
DYNAMICALLY RECONFIGURABLE

PARAMETERIZED COMPONENTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Nigamanth Sridhar, M.Sc.(Tech.), M.S.

* * * * *

The Ohio State University

2004

Dissertation Committee:

Paolo A.G. Sivilotti, Co-Adviser

Bruce W. Weide, Co-Adviser

Neelam Soundarajan

Approved by

Co-Adviser

Co-Adviser

Department of Computer
and Information Science

c© Copyright by

Nigamanth Sridhar

2004

ABSTRACT

With the size and complexity of software systems growing at a very fast pace, one

of the concerns that we have to address is that of tractable reasoning. We need to make

sure that the software we build does not exceed the limits of our understanding. Since

we only know how to reason about software of limited sizes, we need to find a way of

always keeping the logical size of the programs we write small. Software should thus

be built from small, well-understood components put together in predictable ways.

Parameterization is a technique that can greatly help in building scalable, flex-

ible, and robust software systems. An important consideration with parameterized

components is the time of binding parameters to the component; whether a commit-

ment to parameters can be changed or not depends on the binding time. In order to

achieve maximum flexibility, parameters should be bound as late as possible. Post-

poning parameter binding to execution time allows for the selection of parameters to

be most effective, because it is at run time that details of a system are most complete.

Further, dynamically bound parameterized components also present the possibility

for dynamic reconfiguration.

In this dissertation, we present a methodology for building dynamically reconfig-

urable parameterized components. The methodology is presented as a design pattern,

with minimal assumptions on the target programming language or environment. The

ii

Service Facility design pattern offers a model of parameterized components that sup-

ports dynamic binding of parameters. Further, the model supports a mode of dy-

namic reconfiguration called dynamic module replacement, which involves re-binding

of some or all of the parameters to a parameterized component during run time. The

model also includes safety conditions to ensure that the dynamic parameter bindings

(and re-bindings) are correct with respect to type-safety.

The techniques and ideas presented in this dissertation are in the context of well-

known and widely-used technologies (such as Java, .NET, and XML) so as to enable

these ideas to be inducted into practice quickly. The solutions presented here are

generic and incrementally deployable.

iii

To my parents...

iv

ACKNOWLEDGMENTS

This dissertation has my name on it, but I would never have been able to get

all of this research done, and written this thesis if not for a long list of people. I

would like to first thank my advisors Paul Sivilotti and Bruce Weide. If it wasn’t for

Bruce’s support even before I came to OSU, I would not be where I am today. They

have both provided me with ample encouragement, technical advice, freedom to do

my research, and finally, but importantly financial support through graduate school.

Every time I have walked into their offices with a problem (technical or otherwise), I

have always come out feeling much better. I also have to thanks Neelam Soundarajan

for spending time with me whenever I had questions, and for all the help in finishing

this dissertation.

The two most important people who have stayed with me through the years I

have spent in graduate school, and have helped me in numerous occasions — Jason

Hallstrom and Scott Pike. If not for the “team support” that they gave me, I would

have had a much harder time getting through graduate school. Not to mention the

numerous hours of research we got done together, while playing with the football

and the aerobie. Those long hours I spent in Dreese were so much fun! Some of

the earliest research I did was along with Scott, and a lot of the ideas for this thesis

became clear in my mind through the many hours of talking to Scott. And I have

v

to thank Jason for giving me rides from home to campus and back everyday through

my last quarter when I was writing the dissertation.

Thanks are also due to Hilary for all the support and stimulating research dis-

cussions we have had, and the whole Software Engineering lab — Chris Bohn, Scott

Kagan, Mike Gibas and Prakash Krishnamurthy. All of them are great people and

have helped me along the way many times over the last five years. The Distributed

Systems group is another bunch of people that I have to thanks for all the great 888

discussions, and the numerous practice talks (including my thesis defense) they have

listened to and given comments on — Murat, Vinod, Sandip, Greg, Vinayak.

This list of acknowledgments will not be complete without the Reusable Software

Research Group — Bill Ogden, Tim Long, Paolo Bucci, Wayne Heym, Ben Tyler,

Joan Krone. They gave me all the feedback and more on my research. They hardened

me for all the conference talks I gave.

Last but most important, I would like to thank my parents for having put me

through school, and having always been there to support me. I can never thank them

enough for all the sacrifices they have had to make so I could get a great education,

and achieve all my goals. My sister has been a great source of love, affection, and fun

during times when I felt down.

This work has been supported by the National Science Foundation (NSF) under

grant CCR-0081596, and by gifts from Lucent Technologies and Microsoft Research.

vi

VITA

October 13, 1976 . Born – Madras, India

June 1997 . M.Sc.(Tech.) Information Systems,
Birla Inst. of Technology & Science,
Pilani, India

July 1997 – December 1998Member of Technical Staff,
Lucent Technologies

June 2000 . M.S. Computer & Information Science,
The Ohio State University

January 1999 – present . Graduate Teaching Associate,
The Ohio State University

January 1999 – present . Graduate Research Associate,
The Ohio State University

PUBLICATIONS

Research Publications

Paolo A.G. Sivilotti, Scott M. Pike, and Nigamanth Sridhar. A new distributed
resource-allocation algorithm with optimal failure locality. In Proceedings of the
12th IASTED International Conference on Parallel and Distributed Computing and
Systems, volume 2, pages 524–529. IASTED/ACTA Press, November 2000.

Nigamanth Sridhar, Bruce W. Weide, and Paolo Bucci. Service facilities: Extending
abstract factories to decouple advanced dependencies. In Proceedings of the 7th
International Conference on Software Reuse, pages 309–326, April 2002.

Scott M. Pike and Nigamanth Sridhar. Early reply components: Concurrent execu-
tion with sequential reasoning. In Proceedings of the 7th International Conference on
Software Reuse, pages 46–61, April 2002.

vii

Jason O. Hallstrom, Scott M. Pike, and Nigamanth Sridhar. Iterators reconsidered.
In Proceedings of the Fifth Workshop on Component-Based Software Engineering,
Orlando, FL, May 2002.

Nigamanth Sridhar and Paolo A.G. Sivilotti. Lazy snapshots. In S.G. Akl and
T.Gonzalez, editors, Proceedings of the 14th IASTED International Conference on
Parallel and Distributed Computing and Systems, pages 96–101, Cambridge, MA,
November 2002. IASTED, ACTA Press.

Nigamanth Sridhar and Jason O. Hallstrom. Generating configurable containers for
component-based software. In Proceedings of the Sixth Workshop on Component-
Based Software Engineering, Portland OR, May 2003.

Nigamanth Sridhar, Scott M. Pike, and Bruce W. Weide. Dynamic module replace-
ment in distributed protocols. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, pages 620–627, May 2003.

Nigamanth Sridhar and Bruce W. Weide. Reasoning about parameterized compo-
nents with dynamic binding. In Proceedings of the Workshop on Specification and
Verification of Component-Based Systems at ESEC/FSE 2003, pages 92–95, Helsinki,
Finland, September 2003.

Jason O. Hallstrom, Nigamanth Sridhar, Anish Arora, Paolo A.G. Sivilotti, and
Willam M. Leal. A container-based approach to object-oriented product lines. Jour-
nal of Object Technology, April 2004. (to appear).

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Software Methodology Prof. Bruce W. Weide
Software Systems Prof. Paolo A.G. Sivilotti
Computer Graphics Prof. Roger Crawfis

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Figures . xii

List of Listings . xv

Chapters:

1. Introduction . 1

1.1 The Problem . 1
1.2 The Proposed Approach . 4
1.3 The Thesis . 6
1.4 Contributions . 7
1.5 Organization of the Thesis . 8

2. Parameterized Components . 10

2.1 Introduction . 10
2.2 Static Parameterization . 13
2.3 Dynamic Parameterization . 15
2.4 Dependent Parameterization . 16
2.5 Chapter Summary . 19

ix

3. The Service Facility Design Pattern . 21

3.1 Introduction . 21
3.2 Dependencies in Software Systems 21
3.3 Design Patterns . 24

3.3.1 The Abstract Factory Pattern 25
3.3.2 The Proxy Pattern . 29
3.3.3 The Strategy Pattern . 32

3.4 The Service Facility Pattern . 35
3.4.1 Implementing Service Facilities 39
3.4.2 Performance Considerations 47
3.4.3 Enhancements . 50
3.4.4 Separating Code from Data 53
3.4.5 Serflets: Keeping Code and Data Together 56
3.4.6 Mediation in Service Facility Wrappers 58

3.5 Bringing It All Together: Resource Allocation Example 59
3.6 Chapter Summary . 65

4. Ensuring Type-Correct Dynamic Parameter Binding 66

4.1 Introduction . 66
4.2 Specifying Parameterized Components 66

4.2.1 Specifying Serfs in RESOLVE 69
4.2.2 Realizing RESOLVE Contracts as Serfs 70

4.3 Specifying Dynamically-Bound Parameterized Components 72
4.4 Instantiation-Checking Components 82
4.5 Chapter Summary . 84

5. Dynamic Reconfiguration using the Service Facility Pattern 85

5.1 Introduction . 85
5.2 Dynamic Reconfiguration . 86
5.3 Dynamic Module Replacement . 87

5.3.1 Conditions for Dynamic Module Replacement 88
5.4 Dynamic Module Replacement using Service Facilities 90

5.4.1 Allowing Reconfiguration 95
5.5 Case Study: Mutual Exclusion . 97

5.5.1 Performance Considerations 103
5.6 Distributed Service Facilities . 105
5.7 Chapter Summary . 107

x

6. Related Work . 109

6.1 Parameterized Programming . 109
6.1.1 Language Support . 110
6.1.2 OO Frameworks . 114

6.2 Dynamic Reconfiguration . 115
6.2.1 Specialized Languages and Architectures 115
6.2.2 Language/Architecture Enhancements 121

7. Conclusions . 124

7.1 Summary of Contributions . 124
7.2 Future Work . 125

7.2.1 Component Containers . 125
7.2.2 Towards a Component Model 129

Appendices:

A. Unified Modeling Language Notation . 131

A.1 Introduction . 131
A.2 Static Structure Notation . 132

A.2.1 Interface . 132
A.2.2 Class . 132

A.3 Relationships . 133
A.3.1 Uses . 133
A.3.2 Extends . 134
A.3.3 Implements . 135
A.3.4 Instantiates . 137
A.3.5 Composition . 137

Bibliography . 140

xi

LIST OF FIGURES

Figure Page

3.1 Sequence design based on the abstract factory pattern 28

3.2 UML design structure for the Proxy pattern 30

3.3 UML design diagram of a system using the Strategy design pattern. . 33

3.4 Object Creation in Serfs . 37

3.5 Method redirection in Serfs. 38

3.6 UML design of a system with concrete dependencies 39

3.7 UML design structure of the Service Facility pattern 40

3.8 Extending Sequence R1 with sort using inheritance 50

3.9 Extending Sequence with sort using delegation 52

3.10 UML design showing Serflets in the Service Facility pattern 57

3.11 A Serf wrapper that uses multiple services to perform checks on inter-
cepted messages . 60

3.12 UML Design for the resource allocation example using the Service Fa-
cility pattern. 62

4.1 Instantiation-checking wrapper . 83

5.1 Serf redirecting call to client handle. The client makes the invocation
to the handle h1, the Serf dispatches the call to the object o1. 94

xii

5.2 After instance rebinding, the old objects are destroyed, and the client
handles now point to the new object instances. A client invocation on
h1 is now dispatched to the new object instance no1. 94

5.3 Conflict graph before reconfiguration 100

5.4 Conflict graph during reconfiguration — includes the proxy represent-
ing the Serf. 100

5.5 Distributed clients using a centralized solution 106

5.6 Distributed clients using a distributed solution but through a central-
ized gateway . 106

5.7 Distributed clients using a distributed solution 107

A.1 A UML interface . 132

A.2 A UML class . 133

A.3 The uses arrow . 133

A.4 The uses relation . 134

A.5 The uses interface between a class and an interface 134

A.6 The extends arrow . 134

A.7 The extends relation . 135

A.8 The implements arrow . 136

A.9 The implements relation . 136

A.10 The instantiates arrow . 137

A.11 The instantiates relation . 137

A.12 The composition arrow . 138

xiii

A.13 The composition relation . 138

A.14 The composition relation between a class and an interface 139

xiv

LIST OF LISTINGS

2.1 Stack Template . 13
2.2 Instantiating the Stack Template . 14
2.3 Sorter Template . 17
2.4 Sorter component specified in AsmL 18
2.5 Runtime checks in C# code to check correctness of template parameters 19
3.1 The Data and ServiceFacility interfaces 41
3.2 Structure of a service facility . 45
3.3 create() method with weak references to data objects 49
3.4 rep() method using lazy initialization 49
3.5 The Point and ColorPoint classes . 55
3.6 Method exposing the binary method problem 55
3.7 The ResourceSerf as a C# Serf . 61
3.8 create() and request() methods from ResourceSerf 63
4.1 The contract for StackContract specified using RESOLVE 68
4.2 The contract for StackSerf . 71
4.3 C# Stack and StackSerf interfaces . 72
4.4 C# implementation of add for SequenceSerf realization layered on top

of StackSerf . 75
4.5 A client instantiating a SequenceSerf 75
4.6 Partial XML specification for StackSerf 76
4.7 ExternalSorter interface in C# with XML annotations 80
4.8 The setItemSerf method in StackExternalSorter 81
4.9 Enforcing stability of parameters . 82
5.1 Java source in the initiator to check if a component supports dynamic

reconfiguration . 96
5.2 The Reconfigurable attribute and the ComponentSerf R1 class tagged

with the attribute . 97
5.3 C# code to check if the Serf supports reconfiguration 98
5.4 The setProtocolSerf method in ResourcerSerf 102

xv

CHAPTER 1

INTRODUCTION

God’s Law: “Human capacity for understanding is limited.”

— William Buxton, 2001.

1.1 The Problem

One of the most important problems facing software engineering today is the

scalability of software. Advancement in computer technology governed by Moore’s

Law [Moore 2000] has tempted software engineers to scale their systems at the same

pace. Along with the size of these software systems, their complexity, and hence the

effort required to understand them, is also growing at an alarming pace. However,

all software engineers are human, after all, and human understanding is limited, as

expressed by William Buxton’s “God’s Law” [Buxton 2001]. How can we build larger

systems, and continue to be able to understand them?

We appear to know how to reason about small systems, but can we apply the

same techniques to large systems? Dijkstra pointed out in his Notes on Structured

Programming [Dijkstra 1972]:

1

Apparently we are too much trained to disregard differences in scale,
to treat them as “gradual differences that are not essential”. We tell
ourselves that what we can do once, we can also do twice and by
induction we fool ourselves into believing that we can do it as many
times as needed, but this is just not true! A factor of a thousand is
already far beyond our powers of imagination!

Put otherwise, the techniques that allow reasoning about a program with ten

lines of code cannot be applied directly to a program with ten thousand lines of code.

The complexity of large-scale software simply outstrips the capacity of our unaided

intellectual abilities. This limit on our understanding underscores the importance of

modular components and composition techniques that support reasoning

reuse about system behavior and correctness. Existing software components

should be reused to build newer larger systems.

Fortunately, reuse is fashionable these days among software engineers. Nearly

every software company now has a software component “library” from which different

development groups can pick components and use them in their own systems. These

components are usually ones that have been used before in projects, but are general

enough to be used in other scenarios as well. So when a project team picks up

a component from this library and integrates it into their system, there should be

enough that can be said about the component’s behavior that it doesn’t need to be

reanalyzed from scratch. This should be a huge saving in time — the development

team does not have to re-implement the functionality provided by this component,

or the explanation of what it does.

What happens in reality is, however, quite different. There usually are some parts

of the component that have not been generalized enough, or are incomplete, or in the

worst case, not well documented. In such cases, the development team, in addition

to building their own project, also has to spend time trying to tailor the component

2

from the library to their particular project. Such change is dangerous because once

the component is changed in even the smallest manner, there is a chance that the

original specification will not hold. So while a developer may expect a component

to behave in a certain way based on its specification, the behavior of the component

may turn out to be something completely (or worse, subtly) different! Ultimately this

kind of reuse leads them into the tar pit mired by complexities of scale [Brooks 1975].

What we really need is code reuse combined with reasoning reuse. Thirty years of

research on information hiding [Parnas 1972, Parnas 1979] dictates that reuse should

be maintained at a level that respects the rules of modularity and abstraction. It is

this kind of composition that will lead to systems that can still fit into the limited

capacity of human understanding, because at any point in the reasoning process,

the composition that is being considered is still small enough for our well-known

techniques to apply.

Along with the complexities of scale, another big problem we are faced with is

the requirement that successful software systems must evolve with time. As human

needs for the systems change, we should be able to effect changes in our software

without having to interrupt the services that the software provides. Software should

be flexible enough to accommodate situations that were not directly envisioned at

the time the system was designed. The need for dynamic reconfiguration in software

is real [Kramer and Magee 1985, Hicks 2001].

Our work addresses problems that inevitably must be overcome to pave the way for

future progress in software engineering theory and practice. In any realistic scenario

we can envision for the future, software systems will only get bigger and more complex.

It is, therefore, imperative we find ways to make such large systems tractable. We can

3

understand and reason about large systems only if they are built from components

whose behavior can be reasoned about modularly. This requires that our reasoning

about components in isolation must be composable to support reasoning about the

same components under composition. That is, we must be able to compose our

components and reasoning hand in hand. The effort required for reasoning should

not climb exponentially, which is where we are headed if we continue along the path of

code reuse that is the current industry norm. Code reuse must be complemented

with reasoning reuse. This is possible only if the units of composition strictly

adhere to the properties of abstraction, encapsulation, and information hiding.

1.2 The Proposed Approach

The research community knows how to build software components that respect

encapsulation, abstraction and information hiding. Further, strong theoretical bases

have been developed to demonstrate how such components can be designed and then

composed to construct large software systems. Yet, the current culture of reuse has

not been influenced enough for modular component-based methods to inform best

practices. This gap between the state of knowledge and state of current practice is

cause for concern. We view this as a research problem in itself that must be addressed.

Our approach, therefore, is to make modular, component-based system develop-

ment more attractive to practitioners. To transfer ideas from the research knowledge

base at large, we are motivated to recast the core findings of that research in a form

that is adoptable by practitioners. Desiderata for such recasting include the following:

4

1. The research results must be applicable in the domain of real development

environments. The results must not only be research prototypes, but also in-

corporated into mainstream programming languages and/or development envi-

ronments.

2. The use of these ideas should not require overarching changes in the method-

ology of software development, nor should it require global changes to current

system infrastructures. As a litmus test, modular components should be incre-

mentally deployable into existing and developing systems.

In keeping with the above desiderata, the approach here is to express a fundamen-

tally sound model of component-based software by using design patterns [Gamma,

Helm, Johnson and Vlissides 1995], which are codified solutions to commonly oc-

curring situations in software. Design patterns are language-independent, save some

explicitly stated restrictions on language features. The most important characteristic

of design patterns with respect to incremental deployment is that they require no

changes to the programming language or the platform. (This is not to say that pro-

gramming language changes would not help [Baumgartner, Läufer and Russo 1996],

only that they are not really necessary.)

We use a kind of parameterized programming [Goguen 1984] as the basis for our

solution. Parameterization has been shown to be a strong technique for building

scalable, reliable, and flexible software. Further, the time at which a parameterized

component is instantiated (i.e., its parameters are fixed) is a very important consid-

eration. Since, in general, we have more information about a software system and

its environment during run-time, our approach to parameterization supports binding

parameters during this phase of the software system, too.

5

Dynamic binding of parameters has many advantages over static binding, since

the system can (in principle) then respond to changes in the environment during

execution. Dynamically-bound parameterized components support dynamic module

replacement — a mode of dynamic reconfiguration where the granularity of recon-

figuration is at the level of modules. Our methodology includes support for safe

replacement of modules.

Dynamic binding also brings with it a set of challenges. Ensuring the type-

correctness of parameter bindings is more difficult than in the case of static binding.

