A NUMERICAL APPROACH FOR THE INTERFACIAL
MOTION BETWEEN TWO IMMISCIBLE
INCOMPRESSIBLE FLUIDS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of the Ohio State University

By
Jin Wang, M.S.

* %k ok ok ok

The Ohio State University
2004

Dissertation Committee: Approved by

Prof. Greg Baker, Advisor

Prof. Saleh Tanveer

Advisor
Prof. Ed Overman Department Of Mathematics

ABSTRACT

Incompressible flows with interfaces occur in a wide variety of physical phenomena
as well as technological processes. Mathematically, the motion is governed by the
incompressible Navier-Stokes equations together with interfacial conditions.

In this thesis, we present a numerical approach to simulate the two-dimensional
viscous, incompressible flows with interfaces. First we introduce some new coordi-
nates so that the interface is mapped into a coordinate line which enables us to work
on a rectangular domain instead of a deformed geometry. Then an iterative approach
combined with an implicit time marching method is applied to update the motion
in time. At each iterate, the Fourier transform and the pseudo-spectral technique
are applied in the horizontal direction, X, under the assumption that the solutions
are periodic in X. Then we write the semi-discretized equations as a 1st-order ODE
system with respect to the vertical coordinate, Z, and an efficient ODE solver is
developed to construct the solutions.

As an application of our numerical approach, we study the problem of steady
progressive interfacial waves (Stokes waves). In contrast to all the previous work
which was concerned with inviscid fluids, we study Stokes waves in the presence of
viscosity. Our numerical results show that the effect of viscosity is somehow equivalent

to the decay of the expansion parameter in the series expansion of the inviscid Stokes

i

waves. Our work suggests a new expansion form for Stokes waves in viscous fluids.
In addition, we perform a similar study for the viscous effects on standing waves.
Finally, some analysis is applied for the linearized motion. In particular, the

asymptotic solution to the linearized interfacial flow is derived.

il

Dedicated to my parents and wife

v

ACKNOWLEDGMENTS

I wish to express my heartiest thanks to my adviser, Greg Baker, for his guidance,
encouragement and support throughout my graduate study at Ohio State. I have
greatly enjoyed numerous discussions with him and benefited tremendously from his
advice. I sincerely appreciate his patience in carefully reading this thesis and his
many valuable suggestions for improvement.

[would like to thank Saleh Tanveer, Ed Overman and Bjorn Sandstede for their
inspiring classes. Special thanks go to Saleh Tanveer and Ed Overman for serving on
my Dissertation Committee.

I would like to thank the computer staff in the mathematics department, especially
Dave Alden, for the assistance in computing. I would also like to thank the Ohio
Supercomputer Center for the high performance computing resources.

Finally, I wish to express my deep gratitude to my wife for all her love and

support.

VITA

1998 B.S. in Mathematics, University of Sci-
ence and Technology of China.

1999 B.S. in Economics, University of Science
and Technology of China.

2000 .. M.S. in Mathematics, University of Sci-
ence and Technology of China.

2000 —presentl Graduate Research and Teaching Asso-
ciate, The Ohio State University.

PUBLICATIONS

1. J. Wang and R. X. Liu, A new approach to design high-order schemes, J. Comput.
Appl. Math., vol. 134, pp. 59-67, 2001.

2. J. Wang and R. X. Liu, Some generalizations of classical MPDE approach, J.
Unwv. Sci. Tech. China, vol. 31, pp. 143-150, 2001.

3. J. Wang and R. X. Liu, The remainder-effect analysis of upwind leapfrog schemes,
Math. Appl., vol. 13, pp. 84-90, 2000.

vi

FIELDS OF STUDY
Major field: Mathematics

Specialization: Numerical Analysis and Scientific Computing

vii

TABLE OF CONTENTS

Abstract i
Dedication v
Acknowledgments v
Vita . . . o e e vi
List of Figures X
List of Tables e xiii
1 Introduction 1
1.1 Overview of computational fluid dynamics 1

1.2 Numerical simulation to incompressible Navier-Stokes equa-
tlons e 4
1.3 Computation of incompressible interfacial lows 8
1.4 Interfacial waves 12
1.5 Summary of the thesis 15
2 Background 17
2.1 Finite difference methods 17
2.2 Discrete Fourier transform 21
2.3 Boundary value problem (BVP) solvers 26
2.4 Iterative methods for linear systems 31
24.1 Generalidea 31
2.4.2 Preconditioningo 35
2.4.3 The GMRES method 37
3 Numerical Methods 48
3.1 Basic formulation L. 48
3.2 The mapped equations 50

viii

3.3 Time marching 55

3.3.1 The Crank-Nicolson method 56
3.3.2 The backward differentiation formula (BDF) 59
3.4 The Fourier transform 60
3.5 The boundary value problem (BVP) 63
3.6 A different approacho oL 67
3.6.1 The numerical method 69
3.6.2 The GMRES iterations 73
3.7 Conversion to dimensionless units 7
4 Numerical Results 79
4.1 Numerical verification of accuracy 79
4.2 Numerical simulation of viscous Stokes waves 85
4.3 Numerical simulation of viscous standing waves 96
4.4 Parallelization 97
) Linear Analysis 115
5.1 Asymptotic study for the linear problem 115
5.1.1 Asymptotic expansions 116
5.1.2 Lowest-order solutions 120
5.1.3 First-order solutions 124
5.2 Accuracy of the numerical methods 129
5.2.1 Truncation errors for a simple model 129
5.2.2 Order of accuracy for the linear problem 134
Bibliography 147

X

FIGURE

4.1

4.2

4.3

4.4

LIST OF FIGURES

PAGE

The interface profiles from the numerical simulation of Stokes waves
at t = 0 and t = 207, where T is one wave period, with p}) =
0.0012, u™M =18 x 107*, p@ = 1.0, u® = 1.1 x 1072 and two
choices for the amplitude parameter A: (a) A =0.01; (b) A=0.1.

The interface profiles from the numerical simulation of Stokes waves
at t = 0 and t = 207, where T is one wave period, with p(!) =
0.0012, p™ =18x107%, p® =1.0, u® = 1.1F x 10" and two
choices for the amplitude parameter A: (a) A =0.01; (b) A=0.1.

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p) = 0.0012, u(V = 1.8 x 107*, p® =
1.0, u® = 1.1 x 102 and the amplitude parameter A = 0.01. The
numerical solution is displayed from 7 = 0 and for every period, 7',
until 7 = 207". (a) modes |Ay| versus |A;|; (b) modes |A3| versus
|A1|; (c) modes |Ay4| versus |A1]; (d) modes |As| versus |A;].

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p® = 0.0012, p(¥ = 1.8 x 1073, p? =
1.0, @ = 1.1 x 107! and the amplitude parameter A = 0.01. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207. (a) modes |Ay| versus |A;|; (b) modes |Aj3| versus
|A1|; (c) modes |Ay4| versus |A;]; (d) modes |As| versus |A;].

100

101

102

103

4.5

4.6

4.7

4.8

4.9

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p() = 0.0012, u(V = 1.8 x 107*, p® =
1.0, u® = 1.1 x 1072 and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, 7',
until 7 = 207". (a) modes |As| versus |A;|; (b) modes |A3| versus
|A1|; (c) modes |Ay4| versus |A1]; (d) modes |As| versus |A;].

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p®) = 0.0012, x(¥ = 1.8 x 1073, p? =
1.0, 4 = 1.1 x 107! and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207". (a) modes |Ay| versus |A;|; (b) modes |A3| versus
|Aq|; (c) modes |A4| versus |A;|; (d) modes |A5| versus |A4]|.

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p = 0.0012, u(¥ = 1.8 x 107*, p? =
1.0, u® = 1.1 x 1072 and the amplitude parameter A = 0.2. The
numerical solution is displayed from 7 = 0 and for every period, 7',
until 7 = 207. (a) modes |As| versus |A1|; (b) modes |Aj3| versus
|A1|; (c) modes |Ay4| versus |A1]; (d) modes |As| versus |A;].

Comparison between the inviscid solution and the numerical solution
of the Stokes wave with p) = 0.0012, u(V = 1.8 x 1072, p® =
1.0, u® =11 x 107" and the amplitude parameter A = 0.2. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207". (a) modes |Ay| versus |A;|; (b) modes |A3| versus
|A1|; (c) modes |Ay4| versus |A1]; (d) modes |As| versus |A;].

Comparison between the inviscid solution and the numerical solution
for the profiles of Stokes waves with p(!) = 0.0012, pu®) = 1.8 x
1074, p® =1.0, u® = 1.1 x 1072 (a) The numerical solution starts
from A = 0.01 and is plotted at ¢ = 207", while the inviscid solution
is plotted with A = 0.009038. (b) The numerical solution starts from
A = 0.1 and is plotted at ¢ = 207", while the inviscid solution is
plotted with A =0.09031.

xi

104

105

106

107

4.10

4.11

4.12

4.13

4.14

4.15

The phase shift in the numerical solution of the Stokes wave with
A = 0.01 and p™M = 0.0012, p = 1.8 x 107*, p®@ = 1.0, u?® =
1.1 x 107%. (a) Phase shift of mode A; versus time; (b) Phase shift of
mode A, versus time. 0 numerical solution; - - linear least square
approxXimation.o e e e

The phase shift in the numerical solution of the Stokes wave with
A = 0.01 and pV = 0.0012, pM =18 x 1074, p® = 1.0, p? =
1.1 x 1072. (a) Phase shift of mode A3 versus time; (b) Phase shift of
mode Ay versus time. 0 numerical solution; - - linear least square
approximation. L L.

The vorticity contours when the amplitude parameter A = 0.1 for
the two choices of the viscosities: (a) pM = 0.0012, pM = 1.8 x
1074, p@ = 1.0, u® = 1.1 x 1072; (b) pM = 0.0012, pu® =
1.8x107%, p@ =1.0, p®@ =11x10"1.

The vorticity contours in the lower fluid when the amplitude parameter
A = 0.1 for the two choices of the viscosities: (a) pM =0.0012, pV =
1.8 x 1074, p® =10, u® = 1.1 x 10725 (b) p = 0.0012, pu® =
1.8x107%, p@ =1.0, p®@ =11x10"1.

Comparison between the inviscid solution and the numerical solution
of the standing wave with p(¥ = 0.0012, p(¥ = 1.8 x 107, p? =
1.0, u® = 1.1 x 1072 and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, 7',
until 7 = 207". (a) modes |Ay| versus |A;|; (b) modes |A3| versus
|A1|; (c) modes |Ay| versus |A1]; (d) modes |As| versus |A;].

Comparison between the inviscid solution and the numerical solution
of the standing wave with p(Y = 0.0012, u(¥ = 1.8 x 1073, p(? =
1.0, u® = 1.1 x 107! and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207. (a) modes |Ay| versus |A;|; (b) modes |Aj3| versus
|Aq|; (c) modes |A4| versus |A;|; (d) modes |A5| versus |A4].

109

110

111

112

113

114

TABLE

4.1
4.2
4.3
4.4
4.5

4.6

LIST OF TABLES

PAGE
Results for the first test case oL, 81
Results for the second test case 84
Decay rates in the air-water case 89
Decay rates in the case with 10 times bigger viscosities 90
Linear least square approximations for the phase shift 93
Performance of parallelization 98

xiil

CHAPTER 1
INTRODUCTION

1.1 Overview of computational fluid dynamics

It’s well known the field of fluid mechanics generates many problems in the form of
partial differential equations (PDE). These equations describe the motion and the en-
ergy of fluid flows and we have to solve such equations, together with some boundary
conditions and/or initial conditions, to understand the physics involved. Basically
there are three approaches to proceed: theoretical, experimental and computational.

The theoretical approach uses mathematical theory to seek the solution of a prob-
lem. For simple cases, an exact solution in closed form can be achieved which gives
clean and general information about the physics involved in the problem. However,
this can only be applied to a limited number of physical problems, usually in linear
cases and with simple geometry. For the majority of problems in fluid mechan-
ics, which usually possess nonlinearity and involve complex physics and geometry,
we have to give up finding the exact solutions. A different theoretical approach,
known as asymptotic, applies to problems involving one or more small parameters.
Asymptotic methods construct a series expansion, called asymptotic expansion, in

terms of the small parameter(s) to approximate the solution. This approximation

becomes increasingly accurate when letting the small parameter(s) tend to zero. The
asymptotic technique can be applied to many nonlinear problems and the two most
common asymptotic methods are the method of matched asymptotic expansions and
the method of multiple scales [44][67].

The experimental approach uses apparatus and measuring devices in a lab to
model and simulate and record results. If carefully handled, experiments can give very
realistic results to many physical problems. Hence the experimental approach offers
a direct way to demonstrate the real physics, which is a big advantage. However,
it’s not always possible to model a physical problem in a lab. For example, some
important phenomena involved in liquid-gas interfaces often happen on such scales
of space and time that experimental visualization is very difficult of even imposible.
Another disadvantage of the experimental approach is that the costs for equipment
are usually high.

The computational approach develops numerical methods and uses digital com-
puters as tools to find approximate solutions. This approach can treat both linear
and nonlinear problems, can handle both simple and complex geometry and is capa-
ble of attacking large-scale problems. Hence the computational approach can provide
information not available by the other two approaches and can offer a powerful way to
improve our understanding of complicated physics. In recent years this approach has
been increasingly important in the study of fluid mechanics, as well as many other
fields of science and engineering. More and more good numerical methods are being
designed which enable us to attack more and more challenging problems. The con-

tinous improvement of computational power keeps extending the range of affordable

problems in numerical simulations. On the other hand, the computational approach
also has limitations. Numerical methods cannot find exact solutions and they are
always associated with numerical errors which can be disasterous in some situations.
Meanwhile, a common difficulty to many numerial methods lies in the treatment of
boundary conditions. (We will illustrate this issue in next section.)

It’s important to note that these three approaches are closely related, rather
than separated, from each other. The theoretical approach provides mathematical
background to the other two approaches and often provides good insight, if not the
solutions, to the problems. The experimental and the computational approaches can,
in many cases, check and justify the results with each other. The results from these
two approaches can, in turn, motivate the development of rigorous mathematical
theory. In this thesis we are mainly concerned with the computational approach,
though some discussion will be given to the asymptotic solutions.

The history of computational fluid dynamics (CFD) starts back in the early stage
of the development of digital computers. A milestone in CFD was due to the fa-
mous paper by Courant, Friedrichs and Lewy in 1928 [14]. In this paper, existence
and uniqueness questions were addressed for the numerical solutions of PDEs. In
particular, a stability requirement, now commonly refered to as the CFL condition,
was proposed for numerical solutions of hyperbolic PDEs. Later in the 1940’s, von
Neumann developed his method for evaluating the stability of numerical methods
in time evolution problems. Since then this method has been the most widely ap-
plied technique for determining the numerical stability [47][54]. In the 1950’s, much

progress was made for numerically solving elliptic and parabolic equations and for

calculating shock waves. Typical work includes the successive overrelaxation (SOR)
scheme by Frankel [23] for Laplace’s equation, the conservative scheme by Peter Lax
[39] for shock capturing, the alternating direction implicit (ADI) method by Douglas
and Rachford [17], the particle-in-cell (PIC) method by Evans and Harlow [20], etc.
In recent decades many new techniques, such as finite volume methods, boundary-
integral equation methods and spectral methods, have been substantially extended.
Meanwhile, many new ideas, such as the multigrid [43], the total variation dimin-
ishing (TVD) [31] and the essentially non-oscillating method (ENO) [32], have been
introduced and widely applied. In recent years, both the number of researchers and
the progress made in the area of CFD have been expanding rapidly with significant
impact in not only the field of fluid mechanics, but also many other disciplines includ-
ing material science, biological science, chemical engineering, industrial engineering,

etc.

1.2 Numerical simulation to incompressible Navier-
Stokes equations

Normally most fluids, including air and water, can be treated as incompressible fluids
and their motions are described by the incompressible Navier-Stokes equations [8].
That’s why the incompressible Navier-Stokes equations have a fundamental impor-
tance in fluid mechanics. Consequently, the numerical simulations to such equations
have been a very active area in CFD.

We consider the two-dimensional unsteady incompressible Navier-Stokes equations

4

for a flow with constant density p and viscosity p and without external forces. Let’s
denote the velocity vector by V = (u,w), the pressure by p. The continuity of the

momemtum and the mass give

pVit+pV -V = —vp+uviV, (1.1)
vV =0, (1.2)
.) o 0)))
where t is the temporal coordinate and 7 = (8_ , 3_) the spacial gradient. Equation
x 0z

(1.2) is commonly called the incompressibility condition and it states that the velocity
field is divergence free.

One major difficulty associated with the numerical study for equations (1.1) and
(1.2) is that the incompressibility condition has to be satisfied at all times, but there
is no time-derivative in equation (1.2). Thus, as the flow field is updated in time
through (1.1), the incompressibility condition must somehow be satisfied implicitly
through the computation.

There have been many numerical methods developed to solve equations (1.1) and
(1.2). In what follows we briefly review some representative methods.

1. Pressure equation approach.
By taking the divergence of the momentum equation (1.1) and using the incom-

pressibility condition, we obtain a Poisson equation for the pressure

Vp=—pv-(V-VV). (1.3)

Numerically, at each time step, we solve the pressure equation (1.3) first, then do

the time evolution to the momentum equation to find the velocity. The essential

idea of this method is that we use the pressure equation to replace the incompress-
ibility condition and, consequently, the calculation of the velocity and the pressure
is separated. On the other hand, this replacement can give rise to big numerical
errors, leading to the violation of the incompressibility condition. Consequently, high
resolution is required to ensure the incompressibility condition. Efforts have been
made to overcome this problem by modifying the pressure equation. This includes
the famous marker-and-cell (MAC) method [30][71]. Another issue with this method
is that special treatment is needed for the pressure boundary conditions since there
is no physical boundary condition for the pressure. An useful way to do this is to
project the momemtum equation in the normal direction of the boundary [28][29].
2. Projection methods.

They belong to the category of fractional step methods. At each time step we
first calculate an intermediate velocity V*, which does not necessarily satisfy the
incompressibility condition, then we project V* into a divergence-free field to obtain
the correct velocity.

There are many versions of the projection method (e.g. [9][37][68]). One of them

is due to Van Kan [68]:

V=—-vn

L1 . yn .
S (VeuV)tE = R (VT V) - vt (1.4)
yrtl 1 "
— = ‘' A 1
— 5V (P p"), (1.5)
vVttt = o, (1.6)

where (V - 7V)"*2 represents some average for the nonlinear term. Note that (1.5)

and (1.6) yield a Poisson equation for the pressure and ensure the incompressibility

6

condition. It turns out that many projection methods only achieve 1st-order accuracy
for the pressure [11][18], partly due to the difficulty in obtaining the pressure boundary
conditions.

3. Vorticity-stream function formulation

Define the vorticity Q by

ow Ou
Q= —— —. 1.
or 0z (17)
Also define the stream function ® by
o 0P

By taking the curl of the momentum equation (1.1) we can eliminate the pressure

and obtain

80 80 9 u,0%Q 8%Q

E‘}‘ua—xﬁ'w&:;(@-Fﬁ). (1.9)
Meanwhile, (1.7) and (1.8) give
2 5P
57t = (1.10)

As a result, we are able to transfer the mixed elliptic-parabolic Navier-Stokes equa-
tions into one parabolic equation (1.9) and one elliptic equation (1.10), which can then
be solved separately. This is a great simplification for the numerical implementation.
Unfortunately, for three-dimensional problems, this method no longer possessess such
an easy simplification (actually gets much complicated); hence it is not favored for
3-D problems [3].

4. Artificial compressibility methods.

In order to overcome the difficulty with the incompressibility constraint, Chorin
[13] introduced an artificial time derivative for the pressure and replaced the incom-
pressibility condition by

Op

Bop T tw.=0, (1.11)

where [is a factor related to At. In this way one can update the velocity and the
pressure simultaneously. The original method of Chorin was only valid for steady-
state problems (when % — 0). Similar methods for time-dependent problems were
developed by Peyret and Taylor [52], Rogers et al. [55]. The disadvantage of these

methods is that the equations may become highly stiff and require implicit treatment

which requires a large amount of memory usage.

1.3 Computation of incompressible interfacial flows

We have already seen that it’s not easy to compute the incompressible Navier-Stokes
equations. Now, to make things more challenging, we want to simulate the flows
of two immiscible and incompressible fluids with a sharp interface. Such interfacial
flows occur in a wide variety of physical phenomena such as bubbles, droplets, cav-
ities, ice melting in water, wind-water wave interaction, as well as a large number
of technological processes such as jets, casting, mold filling, thin films, just to name
a few. Consequently, numerical simulations to these problems have been making
great strides in many disciplines in science and engineering, for example, geophysics,
oceanography, material science, chemical engineering, and so on.

In addition to the difficulties in the simulation of the incompressible Navier-Stokes

equations, we now have a new challenge in that the domain of interest contains an
unknown interface which evolves in time and which must be determined as part of the
solution. The interface plays a major role in defining the system and it’s important
to have an accurate representation of the interface.

A couple of methods have been developed for tracking or capturing the interface.
Some popular methods are summarized below.

1. Volume-of-fluid (VOF) methods.

VOF methods have been in use for several decades. Early work includes the SLIC
algorithm of Noh and Woodward [45] and the SOLA-VOF algorithm of Hirt and
Nicols [35]. Since then, significant progress has been made on VOF methods and a
review of recent work can be found in [58].

In the VOF method, a volume fraction function is defined by

1, if (z,z) is in upper fluid,
C(z,2) = (¢,7) s in upp (1.12)

0, if (z,2) isin lower fluid.

A point (z, z) lies in the interface if and only if 0 < C(z, z) < 1. The function C(z, 2)

satisfies the advection equation

%—f+v-v0:0, (1.13)

where the velocity V' is obtained from the Navier-Stokes equations. At each time
the values of C(z,z) are used to reconstruct an approximation to the interface and
this approximate interface is then used to update the volume fractions at the next
time. VOF methods provide a simple way to handle the topological changes of the

interface and are relatively easy to extend from two-dimensional to three-dimensional

domains. However, these methods cannot follow the small structure of the interface
and are not good at capturing the fine-scale boundary layers near the interface.
2. Level set methods.

The level set approach was first proposed by Osher and Sethian [49] and has since
been widely applied to many interfacial /free-surface problems including bubbles and
drops, Rayleigh-Taylor instability, flow by mean curvature, etc. In these methods, a

level set function ¢(z, z,t) is introduced with the initial value
#(z,z,t=0) = +d (1.14)

where d is the shortest distance from the point (z, z) to the initial interface and where
the sign of ¢ indicates whether (z, z) is in the upper or the lower fluid. The level set
function ¢ evolves in response to the propagation of the interface and the evolution
is given by

o¢

- . — 1.1
8t+V v¢ =0 (1.15)

which is similar to (1.13). At anytime, the zero level set, ¢ = 0, gives exactly the
location of the interface. These methods, like the VOF methods, do not require special
procedures to treat topological changes of the interface and are relatively simple to
generalize to three-dimensional problems. The disadvantages, however, are that level
set methods have inherent numerical dissipation which will smooth the interface and
lead to nonphysical loss of mass.
3. Boundary-integral equation (BIE) methods.

These methods were developed for potential flows and notable work in this cate-

gory was made by Longuet-Higgins and Cokelet [42], Vinje and Brevig [69], Baker et

10

al [5], etc. In these methods, Laplace’s equation is solved by using Green’s functions,
leading to Fredholm integral equations of the second kind. The dynamic and kina-
matic interfacial /free-surface conditions are integrated to update the interface/free
surface at each time. A distinct advantage of the BIE methods is that the space
dimension of the problem is reduced by one. Hence the BIE methods offer an effi-
cient way for the computation of inviscid and irrotational flows. Unfortunately, these
methods are not applicable to general viscous flows.

