
MUSICAL USE OF A GENERAL AND EXPRESSIVE

PLUCKED-STRING INSTRUMENT IN SOFTWARE

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the

Degree Doctor of Musical Arts in the Graduate School of

the Ohio State University

By

James Michael Croson, B.A., B.M., M.A.

The Ohio State University

2004

Dissertation Committee:

Professor Thomas Wells, Co-Advisor

Professor Donald Harris, Co-Advisor

Professor Burdette Green

Approved by

Co-Advisor

Co-Advisor

School of Music

Copyright by

James M. Croson

2004

ii

ABSTRACT

Plucked string instrument models have enjoyed an intensive history of

development in computer music, offering novel methods for synthesis and ever-better

simulations of actual acoustic instruments. Research in acoustics has improved our

understanding of the physics of musical instruments, and made available to composers

and performers more natural sounding computer-based instruments. This paper outlines

issues in the development of plucked string software models, emphasizing the

opportunities for expressive musical use of these models. A general plucked string

instrument emphasizing maximum expressive control is presented in implementations for

two software platforms, Max/MSP and Csound. Nukulele, the instrument model, couples

four plucked strings together for exploration of many control parameters including the

effects of using different excitation impulses, dynamic function control of some

parameters, resonance between the strings, and feedback effects. The instrument model is

implemented two ways: one in Max/MSP for rapid prototyping and exploration, and the

other for use in Csound, a score-based, repeatable, and adjustable system for making

music. The effects of varying available parameter settings are illustrated by audio

examples, and I offer guidance for their exploration and use. Appendices provide the

Max/MSP Nukulele application, a Csound orchestra and score file template, and a

Max/MSP application to convert data from the Max/MSP prototyping implementation to

iii

Csound score format for high quality and repeatable rendering. This document is aimed at

musicians and educators and emphasizes practical musical use: the mathematical

underpinnings and theory reside in the cited literature.

iv

DEDICATION

Dedicated to my inspiration and partner, Sherie Lindamood.

v

ACKNOWLEDGMENTS

I thank my advisors and instructors at Ohio State University, especially Professor

Donald Harris, Dr. Thomas Wells, Dr. Burdette Green, and Dr. Marc Ainger for their

example, support, encouragement, knowledge, and sensibilities, which I appreciate now

and will long value.

I thank Dr. Allan Schindler for inspiration and my initiation into computer music

composition. Many others at the Eastman School of Music gave so much in classes and

lessons; I especially thank Syd Hodkinson.

I think now of my students, performers, collaborators, and colleagues throughout

my studies, who shaped the character of my experience.

vi

VITA

July 11, 1953 Born - El Paso, Texas, USA.

1982 B.A. Photography and Cinema, Ohio State University.

1992 B.M. Jazz Studies, Ohio State University.

1994 M.A. Music Theory, Eastman School of Music.

2001 - present....................... Graduate Teaching Associate, The Ohio State University.

FIELDS OF STUDY

Major Field: Music

vii

TABLE OF CONTENTS

Page

ABSTRACT... ii

DEDICATION ...iv

ACKNOWLEDGMENTS ...v

VITA..vi

LIST OF FIGURES..ix

LIST OF TABLES ..x

LIST OF AUDIO EXAMPLES ..xi

1. INTRODUCTION..1

1.1. PLUCKED STRING SYNTHESIS MODELS ..5
2. NUKULELE...14

2.1. USER INTERFACE..15
2.2. SYNTHESIS ENGINE..18
2.3. FEEDBACK AND RESONANCE MATRIX..19
2.4. MORE INSTRUMENT CONTROLS ...21

3. MUSICAL USE..22

3.1. IMPULSES...22
3.2. PARAMETERS ..28

3.2.1. THE ENVELOPE, EXCITATION, AND DAMPING28
3.2.2. THE LOOP FILTER..29
3.2.3. FREQUENCY...30
3.2.4. FUNCTIONS ..31
3.2.5. RESONANCE AND FEEDBACK BETWEEN STRINGS33

3.3. EXPORT TO CSOUND..36
4. DIFFICULTIES, OPPORTUNITIES, AND CONCLUSIONS..................................37

viii

APPENDIX A: CSOUND ORCHESTRAS AND SCORES ..41

APPENDIX B: MAX/MSP APPLICATIONS ...50

BIBLIOGRAPHY ...52

ix

LIST OF FIGURES

Page

Figure 1. A block diagram of the Karplus-Strong algorithm...6

Figure 2. Block diagram of a digital waveguide. ..8

Figure 3. Single delay loop (SDL) block diagram. ...11

Figure 4. Nukulele main screen. ...16

x

LIST OF TABLES

Page

Table 1. Numeric parameter settings in the Max/MSP Nukulele application...................17

xi

LIST OF AUDIO EXAMPLES

Page

Example 1. Simple Karplus-Strong synthesis...22

Example 2. An impulse from sound examples from Erkut et al. 2000.23

Example 3. A damping signal from Erkut et al. 2000. ..23

Example 4. A musical figure using the Nukulele implementation with impulses and
damping signals from Erkut et al. 2000. ...23

Example 5. Four percussive sounds: a rock click, a hit on an African soprano marimba, a
hit on a five-gallon plastic water jug transposed higher, and a hit on a wine glass...25

Example 6. The impulses of Example 5 used in the Nukulele implementation with the
same parameter settings. ..25

Example 7. Four bassy drum sounds. ...26

Example 8. The impulses of Example 7 used in the Nukulele implementation with the
same parameter settings. ..26

Example 9. A musical figure using the impulses of Example 7, and varying parameters
for expressiveness. ...26

Example 10. Ten wood clicks for use as impulses..27

Example 11. The wood click impulses of Example 10 used in the Nukulele
implementation with the same parameter settings, followed by an arpeggio.27

Example 12. A ten-second soundfile of a synthetic bowed string instrument to be used as
an impulse. ..28

Example 13. A musical gesture using the impulse of Example 12, with the speed of
playback of the impulse soundfile slowly increasing. ...28

Example 14. Five notes using a click of two rocks struck together illustrating the pluck
position filter: filter settings of 0.1, 0.5, 0.8, 0.99, 0.9999.......................................29

xii

Example 15. Five notes using a bassy tomtom as impulse illustrating varying the loop
filter amplitude: amplitude settings of 0.9999, 0.990, 0.890, 0.690, and 0.490........29

Example 16. Five notes using a bassy tomtom as impulse illustrating varying the loop
filter coefficient: coefficient settings of 0.001, 0.010, 0.221, 0.421, and 0.721........30

Example 17. Low frequency delay effect, using the bassy tomtom as impulse for three
notes: frequencies are 20 Hz., 15 Hz., and 5 Hz..30

Example 18. Modulated low frequency delay effect on three strings with pitch alteration
varying frequency, using the rock as impulse: frequencies are 5 Hz., 8 Hz., and 12
Hz..31

Example 19. Three notes using a short blast of air with a rapid decay as impulse:
amplitude function normal, with a slow attack, and with a sharp attack that
diminishes and with a swell..31

Example 20. Three notes using a hit on an African soprano marimba illustrating simple
pitchbend functions..32

Example 21. Four notes using a hybrid impulse of a hit on a metal wine glass rack and a
hit on a plastic jug illustration various vibrato functions as FM modulation: no
vibrato/FM, heavy FM modulation applied to the attack, heavy FM modulation
applied to the attack with a swell of FM modulation during the sustain portion, and
the same but with a multiplier of one tenth. ..32

Example 22. Four notes using a short blast of air as impulse illustration pitch alteration
functions: none, a little alteration at the beginning of the note, too much alteration at
the beginning of a note, and the same with a silly rise during the sustain portion to
show the range available. ...33

Example 23. No resonance. ...34

Example 24. More resonance...34

Example 25. More resonance...34

Example 26. More resonance...34

Example 27. More resonance...34

Example 28. More resonance...35

Example 29. Too much resonance. ..35

Example 30. A simple musical figure using a blast of air as impulse and illustrating
feedback between two strings...36

xiii

Example 31. Another musical figure using a bassy tomtom as impulse illustrating
feedback effects on three strings...36

Example 32. Another musical figure using a hit on a five-gallon plastic water bottle with
a lot of resonance as impulse illustrating feedback effects on three strings.36

1

CHAPTER 1

INTRODUCTION

Composers using computers have long struggled against the limitations of this

instrument for expressiveness. Precision, novel sounds, exactitude, and repeatability

come easily, but music that sounded natural and expressive came only with effort.

Designing expressiveness into an instrument model is only half of the toil: controlling the

model can be difficult too. After all, acoustic instruments develop and improve over long

periods of time along with, and informed by, development and improvement in

performance techniques and practice. Computer instruments in software have a relatively

shorter history, and the instrument models used typically enjoy an even shorter useful life

cycle, often developed, used once, and discarded.

Like many, I often seek computer instrument models that achieve natural and

expressive musical effects similar to those we expect of acoustic instruments, while also

demanding the medium's precision, range of possible sounds, exactitude, and

repeatability. While my aim is rarely exact imitation of existing acoustic instruments, I

often desire something of the responsive qualities of acoustic instruments, especially the

ability to deliver musical ideas and gestures convincingly and with the expressiveness

that can be a primary mode of interest in a composition.

2

Expressiveness, naturalness, and responsiveness are closely related, and are the

aim of what David Beck's calls "acoustic viability," a design aesthetic in synthesis:

By recognizing the importance of instrument acoustics and its relationship

to expression, synthetic instrument designers can build synthesis processes

that respond to changes in loudness, pitch, and articulation that are

consistent with our understanding of acoustic instruments (Beck 2000).

Responsiveness characterizes the way the output changes when the input is

varied. An instrumentalist judges an acoustic instrument based (among others things) on

its response; how hard the player has to work to achieve a range of effects in sound, how

reliable and predictable are the effects, and how easy they are to control. The focus is on

the way details of the sound unfold in time.