In the latter case, the binding is done at compile time, and so the compiler has full

control over the type-safety. We provide proof obligations, and checking components

to monitor type-correctness, while allowing for the flexibility of dynamic binding.

Finally, we believe that the science of design of software systems should generally

advance in lock-step with the engineering of such designs. There seem to be more

radical changes in the science now than there are in engineering. The average amount

of time an idea takes to be translated into practice, after it has been developed by the

research community, is estimated to be eighteen years [Gibbs 1994]. Our approach is

therefore also geared to tackle the problem of quick dissemination of research results

to practitioners.

1.3 The Thesis

This dissertation defends the following thesis:

1. Parameterized programming provides a strong basis for building reusable soft-

ware components, and delaying the binding of parameters to a component until

run time increases the flexibility of these components.

6

2. A methodology for dynamic parameterization can be built as a design pattern

that places minimal restrictions on the target programming language.

3. Software systems built from dynamically bound parameterized components can

adapt to changes in the environment during system execution, and need not

require re-starting the system.

1.4 Contributions

This dissertation makes the following key contributions:

1. We provide a methodology for implementing parameterized components that

supports dynamic binding of parameters. This model is presented as a de-

sign pattern and is applicable in a variety of common programming languages

and platforms. We explain how this design pattern, called the Service Facil-

ity pattern, can be viewed as a composition of several other well-known design

patterns.

2. We show that not only can parameters of parameterized components be bound

at run-time, they can also be re-bound — components can respond to changes

in run-time situations by way of dynamic reconfiguration. We specify the con-

ditions under which it is safe to perform dynamic reconfiguration, and outline

how such reconfiguration can be implemented using our design pattern model.

3. With static parameter binding, the binding of parameters to components is done

(and checked) at compile-time. The compiler can thus provide strong guarantees

for the correctness of the templates, since it has access to the full type system.

When parameters are bound at run-time, however, we can no longer use the

7

type system to check for correctness of component instantiation. We provide a

set of proof obligations, which guarantee the correctness of parameter bindings

at run-time, along with a method for dynamically checking them.

1.5 Organization of the Thesis

In Chapter 2, we review background material on parameterized components. We

outline the different modes of parameterization that we are interested in studying,

along with a comparison among the different modes. We point out some of the

advantages and challenges of each of these parameterization modes.

In Chapter 3, we describe the Service Facility design pattern. We explain why

this pattern is important, and point out connections with other well-known design

patterns. We introduce a resource allocation component as an example to explain

the design pattern, and use this example in later chapters as well.

In Chapter 4, we present some of the challenges that arise from using dynamic

binding for parameterized components. We describe proof obligations that have to be

satisfied in order for the binding of parameters to be type-correct. We also describe a

style of checking components that enforce type-safe parameter bindings at run time.

Chapter 5 describes how the Service Facility design pattern can be used for dy-

namic reconfiguration, which amounts to “component transplant on a live system”.

The particular mode of dynamic reconfiguration that we study here is dynamic module

replacement. We point out the importance of this technique, and outline the con-

ditions that are necessary for effecting dynamic module replacement in component-

based, distributed systems. We explain this technique in the context of the distributed

resource allocation example introduced in Chapter 3.

8

We present relevant related research in Chapter 6, and point out some of the

major connections between our work and different bodies of work in the literature.

Finally, we present our conclusions and some of the directions for future research in

this area in Chapter 7.

9

CHAPTER 2

PARAMETERIZED COMPONENTS

2.1 Introduction

Traditionally, parameterization has been used as a technique for building generic

data types, especially popular in the domain of data collections, such as stacks,

queues, lists, etc. This view has been further popularized by template class libraries

such as the C++ Standard Template Library (STL) [Musser and Saini 1996]. The

recent proposals for generics in Java [Bracha, Odersky, Stoutamire and Wadler 1998]

and the .NET common language runtime [Kennedy and Syme 2001] also endorse this

view of parameterized components.

The essential idea with generic data collection components is that the component

designer simply designs the collection while leaving some parts of the component

(generally, the kind of items in the collection) unspecified. Later, when a client

program wants to use such a generic component, it instantiates1 the template by

“filling in” the incomplete parts of the component definition, thereby resulting in a

complete definition for the component.

1We use the word instantiation to mean the setting of all parameters of a template. We refer to
what is often called instantiation in the OO literature — creation of a new object of a given class
— as object creation in order to avoid confusion.

10

Our view of parameterized components, however, is much broader. We view pa-

rameterization as a mechanism for hierarchical composition of (arbitrarily complex)

components. This view is rooted in the idea that systems are composed of a num-

ber of (preferably independent) design decisions [Parnas 1972]. Each of these design

decisions is encapsulated in its own module. Dependencies between these modules

are kept at the abstract (interface) level, such that a change to one module does not

ripple through the rest of the system — change is localized. Components are de-

signed as templates, and are specialized by client programs that pick the appropriate

design decisions at integration time by instantiating the template with parameters.

Each parameter defines a design decision to be made; binding a particular parameter

indicates committing to a particular decision.

To illustrate this point, consider a payroll system that uses some routine to sort

a list of items. Without loss of generality, let us assume that the particular imple-

mentation used is QuickSort. Suppose that the maintenance team for this piece of

software discovers, after the system has been released and deployed, that QuickSort

is not the most efficient sorting algorithm for this application domain. How much

effort would it take for this routine to be replaced with a new one that implements,

say, MergeSort?

At first glance, it does not seem like much work. After all, sorting algorithms are

part of most every system running today. But let us draw up a list of things that

might need consideration:

• What is the kind of item being sorted?

• What is the data structure used to store the items?

• How is the ordering of items determined?

11

• How are items input to the sort routine?

• How are results output from the sort routine?

• When is the sorting actually done?

In the worst case, all of the above may have been hard-coded into the sort routine

in the existing system, making it a non-trivial effort to write the sort routine with a

different algorithm, and then integrate it with the rest of the system.

If, on the other hand, the problem of sorting is recast as a component instead of

a sort routine, we can construct a parameterized SortingMachine component, that is

inspired by the design presented in [Weide, Ogden and Sitaraman 1994, Sitaraman,

Weide, Long and Ogden 2000]. Such a component is parameterized by the kind of

item being sorted, ordering of items, input/output schemes and the actual algorithm

used. For instance, in the payroll example, the sorting machine could have been pa-

rameterized by PayrollRecord as the item, a PayrollRecordComparator component that

would decide if two payroll records are in the right order, input/output as “one item

at a time”, and QuickSort as the algorithm. Further, the SortingMachine component

could be parameterized by the desired ordering.

In this case, switching from QuickSort to MergeSort is reduced to merely changing

one line of code in the component integration module. The client code that needs to

sort requires no change. In fact, in an environment that supports dynamic linking,

the payroll system need not even be taken down — if we design the components and

associated infrastructure carefully. The whole change can be effected by hot-swapping

the component implementations at run time.

In general, we recognize four kinds of template parameters [Edwards, Heym, Long,

Sitaraman and Weide 1994] — types, components, constants, and math definitions.

12

Listing 2.1: Stack Template

1 template <class Item>
2 class Stack {
3 public :
4 void push(Item& x);
5 void pop(Item& x);
6 int length();
7 };

A constant parameter lets the client specialize the template by a particular value. For

example, if the Stack component was bounded, this size limit would be a constant

parameter to the stack template. A type parameter lets the client specialize the tem-

plate by supplying a specific type, PayrollRecord in our current example. A component

parameter is used to allow the client to set up a relationship between components.

The client can provide realizations of specific interfaces that the template would use.

Examples of this are the PayrollRecordComparator and QuickSort parameters to the

SortingMachine component. Finally, math definitions that are needed in the specifica-

tion can be passed in as parameters. Template parameters can also be restricted —

the actual parameter could be required to implement certain functionality in order

to be valid.

2.2 Static Parameterization

In the case of C++ templates (as with Ada generics, and similar language-supplied

parameterized programming support constructs), integration is done at compile time.

So actual template parameters are bound to the formals at compile time. We call this

mode of parameterization static parameterization, since the binding of parameters to

13

Listing 2.2: Instantiating the Stack Template

1 class PayrollRec { /* ... */ };
2 typedef Stack<PayrollRec> StackOfPayrollRec;
3 StackOfPayrollRec s1;

a template remains static for its lifetime. Each such instantiated template defines a

new type that joins the existing types of the program.

As an example, consider the C++ definition of a Stack template presented in

Listing 2.1. This template is parameterized by the type of Item that the client supplies.

The Stack component exports methods that the client can use to push and pop Item

elements, as well as to query the length of the stack.

Consider a client who wants to construct a stack of payroll records. In order to

do this, the client first defines a PayrollRecord class, and then instantiates the Stack

template with PayrollRecord. This is shown in Listing 2.2.

As can be seen from this code segment, at the time of instantiating the Stack

template, the client program defines a new type. This new type, StackOfPayrollRecord

is added to the set of types for this compilation unit. From now on, all variables

declared of this type are governed by the strong typing rules of the language.

Further, before a template can be used, it must be instantiated. Without the

instantiation step, a program that tries to use a template will not compile. The

compiler, when it starts checking a particular program, expects all the templates that

the program uses to be properly instantiated with actual parameters.

14

2.3 Dynamic Parameterization

While static parameterization offers a way for component designers to delay the

decision of which particular actual parameters to bind to each formal template pa-

rameter, the decision cannot be postponed beyond compile time. Once the binding

has been done, and the client program has been compiled into object code, no changes

are possible to the binding without recompiling the client program.

In some situations, however, the decision of which parameter to bind to a partic-

ular template is not apparent until run time. Further, such decisions may have to

be changed during execution of the system. With statically-bound templates, such

delay in commitment [Thimbleby 1988] is impossible. What we need in such cases is

to be able to postpone the binding of parameters until run time. We call this mode

of parameterization dynamic parameterization.

Consider, for example, a network in which the nodes all compete for a single

resource. The nodes in the network need not know about where the resource is

physically located, nor do they need to know which conflict resolution algorithm

must be executed to gain access to the resource. We can design a ResourceManager

component that manages all accesses to the resource. Now, whenever a particular

client wants to use the resource, a request can be sent to the ResourceManager which,

based on the conflict resolution algorithm, allocates the resource to the various clients.

The choice of the particular conflict resolution algorithm may be influenced by other

aspects of the system — the size of the network, the frequency of requests from each

client, etc. In different network situations, we would like to be able to use different

conflict resolution protocols. In other words, we would like the ResourceManager

component to be parameterized by a conflict resolution protocol.

15

Moreover, if this parameterized component supports dynamic binding of parame-

ters, the vision is that we should be able to supply a suitable protocol as a parameter

during system execution. In fact, with dynamic parameterization, the choice of the

algorithm should be changeable after the system has been deployed. Let us suppose

that the system was initialized to use a token ring algorithm to resolve conflicts. If

the number of clients in the network becomes too high, this algorithm is no longer

efficient. At such a time, the system should be reconfigureable to use a more effi-

cient algorithm, maybe one that organizes the clients in a tree [Raymond 1989]. This

change should be made without stopping the system.

Current language mechanisms for building parameterized components do not sup-

port dynamic binding. The methodology that we define in this dissertation provides

a way of implementing components that support this mode of parameterization.

2.4 Dependent Parameterization

The flavor of parameterization that we have seen so far is simple — the component

does not place any restriction on the parameter(s). This, however, is not always true.

There are cases where the parameters have to satisfy some restrictions in order to be

valid. For example, consider a Sorter component that sorts elements in a list of items.

Further, let this component be parameterized by the type of item. For the sort method

to be able to sort the list of elements, there has to be a way to compare two elements

of this type. We call parameterization of this kind dependent parameterization.

In Listing 2.3, if the class PayrollRecord does not implement the “>” operation,

the compiler would produce an error message at line 9 saying that the operator is

not supported. The compiler thus checks that the parameters supplied by the client

16

Listing 2.3: Sorter Template

1 template <class Item>
2 class Sorter
3 {
4 public :
5 /* ... */
6 void sort()
7 {
8 /* ... */
9 if (x > y)

10 /* ... */
11 }
12 };
13

14 class PayrollRec { /* ... */ };
15

16 typedef Sorter<PayrollRec> PayrollRecSorter;

produce type-correct bindings. However, there is no syntactic way to specify this

restriction in the programming language so that the client can be informed of such a

restriction, and hence can avoid the illegal parameter binding. In fact, none of the

widely-used languages that support generics, support syntactic specification of such

restrictions2.

Fortunately, some specification languages do allow such restricted parameters.

One such language is AsmL [Barnett and Schulte 2001], an executable specification

language designed for .NET. For example, the AsmL specification in Listing 2.4 for

the ExternalSorter component requires the parameter T to implement two interfaces

— ISerializable and IComparable. If the parameter supplied does not implement both

the specified interfaces, the AsmL compiler produces an error message and stops.

2Ada95 does support certain kinds of restrictions, but is not widely used for building commercial
software. The C# 2.0 language (scheduled for release in 2005) will also have generics that support
some restrictions

17

Listing 2.4: Sorter component specified in AsmL

1 interface ExternalSorter
2 of
3 <T implements ISerializable
4 and IComparable>
5 Sort(xs as Sequence of T)

Such a specification informs the client programmer of the correct kind of parameters

to supply to the template.

Unfortunately, the richness in specification stops at the specification language

level, and is not extended to the programming language level at this time. Proposed

C# generics, for example, offer no way to require that T implement both ISerializable

and IComparable. One solution would be to create a new interface (called say, ISeri-

alizableAndComparable) that extends both ISerializable and IComparable, and require

that T implement this new interface ISerializableAndComparable.

The best that can be done is for the component programmer to include code in the

component methods to check the type of the parameter. These checks can, however,

only be made at run time. Listing 2.5 shows an example of the kinds of runtime

checks that the programmer would write in the component code.

Suppose that the parameter that is bound to the template is indeed an incorrect

parameter. A run time check such as the one in Listing 2.5 will catch the error, but

only after the system has been deployed. In the case of static dependent parameter-

ization, this is too late to catch the error since the binding has already taken place.

In order to change the parameter to supply a new, correct parameter, the system will

have to be stopped, and recompiled. So given the language mechanisms for gener-

ics that are currently available, there is no way to effectively specify restrictions on

18

Listing 2.5: Runtime checks in C# code to check correctness of template parameters

1 class C : ExternalSorter
2 {
3 void sort(object [] xs)
4 {
5 if (!(xs is ISerializable &&
6 xs is IComparable))
7 throw new InvalidArgumentException(
8 ‘‘Incorrect type: Argument xs!’’);
9 /* ... */

10 }
11 }

template parameters, and strictly enforce such restrictions. In the case of dynamic

dependent parametrization, however, the binding of the parameter happens only at

run time. So the check can, in fact, catch the error at the time it happens. The client

can then provide a different parameter that actually satisfies the restrictions.

2.5 Chapter Summary

In this chapter, we have provided an overview of parameterization, and defined

the different modes of parameterized programming that we are interested in studying.

We extend the view of parameterized programming to include not only abstract data

types, but a more general approach to building reusable software. We have presented

the key differences between static and dynamic parameterization, as well as some of

the main challenges that we encounter in each of these modes.

We use the term static parameterization to refer to the mode of parameterization

where the parameters to a component are bound statically, i.e., no further change

of parameters is possible once the binding has been completed. This is the mode

of parameterization supported by all languages that provide linguistic constructs for

19

implementing parameterized components. The downside of this mode of parameter-

ization is the inability to make any modifications to a software system after it has

been deployed.

Such modification is possible, in principle, in the case of dynamic parameterization.

In this mode, parameters to a component are bound only during run time. Since

we have more information about a software system’s behavior and its environment

during execution than before, the choice of parameters can be more effective. Further,

dynamically-bound parameters can be re-bound if situations change during execution.

The downside with dynamic parameterization over the static version is that ensuring

correctness of instantiation becomes a challenge, since the compiler can no longer

ensure such correct bindings.

Finally, we use the term dependent parameterization to refer to the mode of pa-

rameterization in which the choice of one parameter to a particular component may

depend on the choice of other parameters. The challenges that arise when dealing

with dependent parameterization involve the specification of these restrictions, and

ways to strictly enforce them.

20

CHAPTER 3

THE SERVICE FACILITY DESIGN PATTERN

3.1 Introduction

In this chapter, we introduce and describe the Service Facility design pattern.

The Service Facility pattern enables the construction of parameterized components

that support dynamic binding. This design pattern combines elements of three well-

known design patterns — Abstract Factory, Proxy, and Strategy [Gamma et al. 1995]

— to provide a methodology for building flexible parameterized components. This

methodology is particularly useful in languages that do not provide a mechanism

for parameterized programming (such as templates or generics). Even in languages

that do support such a mechanism, the pattern offers the advantages of dynamic

parameterization.

3.2 Dependencies in Software Systems

Direct design-time dependencies between concrete components are widely recog-

nized as undesirable because they complicate software maintenance activities. Any

change in the design of a single concrete component may well entail major changes in

the rest of any system that uses it — a phenomenon termed “the hairball effect” by

21

Clemens Szyperski. The reason is that a change might affect the interaction of the

component being modified with the other components that were designed to depend

on it, and changes there might affect the interactions with the components that were

designed to depend on them, and so on [Weide 2002].

It is, therefore, commonly recommended that design-time component dependen-

cies generally should be limited to those between a concrete component and the ab-

stract components that it implements and uses (or otherwise communicates with) [Meyer

1992]. In fact, all popular commercial component technologies are now based on this

principle — variously called “design by contract”, “programming by contract”, “de-

sign to interfaces”, “decoupling”, etc. Modern programming languages such as Java

and C# support the idea by giving interfaces (abstract components) the same lin-

guistic status as classes (concrete components). A simple rule that supports good

component design in these languages is that design-time coupling should be from

classes to interfaces, not from classes to classes. Common advice for easing mainte-

nance is that new interfaces may be introduced, but existing ones should remain fixed

once they are deployed in a setting where reuse is expected. The internal details of

classes that implement those interfaces may change even after deployment, so long

as they continue to implement the same interfaces. Just as importantly, however,

new implementation classes may be added for existing interfaces and thereby become

available as new implementation options for clients of those interfaces.

Eventually, of course — at the latest just before code is executed — someone

must select some concrete component to implement each abstract component that is

used in building a larger component or final system. It is helpful, therefore, when

discussing component-based systems to distinguish between component design time

22

and component integration (composition) time. By the former, we mean the time

at which a component is considered fully designed and is entered into a component

library, i.e., where it still exists out of the context of any larger component or final

system in which it might be (re)used; design time is when concrete-to-concrete depen-

dencies should be avoided. By the latter, we mean the time at which the component

is selected for use from the library and assembled into a larger component or final

system. Integration time with respect to a library component might occur at design

time, or more likely at compile time, link time, or run time, in the context of the

larger component or system in which it is used.

An important question in component-based software engineering concerns how

to reconcile the desire to decouple concrete-to-concrete dependencies at component

design time with the need for easy assembly of concrete components at integration

time. Parameterization of components using a template mechanism is one decoupling

approach [Batory, Singhal, Thomas, Dasari, Geraci and Sirkin 1994, Sitaraman and

Weide 1994]. As a template, a concrete component can be designed so that it depends

on one or more abstract components, implementations of which are parameters that

can be selected and bound at integration time as opposed to being fixed at design

time. In languages with template support, integration time (the binding of concrete

components to the abstract components they implement) means compile time be-

cause integration is achieved through template instantiation. This is relatively early

integration-time binding but still much better from the maintenance standpoint than

forcing such implementation commitments to occur at design time.

With the advent of modern distributed computing environments, the length of

the integration phase is more loosely defined; component integration may only occur

23

on the first use of that particular component, which itself could happen a long time

after the system has been deployed. Especially in software systems in which different

parts are implemented at different times, it is unreasonable to expect component

integration to be confined to one point in time. In the context of our discussion so

far, what this lengthening of integration time means is that the decoupling mechanism

that we consider should be flexible enough to carry any such decoupling throughout

the lifetime of the software system.

