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ABSTRACT

Since wireless sensor networks are inherently fault-prone and since their on-site

maintenance is infeasible, scalable self-healing is crucial for enabling the deployment

of large-scale sensor network applications. To achieve scalability of self-healing, in

this dissertation we focus on addressing (1) the scalability of the cost-overhead of

self-healing with respect to the size of the network, and (2) the scalability of the

design effort for self-healing with respect to the size of the application software.

Our research on fault-containment addresses the first problem: By confining the

contamination of faults within a small area, this approach achieves healing within

work and time proportional to the size of the perturbation, independent of the size of

the network. Our research on specification-based design of self-healing addresses the

second problem: Since specifications are more succinct than implementations, this

approach yields efficient design of self-healing even for large implementations.

These two research directions are complementary, and together enable a scalable

design of local self-healing for large-scale sensor network applications.
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CHAPTER 1

INTRODUCTION

Fault-tolerance is the ability of a system to deliver a desired level of functionality

in the presence of faults. Fault-tolerance is crucial for many systems and is becoming

vitally important for computing- and communication- based systems as they become

intimately connected to the world around them, using sensors and actuators to mon-

itor and shape their physical surroundings.

In contrast to only 2% of processors that find their way into interactive computers,

such as laptops, desktops, and servers, the remaining 98% of processors are employed

in embedded computers, such as those used in cell phones, personal digital assistants,

vehicles, robots, home and industrial appliances [103]. Various efforts are beginning

to provide ubiquitous network connectivity for these embedded devices to harvest the

information derived by these embedded nodes and to enable remote controlling of

these embedded systems [91]. Owing to the rapid growth rate of the embedded sys-

tems market, these networked, embedded devices are expected to outnumber humans

by a hundred or thousands to one in the near future [103].

A prime example of the rising popularity of embedded systems is the sensor net-

works [2, 54, 104]. Recent advances in embedded systems technology have made it

feasible to build low-cost and low-power wireless sensor nodes, and have, hence,
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enabled deployment of large-scale wireless sensor networks (with potentially many

thousands of nodes). Even in this early stages of their development, sensor networks

have already found several applications. They are employed in habitat monitoring to

study the nesting behaviors of birds on a remote island [78], in precision agriculture

to monitor the humidity levels at different parts of a vineyard [57], and in civil en-

gineering to monitor the stress level of structures under earthquake simulations [62].

A major application area for sensor networks is the military and surveillance sys-

tems [7, 33, 35, 98].

Sensor networks introduce new challenges for fault-tolerance. Sensor networks

are inherently fault-prone due to the shared wireless communication medium: mes-

sage losses and corruptions (due to fading, collision, and hidden-node effect) are the

norm rather than the exception. Moreover, node failures (due to crash and energy

exhaustion) are commonplace. Thus, sensor nodes can lose synchrony and their pro-

grams can reach arbitrary states [59]. Since on-site maintenance is not feasible, sensor

network applications should be self-healing. Another challenge for fault-tolerance is

the energy-constraint of the sensor nodes. Applications that impose an excessive

communication burden on nodes are not acceptable since they drain the battery

power quickly. Thus, self-healing of sensor network applications should be local and

communication-efficient.

1.1 Scalability of Fault-Tolerance for Sensor Network Appli-

cations

Since wireless sensor networks are inherently fault-prone and since their on-site

maintenance is infeasible, scalable self-healing is crucial for enabling the deployment

of large-scale sensor network applications. To achieve scalability of self-healing, in

2



this dissertation we focus on addressing (1) the scalability of the cost-overhead of

self-healing with respect to the size of the network, and (2) the scalability of the

design effort for self-healing with respect to the size of the application software.

1.1.1 Scalability with respect to network size

Several sensor network services, such as tracking, routing, and spatial querying,

require continuous maintenance of distributed data structures, such as trees, paths,

and clusters, over a large number of sensor nodes. This is a challenging task because

message losses and corruptions (due to fading, collisions, and hidden node effects) and

node failures (due to software/hardware crashes or energy exhaustion) can drive por-

tions of these large-scale structures to be arbitrarily corrupted and hence to become

inconsistent with the rest of the structure.

For dealing with arbitrary corruptions, we need self-healing systems: A self-healing

system ensures eventual satisfaction of system specifications upon starting from a cor-

rupted state. However, since faults can temporarily violate the program specifications

in a self-healing system, extra care should be taken for containing the effects of faults:

Faults in one part of the system may contaminate the entire system and hence may

result in a high-cost, system-wide correction.

Thus, mechanisms for local containment of faults are needed for continuous and

local maintenance of large-scale data structures.

1.1.2 Scalability with respect to implementation size

Since the complexity of software grows drastically with respect to its size, large-

scale software systems are extremely error-prone and fail frequently. Especially for

3



sensor network applications, that are inherently distributed, reasoning about the sys-

tem and verification of correctness are more difficult due to the lack of a centralized

controller and the lack of a globally shared memory. Again due to their overwhelm-

ing complexity, design of fault-tolerance for large-scale software systems remains a

challenging task.

Whitebox approaches for designing fault-tolerance, such as exception handling,

forward recovery, recovery blocks [92], and application-specific fault-tolerance meth-

ods [10,11], assume that the implementation is fully available, and study the source-

code for designing fault-tolerance. However, they are not applicable for large-scale

software systems because the task of studying the implementation and designing a

fault-tolerant version becomes unbearable as the size of the implementation grows.

Blackbox solutions, such as reset and restartability approaches, may be adequate

for centralized software systems, however they are inapplicable for massively dis-

tributed software since a reset of the software would mean a global reset of the entire

network, and would incur a lot of work and down time.

Thus, a more efficient and informed approach is needed for achieving scalable

design of fault-tolerance with respect to software size.

1.2 Thesis

In this dissertation, we address the above two scalability questions.

Towards addressing the scalability problem of cost-overhead of fault-tolerance with

respect to the network size, we propose that scalable design of fault-tolerance

4



to distributed data structures can be achieved by using efficient and light-

weight fault-containment techniques for self-healing. By confining the con-

tamination of faults within a small area, this approach achieves fault-local self-healing:

Work and time spent for recovery are proportional to the size of the perturbation as

opposed to the size of the network.

Towards addressing the scalability problem of fault-tolerance design with respect

to the implementation size, we propose that scalable design of fault-tolerance can

be achieved without knowledge of system implementation but with knowl-

edge only of system specification. That is, for the design of fault-tolerance we

eschew knowledge of system implementation in favor of knowledge of system speci-

fication. Since specifications are typically more succinct than implementations, our

specification-based design of fault-tolerance approach offers the promise of scalability

when the design effort for adding fault-tolerance is proportional to the size of the

system. Also, since specifications admit multiple implementations and since system

components are often reused, a specification-based approach offers reusability. Fi-

nally, in contrast to a blackbox approach, a specification-based approach allows the

design of efficient (low-cost) fault-tolerance by virtue of exploiting more information

about the system.

We give a brief overview of these two techniques in the following two subsections.

1.2.1 Fault-containment for scalability with respect to net-
work size

For achieving local self-healing of hierarchical tracking of mobile objects in sensor

networks, we developed a hierarchy-based fault-containment technique [35]. The key

idea of this technique is to wait for a longer time before updating a wider region’s

5



view. We achieve this by using larger timeouts before propagating an update to

the higher levels of the hierarchy. This way, more recent (more accurate) updates

coming from lower levels can catch up to (contain) misinformed updates at higher

levels. As a result, contamination due to faults is restricted to an area proportional

to the perturbation size (i.e., the size of the initially faulty area), and our tracking

path stabilizes in work and time proportional to the perturbation size instead of the

network size. Furthermore, our solution is such that the latency imposed by waiting

for larger timeouts at higher levels of the hierarchical partitioning does not affect the

availability or quality of tracking; it is still possible to seamlessly track continuously

moving objects.

For achieving local self-healing of clustering, we developed a stretch-factor based

fault-containment technique [34]. The key idea of this technique is to allow each

cluster to tolerate expansion up to two-fold of its ideal size. This way, the faults

hitting a cluster are subsumed locally within that cluster, and cascading effects, that

may require a re-clustering of the entire network, are avoided. For example, we show

that thanks to the stretch-factor of two-fold, the nodes in a collapsed cluster can

either join their neighboring clusters or form a new cluster without disturbing their

neighboring clusters.

1.2.2 Specification-based design for scalability with respect
to implementation size

In order to demonstrate that scalable design of fault-tolerance is achievable via a

specification-based approach, we have developed a novel method that enables such a

design. Loosely speaking, our method is to first design a wrapper component to add

fault-tolerance at the system specification level and then to transform this wrapper to
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the system implementation level by means of a fault-tolerance preserving and compo-

sitional refinement [6,32]. Even though the wrapper is designed solely by studying the

system specification and not the system implementation, the nature of our transfor-

mation enables us to conclude that the transformed wrapper provides fault-tolerance

to the system implementation.

W’C

WA

Figure 1.1: Specification-based design technique.

For example, given an abstract system specification A, we first design a fault-

tolerance wrapper W such that adding W to A yields a fault-tolerant system. Our

transformations ensure that for any concrete implementation C of A, adding a concrete

implementation W ′ of W would also yield a fault-tolerant system.

Note that since the refinements from A to C and W to W ′ can be done inde-

pendently, specification-based design enables a posteriori or dynamic addition of

fault-tolerance. That is, given a concrete implementation C, it is possible to add

fault-tolerance to C by first designing an abstract fault-tolerance wrapper W using

solely an abstract specification A of C, and then adding a concrete refinement W ′ of

W to C.
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1.3 Outline of the Dissertation

This dissertation consists of two parts:

1. fault-local self-healing, and

2. specification-based design of self-healing.

In the first part, we present our work on fault-containment to achieve scalable self-

healing with respect to network size. In Chapter 2 we present a hierarchy-based fault-

containment technique for fault-local self-healing of tracking, and in Chapter 3 we

present a stretch-factor based fault-containment technique for fault-local self-healing

of clustering. We discuss related work on fault-containment in Chapter 4.

In the second part, we present our work on specification-based design of self-

healing to achieve scalability with respect to implementation size. To this end, we

introduce two fault-tolerance preserving and compositional refinements, namely ev-

erywhere and convergence refinements, in Chapter 5. In Chapter 6, we illustrate the

design of specification-based self-healing to our hierarchical tracking service presented

in Chapter 2 in order to achieve scalability of design effort of self-healing with respect

to the real world implementations of this tracking service. In Chapter 7, we discuss

the soundness and completeness of the abstraction functions we use, and present a

preliminary method for achieving automated synthesis of specification-based design

of fault-tolerance. We present related work on design of fault-tolerance and fault-

tolerance preserving refinements in Chapter 8.

Finally, we present concluding remarks in Chapter 9.
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PART I
FAULT-LOCAL SELF-HEALING
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CHAPTER 2

A HIERARCHY-BASED FAULT-LOCAL HEALING
TECHNIQUE FOR TRACKING IN SENSOR NETWORKS

2.1 Introduction

Owing to applications in mobile computing, cellular telephony, and military con-

texts, tracking of mobile objects has received significant attention [16,20,38,90,100].

More recently, the DARPA Network Embedded Software Technology (NEST) pro-

gram posed tracking as a challenge problem in wireless sensor networks, and several

groups have delivered small-scale (using 100 node networks) tracking demonstrations:

pursuer-evader tracking with 1 human controlled evader and 3 autonomous pursuers

is showcased in [99], and detection, classification, and tracking of various intruders,

such as persons and cars, are demonstrated in [7].

Besides the opportunities they provide for tracking of objects, wireless sensor net-

works also impose new challenges. Sensor nodes are energy constrained; algorithms

that require an excessive communication burden are unacceptable as they drain bat-

tery power quickly. Sensor networks are fault-prone, message losses and corruptions

and node failures are frequent; nodes can lose synchrony and programs can reach

arbitrary states [59]. On-site maintenance is infeasible; sensor networks should be
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self-healing. Moreover, self-healing should achieve fault-containment; otherwise a

fault in one region of the network may contaminate the entire network and require

a global correction, wasting the energy of the nodes and hindering the availability of

the tracking service.

Contributions. Our contribution is to present a hierarchy-based fault-local stabiliz-

ing algorithm, namely STALK (Stabilizing TrAcking via Layered linKs), for tracking

in sensor networks. Starting from an arbitrarily corrupted state, STALK satisfies

its specification in time and work proportional to perturbation size (i.e., the size of

the initially faulty area) instead of network size. This fault-local self-healing notion

implies fault-containment: fault contamination is confined to an area proportional to

the perturbation size. We achieve fault-containment by slowing propagation of infor-

mation as the levels of the hierarchy underlying Stalk increase, enabling the more

recent information propagated by lower levels to override misinformation at higher

levels.

Our scheme for achieving fault-containment does not interfere with the efficiency

of tracking operations in the absence of faults. While achieving fault-local stabi-

lization, Stalk also adheres to the locality of tracking operations: a find invoked

within distance d of the mobile object requires O(d) time and communication cost

(work) to reach the object, and a move of the object to distance d away requires

O(d ∗ log(network diameter)) time and work to update the tracking structure. Fur-

thermore, Stalk achieves seamless tracking of a continuously moving object by en-

abling concurrent executions of move and find operations.

Overview of Stalk. For achieving scalability, Stalk employs a hierarchical struc-

ture. For ensuring the locality of both find and move operations, Stalk adopts a
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partial information strategy. The tracking information is maintained with accuracy

related to the distance from the mobile object: Nearby nodes that are relatively in-

expensive to update have more recent and accurate information about the object,

whereas far away nodes that are relatively expensive to update have older and more

approximate information about the object.

Tracking structure. We assume a hierarchical partitioning of the sensor network

into clusters based on radius. The tracking structure is a path rooted at the highest

level of the hierarchy. Each process in the tracking path has at most one child, either

at its level or one below it in the hierarchy, and the mobile object resides at the

leaf of the tracking path, at the lowest level. Each process in the path points to a

process that is generally closer to the object and has more recent information about

its location.

Find operation. A find operation invoked at a process queries neighboring pro-

cesses at increasingly higher levels of the clustering hierarchy until it encounters a

process on the tracking path. Once the tracking path is found, the find operation

follows it to its leaf to reach the mobile object.

Move operation. We implement move-triggered updates by means of two local

actions, grow and shrink. The grow action enables a path to grow from the new

location of the object to increasingly higher levels of the hierarchy and connect to the

original path. The shrink action cleans branches deserted by the object. Shrinking

also starts at the lowest level and climbs to increasingly higher levels. Despite that

grow and shrink occur concurrently, we achieve the move operation successfully by

using suitable values for the process timers, which actuates the execution of these

actions.
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Fault-local stabilization. We use two concepts for achieving fault-locality: hierar-

chical partitioning and level-based timeouts for execution of actions. The key idea

is to wait for more time before updating a wider region’s view. We employ larger

timeouts when propagating an update to a higher level of the hierarchy and, thus,

more recent updates coming from lower levels can catch-up to misinformed updates

at higher levels. The latency imposed by waiting is a constant factor of the commu-

nication delay and does not affect the accessibility of the tracking structure.

A perturbation count for a given system state is the minimum number of processes

whose state must change to achieve a consistent state of the system. For work and

time calculations the level of “perturbed” processes are important; a fault hitting a

level l process affects the entire level l cluster and hence its size is rl. We define

perturbation size to be a weighted sum of the levels of perturbed processes. A stabi-

lizing system is fault local stabilizing if the time and work required for stabilization

are bounded by functions of perturbation size rather than system size.

Concurrent move and find operations. Stalk achieves seamless tracking of a con-

tinuously moving object: An object can relocate before the effects of its previous move

operations finish updating the tracking path, and a find operation may be concur-

rently in progress with these move operations. During concurrent move operations, it

is not possible to achieve a complete tracking path; there will be discontinuities in the

path. By giving an upperbound on the speed of the object, we prove a reachability

condition on the tracking path and ensure that if a find encounters a dead-end while

following a path, there is always an available newer path nearby.
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Related work. Stalk provides a “network middleware support” for tracking: it

assumes an underlying service for detection of a mobile object [56,75,111] and provides

a basis for higher level applications such as multiple target tracking [96] and pursuer-

evader applications [48].

The idea of employing a hierarchical structure for achieving scalability of tracking

has been extensively researched [3, 110] in the context of personal communication

systems and mobile Internet Protocol, and the idea of using a partial information

strategy to optimize both finds and moves has been investigated in [16, 23].

In [16], a hierarchy of regional directories is constructed so that each level l di-

rectory enables a node to find a mobile object within 2l distance from itself. The

communication cost of a find for an object d away is O(d ∗ log2N) and that of a

move of distance d is O(d ∗ logD ∗ logN + log2D/logN) (where N is the number

of nodes and D is network diameter). A topology change, such as a node failure,

necessitates a global reset of the system since the regional directories depend on a

non-local clustering program [15] that constructs a sparse cover of a graph. In [23],

the tracking problem is considered for a geometric network model similar to ours, and

cost complexity similar to ours is achieved.

Stalk offers properties that these protocols lack, such as fault-tolerance and

seamless tracking of a continuously moving object. Stalk is not only fault-tolerant

but also stabilizing and fault-containing as well: Starting from an arbitrarily cor-

rupted state, Stalk recovers within work and time proportional to the size of the

faulty region. Stalk achieves seamless tracking of continuously moving objects: An

0The move operation in [23] costs O(d * log d) work (where d is the distance moved by the
object), but their interpretation of “amortized cost” is more permissive than ours. Using the same
interpretation for “amortized cost”, the move operation in Stalk also costs O(d * log d) work.
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object can relocate before the effects of its previous move operations finish updating

the tracking path, and a find operation may be concurrently in progress with these

move operations.

There has been some work on self-stabilizing tracking algorithms [33,38,51]. The

distributed arrow protocol [51] suffers from the dithering problem —where an object

moving back and forth across a multi-level hierarchy boundary may lead to nonlocal

updates. The protocols in [33] do not exploit the hierarchy idea and are not scalable

for large networks. In [38], using a hierarchy of location servers, a stabilizing location

management protocol is presented. However, in contrast to Stalk, the protocol

in [38] fails to ensure locality of finds. Also, none of these protocols enjoy fault-

containment.

The area of fault-containment of self-stabilizing algorithms has received growing

interest [12,17,45,86]. The notion of fault containment within the context of stabiliza-

tion is formalized first in [45]; algorithms were proposed to contain state-corruption

of a single node in a stabilizing spanning tree protocol. In [86] fault-containment

of Byzantine nodes have been studied for dining philosophers and graph coloring al-

gorithms; this work requires the range of contamination to be constant and is too

limiting for problems such as tracking and routing whose locality are not constant.

In [17], a broadcast protocol is proposed to contain observable variables in the pres-

ence of state corruptions, but the protocol allows for global propagation of internal

protocol variables. We present a more detailed survey of the fault-containment and

fault-local stabilization literature in Chapter 4.

A protocol that achieves fault-local stabilization in shortest path routing is pre-

sented in [12]. To achieve fault-containment the protocol uses containment actions
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that are a constant time faster than the fault-intolerant program actions. In contrast

to [12], we do not have a privileged set of containment actions in Stalk; the program

actions serve to this end. We enable fault-containment in a hierarchy-based manner

by suitably varying the speed of actions (through the use of process timers) as per

the level of the hierarchy they are executed at.

Organization of the chapter. After presenting the model in the next section, we

present specifications of Stalk in Section 2.3. In Section 2.4, we present the move

operation. Fault-local stabilization of the tracking path is discussed in Section 2.5.

The find operation is in Section 2.6. In Section 2.7 we discuss concurrent execution

of move operations, where the mobile object may relocate while previous move oper-

ations are still updating the tracking structure. In Section 2.8 we consider execution

of find operations while moves are concurrently updating the tracking structure. Fi-

nally, we conclude the chapter in Section 2.9. We refer the readers to the technical

report [35] for the detailed proofs.

2.2 Model

We consider a sensor network consisting of multiple sensor locations. Each sensor

location plays host to (possibly) multiple processes with identifiers from a set P . In

this chapter, as a convention, i and j refer to process identifiers, and i.x refers to the

value of variable x at i.
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We denote the location of a process i with loc(i) (and for convenience the set of

locations of process set I with loc(I)). The Euclidean distance between the locations

of i and j is denoted by dist(i, j).

Hierarchical partitioning. Assume a hierarchical partitioning of processes over

locations. Consider a tree with levels 0 through MAX of all processes P . For each

process i we define:

1. lvl(i), the level of process i in the tree,

2. h(i), i’s parent in the tree (for convenience, we define h(i) to be i if lvl(i) =

MAX),

3. hn(i), the iterated parent, defined as h(i) if n = 1 and h(hn−1(i)) otherwise,

4. children(i), i’s children in the tree.

We assume a one-to-one correspondence between the level 0 processes in the tree

and node locations. For a location v we denote the level 0 process residing at v as

proc0(v). We also assume that for any i such that lvl(i) > 0, i’s location loc(i) is

equal to loc(j) of one of its children j. This partitioning yields clusters. For i such

that lvl(i) = k+1, 0 ≤ k < MAX, children(i) together form a cluster C at level

k whose clusterhead is i. Radius of cluster C is the maximum distance from i to

any process in C. Next we introduce the symmetric neighbor relation. For level 0

processes i, j, i 6=j, j ∈ nbr(i) ⇐⇒ dist(i, j) ≤ 1. For level k > 0 processes i, j, that

are clusterheads of level k− 1 clusters Ci and Cj, i and j are neighbors if Ci contains

a process that is a neighbor of a process in Cj.
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Geometry assumptions. We fix the following assumptions about the hierarchical

partitioning:

1. We define a real constant r ≥ 3 to denote the cluster dilation factor; the radius

of a level l cluster is at least rl,

2. We define a real maximum cluster radius constant m ≥ 2/
√

3 to bound the

radius of a level l cluster to be at most mrl,

3. We define a real minimum cluster breadth constant q satisfying 2m+r−1
r−1

≤ q ≤

2m to restrict the locations in non-neighboring level l clusters to be greater than

qrl apart.