Naturalness is the quality by which we judge how an instrument's response

corresponds to our intuitions about sounds in the real world, including the human voice

and acoustic instruments. Separate qualities of a sound or gesture such as loudness,

articulation, timbre, vibrato, etc. need to move together under larger scale variations in a

way that does not contradict our intuitions very much, though it should be said that we

love surprises.

Expressiveness is conveyed by variations in performance that correspond in a

recognizable way to the emotional range that a player might wish to communicate to a

listener. A sound or gesture will quickly be judged inexpressive if the correspondence is

too static, mechanical, foreign, or non-human. One could say expressive sound is life-

3

like. Of course, expressiveness is often employed for structural aims such as clarity,

contrast, etc, as well as for emotional response. This document focuses on the rather

traditional situation where a composer has a sound or gesture in mind, and tries to

achieve it with an instrument model in such a way that the expression can be varied to

evoke different responses in a listener.

A host of synthesis techniques exist which can similarly benefit from more

attention to expanding possibilities for expressiveness. One important category, physical

modeling synthesis, is especially promising, since it relies on observation and physics to

model the processes in acoustic instruments that shape the instruments' sound. The

unfolding in time or morphology of these processes within notes and gestures in physical

models are then more closely analogous to the processes in acoustic instruments, and

expressive musical use then is based more closely on modeled natural responsiveness.

Separate qualities of the sound such as loudness, articulation, etc. are then inter-

dependent�a change in one effects change in the others. This inter-dependence contrasts

with the earlier synthesis methods, which built up sounds from basic waveshapes and

shaped them by envelopes controlling frequency, amplitude, or filtering the spectrum in

time, possibly with slight randomization of certain parameters to add liveliness and

diminish exact duplication from note to note. Wavetable synthesis (as used in modern

samplers) achieved a certain success because the complicated attack portion was

satisfying (duplicating exactly as it did the attack of some recorded instrument). While a

degree of naturalness and variability was possible, musicians quickly noticed the flat

similarity of the wavetable samples and method's reluctance to flex to expressive ends.

While the use of high quality samples is probably the most prevalent synthesis method

4

today, used to simulate even large orchestras in film and television soundtrack

production, physical modeling is making important inroads.

One important area of physical modeling research models the plucked string. An

overview of this research is provided in the next section. Then, I introduce an elaborate

plucked-string instrument implemented in two music software synthesis systems,

Max/MSP and Csound. Lastly, I discuss challenges to building-in possibilities of

expressive control and how these challenges can be met.

In the instrument model implementation, I retain as much possibility of

expressiveness as possible, at the expense of employing a large number of control

parameters. I retain the generality of the instrument, which is, thus, potentially many

instruments. Several facets are emphasized which are less often investigated in the

literature: the use of unusual impulses to excite the string models, the use of dynamic

functions to vary parameters, and resonance and feedback effects between the strings.

The Max/MSP implementation favors real-time exploration of settings and

sounds. The Csound implementation offers precise specification and repeatability at the

expense of lacking the immediate feedback of performance. My interest is in having

available both the immediacy and responsiveness of a real-time software system like

Max/MSP and the specificity and repeatability of a run-time software system such as

Csound.

This instrument model and two implementations provide solutions to

compositional problems that I can use in future compositions, when my focus will be on

composition rather than problem solving. I hope these solutions can be adapted for

5

exploring other types of synthesis, and that the implementations described here may be

useful to other composers or to teachers of computer music composition.

1.1. PLUCKED STRING SYNTHESIS MODELS

This instrument model implementation I call Nukulele (new ukulele) is based on

previous plucked string models: the Karplus-Strong algorithm (Karplus and Strong

1983), digital waveguides as formalized by Julius O. Smith (Smith 1987, 1992, 2004),

and recent extensions and refinements by others (Jaffe and Smith 1983, Sullivan 1990),

especially the Finnish acoustics researchers at the Helsinki University of Technology,

Laboratory of Acoustics and Audio Signal Processing (Karjalainen et al. 1993, 1998,

Välimäki et al. 1996).

As is well known, the Karplus-Strong algorithm feeds an impulse of random noise

into a delay line, the output of which is filtered and fed back into the delay line (Karplus

and Strong 1983). The output sound thus has a bright and loud attack that decays and

becomes less bright over time, much as does the sound of plucked string. The algorithm

is quite computationally efficient. Figure 1 shows a block diagram of the Karplus-Strong

algorithm.

6

Impulse

(Noise)

Averaging
Filter

Delay

Output

(Current sample plus
 previous sample
 divided by two)

Figure 1. A block diagram of the Karplus-Strong algorithm.

Consider a real plucked string (though much here is applicable to struck and

bowed strings too): the pluck initiates a wave that propagates along the string, vibrating

at a frequency dependent on the length and tension of the string. The wave carries the

shape of the original pluck. The pluck on a real string, in fact, sends a wave towards the

bridge and another in the opposite direction�on a guitar, towards the end stopped by a

finger at a fret. In software models, the delay line models the circulation of the wave

around the path of the closed string. Filters model the physical and mechanical losses at

the bridge and fret (as the wave on a real string radiates into the body of the instrument

and then into the air). Actually, a real string vibrates in three dimensions: first is that

perpendicular to the length of the string and in the plane of the flat top of the body, that

is, towards and away from the other strings; second is that perpendicular to the string and

perpendicular to the plane of the body, that is, towards and away from the body. And the

third is longitudinal, lengthening and shortening of the string, especially on instruments

which allow more free motion, for instance, at a tuning pin. (A torsional vibration is

7

usually ignored in plucked string computer models, but can be important in bowed string

models since a bow forces more twisting in the string.)

Digital waveguides, as formalized by Smith, model the behavior of a string by

using two delay lines, which model the waves towards the bridge and the fret (Smith

1987, 1992, 1997b, 2004). A complete model would include filters to simulate the

filtering due to the body of the instrument, the size and density of the material in the

string, as well as the air through which the resultant sound must travel. Commuted

waveguides subsume many of these additional factors into the sound of the impulse for

efficiency (a mathematical convenience moving the bridge/fret/body filter from the end

of the signal chain to the beginning with the impulse), rather than supplying each

modeling block in the software algorithm (Smith 1987, 1993, Karjalainen et al. 1993).

Effects due to the body of the instrument, the plectrum, string constitution, etc., are then

automatically included, but are then not variable. (It should be noted that patents exist for

both the Karplus-Strong algorithm and digital waveguides.) Example 2 shows a block

diagram of a digital waveguide.

8

Output
1/2

Fret
Filter

Bridge
Filter

Delay

Delay

Impulse

Figure 2. Block diagram of a digital waveguide.

The Helsinki group has investigated using various carefully crafted impulses

obtained from recordings of guitars and other instruments, resulting in very realistic

emulation by synthesis. Measurement and extraction techniques are described in several

papers (Erkut et al. 2000, Karjalainen et al. 1998, Välimäki et al. 1996, Tolonen 1998,

Tolonen and Välimäki 1997). Excitation impulses have been extracted from high quality

recordings taken in an anechoic chamber. Fairly realistic impulses can be derived by

editing a suitable short soundfile from the attack of a plucked string tone, finding the

resonances of the instrument common to different pitches and removing them with a

notch filter from the impulse (Karjalainen et al. 2000) or by inverse filtering the sample

with the impulse response of the computational model (Välimäki et al. 1996). Another

technique is by FFT analysis and resynthesis with sinusoids and noise (Serra 1997). The

partials above a certain threshold of stability are separated into a harmonic portion as

data, and resynthesized. This harmonically steady sound is then subtracted from the

9

output of the plucked string model (excited by the original soundfile), leaving the

impulse.

Much more attention has been paid to the extraction of body resonances

(Karjalainen and Smith 1996, Karjalainen et al. 2000, Penttinen et al. 2001, Bank et al.

2002 and others). Outside of a commuted waveguide model, interest is focused on

variable body resonance for generality (say, for virtual instruments in a family like the

viols) or for novel effects (such as impossibly sized or oddly shaped virtual instruments).

Body resonances can be extracted by methods similar to those mentioned above to extract

the excitation impulse. Since the most important body resonances are usually fairly low

frequencies with long decays, they can easily be separated from the harmonically steady

data. Body resonances can also be extracted by the technique of striking an actual

instrument with an impulse hammer and recording the impulse response, so they can be

later convolved with the final synthesized tones from the plucked string model (or with

the excitation impulse in the case of the commuted waveguide model). One technique is

to deconvolve (division of spectra) signals recorded from the bridge with that from a

pickup in the sound hole (Karjalainen et al. 2000). Body resonances are then modeled

computationally in various filtering methods, always with added computational expense.

Without access to very high quality recording situations and the numeric

processing involved in these extraction techniques, I have sometimes simply taken the

attack portion of recorded guitar tones and extracted the impulses. One must remove at

least the strongest partials, since anything pitched will repeat in the delay line, and not

adjust to the frequency specified by the length of the string. In any case, the extraction

10

techniques necessary for acoustics research are not necessary for my more general, not

necessarily realistic implementation.

Further extensions in the literature have included the addition of filters to model a

variable pluck point along the string, the variation of the impulse to simulate different

plectrums or plucking styles, the addition of still more filters and effects to model the

workings of an electric guitar (Sullivan 1990), addition of filters to achieve a more

acoustic sound from an electric guitar (Karjalainen et al. 2000), and the coupling of

strings (Tolonen et al. 1998). Researches have attempted to model various instruments

such as the mandolin, the banjo (Välikmäki et al. 1996), the oud, the lute (Erlkut et al.