3.3 Design Patterns

Several key problems in software design are commonly recurring — nearly every

large-scale software project encounters some set of problems that every member on

the team has already dealt with in a different project. However, the solutions to these

problems are usually so wrapped in with the particular project in question, that these

solutions could hardly be re-used.

Around the late 1980s and early 1990s, software engineering researchers borrowed

some ideas from Christopher Alexander’s work on identifying patterns in architectural

design [Alexander 1979]. Alexander reduced his architectural design activity into a

step involving identifying previously-known problems, and another step involving the

application of known solutions to these problems. Further, he invented a language

in which to express these patterns in a way that was immediately accessible to other

architects as well [Alexander 1977]. Alexander defines a pattern as:

“a three-part rule, which expresses a relation between a certain con-
text, a problem, and a solution.”

This work on architectural patterns has driven a number of software engineers

to find and document such commonly recurring problems (and reusable solutions to

24

such problems). The first such effort dates back to 1987, with a pattern language

for designing user interfaces with Smalltalk [Beck and Cunningham 1987]. Since

then there have been a number of efforts at identifying various kinds of patterns, in

different stages of the software development process.

Design patterns are codified solutions to commonly recurring problems at the de-

sign phase [Gamma et al. 1995]. Each design pattern defines the context in which it

is to be applied, the structure of the solution, and a list of potential connections to

other design patterns or other parts of the software system. The “Gang of Four”, who

are credited with the first set of cataloged design patterns, define a classification for

design patterns. Creational patterns are those that decouple dependencies introduced

at the time of object creation. Structural patterns define ways in which the composi-

tion of several objects and classes can be accomplished without concrete dependencies

among them. Behavioral patterns decouple dependencies that are introduced during

the execution of a software system, and that alter the behavior of the system.

In the rest of this section, we describe three design patterns from the Gang of Four

catalog. The descriptions we present include all the major features of the patterns

required to understand the rest of our own methodology. For a complete treatment

of the patterns themselves, including usage pitfalls, we refer the reader to [Gamma

et al. 1995].

3.3.1 The Abstract Factory Pattern

The Abstract Factory pattern is an approach that can dramatically reduce — but

not quite eliminate — dependencies between classes (i.e., concrete components) at the

25

time of object creation. If it is adopted uniformly, then every class has a correspond-

ing factory class whose objects (class instances) can manufacture/construct/create

objects of the original class, which is called the product class. The client program

depends almost entirely on the interfaces (i.e., abstract components) implemented by

the factory class and by the product class.

The binding of a reference to the factory object, which pins down the product’s

implementation class, technically happens at run time and hence can be based on

information that is not known until run time. However, in most languages the set of

possible implementation choices must be known at compile time. For example, Java

and C# (like most other object-oriented languages) effectively doom any approach to

decoupling concrete-to-concrete dependencies so that the strongest possible conclu-

sion is that it almost works. The reason is that everywhere a constructor is invoked,

Java/C# expects to see the name of the class the object is to be an instance of — not

the name of an interface. Identifying constructor names with class names is known to

introduce other problems as well [Meyer 2001]. But the goal of design patterns is not

to suggest how to change the language deficiencies we are stuck with but to record

the best ways people have found to work around them [Baumgartner et al. 1996]. The

objective of the abstract factory pattern is, therefore, not to remove this language

restriction but to allow us to live with it.

The result of using the abstract factory pattern is that it is possible to local-

ize each concrete-to-concrete dependency to a single line of code where the factory

implementation class finally must be chosen if the client code is to compile. Now

all objects of the product class are constructed not by invoking the product class’s

constructor but by invoking a non-constructor method of the factory object. The

26

lines of code that ask factory objects to construct product objects do not introduce

concrete-to-concrete dependencies, and need not change when the factory and prod-

uct implementation classes are replaced by different ones that implement the same

interfaces (functional behavior) with different performance or other non-functional

properties.

Example: A Sequence Component

Figure 3.1 shows the UML3 [Booch, Rumbaugh and Jacobson 1998] design struc-

ture of a system that uses a Sequence product interface along with a SequenceF factory

interface for this product. Only one sequence implementation “R1” (for “realization,

or implementation, number 1”; the name is unimportant) is shown in the figure.

The two implementation classes for this implementation are SequenceF R1 and Se-

quence R1. Of course, an important reason for using factories is that it is expected

that there are or eventually might be other implementations of sequences with the

same two interfaces that could be selected for use in the client program. For example,

the Sequence interface includes methods to add, remove, and update sequence entries

by position. The “R1” implementation might take best-case constant and worst-case

linear time for each of these methods, and another implementation might always take

log time for each of them. Supporting easy substitution of one such implementa-

tion for another, based on the client’s performance needs, is one major reason for

decoupling concrete-to-concrete dependencies.

3For the benefit of readers who do not have experience with UML, we present a short tutorial on
the notation in Appendix A.

27

+create()

«interface»
AbstractFactory

«interface»
Product

+create()

«interface»
SequenceF +add()

+remove()
+length()

«interface»
Sequence

+create()

SequenceF_R1

+add()
+remove()
+length()

Sequence_R1

Client

Figure 3.1: Sequence design based on the abstract factory pattern

Without the abstract factory pattern, the client program would have to construct

sequences as follows, spreading the name of the class throughout the code:

1 Sequence s1 = new Sequence_R1 ();
2 /* ... */
3 Sequence s2 = new Sequence_R1 ();
4 /* ... */
5 s1.add (x, 3);
6 y = s2.remove (i);
7 /* ... */

The following code snippet shows how the client program takes advantage of the

abstract factory pattern:

1 SequenceF seqF = new SequenceF_R1 (); // Select implementation
2 /* ... */
3 Sequence s1 = seqF.create ();
4 /* ... */

28

5 Sequence s2 = seqF.create ();
6 /* ... */
7 s1.add (x, 3);
8 y = s2.remove (i);
9 /* ... */

This client can now easily switch to a different implementation for Sequence, the

only code change being a change to the factory constructor, which appears in just

one place in the code. A change from “R1” to “R2”, for example, does not lead to

a change in the client code except in this one inherently (in Java/C#) unavoidable

place. Note that the client declares both factory and product objects to have interface

types.

3.3.2 The Proxy Pattern

Consider a client/server application in which the client first obtains an object

reference to the server, and then starts interacting with it. Further, suppose that the

decision of whether the client and server run on the same machine, or on physically

distributed locations, is not known at the time of programming the client application.

How can the client program be designed to interact with the server without this

knowledge?

One possible solution to this situation is that at every instance where the client

application wants to send a message to the server, it checks whether the server is a

local or a remote object. Based on this information, the client could either make a

simple local method invocation, or send a remote method invocation. The following

pseudocode shows a client program accessing a Subject server si. These lines of code

(3 through 10) have to be repeated at every place in the client program where an

interaction with si is needed. This solution, however, lacks efficiency (a check has

29

Client

+Request()

«interface»
Subject

+Request()

«implementation class»
Proxy

+Request()

«implementation class»
RealSubject

...
realSubject.Request();
...

Figure 3.2: UML design structure for the Proxy pattern

to be made every time a method invocation is made) and elegance (the client code

includes numerous such checks, which are distracting).

1 Subject si = subjectFactory.create();
2 /* ... */
3 if (si is local instance)
4 {
5 si.Request();
6 }
7 else
8 {
9 send Request() as remote invocation to si.

10 } /* ... */

A cleaner solution to this problem is to use the Proxy pattern. Under the Proxy

pattern, the aforementioned client application would be programmed to interact with

a proxy, which would in turn know how to actually access the server instance. This

proxy object is a local object on the client side. The client just makes simple method

invocations on the proxy, and does not care about the actual physical location of the

server. Figure 3.2 shows the UML design structure of a client that uses the Proxy

design pattern to access a server instance. Using the Proxy pattern, the client code

30

now looks like the following:

1 Subject si = subjectFactory.create();
2 /* ... */
3 si.Request();
4 /* ... */

As can be seen in the UML diagram, the Proxy implements the same interface

as the subject that the client wants to interact with. Because of this, the client

program can be written without the knowledge that it is interacting with a proxy

object. As far as the client program is concerned, it obtained a reference to an object

that implements the Subject interface, and it can make method invocations on this

object just like any other.

Apart from the use of the Proxy pattern shown above, there are other advantages

to using this pattern. Since the client no longer has a direct reference to the object

instance, the object instance can be modified without the client having to be notified

of such change. Examples of such changes include dynamic load balancing, where

the physical location of the object is changed — which is at least expensive if not

impossible if the client holds physical references to the object instance.

While the Abstract Factory pattern decouples the dependency between a client

program and a concrete object class, once an object instance has been created by the

factory, there is a concrete dependency introduced in the system. The client instance

has a direct reference to a concrete object instance. The Proxy pattern extends this

decoupling through the lifetime of the object. The dependency between the concrete

client instance and the concrete object instance is broken using the Proxy pattern.

31

The client depends only on the interface, and not on any particular implementation,

throughout the lifetime of the system.

3.3.3 The Strategy Pattern

The Strategy design pattern is another technique that can be used to decouple

behavioral dependencies between concrete components. Portions of a component’s

behavior that may change during the lifetime of the system are abstracted out and

placed in a separate component, with interface-level dependencies between the com-

ponents.

In order to explain this pattern better, we go back to the payroll sorter example

from Chapter 2. The example shows a parameterized SortingMachine component

with the sorting algorithm as one of its parameters. At system integration time,

an implementation of the sorting algorithm is provided to the SortingMachine. In

this case, we observed that the particular sorting algorithm is independent of the

SortingMachine component, and moreover, that the algorithm could change during

the lifetime of the component. Therefore, the sorting algorithm was abstracted into

a separate component. This is, in essence, what the Strategy pattern does.

Figure 3.3 shows the UML design of the SortingMachine component using the

Strategy pattern. In this pattern, the SortingMachine plays the role of the context,

and SortingAlgorithm is called the abstract strategy. The implementations of Sortin-

gAlgorithm — QuickSort and MergeSort — play the role of concrete strategy.

Under the Strategy pattern, the context is decoupled from the strategy. There is

an abstract dependency from the context to the abstract strategy (an interface). At

integration time, a concrete implementation of the strategy is supplied to the context.

32

SortingMachine «interface»
SortingAlgorithm

QuickSort MergeSort

sortAlgorithm

Figure 3.3: UML design diagram of a system using the Strategy design pattern.

The behavior of the context can thus be varied by changing the particular concrete

strategy that is supplied.

The context holds a reference to a strategy. This is a run-time relationship, which

has to be set up during execution. The context class includes a data member in which

to store the object reference to the strategy instance, and an overloaded constructor

that takes a strategy instance as a parameter. A common way of instantiating a con-

text object instance with a particular strategy is to pass an instance of the strategy as

a parameter to the context’s constructor. The constructor can initialize the strategy

data member with this object reference.

1 public class SortingMachine
2 {
3 private SortingAlgorithm sortAlgorithm;
4 /* ... */
5

6 public SortingMachine(SortingAlgorithm sorter)
7 {
8 /* ... */
9 this .sortAlgorithm = sorter;

10 /* ... */
11 }
12 /* ... */
13 }

33

Invoking the constructor with different strategy instances produces context in-

stances with appropriate behavior.

1 SortingMachine quickSorter = new SortingMachine(new QuickSort());
2 SortingMachine mergeSorter = new SortingMachine(new MergeSort());

Using the overloaded constructor as the only way to set the strategy in the con-

text class limits the flexibility that can be afforded by the Strategy pattern, since the

strategy cannot be changed once the context object has been constructed. In order to

address this concern, in addition to the overloaded constructor (or as an alternative to

it), a separate method is defined to initialize the strategy data member. The context

class exposes a public method4 to allow the strategy to be modified. The method

can be called by the client itself, or by an administrative component, and passed an

instance of a new concrete strategy in order to change the strategy being used.

1 SortingMachine sorter = new SortingMachine();
2 sorter.setSortingAlgorithm(new QuickSort());
3 /* ... */
4 sorter.setSortingAlgorithm(new MergeSort());

The Strategy pattern thus breaks dependencies among various behavioral aspects

of a software system. Component boundaries are defined around behavioral entities

rather than data types. This is in accordance with Parnas’s observation that systems

should be decomposed into modules based on behavior, rather than subroutines tied

to data structures [Parnas 1972].

4This could also be a property in .NET languages.

34

3.4 The Service Facility Pattern

The abstract factory pattern is based on a manufacturing-industry metaphor.

What happens if we use a service-industry metaphor to address the decoupling prob-

lem during object creation?

Consider a safe deposit box that can be rented from a bank. The client initially

needs to ask the bank for one. The bank continues to hold the box; the client merely

gets a key for it. However, any change to the contents of the box can be made only

at the client’s behest. The bank cannot add anything to or remove anything from

the box on its own. In fact, the bank cannot even open the box (except possibly

under extreme legal circumstances) because it needs the other key from the client.

Similarly, the client cannot change the contents of the box on his own — he needs

the bank’s key to open it. In short, any change to the contents of the box is initiated

by the client, and the client and the bank cooperate in opening the box and changing

its contents.

Notice that the bank can, if it is deemed necessary or desirable, change the physical

location of the safe deposit box, as long as its contents are left unchanged. This does

not affect the client’s logical view of the box. The client is not concerned about where

his safe deposit box is physically located, as long as he has access to it and he alone

can control the contents of the box. This aspect of the service-industry metaphor also

offers a solution to the decoupling problem during an object’s lifetime (Section 3.3.2).

This situation is different from the factory metaphor is several ways. The most

important is that a factory’s role is limited to product creation. After that, the

factory is out of the picture and the client is on his own to change the product (or, in

terms of the usual OOP metaphor, to ask the product to change itself). The bank’s

35

role is significant throughout the lifetime of the safe deposit box because without the

bank the client can do nothing to the box. The bank also controls the location of the

box and is responsible for securing it so that only the client can access its contents.

This composition of the Abstract Factory and Proxy pattern lies at the core of

the Service Facility pattern. We call the software analogue of a safe deposit box

a data object because it holds information for a client but cannot manipulate that

data on its own. That is, neither the data object nor the client can manipulate a

data object’s value unless the client explicit requests participation by the bank. We

call the software analogue of the bank a service facility object (or Serf, for short)

because it must be asked to help perform all services on, i.e., manipulations of, the

data objects for which it is responsible.

Like to the Abstract Factory pattern, the Service Facility pattern provides an

abstract interface to clients of a component that can be used for creating instances

of the type(s) the component exports. However, while the Abstract Factory pattern

is based on a manufacturing industry metaphor (whereby the factory is out of the

picture once the object is created), the Service Facility pattern is based on a service

industry metaphor (the Serf always remains as an intermediary between the client

and the object instances). When a client calls create() on a Serf to ask for a data

object, the Serf creates not just the object, but also a handle to the object. Figure 3.4

shows how objects are created in the Service Facility pattern: the client asks the Serf

for an object; the Serf creates it, and a handle. The handle is returned to the client,

and the object is hidden from the client behind the handle. From this point on, the

client interacts with the object instance by giving this handle to the Serf.

36

create

obj
h

Figure 3.4: Object Creation in Serfs

Through the lifetime of the program, when the client wants to modify data ob-

jects, rather than invoking the method on the object directly, it invokes the method

through the Serf (which acts as a proxy for the data object). The Serf then finds

the object that the handle refers to, and routes the method invocation to that ob-

ject. Figure 3.5 shows how method invocations are redirected in the Service Facility

pattern. The client makes the invocation on its handle; the Serf redirects the call to

the corresponding object. Conceptually, one can see all the objects created by a Serf

as being held “inside” the Serf, with the Serf intercepting every method invocation

going to each object.

The Service Facility pattern introduces an extra level of indirection between the

client and the objects it uses. The key point here is that this level of indirection is

maintained through the entire lifetime of each object.

Apart from decoupling dependencies between the client instance and object in-

stances, the Service Facility pattern also supports decoupling of dependencies between

37

2 2

h1

h2

h3

h4

hk

obj1

obj4

obj3

obj2

objk

Figure 3.5: Method redirection in Serfs.

38

Client

ComponentRep_R1

ParameterA_R1

Figure 3.6: UML design of a system with concrete dependencies

different behavioral aspects of a component. The pattern allows the construction of

dynamically-bound parameterized components. Each Serf is a template, whose pa-

rameters are set as strategies (Strategy design pattern).

3.4.1 Implementing Service Facilities

Figure 3.6 shows the UML design of a system with a client program that uses

a concrete class named ComponentRep R1. Further, ComponentRep R1 depends on

ParameterA R1 to provide some of its behavior. This system is not flexible, since any

change in either ComponentRep R1 or ParameterA R1 will result in a change in the

remaining classes in the system. In the rest of this section, we show how we can

use the Service Facility pattern in order to decouple such dependencies, and convert

the system so that Client depends on a component that provides the same interface

as ComponentRep R1, and is parameterized by the functionality that ParameterA R1

provides through its own (separate) interface.

Figure 3.7 shows the UML description of the same system using the Service Facility

pattern in order to decouple the dependencies present. The ServiceFacility and Data

interfaces are at the root of the service facility object and data object hierarchies.

Every Serf implements the ServiceFacility interface, and the objects that a Serf creates

39

Client

+create()

«interface»
ServiceFacility

+setParameterA()
+componentMethod()()
+...()

«interface»
ComponentSerf

+setParameterA()
+create()
+componentMethod()()
+...()

ComponentSerf_R1

«interface»
Data

«interface»
ComponentData

ComponentData_R1

«interface»
ParameterA

ParameterA_Rx

ComponentRep_R1

Figure 3.7: UML design structure of the Service Facility pattern

all implement the Data interface. Listing 3.1 shows these two interfaces written in C#.

As can be observed from this listing, the Data interface is simply an empty interface.

This interface is only used to provide a uniform structure across the Service Facility

pattern, and to establish a syntactic difference between service facility objects, and

data objects. The ServiceFacility interface has one method — create(), which returns

a data object. Every service facility class must implement the ServiceFacility interface.

Note that the create method of ServiceFacility returns an instance of Data. But

ComponentRep R1, which is what the Client really wants to use, does not implement

this interface. However, recall that the client only gets a handle to the object instance,

and not the object instance itself. In this particular case, the Client receives an

instance of ComponentData R1, which in turn holds a reference to an instance of

40

Listing 3.1: The Data and ServiceFacility interfaces

1 namespace ServiceFacility
2 {
3 public interface Data
4 { }
5

6 public interface ServiceFacility
7 {
8 Data create();
9 }

10 }

ComponentRep R1. So Client uses the ComponentRep R1 instance through the handle

it holds (the ComponentData R1 instance).

Client View

The Client now depends on the ComponentSerf interface (dependency on an ab-

stract component), rather than ComponentRep R1 (dependency on a concrete com-

ponent). The ComponentSerf implementations act as factories to create objects of

type ComponentData. The Client therefore no longer needs to name the particular

concrete class ComponentRep R1 in order to create object instances. In fact, the only

concrete component it needs to name in the new design is the specific implementation

of ComponentSerf that it wants to use. Once the Client has picked the implementa-

tion of ComponentSerf, all future uses of this component can go through the interface

reference. Switching to a new implementation of ComponentSerf will simply involve

changing this one line of code. We now have a single point of control in the Client

over which implementation is in use.

41

1 ComponentSerf cSerf = new ComponentSerf_R1();
2 /* ... */
3 ComponentData c = (ComponentData) cSerf.create();

The Service Facility pattern offers another level of decoupling — separating the

code that operates on a piece of data from the data itself. An important difference

to note going from the design in Figure 3.6 to the design using the Service Facility

pattern is that the method componentMethod() that used to be in ComponentRep R1

is now in ComponentSerf R1. ComponentRep R1 now only holds the data members,

and does not include any of the interface methods. The ComponentSerf has these

methods instead. The Client, instead of invoking componentMethod() on the object

instance directly:

1 ComponentRep_R1 crep = new ComponentRep_R1();
2 crep.componentMethod();

now invokes the method on the ComponentSerf with the particular object instance

handle as a parameter to the method:

1 cSerf.componentMethod(c);

This view departs from the traditional object-oriented style where an object in-

cludes the data, as well as the operations defined on it. We outline some of the reasons

for taking this view in Section 3.4.4.

