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ABSTRACT

This dissertation begins with fundamental questions about hub and spoke and

point-to-point networks. The current hub network problem has received particular

attention in terms of models and methods. However, current hub models do not meet

important requirements for an optimal network design. These requirements include

incorporation of flow economies of scale, infrastructure types, and cost allocation. The

objective of this research is to investigate and characterize hub and point-to-point

networks. This goad is achieved by [1] developing a model that designs an optimal hub

network and an optimal point-to-point network with right-sized infrastructure, [2]

allocating the network costs of hub networks and point-to-point networks to users

(passengers), and [3] comparing cost allocations between hub networks and point-to-

point networks. This research contributes to our understanding of fundamental questions

about the merits of hub networks versus point-to-point networks.
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iii

DEDICATION

To my Mother in Korea, my Father in Heaven, and my Wife in Columbus who all made

this accomplishment possible



iv

ACKNOWLEDGMENTS

I thank my adviser and mentor, Morton E. O’Kelly, for his endless assistance,

encouragement, and endurance through my doctoral program. This dissertation would not

have been possible without his mentoring insights, and patience.

I also thank to my other committee members, Alan T. Murray and Mei-Po Kwan,

for their valuable comments and suggestions. Alan’s continual warm support and

encouragement helped me finish up this work.



v

VITA

1996………………………… B.S., Geography, Kyung Hee University, Seoul, Korea

1999………………………… M.A., Geography, The Ohio State University

1997-current………………… Research, Teaching Associate, The Ohio State University

PUBLICATIONS

Research Publications

1. Thomas, R., Csathó, B., Davis, C., Kim, C., Krabill, W., Manizade, S.,
McConnell, J., Sonntag, J., 2001, Mass balance of higher-elevation parts of the
Greenland ice sheet, Journal of Geophysical Research, Vol. 106, No. D24, pp.
33707-33716.

2. van der Veen, C. J., Bromwich, D. H., Csathó, B. M., and Kim, C., 2001, Trend
Analysis of Greenland Precipitation, Journal of Geophysical Research, Vol. 106,
No. D24, pp. 33909-33918.

3. Thomas, R., T. Akins, B. Csathó, M. Fahnestock, P. Gogineni, C. Kim, and J.
Sonntag, 2000, Mass balance of the Greenland Ice Sheet at high elevations,
Science, Vol. 289, pp. 426-428.

4. Kim, C., B. Csathó, R. Thomas, van der Veen, C. J., 2000. Studying and
monitoring the Greenland ice sheet using GIS techniques. International Archives
of Photogrammetry and Remote Sensing, Vol. XXXII (B7/2), pp. 678-685.

FIELDS OF STUDY

Major Field: Geography



vi

TABLE OF CONTENTS

Page

ABSTRACT ....................................................................................................................ii

DEDICATION ...............................................................................................................iii

ACKNOWLEDGMENTS........................................................................................... iv

VITA.................................................................................................................................. v

LIST OF TABLES ........................................................................................................ ix

LIST OF FIGURES ....................................................................................................xvi

CHAPTERS:

CHAPTER 1 .................................................................................................................... 1
1.1 Problem Statement .............................................................................................. 2
1.2 Infrastructure Design........................................................................................... 3

1.2.1 Infrastructure of the FDMAP Model........................................................... 4
1.2.2 Infrastructure of the FDPTP Model ............................................................ 5

1.3 Cost Allocation and Game Theory...................................................................... 5

CHAPTER 2 .................................................................................................................... 7
2.1 Hub Network Design........................................................................................... 7
2.2 Economies of Scale ........................................................................................... 12
2.3 Cost Allocation.................................................................................................. 18
2.4 Competition....................................................................................................... 21
2.5 Summary of Review.......................................................................................... 24

CHAPTER 3 .................................................................................................................. 25
3.1 Network Design Model ..................................................................................... 28
3.2 Network Modeling Framework......................................................................... 29



vii

Page

3.2.1 Tabu Search in Hub Network.................................................................... 31
3.2.2 Piecewise-Linear Concave Cost Function................................................. 32
3.2.3 Multiple Interhub Links in Hub Network ................................................. 36
3.2.4 Shortest Path Enumeration in Hub Network ............................................. 37

3.3 Infrastructure Design of the Flow-based Discount Multiple Allocation Hub
Problem (FDMAP)........................................................................................................ 38

3.3.1 Model Assumption .................................................................................... 38
3.3.2 Flow-based Discount Multiple Allocation Hub Problem (FDMAP) ........ 39
3.3.3 Tabu FDMAP Algorithm .......................................................................... 41

3.4 Infrastructure Design of the Flow-based Discount Point-To-Point Problem
(FDPTP) ........................................................................................................................ 43

3.4.1 Model Assumption .................................................................................... 44
3.4.2 Flow-based Discount Point-To-Point Problem (FDPTP) ......................... 44

3.5 Cost Allocation in the Hub Network................................................................. 53
3.5.1 Model Assumption .................................................................................... 53
3.5.2 Notations, Definitions, and Properties ...................................................... 54
3.5.3 The Core.................................................................................................... 56
3.5.4 Aggregate Cost Allocation ........................................................................ 63
3.5.5 Individual Cost Allocation ........................................................................ 68

3.6 Cost Allocation in the Point-To-Point Network................................................ 70
3.6.1 Model Assumption .................................................................................... 70
3.6.2 Proportional Cost Allocation..................................................................... 70

CHAPTER 4 .................................................................................................................. 77
4.1 Data Description................................................................................................ 77
4.2 Numerical Results of the FDMAP .................................................................... 79
4.3 Summary of Results ........................................................................................ 101

CHAPTER 5 ................................................................................................................ 103
5.1 Numerical Results of the FDPTP.................................................................... 104
5.2 Properties of the FDPTP ................................................................................. 120
5.3 Summary of Results ........................................................................................ 123

CHAPTER 6 ................................................................................................................ 124
6.1 Numerical Results of Cost Allocation in the FDMAP.................................... 126
6.2 Numerical Results of Cost Allocation in the FDPTP...................................... 139
6.3 Numerical Results of Cost Allocation Comparison ........................................ 165
6.4 Summary of Results ........................................................................................ 186

CHAPTER 7 ................................................................................................................ 189
7.1 Summary of Research ..................................................................................... 190



viii

Page

7.2 Further Research ............................................................................................. 194

APPENDIX A ............................................................................................................. 196

LIST OF REFERENCES ......................................................................................... 199



ix

LIST OF TABLES

Table Page

Table 3.1 Tradeoffs between Fixed Costs and Transport Costs (based on Figure 3.3) .... 34

Table 3.2 Ranges of the Interhub Link Flows (6-Node) ................................................... 48

Table 3.3 Slope (Discount) and Fixed Cost for the Piecewise-Linear Cost (6-Node) ...... 49

Table 3.4 Total Network Cost of FDPTP with/without Hop Constraint (6-Node) ........... 52

Table 3.5 Discounted Link Cost of the FDPTP with/without Hop Constraint (6-Node).. 52

Table 3.6 Optimal Solutions of FDMAP (6-Node)........................................................... 61

Table 3.7 Cost Allocation of FDMAP with Cost Function 1 under Flow Range 1 (6-
Node)......................................................................................................................... 62

Table 3.8 Individual Players (6-Node).............................................................................. 64

Table 3.9 Aggregate Players (6-Node).............................................................................. 64

Table 3.10 Fixed Costs of Interhub Link for FDMAP Hub Game (6-Node).................... 65

Table 3.11 Three Group Players of FDMAP Hub Game in a Normal Form (6-Node) .... 67

Table 3.12 Cost Allocation of Fixed Costs for Individual Player in FDMAP Hub Game
(6-Node) .................................................................................................................... 69

Table 3.13 Cost Allocation (FDPTP without Hop Constraint) of X4 with Cost Function 1
under Flow Range 1 (6-Node)................................................................................... 72

Table 3.14 Cost Allocation (FDPTP without Hop Constraint) of X5 with Cost Function 1
under Flow Range 1 (6-Node)................................................................................... 73



x

Table Page

Table 3.15 Cost Allocation (FDPTP with Hop Constraint) of X2 with Cost Function 1
under Flow Range 1 (6-Node)................................................................................... 74

Table 3.16 Cost Allocation (FDPTP with Hop Constraint) of X4 with Cost Function 1
under Flow Range 1 (6-Node)................................................................................... 75

Table 3.17 Cost Allocation (FDPTP with Hop Constraint) of X5 with Cost Function 1
under Flow Range 1 (6-Node)................................................................................... 76

Table 4.1 Total Network Flow (CAB Data)...................................................................... 78

Table 4.2 Flow Ranges of the Interhub Link Flows (CAB20).......................................... 82

Table 4.3 Slope and Fixed Cost for the Piecewise Linear Cost (CAB20) ........................ 85

Table 4.4 Optimal Solutions of the FDMAP (CAB20)..................................................... 86

Table 4.5 Optimal Solutions of the Multiple Allocation Hub Model (CAB20) ............... 87

Table 4.6 Optimal Solutions of the Multiple Allocation Hub Model with Fixed Hub
Location (CAB20)..................................................................................................... 88

Table 4.7 Ranges of the Interhub Link Flows (CAB25) ................................................... 91

Table 4.8 Slope and Fixed Cost for the Piecewise Linear Cost (CAB25) ........................ 92

Table 4.9 Optimal Solutions of the FDMAP (CAB25)..................................................... 92

Table 4.10 Ranges of the Interhub Link Flows (CAB100) ............................................... 95

Table 4.11 Slope and Fixed Cost for the Piecewise Linear Cost (CAB100) .................... 96

Table 4.12 Optimal Solutions of the FDMAP (CAB100)................................................. 97

Table 4.13 Optimal Solutions of the Multiple Allocation Hub Model (CAB100) ........... 98

Table 5.1 FDPTP (CAB10) with Cost Function 3 under Flow Range 2......................... 109

Table 5.2 Ranges of Link Flows (CAB10) ..................................................................... 111

Table 5.3 Slope and Fixed Cost for the Piecewise-Linear Cost Function (CAB10)....... 111



xi

Table Page

Table 5.4 Cost of the FDPTP Solution without Hop Constraint (CAB10) ..................... 112

Table 5.5 Cost of the FDMAP Solution (CAB10) .......................................................... 112

Table 5.6 Cost of the FDPTP Solution with Hop Constraint (CAB10) .......................... 113

Table 5.7 Discount Levels in the FDPTP (CAB10) with Cost Function 3 under Flow
Range 2.................................................................................................................... 113

Table 5.8 Discount Levels in the FDPTP (CAB10) without Hop Constraint with Cost
Function 3 under Flow Range 2 .............................................................................. 114

Table 5.9 Discount Levels in the FDPTP (CAB10) without Hop Constraint with Cost
Function 1 under Flow Range 1 .............................................................................. 115

Table 5.10 Ranges of Link Flows (CAB15) ................................................................... 116

Table 5.11 Slope and Fixed Cost for the Piecewise Linear Cost Function (CAB15) ..... 117

Table 5.12 Discount Levels in the FDPTP (CAB15) without Hop Constraint with Cost
Function 1 under Flow Range 1 .............................................................................. 118

Table 6.1 Ranges of the Interhub Link Flows (CAB15) ................................................. 126

Table 6.2 Slope and Fixed Cost for the Piecewise Linear Cost (CAB15) ...................... 127

Table 6.3 Cost Allocation (FDMAP) with Cost Function 1 under Flow Range 1 (CAB15)
................................................................................................................................. 129

Table 6.4 Solutions of the FDMAP (CAB15)................................................................. 130

Table 6.5 Cost Allocation (FDMAP) with Cost Function 2 under Flow Range 1 (CAB15)
................................................................................................................................. 131

Table 6.6 Cost Allocation (FDMAP) with Cost Function 3 under Flow Range 1 (CAB15)
................................................................................................................................. 132

Table 6.7 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 4-7 (CAB15)..................................................................................... 136

Table 6.8 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 7-4 (CAB15)..................................................................................... 137



xii

Table Page

Table 6.9 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 7-12 (CAB15)................................................................................... 138

Table 6.10 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 12-7 (CAB15)................................................................................... 138

Table 6.11 Ranges of Link Flows (CAB10) ................................................................... 139

Table 6.12 Slope and Fixed Cost for the Piecewise Linear Cost (CAB10) .................... 140

Table 6.13 Cost Allocation (FDPTP) of 6-9 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 141

Table 6.14 Cost Allocation (FDPTP) of 7-8 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 142

Table 6.15 Cost Allocation (FDPTP) of 7-10 Link with Cost Function 3 under Flow
Range 2 (CAB10).................................................................................................... 142

Table 6.16 Cost Allocation (FDPTP) of 8-7 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 143

Table 6.17 Cost Allocation (FDPTP) of 10-7 Link with Cost Function 3 under Flow
Range 2 (CAB10).................................................................................................... 143

Table 6.18 Cost Allocation (FDPTP) of 1-7 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 144

Table 6.19 Cost Allocation (FDPTP) of 2-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 145

Table 6.20 Cost Allocation (FDPTP) of 3-2 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 146

Table 6.21 Cost Allocation (FDPTP) of 4-9 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 147

Table 6.22 Cost Allocation (FDPTP) of 5-1 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 148

Table 6.23 Cost Allocation (FDPTP) of 5-4 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 149



xiii

Table Page

Table 6.24 Cost Allocation (FDPTP) of 6-3 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 149

Table 6.25 Cost Allocation (FDPTP) of 6-5 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 150

Table 6.26 Cost Allocation (FDPTP) of 7-4 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 151

Table 6.27 Cost Allocation (FDPTP) of 9-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 152

Table 6.28 Cost Allocation (FDPTP) of 1-5 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 154

Table 6.29 Cost Allocation (FDPTP) of 1-10 Link with Cost Function 3 under Flow
Range 2 (CAB10).................................................................................................... 154

Table 6.30 Cost Allocation (FDPTP) of 2-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 155

Table 6.31 Cost Allocation (FDPTP) of 4-8 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 155

Table 6.32 Cost Allocation (FDPTP) of 6-2 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 156

Table 6.33 Cost Allocation (FDPTP) of 6-5 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 156

Table 6.34 Cost Allocation (FDPTP) of 7-8 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 156

Table 6.35 Cost Allocation (FDPTP) of 7-10 Link with Cost Function 3 under Flow
Range 2 (CAB10).................................................................................................... 157

Table 6.36 Cost Allocation (FDPTP) of 4-7 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 157

Table 6.37 Cost Allocation (FDPTP) of 6-1 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 158



xiv

Table Page

Table 6.38 Cost Allocation (FDPTP) of 6-9 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 158

Table 6.39 Cost Allocation (FDPTP) of 8-7 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 159

Table 6.40 Cost Allocation (FDPTP) of 3-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 159

Table 6.41 Cost Allocation (FDPTP) of 5-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 160

Table 6.42 Cost Allocation (FDPTP) of 6-3 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 160

Table 6.43 Cost Allocation (FDPTP) of 10-7 Link with Cost Function 3 under Flow
Range 2 (CAB10).................................................................................................... 161

Table 6.44 Cost Allocation (FDPTP) of 4-9 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 161

Table 6.45 Cost Allocation (FDPTP) of 6-4 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 162

Table 6.46 Cost Allocation (FDPTP) of 7-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 163

Table 6.47 Cost Allocation (FDPTP) of 9-6 Link with Cost Function 3 under Flow Range
2 (CAB10) ............................................................................................................... 164

Table 6.48 Solution of the FDMAP (CAB10) with Cost function 3 under Flow Range 2
................................................................................................................................. 169

Table 6.49 Solution of the FDPTP (CAB10) with Cost function 3 under Flow Range 2
................................................................................................................................. 169

Table 6.50 Cost Allocation (CAB10) of O-D Pairs with Cost function 3 under Flow
Range 2.................................................................................................................... 173

Table 6.51 Cost Allocation (CAB10) of Favorable O-D Pairs by Point-To-Point Network
with Cost function 3 under Flow Range 2 .............................................................. 175



xv

Table Page

Table 6.52 Cost Allocation (CAB10) of Favorable O-D Pairs by Hub Network with Cost
function 3 under Flow Range 2 ............................................................................... 176

Table 6.53 Degree of Node (CAB10) of the FDMAP and the FDPTP with Cost function 3
under Flow Range 2 ................................................................................................ 178

Table 6.54 Selected Nodes for Simulation Set 7 and 8................................................... 179

Table 6.55 Solutions for Simulation Set 7 ...................................................................... 180

Table 6.56 Solutions for Simulation Set 8 ...................................................................... 183



xvi

LIST OF FIGURES

Figure Page

Figure 3.1 Piecewise-Linear Concave Cost Function ....................................................... 29

Figure 3.2 Network Design Framework............................................................................ 30

Figure 3.3 Simple Hub Network (6-Node)........................................................................ 35

Figure 3.4 Solution (6-Node) of FDPTP with Hop Constraint with Cost Function 1 under
Flow Range 1 ............................................................................................................ 49

Figure 3.5 Solution (6-Node) of FDPTP without Hop Constraint with Cost Function 1 . 51

Figure 3.6 The Hub Network with FDMAP Hub Game (6-Node) ................................... 68

Figure 4.1 CAB Data Set................................................................................................... 78

Figure 4.2 Infrastructure of the FDMAP........................................................................... 79

Figure 4.3 Interhub Flow with Cost Function 10 (CAB20) .............................................. 89

Figure 4.4 Interhub Flow with Cost Function 11 (CAB20) .............................................. 90

Figure 4.5 Interhub Flow with Cost Function 1 (CAB25) ................................................ 93

Figure 4.6 Interhub Flow with Cost Function 3 (CAB25) ................................................ 94

Figure 4.7 Interhub Flow with Cost Function 3 (CAB100) .............................................. 99

Figure 4.8 Interhub Flow with Cost Function 7 (CAB100) ............................................ 100

Figure 5.1 Result (CAB10) of the FDPTP with Cost Function 3 under Flow Range 2.. 107



xvii

Figure Page

Figure 5.2 Result (CAB10) of the FDPTP without Hop Constraint with Cost Function 3
under Flow Range 2 ................................................................................................ 108

Figure 5.3 Result (CAB10) of the FDPTP without Hop Constraint with Cost Function 1
under Flow Range 1 ................................................................................................ 110

Figure 5.4 Result (CAB15) of the FDPTP without Hop Constraint with Cost Function 1
under Flow Range 1 ................................................................................................ 119

Figure 5.5 Asymmetric Individual Routing .................................................................... 120

Figure 5.6 Splitting Flows of O-D pair ........................................................................... 121

Figure 5.7 Mixture of Discount and Non-discount Link................................................. 122

Figure 6.1 Cost Allocation of Infrastructure (Interhub Link) ......................................... 125

Figure 6.2 Competitive Route in Hub Network .............................................................. 167

Figure 6.3 Interhub Link Connection.............................................................................. 168

Figure 6.4 Result (CAB10) of the FDMAP with Cost function 3 under Flow Range 2. 170

Figure 6.5 Cost Allocation (CAB10) of Favorable O-D Pairs by the FDMAP with Cost
function 3 under Flow Range 2 ............................................................................... 171

Figure 6.6 Result (Simulation 7) of the FDMAP with Cost function 3 under Flow Range
2............................................................................................................................... 181

Figure 6.7 Result (Simulation 7) of the FDPTP with Cost function 3 under Flow Range 2
................................................................................................................................. 182

Figure 6.8 Result (Simulation 8) of the FDMAP with Cost function 3 under Flow Range
2............................................................................................................................... 184

Figure 6.9 Result (Simulation 8) of the FDPTP with Cost function 3 under Flow Range 2
................................................................................................................................. 185



1

CHAPTER 1

INTRODUCTION

Airline deregulation in the U.S. has led to intense changes in the arrangement of

the network structure. Deregulation has allowed airlines to expand and rearrange their

route structure, resulting in hub-and-spoke networks. In one particular form of hub

networks, a set of hub nodes is fully connected while other non-hub nodes are connected

to those hub nodes. The interaction between nodes is done largely via hubs. From the

passenger’s point of view, the benefits include more frequent flights at the expense of

longer journey times, or inconvenience. For the airline side, airline industries can achieve

higher traffic densities than the traditional point-to-point network structure by

concentrating passengers in hubs. Studies show that economies of density are the main

reason for lowering cost per passenger. However, current hub network models do not

represent economies of scale in a realistic way. Such economies of scale are embedded in

a hub network, and are interrelated with cooperation of origin-destination flows. For

example, economic advantages can be obtained by installing right-sized infrastructure. To

establish the optimal infrastructure of hub networks, it is sometimes necessary for the

origin-destination pairs (hereafter called O-D pairs) of passengers to cooperate with each
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other, or for the carriers to coordinate such flows. Moreover, the route strategy for the

flows in a hub network should be compared with the point-to-point network provider in

order to gauge costs and benefits comparatively.

In theory, a new airline network may be designed optimally by considering some

important factors, such as flow economies of scale, optimal infrastructure, and cost

allocation. The current hub network design literature has not successfully integrated these

factors. Such a research finding can also be applied to other fields. In addition to airline

traffic flows in hub networks, there are other major applications for hub-and-spoke

networks: telecommunications, fuel transmission, and mail delivery networks.

This dissertation is organized as follows. Previous research is reviewed in chapter

2. In chapter 3, the methodology for the developed models is described, and the various

approaches to solving hub, and point-to-point models are characterized algorithmically.

Chapters 4, 5, and 6 show numerical results for the developed models. Chapter 7 consists

of a discussion of the results and recommendations for future research.

1.1 Problem Statement

This section introduces relevant research issues by describing the problem

motivating this research and the purpose of this work. The current hub network problem

has received particular attention in terms of models and methods. However, current hub

models do not meet important requirements for optimal network design. These

requirements include incorporation of flow economies of scale, infrastructure types, and

cost allocation. The objectives of this research are [1] to develop a model that designs an
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optimal hub network and an optimal point-to-point network with right-sized

infrastructure, [2] to allocate the network costs of hub networks and point-to-point

networks to the users (passengers), and [3] to compare cost allocations between hub

networks and point-to-point networks. These objectives contribute to our understanding

of fundamental questions about the merits of hub networks versus point-to-point

networks.

1.2 Infrastructure Design

The topological infrastructure questions involved in establishing links on both hub

networks and point-to-point networks are represented in this section. First, the

infrastructure design of hub networks involves an interhub link installation problem with

a choice of link types. Infrastructure design in hub networks can be described as follows:

given a set of network nodes, [1] select a subset of possible hub nodes, [2] build a set of

interhub links where the type of an interhub link can be specified by cost function and

flow condition, and [3] assign non-hub nodes to hub nodes so as to minimize the total

cost of location (hub), allocation (hub-spoke), and infrastructure (interhub link). An

efficient heuristic method for designing the optimal infrastructure of interhub links is

developed by solving a multiple hub problem with flow economies of scale. This

approach employs piecewise-linear concave cost functions on the interhub links. Second,

the infrastructure design in point-to-point networks involves the decision to open any link

based on a piecewise linear concave cost function. Within the limited flows generated in
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networks, the question is which link can be selected to open for achieving flow

economies of scale.

1.2.1 Infrastructure of the FDMAP1 Model

In this section, the issue of optimal interhub infrastructure in hub networks is

addressed through an approach which incorporates flow economies of scale. Interhub

infrastructure in this research represents the types of linkages, such as the size of airplane,

frequency level of airplane service in a passenger network, or the types of backbone link

pipelines (trunks) in a telecommunication network. According to the applications of the

hub network model, models considering economies of scale represent the real world

better than those which use a constant discount. Previous research has pointed out that a

constant discount factor does not represent the real volume carried on an interhub link

because interhub links may have either lower or higher volume than expected [see

O’Kelly (1998) for more details]. This implies that current hub network research2 does

not provide accurate algorithms for addressing optimal interhub infrastructure. The

optimal level of the interhub link is a critical factor in network performance. For

example, it is expensive to install large volume interhub links if they are unmatched with

network flows (called over-provision of infrastructure), or vice versa. Thus, a hub

network itself should find the optimal infrastructure types and optimal flows

1 Flow-based Discount Multiple Allocation Hub Problem (FDMAP).
2 Bryan (1998) developed the complete enumeration of the interhub links for the smaller size of networks.
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simultaneously. The model developed in this study ensures optimality3 with respect to

interhub link types and interhub flows.

1.2.2 Infrastructure of the FDPTP4 Model

The idea of flow-based discount point-to-point network is based on the

observations of previous hub network models and point-to-point models. The results of

hub models reveal that some interhub links carry only a small amount of flow while other

non-interhub links are busy carrying significant flow. On the other hand, there is not

enough flow to maintain all direct links in point-to-point networks. To fill the gap

between these conflicting observations, the model allows discounts on heavily used links

based on a piecewise-linear concave cost function. This implies that some O-D pairs may

have to deviate from their shortest path to build up higher flow levels if necessary.

1.3 Cost Allocation and Game Theory

The cost allocation of a shared link is investigated in this section. Interhub link

installed is the shared link in hub networks and any opened link is the shared link in

point-to-point networks. Little attention has been paid to the problem of allocating the

costs of setting up infrastructure among users (passengers). Allocating the costs properly

among users is critical in network design. The model that incorporates a fixed charge for

using infrastructure affects the individual routing strategy resulting from flow economies

3 Optimality here means proper infrastructure that is based on location-allocation using a heuristic method.
Therefore, it may not be an optimal solution strictly speaking.
4 Flow-based Discount Point-to-Point Problem (FDPTP).
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of scale with bundling flows. It is possible for each group of users to cooperate and set up

infrastructure satisfying the demand and supply of its own members. The nature of this

problem is such that if any disjoint coalitions unite, their total cost will not increase [see

Tamir (1992) for more details]. Therefore, with respect to the total cost for all users who

join the coalition, there exists an incentive for them to act as a grand coalition. However,

a question arises over how to allocate the total network cost (especially the fixed cost of

infrastructure) to the users. Fair cost allocation should demonstrate that no group of users

will have the motivation to break up the grand coalition and act on its own. In game

theory terminology, such a cost allocation is called a core allocation. A suitable cost

allocation among cooperating participants is a critical prerequisite to create a coalition.

Using the above argument, the problem of setting cost allocation involves

network design. Thus, cost allocation should be reflected in designing both the hub

network and the point-to-point network. Mathematical programming for cost allocation

featuring a game theory approach is used to set up the hub network efficiently. A

common cost allocation method, cores, is incorporated into the hub location model in

order to provide fair cost to users. Unlike the hub network, a cost allocation of the point-

to-point network can be achieved without resorting to game theory. The main reason is

that there is no interhub link in the point-to-point network. In hub networks, O-D pairs

can find a cheaper cost by switching their routes due to flow economies of scale on

interhub links. However, O-D pairs in point-to-point networks cannot find better routes.
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CHAPTER 2

LITERATURE REVIEW

This chapter is a general overview of previous research related to the hub-and-

spoke networks and point-to-point networks. Network studies can be reviewed in various

ways. This chapter reviews previous literature by focusing on aspects directly relevant to

the dissertation. These factors include location-allocation, network design, cost

allocation, game theory, competition and so on. Network models can also be formulated

with various network environments: continuous (plane) model and discrete (non-plane)

model. However, the review section mainly focuses on discrete models.

2.1 Hub Network Design

This section reviews major aspects of hub network design such as location-

allocation using heuristic algorithms. Most recent hub problem methods locate the hub

nodes given the number of demand nodes, O-D spatial interaction flows, and discounted

link costs to minimize the total transportation cost. Since O’Kelly (1986) first formulated

the p-hub problem, there has been a great deal of analytical research on the hub location

problem. Optimizing current air passenger patterns can solve hub location problems in

which central facilities acting as switching points for interactions that are chosen as hubs.
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The main decision in single hub assignment is to assign one node to another whereas the

big concern in the multiple hub problem is how to connect multiple hubs or where to put

multiple hubs. The common fundamental interest for both single and multiple hub

problems is based on the total minimum cost. One of the most difficult components in

hub location problems is the allocation of spoke nodes to hub nodes. In the easiest case,

multiple allocation allows each origin-destination node to be routed directly from several

hubs based on finding the cheapest routing. In other words, each node can use more than

one hub node in a multiple allocation system. A single allocation restriction permits each

node to be assigned only to a single hub. This strict restriction makes a single allocation

model more difficult to solve than a multiple allocation model. Recent studies focus on

the multiple allocation hub problem because it is more realistic. A solution approach of

complete enumeration using shortest paths for the multiple hub problem was addressed

by Campbell (1994). He stated that a multiple allocation problem gives a good indicator

of a lower bound for a single allocation problem (see Campbell (1996) for more details).

O’Kelly (1998) presented a multiple hub assignment using the inter-hub discount factor.

He stated that the usage of hub linkages depends on the discount pattern.

Heuristic methods are most commonly used in the areas of transportation

planning and location modeling. They are useful when optimal algorithms cannot solve

the problem or take a very long time to solve because of problem size and complexity.

Heuristic methods are analytical solution methods that are based on an intuitive

understanding of the model. In general, a good understanding of the relationship between

the decision variables and the constraints and the objective function is required to
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formulate good heuristic procedures. Numerous meta-heuristic methods, in addition to

the enumeration-based approaches, have been proposed in recent years. Klincewicz

(1991) used exchange heuristics with clustering. He recommended a multi-criteria

assignment procedure in allocating spokes to hubs. In his two-stage procedure, both

distance from a spoke to a hub and flow between spokes are considered. Later

Klincewicz (1992) applied a tabu search and a greedy randomized adaptive search

procedure (GRASP) to hub problems. The computational results indicated that good

solutions tended to be found in the early stages of tabu search. Skorin-Kapov and Skorin-

Kapov (1994) developed a tabu search heuristic to solve single allocation p-hub

problems. Their tabu search method defined the neighborhood structure for location and

allocation separately. Their computational results showed that tabu search is good for

solving the single allocation hub problem. At the time of publication, the best-known

solutions for the single allocation p-HLP (Hub Location Problem) for the CAB5 data set

were achieved by the tabu search heuristic. Later, O’Kelly, Skorin-Kapov and Skorin-

Kapov (1995) extended a hub model with a new approach to develop the best bounds

obtained for the hub location problem. Their methodology identified good lower bounds

for the single allocation hub problem by linearizing a quadratic term.

Some recent research has shown that the important algorithmic benefits of using

tight linear programming relaxations. Skorin-Kapov et al. (1996) provided a tight linear

programming formulation to find optimal solutions to the problem. Although their

solutions were very close to optimality, computation time was extensive. Therefore, the

5 Civil Aeronautics Board (CAB) data sets of U.S. city airline passenger flows in 1970 are used in this
study.
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application to the large-scale network is prohibitive. To get over this limitation of size,

Sohn and Park (1997) showed that the 2-hub problem could be solved in polynomial time

with fixed hub locations based on enumeration of all possible pairs of hubs using a

minimum cut algorithm implementing a large network problem. They concentrated on the

allocation parts of terminal nodes to two fixed hubs. However, their application is

somewhat less realistic because it only deals with 2 hub locations. More recently, Sherali

et al. (2000) developed a model for the design of local access transport area networks by

applying the reformulation-linearization technique. They designed a hybrid heuristic

procedure that combines a limited run of an exact method with a Lagrangean dual

procedure. Their problem requires hub nodes to be equipped with multiplexers in order to

process the aggregated transmission traffic. The problem decides on which nodes from a

potential set should be designated as hubs, what multiplexer capacity should each of these

hubs be provided with, and how should the demand of the clients be routed. The cost

function in this model involves equipment component costs that exhibit nonlinear

economies of scale. They argue that its presence influences the network design, and it

specifically needs to be accounted for in developing solution procedures.

Wheeler (1989) has provided “check-lists” of factors in hub location. He

discussed how to determine hub location by listing several factors. He stated that the

most critical factor is to locate the hub in an area with a large volume of local origin and

destination traffic. He demonstrated that hubs should be centrally located near the

weighted midpoint of cities served by a hub in order to minimize network circuity and

total elapsed travel time. A heuristic for the hub model can utilize this implication. The
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hub model needs to consider the hub node candidates within the convex hull of all nodes

to reduce the search space. The author also maintained that the creation of multiple hub

networks allows an airport to serve an increased percentage of the potential O-D markets

by better serving existing flows and by entering into markets that were previously served

only by circuitous routes.