In addition, there are some other methods such as marker-and-cell method [30][71],
front-tracking method [26], which have also achieved much success in the interface
simulations. All these methods have their strength and weakness and a perfect ap-
proach does not yet exist.

Probably the most important two-fluid system is the one with air and water with
particular importance in geophysical flows. An example is the generation of sea sur-
face waves which can affect both the local and the global climate, and affect all
commercial activities related to the oceans. Despite its ubiquitous presence and im-
portance, understanding of the physics involved remains limited due to the nonlinear
phenomenon implicit in both air flow and water wave evolution [4].

We hope to perform a careful numerical study of the interface evolution with as
much accuracy as possible for the interface profile and the boundary layers, under the
assumption that the interface remain single-valued and no dramatic change occurs for

its topology. The methods summarized above do not appear optimal for an accurate

11

study of the detailed interactions of the two fluids at the interface. Hence it’s worth-
while to explore new approaches to improve our understanding of the fundamental
physics involved.

A new approach has been developed in our research to simulate the two-dimensional
viscous incompressible flows with interfaces. The basic idea of the approach is as fol-
lows. New coordinates, referred to as logical coordinates, are introduced so that the
interface is mapped into a coordinate line which enables us to work on a rectangular
domain instead of the deformed geometry. An iterative approach combined with the
Crank-Nicolson scheme or the backward difference formula is applied for the evolution
of the interface to ensure time-stepping stability. To perform the space discretization
in the horizontal direction, X, the Fourier transform and the pseudo-spectral tech-
nique are applied under the assumption that the solutions are periodic in X . Then
we write the semi-discretized equations as a Ist-order ODE system with respect to
the vertical coordinate, Z , and an efficient ODE solver is developed to construct the
solutions. The incompressibility condition is treated as one equation in the ODE
system so that it’s automatically satisfied at each time step. The methods achieve
uniform order of accuracy for the velocities, the pressure and the interface profile:

2nd order for both ¢ and Z , and spectral accuracy for X .

1.4 Interfacial waves

By applying our numerical methods we are able to study interfacial waves moving

between two different fluids. In this thesis we consider two kinds of such waves:

12

Stokes waves and standing waves. In future, our plan is to numerically simulate the
generation of water waves (like sea surface waves) by wind forcing and study their
subsequent interaction. This will be an interesting topic in our future research.

The problem of steady progressive free-surface or interfacial waves (Stokes waves)
is one of the oldest in the field of mathematical fluid mechanics and a large body of
work has been done on this subject. Stokes [63] was the first to systematically study
the properties of surface water waves by using the technique of series expansion called
the Stokes’ expansion. He computed the solution to fifth-order for the deep-water
case and to 3rd-order for finite depth. Thereafter, much effort has been devoted to
Stokes’ theory by various investigators. Levi Civita [41] proved the convergence of
Stokes’ expansion for sufficiently small waves. De [16] published a fifth-order solution
to general depth. Schwartz [59] were able to calculate the expansion to extremely
high orders by using the digital computer to perform the coefficient arithmetic. By
noting that ”"waves which occur in nature are never, in fact, free surface waves”,
Tsuji and Nagata [65] and Holyer [36] applied the Stokes’ expansion to the interfacial
waves moving between two fluids of different densities. We note that all the works
mentioned here were concerned with inviscid fluids.

We let z, 2z be the horizontal and the vertical coordinates, respectively, and t the
temporal coordinate. In Stokes’ expansion, the profile of a surface/interfacial wave

in a frame moving with the phase speed can be written in a non-dimensional form

z= ZAk(A) cos kx| (1.16)
k=1
where the coefficients Ay (k= 1,2,3,---) only depend on a free parameter A. One of

13

the main objectives in the work mentioned above is to calculate these coefficients to
high-order so that they can give good approximations to the highest stable wave. This
is not the goal of the present work. Instead, our interest is to study the viscous effects
on Stokes waves. While there are no truly free surface waves in nature, there are also
no truly inviscid fluids in nature either. We ask: What happens to a Stokes wave
in the presence of viscosity? It turns out the coefficients Ay (k =1,2,3,---) appear
to decay with time in a ’nice’ pattern, i.e., the effect of the viscosities is somehow
equivalent to the decay of the expansion parameter A in the series expansion of the
inviscid Stokes waves. Our work also suggests a new expansion form for Stokes waves
in viscous fluids.

Another topic in fluid mechanics, which is as attractive as Stokes waves, is the
motion of standing waves. A standing wave is stationary in the horizontal direction
and makes periodic oscillations between crest and trough in the vertical direction. It
can be expanded in a similar way as (1.16)

z= ZAk(A,t) cos kz , (1.17)

k=1
where the coefficients Ay (k = 1,2,3,---) depend on both the time and the parameter
A. Various investigators have studied such waves [51][56][60] in the case of inviscid
fluids. It’s of our interest to ask the same question as for the Stokes waves: What
happens to a standing wave in the presence of viscosity? Based on the results for
Stokes waves, we speculate that a similar decay pattern also holds for standing waves.

Hoewever, our numerical tests show that there is a disagreement with this pattern,

14

starting from the 4th mode A;. The reason for this disagreement is not clearly

understood yet and that remains an open question in our research.

1.5 Summary of the thesis

This thesis is mainly concerned with the numerical methods developed for comput-
ing the two-dimensional interfacial flows between two immiscible and incompressible
viscous fluids. The thesis is organized as follows.

In Chapter 2, we review some basic techniques in numerical methods including
finite difference methods, discrete Fourier transform, ODE solvers and iterative meth-
ods for linear systems. The ideas closely related to our numerical methods applied
to interfacial flows are emphasized.

In Chapter 3, we describe in detail our numerical methods for computing incom-
pressible flows with interfaces. Major discussion is devoted for the first approach
which is constructed through the extraction of linearized terms. In addition, we
also discuss a different approach which employs the generalized minimum residual
(GMRES) algorithm.

In Chapter 4, we provide the numerical results from our methods. Two examples
serve for the numerical verification of the accuracy of our methods. Then the Stokes
waves in the presence of viscosity are investigated and a new expansion form is sug-
gested. Similar study is also performed for standing waves. Finally the parallelization
of the numerical methods is briefly discussed.

In Chapter 5, we apply some analysis to the linearized motion. This includes

15

the asymptotic solution of the linear problem and the justification of the order of

accuracy of our numerical methods applied to the linear problem.

16

CHAPTER 2
BACKGROUND

2.1 Finite difference methods

Among various numerical methods, finite difference methods have the longest his-
tory and probably the widest applications. The basic idea of finite difference methods
is that we use differences, constructed on appropriate grid points, to approximate the

derivatives of functions. For example,

du un+1 —ym u'n+1 _ un—l d2u u'n+1 — 2u™ + u'n—l
S S , o~ , etc.

At li=nas At 2At dt2 li=nat (At)2

where u™ denotes the value of v at ¢ = nAt. In our notation, ¢ usually refers to
the temporal coordinate and z, z the spacial coordinates. By using finite differences,
we can transfer a differential equation defined in a continuous space into one or
more algebraic equations defined in a discrete space. Then we solve these algebraic
equations to obtain the numerical solutions to that differential equation.

For a given differential equation there can be many ways to discretize the equation
by using finite difference methods. Some of these methods give better approxima-

tion to the solution than other ones. That means, different methods have different

17

accuracy. Consider a general mth-order ODE with respect to t,

du d™u

Let
du d™u
LAt(tauaEa"' aW)

du d™u
y 3,00 7—)' By
dt dt™
performing the Taylor’s series expansion for La; at some moment, say ¢t = nAt, we

be a finite difference approximation with step size At to L(t,u

obtain, generally,
Ly =L+ T, with T = C,At* + Cpyp AP 4 oo (2.2)

where C,,Cpi1, -+ are constants and C, # 0. We call T in (2.2) the (global)
truncation error or discretization error of the method and p the order of accuracy for
the method.

There are many other concepts related to finite difference methods such as stabil-
ity, consistency, convergence, dispersion, etc. We refer to the book of Richtmyer and
Morton [54] and that of Anderson, Tannehill and Pletcher [3] for a comprehensive
study of these issues.

In what follows, we consider a typical 1st-order ODE

Tt glunt) = Flut) (23

where g usually stands for linear terms and f the nonlinear terms. We illustrate some

commonly used second-order finite difference methods here. These ideas are closely

18

related to our numerical methods applied to the interfacial flow.

1) second-order BDF method:

gun+1 — 4y™ _+_ u'n,—l

n+l _ pn+l
2At T o

2) BDF with a 2nd-order extrapolation for f:

3un+1 _ 4un + un—l

n+1 n n—1
=2f" — .
SAL +9 =1

3) General BDF /extrapolation formula:

3un+1 — 4y _I_ un—l

2At

(2.5)

+ﬂgn+1+(1_ﬁ)(29n_gn—l) _ afn+1+(1_a)(2fn—fn_l), (2.6)

where a, [are two real parameters and we usually require 0 < a <1,0< 3 < 1.

In particular, when a = 8 = 1, (2.6) is reduced to (2.4) and when a = 0, 8 = 1,

(2.6) is reduced to (2.5).

4) Crank-Nicolson method:

At 2

5) Crank-Nicolson with Adams-Bashforth:

1 n+1 ny __ 3 n n—1
A TRl) =S5
6) Leapfrog method:
un+1 _ un—l " "
oar Te =T

+ l(gn—i-l +gn) — %(fn+1 + fn))

(2.7)

(2.8)

(2.9)

7) Leapfrog with Crank-Nicolson:

U
2At

un+1 _ ,mn—1

+gn — %(fn+l + f’n—l)) (210)

8) General Leapfrog/Crank-Nicolson formula:

n+1 n—1

+Bg" +(1-5) %(9"*1 +9") =af"+(1-a) %(f”+1 + 771, (2.11)

where 0 < a<1,0< < 1. In particular, when o = § = 1, we recover (2.9); when
a =0, B8 =1, we recover (2.10).

In all the above methods, we approximate the governing equation (2.3) at t =
(n+1)At. That’s to say, n+ 1 refers to the current time level and n,n— 1, etc., refer
to previous time levels. Hence, variables with the superscript n+ 1 are unknowns and
must be computed, while variables with superscripts n or n — 1 are already known.

We notice that in the methods (2.5), (2.8) and (2.9) f**! doesn’t appear. Instead,
some linear combinations of f™ and f"~! are used to discretize f. We call them
explicit treatments of f. In the other methods, f"*! appears and we call them
implicit treatments of f. Similarly we can discuss the explicit/implicit treatments
of g. If a method treats both f and g explicitly, we say the method is explicit.
Otherwise we say the method is implicit. The advantage of explicit methods is that,
they usually generate simpler algebraic equations in the discrete space and numerical
solutions can be obtained with less effort. The disadvantage is that many explicit

methods are numerically unstable unless the time step is prohibitively small. On the

20

other hand, implicit methods generally have good stability properties and that’s the
main reason why they are prefered in many numerical applications. However, implicit
methods usually result in more complicated algebraic equations and more than often

some iterative approaches have to be applied to obtain the solutions.

2.2 Discrete Fourier transform

A real function f which is periodic with period X can be represented by the

Fourier series

= 2m . 2m
f(;l;) = ay+ ; (ak cos ?kfr + by sin Ykl') ; (212)

where

1 X

ap = }\/Ov f(.’I?)d.’B’
9 X

a = —/ f(z)coskzdez, k=1,2,---,
X 0

9 X
by, = —/ f(z)sinkzdz, k=1,2,---. (2.13)
X Jo

The complex version of a Fourier series takes the form

oo

27

f(z) = kzz_:oo Cr, €Xp (yzkx) , (2.14)
where
—1/Xf() (- Zika)d k=0,+1,+2 (2.15)
ck_XO z)exp (— -ikz) de, =0,+1,42,---. .

21

When f is real, c_;, = ¢} (* refers to the complex conjugate) and the real Fourier

coefficients and the complex Fourier coefficients are related by

Co = ao,
1 .
Cr = E(ak—zbk), k:1,2,"',
1
C_p = i(ak + ”Lbk) ; k= 1, 2, cee (216)

In practical applications, we can only compute a finite number of Fourier coefhi-
cients and we are more interested in the discretized form of the Fourier transform.
We pick two positive integers N, M with N = 2M + 1 and partition the domain
[0, X] into N equally spaced intervals by z; = j X/N, j=0,1,2,--- ,N —1. Then
we write
M
2m

flaj)= Y awexp(Spikz;), j=0,1, N-1. (2.17)

k=—M

It’s more convenient to write (2.17) as

M
2m .)
fi= Zékexp(ﬁﬁzk’j), j=0,1,--- ,N—1. (2.18)

k=—M

If we treat {¢;} as unknowns in (2.18), we can solve the linear system to obtain

N-1
. 1 -2 .
ck:N;:O:fjexp(¥ ikj), k=-M,-M+1,--- M. (2.19)

Equations (2.19) and (2.18) define the discrete Fourier transform and the inverse
discrete Fourier transform, respectively. Note that the discrete Fourier coefficient
¢ defined in (2.19) is generally different from the continuous Fourier coefficient ¢

defined in (2.15). However, é — ¢ as N — oo. In a computer, (2.19) or (2.18)

22

can be computed rapidly by the well-established algorithm called the Fast Fourier
Transform (FFT). The FFT is most efficient when N is an even number. Hence, we
usually drop the coefficient ¢3; when performing the transform. That means, we set
N = 2M and replace M by M — 1 in (2.19) and (2.18).

The discrete Fourier transform is widely applied in numerical computations when
dealing with functions which possess periodicity. Let’s illustrate the basic idea by

considering the Burgers’ equation
fit ffo=vfe, x€[0,27], t>0, (2.20)

where v is a constant parameter. We assume periodic boundary conditions. Before
performing the discrete Fourier transform, we need to calculate the discrete Fourier
series expansions for f, and f,, . We notice that (2.17) corresponds to the expansion

in continuous space

M

f(z) = Z Cl, €Xp (ka) , z € [0,2n]. (2.21)

k=—M

By taking the derivative with respect to z on both sides, we obtain

M
fe(z) = Z 1kéy, exp ('ka) , z € [0,27]. (2.22)
k=—M
In discrete form,
M
fo(zj) = Y ikéexp (ikz;), j=0,1,--- ,N—1. (2.23)
k=—M
In a similar way, we obtain
M
foolzj) = > (=k*)érexp (ikz;), j=0,1,--- ,N—1. (2.24)
k=—M

23

Now, we formally perform the discrete Fourier transform by substituting (2.23), (2.24)
and (2.17) (Note that X = 2) into (2.20),

%(i & exp(ikxﬁ) -1—(i Cr eXP(ikmj))< i ikékexp(ikm]’))

M
Z —k?)éy, exp(ikz;), j=0,1,---,N—1. (2.25)

From (2 25) we obtain

M dé, M M
z: 5 &P (tkz;) + Z i exp(ikz;) k_Z_:M(_Vk2)ék exp(ikz;),
j = Oala"'aN_]-a (226)
where
M
di = Y Gm(ikén), k=-M,-M+1,--- M, (2.27)
m=—M

and where we have used the property that
exp (z/m]) = exp (i(/{:—l—nN)a:j) , et = ChanN , for n=0,+£1,4+2,--- . (2.28)

Equation (2.26) implies that

deé ~
g-l_dk_(l/kz)éka k:_Ma_M-l_]‘"“’M’ (229)

where dj, are defined in (2.27). Now the original PDE (2.20) is transformed into a set
of ODEs (2.29) for {¢;} with respect to ¢t. What’s left is to update {¢é} in time, and
then use the inverse discrete Fourier transform (2.18) to recover {f;}. If we treat the
nonlinear term dj, explicitly, then (2.29) can be solved separately for each k. On the
other hand, if an implicit form is used for d , then all ¢;s are coupled with each other

in (2.29) and usually an iterative method is employed to construct the solutions.

24

We point out that on deriving equation (2.29) we directly implemented the discrete
Fourier transform on the nonlinear term ff,, which resulted in the formula (2.27)
called convolution. It takes O(N?) operations to calculate all the dys. This is not
desirable when N is large. A better way is to use the pseudo-spectral technique [53].
Generally, to perform the discrete Fourier transform of a product of two functions,
say u and v, we perform 3 steps:

1. Use the inverse discrete Fourier transform to recover {u;} and {v,}, the discrete
values of the two functions;

2. Form the products u;v;, 7=0,1,--- N —1;

3. Use the discrete Fourier transform to obtain the Fourier coefficients associated
with the products obtained in Step 2.

The above procedure requires O(N log, N) operations, which is much cheaper than
the convolution. In practical applications of the pseudo-spectral approach, one may
need to de-alias. A commonly used de-aliasing approach is the ” gN rule” [48].

As a summary, to apply the discrete Fourier transform (often with other numerical
methods) to solve a differential equation, the general procedure is: First use the
discrete Fourier transform to derive equations for the discrete Fourier coefficients
{é}. The pseudo-spectral technique is often used to treat the nonlinear terms.
Now the problem is transformed into the discrete Fourier space. Then use some
other numerical methods, depending on the nature of the equations for {¢;}, to
construct the solutions in the discrete Fourier space. Finally, use the inverse discrete
Fourier transform to recover the solutions of the original differential equation. If

the solutions are sufficiently smooth, say, infinitely differentiable, then the discrete

25

Fourier transform can achieve spectral accuracy, i.e., the errors decay exponentially
with the number of points, N . This is the greatest advantage of the discrete Fourier

transform.

2.3 Boundary value problem (BVP) solvers

In this section we are concerned with ODEs and boundary values. A simple ex-
ample is given by

Y= o) (230)

with y(a) and y(b) specified. There have been a number of numerical methods devel-
oped to solve such equations. Here we just name a few most common ODE solvers.

1) Euler method:

Yi+1 = Y + Az f(z;, y5) (2.31)
which is first-order accurate.
2) Trapezoidal rule:
Yj+1 = Y; + % (f(zj1, yirr) + f(z5, v5)) (2.32)

which is second-order accurate.

3) Adams-Bashforth method:

Az
Yirr = Y5+ — (3F(25, 9) = F(2j-1, 9j-1)) (2.33)
which is second-order accurate.
4) Simpson’s rule:
Az
Yi+1 = Yj-1+ —- (f(zjer, yjar) +4f (25, ;) + flzj-1, yj-1)) (2.34)

26

which is fourth-order accurate.

We note that among all the methods with second-order accuracy the trapezoidal
rule is the unique one that employes points at only two levels, j+1 and j. This feature
gives great simplicity for implementing the method since we don’t need a start-up
procedure. Also the trapezoidal rule possesses good stability properties. Therefore,
in what follows we discuss this method in detail.

We focus on a special case of (2.30)

d
ﬁ:)\y+r, a<z<b, (2.35)

where A # 0 is a real constant and r is a function of z. Equation (2.35) has the
importance that many problems in numerical computations can be reduced to dif-
ferential equations in this form or in its vector counterparts, which we will address

soon. Let’s apply the trapezoidal rule to (2.35),

WA = Ay 4 4) + (gt). (2.36)

That is,
(1= S0 g = (14 55N = 520 4) (237)
Suppose we partition the domain [a, b] into J intervals so that j =0, 1, -+, J with

JAxr = b — a. We have to discuss (2.37) in two different cases.

If A <0, we use

1+ 42X Az
Yi+1 = 1_%/\%'{‘1_%/\ (rj +7jt1). (2.38)
We calculate y;4; from 5 =0to j =1, 2,---, until j = J — 1. That means, we do

27

the calculation with the index j increasing. In this case y, has to be given at the left
Az

boundary condition. Since ﬁ < 1, (2.38) is numerically stable.
T2
On the other hand, if A > 0, we use
-5 2 (ri 4 7j41) (2.39)
=y — —=— (1, +7i41) . .
Yj 1+%/\y]+1 1+%>\ 7T T 41

We calculate y; from j =J —-1toj=J—-2, J—3,---, until 5 = 0. That means,

we do the calculation with the index j decreasing. In this case y; has to be given at

_ A
the right boundary condition. Since 1_{_7;” < 1, (2.39) is numerically stable.
2
Now let’s consider a matrix equation
d
—Y =AY + R, a<z<b, (2.40)
dx
where the unknown Y = (1, v, --+, ¥n)”, where A = (a;;) is an n X n constant
matrix and where R = (7, 72, - -+, 7,)7 with each 7; a function of z . Equation (2.40)

can be regarded as the extension of (2.35) in vector form and we want to apply the
trapezoidal rule to solve (2.40) as well. There are two ways to proceed. First let’s

consider using the trapezoidal rule directly,

Az Az Az

([== A)Yjm — (I + - A)Yj = —(B; + Rj11) - (2.41)

Suppose the boundary conditions for (2.40) are given at both the end points, z = a
and x = b,

CY(a)+DY(b) =R, , (2.42)

where C, D are constant matrices and R is a vector of length n.

The discretized version of (2.42) 1s
CYy+DY;=R,. (2.43)

28

Combine (2.41) (for j =0, 1, ---, J — 1) and (2.43) to obtain a partitioned system

Dy D, Y; 22 (R;+ Ry-1)
Dy D, Y1 %(Rj—l + Rj_2)
= ' . (2.44)
Dy D, Y, 8%(Ry + Ry)
D c || v R,
where
A A
D1:I—7xA, Dgz—(1+7mA). (2.45)
To find a fast way to solve (2.44), we write it in a compact form
B S | | v R
=11 _ 1. (2.46)
Sy C Vo R,
where
Vl = [YJ>YJ—1)"')Y1]T7 ‘/QZYE)J
~ Ax Az Ax
Ry = [T(RJ + RJ—l)a 7(RJ—1 + RJ—Q) y T 7(R1 + RO)]T) (247)

and B, 51, Sy are the corresponding matrix blocks. Note that B is in block bi-
diagonal form and a linear system with the matrix B can be solved very rapidly by
using the standard block bi-diagonal solver (see, e.g. [27]).

The solution to (2.46) is given by
Vo = (C=5B18) " (Ra—SB'R,),
Vi = B Y (R —5V). (2.48)

29

The procedure to obtain (2.48) is as follows.

(1) Solve matrix equations BX = S;, BX = R, to obtain B9, B_lﬁl, respec-
tively.

(2) Do the matrix multiplications S, B~'S,, Sy B! E .

3) Solve (C — Sy B~ 81) Va = Ry — Sy B~ Ry to obtain V5.

)
(3)
(4) Do the multiplication Sy V5.
(5) Solve BVy = Ry — 5, V, to obtain V; .

The problem in this procedure is that there is no guarantee that the block bi-
diagonal solver associated with the matrix B is numerically stable. If it is unstable,

then the method will fail. An alternative approach applies when the coefficient matrix

A in (2.40) is diagonalizable, i.e., A has n linearly independent eigenvectors.

Let A\, Ao, -+, A, be the n eigenvalues of A and 3y, B2, ---, B, the corre-
sponding eigenvectors. Let @ = [51, B2, -+, Ba]. Then
Q71AQ = A =diag(M1, Aa, -+, An). (2.49)

We apply the transformation

Y =QY | (2.50)
where Y = (%1, U2, - *, Un]. Then the original system (2.40) becomes
dy _iv+&, (2.51)
dx
where R = [71, T2, -+, "] = Q 'R. The system (2.51) is reduced to n scalar
ODEs,
S NG+, i=L2n (2.52)

30

For A\; < 0, we use a formula similar to (2.38) to solve (2.52). For A; > 0, a formula
similar to (2.39) will apply. In this way, we ensure numerical stability. Once Y is

constructed, we can recover the solution for the original system by (2.50).