The other dependency in Figure 3.6 is the dependency between ComponentRep R1

and ParameterA R1. In the design using the Service Facility pattern, this dependency

is eliminated by making the ComponentSerf (which creates and manages Component-

Data objects) a parameterized component, with ParameterA as a parameter to this

42

component. During system execution, the Client invokes the setParameterA() method,

passing it an instance of ParameterA:

1 ParameterA parA = new ParameterA_R1();
2 cSerf.setParameterA(parA);

Now if the Client at some point wants to change the implementation of ParameterA

that ComponentSerf should use, it can invoke the setParameterA() method again with

an instance of the new implementation. Details of such change during execution are

presented in Chapter 5.

Since the template parameters are set at run-time, there is no way for the compiler

to ensure that they are set, let alone in a type-safe way (i.e., with actuals that

would have allowed compile-time type-checks to succeed). At the point that the

ComponentSerf object is declared and constructed, the compiler “believes” that the

object is ready for use. However, under the semantics of Serfs, this object has not

been fully instantiated and is therefore not ready for use. The client, therefore, has

proof obligations to satisfy — that the Serf has been instantiated with appropriate

parameters.

Fortunately, though, we have already seen a way of ensuring correctly instantiated

templates (Chapter 2). Since the parameters are supplied to the Serf template only at

run-time, we have full knowledge of the actual dynamic type of each parameter, and

the actual value of every data member and property in the Serf. A detailed treatment

of these type-safety checks is presented in Chapter 4.

43

Implementer View

Listing 3.2 shows the skeletal structure of a service facility class ComponentSerf R1

in C#5. There are five major sections in every service facility component, including

this one:

Type Definition (Lines 3 — 21) A service facility exports some types — typi-

cally one, but sometimes zerp, sometimes more than one. A type exported by

a service facility is expressed as an inner class. Moreover, this class is declared

as internal, meaning that the class is not visible outside of the service facility

component. The more important implication of this is that only the service

facility can create instances of this class.

There are two inner classes in the code listing. The first one, Component-

Data R1, defines the handle that the client will be given in response to the

create() method. The second class, ComponentRep R1, defines the actual repre-

sentation (data members) of the type. This class is invisible outside the service

facility.

Template Parameter Definition (Lines 23 — 36) The parameters to the ser-

vice facility are specified here. Each parameter is represented by a private data

member, and a public property that a client can use to control its value. Each

property gets automatically translated to two methods — a getter and a setter.

In the case of Java service facilities, each parameter to the service facility is

represented by a private data member, and two public methods in the style of

a JavaBean getter and setter.

5Although the code samples presented are all in C#, corresponding constructs are available in
Java as well

44

The rep Method (Lines 41 — 46) The client holds only a handle to the actual

object instance. This handle is an instance of ComponentData R1. Every

method invocation to the service facility includes this handle as one of the

parameters. For the service facility to perform the operation on the actual ob-

ject instance (the ComponentRep R1 instance that the handle corresponds to),

it has to extract the representation instance from inside the handle. The rep

method does this extraction, and returns the representation instance (the actual

object) that the operation can then modify.

The create Method (Lines 48 — 57) This method performs the factory func-

tion of the service facility. An instance of the Data object is created and re-

turned to the client. The service facility also holds a reference to the newly

created data object. This way, it can can perform administrative maintenance

if needed. The importance of this will be seen in Chapter 5 when we discuss

dynamic reconfiguration.

Component Method(s) (Lines 59 — 65) All methods that used to be in the

interface of Component R1 are now in ComponentSerf R1. Each method first

invokes the rep (private) method on the ComponentData R1 instance that is

passed into the method. The operation is then performed on the representation

instance (ComponentRep R1).

Listing 3.2: Structure of a service facility

1 public class ComponentSerf_R1 : ComponentSerf
2 {
3 // type definition
4 internal class ComponentData_R1 : ComponentData
5 {
6 Continued

45

7 Listing 3.2 continued
8 internal ComponentRep_R1 rep;
9

10 internal ComponentData_R1()
11 {
12 rep = new ComponentRep_R1();
13 /* Initialize representation fields */
14 }
15 }
16

17 internal class ComponentRep_R1
18 {
19 /* Data members */
20 }
21 // end type definition
22

23 // template parameter
24 private ParameterA pASerf;
25 public ParameterA PASerf
26 {
27 get
28 {
29 return pASerf;
30 }
31 set
32 {
33 pASerf = value;
34 }
35 }
36 // end template parameter
37

38 // list of objects created
39 ArrayList listOfObjects = new ArrayList();
40

41 // rep method to extract real object instance internally
42 private ComponentRep_R1 rep(ComponentData cData)
43 {
44 return ((ComponentData_R1) cData).rep;
45 }
46 // end Rep method
47

48 // create method from ServiceFacility
49 public Data create()
50 {
51 Continued

46

52 Listing 3.2 continued
53 ComponentData_R1 newObj = new ComponentData_R1();
54 listOfObjects.Add(newObj);
55 return newObj;
56 }
57 // end create method
58

59 // component methods
60 public void componentMethod(ComponentData c)
61 {
62 ComponentRep_R1 cRep = rep(c);
63 /* ... */
64 }
65 // end component methods
66 }

3.4.2 Performance Considerations

Extra Level of Indirection

The Service Facility pattern introduces an extra level of indirection between a

client program and all data objects it uses. This means that, for every method invo-

cation the client program makes on a data object, an extra level of indirection has

to be traversed before the method is executed. The extra computation is what ex-

tracts the representation instance that corresponds to the data handle that the client

program holds. However, this extra performance burden is a trade-off between the

speed of execution and the amount of flexibility that is afforded by the programming

model.

If, at the time of system design, no change is ever expected in a part of the system,

then that part can be programmed without this extra indirection layer. That would

definitely increase system performance. But if such a guarantee cannot be made at

design time, and changes are expected, then this performance degradation (which is

47

a constant time degradation) may be acceptable, since it increases the flexibility of

the resulting software system.

Weak References

The service facility is a long-running component, and may potentially never go

out of scope. Since it holds a reference to every single object that it creates, these

objects will also not go out of scope as long as the service facility is around, even

if these data objects go out of scope in the client, or the client that uses the data

objects goes out of scope. This could potentially result in large memory leaks, which

could degrade the performance of the entire system.

In order to avoid this situation, the reference that the service facility holds on the

data objects it creates is a weak reference [van der Linden 1998, Robinson 2002]. A

weak reference is a reference that lets the garbage collector delete it even when some

object that refers to it is still alive. As long as there is at least one strong reference

to an object, the garbage collector will not collect it. But as soon as the last strong

reference has been destroyed, the object is marked for collection, and in the next

iteration of the garbage collector, the object will be finalized. So if the client instance

that requested a particular data object goes out of scope, this data instance will be

finalized in spite of the fact that the service facility still holds a reference to the data

object. With the service facility using weak references, the create() method will look

like Listing 3.3.

Lazy Initialization

A client may sometimes want to declare and create an instance of a data object

simply for use as a “catalyst” in some operation — the object is declared for the sole

48

Listing 3.3: create() method with weak references to data objects

1 public Data create()
2 {
3 ComponentData_R1 newObj = new ComponentData_R1();
4 WeakReference wrObj = new WeakReference(newObj, false);
5 listOfObjects.Add(wrObj);
6 return newObj;
7 }

Listing 3.4: rep() method using lazy initialization

1 private ComponentRep_R1 Rep(ComponentData c)
2 {
3 if (((ComponentData_R1) c).rep == null)
4 {
5 ((ComponentData_R1) c).rep = new ComponentRep_R1();
6 /* Initialize representation fields */
7 }
8 return ((ComponentData_R1) c).rep;
9 }

purpose of internal computation within the operation and is invisible outside. In such

cases, why should the object be fully initialized? We can improve the performance

of the create() operation by postponing the initialization to the time when the object

first gets used. The service facility only creates the data object (the handle), and

does not create the actual representation object instance. Then when an operation

is invoked on a particular data object for the first time, the representation object

instance is created at that time. This check, and creation of the object instance, is

done in the rep method (Listing 3.4). Again, while lazy initialization is not a central

feature of the Service Facility pattern, it is a useful optimization.

49

+add()
+remove()
+length()

«interface»
Sequence

+add()
+remove()
+length()

Sequence_R1

+add()
+remove()
+length()
+sort()

SequenceSort_R1

+sort()

«interface»
SequenceSort

Figure 3.8: Extending Sequence R1 with sort using inheritance

3.4.3 Enhancements

The standard object-oriented way of adding functionality to an existing component

is to use inheritance [Meyer 1988]. The new functionality is placed in a separate

component (derived class) that inherits functionality from the component that is

being extended (base class). When a class C ′ inherits from another class C, the

derived class C ′ acquires all the data members and methods of the base class C. The

derived class could, however, elect to override some or all of the methods in the base

class. Moreover, the derived class C ′ includes new methods that provide the enhanced

functionality.

Constructing enhancements using inheritance has a few problems. First of all,

inheritance creates a concrete dependency between the base class and the derived

class — the derived class borrows data and methods from the base class. Further, the

enhancement in the form of the derived class is tied to exactly one implementation

of the abstract component that is being extended.

50

Consider an abstract Sequence component with the operations add, remove, and

length to add an item, remove an item, and query the length, respectively. Consider

an implementation of the Sequence component, Sequence R1. If we wanted to extend

the functionality of the Sequence component to include a Sort operation to sort the se-

quence in some order, the standard OO way is to create a derived class of Sequence R1

called SequenceSort R1, that has not only the Sequence operations (inherited from Se-

quence R1), but also the sort operation. This scenario is show in Figure 3.8. The sort

operation is contained in the SequenceSort interface, which extends the Sequence in-

terface. The SequenceSort R1 class implements the SequenceSort interface, meaning

that this class has to provide the operations that both the interfaces Sequence and

SequenceSort provide. This class inherits the Sequence operations from Sequence R1,

and implements sort on its own.

Now let us suppose that we create a new implementation of Sequence, say Se-

quence R2. This implementation cannot use the Sort extension, since SequenceSort R1

is a derived class of Sequence R1, and is therefore tightly coupled to that implementa-

tion. If we want to be able to sort instances of Sequence R2, we would have to create

a new derived class, this time inheriting from Sequence R2 to add this functionality.

This is not a scalable way of software development, since every new implementation

of a component has to be accompanied by all the enhancements to the component

as well. It also results in proliferation of nearly-identical code (here, Sort body) and

hence the loss of single point of control over change.

The more scalable approach is to build a single enhancement component, Se-

quenceSort Enh, that can be used with any implementation of Sequence. This is

the scenario shown in Figure 3.9. In this case, the enhancement is built using a

51

+add()
+remove()
+length()

«interface»
Sequence

+add()
+remove()
+length()

Sequence_R1

+add()
+remove()
+length()
+sort()

SequenceSort_Enh

+sort()

«interface»
SequenceSort

Figure 3.9: Extending Sequence with sort using delegation

technique known as delegation, or object composition [Gamma et al. 1995]. The Se-

quenceSort Enh provides the same set of methods as SequenceSort R1 — add, remove,

length, and sort; but instead of inheriting the Sequence methods from a particular

implementation of Sequence, it now delegates these methods to any implementation

of Sequence. This is denoted in the figure via a “uses” arrow from SequenceSort Enh

to the Sequence interface; meaning SequenceSort Enh “uses some implementation of”

the interface.

The standard way of implementing enhancements in the Service Facility pattern is

to use delegation, rather than using inheritance. Further, the implementation of the

base component is provided to the enhancement as a parameter. The enhancement

does not refer to any of the state in the implementations; it does not have access to

the implementation class’s state. The enhancement interacts with the base imple-

mentation as a client of the base implementation, invoking operations on the base

implementation. Such enhancements are called layered enhancements, since the new

operations are implemented as layers over the base component’s operations.

52

3.4.4 Separating Code from Data

As we have seen in Section 3.4.1, the Service Facility pattern makes a distinction

between two kinds of objects — service facility objects and data objects. Service

facility objects (Serfs) are conceptually stateless, and provide functionality — they

export (one or more) type(s) and operations defined on the type(s). The Serf can

create data objects of the types it defines (these objects are stateful), as well as operate

on them. Data objects, on the other hand, contain state, and have unique identities.

There are multiple instances of these data objects, and all of these instances are

maintained by the Serf that created them. This distinction is similar to the distinction

that Clemens Szyperski makes between components and objects [Szyperski 1999].

Serfs are similar to what Szyperski refers to as components, and data objects are

similar to what he refers to as objects.

As opposed to traditional object-oriented systems, where a class defines a single

type and the operations associated with this type, under the Service Facility pattern,

the operations on the data objects are defined in the Serf. The data objects are simply

containers for state. All operations on the data object are defined in the Serf. When

the client wants an operation performed on a data object, it invokes the operation on

the Serf object, and passes the data object as a parameter.

Taking this (component-oriented) view as opposed to an object-oriented view

does yield some advantages. Consider an object obj, which has a method defined

on it called Meth that takes one parameter. An invocation to this method is of the

form obj.Meth(param). In this case, the receiver of this method (obj) is a distin-

guished parameter to the operation — the method has access to the private state of

this object alone, and not of the other parameters to the method. Apart from the

53

cosmetic asymmetry that this notation leads to, there are also technical reasons that

the component-oriented approach is favored over the object-oriented one.

Binary Operations

Let us consider a (regular, object-oriented) Point class which looks like the code

segment in Listing 3.56. The class exports three public methods (functions), two to

access the values of xVal and yVal, and the third to check if a second Point instance

is equal to the receiving Point instance. There seems to be something different about

the equal method, which tests the equality of two Point objects. Equality is a binary

operator, but as it is written in the class, the method takes only one parameter. The

other parameter is the object instance on which the method is invoked. As may be

seen from this, binary methods, when expressed in the object-oriented notation, are

asymmetric.

The ColorPoint class extends the Point class using inheritance, and adds state

(cVal). Moreover, the equal() method from Point is overridden in ColorPoint to mean

something different. The method breakit() in Listing 3.6 exposes the problem that

results from this inheritance relationship and the asymmetric notation for expressing

the binary method equal(). The method works perfectly fine if invoked with an in-

stance of Point as the parameter. But if the method is invoked as follows:

1 ColorPoint cp = new ColorPoint(3, 4, "white");
2 breakit(cp);

the program will not work, since at the time the equal() method is invoked in the

breakit() method (Line 4), the invocation is sent to the equal() method defined in the

6This example is borrowed from [Bruce, Cardelli, Castagna, Group, Leavens and Pierce 1995].

54

Listing 3.5: The Point and ColorPoint classes

1 class Point
2 {
3 private int xVal;
4 private int yVal;
5

6 public int x() { return xVal; }
7 public int y() { return yVal; }
8 public bool equal(Point p)
9 {

10 return ((this .xVal == p.x()) &&
11 (this .yVal == p.y()));
12 }
13 }
14

15 class ColorPoint : Point
16 {
17 private string cVal;
18

19 public string c() { return cVal; }
20 public bool equal(ColorPoint p)
21 {
22 return ((this .xVal == p.x()) &&
23 (this .yVal == p.y()) &&
24 (this .cVal == p.c()));
25 }
26 }

Listing 3.6: Method exposing the binary method problem

1 public void breakit(Point p)
2 {
3 Point newPoint = new Point(3, 4);
4 if (p.equal(newPoint))
5 /* ... */
6 }

55

ColorPoint class. This method, however, assumes that the parameter it receives is also

a ColorPoint, and tries to invoke the c() method on it, which will fail in this particular

example, since the parameter to the equal() method (newPoint) is an instance of Point.

Note that the compiler will accept this program as correct. The reason that this

problem shows up is that according to object-orientation, inheritance is a mechanism

for achieving subtyping [Cardelli 1984]. Since ColorPoint inherits from Point, the

compiler considers it a subtype of Point. However, as shown by the example above,

ColorPoint is not a behavioral subtype of Point, since the equal() methods in the two

classes do not follow the contravariant rule for subtyping [Castagna 1995].

In the case of the Service Facility pattern, since the methods are part of the Serf,

the cosmetic asymmetry of binary operations (or for that matter, any polyadic oper-

ation) is not a problem. All arguments to the operation are expressed as parameters

to the method, since the receiver of the method is the Serf object, and not one of the

arguments to the operation. Moreover, since the Service Facility pattern does not use

inheritance to extend functionality, the problem shown above does not arise either.

3.4.5 Serflets: Keeping Code and Data Together

The Service Facility pattern provides a basis for programming component-oriented

systems using object-oriented programming languages. However, the pattern does

not require programmers to give up the object-oriented programming notation, and

switch to the component view. While keeping the component view is certainly more

advantageous in many ways, we present here an object-oriented version of the pattern

that uses object-oriented notation. Please note that the rest of the dissertation will

not follow the formulation presented in this section; we will use the component view

56

Client

+create()

«interface»
ServiceFacility

+setParameterA()

«interface»
ComponentSerf

+setParameterA()
+create()

ComponentSerf_R1

«interface»
Data

+componentMethod()
+...()

«interface»
ComponentData

+componentMethod()
+...()

ComponentData_R1

«interface»
ParameterA

ParameterA_Rx

ComponentRep_R1

Figure 3.10: UML design showing Serflets in the Service Facility pattern

presented so far. However, modifying the concepts presented in later chapters to the

object-oriented view should not be difficult, and we leave this to the reader who does

not want to give up the obj.Meth notation.

The aspect of the Service Facility pattern that brings about this change in view

from object-oriented to component-oriented is the fact that the methods defined on

a type are housed inside the service facility as opposed to the data object itself. This

is the aspect that we will relax in this section. We will move the methods from the

service facility class (ComponentSerf R1, Figure 3.7) to the data class (Component-

Data R1). The new UML design is presented in Figure 3.10. Although we move the

methods into ComponentData R1, this is not the same as the product object from

the Abstract Factory pattern (Section 3.3.1). We still maintain the extra level of

indirection that the Service Facility pattern introduces.

57

The separation between the actual representation object and the logical handle

that the client holds is still maintained. The only difference is that rather than the

client having to invoke methods on the ComponentSerf object with the Component-

Data object as a parameter, it invokes methods on the ComponentData object directly.

We call this ComponentData object a Serflet.

1 ComponentSerf cSerf = new ComponentSerf_R1();
2 ParameterA paramA = new ParameterA_R1();
3 cSerf.ParamA = paramA;

4

...
5 ComponentData c = cSerf.create();
6 c.componentMethod();

The Serf still contains the template parameters to the component, and performs

any administrative tasks, such as dynamic reconfiguration. The Serf also holds (weak)

references to all the Serflet data objects it creates. So although the Serflet objects

(client proxies) cannot be modified without the client knowing about such change,

the representation objects can be modified without the client having to be notified.

3.4.6 Mediation in Service Facility Wrappers

The Service Facility pattern also offers a solution path for problems of separation

of concerns [Tarr, Ossher, Harrison and Sutton 1999]. Apart from the functional

properties, software components typically also include behavior that is not central

to the functionality of the component. Examples of such behavior include message

logging, transaction management, etc. Several solutions to these problems have been

proposed — aspect-oriented programming [Kiczales, Lamping, Menhdhekar, Maeda,

Lopes, Loingtier and Irwin 1997], subject-oriented programming [Harrison and Ossher

1993], containers [SunMicrosystems 2001], interceptors [Hallstrom, Leal and Arora

58

2003]. All of these solutions include some way of tracking the flow of messages to and

from the component instance.

Since the service facility is essentially a wrapper [Büchi and Weck 2000], it offers

a way of observing all messages flowing into and out of the data objects it manages.