The proper infrastructure also plays a very important role in designing a hub

network. However, there has been little attention to the effect of linkages, cables, or

interhub links on the structure of network. Gavish and Neuman (1989) employed

Lagrangean relaxation to solve the joint problem of assigning linkage capacity and

selecting a route for each interacting node pair to achieve a minimum network cost while

satisfying a required performance level. The model included fixed setup and variable

traffic linkage costs. This paper demonstrates that there are two costs in network cost:

transportation and fixed.

Several algorithms have been proposed for the hub network design. Some of the

algorithms are heuristic, and some others are based on more rigorous mathematical

programming. As can be observed above, hub models belong to the difficult

combinatorial problems thanks to the number of integer variables and constraints

involved so the computation of an optimal solution is expected to be a challenging task.

The computational requirements for obtaining exact solutions to hub problems lead to

many heuristic approaches. Previous heuristic methods show that the use of a collection

of linked subproblems is a good modeling approach. However, heuristic methods do not

guarantee an exact optimal solution, although they may be fast and deals with large data
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sets compared to branch-and-bound methods. In this research, both a linearization of a

quadratic term and a tabu heuristic algorithm are used to solve the hub problem. Because

of the complexity of a hub network design problem and interdependency among different

variables, an exact solution for large networks is not yet available. This topic is pursued

in Section 3.2 of this dissertation.

2.2 Economies of Scale

This section reviews how cost functions are incorporated in network models to

address flow economies of scale. This section also focuses on the effect of economies of

scale on network structure. The cost of shipping from node to node often uses a simple

linear function. However, the linear cost assumption is often not realistic because it

cannot account for economies of scale. If fixed charges, discounts, or economies of scale

are involved in the transportation network, concave cost functions make more sense. The

question of economies of scale is a major focus in the analysis of concave cost functions.

The concavity of the cost function corresponds to economies of scale, which results in

decreasing marginal cost and decreasing mean cost with respect to higher volume of

flow. Therefore, to adopt economies of scale in a hub model, the concave cost function

must be employed.

Zangwill (1968) developed theorems which explicitly characterize the extreme

points for certain networks. By exploiting this characterization, he developed algorithms

that determine the minimum concave cost solution for networks with a single source and

a single destination. His main concern was how to determine minimum cost flows in
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certain types of concave cost networks. He found that there is an optimal solution to the

single-source minimum concave cost network flow problem with at most one positive

incoming flow into each node. One important finding is that it is not necessary to search

all the extreme flows in order to find the optimal flow. His finding helps solve the

uncapacitated concave flow problem because it has many local optima. His results are

quite useful in characterizing extreme flows in networks and useful for analyzing the

concept of extreme flow. However, this idea of extreme flows is restricted for certain

networks. The links of the FDPTP involve multiple sources and destinations so the model

may have to split flows into many links to achieve flow economies of scale [see Section

5.2 for more details about flow splitting property]. This topic is pursued in Section 3.2 of

this dissertation.

Yaged (1971) proposed the fixed point heuristic to solve the Zangwill’ problem.

His fast search algorithms are efficient for finding local optima but not a global optimum.

He developed techniques for selecting a path through the network for each point-to-point

demand for communication channels. He demonstrated that a modification of the iterative

algorithm provides acceptable solutions when the link cost displays a fixed charge. This

approach is efficient when an exact solution is difficult. He also suggested a method for

routing future demands and installing transmission facilities. His model is based on two

critical assumptions. First, the transmission systems to be installed on a link must display

economies of scale. Second, each link cost is assumed to be a concave function of link

size. His study showed that concave link cost functions are realistic because they reflect

economies of scale. Magnanti and Wong (1984) reviewed the concave cost network
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design problem. They discussed the concave cost network flow problem that generalizes

the uncapacitated fixed-charge network design model. They also showed that the basic

fixed-charge design problem is quite flexible and contains many well-known network

optimization problems, including the shortest path and uncapacitated plant location.

Earlier Rech and Barton (1970) proposed a solution method for solving

nonconvex transportation problems. They dealt with a minimal cost transportation

problem for shipping a single commodity, available at m sources, to n destinations with

known demands. These n destinations are connected to supply points by a transportation

network, which has features of transshipment points and restrictions on the capacity of a

pipeline. They argued that some cost functions can be nonconvex piecewise linear cost

functions, with an example of warehouse location under economies of scale. They

showed that a particular case of such a cost function is the concave piecewise linear cost

function arising whenever economies of scale are present. Hall (1989) showed that the

optimal route for each origin-destination pair can be found from the optimal flows on the

shared arcs alone. A “shared arc” means it carries flow for more than one origin-

destination pair. He argued that the optimal shared arc flows can be found with an

exhaustive search over the feasible region for flows. His model procedure for selecting

shipment routes accounts for economies of scale.

The following paper represents different aspects of concave cost network flow

problem. Balakrishnan and Graves (1989) considered the problem of routing multiple

commodities between various origin-destination pairs in a network. They developed a

composite algorithm to create both lower bounds and feasible solutions as a mixed
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integer program. They incorporated economies of scale in arc flow costs using piecewise

linear concave total cost functions for each arc. They showed that the cost function can be

partitioned into several cost ranges using a piecewise linear assumption. They

demonstrated that the composite algorithm is very effective in generating solutions with

small gaps between the upper and lower bounds, even for relatively large problems. They

stated that the performance of their algorithms substantially improve when the networks

have certain special topologies.

The relationships between scale economies and network shapes were

mathematically and empirically explored by Gordon (1974). He drew several

conclusions. First, fully connected transportation networks are uncommon because of the

existence of scale economies for most transportation modes. This contention is supported

by the results of the FDMAP and the FDPTP. The models do not build fully connected

networks due to flow economies of scale. Second, the greater the scale economies, the

less connected the network shape and the more intense the traffic pattern. Third,

congestion at nodes should cause a more connected network. Fourth, the network shape,

given a fixed cost function, should rely on supply-demand equilibrium.

Explicit flow economies of scale were not exploited in hub models until recent

years. O’Kelly and Bryan (1998) formulated a model incorporating a piece-wise linear

concave cost function. The cost of utilizing an interhub link in their model depends on the

total amount of flow traveling across it with the per unit cost decreasing as flows

increase. Their approach approximated a nonlinear cost function to represent more

realistic interhub discounts. Later Bryan (1998) presented four extensions of the hub
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location problem, one being a model that incorporates a flow-dependent cost function for

the spokes as well as the interhub links. This extended the basic hub model

systematically. She also allowed discounts on all link flows. This idea is very related to

point-to-point networks in which any link can get a discount based on threshold. O’Kelly

and Bryan (2001) showed that the resulting hub facility locations are interdependent due

to the flows between them. Their solution approach favors the assembly of flows into

bundles so that the model can penalize fractional facility locations. They discussed non-

integer solutions resulting from fractional facilities. They proposed different models

depending on the allocations and flow-dependent cost functions. Their approach

represents hub-and-spoke networks from a more realistic point of view. Horner and

O’Kelly (2001) explored an endogenous hub location problem based on equilibrium

traffic assignment. They implemented a non-linear cost function, which allows

economies of scale on all network links. They also showed that network flows are re-

routed to utilize the cost savings for amalgamation under discounted conditions.

As discussed above, a simple hub model fails to consider economies of scale.

When researchers realized that there was little concentration on the interhub links with a

simple multiple allocation protocol, studies with discounts shifted to investigate

economies of scale. Therefore, the discount factor alpha should be differentiated based on

the level of interhub flows. This assertion is also applied to the point-to-point network.

Little flow concentration on the links by a simple model motivates the development of a

flow discount model of this dissertation.
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Over the years the effect of economies of scale has received considerable

attention in the transportation network literature. Economies of scale generate tendencies

toward concentration. Hub-and-spoke operations of airlines benefit from economies of

scale. For example, smaller airplanes bring in passengers from smaller or medium-size

cities into a hub, and a larger airplane carries them to another hub that is close to the

destinations, and then smaller airplanes carry the passengers to the destinations. Often

times, passengers to a common destination are served by a larger airplane directly from

the first hub. The benefit of hub networks is the usage of a small number of links and

exploitation of economies of scale by concentrating flows. Transportation costs are

characterized by significant economies of scale, so that average costs on a connection

decline as a number of users increases.

Considerable research has been spent on the cost function in network models,

although not all cost function models use the concave cost function. A concave cost

function differs from the general cost function in that economies of scale are present in

the network. To implement the concave cost function, a piecewise linear concave cost

function is employed in a design problem with link type selection. This review supports

the practicability of a piecewise-linear concave cost function for the network design to

employ flow economies of scale. This topic is pursued in Sections 3.3 and 3.4 of this

dissertation.
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2.3 Cost Allocation

This section demonstrates how cost allocation is efficient and how it works in a

network context by reviewing previous studies. The following research addresses a

fundamental question about cost allocation in network design, i.e. how to fairly allocate

costs for users. Although there is a much analytical research on hub location models, cost

allocation studies do not get much attention. The cost sharing is common in many

economic activities. The issues of cost sharing appear both explicitly and implicitly.

However, the difficulty arises explicitly whenever a group of individuals jointly use a

shared infrastructure. This argument similarly corresponds to the issues of the interhub

link costs in hub networks, and the link costs in point-to-point networks.

Heaney and Dickinson (1982) cited four well-known cost apportionment methods

to allocate costs among participants in common usage: Separable Cost Remaining Benefit

(SCRB) method, Shapley method, Linear Programming method (LP), and Minimum Cost

Remaining Saving method (MCRS). They developed the minimum cost remaining saving

method to overcome weakness in the Shapley, and LP. They argued that in the presence

of a core, all methods listed do not differ significantly. If there is no core, however, the

other three methods (Shapley, LP, and SCRB) do not produce a rational allocation of cost

while the MCRS method utilizes an additional LP technique that relaxes the core

constraints to find a core solution. Their method is based on the axioms of fairness from

cooperative n-person game theory. Young et al. (1982) also compared different methods

for allocating the joint costs. They contrasted the separable cost remaining benefits

method (SCRB) with the Shapley value and variants of the core from cooperative game
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theory. The SCRB method is shown to be flawed in that it is not monotonic6 in total costs.

In other words, an increase in total costs may result in some participants having to pay

less than before due to the way in which marginal costs are introduced. They concluded

that proportional allocation according to a single numerical criterion may be preferable to

the more complicated SCRB method.

There are two comparable works which focus on cost allocation of location

models on networks. Tamir (1992) discussed a class of location problems for which there

always exists a core allocation. The core itself was characterized by a dual linear program

to the location problem. The important concluding remark from his research is that there

exists core allocation on tree graphs. Granot (1987) considered cost allocation as a

cooperative game in facility locational models, but only in a single facility case. He

argued that the location y and a corresponding cost allocation q should be selected from a

least core associated with the locational model. His model assumptions on the utility

functions of the users are less restrictive than those in Tamir (1992). He maintained that

the allocation of the system’s operating cost and the locations of the service stations are

strongly related. That is, the farther a user is from the service station, the lower the cost

share a user should be willing to pay. However, his argument is questionable in the case

of infrastructure cost allocation in hub networks and point-to-point networks because the

link usages involve at least two locations.

The game theoretical approach has been used not only to model various cost

allocation problems, but also to design algorithms for networks. In a network system, the

6 See Megiddo (1974) for the monotonicity property. If total costs increase then no participant will be
charged less; conversely, if total costs decrease, no participant will be required to pay more.
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players need to compete for nodes or arcs, but also need to cooperate in order to

efficiently perform the system. Relatively little has been done on the analysis of game

theoretic cost allocation for general network problems.

Sharkey (1990) studied a class of cooperative game involving the shared use of

fixed cost facilities. He showed that a sufficient and a necessary condition for a nonempty

core coincide with optimal values for a pair of integer and linear program. It is shown

that shadow prices do not exist to sustain a minimal cost network when there is

decentralized ownership of individual links. Combined approaches that incorporate hub

network design with cost allocation have been discussed by Skorin-Kapov (1998, 2001).

The most relevant game theoretical cost allocation method in hub network design was

studied by Skorin-Kapov (1998). He addressed the cost allocation problem associated

with the p-hub location problem. He described basic hub games, and classified the hub

game into 6 different possible games based on players, characteristic function, and

network traffic. He defined a hub game as follows. First, it is concerned with the

distribution of the cost of flow among users. Second, it takes care of the user’s

contribution to economies of scale. Thus, a hub game model exploits economies of scale

by cooperation of users and by routing traffic via hubs. Using this insight, he approached

cooperative game theory to examine the behavior and the associated cost allocation of

different users of hub networks. He applied core and nucleolus techniques to solve cost

allocation. Thus, his study’s main objective is to develop a computationally tractable

framework for a fair allocation of the cost of communication services delivered via the

hub network among its users. Because a hub network game model is computationally
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prohibitive, it is very difficult to solve the problem with general practical algorithms.

There are very noticeable differences between previous cost allocation approaches and

hub network game approaches. While the distribution of the cost of flow among users

(network nodes) is the main concern in cost allocation, the division among pairs of nodes

is considered in a hub network game. There are some complexities in hub network

games. First, it is problematic how to define the set of players for the hub game. Second,

how the cost should be determined is an issue. Moreover, most of cost allocation solution

concepts require the enormous amount of data to compute and exponential number of

constraints. Later, Skorin-Kapov (2001) considered cost allocation of hub-like network

design in which each pair of nodes can communicate via a direct link and the origin-

destination flow can be delivered through any path in the network. He introduced an

incentive to combine flow from different sources. For example, if the total flow through a

link exceeds the prescribed threshold, then the cost of this flow is discounted by a factor

alpha. This topic is pursued in Sections 3.5 and 3.6 of this dissertation.

2.4 Competition

This section emphasizes competition issues in the networks. There is little

literature dealing with competition issues in a hub network. According to previous

literature, competing hubs have locational advantages in certain markets. Thus, location

benefits impact competitive behavior of existing hubs, and even produce opportunities for

the expansion of new hubs. Hansen (1988) suggested three basic principles in a hub

competition model. First, an airline’s hubs obtain competitive advantages in certain
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markets. Second, these competitive advantages can lead to additional profits by

increasing either load factors or fares. Third, hub competition includes both exploitation

of existing hub assets to their best advantage, and the modification of these assets in order

to enhance the value of the advantages they can give. He proposed that sound planning of

system infrastructure requires an understanding of how hub competition will affect future

traffic levels, of how investment decisions may influence the competitive process, and of

the potential for management strategies to shift demand in order to make better use of

existing facilities. He argued that a relatively small number of hubs make a hub location a

critical variable in the competitive process. He pointed out that the model should address

service as well as location because different hubs provide different services. Using this

insight, he suggested a model of airline hub competition should address four phenomena.

First, a model should offer an understanding of the forces leading to hub location.

Second, a model must explain how services offered from any given hub are determined,

termed as the process of hub configuration. Third, a model should take into account the

potential influence of one hub’s configuration on that of another, termed as hub

interaction. Fourth, a model should estimate how these processes will determine the

success of different competitors, termed the competitive outcome. Later Hansen (1990)

developed a game theoretical model of airline hub competition using the United States air

transportation system. His hub competition model can be depicted as a noncooperative

game between a set of airlines seeking to maximize profit with two types of competitors:

hub carriers and direct carriers. Although his model had some simplifying assumptions, it

represented a considerable advance to fit passenger service preferences, aircraft
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technology characteristics, and airline economic behavior into a unified model. He

concluded that the competition game does not have true equilibrium points in general.

However, he found that a state of quasi-equilibrium can be found in the case in which

round-to-round strategy adjustments by the airline competitors were small.

An equilibrium model of airline network considering airline competition and

passenger routing preference was developed by Ghobrial (1983). The results suggested

that network hubbing is efficient, and airlines will probably find it beneficial to hub

despite the pricing penalties due to the airport congestion fee imposed on airlines using

major hubs. Phillips (1987) presented statistical information regarding air carriers’ altered

operating and marketing practices in strengthening their hubs and reducing interline

operation in hubs. He found that if an airline dominates its hub, it may be in a better

position to prevail over actual and potential competitors. There are also negative effects

of hub competition. Brueckner and Spiller (1991) examined a negative effect of

competition in airline hub-and-spoke networks. They found that competition in an airline

hub-and-spoke network may have harmful effects outside the market where it occurs.

They expected competition in a single market of a hub-and-spoke network to generate

negative externalities. Starr and Stinchcombe (1992) investigated hub networks in which

systems are optimal under a variety of cost and demand configurations, and typically

demonstrate large, pervasive economies of scale. Moreover, those pervasive scale

economies indicate that the industry is a natural monopoly assuming the presence of high

costs and low marginal costs. However, they admit that if passenger flows to or from

most non-hub destinations exceed several times the economic capacity of a single
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aircraft, then the scale economy can be fully exploited by each of several firms rather

than rely on a monopolistic structure. This statement tells us that there is room in the

market for several airlines and several hubs. Marianov et al. (1999) proposed an

algorithmic approach to deal with direct competition. Their model enabled an airline to

capture customers if the competitor can provide shorter distance for each O-D pair. Their

model is based on only cost without considering pricing policy. This topic is pursued in

Section 6.4 of this dissertation.

2.5 Summary of Review

A variety of aspects on current hub networks and point-to-point networks were

reviewed. Moreover, the topics related with solution approaches were also given. The

review included comprehensive views on both conceptual and applied sides. Many

previous model formulations and solution approaches are critically examined to

overcome the current research gap and to provide a more comprehensive model

framework.
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CHAPTER 3

METHODOLOGY

This chapter presents methodologies to support design decisions for infrastructure

and cost allocation in both hub networks and point-to-point networks. Such networks

interconnect geographically dispersed nodes and switching centers. Topological design

decisions incorporating these issues are very important in a hub network design. They are

important because of the dynamic network adjustment required for interhub links and

switching facilities, and the significant impact of network configuration choices on

several levels. With increasing competition and service diversity in the airline network

industry, understanding network characteristics of both hub and point-to-point networks

have become increasingly important.

This chapter develops models to design an optimal hub network and an optimal

point-to-point model with respect to infrastructure and shows an approach to solve them.

The models are motivated by several observations regarding hub network design

practices. From a design perspective, network planners must often accommodate various

explicit as well as implicit design considerations that cannot be adequately represented in

optimization models. Optimal infrastructure is an explicit decision while fair cost

allocation is an implicit consideration. To do this, it is necessary to completely
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characterize underlying network features of infrastructure and cost allocation in a

convenient form for mathematical modeling. From the optimization point of view, since

most discrete hub network design problems are NP-hard, optimization-based heuristic

procedures that provide feasible solutions are suitable solution approaches. For the point-

to-point network, a complete enumeration method, rather than a heuristic approach, is

employed.

The network design in this research has two major methodologies: [1] Design the

optimal infrastructure on both hub networks and point-to-point networks using an

optimization-based model, [2] Allocate the total network cost (especially fixed cost of

infrastructure) to the users (O-D pairs) based on cooperative game theory in hub

networks based on a player’s flow contribution in point-to-point networks. Then, user

costs between hub networks and point-to-point networks are compared to characterize

different network designs.

On the hub network side, the methodology expands a traditional hub model into a

flow-based discount hub model by incorporating flow economies of scale. This

modification building on prior research [see Chapter 2 for more details] combines some

network design refinements, such as creating alternate routes for origin-destination pairs

by incorporating more possible ways to transport flows in a hub network. The hub

network design considers major topological decisions of location-allocation, and it also

determines the optimal levels of service for installed infrastructure.

On the point-to-point network side, the methodology expands a pure point-to-

point model into a flow-based discount point-to-point model by adding flow economies
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of scale on opened links. The point-to-point network design considers major topological

decisions of location-allocation, and it also determines the optimal levels of service for

installed infrastructure. To compare the results of the point-to-point network model with

those of a hub network model, restrictions on the number of connections between origin

and destination are imposed. For each origin-destination pair, for example, the number of

links on the interconnecting route is limited by the intermediate hop restrictions to follow

hub network structure [see Balakrishnan and Altinkemer (1992) for more details]. In air

passenger networks, especially, the number of links is a critical consideration unlike in

telecommunication networks because the maximum number of intermediate stops to be

tolerated by passengers is at most two. Thus, the model only allows at most two stops on

an origin and destination route. It is also expected that the constraints in the number of

links affect arc (link) densities and cost structures.

The rest of this chapter is organized as follows. Sections 3.1 and 3.2 define

substantial components of the models. In Section 3.3, the infrastructure design of the

flow-based discount multiple allocation hub problem (FDMAP) is presented as a

mathematical programming formulation with formal descriptions, and the modeling

assumptions. A tabu search heuristic is also described as a solution approach to solve the

FDMAP. Section 3.4 describes the infrastructure design of the flow-based discount point-

to-point problem (FDPTP) as a mathematical program, and details modeling assumptions.

Sections 3.5 and 3.6 describe cost allocation schemes for the FDMAP and the FDPTP

respectively.
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3.1 Network Design Model

For the hub network design problem involves selecting a subset of links (network

infrastructure) with optimal service levels on each selected interhub link, and routing all

internodal traffic requirements at minimum total investment and operating cost. Thus, the

decisions of the topological design of hub nodes and interhub links, and routings of O-D

pairs are required. This study develops a hub model that addresses all these problems.

The model framework differs from many previous models in two ways. First, fast

algorithms are possible for flow-based discounts utilizing a piecewise-linear cost function

in the objective function. Second, flows of O-D pairs in the model play an important role

in building infrastructure.

The hub network design is defined over a directed network G (N, E) with N nodes

and E edges. For every pair of nodes i, j in the network, Wij represents the internodal

traffic between i and j. The model also accommodates economies of scale with respect to

volume discounts in the form of piecewise-linear concave costs (see Figure 3.1). To

establish a piecewise-linear concave cost function on each link of the network, two types

of cost, fixed and variable (transport), are introduced. As can be seen in Figure 3.1, the

variable costs that represent the cost per unit of flow are dependent on the discount of the

link associated with fixed costs. For example, the fixed costs might be investments for

building infrastructure while the variable cost component approximates flow-dependent

transportation expenses. In Section 3.2.2, how these fixed and variable costs account for

routings of the origin-destination pairs is described.
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For the point-to-point network, the model employs flow-based discounts on

opened links. The mixed-integer programming formulation of the point-to-point problem

distinguishes the direction of flow on each of the original undirected network G.
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Figure 3.1 Piecewise-Linear Concave Cost Function

3.2 Network Modeling Framework

In this section, the network models are presented with two different sub-models

(see Figure 3.2). In the FDMAP model, a hub network design problem considering

infrastructure is solved, and infrastructure design variables, such as interhub flows and

link cost functions, are incorporated. The infrastructure design of the hub network model



30

seeks to find an optimal interlink under multiple allocation restriction. The FDMAP

model is implicitly based on several characteristics, described individually in Sections

3.2.1 - 3.2.4 below. The FDPTP model is described in Section 3.4. The cost allocation of

the infrastructure models is then developed in Sections 3.5 - 3.6 where the model assigns

the fair cost of infrastructure to the O-D pairs based on game theory in hub networks, and

based on player’s contribution to flow economies of scale in point-to-point networks.

Solve Hub Model (FDMAP)

Cost Allocation for OD pairs of FDMAP

Solve Point-to-Point Model (FDPTP)

Cost Allocation for OD pairs of FDPTP

Compare cost allocations of OD pairs
between FDMAP and FDPTP

chart

Figure 3.2 Network Design Framework



31

3.2.1 Tabu Search in Hub Network

The heuristic method for hub models in this study uses the tabu search method.

According to Glover et al. (1992), a successful application of the tabu search prevents

entrapment in local optima. A suitable neighborhood and fast move evaluation are

essential for that application. The basic principle of the tabu search is to define a set of

possible solutions from the initial solution in order to locate a better one in its

neighborhood by avoiding cycling and trapping into a local optimum. Thus, the tabu

search algorithm allows moves which result in a better objective value, and the

intermediate solutions obtained recently are considered as tabu to prevent the algorithm

from exploring a local minimum more than once. Moreover, it creates more opportunities

to reach a global optimum.

Tabu search uses flexible forms of memory to guide search processes

dynamically. This enables local search algorithms to escape from local minima and to

exploit information that has been gathered during the search. It also relies on a tabu list.

The tabu list stores attributes of a move, i.e., the transition mechanism that enables the

search algorithm to move from a solution to its neighbor solution. Moves with these

attributes are then forbidden during the next iterations. The number of such iterations is

called the tabu tenure. Tabu search also allows the tabu status to be revoked if an

aspiration criterion is met. These principles define the basic short-term memory, form of

tabu search. In addition to the basic algorithm, tabu search uses long-term memory

concepts. These include intensification and diversification. Intensification concepts are

based on methods that identify promising regions of the search space and then search
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these regions more thoroughly. Diversification strategies exploit information about the

search history and guide the search toward yet unexplored regions. Both intensification

and diversification are often based on counting principles. The strength of tabu search is

its flexibility with respect to implementation. It contains a wide variety of ingredients and

parameters, which have to be properly adjusted if the algorithm is to work well. For more

details for tabu search, see Glover (1989, 1990a, 1990b, 1998) and Glover et al. (1993,

1997a, 1997b).

3.2.2 Piecewise-Linear Concave Cost Function

In the real world, infrastructure link can often be built in different sizes or types.

The set of possible sizes is often discrete and finite with a reasonable number of links.

Each possible size yields a certain fixed cost of the link. One useful property of the

piecewise-linear concave cost function is its separable attribute. This allows fixed costs to

appear at several levels of link flow, and also allows the linear transportation cost

coefficients to vary between different intervals of flow amount. As can be seen in Figure

3.1, there are tradeoffs between fixed costs and discounts depending on flows. To achieve

higher discounts, for example, a group of links needs to pay a higher fixed cost. The

optimal combination of fixed costs and discounts is decided by the level of flows. The

lower envelope called Min(f) in Figure 3.1 of the cost function guarantees the lowest

transportation cost for volume of flow. The transportation cost of the linear cost function

is identical to that of the non-linear cost function at the black circles in Figure 3.1 of the

lower envelope cost function. Each segmentation between black circles of the lower
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envelope cost function provides both discount rate and fixed cost. This lower envelope

cost function can also be specified by the predetermined flow range7.

There are also tradeoffs between the number of linear cost functions and the

complexity of the problem. The model can divide the non-linear cost function into as

many as possible to mimic the realistic world pattern of rates for flows. However, the

large number of piecewise-linear cost function adds difficulty to the problem. In this

study, the model approximates the non-linear cost function by five different piecewise-

linear cost functions as can be seen in Figure 3.1. For more details about the piecewise-

linear approximation, see also Bryan (1997), Holmberg (1994), Runggeratigul (1999),

and Vogt and Even (1972).

Table 3.1 illustrates the tradeoffs between fixed costs and transportation costs.

Numerical values in Table 3.1 are based on a simple 6-node network (Figure 3.3). The

network consists of 6 nodes and 10 flows for all origin-destination pairs. Table 3.1 also

shows that the highest interhub discounts (the last row) do not necessarily guarantee the

lowest total network cost. As can be seen in Table 3.1, setting the highest discounts for

every interhub link does not provide the cheapest total network cost. This illustrates

tradeoffs between fixed cost and discount rate. In this particular example, the model also

does not install a fully-connected hub network8 as a result. It rather builds the

infrastructure in a selective way. It is worth explaining the behavior of the flow-based

discount hub model. There is not enough flow to support a fully-connected hub network.

7 This flow range is the deterministic factor for the fixed costs, which changes the total network cost
significantly. The numerical results with different flow ranges are shown in Chapter 4.
8 Traditional hub models install all possible interhub links whereas the FDMAP opens partial intehub links.
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In other words, some of the infrastructure is under-utilized so the model fails to achieve

economies of scale on every interhub link. Thus, the model decides to close partial

interhub links. Notice that the total interhub link flow changes from 240 [discount type:

5, 5, 5] to 280 [discount type: 5, 5, 1] in Table 3.1. Fixed cost for the infrastructure is

equal to [distance of interhub link] * [fixed cost of interhub link]. It is also same as y-

intercept of a piecewise-linear cost function in Figure 3.1.

Level of Discount on
Interhub Link*

Fixed Cost Flow

H1H2 H1H3 H2H3 H1H2 H1H3 H2H3 H1H2 H1H3 H2H3
Transport Cost

Total
Cost

1 1 1 0.00 0.00 0.00 80 80 80 1870.50 1870.50
… … … … … … … … … … …
… … … … … … … … … … …

5 5 1 115.38 115.38 0.00 140 140 0 1296.51 1527.27
… … … … … … … … … … …
… … … … … … … … … … …

5 5 5 115.38 115.38 128.00 80 80 80 1200.50 1559.26
* There are five kinds of discount rates: 1 is the lowest discount (larger alpha, α = 1),
and 5 is the highest discount (smaller alpha, α = 0.2).

Table 3.1 Tradeoffs between Fixed Costs and Transport Costs (based on Figure 3.3)

Figure 3.3 shows the hub network configuration based on the results of the

FDMAP with p = 3. Unlike the traditional hub model, interhub links are not fully

connected in the hub model. The dotted line between [H2-H3] in Figure 3.3 was feasible

in the traditional hub model with a fully interconnected interhub link, but not feasible any
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more in this hub model. One of the main reasons for this is the number of interhub links

between origin and destination allowable in the model. In this research, the hub model

relaxes the number of interhub links for O-D pairs to travel. For example, the [C-H2] O-

D pair in Figure 3.3 may travel [C�H3�H2] path under the fully interconnected

interhub link constraint while its actual path is [C�H3�H1�H2] under the multiple

interhub links relaxation [see also Section 3.2.3 for more details]. Another reason for this

is that the model finds that this setting provides much cheaper total network cost than the

fully connected hub construction.

H1

H3

H2

A

B

C

Interhub Link

Hub-Spoke Link

Infeasible Interhub Link

Hub node

Figure 3.3 Simple Hub Network (6-Node)
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3.2.3 Multiple Interhub Links in Hub Network

Because the interhub network is not fully connected, the hub model needs to relax

the restrictive assumption that the flows between origin and destination traverse at most

one interhub link. Now two interhub links are permitted. The multiple interhub links are

introduced in the hub model because flow economies of scale make it desirable in some

cases to use two interhub links. In a traditional hub model, only one interhub link was

permissible. Now in a special case of two interhub links, it needs three hubs. However,

the multiple interhub links are only feasible when a hub node corresponds to either origin

or destination node of the path. In other words, flows between origin and destination can

utilize two interhub links if the two interhub links are heavily used. The multiple interhub

links on the path eventually achieve a cheaper transportation cost than the single interhub

link model due to flow economies of scale on the multiple interhub links.

O’Kelly and Miller (1994) classified 8 hub network systems depending on design

variables, such as non-hub assignment, internodal connection, and interhub connectivity.

The network configuration of the FDMAP corresponds to Protocol F design class with

multiple hub allocation, no internodal connection, and partial interhub connectivity. This

network type was never studied in the traditional hub models until flow economies of

scale are observed in multiple interhub links. This relaxation might break the triangle

inequality in some cases. For example, in traditional hub network studies, there is no way

for the [H2�H1�H3] path to get the cheaper transport cost than the [H2�H3] path in

the triangle of the [H1, H2, H3] in Figure 3.3 because hubs are fully connected. However,



37

it is possible that the [H2�H1�H3] path cost is cheaper than cost of the [H2�H3]

direct link in the hub model due to flow economies of scale on multiple interhub links.

3.2.4 Shortest Path Enumeration in Hub Network

The routing policy for the flow-based discount multiple allocation hub problem

(FDMAP) is based on the shortest path for each O-D pair. Under the multiple allocation

restriction, a common characteristic of flow assignment algorithms is to assign flows

along the shortest path. The shortest path computation is based on all link distances (hub-

spoke link, and interhub link) for each O-D pair [see Klincewicz (2002) for more details].

Once the hub locations are decided, and the interhub links are installed, flows need to be

routed optimally based on the shortest path. For example, once the p hubs within the

FDMAP are identified, and the model decides values for Xijkm for each origin-destination

pair (i, j) using intermediate hubs (k, m). It is also necessary to decide the optimal settings

for infrastructure of interhub links to select which piecewise-linear cost function would

minimize the total network cost (fixed cost + transport cost) on the interhub link (k, m).