2001), the Turkish tanbur (Erlkut et al. 2000b), the Finnish kantele (Erkut et al. 2002,

Välikmäki et al. 1999b), and the clavichord (Välikmäki et al. 2003, 2000). The use of

digital waveguides, as a general technique, is also applicable to struck string instruments

such as the piano and the hammered dulcimer, bowed instruments such as the violin

family, and all sorts of wind instruments (Smith 2004).

One long standing problem in plucked string modeling was the need for fractional

delays, because the nature of a digital delay line limited the available frequencies to

integer multiples of the number of samples in the delay lines. An implementation of a

simple delay line/filter loop results in pitches that are close to useful, but grow more

noticeably out of tune at higher frequencies. The pitches are as accurate as the length of

the delay line (in integer samples) will allow, but finer pitch adjustment requires

calculating fractional lengths; that is, interpolating between the samples. This was found

to be possible and efficiently implemented by an allpass filter given the correct

coefficient (Laakso et al. 1996, Välikmäki 1995, Välikmäki et al. 1995, Vlimki and

11

Laakso 1998). The coefficient is calculated by splitting the nominal frequency into an

integer portion (to be sent to the delay line to determine length) and a fractional portion

(to be sent to the allpass filter as a coefficient).

The Helsinki research group has made many of these contributions. In recent

work, these researchers have modeled a guitar, substituting high quality impulses derived

from actual guitars and adding a damping impulse (also derived from actual recordings of

guitars) to model the end of a note. They collapsed the digital waveguide model of two

delay lines into a loop using a single delay line (SDL) for efficiency (Karjalainen et al.

1998). Their results are very successful and quite convincing: their work was a starting

point for my own. Figure 3 displays a block diagram for the single delay line model. Note

the inputs and outputs for coupling with other strings.

Impulse

(Wavetable) Filter
Comb
Filter

Loop
Filter

Delay

Input from
other strings

Output to
other strings

Output

Impulse

Figure 3. Single delay loop (SDL) block diagram.

Further investigations by the Helsinki group explore the use of two waveguides

(or SDL models), slightly mistuned to each other to model the horizontal and vertical

vibrations (that is, parallel to the string, and parallel and perpendicular to the plane of the

12

flat top of the instrument body) that cause the familiar beating effect observable in actual

string recordings (Karjalainen et al. 1998).

Their most current researches investigate the slight lengthening and shortening of

an actual string (Karjalainen et al. 2001, Tolonen et al 2000, 1999, Välimäki et al. 1999a,

1999b, 1998). This tension modulation is a non-linear modulation dependent on the

strength of the impulse signal, and accounts for the pitch glide effect, which is more

prominent in some instruments such as the kantele than in the guitar (Järveläinen et al.

2001a). They have modeled it effectively with time-varying fractional-delay (TVFD)

filters. The slight frequency modulation and amplitude modulation is fed both to the

output of the model and recirculated into the delay loop (as it would be in an actual

string). Besides a slight pitch and volume modulation in the resulting sound, the tension

modulation also affects timbre dynamically, accounting for missing harmonics heard but

theoretically canceled when the string is plucked at half the distance between the bridge

and fret. (The realism which might be afforded by adding this factor is beyond my current

need and focus, but the liveliness which it might add to a plucked string synthesis model

offers much potential, and I intend to include it in future implementations. The dynamic

functions that I have included in my implementation can be used to simulate at least some

of the most obvious effects of tension modulation.)

The literature also describes efforts to build these methods into expressive

instruments in software composition environments (Cook 2002, Laurson 2000, Laurson

et al. 1999). Plucked string models are included in open source software packages such as

Supercollider, Common Music, the Synthesis Tool Kit (also available as Max/MSP or

13

Pure Data objects in the PerColate package), as objects for Max/MSP in the proprietary

Modalys software, and in commercial synthesizers.

14

CHAPTER 2

NUKULELE

I built Nukulele in the Max/MSP programming environment and in Csound. This

section describes the user interface, the synthesis engine, and the resonance matrix.

In my work, my goal was not a convincing emulation of a particular instrument,

but rather a more general instrument that might be able to produce the sounds of a range

of plucked string instruments and especially non-existent, new instruments. Nukulele's

capability of using various excitation signals, even soundfiles unrelated to plucking,

which offers a wealth of possible sounds and textures. Nukulele includes a number of

dynamic modulations for expressive effects: amplitude, pitch (besides the specification of

a given note), pitchbend, and vibrato�all controlled by envelopes. Also, Nukulele links

four strings together so they can resonate through each other; the resonances from and to

each string are also variable. The Helsinki group has published on coupling strings, their

coupling strategy avoided any possibility of feedback (Karjalainen et al. 1998, Tolonen et

al. 1998), whereas I sought the ability to exploit feedback just as it is often used with an

electric guitar.

This larger number of available controls gives the instrument the potential to be

quite flexible and expressive, although difficult to control, especially in real-time. I have

emphasized the instrument's ability to explore possible sounds rather than try to make it

15

easily playable, though some interested person could extend the implementation in that

way for use with a guitar controller or other input devices. Also, one could extend it to

more than four strings, say for a guitar or zither. For my purposes, the Max/MSP

environment offers enough control to prototype useful settings. To build up larger blocks

of music, I wrote a Max/MSP application that will format and deliver the parameter data

in Csound score format. I have used Nukulele successfully in two musical works to date,

and hope improvements will facilitate its use in more.

2.1. USER INTERFACE

The user interface in the Max/MSP version presents four modules�one for each

string�and some controls common to all. Notes are initiated by midi input or by a

graphical piano keyboard that is clicked by the mouse. A slider allows pitch bending

(also responsive to midi input). Figure 4 shows a screen shot of the Max/MSP

application's main screen.

16

Figure 4. Nukulele main screen.

17

Besides the graphical breakpoint envelope interfaces, entry fields for each string

accept numbers for setting various parameters, as shown in Table 1.

(tottime) total time
(freq) frequency (also displays what is set by the keyboard, but

can adjust the pitch of an open string resonating with the
input from other stings)

(ppos) pluck position (0.0 to 1.0)
(excite#) number identifier of the exciter soundfile
(exciteamp) amplitude of the exciter signal
(exciteco) coefficient of a filter applied to the exciter signal
(damp#) number identifier of the damping soundfile
(damptime) percentage of the total time until the start of the damping

soundfile
(dampamp) amplitude of the damping signal
(finalamp) final amplitude at the end of a note
(loopfamp) amplitude of the loop filter
(loopfco) coefficient of the loop filter
(fbin) amplitude of the signal from all other strings for resonance
(fbout) amplitude of this module's signal available to other strings

as resonance
(string1-4) individual amplitudes for signals from each string

Table 1. Numeric parameter settings in the Max/MSP Nukulele application.

Five graphical function editors allow manipulation of breakpoints of envelopes

(time-varying functions which can be applied to various signals) for amplitude,

pitchbend, vibrato speed, vibrato amplitude, and pitch alteration. The amplitude envelope

allows for sounds that have a slow attack or a swell in the middle, for instance. The

pitchbend can alter the pitch by a second above or below, similar to the pitchbend wheels

on many synthesizers. The two vibrato envelopes, amplitude and speed, allow for usual

vibrato as well as interesting frequency modulation (FM) effects, and include a switch to

18

change the range of amplitude or speed. The pitch alteration envelope could be used in

many ways (or not at all), but the impetus to include it was the familiar slight pitch

change in a plucked string often called pitch glide - higher at the beginning when the

string is stretched and tense, and lower as the energy dissipates and approaches a state of

rest.

The Csound implementation uses the same instrument structure and parameters,

but responds to input from a score�a list of notes with parameters�and so events can be

scheduled. Note events, with the large number of parameters, can be copied and pasted

into a text document and start times for each note typed in. The Max/MSP version can be

used to explore sounds and settings, and then export the settings in a format suitable for

Csound. One needs then only to specify which string (in Csound, instruments 1 - 4), the

start times, the durations for each note (if not appropriate as given from the translation

from the Max/MSP Nukulele implementation), and the overall amplitude for the note.

2.2. SYNTHESIS ENGINE

At the heart of the sound production part of the instrument is a loop comprising a

delay line (modeling the recirculating waves) and loop filter (to shape energy loss over

time). As mentioned above, the length of the delay line depends on the integer portion

calculated from frequency, and an additional allpass filter handles fine pitch

adjustments�the fractional delays. An exciter signal from a soundfile is fed into the

delay line/filter loop exciting the circuit that resonates at a frequency dependant on the

length of the delay line. The damping signal is also fed in a specified time later. An

19

amplitude envelope is also in the loop, and can reduce the amplitude at the time of

damping, attenuating the signal recirculating through the loop, mimicking a string

brought to a state of rest.

The exciter signal is also filtered by a comb filter, allowing control over pluck

position to simulate plucking at the bridge or sul tasto effects.

The loop is tapped for output and sent to the computer's audio converter (in

Max/MSP) or written to a soundfile (in Csound).

Some difficulties are peculiar to the Max/MSP version. First, Max/MSP specifies

a "signal vector"; the number of samples calculated at one time. The smallest available

setting is two samples, allowing shorter delay times for higher frequencies, but obviously

more computationally intensive. A setting of 128 samples allows a fairly wide pitch range

and a low computational overhead. (On my 867 MHz processor, a setting of 2 samples

for the signal vector uses up to 70% of the computer's processing, while the setting of 128

uses about 25%). Also, in Max/MSP objects are connected graphically corresponding to

logical connections, and yet I found that certain possible layouts would not work. One

could not, for instance, embed a process in a subpatcher or send a signal via the send~

and receive~ objects without introducing delays which would alter the timing in the delay

loop. These difficulties are not present in the Csound implementation.