The constraints imply a bound, ω, on the number of neighbors at any level l > 0.

They also imply that, for l > 0, the distance between two neighboring level l processes

is within 2rl−1-to-2mrl−1, and the distance between a level l process and its children

in the hierarchy is at most mrl−1. This clustering does not necessarily imply a uniform

tiling of the network, as radii of clusters at the same level are not required to be the

same. The network diameter, D, is the maximum distance between any two locations

in the network. Each node in the network is deployed with O(MAX) storage where

MAX ≤ logrD.

An example of the clustering geometry with r = 3 can be found in Section 2.4.

Our hierarchical partitioning constraints can be realized by using a distributed and

fault-local stabilizing clustering protocol, Floc [34].
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2.3 System Specification

Here we describe the specification for Stalk modeled as I/O automata.

Mobile object. The mobile object Evader resides at exactly one sensor loca-

tion. An objecti occurs at all processes residing at the object’s current location and

no objectj occurs for all other locations. When moving, the object nondeterminis-

tically moves to a neighboring location.

STALK. Stalk consists of two parts, Tracker and Finder, as seen in Figure 2.1.

Tracker maintains a tracking structure by propagating mobile object information

obtained through object and no object inputs. Finder answers client finds by

outputting found at the mobile object’s current location. Finder queries Tracker

for location information through cpq requests and Tracker answers with cpointer

responses.

find
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Figure 2.1: STALK architecture.
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Both parts are implemented distributedly by individual processes communicating

through channels. Each process is assumed to have access to its own local timer, that

advances at the same rate at all processes. We do not assume time synchronization

across processes.

Channels. We use a communication abstraction of a (possibly) multi-hop channel

Channeli,j between any two processes i and j. Such channels are accessed using

send(m)i,j to send from i and receive(m)i,j to receive at j. The cost of sending a

message through Channeli,j is dist(i, j), and in the absence of faults a message is

removed from the channel by at most δ ∗ dist(i, j) time where δ is a known message

delay factor.

Fault model and tolerance specification. Processes can suffer from arbitrary

state corruption. These faults may occur at any time and in any finite number

and order. Channels may suffer faults that corrupt, manufacture, duplicate, or lose

messages.

We say a system is self-stabilizing iff starting from an arbitrary state the sys-

tem eventually recovers to a consistent state, a state from where its specification is

satisfied. In Section 2.4 we characterize consistent states for our implementation.

A perturbation count for a given system state is the minimum number of processes

whose state must change to achieve a consistent state of the system. For work and

time calculations the level of “perturbed” processes are important; a fault hitting a

level l process affects the entire level l cluster and hence its size is rl. We define
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perturbation size to be a weighted sum of the levels of perturbed processes. A stabi-

lizing system is fault local stabilizing if the time and work required for stabilization

are bounded by functions of perturbation size rather than system size.

Complete system. The complete system is the composition of all channels, Evader

and STALK.

We require the system be fault-local stabilizing to a consistent state. Starting

from a consistent state with no outstanding find requests and no process or channel

corruptions, we require that:

1. A find is eventually followed by a found at a location hosting the mobile object,

2. Each found is in response to a prior unanswered find,

3. If a find is initiated at a process Euclidean distance d from the mobile object,

the time and work (communication) performed to service it is at most O(d),

4. If the object moves d distance, the amortized time and work to update the

tracking structure is O(d ∗ log(D)).

2.4 Tracker

Here we describe how Tracker updates the tracking path after a move, assuming

that the mobile object does not relocate until the updates are completed. In Section

2.7, we relax this restriction and allow the object to relocate while effects of its

previous moves are still rippling through the path.

Updates to the tracking path are implemented by two local actions, grow and

shrink. The grow action enables a new path to grow to increasingly higher levels of

the clustering hierarchy and connect to the original path at some level. The shrink
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action cleans old branches deserted by the mobile object starting from the lowest levels

and climbing to increasingly higher levels. We present the grow action in Section 2.4.1

and the shrink action in Section 2.4.2.

A hierarchical partitioning of a network inevitably results in multi-level cluster

boundaries: even though two processes are neighbors they might be contained in

different clusters at all levels (except the top) of the hierarchy. If a process were

to always propagate grows and shrinks to its clusterhead, a small movement of the

object back and forth across a multi-level cluster boundary could result in work

proportional to the size of the network rather than the distance of the move. To

resolve this “dithering” problem, we allow one lateral link per level in our tracking

path. A process occasionally connects to the original path with a lateral link to a

neighboring process rather than by propagating a link to its parent in the hierarchy.

We limit the lateral link count per level in order not to upset the locality properties

of the find operation.

To implement Tracker, each process i maintains a child pointer c, a parent pointer

p, a grow timer gtime, and a shrink timer stime. In the initial states, i.c = i.p = ⊥

and i.gtime = i.stime = ∞ for all i. We assume the use of grow and shrink constants

g and s that satisfy:

s ≥ 10.5δm (2.1)

s + δm

r
< g ≤ s − δm (2.2)

A grow or shrink timer is set at i for g∗rlvl(i) or s∗rlvl(i) time respectively. The values

for the timers are chosen to satisfy the requirements on both the work calculations in

Section 2.4.4 and the fault-containment proofs in Section 2.5.
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Trackeri has four inputs: objecti, no objecti, cpqi, and receive(msg)j,i, and

two outputs: cpointer(j)i and send(msg)i,j (msg can be gquery, ack gquery, grow,

or shrink).

Trackeri answers a cpqi input (an information request from Finderi) with a

cpointer(i.c)i output, providing the value of its child pointer. The sends and re-

ceives propagate grows and shrinks as explained in detail below for process i.

2.4.1 Grow action

A grow updates a path to point to the new location of the object.

If i is at level 0, the object is at the same location as i, and i’s child pointer c does

not point to itself, then i becomes the leaf of the tracking path by setting c to i and

setting its grow timer, gtime, scheduling a grow to be sent when gtime expires.

If i is above level 0 and receives a grow message, it sets its c pointer to the

sender, sets gtime scheduling a grow to be sent to its prospective parent. i also

sends a gquery message to its neighbors to check if the tracking path is reachable

through a neighbor. The tracking path allows the use of one lateral link per level. A

neighbor j that receives the gquery sends an ack gquery back if j is on the tracking

path and there isn’t already a lateral link pointing to j, i.e., if j.p points to its own

clusterhead, h(j). If i receives such an ack gquery from j then it sets p to point to

j, in preparation for adding a lateral link at j.

When gtime expires, if c is still non-⊥, meaning that the path has not shrunk

while i’s grow timer was counting down, then a send (grow) is performed to extend

the tracking path. If i.p points to a neighbor j then the grow message is sent to j,

inserting a lateral link. Otherwise, if p = ⊥, i sets p to point to its own clusterhead

23



h(i) and sends a grow message to h(i), propagating the grow one level up in the

hierarchy. In either case gtime is set to ∞, and i’s role in updating the tracking path

is complete.

If a grow message is received at i but i already has a parent in the tracking path

or is the MAX level process, then i does not propagate the grow (it is already on the

tracking path).

The grow actions at process i are in Figure 2.2.

2.4.2 Shrink action

A shrink cleans old, deserted branches of the tracking path.

If i is at level 0 and has a non-⊥ child pointer, but the mobile object is not at

i’s location, then i removes itself from the leaf of the tracking path. It sets its child

pointer c to ⊥ and sets the shrink timer stime, scheduling a shrink to be sent upon

expiration of stime.

If i receives a shrink message from another process j, i checks to see whether its

child pointer c points to j (c might not point to j; it may have been updated to point

to a process on a newer path). If c = j then i removes itself from the path by setting

c to ⊥ and then sets its shrink timer, scheduling a shrink message to be sent to its

parent p. Otherwise, if c 6= j, i ignores the message, ensuring that shrink actions

clean only deadwood and not the entire tracking path.

When stime expires, if c is still ⊥, meaning no newer path has connected at i

while stime was counting down, i sends a shrink message to its parent p in the path

and then sets p to ⊥.
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Input: objecti

eff: if c 6= i ∧ lvl(i) = 0 then
c := i
gtime := now + g

Output: send (gquery)i,j

pre: j ∈ gnbrquery
eff: gnbrquery := gnbrquery − {j}

if gnbrquery = ∅ then
gtime := now + g ∗ rlvl(i)

Input: receive (gquery)j,i

eff: if p = h(i) then
gqack := j

Output: send (ack gquery)i,j

pre: gqack = j
eff: gqack := ⊥

Input: receive (ack gquery)j,i

eff: if c 6= ⊥ ∧ p = ⊥ then
p := j

Output: send (grow)i,j

pre: now = gtime ∧ c 6= ⊥ ∧
((j = p ∧ p ∈ nbr(i)) ∨ (j = h(i) ∧ p = ⊥))

eff: if p = ⊥ then
p := h(i)

gtime := ∞

Input: receive (grow)j,i

eff: c := j
if lvl(i) = MAX then

p := i
if p = ⊥ then

gnbrquery := nbr(i)

Figure 2.2: Grow actions at process i
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Input: no objecti

eff: if lvl(i) = 0 ∧ c 6= ⊥ then
c := ⊥
stime := now + s

Output: send (shrink)i,j

pre: now = stime ∧ c = ⊥ ∧ j = p
eff: p := ⊥

stime := ∞

Input: receive (shrink)j,i

eff: if c = j then
c := ⊥
stime := now + s ∗ rlvl(i)

Figure 2.3: Shrink actions at process i

The shrink actions for process i are in Figure 2.3.

Example. Figure 2.4 depicts a sample tracking path. The path is seen pointing to a

level 2 clusterhead, which points to one of its hierarchy children, a level 1 clusterhead.

That clusterhead has a lateral link to another level 1 clusterhead that points to a level

0 cluster where the object e is located. Deadwood is denoted by the dotted path.

2.4.3 Correctness

Here we present system invariants and define consistent states of the system.

In the absence of faults, every process i satisfies I, the following five conditions,

at all times:

I0. If lvl(i) = 0 and objecti occurs then i.c = i,

I1. If i.c 6= ⊥ then one of the following holds:
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e

Figure 2.4: Tracking path example

(a) i.c = i and the object is at i,

(b) i.c points to one of its children in the clustering hierarchy, or

(c) i.c points to a neighbor and i.p points to its parent in the clustering hier-

archy,

I2. If i.p 6= ⊥ then either i.c 6= ⊥ or i is executing a shrink action and will send a

shrink to i.p,

I3. The dual: if i.c 6= ⊥ then i.p 6= ⊥ or i is executing a grow action and will send

a grow to its prospective parent,

I4. If i.c 6= i and i.c 6= ⊥ then (i.c).p is either i or ⊥. In the latter case a shrink

from i.c is in transit to i.

A tracking path is a sequence {ix, . . . , i1} where i1 is a leaf and contains the object,

every process but i1 points to the next process as its child, and I is satisfied at all

processes in the sequence. A complete tracking path is a tracking path {ix, . . . , i1}

where lvl(ix) = MAX and ix.p = ix.
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A consistent state is a state where a complete tracking path exists and i.c = i.p =

⊥ for every process i not in the tracking path. Using invariant I it follows from the

program actions that an execution starting from an initial state eventually reaches a

consistent state and that consistent states are closed under moves of the object.

2.4.4 Work

In order to prove our work claims, we must show that the timing of changes to

the new and old tracking paths satisfy certain relationships to ensure that the old

path is reused (via insertion of a lateral link) to the extent possible. More specifically,

it follows from the assumptions on timer constants s and g that an old path being

cleaned bottom-up from level 0 will not clean one of its level l pointers before a grow

starting at level 0 in the new path reaches level l and has an opportunity to query

one of those pointers, allowing for the addition of a lateral link.

This allows us to reason that the new path (which grows by propagating pointers

straight up the hierarchy until it connects to the old path) connects to the pre-shrink

old path at the lowest level process that is either an iterated clusterhead of the new

object location or a neighbor of such a clusterhead that is not itself connected to the

tracking path via a lateral link. In the latter case, the new path would connect via a

lateral link.

We then prove the following theorem.

Theorem 2.1 Starting from a consistent state, move operations of the mobile object

to a total of distance d away require at most O(d ∗ωmr ∗MAX) amortized work and

O(d ∗ gr2 ∗ MAX) amortized time to update the tracking path.
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Proof sketch. The above reasoning implies a level l pointer in the path is updated

as often as every
∑l−2

j=1 qrj distance because of the required use of lateral links at all

levels below l (note that qrl is the minimum distance between two non-neighboring

level l clusters). An O(mrl−1) work and O(grl) time cost is incurred each time a level

l pointer is updated. The costs, multiplied by frequency of updates, are summed for

each level for the result.

2.5 Fault-Containment

After state corruption of a region of (potentially all) processes, our tracking path

heals itself in a fault-local manner within work proportional to perturbation size.

Here we discuss correction actions enabling fault-local stabilization of the path.

Through faults a shrink action can be mistakenly initiated. For example, when a

portion of a tracking path is hit by faults, higher level processes of the path, unaware

a healthy lower path exists, start a shrink action. If “growth” at lower levels lags

behind “shrinking” of upper levels, faults can propagate through the entire upper

path. For fault-containment, grow actions started at lower levels must contain shrink

actions.

Similarly, grow actions can be mistakenly initiated. Consider a garbage path with

no object at its leaf. The topmost process of this path, unaware that the path does

not lead to the object, starts a grow action. If “shrinking” from lower levels lags

behind “growing” of upper levels, faults can contaminate the entire network. Thus

shrinks started at lower levels must contain grows.

The above requirements are both satisfied by giving priority to actions with more

recent information regarding the path; actions from lower levels are privileged over
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ones at higher levels. We achieve this by delaying shrink/grow for longer periods as

the level of the process executing the action increases. This way, propagation actions

coming from below are subject to lesser delays and can arrest mistakenly initiated

propagation actions; fault-local stabilization is achieved. We note that the latency

imposed by delaying is a constant factor of the communication delay to higher levels

and does not affect the quality of tracking.

Stabilization. Here we present correction actions for re-establishing the tracking

path invariant I starting from an arbitrarily corrupted state.

Correction of I0 and I1. I0 is established trivially by object and no object

inputs. The correction of I1 follows from the domain assumptions we make on non-

⊥ c, p and gnbrquery variables for i ∈ P . We require that i.c 6= ⊥ ⇒ i.c ∈

{nbr(i)∪children(i)} : i.c points to either a neighbor of i or to a child of i. Similarly,

we restrict the domain of non-⊥ i.p variables to {nbr(i)∪{h(i)}} and i.gnbrquery to

subsets of nbr(i). These assumptions are reasonable since the clustering provides a

process with the identifiers of its neighbors, children, and clusterhead; a process can

locally check and set these variables to ⊥ if their values are outside their respective

domains.

Correction action for I2. If i has a valid parent but no valid child, then I2 is

corrected at i by setting i.c = ⊥ and scheduling a shrink message to be sent to i.p.

Correction action for I3. If i has a valid child but no parent, then a gquery

message is sent to i’s neighbors and a grow message is scheduled to be sent to the

future parent of i.

The correction actions for I2 and I3 are given in Figure 2.5.
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Internal: start-shrinki

pre: (c = ⊥ ∧ p 6= ⊥ ∧ stime /∈ [now, now + s ∗ rlvl(i)])
∨ [p ∈ nbr(i) ∧ c ∈ nbr(i)]

eff: c := ⊥
stime := now + s ∗ rlvl(i)

Internal: start-growi

pre: c 6= ⊥ ∧ p = ⊥ ∧ gtime /∈ [now, now + g ∗ rlvl(i)]
eff: if lvl(i)= MAX then

p = i
if p = ⊥ then

gnbrquery := nbr(i)

Figure 2.5: Starting grow/shrink at process i

Correction actions for I4. To correct I4 we use heartbeat messages and two

timers: next for periodically sending heartbeats to the parent and a timeout for

dissociating a child if no heartbeat is heard. The correction actions use a constant b

for calculating the frequency of heartbeat messages, whose periodicity are tunable to

achieve less communication or faster detection. We require that b is more than twice

s, the shrink timer constant:

b ≥ 2s (2.3)

Intuitively, this condition serves to prevent a scenario where aggressively scheduled

heartbeats shrink the original path before a new growing path can reconnect to the

original.

Every i with a non-⊥ valued parent sends a heartbeat message to its parent

every b ∗ rlvl(i) time by setting next. Every time i receives a heartbeat or grow

message from its child, i.c, i resets its timeout variable to (b + 2δm/r) ∗ rlvl(i) (it is
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also reset upon receipt of a grow to prevent the scenario where the heartbeat timeout

of i expires scheduling a shrink just after i receives a grow message from a process

in a newly growing path). If i receives a heartbeat from j but i.c = ⊥ then i sets

i.c := j. Otherwise, a heartbeat message received from a process other than i.c is

ignored.

If i has a non-⊥ valued child, is not a leaf, and has not received a heartbeat

message in a (b + 2δm/r) ∗ rlvl(i) time interval, then i.c is set to ⊥.

The correction actions at i for I4 are in Figure 2.6.

Output: send (heartbeat)i,j

pre: now = next ∧ j = p

eff: next := now + b ∗ rlvl(i)

Input: receive (heartbeat)j,i

eff: if c = ⊥ then c := j
if c = j then

timeout := now + (b + 2δm/r) ∗ rlvl(i)

Internal: timeout expirei

pre: now = timeout ∧ c 6= ⊥ ∧ c 6= i
eff: c := ⊥

Internal: heartbeat seti

pre: p 6= ⊥ ∧ next /∈ [now, now + b ∗ rlvl(i)]

eff: next := now + b ∗ rlvl(i)

Internal: timeout seti

pre: c 6= ⊥ ∧ c 6= i

∧ timeout /∈ [now, now + (b + 2δm/r) ∗ rlvl(i)]

eff: timeout := now + (b + 2δm) ∗ rlvl(i)

Figure 2.6: Heartbeat actions at process i

32



Stabilization of the next and timeout variables of the corrector is ensured by

keeping their values within their respective domains. Using the correction actions de-

scribed above, we prove in Theorem 2.2, that Stalk is self-stabilizing to a consistent

state, where a complete tracking path exists.

Theorem 2.2 Stalk is self-stabilizing.

Fault-local stabilization. To prove fault-local stabilization we first give a bound

on arresting distance of grow/shrink actions in Lemmas 2.3 and 2.4. In these lemmas,

l1 + 1 and l2 are respectively the lowest and highest perturbed levels: faults occur

only from level l1 + 1 through level l2. We prove fault containment by showing that

due to our timing assumptions, a correction propagated from l1 catches propagation

of bad information at a level l > l2, leaving levels above l untouched by faults. The

proof is done by comparing the maximum time the propagation of a lower wave takes

to reach l versus the minimum time the higher wave takes to pass it.

Lemma 2.3 Propagation of a shrink action started at level l1+1 catches propagation

of a grow action started at level l2 by level l where

l = l2 + dlogr
br−b+sr+gr−2s+3δm

gr−s−δm
e.

Lemma 2.4 Propagation of a grow action started at level l1 catches propagation of

a shrink action started at level l2 by level l where

l = l2 + dlogr
br−b+sr2−gr−δm

sr−gr−3δm
e.

The size, l − l2, of contamination due to fault propagation is independent of the

network size and is tunable via grow and shrink timer settings. In Section 2.7 we give

sample values for these.
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Theorem 2.5 (Fault-local stabilization) For a perturbation size S, our program

self-stabilizes in O(S) work and in O(rL) time where L denotes the highest perturbed

level.

The proof for Theorem 2.5 follows from the Lemmas 2.3 and 2.4.

2.6 Finder

Here we describe Finder assuming find operations are interleaved with move

operations. We relax this restriction in Section 2.8 and allow the object to relocate

while a find is in progress.

A find consists of two phases: searching and tracing. Searching queries neighboring

processes at increasingly higher levels of the hierarchy until a tracking path is found.

Tracing then follows the pointers in the tracking path to the mobile object.

A client initiates the operation with a find input. The level 0 process at that

location starts servicing the find.

A find is serviced at a process i by first querying the local Trackeri using cpqi.

Trackeri will then return its child pointer c′ through cpointer(c′)i.

If c′ = i, the object is found at i and the tracing phase is over, so i outputs foundi.

If c′ 6= i and c′ 6= ⊥, the tracing phase is continuing, and i sends a find to process

c′.

If c′ = ⊥ it is still the search phase, and i sends an fquery message to its neighbors

and sets a timeout equal to the maximum time for roundtrip neighbor communication

at lvl(i). Neighbors answer the query with an fqack message and start servicing the

find if they are on the tracking path, and ignore it otherwise. If such an fqack is

received before the timeout period expires at i, i knows the tracking path has been
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found and tracing has started at j; i is done. If the timeout period expires with no

reply from a neighbor, the search phase is continuing. In this case i sends a find to

its clusterhead and hands over the responsibility for servicing the find to h(i).