That is, each origin-destination pair (i, j) finds the cheapest combination of cost in

ljmkmlikij FCCSCW +++ )( [see equation 3.1 for notation]. It is feasible to solve the

FDMAP by enumerating all possible combinations of p hubs (nCp cases) with different

types of infrastructure (interhub links). Each interhub link may have as many as user-

specified infrastructure types associated with it. The FDMAP adopts 5 different

infrastructure types.
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3.3 Infrastructure Design of the Flow-based Discount Multiple Allocation Hub

Problem (FDMAP)

The infrastructure design of hub networks involves an interhub link installation

problem with a choice of link types. Current algorithms for hub network research do not

provide the optimum interhub infrastructure in an efficient way. The infrastructure design

of the FDMAP can be described as follows: given a set of network nodes, select a subset

of possible hub nodes, build a set of interhub links where the type of an interhub link can

be specified by cost function and flow condition, and assign non-hub nodes to hub nodes

so as to minimize the total cost.

3.3.1 Model Assumption

Due to the complexity of the hub location problem, several assumptions for the

FDMAP are made. First, all origin-destination pairs are routed via the selected hub

locations. Under the multiple allocation restriction, each non-hub node can be allocated to

any hub. Second, there are no capacities on both the selected hub locations, and a set of

interhub links. In other words, they can handle the entire flow volume if necessary. Third,

multiple interhub links are possible for each O-D pair. Fourth, flows travel via, at most,

three hubs in the 4-length [i-k-m-j] path only in the special case where origin or

destination is hub itself. Fifth, a homogenous flow is assumed. Sixth, the fixed cost of

operating the hub is ignored. Last, neighboring search methods for location-allocation

follows tabu search heuristic procedure.
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3.3.2 Flow-based Discount Multiple Allocation Hub Problem (FDMAP)

The FDMAP is an improvement over the FLOWLOC (O'Kelly and Bryan, 1998),

which has been an inspiration for the present model. Three approaches to find improved

solutions are incorporated in this model. First, a tabu search neighboring heuristic is used

to explore the location-allocation parts. This enables the model to solve the large network

size in an efficient way. Second, a total enumeration method of identifying the shortest

path for each O-D pair is applied to finding optimal infrastructures. Third, the model

implements flow economies of scale on multiple interhub links applying a piecewise-

linear concave cost function rather than a fixed discount function (alpha).

The basic elements of the model are a set of nodes, a set of arcs, and O-D flows.

The installation of interhub links (arcs) to be selected in the hub network depends on

various factors, such as location of hub nodes, tradeoffs between fixed costs and interhub

discount for transport costs, and bundling flows. For example, selecting the interhub link

with a lowest per unit flow cost increases fixed costs of building the cheaper operational

interhub link (lower alpha). On the other hand, an expensive interhub link with low-

priced fixed cost increases the overall per unit flow cost.

The two main decision variables of the FDMAP are Xijkm (O-D path) and Sl

(interhub link discount). Interhub link discount variables (Sl) are directly related to fixed

costs (Fl). The objective function (3.1) of the FDMAP minimizes total network costs by

opening p hubs of n interacting nodes. The model gives flow discounts whenever the

interhub link is identified in the routing path. Constraint (3.2) requires that all flow be

routed via exactly one path. Constraint (3.3) specifies that p hubs should be open.
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Constraints (3.4) and (3.5) require that a hub to be open before a node is assigned to a

hub. Constraint (3.6) is necessary in order for the correct fixed cost to be associated with

its corresponding interhub discount. Constraints (3.7), (3.8) and (3.9) allow only integer

variables.

The Flow-based Discount Multiple Allocation Hub Problem (FDMAP) of the

mathematical formulation based on O’Kelly and Bryan (1998) is formalized as follows:
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3.3.3 Tabu FDMAP Algorithm

This section explains the procedures for routing of origin-destination pairs given

flows (Wij). The idea underlying this algorithm is based on the shortest path enumeration:

given installed infrastructures with fixed p hub locations, the choice of slopes (discounts)

and fixed costs are known.

Tabu FDMAP algorithm is formalized as follows:

Begin Loop 1

Step 1. Set initial p nodes by creating a hub candidate list.

� nC p

Begin Loop 2

Step 2. Set the initial slope and fixed cost.

� (# of infrastructure types) 2
Cp
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Begin Loop 3

Step 3. Evaluate the objective function. Given Wij, find the best

allocation set, which minimizes the total network cost applying

flow discount.

� p2 ( # of possible paths for every i and j)

Step 4. Save the objective function, Xijkm, interhub flows, the fixed

cost (Fl) and the slope (Sl) for each interhub link.

End Loop 3

Step 5. Repeat Loop 3 (Step 3 – 4) until all (# of infrastructure

types) 2
Cp are evaluated.

Step 6. Save the best solutions (all variables listed in Step 4) for each inner

Loop (Loop 3), which provide the fixed cost and slope also.

End Loop 2

Step 7. Swap one hub node with non-hub nodes based on tabu search.

Step 8. Repeat Loop 2 (Step 2)

Step 9. Save the best solutions (all variables listed in Step 4) for each inner loop

(Loop 2)

End Loop 1

Step 10. Save the best solutions (all variables listed in Step 5) for each inner loop (Loop

1)

Step 11. Check the criteria for tabu search parameters, and terminate the loop if it meets

the criteria; otherwise keep Loop 1.
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From the initial construction (with largest weights of flow), the tabu FDMAP

model obtains only the location part. The allocation part is relaxed to the all hubs rather

than a single hub, this part needs p2 possible paths to find a path between origin and

destination. Once hubs are selected, the minimum path between origin and destination is

saved. The objective value is equivalent to adding all the paths and fixed costs. The

model searches for a new hub location by swapping a hub node with non-hub nodes

based on hub frequency, tabu lists, then it updates the best selection at each iteration

along with updating the hub frequency, and tabu lists. However, it cannot move tabu

nodes unless there is a better solution than the previous best. The algorithm repeats the

loop until the maximum iteration for hub exchange is reached. The model saves the best

solutions for each LTM9 by updating the incumbent solution out of LTM sets. While the

simple multiple allocation must evaluate p2 possible paths between origin and destination,

the FDMAP requires 5 times more than the traditional one for each interhub link (5 2
Cp =

5*5*5 possible combinations where p = 3) in addition to p2 possible paths to find the

optimal slopes and fixed costs for the minimum path between origin and destination.

Numerical results are shown in Chapter 4.

3.4 Infrastructure Design of the Flow-based Discount Point-To-Point Problem

(FDPTP)

The idea of flow-based discounting on direct links is based on the observations of

previous hub models and point-to-point models. The results of hub models reveal that

9 LTM stands for long-term memory.
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some interhub links carry only a small amount of flow while other non-interhub links are

busy with carrying a significant flow. On the other hand, there is not enough flow to

maintain all direct links in point-to-point networks. This issue can be resolved to give

flow-based discounts on any link with a choice of link types. The infrastructure design of

the FDPTP can be described as follows: given a set of network nodes, build a set of links

where the type of links can be specified by cost function and flow condition, restrict a

number of intermediate stops between origin and destination, and transport O-D flows so

as to minimize the total network cost.

3.4.1 Model Assumption

Several assumptions for the FDPTP are made due to the complexity of the point-

to-point problem. First, all origin-destination pairs are routed by at most two intermediate

stops under the hop restriction. Second, there are no capacities on both the selected

locations, and a set of opened links. In other words, they can handle the entire flow

volume if necessary. Third, a homogenous flow is assumed. Fourth, there is a directed

link between every pair of nodes. Last, the fixed cost of operating the selected locations

is ignored.

3.4.2 Flow-based Discount Point-To-Point Problem (FDPTP)

Given the above assumptions, the objective is to build links with minimal total

network cost. The problem for the Flow-based Discount Point-to-Point Model (FDPTP)

is formalized as follows:
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The complete set of variables used in the FDPTP model is given as:

.costlinearpiecewiseonrangeflow
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The Wij is exogenously given flow between origin and destination. The number of q of

piecewise-linear cost function is five as same as the FDMAP. The Y variables are the arc

selection decisions while X variables represent the routing decisions for each origin-

destination flow. Objective function (3.10) finds a feasible flow with the minimal total

network cost. The fixed costs, km
qF , are exogenously given by the piecewise-linear cost

function. Constraint (3.11) assures that the discounted flow is greater than the given

piecewise-linear cost function depending on Y. Constraint (3.12) ensures that if a link (k,

m) is non-discounted ( ijkmX 1 ), the discounted flow ( ijkmX 2 , ijkmX 3 , ijkmX 4 , ijkmX 5 ) will be

zero. This constraint also limits the discounted flow through the link (k, m). Constraint

(3.13) guarantees that if there is any non-discounted flow ( ijkmX 1 ) through a link (k, m),

then its value must be less than given threshold T2. The term 2

:,
)1( TYX km

q

jiji
ijkm

q ⋅−≤�
≠

is

equivalent to 21

:,

1 )1( TYX km
jiji

ijkm ⋅−≤�
≠

because the constraint with q = 1 is tighter than

any other q values, so the other constraints with other q values are unnecessary.

Constraint (3.14) implies that all (i, j) flow must originate from i. Constraint (3.15)

prevents flow originating from node i to return to its origin. Constraint (3.16) represents
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that all (i, j) flow must come into j. Constraint (3.17) prevents flow with destination j to

leave node j. Constraint (3.18) specifies that the conservation of flow at node l is met.

Constraint (3.19) allows the only one discount on the link. Constraint (3.20) prohibits any

origin-destination pair that has more than 3 intermediate stops. The purpose of this

constraint is to compare the results with the FDMAP because of the maximum number of

passenger trips. Without this constraint, many O-D pairs are observed with more than 3

intermediate stops. Constraint (3.21) is non-negative flow variables and constraint (3.22)

is binary variable for link (k, m). Variable ijkmX 1 captures the flow that goes from node i

to node j via link (k, m) whose cost is not discounted. Variables, ijkmX 2 , ijkmX 3 , ijkmX 4 ,

and ijkmX 5 are the flow from node i to node j via link (k, m) whose cost is discounted.

To illustrate the idea of the FDPTP model, a 6-node simple network is studied in

detail. Fixed costs and discounts are obtained by cost function 1 of Table 3.3 based the

flow range 1 of Table 3.2. As can be seen in Figure 3.4, the FDPTP model optimally

opens directed discounted arcs [H1�H2], [H2�H3], and [H3�H1] whose flows are

above the flow range of the fifth piecewise-linear cost function. The arcs, [H2�H1],

[H3�H2], and [H1�H3], in the network get the discount of the second piecewise-linear

cost function. The both directions of [A-H1], [B-H2], [C-H3] arcs get the discount of the

fourth piecewise-linear cost function. As can be seen in Figure 3.4, the flow of each

discounted link is above the given flow range in Table 3.2. All the links can achieve

discounts depending on the level of flows in this particular example.
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Interestingly, routings of some O-D pairs are not symmetric. For example, the

[H2�C] pair in Figure 3.4 has different routings from [C�H2]. The [H2�C] travels

[H2�H3�C] whereas the [C�H2] passes through [C�H3�H1�H2]. Te costs of

symmetric routings are different. For example, the [B-C] pair in Figure 3.4 has a

symmetric routing but different costs between [B�C] and [C�B]. The [B�C] path

enjoys the cheapest discount (S = 0.2) in its path while the [C�B] path uses the less

cheaper discount (S = 0.8) in its path. Some O-D pairs without hop constraint travel

circuitous routing to contribute their flows on links. For example, the [H3�H1] pair in

Figure 3.5 utilizes the one stop path [H3�H2�H1] rather than the direct [H3�H1] path.

Solutions of the model also depend on the concave cost function as shown in Table 3.4.

Piece Flow Range1 Flow Range2 Flow Range3

1 0 0 0
2 15 22.5 30
3 30 45 60

4 45 67.5 90

5 60 90 120

Table 3.2 Ranges of the Interhub Link Flows (6-Node)
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Piece 1 2 3 4 5

Fixed Cost 0 3 9 18 30Cost Function 1
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 4.5 14 27 45
Cost Function 2

Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 6 18 36 60Cost Function 3
Slope 1 0.8 0.6 0.4 0.2

Table 3.3 Slope (Discount) and Fixed Cost for the Piecewise-Linear Cost (6-Node)

100

H1

H3

H2

A

B

C

15

1001550

100

15

50

50

Y5, α = 0.2

Y2, α = 0.8

Y4, α = 0.4

T5 = 60

T4 = 45

T2 = 15

Figure 3.4 Solution (6-Node) of FDPTP with Hop Constraint with Cost Function 1 under
Flow Range 1
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Figure 3.5 illustrates the role of constraint (3.20) in the model. The FDPTP

without the hop constraint (3.20) produces some O-D pairs that take the cheapest link

rather than building direct links. For example, the path of [B�C] O-D pair is

[B�H2�H1�H3�C] in Figure 3.5 instead of [B�H2�H3�C] path in Figure 3.4.

The FDPTP with constraint (3.20) has built Y2 infrastructure due to the hop constraint as

can be shown in Figure 3.4. Total network costs are also increased by the constraint

(3.20) as can be seen in Table 3.4. Table 3.5 also shows the decomposition of transport

cost for each link. Table 3.4 clearly shows the FDPTP without the hop constraint (3.20)

provides the lower total network cost than the FDPTP with the hop constraint. This result

is very obvious because adding more constraints always increases the total network cost.

However, the hop constraint does not affect the total network cost in the case of the cost

function 3 as can be seen in Table 3.4. There are two possible reasons for that: [1] there is

no room for O-D pairs to save the costs anymore in the special case of the cost function

3, and [2] there are no O-D pairs more than 2 intermediate stops in the FDPTP solution.

Numerical results of CAB dataset are described in Chapter 5.
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120
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Figure 3.5 Solution (6-Node) of FDPTP without Hop Constraint with Cost Function 1
under Flow Range 1
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3.5 Cost Allocation in the Hub Network

The complexity of the cost allocation problem has led researchers to conclude that

there is no economically justifiable way to allocate joint costs. Nevertheless, the costs

must be allocated in some way among beneficiaries. Each O-D pair in the hub network

plays an important role in determining the cost and performances of the network link.

Effective and economical usage of an interhub link depends on the number of its

supporting users. This raises the issue of fair cost associated with installation of shared

interhub links. Therefore, a fair10 and cost-effective configuration is the main concern of

cost allocation model. The model employs a cooperative game theory to analyze and

investigate the cost allocation problem of shared infrastructure for hub networks. The hub

network problem is formulated as a cooperative game, and corresponding cost allocation

schemes are chosen from the core of the associated game.

3.5.1 Model Assumption

Players are represented as ordered pairs of nodes (O-D pair). Interhub links have

no capacity limits. The cost allocation in the hub network model is classified as

transferable utility (TU) game. The coalition of the game would not necessarily use the

globally optimal network.

10 See Savas (1978) for fairness (equity) in cost allocation.



54

3.5.2 Notations11, Definitions, and Properties

Following definitions and properties are used to solve the core of a cooperative

game in hub networks. Let N = {1, 2, … , n} be a finite set of nodes, and P = {N*(N-1)}

be players, C: 2P
� R, with C(0) = 0 a characteristic function defined over subsets of P

referred to as coalitions. If C(P) designates a cost that has to be shared by all the players,

then the pair (P; C) is called a cooperative game. For x ∈ R|P| and S ⊆ P, let

�=
∈Sj

jxSx (3.23))(

where x(S) is the part of the total network cost paid by the coalition S. A cost allocation

vector x in a game (P; C) satisfies x(P) = C(P), and the solution of cooperative games is

equivalent to the selection of a reasonable subset of cost allocation vectors. Cost games

are stated in the context of hub networks.

Definition 3.1: A cooperative cost game is a set P of players, {N*(N-1)} together with a

characteristic function from 2P to R, which assigns to each subset of P called a coalition.

If the game is a cost game, the valuation is a cost denoted by C. So the game can be

written as (P; C).

For the hub network problem, P is set of pairs of nodes. For PS ⊂ , C(S) is the

optimal cost that can be achieved by coalition S. Notice that the value of a set is always

non-negative for the hub network game, and Ci > 0 for singletons. It is desirable for a

cooperative game to be zero-normalized; the value that the game attributes to a single

11 The definition and notation are adapted from the models of Skorin-Kapov (1998) and Solymosi (1984).
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player is zero. A cooperative game is zero-normalized if PS ⊂∀ , �=
∈Si

iCSC )( for a

cost game.

Definition 3.2: A cooperative game is monotonic if as coalitions get larger, and their

valuations change steadily. If PTS ⊂⊂ , )()(
\

TCCSC
STi

i ≥�+
∈

for a cost game. This is

equivalent to �≤−
∈ STi

iCSCTC
\

)()( .

Definition 3.3: A cooperative cost game is called subadditive (3.24) if its characteristic

function satisfies the properties below.

(3.24)

,

T)C(SC(T)C(S)

PTS

∪≥+

⊂∀

Definition 3.4: A cooperative cost game is concave (3.25) if its characteristic function

satisfies the properties below.

(3.25))(

,

TSCT)C(SC(T)C(S)

PTS

∩+∪>+

⊂∀

The characteristic function calculates the cost accrued by any coalition. The coalition

needs to distribute the costs to its joining members in a fair way. This is called cost

allocation. Let a cost allocation vector function, CA: P � Rn, assign an amount of costs to

each member of P.

Definition 3.5: An allocation of CA is called an imputation if

(3.26))()(and, PCPCACCAPi ii =≤∈∀

CA(a) is efficient if CA(P) = C(P) where Pa ∈ . It allocates all of the costs the grand

coalition makes to players. This property is also called as efficiency of the cost allocation
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vectors. CA assigns a nonnegative allocation to each player. That is, 0, ≥∀ iCAi . One

always receives a positive cost (non-negativity of the cost allocation vectors). Each

player pays less cost by joining the group than by playing alone. That is, ii CCAi ≤∀ , .

This property is called as individual rationality of the cost allocation vectors. For the cost

game, no player should be charged more than the additional charge (the marginal cost)

the group incurs by taking the individual player in. That is }){\()(, iPCPCCAi i −≤∀ .

This property is called as marginal cost of including player i in the cost allocation

vectors. No coalition S should get more cost in total than its valuation. There should be

no incentive for the coalition to go it alone. That is, )()(, SCSCAPS ≤⊂∀ . This

property is called as standalone cost of including player i in the cost allocation vectors.

3.5.3 The Core

The core is a simple and intuitive solution concept for n-person cooperative

games. It contains all feasible payoff vectors in which no subset of the players can break

its cooperation with the rest of the players. The core of a game is the set of imputations

that satisfies the standalone cost. Mathematically, the core of a cost game (P; c) consists

of all vectors x ∈ R|P| such that x(S) ≤ c(S) for all S ⊆ N, and x(N) = c(N). The cost is

summarized by a joint cost function c(S), which is defined for all subsets S ⊂ Ν of

potential players. The c(S) represents the least cost of serving the players in S by the most

efficient means. The cost of serving no one is assumed to be zero; that is, 0)( =φc . The

cost, c, is called the characteristic function. A cost allocation method is a function defined
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for all N and all joint cost functions c on N such that )(cϕ N
n Rxx ∈= ),...,( 1 and

)(Ncxi =� , where xi is the charge assessed to player i.

In a hub game context, the value of c(S) is determined by estimating the least-cost

routing of each O-D pair. The c(S) is defined so that it includes the possibility that some

or all members of S develop independent ways of cooperation if it is the least-cost

alternative of supplying S. Under these circumstances, c will be subadditive (see

Definition 3.3): )()()( TScTcSc ∪≥+ for all disjoint S, T. This is based on the simple

possibility that the cost of serving two disjoint groups includes the possibility of serving

them separately.

There are two major principles of cost allocation necessary to satisfy the core:

stand-alone cost, and incremental (marginal) cost. For the stand-alone cost, the following

inequality should hold for every subset S:

(3.27))(Scx
Si

i ≤�
∈

This condition indicates that no participant be charged more than their stand-alone costs.

The incremental cost states that no participant should be charged less than the marginal

cost of including itself. In general, the incremental cost of any set S is defined to be c(N)

– c(N-S). This condition requires the allocation x ∈ RN to satisfy:

(3.28)allfor)()( NSSNcNcx
Si

i ⊂−−≥�
∈

Whereas (3.27) provides incentives for voluntary cooperation, (3.28) arises from

consideration of equity. Therefore, the core of c is the set of all allocations NRx ∈ such

that (3.27) and (3.28) hold for all S ⊂ N.
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A characteristic function game is a purely cooperative game among n players who

see a fair distribution for a cost that is freely transferable. It is assumed that all players

would like as little as possible of the cost, and that one unit of the cost is worth the same

to all players. The fairness of a distribution is assumed to depend on the bargaining

strengths of the various coalitions that could possibly form among some or all of the

players. However, the fundamental assumption of a characteristic function game is that

all players are cooperating. In other words, a grand coalition of all n players has formed.

Thus, coalitions of fewer than n players can be used to leverage the strength they would

have had without the others (see also Mesterton-Gibbons (2001) for more details). In this

research, this assumption is relaxed. Instead of “all players are cooperating”, the model

only considers the players who use the interhub links.

To illustrate the cost allocation in hub networks, a 6-node simple network is

studied in detail. With respect to the hub network, the total network flow for the 6-node

network is 300. Concave cost function 1 (Table 3.3) with flow range 1 (Table 3.2) is

incorporated in the FDMAP. The total network cost from the FDMAP is 5.76 (1729.18)12

with transport cost of 4.32 (1296.51) and fixed cost of 1.44 (432.67) as can be seen in

Table 3.6. The core allocation is obtained by assigning the fixed cost to the interhub link

users proportionally. It does not make sense if the cost allocation model divides the total

fixed cost by the number of interhub supporters evenly. Each O-D pair has a different

contribution to the interhub link flows. Out of 30 directed O-D pairs, 22 are the interhub

link players. As can be seen in Figure 3.3, the FDMAP opens 4 directed interhub links

12 The total network cost is normalized by total network flow. For example, 5.76 is equal to 1729.18/300
(cost / total network flow).
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and closes 2 directed interhub links out of 6 possible directed interhub links. Each

interhub link has 7 interhub link users summing up 70 interhub link flows. There are four

interhub links summing up 280 total interhub link flows (see Table 3.6). The flows of

interhub links enable the interhub link to achieve the cheapest discount (e.g. 5th piece) in

piece-wise linear cost functions. As can be seen in Table 3.4, the interhub link should

reach at least 60 to get the 5th piecewise-linear cost function. It is shown that every

interhub link flow (70) is greater than 60 in this case as can be seen in Table 3.6.

Table 3.7 shows the cost allocation vectors for the 6-node network based on two

principles [equations (3.25-3.26)]. Results provide two different cost allocation vectors

for each O-D pair. First, cost allocation vectors are achieved under the global hub

network. In other words, the coalitions cannot modify the hub network. In this case, the

cost allocation is proportional to their contribution to the intherhub link flows. Second,

cost allocation vectors are obtained under the coalition optimal hub network. That is, the

coalitions can modify alternative routings if they can save their own network cost. Under

this situation, the cost allocation is not only proportional to their contribution to the

interhub link flows, but also dependent on alternative routing possibilities. For example,

the O-D pairs ([3-4], [3-6], [4-3], [4-5], [5-4], [6-3]) with multiple interhub links tend to

leave the global optimal hub network to save their network cost. These multiple interhub

link O-D pairs try to use single interhub link. To remedy this controversy, the cost

allocation model obtains a fair cost allocation by charging cheaper fixed costs for these

players so that they can stay in the optimal network. The results support that the grand

coalition for each interhub link is the best strategy for the total network cost under the
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global hub network configuration. In other words, none of the players can achieve a

cheaper cost by other coalitions assuming that players cannot change the globally optimal

hub network. However, the grand coalition for each interhub link is not necessarily the

best strategy to individual players under the coalition optimal hub network configuration.

The core allocations are changed if players can modify the globally optimal hub network.

This fair cost allocation is only possible if and only if the cost savings by the grand

coalition is greater than the opportunity costs by the players who are willing to leave the

grand coalition.

Even with a 6-node network, the possibilities of 2n-1 coalition are very

computationally prohibitive as can be seen in Table 3.8. To reduce the complexity of the

problem, the model tries to separate all interhub link players (22) into a single interhub

link player (7) based on aggregation (see Section 3.5.6). The results show that the core

allocations for the all interhub link players (22) are equal to the core allocation for the

single interhub link player (7). That is, the cost allocation for the whole network is equal

to the cost allocation for the sub-network.
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Cost Allocation Cost AllocationI J Transport Cost
under Global Optimum under Coalition Optimum

1 2 30.00 30.00 30.00
1 3 37.21 52.66 58.84
1 4 37.21 52.66 55.24
1 5 73.27 88.72 94.90
1 6 73.27 88.72 91.29
2 1 30.00 30.00 30.00
2 3 7.21 22.66 28.84
2 4 7.21 22.66 25.24
2 5 43.27 58.72 64.90
2 6 43.27 58.72 61.29
3 1 37.21 52.66 58.84
3 2 7.21 22.66 28.84
3 4 14.42 45.33 32.45
3 5 36.06 36.06 36.06
3 6 50.48 81.38 68.51
4 1 37.21 52.66 55.24
4 2 7.21 22.66 25.24
4 3 14.42 45.33 32.45
4 5 50.48 81.38 72.11
4 6 36.06 36.06 36.06
5 1 73.27 88.72 94.90
5 2 43.27 58.72 64.90
5 3 36.06 36.06 36.06
5 4 50.48 81.38 72.11
5 6 108.86 108.86 108.86
6 1 73.27 88.72 91.29
6 2 43.27 58.72 61.29
6 3 50.48 81.38 68.51
6 4 36.06 36.06 36.06
6 5 108.86 108.86 108.86

Table 3.7 Cost Allocation of FDMAP with Cost Function 1 under Flow Range 1 (6-
Node)
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3.5.4 Aggregate Cost Allocation

A cooperative hub game with aggregated players is applied to solve the cost

allocation problem efficiently and to reduce the complexity of the problem. In this study,

the players are defined as all sets of all node pairs (N*N-1). All sets of node pairs are

aggregated (grouped) based on interhub link usage due to the complexity of all possible

coalitions. For example, Table 3.8 shows the number of possible coalition considerations

based on a 6-node simple hub network (see Figure 3.3). More generally, among n*(n-1)

players, 2n-1 coalitions are possible. It is obvious that the CAB dataset is impossible to

obtain the cost allocation without the aggregation scheme due to the large number of

coalitions. Table 3.9 summarizes the grouping of the sets of node pairs based on the

previously supported interhub links. Once the fair cost allocation for the aggregate

players is obtained, those costs (fixed costs for infrastructure) are allocated to each

individual user. Comparing Table 3.9 with Table 3.8 shows how efficient the aggregation

scheme is in the cost allocation.
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Table 3.8 Individual Players (6-Node)

Combination S # of Possibilities

3 C 1 1 3

3 C 2 2 3

3 C 3 3 1

23-1 Sum 7

Table 3.9 Aggregate Players (6-Node)

Combination S # of Possibilities

12 C 1 1 12

12 C 2 2 66

12 C 3 3 220

12 C 4 4 495

12 C 5 5 792

12 C 6 6 924

12 C 7 7 792

12 C 8 8 495

12 C 9 9 220

12 C 10 10 66

12 C 11 11 12

12 C 12 12 1

212-1 Sum 4095
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The value of the characteristic function, c(S), for each subset of players S (S ∈P)

should describe the cost associated with the delivery of service to S. For the case when P

= N*(N –1), c(T) should be the cost of traffic between pairs of users in T where T ⊆ P.

For the sets of node pairs, a game {N*(N-1), c} of the characteristic function C is defined

as follows:

)1.3()( equationTC = , such that ,0)( =φC and for )1(* −∈≠ NNTφ , where Xijkm is an

optimal solution subject to (3.2) – (3.9). Notice that there are two optimal situations.

First, the traffic between pairs in T is carried over a globally optimal hub network.

Second, coalitions optimize the hub network instead of using an optimized hub network.

Players are identified as pairs of users, and the cost allocated to each pair could later be

equally divided among users in that pair. Table 3.10 shows the model allocates the fixed

cost, and the total network cost separately based on a 6-node network.

Interhub Link Total Total Cost Fixed6-Node
H1H2 H1H3 H2H3 Cost without Fixed Cost Cost

S C(S) C(S) C(S) C(S) C(S) C(S)
{H1H2, H1H3} 1.84 1.84 0 5.09 4.71 0.38
{H1H2, H2H3} 1.82 0 1.92 5.15 4.34 0.81

{H1H3, H2H3} 0 1.82 1.92 5.15 4.34 0.81

Interhub Link Total Total Cost Fixed
6-Node H1H2 H1H3 H2H3 Cost without Fixed Cost Cost

S C(S) C(S) C(S) C(S) C(S) C(S)

{H1H2, H1H3, H2H3} 1.84 1.84 0 5.09 4.71 0.38

Table 3.10 Fixed Costs of Interhub Link for FDMAP Hub Game (6-Node)
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Table 3.11 shows the results of the FDMAP hub game with respect to grouping

costs, installation built, and total network cost. Table 3.11.a illustrates the payoffs for the

3-player hub game based on their own strategies. Table 3.11.b specifies the

infrastructures selected. Table 3.11.c shows that the cooperation of all players (H1H2,

H1H3, and H2H3) is the best strategy for reaching a minimum total cost. The role of

[H2H3] is not dominant in reducing the total cost. However, the participation of [H2H3]

player in this cooperation reduces the infrastructure cost, so that the total cost can be

reduced. As can be seen in Figure 3.6, the configuration of the hub network game allows

for the selective interhub links rather than a fully connected hub network. Since each pair

is restricted to a 4-length stop trip, the node B is connected to both H2 and H3. Although

the [B-C] O-D pair has a less expensive 5-length stop way of [B-H2-H1-H3-C] trip, it

will still undertake a [B-H3-C] trip. If we relax the maximum trip length, the [BC] O-D

pair will select a less expensive route.
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a. Group Cost

Group costs H2H3 JOIN

H1H2 \ H1H3 Join Not Join
Join (160.96, 160.96, 224.23) (160.96, 218.64, 230.13)

Not Join (218.64, 160.96, 230.13) (218.64, 218.64, 240.22)

Group costs H2H3 NOT JOIN

H1H2 \ H1H3 Join Not Join
Join (200.04, 200.04, 240.22) (218.64, 218.64, 240.22)

Not Join (218.64, 218.64, 240.22) (218.64, 218.64, 240.22)

b. Infrastructure built

Infrastructure H2H3 JOIN

H1H2 \ H1H3 Join Not Join
Join (5, 5, 1) (4, alpha = 0.6, 5)

Not Join (alpha = 0.6, 4, 5) alpha = 0.6

Infrastructure H2H3 NOT JOIN

H1H2 \ H1H3 Join Not Join
Join (4, 4, alpha = 0.6) alpha = 0.6

Not Join alpha = 0.6 alpha = 0.6

c. Total Network Cost

Total Cost H2H3 JOIN

H1H2 \ H1H3 Join Not Join
Join 5.09 5.17

Not Join 5.17 5.2

Total Cost H2H3 NOT JOIN

H1H2 \ H1H3 Join Not Join
Join 5.14 5.2

Not Join 5.2 5.2

Table 3.11 Three Group Players of FDMAP Hub Game in a Normal Form (6-Node)
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H1

H3

H2

A

B

C

Interhub Link

Hub-Spoke Link

Hub node

Figure 3.6 The Hub Network with FDMAP Hub Game (6-Node)

3.5.5 Individual Cost Allocation

Once an optimal hub network has been reached as can be seen in Figure 3.2, the

cost/mile and the fixed cost for each interhub link can be calculated. Then, those fixed

costs to each individual player of the previous interhub link grouping can be fairly

allocated. Table 3.13 shows cost allocation of fixed costs for each individual player. By

joining the coalition, every individual player in each interhub link group has a lower
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fixed cost than that of members of the partial coalition. Table 3.13 also demonstrates that

joining all players is better than the partial coalition.

a. H1H2, H1H3, H2H3 Coalition

FIXED COST ALLOCATION H1H2, H1H3, H2H3 COALITION

Grouping Player H1H2 H1H3 H2H3

FDMAP Hub Game 0.82 0.82 0.00

Individual Player H1H2 H1H3 H2H3

FDMAP Hub Game 0.14 0.14 0.14

b. H1H2, H1H3 Coalition

FIXED COST ALLOCATION H1H2, H1H3 COALITION

Grouping Player H1H2 H1H3 H2H3

FDMAP Hub Game 0.82 0.82 1.50

Individual Player H1H2 H1H3 H2H3

FDMAP Hub Game 0.20 0.20 0.37

Table 3.12 Cost Allocation of Fixed Costs for Individual Player in FDMAP Hub Game
(6-Node)
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3.6 Cost Allocation in the Point-To-Point Network

In this section, cost allocation schemes of the FDPTP model are presented. The

model provides a fair cost allocation among users of discounted links based on their

contribution to flow economies of scale. Each pair of nodes transports flows either with

discounts, or without discounts. The amount of flow on the links decides the level of

discount rates. Many O-D pairs use shared discounted links. Therefore, the cost of

discounted links in the point-to-point network should be distributed among its users in a

fair way. In other words, the cost allocation should be solved with respect to its own flow

because each O-D pair has different flow to transport on shared links.