2.4 Iterative methods for linear systems

2.4.1 General idea

There are two major classes of methods for solving linear systems. The well-known
Gaussian elimination, LU factorization, LD LT factorization, etc., belong to the class
of direct methods. These methods are suitable for systems with small matrices. When
the coefficient matrices are large and sparse, the direct methods become impractical
unless the matrices have special structures. In contrast to the direct methods are
the iterative methods which generate a sequence of approximate solutions such that
they converge to the exact solution. In this section, we give some general idea of the
iterative methods, with emphasis on the GMRES method.

Suppose we want to solve a linear system

Az =b, (2.53)

where A = (a;;) is a non-singular n X n matrix and where b is a vector of length n.
If we split A

then (2.53) yields

31

or

r= A" (A — Az + AT'D. (2.56)

If we denote A7'(A; — A) by Q and A7'b by f, then (2.56) can be written as
r=Qr+ f. (2.57)

Given a vector z(?) | called the initial guess, we can construct a sequence of approxi-

mate solutions {z(™} by
M) — Qz(m 4 £ m=0,1,2-. (2.58)
Assume the iterates {z(™} converge, lim,, ., 2™ = a, then (2.58) implies
a=Qa+ f, (2.59)
which yields
Aa=b. (2.60)

Hence a, the limit of {a:(’")}, is the exact solution to (2.53).

The next question is: When does the sequence {z(™} converge? We have the
following result [22]:
Let p(Q) be the spectral radius (i.e., the absolute value of the biggest eigenvalue) of
the matriz Q) , then the iterates defined in (2.58) converge for any initial guess z©) 4f
and only if p(Q) < 1.
Proof Let z be the exact solution of (2.53), then z satisfies (2.57). Let elm =

z —z(™ | then (2.57) and (2.58) yield
€(m) — Qe(m—l) — Q2€(7n—2) L Q,ne(o)

32

0) 0)

Since e = g — 2

which is equivalent to the condition p(Q) < 1.

is arbitrary, lim,,_, . e™ = 0 if and only if lim,,,,, @™ = 0,

We note that, for any matrix norm || - ||, ||Q|| > p(Q). Hence, if ||Q]| < 1, then

the iterates in (2.58) converge to the exact solution of (2.53). This is very useful

since practically it’s often easier to calculate some norm of a matrix than to find its

spectral radius.

A common way to split the matrix A is to let
A=D-L-U,
where
D = diag(alla a22, -+, ann)
and where
(0 \ (0 Qai12 413
asy 0 0 Qa3

L=~1 azn an 0 o U=~

\anl Ana *** Qponel 0) \

Some of the classical iterative methods are listed below.

(1) The Jacobi Iteration:

i1 n
(me1) _ 1 (m) (m) -
T, _a_ﬁ(zazjm]’ +’Z Q45 T ; —bi>, i=1,2,--,n.

We can write (2.64) in matrix form,
™ = DTYL + U)z™ 4+ Db

33

0 Ap—1,n

(2.61)

(2.62)

Q1p \

A2y

(2.63)

(2.64)

(2.65)

If the matrix A is diagonally dominant, i.e., |as| > Y2, ;|ay| for i = 1,2,.--, n,
then the Jacobi Iteration (2.65) converges.

(2) The Gauss-Siedel Iteration:

i—1
-1
$£1n+1):?<zaz] §m+1 + Z Q5]m - 1) K 7:21’ 2; y . (266)

j=1 j=it1

Or in matrix form,
2™t = DY L™t L Uzt) 4 D71, (2.67)
That is,
™Y = (D — L)"'Uaz™ + (D — L)™'. (2.68)

If the matrix A is diagonally dominant, or symmetric and positive definite, then the
Gauss-Siedel Iteration (2.68) converges.

(3) The Successive Over-Relaxation (SOR) Tteration:
2—1
x£1n+1) — (1 (m) (Zaz .’E(m+1) Z aij]) , 7 =]_’ 2’. e,n,
7=1 7j=1+1
(2.69)

where w is a real number called the relaxation parameter. Equation (2.69) can be

expressed in matrix form as
x(m+1) — (1 _ w)x(m) + OJD_l(LCL‘(m+1) + Um(m)) + CUD_lb, (270)
which implies

z(m+1l) — (D —wL)™! [(1—-w)D+ wU]m(m) A w(D—wL)™'b (2.71)

34

The convergence of SOR requires
O<w<2. (2.72)

In particular, when w = 1, SOR reduces to the Gauss-Siedel Iteration.
Another popular iterative method is the Conjugate Gradient method, which works

for symmetric positive definite matrices. For details, see, for example, [22][27].

2.4.2 Preconditioning

The technique of preconditioning is frequently used in iterative methods to improve
the efficiency and to accelerate the convergence, especially when the coefficient matrix
A is ill-conditioned. Let’s illustrate the basic idea of preconditioning as follows. For
simplicity of notation, from now on we refer to the m-th iterates by the subscript m
instead of the superscript. Suppose M is a matrix such that M~'A ~ I in the sense
that

(I-M1A™ =0 when m — o0. (2.73)

The matrix M is also subject to the constraint that linear systems with M are easy
to solve. Such a matrix M is called a preconditioner to the oringinal system. Then

we can construct a simple iteration by

Tyl = Ty + M_l(b — Az,,). (2.74)

35

Let zy be an initial guess. We have the following procedure to compute the solution

to Ax = b:

b—AIL’(),

To

solve My ro for yg,

while (r,, # 0)

m = m+1,
Twm = ZTm—1t Ym—1,
rm = b— Ax,,,
solve My,, = r, fory,,
end . (2.75)

We can also generate the initial guess xzy by using the preconditioner and solve
Mzy+c=0b, (2.76)

where the vector ¢ ~ 0 and is intended to make x(a better approximation to . We

may put ¢ = 0 for simplicity.

36

If we define the error of the procedure (2.75) to be e,, = A7'b—=z,, , then we have

ey = A_lb — Xy ,
€ = A_lb—.’l,'l = A_lb— ($0+y0)
= A_lb - [CL'O + M_l(b — Al‘o)]

= A_lb — Ty — M_lA(A_lb — .’Bo)

= €y — M_lACO
= (I— M "A)e,,
€y = A_lb — X2

= A_lb — [iL‘l + M_l(b — Aml)]

= €1 — M_lAel
= (I-M'A)e
= (I - M 1A%, .

By induction, we easily obtain
em = (I — M~ "A)"e, . (2.77)

The convergence of the iteration is established by noting (2.73).

2.4.3 The GMRES method

The Generalized Minimum RESidual (GMRES) method was proposed by Saad and
Schultz in 1986 [57] in order to solve large and non-symmetric linear systems. In this

section we give a brief discription of the fundamentals of GMRES. The presentation

37

in what follows is essentially from the book of Golub and Van Loan [27] in Ch.5, Ch.9

and Ch.10 and from the report by Fraysse et al. [24].

The Arnoldi process

From linear algebra we know that if an n X n matrix A is symmetric, then we
can construct an orthogonal matrix @ such that QT AQ is tridiagonal. When A is
not symmetric, the orthogonal tridiagonalization QT AQ generally does not exist. An
alternative way to proceed is via the Arnoldi process, which genearates an orthogonal
matrix @ such that Q7 AQ = H is in the upper Hessenberg form. A matrix H = (h;;)

is upper Hessenberg if h;; =0,¢> 354+ 1.

Let Q = [q1, 92, *** , qn| - By comparing columns in AQ = QH, we obtain
m+1
Agn =Y himgi, 1<m<n-—1. (2.78)
=1

If we separate the last term in the summation, we obtain

- A
hm+1,m gm+1 = Aqm - Z hzm 9% =Tm , (279)
=1
where h;,, = qF Aq,, for i = 1,--- m. It follows that if r,, # 0, then g,,,; is specified
by
Gm+1 = Tm [Bant1,m (2.80)
where Ayt1,m = ||7ml|2 since the 2-norm of each column vector of an orthogonal

38

matrix is equal to 1. These equations define the Arnoldi process which is described

as follows:

To = 1,
th =]-a
m = 0,

while (Ami1m # 0)

dm+1 — Tm / Pmt1,m
m = m-+1,
Tm = Aqnm,
for: = 1:m
him = ¢ T,
Tm = Tm— him G,
end ,
hmtrm = 7mll2,
end . (2.81)

We assume that ¢; is a given unit 2-norm starting vector. The ¢, are called the

Arnoldi vectors and they define an orthonormal basis for the Krylov subspace

K:(Aa q1, m) = Spa‘n{qla) Q'm} = Spa‘n{(ha AQ1a Ty Am_lql} . (282)

The situation after m steps is summarized by the Arnoldi factorization (note that

39

dm+1 10 (2.79) is not calculated until the (m + 1)-th step)

AQm - QmHm + Tmeg ; (283)
where Q.. = [¢1, ", @m), €m = Ln(:,m) is the m-th canonical vector and
hi1 hio him
hor haoo hom
Hn= | 0 hg
0 oot hm,, m—1 h1nm

If r,, = 0, then the columns of @),, define an invariant subspace, which means the

Krylov subspace K(A, g1, m) is invariant under A.

Givens rotations and least squares

An m-by-n matrix A can be factorized by

A=QR, (2.84)

where Q € R™*™ is orthogonal and R € R™*" is upper triangular. This is called the

QR factorization.

40

The method of Givens rotations is a common way to compute the QR factorization

of a matrix. Givens rotations are matrices of the form

I

G = G(i,m,) = I , (2.85)

where G;; = ¢ = cos @, G,,, = s = sin 0 for some # and the s are identity matrices of
the appropriate dimensions. Such matrices are clearly orthogonal. Premultiplication
by G(i,m,0)T amounts to a counterclockwise rotation of # radians in the (i, m)

coordinate plane. If € R" and y = G(i,m,0)Tz, then the components of y read

Cx; — 8Ty, J = 1,
Y; = sx; +cxy,, J = m,
zj, j # i,m.
If we set
e T §= ———m (2.86)

/.2 2’ /.2 2
$i+x1n mi+x1n

then y,, = 0. Thus, it is a simple matter to zero a specific entry in a vector by using
the Givens rotation.

Now, we apply the Givens rotations to an m-by-n matrix A. We can first zero all
the lower diagonal entries in the first column, A;; , in the order of : = m, m—1, --- | 2.
Then we zero all the lower diagonal entries in the second column, A;s , in the order of

t=m, m—1, -+, 3. If we continue this process, column by column, we will finally

41

obtain an upper triangular matrix R. If GG; denotes the j-th Givens rotation in the

reduction, then we have

QTA=R, (2.87)

where Q@ = G1Gs -+ ,Gy and J is the total number of rotations. Equation (2.87)
gives the QR factorization of the matrix A.

The QR factorization is a powerful method to find the least squares solution
of overdetermined systems of equations, i.e., the minimization of ||Az — b||; where
A € R™™ with m > n and b € R™. Here we assume that rank(A)=n. Suppose

that an orthogonal matrix) € R™*™ has been computed such that
r R
Q" A=R= , where Ry € R™" | (2.88)
is upper triangular. Let

c
Qb = , Where ce R" and d € R™™" . (2.89)
d

Since the 2-norm is preserved under an orthogonal transformation, we have
|4z — bJE = Q7 Az — QTbIE = || Ryz — clf2 + || dl3 (2.90)

for any € R”. Clearly, if rank(A)=rank(R;)= n, then the least squares solution z

is determined by the upper triangular system
Riz=c. (2.91)

Hence we conclude that the full rank least squares problem can be readily solved once

we have computed the QR factorization of A.

42

The GMRES algorithm

Let A be a non-singular n X n real matrix, and b be a vector of length n. We want

to solve the linear system

Az =b. (2.92)

Let zy be an initial guess for this linear system and ry = b— Az, be its corresponding
residual.
The GMRES algorithm builds an approximation to the solution of (2.92) in the

form

Ty = To + me 3 (293)

where @),, is an orthonormal basis for the Krylov subspace
K(A, ro, m) = span{rg, Arg, ---, A" 'ry} | (2.94)

and where the vector y is determined so that the 2-norm of the residual r,, = b— Az,,
is minimal over KC(A, 7o, m).

The basis @,, for the Krylov subspace (A4, r¢, m) is constructed via the Arnoldi
process discussed before. After m steps of the Arnoldi iteration, we get the relation-

ship (2.83), which can be rewritten as

AQm — Qm+1ﬁ[m ; (295)
where
] Hm' (m+1)xm
Qm+l = [Qm,a qm-{—l]; Hm = € R .
0---0 h1n+1,’m

If g1 = ro/Boy where By = ||ro||2, then it follows that

"m = b— Axm, =b— A(ﬂfo + Q1ny)
= 19— AQumY = 1o — Quir1Hny
= Boq1 — Qm+1f~fmy

= Qm+1(Poer — Hny) - (2.96)

Since @,,+1 is an orthonormal matrix, the residual norm ||r,,||2 = ||Boe1 — I:[my||2 18

minimized when y solves the linear least-squares problem

min ||Foer — Hunylls - (2.97)

Equation (2.97) can be efficiently solved by using the Givens rotations discussed in the
previous subsection. We denote the solution of (2.97) by v,, . Then z,, = o + QumYm

gives an approximate solution of (2.92) for which the residual is minimized over

44

K(A, rg, m). Now we are ready to write out the basic GMRES algorithm as follows:

To

hio

m
while (hm+1, m
gm+1

m

Tm

for 1
hi1n

T’m,
end,
h”m+1, m
Tm

end ,

T =Z,,.

b — A.’BO y
I7oll2
0,

0)

Tm / hm+1,1n)

m+1,

72

2o + QmYm where ||higer — HpYm|l2 = min,

(2.98)

In practice, to make GMRES effective, preconditioning is almost always required.

The preconditioning process in GMRES is similar to that discussed before except

the iteration form is different from that in (2.74). We have found in our numerical

experiments that preconditioning is a key to improve the efficiency of GMRES. More

45

than often a good preconditioner can use just 1/20 or less iterations to achieve the
same accuracy, compared to the case without a preconditioner.

We refer to the above preconditioning process as left preconditioning. Sometimes
people may also consider right preconditioning together with left preconditioning.
That means, we construct two matrices M;, M, such that M;*AM;" is close to the
identy matrix / and that linear systems with AM; are easy to solve. Then we solve

the linear system

MYAM; 'y = MY (2.99)

with 2 = M;'y. However, in all our numerical tests we have found this is not
necessary since a left preconditioner seems good enough for the GMRES. Hence we
won’t discuss right preconditioning in any further detail.

Another issue related to the GMRES algorithm (2.74) is that the storage of the
orthogonal basis (),, might be demanding, especially when the convergence is slow.
The restarted GMRES method is developed to cope with this memory drawback.
Given a fixed number j, the restarted GMRES method computes a sequence of
approximate solutions z,, until the convergence is achieved or m = j. If m = j and
the solution is not found yet, then a new starting vector is chosen on which GMRES
is applied again. Often GMRES is restarted from the last computed approximation,
l.e., ¢y = ;. The process is repeated until the convergence is achieved.

Finally, though the above discussion of GMRES is concerned with real linear
system, the ideas can be naturally extended to complex case. Only a few minor

changes are needed for this extension: the matrix Q7 has to be replaced by QF,

46

which is the conjugate transposition of @ and the least-square problem (2.97) has to

be solved in the complex space C™.

A GMRES package

There are several software packages that implement GMRES. We will consider the
one written by Fraysse et al. [24] for simplicity and portability. This package contains
GMRES routines for both real and complex, single and double precision calculations.
One important feature of this package is that the GMRES solvers are implemented
by the reverse communication mechanism for the matrix-vector multiplication, the
dot product and the preconditioning computations. That means, the package leaves
these jobs to the user. They need to be supplied in a series of subroutines. This
ensures the portability and the flexibility of the package since only the user knows
what matrix is being treated, how the preconditioner should be chosen and how the
data should be organized.

Another advantage of this data structure is that the GMRES routines don’t care
about the explicit structure of the matrix. Actually the matrix is not stored at all in
the routines. We will exploit this nature of the software package in the design of our

numerical method.

47

CHAPTER 3
NUMERICAL METHODS

3.1 Basic formulation

We now go to the main point of this thesis — to numerically study the two-
dimensional interfacial flows between two immiscible and incompressible viscous flu-
ids. Let’s denote the spacial coordinates by (z,z), the temporal coordinate by ¢,
the velocity components by (u,w), the pressure by p, the density by p, the dynamic
viscosity by p and the gravitational acceleration by ¢g. The equations of motion, in

each of the two fluids, are given by the Navier-Stokes equations

pu + pul, + pwu, = _-P:n + ,u'(umm + uzz) P (31)

PWy + PUW, + pww, = _Pz + M(wrz + U)ZZ) ’ (32)

where P is the hydrodynamic pressure which includes the gravity term, P = p+ pgz.

The incompressibility condition is
Uy, +w, =0. (3.3)

The equations (3.1)-(3.3) hold in both the upper fluid and the lower fluid. Their so-

lutions are connected through the interfacial conditions. Let’s represent the interface

48

in the form
(z,2)=(z,h(z,t)). (3.4)

h is determined by the kinematic condition
he + uDhy = wll) | (3.5)

where u!), w0 are the velocity components at the interface.

The continuity of velocity at the interface gives
u®) = @ = @ O =@ O (3.6)

where the superscripts (1), (2) distinguish the upper and the lower domains. More-

over, we have two stress conditions, or dynamical interfacial conditions,
(12 = 1) [+ 0) = w2 +)]
+ b [0 — wl?) — w0 —)] =0, (5.1
(P = P2) — gh(p) —) 4 b, [u(wl?) 4 wld) — p O + u)]

— 2[u(1)wgl) —u(Q)wf)] - 2Tk =0, (3.8)

where T is the surface tension of water and where k is the mean curvature of the
interface,
hzz

We are seeking those solutions that are 27-periodic in . Hence we don’t need
additional boundary conditions in the horizontal direction. However we do need the
boundary conditions at the two ends in the vertical direction to complete the system
and we are only interested in those solutions which are exponentially decaying with

respect to |z| .

49

3.2 The mapped equations

The evolving interface h(z,t) between the two fluids makes the design of numerical

methods difficult. To overcome this difficulty we map the deformed geometry into a

rectangular shape in new, logical coordinates at the cost of changing the details of

the governing equations and the interfacial conditions. Our numerical methods are

then constructed on these mapped equations.

Let’s introduce the new coordinates, (X, Z,7), through the mapping

= X,
z= F(X,Z,1),
t= T

where
Z+ h(X,7) exp(—aZ), Z >0,

[I>

F(X,Z,T)
Z 4+ h(X,T) exp(aZ), 74 <0,

where a > 0 is a constant. Clearly, when Z =0,

z = h(z,t)

(3.10)
(3.11)

(3.12)

(3.13)

(3.14)

marks the location of the interface. When far from the interface, Z is relaxing expo-

nentially to z if a # 0.
If we define

50

(3.15)

then

% % - Goa% ; (3.16)
% aix - Gla% : (3.17)
% G:;a% : (3.18)
88—; 53;2 + (Gl)Qaa—ZQ2 - 2G1% +(G1(Gh)z - (Gl)X>8%, (3.19)
7 (G3)23_2 + G3(G3)zi : (3.20)

022 042 07

Let’s further define
92= (G1)* +(Ga)*, g3=-2G1, ga= Gl% + Gs% —~ % . (3.21)
Then we can write the Laplacian in new variables as
2 2
L 2 88722 + % 2 2

= ai@ +928822 +938)§8Z+g48%' (3.22)

We remark that in the upper domain (Z > 0) and the lower domain (Z < 0),
each of G; (1 = 0,1,3), g; (1 = 2,3,4) generally has different expressions, according

to (3.13). In particular, if we set @ = 0 in (3.13), we get, in both domains,

GO = hT B Gl = hX 3 G3 =1 3 (323)

g2=14(hx)*, gs=—-2hx, ga=—hxx. (3.24)

51

Now we substitute the transformation rules (3.16)-(3.22) for the derivatives di-

rectly into the basic equations (3.1)-(3.8). The equations of motion become:

1 1
ur — Gouz + u(ux — Gruz) + wGsuy = —;PX + ;G1PZ +vL{u}, (3.25)
1
w, — Gowz + u(wx — Giwz) + wGswz = ——G3Pz +vL{w}, (3.26)
p

where v = % is called the kinematic viscosity, and the incompressibility condition is
ux — Giugz + Gawz = 0. (3.27)
At the interface Z = 0, we have continuity of the velocity
u®M = u® =) = @ = D (3.28)
and the kinematic condition
hy 4+ uDhy = wD . (3.29)

The stress conditions (or dynamic interfacial condtions) are now:

(1)
1 1 1 2 2) 2 4hX G 1 1 1
AOGEDUD 4 oMy~ @EP0D 4 w®) 4 (h2 — + G?l))um(“&) — Gy
X 3
4hx G @)/, (2) (2), (2)
- (h§(1 F GQZ))N (ux = Giuy’) =0, (3.30)
4h3 1 1 (1
(PO =P 4+ (2= 5 20) [y’ = G1uy)) — () — G170
X
_ gh(p(l) _ p(2)) 1+ 92Tk . (3.31)

We note that in order to obtain (3.30) and (3.31), we have eliminated w" and w'

in equations (3.7) and (3.8) by using the incompressiblity condition (3.3). It will be

52

clear soon that such eliminations are necessary to be consistent with our numerical
method for the Navier-Stokes equations.

Before we start a detailed description of the numerical methods, it is best to de-
scribe first the overall strategy. The equations are written in the form of linear terms
and nonlinear terms separately, and they have the appearance of (2.3). Then the
methods described there may be used to advance the solution in time. In particular,
implicit methods will be used for reasons of numerical stability and iterative method
will be used to construct the solution. T'wo specific choices will be made, the Crank-
Nicolson method (2.7) and the second-order BDF method (2.4). These methods are
fully implicit and so require the solution of a nonlinear system of equations for the un-
knowns at the new time level. The linear terms provide a simple iterative procedure.
For example, the iteration

u(n,m) —u”

1 1
= ((nm) n\ _ —(f(nm=1) n 3.32
A tolet) = 5(f +f") (3.32)

may be applied to the Crank-Nicolson method (2.7) and when the iterations have
reached a satisfactory level of convergence, u™*t! = u(»™) . The advantage of such an
iteration is that only a linear system must be solved, but the disadvantage may be the
need to reduce At to ensure convergence below values that are sufficient for numerical
stability. As to the spacial discretization, the Fourier transform is performed along
the X-direction which possesses periodicity to achieve spectral accuracy in X . For
each iteration at each time step, a linear system of 1st-order ODEs with respect to
Z is solved.

As a start, we describe the separation of the equations into linear and nonlinear

53

parts. Let’s introduce a new variable ¢ = uz. Then we extract the linear parts of
these equations and put them to the left-hand sides. All the nonlinear terms and the
mapping-associated terms will be collected to the right-hand sides.