Not only can the Serf observe the messages flowing across, it can perform tasks based

on the nature and content of these messages. For instance, the Serf is a natural place

to log all method invocations going to the data objects it maintains. The Serf can

also act as a checking wrapper for the data objects that can ensure that the client and

the component both respect design by contract [Edwards, Shakir, Sitaraman, Weide

and Hollingsworth 1998]. Method invocations can be intercepted on the way into the

component for pre-condition checks, and responses can be intercepted to make sure

that the post-condition holds.

In fact, these non-functional services can themselves be modularized, and provided

to the Serf as parameters. The Serf can then be built in such a way that for every

method invocation, all the non-functional services are performed before the method

is actually executed. For instance, Figure 3.11 shows a service facility wrapper that

includes three services — message logging, transaction management, and contract

checking. The Serf performs all these tasks, and then executes the method.

3.5 Bringing It All Together: Resource Allocation Example

The problem of mutual exclusion involves the synchronization of the activities

of (logically) concurrent processes. The synchronization can be viewed as a way to

coordinate access to a shared resource, or a privilege to execute a particular section of

code. The problem of mutual exclusion has been well studied and numerous solutions

59

Rep
Object

m1'

m2'

m3'

m1

m2

m3

Services

Message
Logging

Transaction
Managing

Contract
Checking

Service Facility Wrapper

Figure 3.11: A Serf wrapper that uses multiple services to perform checks on inter-
cepted messages

are available in the literature. For a comprehensive presentation of mutual exclusion

and applications see [Lamport and Lynch 1990] and [Lynch 1996]. For a list of such

solutions, we refer the reader to [Neilsen and Mizuno 1991].

One common drawback of all these solutions is that the processes in the network

are tied to a particular conflict resolution protocol. Once the network application has

been deployed, it is not possible to change the conflict resolution policy without stop-

ping the processes, or using some specialized configuration languages not suitable for

enterprise development environments. This is undesirable because the conflict reso-

lution policy for mutual exclusion is a design decision that is completely independent

from the problem domain. In the ideal case, we should be able to change the conflict

resolution policy even while the system application layer is running on top of it.

60

Listing 3.7: The ResourceSerf as a C# Serf

1 interface ResourceSerf : ServiceFacility
2 {
3 public ProtocolSerf protSerf
4 {
5 get; set;
6 }
7

8 Resource joinNetwork();
9 void leaveNetwork(Resource r);

10 bool isRequested(Resource r);
11 bool isAvailable(Resource r);
12 void request(Resource r);
13 void release(Resource r);
14 }

In order to be able to make such changes at execution time, the component must

be designed for such change [Parnas 1979]. Listing 3.7 presents the ResourceSerf in-

terface for a resource manager object. This is a parameterized component that can be

specialized by the conflict resolution protocol (ProtocolSerf). These parameters are

restricted parameters — the parameters must implement their specified interface spec-

ifications. The component exports one type (Resource). When a client process wants

access to the resource that is managed by this component, it invokes the joinNetwork

method, which returns an object of type Resource. From that point on, whenever it

wants to use the resource, the client requests the resource by calling request on its

Resource instance. In effect, the client treats this Resource handle as the actual shared

resource itself.

In addition, there is a property to represent the component parameter (Proto-

colSerf). An instance of Resource is modeled by two boolean variables — requested

and available. When a client requests its resource r, r.requested is set to true. Then

61

Client

+initialValue()
+swap()

«interface»
ServiceFacility

+joinNetwork()
+leaveNetwork()
+request()
+release()
+isRequested()
+isAvailable()
+setProtocolSerf()

«interface»
ResourceSerf

+joinNetwork()
+leaveNetwork()
+request()
+release()
+isRequested()
+isAvailable()
+serProtocolSerf()
+initialValue()
+swap()

«implementation class»
ResourceSerf_R1

«interface»
Data

«interface»
Resource

Resource_R1

+request()
+release()
+isRequested()
+isAvailable()

«interface»
ProtocolSerf

+request()
+release()
+isRequested()
+isAvailable()

«implementation class»
TokenRingProtocolSerf

ResourceRep_R1

Figure 3.12: UML Design for the resource allocation example using the Service Facility
pattern.

when the resource is available for use by the client, r.available becomes true. Only

one of the resource proxies in the system can have both requested and available set to

true at the same time.

Let us assume a polling implementation of the request() method in ResourceSerf.

Thus, a client will make a request() invocation on its proxy, and then poll the isAvail-

able() method until the resource becomes available. At this point, the client uses the

resource, and releases it by invoking release() when finished.

Figure 3.12 shows the UML description of a client using ResourceSerf. The system

uses the Service Facility pattern. ResourceSerf is the main component in this system.

This component is parameterized by a ProtocolSerf, and manages a Resource that

62

Listing 3.8: create() and request() methods from ResourceSerf

1 internal class ResourceRep_R1
2 {
3 bool requested;
4 bool available;
5 ProtocolProxy protocolProxy;
6

7 public ResourceRep_R1()
8 {
9 protocolProxy = (ProtocolProxy) protSerf.create();

10 requested = false ;
11 available = false ;
12 }
13 }
14

15 public Data create()
16 {
17 Resource_R1 newResource = new Resource_R1();
18 WeakReference wrRes = new WeakReference(newResource, false);
19 clientList.Add(wrRes);
20 return newResource;
21 }
22

23 public void request(ref Resource r)
24 {
25 ResourceRep_R1 rRep = Rep(r);
26 rRep.requested = true ;
27 ProtocolProxy pp = rRep.protocolProxy;
28 protSerf.request(ref pp);
29 }

the client wants to use. The actual conflict resolution is done by the ProtocolSerf.

For every client, the Serf creates a representative in the ProtocolSerf. When a client

makes a request on its logical handle, the ResourceSerf makes a request on behalf

of this client on the ProtocolSerf. Listing 3.8 shows a parts of ResourceSerf — the

constructor for ResourceRep R1, and the create() and request() methods — to illustrate

this interaction between ResourceSerf and ProtocolSerf.

63

The reader may have observed from this example that a change in the ProtocolSerf

implementation is going to immediately affect every single client proxy that the Re-

sourceSerf has created. However, the client processes should not have to be involved

in this change. The levels of decoupling that the Service Facility pattern introduces

make way for the change in ProtocolSerf to be insulated from the clients7.

In this example, ResourceSerf plays the role of the factory under the Abstract Fac-

tory pattern. It creates objects of type Resource (the product from Abstract Factory)

on behalf of the client. The client no longer needs to keep track of which particular

concrete implementation of ResourceSerf is in use. Further, if the ResourceSerf is re-

configured to use a different ProtocolSerf, the client does not have to concern itself

with such a change.

ResourceSerf also plays the role of the context in the Strategy pattern, and uses

an instance of ProtocolSerf as a strategy to resolve conflicts and provide mutually

exclusive access to clients vying for the resource. The ResourceSerf is no longer coupled

to a single conflict resolution algorithm.

Finally, ResourceSerf also acts as a proxy (Proxy pattern) to the Resource (subject)

that the client gets back from the create() method. Since a change in ProtocolSerf will

affect all client proxies that have already been created by ResourceSerf, it is essential

that the client not have direct references to the representation objects. In this case,

however, the client only holds a reference to a logical handle, and not to the actual

representation object.

7The client processes may experience lower performance levels during reconfiguration, but the
client does not have to do anything for the reconfiguration to occur.

64

3.6 Chapter Summary

Design patterns are codified solutions to commonly recurring problems in software

systems. They offer an elegant solution in that they are not tied to a particular pro-

gramming language. Instead, they provide a set of assumptions that they make about

the target programming language, and any language that satisfies these assumptions

can be used to implement the solution.

In this chapter, we presented three kinds of concrete dependencies that occur in

different phases of a software system’s life cycle; and design pattern solutions to each

of these different kinds of dependencies. The Service Facility pattern unifies these

independent solutions to a common model for developing flexible software components

that can be specialized for different usage scenarios through parameterization. We

presented details of the Service Facility pattern as well as some possible extensions

and optimizations for the pattern.

A preliminary version of the work described in this chapter was presented at the

International Conference on Software Reuse in Austin, TX in April 2002 [Sridhar,

Weide and Bucci 2002].

65

CHAPTER 4

ENSURING TYPE-CORRECT DYNAMIC PARAMETER
BINDING

4.1 Introduction

In Chapter 2, we outlined some of the challenges that we face when building

dynamically bound parameterized components. We noted there that we need ways

of checking at run time whether the parameters supplied to a component meet all of

the restrictions imposed on them. In Chapter 3, we presented the Service Facility

pattern as a way of implementing dynamically bound parameterized components.

In this chapter, we present in detail the kinds of run time checks that are needed

to ensure type-correct bindings of parameters to templates during execution time.

In addition, we show how these checks can be generated automatically from XML

descriptions of the components.

4.2 Specifying Parameterized Components

In order to specify parameterized components, we use the RESOLVE [Edwards

et al. 1994] notation. As an example, we present StackContract (borrowed from [Edwards

et al. 1994]) specified using the RESOLVE notation in Listing 4.1. This module de-

fines one type (Stack) and its interface exports three operations on this type — push,

66

pop, and length. The type definition describes a mathematical model (string of Item in

this case), as well as the set of legal values that a new instance of this type can assume

upon initialization (empty string in the case of Stack). Each module can export zero

or more types. In the case of a module that exports more that one type, the types

are identified using a type identifier. For the sake of simplicity, in this discussion we

only deal with components that export exactly one type, and so we will no longer

refer to the type identifier.

The global context of this contract introduces other modules or facilities that this

component uses. In this particular example, StackContract makes use of an Integer

component, and therefore imports the standard realization of that component (Stan-

dardIntegerFacility). In programming language terms, the global context serves the

same purpose as import statements in Java, using statements in C#, or #include

statements in C++.

The parameters to this template are specified in its parametric context. In the par-

ticular example, StackContract is parameterized by the type of item that is contained

in a stack. In general, parameters can be of four different kinds: constants, types,

facilities, and math definitions. A constant parameter lets the client specialize the

template by a particular value. For example, if the stack component was bounded,

this size limit would be a constant parameter to the stack template. A type parameter

lets the client specialize the template by supplying a specific type, as is the case in our

current example; the client program provides the type of items that the Stack would

hold. A facility is an instance of some template. Thus, a facility parameter is used

to allow the client set up an integration-time relationship between components. The

67

Listing 4.1: The contract for StackContract specified using RESOLVE

1 contract StackContract
2 context
3 global context
4 facility StandardIntegerFacility
5 parametric context
6 type Item
7

8 interface
9 type Stack is modeled by string of Item

10 exemplar s
11 initialization
12 ensures
13 |s | = 0
14

15 operation push (
16 alters s: Stack,
17 consumes x: Item
18)
19 ensures
20 s = <#x> * #s
21

22 operation pop (
23 alters s: Stack,
24 produces x: Item
25)
26 requires
27 |s | > 0
28 ensures
29 #s = <x> * s
30

31 operation length (
32 preserves s: Stack
33) : Integer
34 ensures
35 length = |s |
36 end StackContract

68

client can provide realizations of specific contracts that the template can use. Finally,

math definitions that are needed in the specification can be passed in as parameters.

Template parameters can also be restricted — the actual parameter could be

required to implement certain functionality in a valid binding (dependent parameter-

ization, Section 2.4). An example of such a restriction would be the requirement that

the kind of items that can be put in the Sorter template from Listing 2.3 appropriately

implement the comparison operator (>).

4.2.1 Specifying Serfs in RESOLVE

The contract presented in Listing 4.1 specifies that it requires, as part of its

global context, the standard integer facility. Recall that a facility is an instance of

a template, all of whose formal parameters have been bound to actuals. In order

to accommodate run-time binding of parameters, we introduce new notation to the

RESOLVE language. A service facility is an instance of a template that is bound to

its parameters dynamically, rather than statically.

Further, we unify all the different kinds of parameters that can be part of the

parametric context of a RESOLVE template to be service facilities. In the case of

type parameters, we specify in the parametric context a service facility that defines

the required type; a constant parameter is expressed as a service facility that provides

the constant value; and math definitions are expressed as service facilities that provide

program functions that correspond to the math definition.

Substituting service facilities for facilities, we can translate the RESOLVE Stack-

Contract (Listing 4.1) into StackSerfContract (Listing 4.2). It is easy to see that the

69

Stack and StackSerf C# interfaces (Listing 4.3) can be generated from StackSerf-

Contract. All the information needed to generate these interfaces is available in the

contract. In general, the type(s) exported by a SerfContract is used to generate the

type interface(s) (Stack in the example), and the interface part of the contract, along

with the parametric context is used to generate the Serf interface.

4.2.2 Realizing RESOLVE Contracts as Serfs

Abstract RESOLVE components are expressed in the Service Facility pattern as

interfaces; concrete components are expressed as classes. In the languages that we

consider (Java and .NET languages8), interfaces are first-class constructs in the lan-

guage. Interfaces in these languages are comprised of method signatures. There is a

direct mapping from the interface in the RESOLVE specification to the programming

language interface. Further, the template parameters listed in the concept’s paramet-

ric context are also represented by methods in the interface. Each facility parameter

in the concept corresponds to two methods — one setter, and one getter. In C#, each

template parameter can be represented by a single property [Archer 2001].

For example, Listing 4.3 shows the C# interface for a StackSerf component. There

is a one-to-one correspondence between the operations in the RESOLVE contract in

Listing 4.2 and the methods in this interface. Further, the parameter in the parametric

context of StackSerfContract corresponds to the property ItemSerf. This property will

translate to a setter and a getter method for ItemSerf in realizations of this interface.

8All languages that respect the Common Type System of the Microsoft .NET Common Language
Runtime have the same set of features [Microsoft 2002a]. Henceforth, whenever we want to refer to
.NET languages, we will use C# as the representative.

70

Listing 4.2: The contract for StackSerf

1 contract StackSerfContract
2 context
3 global context
4 service facility StandardIntegerSerf
5 parametric context
6 service facility ItemSerf
7 defining type Item
8

9 interface
10 type Stack is modeled by string of Item
11 exemplar s
12 initialization
13 ensures
14 |s | = 0
15

16 operation push (
17 alters s: Stack,
18 consumes x: Item
19)
20 ensures
21 s = <#x> * #s
22

23 operation pop (
24 alters s: Stack,
25 produces x: Item
26)
27 requires
28 |s | > 0
29 ensures
30 #s = <x> * s
31

32 operation length (
33 preserves s: Stack
34) : Integer
35 ensures
36 length = |s |
37 end StackSerfContract

71

Listing 4.3: C# Stack and StackSerf interfaces

1 public interface Stack : Data
2 { }
3

4 public interface StackSerf : ServiceFacility
5 {
6 void push(Stack s, Data x);
7 void pop(Stack s, Data x);
8 int length(Stack s);
9

10 // Template parameter(s)
11 ServiceFacility ItemSerf
12 {
13 get;
14 set;
15 }
16 }

4.3 Specifying Dynamically-Bound Parameterized Compo-
nents

When using static parameterization, the compiler enures that the template bind-

ings are all legitimate from the point of view of type-correctness of parameter bind-

ings. With dynamically-bound Serf templates, we have to ensure that we perform the

same set of checks to ensure legitimacy of the bindings. Before certifying a particular

template as valid, a template-aware compiler performs the following checks:

R1. Enforcing Instantiation. Before it is used in a client program, a template

must be fully instantiated — all parameters to the template must have been

supplied, and

R2. Enforcing Restrictions. The actual template parameters result in type-correct

bodies for the template’s methods.

72

Before we describe how the Serf pattern can be augmented with additional proof

obligations to ensure correct bindings, we take a short detour to convince the reader

that compiler checks are not sufficient to enforce the above requirements when dealing

with dynamic binding.

Since Serfs are really just objects at the linguistic level, as soon as the construc-

tor has been invoked by the client and an object has been allocated, the compiler

considers the Serf object ready for use. However, under the semantics of the Serf

design pattern, this Serf may not be ready for use yet. The reason is that there may

be template parameters that need to be supplied to the Serf. So until these param-

eters have been set, the client should not be allowed to invoke any methods on the

Serf, including create(). Since the template parameters are really just properties (or

data members) of a run-time object, the compiler currently does not check for these

properties being set. We could instrument the compiler to perform additional static

analysis to ensure that every path leading to a method call on the Serf already has

lines of code that set the template parameters. This would require that we had special

syntax to distinguish data members that represent template parameter from regular

data members. However, we would like to be able to perform these checks without

making changes to the language or the compiler, so that the solution is immediately

deployable.

In Section 2.4, we have shown how the syntactic constructs provided by program-

ming languages are not sufficient to completely specify templates in the presence of

dependent parameters. As another example of such dependent parameters, consider

a Sequence component. A Sequence is modeled by a mathematical string, in which

items can be added to and deleted from any arbitrary position (pos). Further, the

73

component also provides an operation to query the length of the sequence. Consider

a realization of this component that is layered on top of a Stack component. To be

specific, suppose the representation consists of two stacks (call them beforeStack and

afterStack) positioned so that the top elements of the two stacks “face each other”

in the interior of the sequence they represent. The current value of pos is now the

length of beforeStack. Additions (deletions) can now be performed by first adjusting

the elements in the two stacks such that the length of beforeStack is equal to the

desired pos value, and then pushing (popping) an element onto (from) beforeStack.

Listing 4.4 shows the add method from this realization of SequenceSerf.

Clearly, this realization of SequenceSerf does not care which particular implemen-

tation of StackSerf is used. So we can design the SequenceSerf component to be a

template that takes two parameters — a type parameter that stands for the kind of

Item that the sequence holds, and a facility parameter that provides some implemen-

tation of StackSerf. In fact, the two stacks (beforeStack and afterStack) could come

from separate Stack realizations, in which case, the Sequence would be parameter-

ized by the item type, and two realizations of Stack. We deal with the simpler case

here, since the problem we are trying to illustrate shows up even then. Under the

Serf pattern, a client program will then create and set the template parameters of

(i.e., instantiate) a StackSerf object, and then pass that object as the facility param-

eter to the SequenceSerf instance. Listing 4.5 shows a snippet from a client program

instantiating a SequenceSerf object.

There is an indirect restriction that this client has to follow — the Item parameters

to the stack and sequence templates have to be the same. This restriction cannot be

encoded by any syntactic means allowed by C# (or Java).

74

Listing 4.4: C# implementation of add for SequenceSerf realization layered on top of
StackSerf

1 public void add(Sequence s, Data x, int pos)
2 {
3 SequenceRep_R1 sRep = Rep(s);
4 if (stackSerf.length(sRep.beforeStack) < pos)
5 {
6 while (stackSerf.length(sRep.beforeStack) < pos)
7 {
8 Data tempX = itemSerf.create();
9 stackSerf.pop(sRep.afterStack, tempX);

10 stackSerf.push(sRep.beforeStack, tempX);
11 }
12 }
13 else
14 {
15 while (stackSerf.length(sRep.beforeStack) > pos)
16 {
17 Data tempX = itemSerf.create();
18 stackSerf.pop(sRep.beforeStack, tempX);
19 stackSerf.push(sRep.afterStack, tempX);
20 }
21 }
22 stackSerf.push(sRep.afterStack, x);
23 }

Listing 4.5: A client instantiating a SequenceSerf

1 /* ... */
2 IntegerSerf intSerf = new IntegerSerf_Std();
3

4 StackSerf stackSerf = new StackSerf_R1();
5 stackSerf.ItemSerf = intSerf;
6

7 SequenceSerf seqSerf = new SequenceSerf_R1();
8 seqSerf.StackSerf = stackSerf;
9 seqSerf.ItemSerf = intSerf;

10 /* ... */

75

Now let us see how we can augment Serf interfaces with contract checking in order

to enforce the proper use of Serfs as parameterized components. We will handle the

two requirements, R1 and R2, separately. We enrich the specification of each compo-

nent with additional pre- and post-conditions. There is a wide variety of specification

languages we can choose from, and any language that supports parameterization con-

structs can be used. We use the eXtensible Markup Language (XML) [Harold and

Means 2] to encode these specifications, so that we can emphasize their language-

independent nature. Further, [Hallstrom and Soundarajan 2002] describes a tool that

can use such embedded XML specifications to create program documentation. List-

ing 4.6 shows a partial specification of the StackSerf contract written in XML. We

describe this specification in detail in the rest of this section.