3.6.1 Model Assumption

Players are represented as ordered pairs of nodes (N*N-1). Discounted links in the

FDPTP model have no capacity limits. The O-D pairs necessarily use the globally

optimal network. Unlike the hub network, the O-D pairs in the point-to-point network

cannot reduce their cost by changing their routings.

3.6.2 Proportional Cost Allocation

A proportional cost allocation scheme is developed to solve the cost allocation

model. The total network cost is obtained by constraints (3.10) – (3.22). Then, the model

separates the total network costs into transportation costs and fixed costs. The goal is to
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allocate the fixed costs among users of the discounted link users 13 based on their

contribution to flow economies of scale. Let PCAijkm be a proportional cost allocation of

the [I-J] pair on [K-M] link. It is possible to divide the fixed costs to user of shared links

fairly. Equation (3.29) allocates fixed costs on every opened links to the users with

respect to flow contribution on the link.

(3.29),]/[ mkXWFPCA
i j

ijkmkmkmijkm ∀��⋅=

Tables 3.13-3.14 show the cost allocations of the FDPTP without hop constraint for each

O-D pair (players) based on a 6-node network [see Figure 3.5 for the optimal solution of

the FDPTP without hop constraint]. Tables 3.15-3.17 show the cost allocations of the

FDPTP with hop constraint for each O-D pair based on a 6-node network. Notice that

[Difference] columns of Tables 3.13-3.17 have zero, positive or negative numbers. Zero

in [Difference] column represents that each user’s flow contribution to links is same as

others. In other words, cost allocation is not necessary in this particular case. Positive

number in [Difference] column shows that O-D pairs pay more fixed costs with respect to

flow by proportional cost allocation than those without cost allocation. Negative number

in [Difference] column represents that they pay less fixed costs with respect to flow by

proportional cost allocation than those without cost allocation. In this particular example,

every O-D pair has a unit flow of 10. For example, Table 3.15 provides the cost

allocation of O-D pairs that use the discount link (X2). Their total network cost [Total

Network Cost2] represents proportional cost allocations based on their flow contribution

13 The cost allocation for the non-discounted link users is trivial because there are no flow economies of
scale involved in that link.
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to the link because each O-D pair contributes different flow to the link. The numerical

results of the CAB dataset are shown in Chapter 6.

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 1 2 1 2 10 12 14.16 14.16 0

X4 1 3 1 2 10 12 14.16 14.16 0

X4 1 4 1 2 10 12 14.16 14.16 0

X4 1 5 1 2 10 12 14.16 14.16 0

X4 1 6 1 2 10 12 14.16 14.16 0

X4 2 1 2 1 10 12 14.16 14.16 0

X4 3 1 2 1 10 12 14.16 14.16 0

X4 4 1 2 1 10 12 14.16 14.16 0

X4 5 1 2 1 10 12 14.16 14.16 0

X4 6 1 2 1 10 12 14.16 14.16 0

X4 1 5 3 5 10 14.42 17.02 17.02 0

X4 2 5 3 5 10 14.42 17.02 17.02 0

X4 3 5 3 5 10 14.42 17.02 17.02 0

X4 4 5 3 5 10 14.42 17.02 17.02 0

X4 6 5 3 5 10 14.42 17.02 17.02 0

X4 1 6 4 6 10 14.42 17.02 17.02 0

X4 2 6 4 6 10 14.42 17.02 17.02 0

X4 3 6 4 6 10 14.42 17.02 17.02 0

X4 4 6 4 6 10 14.42 17.02 17.02 0

X4 5 6 4 6 10 14.42 17.02 17.02 0

X4 5 1 5 3 10 14.42 17.02 17.02 0

X4 5 2 5 3 10 14.42 17.02 17.02 0

X4 5 3 5 3 10 14.42 17.02 17.02 0

X4 5 4 5 3 10 14.42 17.02 17.02 0

X4 5 6 5 3 10 14.42 17.02 17.02 0

X4 6 1 6 4 10 14.42 17.02 17.02 0

X4 6 2 6 4 10 14.42 17.02 17.02 0

X4 6 3 6 4 10 14.42 17.02 17.02 0

X4 6 4 6 4 10 14.42 17.02 17.02 0

X4 6 5 6 4 10 14.42 17.02 17.02 0

Table 3.13 Cost Allocation (FDPTP without Hop Constraint) of X4 with Cost Function 1
under Flow Range 1 (6-Node)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 3 4 3 10 4 18 18 0
X5 1 5 4 3 10 4 18 18 0
X5 2 3 4 3 10 4 18 18 0
X5 2 5 4 3 10 4 18 18 0
X5 4 1 4 3 10 4 18 18 0
X5 4 2 4 3 10 4 18 18 0
X5 4 3 4 3 10 4 18 18 0
X5 4 5 4 3 10 4 18 18 0
X5 6 1 4 3 10 4 18 18 0
X5 6 2 4 3 10 4 18 18 0
X5 6 3 4 3 10 4 18 18 0
X5 6 5 4 3 10 4 18 18 0
X5 3 1 3 2 10 3.61 16.22 16.22 0
X5 3 2 3 2 10 3.61 16.22 16.22 0
X5 3 4 3 2 10 3.61 16.22 16.22 0
X5 3 6 3 2 10 3.61 16.22 16.22 0
X5 4 1 3 2 10 3.61 16.22 16.22 0
X5 4 2 3 2 10 3.61 16.22 16.22 0
X5 5 1 3 2 10 3.61 16.22 16.22 0
X5 5 2 3 2 10 3.61 16.22 16.22 0
X5 5 4 3 2 10 3.61 16.22 16.22 0
X5 5 6 3 2 10 3.61 16.22 16.22 0
X5 6 1 3 2 10 3.61 16.22 16.22 0
X5 6 2 3 2 10 3.61 16.22 16.22 0
X5 1 3 2 4 10 3.61 16.22 16.22 0
X5 1 4 2 4 10 3.61 16.22 16.22 0
X5 1 5 2 4 10 3.61 16.22 16.22 0
X5 1 6 2 4 10 3.61 16.22 16.22 0
X5 2 3 2 4 10 3.61 16.22 16.22 0
X5 2 4 2 4 10 3.61 16.22 16.22 0
X5 2 5 2 4 10 3.61 16.22 16.22 0
X5 2 6 2 4 10 3.61 16.22 16.22 0
X5 3 4 2 4 10 3.61 16.22 16.22 0
X5 3 6 2 4 10 3.61 16.22 16.22 0

Table 3.14 Cost Allocation (FDPTP without Hop Constraint) of X5 with Cost Function 1
under Flow Range 1 (6-Node)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 1 6 2 4 10 28.84 36.06 34.25 -1.80
X2 2 6 2 4 5 14.42 18.03 19.83 1.80
X2 3 1 3 2 5 14.42 18.03 19.83 1.80
X2 5 1 3 2 10 28.84 36.06 34.25 -1.80
X2 4 3 4 3 5 16 20 22 2

X2 6 5 4 3 10 32 40 38 -2

Table 3.15 Cost Allocation (FDPTP with Hop Constraint) of X2 with Cost Function 1
under Flow Range 1 (6-Node)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 1 2 1 2 10 12 22.80 22.80 0
X4 1 3 1 2 10 12 22.80 22.80 0
X4 1 4 1 2 10 12 22.80 22.80 0
X4 1 5 1 2 10 12 22.80 22.80 0
X4 1 6 1 2 10 12 22.80 22.80 0
X4 2 1 2 1 10 12 22.80 22.80 0
X4 3 1 2 1 10 12 22.80 22.80 0
X4 4 1 2 1 10 12 22.80 22.80 0
X4 5 1 2 1 10 12 22.80 22.80 0
X4 6 1 2 1 10 12 22.80 22.80 0
X4 1 5 3 5 10 14.42 27.40 27.40 0
X4 2 5 3 5 10 14.42 27.40 27.40 0
X4 3 5 3 5 10 14.42 27.40 27.40 0
X4 4 5 3 5 10 14.42 27.40 27.40 0
X4 6 5 3 5 10 14.42 27.40 27.40 0
X4 1 6 4 6 10 14.42 27.40 27.40 0
X4 2 6 4 6 10 14.42 27.40 27.40 0
X4 3 6 4 6 10 14.42 27.40 27.40 0
X4 4 6 4 6 10 14.42 27.40 27.40 0
X4 5 6 4 6 10 14.42 27.40 27.40 0
X4 5 1 5 3 10 14.42 27.40 27.40 0
X4 5 2 5 3 10 14.42 27.40 27.40 0
X4 5 3 5 3 10 14.42 27.40 27.40 0
X4 5 4 5 3 10 14.42 27.40 27.40 0
X4 5 6 5 3 10 14.42 27.40 27.40 0
X4 6 1 6 4 10 14.42 27.40 27.40 0
X4 6 2 6 4 10 14.42 27.40 27.40 0
X4 6 3 6 4 10 14.42 27.40 27.40 0
X4 6 4 6 4 10 14.42 27.40 27.40 0

X4 6 5 6 4 10 14.42 27.40 27.40 0

Table 3.16 Cost Allocation (FDPTP with Hop Constraint) of X4 with Cost Function 1
under Flow Range 1 (6-Node)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 3 2 3 10 7.21 19.23 18.03 -1.20
X5 1 4 2 3 10 7.21 19.23 18.03 -1.20
X5 1 5 2 3 10 7.21 19.23 18.03 -1.20
X5 2 3 2 3 10 7.21 19.23 18.03 -1.20
X5 2 4 2 3 10 7.21 19.23 18.03 -1.20
X5 2 5 2 3 10 7.21 19.23 18.03 -1.20
X5 2 6 2 3 5 3.61 9.61 14.42 4.81
X5 4 3 2 3 5 3.61 9.61 14.42 4.81
X5 4 5 2 3 10 7.21 19.23 18.03 -1.20
X5 6 3 2 3 10 7.21 19.23 18.03 -1.20
X5 1 4 3 4 10 8 21.33 20 -1.33
X5 2 4 3 4 10 8 21.33 20 -1.33
X5 2 6 3 4 5 4 10.67 16 5.33
X5 3 1 3 4 5 4 10.67 16 5.33
X5 3 2 3 4 10 8 21.33 20 -1.33
X5 3 4 3 4 10 8 21.33 20 -1.33
X5 3 6 3 4 10 8 21.33 20 -1.33
X5 5 2 3 4 10 8 21.33 20 -1.33
X5 5 4 3 4 10 8 21.33 20 -1.33
X5 5 6 3 4 10 8 21.33 20 -1.33
X5 3 1 4 2 5 3.61 9.61 14.42 4.81
X5 3 2 4 2 10 7.21 19.23 18.03 -1.20
X5 4 1 4 2 10 7.21 19.23 18.03 -1.20
X5 4 2 4 2 10 7.21 19.23 18.03 -1.20
X5 4 3 4 2 5 3.61 9.61 14.42 4.81
X5 4 5 4 2 10 7.21 19.23 18.03 -1.20
X5 5 2 4 2 10 7.21 19.23 18.03 -1.20
X5 6 1 4 2 10 7.21 19.23 18.03 -1.20
X5 6 2 4 2 10 7.21 19.23 18.03 -1.20

X5 6 3 4 2 10 7.21 19.23 18.03 -1.20

Table 3.17 Cost Allocation (FDPTP with Hop Constraint) of X5 with Cost Function 1
under Flow Range 1 (6-Node)
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CHAPTER 4

NUMERICAL RESULTS OF THE FLOW-BASED DISCOUNT

MULTIPLE ALLOCATION HUB PROBLEM (FDMAP)

This chapter presents analytical results of the FDMAP. The computational results

from the FDMAP are discussed and compared to the results for previous hub models. The

new model particularly focuses on building optimal infrastructure for interhub links with

a concave cost function. The numerical results are also compared to other developed

models in later chapters.

4.1 Data Description

Civil Aeronautics Board (CAB) data sets are used in this study. Table A.1 in the

Appendix A shows 25 U.S. city airline passenger flows in 1970. This is a standard

benchmark data used to assess hub model characteristics. Subsets of the data are also

generated in order to compare 10*10, 15*15, and 20*20 interactions. The 100 U.S. city

airline passenger flows for 1970 in Table A.2 are also used. Figure 4.1 shows the

configuration of each data. The data include values for the O-D flows (Wij), and distances

(Cij) calculated from latitude and longitude coordinates of each airport. The total network

flow for the dataset is given in Table 4.1. All flows are symmetric.
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Figure 4.1 CAB Data Set

Dataset Total Network Flow
10 999,026
15 2,364,942
20 5,754,594
25 8,540,006
100 16,549,732

Table 4.1 Total Network Flow (CAB Data)
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4.2 Numerical Results of the FDMAP

To illustrate the efficiency of the new model, a 20 node network, a 25 node

network, and a 100 node network are analyzed. The 20 node network is typically used.

Unlike the previous FLOWLOC model, the FDMAP solves a 100 node network without

fixed hub locations in a reasonable amount of time. The FDMAP determines

infrastructure of the interhub link along with optimal hub locations and the allocations of

non-hub nodes to hubs for 20, 25, 100 cities. Figure 4.2 illustrates different types of

infrastructure in hub network. Total flows from Dallas to Atlanta, for example, are

bundled from other city pairs, including Dallas to Atlanta. Then, the model decides a type

of plane that provides the minimum total network cost.

DALLAS
HUB

FLOW
=A

FLOW = B

FLOW
= C

ATLANTA
HUB

FLOW = A+ B + C + D

FLOW = D

?

?

?

Figure 4.2 Infrastructure of the FDMAP
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To exemplify the impact of the flow dependent cost function on interhub flows, a

completely interconnected hub network is relaxed. In other words, some interhub links

might be permitted to be closed in optimal situations. The number of hubs to open is

exogenously fixed at three. Practically, the empirical data on costs and rates would be

used to obtain the cost function. To investigate the flow dependency of the new model,

costs are approximated by piecewise-linear cost functions. Each nonlinear concave cost

function to be approximated is based on equation (4.1). Tables 4.2, 4.7 and 4.10 show the

ranges of the interhub link flows for a 20 node network, a 25 node network and a 100

node network respectively. Tables 4.3, 4.8, and 4.11 show slopes and fixed costs for the

piecewise-linear functions of the 20 node network, the 25 node network, and the 100

node network.

The FDMAP solves 15 different cost functions for the 20 node network, 4 for the

25 node network and 11 for the 100 node network. The results are compared with the

previous hub models. Tables 4.4, 4.9, and 4.12 show the optimal hub locations and the

average total network cost per unit flow for CAB20, CAB25 and CAB100 respectively.

For the 20 node network, the cost functions 1 to 10 are solved with 1 representing the

cost function with the smallest discounts for each piecewise of the cost function and 10

indicating the cost function as the largest discount based on RANGE1 (see Table 4.2).

The cost functions 11 to 13 are evaluated to give the lower threshold of flows (RANGE2)

as can be seen in Table 4.2. The cost functions 14 to 15 have the same flow range

(RANGE1) with different cost functions. For the 25 node network, the cost functions 1 to

2 are solved with 1 representing the cost function with the smallest discounts for each
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piecewise of the cost function and 2 indicating the cost function as the largest discount

based on RANGE1. The cost functions 3 to 4 are evaluated to give the lower threshold of

flows (RANGE2) as can be seen in Table 4.7. For the 100 node network, the cost

functions 1 to 7 (RANGE1) are solved with 1 representing the cost function with the

smallest discounts for each piecewise of the cost function and 7 indicating the cost

function as the largest discount. The cost functions 8 to 9 are evaluated to give the lower

threshold of flows (RANGE2) as can be seen in Table 4.10. The cost functions 10 to 11

have a same flow range (RANGE1) with a different cost function.
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In the three hub model of CAB20, hubs are optimally located at Chicago, New

York, and Dallas for all runs as can be seen in Table 4.4. In the multiple allocation hub

models, the hub locations vary depending on the discount. Optimal infrastructures in the

interhub links are also shown in Table 4.4. Results show that when the available discount

increases, it tends to close a partial interhub link to achieve a large interhub discount in

other interhub links instead of maintaining all interhub links. More interestingly, the total

interhub link flows are distributed differently depending on the range set of interhub link

flows. For example, both C.F.10 and C.F.11 have similar total interhub link flows but

C.F.11 allocates the flows relatively evenly between two open interhub links while

C.F.10 concentrates the flows on one interhub link as can be seen in Table 4.4.

Piece Flow Range 1 Flow Range 2
1 ~ ~
2 250,000 125,000
3 500,000 250,000
4 750,000 375,000
5 1,000,000 500,000

Table 4.2 Flow Ranges of the Interhub Link Flows (CAB20)

As can be seen in Table 4.4, the average total network cost (obj) decrease as the

available discount increases. This is a similar characteristic of the traditional multiple

assignment model. The total network costs are divided into transport costs and fixed
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costs. As earlier mentioned, fixed costs increase as the available discount increases (see

Figure 3.1 for details). There is a positive relationship between the total network cost and

the total interhub flow among different cost functions. As the interhub link gets larger

flow, the total network cost gets cheaper holding everything else same.

There are several differences between the FDMAP and the traditional hub model.

Bryan (1997) argued that the gap between two objective function values (traditional

models vs. flow dependent hub models) represents the extra cost paid by the flow

dependent hub model for routing some flows via their non least-cost path. The total

network cost per unit flow in the traditional hub model is always less than the per unit

total network cost in the flow dependent hub model. However this argument neglects a

very important network characteristic. It is not appropriate to compare the traditional hub

model and the flow dependent hub model directly. There are a couple of reasons why the

comparison is not proper. First, it is important to point out that the traditional hub model

did not include the fixed costs for the interhub links. Therefore, comparing two models

without considering the fixed cost does not make sense. Second, the flow ranges may

change the total network cost. For example, the flow range set 2 in Table 4.2 provides

much cheaper the total network cost than the flow range set 1. In this case, the flow

dependent hub model achieves much cheaper per unit total network cost than the

traditional hub model (see Table 4.4 and Table 4.5 for results). Therefore, Bryan’s

argument that the value of the objective function in the traditional hub model must

always be less than or equal to the value in the flow dependent hub model is no longer

valid.
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There are also noticeable differences between the FLOWLOC and the FDMAP.

Moreover, the FDMAP allocates flows to paths that are necessarily their least cost path

unlike the FLOWLOC model. This is much clearer once the FDMAP finds the optimal

cost allocation vectors for each O-D pair. It is important to note that optimal hub

locations between the traditional multiple allocation model and the FDMAP are not

always identical. One possible way to compare two models is to fix the hub locations for

both models.

For CAB20 data set, Figures 4.3 and 4.4 illustrate the changes in allocation of the

FDMAP under different cost functions and flow ranges. There are two reasons why

Figure 4.4 has more flows across the interhub links. First, the discount on the interhub

link increases in the cost function 11. Second, the flow range in the cost function 11 is

lower than the cost function 10. This illustrates a characteristic of the FDMAP that

allocates flows optimally in order to minimize the total network cost. One interesting

network configuration in the FDMAP different from the FLOWLOC is that the FDMAP

does not necessarily open all the interhub links. See also the model assumptions of the

FDMAP that allows the multiple interhub links discussed in Chapter 3.
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Piece 1 2 3 4 5

Fixed Cost 0 21721.78 65165.33 130330.7 500000Cost Function 1
Slope 0.956556 0.869669 0.782782 0.695895 0.326226

Fixed Cost 0 26066.13 78198.39 156396.8 500469.7
Cost Function 2

Slope 0.947868 0.843603 0.739339 0.635074 0.291001
Fixed Cost 0 30410.49 91231.46 182462.9 510896.2

Cost Function 3
Slope 0.939179 0.817537 0.695895 0.574253 0.24582

Fixed Cost 0 34754.84 104264.5 208529 500469.7
Cost Function 4

Slope 0.93049 0.791471 0.652452 0.513432 0.221492
Fixed Cost 0 39099.2 117297.6 234595.2 516109.4

Cost Function 5
Slope 0.921802 0.765405 0.609008 0.452611 0.171097

Fixed Cost 0 43443.55 130330.7 260661.3 521322.6
Cost Function 6

Slope 0.913113 0.739339 0.565564 0.39179 0.131129
Fixed Cost 0 47787.91 143363.7 286727.4 516109.4

Cost Function 7
Slope 0.904424 0.713273 0.522121 0.330969 0.101587

Fixed Cost 0 52132.26 156396.8 312793.6 500469.7
Cost Function 8

Slope 0.895735 0.687206 0.478677 0.270148 0.082472
Fixed Cost 0 56476.62 169429.9 338859.7 496994.2

Cost Function 9
Slope 0.887047 0.66114 0.435234 0.209327 0.051193

Fixed Cost 0 60820.97 182462.9 364925.8 510896.2
Cost Function 10

Slope 0.878358 0.635074 0.39179 0.148506 0.002536
Fixed Cost 0 25000 75000 150000 250000

Cost Function 11
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 12500 62500 137500 237500
Cost Function 12

Slope 1 0.9 0.7 0.5 0.3
Fixed Cost 0 12500 37500 75000 125000Cost Function 13

Slope 0.9 0.8 0.7 0.6 0.5
Fixed Cost 0 25000 75000 150000 250000

Cost Function 14
Slope 0.9 0.8 0.7 0.6 0.5

Fixed Cost 0 50000 150000 300000 500000
Cost Function 15

Slope 1 0.8 0.6 0.4 0.2
*Cost functions 1-10, and 14-15 are based on Flow Range 1 and cost functions 11-13 are based on Flow Range 2.

Table 4.3 Slope and Fixed Cost for the Piecewise Linear Cost (CAB20)
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In the three hub model of CAB25, hubs are optimally found among four different

locations depending on the cost functions. Chicago, Los Angeles, and Philadelphia are

found as hubs for the cost function 1 as can be seen in Table 4.9. Chicago, Los Angeles,

and New York are selected as hubs with cost functions 2-4. Chicago and Los Angeles are

strong candidates as hub locations in most cost functions due to the geographical

distribution of locations whereas New York, Philadelphia, Washington D.C. are

competing each other on east side. In this particular data, the FDMAP does not build a

fully-connected hub network under any cost function. Figures 4.5 and 4.6 illustrate the

changes in allocation of the FDMAP under different cost functions and flow ranges.

Piece Flow Range 1 Flow Range 2
1 0 0
2 300,000 150,000
3 600,000 300,000
4 900,000 450,000
5 1,200,000 600,000

Table 4.7 Ranges of the Interhub Link Flows (CAB25)
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In the three hub model of CAB100, hubs are optimally found among 8 different

locations depending on the cost functions as can be seen in Table 4.12. Figures 4.7 and

4.8 illustrate the changes in allocation of the FDMAP under different cost functions and

flow ranges. The results support that there is no relationship between the amount of flow

and the length of interhub link. The longer interhub link gets higher volume of flows in

Figure 4.7 whereas the shorter interhub link gets higher volume of flows in Figure 4.8.

Piece Flow Range 1 Flow Range 2
1 ~ ~
2 250,000 125,000
3 500,000 250,000
4 750,000 375,000
5 2,000,000 1,000,000

Table 4.10 Ranges of the Interhub Link Flows (CAB100)
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Piece 1 2 3 4 5

Fixed Cost 0 9063.59 27190.8 108763 619225Cost Function 1
Slope 0.981873 0.945618 0.909364 0.800601 0.54537

Fixed Cost 0 12084.8 36254.4 145018 825633
Cost Function 2

Slope 0.97583 0.927491 0.879152 0.734135 0.393827
Fixed Cost 0 15106 45317.9 181272 985465

Cost Function 3
Slope 0.969788 0.909364 0.84894 0.667668 0.265572

Fixed Cost 0 18127.2 54381.6 217526 1008540
Cost Function 4

Slope 0.963746 0.891237 0.818728 0.601202 0.205696
Fixed Cost 0 21148.4 63445.1 253780 1024360

Cost Function 5
Slope 0.957703 0.87311 0.788516 0.534736 0.149447

Fixed Cost 0 24169.6 72508.7 290035 1005450
Cost Function 6

Slope 0.951661 0.854983 0.758304 0.468269 0.11056
Fixed Cost 0 27190.8 81572.3 326289 1000620

Cost Function 7
Slope 0.945618 0.836855 0.728092 0.401803 0.064637

Fixed Cost 0 12500 37500 75000 175000
Cost Function 8

Slope 0.9 0.8 0.7 0.6 0.5
Fixed Cost 0 25000 75000 150000 350000

Cost Function 9
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 50000 150000 300000 700000
Cost Function 10

Slope 1 0.8 0.6 0.4 0.2
Fixed Cost 0 25000 75000 150000 350000

Cost Function 11
Slope 0.9 0.8 0.7 0.6 0.5

* Cost functions 1-7 and 10-11 are based on Flow Range 1 and cost functions 8-9 are based on Flow Range 2.

Table 4.11 Slope and Fixed Cost for the Piecewise Linear Cost (CAB100)
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4.3 Summary of Results

Computational results clearly support the notion that the model can design

optimal hub locations and infrastructure. The algorithm solves problems of practical size

within acceptable computation times, so it provides a flexible means to model

infrastructure in hub networks. Identifying optimal flows is one of the key tasks in

building hub network models. This research shows that the study of the relationship

between optimal flows and infrastructure is critical to reach an optimal network. It is also

necessary to understand the linkage between cost functions and optimal flows. This study

investigates the role of flows in building interhub links as a means of routing paths.

This chapter presents empirical results of the FDMAP that incorporates

economies of scale utilizing the piecewise-linear cost function. The model focuses on the

interhub link installation along with hub locations and allocations of non-hub nodes. The

numerical results of CAB data show that the FDMAP is different from the FLOWLOC

and the traditional multiple allocation hub model. In terms of modeling aspect, first, the

FDMAP allows the multiple interhub links for the O-D pair path. Second, the results of

FDMAP show that a completely connected hub network is not necessary to an optimal

hub network. In other words, the model does not open fully-connected interhub links to

save the total network cost by achieving the flow economies of scale. With respect to

speed of computation, the tabu search algorithm solves a relatively large 100 node hub

network in reasonable time. The model also points out that the comparison of the total

network cost between the flow dependent hub model and the traditional multiple

allocation model is not appropriate. On one hand, the fixed cost has not been considered
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in the traditional multiple allocation model. On the other hand, the range of interhub link

flow significantly affects the total network cost.

There are several expected properties of the tabu FDMAP heuristic over previous

multiple allocation hub models. First, results of the tabu FDMAP heuristic show similar

network structures to the results of the single allocation model. In other words, the usage

of interhub links is intensified comparing to the traditional multiple allocation hub

problem. The results show that most of the interhub links have significant flows to

achieve the discount by bundling flows. Moreover, flows on the interhub links are more

reasonable because the discounts are based on the pre-specified threshold. Second, the

tabu FDMAP heuristic14 can be extended to larger networks with a reasonable

computation time while the previous FLOWLOC model, which used the LP solution, is

limited to small networks with an expensive computation time.

14 The tabu FDMAP heuristic is coded in C++.
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CHAPTER 5

NUMERICAL RESULTS OF THE FLOW-BASED DISCOUNT

POINT-TO-POINT MODEL (FDPTP)

This chapter presents numerical results for the flow-based discount point-to-point

model in which every pair of nodes can communicate directly. The flow economies of

scale idea in the FDMAP is adopted in this model to compare point-to-point networks

with hub networks. A fully-connected pure point-to-point network is infeasible because

there is not enough flow to support such a network. The point-to-point network based on

the flow-dependent cost function is a reasonable approach to solve the problem. There is

an incentive to combine flows from different origins and destinations when the flow

through a link surpasses a threshold with various discount factors. Computational results

of CAB data are presented to illustrate this idea.

In a hub-and-spoke network, a smaller number of links are chosen to serve a large

number of O-D pairs while a large number of links are necessary in a point-to-point

network to transport flows. The ideas behind this new model are as follows: [1] the non-

interhub links can achieve flow economies of scale, [2] air travelers prefer direct flights

and more frequency, and [3] competition increases among direct service providers and

hub service providers.
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5.1 Numerical Results of the FDPTP

10-node and 15-node versions of CAB data set are performed with different

predefined concave cost functions which provide the flow economies of scale. CPLEX, a

mixed integer problem solver, is used to solve those problems. Both the 10-node and the

15-node network are solved optimally, but not all instances of the 20-node and the 25-

node networks are solved optimally due to increase in memory consumption and running

time. For the large network, a number of fractional decision variables increase the size of

branch and bound tree significantly.

The behavior of the model depends also on concave cost functions that determine

input parameters of discounts and fixed costs along with flow ranges. The numerical

results show that discount values and flow ranges are directly related with the complexity

of the problem in addition to the problem size. For example, as a discount value gets

lower (more discount), the possibility of bundling flows gets bigger. This makes the

model complex to solve in addition to the problem size. In the similar context, the higher

flow range level makes the model search more O-D pairs to bundle flows than the lower

one. Decreasing the discount value alpha (more discount) creates a situation where there

is a larger incentive to cooperate. So more re-routing needs to be done at the expense of

the level of difficulty. The increase in the flow range level reduces the number of

discounted links. The ratio between discounted and non-discounted links illustrates the

attractiveness of discounting for a specific cost function.

Figure 5.1 shows the results of the FDPTP (CAB10) with cost function 3 of Table

5.3. In this particular problem, Cleveland (6) and Dallas (7) have the most interacting
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flows with other nodes. Out of 90 possible directed links, the model opens 20 discounted

links which are four Y5, four Y4, four Y3, and eight Y2 discounted links. As can be seen in

Table 5.2 and 5.7, the flows on discount links are corresponding to the flow range each

other. Among most discounted links, the discount link between Cleveland (6) and

Chicago (4) [6�4] has the largest flows. Notice that the model does not necessarily open

the link between Chicago (4) and Cleveland (6) [4�6]. On the other hand, the model

opens 4 pairs of two-way links. More interestingly, different discounts are found on those

two-way links. For example, the link between Dallas (7) and Houston (10) [7�10] is

discounted by Y2 variable whereas the link between Houston (10) and Dallas (7) [10�7]

is discounted by Y4 variable.

Figure 5.2 shows the results of the FDPTP (CAB10) with cost function 3 without

hop constraint (3.20). The model without hop constraint makes the network denser than

one with hop constraint. Out of 90 possible directed links, the model opens 15 discounted

links which are ten Y5, four Y3, and single Y2 discounted links. This illustrates that most of

opened links achieve the large discounts. As can be seen in Table 5.2 and 5.8, the flows

on discount links are corresponding to the flow range each other. Table 5.1 shows the

total network cost with different discount levels between Figure 5.1 and Figure 5.2. As

can be seen in Table 5.1, the model without hop constraint achieves the higher level of

the flow economies of scale than the one with hop constraint.

The reason for the dense network result without hop constraint is that the model

with hop constraint needs to re-route flows of the geographically separated O-D pairs.