We have, first of all,

uz—q=0. (3.33)
In all the following equations, we replace uz by ¢. Secondly, from the momemtum
equation (3.25) we have
1 A 1
ur + ;PX —v(uxx +qz) = R, = Gog + ;GlpZ

— [U(UX — Gig) + wGsQ] +v [(92 —1)gz + g39x + 94‘]} . (3.34)
Thirdly, the incompressibility condition (3.27) gives
ux + wy = R, 2 Gig+ (1 — G3)wy . (3.35)
Finally, from the momentum equation (3.26) we have
1 1
Wy + ;PZ —v(wxx +wzz) = Gowz+ ;(1 — G3) Py
—[u(wx — Giwz) + wGswz] + v[gwzz + gswxz + gawz —wzz] . (3.36)

We don’t want the wzz term on the left-hand side since it’s a 2nd-order derivative
with respect to Z. We note that, in the linear case the incompressibility condition

reads

which implies

Wzz + dx = 0. (338)

54

Hence, we hope to replace wzz by —qx on the linear part, i.e., the left-hand side, of
(3.36). This is done by adding v(wzz + ¢x) to both sides of (3.36) and maintaining
the equality,
wy + %PZ — v(wxx — gx) = Ry = Gowz + %(1 — G3) Pz
—[u(wx — Giwz) + wGawz] + v|[gawzz + gswxz + gawz + qx] - (3.39)

We will use (3.39) instead of (3.36) as one of the governing equations.

Similarly, the two stress conditions (3.30) and (3.31) may be expressed as

A
PV (g + wd) — 1P (g? + w) = 51 2 V(1 - GP)g — u?(1 - GP)g?

(1)
4hx | Gi'\ 1y (1) A()
_ —a\WsM
(hg(_ 1 + Ggl)):“ (ux 19%)
4hx G?) @)/..(2) (2)
- GY¢? 3.40
+(h§(_1+Gg2))/'L (UX 14)a ()

pY _ p® 4 Q(g(l)ug) — N(Z)ug)) =95 = gh(p(l) — ,0(2)) + 2Tk

+2(u WGP — 2GR @)
4h%

2 [- GUg) - u P) 6P (3.41)
X

I

while the other two interfacial conditions (3.28) and the kinematic condition (3.29)

remain unchanged.

3.3 Time marching

Suppose we know the numerical solution at the time step n, {h",u", ¢",w", P"}, and

we want to advance the solution to the next time step n+1, { A"+ um+! ¢gn+1 yn+l prtiy,

55

Since the equations are nonlinear, an iterative method is used to construct the solu-
tion. The iteration is based on the linear part of the system as described in (3.32)

for the Crank-Nicolson method.

3.3.1 The Crank-Nicolson method

The Crank-Nicolson method (2.7) applied to (3.33), (3.34), (3.35) and (3.39) yields

uytt — "ttt = 0, (3.42)
— A, T %(PX-H +Px) — (kX + 4+ ukx +6z)
1 1
= —RM'4+ -R! 3.43
witt +uytt = R (3.44)
T—F%(PZ-H-"PZ) - 5(5% —dx T+ whx — d%)
1 1
= —RM'4+ -RI 3.45

where R, , R., R, contain all the nonlinear terms. In addition, the evolution of the
interface is approximated by

Rt — pm 1 (I) (I a1, 1 (I) (I) n

while the interfacial conditions are approximated by

(u® — @)+l = (3.47)
(Vg + wd) — 4@ (@? + @)+ = g+t (3.48)
(w® — @)+ = g (3.49)
(PO — P® 4 o(Wy — @y Py)ntt = gnt1 (3.50)

56

where S7, S; have all the nonlinear terms.

Unfortunately, the equations for the updated solution are nonlinear and chal-
lenging to solve in general. A simple iterative method, as described in (3.32), is
obtained by evaluating all nonlinear terms with a previous guess. Specifically, let
{R(nm=1) gy (mm=1) g(nm=1) y(nm=1) p(n.m=1)Y he the solution at the (m — 1)th iter-

ation (m > 1), where
{h(n,O)’u(n,O)’ q(n,O),w(nO (n, 0)} a {h'n ’qn’wn, Pn})

The next iterate is obtained as follows.
First we update the interface h by

1 1
— = 5(“’(1) — uDhy)mm=b) 4 §(wm — uDhx)™. (3.51)

Once h{™™) is known, the mappings (3.10)-(3.12) are evaluated and the mapping-
associated coefficients G(m.m) (1=0,1,3), g (n ™) (1 = 2,3,4) are readily calculated.

Then we compute {u(»™ ¢(nm) qym) pm)y y

o _ o _ (3.52)
S S (PE™ + PR) - ;<u§?§”) g™ ki +a3)
= SRV 4 CRD (3:53)
wy ™ 4 up™ = Rﬁ""’"‘_”, (3.54)
w(WA)T 4 gl_p(P(”’”) +Pj) — ;(wé?;?) —ax "+ whx =)
_ R““” b, QRZL (3.55)

a7

with the corresponding interfacial conditions

(u) — @Yo — g (3.56)
(1D (g +) = 4@ (q@ 4 @))nm) = glrm=1) (3.57)

(w® — @@)mm = o (3.58)
(PO PO 4 200l — @) = s (350

We set the stopping criterion of the iterations to be

||h(n,1n) o h(n,?n—1)||2 N ||u(n,m) o u(n}nn—l)”z N ||q(n,1n) - q(n,1n—l)||2
[m=D]| [[um=D] [[gtmm=D][
||w(n,1n) _ w(n,':n—l)||2 ||P(n,m) _ P(n,?n—1)||2
+ < E, 3.60
[t [Pe, (3:60)

where E is some tolerance and where the Ly-norm || - || is taken at all the grid points.

Once (3.60) is satisfied, we set

{hn+l’ un+1’qn+1’wn+1’ Pn+1} — {h(n,m)’u(n,m)’ q(n,m)’w(n,m)’P(n,m)}

and the advancement of solution to the time step n + 1 is complete. Clearly, when
convergence is achieved, we have effectively applied the Crank-Nicolson scheme to

(3.51)-(3.55) and treated all the interfacial condtions in a fully implicit manner.

58

3.3.2 The backward differentiation formula (BDF)

An alternative way to do time marching is based on the second-order BDF method

(2.4). The application of the BDF method to (3.33), (3.34), (3.35) and (3.39) yields

3untt —4u” 4wt 1
2AT

3wt — 4y 4 L

2AT

The evolution of the interface is approximated by

3h"tL — 4pm 4 pn1
2AT

+ ;P}Z—H —(

1 n
+;PZ+1_V(

n+1 n+1
Wy~ + Uy

Wxx — 4x

(WD — uDpy)+L

0, (3.61)
RM (3.62)
R (3.63)
R+ (3.64)

(3.65)

and the interfacial conditions are approximated by (3.47)-(3.50). An iterative process,

similar to that applied to the Crank-Nicolson method, is constructed by using a

previous guess to evaluate the nonlinear terms.

Using the same notation as before, we obtain the m-th (m > 1) iterate for h from

3h(n,m) — 4h" + pr—1
2AT

Knowing h(™™) we can evaluate G’Z(-"’m) (t=10,1,3), g

compute {u(™™) ¢(nm) y(nm) prm)t by

3u(mm) — gyn + w1 1
| —
2AT

)

3w(n,m) — Q™ + wn—l 1

2AT

— (w(I) _ u(])hX)(n,m—l))

P;(n,m) _ I/(

+ ;Pén’m) —(

59

(3.66)

2,3,4). Then we

0, (3.67)

R(n,m—l)

U)

(3.68)
R(»m=1) = (3.69)

Rm=1) = (3.70)

with the corresponding interfacial condtions given by (3.56)-(3.59). The stopping
criterion is the same as (3.60). Once convergence is achieved, we have effectively
applied the BDF scheme to (3.66)-(3.70) and treated all the interfacial condtions in

a fully implicit manner.

Next, we turn to the spacial discretization which allows the construction of the

m-th iterate.

3.4 The Fourier transform
We choose the spacial domain to be a rectangle
((X,2)[0< X <on,~H <7< H} (3.71)

where H , the vertical computational length, is a prescribed constant. We often
pick H to be big enough so that the far-field boundary conditions can be set to 0,
accommodating the exponential decay of solutions. Then we make uniform grids with
2K points in the X-direction and 2.J + 1 points in the Z-direction. Consequently,
AX:%aHdAZ:?

Since we have assumed all the solutions are periodic in the X-direction, we can
take advantage of the discrete Fourier transform to achieve spectral accuracy for X.

In the previous section, we described two ways to march forward in time. For
the Crank-Nicolson method, we apply the discrete Fourier transform at each iter-
ation to (3.51)-(3.55) as well as the corresponding interfacial conditions. For the

52

0
left-hand sides of these equations, we simply replace 7 by ik, 322 by —k? and
T z

60

the physical variables {h,u,q,w, P} by their k-th Fourier coefficients, where k =
—-K,-K+1,---,0,1,--- K — 1. For the right-hand sides containning all the non-
linear terms and the mapping-associated terms, we carry out the well-known pseudo-
spectral approach which consists of 3 steps:

1. use the inverse discrete Fourier transform to recover the physical variables;

2. evaluate the expressions in physical space;

3. use the discrete Fourier transform to obtain the Fourier coefficients of the
expressions.

From now on the subscript k& will denote the k-th Fourier coefficient of the physical
variables. After applying the Fourier transform, the iterative formula (3.52)-(3.55)

can be written as as a 4 by 4 linear system of 1st-order ODEs with respect to Z

d
—Y:. = Bi(AT)Y; . .72
de k(7-) k+Rka (37)
wehre
A n,m n,m n,m n,m
Yk = (I(c’)’]i’)’w]((;’)’Plg’)) ;
0 1 0 0
(24 vk?AT 0 0 Lik

By(Ar) £ oo) 7~ (3.73)

—ik 0 0 0

0 —pvik ——A&T(Q + I/szT) 0

and where the vector Rj contains all the explicit terms, i.e., the terms associated

61

with the nth time level and the (m — 1) th iteration, and is given by the k-th Fourier

coeflicient of the vector

(

0

-2 1 (n,m—1) u” 1 14

— [T+ RY) + 5 — PR+ (ki + 03]

v 2 AT 2p 2 (3.74)

Rn,m—l
1 (n,m—1) n w" 1 n v n n
\ 2p [E(Rw +Rw)+E—sz+§(wXX—QX)]
Similarly, for the BDF method (3.67)-(3.70) we obtain

4y, B(4A)Y +R (3.75)
R = —AT .
AL K3 k k)

where Rj, is the k-th Fourier coefficient of the following vector which contains all the

(0)

explicit terms,

__]- (n,m—1) QLH . u"
v [AT QAT] (3.76)
Rgn,':n—l)
(n,m—1) M N wn—l
\ P [Rw + AT QAT])

The interfacial condtions for both the systems (3.72) and (3.75) are given by

Tkgl)Yk(l) _ Tk(;Z)Yk(z) . (3.77)
where) -
1 0 0 0 (0 \
N 0 L @klu 0 A (Si'n,,?n—l))
- R (3.78)
0 0 1 0 0
2iky 0 0 1 \ (sim=))

62

We must now construct numerical solutions to either of the ODE systems (3.72),
(3.75) subject to the interfacial conditions (3.77) and the far-field conditions (decaying
solutions). The two systems (3.72) and (3.75) have the same structures except that
the right-hand-side vectors, Rj and Ry, are different. Hence an ODE solver working
for one system can be very easily modified to work for the other one. So, in the
following discussion we will only use the system (3.72) to illustrate the numerical

procedure.

3.5 The boundary value problem (BVP)

We notice that the 4 eigenvalues of the matrix By(A7) in (3.73) are given by

M=k, ==k, X=¢k), \=-y(k), (3.79)
where
A 2
P(k) =4/ k2 + AT (3.80)

The shooting method is the simplest to apply but there is a difficulty in the choice
of shooting parameters for decaying solutions. Further, the rapid exponential growth
of the solutions typically causes blow up prior to the numerical solution reaching the
interface.

The remedy is to diagonalize the system (3.72) prior to applying the shooting

63

method (see Section 2.3). The eigenvectors associated with the four eigenvalues in

(3.79) are
(k) (1) [wk)) (1)
e = K , €3 = * , €3 = vA(k) , €4 = _¢(k) (3.81)
—ik i —ik)

) A\w) (o) o
for k # 0, and

(o) (0) (w0) (1)
0 0 $*(0) —9(0)

€1 = y €9 = , €3 = y €4 = (382)
0 4z 0 0

T 2 U A U R

for £ = 0. Define the matrix

Qk = (61; €2, €3, 64) (383)

and introduce the transformation

Y = QiYs . (3.84)
Then the system (3.72) becomes
d ~ ~~ o~
—Y), = ByYy + Ry, (3.85)

dz

64

where]Ai;k 2 Q,;le and

.
[&)
—k
) k # 0 ’
(k)
~ A —(k)
By, - Q' BrQx = | \ (3.86)
[0)
0
, k=0
(0)
—(0
L\ ¥(0)
At the interface, the jump condition (3.77) becomes
TOQETY _ 10T _ (3.87)
where T}, is defined in (3.78) and @} in (3.83).
Now the system (3.85) is reduced to four scalar equations in the form of
4o \j+7 (3.88)
—y = r .

and we apply the trapezoidal rule, which is second-order accurate in AZ , to each of

them. Following the discussion after (2.35), we use

. 1 AZ . AZ .
Yir1 = (1 — AZ)\) [(1+ 2)\)yj-l_ 9 (7']'+7’]'+1)], j=—J,—=J+1,---, -1, (3'89)

when A < 0. That means we start from the bottom, where 3_; is known, and apply

(3.89) with increasing j until we reach the interface j = 0.

65

If A >0, we use

- 1 AZ . AZ . .
U= gy (-5 A (G +Ta)] = J -1, =20 (3.90)

That means we start from the top, where 7, is known, and apply (3.90) with decreas-
ing j until we reach the interface j = 0.

We apply this one-way shooting method in three steps. First, we shoot from the
top and bottom using only those ODEs that have positive and negative eigenvalues,
respectively. Consequently, some of the unknowns are now determined, in particular,
at the interface. Second, we use the known quantities to write the interfacial con-
ditions as a linear system of algebraic equations for the remaining unknowns. Once
this algebraci system has been solved, we use the known values at the interface to
complete the third step. We shoot from the interface upwards and downwards using
those ODEs that have negative and positive eigenvalues, respectively.

The details of this procedure for the case k > 0 are as follows. From (3.86) we
see the two positive eigenvalues correspond to the 1st and the 3rd components of }7;6 ,
denoted by ¥; and %3, respectively. They are determined by the recursion (3.90).
The two negative eigenvalues correspond to the 2nd and the 4th components of i/v'k,
denoted by y» and ¥y, respectively. They are determined by the recursion (3.89). At

the interface j = 0, (3.87) gives

() (7))

e 7
1) A(1) 2) ~(2)
TV Q\ " — TP " =7, (3.91)
Y3 Ys3
~(1) ~(2)
\ Yy } =0 k Yy) =0

66

where {@411)’%1)’@422)’&12) }j=0 are already known. Hence (3.91) forms a 4 by 4 lin-

ear system for the unknowns {@{21),@(11), @’f), 37‘%2) }j=0. Once they are solved, we can
continue the computation for 7,73 by following (3.90) with the indices shifted to:
j=-1,-2,--- ,—J, and for s, 7y by following (3.89) with the indices shifted to:
j=0,1,---,J—1.

The situation is a little different in the case £ = 0 since we have two zero eigen-
values, corresponding to 7; and 7, . Moreover, the calculation of 7; requires 7> (see
(3.86)). Therefore, when applying the shooting method, we always shoot from the
same place and go through the same direction (either upwards or downwards) for the
two ODEs that have zero eigenvalues. There is no change for the other parts in this
method.

Finally, we remind the reader that the discussion in this subsection is made for

the matrix By (A7) . When our strategy is applied to to the system (3.75), where the

matrix is Bk(gAT), we have to replace A7 by %AT.

3.6 A different approach

The method described above is the one we apply to most of our numerical simulations.
Here, for comparison, we discuss a different method which employs the GMRES
algorithm. This method is also constructed on the mapped equations and has some
similar parts as the previous method. The important feature of this new method is
that it doesn’t require the extraction of linear terms. Instead, we directly perform the

temporal and the spacial discretizations to the full mapped equations, which results

67

in a huge linear system with variable coefficients. Then the GMRES algorithm is
applied to find the solutions.
The method is based on applying different time marching algorithms to different

terms in the equations. As a simple illustration, consider

T o) = Sw), (3.92)

where g(u) contains the diffusion terms and f(u) represents the advection terms. The

application of the method (2.8) to (3.92) yields
n+1 n
T (o)) = S5 - 2, (393)
where the Crank-Nicolson scheme is applied to the linear diffusion terms in g(u) and
the Adams-Bashforth scheme is applied to the nonlinear advection terms in f(u). A
linear system must be solved to find u"*! and this is where GMRES proves useful.
This method is also second-order accurate and with good stability properties. Our
numerical tests show that this method actually has better stability properties than
the previous method, i.e., permitting bigger values of Az and At. The other reason to
introduce this method is that it can provide a consistency check on all the numerical
results. We found very good agreement for the results from these different methods
and we are therefore confident about the validity of our results. The disadvantage of
this new method is that much more computing effort is required since, as we will see

soon, we are working with a linear system with a huge coefficient matrix.

68

3.6.1 The numerical method

For convenience, we list again the governing equations with the unknowns {u, ¢, w, P} :

uz = q, (3.94)
1 1

ur — Gog + u(ux — G1q) + wGsq = —;PX + ;GHPZ +vL{u}, (3.95)
ux — qu + Gng =0 , (396)

1
w, — Gowz + u(wx — Giwz) + wGswz = —=G3Pz +vL{w}, (3.97)

p

where £ is the mapped Laplacian and

L{u} = uxx + 9297 + 93qx + 9aq - (3.98)

We note that, by differentiating (3.96) with respect to X and Z, respectively, we

obtain

1
Wxyz = —G_[UXX_(Gl)Xq_quX+(G3)XwZ]) (399)
3

1
wzz =~ [ax = (G1)zq¢— Graz + (G3)zwz] (3.100)
3

Hence we have

L{w} = wxx+gowzz+ g3wxz+ gawz

= wxx— Gig [92(ax = (G1)z q) + g3 (uxx — (G1)x ¢ — G1gx)]

Gi

92(G3)z + 93(G3)x) — ga]wz + 924z - (3.101)

-G Gy

All the derivatives with respect to Z are first-order in the governing system (3.94)-
(3.97).

69

The numerical approach is as follows: The Crank-Nicolson method is applied
to the diffusion terms and the Adams-Bashforth method to the advection terms to
advance the solution in time. The discrete Fourier transform is applied along the
horizontal direction, X , which is assumed to possess periodicity. Then we obtain a
first-order ODE system with respect to Z , the vertical coordinate. The trapezoidal
rule is applied to this ODE system which results in a linear system, where the coef-
ficient matrix is huge and has variable entries. We will use the GMRES method to
solve the linear system at each time step.

Let’s consider the details of the approximation in time. By using the Crank-
Nicolson scheme for the linear terms and the Adam-Bashforth scheme for the nonlin-

ear terms, we obtain

umtt — 1 N "
A 5[(G0q) 4 (Gog)"]
3 1
+ §[U(UX - qu) + U’GS‘]]n - §[U(UX - GlQ) + ’WG:;‘J]n_l
1 1 1
= Gl P LT
L tp s Yep, 1o (3.102)
—[—-= - vC{u} ",)
27, X p 1Pz
w™tl — 1
— A, 5[(G0w2)n+1 + (Gowz)"]
3 1
+ §[u(wx — Giwz) + wGswz |* — i[u(wX — Ghwz) + wGswyz]"_1
1 1 1 1
= 3 [—;G3PZ +vL{w}] + 3 [—;G;;PZ +vL{w}]". (3.103)

By substituting (3.98) and (3.101) into (3.102) and (3.103) and rearranging terms,

70

we obtain

uytt o= ¢ttt (3.104)
SOIMPE 4 Lt U4, (3.105)
Gutlyntl = gl g Grtl gl (3.106)
g P [5G0t G0 S (0xGola as(Gal)
+ gg?ﬁ”W?HﬂWH+F, (3.107)
where
w1 1. 1
Uttt = A 5(6’0 q)"tt — 5[—;PX +v(uxx +93qx +949) "', (3.108)
vt = w:: - g{wxx - Gis [92 (ax — (G1)z q)
+93 (uxx — (G1)x ¢ — G1gx)] }**, (3.109)

and where £, F denote the explicit terms

u” 1

E = —— —=(Gyq)"
AT Q(GO)
3 1
+ §[u(ux — Giq) + wGsq]" — §[U(UX — Giq) + wGsq """
1. 1 1
- 5[_;PX + ;GIPZ +v(uxx + 929z + 93qx + 949)]" (3.110)
w1
Fo= =& alGwa)

3 1
—|— i[u(wx — lez) —|— ’U_)Gng]n — 5[U(’LUX — lez) -|— ngwZ]n—l

1 1 1
- 5{_;G3PZ +v|wxx — 53 [92(¢x — (G1)zq) + 93 (uxx — (G1)x ¢ — G1gx)]

1

BLYeN (92(G3)z + 93(G3)x) — g9a]wz + %gz gz] " . (3.111)

71

Now (3.104)-(3.107) form a first-order linear system of ODEs with respect to Z .

We apply the trapezoid rule to perform the integration of this system and obtain

n+l _ n+l
Yjt1 — Uy

AZ
n+1 n+1
i(Gn+1)' L J+1 'P]
v its AZ

(U™h)je + (U™
2
n+1 n+1
(Gn-i-l)‘ . wj'-:l B wj+
3 1+35 AZ
1
_5 [(lez+1qn+1)j+1

n+1 n+1
i(gnﬂ) . M
2p 3 Jj+s3 AZ

v 1

1 v
+[§Go + 591~ 2G, (92(G3)z

(V™ i + (V")
2

2p

1
(i +q4t) =0, (3.112)

2 7

n+1 n+1
K(gn+1)' L Gy — Y
2w Jits AZ
E, .1+ E;
%ﬂ, (3.113)

1 n+1y n+1y
5[(“){ Ji+r + (ux);]

(GrHigh), | =0, (3.114)

n+1 n+1
v,.G1 1 Gri TG

§(G392)1+% AZ
n+l . n+l
93(G3)X)] ,
1+

n+1 w]._H w
Fii+ F,

N[

i
AZ
j

5 (3.115)

We note that all the terms in the left-hand sides of the above equations are

evaluated at t = (n + 1)At with superscipt 7 4+ 1 and all the terms in the right-hand

sides are evaluated at previous times with superscripts n or n — 1. We have yet to

apply an approximation in the X direction, where we plan to take advantage of the

Fourier transform to achieve spectral accuracy. Since the coefficients in the above

equations, such as Gy, G1, Gs3, g2, 93, g4, all depend on X, application of the

Fourier transform to any product with these coefficients will require the convolution

rule and make the results far too complicated. Fortunately, the GMRES method

doesn’t require the explicit structure of the iteration matrix. This enables us to

apply the pseudo-spectral approach to equations (3.112)-(3.115) to obtain a linear

system for each Fourier mode &,
ALY, = Sk, (3.116)

where the unknown, Y}, is composed of the k-th Fourier coefficients of v, ¢, w and
P at all the vertical positions, j = —M,—M +1,--- ,—1,0,1,--- , M and where the
right-hand side vector S comes from the k-th Fourier coefficients of the right-hand

sides in equations (3.112)-(3.115).

3.6.2 The GMRES iterations

We use GMRES to solve equation (3.116). The main steps in performing a GMRES
iteration are as follows:

(1) Calculate the right-hand side vector Sy, which we have discussed in detail.

(2) Make an initial guess for the solutions.