Work. Finds are local: a find initiated at process i distance d from the mobile object

requires O(d) work to complete. To see this we first note that geometry assumptions

imply:

Theorem 2.6 (Proximity) In a consistent state, for a process j that is at most d

distance from the mobile object, one of the following holds:

• hdlogrde+1(j) is in the tracking path or

• ∃i ∈ nbr(hdlogrde+1(j)) in the tracking path.

Proof sketch. Say d = rl. For this theorem to be false, it must be that level l

cluster j is represented by does not neighbor any level l cluster in the tracking path,

implying the distance between j and any process represented by a level l cluster on

the tracking path is more than qrl. However, using the fact that there is at most

1 lateral link per level and that the maximum radius of a level l cluster is mrl, we

can conclude that the distance between the leaf of the tracking path and any process

represented by a level l cluster in the tracking path is at most
∑l−1

j=0 2mrj. This plus

the distance rl is less than qrl, by assumptions in Section 2.

Theorem 2.7 A find operation invoked at distance d from a mobile object results in

O(d ∗ ωrm) work and takes O(d ∗ δrm) time.

Proof sketch. The previous theorem implies a find operation will find the path by

level dlogrde+ 1. We add this cost of searching to the cost of following tracking path

links from that level.
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2.7 Concurrent Move Operations

In this section we relax the atomic move restriction and consider concurrent ex-

ecution of move operations, where the mobile object may relocate while effects of

previous move operations are still rippling through the tracking structure.

We showed that a complete tracking path was preserved by atomic move opera-

tions. However, during concurrent move operations, we can not guarantee a complete

tracking path: at any given instant, there may be a new path growing, older deadwood

shrinking, and new deadwood being produced. Hence, we provide a looser definition

of a tracking structure consisting of several path segments that satisfy a reachability

condition.

A path segment is a piece of a tracking path. The piece is maximal in that

the first process in the segment has no parent pointer or has a parent pointer to

itself (for the topmost level of hierarchy) and the last pointer in the segment (the

endpoint) points to itself or a process without a pointer. A sequence of path segments

{{ix,yx
, . . . , ix,1}, . . . , {i1,y1

, . . . , i1,1}} is a tracking structure if i1,1 contains the object

and every endpoint i, s.t. i = iy,1, y 6= 1, satisfies a 3-part reachability condition:

(1) If i.c is i’s hierarchy child, lvl(i) > 1 implies the next path segment contains a

neighbor of i, and lvl(i) = 1 implies the next segment contains a process neighboring

i.c. (2) If i.c is i’s neighbor, the next segment contains a process neighboring i.c. (3)

If lvl(i) > 1, the next segment’s endpoint is at least 2 levels below lvl(i).

A complete tracking structure is a tracking structure that reaches the top level of

the hierarchy. We also define a weaker version of a consistent state: A good state is

a program state where a complete tracking structure exists and i.c = i.p = ⊥ for all

processes i not in the tracking structure.
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We assume the object takes at least e time at a level 0 process (that is, within the

coverage area of its sensor) before moving to a neighboring level 0 process, and the

minimum time the object takes to move a total of d distance is e ∗ d where

e ≥ 2sr3 (2.4)

Theorem 2.8 Starting from a good state, a move of the object leads to another good

state.

Proof sketch. The reachability condition is implied because the time a mobile

object takes moving far enough to require a level l − 2 update and then propagating

a shrink to remove the level l − 2 pointers is more than the time to delete level l

pointers in a prior segment.

The following two theorems have proofs very similar to those of the non-concurrent

case.

Theorem 2.9 Starting from a good state, object moves to distance d away take O(d∗

ωrm ∗ MAX) work and O(d ∗ gr2 ∗ MAX) time to complete.

Proof sketch. Newer segments do not outgrow older segments so Theorem 2.1 still

holds.

Theorem 2.10 (Fault-local stabilization) For concurrent moves and perturba-

tion size S the system self-stabilizes to a good state in O(S) work and in O(rL) time

where L denotes the highest perturbed level.

Sample timer constants. Consider g = 5δm, s = 11δm, e = 23δmr3, and b =

11δmr. Tracking structure inequalities are satisfied, grow actions catch faulty shrink

actions in 2 levels, and shrinks catch faulty grows within 4 levels.
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2.8 Concurrent Find and Move Operations

Given our prior timing assumptions, find operations are successful even when move

operations are still in progress on the tracking structure.

In the searching phase a find invoked within d distance of a mobile object hits the

tracking structure by level dlogrde+1 as before; the object can not move fast enough

to result in a propagation of a shrink to level dlogrde + 1 before the find operation

gets there.

In a tracing phase that is concurrent with a move, a complete tracking path may

not be available, and a find may reach a process with c=⊥ while tracing the tracking

structure. If a find reaches such a dead end it re-executes the searching phase. The

reachability condition of the tracking structure ensures the find will reach a newer

path segment by searching neighboring processes at the current level or one level

higher. The mobility of the object only results in a constant factor difference in time

and work to complete a find.

Theorem 2.11 A find operation invoked within d distance of a mobile object requires

O(dωrm) work and O(dδrm) time to reach the object.

2.9 Chapter Summary

We presented Stalk, a fault-local stabilizing tracking service for sensor networks.

We use two concepts to achieve fault locality: hierarchical partitioning and level-based

timeouts for execution of actions. The key idea is to wait longer before updating a

wider region’s view by employing larger timeouts when propagating an update to

higher levels of the hierarchy. This way, more recent updates from lower levels can

38



catch-up to and override the misinformed updates at higher levels. While achiev-

ing fault-local stabilization Stalk also adheres to the locality of tracking opera-

tions. Moreover, by enabling concurrent move and concurrent find operations Stalk

achieves seamless and continuous tracking of the mobile object.

In this work we focused on the analytical worst-case performance of Stalk. In

the appendix, we provide simulations for the average-case performance of Stalk by

considering a random movement model for the object. Simulation results show that

work for move scales better than linearly due to the locality of movements featured by

the random model. The code is available at www.cse.ohio-state.edu/∼demirbas/

track/.

Stalk has applications in message routing to mobile units and in pursuer/evader

games. As part of our efforts to develop sensor network services in the DARPA/NEST

program, we are implementing Stalk on the Mica mote platform [54]. For future

work, we are examining other problems that could benefit from our hierarchy-based

local stabilization technique.
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CHAPTER 3

A STRETCH-FACTOR BASED FAULT-LOCAL HEALING
TECHNIQUE FOR CLUSTERING IN SENSOR

NETWORKS

3.1 Introduction

Large-scale ad hoc wireless sensor networks introduce challenges for self-configuration

and maintenance. Centralized solutions that rely on pre-defined configurer or main-

tainer nodes are unsuitable: Requiring all the nodes in a large-scale network to com-

municate their data to a centralized base-station depletes the energy of the nodes

quickly due to the long-distance and multi-hop nature of the communication and also

results in network contention.

Clustering is a standard approach for achieving efficient and scalable control in

these networks. Clustering facilitates the distribution of control over the network.

Clustering saves energy and reduces network contention by enabling locality of com-

munication: nodes communicate their data over shorter distances to their respective

clusterheads. The clusterheads aggregate these data into a smaller set of meaning-

ful information. Not all nodes, but only the clusterheads need to communicate far

distances to the base station.
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To enable efficient and scalable control of the network, a clustering service should

combine several properties. The service should achieve clustering in a fast and local

manner: cluster formation and changes/failures in one part of the network should be

insulated from other parts. Furthermore, the service should produce approximately

equal-sized clusters with minimum overlap among clusters. Equal-sized clusters is a

desirable property because it enables an even distribution of control (e.g., data pro-

cessing, aggregation, storage load) over clusterheads; no clusterhead is over-burdened

or under-utilized. Minimum overlap among clusters is desirable for energy efficiency

because a node that participates in multiple clusters consumes more energy by having

to transmit to multiple clusterheads.

In this paper we are interested in a stronger property, namely a solid-disc clustering

property, that implies minimization of overlap. The solid-disc property requires that

all nodes that are within a unit distance of a clusterhead belong only to its cluster.

In another words, all clusters have a nonoverlapping unit radius solid-disc.

Solid-disc clustering is desirable since it reduces the intra-cluster signal contention:

The clusterhead is shielded at all sides with nodes that belong to only its cluster, so the

clusterhead receives messages from only those nodes that are in its cluster, and does

not have to endure receiving messages from nodes that are not in its cluster. Solid-disc

clustering also results in a guaranteed upper bound on the number of clusters: In the

context of hierarchical clustering, minimizing the number of clusters at a level leads to

lower-cost clustering at the next level. Finally solid-discs yield better spatial coverage

with clusters: Aggregation at the clusterhead is more meaningful since clusterhead is

at the median of the cluster and receives readings from all directions of the solid disc

(i.e., is not biased to only one direction).
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Equi-radius solid-disc clustering with bounded overlaps is, however, not achievable

in a distributed and local manner. We illustrate this observation with an example for

a 1-D network (for the sake of simplicity).

 L

l1 k1 k2

  K

l2 s1p1

Figure 3.1: Each pair of brackets constitutes one cluster of unit radius, and colored
nodes denote clusterheads.

l2

 L j   K

k2p1 s1l1 k1

R = 1 R = 1 

Figure 3.2: A new node j joins the network between clusters of clusterheads L and
K.

l1 k1

j

     cascading

p1 s1 L   K

l2 k2

Figure 3.3: Node j forms a new cluster and leads to re-clustering of the entire network.

Consider a clustering scheme that constructs clusters with a fixed radius, say

R = 1, solid-disc. Figure 3.1 shows one such construction. We show that for fixed

radius clustering schemes, a node join can lead to re-clustering of the entire network.

When node j joins the network (Figure 3.2), it cannot be subsumed in its neighboring

clusters as j is not within unit distance of neighboring clusterheads L and K. j thus

forms a new cluster with itself as the clusterhead. Since all nodes within unit radius

of a clusterhead should belong its cluster, j subsumes neighboring nodes l1 and k1
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in its cluster. This leads to neighboring clusterheads L and K to relinquish their

clusters and election of l2 and k2 as the new clusterheads (Figure 3.3). The cascading

effect propagates further as the new clusterheads l2 and k2 subsume their neighboring

nodes leading to re-clustering of the entire network.

Our contributions. We show that solid-disc clustering with bounded overlaps is

achievable in a distributed and local manner for approximately equal radii (instead

of exactly equal-radii). More specifically, we present FLOC, a fast local clustering

service that produces nonoverlapping and approximately equal-sized clusters. The

resultant clusters have at least a unit radius solid-disc around the clusterheads, but

they may also include nodes that are up to m, where m ≥ 2, units away from their

respective clusterheads. By asserting m ≥ 2, FLOC achieves locality: effects of

cluster formation and faults/changes at any part of the network are contained within

at most m unit distance.

While presenting FLOC we take unit radius to be the reliable communication

radius of a node and m to be the maximum communication radius. In so doing we

exploit the double-band nature of wireless radio-model and present a communication-

and, hence, energy-efficient clustering.

FLOC is suitable for clustering large-scale wireless sensor networks since it is fast

and scalable. FLOC achieves clustering in O(1) time regardless of the size of the

network. FLOC is also locally self-healing in that after faults stop occurring, faults

and changes are contained within the respective cluster or within the immediate

neighboring clusters, and FLOC achieves re-clustering within constant time.

We simulate FLOC using Prowler [97] and analyze the tradeoffs between clustering

time and the quality of the clustering. We observe that forcing a very short clustering
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time leads to network traffic congestion and message losses, and hence, degrades the

quality of the resultant clustering. We suggest suitable parameters for FLOC to

achieve a fast completion time without compromising from the quality of clustering.

Furthermore, we implement FLOC on the Mica2 [102] mote platform and experiment

with actual deployments to corroborate our simulation results.

Outline. After presenting the network and fault model in the next section, we

present the basic FLOC program in Section 3.3. We discuss the self-healing properties

of FLOC in Section 3.4. In Section 3.5, we present additional actions that improves

the convergence time of the clustering. We discuss our simulation and implementation

results in Section 3.6. In Section 3.7 we present related work, and we conclude the

paper in Section 3.8.

3.2 Model

We consider a wireless sensor network where nodes lie in a 2-D coordinate plane.

The wireless radio-model for the nodes is double-band: A node can communicate

reliably with the nodes that are in its inner-band (i-band) range, and unreliably (i.e.,

only a percentage of messages go through) with the nodes in its outer-band (o-band)

range. This double-band behavior of the wireless radio is observed in [25, 109, 112]

We define the unit distance to be the i-band radius. We require that the o-

band radius is m units where m ≥ 2. This is a reasonable assumption for o-band

radius [25, 109, 112]. Nodes can determine whether they fall within i-band or o-band

of a certain node by using any of the following methods:

• Nodes are capable of measuring the signal strength of a received message [54].

This measurement may be used as an indication of distance from the sender.
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E.g., assuming a signal strength loss formula ( 1
1+d2 ), where d denotes distance

from the sender, the i-band neighbors receive the message with [0.5, 1] of the

transmission power, and, for m = 2 the o-band neighbors receive the message

with [0.2, 0.5] power.

• Nodes may maintain a record of percentage of received messages with respect

to neighbors [25], and infer the i-band/o-band neighbors from the quality of the

connections.

• An underlying localization service [82, 87] may provide the nodes with these

distance information.

We assume that nodes have timers, but we do not require time synchronization

across the nodes. Timers are used for tasks such as sending of periodic heartbeats

and timing out of a node when waiting on a condition. Nodes have unique ids. We

use i, j and k to denote the nodes, and j.var to denote a program variable residing

at j. We denote a message broadcast by j as msg j.

A program consists of a set of variables and actions at each node. Each action has

the form: <guard> −→ <assignment statement>. A guard is a boolean expression

over variables. An assignment statement updates one or more variables.
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Fault model. Nodes may fail-stop and crash, but we assume that the network does

not get partitioned. New nodes can join the network. These faults can occur in any

finite number, at any time and in any order. A program is self-healing if and only if

after faults stop occurring the program eventually recovers to a state from where its

specification is satisfied.

Problem statement. Design a distributed, local, scalable and self-healing program

that constructs a clustering of a network such that:

• a unique node is designated as a clusterhead of each cluster,

• every node in the inner-band of a clusterhead j belongs to j’s cluster,

• no node outside the outer-band of a clusterhead j belongs to j’s cluster,

• every node belongs to a cluster, and

• no node belongs to multiple clusters.

3.3 FLOC Program

3.3.1 Justification for Stretch-Factor ≥ 2

As an illustration of local self-healing of FLOC, consider Figure 3.4. When j joins

the network it is subsumed by one of its neighboring clusters as j is within 2 units of

the clusterhead L, thus leading to local healing.

l2

 L

l1 k1

  K

k2j

Figure 3.4: New node j joins one of its neighboring clusters.
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Furthermore, Figure 3.5 illustrates how FLOC locally self-heals when all clusters

are of radius 2 and a new node j joins the network. j elects itself as the clusterhead

since it is not within 2 units of the clusterheads of its neighbors l1 and k1. Nodes l1

and k1 then join the cluster of j because they are not within 1 unit of their respective

clusterheads but are within 1 unit of j. Thus j forms a legitimate cluster as in Figure

3.6.

  K L j

l1 k1
R = 2 R = 2

l2 l4 l3

Figure 3.5: j ′s neighbors are l1 and k1.

  K L j

l2 l4 l3 l1 k1

Figure 3.6: j becomes the clusterhead.

3.3.2 Program

Each node j maintains only two variables, status and cluster id, for the FLOC

program. j.status has a domain of {idle, cand, c head, i band, o band}. As a short-

hand, we use j.x to denote j.status = x. j.idle is true when j is not part of any

cluster. j.cand means j wants to be a clusterhead, and j.c head means j is a cluster-

head. j.i band (respectively j.o band) means j is an inner-band (resp. outer-band)

member of a clusterhead; j.cluster id denotes the cluster j belongs to. Initially for

all j, j.status = idle and j.cluster id = ⊥.
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FLOC program consists of 6 actions as seen in Figure 3.8.

6

candidate

clusterheadidle

5

4

35

1

i_band o_band

Figure 3.7: The effect of actions on the status variable.

Action 1 is enabled when a node j has been idle for some random wait-time

chosen from the domain [0 . . . T ]. Upon execution of action 1, j becomes a candidate

for becoming a clusterhead, and broadcasts its candidacy.

Action 2 is enabled at an i-band node of an existing cluster when this node

receives a candidacy message. If this recipient node determines that it is also in the

i-band of the new candidate, it replies with a conflict message to the candidate and

attaches its cluster-id to the message. We use a random wait-time from the domain

[0 . . . t] to prevent several nodes replying at the same time so as to avoid collisions.

Action 3 is enabled at j when j receives a conflict message in reply to its candi-

dacy announcement. The conflict message indicates that if j forms a cluster its i-band

will overlap with the i-band of the sender’s cluster. Thus, j gives up its candidacy

and joins the cluster of the sender node as an o-band member.

Action 4 is enabled at j if j does not receive a conflict message to its candidacy

within a pre-defined period ∆. In this case j becomes a clusterhead, broadcasts this

decision with c head msgj.
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Action 5 is enabled at all the idle nodes that receive a c head msg. These nodes

determine whether they are in the i-band or o-band of the sender, adjust their status

accordingly, and adopt the sender as their clusterhead.

Action 6 is enabled at an o band node j when j receives a c head msg from a

clusterhead i of another cluster. If j determines that j falls in the i-band of i, j joins

i’s cluster as an i band member.

(1) timeout(j.idle) −→ j.status:=cand;

bcast(cand msgj)

[]
(2) timeout(j.i band ∧ rcv(cand msgi)) −→

if(j ∈ i-band of i)

bcast(conflict msgj)

[]
(3) j.cand ∧ rcv(conflict msgi) −→

j.status := o band;

j.cluster id := msgi.cluster id

[]
(4) timeout(j.cand) −→ j.status := c head;

bcast(c head msgj)

[]
(5) j.idle ∧ rcv(c head msgi) −→

j.status := i band | o band;

j.cluster id := i;

[]
(6) j.o band ∧ rcv(c head msgi) −→

if(j ∈ i-band of i)

j.status := i band;

j.cluster id := i;

Figure 3.8: Program actions for j.
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3.3.3 Analysis

The candidacy period for a node can last at most ∆ time, and we require that the

election of a clusterhead is completed in an atomic manner: If two nodes that are less

than 2 units apart become candidates concurrently, both may succeed and as a result

the i-bands of the resultant clusters could be overlapping. To avoid this case with

a high probability, the domain T of the timeout period for action 1 should be large

enough to ensure that no two nodes that are less than 2 units apart have idle-timers

that expire within ∆ time of each other.

Note that T depends only on the local density of nodes and is independent of the

network size. Hence, it is sufficient to experiment with a representative small portion

of a network to come up with a T that avoids collusions of clusterhead elections with

a high probability. For the rare cases where the atomicity requirement for elections

is violated, our additional actions presented in Section 3.5 reassert the solid-disc

clustering property.

Theorem 3.1. Regardless of network size, FLOC produces a clustering of nodes

within constant time T + ∆.

Proof. An action is enabled at every node within at most T time: if no other action

is enabled in the meanwhile, action 1 is enabled within T time.

From Figure 3.7 it is easy to observe that once an action is enabled at a node

j, j is assigned to a cluster within at most ∆ time: If the enabled action is 5, then

j is assigned to a cluster instantaneously. If the enabled action is 1, then one of

actions 3 or 4 is enabled within at most ∆ time, upon which j is assigned to a cluster

immediately.
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Also note that once j is assigned to a cluster (i.e. j.status ∈ {c head, i band, o band})

no further action can violate this property. Only actions 2 and 6 can be enabled at

j: Action 2 does not change j.status, and action 6 changes j.status from o band to

i band, but j is still a member of a cluster (in this case a closer cluster).

Thus, every node belongs to a cluster within T + ∆. Since cluster id contains a

single value at all times, and no node belongs to multiple clusters.

Furthermore, when the atomicity of elections is satisfied, actions 2, 3, and 6 ensure

that the clustering satisfies the solid-disc property: If there is a conflict with the i-

band of a candidate j and that of a nearby cluster, then j is notified via action 2,

upon which j becomes an o band member of this nearby cluster via action 3. If there

is no conflict, j becomes a clusterhead and achieves a solid-disc by dominating all the

nodes in its i-band. The o band members of other clusters that fall in the i-band of

j join j’s cluster due to action 6.

Theorem 3.2. The number of clusters constructed by FLOC is within 3-folds of

the minimum possible number.

Proof. A partitioning of the network with minimum number of clusters is achieved

by tiling hexagonal clusters of radius 2 (and circular radius
√

3). The worst case

construction, where FLOC partitions the network with maximum number of clusters,

is achieved by tiling hexagonal clusters of radius 2/
√

3 (and circular radius 1). In

this worst case, the number of clusters constructed by FLOC is 3 times the minimum

possible number.
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3.3.4 Discussion

After clustering, a node can be in the i-band of at most one clusterhead. A

clusterhead has all the nodes in its i-band as its members and some from its o-

band. During a convergecast (data aggregation) to the clusterhead, the messages

from o-band members may or may not reach the clusterhead directly. If a message

from an o-band member is tagged as important, it may be relayed by an i-band

member upon detection of a missing acknowledgement from the clusterhead—the i-

band members can hear both the clusterhead and the o-band members reliably. Also,

the o-band members do not need to hear the clusterhead every time, the i-band

members may suffice for most operations. If the clusterhead is sending an important

message that needs to reach all members, in order for the o-band members to also

receive it reliably, the i-band members may relay this message when they detect

missing acknowledgements from nearby o-band members.