For example, the model needs to build extra links to carry the flows from Dallas (7) to
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Boston (3) [7�3] which are geographically far from each other. To make this feasible,

the model builds the new link from Dallas (7) to Cleveland (6) [7�6] which was not

feasible in the previous result (Figure 5.1). On the other hand, the model also removes

some links of the previous result to achieve the flow economies of scale. For instance, the

links from Boston (3) to Baltimore (2) [3�2], and from Atlanta (1) to Dallas (7) [1�7]

are not opened any more. The level of discounts for the links is also changed. For

example, the discount level of the link from Baltimore (2) to Cleveland (6) [2�6]

changes from Y2 to Y5 variable without hop constraint.

Figure 5.3 shows the results of the FDPTP (CAB10) with cost function 1 without

hop constraint (3.20). The model with a higher flow range makes the network denser than

the one with a lower flow range. The model with a higher flow range cannot achieve the

flow economies of scale as much as the one with a lower flow range. The model opens

relatively a large number of lower discount links. For example, the proportion of Y2 is

much higher than the one of Y5. Out of 90 possible directed links, the model opens 16

discounted links which are four Y5, one Y3, and eleven Y2 discounted links. As can be

seen in Table 5.2 and 5.9, the flows on discount links are corresponding to the flow range

each other.
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Piece Flow Range 1 Flow Range 2
1 0 0
2 62,500 31,250
3 125,000 62,500
4 187,500 93,750
5 250,000 125,000

Table 5.2 Ranges of Link Flows (CAB10)

Piece 1 2 3 4 5

Fixed Cost 0 12,500 37,500 75,000 125,000Cost Function 1
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 6,250 18,750 37,500 62,500
Cost Function 2

Slope 0.9 0.8 0.7 0.6 0.5
Fixed Cost 0 7,500 20,000 38,750 63,750

Cost Function 3
Slope 1 0.8 0.6 0.4 0.2

*Cost functions 1-2 are based on flow range 1, and cost function 3 is based on flow range 2.

Table 5.3 Slope and Fixed Cost for the Piecewise-Linear Cost Function (CAB10)

Comparing Table 5.4 and Table 5.5 shows how efficient the FDPTP model is with

respect to the total network cost. Given the same input parameters of discounts and fixed

costs with flow range, the FDPTP provides the cheaper total network cost than the

FDMAP in cost function 3 whereas the FDMAP finds the cheaper total network cost in

cost functions 1 and 2. Even the FDPTP with hop constraint in cost function 3 (Table 5.6)

which behaves like hub network due to the number of stops achieves the cheaper total
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network cost than the FDMAP. More interestingly, the decomposition of total network

costs into transport costs and fixed costs provides the clear idea of network structure.

Unlike the other results, the proportion of fixed costs in the FDPTP with cost

function 3 as can be seen in Table 5.4 is larger than the transport cost. Although the

FDPTP obtains the cheaper transport costs than the FDMAP, fixed costs are very high

due to the large number of links to be opened. The number of links built by the FDPTP

cost relatively higher fixed costs than the FDMAP solution. Therefore, the optimal

network configuration between hub network and point-to-point network depends on the

input parameters.

CAB10 Total Network Cost Transport Cost Fixed Cost

C.F.1 682.87 485.40 197.48
C.F.2 643.40 585.39 58.01

C.F.3 531.69 245.15 286.53
*Cost functions 1-2 are based on flow range 1, and cost function 3 is based on flow range 2.

Table 5.4 Cost of the FDPTP Solution without Hop Constraint (CAB10)

CAB10 Total Network Cost Transport Cost Fixed Cost

C.F.1 651.25 643.46 7.79
C.F.2 641.59 637.70 3.90

C.F.3 624.08 552.71 71.37
*Cost functions 1-2 are based on flow range 1, and cost function 3 is based on flow range 2.

Table 5.5 Cost of the FDMAP Solution (CAB10)
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CAB10 Total Network Cost Transport Cost Fixed Cost

C.F.3 588.91 352.91 236.01
*Cost function 3 is based on flow range 2.

Table 5.6 Cost of the FDPTP Solution with Hop Constraint (CAB10)

K M Flow Discount
6 4 286643 5
9 6 240692 5
4 9 174417 5
7 6 148210 5
6 3 108379 4
3 6 108379 4
5 6 103292 4
10 7 96709 4
6 1 89859 3
4 7 75580 3
8 7 67896 3
6 9 66275 3
7 10 60725 2
6 2 60035 2
2 6 60035 2
1 5 53875 2
6 5 49417 2
4 8 36646 2
1 10 35984 2
7 8 31250 2

Table 5.7 Discount Levels in the FDPTP (CAB10) with Cost Function 3 under Flow
Range 2
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K M Flow Discount
9 6 413904 5
6 5 380208 5
4 9 380208 5
5 1 202085 5
7 4 202085 5
1 7 202085 5
5 4 178123 5
3 2 155415 5
6 3 155415 5
2 6 155415 5
10 7 82778 3
7 10 82778 3
8 7 67896 3
7 8 67896 3
6 9 33696 2

Table 5.8 Discount Levels in the FDPTP (CAB10) without Hop Constraint with Cost
Function 3 under Flow Range 2
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K M Flow Discount
4 5 344,623.00 5
5 6 344,623.00 5
6 9 344,623.00 5
9 4 344,623.00 5
7 4 166,862.00 3

3 6 108,379.00 2
6 3 108,379.00 2
4 7 98,966.00 2
7 10 82,778.00 2
10 7 82,778.00 2
1 5 75,054.00 2
5 1 75,054.00 2
4 8 67,896.00 2
8 7 67,896.00 2
2 6 62,500.00 2
6 2 62,500.00 2

Table 5.9 Discount Levels in the FDPTP (CAB10) without Hop Constraint with Cost
Function 1 under Flow Range 1

Figure 5.4 shows the results of the FDPTP (CAB15) with cost function 1 in Table

5.10. In this particular problem, Chicago (4), Cincinnati (5) and Kansas City (11) have

the most interacting flows with other nodes. Out of 210 possible directed links, the model

opens 26 discounted links which are twelve Y5, five Y4, four Y3, and five Y2 discounted

links. As can be seen in Table 5.10 and 5.12, the flows on discount links are

corresponding to the flow range each other. Among most discounted links, the discount

link between Chicago (4) and Cincinnati (5) [4�5] has the largest flows. There are 9
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pairs of two-way links. Eight pairs of those two-way links have the same level of

discount on both ways. Only one pair has a different level of discount. For example, the

link between Baltimore (2) and Cleveland (6) [2�6] is discounted by Y4 variable whereas

the link between Cleveland (6) and Baltimore (2) [6�2] is discounted by Y2 variable. Not

only the level of discount but also the amount of flow on two-way links are different. As

can be seen in Table 5.12, the flows between Chicago (4) and Kansas City (11) [4�11]

and Kansas City (11) to Chicago (4) and [11�4] are different [see also model property in

section 5.2 for more details].

Piece Flow Range 1 Flow Range 2
1 0 0
2 125,000 62,500
3 250,000 125,000
4 375,000 187,500
5 500,000 250,000

Table 5.10 Ranges of Link Flows (CAB15)
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Piece 1 2 3 4 5
Fixed Cost 0 25,000 75,000 15,0000 250,000Cost Function 1

Slope 1 0.8 0.6 0.4 0.2
Fixed Cost 0 12,500 62,500 137,500 237,500

Cost Function 2
Slope 1 0.9 0.7 0.5 0.3

Fixed Cost 0 12,500 37,500 75,000 125,000
Cost Function 3

Slope 0.9 0.8 0.7 0.6 0.5
Fixed Cost 0 12,500 37,500 75,000 125,000

Cost Function 4
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 6,250 31,250 68,750 118,750
Cost Function 5

Slope 1 0.9 0.7 0.5 0.3
Fixed Cost 0 6,250 18,750 37,500 62,500

Cost Function 6
Slope 0.9 0.8 0.7 0.6 0.5

*Cost functions 1-3 are based on flow range 1, and cost functions 4-6 are based on flow range 2.

Table 5.11 Slope and Fixed Cost for the Piecewise Linear Cost Function (CAB15)
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K M Flow Discount
4 5 704,756 5
5 6 642,256 5
6 9 642,256 5
9 4 642,256 5
11 4 485,092 5
4 11 422,592 5
8 11 338,512 5
11 8 338,512 5
5 1 318,805 5
8 12 276,108 5
12 8 276,108 5
1 5 256,305 5
2 6 233,277 4
7 11 211,591 4
11 7 211,591 4
1 14 193,323 4
14 1 193,323 4
3 2 166,021 3
6 3 166,021 3
4 15 128,003 3
15 4 128,003 3
7 10 119,699 2
10 7 119,699 2
6 2 67,256 2
1 13 62,500 2
13 11 62,500 2

Table 5.12 Discount Levels in the FDPTP (CAB15) without Hop Constraint with Cost
Function 1 under Flow Range 1
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5.2 Properties of the FDPTP

There are several model properties from the results of the FDPTP model. First,

individual routings are not symmetric unlike the traditional hub model as can be seen in

Figure 5.5. The model strategically allocates the flows based on the flow range (threshold

level) to achieve the optimal network. This leads to produce the paths (i, j) and (j, i)

differently. For example, the i-k-j is the indirect path for (i, j) while the j-i is the direct

path for (j, i).

i

k

j

FLOW 50

F
L

O
W

50

i

k

j

FLOW 50

Figure 5.5 Asymmetric Individual Routing

Second, the FDPTP model splits the flow of O-D pair selectively based on the flow range

(threshold level) as can be seen in Figure 5.6. For example, the flow of O-D pair (i, j) is
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split two ways. The flow of 50 is kept in path (i, k) and it is split into two arcs k-j and k-

m-j.

i

j

m

k50
10

40

10

Figure 5.6 Splitting Flows of O-D pair

Third, there is a mixture of discount and non-discount link for the O-D pair as can be

seen in Figure 5.7. This model property is closely related to second model property.

Based on the flow range, the model amalgamates the flows on a specific arc while once a

specific arc reached the flow range, the model deviates the surplus flow into other arcs.
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Figure 5.7 Mixture of Discount and Non-discount Link

Numerical results also show other interesting characteristics of the FDPTP model.

Results show that discounting is not guaranteed even if flow of O-D pair is greater than

the flow range. It is not necessarily guaranteed due to the model properties above,

especially the property of splitting the flows. In this case, the fairness issue is involved

which will be discussed in cost allocation chapter. In the FDPTP model, the distance

between the origin and the destination does not affect the routing strategy at all. In other

words, the short distance of O-D pair does not necessarily favors a direct connection.
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5.3 Summary of Results

The numerical results show the effectiveness of flow-based discount point-to-

point network model. For smaller networks, it is possible to obtain optimal solutions in a

reasonable time. However, heuristic solution techniques for larger problems are necessary

because the model formulation is too memory intensive for the largest network evaluated.

The behavior of the model depends also on concave cost functions that determine

input parameters of discounts and fixed costs along with flow ranges. The numerical

results show that discount values and flow ranges are directly related to the complexity of

the problem, in addition to the problem size. The FDPTP model, with a higher flow

range, cannot achieve flow economies of scale as much as the one with a lower flow

range. It also displays a less dense network structure than the lower one. Given

discounting incentives based on the amount of flow on network links, O-D pairs are

motivated to amalgamate their flows. It turns out that a high level of flow range makes

the model difficult to solve because the model needs to bundle flows in many different

possible ways. This property is more sensitive to the model with hop constraint. The

result of network structure is also affected by the hop constraint. The reason for the less

dense network result without hop constraint is that the model with hop constraint needs to

re-route flows of the geographically separated O-D pairs.
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CHAPTER 6

NUMERICAL RESULTS OF COST ALLOCATION

This chapter presents the results of the cost allocations in both hub network games and

point-to-point network games. The cost allocation problems associated with the hub

network design and the point-to-point network design are addressed. The hub network is

efficient with a small number of links under the flow economies of scale. This network

efficiency utilizing the flow economies of scale is accomplished by the cooperation of

users (O-D pairs). Thus, it is essential to allocate the cost of delivering services through

interhub link infrastructure among its users in a fair way. Fair cost allocation not only

provides the efficient hub network but also compares the hub network with the point-to-

point network. In this manner, no O-D pair should want to secede if they receive a fair

cost from the hub network. In other words, users (O-D pairs) of the hub network with

unfair cost allocation may seek point-to-point network services. Such a network with

unfair cost allocations results in a higher total network cost due to failure in acheiving

flow economies of scale. The total network cost, c(P), in hub networks obtained by the

FDMAP is separable into fixed costs of infrastructure and transportation costs. In the cost

allocation model, the objective is to allocate the fixed costs of infrastructure to interhub

link users in the hub network. The results of cost allocations between users in the hub
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network and users in the point-to-point network users are also compared to show the cost

difference of the links. Figure 6.1 illustrates how infrastructure costs in the hub networks

that involve the users. For example, the Dallas hub collects flow (users) from other spoke

nodes and sends those flows, including its own, into the Atlanta hub in order to achieve

flow economies of scale along the interhub link. This involves cost allocation issues

about how much each flow contributes to the aggregated flows. The cost allocations

associated with the FDPTP model are also tackled with empirical data. The FDPTP game

is characterized to provide a fair cost allocation among users of discounted links based on

their contribution to flow economies of scale.

DALLAS
HUB

FLOW
=A

FLOW = B

FLOW
= C

ATLANTA
HUB

FLOW = A+ B + C + D

FLOW = D

Figure 6.1 Cost Allocation of Infrastructure (Interhub Link)
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6.1 Numerical Results of Cost Allocation in the FDMAP

The numerical analysis of cost allocation in the FDMAP is based on CAB15 data.

Total network flow for CAB15 data is 2,364,942. Table 6.1 shows flow ranges for each

piece-wise linear cost function. Concave cost functions 1-3 of Table 6.2 are based on the

flow range 1 in Table 6.1, while concave cost functions 4-6 of Table 6.2 are based on the

flow range 2 in Table 6.1. The FLOW RANGE2 (third column of Table 6.1) gives more

discounts than the FLOW RANGE1 (second column of Table 6.1) for the same amount

of flow. For instance, to achieve the second piece of the concave cost function in Table

6.1, there is a flow difference to reach depending on flow ranges. The model allows

125,000 units of flow to get the second piece of the concave cost function under Flow

Range1 while 62,500 units of flow are only necessary under Flow Range2. Cost

allocation solutions of the FDMAP (CAB15) are shown in Table 6.3. Out of 6 different

simulations tested, 4 are presented to illustrate the empirical results.

Piece Flow Range 1 Flow Range 2
1 0 0
2 125,000 62,500
3 250,000 125,000
4 375,000 187,500
5 500,000 250,000

Table 6.1 Ranges of the Interhub Link Flows (CAB15)
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Piece 1 2 3 4 5
Fixed Cost 0 25000 75000 150000 250000Cost Function 1

Slope 1 0.8 0.6 0.4 0.2
Fixed Cost 0 12500 62500 137500 237500

Cost Function 2
Slope 1 0.9 0.7 0.5 0.3

Fixed Cost 0 12500 37500 75000 125000
Cost Function 3

Slope 0.9 0.8 0.7 0.6 0.5
Fixed Cost 0 12500 37500 75000 125000

Cost Function 4
Slope 1 0.8 0.6 0.4 0.2

Fixed Cost 0 6250 31250 68750 118750
Cost Function 5

Slope 1 0.9 0.7 0.5 0.3
Fixed Cost 0 6250 18750 37500 62500

Cost Function 6
Slope 0.9 0.8 0.7 0.6 0.5

* Cost functions 1-3 are based on Flow Range 1 and cost functions 4-6 are based on Flow Range 2.

Table 6.2 Slope and Fixed Cost for the Piecewise Linear Cost (CAB15)

Simulation Set 1: Cost Function 1 under Flow Range 1

Table 6.3 shows the cost allocations for the interhub link users with the cost

function 1 under the flow range 1. As can be seen in Table 6.4, Chicago (4), Dallas (7),

and Los Angeles (12) are selected as hubs to open. However, the FDMAP only opens 2

directed interhub links (1 undirected interhub link) out of 6 directed ones due to the high

flow volume requirement. The model does not agglomerate enough flows to reach the

high flow range for the cheaper discount, and the concave cost function is too expensive

to motivate players to cooperate each other. Combination of a high flow range and an
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expensive concave cost function does not produce any multiple interhub link15 users at all

in this particular simulation. This absence of the multiple interhub link users makes the

cost allocation model less complex to solve. Table 6.3 provides the fair cost allocation for

the interhub link users. Players (O-D pairs) get the fair cost allocation based on their

contribution to the flow economies of scale. Total network costs consist of transportation

costs and fixed costs. Transportation costs do not change while fixed costs are allocated

differently depending on the player’s role in the FDMAP. The core allocation provides

the proportional fixed cost to the player instead of evenly divided fixed costs. The cost

allocation considers two different network optimal situations: [1] global optimal network,

and [2] coalition optimal network. Under the global optimal network, the players cannot

alter the interhub link with given hub locations. In other words, no player can achieve the

cheaper transportation cost than the FDMAP solution itself. The solution of cost

allocations guarantees the cheapest individual cost for the player. In other words, no

player has a motivation to leave the grand coalition, which is the solution of the FDMAP.

if cost allocation vectors of Table 6.3 are obtained. Under the coalition optimal network,

however, the players can modify (alter) the interhub link with given hub locations.

15 There are 3 hubs involved in the multiple interhub link. This multiple interhub link occurs only when
either origin or destination is hub itself.
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I K M J Transport Cost Flow Fixed Cost Total Network Cost
2 4 12 12 16,002,131.30 7975 2,508,529.85 18,510,661.15
3 4 12 12 50,112,203.46 22254 6,999,977.84 57,112,181.30
4 4 12 12 91,116,669.42 65387 20,567,428.38 111,684,097.80
5 4 12 12 9,810,393.34 5951 1,871,882.27 11,682,275.62
6 4 12 12 24,569,654.56 14412 4,533,283.03 29,102,937.59
9 4 12 12 36,627,461.11 22463 7,065,718.62 43,693,179.74
12 12 4 2 16,002,131.30 7975 2,508,529.85 18,510,661.15
12 12 4 3 50,112,203.46 22254 6,999,977.84 57,112,181.30
12 12 4 4 91,116,669.42 65387 20,567,428.38 111,684,097.80
12 12 4 5 9,810,393.34 5951 1,871,882.27 11,682,275.62
12 12 4 6 24,569,654.56 14412 4,533,283.03 29,102,937.59
12 12 4 9 36,627,461.11 22463 7,065,718.62 43,693,179.74
*Hub node 4 is Chicago, and 12 is Los Angeles.
** Index I and J stands for origin and destination, and K and M for hubs.

Table 6.3 Cost Allocation (FDMAP) with Cost Function 1 under Flow Range 1 (CAB15)
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Simulation Set 2: Cost Function 2 under Flow Range 1

Table 6.5 shows the cost allocations for the interhub link users with the cost

function 2 under the flow range 1. The difference from the simulation set 1 is the cost

function. The cost function 2 is slightly cheaper than the cost function 1, so the FDMAP

does not bundle more flows than the cost function 1. The cost allocation distributes the

fixed costs to the players proportionally depending on their contribution to the flow

economies of scale. The results of this simulation set can be interpreted as similar as the

simulation set 1.

I K M J Transport Cost Flow Fixed Cost Total Network Cost
2 4 12 12 17,391,274.86 7975 2,508,529.85 19,899,804.71
3 4 12 12 53,988,567.19 22254 6,999,977.84 60,988,545.03
4 4 12 12 102,506,253.10 65387 20,567,428.38 123,073,681.47
5 4 12 12 10,846,981.84 5951 1,871,882.27 12,718,864.12
6 4 12 12 27,080,041.64 14412 4,533,283.03 31,613,324.67
9 4 12 12 40,540,229.98 22463 7,065,718.62 47,605,948.61
12 12 4 2 17,391,274.86 7975 2,508,529.85 19,899,804.71
12 12 4 3 53,988,567.19 22254 6,999,977.84 60,988,545.03
12 12 4 4 102,506,253.10 65387 20,567,428.38 123,073,681.47
12 12 4 5 10,846,981.84 5951 1,871,882.27 12,718,864.12
12 12 4 6 27,080,041.64 14412 4,533,283.03 31,613,324.67
12 12 4 9 40,540,229.98 22463 7,065,718.62 47,605,948.61

*Hub node 4 is Chicago, and 12 is Los Angeles.
** Index I and J stands for origin and destination, and K and M for hubs.

Table 6.5 Cost Allocation (FDMAP) with Cost Function 2 under Flow Range 1 (CAB15)
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Simulation Set 3: Cost Function 3 under Flow Range 1

Table 6.6 shows the cost allocations for the interhub link users with the cost

function 3 under the flow range 1. As can be seen in Table 6.4, Chicago (4), Dallas (7),

and Los Angeles (12) are selected as hubs to open. In this simulation, the FDMAP opens

all 6 directed (3 undirected) interhub links. The cost function 3 gives a discount of the

first piece of cost function on Chicago-Dallas, and Los Angeles-Dallas interhub links

unlike the cost functions 1, and 2. In this case, the interhub link users of Chicago- Dallas

(Dallas-Chicago), and Dallas-Los Angeles (Log Angeles-Dallas) do not pay fixed costs

but enjoy the discount rate because there is no fixed charge involved. These fully opened

interhub links are possible due to the low flow range requirement. Individual cost

allocations of O-D pairs are provided in Table 6.6.

I K M J Transport Cost Flow Fixed Cost Total Network Cost
2 4 12 12 16,002,131.30 7975 1,254,264.93 17,256,396.22
3 4 12 12 50,112,203.46 22254 3,499,988.92 53,612,192.38
4 4 12 12 91,116,669.42 65387 10,283,714.19 101,400,383.61
5 4 12 12 9,810,393.34 5951 935,941.14 10,746,334.48
6 4 12 12 24,569,654.56 14412 2,266,641.52 26,836,296.08
9 4 12 12 36,627,461.11 22463 3,532,859.31 40,160,320.43
12 12 4 2 17,391,274.86 7975 1,254,264.93 17,256,396.22
12 12 4 3 53,988,567.19 22254 3,499,988.92 53,612,192.38
12 12 4 4 102,506,253.10 65387 10,283,714.19 101,400,383.61
12 12 4 5 10,846,981.84 5951 935,941.14 10,746,334.48
12 12 4 6 27,080,041.64 14412 2,266,641.52 26,836,296.08
12 12 4 9 40,540,229.98 22463 3,532,859.31 40,160,320.43

*Hub node 4 is Chicago, and 12 is Los Angeles.
** Index I and J stands for origin and destination, and K and M for hubs.

Table 6.6 Cost Allocation (FDMAP) with Cost Function 3 under Flow Range 1 (CAB15)
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Simulation Set 4: Cost Function 4 under Flow Range 2

Tables 6.7-6.10 show the cost allocations for the interhub link users with the cost

function 4 under the flow range 2. As can be seen in Table 6.4, Chicago (4), Dallas (7),

and Los Angeles (12) are selected as hubs to open. The FDMAP opens 4 directed (2

undirected) interhub links out of 6, and closes Chicago-Los Angeles (Chicago-Los

Angeles) interhub link. The FDMAP obtains the optimal hub network by closing 2

interhub links instead of providing the fully connected hub network. Combination of a

low flow range and a steep (cheaper) cost function produces many multiple interhub link

users. This presence of the multiple interhub link users adds more complexity to the

problem. The reason for the complicated cost allocation is that the O-D pairs involving

the multiple interhub links interact each other.

As discussed in Chapter 3, the total infrastructure cost allocation is equivalent to

the sum of the individual infrastructure cost allocation. Tables 6.7-6.10 provide cost

allocation vectors for each interhub link both under the global hub network configuration

and under the coalition hub network configuration respectively. Each table includes

different fixed costs both under the global hub network (Fixed Cost 1 column) and under

the coalition hub network (Fixed Cost 2 column). Notice that the transport cost

(Transport Cost column) is same under both conditions. Each of Tables 6.7 and 6.8

provides the fair cost allocation for the interhub link of Chicago-Dallas, and Dallas-

Chicago respectively. In terms of multiple interhub links, there are 7 multiple interhub

links out of 28 interhub link players. Total Cost 1 and Fixed Cost 1 are obtained under the

global hub network while Total Cost 2 and Fixed Cost 2 are gained under the coalition
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optimal hub network. Notice that Total Cost 2 with multiple interhub links is decreased

whereas Total Cost 2 of non-multiple interhub links is increased. Under the coalition hub

network configuration, the players can modify their interhub links to save their individual

costs by altering their paths. This is called as a coalition optimal network. This coalition

optimal situation makes the total cost much higher than that of the global optimal

network. Thus, it is necessary to find the core solution to make those willing-to-leave-

players stay in the network while at the same time to maintain the remainder-players still

happy.

Each of Tables 6.9 and 6.10 shows the fair cost allocation for the interhub links of

Los Angeles-Dallas, and Dallas-Los Angeles respectively. For example, the player of [2-

12] O-D pair in Table 6.9 has multiple interhub links in its paths. The path, [2-4-7-12],

involves [4-7] interhub link and [7-12] interhub link at the same time. The multiple

interhub link players would make their own coalition to save their costs if the other

players are not willing to offsets their overly charged fixed costs. Results in Tables 6.7-

6.10 show the offsets among players. For example, individual costs for the single

interhub link players are increased under the coalition optimal network restriction

compared to the global optimal network while individual costs for the multiple interhub

link players are decreased under the coalition optimal network configuration. The

solutions of cost allocation guarantee the cheapest individual cost for the players under

both network configurations. Players (O-D pairs) get the fair cost allocations based on

their contribution to the flow economies of scale. Results16 of Simulation Set 5 (Flow

16 These results are not presented.
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Range 2, Cost Function 5) and Simulation Set 6 (Flow Range 2, Cost Function 6) could

be obtained in the similar context of simulation set 4.

The results support the grand coalition for each interhub link is the best strategy

for the total network cost under the global hub network configuration. In other words,

none of the players can achieve the cheaper cost by other coalitions assuming players

cannot change the globally optimal hub network. On the other hand, the grand coalition

for each interhub link is not necessarily the best strategy to individual players under the

coalition optimal hub network configuration. The core allocations are changed if players

can modify the globally optimal hub network. This fair cost allocation is possible if and

only if the cost savings by the grand coalition is greater than the opportunity costs by the

players who are willing to leave the grand coalition.

Multiple interhub link players pay more fixed costs than the single interhub link

players under the global hub network with respect to their contribution to flow economies

of scale. The reason is that they have to pay fixed costs twice whereas the single interhub

link users pay only once. However, the multiple interhub link players pay less fixed costs

than the single interhub link players under the coalition optimal hub network

configuration with respect to their contribution to flow economies of scale. The coalition

optimal network is only feasible if and only if there are the multiple interhub link players

in the solutions of the FDMAP.
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I K M J Transport Cost Flow Fixed Cost 1 Total Cost 1 Fixed Cost 2 Total Cost 2

2 4 7 7 2,990,181.77 3878 1,278,771.68 4,268,953.45 2,504,783.31 5,494,965.09
2 4 7 8 4,594,674.87 3202 1,055,860.48 5,650,535.35 2,281,872.11 6,876,546.98
2 4 7 10 4,166,451.44 4198 1,384,291.78 5,550,743.22 2,610,303.41 6,776,754.85

2 4 7 12 10,135,969.32 7975 2,629,758.68 12,765,728.00 1,314,879.34 11,450,848.66
3 4 7 7 6,048,328.96 5951 1,962,344.06 8,010,673.03 3,188,355.70 9,236,684.66
3 4 7 8 9,691,573.91 5768 1,901,999.76 11,593,573.66 3,128,011.39 12,819,585.30
3 4 7 10 5,250,650.29 4242 1,398,800.79 6,649,451.08 2,624,812.43 7,875,462.71

3 4 7 12 33,742,853.16 22254 7,338,263.28 41,081,116.44 3,669,131.64 37,411,984.80
4 4 7 7 3,385,353.72 21423 7,064,240.78 10,449,594.50 8,290,252.41 11,675,606.13
4 4 7 8 22,472,402.38 27342 9,016,032.83 31,488,435.21 10,242,044.46 32,714,446.84
4 4 7 10 6,005,116.51 15826 5,218,628.32 11,223,744.83 6,444,639.95 12,449,756.47

4 4 7 12 43,020,025.75 65387 21,561,383.17 64,581,408.93 10,780,691.59 53,800,717.34
5 4 7 7 1,281,295.25 3102 1,022,885.45 2,304,180.69 2,248,897.08 3,530,192.32
5 4 7 8 1,682,165.85 1562 515,069.98 2,197,235.82 1,741,081.61 3,423,247.46
5 4 7 10 1,216,291.57 1917 632,131.33 1,848,422.90 1,858,142.97 3,074,434.53

5 4 7 12 5,433,022.82 5951 1,962,344.06 7,395,366.88 981,172.03 6,414,194.85
6 4 7 7 2,357,451.42 5023 1,656,335.78 4,013,787.20 2,882,347.41 5,239,798.83
6 4 7 8 3,979,824.95 3512 1,158,083.07 5,137,908.02 2,384,094.70 6,363,919.65
6 4 7 10 2,447,339.15 3543 1,168,305.33 3,615,644.48 2,394,316.96 4,841,656.12

6 4 7 12 13,968,635.57 14412 4,752,361.39 18,720,996.96 2,376,180.70 16,344,816.27
9 4 7 10 2,742,265.66 4448 1,466,729.36 4,208,995.01 2,692,740.99 5,435,006.65

9 4 7 12 20,104,376.91 22463 7,407,181.09 27,511,558.01 3,703,590.55 23,807,967.46
9 4 7 7 2,559,817.65 6479 2,136,452.22 4,696,269.88 3,362,463.86 5,922,281.51
9 4 7 8 5,946,120.82 5615 1,851,547.96 7,797,668.78 3,077,559.59 9,023,680.41

15 4 7 7 2,357,235.12 4678 1,542,571.93 3,899,807.05 2,768,583.56 5,125,818.68
15 4 7 8 10,389,687.59 8897 2,933,788.46 13,323,476.05 4,159,800.09 14,549,487.68
15 4 7 10 1,996,806.13 2753 907,802.59 2,904,608.71 2,133,814.22 4,130,620.35

15 4 7 12 17,781,368.82 17714 5,841,196.90 23,622,565.72 2,920,598.45 20,701,967.27
*Fixed Cost1 & Total Cost1 are under global optimal whereas Fixed Cost2 & Total Cost2 are under coalition optimal.
** Index I and J stands for origin and destination, and K and M for hubs.
*** I-J pairs with italic and bold numbers are multiple interhub links.