2.3. FEEDBACK AND RESONANCE MATRIX

Each string makes available an output signal to all four strings (including itself),

and accepts input from all four strings (including itself). Resonances are quite useful, and

20

add much interest (possibly realism) to sounds. At low resonance gain levels, the results

are very subtle. At slightly higher resonance gain levels, one can hear the natural

harmonic series emphasized. At high levels, the signal can begin to grow when the signal

in each cycle of the loop is louder than in the cycle before. Usual dynamics processing

(compression, limiting, or clipping) was not appropriate as I did not want to alter the

spectrum of the sound, introduce artifacts, or otherwise alter the sound (especially of the

recirculating copies of the exciter signal). I wanted automatic assistance in responding to

growing feedback rather than constant compression.

Currently, the feedback control system entails a convention of only using

impulses of 80% of the maximum gain, leaving 20% headroom with which to allow for

feedback effects. The average output of the loop is tested: if it is over a given threshold,

the amplitude of the input from other strings and the gain of the feedback loop are

diminished. (From 80% to 90%, the gain is gently diminished. From 90% to 99%, the

gain is more drastically diminished, even to zero.) As a safeguard, a clipping filter is

inserted after these controls. One trial implementation resulted in the gain slowly

oscillating as the signal was pushed below the threshold, the feedback control

disengaged, and then feedback rose again. Now, the gain is permanently diminished; that

is, it does not return to a higher gain as the signal diminishes below the threshold. To get

another event with feedback, one has to restart the loop gain envelope with a new note. A

more natural effect can be achieved by filtering rather than overall gain reduction, but I

want to keep the software simple and efficient for the time being.

21

2.4. MORE INSTRUMENT CONTROLS

The user interface in Max/MSP has a few miscellaneous controls. A preset bank

allows all parameter settings to be stored and retrieved. Also, included are an adjustable

overall amplitude, the usual selector switch to stop and start audio processing and output,

and a button to export current settings for later conversion to Csound score format.

22

CHAPTER 3

MUSICAL USE

In this section, I discuss useful parameter settings and some of the effects on the

sound which can be expected, and I offer directions for exploration. I will make it clear

whether I am discussing the Max/MSP or Csound version, but the emphasis here is on the

instrument in general rather the peculiarities of each software version.

3.1. IMPULSES

The impulse used has a great influence on the sound. The Karplus-Strong

algorithm uses simple random noise. Example 1 uses the Csound "pluck" opcode using

simple averaging for the loop filter and noise (random values for each sample) as an

impulse.

Audio example: click to play.

Example 1. Simple Karplus-Strong synthesis.

Chapter 1 described methods for extraction of realistic excitation impulses.

Several examples follow that use such impulses with the Nukulele implementation.

23

Example 2 is one of the soundfiles of an impulse from examples online from a HUT

Acoustics Lab paper (Erkut et al. 2000).

Audio example: click to play.

Example 2. An impulse from sound examples from Erkut et al. 2000.

Example 3 is one of the soundfiles of a damping signal from the same set of

examples (Erkut et al. 2000).

Audio example: click to play.

Example 3. A damping signal from Erkut et al. 2000.

Example 4 is a musical figure using the impulses and damping signals above in a

naturalistic way. One should bear in mind that these are simple, unadulterated

monophonic soundfiles, and could be greatly enhanced with various post-processing

techniques such as reverberation and placement in a stereo field.

Audio example: click to play.

Example 4. A musical figure using the Nukulele implementation with impulses and
damping signals from Erkut et al. 2000.

24

The Helsinki researchers use a database of such impulses and damping signals

that are varied according to different playing techniques. A number of excitation

impulses and damping impulses can be used to make a particular instrument model which

can emulate, for instance, different pluck intensities from soft to hard, the use of the

finger or plectrum, etc., in different playing techniques. One could imagine the usefulness

of damping signals that capture the unvoiced glissando to the next note or the noise of

finger slides between notes (which players usually attempt to suppress). Others impulses

or damping signals could be fabricated for related special effects such as scraping a metal

string, plucking harmonics, activating the string by sudden and hard placement of the

finger of the left hand, and others.

In the Max/MSP implementation, whatever available impulses or damping signals

are desired must be edited into a table of impulses selectable by number from the

interface. (In the list within the software, the 20 soundfiles are named ex01, ex02, etc.

Most convenient is to have a folder of such soundfiles, named accordingly. Then, one can

simply substitute folders to change banks of available exciter signals.) In Csound, the

soundfiles can be specified in the score by name.

Again, my aim was not realistic emulation like the researches mentioned above,

but rather easy exploration and fabrication of useful, interesting, and expressive

instruments. Nothing limits one to excitation signals that capture actual plucking or

damping. Various percussive sounds work quite well too, such as the metal hit of a

triangle, a tomtom, a marimba strike, or even synthesized sounds. Various forms of noise,

filtered and/or shaped by an envelope, can be quite useful too. With any of these sources

used for excitation, it is possible to make a family of related impulse or damping sources

25

to emulate varied but related plucking or damping styles within a particular conceptual

instrument as would be available to a performer on a real instrument. Example 5 presents

four percussive sounds suitable for exciting the string model. Example 6 runs these

excitation signals through the Nukulele implementation.

Audio example: click to play.

Example 5. Four percussive sounds: a rock click, a hit on an African soprano marimba, a
hit on a five-gallon plastic water jug transposed higher, and a hit on a wine glass.

Audio example: click to play.

Example 6. The impulses of Example 5 used in the Nukulele implementation with the
same parameter settings.

Example 7 contains four bassy drum sounds: a deadened hit on a low drum, a hit

on a five-gallon plastic water jug which has a lot of resonance and a long decay, a hit on a

five-gallon plastic water jug transposed higher, and a hit on a low drum with a lot of

resonance and a long decay. In Example 8, these sounds are used as excitation signals in

the Nukulele implementation. The resonances within these excitation signals add much

that could be heard as the resonance of an instrument body. At the very least, they add

much character to the sound.

26

Audio example: click to play.

Example 7. Four bassy drum sounds.

Audio example: click to play.

Example 8. The impulses of Example 7 used in the Nukulele implementation with the
same parameter settings.

In Example 9, these impulses are used in a musical context.

Audio example: click to play.

Example 9. A musical figure using the impulses of Example 7, and varying parameters
for expressiveness.

The virtual instrument portrayed in Example 9 does not sound like a professional

instrument, cobbled together as it is of four widely varying impulses, but it does exhibit

some degree of naturalness and expressiveness, such as one could expect from a real,

generally available instrument.

Examples 10 and 11 display other percussive sounds used as impulses.

27

Audio example: click to play.

Example 10. Ten wood clicks for use as impulses.

Audio example: click to play.

Example 11. The wood click impulses of Example 10 used in the Nukulele
implementation with the same parameter settings, followed by an arpeggio.

Longer, more sustained excitation sources may be used too, and these can be

manufactured or altered according to desire. A long sample of a bowed string instrument,

for instance, will still play into the harmonic resonances of the open virtual strings of the

instrument model, and may be shaped by the envelopes and settings. Extremely long

sounds can be used to generate more ethereal textures. These longer soundfiles especially

benefit from pitch alteration (outside of the pitch alterations of the virtual strings

themselves), which can be simply done by varying the playback speed of the soundfile.

This kind of pitch alteration can be fixed overall, or can be varied in time according to an

envelope. This capability is not included in either software version, but I have used this to

good effect in the Csound version with a few additional lines of code on an ad hoc basis.

Examples 12 and 13 illustrate. Example 12 is a long soundfile of a synthetic

bowed string instrument. Example 13 presents the impulse of Example 12 in the Nukulele

implementation with the added feature that the playback speed of the impulse is slowly

increased over its length. One can hear the harmonic resonances of the implementation's

virtual string excited by sympathetic frequencies in the impulse as they sweep past in

pitch.

28

Audio example: click to play.

Example 12. A ten-second soundfile of a synthetic bowed string instrument to be used as
an impulse.

Audio example: click to play.

Example 13. A musical gesture using the impulse of Example 12, with the speed of
playback of the impulse soundfile slowly increasing.

3.2. PARAMETERS

3.2.1. THE ENVELOPE, EXCITATION, AND DAMPING

The total time of the instrument sets the length of the envelope. If the final

amplitude is 1.0, the string will continue to sound (in Max/MSP). The excitation signal

always begins immediately but the damping signal begins at a set percentage of the total

time. If one sets the damping time to an appropriate but rather unusual length, one can

have two impulses within a longer, overall note, or even combine the impulse and

damping signal at the beginning of the note.

The pluck amplitude can vary the amplitude of the excitation signal, and the damp

amplitude varies the amplitude of the damping signal. The pluck filter coefficient can

vary the timbre of the excitation signal, but also is applied to a similar filter for the

damping signal.

29

The pluck position ranges from 0.0 to 1.0, and sets the percentage of the length of

the string where the pluck occurs. Thus, values near 0.0 correspond to a bright but not-so-

loud plucking at the bridge, and values in the middle produce sounds that are more flute-

like and have more volume, as in sul tasto playing.

Audio example: click to play.

Example 14. Five notes using a click of two rocks struck together illustrating the pluck
position filter: filter settings of 0.1, 0.5, 0.8, 0.99, 0.9999.

3.2.2. THE LOOP FILTER

The loop amplitude sets the gain of the recirculating signal in the string. The loop

filter coefficient adjusts the quality of the filter applied to the recirculating signal, and can

determine how quickly the sound decays�with no filtering, it would simply continue to

recirculate. The use of a lowpass filter causes the sound to begin bright and for the higher

frequencies to decay faster.

Audio example: click to play.

Example 15. Five notes using a bassy tomtom as impulse illustrating varying the loop
filter amplitude: amplitude settings of 0.9999, 0.990, 0.890, 0.690, and 0.490.

30

Audio example: click to play.