Optimization. Ideally, we want that a conflict is first reported by a node that is

closest to the candidate, so that the candidate, upon aborting its candidacy, can join

this closest cluster. Another advantage of selecting the notifier to be closest to the

candidate is that, then the conflict message of the notifier is overheard by as many

nodes within the i-band of the candidate, upon which these overhearing nodes can

decide that there is no need to report a conflict again. This way communication- and,

hence, energy-efficiency is achieved.

One way to choose the closest notifier is to set t at a notifier node to be inversely

proportional to the distance from the candidate. If an underlying localization service

is not available, the same effect can be achieved by setting t inversely proportional
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with respect to the received signal strength of the candidacy message. A notifier sets

t smaller the higher the received signal strength of the candidacy message at that

notifier.

3.4 Self-Healing

In this section, we discuss the local self-healing properties of our clustering service.

Node failures. FLOC is inherently robust to failures of cluster members (non-

clusterhead nodes), since such failures do not violate the clustering specification in

Section 3.2.

However, failure of a clusterhead leaves its cluster members orphaned. In order to

enable the members to detect the failure of the clusterhead, we employ heartbeats.

The clusterhead periodically broadcasts a c head msg. If the lease at a node j expires,

i.e., j fails to receive a heartbeat from its clusterhead within the duration of a lease

period, L, then j dissociates itself from the cluster by setting j.status := idle and

j.cluster id := ⊥. While setting the idle-timer, j adds L to the selected random wait

time so as not to become a candidate before all the members can detect the failure

of the clusterhead.

After a clusterhead failure, all the cluster members become idle within at most

L time. After this point, the dissolved members either join neighboring clusters as

o-band members, or an eligible candidate unites these nodes in a new cluster within

T + ∆ time. Due to our selection of m≥2, this is achieved in a local manner.

The lease for o-band nodes should be kept high. Since they receive only a per-

centage of the heartbeats they may make mistakes for small values of L. Keeping the

lease period high for the o-band nodes does not affect the performance significantly,
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because the o-band nodes are moldable: Even if they have misinformation about the

existence of a clusterhead, the o-band nodes do not hinder new cluster formation, and

even join these clusters if they fall within the i-band of these clusterheads.

L is tunable to achieve faster stabilization or better energy-savings.

Node additions. FLOC requires that nodes wait for some random time (chosen

from [0 . . . T ]) before they can become a candidate. Some of the newly added nodes

receive a heartbeat (c head msg) from a nearby clusterhead within their initial wait-

ing period and join the corresponding cluster as an i band or o band member. Those

nodes that fail to receive a heartbeat message within their determined waiting times

become candidates, and either form their own clusters (via action 2), or receive a

conflict message from an i band member of a nearby cluster and join that cluster (via

action 3).

3.5 Extensions to the Basic FLOC Program

Choosing a sufficiently large T guarantees the atomicity of elections and, hence,

the solid-disc clustering. Here we present some additional actions to ensure that the

solid-disc property is satisfied even in the statistically rare cases where atomicity of

elections are violated.

Consider a candidate i and an idle node k that is within 2 units of i. If k’s idle

timer expires before i’s election is completed (i.e., within ∆ time of i’s candidacy an-

nouncement), then atomicity of elections is violated. Even though there exists a node

j that is within the i-bands of both i and k, both candidates may succeed in becoming

clusterheads: Since k’s candidacy announcement occurs before i’s c head msg, action

2 is not enabled at j and j does not send a conflict msg to k.
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Our solution is based on the following observation. Since i broadcasts its cand msg

earlier than that of k and since a broadcast is an atomic operation in wireless sensor

networks: i’s broadcast is received at the same instant by all the nodes within i’s

i-band. These i-band nodes can be employed for detecting a conflict if a nearby node

announces candidacy within ∆ of i’s candidacy.

To implement our solution we introduce a boolean variable lock to capture the

states where an idle node j is aware of a candidacy of a node that is within unit

distance to itself. The value of j.lock is material only when j.status = idle. Our

solution consists of 4 actions.

Action 7 is enabled when an idle node j receives a candidacy message. If j

determines that j is in the i-band of the candidate, j sets lock as true.

Action 8 is enabled when an idle and locked node j receives a candidacy message.

If j determines that it is also in the i-band of this new candidate, it replies with a

“potential conflict” message to the candidate.

Action 9 is enabled when a node receives a “potential conflict” message as a

reply to its candidacy announcement. In this case the node gives up its candidacy

and becomes idle again. This time, to avoid a lengthy waiting, the node selects the

random wait-time from the domain [0...T/2].

Action 10 is enabled if an idle j remains locked for ∆ time. Expiration of

the ∆ timer indicates that the candidate that locked j failed to become a leader:

since otherwise j would have received a c head msg and j.status would have been

set to i band. So as not to block future candidates j removes the lock by setting

j.lock :=false.
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(7) j.idle ∧ rcv(cand msgi) −→
if(j ∈ i-band of i) j.lock := true

[]
(8) timeout(j.lock ∧ rcv(cand msgi)) −→

if(j ∈ i-band of i) bcast(pot conf msgj)

[]
(9) j.cand ∧ rcv(pot conf msgi) −→

j.status := idle

[]
(10) timeout(j.lock == true) −→ j.lock := false

Figure 3.9: Additional actions for j.

Note that these additional actions are applicable only in the statistically rare

violations of atomicity of elections; they do not cure the problem for every case. If T

is chosen too small, there may be some pathological cases where there is a chain of

candidates whose i-bands overlap with each other that results in the deferring of all

candidates in the chain. These chains should be avoided by choosing a large enough

T .

3.6 Simulation and Implementation Results

In this section we analyze, through simulations and experiments, the tradeoffs

between smaller T and the quality of clustering, and determine a suitable value for

T that a fast completion time without compromising the quality of the resulting

clustering. We also analyze the scalability of FLOC with respect to network size.
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3.6.1 Simulation

For our simulations, we use Prowler [97], a MATLAB based, event-driven simu-

lator for wireless sensor networks. Prowler simulates the radio transmission, propa-

gation, and reception delays of Mica2 motes [54], including collisions in ad-hoc radio

networks, and the operation of the MAC-layer.

Our implementation of FLOC under Prowler is per node and is a message-passing

distributed program. Our code is available from www.cis.ohio-state.edu/∼demirbas/

floc/. In our simulations, we use a grid topology for simplicity (note that FLOC

is applicable for any kind of topology and does not require a uniform distribution of

nodes). In the grid, each node is unit distance away from its immediate North, South,

East, and West neighbors. We use a signal strength of 1 and m = 2; the i-band neigh-

bors are the nodes with Received Signal Strength Indicator (RSSI) > 0.5, and the

o-band neighbors have RSSI > 0.2. It follows that immediate N, S, E, W neighbors

are i-band neighbors, and immediate diagonal neighbors and 2-unit distance N, S, E,

W neighbors are o-bound neighbors. Thus the degree of a node in our network is

between 4 and 12.

Below we analyze the tradeoffs involved in the selection of T ; for this part we use

a 10-by-10 grid (as described above) for the simulations. Then, we consider larger

networks (up to 25-by-25 grids) and investigate the scalability of the performance of

FLOC with respect to network size. We repeat each simulation 10 times and take the

average value from these runs. In all our graphs, the error bars denote the standard

deviation in our data. Due to MAC layer delays, the average transmission time for

a packet is around 25 msec. Thus, we fix t = 50 msec and ∆ = 200 msec for our

simulations.
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Tradeoffs in the selection of T . Using a small value for T allows a shorter

completion time for FLOC as shown in Figure 3.10. However, a small value for T

also increases the probability of violation of atomicity of elections; Figure 3.11 shows

that while T decreases the number of violations of atomicity of elections increases.

Figure 3.10: Completion time versus T

Figure 3.11: Number of atomicity violations versus T
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Ideally, we want the elections to be completed in an atomic manner. For up to

some number of atomicity violations, our extra actions in Section 3.5 enable successful

solid-disc clustering. However, for small values of T (T <5 sec) several nodes declare

their candidacy around the same times, and we encounter a sharp increase in the

number of messages sent and the number of nodes sending messages as shown in

Figure 3.12. This leads to network traffic congestion and loss of messages due to

collisions. For T = 2 the number of reception of collided messages are 20% of the

total messages received. This collision rate climbs to 30% for T = 1, and 55% for

T = 0.5. Due to these lost messages, for T < 5, we observe deformities in the shape

of the clusters formed; the solid-disc clustering property is violated. For example, for

T = 0.5 half of the clusters formed are single node clusters. As a result, we observe

an increase in the number of clusters formed as shown in Figure 3.13.

Figure 3.12: Messages sent versus T
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Figure 3.13: Number of clusters formed versus T

To achieve a quick completion time while not compromising the quality of the

resulting clustering, we choose T = 5 sec in our FLOC program –and for the rest of

this section. We observe that for T =5 the solid-disc clustering property is satisfied

by every run of the FLOC program. Figure 3.14 shows a resulting partitioning on a

10-by-10 grid. The arrow at a node points to its respective clusterhead. There are 16

clusters; each clusterhead contains at least its i-band neighbors as it members, that

is, solid-disc clustering is observed.

Scalability with respect to network size. In Theorem 1, we showed that

the completion time of FLOC is unaffected by the network size. To corroborate this

result empirically, we simulated FLOC with T = 5 for increasing network size of up

to 25-by-25 nodes while preserving the node density. Figure 3.15 shows that the

clustering is achieved in 5 sec regardless of network size.
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Figure 3.14: Clusters formed by FLOC on a 10-by-10 grid.

Figure 3.15: Completion time versus network size

We also investigated the average number of clusters constructed (NCC) by FLOC

with respect to increasing network size. An interesting observation is that, NCC for

a given N is predictable; the variance is very small as seen in Figure 3.16. Since

clusters have, on average, around 6 members, N/6 gives NCC for our grid topology

networks.

61



Figure 3.16: Number of clusters formed versus network size

For a grid of 25-by-25, FLOC constructs around 100 clusters. In the theoretical

best case, an omniscient centralized partitioning scheme (see Theorem 2) could tile

this grid with 60 hexagons (with circular radius of
√

3 and hexagonal radius of 2).

That is, in practice FLOC has an overhead of only 1.67 when compared with the best

scheme. Note that, in Theorem 2, we have determined that NCC for FLOC is always

within 3-folds of this best scheme.

3.6.2 Implementation

We implemented FLOC on the Mica2 [102] mote platform using the TinyOS [55]

programming suite. Our implementation is about 500 lines of code and available from

www.cis.ohio-state.edu/∼demirbas/floc/.

The Mica2 motes use Chipcon [24] radio CC1000 for transmission. RSSI at a

mote can be obtained using the CC1000 radio interface in the TinyOS radio stack:

RSSI varies from -53dB to -94dB, the radio interface encodes this into a 16 bit integer

value —the lower the value the higher the signal strength. By experimenting at an
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outdoor environment and comparing power level and reliable range of reception we

chose a transmission power of 7, from a range of 1 to 255. At a power level 7, we

obtain reliable reception up to 15 feet with RSSI ranging from 0 to 140. By selecting

appropriate thresholds for RSSI, we took m=2 and divided this 15 feet distance into

two equal halves as i-band range and o-band range: we considered RSSI between 0-80

as i-band and 80-140 as o-band.

Figure 3.17: 5-by-5 grid topology deployment

We performed our experiments at an outdoor parking lot; Figure 3.17 shows a

picture of our deployment. To mimic our simulation topology settings, we arranged

25 Mica2 motes in a 5-by-5 grid where each mote is 6 feet away from its immediate

North, South, East, and West neighbors. From our signal strength settings it follows

that, ideally, immediate N, S, E, W neighbors are i-band neighbors, and immediate

diagonal neighbors and 2-unit distance N, S, E, W neighbors are o-bound neighbors.

Based on our simulation results, to achieve a quick completion time while avoiding

network contention, we chose T =5 sec, ∆=200 msec.
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In our set up, we placed a laptop in the center of the network to collect status

reports from the motes: After the clustering is completed, every mote temporarily

sets its transmission power to maximum level and broadcasts a status report. This

report indicates the completion time of the clustering program at the respective mote,

and whether the mote is a clusterhead, i-band, or o-band member of a cluster. In

order to avoid collisions, these reports are spread in time.

We performed over 20 experiments with these settings. We observed the average

number of clusters formed to be 4. The cluster sizes were reasonably uniform, the

average number of motes per cluster was 6. The average completion time was 4.5

seconds.

When we increased the inter node spacing to 8 feet, with the same settings for

signal strength measurements, the number of clusters increased to an average of 6 as

expected. The average completion time was again 4.5 seconds.

We observed in our experiments that, due to the nondeterministic nature of wire-

less radio communication, the i-band/o-band membership determination using RSSI

is not always robust. Transmitting candidacy and clusterhead messages 3 times,

and using the average RSSI from the corresponding 3 receptions would make the

i-band/o-band determination more robust. Alternatively, as we discussed in Section

3.2, a connectivity service or localization service can be employed for i-band/o-band

membership determination.

3.7 Related Work

Several protocols have been proposed recently for clustering in wireless networks

[4, 19, 21, 50, 84].
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Max-Min D-cluster algorithm [4] partitions the network into d-hop clusters. It

does not guarantee solid-disc clustering and in the worst case, the number of clusters

generated may be equal to the number of nodes in the network (for a connected

network).

Clubs [84] forms 1-hop clusters: If two clusterheads are within 1-hop range of each

other, then both the clusters are collapsed and the process of electing clusterheads

via random timeouts is repeated. Clubs does not satisfy our unit distance solid-disc

clustering property: clusterheads can share their 1-hop members. Also, in contrast

to Clubs, FLOC does not collapse any cluster once it is formed. FLOC resolves

contentions by delaying the latter candidates from becoming clusterheads.

LEACH [50] also forms 1-hop clusters. The energy load of being a clusterhead

is evenly distributed among the nodes by incorporating randomized rotation of the

high-energy clusterhead position among the nodes. Nodes elect themselves as clus-

terheads based on this probabilistic rotation function and broadcast their decisions.

Each non-clusterhead node determines its cluster by choosing the clusterhead that

requires the minimum communication energy. LEACH does not satisfy our solid-disc

property: Not all nodes within 1-hop of a clusterhead j belongs to j. Hence, in

LEACH the clusterheads are susceptible to network contention induced by members

of other clusters. The authors [50] suggest using different Code Division Multiple

Access (CDMA) spreading codes for each cluster to solve this problem, however, for

most sensor network platforms (including Mica2) CDMA mechanism is not available.

FLOC complements LEACH since it addresses the network contention problem at

the clusterheads by constructing solid-disc clusters. Moreover, LEACH style load-

balancing is readily applicable in FLOC by using the above mentioned probabilistic
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rotation function for determining the waiting-times for the candidacy announcements

at the nodes. By adopting FLOC, it is also possible to guarantee a tight upperbound

on the number of clusters formed.

The algorithm in [19] first finds a rooted spanning tree of the network and then

forms desired clusters from the subtrees. It gives a bound on the number of clusters

constructed and the convergence time is of the order of the diameter of the network.

It is locally fault-tolerant to node failures/joins but may lead to re-clustering of the

entire network for some pathological scenarios.

For a given value of R, the algorithm in [21] constructs clusters such that all the

nodes within R/2 hops of a clusterhead belong to that clusterhead and the farthest

distance of any node from its clusterhead is 3.5R hops. With high probability, a

network cover is constructed in O(R) rounds; the communication cost is O(R3).

In an earlier technical report [83], we have presented –under a shared memory

model– a self-stabilizing clustering protocol, LOCI, that partitions a network into

clusters of bounded physical radius [R, mR] for m ≥ 2. LOCI achieves a solid-disc

clustering with radius R. Clustering is completed iteratively within O(R4) rounds.

3.8 Chapter Summary

The properties of FLOC that make it suitable for large scale wireless sensor net-

works are its: (1) locality, in that each node is affected only by nodes within m units,

(2) scalability, in that clustering is achieved in constant time independent of network

size, and finally (3) self-healing capability, in that it tolerates node failures and joins

locally within m units.

Through simulations and experiments with actual deployments, we analyzed the

tradeoffs between completion time and the quality of the resulting clustering, and
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suggested suitable values for the domain, T , of the randomized candidacy timer to

achieve a fast completion time without compromising the quality of the clustering.

Since in FLOC each node is affected only by nodes within m units, it is sufficient

to experiment with a representative small portion of a network to determine suitable

values for T .

As part of future work, we are planning on integrating FLOC in our “Line in the

Sand” (LITeS) tracking service [7] to achieve scalable and fault-local clustering. As

part of the DARPA/Network Embedded Systems Technology project, our research

group has already deployed LITeS over a 100-node sensor network across a large ter-

rain and achieved detection, classification, and tracking of various types of intruders

(e.g., persons, cars) as they moved through the network. We are also investigating the

role of geometric, local clustering in designing efficient data structures for evaluation

of spatial queries in the context of sensor networks.
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CHAPTER 4

RELATED WORK ON FAULT-CONTAINMENT AND

FAULT-LOCAL HEALING

In this chapter we provide a brief survey of work on fault-containment in Section

4.1 and work on fault-local stabilization in Section 4.2.

4.1 Fault-containment

Fault-containment is a highly desirable property for fault-tolerance systems, and

it has received a lot of attention in the fault-tolerance literature. Here we overview

previous work on fault-containment. We discuss masking fault-tolerance approaches

for fault-containment in Section 4.1.1. In Section 4.1.2 we mention approaches that

contain faults within software module boundaries, and in Section 4.1.3 approaches

that bound faults within predefined sections of a network.

4.1.1 Fault-containment through masking

One way of achieving fault-containment is through design of masking fault-tolerance:

A system is masking tolerant if in the presence of faults, it always satisfies its safety

properties and, when faults stop occuring, it eventually resumes satisfying its liveness

properties. Since all faults are masked immediately, a masking fault-tolerant system

is trivially fault-containing.
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Masking fault-tolerance is a strong property and hence it is applicable for a limited

class of faults, such as single node failure, message loss, etc. Also, since masking

tolerance is overly ambitious, the cost of masking tolerance may be too high a price

to pay in wireless sensor networks, where energy is a precious commodity, and in

real-time applications, where the freshness of data is as important as the accuracy

of the data. These concerns led researchers to investigate other approaches for fault-

containment. In this chapter, we focus on these approaches, and relegate an overview

of work on masking fault-tolerance to Section where we survey previous work on

fault-tolerance design methods.

4.1.2 Fault-containment within prespecified modules of the
system

Below, we mention two popular schemes, Sandboxing and Input/Output checking,

for achieving fault-containment within prespecified modules of the system.

Sandboxing. The idea behind sandboxing approach is simple: the user program

is isolated in a sandbox where it can execute without harming anything outside the

sandbox. The boundaries of this notional box limit the scope of a malicious program

to cause damage to the computer system as a whole. In the Java system [58], for

example, most applets are run in a software sandbox. A virtual machine [106], a

software abstraction of a machine on top of another machine, is also another example

of the sandboxing approach.

Sandbox consists of user code and data segment. A typical sandbox implementa-

tion employs the following techniques:

• configuring the memory manager unit to throw an exception for accesses outside

of sandbox,
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• rewriting the binary to mask off higher order bits on addresses to keep them

within the sandbox, and

• redirecting system calls through a protected jump table to an arbitrator.

Input/output checking. Input/output checking allows a system to limit the

impact of manifested faults to some predefined system module boundaries. In [94],

input/output checking techniques for fault containment are formatted and presented

as design patterns. The presented fault containment patterns are: the Input Guard

pattern which confines an error outside the guarded system boundaries; the Output

Guard which confines an error inside the guarded system boundaries; and the Fault

Container pattern which is the fault tolerant counterpart of the well-known Adapter

pattern and which combines the properties of the Input Guard and Guard patterns.

4.1.3 Fault-containment within prespecified system bound-

aries

In [42], the authors show that by adding structure and sacrificing full distribu-

tion it is possible to improve the fault-containment of self-stabilizing algorithms. To

demonstrate this, they investigate an application of the general principle of “intro-

ducing structure” to the area of self-stabilizing spanning-tree construction. By doing

this, they show that it is possible to transform an arbitrary self-stabilizing spanning-

tree algorithm into one with increased efficiency and fault-containment properties.

After adding the fixed structure, faults can only lead to perturbations within the

algorithm instances in which they happen. This is in contrast to the case where a

standard spanning-tree algorithm runs in the entire network: a single fault (e.g., of

the root) can lead to a global reconfiguration. However, the level of fault-containment
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again depends on the distribution of algorithm instances to processing elements: if

one processing element participates in all algorithm instances then a failure of this

node may also cause global disruption.

A hierarchical error detection and containment framework for a Software Imple-

mented Fault Tolerance (SIFT) layer of a distributed system is proposed in [18].

The design and implementation of a software-based distributed signature monitoring

scheme is central to the proposed four-level hierarchy: process level, node level, group

level, and across groups. The paper reports a substantial increase in availability due

to the detection framework and help in understanding the trade-offs between overhead

and coverage for different combinations of techniques.

4.2 Fault-local stabilization

The area of fault-containment of self-stabilizing algorithms has received growing

interest since it was first introduced in [45]. Below we present an overview of some

previous work on fault-local stabilization.

4.2.1 Solutions that are local but not fault-local

A notion of local correction was suggested in [14] in the context of self stabilization.