Table 6.7 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 4-7 (CAB15)
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I K M J Transport Cost Flow Fixed Cost 1 Total Cost 1 Fixed Cost 2 Total Cost 2

7 7 4 9 2,559,817.65 6479 2,136,452.22 4,696,269.88 3,362,463.86 5,922,281.51
7 7 4 15 2,357,235.12 4678 1,542,571.93 3,899,807.05 2,768,583.56 5,125,818.68
7 7 4 2 2,990,181.77 3878 1,278,771.68 4,268,953.45 2,504,783.31 5,494,965.09
7 7 4 3 6,048,328.96 5951 1,962,344.06 8,010,673.03 3,188,355.70 9,236,684.66
7 7 4 4 3,385,353.72 21423 7,064,240.78 10,449,594.50 8,290,252.41 11,675,606.13
7 7 4 5 1,281,295.25 3102 1,022,885.45 2,304,180.69 2,248,897.08 3,530,192.32
7 7 4 6 2,357,451.42 5023 1,656,335.78 4,013,787.20 2,882,347.41 5,239,798.83
8 7 4 9 5,946,120.82 5615 1,851,547.96 7,797,668.78 3,077,559.59 9,023,680.41
8 7 4 15 10,389,687.59 8897 2,933,788.46 13,323,476.05 4,159,800.09 14,549,487.68
8 7 4 2 4,594,674.87 3202 1,055,860.48 5,650,535.35 2,281,872.11 6,876,546.98
8 7 4 3 9,691,573.91 5768 1,901,999.76 11,593,573.66 3,128,011.39 12,819,585.30
8 7 4 4 22,472,402.38 27342 9,016,032.83 31,488,435.21 10,242,044.46 32,714,446.84
8 7 4 5 1,682,165.85 1562 515,069.98 2,197,235.82 1,741,081.61 3,423,247.46
8 7 4 6 3,979,824.95 3512 1,158,083.07 5,137,908.02 2,384,094.70 6,363,919.65

10 7 4 15 1,996,806.13 2753 907,802.59 2,904,608.71 2,133,814.22 4,130,620.35
10 7 4 2 4,166,451.44 4198 1,384,291.78 5,550,743.22 2,610,303.41 6,776,754.85
10 7 4 3 5,250,650.29 4242 1,398,800.79 6,649,451.08 2,624,812.43 7,875,462.71
10 7 4 4 6,005,116.51 15826 5,218,628.32 11,223,744.83 6,444,639.95 12,449,756.47
10 7 4 5 1,216,291.57 1917 632,131.33 1,848,422.90 1,858,142.97 3,074,434.53
10 7 4 6 2,447,339.15 3543 1,168,305.33 3,615,644.48 2,394,316.96 4,841,656.12
10 7 4 9 2,742,265.66 4448 1,466,729.36 4,208,995.01 2,692,740.99 5,435,006.65

12 7 4 15 17,781,368.82 17714 5,841,196.90 23,622,565.72 2,920,598.45 20,701,967.27

12 7 4 2 10,135,969.32 7975 2,629,758.68 12,765,728.00 1,314,879.34 11,450,848.66

12 7 4 3 33,742,853.16 22254 7,338,263.28 41,081,116.44 3,669,131.64 37,411,984.80

12 7 4 4 43,020,025.75 65387 21,561,383.17 64,581,408.93 10,780,691.59 53,800,717.34

12 7 4 5 5,433,022.82 5951 1,962,344.06 7,395,366.88 981,172.03 6,414,194.85

12 7 4 6 13,968,635.57 14412 4,752,361.39 18,720,996.96 2,376,180.70 16,344,816.27

12 7 4 9 20,104,376.91 22463 7,407,181.09 27,511,558.01 3,703,590.55 23,807,967.46
*Fixed Cost1 & Total Cost1 are under global optimal whereas Fixed Cost2 & Total Cost2 are under coalition optimal.
** Index I and J stands for origin and destination, and K and M for hubs.
*** I-J pairs with italic and bold numbers are multiple interhub links.

Table 6.8 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 7-4 (CAB15)
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I K M J Transport Cost Flow Fixed Cost 1 Total Cost 1 Fixed Cost 2 Total Cost 2

1 7 12 12 11,147,511.99 9221 3,517,064.93 14,664,576.93 8,480,470.85 19,627,982.85
7 7 12 12 13,672,403.94 27350 10,431,810.64 24,104,214.58 15,395,216.56 29,067,620.50

10 7 12 12 12,455,154.69 17267 6,585,962.50 19,041,117.19 11,549,368.42 24,004,523.11
11 7 12 12 14,487,634.82 15287 5,830,752.81 20,318,387.63 10,794,158.73 25,281,793.55
13 7 12 12 4,968,694.24 5454 2,080,259.42 7,048,953.67 7,043,665.34 12,012,359.59
14 7 12 12 23,980,271.85 15011 5,725,481.15 29,705,753.00 10,688,887.07 34,669,158.92

2 4 7 12 10,135,969.32 7975 3,041,816.81 13,177,786.14 1,520,908.41 11,656,877.73

3 4 7 12 33,742,853.16 22254 8,488,099.23 42,230,952.39 4,244,049.62 37,986,902.77

4 4 7 12 43,020,025.75 65387 24,939,846.53 67,959,872.28 12,469,923.26 55,489,949.02

5 4 7 12 5,433,022.82 5951 2,269,824.69 7,702,847.50 1,134,912.34 6,567,935.16

6 4 7 12 13,968,635.57 14412 5,497,011.15 19,465,646.72 2,748,505.58 16,717,141.15

9 4 7 12 20,104,376.91 22463 8,567,815.81 28,672,192.73 4,283,907.91 24,388,284.82

15 4 7 12 17,781,368.82 17714 6,756,456.81 24,537,825.63 3,378,228.40 21,159,597.23
*Fixed Cost1 & Total Cost1 are under global optimal whereas Fixed Cost2 & Total Cost2 are under coalition

optimal.
** Index I and J stands for origin and destination, and K and M for hubs
*** I-J pairs with italic and bold numbers are multiple interhub links.

Table 6.9 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 7-12 (CAB15)

I K M J Transport Cost Flow Fixed Cost 1 Total Cost 1 Fixed Cost 2 Total Cost 2

12 12 7 13 4,968,694.24 5454 2,080,259.42 7,048,953.67 7,043,665.34 12,012,359.59
12 12 7 14 23,980,271.85 15011 5,725,481.15 29,705,753.00 10,688,887.07 34,669,158.92
12 12 7 1 11,147,511.99 9221 3,517,064.93 14,664,576.93 8,480,470.85 19,627,982.85
12 12 7 7 13,672,403.94 27350 10,431,810.64 24,104,214.58 15,395,216.56 29,067,620.50
12 12 7 10 12,455,154.69 17267 6,585,962.50 19,041,117.19 11,549,368.42 24,004,523.11
12 12 7 11 14,487,634.82 15287 5,830,752.81 20,318,387.63 10,794,158.73 25,281,793.55

12 7 4 15 17,781,368.82 17714 6,756,456.81 24,537,825.63 3,378,228.40 21,159,597.23

12 7 4 2 10,135,969.32 7975 3,041,816.81 13,177,786.14 1,520,908.41 11,656,877.73

12 7 4 3 33,742,853.16 22254 8,488,099.23 42,230,952.39 4,244,049.62 37,986,902.77

12 7 4 4 43,020,025.75 65387 24,939,846.53 67,959,872.28 12,469,923.26 55,489,949.02

12 7 4 5 5,433,022.82 5951 2,269,824.69 7,702,847.50 1,134,912.34 6,567,935.16

12 7 4 6 13,968,635.57 14412 5,497,011.15 19,465,646.72 2,748,505.58 16,717,141.15

12 7 4 9 20,104,376.91 22463 8,567,815.81 28,672,192.73 4,283,907.91 24,388,284.82
*Fixed Cost1 & Total Cost1 are under global optimal whereas Fixed Cost2 & Total Cost2 are under coalition optimal.
** Index I and J stands for origin and destination, and K and M for hubs
*** I-J pairs with italic and bold numbers are multiple interhub links.

Table 6.10 Cost Allocation (FDMAP) with Cost Function 4 under Flow Range 2 on
Interhub Link 12-7 (CAB15)



139

6.2 Numerical Results of Cost Allocation in the FDPTP

The numerical analysis of cost allocation in the FDPTP is based on CAB10 data.

Total network flow for CAB10 data is 999,026. Table 6.11 shows flow ranges for each

piece-wise liner cost function. Concave cost functions 1-2 of Table 6.12 are based on the

flow range 1 of Table 6.11 while concave cost function 3 of Table 6.12 are based on the

flow range 2 of Table 6.11. The FLOW RANGE2 (third column of Table 6.11) gives

more discounts than the FLOW RANGE1 (second column of Table 6.11) for the same

amount of flow. To achieve the second piece of concave cost function in Table 6.12,

there is a flow difference to reach depending on flow ranges. For example, the model

allows 62,500 flows to get the second piece of concave cost function under the FLOW

RANGE1 while 31,250 flows are only necessary under the FLOW RANGE2 setting. Out

of 3 different simulation sets tested, 2 simulation sets are presented to illustrate the

empirical results.

Piece Flow Range 1 Flow Range 2
1 0 0
2 62,500 31,250
3 125,000 62,500
4 187,500 93,750
5 250,000 125,000

Table 6.11 Ranges of Link Flows (CAB10)
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Piece 1 2 3 4 5

Cost Function Fixed Cost 0 12500 37500 75000 125000
1 Slope 1 0.8 0.6 0.4 0.2

Cost Function Fixed Cost 0 6250 18750 37500 62500
2 Slope 0.9 0.8 0.7 0.6 0.5

Cost Function Fixed Cost 0 7500 20000 38750 63750

3 Slope 1 0.8 0.6 0.4 0.2

* Cost functions 1-2 are based on Flow Range 1 and cost function 3 is based on Flow Range 2.

Table 6.12 Slope and Fixed Cost for the Piecewise Linear Cost (CAB10)

Simulation Set 1: Cost Function 3 under Flow Range 2 (Without Hop Constraint)

The simulation set 1 is based on cost function 3 under flow range 2 of the FDPTP

without hop constraint. Cost allocation solutions of the FDPTP (CAB10) are shown in

Tables 6.13-27. Each table provides the cost allocations of the O-D pairs for the opened

links. As can be seen in Figure 5.2, the FDPTP (CAB10) of simulation set 1 opens 15

links out of 90, which are ten y5, four y3, and one y2 discounted links.

Table 6.13 provides the fair cost allocation of the O-D pairs for [6-9] link. Players

(O-D pairs) get the fair cost allocation based on their contribution to the flow economies

of scale. Total network costs consist of transportation costs and fixed costs in the table.

Transportation costs do not change while fixed costs are allocated differently depending

on the player’s role in the FDPTP. The core allocations are affected mainly by the

proportional fixed costs to the player instead of evenly divided fixed costs. As can be

seen in Table 6.13, Total Network Cost 1 and Total Network Cost 2 are different for each
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O-D pair which uses [6-9] link. Total Network Cost 2 is obtained with cost allocation

solutions whereas Total Network Cost 1 is calculated without cost allocations. Difference

column in Table 6.13 shows difference between evenly-distributed fixed costs and

proportionally-distributed fixed costs. Positive sign in Difference column shows that the

O-D pair of cost allocation pays more fixed costs than the one of without cost allocation

solutions. The main reason is that the O-D pairs of positive sign have high volume of

flows compared to the ones of negative sign. One the other hand, the O-D pairs of

negative sign pay less fixed costs in cost allocation solutions due to their low volume of

flows compared to the ones of positive sign. In other words, the O-D pairs in negative

sign will pay unnecessary high fixed costs without cost allocation solutions. Notice that

the O-D pairs of higher volume of flows pay more fixed costs so their total network costs

are increased. Tables 6-14-6.27 of different opened links can be explained same as Table

6.13. Table 6.13 shows the cost allocations of the O-D pairs for y2 discounted link, Tables

6.14-6.17 show the cost allocations of the O-D pairs for y3 discounted link, and Tables

6.18-6.27 show the cost allocations of the O-D pairs for y5 discounted link.

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 2 9 6 9 6699 505,151.76 740,798.76 645,696.57 -
X2 3 9 6 9 16578 1,250,097.91 1,485,744.91 1,597,903.82 +

X2 6 9 6 9 10419 785,665.95 1,021,312.95 1,004,256.24 -

*X: a type of discount, I: origin, J: destination, and K-M: opened link.

Table 6.13 Cost Allocation (FDPTP) of 6-9 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 1 8 7 8 2243 893,444.59 2,368,725.03 1,332,078.48 -
X3 2 8 7 8 3202 1,275,438.96 2,750,719.40 1,901,611.81 -
X3 3 8 7 8 5768 2,297,542.75 3,772,823.20 3,425,514.33 -
X3 4 8 7 8 27342 10,891,021.84 12,366,302.28 16,237,935.66 +
X3 5 8 7 8 1562 622,184.77 2,097,465.22 927,644.48 -
X3 6 8 7 8 3512 1,398,919.93 2,874,200.37 2,085,715.38 -
X3 7 8 7 8 11557 4,603,450.35 6,078,730.79 6,863,500.20 +
X3 9 8 7 8 5615 2,236,598.92 3,711,879.36 3,334,650.31 -

X3 10 8 7 8 7095 2,826,120.98 4,301,401.43 4,213,596.43 -

Table 6.14 Cost Allocation (FDPTP) of 7-8 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 1 10 7 10 7248 962,919.99 1,454,968.88 1,350,671.97 -
X3 2 10 7 10 4198 557,717.73 1,049,766.62 782,301.45 -
X3 3 10 7 10 4242 563,563.27 1,055,612.16 790,500.90 -
X3 4 10 7 10 15826 2,102,534.74 2,594,583.63 2,949,190.76 +
X3 5 10 7 10 1917 254,679.58 746,728.47 357,234.85 -
X3 6 10 7 10 3543 470,698.89 962,747.78 660,241.55 -
X3 7 10 7 10 34261 4,551,683.49 5,043,732.37 6,384,571.24 +
X3 8 10 7 10 7095 942,593.45 1,434,642.34 1,322,160.27 -

X3 9 10 7 10 4448 590,931.03 1,082,979.92 828,889.20 -

Table 6.15 Cost Allocation (FDPTP) of 7-10 Link with Cost Function 3 under Flow
Range 2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 8 1 8 7 2243 893,444.59 2,368,725.03 1,332,078.48 -
X3 8 2 8 7 3202 1,275,438.96 2,750,719.40 1,901,611.81 -
X3 8 3 8 7 5768 2,297,542.75 3,772,823.20 3,425,514.33 -
X3 8 4 8 7 27342 10,891,021.84 12,366,302.28 16,237,935.66 +
X3 8 5 8 7 1562 622,184.77 2,097,465.22 927,644.48 -
X3 8 6 8 7 3512 1,398,919.93 2,874,200.37 2,085,715.38 -
X3 8 7 8 7 11557 4,603,450.35 6,078,730.79 6,863,500.20 +
X3 8 9 8 7 5615 2,236,598.92 3,711,879.36 3,334,650.31 -

X3 8 10 8 7 7095 2,826,120.98 4,301,401.43 4,213,596.43 -

Table 6.16 Cost Allocation (FDPTP) of 8-7 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 10 1 10 7 7248 962,919.99 1,454,968.88 1,350,671.97 -
X3 10 2 10 7 4198 557,717.73 1,049,766.62 782,301.45 -
X3 10 3 10 7 4242 563,563.27 1,055,612.16 790,500.90 -
X3 10 4 10 7 15826 2,102,534.74 2,594,583.63 2,949,190.76 +
X3 10 5 10 7 1917 254,679.58 746,728.47 357,234.85 -
X3 10 6 10 7 3543 470,698.89 962,747.78 660,241.55 -
X3 10 7 10 7 34261 4,551,683.49 5,043,732.37 6,384,571.24 +
X3 10 8 10 7 7095 942,593.45 1,434,642.34 1,322,160.27 -

X3 10 9 10 7 4448 590,931.03 1,082,979.92 828,889.20 -

Table 6.17 Cost Allocation (FDPTP) of 10-7 Link with Cost Function 3 under Flow
Range 2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 1 7 6469 917,332.02 2,591,410.56 2,364,245.84 -
X5 1 3 1 7 7629 1,081,825.00 2,755,903.55 2,788,194.70 +
X5 1 4 1 7 20036 2,841,190.95 4,515,269.50 7,322,620.14 +
X5 1 5 1 7 4690 665,062.17 2,339,140.71 1,714,069.10 -
X5 1 6 1 7 6194 878,335.83 2,552,414.38 2,263,740.72 -
X5 1 7 1 7 11688 1,657,408.66 3,331,487.20 4,271,650.24 +
X5 1 8 1 7 2243 318,067.04 1,992,145.59 819,756.29 -
X5 1 9 1 7 8857 1,255,960.69 2,930,039.23 3,236,995.74 +
X5 1 10 1 7 7248 1,027,797.57 2,701,876.11 2,648,949.43 -
X5 2 7 1 7 3878 549,917.08 2,223,995.62 1,417,304.90 -
X5 2 8 1 7 3202 454,057.37 2,128,135.91 1,170,245.04 -
X5 2 10 1 7 4198 595,294.45 2,269,372.99 1,534,256.31 -
X5 3 7 1 7 5951 843,877.39 2,517,955.93 2,174,930.75 -
X5 3 8 1 7 5768 817,927.20 2,492,005.74 2,108,049.16 -
X5 3 10 1 7 4242 601,533.84 2,275,612.38 1,550,337.12 -
X5 4 7 1 7 21423 3,037,873.52 4,711,952.06 7,829,531.41 +
X5 4 8 1 7 27342 3,877,213.17 5,551,291.71 9,992,767.01 +
X5 4 10 1 7 15826 2,244,194.85 3,918,273.39 5,783,978.16 +
X5 5 7 1 7 3102 439,876.94 2,113,955.48 1,133,697.73 -
X5 5 8 1 7 1562 221,498.32 1,895,576.86 570,869.07 -
X5 5 10 1 7 1917 271,838.84 1,945,917.38 700,612.04 -
X5 6 7 1 7 5023 712,283.00 2,386,361.54 1,835,771.66 -
X5 6 8 1 7 3512 498,016.70 2,172,095.24 1,283,541.72 -
X5 6 10 1 7 3543 502,412.63 2,176,491.18 1,294,871.39 -
X5 9 7 1 7 6479 918,750.06 2,592,828.60 2,367,900.57 -
X5 9 8 1 7 5615 796,231.14 2,470,309.69 2,052,131.77 -

X5 9 10 1 7 4448 630,745.53 2,304,824.07 1,625,624.59 -

Table 6.18 Cost Allocation (FDPTP) of 1-7 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 2 1 2 6 6469 404,808.15 1,578,119.78 1,235,053.62 -
X5 2 3 2 6 12999 813,433.48 1,986,745.11 2,481,753.29 +
X5 2 4 2 6 13692 856,799.08 2,030,110.71 2,614,060.01 +
X5 2 5 2 6 3322 207,879.53 1,381,191.16 634,232.20 -
X5 2 6 2 6 5576 348,927.23 1,522,238.86 1,064,563.15 -
X5 2 7 2 6 3878 242,672.13 1,415,983.76 740,383.05 -
X5 2 8 2 6 3202 200,370.34 1,373,681.96 611,321.95 -
X5 2 9 2 6 6699 419,200.78 1,592,512.40 1,278,964.94 -
X5 2 10 2 6 4198 262,696.65 1,436,008.28 801,477.06 -
X5 3 1 2 6 7629 477,397.03 1,650,708.66 1,456,519.41 -
X5 3 4 2 6 35135 2,198,629.54 3,371,941.17 6,707,931.52 +
X5 3 5 2 6 5956 372,706.35 1,546,017.97 1,137,112.29 -
X5 3 6 2 6 14121 883,644.45 2,056,956.08 2,695,964.17 +
X5 3 7 2 6 5951 372,393.47 1,545,705.09 1,136,157.69 -
X5 3 8 2 6 5768 360,941.94 1,534,253.57 1,101,219.55 -
X5 3 9 2 6 16578 1,037,395.21 2,210,706.83 3,165,051.62 +

X5 3 10 2 6 4242 265,450.02 1,438,761.65 809,877.49 -

Table 6.19 Cost Allocation (FDPTP) of 2-6 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 3 2 6469 478,101.41 1,863,849.03 1,458,668.43 -
X5 3 1 3 2 7629 563,832.99 1,949,580.62 1,720,232.10 -
X5 3 2 3 2 12999 960,711.11 2,346,458.74 2,931,091.50 +
X5 3 4 3 2 35135 2,596,706.28 3,982,453.91 7,922,447.86 +
X5 3 5 3 2 5956 440,187.35 1,825,934.98 1,342,994.15 -
X5 3 6 3 2 14121 1,043,634.25 2,429,381.88 3,184,086.70 +
X5 3 7 3 2 5951 439,817.82 1,825,565.44 1,341,866.72 -
X5 3 8 3 2 5768 426,292.92 1,812,040.55 1,300,602.80 -
X5 3 9 3 2 16578 1,225,222.62 2,610,970.25 3,738,105.61 +
X5 3 10 3 2 4242 313,511.54 1,699,259.17 956,511.28 -
X5 4 2 3 2 13692 1,011,928.35 2,397,675.97 3,087,353.24 +
X5 5 2 3 2 3322 245,517.53 1,631,265.15 749,064.23 -
X5 6 2 3 2 5576 412,102.87 1,797,850.49 1,257,309.50 -
X5 7 2 3 2 3878 286,609.56 1,672,357.19 874,434.40 -
X5 8 2 3 2 3202 236,648.74 1,622,396.37 722,005.92 -
X5 9 2 3 2 6699 495,099.91 1,880,847.54 1,510,530.19 -

X5 10 2 3 2 4198 310,259.65 1,696,007.28 946,589.90 -

Table 6.20 Cost Allocation (FDPTP) of 3-2 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 4 9 6469 306,721.55 726,533.54 563,863.69 -
X5 1 3 4 9 7629 361,721.86 781,533.85 664,973.88 -
X5 1 5 4 9 4690 222,371.94 642,183.93 408,798.99 -
X5 1 6 4 9 6194 293,682.69 713,494.68 539,893.60 -
X5 1 9 4 9 8857 419,946.33 839,758.32 772,011.23 -
X5 4 1 4 9 20036 949,988.11 1,369,800.10 1,746,417.19 +
X5 4 2 4 9 13692 649,193.31 1,069,005.30 1,193,449.00 +
X5 4 3 4 9 35135 1,665,893.00 2,085,704.99 3,062,505.89 +
X5 4 5 4 9 19094 905,324.06 1,325,136.05 1,664,308.73 +
X5 4 6 4 9 35119 1,665,134.37 2,084,946.36 3,061,111.26 +
X5 4 7 4 9 21423 1,015,751.41 1,435,563.40 1,867,313.61 +
X5 4 8 4 9 27342 1,296,395.23 1,716,207.22 2,383,237.11 +
X5 4 9 4 9 51341 2,434,285.25 2,854,097.24 4,475,085.09 +
X5 4 10 4 9 15826 750,374.91 1,170,186.90 1,379,456.90 +
X5 5 2 4 9 3322 157,509.51 577,321.50 289,558.69 -
X5 5 3 4 9 5956 282,398.14 702,210.13 519,148.57 -
X5 5 6 4 9 7284 345,364.01 765,176.00 634,902.32 -
X5 5 9 4 9 7180 340,432.95 760,244.94 625,837.26 -
X5 7 1 4 9 11688 554,175.53 973,987.52 1,018,772.42 +
X5 7 2 4 9 3878 183,871.72 603,683.71 338,021.85 -
X5 7 3 4 9 5951 282,161.07 701,973.06 518,712.75 -
X5 7 5 4 9 3102 147,078.41 566,890.40 270,382.62 -
X5 7 6 4 9 5023 238,160.82 657,972.81 437,824.59 -
X5 7 9 4 9 6479 307,195.69 727,007.68 564,735.32 -
X5 8 1 4 9 2243 106,349.74 526,161.73 195,508.77 -
X5 8 2 4 9 3202 151,819.82 571,631.81 279,099.01 -
X5 8 3 4 9 5768 273,484.30 693,296.29 502,761.75 -
X5 8 5 4 9 1562 74,060.76 493,872.75 136,150.11 -
X5 8 6 4 9 3512 166,518.18 586,330.17 306,119.84 -
X5 8 9 4 9 5615 266,229.95 686,041.94 489,425.66 -
X5 10 1 4 9 7248 343,657.11 763,469.10 631,764.41 -
X5 10 2 4 9 4198 199,044.22 618,856.21 365,914.32 -
X5 10 3 4 9 4242 201,130.44 620,942.43 369,749.54 -
X5 10 5 4 9 1917 90,892.75 510,704.74 167,093.32 -
X5 10 6 4 9 3543 167,988.01 587,800.00 308,821.93 -

X5 10 9 4 9 4448 210,897.74 630,709.73 387,705.31 -

Table 6.21 Cost Allocation (FDPTP) of 4-9 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 2 1 5 1 6469 483,638.87 1,366,252.19 1,246,485.64 -
X5 2 7 5 1 3878 289,929.13 1,172,542.45 747,236.25 -
X5 2 8 5 1 3202 239,389.65 1,122,002.97 616,980.53 -
X5 2 10 5 1 4198 313,853.14 1,196,466.46 808,895.77 -
X5 3 1 5 1 7629 570,363.42 1,452,976.74 1,470,001.39 +
X5 3 7 5 1 5951 444,911.88 1,327,525.19 1,146,674.30 -
X5 3 8 5 1 5768 431,230.33 1,313,843.65 1,111,412.77 -
X5 3 10 5 1 4242 317,142.69 1,199,756.01 817,373.95 -
X5 4 1 5 1 20036 1,497,942.25 2,380,555.57 3,860,656.42 +
X5 4 7 5 1 21423 1,601,637.89 2,484,251.21 4,127,911.88 +
X5 4 8 5 1 27342 2,044,157.37 2,926,770.69 5,268,420.23 +
X5 4 10 5 1 15826 1,183,191.96 2,065,805.28 3,049,448.42 +
X5 5 1 5 1 4690 350,636.31 1,233,249.63 903,697.28 -
X5 5 7 5 1 3102 231,913.40 1,114,526.72 597,711.93 -
X5 5 8 5 1 1562 116,779.09 999,392.41 300,975.51 -
X5 5 10 5 1 1917 143,319.79 1,025,933.11 369,379.04 -
X5 6 1 5 1 6194 463,079.17 1,345,692.49 1,193,497.00 -
X5 6 7 5 1 5023 375,532.24 1,258,145.56 967,861.71 -
X5 6 8 5 1 3512 262,566.04 1,145,179.36 676,713.18 -
X5 6 10 5 1 3543 264,883.68 1,147,497.00 682,686.45 -
X5 7 1 5 1 11688 873,824.57 1,756,437.89 2,252,113.81 +
X5 8 1 5 1 2243 167,692.38 1,050,305.70 432,194.67 -
X5 9 1 5 1 8857 662,171.82 1,544,785.14 1,706,619.78 +
X5 9 7 5 1 6479 484,386.50 1,366,999.82 1,248,412.50 -
X5 9 8 5 1 5615 419,791.66 1,302,404.98 1,081,931.81 -
X5 9 10 5 1 4448 332,543.78 1,215,157.10 857,067.27 -
X5 10 1 5 1 7248 541,878.89 1,424,492.21 1,396,588.03 -

Table 6.22 Cost Allocation (FDPTP) of 5-1 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 2 4 5 4 13692 698,374.97 2,504,839.60 1,948,112.64 -
X5 3 4 5 4 35135 1,792,097.92 3,598,562.54 4,999,045.99 +
X5 5 2 5 4 3322 169,442.13 1,975,906.76 472,657.77 -
X5 5 3 5 4 5956 303,792.09 2,110,256.72 847,426.15 -
X5 5 4 5 4 19094 973,909.71 2,780,374.33 2,716,715.07 -
X5 5 6 5 4 7284 371,528.14 2,177,992.77 1,036,375.44 -
X5 5 9 5 4 7180 366,223.51 2,172,688.14 1,021,578.20 -
X5 6 4 5 4 35119 1,791,281.82 3,597,746.45 4,996,769.49 +
X5 9 4 5 4 51341 2,618,702.13 4,425,166.75 7,304,853.28 +

Table 6.23 Cost Allocation (FDPTP) of 5-4 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 6 3 6469 719,444.14 2,804,708.89 2,194,995.54 -
X5 1 3 6 3 7629 848,452.52 2,933,717.27 2,588,594.99 -
X5 2 3 6 3 12999 1,445,672.35 3,530,937.10 4,410,688.98 +
X5 4 2 6 3 13692 1,522,743.73 3,608,008.48 4,645,830.72 +
X5 4 3 6 3 35135 3,907,508.11 5,992,772.86 11,921,652.23 +
X5 5 2 6 3 3322 369,453.31 2,454,718.06 1,127,187.38 -
X5 5 3 6 3 5956 662,391.30 2,747,656.05 2,020,929.58 -
X5 6 2 6 3 5576 620,129.93 2,705,394.68 1,891,991.83 -
X5 6 3 6 3 14121 1,570,454.59 3,655,719.34 4,791,394.65 +
X5 7 2 6 3 3878 431,288.36 2,516,553.11 1,315,843.67 -
X5 7 3 6 3 5951 661,835.23 2,747,099.98 2,019,233.03 -
X5 8 2 6 3 3202 356,107.61 2,441,372.36 1,086,470.20 -
X5 8 3 6 3 5768 641,483.04 2,726,747.79 1,957,139.32 -
X5 9 2 6 3 6699 745,023.39 2,830,288.14 2,273,036.81 -
X5 9 3 6 3 16578 1,843,707.68 3,928,972.43 5,625,079.00 +
X5 10 2 6 3 4198 466,876.88 2,552,141.63 1,424,422.83 -
X5 10 3 6 3 4242 471,770.30 2,557,035.05 1,439,352.46 -

Table 6.24 Cost Allocation (FDPTP) of 6-3 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 5 6 5 4690 211,889.89 611,912.99 389,529.23 -
X5 2 1 6 5 6469 292,263.47 692,286.57 537,284.56 -
X5 2 4 6 5 13692 618,591.96 1,018,615.07 1,137,192.80 +
X5 2 5 6 5 3322 150,084.90 550,108.01 275,909.62 -
X5 2 7 6 5 3878 175,204.47 575,227.58 322,088.35 -
X5 2 8 6 5 3202 144,663.41 544,686.52 265,942.99 -
X5 2 10 6 5 4198 189,661.78 589,684.88 348,666.04 -
X5 3 1 6 5 7629 344,671.20 744,694.31 633,628.68 -
X5 3 4 6 5 35135 1,587,366.98 1,987,390.08 2,918,147.03 +
X5 3 5 6 5 5956 269,086.60 669,109.70 494,677.21 -
X5 3 7 6 5 5951 268,860.71 668,883.81 494,261.93 -
X5 3 8 6 5 5768 260,592.93 660,616.04 479,062.82 -
X5 3 10 6 5 4242 191,649.66 591,672.76 352,320.47 -
X5 4 1 6 5 20036 905,208.05 1,305,231.15 1,664,095.46 +
X5 4 5 6 5 19094 862,649.35 1,262,672.46 1,585,857.39 +
X5 4 7 6 5 21423 967,871.43 1,367,894.54 1,779,293.12 +
X5 4 8 6 5 27342 1,235,286.41 1,635,309.51 2,270,897.29 +
X5 4 10 6 5 15826 715,004.12 1,115,027.22 1,314,432.76 +
X5 6 1 6 5 6194 279,839.22 679,862.33 514,444.36 -
X5 6 4 6 5 35119 1,586,644.11 1,986,667.21 2,916,818.15 +
X5 6 5 6 5 7284 329,084.42 729,107.52 604,974.61 -
X5 6 7 6 5 5023 226,934.52 626,957.62 417,186.64 -
X5 6 8 6 5 3512 158,668.93 558,692.03 291,690.12 -
X5 6 10 6 5 3543 160,069.48 560,092.58 294,264.83 -
X5 7 1 6 5 11688 528,053.09 928,076.19 970,750.04 +
X5 7 5 6 5 3102 140,145.51 540,168.61 257,637.46 -
X5 8 1 6 5 2243 101,336.68 501,359.78 186,292.98 -
X5 8 5 6 5 1562 70,569.72 470,592.83 129,732.34 -
X5 9 1 6 5 8857 400,151.11 800,174.22 735,620.56 -
X5 9 4 6 5 51341 2,319,539.15 2,719,562.25 4,264,140.79 +
X5 9 5 6 5 7180 324,385.79 724,408.90 596,336.86 -
X5 9 7 6 5 6479 292,715.26 692,738.36 538,115.12 -
X5 9 8 6 5 5615 253,680.53 653,703.64 466,355.36 -
X5 9 10 6 5 4448 200,956.55 600,979.65 369,429.86 -
X5 10 1 6 5 7248 327,457.97 727,481.08 601,984.62 -
X5 10 5 6 5 1917 86,608.30 486,631.40 159,216.96 -