Example 16. Five notes using a bassy tomtom as impulse illustrating varying the loop
filter coefficient: coefficient settings of 0.001, 0.010, 0.221, 0.421, and 0.721.

3.2.3. FREQUENCY

The basic frequency is specified by which note is played on the Max/MSP

keyboard or the frequency field in the Csound score. As mentioned, the frequency sets

the length of the delay line to integral multiples of the samples, and a fractional part is

calculated to send to the allpass filter for adjusting the delay between integral multiples of

the samples. In the Max/MSP version, the signal vector size in the DSP window must be

set fairly low for high frequencies to be available, but this taxes the processor

accordingly. Other pitch alterations are described below under Functions.

Very low frequencies (below 27.5 Hz or A0 on the keyboard in the Max/MSP

version) result in echo-like delays. Rhythmic textures can be explored by using different

very low frequencies on different strings. Of course, the further frequency modulations

described below under "FUNCTIONS" can vary the time of these echo-like delays as

well.

Audio example: click to play.

Example 17. Low frequency delay effect, using the bassy tomtom as impulse for three
notes: frequencies are 20 Hz., 15 Hz., and 5 Hz.

31

Audio example: click to play.

Example 18. Modulated low frequency delay effect on three strings with pitch alteration
varying frequency, using the rock as impulse: frequencies are 5 Hz., 8 Hz., and 12
Hz.

3.2.4. FUNCTIONS

All of the functions divide the total time into four segments with five breakpoints.

The first and last breakpoints are fixed at the beginning and end in time but not in value.

The other three can be adjusted in time and value.

The amplitude function makes an envelope which is applied after the envelope

handling the excitation and damping. A slower rise in the beginning can take the edge off

a sharp attack, or even make a real crescendo with the sustaining part of the looped

signal. One can make a swell in the middle or a more severe decrescendo than given by

the final amplitude field in the main loop envelope. This would correspond to the use of a

volume knob or foot pedal applied to an electric guitar signal, but here is available for

each string.

Audio example: click to play.

Example 19. Three notes using a short blast of air with a rapid decay as impulse:
amplitude function normal, with a slow attack, and with a sharp attack that
diminishes and with a swell.

The pitchbend function is limited to two semitones above or below the basic

pitch.

32

Audio example: click to play.

Example 20. Three notes using a hit on an African soprano marimba illustrating simple
pitchbend functions.

The vibrato speed and vibrato amount functions can be adjusted to make time-

varying vibrato, but they can also be used for frequency modulation effects. I have found

that applying strong and fast frequency modulation to the beginning of a note can open a

range of new sounds even with other settings remaining the same. Switches are available

to toggle between two ranges for vibrato speed (0 - 20 or 0 - 200) and amplitude (0 - 0.1

and 0 - 1.0). Refer back to Examples 4 and 9 for natural vibrato effects. Example 21

illustrates some FM modulation effects.

Audio example: click to play.

Example 21. Four notes using a hybrid impulse of a hit on a metal wine glass rack and a
hit on a plastic jug illustration various vibrato functions as FM modulation: no
vibrato/FM, heavy FM modulation applied to the attack, heavy FM modulation
applied to the attack with a swell of FM modulation during the sustain portion,
and the same but with a multiplier of one tenth.

Finally, the pitch alteration function can be used to simulate pitch glide, raising

the pitch slightly at the beginning of a note, corresponding to the increased tension of the

string immediately after the pluck. The maximum amount of pitch alteration is limited to

two about semitones above the basic pitch. (This is much more than is characteristic for

natural sounding pitch glide effects, but is present for exploration of non-natural effects.)

33

Example 21 presents some pitch alterations. Notice that even subtle changes in the pitch

on the onset of a note affects the spectrum which circulates in the delay line.

Audio example: click to play.

Example 22. Four notes using a short blast of air as impulse illustration pitch alteration
functions: none, a little alteration at the beginning of the note, too much alteration
at the beginning of a note, and the same with a silly rise during the sustain portion
to show the range available.

3.2.5. RESONANCE AND FEEDBACK BETWEEN STRINGS

Each string has a gain control for input and output of resonance, as well as

separate gain controls for input from each string (including itself). One can explore

feedback into the same string that is being played, or any combination of strings. (One

can use to simulate a double delay line (as in a standard waveguide), slightly mistuning

one from the other to achieve beating due to vibrations in two dimensions.

A guitarist using feedback has the immediate capability of responding to even

minor changes in sound, so feedback is easier to control than in software. Standard

automatic dynamic processing such as compression or limiting can alter the spectrum of

the sound and introduce noticeable artifacts that I wanted to avoid. My current feedback

control system tests the output signal (averaged over a short time interval), and, if

approaching the maximum amplitude, will diminish the resonance gain as well as the

output gain so the feedback will not continue to grow. The feedback gain is diminished

when the output signal reaches 80% of the maximum of which the system is capable

34

(maxamp)�gently between 80% and 90%, more forcefully above 90%, and clipping at

just below 100%.

The next seven examples show increasing resonance between three strings, from

none to what would be called "unnatural". The examples all hold the settings in the score

unchanged between examples, except the resonance parameters which are increased

slightly with each succeeding example. The impulse is a blast of air.

Audio example: click to play.

Example 23. No resonance.

Audio example: click to play.

Example 24. More resonance.

Audio example: click to play.

Example 25. More resonance.

Audio example: click to play.

Example 26. More resonance.

Audio example: click to play.

Example 27. More resonance.

35

Audio example: click to play.

Example 28. More resonance.

Audio example: click to play.

Example 29. Too much resonance.

At low resonance gains, the influence of other strings is quite natural and

pleasant, but with more feedback in the system, the sound sometimes seems artificial and

shrill. I may need to add some filtering instead of�or in addition to�resonance gain

reduction for a more desirable sound. This filtering might model the effects of pickup,

electronics, speaker, air, and some delay which are in the signal path of feedback in an

acoustic situation.

In the Csound implementation, no automatic feedback control is needed, as one

can tell before the sound is played whether it exceeds the available amplitude range.

Examples 30 through 32 show various feedback effects in musical figures. Factors used

to control feedback are the resonance settings, the length of the notes, and, of course,

frequency. Notes in certain simple harmonic ratios tend to reinforce each other and

feedback much quicker. For instance, a perfect fourth, unison, octave, perfect fifth, and a

major tenth are most susceptible intervals. The spectrum of the impulse (affected by other

settings in the implementation) circulating in the string also has modes that can interact

with the modes of other strings and feedback. One effective feedback control is slight

pitch change, such as pitchbend, pitch alteration, or vibrato, which can quickly defeat the

36

feedback. Example 30 is simple feedback controlled by length of notes and the resonance

settings. Example 31 is a more complicated counterpoint of feedback which employs the

length of notes, resonance settings, and pitch alteration to control the feedback. Example

32 is similar, but illustrates some unexpected resonance not at all evident from the simple

impulse used.

Audio example: click to play.

Example 30. A simple musical figure using a blast of air as impulse and illustrating
feedback between two strings.

Audio example: click to play.

Example 31. Another musical figure using a bassy tomtom as impulse illustrating
feedback effects on three strings.

Audio example: click to play.

Example 32. Another musical figure using a hit on a five-gallon plastic water bottle with
a lot of resonance as impulse illustrating feedback effects on three strings.

3.3. EXPORT TO CSOUND

In the Max/MSP implementation, when one has adjusted settings to ones

satisfaction, one presses the button to save it to a data container (called a "coll"), which is

saved to disk. As it stands now, the NukuleleToCsound exporter is a separate program.

One simply launches it, and then processes the saved coll into another text file, which can

be cut and pasted into a Csound score file.

37

CHAPTER 4

DIFFICULTIES, OPPORTUNITIES, AND CONCLUSIONS

The most painful limitation in the Max/MSP implementation is the mouse input to

the graphic piano keyboard. The other settings also must be set individually, which is

quite a bit different than the situation with a traditional musical instrument. One could

improve the interface to be more playable, but only at the expense of some of the

generality of the instrument model as it is. I could imagine altering the program to

maximize being playable for one particular preset, having already decided on some

settings. Thus, a possible workflow would be to use the Nukulele model to zero in on a

particular instrument, say, a bass guitar-like sound, and then spin off a copy of the

program which could then be edited to make it more playable in ways appropriate to it.

Another limitation is the lack of ability to record gestures of more than one note.

One should be able to design something for this with some of the sequencing capabilities

of Max, but that was beyond the scope of this paper. While I would not be interested in a

fully functional sequencer in my program, it would be nice to be able to record short

moves�a musical phrase or so�and adjust settings on successive replays until a gesture

was just right, and then export to Csound.

A difficulty is the necessary effort to conceptualize multiple strings. One has to

specify which strings are open and sounding at any one time. This is not dissimilar from

38

honest and conscientious composing for the guitar, but it seems very different than

playing one, where a left-hand position and a right-hand strum subsumes many decisions

in an instant.

With the promise of faster computers, the model could be altered to include the

double delay line for vertical and horizontal vibrations and allow for the addition of the

non-linear effect of the subtle lengthening and shortening of the string. One could

investigate the modeling of different resonant bodies through which the strings could

sound. Electric instruments could be modeled by simulating the use of a pickup, the

effect of an amplifier's electronics, and other common effects such as distortion and

compression which would enhance the feedback effects. Again, I might not be interested

in emulating an actual electric guitar, but it does seem that a whole range of interesting

sound possibilities might open up.

A way to increase efficiency would be to write what is know as an "external

object", a C program which can then be incorporated into the Max/MSP environment.

This likely would give a performance increase, as well as simplifying the interface

presented to the user. In Csound, one could write an "opcode" which would have similar

possible efficiency and simplification benefits.