The meaning of locality there is that each node can act locally to correct a state of an

algorithm. However, if the corrected algorithm is global, then the function computed

by the corrected algorithm it can be output only after O(n) (number of nodes) or

O(Diarneter) (diameter of the network). (In fact the example used in [14] for the

corrected algorithm is the global reset algorithm. )

Another concept worth mentioning is snap stabilization [30]: A system is called

snap-stabilizing if its behavior stabilizes to its specification in 0 time. Clearly, snap
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stabilization is possible only for a certain class of task specifications, that allow a

faulty node to be considered externally correct even at the time of the fault (broadcast

does not satisfy this requirement). On the other hand, no known snap-stabilizing

algorithm is error confined.

4.2.2 Solutions that are fault-local in time but not in work

Kutten and Peleg [68] introduce the notion of fault mending, which addresses the

issue of relating repair time to fault severity; their method is based on state replication

and is self-stabilizing only in a synchronous system.

In [1], a local stabilizer protocol that converts a distributed algorithm into a

synchronous self-stabilizing algorithm with local monitoring and repairing properties

is presented. Whenever the self-stabilizing version enters an inconsistent state, the

inconsistency is detected, in O(1) time, and the system state is repaired within time

proportional to the largest diameter of a faulty region. This method is also based on

an underlying state replication protocol, and hence, even though the recovery-time is

fault-local, the work done is not local.

In [17], a broadcast protocol is proposed to contain observable variables in the

presence of state corruptions, but the protocol allows for global propagation of internal

protocol variables.

4.2.3 Solutions that are fault-local but that assume a re-

stricted fault-model

The notion of fault containment within the context of stabilization is formalized

first in [45]; algorithms were proposed to contain state-corruption of a single node in

a stabilizing spanning tree protocol.
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Dolev and Herman [37] construct self-stabilizing protocols that guarantee safe con-

vergence from states that arise from legitimate states perturbed by limited topology

changes.

Some other examples of self-stabilizing algorithms that guarantee rapid conver-

gence from states that arise from legitimate states due to single-process faults are

presented in the context of leader election problem [44] and mutual exclusion prob-

lem [53].

4.2.4 Fault-local stabilizing solutions

In [86] fault-containment of Byzantine nodes have been studied for dining philoso-

phers and graph coloring algorithms. In [89] a dining-philosophers algorithm with

crash-locality 1 is presented under a partially synchronous model. These work require

the intrinsic locality of the problem to be constant and is too limiting for problems

such as tracking and routing whose locality are not constant.

A protocol that achieves fault-local stabilization in shortest path routing is pre-

sented in [12]. To achieve fault-containment the protocol uses containment actions

that are a constant time faster than the fault-intolerant program actions. In contrast

to [12], we do not have a privileged set of containment actions in Stalk; the program

actions serve to this end. We enable fault-containment in a hierarchy-based manner

by suitably varying the speed of actions (through the use of process timers) as per

the level of the hierarchy they are executed at.
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CHAPTER 5

SPECIFICATION-BASED DESIGN METHOD

5.1 Introduction

Research in self-healing, more specifically in self-stabilization [36, 39, 46, 52], has

traditionally relied on the availability of a complete system implementation. The

standard approach uses knowledge of all implementation variables and actions to

exhibit an “invariant” condition such that if the system is properly initialized then

the invariant is always satisfied and if the system is placed in an arbitrary state then

continued execution of the system eventually reaches a state from where the invariant

is always satisfied. The apparently intimate connection between stabilization and the

details of implementation has raised the following serious concerns: (1) Stabilization is

not feasible for many applications whose implementation details are not available, for

instance, closed-source applications. (2) Even if implementation details are available,

stabilization is not scalable as the complexity of calculating the invariant of large

implementations may be exorbitant. (3) Stabilization lacks reusability since it is

specific to a particular implementation.

Towards addressing these concerns, in this chapter, we show that system stabi-

lization may be achieved without knowledge of implementation details. We eschew
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“whitebox” knowledge—of system implementation—in favor of “graybox” knowledge—

of system specification—for the design of stabilization. Since specifications are typi-

cally more succinct than implementations, specification-based design of fault-tolerance

offers the promise of scalability when the design effort for adding fault-tolerance is

proportional to the size of the system.. Also, since specifications admit multiple

implementations and since system components are often reused, specification-based

design of fault-tolerance offers the promise of reusability. Finally, for closed-source

situations where exploiting a specification is warranted, specification-based approach

allows the design of efficient fault-tolerance in contrast to a blackbox design.

Given a high-level system specification A, the specification-based approach is to

design a tolerance wrapper W such that adding W to A yields a fault-tolerant system.

The goal is to ensure that for any low-level refinement (implementation) C of A adding

a low-level refinement W ′ of W would also yield a fault-tolerant system.

Note that since the refinements from A to C and W to W ′ can be done in-

dependently, specification-based design enables a posteriori or dynamic addition of

fault-tolerance. That is, given a concrete implementation C, it is possible to add

fault-tolerance to C as follows:

• First, design an abstract (high-level) tolerance wrapper W using solely an ab-

stract specification A of C, and then

• add a concrete (low-level) refinement W ′ of W to C.

The goal of specification-based fault-tolerance is not readily achieved for all re-

finements. The refinements we need for achieving specification-based fault-tolerance

should not only preserve fault-tolerance but also have nice composability features so

that the refinements from A to C and W to W ′ can be done independently. In this
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chapter we present special classes of refinement, “everywhere refinements”, “local-

everywhere refinements”, and “convergence refinements”, that enable specification-

based design of stabilization. These refinements ensure that if A composed with W

is fault-tolerant, then for any everywhere or convergence refinement C of A adding

an everywhere or convergence refinement W ′ of W would also yield a fault-tolerant

system.

Outline of the rest of the chapter. In Section 5.2, we give preliminaries. In

Section 5.3 we show that everywhere and convergence refinements are stabilization

preserving and in Section 5.4 that they are amenable for specification-based design

of stabilization. We make concluding remarks in Section 5.5.

We refer the reader to the full version of our works on everywhere refinement [6]

and convergence refinement [32] for several illustrations of our specification-based

design method. In those work, we present specification-based design of stabilization

for the Ricart-Agrawala and Lamport mutual exclusion algorithms, and a derivation

of Dijkstra’s stabilizing token-ring algorithms as a refinement of a simple, abstract

token-ring algorithm.

5.2 Preliminaries

Let Σ be a state space.

Definition. A system S is a finite-state automaton (Σ, T , I) where T , the set of

transitions, is a subset of {(s0, s1) : s0, s1 ∈ Σ} and I, the set of initial states, is a

subset of Σ.
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A computation of S is a maximal sequence of states such that every state is related

to the subsequent one with a transition in T , i.e., if a computation is finite there are

no transitions in T that start at the final state.

We refer to an abstract system as a specification, and to a concrete system as an

implementation. For now we assume for convenience that the specification and the

implementation use the same state space. In Section 5.4.4, we present a generalization

that allows the implementation to use a different state space than the specification.

Henceforth, let C be an implementation and A a specification.

Definition. C is a refinement of A, denoted [C ⊆ A]init, iff every computation of C

that starts from an initial state is a computation of A.

Definition. C is an everywhere refinement [6] of A, denoted [C ⊆ A], iff every

computation of C is a computation of A.

Definition. A state sequence c is a convergence isomorphism of a state sequence a iff

c is a subsequence of a with at most a finite number of omissions and with the same

initial and final (if any) state as a.

For instance, c = s1 s3 s6 is a convergence isomorphism of a = s1 s2 s3 s4 s5 s6.

However, c = s1 s3 s5 s6 is not a convergence isomorphism of a = s1 s2 s5 s6 since

c can only drop states in a, and cannot insert states to a. Intuitively, the convergence

isomorphism requirement corresponds to the notion of using similar recovery paths:

c should use a similar recovery path with a and not any arbitrary recovery path.

Definition. C is a convergence refinement of A, denoted [C � A], iff:

• C is a refinement of A,

• every computation of C is a convergence isomorphism of some computation of

A.
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Note that convergence refinements are more general than everywhere refinements:

[C ⊆ A] ⇒ [C � A], but not vice versa.

A fault is a perturbation of the system state. Here, we focus on transient faults

that may arbitrarily corrupt the process states. The following definition captures a

standard tolerance to transient faults.

Definition. C is stabilizing to A iff every computation of C has a suffix that is a

suffix of some computation of A that starts at an initial state of A.

This definition of stabilization allows the possibility that A is stabilizing to A,

that is, A is self-stabilizing.

5.3 Stabilization Preserving Refinements

Refinement tools such as compilers, program transformers, and code optimizers

generally do not preserve the fault-tolerance properties of their input programs. Con-

sider, for example, a program that is trivially tolerant to the corruption of a variable

x in that it eventually ensures x is always 0.

int x=0;

while(x==x) {
x=0;}

The bytecode that a Java compiler produces for this input program is not tolerant.

0 iconst 0

1 istore 1

2 goto 7

5 iconst 0

6 istore 1

7 iload 1

8 iload 1

9 if icmpeq 5

12 return
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If the value of x (i.e., the value of the local variable at position 1) is corrupted

after line 7 is executed and before line 8 is executed (i.e., during the evaluation of

“x==x”) then the execution terminates at line 12, thereby failing to eventually ensure

that x is always 0.

As another example, consider the specification of a bidding server component. The

server accepts bids during a bidding period via a “bid(integer)” method and stores

only the highest k bids in order to declare them as winners when the bidding period is

over. When the “bid(v)” method is invoked, the server replaces its minimum stored

bid with v only if v is greater than the minimum stored bid. The bidding server is

tolerant to the corruption of a single stored bid in that it satisfies the specification

for (k − 1) out of best-k bids.

Consider now a sorted-list implementation of the bidding server. The implemen-

tation maintains the highest k bids in sorted order with their minimum being at the

head of the list. When the “bid(v)” method is invoked on the implementation, it

checks whether v is greater than the bid value at the head of the list, and if so, the

head of the list is deleted and v is properly inserted to maintain the list sort order.

This implementation, while correct with respect to the specification in the absence

of faults, does not tolerate the corruption of a single stored bid: If the stored bid

at the head of the list is corrupted to be equal to MAX INTEGER, then the implemen-

tation prevents new bid values from entering the list, and hence fails to satisfy the

specification for (k − 1) out of best-k bids.

These examples illustrate that even though an abstract system A is fault-tolerant,

it is possible that a refinement C of A may not be fault-tolerant since the extra states

introduced in C create additional challenges for the fault-tolerance of C. That is,
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C refines A and A is stabilizing to A

does not imply that C is stabilizing to A.

For a more abstract counterexample, consider Figure 5.1. Here s0, s1, s2, s3, . . .

and s* are states in Σ, and s0 is the initial state of both A and C. In both A

and C, there is only one computation that starts from the initial state, namely

“s0, s1, s2, s3, . . .”; hence, [C ⊆ A]init. But “s*, s2, s3, . . .” is a computation

that is in A but not in C. Letting F denote a transient state corruption fault that

yields s* upon starting from s0, it follows that although A is stabilizing to A if F

occurs initially, C is not.

s*
F

s1s0 s2 s3 . . .

s*
F

s1s0 s2 s3 . . .A:

C:

Figure 5.1: [C ⊆ A]init

We are therefore motivated to use suitable stabilization preserving refinements in

order to enable a specification-based design of stabilization. Next, we present the

stabilization preserving properties of everywhere and convergence refinements.

Theorem 5.0 . If [C ⊆ A] and A is stabilizing to B,

then C is stabilizing to B.

Theorem 5.0 follows immediately from the definitions of stabilization and every-

where refinement.
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The requirements for everywhere refinements are sometimes too restrictive. For

instance, every computation of the concrete might not be a computation of the ab-

stract since the execution model of the concrete is more restrictive than that of the

abstract. One such example is model refinements where a process is allowed to write

to the state of its neighbor in the abstract system but not allowed to do so in the

concrete system. To address such cases, we consider the more general convergence

refinements.

Theorem 5.1 . If [C � A] and A is stabilizing to B,

then C is stabilizing to B.

Theorem 5.1 follows immediately from the definitions of stabilization and conver-

gence refinement (C can only drop a finite number of states from the computations

of A). Theorem 5.1 is the formal statement of the amenability of convergence refine-

ments as stabilization preserving refinements.

5.4 Specification-Based Design of Stabilization

Here we focus on the problem of how to design stabilization to a given implemen-

tation C using only its specification A. That is, we want to prove that: If adding a

wrapper W to a specification A renders A stabilizing, then adding W to any every-

where or convergence refinement C of A also yields a stabilizing system. We define

a wrapper to be a system over Σ and formulate the “addition” of one system to an-

other in terms of the operator (pronounced “box”) which denotes the union of

automata.

Next, we prove that everywhere and convergence refinements enable specification-

based design of stabilization, respectively in Sections 5.4.1 and 5.4.2. In Section
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5.4.3 we prove composition theorems about everywhere and convergence refinements.

Finally, in Section 5.4.4, we present a generalization of our model that allows the

implementation to use a different state space than the specification.

5.4.1 Everywhere refinements

Lemma 5.2 . ([C ⊆ A] ∧ [W ′ ⊆ W ]) ⇒ [(C W ′) ⊆ (A W )]

From the lemma, our goal follows trivially:

Theorem 5.3 (Stabilization via everywhere refinements).

If [C ⊆ A], A W is stabilizing to A, and [W ′ ⊆ W ] then C W ′ is stabilizing

to A.

Recall that W ′ and W are designed based only on the knowledge of A and not of

C in the specification-based design approach. This results in the reusability of the

wrapper for any everywhere implementation of A.

We now focus our attention on distributed systems. The task of verifying ev-

erywhere implementation is difficult for distributed implementations, because global

state is not available for instantaneous access, all possible interleavings of the steps of

multiple processes have to be accounted for, and global invariants are hard to calcu-

late. For effective specification-based design of stabilization of distributed systems, we

therefore restrict our consideration to a subclass of everywhere specifications, namely

local everywhere specifications.

A local everywhere specification A is one that is decomposable into local speci-

fications, one for every process i; i.e., A = ( i :: Ai). Hence, given a distributed

implementation C = ( i :: Ci) it suffices to verify that [Ci ⊆ Ai] for each process

i. Verifying these “local implementations” is easier than verifying [C ⊆ A] as the
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former depends only on the local state of each process and is independent of the en-

vironment of each process, thereby avoids the necessity of reasoning about the states

of other processes.

Let A = ( i :: Ai), C = ( i :: Ci), W = ( i :: Wi), and W ′ = ( i :: W ′
i ).

Lemma 5.4 . (∀i :: [Ci ⊆ Ai]) ⇒ [C ⊆ A]

Lemma 5.5 . ((∀i :: [Ci ⊆ Ai]) ∧ (∀i :: [W ′
i ⊆ Wi])) ⇒ [(C W ′) ⊆ (A W )]

From Lemma 5.5 and Theorem 5.3 , we have

Theorem 5.6 (Stabilization via local everywhere refinements).

If (∀i :: [Ci ⊆ Ai]), (∀i :: [W ′
i ⊆ Wi]), and A W is stabilizing to A, then

C W ′ is stabilizing to A.

Theorem 5.6 is the formal statement of the amenability of local everywhere speci-

fications for specification-based design of stabilization. Again, it is tacit that W ′
i and

Wi are designed based only on the knowledge of Ai and not of Ci.

5.4.2 Convergence refinements

Lemma 5.7 If [C � A] and (A W ) is stabilizing to A

then [(C W ) � (A W )].

Proof. This proof consists of two parts. We prove [(C W ) ⊆ (A W )]init in the

first part, and we prove in the second part that every computation x of (C W ) is

a convergence isomorphism of a computation x′ of (A W ).

1. [C � A] ⇒ [C ⊆ A]init. Thus, every computation of C starting from the

initial states is a computation of A, and hence [(C W ) ⊆ (A W )]init.
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2. Any computation x of (C W ) can be written as · · · − CSi − WSi − CSi+1 −

WSi+1 − · · · where CS denotes consecutive states produced by C and WS

denotes consecutive states produced by W . Since [C � A], C can only drop

states from computations of A. Thus, there exists a computation x′ of (A W )

of the form · · · −ASi −WSi −ASi+1 −WSi+1 − · · · −Ainit where for all i, CSi

is a convergence isomorphism of ASi Since (A W ) is stabilizing to A, x′ has

a suffix, Ainit, that is a suffix of some computation of A that starts from the

initial states. Since [C � A] ⇒ [C ⊆ A]init, x cannot drop any states from

x′ after (A W ) stabilizes to A. That is, x can drop only a finite number of

states from x′, and hence we conclude that x is a convergence isomorphism of

x′.

Theorem 5.8 If [C � A] and (A W ) is stabilizing to A

then (C W ) is stabilizing to A.

Proof. The result follows from Lemma 5.7 and Theorem 5.1 .

Theorem 5.8 states that if a wrapper W satisfies (A W ) is stabilizing to A, then,

for any C that satisfies [C � A], (C W ) is stabilizing to A. In fact, after proving

Lemma 5.9 , we prove a more general result in Theorem 5.10 .

Lemma 5.9 If [W ′ � W ] and (A W ) is stabilizing to A

then (A W ′) is stabilizing to A.

Proof. Note that [W ′ � W ] and “(A W ) is stabilizing to A” implies

[A W ′ � A W ]. (This proof is similar to the proof of Lemma 5.7 , and hence,

is not included here.) The result follows from the above via Theorem 5.1 .

Theorem 5.10 If [C � A] and (A W ) is stabilizing to A

then (∀W ′ : [W ′ � W ] : (C W ′) is stabilizing to A).
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Proof. Given [W ′ � W ] and (A W ) is stabilizing to A, we get (A W ′) is stabi-

lizing to A from Lemma 5.9 . Since [C � A], from Lemma 5.7 we get

[(C W ′) � (A W ′)]. The result follows via Theorem 5.1 .

Theorem 5.10 is the formal statement of the amenability of convergence refine-

ments for specification-based design of stabilization: If W provides stabilization to A,

then any convergence refinement W ′ of W provides stabilization to every convergence

refinement C of A.

5.4.3 Compositionality of everywhere and convergence re-

finements

Here we prove composition theorems about everywhere and convergence refine-

ments. In contrast to previous work on composition of fault-tolerance, these theorems

are applicable for the general case of composition and are not limited to special cases

such as layering composition.

Composition theorem for everywhere refinements. Composition theorem

for everywhere refinements is simple:

Theorem 5.11 (Composition of everywhere refinements).

[C ⊆ A] ∧ [D ⊆ B] ∧ [I ′ ⊆ I]

⇒ [C D I ′ ⊆ A B I]

Everywhere refinements are very easy to compose and thus specification-based

approach for composition of fault-tolerance readily applies for everywhere refinements.

Composition theorem for convergence refinements. Convergence refine-

ments are weaker than everywhere refinements and thus they do not compose as

cleanly as everywhere refinements.
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(Example): [C � A] ⇒ [C B � A B] is not a theorem for convergence

refinements. Consider the following counterexample.

A: B:

C:
3 12

3 12 03 120

0

Figure 5.2: [C � A]

Let A, C, and B be as in Figure 5.2. State 0 is the initial state for A, C and B,

thus [C ⊆ A]init and [C � A].

3 12

3 12 0

0
C[]B:

A[]B:

Figure 5.3: (C B) is not a convergence refinement of (A B)

As seen in Figure 5.3, a = 3 − 2 − 1 − 3 − 2 − 1 − 3 − 2 − 1... is a computation

of A B, and c = 3 − 1 − 3 − 1 − 3 − 1... is a computation of C B. However, c

drops infinitely many states from a and thus C B is not a convergence refinement

of A B.

(End of example).
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Therefore, in order to prove a composition theorem we need to prove loop-free

behavior of the abstract composition outside its invariant.

Lemma 5.12 .

[C � A] ∧ (A B I) is stabilizing to A

⇒ [C B I � A B I]

Proof: The proof consists of two parts. We prove in the first part that [C B I

⊆ A B I]init and in the second part that every computation of C B I is

a convergence isomorphism of some computation of A B I.

1. [C � A] ⇒ [C ⊆ A]init. Thus, every computation of C starting from an

initial state is a computation of A and, hence, [C B I ⊆ A B I]init.

2. Any computation x of (C B I) can be written as · · · − CSi − BSi − ISi −

CSi+1 − BSi+1 − ISi+1 · · · where CS denotes consecutive states (potentially

empty) produced by C, BS that of B, and IS that of I. Since [C � A], C can

only drop states from computations of A. Thus, there exists a computation x′

of (A B I) of the form · · · − ASi − BSi − ISi − ASi+1 − BSi+1 − ISi+1 · · ·

where for all i, CSi is a convergence isomorphism of ASi.

Since (A B I) is stabilizing to A (under weak fairness), there are no loops

in the uninitialized computations of (A B I). That is, a sequence of states

that are outside the invariant of A and occured in ASi cannot occur again later

in ASj where j > i. Thus, in every computation of C B I, C can drop only

a finite number of states from the corresponding computation of A. Therefore,

x can drop only a finite number of states from x′, and hence we conclude that

x is a convergence isomorphism of x′.
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Lemma 5.13 .

[D � B] ∧ (A B I) is stabilizing to A

⇒ [A D I � A B I]

Proof: Similar to the proof of Lemma 5.12 .

Theorem 5.14 (Composition of convergence refinements).

[C � A] ∧ [D � B] ∧ [I ′ � I]

∧ (A B I) is stabilizing to A

⇒ [C B I � A B I]

Proof: Follows from Lemma 5.12 , Lemma 5.13 (applied twice), and transitivity

of [ � ].

Our composition theorem is very general and is defined in an asymmetric manner.