Table 6.25 Cost Allocation (FDPTP) of 6-5 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 7 4 6469 1,022,258.94 2,887,823.12 2,634,674.69 -
X5 1 3 7 4 7629 1,205,567.08 3,071,131.26 3,107,115.97 +
X5 1 4 7 4 20036 3,166,174.07 5,031,738.25 8,160,201.27 +
X5 1 5 7 4 4690 741,133.78 2,606,697.96 1,910,128.97 -
X5 1 6 7 4 6194 978,802.27 2,844,366.45 2,522,673.52 -
X5 1 9 7 4 8857 1,399,620.87 3,265,185.05 3,607,252.08 +
X5 7 1 7 4 11688 1,846,987.55 3,712,551.73 4,760,253.17 +
X5 7 2 7 4 3878 612,818.08 2,478,382.26 1,579,420.07 -
X5 7 3 7 4 5951 940,402.37 2,805,966.55 2,423,705.22 -
X5 7 4 7 4 21423 3,385,353.72 5,250,917.90 8,725,094.42 +
X5 7 5 7 4 3102 490,191.25 2,355,755.44 1,263,373.15 -
X5 7 6 7 4 5023 793,755.86 2,659,320.04 2,045,752.19 -
X5 7 9 7 4 6479 1,023,839.18 2,889,403.36 2,638,747.46 -
X5 8 1 7 4 2243 354,448.42 2,220,012.60 913,522.23 -
X5 8 2 7 4 3202 505,993.68 2,371,557.86 1,304,100.84 -
X5 8 3 7 4 5768 911,483.93 2,777,048.11 2,349,173.53 -
X5 8 4 7 4 27342 4,320,699.32 6,186,263.50 11,135,766.78 +
X5 8 5 7 4 1562 246,833.89 2,112,398.07 636,166.62 -
X5 8 6 7 4 3512 554,981.20 2,420,545.38 1,430,356.70 -
X5 8 9 7 4 5615 887,306.22 2,752,870.40 2,286,860.16 -
X5 10 1 7 4 7248 1,145,359.84 3,010,924.02 2,951,943.44 -
X5 10 2 7 4 4198 663,385.84 2,528,950.02 1,709,748.70 -
X5 10 3 7 4 4242 670,338.91 2,535,903.09 1,727,668.89 -
X5 10 4 7 4 15826 2,500,891.94 4,366,456.12 6,445,565.25 +
X5 10 5 7 4 1917 302,932.51 2,168,496.69 780,749.94 -
X5 10 6 7 4 3543 559,879.95 2,425,444.13 1,442,982.29 -
X5 10 9 7 4 4448 702,891.91 2,568,456.09 1,811,567.94 -

Table 6.26 Cost Allocation (FDPTP) of 7-4 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 2 9 6 6469 121,952.04 276,028.92 215,868.04 -
X5 1 3 9 6 7629 143,820.08 297,896.96 254,576.80 -
X5 1 5 9 6 4690 88,414.75 242,491.64 156,503.50 -
X5 1 6 9 6 6194 116,767.80 270,844.69 206,691.40 -
X5 4 1 9 6 20036 377,713.86 531,790.75 668,593.62 +
X5 4 2 9 6 13692 258,118.30 412,195.18 456,896.78 +
X5 4 3 9 6 35135 662,356.59 816,433.47 1,172,441.44 +
X5 4 5 9 6 19094 359,955.51 514,032.39 637,159.44 +
X5 4 6 9 6 35119 662,054.96 816,131.84 1,171,907.53 +
X5 4 7 9 6 21423 403,861.25 557,938.14 714,877.27 +
X5 4 8 9 6 27342 515,444.82 669,521.71 912,392.03 +
X5 4 10 9 6 15826 298,347.95 452,424.84 528,107.54 +
X5 5 2 9 6 3322 62,625.55 216,702.43 110,853.86 -
X5 5 3 9 6 5956 112,281.08 266,357.97 198,749.43 -
X5 5 6 9 6 7284 137,316.22 291,393.10 243,064.28 -
X5 7 1 9 6 11688 220,339.37 374,416.26 390,024.07 +
X5 7 2 9 6 3878 73,107.13 227,184.01 129,407.37 -
X5 7 3 9 6 5951 112,186.82 266,263.71 198,582.58 -
X5 7 5 9 6 3102 58,478.16 212,555.04 103,512.55 -
X5 7 6 9 6 5023 94,692.39 248,769.28 167,615.58 -
X5 8 1 9 6 2243 42,284.50 196,361.38 74,848.05 -
X5 8 2 9 6 3202 60,363.34 214,440.22 106,849.51 -
X5 8 3 9 6 5768 108,736.95 262,813.84 192,475.94 -
X5 8 5 9 6 1562 29,446.45 183,523.33 52,123.34 -
X5 8 6 9 6 3512 66,207.38 220,284.27 117,194.09 -
X5 9 1 9 6 8857 166,970.04 321,046.92 295,554.69 -
X5 9 2 9 6 6699 126,287.94 280,364.82 223,543.05 -
X5 9 3 9 6 16578 312,524.48 466,601.36 553,201.49 +
X5 9 4 9 6 51341 967,868.21 1,121,945.09 1,713,229.43 +
X5 9 5 9 6 7180 135,355.64 289,432.52 239,593.84 -
X5 9 6 9 6 10419 196,416.49 350,493.37 347,678.02 -
X5 9 7 9 6 6479 122,140.55 276,217.44 216,201.74 -
X5 9 8 9 6 5615 105,852.63 259,929.52 187,370.39 -
X5 9 10 9 6 4448 83,852.63 237,929.51 148,428.05 -
X5 10 1 9 6 7248 136,637.56 290,714.44 241,862.97 -
X5 10 2 9 6 4198 79,139.69 233,216.57 140,085.65 -
X5 10 3 9 6 4242 79,969.17 234,046.05 141,553.91 -
X5 10 5 9 6 1917 36,138.82 190,215.71 63,969.55 -
X5 10 6 9 6 3543 66,791.79 220,868.67 118,228.55 -

Table 6.27 Cost Allocation (FDPTP) of 9-6 Link with Cost Function 3 under Flow Range
2 (CAB10)
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Simulation Set 2: Cost Function 3 under Flow Range 2 (With Hop Constraint)

The simulation set 2 is based on cost function 3 under flow range 2 of FDPTP

with hop constraint. The hop constraint restricts the number of stops between origin and

destination to at most 2 in the FDPTP. Cost allocation solutions of the FDPTP (CAB10)

are shown in Tables 6.28-47. Each table provides the cost allocations for the link model

opened. As can be seen in Figure 5.1, the FDPTP (CAB10) of simulation set 1 opens 20

links out of 90, which are four y5, four y4, four y3, and eight y2 discounted links.

Table 6.28 provides the fair cost allocation of the O-D pairs for the [1-5] link.

Players (O-D pairs) get the fair cost allocation based on their contribution to the flow

economies of scale. As can be seen in Table 6.28, Total Network Cost 1 and Total

Network Cost 2 are different for each O-D pair which uses [1-5] link. Total Network Cost

2 is obtained with cost allocations whereas Total Network Cost 1 is calculated without

cost allocations. Difference column in Table 6.28 shows difference between evenly-

distributed fixed costs and proportionally-distributed fixed costs. Positive sign in

Difference column shows that the O-D pair of cost allocation pays more fixed costs than

the one of without cost allocation solutions. Tables 6-29-6.47 can be explained same as

Table 6.28. Tables 6.28-6.35 show the cost allocations of the O-D pairs for y2 discounted

link, Tables 6.36-6.39 show the cost allocations of the O-D pairs for y3 discounted link,

Tables 6.40-6.43 show the cost allocations of the O-D pairs for y4 discounted link, and

Tables 6.44-6.47 show the cost allocations of the O-D pairs for y5 discounted link.
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 1 2 1 5 6469 1,934,555.49 2,401,821.36 2,271,195.07 -
X2 1 3 1 5 7629 2,281,453.67 2,748,719.55 2,678,458.37 -
X2 1 4 1 5 20036 5,991,769.01 6,459,034.88 7,034,420.22 +
X2 1 5 1 5 4690 1,402,545.25 1,869,811.13 1,646,607.65 -
X2 1 6 1 5 6194 1,852,316.69 2,319,582.57 2,174,645.58 -

X2 1 9 1 5 8857 2,648,687.27 3,115,953.14 3,109,595.72 -

Table 6.28 Cost Allocation (FDPTP) of 1-5 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 1 7 1 10 11688 6,500,472.88 7,245,338.60 8,194,057.07 +
X2 1 8 1 10 2243 1,247,481.24 1,992,346.95 1,572,490.59 -
X2 1 10 1 10 7248 4,031,094.07 4,775,959.78 5,081,324.92 +
X2 2 10 1 10 4198 2,334,786.55 3,079,652.26 2,943,074.23 -
X2 3 10 1 10 4242 2,359,257.87 3,104,123.58 2,973,921.12 -
X2 5 10 1 10 1917 1,066,170.99 1,811,036.70 1,343,943.14 -

X2 9 10 1 10 4448 2,473,828.15 3,218,693.86 3,118,340.68 -

Table 6.29 Cost Allocation (FDPTP) of 1-10 Link with Cost Function 3 under Flow
Range 2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 2 1 2 6 6469 1,619,232.62 1,879,968.54 1,872,090.22 -
X2 2 3 2 6 12999 3,253,733.93 3,514,469.85 3,761,833.47 +
X2 2 4 2 6 13692 3,427,196.32 3,687,932.24 3,962,383.56 +
X2 2 5 2 6 3322 831,518.13 1,092,254.04 961,367.09 -
X2 2 6 2 6 5576 1,395,708.93 1,656,444.85 1,613,661.31 -
X2 2 7 2 6 3878 970,688.53 1,231,424.45 1,122,270.19 -
X2 2 8 2 6 3202 801,481.35 1,062,217.27 926,639.80 -
X2 2 9 2 6 6699 1,676,803.11 1,937,539.03 1,938,650.85 +

X2 2 10 2 6 4198 1,050,786.60 1,311,522.52 1,214,876.29 -

Table 6.30 Cost Allocation (FDPTP) of 2-6 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 2 8 4 8 3202 2,324,480.63 3,458,772.00 2,919,143.24 -
X2 3 8 4 8 5768 4,187,259.30 5,321,550.67 5,258,469.14 -
X2 4 8 4 8 16987 12,331,652.86 13,465,944.23 15,486,410.42 +
X2 5 8 4 8 1562 1,133,928.40 2,268,219.78 1,424,016.78 -
X2 6 8 4 8 3512 2,549,524.04 3,683,815.41 3,201,758.60 -

X2 9 8 4 8 5615 4,076,189.49 5,210,480.86 5,118,984.78 -

Table 6.31 Cost Allocation (FDPTP) of 4-8 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 1 2 6 2 6469 1,619,232.62 1,879,968.54 1,872,090.22 -
X2 3 2 6 2 12999 3,253,733.93 3,514,469.85 3,761,833.47 +
X2 4 2 6 2 13692 3,427,196.32 3,687,932.24 3,962,383.56 +
X2 5 2 6 2 3322 831,518.13 1,092,254.04 961,367.09 -
X2 6 2 6 2 5576 1,395,708.93 1,656,444.85 1,613,661.31 -
X2 7 2 6 2 3878 970,688.53 1,231,424.45 1,122,270.19 -
X2 8 2 6 2 3202 801,481.35 1,062,217.27 926,639.80 -
X2 9 2 6 2 6699 1,676,803.11 1,937,539.03 1,938,650.85 +

X2 10 2 6 2 4198 1,050,786.60 1,311,522.52 1,214,876.29 -

Table 6.32 Cost Allocation (FDPTP) of 6-2 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 2 5 6 5 3322 600,339.62 812,116.55 714,231.27 -
X2 3 5 6 5 5956 1,076,346.40 1,288,123.34 1,280,542.28 -
X2 4 5 6 5 19094 3,450,597.41 3,662,374.35 4,105,217.30 +
X2 6 5 6 5 7284 1,316,337.67 1,528,114.61 1,566,062.78 +
X2 7 5 6 5 3102 560,582.02 772,358.96 666,931.19 -
X2 8 5 6 5 1562 282,278.89 494,055.83 335,830.60 -
X2 9 5 6 5 7180 1,297,543.18 1,509,320.12 1,543,702.74 +

X2 10 5 6 5 1917 346,433.19 558,210.12 412,155.73 -

Table 6.33 Cost Allocation (FDPTP) of 6-5 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 1 8 7 8 2243 1,191,259.45 2,436,027.33 1,548,637.29 -
X2 4 8 7 8 10355 5,499,550.44 6,744,318.32 7,149,415.57 +
X2 7 8 7 8 11557 6,137,933.79 7,382,701.67 7,979,313.93 +

X2 10 8 7 8 7095 3,768,161.31 5,012,929.19 4,898,609.70 -

Table 6.34 Cost Allocation (FDPTP) of 7-8 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X2 4 10 7 10 15826 2,803,379.66 3,218,545.91 3,236,178.08 +
X2 6 10 7 10 3543 627,598.52 1,042,764.77 724,490.01 -
X2 7 10 7 10 34261 6,068,911.31 6,484,077.56 7,005,857.28 +

X2 8 10 7 10 7095 1,256,791.27 1,671,957.52 1,450,820.39 -

Table 6.35 Cost Allocation (FDPTP) of 7-10 Link with Cost Function 3 under Flow
Range 2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 2 7 4 7 3878 1838454.241 3594279.352 2649274.67 -
X3 3 7 4 7 5951 2821207.114 4577032.225 4065454.76 -
X3 4 7 4 7 21423 10156061.17 11911886.28 14635227.24 +
X3 4 8 4 7 10355 4909023.637 6664848.748 7074068.903 +
X3 4 10 4 7 15826 7502675.816 9258500.927 10811609.32 +
X3 5 7 4 7 3102 1470573.764 3226398.875 2119146.474 -
X3 6 7 4 7 5023 2381267.574 4137092.685 3431487.021 -
X3 6 10 4 7 3543 1679639.86 3435464.971 2420417.781 -

X3 9 7 4 7 6479 3071517.542 4827342.653 4426160.543 -

Table 6.36 Cost Allocation (FDPTP) of 4-7 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 2 1 6 1 6469 2172680.798 3033861.26 2978640.06 -
X3 2 10 6 1 4198 1409941.875 2271122.337 1932961.968 -
X3 3 1 6 1 7629 2562278.839 3423459.301 3512760.089 +
X3 3 10 6 1 4242 1424719.732 2285900.193 1953221.693 -
X3 4 1 6 1 20036 6729298.574 7590479.035 9225542.16 +
X3 5 1 6 1 4690 1575185.182 2436365.644 2159502.532 -
X3 5 10 6 1 1917 643844.3485 1505024.81 882679.3932 -
X3 6 1 6 1 6194 2080319.194 2941499.655 2852016.777 -
X3 7 1 6 1 11688 3925536.121 4786716.583 5381719.743 +
X3 8 1 6 1 2243 753334.8323 1614515.294 1032785.539 -
X3 9 1 6 1 8857 2974715.386 3835895.847 4078190.603 +
X3 9 10 6 1 4448 1493906.97 2355087.432 2048074.043 -

X3 10 1 6 1 7248 2434316.034 3295496.496 3337329.286 +

Table 6.37 Cost Allocation (FDPTP) of 6-1 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 1 9 6 9 8857 500910.115 736557.115 752845.2916 +
X3 2 9 6 9 6699 378863.8207 614510.8207 569415.2206 -
X3 3 9 6 9 16578 937573.4318 1173220.432 1409130.546 +
X3 5 9 6 9 7180 406066.9104 641713.9104 610300.2364 -
X3 6 9 6 9 10419 589249.4623 824896.4623 885615.343 +
X3 7 9 6 9 6479 366421.6591 602068.6591 550715.2133 -
X3 8 9 6 9 5615 317557.8972 553204.8972 477275.1849 -

X3 10 9 6 9 4448 251557.8854 487204.8854 378080.1464 -

Table 6.38 Cost Allocation (FDPTP) of 6-9 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X3 8 1 8 7 2243 893444.59 2368725.034 1332078.476 -
X3 8 2 8 7 3202 1275438.955 2750719.4 1901611.806 -
X3 8 3 8 7 5768 2297542.753 3772823.197 3425514.333 -
X3 8 4 8 7 27342 10891021.84 12366302.28 16237935.66 +
X3 8 5 8 7 1562 622184.7746 2097465.219 927644.4849 -
X3 8 6 8 7 3512 1398919.929 2874200.373 2085715.385 -
X3 8 7 8 7 11557 4603450.346 6078730.79 6863500.2 +
X3 8 9 8 7 5615 2236598.918 3711879.362 3334650.309 -

X3 8 10 8 7 7095 2826120.983 4301401.428 4213596.428 -

Table 6.39 Cost Allocation (FDPTP) of 8-7 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 3 1 3 6 7629 1,696,905.04 4,091,097.90 3,213,690.36 -
X4 3 2 3 6 12999 2,891,344.69 5,285,537.55 5,475,784.64 +
X4 3 4 3 6 35135 7,815,016.21 10,209,209.07 14,800,499.52 +
X4 3 5 3 6 5956 1,324,782.60 3,718,975.46 2,508,944.79 -
X4 3 6 3 6 14121 3,140,909.18 5,535,102.04 5,948,423.33 +
X4 3 7 3 6 5951 1,323,670.46 3,717,863.32 2,506,838.56 -
X4 3 8 3 6 5768 1,282,966.09 3,677,158.95 2,429,750.43 -
X4 3 9 3 6 16578 3,687,415.36 6,081,608.22 6,983,426.24 +

X4 3 10 3 6 4242 943,540.59 3,337,733.46 1,786,928.11 -

Table 6.40 Cost Allocation (FDPTP) of 3-6 Link with Cost Function 3 under Flow Range
2 (CAB10)



160

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 1 2 5 6 6469 584,526.94 1,209,773.13 1,132,740.23 -
X4 1 3 5 6 7629 689,342.40 1,314,588.60 1,335,859.51 +
X4 1 4 5 6 20036 1,810,416.09 2,435,662.29 3,508,360.36 +
X4 1 6 5 6 6194 559,678.44 1,184,924.64 1,084,586.95 -
X4 1 9 5 6 8857 800,302.22 1,425,548.42 1,550,885.79 +
X4 5 1 5 6 4690 423,779.77 1,049,025.97 821,232.29 -
X4 5 2 5 6 3322 300,169.81 925,416.00 581,691.61 -
X4 5 3 5 6 5956 538,173.20 1,163,419.40 1,042,912.47 -
X4 5 4 5 6 19094 1,725,298.71 2,350,544.90 3,343,413.49 +
X4 5 6 5 6 7284 658,168.84 1,283,415.03 1,275,449.03 -
X4 5 7 5 6 3102 280,291.01 905,537.21 543,168.99 -
X4 5 8 5 6 1562 141,139.45 766,385.64 273,510.62 -
X4 5 9 5 6 7180 648,771.59 1,274,017.79 1,257,238.34 -

X4 5 10 5 6 1917 173,216.59 798,462.79 335,672.13 -

Table 6.41 Cost Allocation (FDPTP) of 5-6 Link with Cost Function 3 under Flow Range
2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 1 3 6 3 7629 1,696,905.04 4,091,097.90 3,213,690.36 -
X4 2 3 6 3 12999 2,891,344.69 5,285,537.55 5,475,784.64 +
X4 4 3 6 3 35135 7,815,016.21 10,209,209.07 14,800,499.52 +
X4 5 3 6 3 5956 1,324,782.60 3,718,975.46 2,508,944.79 -
X4 6 3 6 3 14121 3,140,909.18 5,535,102.04 5,948,423.33 +
X4 7 3 6 3 5951 1,323,670.46 3,717,863.32 2,506,838.56 -
X4 8 3 6 3 5768 1,282,966.09 3,677,158.95 2,429,750.43 -
X4 9 3 6 3 16578 3,687,415.36 6,081,608.22 6,983,426.24 +

X4 10 3 6 3 4242 943,540.59 3,337,733.46 1,786,928.11 -

Table 6.42 Cost Allocation (FDPTP) of 6-3 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X4 1 7 10 7 11688 1,035,192.13 1,815,201.45 2,072,161.17 +
X4 1 8 10 7 2243 198,659.82 978,669.14 397,660.63 -
X4 10 1 10 7 7248 641,946.66 1,421,955.98 1,284,995.22 -
X4 10 2 10 7 4198 371,811.82 1,151,821.14 744,261.86 -
X4 10 3 10 7 4242 375,708.85 1,155,718.17 752,062.60 -
X4 10 4 10 7 15826 1,401,689.83 2,181,699.15 2,805,785.64 +
X4 10 5 10 7 1917 169,786.39 949,795.71 339,864.22 -
X4 10 6 10 7 3543 313,799.26 1,093,808.58 628,137.15 -
X4 10 7 10 7 34261 3,034,455.66 3,814,464.97 6,074,119.93 +
X4 10 8 10 7 7095 628,395.64 1,408,404.95 1,257,869.91 -

X4 10 9 10 7 4448 393,954.02 1,173,963.34 788,584.26 -

Table 6.43 Cost Allocation (FDPTP) of 10-7 Link with Cost Function 3 under Flow
Range 2 (CAB10)

X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 4 1 4 9 20036 949,988.11 3,468,860.04 2,686,107.34 -
X5 4 2 4 9 13692 649,193.31 3,168,065.25 1,835,605.00 -
X5 4 3 4 9 35135 1,665,893.00 4,184,764.94 4,710,340.46 +
X5 4 5 4 9 19094 905,324.06 3,424,196.00 2,559,819.01 -
X5 4 6 4 9 35119 1,665,134.37 4,184,006.31 4,708,195.44 +

X5 4 9 4 9 51341 2,434,285.25 4,953,157.19 6,882,982.49 +

Table 6.44 Cost Allocation (FDPTP) of 4-9 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 1 4 6 4 20036 1,247,469.81 2,239,761.19 2,634,669.23 +
X5 2 4 6 4 13692 852,483.36 1,844,774.74 1,800,453.74 -
X5 3 4 6 4 35135 2,187,554.99 3,179,846.37 4,620,138.92 +
X5 5 4 6 4 19094 1,188,819.55 2,181,110.93 2,510,799.27 +
X5 6 4 6 4 35119 2,186,558.81 3,178,850.19 4,618,034.97 +
X5 7 4 6 4 21423 1,333,826.40 2,326,117.78 2,817,055.24 +
X5 8 4 6 4 27342 1,702,351.75 2,694,643.13 3,595,384.61 +
X5 9 4 6 4 51341 3,196,563.56 4,188,854.95 6,751,175.52 +
X5 10 4 6 4 15826 985,349.23 1,977,640.61 2,081,067.84 +
X5 2 7 6 4 3878 241,449.79 1,233,741.17 509,944.46 -
X5 3 7 6 4 5951 370,517.71 1,362,809.09 782,537.26 -
X5 5 7 6 4 3102 193,134.92 1,185,426.31 407,902.97 -
X5 6 7 6 4 5023 312,739.11 1,305,030.49 660,508.26 -
X5 9 7 6 4 6479 403,391.74 1,395,683.12 851,967.55 -
X5 2 8 6 4 3202 199,361.07 1,191,652.45 421,052.65 -
X5 3 8 6 4 5768 359,123.87 1,351,415.25 758,473.35 -
X5 5 8 6 4 1562 97,252.34 1,089,543.72 205,397.95 -
X5 6 8 6 4 3512 218,662.11 1,210,953.49 461,816.65 -
X5 9 8 6 4 5615 349,597.87 1,341,889.25 738,354.35 -

X5 6 10 6 4 3543 220,592.21 1,212,883.59 465,893.05 -

Table 6.45 Cost Allocation (FDPTP) of 6-4 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 7 1 7 6 11688 2,360,249.47 5,425,377.40 7,436,354.46 +
X5 8 1 7 6 2243 452,946.58 3,518,074.50 1,427,082.74 -
X5 10 1 7 6 7248 1,463,645.46 4,528,773.39 4,611,455.95 +
X5 7 2 7 6 3878 783,114.94 3,848,242.87 2,467,332.53 -
X5 8 2 7 6 3202 646,604.96 3,711,732.89 2,037,235.37 -
X5 10 2 7 6 4198 847,735.05 3,912,862.98 2,670,928.82 -
X5 7 3 7 6 5951 1,201,732.09 4,266,860.01 3,786,254.74 -
X5 8 3 7 6 5768 1,164,777.46 4,229,905.39 3,669,823.11 -
X5 10 3 7 6 4242 856,620.32 3,921,748.25 2,698,923.31 -
X5 7 4 7 6 21423 4,326,114.35 7,391,242.27 13,630,135.32 +
X5 8 4 7 6 27342 5,521,384.42 8,586,512.35 17,396,030.43 +
X5 10 4 7 6 15826 3,195,868.26 6,260,996.18 10,069,108.97 +
X5 7 5 7 6 3102 626,411.18 3,691,539.11 1,973,611.53 -
X5 8 5 7 6 1562 315,426.91 3,380,554.83 993,804.39 -
X5 10 5 7 6 1917 387,114.84 3,452,242.77 1,219,669.02 -
X5 7 6 7 6 5023 1,014,333.77 4,079,461.70 3,195,825.50 -
X5 8 6 7 6 3512 709,205.69 3,774,333.62 2,234,469.27 -
X5 10 6 7 6 3543 715,465.77 3,780,593.70 2,254,192.66 -
X5 7 9 7 6 6479 1,308,355.27 4,373,483.19 4,122,188.62 -
X5 8 9 7 6 5615 1,133,880.97 4,199,008.90 3,572,478.64 -

X5 10 9 7 6 4448 898,219.51 3,963,347.44 2,829,988.42 -

Table 6.46 Cost Allocation (FDPTP) of 7-6 Link with Cost Function 3 under Flow Range
2 (CAB10)
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X I J K M Flow Transport Cost Total Network Cost 1 Total Network Cost 2 Difference

X5 4 1 9 6 20036 377,713.86 806,928.04 877,922.82 +
X5 9 1 9 6 8857 166,970.04 596,184.22 388,089.56 -
X5 4 2 9 6 13692 258,118.30 687,332.48 599,946.06 -
X5 9 2 9 6 6699 126,287.94 555,502.12 293,531.89 -
X5 4 3 9 6 35135 662,356.59 1,091,570.77 1,539,519.78 +
X5 9 3 9 6 16578 312,524.48 741,738.66 726,402.70 -
X5 9 4 9 6 51341 967,868.21 1,397,082.39 2,249,622.45 +
X5 4 5 9 6 19094 359,955.51 789,169.68 836,646.95 +
X5 9 5 9 6 7180 135,355.64 564,569.82 314,608.00 -
X5 4 6 9 6 35119 662,054.96 1,091,269.14 1,538,818.70 +
X5 9 6 9 6 10419 196,416.49 625,630.67 456,532.13 -
X5 9 7 9 6 6479 122,140.55 551,354.73 283,892.09 -
X5 9 8 9 6 5615 105,852.63 535,066.81 246,033.97 -

X5 9 10 9 6 4448 83,852.63 513,066.81 194,899.22 -

Table 6.47 Cost Allocation (FDPTP) of 9-6 Link with Cost Function 3 under Flow Range
2 (CAB10)
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6.3 Numerical Results of Cost Allocation Comparison

This section compares the cost allocations between hub networks and point-to-

point networks. It is shown that some O-D pairs prefer a certain network structure. This

contributes to understanding a fundamental question about the merits of hub networks

versus point-to-point networks. The computational results from the FDMAP and the

FDPTP are used to compare the networks. The numerical analysis of cost comparison is

based on CAB10 data.

As can be seen in Figure 6.2, there are many possible ways for each O-D pair to

travel depending on network configuration. Under the hub network structure, the [A-B]

pair’s route depends on how interhub links are connected each other. In the case of 3-hub

problem, there are four possible interhub connections available as can be seen in Figure

6.3. Each O-D pair finds its own cheapest route out of all possible ways achieving flow

economies of scale. Under the point-to-point network structure, the [A-B] pair’s route is

not constrained by hub nodes because there are no hubs chosen. Its best route is basically

found by flow economies of scale on opened links.

Table 6.48 shows the results of the FDMAP (CAB10) with cost function 3 (see

Table 5.3). Three hubs are open, but hubs are not fully connected each other. To achieve

flow economies of scale, the model closes a partial interhub link as can be seen in Figure

6.4. Under the same cost function, it is shown that the flow-based discount point-to-point

model provides the cheaper network cost than the flow-based discount multiple hub

location model. Due to the large number of opened links, the point-to-point network pays

higher fixed costs for opened links than the hub network by offsetting the cheaper
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transportation costs. Table 6.49 shows the results of the FDPTP (CAB10) with cost

function 3. Table 6.50 presents cost differences of O-D pairs between hub network and

point-to-point network. Out of 90 directed O-D pairs, 67 O-D pairs can save their costs

by point-to-point network as can be seen in Table 6.51 whereas 23 O-D pairs maintain

their cheapest network costs by hub network as can be seen in Table 6.52. Figure 6.5

illustrates O-D pairs that save the their costs by a hub network configuration. Cost

allocation makes it possible to capture the market share of each network provider with

respect to the cost of each O-D pair. The FDMAP captures 28% of market shares with

respect to passenger flows as can be seen in Figure 6.5. Out of 90 O-D pairs, the FDMAP

provides the cheaper costs to 23 O-D pairs that the FDPTP does.