Listing 4.6: Partial XML specification for StackSerf

1 <contract >
2 <name>StackSerfContract</ name>
3 <parameter >
4 <name>ItemSerf</ name>
5 <type >ServiceFacility</ type >
6 <defines >type Item</ defines >
7 </ parameter >
8

9 <interface >
10 <operation >
11 <name>create</ name>
12 <returntype >Data</ returntype >
13

14 <precondition >
15 ItemSerf != null
16 </ precondition >
17

18 <postcondition >
19 create = EmptyStack
20 </ postcondition >
21 </ operation >
22

23

24 Continued

76

25 Listing 4.6 continued
26 <operation >
27 <name>push</ name>
28

29 <parameter >
30 <name>s</ name>
31 <type >Stack</ type >
32 <mode>alters</ mode>
33 </ parameter >
34

35 <parameter >
36 <name>x</ name>
37 <type >Data</ type >
38 <mode>consumes</ mode>
39 </ parameter >
40

41 <precondition >
42 ItemSerf != null
43 </ precondition >
44

45 <postcondition >
46 ensures s = (#x) * s
47 </ postcondition >
48 </ operation >
49

50 <operation >
51 <name>pop</ name>
52

53 <parameter >
54 <name>s</ name>
55 <type >Stack</ type >
56 <mode>alters</ mode>
57 </ parameter >
58

59 <parameter >
60 <name>x</ name>
61 <type >Data</ type >
62 <mode>produces</ mode>
63 </ parameter >
64

65 <precondition >
66 ItemSerf != null and
67 | s | > 0
68 </ precondition >
69 Continued

77

70 Listing 4.6 continued
71

72 <postcondition >
73 ensures #s = (x) * s
74 </ postcondition >
75 </ operation >
76

77 <operation >
78 <name>length</ name>
79 <returntype >int</ returntype >
80

81 <parameter >
82 <name>s</ name>
83 <type >Stack</ type >
84 <mode>preserves</ mode>
85 </ parameter >
86

87 <precondition >
88 ItemSerf != null
89 </ precondition >
90

91 <postcondition >
92 ensures length = | s |
93 </ postcondition >
94 </ operation >
95 </ interface >
96 </ contract >

R1. Enforcing Instantiation Before the Serf can be used to create data objects,

we require that the Serf has been properly instantiated, i.e., all the template param-

eters have been set. For each template parameter, the property that corresponds to

that parameter must have been set to a value other than its initial value. In this case,

we will just use the initial value conventions of Java/C# — for example, Object type

variables are initialized to be null, and int variables are initialized to 0.

In order to make sure that by the time we use a Serf it is properly instantiated,

we include a check to make sure that all the parameters have actually been set in the

78

pre-condition of each method, including the create() method (lines 15, 42, 66, and 88

in Listing 4.6). So, in accordance with design by contract, clients that want to use a

Serf object have to first instantiate it by supplying appropriate actual parameters.

Currently we have built a mapping between the XML specification and assertion

checks in C#. In the case of Java Serf components, the XML specification can be used

to generate JML [JML n.d., Cheon 2003] annotations to specify the pre-conditions.

We can then use the assertion generation and checking tools that are part of JML to

generate and check the pre-conditions at run-time.

R2. Enforcing Restrictions In the foregoing discussion, we have presented one

way of making sure that a Serf object is actually instantiated before it is used. How-

ever, how do we make sure that the parameters that have been supplied are appro-

priate from the type-correctness standpoint?

The solution we use is again to rely on design by contract. We embed the restric-

tions on parameters in the specification of the component. From these specifications,

run-time checks can be generated that interrogate the incoming parameter to make

sure that the restrictions on the parameter have in fact been met. Again, in the case

of Java Serfs, we can use the JML Run time Assertion Checker (RAC) [Cheon 2003]

to generate and check the assertions.

Each of the parameters to the Serf may be annotated with restrictions. For in-

stance, in the StackExternalSorter example, we impose a restriction on the ItemSerf

parameter that it implement the ISerializable and IComparable interfaces (Listing 4.7).

This requirement, however, is stated in the XML contract, but not in the correspond-

ing C# interface for reasons cited earlier in this section. Instead, the requirement is

79

Listing 4.7: ExternalSorter interface in C# with XML annotations

1 public interface StackExternalSorter : ServiceFacility
2 {
3 /// <contract>
4 /// <parameter>
5 /// <name> s </name>
6 /// <type> Stack </type>
7 /// <mode> alters </mode>
8 /// </parameter>
9 ///

10 /// <precondition>
11 /// StackBase != null and
12 /// ItemSerf != null
13 /// </precondition>
14 ///
15 /// <postcondition>
16 /// s is permutation of #s and
17 /// IS_ORDERED (s)
18 /// </postcondition>
19 /// </contract>
20 void Sort(Stack s);
21

22 // Template parameters
23

24 /// <restriction>
25 /// implements ISerializable
26 /// </restriction>
27 StackSerf StackBase
28 {
29 get;
30 set;
31 }
32

33 /// <restriction>
34 /// implements ISerializable
35 /// </restriction>
36 ///
37 /// <restriction>
38 /// implements IComparable
39 /// </restriction>
40 ServiceFacility ItemSerf
41 {
42 get;
43 set;
44 }
45 }

80

Listing 4.8: The setItemSerf method in StackExternalSorter

1 private StackSerf stackBase;
2 public StackSerf StackBase
3 {
4 get
5 {
6 return stackBase;
7 }
8 set
9 {

10 if (!(value is ISerializable &&
11 value is IComparable))
12 throw new InvalidArgumentException(
13 ‘‘Argument is of incorrect type !’’);
14 else
15 stackBase = value;
16 }
17 }

encoded as the aforementioned run-time checks. The setItemSerf method in StackEx-

ternalSorter will now have a precondition that the parameter it gets passed implements

both the required interfaces.

This precondition can be checked during execution using the Reflection API in

C# and Java. The setItemSerf method uses reflection to query the parameter it gets

passed to see the list of interfaces that parameter object implements (Listing 4.8).

If ISerializable and IComparable are not part of this list, the precondition check fails,

and the instantiation does not complete successfully. This failure in instantiation is

viewed as a failure to meet the contract, and an exception is thrown. The key gain

here is that the error (in this case, the attempt to bind an incorrect parameter to

a template) is actually caught at the time it occurs, and the client can be given a

chance to correct it, by the exception handler routine.

81

Listing 4.9: Enforcing stability of parameters

1 /// <precondition>
2 /// Parameter = null
3 /// /* Remaining precondition */
4 /// </precondition>
5 void setParameter(...)
6 {
7 /* ... */
8 }

R3. Enforcing Stability of Parameters In addition to these two kinds of checks,

there is one more check that is necessary in the case of dynamically bound parame-

terized components. This check ensures that the component satisfies the requirement

that once a parameter has been set, it cannot be unset, or changed. This condition

can be enforced by requiring that the setParameter method for any Parameter can

only be invoked once. We do this by including another clause in the pre-condition of

every setParameter method to check if the Parameter is null (Line 2 in Listing 4.9).

4.4 Instantiation-Checking Components

One drawback of the inline checks described in the end of the previous section

is that they have to be executed every time the method is invoked. Even if the

correctness of the Serf template, and its parameters has been established, these checks

will be executed on every future method call. Such inline checks could soon become

a performance burden on the entire system. If we could have some way by which

the checks can be “turned off” once the correctness has been established, then this

performance burden can be avoided.

82

Component
Instance

Client

Method
invocation

intercepted by
wrapper

Client receives
message from
component,
forwarded by

wrapper

Component-
Wrapper
interaction
(transparent)

Figure 4.1: Instantiation-checking wrapper

The instantiation-checking code is completely a separate dimension of concern [Tarr

et al. 1999] from the rest of the component code. We can separate these checks into

a wrapper for the component. When a client program now makes a method invoca-

tion on the component, the wrapper first intercepts the call, performs all the checks,

and if they all pass, forwards the method call to the component (Figure 4.1). This

approach is the same as that used in [Edwards et al. 1998], except that the kind of

assertion-checking done here is much simpler. Still, the performance burden remains

as every method invocation has to traverse an extra level of indirection.

We do have the ability, however, to turn off the checking code. The Service Facility

pattern supports dynamic module replacement (Chapter 5), and hence, once the client

has passed the parameter binding phase, the instantiation-checking wrappers can be

removed, thus removing the performance overhead.

83

4.5 Chapter Summary

Dynamic binding of parameters to components greatly increases the flexibility of

software systems. But the flexibility does come at a cost — care must be taken to

ensure that the bindings that take place at run time are indeed correct with respect to

type safety. In this chapter, we have presented the various kinds of checks that need to

be performed in order to ensure type-correct parameter bindings. We also presented

a specification framework in which service facility components can be specified.

The specification framework uses the RESOLVE specification language as its basis,

and extends the language to include the notion of dynamically bound parameterized

components. We have shown a transformation of the modified RESOLVE specification

into code written in Java/C#. The transformation first goes from the RESOLVE

specification to a specification written in XML, and finally to Java/C# code. We

have also shown how the checks to ensure instantiation can be abstracted out into

separate instantiation-checking wrappers.

A preliminary version of the work described in this chapter was presented at

the Workshop on Specification and Verification of Component-Based Systems at ES-

EC/FSE in Helsinki, Finland in September 2003 [Sridhar and Weide 2003].

84

CHAPTER 5

DYNAMIC RECONFIGURATION USING THE SERVICE
FACILITY PATTERN

5.1 Introduction

In Chapter 4, we presented a specification framework and rules for using the

Service Facility patter as a way of constructing type-safe, dynamically bound param-

eterized components. One of the conditions that we presented there was that each

parameter to a component can only be set once, and after that has happened for the

first time, the parameter cannot be unset, or changed (R3, Section 4.2.1). In this

chapter, we relax this condition, and allow (some or all) parameters to components

to be changed, if the execution environment so requires.

This relaxation is made in order to allow for dynamic reconfiguration of compo-

nents. If a particular component supports reconfiguration, then the precondition for

the setParameter method is weakened to remove the clause Parameter = null. This

is done so that the setParameter can, in fact, be called more than once. The re-

configuration is done inside the setParameter method. In this chapter, we present

details of how a component can be made to support reconfiguration, and how such

reconfiguration can be effected using the Service Facility design pattern.

85

5.2 Dynamic Reconfiguration

Dynamic reconfiguration refers to changing, updating, or otherwise modifying a

system during execution. Dynamic reconfiguration is essential for supporting the

operation and evolution of long-lived and highly-available systems for which it is either

not possible or not economic to terminate execution in order to carry out invasive

maintenance activities. Many naturally occurring systems exhibit some degree of

flexibility with respect to change and adaptation, particularly when the consequences

of not accommodating change are grave. An obvious example is the human body itself.

When faced with a failing component, such as a kidney, it’s a highly-desirable property

that surgeons can replace the component without killing the host, as it were. Such

is not the case with most software systems, where component substitution typically

involves killing and re-deploying the entire application.

Dynamic reconfiguration is a material factor for any system that is subject to

runtime evolutionary changes; that is, circumstances that cannot be anticipated or

statically accommodated prior to system deployment [Kramer and Magee 1990]. For

many online systems, such as banking applications, it is economically prohibitive to

compromise availability for either planned or unplanned downtime. For distributed

systems, like telecommunication switching networks, it may not be possible to coordi-

nate downtime because the application spans over multiple administrative domains.

In either case, robust systems must be designed to support modes of reconfiguration

which enable applications to be changed on-the-fly.

86

5.3 Dynamic Module Replacement

The particular mode of dynamic reconfiguration that we are concerned about is

known as module replacement. When applications are designed to depend on an

object’s interface rather than on its implementation, module replacement enables the

implementation to be “hot swapped” at run-time without breaking the client code or

side-affecting adjacent modules. Several approaches to achieving module replacement

have been proposed in the literature, but most depend on non-enterprise research

languages [Kramer and Magee 1985, Liskov 1988, Bloom and Day 1993, Hofmeister

1993], or make restrictive assumptions involving special-purpose middleware [Ben-

Shaul, Holder and Lavva 2001, Malabarba, Pandey, Gragg, Barr and Barnes 2000].

These limiting factors on software deployment and portability render most existing

approaches inapplicable to real software development.

Further, almost all the work in the area of dynamic module replacement has

been concentrated on the domain of data container components [Bloom and Day

1993]. We extend the idea of module replacement into distributed protocols, and

other algorithms recast as component modules. We show that the power of module

replacement is only limited by our ability to effectively modularize our software.

Dynamic module replacement, however, is not the only way of effecting dynamic

reconfiguration. This mode is best suited when the system being reconfigured can

be properly modularized, and moreover, when the granularity of the desired recon-

figuration can be at the module level. In the case of finer-grained reconfiguration,

other modes of reconfiguration have been proposed, such as interception [Hallstrom

et al. 2003]. Dynamic Link Libraries (DLLs) also provide a way of reconfiguration,

where replacing a DLL with a different one that provides implementations for the

87

same set of interfaces provided by the old one allows for the new implementation to

be used. In this chapter, however, we do not consider these other modes of dynamic

reconfiguration. We only concern ourselves with module replacement.

The Service Facility pattern can be viewed as the next-generation of the well-

known Abstract Factory pattern [Gamma et al. 1995], along with elements of the

Proxy and Strategy patterns. Like abstract factories, Serfs are responsible for creating

product objects for clients. Unlike abstract factories, however, Serfs only return a

product reference to the client; the implementation of the product actually resides

within the Serf itself, which then “services” the subsequent method invocations of

the client. As such, a Serf can be viewed as a wrapper which introduces a level of

indirection between the client and the product object. This enables the Serf to act as

an interceptor capable of decoupling the abstract product interface (used by the client)

from the actual product implementation (residing within the Serf). As a wrapper

and an interceptor, a Serf can insulate clients from module replacement by delaying

intercepted method invocations while reconfiguring the product class encapsulated

within the wrapper. Thus, Serfs provide a clean synchronization mechanism that

can be used during updates and configuration changes during system execution.

5.3.1 Conditions for Dynamic Module Replacement

In a running system, what is required to permit substitution of the implementa-

tion of a module without stopping system execution? We present here the conditions

required for realizing dynamic reconfiguration. Each condition presented here trans-

lates to a step in the corresponding operational outline of the reconfiguration process.

88

1. Initiation: Module replacement must be initiated, either internally by the

module itself, or externally by a third-party.

2. Module Integrity: The consistency of modules undergoing replacement must

be preserved. Typically this can be achieved by restricting or regulating how

client invocations can (or cannot) be interleaved with module replacement ac-

tivities.

3. Module Rebinding The new (target) replacement module must be dynami-

cally loaded and linked into the runtime environment, so that new object in-

stances can be created to replace their old counterparts.

4. State Migration: The abstract state of each old object instance must be

transmitted to the new counterpart object instance.

5. Instance Rebinding: Each client-side object handle must be redirected to its

new object instance counterpart. This involves rebinding old object handles to

new instances of the target replacement module. Old object instances should

be finalized.

Previous research has documented other considerations which must be addressed

for dynamic reconfiguration. Examples include protection, security, and the consis-

tency of module substitutions. Such issues — pertaining to the safety and semantic

correctness of module replacement — have been explored elsewhere in the litera-

ture [Kramer and Magee 1985, Hofmeister and Purtilo 1993, Endler 1992]. Any

reliable reconfiguration strategy must address these questions, but ultimately a suf-

ficient infrastructure for achieving module replacement is required. The focus of this

89

discussion is to supply such an infrastructure for accomplishing reconfiguration in

enterprise-scale languages.

5.4 Dynamic Module Replacement using Service Facilities

Now let us see how Serfs actually satisfy the five conditions presented in Sec-

tion 5.3.1. We note that languages supporting reflection provide clean solutions to

the Initiation and Module rebinding steps. State migration can be realized indirectly

by the Serf, or directly by the original and target modules themselves. The material

support offered by Serfs pertains primarily to managing Module integrity and Instance

rebinding.

Initiation. In the case of internal initiation, this is simple — the component

triggers reconfiguration in response to a condition in its environment, such as a fault,

performance degradation, etc. Internal initiation is essentially planned change, and

so has limited scope; it is generally not possible to predict all changes that might

occur in the environment.

As an example of internal initiation, consider a Matrix component that uses an-

other component MatrixMultiplier to perform matrix multiplication. Suppose that

there are two implementations of MatrixMultiplier — SparseMatrixMultiplier, to per-

form multiplication on sparse matrices, and DenseMatrixMultiplier to perform mul-

tiplication on dense matrices. The Matrix component may be initialized with the

SparseMatrixMultiplier, and as it becomes denser, the component may decide to re-

configure itself to use the DenseMatrixMultiplier. Note that this may require a change

in the data representation as well. In this case, the entire reconfiguration is fully

planned at the time of system design. This is what we mean by internal initiation.

90

Responding to unplanned changes requires support for external initiation by a

third party. The system being reconfigured has not support built into it to make

decisions for when reconfiguration should take place. The initiation is usually done

by an external process which detects the need for reconfiguration, or by a human

administrator.

In environments that support reflection, such as Java and .NET, initiation involves

an outside agent being able to invoke a reconfiguration method on the Serf. For

example, rebinding a template parameter can be initiated by invoking setParameter

and specifying an appropriate replacement module. In the case of environments that

do not support reflection, external initiation can be achieved using DLLs, socket

communications, or even the file I/O system in primitive circumstances.

In order to further clarify this distinction between internal and external initiation,

consider the Windows Update service in the Microsoft Windows XP operating system.

This service can be set up to automatically find updates to the operating system,

download and install them to reconfigure parts of the operating system. What kind of

reconfiguration initiation is this? By our definition of internal and external initiation,

the Windows Update system performs external initiation of reconfiguration. The

system being reconfigured here is the part of the operating system that needs an

upgrade; this component is not designed for reconfiguration. The Windows Update

program is the third party that detects that this component can be upgraded, and

then proceeds to reconfigure the component.

Module Integrity. Access control is required when interleaved client invocations

can disrupt module replacement or compromise the integrity of the object instances

themselves. Since the Serf wraps the module implementation, it serves as a “gateway”

91

which can choose to defer method calls while effecting module substitution. This

creates a local synchronization mechanism that may delay servicing a client invocation

during reconfiguration. After completing the reconfiguration, deferred invocations are

delegated to the new target object instances.

Not all method invocations need to be deferred, however. Only those method

invocations that will be affected by the reconfiguration process need to be deferred.

More importantly, the method invocations that may have a critical impact on the

reconfiguration must not be deferred. Since the Serf can observe all messages going

through it, the decision of which messages to allow, and which to defer can be made

in the Serf. This decision is dependent on the particular kind of system that is

reconfigured, and must be specified by the system designer.

Module Rebinding. The initiation step provides the Serf with information

about the new module implementation. In the case of environments that support

dynamic class loading, such as Java and .NET, the initiating agent can supply the

name of the new implementation directly. The Serf can then use reflection to locate

and load the new class, and then create instances of the new module type. In the case

of .NET applications, the initiator can simply point the Serf to the source code of the

new implementation, which the Serf can then compile, load, and create instances. We

note that reflection simplifies this step for the application programmer. As with the

initiation step, however, languages without reflection or dynamic class loading can

resort to cruder alternatives as substitutes.

State Migration. Migration amounts to recording each object’s abstract state,

and then reconstructing a “next generation” object with an equivalent abstract value

from the target module. This can be achieved using two complementary operations:

92

one for externalizing an object’s concrete state into the abstract value it represents,

and one for internalizing an abstract value into an object by constructing a concrete

state that represents it. Object instances can support their own state migration by

implementing such value-transmission methods directly [Herlihy and Liskov 1982].

Alternatively, these methods can be realized indirectly by the Serf itself, provided

that the original and target modules support observability and controllability of their

abstract states [Weide, Edwards, Heym and Long 1994].