(3) Apply a good preconditioner.

(4) Apply the pseudo-spectral approach to perform the matrix-vector multiplica-
tion.

It’s relatively easy to perform the matrix-vector multiplication, say Ay Y . This
is achieved by substituting the vector Y into the left-hand sides of equations (3.112)-
(3.115) and applying the pseudo-spectral approach. As a result, we obtain the right-
hand sides corresponding to that vector Y and they give exactly Aj Y . Note that

the interfacial conditions (3.118)-(3.121) are also included in the calculation with the

pseudo-spectral approach.

73

Finally, we need boundary conditions to close the system (3.112)-(3.115). We

need four conditions at the two ends and four conditions at the interface. We use
u=0, w=0 (3.117)

on both the top and the bottom. At the interface, we have the continuity of the

velocities and two stress conditions. They read:

uV — @ =0, (3.118)
w? — w® =0, (3.119)
1
AD(GDD 4 D) OGP | @y 4 (X G\ D _ G
(+ wy’) p = (G37 ¢ +wy’) + (5 + 1)# (ux 1°¢)
3
4hx GY) 2)
= a2yt el -6 =0, (3.120)
3
413
(PU—PP) + (2= 52)0k = G) — WP} - G
X
= gh(pW — p?) + 2Tk . (3.121)

These conditions are evaluated at t = t"*! and Z = 0. That means they are treated
implicitly.

Now we write out the details for making the initial guess. Let’s go back to the
system (3.104)-(3.107). We linearize all the terms evaluated at ¢ = (n 4+ 1)At (i.e.,

terms with superscripts n + 1) so that the coefficients are approximated by

GO = 0, Gl = 0, Gg = 1, go = 1, gs = 0, g4 = 0. (3122)

74

We are led to the approximate system

uptt = ¢"th, (3.123)
n+1
Z n+l u iPn+1 _ z n+1 E 3.124
qu Ar +2p X QU’XX+) (3.124)
n+1 n+1
wy = —uy, (3.125)
1 wtt oy v

Then we perform the Fourier transform in X on the above equations (3.123)-(3.126),

which yields the following ODE system for each Fourier mode k&,

d
— Y, = By(AT)Yi+ Ry, (3.127)
dz
where
0 1 0 0
A2+ vEPAT) 0 0 Lik
Bi(AT) 2 z) = , (3.128)
—ik 0 0 0
0 —pvik —ﬁ(? + VkZAT) 0
and

[+t (0)

2
n+1 ’E
q k
2™ ., R.E| v (3.129)
w,’j"’l 0

vy ey

As before, the subscript k refers to the k-th Fourier coefficient of the corresponding

physical variable.

75

We also linearize the interfacial conditions (3.118)-(3.121) to obtain

uV — 4 = 0, (3.130)
pO(qW +) — p@ (@ +0P) = o0, (3.131)
wh @ — 0, (3.132)

(PO — POy 4 20, Wu) — 1@y = gh(p® — pP) + Thyx . (3.133)

After the Fourier transform is applied, the above equations can be written as

Tkgl)Yk(l) _ T]£2)Yk(2) =, (3.134)
where
1 0 0 0 (0 \
0 p ik O 0
- ’ r A . (3.135)
0 0 1 0 0
2ikp 0 0 1 \ (9" =) = K°T) s)

Note that the ODE system (3.127) with the interfacial conditions (3.134) are in
the same form as (3.72) and (3.77) in Section 3.4, except that the right-hand side
vectors Rj and 7, are different. Hence we can use the same technique as before to
compute the solutions. Specifically, we first diagonalize the system (3.127), then apply
the trapezoidal rule to the transformed diagonal system and shoot in the appropriate
directions as described in Section 3.5. Once the solutions for the diagonal system
are obtained, we transform them back to obtain the solutions for the original system

(3.127). These solutions Y, obtained for all the vertical points, will serve as the

initial guess for GMRES.

76

Fortunately, the preconditioner works in the same way as making the initial guess,
except that the right-hand side vectors Ry in (3.127) and 7} in (3.134) are different.
They are the residuals in the iteration and are provided by GMRES. We simply
substitute them into (3.127) and (3.134) and apply the procedure described above to
construct the solutions.

In our numerical simulation of the interfacial flows, we found the GMRES typically
requires 6-10 iterations at each time step to achieve convergence. Overall, this method

requires about three times as much CPU time as the previous method does.

3.7 Conversion to dimensionless units

To reduce the number of computations, it’s convenient to use dimensionless vari-

ables. Let 3 be the wave number and introduce the dimensionless variables

=Pz, z=Pfz, t=+/gft,

= éu, W = éw, P:EP, h = h . (3.136)
g g Py
Let’s further define the dimensionless parameters
(1) 1) _ 2 1
A A S _— _ VI
p= p(2)? n= M(Z)’ T_p(Q)QT’ K= k’{'a Re— \/@V . (3137)

Then we can write all the equations in dimensionless form,

_ 1
U + Utz + wiy; = —P;+ R—(aﬁ + Uzs) , (3.138)
_ 1
Wi + 0z + Ww0; = —P:+ ﬁ(wﬁ + s3) (3.139)
Uz +wz; = 0. (3.140)

The kinematic condition (3.5) and the continuity of velocity at interface (3.6) keep

the same form,

he + @Dy = @) | (3.141)

a® =a® =g® gV = g® = gD (3.142)

The dynamical interfacial conditions (3.7) and (3.8) are changed into

+ 2hs[a(al — o) - @ - a)] = 0, (3.143)
S 5 _ 1
(pPY = PO) = (7= Dt —y he [+ 07) — (37 4 3;)]
2 | _
70 [and” — @] — 2T% = 0. (3.144)

Our numerical methods can be applied directly to equations (3.138)-(3.144). One
simple way to convert the dimentional numerical methods into the dimensionless

form is to set

. 1 1 .
1 —) — 1 — 2) _ 1 — g (2) —
pl=p =1, VW=—pF, v= o w=p, o p =1
R R

What’s left is just a few modifications of the coefficients in the 2nd dynamical inter-

facial condition, which is easy to accomplish.

78

CHAPTER 4
NUMERICAL RESULTS

4.1 Numerical verification of accuracy

While there is little doubt about the spectral accuracy in the X-direction where
the Fourier transform is applied, the order of accuracy for the time marching and
the discretization in the Z-direction is to be justified by numerical experiments. Two
examples serve for that purpose. These tests are performed on a 2.4GHz Xeon dual-
processor workstation.

In the first example, we consider the incompressible Navier-Stokes equations (3.1)-

(3.3) with the exact solutions

u = tsin(2z)e >,
w = tcos(2z)e
P = g(cos(2z)e™ — t?e™%) | (4.1)

which are exponentially decaying in the vertical direction and periodic in the hori-

zontal direction. The spatial domain is defined as

{(z,2)|0< 2z <27, h(z,t) <2< 1}, (4.2)

79

where h, the bottom, is artificially set as
h(z,t) = 0.1sin(z —t) . (4.3)

Only one fluid is concerned and there is actually no interface. Nevertheless, when
applying our methods the wavy boundary h(z,t) serves as the ”interface”, on which
the mappings (3.10)-(3.12) are readily formed (for Z > 0 only) and all the parts in our
approach are readily applied. That means the mapped equations and the formulation
as a BVP in Z will be thoroughly tested. Obviously, the numerical treatment of the
interfacial conditions will not be tested. The initial and the boundary values for
u,w, P are taken from the exact solution (4.1).

We perform the computation for p = 1, u = 0.313 (corresponding to R, = 100)
and run the codes until 7 = 0.4. We use 32 points in the X-direction so that the
errors assoiciated with AX is much much smaller than those associated with At and
AZ . Let N be the number of time steps and J the number of points in the Z-
direction. We keep doubling N and J to check the error pattern. The results are
presented in Table 4.1, where E(u, N, J) denotes the Ly-norm of the errors for u with
the resolution of N time steps and J points in the Z-direction, and where R(u, N, .J)

denotes the quantity

E(u,N/2,7/2)
E(u, N, J)

Similar notations hold for E(w, N, J), R(w,N,J) and E(P,N,J), R(P,N,J). The
results clearly indicate the 2nd-order convergence in both A7 and AZ .
In the second example, we consider the two-fluid case with an interface. Due to

the presence of the nonlinear interfacial conditions (3.6)-(3.8), an analytical form of

80

v E(u, N, J) E(w, N, J) E(P,N,J)
(R(u, N, J)) (R(w, N, J)) (R(P,N,J))
1.824 x 10~° 6.069 x 10~6 4.469 x 10~°
40 | 40
(—) (—) (—)
4.680 x 1076 1.512EF x 1076 1.207 x 107°
80 | 80
(1.97) (2.00) (1.92)
1.194 x 10~ 3.833 x 1077 3.018 x 1076
160 | 160
(1.98) (1.99) (2.00)

Table 4.1: Results for the first test case

solutions is not available in this case. However, we know there are exact solutions for
the linearized problem. If we use that linearized solutions as the initial conditions
and set the amplitude of the interface A to be small enough, then the influence of
the nonlinear terms in both the governing equations and the interfacial conditions
becomes unimportant since they are in the order of O(h?) and we expect the solutions
of our nonlinear problem will be very close to that of the linearized problem. Hence
we will use the linearized solutions as the reference solutions to test the accuracy of
our numerical methods. At the same time, the numerical treatment of the interfacial
conditions will be tested at least at the linear level.

Solutions for the linear motion of interfacial flows are available in [12] and most

81

recently in [7]. They take the form of

(Uk,\ (u%

0
w w
S I R PO (4.4)
P Py

\)\ P

where the subscript k& specifies the k-th Fourier coefficient and the superscript 0

indicates the initial state. The value of o(k) is found through the dispersion relation

[p(l),/,/(l)(Q(l) + ,/V(l)k) + p(2),/y(2)(Q(2) + w/z/(Q)k)]
x [(p® = pW)gk + Tk + (02 + p!V)o? (k)]

4(pIVr0QW 4 @@ k) (VD@ 4 VD)o (k)e =0, (4.5)

where Q) = /o (k) + vWk2, Q@ = ,/o(k) + v@k2. Newton’s method is applied
to numericaly find the roots of the nonlinear equation (4.5). Once o(k) is determined,
the initial values {u}, wi, P?, h}} are determined as follows.

In the upper domain:

o QM
wf = Aexp(—|k|) + Bexp(-—=2),
v(1)
0 | | i QW QM
= ——A —\k ———B —
Uy, Lk exp(| |) k\/ﬁ exp(mz)’
Dok

p =2 |Z|() A exp(—|k|z) (4.6)

82

In the lower domain:

0 02
w, = Cexp(lk|z)+ D exp(z),
v(2)
. M i 0® 02
Uy = A C’exp(|/€|z)+ kmDeXp(mz)a
@Da(k
Py :-f|ﬁ)cmmm@. (4.7)
For the interface:
h=2 4.8
k 2 ? ()

where a is a small real constant that specifies the amplitude and where A, B,C, D

are constants determined by a and o(k),

4 = aS U(k) ’ B aR 0'(/{3) ’
2(S— R) 2(R— 5)
VI@k + Q@) V@ £/, B
T VPR —0® 0 Vo@E—_0® L0

D = A+B-C,
where

R = 2,0(1),/(1)]{32 u 2/)(2)‘/1/(2) AR

(2)
S = p(l)(o(k) + 2y(1)/€2) + pP® V—l)(v vk + Q(Q)) — pPv V(Z)k(\/ vk — Q(Q)))

v
In our test we pick k = 1, a = 0.01 and consider the air-water case with p!) =
0.0012, p® = 1.8 x 107*, p@ = 1.0, u® = 1.1 x 102 (corresponding to R" =
208.70, R = 2845.9). The domain of computation is chosen to be a rectangle as is

defined in (3.71) with H = 1. The initial conditions and the boundary values at the

83

v | E(u,N,J) E(w,N,J) E(P,N,J) E(h,N,J)
(R(u,N,J)) | (R(w,N,J)) | (R(P,N,J)) | (R(h,N,J))
3.717 x 1072 2.220 x 1072 7.017 x 1071 1.343 x 1073
40 | 40
(—) (—) (=) (—)
%0 | 80 1.155 x 1072 6.486 x 1073 2.134 x 1071 4.023 x 1074
(1.79) (1.85) (1.81) (1.83)
3.171 x 1073 1.736 x 1073 5.795 x 1072 1.086 x 104
160 | 160
(1.90) (1.93) (1.92) (1.92)
8.093 x 1074 4.406 x 1074 1.475 x 1072 2.761 x 10~°
320 | 320
(1.98) (1.99) (1.98) (1.98)

Table 4.2: Results for the second test case

84

two ends (Z = +1) are taken from the linear solutions. We advance the solution until
7 = 0.4, using fixed 32 points in the X-direction, 2J + 1 points in the Z-direction
and N time steps. The results are shown in Table 4.2, where the quantities £ and R
are defined as before. We observe bigger numerical errors than those in the first test
case. The reasons are: (1) We don’t have the exact solution in this case and we are
using an approximate solution instead as the reference solution; (2) The viscosities
are much smaller (or in other words, the Reynolds numbers are much bigger), so that
higher resolution is required to achieve good accuracy. Nevertheless, the results in the
table clearly indicate that second-order convergence is approached as the resolution
is refined.

Further evidence of the accuracy and reliability of the numerical code is provided
by the remarkable pattern in the simulation of viscous effects on the motion of Stokes

waves.

4.2 Numerical simulation of viscous Stokes waves

A large body of research has been conducted on steady progressive waves (Stokes
waves) [59][60][63][65]. Certainly, such waves, no matter on a free surface or at an
interface, can only exist for inviscid fluids and so we call them inviscid Stokes waves.
We ask: What happens if we start with an inviscid Stokes wave and then turn on
the viscosity? It can be expected that the wave will decay due to viscous effects. A
more delicate question is: In what pattern does the viscosity damp the wave? The

results reported in this section will try to answer that question. For convenience, we

85

will call such waves viscous Stokes waves. In what follows we neglect the effects of
the surface tension.

We consider a two-fluid system in a frame moving with the phase speed ¢ and
use the expansion formula from the paper of Tsuji and Nagata [65] to obtain initial
conditions. The wave profile h can be expanded in a dimensionless form by a Fourier

cosine series
h = Z Ag(A)coskz . (4.9)
k=1

The first five Fourier coeflicients are:

Al - A,
— 1p2=pM 17(p2))2 -38p2) pM +17(p1))2 42\ 42
Ay = 2 p(2)4p(1) 1+ 12(p@+pM)2 A A%
_ 3()? =100 oM 43(p(1)7 43
Az = 8D +p0)2 A+
459(p(2))%—2468(p(2))3 p(1) +4130(p(2))2 (p(1))2 —2468p(2) (p(1))3 +459(p(1))* A5
384(p@ +p(D)*)
A, = E2=pN((pP)2=6p2pD+(pD)%) 44
4= 3(p D +p)3)
_ 125(p)*—1516(p*))3p() +3118(p*))2 (p(1))2 ~1516p) (p(1))3 +125(p())* 45
As = 384(p(D +p(0)4 A®, (4.10)

and the phase speed c is given by

C

2 _ p@—p P22+ 2, (0P =pM)?(5(p1*))?~14p2) p(+5(pM)?) 44
- p(2)+p(1) 1 (p(2)+p(1))2 A + 4(p(2)+p(1))4 A) (4'11)

Tsuji and Nagata were able to give the explicit expressions for the Fourier coeflicients
in the series expansions of the stream functions for both the fluids up to the fifth order.
Consequently the velocities and the pressures can be easily calculated from the stream

functions. These solutions are used as the initial values in our codes. Then we will

turn on the viscosities for both the fluids and start the computation.

86

In our numerical simulations we set the reference frame to be moving at the in-
viscid phase speed ¢ so that the wave is nearly stationary in the horizontal direction
except for a very small phase shift due to viscous contribution. What we are most
interested in is the wave motion in the vertical direction, i.e., the change of the ampli-
tude, due to viscous effects. We consider three choices for the amplitude parameter
A by using

(1) a small value A = 0.01;

(2) a moderate value A = 0.1;

(3) a relatively big value A =0.2.

We also consider two choices for the viscosities:

(1) The typical air-water case with pM = 0.0012, uM = 1.8x107*, p® =
1.0, u» = 1.1 x 102, or in nondimensional units, 5 = 0.0012, 7 = 13.636, RM =
208.70, R\» = 2845.9.

(2) An artificial case where the densities are the same with, but the viscosities
are 10 times bigger than, the air-water case. Specifically, p¥ = 0.0012, p® =
1.8x1073, p@ =1.0, u® =1.1x10"", or in nondimensional units, 5 = 0.0012, i =
13.636, R%M = 20.870, R = 284.59.

The spacial domain of computation is the same as defined in (3.71) with H to be
big enough so that it reasonably represents two layers of infinite thickness, which is
the case considered in the paper of Tsuji and Nagata. We perform the computation
on a 2.4GHz Xeon dual-processor workstation from 7 = 0 until 7 = 207", where 7" is
one wave period. Figures 4.1 and 4.2 show the wave profiles at 7 = 0 and 7 = 207

for A =0.01, 0.1 and the two choices of the viscosites, respectively. One can clearly

87

see the decay of the wave amplitude. In the case of bigger viscosities (Figure 4.2) the
wave decays faster than in the air-water case (Figure 4.1). Moreover with the same
viscosities the decay rate is approximately the same for the two choices of A. Clearly
each Fourier mode of the wave, Ay, is dependent on the temporal variable 7 and we
use Ag(7) to indicate such a dependence. To do a quantitative study, we define the

decay rate, 5(k), for each mode Aj through the relation
Ar(1) = Ag(0) "B (4.12)

The value of 5(k) is numerically calculated by

_ Ln(Ax(207)) — Ln(Ax(0))

5(k
a(k) 20T ’

(4.13)

where Ln is the natural logarithm function. We calculate the decay rate for each of
the first five Fourier modes and compare that with the value in the purely linear case,
i.e., the real part of o(k) as determined by equation (4.5). The comparison is made
in dimensionless units and the results are shown in Tables 4.3 and 4.4, respectively.
We see that the decay rate for the mode A; is close to that in the linear case, the
smaller the A, the smaller the difference. Even when A = 0.2, the decay rate is only
about 10% different from the linear prediction. But the most notable feature of the
pattern in decay rates is that the decay rate o(k) for the kth mode is approximately
(k) = ka(1), at least for k = 1,2,--- ,5. These values are distinct from the
linear predictions and suggest that nonlinear interactions remain important during
the viscous damping of the wave. There is a single disagreement with this pattern

in Table 4.3, the decay rate of the fourth mode when A = 0.2. There are several

88

Mode | Linear case A =0.01 A=0.1 A=0.2
Ay | —8.03x107* | —8.05 x 107* | —8.15 x 107* | —9.33 x 10~*
Ay | =3.00x 1073 | —=1.55 x 1073 | —1.66 x 1073 | —1.82 x 1073
A3 | =653 x 1073 | —2.27 x 1073 | —2.51 x 1073 | —2.80 x 1073
Ay | —1.14x 1072 | =299 x 1073 | —2.99 x 1073 | —2.83 x 1073
As | =1.75x 1072 | =3.71 x 1073 | —=3.70 x 1073 | —4.48 x 1073

Table 4.3: Decay rates in the air-water case

possibilities for this discrepancy, but we will delay discussion of it until after we view
the results from a different perspective.

Tables 4.3 and 4.4 give the average decay rate over a time interval. We now want
to study the decay pattern for each mode in detail. From the expansion formula
(4.10) we know the analytic relationship between these modes. The complex version
of (4.9) predicts that all the complex Fourier coefficients are purely real. However,
the numerical calculations for the viscous Stokes waves generate complex Fourier
coefficients with both real and imaginary parts. Thus the magnitude |A;| and the
phase ¢, will be studied. For the inviscid case, the results in (4.10) suggest one way
to view the family of Stokes waves is to consider the curves A;(A;), or equivalently,
|Ak|(|A1]|) . Then the effects of viscosity can be studied by viewing the deviation of
the numerical results from these curves.

We draw the curves by using (4.10) for the modes |Ay| versus |A;|, |A3| versus

|A1|, |A4| versus |A;], |As| versus |A;|, etc., and refer to these curves as inviscid

89

Mode | Linear case A =0.01 A=0.1 A=0.2
Ay | =7.04x 1073 | =7.05 x 1073 | =7.09 x 1073 | =7.15 x 1073
Ay | —2.68x 1072 | —1.40 x 1072 | —1.43 x 1072 | —1.45 x 1072
A; | —5.82x1072| —=2.10 x 1072 | —2.16 x 1072 | —2.20 x 1072
Ay | —1.00x 1071 | —2.83 x 1072 | —2.86 x 1072 | —2.81 x 1072
As | =152 x 1071 | =357 x 1072 | —3.59 x 1072 | —3.52 x 1072

Table 4.4: Decay rates in the case with 10 times bigger viscosities

solutions. On the other hand, we have the numerical solutions which give the time
evolution for the amplitude of each mode. We can plot these amplitudes in the same
way as |As| versus |A1|, |As| versus |A1|, |A4| versus |A;|, |As| versus |A4|, etc. In
Figures 4.3 — 4.8 we compare the numerical solutions for the three choices of the
amplitude parameter A and the two choices of the viscosities to the analytic inviscid
0 and for every period,

solutions. The numerical solutions are plotted from 7 =

T, until 7 = 207". Figures 4.3, 4.5, 4.7 give the results in the air-water case for
A = 0.01, 0.1, 0.2, respectively. Figures 4.4, 4.6, 4.8 give the results in the case
with 10 times bigger viscosities for A = 0.01, 0.1, 0.2, respectively. These results,
together with results for the decay rates, suggest a very clear interpretation: viscous
effects simply reduce the magnitude of the Stokes wave while allowing it to remain
a member of the family. Without viscosity, A is fixed. With viscosity it is reduced

while maintaining the ratio of the amplitudes.

The evidence is strongest for A = 0.01 and A = 0.1. For A = 0.2, there is a

90

deviation in the pattern for A4 and As but it is confined to the first a few periods of
the motion. The reason is that our initial conditions correspond to the inviscid Stokes
wave where the tangential velocities are discontinous but the pressure is continuous
across the interface. As soon as the computation is started in the presence of viscosity,
boundary layers form to ensure the velocities become continuous and the stresses
become important in the balance of pressure across the interface. When the wave
amplitude is big, like A = 0.2, such an adjustment from the inviscid solution to the
viscous solution can affect the fourth and fifth digits of the numerical results. Since
this spontaneous adjustment is relatively small, it is observed in the fourth and fifth
modes where amplitudes are of comparable size to the adjustments. The numerical
results show that the deviation in the pattern of amplitudes quickly dies away and the
Stokes wave is fully restored, albeit at a smaller amplitude. This is also indicated by
the case with bigger viscosities (see Figure 4.8) where the modes decay much faster
and the numerical solution and the inviscid solution show pretty good agreement
when 7 > 107".

One more evidence is provided in Figure 4.9, where we match the numerical so-
lutions of viscous Stokes waves at 7 = 207" by using some analytic solutions from
inviscid Stokes waves. The air-water case is considered and two choices for the ini-
tial wave amplitude are made: A = 0.01 and 0.1. From the numerical solutions we
are able to obtain the magnitude of the mode A; at 7 = 207 in both cases, which
are approximately 0.009038 and 0.09031, respectively. Then we set the amplitude
parameter A to be these two numbers, respectively, and substitute A into the expan-

sion (4.9) to obtain an inviscid solution. The numerical solutions and the inviscid

91

solutions are plotted for both cases in Figure 4.9 and we find excellent agreement
between them.