For B to be a stand-alone component rather than a tolerance wrapper, in the abstract

one should also prove that (A B I) is stabilizing to invariant of B. This way we

ensure that starting from the initialized states, both component do useful work.

5.4.4 Refinement between different state spaces

The definitions and theorems introduced in this chapter assumed for the sake

of convenience that C and A use the same state space. However, as the examples

presented in the introduction illustrate, the state space of the implementation can

be different than that of the specification since the implementations often introduce

some components of states that are not used by the specifications.

This is handled by relating the states of the concrete implementation with the

abstract specification via an abstraction function. The abstraction function is a total
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mapping from ΣC , the state space of the implementation C, onto ΣA, the state space

of the specification A. That is, every state in C is mapped to a state in A, and

correspondingly, every state in A is an image of some state in C.

All definitions and theorems in this chapter are readily extended with respect

to the abstraction function. The soundness and completeness of our abstraction

functions are discussed in detail in Section 7.1.

5.5 Chapter Summary

In this chapter, we investigated the specification-based design of system stabiliza-

tion, which uses only the system specification, towards overcoming drawbacks of the

tradional whitebox approach, which uses the system implementation as well. The

specification-based design approach offers the potential of adding stabilization in a

scalable manner, since specifications grow more slowly than implementations. It also

offers the potential of component reuse: component technologies typically separate

the notion of specification (variously called interface or type) from that of implementa-

tion. Since reuse occurs more often at the specification level than the implementation

level, specification-based design of stabilization is more reusable than stabilization

that is particular to an implementation.

Although we have limited our discussion of the specification-based design ap-

proach to the property of stabilization, the approach is applicable for the design

of other dependability properties, for example, masking fault-tolerance and fail-safe

fault-tolerance. (A system is masking fault-tolerant iff its computations in the pres-

ence of the faults implement the specification. A component is fail-safe fault-tolerant
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iff its computations in the presence of faults implement the “safety” part [but not nec-

essarily the “liveness” part] of its specification.) Our observation that specification-

based design of stabilization is not readily achieved for all specifications is likewise

true for specification-based design of masking and specification-based design of fail-

safe. Moreover, our observation that local everywhere specifications are amenable to

specification-based design of stabilization is also true for specification-based design of

masking and specification-based design of fail-safe.
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CHAPTER 6

SPECIFICATION-BASED DESIGN OF HEALING FOR
TRACKING IN SENSOR NETWORKS

6.1 Introduction

In Chapter 2 we presented a fault-locally self-healing tracking service, STALK, for

sensor networks. There, we used I/O automata specification language for describing

STALK, and gave formal proofs of correctness and fault-local self-healing for this

I/O language program. The implementation languages for sensor network platforms

are, however, more finer-grained than the abstract I/O language. For the mote [102]

platform, the implementation language is a dialect of C, called NesC [43], and the

runtime environment TinyOS [55] consists of a collection of system components for

network protocols and sensor drivers. With a conservative estimate, the 20 lines

of I/O code we wrote for STALK will correspond to 2000 lines of code (including

the libraries for networking and sensing) at the implementation level. Even though

we formally verified STALK at the I/O language level, proving correctness and self-

healing of the corresponding implementation at the TinyOS level by studying 2000

lines of code is a very challenging task.
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In this chapter we revisit STALK and consider the design of specification-based

self-healing to the STALK program in order to achieve a self-healing implementation

of this tracking service at the TinyOS level. By doing so, we also illustrate that

specification-based design of self-healing enables scalability of the design effort of

self-healing with respect to the size of the implementation.

In Chapter 5, to enable a specification-based design of stabilization, we presented

two fault-tolerance preserving and compositional refinements, namely everywhere and

convergence refinements. We can consider using these refinements for implementing

STALK in NesC, however, these refinements do not have tool/compiler support and,

hence, their adoption in practice is limited. In this case, it would be hard to prove

manually that our implementation at the TinyOS level is in fact an everywhere or

convergence refinement of STALK at the I/O automata level. Instead, in this chapter,

we show that we can use ordinary refinements (for which a lot of tool/compiler support

exists) and still achieve a specification-based design of stabilization under suitable

conditions.

The obstacles for adopting ordinary refinements (compilers, code transformers,

etc.) for specification-based design of self-healing are that ordinary refinements do

not preserve fault-tolerance and that ordinary refinements do not satisfy the com-

positionality property mentioned in Chapter 5: Even though the abstract system

composed of the fault-intolerant tracking program A and the self-healing wrapper W

is self-stabilizing, when A and W are refined into C and W ′ at the implementation

level, the concrete system might not be stabilizing since starting from faulty states

C may interfere with and invalidate the recovery strategy of W ′. Even though we

proved that starting from faulty states A does not interfere with W , since ordinary
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refinements are concerned only with computations starting from good states, compu-

tations of C that start from faulty states are unconstrained and may potentially be

interfering with W ′.

A straightforward way to prevent the interferences between the wrapper and the

application code outside the good states is to use atomic wrappers at both the ab-

stract and the concrete systems. When an atomic wrapper is executed it corrects

the application to a good state in a single step, and the application code does not

have the opportunity to interfere with the execution and the recovery strategy of

the wrapper. Similarly, we also require that the wrapper self-stabilizes atomically in

order to prevent the application to interfere with the self-stabilization of the wrapper

when starting from a faulty state for the wrapper.

Atomic wrappers are, however, infeasible for distributed systems because, in a dis-

tributed system, global system state is not available for instantaneous access. There-

fore, for effective specification-based design of stabilization of distributed systems, we

restrict our attention to wrappers local to each process of the distributed system. At

the abstract level, A = ( i :: Ai), we design the wrappers to be decomposable as

local wrappers, one for every process i; i.e., W = ( i :: Wi). While refining to a

distributed implementation C = ( i :: Ci) we refine these local and atomic wrappers

to be composed with the application code Ci at each process i; i.e., W ′ = ( i :: W ′
i )

By using local and atomic wrappers we achieve stabilization for each process both

at the abstract and concrete system levels. However, even though all the processes are

individually stabilizing, a system may fail to stabilize as a whole due to the continuous

introduction of corruptions to the system by the processes that are in a faulty state

at the time. Consider a scenario where process j is not yet stabilized but i is. If they

94



interact, i may receive bad input from j, and its state may become bad. Next, when

j is corrected to a good state, since i is not yet stabilized, i can in turn infect j. This

cycle may repeat infinitely, and even though i and j are individually stabilizing, the

system may fail to stabilize as a whole.

In order to ensure that stabilization of individual processes leads to stabilization of

the system as a whole, we borrow ideas from literature on compositional approaches

to stabilization. One simple idea is stabilization through composition of layers [36].

In the traditional stabilization by layers approach lower-level processes are oblivious

to the existence of higher-level processes, and higher-level processes can read (but

not write) the state of a lower- level process. Processes can corrupt each other, but

only in a predetermined controlled way since lower-level processes cannot be affected

by the state of higher-level ones. Also, the order in which correction must take place

is the same direction, the correction of higher-levels depend on that of lower-levels.

In order to ensure that stabilization compose at the system level, we adopt a layered

composition technique at the abstract system level and assert that the concrete system

preserve the layered composition structure of the abstract system.

To recap, we make the following assumptions:

1. Wrappers are local to each process and are atomic.

2. Identical layered composition structure is used by the abstract and concrete

systems.

These two assumptions are satisfied by a rich class of implementations. For ex-

ample, STALK satisfies both assumptions. The correctors (wrappers) in STALK are
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local to each process and atomic: the process is atomically put into a locally consis-

tent state with respect to the processes it interacts. Also STALK algorithm imposes

a static structure on the information flow. There is no communication from a higher

level process to a lower level process. The direction of communication is from lower

level processes to higher level processes. Due to this structural constraint, the same

layered composition structure is applicable at both the abstract and concrete systems.

We show, using these two assumptions, that an ordinary refinement suffices for

the fault-intolerant tracking algorithm, and a self-stabilization preserving refinement

suffices for the wrappers. The reason we use a stabilization-preserving refinement

(e.g., everywhere or convergence refinements) for the wrapper is to ensure that the

concrete wrapper is able to stabilize from the corruption of its variables. Since there

are a lot of tool support for ordinary refinements, refinement of the tracking algorithm

can be done automatically via a compiler. Since the wrappers are small and simple

their proof of self-stabilization can be achieved easily even at the implementation

level. Pattern-based design of self-healing and automated synthesis of specification-

based self-healing approaches, that we discuss in Chapter 9, are also of help for the

stabilization preserving refinement of the wrappers.

Outline of the rest of the chapter. In the next section, we show that the

refinement method we described above is amenable for the specification-based de-

sign approach. We discuss the refinement of STALK to a fault-locally self-healing

implementation in Section 6.3. In Section 6.4 we discuss possible extensions to our

refinement method by relaxing the layered composition assumption. Finally we con-

clude the chapter with a summary in Section 6.5.
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In this chapter we restrict our presentation to the refinement of the Tracker au-

tomata of STALK and do not discuss the refinement of the simpler and less interesting

Finder automata. We note that our method is also applicable for the refinement of

the Finder automata.

6.2 Adopting Ordinary Refinements for Specification-based
Design

We use the same system model as in Section 5.2.

Definition. A system S is a finite-state automaton (Σ, T , I) where T , the set of

transitions, is a subset of {(s0, s1) : s0, s1 ∈ Σ} and I, the set of initial states, is a

subset of the state space Σ.

A computation of S is a maximal sequence of states such that every state is related

to the subsequent one with a transition in T , i.e., if a computation is finite there are

no transitions in T that start at the final state. We define a wrapper to be a system

over Σ and formulate the “addition” of one system to another in terms of the operator

(pronounced “box”) which denotes the union of automata.

Definition. C is a refinement of A, denoted [C ⊆ A]init, iff every computation of C

that starts from an initial state is a computation of A.

Definition. C is stabilizing to A iff every computation of C has a suffix that is a

suffix of some computation of A that starts at an initial state of A.

Let A and C be distributed systems composed of processes Ai and Ci respectively;

i.e., A = ( i :: Ai) and C = ( i :: Ci). We say that a wrapper Wi for each process

Ai is local and atomic iff Wi when executed self-stabilizes (if its state is corrupted)

and corrects Ai to a good state (locally consistent state) in a single step.
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Stabilization through composition of layers require that the correction and the

corruption relations are to the same direction and form a directed acyclic graph.

Corruption relation denotes for each process in a bad state which other processes it

can corrupt. That is the corruption relation constrains the processes an uncorrected

process can potentially corrupt. Correction relation denotes for each process the prior

correction of which other processes its correction depends on. That is, the correction

relation constrains the order in which correction must occur.

Theorem 6.1 states the conditions under which ordinary refinements are usable

for the specification-based design of stabilization: Given local and atomic wrappers

(premise 3) that achieve stabilization of the abstract system (premise 1), ordinary

refinement of the application code at each process (premise 2) when composed with

everywhere refinement of the abstract wrapper (premise 4) —provided that the lay-

ered composition structure of the abstract is preserved (premise 5)— results into a

concrete system that is self-stabilizing to the abstract system specifications.
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Theorem 6.1 . If

1. ( i :: [Ai Wi]) is stabilizing to Ai,

2. (∀i :: [Ci ⊆ Ai]init),

3. (∀i :: [W ′
i ⊆ Wi]),

4. (∀i :: Wi is local and atomic), and

5. the correction & corruption relations of the abstract system are to the same di-

rection, and the concrete system preserves the correction & corruption relations

of the abstract

then ( i :: [Ci Wi]) is stabilizing to ( i :: Ai).

Proof. From premises 3 and 4 it follows that (∀i :: W ′
i is local and atomic), and

hence Ci cannot interfere with the recovery strategy of W ′
i . Thus, from premises 2,

3, and 4, it follows that (∀i :: [Ci Wi] is stabilizing to [Ai Wi]). The conclusion

follows from this result and premises 1 and 5.

6.3 Refinement of STALK to the Implementation Level

In this section, we present a refinement of the abstract STALK program given

in Chapter 2 to the TinyOS implementation level by showing that Theorem 6.1 is

applicable for this refinement. We start by recalling some of the properties of STALK

and pointing out which concepts of Theorem 6.1 they correspond to. We then continue

with a discussion of the refinement to the implementation level.

STALK provides local specifications for the fault-intolerant tracking program:

The Trackeri automata presented in Section 2.4 corresponds to Ai in Theorem 6.2.
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STALK also provides local and atomic wrappers for each Trackeri: The parallel

composition of the correction actions in Section 2.5 corresponds to Wi in Theorem

6.2. Since, in Chapter 2, we proved that Trackeri composed with the correction

actions are fault-locally self-stabilizing, premise 1 is satisfied. Since the correction

actions for the Trackeri automata are all local and atomic (since they are stateless,

they are stabilizing in one step; they also put Trackeri in a locally-consistent state

in one step), premise 4 is satisfied.

STALK imposes a static layered structure on the processes: There is no commu-

nication from a higher level process to a lower level process; the direction of commu-

nication is from lower level processes to higher level processes. Due to this structural

constraint, the same layered composition structure is applicable at both the abstract

and concrete systems; hence, premise 5 is satisfied.

Next, we consider the refinement of STALK to the implementation level. In order

for Theorem 6.1 to be applicable, we need to show that premises 2 and 3 are satisfied

by our refinement of STALK.

Premise 2 asserts that the implementation of the Trackeri automata should be a

refinement from the initial states. Since there are a lot of tool support for ordinary

refinements, refinement of the tracking algorithm can be done automatically via a

compiler. For example, the IOA toolkit [41] supports the design, analysis, verification,

and refinement of programs written in I/O automata notation. The toolkit includes

analysis tools such as the IOA simulator [61] and interfaces to theorem-proving tools

[40] as well as compilers for generation of distributed code in commercial programming

languages [101]. Even if the implementation of Trackeri automata is performed

manually, the verification process for ordinary refinements are, in general, easier than
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that of fault-tolerance preserving and compositional refinements. Since an ordinary

refinement from initial states of the Trackeri automata is sufficient, one does not have

to consider refinements from every state for the purposes of this implementation.

Premise 3 asserts that the abstract wrappers should be everywhere refined. IOA

toolkit can again be employed to this end. First, using the IOA toolkit we obtain

a wrapper at the implementation level, and then we modify this concrete wrapper

until we can prove that it is an everywhere refinement of the abstract wrapper. [108]

suggests a method for reasoning about the relationships between designs at different

levels of abstraction using the IOA toolkit. The method advocates paired execution

of the abstract level and concrete level systems using IOA simulator [61] in order to

identify an abstraction function (simulation relation in their model). Then, using

the Larch theorem prover [40] the refinement is formally verified, potentially from

every state. Alternatively, model-checking based approaches may be used for the

verification: For example, [49] can accept a wrapper written in C language as input,

and model-check properties of the wrapper. Since the wrappers are small and simple,

their proof of self-stabilization can be achieved easily even manually, without any

tool support. Since sensor nodes [54] have a single thread of control, the concrete

level wrappers can also be made atomic easily. Also, since stateless wrappers are

trivially self-stabilizing, self-stabilization of the wrapper can be achieved by avoiding

introduction of new variables or by using soft-state variables.

Since all the premises are satisfied, we can conclude, by a simple application of

Theorem 6.1 , that the resultant implementation of STALK at the TinyOS level is

self-stabilizing to the abstract specifications.
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Even though preservation of stabilization is guaranteed by our refinement method,

preservation of fault-containment demands a stronger refinement for the wrappers:

aside stabilization property, real-time guarantees of the abstract wrappers should

also be preserved. The fault-containment calculations in STALK made use of the

detection and execution time by the local wrappers: The time latency of detection

at the “start-shrink” action depends on the timeout period of the heartbeats, and

the execution time of the wrappers are assumed negligible. When we refine the

wrappers, we should be careful about the detection and execution latencies at the

concrete level. If the detection and execution latencies introduced at the concrete level

do not influence fault-containment calculations, we can reuse the fault-containment

argument of STALK at the concrete system level. By ensuring that the real-time

requirements of STALK are respected by the implementation, we can conclude that

the fault-containment property of STALK is respected by the concrete system.

6.4 Extensions

In this section, we discuss possible extensions to our refinement method by relaxing

the layered composition assumption, that we adopted for achieving specification-based

design of self-healing using ordinary refinements.

In [73], a compositional framework for constructing self-stabilizing systems is pro-

posed. The framework explicitly identifies for each component which other com-

ponents it can corrupt (corruption relation). Additionally, the correction of one

component often depends on the prior correction of one or more other components,

constraining the order in which correction can take place (correction relation). De-

pending on what is actually known about the corruption and correction relations, the
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framework offers several ways to coordinate system correction. In cases where the

correction and corruption relations are in reverse directions, persistent corruption cy-

cles may be formed: even though all the components are individually stabilizing, the

system may fail to stabilize due to the continuous introduction of corruptions to the

system via these corruption cycles. By employing blocking coordinators, the frame-

work breaks these malicious cycles. In cases where both correction and corruption

relations are in the same direction, no cycle forms and there is no need for blocking.

By including both correction and corruption relations, this framework subsumes

and extends other compositional approaches, such as layered composition, where cor-

rection and corruption relations are to the same direction. By adopting this frame-

work in our refinement method, we can relax our layered composition assumption

and allow arbitrary compositions of processes. Using the knowledge of correction-

corruption relations between the processes, we can instantiate a corresponding coor-

dinator to ensure that stabilization of processes compose at the system level. We can

even relax the preservation of correction corruption relations when going to the con-

crete if we know the correct coordinator to use for the correction-corruption relations

at the concrete.

6.5 Chapter Summary

In this chapter we revisited the tracking problem in sensor networks and presented

design of specification-based self-healing to STALK in order to achieve scalability of

design effort of self-healing with respect to the implementation of this tracking service.

More specifically, we showed that we can use ordinary refinements (for which a

lot of tool/compiler support exists) and still achieve a specification-based design of
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stabilization under suitable conditions. To this end, we assumed that (1) wrappers

are local to each process and are atomic, and (2) the concrete system preserves the

layered composition structure of the abstract system.

Using these two conditions, we showed that ordinary refinement suffices for the

fault-intolerant tracking algorithm, and a self-stabilization preserving refinement suf-

fices for the wrappers. Since there are a lot of tool support for ordinary refinements,

refinement of the tracking algorithm can be done automatically via a compiler.
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CHAPTER 7

DISCUSSION ON ABSTRACTION FUNCTIONS AND
AUTOMATED SYNTHESIS OF SPECIFICATION-BASED

DESIGN OF FAULT-TOLERANCE

In this chapter, we first investigate in Section 7.1, the soundness and complete-

ness of the abstraction functions we use in our specification-based design approach,

and then, in Section 7.2, we discuss a preliminary method for achieving automated

synthesis of specification-based design of fault-tolerance.

7.1 Soundness and Completeness of Abstraction Functions

In this section, we investigate soundness and completeness of our abstraction

functions. To this end, we first summarize our use of abstraction functions briefly in

Section 7.1.1. Then in 7.1.2, we present two constructive methods that given a system

C deduces an abstract system A such that [C ⊆ A] and [C � A], respectively,

and prove the soundness and completeness of these abstraction methods. Finally, in

Section 7.1.3 we present a survey of abstraction functions developed in the model

checking literature that are applicable for specification-based design.
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7.1.1 Abstraction functions

In this section, after some preliminary definitions, we justify how abstraction

functions allow the implementation to have a different state space than that of spec-

ification.

Let Σ be a state space.

Definition. A system S is a finite-state automaton (Σ, T , I) where T , the set of

transitions, is a subset of {(s0, s1) : s0, s1 ∈ Σ} and I, the set of initial states, is a

subset of Σ.

A computation of S is a maximal sequence of states such that every state is related

to the subsequent one with a transition in T , i.e., if a computation is finite there are

no transitions in T that start at the final state.

Abstraction between different state spaces. The state space of the imple-

mentation C can be different than that of the specification A since the implemen-

tations often introduce some components of states that are not used by the specifi-

cations. We handle this by relating the states of the concrete implementation with

the abstract specification via an abstraction function. The abstraction function is a

total mapping from ΣC , the state space of the implementation C, onto ΣA, the state

space of the specification A. That is, every state in C is mapped to a state in A, and

correspondingly, every state in A is an image of some state in C.

Additional state variables in the concrete. Note that our abstraction func-

tion allows C to introduce irrelevant variables for implementing a feature that is

orthogonal to the functionality of A (e.g., a graphical user interface at C). If only the

irrelevant variables differ for two states c1 and c2 of C, then our abstraction functions

will map c1 and c2 to correspond the same state in A.
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7.1.2 Soundness and completeness of abstraction functions

Everywhere refinements. We present a constructive method that given a

system C deduces an abstract system A such that [C ⊆ A]. This method is equiv-

alent to the existential abstraction method presented in model-checking literature in

Section 7.1.3.

Theorem 7.1 (Soundness). Let h be an abstraction function from C to A. If

1. IA(sA) ⇐⇒ (∀sC : h(sC) = sA : IC(sC))

2. TA(s0A, s1A) ⇐⇒ (∃s0C , s1C : h(s0C) = s0A ∧ h(s1C) = s1A : TC(s0C , s1C))

then [C ⊆ A]. (That is, every computation of C is a computation of A with respect

to the abstraction function h.)