It is shown that O-D pairs with multiple interhub links always favor a point-to-

point network. Those pairs includes as [2�7], [3�7], [6�7], [6�10], and [7�9] O-D

pairs. There are some O-D pairs with single interhub link that favors a hub network. For

example, O-D pairs such as [2�10], [4�6], [5�10], and [8�9] always prefer hub

network to point-to-point network. O-D pairs such as [7�6], [7�4], and [4�9] pays

relatively high amount of fixed costs. Their fixed cost percentage is more than 65% of

their total network costs. The most cost savings by point-to-point network. On the other

hand, O-D pairs such as [1�5], [2�5], [2�6], [6�2], and [7�10] pay relatively low

amount of fixed costs. Their fixed cost percentage is less than 15% of their total network

costs.
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H1

H3H2

A B

Feasible Link

Figure 6.2 Competitive Route in Hub Network
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(a) (b)

(c) (d)

opened link

closed link

Figure 6.3 Interhub Link Connection
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I J Flow Cost Allocation (FDPTP) Cost Allocation (FDMAP) Difference

1 2 6469 5,276,025.51 5,645,175.44 369,149.93

1 3 7629 7,228,008.24 8,512,727.34 1,284,719.10

1 4 20036 13,177,449.81 11,973,457.50 (1,203,992.31)

1 5 4690 1,646,607.65 3,684,758.06 2,038,150.41

1 6 6194 3,259,232.53 3,467,198.66 207,966.13

1 7 11688 10,266,218.23 8,287,043.29 (1,979,174.94)

1 8 2243 3,518,788.51 3,079,409.54 (439,378.97)

1 9 8857 5,413,326.81 5,792,709.17 379,382.36

1 10 7248 5,081,324.92 6,743,854.49 1,662,529.57

2 1 6469 4,850,730.28 5,645,175.44 794,445.16

2 3 12999 9,237,618.11 11,295,529.15 2,057,911.04

2 4 13692 5,762,837.29 6,295,392.18 532,554.89

2 5 3322 1,675,598.36 1,789,822.18 114,223.82

2 6 5576 1,613,661.31 1,744,636.17 130,974.85

2 7 3878 4,281,489.32 4,696,545.07 415,055.75

2 8 3202 4,266,835.69 4,377,836.09 111,000.40

2 9 6699 2,508,066.07 2,727,443.59 219,377.52

2 10 4198 6,090,912.49 5,843,630.55 (247,281.94)

3 1 7629 6,726,450.45 8,512,727.34 1,786,276.89

3 2 12999 9,237,618.11 11,295,529.15 2,057,911.04

3 4 35135 19,420,638.44 24,698,979.75 5,278,341.31

3 5 5956 3,789,487.06 4,657,389.50 867,902.43

3 6 14121 5,948,423.33 7,852,272.94 1,903,849.61

3 7 5951 7,354,830.58 8,654,310.34 1,299,479.77

3 8 5768 8,446,692.92 9,288,826.23 842,133.31

3 9 16578 8,392,556.79 10,781,160.79 2,388,604.00

3 10 4242 6,714,070.92 6,936,480.08 222,409.16

4 1 20036 12,789,572.32 11,973,457.50 (816,114.82)

4 2 13692 6,397,934.61 6,295,392.18 (102,542.43)

4 3 35135 21,050,359.76 24,698,979.75 3,648,619.99

4 5 19094 7,501,683.25 4,869,548.55 (2,632,134.71)

4 6 35119 6,247,014.14 5,159,088.77 (1,087,925.37)

4 7 21423 14,635,227.24 16,094,839.84 1,459,612.59

4 8 27342 29,709,894.89 24,811,035.82 (4,898,859.07)

4 9 51341 6,882,982.49 12,381,491.36 5,498,508.87

4 10 15826 14,047,787.40 15,394,106.25 1,346,318.86

5 1 4690 2,980,734.82 3,684,758.06 704,023.24

5 2 3322 1,543,058.70 1,789,822.18 246,763.48

5 3 5956 3,551,857.26 4,657,389.50 1,105,532.23

5 4 19094 5,854,212.76 4,869,548.55 (984,664.22)

5 6 7284 1,275,449.03 1,645,422.09 369,973.06

5 7 3102 3,070,218.43 3,121,598.93 51,380.50

5 8 1562 1,902,925.36 1,815,767.83 (87,157.53)

5 9 7180 1,867,538.58 2,298,707.16 431,168.58

5 10 1917 2,562,294.66 2,353,577.89 (208,716.77)
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I J Flow Cost Allocation (FDPTP) Cost Allocation (FDMAP) Difference

6 1 6194 2,852,016.78 3,467,198.66 615,181.88

6 2 5576 1,613,661.31 1,744,636.17 130,974.85

6 3 14121 5,948,423.33 7,852,272.94 1,903,849.61

6 4 35119 4,618,034.97 5,159,088.77 541,053.80

6 5 7284 1,566,062.78 1,645,422.09 79,359.31

6 7 5023 4,091,995.28 4,511,613.02 419,617.74

6 8 3512 3,663,575.25 3,702,828.61 39,253.37

6 9 10419 885,615.34 982,082.44 96,467.09

6 10 3543 3,610,800.84 3,966,788.60 355,987.76

7 1 11688 12,818,074.20 8,287,043.29 (4,531,030.91)

7 2 3878 3,589,602.72 4,696,545.07 1,106,942.36

7 3 5951 6,293,093.29 8,654,310.34 2,361,217.05

7 4 21423 16,447,190.56 16,094,839.84 (352,350.72)

7 5 3102 2,640,542.71 3,121,598.93 481,056.22

7 6 5023 3,195,825.50 4,511,613.02 1,315,787.52

7 8 11557 7,979,313.93 7,672,417.24 (306,896.69)

7 9 6479 4,672,903.83 6,430,081.78 1,757,177.95

7 10 34261 7,005,857.28 7,586,139.14 580,281.87

8 1 2243 3,791,946.75 3,079,409.54 (712,537.21)

8 2 3202 4,865,486.97 4,377,836.09 (487,650.88)

8 3 5768 9,525,087.87 9,288,826.23 (236,261.65)

8 4 27342 37,229,350.70 24,811,035.82 (12,418,314.88)

8 5 1562 2,257,279.47 1,815,767.83 (441,511.64)

8 6 3512 4,320,184.66 3,702,828.61 (617,356.04)

8 7 11557 6,863,500.20 7,672,417.24 808,917.04

8 9 5615 7,384,404.13 6,449,360.73 (935,043.40)

8 10 7095 5,664,416.82 6,281,190.73 616,773.91

9 1 8857 4,466,280.16 5,792,709.17 1,326,429.01

9 2 6699 2,232,182.74 2,727,443.59 495,260.85

9 3 16578 7,709,828.94 10,781,160.79 3,071,331.85

9 4 51341 9,000,797.98 12,381,491.36 3,380,693.38

9 5 7180 1,858,310.74 2,298,707.16 440,396.41

9 6 10419 456,532.13 982,082.44 525,550.30

9 7 6479 5,562,020.19 6,430,081.78 868,061.59

9 8 5615 6,103,373.10 6,449,360.73 345,987.63

9 10 4448 5,361,313.94 5,381,102.15 19,788.22

10 1 7248 9,233,780.45 6,743,854.49 (2,489,925.97)

10 2 4198 4,630,066.96 5,843,630.55 1,213,563.59

10 3 4242 5,237,914.01 6,936,480.08 1,698,566.07

10 4 15826 14,955,962.45 15,394,106.25 438,143.80

10 5 1917 1,971,688.97 2,353,577.89 381,888.92

10 6 3543 2,882,329.81 3,966,788.60 1,084,458.79

10 7 34261 6,074,119.93 7,586,139.14 1,512,019.22

10 8 7095 6,156,479.61 6,281,190.73 124,711.12

10 9 4448 3,996,652.83 5,381,102.15 1,384,449.33

Table 6.50 Cost Allocation (CAB10) of O-D Pairs with Cost function 3 under Flow
Range 2
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I J Flow Cost Allocation (FDPTP) Cost Allocation (FDMAP) Difference

1 2 6469 5,276,025.51 5,645,175.44 369,149.93

1 3 7629 7,228,008.24 8,512,727.34 1,284,719.10

1 5 4690 1,646,607.65 3,684,758.06 2,038,150.41

1 6 6194 3,259,232.53 3,467,198.66 207,966.13

1 9 8857 5,413,326.81 5,792,709.17 379,382.36

1 10 7248 5,081,324.92 6,743,854.49 1,662,529.57

2 1 6469 4,850,730.28 5,645,175.44 794,445.16

2 3 12999 9,237,618.11 11,295,529.15 2,057,911.04

2 4 13692 5,762,837.29 6,295,392.18 532,554.89

2 5 3322 1,675,598.36 1,789,822.18 114,223.82

2 6 5576 1,613,661.31 1,744,636.17 130,974.85

2 7 3878 4,281,489.32 4,696,545.07 415,055.75

2 8 3202 4,266,835.69 4,377,836.09 111,000.40

2 9 6699 2,508,066.07 2,727,443.59 219,377.52

3 1 7629 6,726,450.45 8,512,727.34 1,786,276.89

3 2 12999 9,237,618.11 11,295,529.15 2,057,911.04

3 4 35135 19,420,638.44 24,698,979.75 5,278,341.31

3 5 5956 3,789,487.06 4,657,389.50 867,902.43

3 6 14121 5,948,423.33 7,852,272.94 1,903,849.61

3 7 5951 7,354,830.58 8,654,310.34 1,299,479.77

3 8 5768 8,446,692.92 9,288,826.23 842,133.31

3 9 16578 8,392,556.79 10,781,160.79 2,388,604.00

3 10 4242 6,714,070.92 6,936,480.08 222,409.16

4 3 35135 21,050,359.76 24,698,979.75 3,648,619.99

4 7 21423 14,635,227.24 16,094,839.84 1,459,612.59

4 9 51341 6,882,982.49 12,381,491.36 5,498,508.87

4 10 15826 14,047,787.40 15,394,106.25 1,346,318.86

5 1 4690 2,980,734.82 3,684,758.06 704,023.24

5 2 3322 1,543,058.70 1,789,822.18 246,763.48

5 3 5956 3,551,857.26 4,657,389.50 1,105,532.23

5 6 7284 1,275,449.03 1,645,422.09 369,973.06

5 7 3102 3,070,218.43 3,121,598.93 51,380.50

5 9 7180 1,867,538.58 2,298,707.16 431,168.58
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I J Flow Cost Allocation (FDPTP) Cost Allocation (FDMAP) Difference

6 1 6194 2,852,016.78 3,467,198.66 615,181.88

6 2 5576 1,613,661.31 1,744,636.17 130,974.85

6 3 14121 5,948,423.33 7,852,272.94 1,903,849.61

6 4 35119 4,618,034.97 5,159,088.77 541,053.80

6 5 7284 1,566,062.78 1,645,422.09 79,359.31

6 7 5023 4,091,995.28 4,511,613.02 419,617.74

6 8 3512 3,663,575.25 3,702,828.61 39,253.37

6 9 10419 885,615.34 982,082.44 96,467.09

6 10 3543 3,610,800.84 3,966,788.60 355,987.76

7 2 3878 3,589,602.72 4,696,545.07 1,106,942.36

7 3 5951 6,293,093.29 8,654,310.34 2,361,217.05

7 5 3102 2,640,542.71 3,121,598.93 481,056.22

7 6 5023 3,195,825.50 4,511,613.02 1,315,787.52

7 9 6479 4,672,903.83 6,430,081.78 1,757,177.95

7 10 34261 7,005,857.28 7,586,139.14 580,281.87

8 7 11557 6,863,500.20 7,672,417.24 808,917.04

8 10 7095 5,664,416.82 6,281,190.73 616,773.91

9 1 8857 4,466,280.16 5,792,709.17 1,326,429.01

9 2 6699 2,232,182.74 2,727,443.59 495,260.85

9 3 16578 7,709,828.94 10,781,160.79 3,071,331.85

9 4 51341 9,000,797.98 12,381,491.36 3,380,693.38

9 5 7180 1,858,310.74 2,298,707.16 440,396.41

9 6 10419 456,532.13 982,082.44 525,550.30

9 7 6479 5,562,020.19 6,430,081.78 868,061.59

9 8 5615 6,103,373.10 6,449,360.73 345,987.63

9 10 4448 5,361,313.94 5,381,102.15 19,788.22

10 2 4198 4,630,066.96 5,843,630.55 1,213,563.59

10 3 4242 5,237,914.01 6,936,480.08 1,698,566.07

10 4 15826 14,955,962.45 15,394,106.25 438,143.80

10 5 1917 1,971,688.97 2,353,577.89 381,888.92

10 6 3543 2,882,329.81 3,966,788.60 1,084,458.79

10 7 34261 6,074,119.93 7,586,139.14 1,512,019.22

10 8 7095 6,156,479.61 6,281,190.73 124,711.12

10 9 4448 3,996,652.83 5,381,102.15 1,384,449.33

Table 6.51 Cost Allocation (CAB10) of Favorable O-D Pairs by Point-To-Point Network
with Cost function 3 under Flow Range 2
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I J Flow Cost Allocation (FDPTP) Cost Allocation (FDMAP) Difference

1 4 20036 13,177,449.81 11,973,457.50 (1,203,992.31)
1 7 11688 10,266,218.23 8,287,043.29 (1,979,174.94)
1 8 2243 3,518,788.51 3,079,409.54 (439,378.97)
2 10 4198 6,090,912.49 5,843,630.55 (247,281.94)
4 1 20036 12,789,572.32 11,973,457.50 (816,114.82)
4 2 13692 6,397,934.61 6,295,392.18 (102,542.43)
4 5 19094 7,501,683.25 4,869,548.55 (2,632,134.71)
4 6 35119 6,247,014.14 5,159,088.77 (1,087,925.37)
4 8 27342 29,709,894.89 24,811,035.82 (4,898,859.07)
5 4 19094 5,854,212.76 4,869,548.55 (984,664.22)
5 8 1562 1,902,925.36 1,815,767.83 (87,157.53)
5 10 1917 2,562,294.66 2,353,577.89 (208,716.77)
7 1 11688 12,818,074.20 8,287,043.29 (4,531,030.91)
7 4 21423 16,447,190.56 16,094,839.84 (352,350.72)
7 8 11557 7,979,313.93 7,672,417.24 (306,896.69)
8 1 2243 3,791,946.75 3,079,409.54 (712,537.21)
8 2 3202 4,865,486.97 4,377,836.09 (487,650.88)
8 3 5768 9,525,087.87 9,288,826.23 (236,261.65)
8 4 27342 37,229,350.70 24,811,035.82 (12,418,314.88)
8 5 1562 2,257,279.47 1,815,767.83 (441,511.64)
8 6 3512 4,320,184.66 3,702,828.61 (617,356.04)
8 9 5615 7,384,404.13 6,449,360.73 (935,043.40)

10 1 7248 9,233,780.45 6,743,854.49 (2,489,925.97)

Table 6.52 Cost Allocation (CAB10) of Favorable O-D Pairs by Hub Network with Cost
function 3 under Flow Range 2

In this particular example, it is difficult to generalize the O-D pair’s behaviors for

its favored network. However, there are some patterns of cost allocations that can be

generalized. The O-D pairs with multiple interhub links always prefer the FDPTP to the

FDMAP. Examples include [2�7], [3�7], [6�7], [6�10], and [7�9] O-D pairs. The

FDPTP finds the exact same routes for [6�4�7] multiple interhub link O-D pairs as

does the FDMAP. However, the FDPTP produces more interhub link flows than the
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FDMAP, so the sharing fixed cost by the FDPTP is much lower than the one by the

FDMAP. Notice that the O-D pair pays fixed costs proportional to player’s flow

contribution to the link.

A noticeable pattern of cost allocation is that the [6�4] interhub link users prefer

the FDPTP to the FDMAP with an exception of the [2�10] O-D pair. The main reason

for this is that the FDPTP has built the [6�4] link with the same discount as the

FDMAP, so the hub network may lose its merit of interhub link usage. Another clear

pattern is that all the O-D pairs originating from node 3 prefer the FDPTP to the FDMAP.

Notice that node 3 is only connected to hub node 6, and its average distance to 3 opened

hub locations is longer than any other nodes. So these pairs already had a disadvantage

under the hub network in this particular example. The similar but weak pattern can be

found with node 2. It is only connected to a single hub location, but its average distance

to 3 opened hub nodes is much shorter than node 3. On the other hand, the O-D pairs

originating from node 8 prefer the FDMAP to the FDPTP with exceptions of [8�7], and

[8�10] pairs. Its average distance to 3 opened hub locations is also very long. However,

it is connected multiple hub locations, so it can take advantages of the interhub link

discounts.

Results of the FDMAP and the FDPTP show the similar network structure as can

be seen in Table 6.53. For example, the degree of node shows a similar pattern between

two network solutions although the ranks of node 6 and node 6 are interchanged each

other. The hub nodes of the FDMAP still maintain their top ranks in the FDPTP solution.



178

Degree of Node
ID

Average Distance
to Hub Locations

Rank of Average Distance
to Hub Locations FDMAP FDPTP

1 1866.386 6 6 3
2 2122.4107 7 2 2
3 2955.6746 10 2 2
4* 1101.4284 1 14 4
5 1275.0983 2 4 3
6* 1320.9963 4 12 11
7* 1799.8105 5 8 6
8 2788.1775 9 4 3
9 1314.0669 3 4 3

10 2258.2133 8 4 3
* Hub node.

Table 6.53 Degree of Node (CAB10) of the FDMAP and the FDPTP with Cost function 3
under Flow Range 2

To generalize characteristics of O-D pairs, 100 sets of simulation are generated.

Each simulation set is randomly selected from CAB25 data set. Two of them are chosen

to see the geographical effect of spatial arrangement on data set because they are

geographically extensive as can be seen in Table 6.54. Notice that the CAB10 data set is

geographically intensive in East region.
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City State Id SIMULTATION7 SIMULATION8

Atlanta Georgia 1 1 0
Baltimore Maryland 2 0 1

Boston Massachusetts 3 1 0
Chicago Illinois 4 0 1

Cincinnati Ohio 5 0 0
Cleveland Ohio 6 0 0

Dallas Texas 7 0 1
Denver Colorado 8 1 1
Detroit Michigan 9 0 0

Houston Texas 10 0 1
Kansas City Missouri 11 0 1
Los Angeles California 12 0 1

Memphis Tennessee 13 0 0
Miami Florida 14 0 1

Minneapolis Minnesota 15 1 1
New Orleans Louisiana 16 0 0

New York New York 17 1 0
Philadelphia Pennsylvania 18 1 0

Phoenix Arizona 19 0 1
Pittsburgh Pennsylvania 20 1 0
St. Louis Missouri 21 0 0

San Francisco California 22 1 0
Seattle Washington 23 0 0
Tampa Florida 24 1 0

Washington District of Columbia 25 1 0
* 1 is selected for simulation set.

Table 6.54 Selected Nodes for Simulation Set 7 and 8
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Simulation Set 7: Randomly Selected Subset (10-Node) of CAB25 with Cost

Function 3 under Flow Range 2

Table 6.55 shows that the FDPTP obtains a cheaper total network cost than the

FDMAP. Proportion of fixed cost to the total network cost in the FDPTP is much higher

than the one in the FDMAP. As can be seen in Figures 6.6 and 6.7, the number of links

built as a result is different each other. The FDPTP tends to build more links to transport

O-D flows achieving flow economies of scale than does the FDMAP. As stated in

Chapter 4, the FDMAP does not provide a fully connected hub network. It closes the

longest interhub link to achieve flow economies of scale. One interesting observation

from the results is that a node 25 (Washington D.C.) has significantly changed its role in

the network. For example, it acts as spoke node in the FDMAP whereas it turns into a

node with the largest flow with other nodes in the FDPTP.

Simulation Set 7 (10-Node) Cost

CF3 Obj Transport Cost Fixed Cost

FDMAP 642.81 483.69 159.12

FDPTP 474.57 226.45 248.12
* Total network flow is 2,089,852.
** Cost function 3 is based on flow range 2.

Table 6.55 Solutions for Simulation Set 7
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Simulation Set 8: Randomly Selected Subset (10-Node) of CAB25 with Cost

Function 3 under Flow Range 2

A similar result with simulation set 7 is obtained in this simulation. Table 6.56

shows that the FDPTP obtains a cheaper total network cost than the FDMAP. As can be

seen in Figures 6.8 and 6.9, the structure of infrastructure is different each other. The

FDMAP does not provide a fully connected hub network. It closes the longest interhub

link to achieve flow economies of scale. One interesting observation from the results is

that a node 11 (Kansas City.) has significantly changed its role in the network. It

increases interactions with other nodes in the FDPTP. On the other hand, a node 4 acting

as a hub in the FDMAP drastically decreases interactions with other nodes in the FDPTP.

Unlike the previous results of the FDPTP, the opened links of the FDPTP are all

symmetric as can be seen in Figure 6.9.

Simulation Set 8 (10-Node) Cost

CF3 Obj Transport Cost Fixed Cost

FDMAP 886.15 678.66 207.49

FDPTP 763.27 397.26 366.01
* Total network flow is 1,253,528.
** Cost function 3 is based on flow range 2.

Table 6.56 Solutions for Simulation Set 8
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The models tend to produce results that the FDPTP finds the lower total network

cost than the one of the FDMAP. This makes sense because the FDPTP could always

build same infrastructure as the FDMAP, plus it has merits of other links discounts.

With relatively small number of simulations, the geographical effect on spatial

arrangement can be ignored on these models. The node’s role in the network can

significantly change between two models.
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6.4 Summary of Results

This chapter expands the scope of the traditional research on hub network and

point-to-point network. In network theory, one tried to determine the minimum network

cost achievable in a situation modeled by a concave cost function. In this chapter, the

question of how to share the cost among users is considered.

In the FDMAP, this work starts with the minimization of the objective function,

and analyzes how the saving achieved by minimizing cost is to be divided among the

participants in the cooperative system. The reason to employ a cooperative game theory

is that the O-D pairs (players) may change the hub network structure to save their own

network costs. To represent this possibility, two types of configuration are assumed: [1]

global optimal hub network, and [2] coalition optimum network.

Cost allocations are also shown to be different under different characteristic

functions. Characteristic functions under the global optimal network and under the

coalition optimum network affect the cost allocation vectors. Under the assumption of the

global optimal hub network, players who use the multiple interhub links are often

charged more than the single interhub link players. One of the reasons is that they have to

pay multiple fixed costs in their paths. Another reason is that those multiple interhub link

users help the hub network achieve the cheaper total network cost by contributing their

flows to the indirect paths. The model finds cost allocations in the sense that no coalition

will find it more profitable to form their own localized sub-network system. The core is

shown to be nonempty, so that the cores can be used to allocate cost. If the cost savings
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by the grand coalition is greater than the opportunity costs by the players who are willing

to leave the grand coalition, the core of the game is not empty.

Two approaches are applied to reduce the complexity of cost allocation. The

numerical results prove the total interhub link cost is the sum of the individual interhub

link cost. This proof enables the model to solve the each interhub link game separately. It

is also shown that the cost allocation for the total network is equal to the cost allocation

for the sub-network. The model also reduces the complexity by aggregating individual

players into group players. This way makes it possible to consider the number of player

as only the number of interhub links.

In the FDPTP, this work starts with the minimization of the objective function,

and analyzes how the saving achieved by minimizing cost is to be divided among the

participants with respect to their contributions to flow economies of scale. Their

contribution is directly related to their own flows. Therefore, the cost allocations can be

easily obtained by proportional payment for the fixed costs with respect to their own

flows. Since there is no possibility for the O-D pairs to change the network structure, the

individual cost allocation is proportional to its flow for the fixed costs for the opened

link.

Cost allocations of O-D pairs between hub network and point-to-point network

are compared. It is shown that O-D pairs with multiple interhub links are always

favorable with point-to-point network. There are some O-D pairs with single interhub

link that favors a hub network. This comparison study of cost allocation shows that there

is a certain network structure to give advantages to certain O-D pairs. However, it is
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rather affected by flow economies of scale on network links. This comparison study also

contributes to understand a fundamental question about the merits of hub networks versus

point-to-point networks.
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CHAPTER 7

CONCLUSION

This section offers conclusions about the study, and points to new research

directions. This study investigated the following. First, infrastructure design in hub

network and point-to-point network was developed. A mathematical programming model

identified the optimal infrastructure that minimizes total network cost in both a hub

network and a point-to-point network. A relationship between flow and infrastructure was

examined. Second, cost allocation was adopted in network design of both the hub

network and the point-to-point network. Mathematical programming for cost allocation

featuring a game theory approach is used to set up the hub network efficiently. A

common cost allocation method, cores, is incorporated into the hub location model in

order to provide fair cost to users. Unlike the hub network, a cost allocation of the point-

to-point network can be achieved without resorting to game theory. The main reason is

that there is no interhub link in the point-to-point network. In hub networks, O-D pairs

can find a cheaper cost by switching their routes due to flow economies of scale on

interhub links.
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An analysis using mathematical models involves two parts: modeling and solving.

In some cases, the hub network problem may be solved optimally by using efficient

algorithms. In other cases, it may have to be solved by using some approximate

procedures. In any case, the solution to a mathematical model is optimum or near-

optimum only for the model, not for the real problem since a model is a only an abstract

representation of reality. Generally speaking, the effectiveness of a solution procedure is

evaluated by speed and accuracy. Speed refers to the time it takes to solve a model on a

computer, while accuracy refers to the closeness of the solution to optimality. The

FDMAP model developed in this study solves a relatively complex hub problem

efficiently, and it also provides a new finding of multiple interhub links. This saves a

total network cost by enabling flow economies of scale on multiple interhub links.

7.1 Summary of Research

On the hub network side, first of all, the main modification adapted by the model

is that the optimal network should consider multiple interhub links, which may break

triangle inequality. Secondly, O-D pairs do not necessarily use the shortest path with

respect to distance because the benefits of the longer path may be determined by the

number of O-D pairs patronizing the links. Thus, flow economies of scale in constructing

and operating the infrastructures are necessary for cooperation to occur. One of the

important aspects of the hub network infrastructure design is the different geographical

distribution of network traffic. This may become an important consideration when

interhub links are interconnected. The tabu FDMAP heuristic is efficient to solve the
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flow-based discount multiple hub location problem. Results of the infrastructure design

of the FDMAP exactly obey the minimum cost envelope (lower envelope), which

configures theoretical relationships between flows and corresponding slopes and fixed

costs. The optimal interhub flows match the proper infrastructure and fixed costs. With

optimal infrastructure, the best solution satisfies the optimal flow condition. In other

words, flows in the interhub link are required to reach large enough flow thresholds to

obtain a certain discount or to acquire a high level of infrastructure. For example, if an

interhub link flow is large enough, then it receives a high discount and pays a

correspondingly higher fixed cost. However, if an interhub link flow is not large enough,

it cannot support expensive fixed costs. In other words, each interhub flow user-cost for a

specific infrastructure cannot be optimal if it does not reach the appropriate thresholds

because it would be better off selecting a low level of infrastructure to accommodate

smaller flows. The model supports the optimality condition showing that the high level of

infrastructure for all interhub links are not always the best choice for the hub network

system. As a concluding remark on the infrastructure design model, the computation time

depends mainly on the number of times that the shortest paths must be computed and the

enumeration of all possible infrastructures.

On the point-to-point network side, the model solves flow-based discount point-

to-point problem. The results of the FDPTP are compared to hub network with respect to

O-D pair’s route cost. There are many interesting characteristics of the FDPTP model.

Discounting is not guaranteed even if flow of O-D pair is greater than the flow range. It is

not necessarily guaranteed due to the model property of splitting the flows. In the FDPTP
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model, the distance between the origin and the destination does not affect the routing

strategy at all. In other words, the short distance of O-D pair does not necessarily favor a

direct connection. The behavior of the model depends on concave cost functions that

determine input parameters of discounts and fixed costs along with flow ranges. It is

shown that discount values and flow ranges are directly related with the difficulty of the

problem in addition to the problem size. The FDPTP model with a higher flow range

could not achieve flow economies of scale as much as the one with a lower flow range. It

displayed a less dense network structure than the lower one. Given discounting incentives

based on the amount of flow on network links, O-D pairs are motivated to amalgamate

their flows. It turns out that a high level of flow range makes the model difficult to solve

because the model needs to bundle flows in many different possible ways. The result of

network structure is also affected by the hop constraint. The FDPTP without hop

constraint shows the less dense network than the FDPTP because it needs to re-route

flows of the geographically separated O-D pairs.

On the cost allocation in hub network, a cooperative game theory has been

incorporated into the hub network design to obtain cost allocation. To overcome the

difficulty of cost allocation, groupings for the players help to characterize core

conditions. Using two-step cost allocation: an aggregate hub game and an individual hub

game, costs of total shared network cost for the subset of users are allocated so that no

one has an incentive not to cooperate. A necessary and sufficient condition for hub

network structure to dominate direct route structure is declining average cost on each

route theoretically. Cost allocation is complicated by the multiple interhub link
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observation (see Section 3.2.3). Multiple interhub link players pay more fixed costs per

flow than the single interhub link players under the global hub network with respect to

their flows because they have to pay fixed costs for the multiple interhub link. However,

the multiple interhub link players pay less fixed costs per flow than the single interhub

link players under the coalition optimal hub network configuration with respect to their

flows. In other words, if the cost savings by the grand coalition is greater than the

opportunity costs by the players who are willing to leave the grand coalition, the core of

the game is not empty. On the other hand, a game theory is not necessary to obtain cost

allocation in point-to-point network. The main reason for that is that point-to-point

networks do not have interhub links that may affect individual routing costs. A

proportional cost allocation is rather adopted to obtain cost allocation with respect to

player’s flow contribution.

The study also compares the cost allocations of O-D pairs between hub network

and point-to-point network to see the merits of each network. It is shown that O-D pairs

with multiple interhub links are always favorable with point-to-point network. There are

some O-D pairs with single interhub link that favors a hub network. The comparison

study of cost allocation shows that there is a certain network structure to give advantages

to certain O-D pairs. However, it is rather affected by flow economies of scale on

network links. The comparison study also contributes to understand a fundamental

question about the merits of hub networks vs. point-to-point networks.
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7.2 Further Research

Although the present algorithms are adequate for hub network design, there is a

need for better approaches and exact hub network design solutions to measure and

compare the optimality of solution. More work should be devoted to the analysis of

algorithm to form a better concept of the applicability and limits of the various

techniques. For example, the infrastructure design problem should be expanded into large

networks such as telecommunication, computer network, and post delivery system. Tabu

search is effective in hub network. However, it always runs the risk of being restricted to

a local minimum, especially for a large data set. To overcome this limitation, a new

model will incorporate other approaches, such as VNS (variable neighboring search),

Partitioning, and Clustering techniques for the large data set.

The FDPTP was effective in modeling flow-based discount point-to-point

network. For a smaller network size, it is possible to obtain the optimal solutions in a

reasonable time. However, heuristic solution techniques for larger problems are necessary

because the model formulation is too memory consuming for the large network.

Another area of future research is the introduction of interhub link capacities. This is

appropriate because passenger inconvenience is a very critical factor in air passenger

networks. The optimal assignment of link capacities to a hub network with minimum cost

routes is interesting, since routing plays a determining role in the optimization of network

performance. This study utilized flow economies of scale using piecewise-linear concave

cost functions for the interhub links only, but further research may include economies of
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scale on nodes as well. Finally, it is hoped that this study stimulates further investigation

in this field.



196

APPENDIX A

ID City Name State Name
1 Atlanta Georgia
2 Baltimore Maryland
3 Boston Massachusetts
4 Chicago Illinois
5 Cincinnati Ohio
6 Cleveland Ohio
7 Dallas Texas
8 Denver Colorado
9 Detroit Michigan
10 Houston Texas
11 Kansas City Missouri
12 Los Angeles California
13 Memphis Tennessee
14 Miami Florida
15 Minneapolis Minnesota
16 New Orleans Louisiana
17 New York New York
18 Philadelphia Pennsylvania
19 Phoenix Arizona
20 Pittsburgh Pennsylvania
21 St. Louis Missouri
22 San Francisco California
23 Seattle Washington
24 Tampa Florida
25 Washington District of Columbia

Table A.1 25-Node CAB Data Set
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ID City Name State Name ID City Name State Name ID City Name State Name

1 Akron Ohio 41 Greensboro North Carolina 81 St. Louis Missouri

2 Albany New York 42 Greenville South Carolina 82 Salinas California

3 Albuquerque New Mexico 43 Harrisburg Pennsylvania 83 Salt Lake City Utah

4 Allentown Pennsylvania 44 Hartford Connecticut 84 San Antonio Texas

5 Atlanta Georgia 45 Houston Texas 85 San Diego California

6 Augusta Georgia 46 Indianapolis Indiana 86 San Francisco California

7 Austin Texas 47 Jackson Mississippi 87 Seattle Washington

8 Bakersfield California 48 Jacksonville Florida 88 Shreveport Louisiana

9 Baltimore Maryland 49 Kansas City Missouri 89 South Bend Indiana

10 Baton Rouge Louisiana 50 Knoxville Tennessee 90 Spokane Washington

11 Beaumont Texas 51 Las Vegas Nevada 91 Syracuse New York

12 Binghamton New York 52 Lexington-Fayette Kentucky 92 Tampa Florida

13 Birmingham Alabama 53 Little Rock Arkansas 93 Toledo Ohio

14 Boston Massachusetts 54 Los Angeles California 94 Tucson Arizona

15 Bridgeport Connecticut 55 Louisville Kentucky 95 Tulsa Oklahoma

16 Buffalo New York 56 Madison Wisconsin 96 Utica New York

17 Charleston West Virginia 57 Memphis Tennessee 97 Washington District of Columbia

18 Charleston South Carolina 58 Miami Florida 98 West Palm Beach Florida

19 Charlotte North Carolina 59 Milwaukee Wisconsin 99 Wichita Kansas

20 Chattanooga Tennessee 60 Minneapolis Minnesota 100 Youngstown Ohio

21 Chicago Illinois 61 Mobile Alabama

22 Cincinnati Ohio 62 Moline Illinois

23 Cleveland Ohio 63 Nashville-Davidson Tennessee

24 Colorado Springs Colorado 64 New Orleans Louisiana

25 Columbia South Carolina 65 New York New York

26 Columbus Ohio 66 Norfolk Virginia

27 Corpus Christi Texas 67 Oklahoma City Oklahoma

28 Dallas Texas 68 Omaha Nebraska

29 Dayton Ohio 69 Orlando Florida

30 Denver Colorado 70 Pensacola Florida

31 Des Moines Iowa 71 Philadelphia Pennsylvania

32 Detroit Michigan 72 Phoenix Arizona

33 Duluth Minnesota 73 Pittsburgh Pennsylvania

34 El Paso Texas 74 Portland Oregon

35 Erie Pennsylvania 75 Providence Rhode Island

36 Evansville Indiana 76 Raleigh North Carolina

37 Flint Michigan 77 Richmond Virginia

38 Fort Wayne Indiana 78 Rochester New York

39 Fresno California 79 Rockford Illinois

40 Grand Rapids Michigan 80 Sacramento California

Table A.2 100-Node CAB Data Set
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Dij A H1 H2 H3 B C
A 0 3 6.32 6.32 9.43 9.43
H1 3 0 3.61 3.61 7.07 7.07
H2 6.32 3.61 0 4 3.61 7.28
H3 6.32 3.61 4 0 7.28 3.61
B 9.43 7.07 3.61 7.28 0 10
C 9.43 7.07 7.28 3.61 10 0

Table A.3 Distance Matrix of 6-Node Network

Fij A H1 H2 H3 B C
A 0 10 10 10 10 10
H1 10 0 10 10 10 10
H2 10 10 0 10 10 10
H3 10 10 10 0 10 10
B 10 10 10 10 0 10
C 10 10 10 10 10 0

Table A.4 Flow Matrix of 6-Node Network
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