One problem with which I struggled through development of the pair of

implementations was the conforming of the two to each other. At this point, they operate

the very nearly the same; that is, the settings from the Max/MSP implementation,

exported to Csound, sound the same when rendered in Csound. If further development is

pursued, one might run into situations that cannot be reconciled between the two

implementations.

39

Csound, in fact, can be arranged to run in real-time and respond to MIDI input,

and graphical interface capability is available, though users computing on the Windows

and Linux platforms currently have an advantage over Macintosh users in this regard.

Some interested person could design an interface so that prototyping and scheduling

could be done in the same software. Also available is a Csound object for Max/MSP

which may offer an easy way to schedule events within the MSP environment.

As an example of the way the basic software implementation presented here can

be extended, I can describe recent variations. First, I have an improved method of

feedback control that automatically adjusts the cutoff frequency of a lowpass filter, thus

regulating the overall volume available to recirculate as feedback. Of course, this alters

the spectrum and so I consider it to be an extension of the basic implementation. Second,

I have been exploring an inserted module for rough emulation of body resonances. A

Max/MSP patcher, called "bodybuilder", uses a reverberation unit and a bank of resonant

filters to emphasize ten formants, each adjustable in frequency and gain. It makes a

difference where this patcher is inserted. Just before the final output is one possibility.

Another is to place it in the path of the resonance signal available to other strings, but this

would require four of these computationally expensive units. Better, perhaps, would be to

simplify the coupling matrix, send each string's resonance output to one common place,

and insert the bodybuilder patcher there. Of course, this would diminish the available

control over the individual strings and their resonance input and output. And one has to

now consider which excitation signals are appropriate: excitation signals that include

body resonances already, such as used in commuted waveguide synthesis, might not be

appropriate. Once one decides on a useful design, the variables could be incorporated into

40

the main interface in Max/MSP. Conforming the Csound implementation to reflect these

changes exactly might or might not be possible. Other extension of the basic software

might or might not include those described here, and so forms of the software model very

likely will diverge from each other.

As it is, Nukulele offers a starting point for more exploration through relatively

simple alterations to the design, though alterations are much easier to make in the Csound

orchestra than in the graphical environment of Max/MSP. More strings could easily be

added. Two strings with similar settings could be coupled to simulate one string vibrating

in the two dimensions (vertically and horizontally). And studio-processing effects such as

compression, equalization, room placement, and reverberation can greatly enhance

Nukulele's output.

Nukulele allows a user to explore plucked string synthesis models in software

implementations that emphasize generality and possibilities of expressiveness.

Compositional usage depends on the composer's interests, but the two implementations

with the bridging conversion utility offer a method of working that can reward a user

with novel and interesting sounds, and most importantly, with opportunities for

expressiveness.

41

APPENDIX A

CSOUND ORCHESTRAS AND SCORES

42

Text files of the Csound Nukulele orchestra file, "nukulele.orc", and the Csound

Nukulele score file template, "nukulele.sco", can be downloaded from the list of

"accompanying files" on the main display for this ETD. The file is

"nukulelecsoundorc_sco.zip"�an archive of a folder containing the two text files.

Csound Nukulele orchestra file code listing.

;**
; nukulele orchestra
; Csound implementation of plucked-string model:
; A Csound renderer for Max front end. The Max/MSP front end is only
; for prototyping; the csound version renders scores built from
; parameters exported from the Max/MSP version.
; Four stings in four instruments communicating via global a-rate
; variables let the strings resonate each other via feedback. Each
; string has a large number of variables/p-fields.
; Based on the paper and online examples and csound instruments
; accompanying:
; Erkut, C., V. Välimäki, M. Karjalainen, and M. Laurson. 2000a.
; "Extraction of Physical and Expressive Parameters for Model-Based
; Sound Synthesis of the Classical Guitar." Presented at the AES
; 108th International Convention (Paris, France, February 19-22),
; preprint no. 5114.

sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 10
gastr1 init 0
gastr2 init 0
gastr3 init 0
gastr4 init 0

endin

; generic p-fields:
; p2 start
; p3 dur

43

; p4 freq
; p5 (amp)
; p6 excite# [file to read and use as exciter]
; p7 exciteamp [amp of exciter sample]
; p8 exciteco [coefficient for filter applied to exciter sample]
; p9 pluckpos [pluck position on string (sul ponticello - sul tasto)]
; p10 damp# [file to read and use as (sample) on note damping]
; p11 damptime [percentage of dur to start playing damp sample]
; p12 dampamp [amp of damp sample]
; p13 finalamp [amp at end of note]
; p14 loopfamp [amp for loop filter]
; p15 loopfco [loop filter coefficient]
; p16 fbin [amp for feedback from other strings]
; p17 compamount [amount of compression]
; p18 fbout [amp for output to other strings]
; p19 str1 [amp for input of string 1 (feedback)]
; p20 str2 [amp for input of string 2 (feedback)]
; p21 str3 [amp for input of string 3 (feedback)]
; p22 str4 [amp for input of string 4 (feedback)]
; p23 vibamprange [range for vibamp]
; p24 vibspeedrange [range for vibspeed]
; each function has nine p-fields:
; amp (exponential)
; p25 amp starting value
; p26 amp value 1;
; p27 amp time% 1
; p28 amp value 2
; p29 amp time% 2
; p30 amp value 3
; p31 amp time% 3
; p32 amp value 4
; p33 amp time% 4
; pitchbend
; p34 pb starting value
; p35 pb value 1;
; p36 pb time% 1
; p37 pb value 2
; p38 pb time% 2
; p39 pb value 3
; p40 pb time% 3
; p41 pb value 4
; p42 pb time% 4
; vibspeed
; p43 vibspeed starting value
; p44 vibspeed value 1;
; p45 vibspeed time% 1
; p46 vibspeed value 2
; p47 vibspeed time% 2
; p48 vibspeed value 3
; p49 vibspeed time% 3
; p50 vibspeed value 4
; p51 vibspeed time% 4
; vibamp
; p52 vibamp starting value
; p53 vibamp value 1;
; p54 vibamp time% 1
; p55 vibamp value 2

44

; p56 vibamp time% 2
; p57 vibamp value 3
; p58 vibamp time% 3
; p59 vibamp value 4
; p60 vibamp time% 4
; pitchalt
; p61 pitchalt starting value
; p62 pitchalt value 1;
; p63 pitchalt time% 1
; p64 pitchalt value 2
; p65 pitchalt time% 2
; p66 pitchalt value 3
; p67 pitchalt time% 3
; p68 pitchalt value 4
; p69 pitchalt time% 4
; whew! all this for some expressiveness!

;

; string 1
instr 1

;;; INIT
 ifreq = cpspch(p4)
 iampn1 = p5
 iexcite = p6
 iexciteamp = p7
 iexciteco = p8
 ipluckpos = p9
 idamp = p10
 idamptime = p11
 idampamp = p12
 ifinalamp = p13
 iloopfamp = p14
 iloopfco = p15
 ifbin = p16
 icompamount = p17
 ifbout = p18
 istr1 = p19
 istr2 = p20
 istr3 = p21
 istr4 = p22
 ivibamprange = p23
 ivibspeedrange = p24

;;; FUNCTIONS
; AMP
; v0 t1 v1 t2 v2 t3 v3 t4 v4
iampt1 = p27*p3
iampt2 = p29*p3
iampt3 = p31*p3
iampt4 = p3 - iampt1 - iampt2 - iampt3
kamp1 expseg p25, iampt1, p26, iampt2, p28, iampt3, p30, iampt4, p32
;display kamp1, p3
; declick....... declick
kclick linseg .0000, .01*p3, 1, p3-.02*p3, 1, p3*.01, .0000

45

kamp = kamp1*kclick
;display kamp, p3

; PITCHBEND
ipbval0 = p34
ipbval1 = p35
ipbval2 = p37
ipbval3 = p39
ipbval4 = p41

ipbval0adj = (ipbval0 <= 64 ? (2 ^ ((ipbval0 - 64) *.002646)) : //
(2 ^ ((ipbval0 - 64) *.002604)))
ipbval1adj = (ipbval1 <= 64 ? (2 ^ ((ipbval1 - 64) *.002646)) : //
(2 ^ ((ipbval1 - 64) *.002604)))
ipbval2adj = (ipbval2 <= 64 ? (2 ^ ((ipbval2 - 64) *.002646)) : //
(2 ^ ((ipbval2 - 64) *.002604)))
ipbval3adj = (ipbval3 <= 64 ? (2 ^ ((ipbval3 - 64) *.002646)) : //
(2 ^ ((ipbval3 - 64) *.002604)))
ipbval4adj = (ipbval4 <= 64 ? (2 ^ ((ipbval4 - 64) *.002646)) : //
(2 ^ ((ipbval4 - 64) *.002604)))
ipbt1 = p36*p3
ipbt2 = p38*p3
ipbt3 = p40*p3
ipbt4 = p3 - ipbt1 - ipbt2 - ipbt3
kpb linseg ipbval0adj, ipbt1, ipbval1adj, ipbt2, ipbval2adj, ipbt3, //
ipbval3adj, ipbt4, ipbval4adj
kpb = kpb
;display kpb, p3

; VIBSPEED
ivspt1 = p45
ivspt2 = p47
ivspt3 = p49
ivspt4 = p3 - ivspt1 - ivspt2 - ivspt3
kvsp linseg p43, ivspt1, p44, ivspt2, p46, ivspt3, p48, ivspt4, p50
;display kvsp, p3
; VIBAMP
ivampt1 = p54*p3
ivampt2 = p56*p3
ivampt3 = p58*p3
ivampt4 = p3 - ivampt1 - ivampt2 - ivampt3
kvamp linseg 52, ivampt1, p53, ivampt2, p55, ivampt3, p57, ivampt4, p59
;display kvamp, p3