Theorem 7.2 (Completeness). If [C ⊆ A]

then there exists an abstraction function h from C to A such that

1. IA(sA) ⇐⇒ (∀sC : h(sC) = sA : IC(sC))

2. TA(s0A, s1A) ⇐⇒ (∃s0C , s1C : h(s0C) = s0A ∧ h(s1C) = s1A : TC(s0C , s1C))

Proof. [C ⊆ A] implies that every computation of C is a computation of A with

respect to some abstraction function h. This same abstraction function h satisfies

the two conditions in the antecedent of the theorem, therefore such an existential

abstraction exists.

Convergence refinements. We present a constructive method, “expansion

abstraction”, that given a system C deduces an abstract system A such that [C � A].

Recall that convergence refinement implies that even in the unreachable states the

computations of the concrete system C track the computations of the abstract system
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A, although some states that appear in the computations of A may disappear in the

computations of C, and hence, C preserves convergence properties (e.g., stabilization)

of A.

The idea of expansion abstraction is similar to the existential abstraction method

we presented above. We first construct A as usual using the existential abstraction

method we described above. Then, we investigate the transitions of A outside the

invariant states of A and expand some of these transitions: If there is a transition

from state s0 to sN and there exists another sequence of transitions starting from sx

and ending at sN , then we remove the transition from s0 to sN and add a transition

from s0 to sx.

Theorem 7.3 (Soundness). Let h be an abstraction function from C to A. If

there exists an expansion abstraction from C to A that uses h, then [C � A]. (That

is, [C ⊆ A]init and every computation of C is a compression of a computation of A

with respect to the abstraction function h.)

Theorem 7.4 (Completeness). If [C � A],

then there exists an expansion abstraction from C to A.

Proof. [C � A] implies that there exists an abstraction function h such that

[C ⊆ A]init with respect to h and every computation of C is a compression of a

computation of A with respect to h. This implies that there exists an expansion

abstraction from C to A that uses h.
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7.1.3 Abstraction functions in model checking literature

Model checking is an automatic verification technique for finite state concurrent

systems. Typically, the user provides a high level model of the system and the tem-

poral logic formula to be checked. The formula is then automatically checked by an

exhaustive search of the state space of the model. The model checking algorithm

will either terminate with the answer true, indicating that the model, and hence the

system, satisfies the formula, or give a counterexample execution showing why the

formula is not satisfied.

The main challenge in model checking is the state explosion problem. Abstraction

is an effective technique for tackling this problem. Abstraction has been traditionally

a manual process requiring creativity, however, recently some abstraction techniques

[26, 27, 29, 31] are proposed to automate this process entirely.

In this section we briefly summarize an automated abstraction technique pro-

posed by Clarke et al. [26, 27] and hint on its application to automated synthesis of

specification-based fault-tolerance. We leave the details and demonstration of these

techniques to Section 7.2, where we demonstrate our automated synthesis design of

specification-based fault-tolerance.

In [26, 27] model checking of ACTL formulas are considered. ACTL is the frag-

ment of CTL where only the operators involving A (“for every path”) are used, and

negation is restricted to atomic formulas. ACTL is expressive enough to capture

stabilizing, masking, and fail-safe fault-tolerance properties. There Clarke et al. in-

troduce the concept of existential abstraction. An abstraction function h is described

by a surjection (i.e., h is onto) h : S −→ S ′ where S is the set of concrete states and
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S ′ the set of abstract states. In contrast, in our work [32] we have defined an abstrac-

tion function to be total and onto from SC to SA. We have required the abstraction

function to be total since we also consider faulty computations of the concrete and

do not restrict ourselves to merely the initialized computations.

Given a concrete system C = (S, I, R) (where I denotes the initial states of C

and R denotes a total transition relation on S) the abstract system A = (S ′, I ′, R′)

corresponding to the abstraction function h is defined as follows:

1. I ′(d′) iff ∃d(h(d) = d′ ∧ I(d))

2. R′(d′
1, d

′
2) iff ∃d1∃d2(h(d1) = d′

1 ∧ h(d2) = d′
2 ∧ R(d1, d2))

Existential abstraction guarantees that when an ACTL formula is true in A, it

will also be true in C. However, since A contains less information, model checking A

potentially leads to wrong results: If a formula is false in A, this may be the result

of some behavior in the approximation that is not present in C.

Consider the following spurious counterexample.

Example: Assume that for a traffic light controller we want to prove φ =

AGAF(state = red) (i.e., red state is encountered infinitely often on every com-

putation path) using the abstraction function h(red) = red and h(green) = h(yellow)

= go. From the figure it is easy to see that while the concrete system C satisfies φ, the

abstract system A does not: there exists an infinite trace “red, go, go, go, ...”. Since

this abstract counterexample does not correspond to some concrete counterexample,

it is a spurious counterexample [26].

(End of example)

Existential abstraction produces a loose approximation of the concrete system and

hence leads to spurious counterexamples. On the other hand, it is weak enough to
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red yellowgreenC:: red goA::

Figure 7.1: Spurious counterexample

be achieved by automated methods (see Section 4.2 of [28]). Next we present the

automatic abstraction-refinement methodology in [26] in which the initial abstract

model is generated by an automatic analysis of the control structures in the program

to be verified.

(Remark): In our work on everywhere refinements [6] we use a stronger no-

tion of abstraction. Instead of the ∃d1∃d2 in condition 2 of existential abstraction

method, this more strict method uses ∀d1∃d2 quantification. Thus, this method

avoids the spurious counterexample problem. In [28], another abstraction “exact-

approximation”, that uses ∀d1∀d2 quantification for condition 2, is introduced. Using

exact-approximation, a property will be true at the concrete level if and only if it is

true at the abstract level. Exact-approximations are too strict to be useful: the au-

thors [28] report that exact approximation allows very little simplification, and hence

not useful for reducing complexity of verification. Our abstraction function in [6]

is not as strict as exact-approximations, but still prevents the existence of spurious

counterexamples. (End of remark)

Counterexample-guided abstraction:

1. Generate the initial abstraction h automatically: First, by examining the tran-

sition blocks corresponding to the variables of the program C, formula clusters
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are formed: A variable cannot appear in formulas that belong to two different

formula clusters. Then, an existential abstraction [28] on the value domains

of the variables in a formula cluster are defined such that two values are in

the same equivalence class if they cannot be distinguished by atomic formulas

appearing in that formula cluster.

2. Model-check the abstract structure: Let A be the abstract system (Kripke struc-

ture) corresponding to the abstraction h. Standard model checking techniques

are used to see whether A satisfies the given ACTL formula. If the check is

confirmative, then we conclude that C also satisfies that formula. Else, if the

check reveals a counterexample, we check whether this is also a counterexample

in C. If it is an actual counterexample it is revealed to the user, else if it is a

spurious counterexample, we proceed to step 3.

3. Refine the abstraction: The equivalence class in A that has caused the spurious

counterexample is determined and is partitioned so that the refined abstraction

function h no longer admits that spurious counterexample.

We give an example of the above procedure in Section 7.2, where we discuss ap-

plication of automatic generation of abstraction functions in automated synthesis of

specification-based fault-tolerance. The idea, briefly, is that given a fault-intolerant

concrete system C, we will deduce a corresponding abstract system A using the auto-

matic abstraction methodology discussed in this section. We will then automatically

synthesize a tolerance wrapper for achieving fault-tolerance of A and refine this wrap-

per (using the abstraction in the reverse direction) to provide fault-tolerance to the

concrete system C. Note that the wrapper synthesized for the abstract model A is

readily available for mapping back to C because the abstraction function is defined
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as onto. In fact in [26] a method for mapping the counterexamples in the abstract

model to counterexamples in the concrete model is presented. We simply adopt that

method to map the abstract tolerance wrapper to the concrete system level.

Our motivation for automated synthesis for specification-based fault-tolerance is

the same as that of using abstractions in model checking: to avoid the state explosion

problem. Since A will be an abstraction of C, our specification-based automated

fault-tolerance synthesis algorithm will be scalable and low-cost.

Existential abstractions are insufficient for convergence refinements:

The above abstraction technique, given a concrete system C will produce (after

some iterative refinement of the abstraction function) a corresponding abstract sys-

tem A such that [C ⊆ A] (i.e., C is an everywhere refinement of A). Even though

[C ⊆ A] ⇒ [C � A], the existential abstraction functions cannot truly capture

the expressive power of convergence refinements. We present one such abstraction in

Section 7.1.

Model-checking with well-founded bisimulation. In [80], Manolios et al.

propose an approach to verification that combines the strengths of the model check-

ing and the automated theorem proving approaches: They use a theorem prover to

reduce an infinite-state system to a finite-state system, which they then handle using

automatic methods.

The reduction amounts to proving a stuttering bisimulation that preserves the

properties of interest. To this end, they introduce the concept of well-founded equiv-

alence bisimulation. As a demonstration of their approach they verify the alternating

bit protocol.
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This approach might be useful for automated synthesis of specification-based fault-

tolerance to infinite-state systems. However, they essentially use an abstraction func-

tion similar to existential abstraction to deduce an abstract system given a finite-state

concrete system that is a well-founded equivalence bisimulation of an infinite-state

concrete system.

7.2 Automated Synthesis of Specification-Based Tolerance

In this section we demonstrate our automated synthesis of specification-based

fault-tolerance by designing fault-tolerance to two 3-state token-ring systems. To

this end, we modify Clarke et al.’s [26] automated algorithm for finding an existential

abstraction function so that when we deduce an abstract system for the given concrete

system, instead of model-checking for a tolerance property in the abstract, we run

an automated synthesis algorithm on the abstract to find a tolerance wrapper that

would ensure that tolerance property.

Recall from Section 7.1.3 that since every computation of the concrete system

is a computation of the abstract system, the synthesized abstract tolerance wrapper

suffices for achieving the desired level of fault-tolerance at the concrete also. However,

if the abstraction is approximate (e.g. existential abstraction) then parts of the

abstract wrapper may turn out to be vacuous when the wrapper is mapped to the

concrete level. This phenomenon is analogous to the spurious counterexample concept

in [26]. We have presented such an example in 4-state token-ring systems in [32].

In our work on everywhere refinements [6] we have used a stronger notion of

abstraction. Instead of the ∃d1∃d2 in condition 2 of existential abstraction method,

we have used ∀d1∃d2 quantification. Using such an abstraction, we are guaranteed
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that (1) every computation of C is a computation of A, and (2) every computation

of A is a computation of C. Therefore, if there is a way to wrap the concrete system

C to achieve a desired level of fault-tolerance, we are guaranteed to find a suitable

abstract tolerance wrapper for A to achieve that desired level of fault-tolerance.

(Remark): The existing work on synthesis of fault-tolerance [5, 63] cannot syn-

thesize a separate tolerance component but instead output a fault-tolerant transfor-

mation of the input system. Thus, here we will derive the tolerance wrappers by

ourselves and not by using an automatic synthesis procedure. (End of remark)

(Remark): The abstract systems we produce in this section are such that every

computation of the concrete system is a computation of the abstract system. In an-

other words [C ⊆ A]. Had we given another abstract system A′ such that [C � A′]

(i.e., C is a convergence refinement of A), our method would still apply. That is, once

a tolerance wrapper is synthesized for A, mapping it to the concrete level would still

achieve stabilization of C. (End of remark)

7.2.1 BTR1: A fault-intolerant token-ring system

BTR1 consists of 3 processes.

c.1 = c.0 ⊕ 1 −→ c.0 := c.1 ⊕ 1

c.0 = c.1 ⊕ 1 −→ c.1 := c.0

c.2 = c.1 ⊕ 1 −→ c.1 := c.2

c.1 = c.2 ⊕ 1 −→ c.2 := c.1 ⊕ 1

Finding the abstraction function. Every process j maintains a counter c.j with

the domain {0, 1, 2}. The set of atomic formulas in BTR1 is {(c.1 = c.0 ⊕ 1), (c.0 =

c.1 ⊕ 1), (c.2 = c.1 ⊕ 1), (c.1 = c.2 ⊕ 1)}. Two atomic formulas f1 and f2 interfere
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iff “var(f1) ∩ var(f2) 6= 0”. The formulas interfering with each other should be put

into the same formula cluster, thus, all the atomic formulas in BTR1 are in the same

formula cluster. Therefore, variables c.0, c.1, and c.2 are in the same variable cluster.

We construct the initial abstraction function h as follows. We put two states

in the same equivalence class if the values of variables in the two states cannot be

distinguished by atomic formulas appearing in that cluster. The domain of {0, 1, 2} ∗

{0, 1, 2} ∗ {0, 1, 2} is partitioned into a total of 9 equivalence classes by this criterion.

We denote these classes by the natural numbers 0...8.

0 = {(0, 0, 0), (1, 1, 1), (2, 2, 2)}
1 = {(0, 0, 2), (1, 1, 0), (2, 2, 1)}
2 = {(0, 0, 1), (1, 1, 2), (2, 2, 0)}
3 = {(0, 2, 2), (1, 0, 0), (2, 1, 1)}
4 = {(0, 2, 1), (1, 0, 2), (2, 1, 0)}
5 = {(0, 2, 0), (1, 0, 1), (2, 1, 2)}
6 = {(0, 1, 1), (1, 2, 2), (2, 0, 0)}
7 = {(0, 1, 0), (1, 2, 1), (2, 0, 2)}
8 = {(0, 1, 2), (1, 2, 0), (2, 0, 1)}

That is, h maps states (0, 0, 0), (1, 1, 1), and (2, 2, 2) of BTR1 to state 0 of the

abstract system ABTR1.

Producing the abstract system, ABTR1. From the definition of existential

abstraction and h, BTR1 follows:

Abstract tolerance wrapper, AW1. It is easy to see from the figure that

ABTR1 becomes stabilizing if a transition is added from 0 into the invariant states.

The abstract wrapper adds a transition from 0 to 1. This is the same as inserting a

token at process N when there are no tokens in the system.
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Refining the tolerance wrapper into W1. When we map AW1 to the concrete

level, we get the following wrapper W1:

c.1 = c.2 ∧ c.2 = c.0 −→ c.2 = c.1 ⊕ 2

From the specification-based design theorem it follows that W1 provides stabilizing

fault-tolerance to BTR1. Indeed, BTR1 W1 results in Dijkstra’s 3-state token-ring

algorithm.

7.2.2 BTR2: Yet another fault-intolerant token-ring system

BTR2 consists of 3 processes.

c.1 = c.0 ⊕ 1 −→ c.0 := c.1 ⊕ 1

c.0 = c.1 ⊕ 1 −→ c.1 := c.2 ⊕ 1

c.2 = c.1 ⊕ 1 −→ c.1 := c.0 ⊕ 1

c.1 = c.2 ⊕ 1 −→ c.2 := c.1 ⊕ 1

Since the guards of BTR2 is the same as that of BTR1, the abstraction function

remains the same for BTR2 as in BTR1.

Producing the abstract system, ABTR2. From the definition of existential

abstraction and h, BTR1 follows:
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Abstract tolerance wrapper, AW2. It is easy to see from the figure that

ABTR2 becomes stabilizing if (1) a transition is added from 5 to 0, and (2) a transition

is added from 0 into the invariant states.

We should give priority to the wrapper so that it executes first at state 5 and

eliminates the possible infinite, non-converging computations by breaking the loop.

Note that the loops at 4 and 8 are self-loops and they are taken care of by the

weak-fairness assumption: Since a self-loop does not alter the current state, there

is always another transition that is infinitely enabled at states 4 and 8, which will

eventually be taken.

As before, the transition from 0 to 1 is the same thing as inserting a token at

process N when there are no tokens in the system.

Refining the tolerance wrapper into W2. When we map AW2 to the concrete

level, we get the following wrapper W2:

c.1 = c.2 ∧ c.2 = c.0 −→ c.2 = c.1 ⊕ 2

c.1 ⊕ 1 = c.0 ∧ c.1 ⊕ 1 = c.2 −→ c.1 = c.0
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From the specification-based design theorem it follows that W2 provides stabilizing

fault-tolerance to BTR2. BTR2 W2 results in a slightly different token-ring system

than Dijkstra’s 3-state token-ring.
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CHAPTER 8

RELATED WORK ON SPECIFICATION-BASED DESIGN
OF FAULT-TOLERANCE

In this chapter we start with a survey of fault-tolerance design methods in Sec-

tion 8.1. We then consider related work on fault-tolerance preserving refinements in

Section 8.2. Finally, in Section 8.3 we discuss work on scalable design of self-healing

through compositional approaches.

8.1 Fault-tolerance Design Methods

In this section we present some previous work on fault-tolerance design methods

and compare them with our specification-based design method. To this end, we first

give a brief summary our method for specification-based design of fault-tolerance in

Section 8.1.1.

We categorize the previous work on fault-tolerance methods with respect to the

type of tolerance they provide: We start with methods applicable for design of any

type of tolerance in Section 8.1.2, in Section 8.1.3 we survey the methods for designing

masking fault-tolerance, in Section 8.1.4 methods for designing nonmasking fault-

tolerance, and in Section 8.1.5 methods for fail-safe fault-tolerance. As we study each

method, we compare and contrast it with our method.
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8.1.1 Brief overview of specification-based design method

Given a high-level system specification A, the specification-based approach is to

design a tolerance wrapper W such that adding W to A yields a fault-tolerant system.

The goal is to ensure that for any low-level refinement (implementation) C of A adding

a low-level refinement W ′ of W would also yield a fault-tolerant system.

Since the refinements from A to C and W to W ′ can be done independently,

specification-based design enables a posteriori or dynamic addition of fault-tolerance.

That is, given a concrete implementation C, it is possible to add fault-tolerance to C

as follows:

• First, design an abstract (high-level) tolerance wrapper W using solely an ab-

stract specification A of C, and then

• add a concrete (low-level) refinement W ′ of W to C.

Note that the goal of specification-based fault-tolerance is not readily achieved

for all refinements. The refinements we need for achieving specification-based fault-

tolerance should not only preserve fault-tolerance but also have nice composability

features so that the refinements from A to C and W to W ′ can be done independently.

In current research, we have presented two such refinements: everywhere refinements

[6] and convergence refinements [32]. These refinements ensure that if A composed

with W is fault-tolerant, then for any everywhere or convergence refinement C of A

adding an everywhere or convergence refinement W ′ of W would also yield a fault-

tolerant system.
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8.1.2 Generic methods for fault-tolerance

Method by A. Arora and S. Kulkarni. Arora and Kulkarni [11] have de-

scribed a comprehensive and widely adopted methodology for the design of tolerance

components to a given intolerant system to achieve a desired level of tolerance. In

their methodology, they have identified two types of tolerance components, detectors

and correctors, and have demonstrated how these detectors and correctors can be

constructed in a hierarchical and efficient manner to render a fault-intolerant sys-

tem to be fault-tolerant. As illustrations of their methodology, they have designed

masking, nonmasking and fail-safe tolerance to several distributed algorithms in the

literature [64–67].

Their methodology, however, assumes access to implementation details of the sys-

tems they render tolerant. In contrast, in our methodology we achieve design of fault-

tolerance using only the system specification and not the system implementation. In

fact, in our work we also adopt their methodology while designing fault-tolerance at

the abstract system level. The abstract tolerance wrappers we design corresponds to

the detector and corrector components in their work.

Method by D. Peled and M. Joseph. In [88], Peled and Joseph view

the incorporation of a recovery program into a fault-intolerant program as a program

transformation. They introduce a proof method which builds on program transforma-

tions and corresponding formula transformations. Let T be a program transformation

and T the corresponding formula transformation. The proof rule states that if a prop-

erty φ holds for a program C, then T (φ) holds for T (C). This proof rule makes it

possible to prove just once that a formula transformation corresponds to a program
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transformation, removing the need to prove separately the correctness of each trans-

formed program. The method uses linear temporal logic (LTL) [79] for expressing

formulas. One can think of these formulas as specifications of the programs. Then,

this proof rule makes it possible to reason about T (C) without looking at its code.

For example, if T has some complicated recovery transformation, given that C has

a property(i.e., specification) φ, apply the transformation T to φ and then conclude

using the proof rule that C also satisfies T (φ).

This method is limited by the inherent assumption that a fault-tolerant program

is obtained by superposing (i.e., layering composition) a generic recovery program

(e.g. checkpointing and recovery) to a fault-intolerant program. Hence, fault-tolerant

programs that cannot be designed in this manner cannot be specified using their

method. In contrast our specification-based design method is not limited with these

assumptions.

8.1.3 Design of masking fault-tolerance

Definition. A system is masking tolerant if in the presence of faults, it always

satisfies its safety properties and, when faults stop occuring, it eventually resumes

satisfying its liveness properties.

Replication. One commonly used method for designing masking fault-tolerant

systems is replication: the intolerant system is replicated and the output of the replicas

is combined to determine the output of the fault-tolerant system. The number of

replicas and the way in which the output is combined depends upon the number of

faults that need to be tolerated and the types of these faults. For example, if the

intolerant program fails in a fail-stop manner, i.e., upon failure, it stops executing and

never outputs incorrect values (although it may not output a value), then to tolerate
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t faults, the number of replicas required is t+1. As a special case, if t is 1, two replicas

are required; this case is an instance of primary-backup. If the intolerant program

fails in a Byzantine manner, i.e., upon failure it may output incorrect values, then to

tolerate t faults, the number of replicas required is 2t+1. As a special case, if t is 1,

three replicas are required; this case is an instance of triple modulo redundancy.

Replication is a blackbox approach to fault-tolerance, in that it does not exploit

any information about the system it renders fault-tolerant, and hence results in sys-

tems that have high overhead. Also, if the intolerant system is nondeterministic,

replication will not be applicable.

Next we present four other methods for masking tolerance that use the replication

idea: state-machine approach, checkpointing & recovery (replication in time rather

than space), recovery blocks, and N-version programming. The comments in the

paragraph above also applies for these methods.