Now that we have thoroughly studied the amplitude of each mode, we turn to
investigating its phase. Since the reference frame is moving at the inviscid phase
speed ¢ in our numerical simulations, the wave motion is not purely stationary in
the horizontal direction — there is a small shift of phase due to the contribution
from viscosity. Accordingly, the complex Fourier coefficients of wave modes contain
small imaginary parts. Let Aj; , and A, , denote the real and imaginary parts of

Ay, respectively, and Py the phase shift for mode A;. Then P, is determined by

In Figures 4.10 and 4.11 we plot P versus the time t for the first four modes of
the Stokes wave in the air-water case with A = 0.01. The phase shift for mode A,
clearly indicates a straight line with respect to time and the slope of the line, %,
gives the shift of phase speed Ac = 1.23 x 107 . On the other hand, the linear theory
predicts the difference between the inviscid phase speed and viscous phase speed is
approximately 1.26 x 10=*, which is very close to the numerical result.

Unfortunately, the numerical solution of the phase shift for modes A,, Az and
A4 shows significant oscillations. The reason for such oscillations is not clearly un-
derstood yet. Nevertheless, the trend of the numerical data can be revealed by using
the standard linear least square approximations. That means, given a set of points

{(t™, PP)}Y_, , we seek a linear function P, = ayt + b such that the quantity

N
(akt"—}—bk —P]?)2

n=1

92

phase shift ag, by
P 1.23 x 107* | —1.01 x 1073
P, 2.50 x 107* | —9.39 x 1073
Ps 3.30 x 107* | —1.67 x 1072
Py 3.62 x 107* | —3.45 x 1072

Table 4.5: Linear least square approximations for the phase shift

is minimized. The two coefficients a;, and b, are determined by

N Zﬁ:l " Pyl — (Zivzl tn) (Zivzl PI?)
N YN ()2 - (T)
(Xama(t)?) (Eama PR) — (Zama 1) (s " PR)
N YN ()2 = (T,)

and the results for 1 < k < 4 are presented in Table 4.5.

ap =)

b =

b

One notable feature of the linear least square approximations to the phase shift

is that ay and a3 are about two and three times of a;, respectively. This indicates

that the rate of phase shift for mode Ay is k times that for mode A;. There is a

disagreement with this pattern for mode A4, which is apparently associated with the

strong oscillations in the numerical calculation of the phase shift P;. The case we are

considering is for A = 0.01, which is close to linear case but the nonlinear interaction

between different modes remains important. When the amplitude is big, the values of

the parameter A and viscosities are both important in determining the phase speed

and the shift of phase can be no longer approximated by a straight line. Nevertheless,

93

the pattern of the phase shift in Table 4.5 together with that of the decay rate in
Tables 4.3 and 4.4 suggest that viscosity maintains the ratio of both the amplitude
and the phase shift between each mode and allows a Stokes wave to remain a member
of the family.

In conclusion, the Stokes wave appears to be a stably-attracting state. Mathe-
matically, the above observations imply the following interpretation. In the presence
of viscosity, if the reference frame is moving with the viscous phase speed ¢ instead

of the inviscid speed ¢, the expansion for a Stokes wave may take the form

oo

h:ZAk(Af(A,p,u,t))coskm. (4.14)

k=1

That means the parameter A in the expansion (4.9) is now replaced by the product
of A and a time-dependent function f. Clearly the function f has the following
properties:

(1) 0<f<1land f=1whent=0;

(2) f is decreasing with respect to t;

(3) The decay rate of f is determined by the densities and the viscosities of the
fluids as well as the wave amplitude.

Now suppose the densities of the fluids are constant. Let’s also take the ratio of
(2
PO

viscosity v and small amplitude A. One possible form for the function f is,

the viscosities, to be fixed. We are particularly interested in the case with small

f = e (B(1)1), (115)
where 7(1) has the same meaning as that defined in (4.12), i.e., the nonlinear decay

94

rate of the first mode A; . Consequently, from (4.10) we have, 5(2) = 25(1), 7(3) =
35(1),- -, which agrees with our numerical results presented in Tables 4.3 and 4.4.

One possibility is that (1) can be expanded in terms of the amplitude parameter

(l)=0cp+ 01 A+ oo A>+--- | (4.16)

where 0y is the linear decay rate, and then each o,, (m = 0,1,) can be expanded

in terms of the viscosity v = vV |
Om = Omo + VOm1 + y20m’2 4 (4.17)

Meanwhile, the viscous phase speed ¢ may be expanded in a similar way as &(1) in
terms of A and v. This possibility must be checked by performing an asymptotic
study of the viscous Stokes waves. In Chapter 5 we provide the details of the asymp-
totic expansions in the linear case. The asymptotic calculation in the nonlinear case

will be a topic in our future research.

Finally we plot the vorticity contours in Figure 4.12 for A = 0.1 and with the
two choices of viscosities. In both cases the vorticity in the upper fluid is dominant
and the maximal value of the vorticity occurs near the interface. In the air-water
case, there is only a very thin layer of vorticity in the lower fluid. In the other case,
the vorticity is much weaker due to the bigger viscosities but extends further into
the fluid away from the interface. To have a closer look at the vorticity distribution
in the lower fluids, we zoom in the vorticity contours in the lower domains for both

cases and present the enlarged pictures in Figure 4.13.

95

4.3 Numerical simulation of viscous standing waves

The motion of two-dimensional standing waves at a fluid interface is also an at-
tractive topic in fluid mechanics and many studies have been performed in the case of
inviscid fluids [51][56][61]. An inviscid standing wave does not propagate but makes
periodic oscillations between crest and trough in the vertical direction. It can be
expanded in a similar form as in (4.9) but with time-dependent coefficients,

h = Z A(A,t)coskz . (4.18)
k=1
Based on our results from the viscous Stokes waves, we would expect that a similar
decay pattern of amplitude holds for standing waves in the presence of viscosity.
Here we use the fifth-order free-surface wave expansion formula from the paper of

Penney and Price [51]. Initially the wave is at its peak,

1 47
A = A+ —A— — A%
32 1344
1 79
AQ = 3 2__A4a
2 672
3 12563
Az = A — A%,
8 59136
1
A4 - §A4,
295
As = ?6§A5. (4.19)

At this moment both fluids are at rest, i.e., the velocities u and w are zero everywhere.
The numerical simulation is performed in a similar way as that for Stokes waves.
We use the above initial conditions and turn on the viscosities to start the computa-

tion. The numerical solution is recorded at every period 7', when the wave attains its

96

peak, until 7 = 207". The decay pattern for the modes |Az| versus |A;|, |As| versus
|Ai1|, |A4| versus |A;| and |As| versus |A;| are plotted in Figures 4.14 and 4.15 for
the air-water case and the case with 10 times bigger viscosities, respectively. The
amplitude parameter A = 0.1 in both cases. We observe that, for the first 3 modes,
i.e., for |As| versus |A;| and |Aj3| versus |A;|, the numerical solutions (the squares)
closely follow the inviscid solutions (the curves). However, for the modes |A4| versus
|A;| and |As| versus |A;|, there is a significant deviation from the inviscid curve (see
Figure 4.14). The disagreement is small, about 107°. There is no improvement with
higher numerical resolution. Similar results also hold for smaller or bigger values of
A. The situation appears different from the behavior of Stokes waves with bigger

amplitude A = 0.2. The reason for this disagreement is not clearly understood yet.

4.4 Parallelization

One of the advantages of the numerical method described in Chapter 3 is that it
can be easily adapted to parallel computer architectures. The details are presented
below.

Suppose the domain of computation is a rectangle as is in (3.71) and there are 2K
points in the X-direction and 2J + 1 points in the Z-direction. Let M be the number
of processors. We use row-wise striped partitioning when updating the solution in
time. Each processor except one, to which we refer as processor 0, is assigned 2.J/M

rows. Processor 0, instead, contains one more row which marks the interface. Each

97

No. of processors n 1 2 4 8 16 32

CPU time T'(n) (in seconds) | 1658 | 876 | 450 | 220 | 114 64

Speedup S(n) 1.00 | 1.89 | 3.68 | 7.54 | 14.54 | 25.91

Efficiency E(n) 1.00 | 0.95|0.920.94 | 091 | 0.81

Table 4.6: Performance of parallelization

processor performs the Fourier transform along the X-direction, calculates the right-
hand side vectors Ry, (see equation (3.72)), and prepares the data for the BVP. Then
we switch to column-wise striped partitioning, by way of an all-to-all communication,
to solve the BVP (3.85). Each processor now handles 2K/M columns and works out
the transformed solutions ?k . Finally, we go back to the row-wise striped partitioning
by using the all-to-all communication again and recover the original solutions Y .
That completes one iteration for marching in time. The biggest overhead in this
parallel agorithm is the switches between row-wise and column-wise partitionings at
each iteration.

A test of the performance of the parallelization by using MPI is made on an TA-
64 Cluster with 900 MHz Itanium-2 processors, for a problem with moderate size:
K = 32, J = 1600 and 400 time steps. The CPU time is compared for different
number of processors and in each multi-processor case the CPU time is measured
from the beginning of computation until the last processor finishes execution. We

use n to denote the number of processors and 7'(n) the CPU time measured with n

98

processors. Meanwhile we calculate the speedup S(n) = T'(1)/T'(n) and the efficiency
E(n) = S(n)/n. The results are shown in Table 4.6.

The drop in performance for 32 processors is associated with K = 32. Commu-
nication costs are beginning to be important. We expect performance will improve

again when K is much larger.

99

0.01

0.005}

-0.005}

-0.01E
0

Figure 4.1:

The interface profiles from the numerical simulation of Stokes waves at
t = 0and t = 207, where T is one wave period, with p() = 0.0012, p*) =
1.8x107%, p@ =1.0, u® =1.1x10"2 and two choices for the amplitude
parameter A: (a) A =0.01; (b) A=0.1.

100

0.01}

0.005}F

-0.005}

-0.01E
0

Figure 4.2:

The interface profiles from the numerical simulation of Stokes waves at
t = 0and t = 207, where T is one wave period, with p() = 0.0012, p*) =
1.8 x 1073, p® = 1.0, u® = 1.1E x 107! and two choices for the
amplitude parameter A: (a) A =0.01; (b) A=0.1.

101

A
S A
a1

6E-05

4E-05

2E-05

Inviscid solution

O Numerical solution

0.01

0.009 0.0095 ™

A
S A
~

Inviscid solution

O Numerical solution

(a)

A
S A
(]

Inviscid solution
O Numerical solution

6E-07
4E-07
2E-07
076009 00095 0.01 |,
(b)
<
8E-11 Inviscid solution

6E-11

4E-11

2E-11

O Numerical solution

6E-09
4E-09
2E-09
0-6.006 00095 ~ 0.01 5,
A,
(c)
Figure 4.3:

Comparison between the inviscid solution and the numerical solution of
the Stokes wave with p™) = 0.0012, p» =1.8x107*, p® =1.0, u@ =
1.1 x 1072 and the amplitude parameter A = 0.01. The numerical so-
lution is displayed from 7 = 0 and for every period, 1", until 7 = 207'.
(a) modes |Asy| versus |A;|; (b) modes |A3| versus |A;|; (c) modes |A4|
versus |A;|; (d) modes |As| versus |A;].

Inviscid solution

A
S A
a1

O Numerical solution

6E-05

4E-05

2E-05

0.004 '0.006 0.008 0.01 Al

(a)

A
S A
~

6E-07

4E-07

2E-07

Inviscid solution

O Numerical solution

'0.004 0006 0.008 0.01

A,

Inviscid solution
O Numerical solution

A
S A
(]

6E-09

4E-09

2E-09

0.004 '0.006 0.008 0.01 Al
1

(b)

(c)

A
A
=

6E-11

4E-11

2E-11

Inviscid solution
O Numerical solution

'0.004 '0.006 0.008 0.01 Al
1

(d)

Figure 4.4: Comparison between the inviscid solution and the numerical solution of

the Stokes wave with p™) = 0.0012, ¥ =1.8x107%, p® =1.0, u® =
1.1 x 107! and the amplitude parameter A = 0.01. The numerical so-
lution is displayed from 7 = 0 and for every period, 1", until 7 = 207'.
(a) modes |Asy| versus |A;|; (b) modes |A3| versus |A;|; (c) modes |A4|
versus |A;|; (d) modes |As| versus |A;].

Inviscid solution
O Numerical solution

Inviscid solution

O Numerical solution

0.09 0.095 O.lIA1I 0.09 0.095 O.lIA1I
(a) (b)
3 <
Inviscid solution Inviscid solution
8E-05 O Numerical solution 8E-06 O Numerical solution

6E-05 6E-06

4E-05 4E-06

2E-05 2E-06

Figure 4.5: Comparison between the inviscid solution and the numerical solution of
the Stokes wave with p™) = 0.0012, p» =1.8x107*, p® =1.0, u@ =
1.1x 1072 and the amplitude parameter A = 0.1. The numerical solution
is displayed from 7 = 0 and for every period, 7', until 7 = 207". (a) modes
|As| versus |A;]; (b) modes |A3] versus |A;]; (c) modes |Ay4| versus |A|;
(d) modes |As| versus |Ay].

104

Inviscid solution Inviscid solution
; . 0.0008 . ;
O Numerical solution O Numerical solution

-

<
Inviscid solution 8E-06 Inviscid solution
O Numerical solution O Numerical solution

6E-06

4E-06

2E-06

Figure 4.6: Comparison between the inviscid solution and the numerical solution of
the Stokes wave with p™) = 0.0012, ¥ =1.8x107%, p® =1.0, u® =
1.1x107! and the amplitude parameter A = 0.1. The numerical solution
is displayed from 7 = 0 and for every period, 7', until 7 = 207". (a) modes
|As| versus |A;]; (b) modes |A3] versus |A;]; (c) modes |Ay4| versus |A|;
(d) modes |As| versus |Ay].

105

Inviscid solution Inviscid solution

O Numerical solution O Numerical solution

(a) (b)
< <t
0.002 Inviscid solution 0.0006+ Inviscid solution
: o Numerical solution i o Numerical solution
0.0004 -
0.0002[40o
_oogooono®2Ra0 e
O-_u 1 1 1 1 L 1 L L L L 1 1 1
0.18 0.19 0.2 IA,|
1
(c) (d)

Figure 4.7: Comparison between the inviscid solution and the numerical solution of
the Stokes wave with p™) = 0.0012, p» =1.8x107*, p® =1.0, u@ =
1.1x 1072 and the amplitude parameter A = 0.2. The numerical solution
is displayed from 7 = 0 and for every period, T', until 7 = 207". (a) modes
|As| versus |A;]; (b) modes |A3] versus |A;]; (c) modes |Ay4| versus |A|;
(d) modes |As| versus |Ay].

106

™
<
Inviscid solution - Inviscid solution
o Numerical solution 0.008 o Numerical solution

Figure 4.8:

(a) (b)
< <
0.002 Inviscid solution 0.0006+ Inviscid solution
’ o Numerical solution [o Numerical solution
0.0015 0.0004"
0.001
0.0002+
0.0005 C o
C ogo
0 O 1 1 1 1 1 1
0.1 0.15 0.2 A,
1
(c) (d)

Comparison between the inviscid solution and the numerical solution of
the Stokes wave with p™) = 0.0012, ¥ =1.8x107%, p® =1.0, u® =
1.1x107! and the amplitude parameter A = 0.2. The numerical solution
is displayed from 7 = 0 and for every period, T', until 7 = 207". (a) modes
|As| versus |A;]; (b) modes |A3] versus |A;]; (c) modes |Ay4| versus |A|;
(d) modes |As| versus |Ay].

107

0.01

0.005

-0.005F

-0.01L

Inviscid Solution 0.1 Inviscid Solution
- - — - Numerical Solution - - — - Numerical Solution

x

Figure 4.9:

Comparison between the inviscid solution and the numerical solution for
the profiles of Stokes waves with p() = 0.0012, u™® =1.8 x 10™*, p® =
1.0, u® = 1.1 x 1072. (a) The numerical solution starts from A = 0.01
and is plotted at ¢ = 207", while the inviscid solution is plotted with A =
0.009038. (b) The numerical solution starts from A = 0.1 and is plotted
at t = 207", while the inviscid solution is plotted with A = 0.09031 .

108

o |
0.016 |-
0
| A
=]
L =
=
L |
a
0.008 |- D)j'z
B |
=]
L |:r|z
L o
=
F_a
=
Ol n n n n 1 n n n n 1 L n n n 1 n
0 20 80 120
t
(a)
o b
0.03 - -
r (m]
B -
0.02 - (m] .-
-
N o-
o (m]
o.01| o _-- O g
r (m] -
I Pug
L _- [m]
o O -
F _ - o (m]
I _
- //D
-0.01 F o
-0.02EO0 P R RS R
0 20 80 120
t
(b)

Figure 4.10: The phase shift in the numerical solution of the Stokes wave with A =
0.01 and p™™ = 0.0012, p® =1.8x107*, p®@ =1.0, u® =1.1x1072.
(a) Phase shift of mode A; versus time; (b) Phase shift of mode Aj versus
time. 0 numerical solution; - - linear least square approximation.

109

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

S
OI\\\\l\‘\\l\\\\I-P\\\\l\\HlHHlHHlHHlHH
\
\
O

| O
o

4

P

0.06

0.04

0.02

-0.02

-0.04

-0.06

S
O]\H\|H\\|\\H\|HHI-PHH|HH|HH|HH

-0.08

(b)

Figure 4.11: The phase shift in the numerical solution of the Stokes wave with A =
0.01 and p™™ = 0.0012, p® =1.8x107*, p®@ =1.0, u® =1.1x1072.
(a) Phase shift of mode A3 versus time; (b) Phase shift of mode A4 versus
time. 0 numerical solution; - - linear least square approximation.

110

Level 1 2 3 4 5 s 7 5 ° 10 11 12 13 14 1S
orticity: -0.45 -0.39 -0.33 -0.27 -0.21 -0.15 -0.09 -0.03 0.03 0.09 0.15 0.21 0.27 0.33 0.39

e
Iy
nf
)

(b)

Figure 4.12: The vorticity contours when the amplitude parameter A = 0.1 for the
two choices of the viscosities: (a) pM =0.0012, u™ =1.8x107*, p® =
1.0, u® =11 x 1072; (b) pV = 0.0012, p® = 1.8 x 1073, p® =
1.0, p® =11x10".

111

Level 1 ES 3 a s G 7 8 ° 10 11 12 13 14
Vorticity: -0.13 -0711 -0.09 -0.07 -0.05 -0.03 -0.01 _0.01_0.03 0.05 0.07 0.09 0.11_ 0.13

0.05

0

0

z
|
0
[5Y
c\l\\\\l\\\\l\

-0.05

10 11 12
0038 0.05 0.062

(b)

Figure 4.13: The vorticity contours in the lower fluid when the amplitude parameter
A = 0.1 for the two choices of the viscosities: (a) pM =0.0012, pu® =
1.8 x 107%, p® = 1.0, u® = 1.1 x 1072; (b) pM = 0.0012, pM) =
1.8 x 1073, p® =10, u® =1.1 x 107",

112

¥

Inviscid solution

0.008 O Numerical solution
0.006
0.004
0.002
0000 0095 'oflm'
(a)

A
& A
a1

6E-05

4E-05

2E-05

Inviscid solution
O Numerical solution

Inviscid solution

O Numerical solution

0095 01

A
S A
(o))

6E-06

4E-06

2E-06

Inviscid solution
O Numerical solution

Figure 4.14: Comparison between the inviscid solution and the numerical solution

of the standing wave with p® = 0.0012, pu™ = 1.8 x 1074,

p(2) =

1.0, u® = 1.1 x 1072 and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207". (a) modes |Ay| versus |A;]; (b) modes |A3| versus |A]|;
(c) modes |A4| versus |A;|; (d) modes |As| versus |A;].

113

Inviscid solution

O Numerical solution

Inviscid solution
O Numerical solution

A

0.006
0.004
0.002
o
0.04 006 008 0.1,
(a)

2E-05

Inviscid solution
O Numerical solution

m
S 1A
()]

6E-06

4E-06

2E-06

Inviscid solution
O Numerical solution

goooooOog B0

"0.04 006 0.08 0.

(d)

Figure 4.15: Comparison between the inviscid solution and the numerical solution

of the standing wave with p® = 0.0012, pu™ = 1.8 x 1073,

p(2) =

1.0, u® = 1.1 x 107! and the amplitude parameter A = 0.1. The
numerical solution is displayed from 7 = 0 and for every period, T,
until 7 = 207". (a) modes |Ay| versus |A;]; (b) modes |A3| versus |A]|;
(c) modes |A4| versus |A;|; (d) modes |As| versus |A;].

CHAPTER 5
LINEAR ANALYSIS

5.1 Asymptotic study for the linear problem

In this section we derive asymptotic expansions, in terms of small viscosities, for the
solutions of the linear Navier-Stokes equations with linear interfacial conditions. Since
we are able to work out the analytical solutions for this linear case, the asymptotic
solutions provide a good way to understand the influence of viscosity on the motion
of a linear (Stokes) wave.

The power of asymptotic methods is that they can be applied to not only linear
problems but also many non-linear problems where exact solutions are impossible to
obtain. Furthermore, asymptotic method and the numerical method can benefit each

other by providing a good check on their accuracy.

115

5.1.1 Asymptotic expansions

We consider a linear version of the Navier-Stokes equations

1

U = ——Pp 4 v(uge + uss) (5.1)
0
1

wy = ——P, 4 v(Wey + W), (5.2)
0

iku+w, =0, (5.3)

with the interfacial conditions

u? = @ (5.4)
hy =wt = w® (5.5)
p(l)y(l)(ugl) + "US)) = p@y® (uz2) + wf)) ’ (5.6)

(0@ — pW)gh + PO — PO 9(pM, My _ 5@y20@Y) = Th,, . (5.7)

Here and in what follows, we use the superscripts (1) and (2) to distinguish the
quantities in the upper and the lower fluids but we shall use them only when it is
important to distinguish which fluid is being considered.

We assume solutions in the form
() ()
w w

— eik:l) eo‘t (5.8)
P P

\ ") \ @)

where £ > 0 and where a is a fixed number which measures the initial amplitude of

the interface. Our goal is then to derive asymptotic expansions for 4, W, P and o

in terms of small viscosity v .

116

By substituting (5.8) into the equations (5.1)-(5.7), we obtain

oU = —%P +v(—kU+U,.) , (5.9)
oW = —%’Pz +v(=E°W+W..), (5.10)
ik + W, =0, (5.11)
and
Uy = y?, (5.12)
ao=WH = We (5.13)
pWD(UD +ikw®) = @@ U@ 1 kW) | (5.14)

(p? = pW)ga + P — P> _ Q(p(l)v(l)Wz(l) _ p(Z)V(2)Wz(2))
= —k’Ta. (5.15)
We introduce the dimensionless parameters
(1) (2)
_r —4/Z=
r= ek R= MR (5.16)
and keep 7 and R fixed. We will use the method of multiple scales [34][44] to derive

the asymptotic expansions. In considering the boundary layers near the interface

which have thickness proportional to /v, we introduce scaled vertical coordinates

Mo, 7M1 as
z
Uozﬁ, m=\vim=z. (5.17)
Consequently,
o 10 8
9z v ony Om’
52 1 o2 2 02 o?