Instance Rebinding. This is the fundamental step in getting dynamic module

replacement to work. The primary task is to decouple the dependency between the

module interface (known to the client), and its runtime objects (which realize the

interface). Parameterization mechanisms such as C++ templates can decouple this

dependency at design-time, but the problem of module replacement requires decou-

pling this concrete dependency at run-time. Essentially, each client-side object handle

held by the client must be rebound to the new object instance. As an interceptor,

the Serf can simply redirect method invocations to the appropriate instance of the

new module. Binding changes happen within the Serf, and are thus invisible to the

client. This can be achieved by maintaining a map from logical client handles to

object instances. Once the rebinding has been effected, all future calls to the module

will be delegated to the new module instance.

Figures 5.1 and 5.2 illustrate instance rebinding in a service facility. Each of the

client handles maps to a particular object that resides in the Serf. When module

replacement is done, the client handles are modified to point to a different location

— the next-generation objects. This is done within the Serf and so the client has no

knowledge that such a change is being made.

93

2 2

h1

h2

h3

h4

hk

obj1

obj4

obj3

obj2

objk

Figure 5.1: Serf redirecting call to client handle. The client makes the invocation to
the handle h1, the Serf dispatches the call to the object o1.

2

h1

h2

h3

h4

hk

no1

no2

no3

no4

no5

2

Figure 5.2: After instance rebinding, the old objects are destroyed, and the client
handles now point to the new object instances. A client invocation on h1 is now
dispatched to the new object instance no1.

94

Discussion. Both Java and C# both support reflection, thus enabling dynamic

module replacement using the Service Facility pattern. Further, since all .NET lan-

guages compile to the same intermediate language (MSIL), all features available in

C# are available in all .NET languages [Microsoft 2002b], thus making the Serf ap-

proach uniform across all .NET languages. We have outlined how Serfs provide a

flexible, language-neutral infrastructure that can be used in mainstream, production

platforms that support reflection to provide an easy approach to dynamic module

replacement.

5.4.1 Allowing Reconfiguration

The component that is being reconfigured should also have some way of notifying

the environment that it does support reconfiguration. We can do this by creating an

empty interface called IReconfigurable, and requiring that every component that sup-

ports reconfiguration to implement this interface. At runtime then, the administrator

(or whichever third party is initiating the reconfiguration) checks using reflection if

the component implements IReconfigurable or not. The initiator then proceeds to

perform the reconfiguration if the component supports it. Listing 5.1 shows the Java

source code required to make this check in the initiator.

This information (that a component supports reconfiguration) does not really be-

long in the interface of the component. In fact, the interface (the set of operations)

that the component exports is exactly the same whether or not it supports reconfigu-

ration. In particular, the setParameter methods look exactly the same syntactically;

the only difference is in their behavioral precondition. This information belongs in

95

Listing 5.1: Java source in the initiator to check if a component supports dynamic
reconfiguration

1 /* ... */
2 Class cls = componentSerf.getType();
3 Class interfaces[] = cls.getInterfaces();
4 bool supportsReconfig = false ;
5 for (int i = 0; i < interfaces.length; i++)
6 {
7 if (interfaces[i].getName() == ‘‘IReconfigurable’’)
8 supportsReconfig = true ;
9 }

10 if (supportsReconfig)
11 {
12 componentSerf.setParameter(...);
13 }
14 /* ... */

the meta-data — data about the component. C# (and other .NET languages) pro-

vides a nice construct to include such meta-data in a component, without introducing

spurious inheritance hierarchies.

A C# class (or interface) can be tagged with attributes. These attributes make up

the meta-data of the class. Further, programmers can define new attributes that carry

meaning along with the class that the client can use. In this case, we can define an

attribute called Reconfigurable. We then tag every class that supports reconfiguration

with this attribute. Again, the initiator of reconfiguration checks to see if the Serf that

needs to be reconfigured is tagged with the Reconfigurable attribute, and proceeds

only if the class is tagged. Listing 5.2 shows the Reconfigurable attribute, and the

ComponentSerf R1 class being tagged with the attribute. The class is tagged simply

by putting the name of the attribute in brackets on the line before the class definition.

Notice that although in the definition of the attribute we call it ReconfigurableAttribute

96

Listing 5.2: The Reconfigurable attribute and the ComponentSerf R1 class tagged with
the attribute

1 public class ReconfigurableAttribute : Attribute
2 { }
3

4 [Reconfigurable]
5 public class ComponentSerf_R1 : ComponentSerf
6 {
7 /* ... */
8 }

we can simply refer to it as Reconfigurable; C# recognizes this shorthand through type

inference [Archer 2001]. Listing 5.3 shows the C# code in the initiator that performs

this check and starts the reconfiguration.

5.5 Case Study: Mutual Exclusion

In this section, we trace through the steps required for dynamic module replace-

ment outlined in 5.3.1. We use the resource allocation example from Chapter 3. The

example illustrates the replacement of the actual conflict resolution protocol (algo-

rithm) used to determine which client in the network currently has access to the

resource.

Initiation. As we have seen earlier, in an environment that supports reflection,

external initiation can be done quite elegantly. A console program can prepare a

message and pass it to ResourceSerf to initiate the reconfiguration. In this particular

case of protocol replacement, the message that needs to be prepared and sent is

an invocation to the setProtocolSerf method (Listing 5.4). As a parameter to this

method call, the initiator will pass a ProtocolSerf that implements the required conflict

resolution protocol. ResourceSerf can then reconfigure itself to use this new protocol

97

Listing 5.3: C# code to check if the Serf supports reconfiguration

1 /* ... */
2 Type type = typeof (componentSerf);
3 boolean supportsReconfig = false ;
4 foreach (Attribute attr in
5 type.GetCustomAttributes(true)
6 {
7 ReconfigurableAttribute reconAttr =
8 attr as ReconfigurableAttribute;
9 if (reconAttr != null)

10 {
11 supportsReconfig = true ;
12 }
13 }
14 if (supportsReconfig)
15 {
16 componentSerf.setParameter(...);
17 }
18 /* ... */

instead of the old one. The entire reconfiguration is handled inside this method, as

detailed in the subsequent steps below.

Module Integrity. What happens if the request for reconfiguration arrives at a

time when the resource is held by one of the clients in the network? What happens

to the messages, if any, that are in transit at the current time? When is it safe to

perform the reconfiguration, while ensuring that there are no interference effects?

In order to ensure safety, the ResourceSerf needs to make sure that the resource

is not being held by any of the clients in the network. To achieve this, the Serf

makes itself one of the clients of the resource. We require that the ProtocolSerf

always guarantees that the ResourceSerf can, in fact, become one of the clients of

the resource. For example, if the ProtocolSerf implementation has a limit n on the

number of client allowed, then it always reserves one slot for the ResourceSerf and

98

allows only n − 1 clients. ResourceSerf thus gets issued its own proxy, and requests

access to the resource on its own. When the ResourceSerf does get access to the

resource, no other client process can be holding the resource. This is guaranteed by

the safety specification of the conflict resolution protocol. Therefore, changing the

protocol at this time would not affect any of the clients. In fact, the clients can be

completely unaware of this change with respect to the correctness of the ResourceSerf

in eventually allocating the resource to it.

Lines 10 through 14 in Listing 5.4 show the Serf creating proxies for itself in the old

and new ProtocolSerf modules. Lines 17 through 24 show the Serf acquiring exclusive

access to the resource under both the old and the new protocols. The ResourceSerf

acquires the resource in the old protocol in order to bring the old protocol to a state

of quiescence. It does the same with the new protocol to delay the new ProtocolSerf

to start accepting requests until after all the client proxies have been transferred over

to the new protocol.

Figures 5.3 and 5.4 show ResourceSerf participating in the conflict resolution.

Originally the conflict graph consists of the proxies of each client in the network.

Each edge in the conflict graph represents a contention for the resource. For each

edge in the conflict graph, only one of the nodes it is incident upon can have access

to the resource. Since this is a fully connected conflict graph, only one node in the

entire graph can have access to the resource, thus satisfying the safety requirement of

mutual exclusion. The Serf’s proxy is added to the conflict graph, and this new node

shares an edge with each of the other proxies, thus maintaining the fully-connected

property of the conflict graph.

99

6

5

43

2

P1
F/F

P2
T/F

P3
F/F

P4
F/T

P5
F/F

P6
F/F

1

Figure 5.3: Conflict graph before reconfiguration

6

5

43

2

P1
T/F

P2
F/F

P3
F/F

P4
F/F

P5
F/F

P6
T/F

1 PRA
F/T

Figure 5.4: Conflict graph during reconfiguration — includes the proxy representing
the Serf.

100

Module Rebinding. The module that implements the new conflict resolution

protocol is created as part of the initiation step by the external initiator program.

This new module is passed into the Serf through the method invocation. This step

involves binding the new ProtocolSerf module to the ResourceSerf. One of the following

two scenarios could be true when the setProtocolSerF (Listing 5.4) method is invoked:

1. ResourceSerf is a service facility that is being instantiated for the first time.

This case is trivial, and is handled in lines 3 through 6 in the method.

2. ResourceSerf is being reconfigured, and there are live proxies in the network.

This is the interesting case. Before this new module can be bound in line 45,

the state migration and instance rebinding steps must be completed. Once they

have been completed, then the rebinding itself can be done.

State Migration. State migration in this example consists of taking a checkpoint

of the abstract states of each of the proxies under the old protocol module, and “rolling

forward” the new protocol to this checkpoint. In this example, the ResourceSerf

directly takes this checkpoint, by individually querying each proxy instance for its

abstract state, and setting a new proxy instance to the same state. The abstract

state of each proxy is a pair of booleans, one of which (available) is the same for all

proxies — false. This is so because the resource is currently with the ResourceSerf.

The ResourceSerf, thus transfers state by simply calling isRequested() on each of the

current-generation proxy instances, and for each proxy for which requested is true, the

ResourceSerf calls request() on the corresponding next-generation proxy. The abstract

state of the entire conflict resolution layer has been migrated to the next-generation

protocol. Lines 37 through 40 in setProtocolSerf provide this behavior.

101

Instance Rebinding. Acting as an interceptor between the client and its proxy

in the mutual exclusion layer, ResourceSerf has a chance to observe, and if necessary,

hold method invocations that the client makes on its proxy. How exactly this is

achieved is as follows. The client only holds a logical reference to the proxy. The actual

reference is stored inside this handle, accessible only by the ResourceSerf. In addition,

the ResourceSerf maintains a map from the logical references to actual proxy instances.

So there is a decoupling of the dependency between the logical handle that the client

holds, and the actual protocol implementation. To complete the reconfiguration,

ResourceSerf simply updates each client’s resource proxy such that the handles now

point to the ProtocolProxy instances instead of the old ones. This is done in lines 26

through 41 in Listing 5.4. From this point on, there is no further action necessary to

ensure that method invocations arrive at the new conflict resolution module.

Listing 5.4: The setProtocolSerf method in ResourcerSerf

1 public void setProtocolSerf(ProtocolSerf psf)
2 {
3 if (protSerf == null) // First time
4 {
5 protSerf = psf;
6 }
7

8 else // reconfiguration
9 {

10 ProtocolSerF newProtSerf = psf;
11 ProtocolProxy serfProxy =
12 (ProtocolProxy) protSerf.create();
13 ProtocolProxy newSerfProxy =
14 (ProtocolProxy) newProtSerf.create();
15

16 // Acquire resource under old protocol
17 protSerf.request(ref serfProxy);
18 /* Wait on separate thread until resource is acquired */
19

20 // Acquire resource under new protocol
21 newProtSerf.request(ref newSerfProxy);
22 Continued

102

23 Listing 5.4 continued
24 /* Wait on separate thread until resource is acquired */
25

26 foreach (Resource res in clientList)
27 {
28 ResourceRep_R1 resRep = Rep(res);
29 Resource tempR = (Resource) initialValue();
30 ProtocolProxy tempPP =
31 (ProtocolProxy) protSerf.create();
32 ProtocolProxy newTempPP =
33 (ProtocolProxy) newProtSerf.create();
34

35 tempPP = resRep.protocolProxy;
36 resRep.protocolProxy = newTempPP;
37 if (protSerf.isRequested(tempPP))
38 {
39 newProtSerf.request(ref newTempPP);
40 }
41 }
42

43 // Now that all the proxies have been transferred,
44 // replace the protocol serf.
45 protSerf = newProtSerf;
46

47 // Release the resource under the new protocol
48 protSerf.release(ref newSerfProxy);
49 }
50 }

5.5.1 Performance Considerations

The Module integrity step of the above reconfiguration guarantees that the safety

specification of resource allocation is not violated. The client may, however, experi-

ence higher response time during the period when the reconfiguration is taking place.

The slower performance is due to the fact that while the reconfiguration is going on,

the ResourceSerf is holding on to the resource. The liveness specification of resource

allocation is not violated, however, since the ResourceSerf will release the resource

once the reconfiguration is over.

103

There may be a further degradation is the response time due to multiple reconfigu-

rations happening in a particular time period. Suppose that a phase of reconfiguration

is started from generation G1 to G2, and m clients were waiting for the resource in

G1. Corresponding requests are made on behalf of these m clients in G2. But let

us suppose that before all of these m clients have been serviced in G2, a new re-

configuration request arrives at the ResourceSerf to migrate to a new generation G3.

The clients who were transferred from G1 to G2, but did not get serviced before the

reconfiguration started may again get transferred. If such reconfiguration requests

keep arriving at a rate faster than all clients in a generation have been serviced, then

the response time from the point of view of these clients may be very long, and there

is even a possibility of the liveness specification getting violated.

This situation can be avoided by adopting one of two strategies. The first is that

in the event that a second reconfiguration request arrives at the ResourceSerf while

there are still clients who were transferred from the previous generation, the new

reconfiguration request is deferred until all of these clients have been serviced. This

way, no client will be made to wait across more than one reconfiguration process.

However, such postponement of reconfiguration may not always be possible. In such

cases, the second strategy can be adopted: the clients that have already been through

one reconfiguration could first be transferred into the new generation, and the protocol

started. Then, once all of these clients have been serviced (by the new ProtocolSerf

module), the remaining clients are transferred over. This way again, clients will only

need to wait through one reconfiguration at the most before they get access to the

resource.

104

5.6 Distributed Service Facilities

In the discussion so far, we have extended the idea of dynamic module replace-

ment outside the domain of data collection components using the example of resource

allocation in distributed systems. We consider two different families of protocols for

solving mutual exclusion. A representative for the first family is a simple centralized

queue-based protocol, where client requests are queued in a simple queue, and the

client at the head of the queue gets access to the resource. In this case, we are dealing

with a centralized solution to a distributed problem. All clients deal with a single

ResourceSerf. This model is presented in Figure 5.5. This solution has its obvious

drawbacks in performance penalties owing to no concurrency at all. A representative

for the second family of protocols employs a distributed token ring [Lynch 1996] for

resolving conflicts. This is a distributed solution that allows changes in topology at

run-time. However, in the case of its service facility implementation, the module that

controls client access to this protocol is still centralized (Figure 5.6).

Both the above approaches leave more to be desired. Even though the second

case encapsulates a distributed protocol implementation, the fact that it is behind a

centralized gateway makes it prone to problems — single point of failure, performance

bottleneck, etc. The truly distributed solution, where a set of distributed clients are

represented by a set of distributed proxies in the protocol, and moreover, the gateway

itself is distributed, is clearly the desired solution. Such a solution can tolerate faults,

and does not involve a single bottleneck. A sketch of this solution is illustrated in

Figure 5.7.

Serfs clearly have two separate functions — object creation, and object mainte-

nance. In order for the distributed implementation to be possible, we separate these

105

Serf

Figure 5.5: Distributed clients using a centralized solution

Serf

Figure 5.6: Distributed clients using a distributed solution but through a centralized
gateway

106

Serf

Figure 5.7: Distributed clients using a distributed solution

two functions. The main Serf still handles object creation; and rather than creating

a logical handle that does not have any functionality on its own, creates a Serflet

wrapper (Section 3.4.5) that encapsulates the actual product instance. The object

maintenance function is now downloaded into the Serflet. In addition, the Serf man-

ages the Serflets in a connected topology thereby enabling coordination among the

Serflets, for instance, in the event of dynamic reconfiguration.

5.7 Chapter Summary

In this chapter, we have presented the use of the Service Facility design pattern

for building systems that support dynamic reconfiguration. The particular mode of

dynamic reconfiguration that we consider is known as dynamic module replacement.

When using this mode of reconfiguration, it is required that the system be designed

107

as a collection of modules that encapsulate different aspects of functionality. Recon-

figuration in such a system then can be effected by way of replacing the particular

module that corresponds to the part of the system that needs change.

We outlined the conditions that must be satisfied for dynamic module replacement

to be effected, as well as an operational view of the steps in the reconfiguration process

that satisfy these conditions. These steps involved in dynamic module replacement

are: Initiation, Module Integrity, Module Rebinding, State Migration, and Instance

Rebinding. We also showed how the Service Facility pattern provides support to this

dynamic module replacement process. We also demonstrated the use of the Service

Facility pattern for dynamic reconfiguration by way of an example in which a resource

allocation component is reconfigured to use different conflict resolution algorithms.

The work described in this chapter was presented at the 23rd International Confer-

ence on Distributed Computing Systems in May 2003 [Sridhar, Pike and Weide 2003].

108

CHAPTER 6

RELATED WORK

In this chapter, we outline some of the research in the literature that is related

to the problems that this dissertation addresses. We examine related work in the

two main areas that the contributions of this dissertation lie in — parameterized

programming, and dynamic reconfiguration. Since the solutions presented in this

dissertation are based in design patterns, we include a treatment of other design

pattern research in each of these two areas, along with a comparison with our work.

6.1 Parameterized Programming

Parameterized programming has been recognized as a powerful technique for build-

ing reusable software. [Goguen 1984] captures the essential basis behind the tech-

nique, and details the list of features that a programming system should support in

order to allow for parameterized programming. In this work, Goguen describes pa-

rameterized programming using OBJ [Goguen and Malcolm 1996, Goguen, Winkler,

Meseguer, Futatsugi and Jouannaud 1993, Tardo 1981]. The primary requirements

that Goguen lists include modularity, hierarchical structure, restricted parameters,

information hiding, module modification, and an underlying formal semantics.

109

Our approach to building parameterized components using the Service Facility

pattern does include support for all these requirements. Under the Service Facility

pattern, design decisions are encapsulated in their own modules, and all interactions

between these modules occur through the interface method invocations. Thus the

modularity and information hiding requirements are respected. Parameters to a ser-

vice facility can themselves be parameterized components, and it is possible to build

a hierarchical system of parameterized service facilities. Finally, the Service Facility

pattern is based on the RESOLVE language for specifying parameterized compo-

nents, which includes a formal semantics for these components as well as support for

restricted parameters.

6.1.1 Language Support

Several programming languages have included support for parameterized program-

ming over the years. We briefly outline the most popular among these.

Ada Generics

The Ada programming language [Barnes 1989] has support for generic units. A

generic component in Ada is parameterized at the level of types it uses. To be

used in a program, the generic component is then instantiated by supplying actual

parameters to take the place of the formal parameters in the generic component

definition [Feldman 1996, Booch 1987, Musser and Stepanov 1989].

Genericity in Ada can be introduced at various levels:

• A whole package can be parameterized by the types it uses. An example is a

generic Set package that exports a generic Set abstract data type, and associated

110

operations. The package is parameterized by the kind of items that the Set

holds.

• A procedure or a function can be defined to be a generic, where the type(s) of

its parameter(s) (and return type, in the case of functions) are left open to be

fixed later during instantiation.

Parameters to a generic unit in Ada can be specified to be restricted. For in-

stance, if we were designing a generic function FindMax that is parameterized by

a type ValueType, and in the function we need to compare two items of ValueType,

the parameter would have a restriction on it, saying that it has to support comparison.