State-machine approach. Schneider [95] generalizes replication to the client-

server model. In his so-called state-machine approach, each client and each server is

replicated and a communication from a client c to a server s is replaced with a com-

munication from every replica of c to every replica of s. Likewise, a communication

from s to c is replaced with a communication from every replica of s to every replica

of c. Since each replica of the server (client) gets these messages, each replica of the

server (client) can ignore the messages from the erroneous clients.

Checkpointing and recovery. Yet another method is checkpointing-and-

recovery: after the occurrence of a fault, the program is restored to some previous

state in its computation. Towards this end, the intolerant program is augmented
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with a checkpointing program and a recovery program; the former records the pro-

gram state periodically and the latter recovers the program to a recorded good state

and resumes the program.

Recovery blocks. Randell [92] combines exceptions and checkpointing-and-

recovery. He assumes that a fault is due to an error in the implementation and uses

multiple implementations to satisfy a given specification. In particular, a program

is composed of recovery blocks that consist of an acceptance test and a sequence of

subprograms. To execute the recovery block, the first subprogram in this sequence is

executed and the acceptance condition is tested thereafter. If the acceptance condition

is satisfied, the execution of the recovery block completes correctly. Otherwise, an

exception is raised and the program state is recovered to the initial state from where

the next subprogram is executed, and so on. Thus, as long as the execution of at

least one subprogram satisfies the acceptance condition, the recovery block completes

correctly.

N-version programming. N-version programming [13] is similar to recovery

blocks idea in that multiple versions of a component are designed to satisfy the same

basic requirements. The fundamental difference of this approach from recovery blocks

is that N-version requires the use of a generic decision algorithm (a voter) to decide

the correct output based on the comparison of all the outputs, whereas recovery blocks

approach uses an application dependent acceptance test.

An example of an N-version fault-tolerance design was presented in [93], which

uses abstraction to reduce the cost of Byzantine fault tolerance and to improve its
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ability to mask software errors. Using abstractions, this work manages to hide im-

plementation details of replicas to enable the reuse of off-the-shelf and, to a certain

extent, nondeterministic implementations.

To this end, the authors define a common abstract behavioral specification for the

system and implement appropriate conversion functions (i.e., conformance wrappers)

for the state, requests, and replies of each implementation in order to make it behave

according to a common specification. They also provide a reset mechanism to repair

faulty replicas: When a replica is recovered, it is rebooted and restarted from a clean

state. Then it is brought up to date using a correct copy of the abstract state that is

obtained from the group of replicas.

Since abstractions and abstract states are used for achieving fault-tolerance, this

work is close to our work in spirit. However, our method is more general in that we

are not limited to only replication-based approaches and masking fault-tolerance.

One of the principal objections to N-version programming is that it is still prone to

common mode failure. The objection is based on the observation that programmers

tend to think in the same way and therefore even independently written programs

are likely to fail in the same way. Also, since multiple versions of a component is used

this approach requires considerable development effort.

8.1.4 Design of nonmasking fault-tolerance

Definition. A system is nonmasking tolerant if in the presence of faults, it need

not satisfy its safety properties but, when faults stop occuring, it eventually resumes

satisfying its safety and liveness properties. A special case of nonmasking tolerance is

stabilizing tolerance: in the presence of faults, even if the system reaches an arbitrary

state, it eventually recovers to a state from where its safety and liveness properties
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are satisfied. In this section, we focus on self-stabilizing fault-tolerance (also known

as self-healing), though the same arguments hold for design of nonmasking tolerance.

Research in stabilization [36,39,46,52] has traditionally relied on the availability of

a complete system implementation. The standard approach to reasoning uses knowl-

edge of all implementation variables and actions to exhibit an “invariant” condition

such that if the system is properly initialized then the invariant is always satisfied and

if the system is placed in an arbitrary state then continued execution of the system

eventually reaches a state from where the invariant is always satisfied. Likewise, the

generic methods for designing stabilization [1,8,60,105] also assume implementation-

specific details as input: [8, 60] assume the availability of the implementation invari-

ant, [1] relies on the knowledge of the implementation actions, and [105] takes as

input a “locally checkable” consistency predicate derived from implementation.

To the best of our knowledge, our work [6] is the first time that system stabilization

is shown to be provable without whitebox knowledge. As one piece of evidence, we

offer the following quote due to Varghese [105] (parenthetical comments are ours):

In fact, the only method we know to prove a behavior stabilization result

(i.e., stabilization with respect to system specification) is to first prove
a corresponding execution stabilization result (i.e., stabilization with re-

spect to system implementation) . . .

8.1.5 Design of fail-safe fault-tolerance

Definition. A system is fail-safe tolerant if in the presence of faults, it always sat-

isfies its safety properties but, when faults stop occuring, it need not resume satisfying

its liveness properties.

In the literature, there has been some instances [9,107] of specification-based fail-

safe systems prior to our work. This is due to the fact that fail-safe tolerance can be
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achieved by using only a “detector” component. It is easy to define an abstraction

mapping over a concrete system and use an abstract detector component to detect

whether the abstract predicate is truthified. Note that it is not necessary to find a

means to refine the detector component to the concrete system level, whereas, that

would have been necessary for a corrector component.

Exception handling. One commonly used method for fail-safe fault-tolerant

systems is exception handling: whenever the program reaches an unintended state,

such as trying to divide by zero, an exception is raised and the control is transferred

to a special exception handler, that recovers the program to an acceptable state.

Xept: A software instrumentation method for exception handling. This

paper [107] poses the question of how to handle faults when source code is not avail-

able. As a solution to this problem, the authors suggest the Xept framework, which

consists of (1) a small language to write exception handling code for functions, and

(2) tools to instrument the object code using the exception handling code written in

part 1.

Overall, Xept method may be considered more of a blackbox approach than a

specification-based approach since only the input arguments and the return value of a

function is of interest in Xept. Xept may be considered a specification-based approach

only if a specification that relates the input and output arguments is provided. Only

then one would be able to employ more sophisticated recovery mechanisms than the

existing blackbox mechanisms (such as retry and checkpointing & recovery) presented

in the paper.
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8.2 Fault-Tolerance Preserving Refinements

First, in Section 8.2.1, we briefly summarize our work on stabilization preserving

refinements. Then, in Section 8.2.2, we present existing methods on refinement of

fault-tolerance and compare them with our stabilization preserving refinement meth-

ods.

Finally, in Section 8.2.3 we present some simulation relations developed in the

literature on refinement and investigate them to see whether they are sufficient for

capturing our stabilization preserving refinements.

8.2.1 Our work on stabilization preserving refinements

We have shown in [6] that refinements in general are not fault-tolerance preserving,

that is, even though A is fault-tolerant, a refinement C of A may not be fault-

tolerant. We are therefore led to considering special classes of refinements. In current

research, we have identified two fault-tolerance preserving refinements: everywhere

refinements [6] and convergence refinements [32].

Intuitively speaking, everywhere refinements demand that the implementations

always satisfy the specifications from every state. Further, for effective design of

fault-tolerance in distributed systems, we identify the subclass of local everywhere

refinements: these refinements are decomposable into parts each of which must al-

ways be satisfied by some system process from all of its states without relying on its

environment (including other processes).
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Intuitively speaking, convergence refinement implies that even in the unreachable

states the computations of the concrete system C track the computations of the

abstract system A, although some states that appear in the computations of A may

disappear in the computations of C, and hence, C preserves convergence properties

(e.g., stabilization) of A.

In contrast to previous work on fault-tolerance preserving refinements, we have

shown that the refinements we have identified have nice compositionality properties

making them suitable for specification-based design of fault-tolerance. For example,

convergence refinement enables a non-stabilizing implementation C to be made stabi-

lizing without knowing the implementation details of C but knowing only an abstract

specification A that C satisfies. More specifically, given C that is a convergence re-

finement of A, first stabilization of A is designed by devising an abstract wrapper W

for A. Stabilization of C is then achieved by adding to C any convergence refinement

of W ; the refined wrapper is oblivious to the implementation details of C.

8.2.2 Previous work on fault-tolerance preserving refinements

Method by Z. Liu and M. Joseph. Liu and Joseph [76] have considered

designing fault-tolerance via transformations. In their work, an abstract program

A is refined to a more concrete implementation C and then based on the refined

program C and the fault actions F that are introduced in the refinement process,

further precautions (such as using a checkpointing & recovery protocol) are taken to

render C fault-tolerant. They design the tolerance based on the concrete program,

while we design our wrappers based on the abstract program.
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Method by L. Lamport and S. Merz. In [70], Lamport and Merz claim

that there is no need for a special technique for formal specification and verification

of fault-tolerance systems, and that refinement of fault-tolerance programs could be

achieved using temporal logic of actions (TLA) and a hierarchical proof method.

Towards this end, they show how a message-passing Byzantine agreement program

(of [71]) can be derived from its high-level specification. (The authors, however, do not

discuss how their example can be generalized into a method for designing arbitrary

fault-tolerant programs.) They first present three specifications for the Byzantine

agreement program: a high-level problem specification, a mid-level specification of

the algorithm, and a low-level specification for message-passing model. Then they

prove that each specification implements the next-higher one.

The authors claim that little ingenuity is required for proofs of refinements since a

hierarchical proof strategy is adopted. However, it should be noted that a considerable

amount of ingenuity is still required for coming up with the refinement programs in

the first place. The authors also admit in the discussion section of the paper that

their method is “not yet feasible for reasoning at the level of executable code, except

in special applications or for small parts of a system.”

Method by McGuire and Gouda. McGuire and Gouda [81] have also dealt

with fault-tolerance preserving refinements of abstract specifications. They have de-

veloped an execution model that can be used in translating abstract network protocol

specifications written in a guarded-command language into C programs using Unix

sockets. Their framework solves the fault-tolerance preserving refinement problem

for a guarded-command to a C program by producing a weakly-stabilizing [47] C

program.
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Fault-tolerance preserving atomicity refinements. Fault-tolerance pre-

serving refinements have been studied in the context of atomicity refinement [22,85],

whereas in our work we have studied them in the more general context of computation-

model refinement. The fault-tolerance preserving refinements presented in [22,85] are

instances of everywhere refinements; here we present a more general type of fault-

tolerance preserving refinement, convergence refinement.

Semantics of fault-tolerance preserving refinements. Leal [72] has also

observed that refinement tools are inadequate for preserving fault-tolerance. The

focus of his work is on defining the semantics of tolerance preserving refinements

of components. Whereas, in our work, we have focused on sufficient conditions for

fault-tolerance preserving refinements.

8.2.3 Simulation relations and fault-tolerance preserving re-
finements

In [77], Lynch and Vaandrager give a unified and comprehensive presentation of

simulation techniques using a simple untimed automaton model. In particular, they

define refinements, forward simulations, backward simulations, and hybrid forward-

backward and backward-forward simulations. Relationships between the different

types of simulations, as well as soundness and completeness results, are stated and

proved.

In this section we first briefly describe these simulations and then investigate

whether they may be applicable for specification-based design. More specifically, we

compare these simulation relations with our everywhere and convergence refinements.

We show that refinement definition of Lynch and Vaandrager can be easily extended

132



to capture our everywhere refinements. We also show that none of the above men-

tioned simulations (including bisimulation) are rich enough to capture convergence

refinements.

A refinement from an automaton C to another automaton A is a function from

states of C to states of A such that

• the image of every start state of C is a start state of A,

• every step of C has a corresponding sequence of steps of A that begins and ends

with the images of the respective beginning and ending states of the given step,

and that has the same external action.

This definition implies that traces of C are also traces of A and is general enough

to capture the notions of refinement discussed in [69,74]. Note that if the refinement

function is total and onto, then this definition is equivalent to our notion of [C ⊆ A]

(read C everywhere refines A), which asserts that starting from any state in C every

computation of C is a computation of A. Note that we do not always require the

refinement function to be onto: if we use everywhere refinements only for preservation

of fault-tolerance, then a total refinement function will suffice. However, if we want

specification-based fault-tolerance (i.e., if we need to design and abstract tolerance

wrapper for the specification and map it to the concrete level to achieve fault-tolerance

of the concrete system), the refinement function should be total and onto.

Forward and backward simulations generalize refinements to allow a set of states

of A to correspond to a single state of C.

A forward simulation from C to A is a relation over states of C to states of A

such that

• every start state of C has some image that is a start state of A,
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• every step of C and every state of A corresponding to the beginning state of the

step yield a corresponding sequence of steps of A (that has the same external

action as the given step of C) ending with an image of the ending state of the

given step.

A backward simulation from C to A is a total relation over states of C to states

of A such that

• all images of every start state of C are start states of A,

• every step of C and every state of A corresponding to the ending state of the

step yield a corresponding sequence of steps of A (that has the same external

action as the given step of C) beginning with an image of the beginning state

of the given step.

Soundness theorems for trace inclusion preorders are proved for refinements, for-

ward simulations, and backwards simulations. That is, if there is a refinement or a

forward or backward simulation from C to A, then all traces of C are also traces of

A. However, only partial completeness results can be proven for refinements, forward

simulations, and backward simulations.

Forward-backward and backward-forward simulations are essentially compositions

of one forward and one backward simulation in the two possible orders. Forward-

backward simulations give a complete proof method for trace inclusion preorders.

That is, if every trace of C is a trace of A then there exists an intermediate automaton

B with a forward simulation from C to B and a backward simulation from B to A.

Bisimulations combine forward simulations in two directions (i.e., from the con-

crete to the abstract and from the abstract to the concrete) and are employed for

proving equivalence of two systems.
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Example. Below, P and Q are not bisimilar since the state Q1 can make both

a b-transition and a c-transition and therefore is not bisimilar to neither P1 nor P2.

Whereas, R and S are bisimilar and the bisimulation relation is shown by the dashed

lines.

a
b c

a cb

Q0

Q1

P0

P1 P2

a

a a

a aaa

R0

a

S0

S1 S2

. . . . . . . . . . . . . . . . . . . . . . . . . 

(End of example).

Summary. None of the above mentioned simulation mappings is enough for

expressing a convergence refinement. These mappings always assert that for every

step of the concrete, the corresponding step in the abstract should have the same

external action as the concrete step. The abstract may have invisible (internal) ac-

tions that are dropped in the concrete, but visible external actions of the abstract

cannot be dropped by the concrete. Whereas in convergence refinement we allow

the non-initialized computations of the concrete to drop visible external actions of

the corresponding abstract computations. Note that it is not possible to rename the

actions that the concrete drops as invisible actions at the abstract level since the

concrete does preserve those actions of the abstract in the initialized computations.
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Furthermore, while an uninitialized computation c1 of the concrete drops the visible

actions of the corresponding abstract computation a there might be another unini-

tialized computation c2 of the concrete that also corresponds to a and that does not

drop any visible actions of a. We give such an example in Section 4.2 of [32].

8.3 Scalability Through Composition

Building a large-scale self-healing system via composition of self-healing compo-

nents is one way of dealing with the scalability problem of the design effort of self-

healing since a compositional approach reduces the global design and reasoning of

self-healing to local activities at the component level.

In [73], a compositional framework for constructing self-healing (self-stabilizing)

systems is proposed. The framework explicitly identifies for each component which

other components it can corrupt (corruption relation). Additionally, the correction of

one component often depends on the prior correction of one or more other components,

constraining the order in which correction can take place (correction relation). By

including both correction and corruption relations, the framework subsumes and ex-

tends other compositional approaches allowing design of fault-containing self-healing

solutions. A global reset is potentially avoided and fault-containment is enabled when

possible by using the correction and corruption relations to check and block certain

components to prevent formation of fault-contamination cycles.

Depending on what is actually known about the corruption and correction rela-

tions, the framework offers several ways to coordinate system correction. In cases

where the correction and corruption relations are in reverse directions, persistent

corruption cycles may be formed: even though all the components are individiually
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stabilizing, the system may fail to stabilize due to the continuous introduction of

corruptions to the system via these corruption cycles. By employing blocking coordi-

nators, the framework breaks these malicious cycles. In cases where both correction

and corruption relations are in the same direction, no cycle forms and there is no

need for blocking.

In this chapter, while developing lightweight and local refinements for designing

specification-based self-healing to tracking, we restricted our work to the systems

where both the correction and corruption relations are to the same direction in both

the abstract and the concrete levels. This way we did not have to deal with addi-

tion of extra coordinators and blocking at the concrete system level. Development of

lightweight and local refinements to a more general class of refinements where correc-

tion and corruption relations might vary at the abstract- and concrete-level systems

is worth investigating.

Scalable design of stabilization through composition idea has been around in re-

stricted forms before [73]. One example is the stabilization by composition of layers

approach [36]. In the traditional stabilization by layers approach lower-level com-

ponents are oblivious to the existence of higher-level components, and higher-level

components can read (but not write) the state of a lower- level component. Com-

ponents can corrupt each other, but only in a predetermined controlled way since

lower-level components cannot be affected by the state of higher-level ones. Also,

the order in which correction must take place is the same direction, the correction

of higher-levels depend on that of lower-levels. Since both relations are to the same

direction, there is no need for blocking.
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CHAPTER 9

CONCLUDING REMARKS

We first summarize the contributions in this dissertation in Section 9.1. In Section

9.2, we outline possible extensions to this work.

9.1 Contributions

This dissertation addressed two orthogonal scalability problems in building fault-

tolerant sensor network services: (1) the scalability of cost-overhead of fault-tolerance

with respect to network size, and (2) the scalability of the design effort for fault-

tolerance with respect to software size. These two research directions are comple-

mentary, and together enable a scalable design of local self-healing for large-scale

sensor network services.

For addressing the first problem, we proposed light-weight fault-containment tech-

niques for self-healing. By confining the contamination of faults within a small area,

these techniques achieve fault-local self-healing within work and time proportional to

the size of the perturbation, as opposed to the size of the network.

We illustrated our hierarchy-based fault-containment technique in the context

of hierarchical tracking of mobile objects in sensor networks and achieved seamless

tracking of continuously moving objects and fault-local self-healing. We illustrated
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our stretch-factor based fault-containment technique in the context of clustering and

achieved containment of changes and failures hitting a cluster locally within the im-

mediate neighborhood of that cluster.

For addressing the second problem, we proposed a specification-based design of

self-healing, which exploits only the specification of the system. Specification-based

fault-tolerance avoids the drawbacks of implementation-specific and blackbox ap-

proaches, and allows the design of scalable, reusable, and low-cost fault-tolerance.

We established the foundations for specification-based design of self-healing by

identifying two special classes of refinements (everywhere refinements and convergence

refinements) that enable specification-based design of fault-tolerance. We also showed

that, under suitable conditions, ordinary refinements (for which a lot of tool/compiler

support exists) can be employed for specification-based design of self-healing. We

illustrated the design of specification-based self-healing to our hierarchical tracking

service in order to achieve scalability of design effort of self-healing with respect to

the real world implementations of this tracking service.

Currently, we are focusing on applying our scalable self-healing techniques in the

context of our DARPA-NEST funded “A Line in the Sand” (LITS) project. Our

research group has already deployed LITS over a 100-node sensor network in a large

terrain and achieved detection, classification, and tracking of various types of intrud-

ers (such as persons and cars) as they moved through the network. We are now

working on scaling LITS to run over 10,000 nodes and to watch over a larger terrain.

To this end we are utilizing our specification-based design method and light-weight

fault-containment techniques for addressing the scalability issues in LITS.
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9.2 Future Directions

Our work on fault-local self-healing and specification-based design of fault-tolerance

have opened up several new directions for future research. We briefly mention some

of these below.

9.2.1 On-the-fly addition of specification-based fault-tolerance

The specification-based approach enables a posteriori and dynamic addition of

scalable fault-tolerance to unanticipated faults, and hence is essential for sensor net-

work services that are subject to adverse environmental conditions, where unantici-

pated faults are the norm rather than the exception. Our research group has built

a framework, DRSS, for dynamic composition of fault-tolerance wrappers; we are

working on adapting this framework for enabling on-the-fly addition of specification-

based fault-tolerance wrappers in LITS. For example, upon observing that message

loss is becoming frequent and causing problems in our LITS service, using such a

framework, we will be able to add ACK/NACK-based reliable delivery wrappers to

heal our service without interrupting its availability.

9.2.2 Tool-set for specification-based fault-tolerance

Research on model-checking has provided several techniques for deducing an ab-

stract system from a given concrete system. In addition, our work on specification-

based design of fault-tolerance has provided refinement techniques that ensure that

after synthesizing a fault-tolerance component for the abstract system, a refinement of

this fault-tolerance component (using the abstraction technique in the reverse direc-

tion) will add fault-tolerance to the concrete system. Leveraging these results, we are

140



working on developing a tool-set that will enable synthesis of scalable fault-tolerance

for a rich class of programs. The toolkit will accept a concrete fault-intolerant pro-

gram as input, and will produce a corresponding abstract program and help the user

to design fault-tolerance to this abstract program. Later, the toolkit will refine this

abstract fault-tolerance wrapper to achieve fault-tolerance to the concrete program.

9.2.3 Syntax-driven fault-tolerance preserving compilers

Our notion of fault-tolerance preserving refinement depends on the semantics of

the input. However, we conjecture that it is possible to identify certain syntactic con-

structs that imply fault-tolerance of a program. Some examples of these constructs

are self-cleaning data structures (e.g., sets) and soft-state variables that are assigned

fresh values periodically. We plan to develop tools that exploit such syntactic con-

structs in order to check whether a given program is fault-tolerant or not, and to add

fault-tolerance to a rich class of programs.
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