; VIBRATO
kvib oscili kvamp, kvsp, 1
;display kvib, p3

; PITCHALT
ipaltt1 = p63*p3
ipaltt2 = p65*p3
ipaltt3 = p67*p3
ipaltt4 = p3 - ipaltt1 - ipaltt2 - ipaltt3
ipalttunused = p69
kpitchalt linseg p61, ipaltt1, p62, ipaltt2, p64, ipaltt3, p66, //
ipaltt4, p68
display kpitchalt, p3

46

; PITCH ALTERATION TO DELAY TIME
kpitchmod = 1/(kpitchalt + kvib + kpb)
;display kpitchmod, p3

;;; LOOP COEFFICIENT ENVELOPE
 kloopenv linseg 1, idamptime*p3, 1, p3-idamptime*p3, //
ifinalamp
;display kloopenv, p3
;calculations for fractional delay interpolation filter
 kfreq = ifreq
 ktime = 1/(kfreq)
 itime = 1/(ifreq)
;delay time *in samples* (integer)
iint = int(sr/ifreq)
 kint = int(sr*ktime)
;remainig fractional delay *in fractions of a sample*
 kfrac = frac(sr*ktime)

;;; EXCITATION
indexsamp = nsamp(iexcite)/sr
aindex linseg 0, indexsamp, nsamp(iexcite), p3 - indexsamp, //
nsamp(iexcite)
aexcitation tablei aindex, iexcite
aexcitation = iexciteamp*aexcitation

;;; DAMPING
indexdampsamp = nsamp(idamp)/sr
adindex linseg 0, idamptime*p3, 0, indexdampsamp, nsamp(idamp), p3 - //
idamptime*p3 - indexdampsamp, nsamp(idamp)
adamp tablei adindex, idamp
adamp = idampamp*adamp

;;; PLUCK SHAPING FILTER E(Z)
 aexcitation filter2 aexcitation, 1, 1, 1+iexciteco, iexciteco
 aexcitation = iexciteamp*aexcitation

 adamp filter2 adamp, 1, 1, 1+iexciteco, iexciteco
 adamp = idampamp*adamp

; Set waveguide
 awgout1 init 0
 afeedback init 0
; Input
 afeedback = gastr1*istr1 + gastr2*istr2 + gastr2*istr3 + gastr4*istr4
 ainput = aexcitation + adamp
display ainput, p3
; COMB FILTER FOR PLUCK POSITION
alow delayr 1/20
icombdel = itime * ipluckpos
acomb deltapi icombdel
delayw ainput
acombed = (ainput - acomb)*.5

; COMPRESSOR
; to be added

47

;---------------- DELAY LINE -----------------------------------
; SET MIN FREQUENCY
 alowestf delayr 1/20
; INTEGER DELAY
 awg1 deltapn kint * kpitchmod

; LOOP FILTER COEFF
 ; B(z)/A(z)
 aloopfilt filter2 awg1, 1, 1, 1+iloopfco, iloopfco

; FD FILTER (ALLPASS)
 afdf biquad aloopfilt, 1-kfrac, kfrac, 0, 1, 0, 0

; LOOP FILTER GAIN
 awgout1 = iloopfamp*afdf*kloopenv

; DELAY WRITE
 delayw acombed + awgout1 + afeedback*ifbin

;;; OUTPUT
awgaout1 dcblock awgout1
aout = awgaout1
gastr1 = awgaout1*ifbout*kamp
;display ainput, p3
 out iampn1*kamp*aout

endin

;

; instruments 2 - 4 similar.
; copy instrument 1 and change variables instr 1 (near the top),
and the gastr1
; variable (just after ;;; OUTPUT) to reflect the new instrument
number.

48

Csound Nukulele score file template code listing.

;***** nukulele.sco

; EXCITATION SIGNAL
f1 0 8193 10 1 ; Sine

f2 0 16385 -1 "ex01" 0 0 0
f3 0 16384 -1 "ex02" 0 0 0
f4 0 16384 -1 "ex03" 0 0 0
f5 0 16384 -1 "ex04" 0 0 0
f6 0 16384 -1 "ex05" 0 0 0
f7 0 16384 -1 "ex06" 0 0 0
f8 0 16384 -1 "ex07" 0 0 0
f9 0 16384 -1 "ex08" 0 0 0
f10 0 16384 -1 "ex09" 0 0 0
f11 0 16384 -1 "ex10" 0 0 0
f12 0 16384 -1 "ex11" 0 0 0
f13 0 16384 -1 "ex12" 0 0 0
f14 0 16384 -1 "ex13" 0 0 0
f15 0 16384 -1 "ex14" 0 0 0
f16 0 16384 -1 "ex15" 0 0 0
f17 0 16384 -1 "ex16" 0 0 0
f18 0 16384 -1 "ex17" 0 0 0
f19 0 16384 -1 "ex18" 0 0 0
f20 0 16384 -1 "ex19" 0 0 0
f21 0 16384 -1 "ex20" 0 0 0

t 0 60
; make instrument 10 play so global variables (resonance signals) are
available
i10 0 4

; two musical notes as examples:
; note the added start times (p2) and duration (p3);
; note the p4 (pitch) specified in cpspch notation
; (octave:pitchclass);
; and the gain setting in p5.
;1 2 3 4 5 6 7 8 9 10 11 12 \\
;13 14 15 16 17 18 19 20 21 22 23 24
i1 0.00 2.00 7.00 1.0 2.000 1.000 -0.200 0.800 7.000 0.850 0.185 \\
1.000 0.990 -0.221 0.100 0.000 0.200 0.000 0.000 0.000 0.000 0.000 \\
0.000 \\

0.800 0.800 0.299 0.800 0.095 0.800 0.360 0.776 0.247 \\
63.500 63.500 0.059 63.500 0.176 63.500 0.199 63.500 0.566 \\
0.000 0.000 0.030 2.000 0.030 5.000 0.625 1.000 0.315 \\
0.000 0.000 0.021 0.005 0.064 0.010 0.713 0.005 0.202 \\
0.020 0.000 0.145 0.000 0.179 0.000 0.395 0.000 0.281

i2 1.00 1.00 6.05 0.5 3.000 1.000 -0.200 0.800 8.000 0.850 0.185 \\
1.000 0.990 -0.221 0.100 0.000 0.200 0.000 0.000 0.000 0.000 0.000 \\
0.000 \\

0.800 0.800 0.299 0.800 0.095 0.800 0.360 0.776 0.247 \\

49

63.500 63.500 0.059 63.500 0.176 63.500 0.199 63.500 0.566 \\
0.000 0.000 0.030 2.000 0.030 5.000 0.625 1.000 0.315 \\
0.000 0.000 0.021 0.005 0.064 0.010 0.713 0.005 0.202 \\
0.000 0.000 0.045 0.000 0.279 0.000 0.395 0.000 0.281

e

50

APPENDIX B

MAX/MSP APPLICATIONS

51

The Max/MSP applications can be downloaded from the list of "accompanying

files" on the main display for this ETD. Applications have been built for Mac OS X for

users who own Max/MSP. The file is "nukulele.zip"�an archive of a folder containing

the Nukulele and NukuleleToCsound Max/MSP applications, sub-patches, and excitation

soundfiles.

:.

52

BIBLIOGRAPHY

Bank, Balázs, Giovanni De Poli, and László Sujbert. 2002. "A Multi-Rate Approach to
Instrument Body Modeling for Real-Time Sound Synthesis Applications." 112th
AES Convention (Munich, Germany, May 10-13), Preprint No. 5526.

Beck, Stephen David. 2000. "Designing Acoustically Viable Instruments in Csound." In
The Csound Book, ed. Richard Boulanger. Cambridge, MA: MIT Press: 155-170.

Cook, Perry R. 2002. Real Sound Synthesis for Interactive Applications. Natick,
Massachusetts: A. K. Peters.

Cuzzucoli, Giuseppe, and Vicenzo Lombardo. 1999. "A Physical Model of the Classical
Guitar, Including the Player�s Touch." Computer Music Journal 23(2): 52-69.

Erkut, C., M. Karjalainen, P. Huang, and V. Välimäki. 2002. ''Acoustical analysis and
model-based sound synthesis of the kantele.'' Journal of the Acoustical Society of
America 112(4): 1681-1691.

Erkut, C., M. Laurson, M. Kuuskankare, and V. Välimäki. 2001. "Model-based Synthesis
of the Ud and the Renaissance Lute." Proceedings of the International Computer
Music Conference (Havana, Cuba, September 17-23): 119-122.

Erkut, C., V. Välimäki, M. Karjalainen, and M. Laurson. 2000a. "Extraction of Physical
and Expressive Parameters for Model-Based Sound Synthesis of the Classical
Guitar." Presented at the AES 108th International Convention (Paris, France,
February 19-22), preprint no. 5114.

Erkut, Cumhur, Tero Tolonen, Matti Karjalainen, and Vesa Välimäki. 2000b. "Acoustical
Analysis of Tanbur, a Turkish Long-necked Lute." Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP'00) vol. 2 (Istanbul, Turkey, June 5-9): 769-772.

Jaffe, David A., and J. O. Smith. 1983. "Extensions of the Karplus-Strong plucked string
algorithm." Computer Music Journal 7(2): 56-69.

53

Järveläinen, H., and V. Välimäki. 2001a. "Audibility of initial pitch glides in string
instrument sounds." Proceedings of the International Computer Music
Conference (Havana, Cuba, September 17-23): 282-285.

Järveläinen, H. 2001b. "Applying perceptual knowledge in string instrument synthesis."
Proceedings of the MOSART Workshop on current research directions in
computer music (November 15-17, Barcelona, Spain): 187-195.

Karjalainen, M., T. Tolonen, V. Välimäki, C. Erkut, M. Laurson, and J. Hiipakka. 2001.
''An Overview of New Techniques and Effects in Model-based Sound Synthesis.''
Journal of New Music Research 30(5): 203-212.