S L SR 1
02* V3778+ ﬁ3n03n1+3n% (5.18)

117

Then we assume the following expansions:

U = u(no,m)+ Vvu(n,m)+vu(n,m)+ -,
W = wo(no,m)+ Vvwi(ne,m)+vws(no,m)+-,
P = Po(no,m)+vvPi(no,m)+vPa(ne,m)+- -,
o = ogtvortvoyt . (5.19)

Note that o is the same in the upper and the lower fluids but with different expansions.

They are related by

a(()l) = 082) ; o =R"c® m=12-.. (5.20)
By substituting (5.19) into (5.9), we obtain
(co+Vvord+vor+---)ug+Vv(oo+Vvor+vos+---)u +
V(0'0+\/;0'1+V0'2+"')U2+"':_?PO_\/;;PI_V;PQ‘F"'
1 82’&0 2 82U0 8221,0
— E2un — Bu — vkl — oo 4+ = =
e PR Y R ol T
1 82U1 82u1 82U1 82U2 82’UQ 82U2
— + 2 + VUV —— + + 2y/v +v -I-) 5.21
Vv Ong 9noom & Ont ~ Ong v Onodm O (5:21)
Comparison of the coefficients of v™ yields,
ik o2
order 1 : O Uy = _ Py _u20 , (5.22)
P oy
1 1k 8211,0 82’&1
der vz : =——P+2 5.23
order v o1 Uy + 0o Uy .)+ 3n08n1+3773 , (5.23)
ik
order v! : oo Uy + o1Ul + g Uz = _u Py — K%y,
o? 02 o?
al o 2 (5.24)

+ + + .
ot = TOngdm Ond

118

If we substitute (5.19) into (5.10) and equate the coefficients of like powers of v™

we obtain,
1 OP,
orderv™2 : — =0, (5.25)
ono
10P 10pP &°
order ¥ : oowy = —— —0 — — — u;() , (5.26)
pOm pon O
1 1 8P1 1 8P2 82’11)0 82’11)1
order vz : oWy + ogw; = —— - - . (5.27
PN oo pon | Tomom T ong (527)
Similarly, the substitution of (5.19) into (5.11) yields,
1 0
order v~ 2 T _ g , (5.28)
oo
3w0 Bwl
order ° : ikuy+ —+ — =0, 5.29
’ om oo ()
1 0 0
order v3 ¢ ikuy + 2+ 22 = 0. (5.30)

We also expand the interfacial conditions (5.12)-(5.15). Let v = v . Using

(5.16), the substitution of (5.19) and (5.20) into (5.12) yields,

order 1/° : Uy =Yy

Substitution into (5.13) yields,

order 1° : aa(()l) = wél) = w(()2) = ao(()z) ,

order v? : aagl) = wgl) = Rwim =aR af) .

Substitution into (5.14) yields,
8u(()1) R augz)

r)
Ono o
8U0 8’&1

N =

order v~

8’&0 (9’&1

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

order * : r(—+ -+ ikwo)(l) =R (s—+—+ ikwo)(Q) . (5.36)

om dno om dno

119

Finally, substitution into (5.15) yields,

order 1 : (p(z) — p(l))ga + pél) _ PéZ) _
: (1) (2) aw(()l)
order vz : P —RP” — 2(,0(1)
Ono

5.1.2 Lowest-order solutions

We start the calculation by seeking solutions at the lowest order, i.e., the solutions

to ug, wy, Py and op. Application of secularity conditions in the higher order

equations will then be used to determine the additional dependency of the solutions

on the scaled variables 79, 7. The interfacial conditions at the lowest orders are

applied to determine the coefficients in the solutions. Details are as follows.

Equation (5.25) implies that P, is independent of 7, i.e.,

PO = Po(’/]l) .

Equation (5.28) implies that
Wy = ’Ujo(’l’]l) .

From (5.22) we obtain
9? ik

(p — 09) up = ;Po(m) :

o

Since we want exponentially decaying solutions, (5.41) yields

Bi(m)e voom — oo Po(m)

U = ik
By(m)ev™™ — —— Py(m)

P 0o

120

(5.39)

(5.40)

(5.41)
for 2>0,

(5.42)
for z2<0,

where Bi(n;) and By(n;) are to be determined. The Substitution of (5.42) and (5.40)

into (5.29) yields, for z > 0,

k2 dwo(m) . Oun
kB Tveene —— P =0. 5.43
ikBi(m)e +'p00 o(m) + dn; + o (5.43)
Elimination of secular terms yields
k2 dwy(m)
— P, + =0. 5.44
2 Ry + S (5.41)

Note that (5.44) also holds for z < 0. Meanwhile, substitution of (5.39) and (5.40)
into (5.26) yields

oowo(m)=———F"""———. (5.45)

To remove the secularity we require

1 dPy(m)
oo W =————. 5.46
i (5.46)
By substituting (5.46) into (5.44), we obtain
d? 9
- %k =0 5.47
(dn%) Wo) ()
which implies
Aj e7Fm for 2>0,
Ay ebm for 2<0,
where A;, Aj are constants. Equations (5.44) and (5.48) show that
W 4
p p oo dwg(m) P20 Aen for 2 >0, (5.49)
V=T g @) :
k dm _ % Ay elm for 2<0.

121

Equations (5.42) and (5.49) show that

Bi(m) e Voo — A e~tm for 2>0,
o = (5.50)
Bo(my)evoom 4 A, ekm for 2<0.
Now we determine the forms of B;(n;) and By(n;). First notice that (5.45) and
(5.46) indicate that

By substituting (5.50) into (5.23) we obtain, for z > 0,

o2 vk dB . -
(—2—0'0) Uy = — Pl(’l']l)+(0'1 Bl(ﬂ1)+2\/0'0 ﬂ) 6_\/0_0170—2141 g1 € K . (552)
O p dm

The secularity condition requires

o1 By(m) + 2\/70‘11117751”) 0, (5.53)
which implies
Bi(m) =bye ", (5.54)
where b; is a constant. Similarly, for z < 0, we get
o1 Ba(m) + 2\/70%751”) ~0, (5.55)
which implies
Bo(m) = by e ™ | (5.56)

where by 1s a constant.
Now the interfacial conditions at the lowest order, (5.31), (5.33), (5.35) and (5.37),
will determine the unknowns A, As, b1, by and oy, while o; will be determined by

the next-order solutions.

122

Equation (5.33) implies that
aogg = Al = A2 y (557)

where o) = 0(()1) = 0(()2). By substituting (5.49) and (5.57) into (5.37), we obtain

) p? — pt) BT

A
70 = _(p(z) TRt Tay pm)

= (5.58)

By substituting (5.54), (5.56) and (5.57) into (5.50) and applying the condition (5.31),
we have

bl —1a oy = b2 + 1a agp . (559)

Meanwhile, (5.35) implies that

7 (=v/@0) b1 = R(/50) by . (5.60)

From (5.59) and (5.60), we find

2iaRaoy 2taroy
by = by = — . 5.61
T R+ ? R+r (5.61)

Then, the solutions at the lowest order are

(2iaRoy --=2

i e /oo M e—Voom 1a0g e~ km for z>0,
Uo = Yiarcy (5:62)
_ 7 n e2v%0 m eﬁno + iaao 6km for =z S Oa
L r
acy e~ km for 2>0,
v = 4 (5.63)
acy ekmn for 2<0,
\
((1) 2
P 9% e~km for z>0, ()
B = . b 5.64
P 8% gkm for 2<0

Y
\

where oy is given by (5.58) and o7 will be determined by solutions at the next order.

123

5.1.3 First-order solutions

Here the first-order solutions refer to u;, wy, P; and o;,. The idea is essentially
the same as that in calculating the lowest-order solutions. The governing equations
at the present order and the secularity conditions from equations at the next order
determine the forms of the solutions. Then the interfacial conditions at the present
order determine the coefficients in the solutions. Here are the details.

For z > 0, (5.43), (5.44) and (5.54) imply that

_ 0
ikby e T M emvam 4 TOL (5.65)
o
Hence
wy; = —ikbl e_;ﬁm e~Voomo 4 Fi(n) . (5.66)
Voo
Similarly, for z < 0 we obtain
1kby o1
wy = — 2 e/ T V0 F>(m) . (5.67)

NG

Here b; and by are given in (5.61) while Fi(n;) and Fx(n;) are to be determined.

Equations (5.52), (5.53) and (5.57) imply that, for z > 0,

(s~ o) us = X i) — ooy o e (5.68)
-~ 5 0Og)U1 = —L71\Th) —tadpgo1 € . .
oy p
Similarly for z < 0, we obtain
o2 ik k

— —0¢) uy = — Py(n1) + tacgo e . 5.69

(5 = o) = 5 Pim) (5:69)
Hence

iacy oy e~*n — & p(p
Di(ny) e=vVoom 4 o p 1) for z2>0,
Uy = 90 ; (570)

4 km _ ik p
OO P e —", i)

g0

124

Substitute (5.70) and (5.66) into (5.30) to obtain, for z > 0,

Z.le(nl) e~Voomo 4 kb (— 2\0/2_0) 6_20\/_}7_0771 e~Voom 4

Voo
dFy(m) Ows
— akoye™Pm 4 K p =——— 5.71
[— akoye™n 4 oo Pr(m) + an] e (5.71)
To remove the secularity, we must have
k? dF
—akoye 4 = Py(m) + 1(m) =0. (5.72)
pao dm

Meanwhile, substitution of (5.51), (5.63) and (5.66) into (5.27) yields, for z > 0,

—k 1 dPi(m) 1 0P
ks 1\ 2
aopoj e + oo Fy(m) = —— - — . 5.73
001 o F1(m) Iy 110 ()

The secularity condition requires

—k]- ()
71 d-ll 171
aocg 01 € +O' F ” - . 5.;4
0¢1 0 1(1)] 1 ()

Now by substituting (5.72) into (5.74), we obtain

d? 9
(d—n%—k)RZO, (5.75)
which implies
Fi(m) = fre™™™, (5.76)
where f; is a constant. Similarly for z < 0, we obtain
d? 9
(d—n%_k)FZZO’ (5.77)
which implies
Fy(m) = fae*™ (5.78)

125

where f, is a constant. Hence,

Zkbl e—zo\/—},—onl 6_\/0_0770 + fl e—km for =z Z 0 ,
= z'kgo 71 (5.79)
_ 2 e2vos Tt eVau o + f2 ekm for = <0
Voo
Consequently, we obtain
P(l) 0o (1) —k
/<: (aal + fl) e~hm for z>0,
P = o ‘ (5.80)
— % (aaf) + f2) ekm for 2<0.
Substitute (5.80) into (5.70) to obtain
Di(m) e vVoono — ifie7*m for z2>0, (5.81)
U1 = .
Dy (m) evoom 4 jf, ekm for 2<0

Now we determine the forms of D;(n;) and Ds(n;). First notice that (5.73) and
(5.74) indicate that

Substitute (5.62), (5.81) and (5.82) into (5.24) to obtain, for z > 0,
2 —7 dD
[(02 +k i) be @™ + o1 Di(m)+ 2\/0_01—(771)] eV
4o dm
_ km ik 9?
—z(ao’o oy + f1 01) e + ; Po(m) = <8—7)(2, — 00) Ug . (5.83)

Elimination of secularity in (5.83) requires that

o2 L dD
(02 + K> — 4—010) bye 2™ 4+ o1 Di(m) + 24/0¢ dln(lm) =0. (5.84)

From (5.84) we can determine the solution for D,

b o2 o,
Di(m) = [dl — = (o2 + k- 71) m] e v (5.85)

where b; is given in (5.61) and d; is a constant to be determined. Corresponding to

(5.83), for 2 < 0, we obtain

i 7L dD
[(Uz +k? — 40—1) bo er/m ™ + o1 Da(m) — 2\/%72(?71)] eVooo

0o dm
. K vk o2
—1 (aao oy — fo 01) e + — Py(m) = (—2 — 00) Ug . (5.86)
P g
Elimination of secularity of in (5.86) requires that
2 o1 dD
(0'2-1-;82—&) bgezmnl +01D2(7]1)—2\/00ﬂ =0. (587)
4oy dm
From (5.87) we can determine the solution for Dy,
D2(771) = |:d2 + bl (0'2 + l{?2 — U—%> 771:| 62\0/}’_0 m (588)
2\/% 40’0 ’

where b, is given in (5.61) and ds is a constant to be determined. We note that, in

both (5.85) and (5.88), 71 occurs in the square brackets in the form

NG 40,
and its origin is from the expansion of
exp[:l: h (o +k2—a—%)ﬁn] (5.89)
2 (o)) 2 40’0 i ’

This exponential form can be recovered by introducing another scaled coordinate
N2 = /v = y/v z. By following the same procedure as for the determination of 7,
in (5.85) and (5.88), the elimination of secularity determines the dependency on 7.

At this stage, the solutions at the current order are expressed in (5.79), (5.80) and

(5.81), with D1 () and Do(7,) given by (5.85) and (5.88), respectively. What remains

127

is to use the interfacial conditions (5.32), (5.34), (5.36) and (5.38) to determine the
unknown coefficients f,, fs, di, dy and oy, while 0o has to be determined by

solutions at the next order. First, by substituting (5.79) into (5.34), we obtain

tkba R

(1) _ tkby _ _ (@)
aoy —\/070+f1— N + Rfs =aRo;" . (5.90)
Substitution of (5.61) yields
2akR./o0g 2akr./og
f1=ao§1)+R7+T, f2:a0'{2)+R7_H. (591)

Combine (5.80) and (5.91) to obtain

1) 2akR./0q
P90 (2a0(1) + u) e~ km for z>0

1

I

P = & R+ (5.92)
2akr./
— % (2aa£2) + %) ekm for 2<0.
By substituting (5.92) into (5.38) and recalling (5.40), we obtain
2kRr /
oV =Rol? = - T Voo (5.93)

L (R+r)(1+47)"

Finally we calculate d; and dy. By substituting (5.81), (5.85) and (5.88) into (5.32)

we obtain
dl - Zfl - Rdg -|- ’LRf2 B (594)
or
. 2takR./0g
dy = Rdy + 2iact? + R—-I-\7/’_ (I+7r). (5.95)
Meanwhile, (5.36) yields
r(2iakoy — /0o di) = R* (2iakog + /0o da) - (5.96)

128

Combine (5.95) and (5.96) to obtain

1 . . Rr(l+r
d, = R—-I—r {QZaRagl) + 2tak\/oy [R(l + 7‘) +r— R?— %] })
_ 1 e , Rr(1+7)
do = RRE+7) { 2iaroy’ + 2iak+/oo [r — R Rtr] } . (5.97)

Except for oy, the calculations of the first-order solutions are complete. This
solution procedure can be carried to even higher orders, though the calculations
become more and more complicated. Fortunately, the solutions constructed prove

adequate to test the numerical results.

5.2 Accuracy of the numerical methods

5.2.1 Truncation errors for a simple model

Let’s first consider a simple model problem which captures the essential parts of our
numerical method. In this case, we are able to calculate the truncation errors in

closed form. The model is a one-dimensional linear diffusion equation
Up = VU, . (5.98)

Here we are not giving any initial conditions nor boundary conditions since they are
not needed in calculating the numerical truncation errors.

After applying the Crank-Nicolson approximation to the time derivative in (5.98),
we have

u"tt -y = —(u" - un) . (5.99)

Then we introduce a new variable ¢ = u, and write (5.99) as a linear system of

equations,
d
—Y =AY 1
7 + R, (5.100)
where
ynt! 0 1 0
y 2 . A% N , (5.101)
n 2
¢t var U r
and
= —(2 + u,) (5.102)
r= uAtu uy,) . .

If we directly apply the trapezoidal rule to (5.100), we have

Az Az Az
- A Y — (I + - A)Y; = (B + Rjn1) , (5.103)

I —
(2 2

where [is the identity matrix. Consequently, we obtain

Az Az Az
Y= - A7 [+ A)Y + (B + Bj)] (5.104)

which can be then implemented numerically. All that is needed to complete this step

is an approximation for R; and R;;;. Since R involves r, we need an approximation

z » - z "."_ zz v + zz 3
for u”,. Two methods are tried: (u,,)? = (u)]+1 (u)] L or (u)] (v)]H =

; 7 2Az 2
(w2)P1 — (us)
Az

However, as we mentioned in Chapter 3, direct application of the trapezoidal rule

n

7. Numerically, we find no significant difference.

is numerically unstable. The remedy is to diagonalize the system (5.100). It’s clear

to see the two eigenvalues of the matrix A in (5.100) are A; = A 2 2/(VAt), Ay =

A 1

—X = —4/2/(vAt) and they have the corresponding eigenvectors e; =

, €2 =

A

130

. Let the transformatin matrix P 2 (e1,€2) and transform YV = PY . That

n+1 an+1 _ "qvn-i-l

—p - , (5.105)
n+1 ~n+1)\(an+1 + "qvn+1)

where u, ¢ are the transformed variables and they can be expressed by the inverse of

(5.105),

un+1 1 un+1 + qn+1 A
— p! — 3 /%) . (5.106)
'(“]"n+1 qn+1 _%(un+1 _ qn+1/)\)

Now the system (5.100) becomes

d _ _ ~
Lam _ gty (5.107)
d _ _ ~
@ = Mg+ Ry, (5.108)
or, in block form
d ~ e -
—V =AY +R, (5.109)
2
- A A - R r /(2
where A 2 ' = , R 2 ~1 =P R = /@A)
)\2 —A RQ T/(QA)
Now apply the trapezoidal rule to the two scalar ODEs (5.107), (5.108), respec-
tively,
Az . Az . Az, ~ ~
(1= 528 — (L A8 = —=((Ba)jen + (RB1);) (5.110)
Az . Az . Az, ~ ~
(1= 5 2)G = (L 520)G ™ = = ((R2)j1 + (Ra)j) - (5.111)

131

n+1

Since A; > 0, recursion (5.110) is applied backwards, i.e., u?"" is calculated knowing

ﬂf:ll. In this way, a decreasing sequence is obtained which is numerically stable.
Alternatively, (5.111) is applied in the forward direction.
On the other hand, we are concerned with the numerical accuracy here. It turns

out the current method has the same truncation errors as (5.103)(5.104). To see this,

write (5.110), (5.111) in block form

Az ~ ~ Az ~~ Az ~ ~
(=AY — [+ A = (B + &) (5.112)

Multiply with the matrix P on both sides to obtain

A ~ Az ~ ~ A ~ ~
P(I = R PPY 0 - P+ S APTPY, = PR + By) . (5.113)

Equation (5.113) is identical to (5.103) since PAP~ = A, PY =Y, PR =R.
Therefore, we may go back to (5.104) and start calculating the truncation errors from
there.

By substituting (5.101) into (5.104), we obtain

1 Az?
ultl = =3 (1 B)uf ™ + Dzqy ™ + ——(rj + 741)] (5.114)
n 1 n 2Az Az
A zl01+8)g P ot T ra)] L (5.115)
where 3 = . Equation (5.115) still holds when we replace j by j — 1,
n 1 n 2Az Az
g = -5 [(1+B)gj21 + AL uity + = (-1 ri)] - (5.116)

From (5.114) we find

2(7«1 +rj41)] - (5.117)

Az

n 1 n ’I’L
gt = (- Bt — (14 B - =

132

Replace j by j — 1 in (5.117),

n 1 n n Az?
¢4 = (1= 8™ = (L4 Bty — —=(rja +75)] - (5.118)

Substituting (5.117) and (5.118) into (5.116) and collecting terms, we obtain

Az?
(1 - /B)U?i-ll - 2(1 + B)U;H-l + (1 - /B)U?jll T(T]'_H + 27“]' + 7“]'_1) . (5.119)

By substituting (5.102), the right-hand side of (5.119) reads

Az?
i+ 20 4 7j0) =

— o [(207) (e + 200+ ()| - (5.120)
We have two methods for calculating the (w..)? contributions to r; — see the discussion

following (5.104). Both methods result in
(Uze)jer + 2(uze)] + (uze)joy = 4(uzs)] + C’AZQ(uzzzz);-’ , (5.121)

where the constant C' depends on the choice of the numerical approximation. Now

we can write (5.119) as

(1= Bupiy — 201+ B)uj™ + (1= Bujly =

7

—ﬂ(u]._l_1 + 2u} + u]-_l) — Azz(uzz)]- — CT(uzzzz)j . (5.122)

Finally we carry out standard Taylor’s series expansion for (5.122) about (¢,, z;)

to determine the truncation errors. After some algebra, we obtain

C+2

Ut — VUyy = —

1
vAZu,,,, + EVSAtZuzzuzz + o(A%, AZ?) (5.123)

which shows that the truncation error for the method is O(At?, Az?).

133

5.2.2 Order of accuracy for the linear problem

We now go to the main point of our error analysis: study the accuracy of our numerical
methods applied to the two-fluid system in the linear case. Now we have a 4 x4 system
and it’s difficult to apply a similar procedure as that for the previous model problem
to compute the truncation errrors. On the other hand, since we are most interested
in the motion of the interfacial flows, we have to consider the interfacial conditions
in our analysis and it’s not good enough to just calculate the truncation errors.
Consequently, our goal here is to theoretically justify the second-order accuracy for
our numerical methods applied to the linear problem, without worrying too much
about the constant coefficients in the error expressions. Both the governing equations
and the boundary conditions will be considered in our study.

Let’s first investigate the temporal discretizations by using the normal mode anal-

ysis [18][64]. The governing equations, under the Fourier transform in z , are

vk

u = ——P+ u(un — kzu) , (5.124)
p
1

wy, = ——P,+v(w,, —kw), (5.125)
p

iku+w, =0, (5.126)

where k£ > 0. By taking the Laplace transform in ¢ to the above equations we obtain

d? o ik
d? o 1 -
(= +) w== 12
[d22 (l/)] w ,U z (5 8)
d? A
(@—I#)P:O, (5.129)

which is a linear system of ODEs. Together with the boundary conditions we can

calculate the analytical solution, denoted by Y (o).

Now we apply the Crank-Nicolson method in ¢ to approximate (5.124)-(5.126),

v

= —— (P + P") + —[ulf 4+ ul, — B (u")], (5.130)

2

= o (PM4 P 2 [wt ol — P+ w”)] (5.131)

untt —yn 1k
At 2p
w"tt —wn 1
At 2

2

iku"tt 4wt =0

By taking the Laplace transform in t to

where
9 eaAt _
F =

E eaAt +

(5.130)-(5.132), we obtain

1

=0+ O(a>At?) .

(5.132)

(5.133)

(5.134)

(5.135)

(5.136)

Similarly, if we apply the second-order BDF method to approximate (5.124)-

(5.126), we obtain

3untt — 4o 4wt
2At
3wt — 4w 4wt

2At

which recovers (5.133)-(5.135) but with

_%Pn+l + y(u'gjl _ k2un+1) ,
1%

1
__Pzn+1 + V(w;zz-l-l _ k2w"+1) ’

iyt 4wt =0,

a different &,

3 — 46—0At + 6—20At

g =

2At

=0+ O(c°At?) .

135

(5.137)

(5.138)

(5.139)

(5.140)

It’s clear to see the similarity between the two systems (5.133)-(5.135) and (5.127)-
(5.129). Meanwhile, we notice that there is no time derivative in the boundary
conditions. In our numerical methods, we use the implicit treatment for all the
boundary conditions so that the discretized equations take essentially the same form
as the analytic ones. Therefore, we can readily see the solution to (5.133)-(5.135) will

be Y (5). We have
Y (5) =Y (0o + CA#?) =Y (o) + O(At?) (5.141)

which shows that our numerical methods are second-order in time.