Karjalainen, M., V. Välimäki, H. Penttinen, and H. Saastamoinen. 2000. "DSP
equalization of electret film pickup for the acoustic guitar," Journal of the Audio
Engineering Society 48(12): 1183-1193.

Karjalainen, M., H. Penttinen, and V. Välimäki. 2000. ''Acoustic Sound from the Electric
Guitar Using DSP Techniques.'' Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP'00 Istanbul, Turkey, June 5-9)
vol. 2: 773-776.

Karjalainen, M., H. Penttinen, and V. Välimäki. 1999. "More acoustic sounding timbre
from guitar pickups," in Proceedings of the 2nd G-6 Workshop on Digital Audio
Effects (DAFX99, Trondheim, Norway, Dec. 9-11): 41-44.

Karjalainen, M., V. Välimäki, and T. Tolonen. 1998. "Plucked-string models: from the
Karplus-Strong algorithm to digital waveguides and beyond." Computer Music
Journal 22(3): 17-32.

Karjalainen, M., and Julius Smith. 1996. "Body Modeling Techniques for String
Instrument Synthesis." Proceedings of the International Computer Music
Conference (Hong Kong, August): 232-239.

Karjalainen, M., V. Välimäki, and Z. Jánosy. 1993. "Towards high-quality sound
synthesis of the guitar and string instruments." Proceedings of the International
Computer Music Conference (Tokyo, Sept. 10-15): pp. 56-63.

Karplus, K. and A. Strong. 1983. "Digital synthesis of plucked string and drum timbres."
Computer Music Journal 7(2): 43-55.

Laakso, T. I., V. Välimäki, M. Karjalainen, and U. K. Laine. 1996. "Splitting the Unit
Delay--Tools for Fractional Delay Filter Design." IEEE Signal Processing
Magazine 13(1) (January): 30-60.

54

Laurson, M., C. Erkut, V. Välimäki, and M. Kuuskankare. 2001. M., ''Methods for
Modeling Realistic Playing in Acoustic Guitar Synthesis.'' Computer Music
Journal 25(3): 38-49.

Laurson, M., C. Erkut, and V. Välimäki. 2000. "Methods for Modeling Realistic Playing
in Plucked-String Synthesis: Analysis, Control and Synthesis." Proceedings of the
COSTG6 Conference on Digital Audio Effects (DAFx'00), (Verona, Italy, Dec. 7-
9): 183-188.

Laurson. M. 2000. "Real-Time Implementation and Control of a Classical Guitar
Synthesizer in SuperCollider." Proceedings of the International Computer Music
Conference (Berlin): 74-77.

Laurson, M., J. Hiipakka, C. Erkut, M. Karjalainen, V. Välimäki, and M. Kuuskankare.
1999. "From Expressive Notation to Model-Based Sound Synthesis: A Case
Study of the Acoustic Guitar." Proceedings of the International Computer Music
Conference (Beijing, China, October 22-28): 1-4.

Levitin, Daniel J., Stephen McAdams, and Robert L. Adams. 2002. "Control parameters
for Musical Instruments: a Foundation for New Mappings of Gesture to Sound."
Organized Sound 7(2): 171-189.

Penttinen, H., M. Karjalainen, and A. Härmä. 2001. "Morphing Instrument Body
Models." Proceedings of the COST-G6 Conference on Digital Audio Effects
(DAFx01, Limerick, Ireland. Dec. 6-9): 50-54.

Rank, Erhard, and Gernot Kubin. 1997. "A Waveguide Model for Slapbass Synthesis."
Proceedings of the International Conference on Acoustics and Speech Signal
Processing, vol. 1: 443-446.

Roads, Curtis, ed. 1989. The Music Machine. Cambridge, MA: MIT Press.

Roads, Curtis. 1996. The Computer Music Tutorial. Cambridge, MA: MIT Press.

Schroeder, M. R. 1965. "New Method of Measuring Reverberation Time." Journal of the
Acoustic Society of America 37: 409-412.

Serra, X. 1997. "Musical sound modeling with sinusoids plus noise." In Musical Signal
Processing C. Roads, S. T. Pope, A. Piccialli, and G. DePoli, eds. Lisse: Swets &
Zeitlinger : 91-122.

Smith, Julius O. 2004. Digital Waveguide Modeling of Musical Instruments. Center for
Computer Research in Music and Acoustics (CCRMA), Stanford University. Web
published at http://www.ccrma.stanford.edu/~jos/waveguide/.

55

Smith, J. O. 1997a. "Acoustic modeling using digital waveguides." In Musical Signal
Processing, C. Roads, S. T. Pope, A. Piccialli, and G. DePoli, eds. Lisse: Swets &
Zeitlinger: 221-263

Smith, J. O. 1997b. "Principles of digital waveguide models of musical instruments." In
Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and
K. Brandenburg, eds. Boston, MA: Kluwer: 417-466.

Smith, Julius O. 1996 "Physical Modeling Synthesis Update." Computer Music Journal
20(2): 44-56.

Smith, J. O. 1993. "Efficient synthesis of stringed musical instruments.'' Proceedings of
the 1993 International Computer Music Conference (Tokyo): 64-71.

Smith, Julius O. 1992. "Physical modeling using digital waveguides." Computer Music
Journal 16(4): 74-91.

Sullivan, C. R. 1990. "Extending the Karplus-Strong algorithm to synthesize electric
guitar timbres with distortion and feedback." Computer Music Journal 14(3): 26-
37.

Smith, Julius O. 1987. "Music applications of digital waveguides." Tech. Rep. STAN-M-
39, CCRMA, Music Department, Stanford University, 1987, a compendium
containing four related papers and presentation overheads on digital waveguide
reverberation, synthesis, and filtering.

Tolonen, Tero, Vesa Välimäki, and Matti Karjalainen. 2000. "Modeling of Tension
Modulation Nonlinearity in Plucked Strings." IEEE Transactions on Speech and
Audio Processing 8(3) (May): 300-310.

Tolonen, Tero. 1999. "Methods for Separation of Harmonic Sound Sources using
Sinusoidal Modeling." AES 106th Convention, Munich, Germany, May 8-11,
1999.

Tolonen T., C. Erkut, V. Välimäki, and M. Karjalainen. 1999. "Simulation of plucked
strings exhibiting tension modulation driving force." Proceedings of the
International Computer Music Conference (Beijing, China, October): 5-9.

Tolonen, Tero. 1998. Model-Based Analysis and Resynthesis of Acoustic Guitar Tones.
Master's thesis. Report no. 46, Helsinki University of Technology, Department of
Electrical and Communications Engineering, Laboratory of Acoustics and Audio
Signal Processing, Espoo, Finland.

56

Tolonen, T., V. Välimäki, and M. Karjalainen. 1998. "A new sound synthesis structure
for modeling the coupling of guitar strings." Proceedings of the IEEE Nordic
Signal Processing Symposium (NORSIG'98), (Vigsø, Denmark, June 8-11): 205-
208.

Tolonen, Tero, and Vesa Välimäki. 1997. "Automated Parameter Extraction for Plucked
String Synthesis." Proceedings of the International Symposium on Musical
Acoustics (ISMA97, Edinburgh, Scotland, August 19-22), vol.1: 245-250.

Välimäki Vesa, Mikael Laurson, and Cumhur Erkut. 2003. "Commuted Waveguide
Synthesis of the Clavichord." Computer Music Journal 27(1): 71-82.

Välimäki, Vesa, Mikael Laurson, Cumher Erkut, and Tero Tolonen. 2000. "Model-Based
Synthesis of the Clavichord." Proceedings of the 2000 International Computer
Music Conference, (Berlin, Germany, August 27 -September 1): 50-53.

Välimäki, V., T. Tolonen, and M. Karjalainen. 1999a. "Plucked-String Synthesis
Algorithms with Tension Modulation Nonlinearity." Proceedings of the
International Conference on Acoustics and Speech Signal (ICASSP'99) vol. 2
(Phoenix, Arizona, March 15-19): 977-980.

Välimäki, Vesa, M. Karjalainen, T. Tolonen, and C. Erkut. 1999b. "Nonlinear Modeling
and Synthesis of the Kantele - a Traditional Finnish String Instrument."
Proceedings of the 1999 International Computer Music Conference, (Beijing,
China, October 22-27): 220-223.

Välimäki, V., T. Tolonen, and M. Karjalainen. 1998. ''Signal-Dependent Nonlinearities
for Physical Models Using Time-Varying Fractional Delay Filters." Proceedings
of the International Computer Music Conference (Ann Harbor, Michigan,
October 1-6): 264-267.

Välimäki, Vesa, and Timo I. Laakso. 1998. "Suppression of Transients in Time-varying
Recursive Filters for Audio Signals." Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP98, Seattle
Washington, May 12-15) vol. 6: 3569-3572.

Välimäki, V., J. Huopaniemi, M. Karjalainen, and Z. Jánosy. 1996. "Physical modeling
of plucked string instruments with application to real-time sound synthesis."
Journal of the Audio Engineering Society 44(5) (May): 331-353.

Välimäki, V. 1995. Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay
Filters. PhD thesis, Report no. 37, Helsinki University of Technology, Faculty of
Electrical Engineering, Laboratory of Acoustic and Audio Signal Processing,
Espoo, Finland.

57

Välimäki, V., T. I. Laakso, and J. Mackenzie. 1995. "Elimination of transients in time-
varying allpass fractional delay filters with application to digital waveguide
modeling." Proceedings of the 1995 International Computer Music Conference
(Banff): 327-334.

Vlimki, V. and T. I. Laakso. 1998. " Suppression of Transients in Variable Recursive
Digital Filters with Novel and Efficient Cancellation Method." IEEE Transactions
on Signal Processing 46(12): 3408-3414.