However, our numerical methods also include the discretization in the vertical
spacial direction, z, and the numerical errors associated with At and Az are coupled
with each other. So we turn to the numerical errors associated with the discretization
in z, i.e., the ODE solver in our methods, and determine the overall accuracy for both
At and Az.

Let’s first consider the analytic equations (5.127)-(5.129). Following the ideas in

our numerical method, we introduce a new variable

(5.142)

Qs
Il
=
n

and transfer (5.127)-(5.129) into a first-order linear ODE system with respect to z,

d
—Y =B(0)Y 14
=Y =B(o)Y, (5.143)

136

where

1>

\ 7

0
0

—pvik —p(o + vk?)

Accordingly, the interfacial conditions become

S y(l)(o) — 52 Y(Q)(O) =7,

where the matrix S and the vector r are given by

1

0

0

2ikp

0

0 0-
tkp 0

1 0

0 1]

The matrix B(o) has four distinct eigenvalues

The eigenvectors associated with these eigenvalues are

€1 =

[ki)
k%

—k

\ oo

, €2 =

[ki)
k23
k

\ #7)

, €3 =

(77
~(F+5)
1k

(0

N0

137

\ (o) — p@)gh — k*Th |

—k, M(o) =[R2, M(o) =4[k 42

y €4 =

.
L ik
o (5.144)
0
0 B

(5.145)
)

(5.146)

(5.147)
(Tz)
—(F+5)

ik

N0)

(5.148)

We can then use these eigenvectors to diagonalize the matrix B(o). Define a matrix

Q(U) = (ela €92, €3, 64)) (5149)

and perform the transformation

Y =Q(o)Y. (5.150)
Then the system (5.143) becomes
dy B(o)Y (5.151)
e = g .
dz ’
where
(%) [(o))
~ ’?jg ~ _)\2(0’)
Y = - , B(o)=Q '(0)B(0)Q(0) =
Ys)\3(0’)
\ % / \ M(0))
(5.152)
Correspondingly, the interfacial conditions (5.145) become
SH QW () YV(0) — S@ QP (o) YD (0) =1 . (5.153)
Now the system (5.151) may be separated into four scalar equations
4 i 1,2,3,4 (5.154)
7 Ym = AmYm m=1,2,9,4, :
dzy 4
whose general solutions are
Um(2) = Cm erm* m=1,2,3,4, (5.155)

138

where the coefficients ¢, will be determined by the boundary conditions. We consider
the domain —H < z < H where H is a fixed number. We pick a positive integer J
such that H = JAz and denote
Y= iAs, where j — JJ—1,---,0, in upper fluid, (5.156)
0,—-1,---,—J, in lower fluid.
When j =0, i.e., at the interface, we will use the superscripts (1) and (2) to distin-
guish the points in the upper and the lower fluids.

Since we are considering k£ > 0, we have A;, A3 > 0 and Ay, Ay < 0. For the two
positive eigenvalues A;, Az, our numerical integration starts from the top z = z;.
Correspondingly, we assume the boundary conditions for the analytic solutions are
specified on the top and, consequently, the analytic solutions in the upper fluid are
given by

U (2) = Tm(27) M (z=21) z2>0, m=1,3. (5.157)
When evaluated at the grid points z; = jAz, (5.157) yields

T (7)) = T (25) X U= B2 j=JJ—1,---,0, m=1,3. (5.158)

On the other hand, for the two negative eigenvalues Ay, A4, our numerical inte-
gration starts from the bottom z = z_;. Correspondingly, we assume the boundary
conditions for the analytic solutions are specified on the bottom and obtain the ana-

lytic solutions in the lower fluid by
U (2) = Gm(2_g) =50 0 2 <0, m=24. (5.159)
At the grid points z; = jAz,

Um(2)) = Gm(z_y) dm U+ A j=—J—-J+1,---,0, m=2,4. (5.160)

At the interface j = 0, we obtain %1)(0) and %1)(0) by following (5.158), @éz)(O)
and 37'512)(0) by following (5.160). To proceed, we need to determine @'52)(0), %2)(0)
and 37(21)(0), @'fll)(O). This is achieved by applying the interfacial condition (5.153).
Let’s denote the column vectors of the matrix S Q(l)(a) by gﬁ), m=1,2,3,4, and

those of the matrix S® Q) (o) by gf,%), m =1,2,3,4. Then (5.153) becomes

[#20)) 712(0))
~(1) ~2)
Y (0) Yo (0)
(gf), 95", 95, gff)) " —(952), 9", 95", gf))) =r. (5.161)
73 (0) Y3 (0)
1 2
\ %(0)) \ %(0))

Collecting the unknowns to the left-hand side and the knowns to the right-hand side,

we obtain
[72(0)) [7900))
~1) ~2)
@ o @ | 2O _(w oo o @0
—91 592" —93 5 94 —2) =61 5,9, =93, 94 1) +r
Ys3 (0) Y3 (0)
1 ~2)
\ 717(0)) \ #7(0))
(5.162)
Or, written in a compact form,
Mi(0)U = My(o)V + 7, (5.163)

where U denotes the unknowns (@{12)(0), 7 '(0), 73 '(0), 7, ' (0))T and the solution

of (5.163) is given by
U= M; (o) Ms(o) V + M; (o) r . (5.164)

140

Once U is obtained, we can continue the calculation into the other half domain.

For A\; and A3,
Um(z) = T2(0) M2 j=0,-1,---,—J, m=1,3. (5.165)

For Ay and A4,
Um(2;) = TP (0) mit= | j=0,1,---,J, m=24. (5.166)

In summary, the solutions of the system (5.151) are given by

(gl(zj) M (i=7)Az \ (@{12)(0) M IAz \
~(1) A2 jAz ~ A2 (j+)Az
~ Yy (0) ™27 Yo(z_y) eV
Y(z) = > (0) in fluid 1, 2(7-1) in fluid 2,
gg(zj) eha (i=J)Az %2)(0) A3 ilz
\ @"(11)(0) e,\4jAz) \ §4(Z_J) e/\4 (FJ+J)Az)

(5.167)
where A, = An(0), m = 1,2,3,4. The solutions to the original system (5.143) are
recovered by using (5.150).

Now we consider the numerical solutions and compare with the above analytical
solutions. The procedure is similar to the above. However o has to be replaced by

g . Corresponding to (5.143) we have

d
—Y =B(@)Y . 5.168
%y = B(@) (5.168)
By using the transformation
Y =Q(3)Y, (5.169)

where the matrix @ is defined in (5.148) and (5.149), the system (5.168) is transformed
into

¥ =BG)7Y, (5.170)

where B(7) = diag ()\1(5'), A2(T), A3(a),)\4(5)) . We represent the numerical solu-
tion of (5.170) at the grid points z; = jAz as
~ JJ—=1,---,0, in upper fluid,

Yy = @1,]', Y2,j5 U3,5 5 §4,]')) where j =
01_]-"" ,_J, in lower fluid.

(5.171)
Since we are seeking solutions that are exponentially decaying away from the
interface, we can always pick the height of the domain, H , to be big enough so that
the numerical errors in the far fields are as small as possible. Hence, for simplicity
of discussion, we assume the exact solutions are given on the top z = z; and the
bottom z = z_;. That means, ¥, ; = Y (2s) for m = 1,3 and ¥y, — 7 = Y (2-s) for
m = 2,4.
Then, for each of the 4 scalar equations in (5.154), we apply the trapezoidal rule

to obtain

A ~ A ~

For A; and A3, where we start the calcualtions from the top, (5.172) yields

1—Bzy (J-j 1— Bzy (J-j
~ ~ 2 m ~ 2 m
m,j = Ym T Az = Ym\2 I w— y 5.173
sma =Y ’J<1+%Am) il J)<1+%Am) (173
where j = J,J—1,---,0; m=1,3. For A\, and \;, where we start the calculations

from the bottom, (5.172) yields

1+ £2A,\ J+i L4 &2, J+i
* 5)]zgnz_J)< + 5) T (5.174)

g’m,]’ - gm,—J(T Az
1A, 1A,

where j = —-J,—J +1,---,0; m=2,4.

142

At the interface, we need to determine the four unknowns (yl’o, Y20> Y3.05 Ya,0

U . This is achieved in a similar way to (5.163),

Mi(3)U = My(3)V + 7, (5.175)
where

{/ T

V= (310, B, U0, 750 (5.176)

is known by following (5.173) and (5.174). The solution of (5.175) is given by

U= M;{'(5)Ms(3)V + M;'(5) 7 . (5.177)
Then we can proceed to calculate the solutions in the other half domain.
1—22)\,\—i
Tns = To (2" = 0,—1,-+,—J, m=1,3 5.178
Ym, j ym’(] 1+ %)\m y J ’) ’) 19y ()
and
~ L+ 52 Am\i
Tms = T (2) s G =010, m=2,4 (5.179)
1— S,
Therefore, the solutions for the system (5.170) are given by
~ 1-4zy,\ /7 9) (1-42x\ !
(e(58) ") ()")
1+2823,\/ ~ 14823, J+7
_ 7 (ﬁ) o Ya(2-s) (ﬁ) N
Y, = 2 g in fluid 1, 2 2 in fluid 2,
7s(2)) 1-82x3\ 77 ~2) (1-582x3\
Y3z eSS Y30 [FEW '
~(1 1+482x2,\/ _ 1442 J+j
\#GEs)) \ B ())
(5.180)

where A\, = A\n(3), m = 1,2,3,4. The solutions for the original system (5.168) are

recovered by applying (5.169).

143

The numerical errors can then be analyzed by comparing the numerical solutions
(5.180) with the analytical solutions (5.167). We only need to do that for the solutions
in the upper fluid since the discussion is essentially the same for that in the lower
fluid.

From (5.136) or (5.140) we know & = o + CAt*. Here and in what follows we
use the common notation C' to denote any constant scalar, vector or matrix that is
of order O(1). There is no need to distinguish these constants in our analysis here.

Then we have, from (5.147)
An(5) = An(0) + CAE?, m=1,2,3,4. (5.181)

As a result, for m =1, 3,

1— 42),,(5) Az Az AZ? AZ?
S B S A— 1__)\m—><1__)\m— 7 2 (Y= =23 (5)
1 + %/\m(&) (2 (0) 9 (U) + 4 1n(0) 8 m(a) +

A2
= 1—\a(3)Az + %Afn(a) +CAZ
Az, 3 2
= 1-XA,(0)Az+ T/\m(a) + CAz° + CAzAt
e (A% L OAZ + CAZAL . (5.182)
Hence,
(= 5 (2)
1+ 82\, (5)
By comparing (5.180) with (5.167) for the solutions in fluid 1 and using (5.183), we

J—7 .
) = imNA L oAz 4 CAR (5.183)

can readily see that, for m = 1,3,

Um,j = Um(2;) + CAZ" + CAL® (5.184)

144

Similarly, for m = 2,4, we can obtain

<1 + 5 (9)

TA(_))] = e/\m(a)jAz -‘|- CAZQ + OAtQ . (5185)
- T2 'm 2

To prove that (5.184) also holds for m = 2,4, it remains to show
TV =TD(0) + CAZ2 + CAL?, m=2,4. (5.186)

It suffices to show

U=U-+CAZ> + CAP, (5.187)

where U is given by (5.177) and U by (5.164). By performing similar calculations
as above we find V = V + CA2%2 4+ CAt?. Meanwhile by checking the entries of
the matrices M; and M,, defined in (5.163), we obtain M;(5) = M;(c) + CA#?,
M, (5) = Ms(o) + CAt?. Hence (5.177) indicates

U

1

My(0) + CALY) T (My(0) + CAL) (V + CAZ2 + CAL) + (My(o) + CAL) ' r

1

[+ M7 0)CA?) " M (0)(Ma(o) + CA?) (V + CAZ® + CAE?) +
I — MY (0)CA? + CAtY) M[(o) (Ma(o) + CAL?) (V + CAZ* + CA) +
[— MY (0)CA* + CAt)My (o) 7

= M7No)Ma(o)V + M{\(0)r + CAZ" + CAP, (5.188)

where [is the identity matrix and where we have assumed At is small enough so
that the spectral radius of the matrix M;'(c)CA#? is smaller than 1. Substitution

of (5.164) into (5.188) yields (5.187).

145

Therefore, we obtain

Y, =Y (z) + CAZ2 + CAL? . (5.189)

Finally, applying (5.150) and (5.169) to recover the original variables and noting that
Q(7) = Qo) + CAt*, we have

Y, = (Q(o)+ CAP)(Y(z) + CAZ? + CAP)

= Y(z)+ CAZ* + CA¢? (5.190)

which completes our proof that the numerical solutions are 2nd-order accurate in

both At and Az.

146

1]
2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]
[11]

BIBLIOGRAPHY

Acheson, D. J., Elementary Fluid Dynamics, Oxford University Press, 1990.

Al-Zanaidi, M. A. and Hui, W. H., Turbulent air flow over water waves - a
numerical study, J. Flutd Mech., vol. 148, pp. 225-246, 1984.

Anderson, D. A., Tannehill, J. C. and Pletcher, R. H., Computational fluid
mechanics and heat transfer, Hemisphere Publishing Corporation, 1984.

Baker, G. R.., Berger, K. M. and Johnson, J. T., Numerical studies of the nonlin-
ear interaction between turbulent air flow and sea surface waves, with application
to ocean surface wave turbulence, 2001 ITR/AP NSF Grant.

Baker, G. R., Meiron, D. I. and Orszag, S. A., Generalized vortex methods for
free surface flow problems, J. Fluid Mech., vol. 123, pp. 477-501, 1982.

Baker, G. R. and Overman, E. A.,; The Art of Scientific Computing, Draft VI,
2000.

Baker, G. R., Wang, J., Johnson, J. T. and Hayslip, A. R., The linear stability

at the interface between two immiscible incompressible fluids, in preparation.

Batchelor, G. K., An introduction to fluid dynamics, Cambridge University Press,
1967.

Bell, J. B., Colella, P. and Glaz, H. M., A second order projection method for the
incompressible Navier-Stokes equations, J. Comput. Phys., vol. 85, pp. 257-283,
1989.

Billingham, J. and King, A. C., Wave Motion, Cambridge University Press, 2000.

Brown, D. L., Cortez, R. and Minion, M. L., Accurate projection methods for
the incompressible Navier-Stokes equations, J. Comput. Phys., vol. 168, pp.
464-499, 2001.

147

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford, Claren-
don Press, 1961.

Chorin, A. J., A numerical method for solving incompressible viscous flow prob-
lems, J. Comput. Phys., vol. 2, pp. 12-26, 1967.

Courant, R., Friedrichs, K. O. and Lewy, H., Uber die partiellen differenzen-
gleichungen der Mathematischen Physik, Mathematishe Annalen, vol. 100, pp.
32-74. 1928.

Craik, A. D. D., Wave Interactions and Fluid Flows, Cambridge University Press,
1985.

De, S. C., Contribution to the theory of Stokes waves, Proc. Cambridge Phil.
Soc., vol. 51, pp. 713-736, 1955.

Douglas, J. and Rachford, H. H.; On the numerical solution of heat conduction
problems in two or three space variables, Trans. Amer. Math. Soc., vol. 82, pp.
421-439, 1956.

E, Weinan and Liu, J.-G., Projection method I: convergence and numerical
boundary layers, SIAM J. Numer. Anal., vol. 32, no. 4, pp. 1017-1057, 1995.

E, Weinan and Liu, J.-G., Projection method II: Godunov-Ryabenki analysis,
SIAM J. Numer. Anal., vol. 33, no. 4, pp. 1597-1621, 1996.

Evans, M. E. and Harlow, F. H., The particle-in-cell method for hydrodynamic
calculations, Los Alamos Scientific Laboratory Report LA-2139, Los Alamos,
New Mexico, 1957.

Fenton, J. D., A fifth-order Stokes theory for steady waves, J. Waterw. Port
Coastal Ocean Eng., vol. 111, no. 2, pp. 216-234, 1985.

Ferziger, J. H. and Peric, M., Computational Methods for Fluid Dynamaics,
Springer, 2002.

Frankel, S. P., Convergence rates of iterative treatments of partial differential
equations, Mathematical Tables and Other Aids to Computation, vol. 4, pp.
65-75, 1950.

Fraysse, V., Giraud, L. and Gratton, S., A set of GMRES routines for real and
complex arithmetics, CERFACS Technical Report TR/PA/97/49, France, 1997.

148

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Gent, P. R. and Taylor, P. A.; A numerical model of the air flow above water
waves, J. Fluid Mech., vol. 77, pp. 105-128, 1976.

Glimm, J., McBryan, O., Menikoff, R. and Sharp, D., Front tracking applied to
Rayleigh-Taylor instability, SIAM J. Sci. Stat. Comput., vol. 7, pp. 230-251,
1986.

Golub, G. H. and Van Loan, C. F., Matrix Computations, The Johns Hopkins
University Press, 1996.

Gresho, P. M., Incompressible fluid dynamics: Some fundamental formulation
issues, Annu. Rev. Fluid Mech., vol. 23, pp. 413-453, 1991.

Gresho, P. M. and Sani, R. L., On pressure boundary conditions for the incom-
pressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, vol. 7, pp.
1111-1145, 1987.

Harlow, F. H. and Welch, J. E., Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Phys. Fluids, vol. 8, pp. 2182-2189,
1965.

Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput.

Phys., vol. 49, pp. 357-393, 1983.

Harten, A., Engquist B., Osher S. and Chakravarthy S., Uniformly high order
accurate essentially non-oscillatory schemes, II1, J. Comput. Phys., vol. 71, pp.
231-303, 1987.

Lomax, H., Pulliam, T. H. and Zingg, D. W., Fundamentals of Computational
Fluid Dynamics, Springer, 2001.

Hinch, E. J., Perturbation methods, Cambridge University Press, 1991.

Hirt, C. W. and Nichols, B. D., Volume of fluid (VOF) method for dynamics of
free boundaries, J. Comput. Phys., vol. 39, pp. 201-225, 1981.

Holyer, J. Y., Large amplitude progressive interfacial waves, J. Fluid Mech., vol.
93, pp. 433-448, 1979.

Kim, J. and Moin, P., Application of a fractional-step method to incompressible
Navier-Stokes equations, J. Comput. Phys., vol. 59, pp. 308-323, 1985.

149

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Kumar, V., Grama, A., Gupta, A. and Karypis, G., Introduction to Parallel
Computing: Design and Analysis of Algorithms, The Benjamin/Cummings Pub-
lishing Company, 1994.

Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical
computation, Comm. Pure Appl. Math., vol. 7, pp. 159-193, 1954.

Lax, P. D. and Wendroff B., Systems of conservation laws, Comm. Pure Appl.
Math., vol. 13, pp. 217-237, 1960.

Levi Civita, M. T., Determination rigoureuse des ondes permanentes d’ampleur
finie, Math Ann., vol. 93, pp. 264-314, 1925.

Longuet-Higgins, M. S. and Cokelet, E. D., The deformation of steep surface
waves on water, I: A numerical method of computation, Proc. R. Soc. Lodon A,
vol. 95, pp. 1-26, 1976.

McCormick, S. F., Multigrid Methods (Frontiers in Applied Mathematics 3),
SIAM, Philadelphia, 1987.

Nayfeh, A. H., Perturbation methods, John Wiley & Sons, 1973.

Noh, W. F. and Woodward, P. R., SLIC (simple line interface calculation), in
Proc. 5th Int. Conf. Fluid Dyn., vol. 59, Lect. Notes Phys., pp. 330-340, Berlin:
Springer-Verlag, 1976.

Ockendon, H. and Ockendon, J. R., Viscous Flow, Cambridge University Press,
1995.

O’Brien, G. G., Hyman, M. A. and Kaplan, S., A study of the numerical solution
of partial differential equations, J. Math. Phys., vol. 29, pp. 223-251, 1950.

Orszag, S. A., Numerical simulation of incompressible flows within simple bound-
aries I: Galerkin (spectral) representations, Stud. Appl. Math., vol. 50, pp.
293-327, 1971.

Osher, S. and Sethian, J. A., Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton- Jacobi formulations, J. Comput. Phys.,
vol. 79, pp. 12-49, 1988.

Overman, E. A., Matlab Overview, Draft, 2000.

150

[61] Penney, W. G. and Price, A. T., Some gravity wave problems in the motion
of perfect liquids, part II: Finite periodic stationary gravity waves in a perfect
liquid, Phil. Trans. R. Soc. Lond. A, vol. 244, pp. 251-284, 1952.

[52] Peyret, R. and Taylor, T. D., Computational Methods for Fluid Flow, Springer,
Berlin, 1983.

[53] Peyret, R., Spectral Methods for Incompressible flow, Springer, 2002.

[54] Richtmyer, R. D. and Morton, K. W., Difference method for initial value prob-
lems, John Wiley & Sons, 1967.

[65] Rogers, S. E., Kwak, D. and Kiris, C., ATAA Paper 89-0463, 1989 (unpublished).

[66] Rottman, J. W., Steep standing waves at a fluid interface, J. Fluid Mech., vol.
124, pp. 283-306, 1982.

[67] Saad, Y. and Schultz, M., GMRES: A generalized minimal residual algorithm
for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., vol. 7,
pp- 856-869, 1986.

[68] Scardovelli, R. and Zaleski, S., Direct numerical simulation of free surface and
interfacial flow, Annu. Rev. Fluid Mech., vol. 31, pp. 567-603, 1999.

[59] Schwartz, L. W., Computer extension and analytic continuation of Stokes’ ex-
pansion for gravity waves, J. Fluid Mech., vol. 62, pp. 553-578, 1974.

[60] Schwartz, L. W. and Fenton, J. D., Strongly Nonlinear Waves, Ann. Rev. Fluid
Mech., vol. 14, pp. 39-60, 1982.

[61] Schwartz, L. W. and Whitney, A. K., A semi-analytic solution for nonlinear
standing waves in deep water, J. Fluid Mech., vol. 107, pp. 147-171, 1981.

[62] Sethian, J. A., Level set methods and fast marching methods, Cambridge Univer-
sity Press, 2000.

[63] Stokes, G. G., On the theory of oscillatory waves, Trans. Cambridge Philos.
Soc., vol. 8, pp. 441-455, 1847.

[64] Strikwerda, J. C. and Lee, Y. S., The accuracy of the fractional step method,
SIAM J. Numer. Anal., vol. 37, pp. 37-47, 1999.

151

[65] Tsuji, Y. and Nagata, Y., Stokes’ expansion of internal deep water waves to the
fifth order, J. Ocean. Soc. Japan, vol. 29, pp. 61-69, 1973.

[66] Sullivan, P. P., McWilliams, J. C. and Moeng, C. H., Simulation of turbulent
flow over idealized water waves, J. Fluid Mech., vol. 404, pp. 47-85, 2000.

[67] Van Dyke, M., Perturbation methods in fluid mechanics, Academic Press, 1964.

[68] Van Kan, J., A second-order accurate pressure-correction scheme for viscous
incompressible flow, SIAM J. Sci. Stat. Comput., vol. 7, pp. 870-891, 1986.

[69] Vinje, T. and Brevig, P., Numerical simulation of breaking waves, Adv. Water
Resources, vol. 4, pp. 77-82, 1981.

[70] Wang, J. and Baker, G., A Numerical Approach for Computing Two-Dimensional
Viscous Incompressible Flows with Interfaces, in preparation.

[71] Welch, J. E., Harlow, F. H., Shannon, J. P. and Daly, B. J., The MAC method,
Los Alamos Scientific Laboratory Report LA-3425, Los Alamos, New Mexico,
1966.

[72] Whitham, G. B., Linear and Nonlinear Waves, John Wiley & Sons, 1974.

152