1 GENERIC
2 TYPE ValueType IS PRIVATE ;
3 WITH FUNCTIONCompare(L, R: ValueType) RETURNBoolean;
4

5 FUNCTION FindMax(L, R: ValueType) RETURNBoolean;

At the time of instantiation, the client, along with a type for ValueType also sup-

plies an operation to match Compare.

1 FUNCTION IntegerFindMax IS
2 NEWFindMax (ValueType=>Integer, Compare=">");

The operation that we supply to the generic to match the Compare operation is

only checked for structural consistency. The behavior of the operation itself cannot

be tested at compile time. This instantiation creates a new function definition that

takes two Integer variables and returns the bigger one.

111

C++ Templates

Templates in C++ [Stroustrup 1991] are similar to Ada generics; the language

allows definition of template classes and template functions. Template classes allow

the definition of generic types, as in Ada. Similarly, template functions can be used to

define methods that can be specialized by their parameter types. The general syntax

for defining templates in C++ is to mark the class or function using the keyword

template, and the list of parameters the template needs to be instantiated with.

1 template <class T>
2 class Stack
3 {
4 private :
5 int size;
6 T* stackPtr ;
7 public :
8 int push(T&);
9 int pop(T&);

10 int length();
11 }
12

13 template <class T>
14 void Swap(T& left, T& right);

Templates can be used in conjunction with inheritance to provide an alternative

to using pure inheritance as a way of extending functionality. Consider the following

example, where we construct a Print extension to Stack.

1 template <class Stack_Base>
2 class Stack_Print : Stack_Base
3 {
4 public :
5 void print();
6 }

112

In this case, the Stack Print template can be instantiated with any implementation

of Stack. The Print operation is implemented as a layered extension, by making calls

to the primary methods (push, pop, and length) in the Stack Base class. Note that

even though the Stack Print template inherits from the Stack Base class, it may not

use the data members directly since they may be declared private in the Stack Base

class.

The Standard Template Library (STL) for C++ [Musser and Saini 1996] provides

a variety of data collection template classes that can be used in C++ programs.

C++ does not provide a way to specify type restrictions on template parame-

ters. However, at the time of instantiation, if the parameter does not provide all the

methods that the template expects the parameter to provide, the instantiation will

produce a compile time error. For example, in the Stack Print example, if the print

method makes invocations to push, pop, and length on the template parameter, but

the client tried to instantiate it with a class that does not provide these methods, the

instantiation will not succeed.

C# Generics

The next version of the C# language [Archer 2001, Sharp and Jagger 2002], sched-

uled for release of the next version of the .NET framework [Platt 2003, Richter 2002]

will include support for generics [Hejlsberg 2003, Microsoft 2003, Kennedy and Syme

2001]. As with Ada and C++, generics in C# can be used to parameterize classes

and methods. Further, they can also be used to parameterize the new constructs that

C# introduces — interfaces and delegates.

C#, like Ada, does provide constructs to specify constraints on template parame-

ters. For instance, the following listing shows a Dictionary class that is parameterized

113

by a key type K and a value type V, and there is a constraint K that it implements

the IComparable interface.

1 class Dictionary<K, V> where K: IComparable
2 {
3 public void Add(K key, V value)
4 {
5 /* ... */
6 if (key.CompareTo(x) == 0) { /* ... */ }
7 /* ... */
8 }
9 }

At the time of instantiation, the compiler checks to see if the parameter supplied

to the generic actually satisfies the constraints and if not, throws a compile time error.

The .NET framework also comes packaged with a variety of generic data collection

classes, similar to the C++ STL.

6.1.2 OO Frameworks

Object-oriented frameworks [Bosch, Molin, Mattsson and Bengtsson 2000] are an-

other approach that has been used to build parameterized software. Frameworks are a

technique for object-oriented code structuring. An object-oriented framework [Fayad

and Schmidt 1997] provides a set of classes that collaborate in a precise manner to

provide a common architectural framework on which a family of similar products can

be built. The common collaborative structure is captured in the form of key methods,

referred to as template methods in the design patterns literature [Gamma et al. 1995],

that direct the ow-of-control, and call the appropriate hook methods of various classes.

Hook method implementations are deferred to derived-class designers, who provide

implementations appropriate to the individual applications.

114

Since frameworks include abstract classes, they are not executable by themselves.

A framework is specialized to create an executable framework instance by providing

implementations for hooks, in concrete subclasses of the abstract classes. Frameworks

therefore provide a clean approach to building parameterized components in languages

that do not provide constructs to support them. The commonalities are implemented

in the framework, while the variabilities are left open as hooks for the individual

instantiations to fill in. One problem with using OO frameworks to build parame-

terized components, however, is with respect to reasoning about them. Reasoning

about enriched behavior in OO frameworks is inherently difficult, since at the time of

developing the framework, there is no way to predict the different ways in which the

hooks can be specialized in the individual framework instances [Soundarajan 2000].

6.2 Dynamic Reconfiguration

Dynamic reconfiguration has been well studied, and a variety of solutions to the

problem of updating software systems dynamically have been proposed in the liter-

ature. A majority of these solutions are either housed in specialized languages or

architectures that were made with the intent of dynamically reconfigurable systems;

or come with specialized modifications to existing languages.

6.2.1 Specialized Languages and Architectures

DYMOS: Dynamic Modification System

The Dynamic Modification System (DYMOS) proposed by Lee is one of the first

system that supported dynamic software update [Lee 1983]. DYMOS is designed

for *Mod (pronounced “StarMod”) [Cook 1980], a multi-threaded variant of Mod-

ula [Wirth 1980]. DYMOS permits changes to module definitions at various levels

115

— type, function, and data definitions. Loop bodies can be modified at run time as

well, providing a way of infinite loops to be updated so they will terminate.

The DYMOS system performs updates coded in a separate language that can be

used to specify which modules are to be updated, along with conditions of when these

updates are to be performed. These commands are given to a command interpreter

that is housed in the runtime environment; the system also includes a source code

management system and a *Mod compiler. The runtime environment then takes input

from the command interpreter, makes the necessary changes to the source code, runs

the new modules through the compiler, and injects the new modules into the system.

The DYMOS system has complete knowledge of the entire application, as well as any

updates that are performed. This knowledge is exploited in ensuring that all updates

that are applied to the application are, in fact, correct.

Dynamic Reconfiguration in Conic

The Conic system [Kramer and Magee 1985, Magee, Kramer and Sloman 1989,

Kramer and Magee 1990] provides a programming language which is based on Pascal,

a configuration language and a distributed operating system for the construction of

dynamically configurable distributed systems. Each process in a distributed program

in Conic runs on a physically separate node; the configuration of the system is specified

separately from the application code. Reconfiguration in Conic is effected by changing

the configuration program associated with the application, and feeding this to the

operating system. The operating system then can perform the necessary changes.

Conic does not, however, allow the code inside of an application program to be

modified during execution.

116

Dynamic Module Replacement in Argus

The Argus language [Liskov 1988] supports building distributed programs that can

be dynamically reconfigured. The Argus language is based on the CLU programming

language [Liskov 1981, Liskov 1993, Liskov, Snyder, Atkinson and Schaffert 1990].

The system uses the concept of guardians, which are like UNIX processes that can

communicate among themselves using a RPC-like interface. Guardians are also ca-

pable of being restarted if they crash. Each guardian contains within it data objects

that store its state. These data objects, in accordance with the information hiding

principle, are only accessible through invocations of operations (called handlers on the

guardian. Invocations on handlers are passed around as messages between processes.

Guardians are resilient to failures. A part of the guardian’s state is marked as

stable, and this part of the state is saved across crashes. The rest of the state is volatile,

and will be lost as a result of a crash. The guardian’s state can, however, be restored

through a special recovery process that initializes the volatile objects using the data

in the stable objects. The design of the guardian should be in such a way that all

the volatile objects can be derived from the stable objects. A distributed program in

Argus consists of a number of guardians, residing in distributed locations, or nodes.

The connections between the guardians in a system can be rerouted dynamically

providing for a system that allows changes during execution.

Bloom proposed a system that supports dynamic module replacement in Argus

[Bloom 1983, Bloom and Day 1993]. The guardian’s code can be replaced even

while it is running. A collection of guardians, called a subsystem, can be replaced

simultaneously. This allows for flexibility and type-safety, since a guardian G may be

used by others, and replacing G may also involve replacing the others that depend on

117

G. Before a guardian (or guardians in a subsystem) can be replaced, it is forced into

a quiescent state so that no new transactions occur while the replacement is taking

place. Once the reconfiguration is complete, the lookup calls are exchanged among

the guardians, so that the new guardians can be recognized.

Day proposed another system of reconfiguration using the crash recovery features

of Argus [Day 1987]. To effect the replacement of a guardian, the old state of the

guardian is encoded and stored. The old guardian is then crashed. A new guardian is

then started, decodes the old guardian’s state, and restores itself to a consistent state

in the system. The new guardians are discovered through new lookup calls, similar

to Bloom’s system.

The state transmission methods [Herlihy and Liskov 1982] that Argus and its

associated dynamic reconfiguration systems use are the biggest contribution that in-

fluenced our work on dynamic module replacement using service facilities. These state

transmission methods do come at a performance burden, but guarantee consistency

in system state.

The PolyLith Software Bus

PolyLith [Hofmeister 1993, Purtilo 1990] is a distributed programming system

that supports reconfiguration. The system provides for structural, geometric and

modular reconfiguration in systems. Similar to Conic and Argus, distributed systems

built on PolyLith run on a collection of processes, and all communication between

processes is defined by special libraries using the PolyLith bus.

Since the PolyLith bus controls all communication in the application that is

being reconfigured, it can manage the exact time of reconfiguration by controlling

the order and timing of the delivery of messages between processes. The bus can

118

also work with the application module in capturing the abstract state of the module

across a reconfiguration step. The methodology used here is similar to Argus, in that

the system uses the value transmission method over abstract data types proposed

by [Herlihy and Liskov 1982]. The PolyLith system, like our system, expects the

module that is being replaced to provide operations to externalize its state to an

abstract value, and to internalize the abstract value to construct its new state.

The system also allows structural changes to the application. Processes can be

added or removed during execution. This is done in a fashion similar to the one

used in Conic — the configuration changes are written as events in a configuration

language, and the PolyLith bus uses these events to effect the change.

Dynamic Software Updating using Popcorn and TAL

Hicks presents a system of updating functionality in a running system [Hicks

2001]. Hicks’ system uses Popcorn [Morrisett, Crary, Glew, Grossman, Samuels,

Smith, Walker, Weirich and Zdancewic 1999], a C-like language that includes some

enhancements such as more flexible variable declarations, and a C++-like namespace

system. The language also improves on C by disallowing pointer arithmetic and

pointer casts. Popcorn also includes exceptions and parametric polymorphism.

Dynamic configuration changes are implemented as patches in Typed Assembly

Language (TAL) [Morrisett, Walker, Crary and Glew 1999]. TAL extends assembly

language with typing rules and annotations, and memory management primitives.

The dynamic patches that Hicks’ system uses is based on the idea of verifiable native

code [Necula 1997]. The use of verifiable code increases the robustness of both the

running program that is being updated, as well as the dynamic patches.

119

DRSS: Dynamic Reconfiguration Subsystem

The Dynamic Reconfiguration Subsystem (DRSS, pronounced ’Doris’) [Hallstrom

et al. 2003] is an open container architecture (i.e. extensible hosting environment)

similar to those used to host Enterprise Java Beans [SunMicrosystems 2001]. The

DRSS container provides dynamic reconfiguration services to its hosted instances,

without the components having been explicitly designed to support dynamic recon-

figuration. The runtime reconfiguration services provided by the platform include the

ability to dynamically add, remove, and replace component implementations (similar

to the work presented in [Rodrigues, Castro and Liskov 2001, Sridhar et al. 2003]), as

well as the ability to dynamically deploy cross-cutting modifications, while managing

the scope of their effect.

The DRSS architecture is loosely based on the Interceptor design pattern [Schmidt,

Stal, Rohnert and Buschmann 2000]. At the core of the DRSS architecture lies a set of

interceptor chains that monitor message flow in and out of the component that needs

to be reconfigured. Every message flowing into the component goes through the

receive chain of interceptors. Each of these interceptors could modify the message, or

may perform additional tasks. Once the message has been handled by the component,

outgoing messages flow through the send chain of interceptors. The behavior of the

component is altered at run time by choosing the set of interceptors to apply in the

send and receive chains. The interceptor chains support dynamic addition/deletion,

allowing components hosted in DRSS to be modified on the fly.

120

6.2.2 Language/Architecture Enhancements

HADAS

The HADAS system [Ben-Shaul et al. 2001] allows the construction of software

components in Java that can be reconfigured at runtime. Components in HADAS

are composed of multiple parts that encapsulate different aspects of the component

such as memory management, operations, data, etc. Reconfiguring a component

would involve changing one of these parts that make up the entire component. This

approach is, however, tied intimately with the HADAS runtime environment and is

not programming-language neutral.

Dynamic C++ Classes

Dynamic C++ classes [Hjálmtýsson and Gray 1998] extend C++ using a library

approach where C++ classes can be altered at runtime. They allow for new func-

tionality to be introduced into an executing program without sacrificing type safety

or performance. This work also uses an extra level of indirection to allow for replace-

ment. The client program holds a reference to a proxy (which is an instance of a new

class called Dynamic introduced in the system), which holds references to multiple

versions of the same class. Constructor calls from the client are always sent to the

most recent version, while other method invocations are sent to the class that created

the object.

This is similar to our approach, except that existing instances of a class that has

been replaced cannot be changed. The model requires holding on to the old class as

long as the last instance from that class is still alive. This may not be possible doing

some useful program restructuring activities.

121

Dynamic Java

Dynamic Java [Andersson, Comstedt and Ritzau 1998] is an extension to Java that

has been proposed to allow for dynamic updates to be performed on Java systems. The

system, like with the dynamic C++ classes, allows multiple versions of the same class

to coexist. The system modifies the class java.lang.Class in the Java class library, and

adds a new data field substitute to this class. The substitute field contains a reference

to the next available version of the class, if any. Unlike the case with dynamic C++

classes, existing instances of the old version of the class are converted to instances

of the new class. However, all the instances are not transferred over at the time the

new class is loaded. Instead, the cost of transfer is amortized over the instances by

adopting a lazy approach to the transfer. After the new class has been loaded, the

first time an instance is accessed through a method invocation, it is first transferred

and then the method is executed. This system also depends on the class (the old and

new versions) to provide the methods to transmit state.

Dynamic Java Virtual Machine

Malabarba et al. have proposed an extension to the Java virtual machine to

support dynamic reconfiguration [Malabarba et al. 2000]. In their system, they ex-

tend the virtual machine by creating a new class loader to replace Java’s default class

loader [Liang and Bracha 1998, Qian, Goldberg and Coglio 2000]. The system includes

a new class loader called DynamicClassLoader which extends the regular ClassLoader

class that is included in Java. Rather than using the Java ClassLoader to load and

resolve references to classes in Java programs, the authors use the new DynamicClass-

Loader. Any class loaded by this class loader is automatically a dynamic class — it

122

can be modified at run time. The DynamicClassLoader class includes methods called

reloadClass and replaceClass that can be used by an administrator to perform dynamic

reconfiguration.

In this work, Malabarba et al. also include details about type-safety issues of

when a class can be updated, and replaced with a new one. The system also handles

the different object update models that the Dynamic Java system from [Andersson

et al. 1998] considers — version barrier, global update, passive partitioning, and active

partitioning.

123

CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

This dissertation set out to defend the following thesis:

1. Parameterized programming provides a strong basis for building reusable soft-

ware components, and delaying the binding of parameters to a component until

run time increases the flexibility of these components.

2. A methodology for dynamic parameterization can be built as a design pattern

that places minimal restrictions on the target programming language.

3. Software systems built from dynamically bound parameterized components can

adapt to changes in the environment during system execution, and need not

require re-starting the system.

In defense of parts (1) and (2), we presented the Service Facility pattern in Chap-

ter 3 as a way of building dynamically bound parameterized components. In Chap-

ter 4, we presented ways to ensure that the dynamic binding of parameters to parame-

terized components built using the Service Facility pattern is type-correct. In defense

124

of part (3), we showed in Chapter 5 how the components built using the Service

Facility pattern can be dynamically reconfigured through module replacement.

An important point that we laid out in the beginning of this dissertation was that

the ideas presented here should be immediately accessible to the software development

community. We have stayed true to this goal throughout this research program. All

of the contributions are housed in technologies that have been widely accepted, and

used by developers. We have not made any specialized modifications to programming

languages or environments. Instead, we have describe a stylized, disciplined way of

programming using available technologies, such as Java, .NET, and XML, that can

be used by any developer who works with these technologies.

7.2 Future Work

7.2.1 Component Containers

Component containers [SunMicrosystems 2001] provide a model of component-

based software engineering where the component designer deals only with the specific

functionality that the component must export. Once the functional code has been

implemented, the component is dropped inside the container, which encapsulates a

variety of orthogonal, non-functional services depending on the environment, and

the requirements of the component. In this context, a container is an extensible

environment that provides runtime support to the objects it hosts. To be clear,

the traditional object-oriented programming literature [Meyer 1988] uses the term

container to refer to classes that serve as collections of objects (e.g., lists, stacks,

queues). We refer to these classes as collection classes, reserving the term container

to refer to an extensible object hosting environment. Similar to an operating system

125

hosting processes, a container hosts objects, transparently providing services to the

objects it hosts. That is, hosted objects are imbued with additional services just by

virtue of executing within the container, with little or no additional programming

effort on the part of the class designer. Containers provide a model of object-oriented

software development that supports a clean separation of concerns between core object

functionality, and system-level peripheral services.

As such, containers are a nice way of imposing architecture for the components,

in the form of how the components need to be built and how they need to be com-

posed. The abstraction of the container in which a particular component resides is

the abstract view of the component when considering composition. So when reason-

ing about compositional behavior, it is important to consider each component in the

system in conjunction with the container it is placed in. When considering compo-

sition analysis of a component-based system built using a container technology, two

kinds of container–component interaction need to be considered:

1. Container functionality is seen as added functionality (e.g., exporting the com-

ponent as a web service)

2. Each operation to the component is augmented with container services (e.g.,

logging, pre-condition checking, etc.)

The problem with this view of containers comes when we try to reason about

composition. The regular theories of composition do not account for the changes in

the interface of the component that we are trying to reason about — and this is what

happens when using containers. Under various circumstances, we may not be able

126

to predict how the components in the system interact with one another, or how a

particular container influences the behavior of a component inside it.

Containers as Parameterized Components

In our model, we do not make a distinction between components and containers.

Instead, we view all components in the system alike. Depending on the particular

part of the system that a particular component is in, it could provide different kinds

of services in addition to the functionality that the component designer writes. These

extra services could, in fact, be written by the component designer himself, but that

would go against the whole philosophy of component-based software engineering,

which is to increase reuse.

One observation to be made is that the kinds of services that we are dealing with

here are concerns that are potentially (in fact, usually) completely orthogonal to the

actual functionality of the component. For instance, a WebSearch component may

also want to make use of a logging service. Such a logging service can be devel-

oped completely independent of the specific component it is being used in. In fact,

the logging code looks exactly the same regardless of what the functionality of the

component is.

These are the kinds of services that can be weaved in as aspects [Kiczales et al.

1997]. While aspect-oriented programming can be used for a variety of situations,

and for providing a spectrum of services, there are limitations. For instance, the code

weaving is done on source code, before deployment. This has several problems:

1. Source code instrumentation generally makes it much harder to prove correct-

ness of programs;

127

2. No changes to these services can be made once the program has started execut-

ing.

3. Often, a developer does not have access to every component’s source code.

Another approach to solving this same problem is to use parameterized compo-

nents, where each of these services, such as logging, load balancing, etc., is imple-

mented in its own module, and these modules are bound as parameters to the com-

ponent that we are building. The component can take a varying number of template

parameters(using the Service Facility pattern), and thus provide a varying number

and kinds of services in different instantiations. One very important consideration

with such parameterized components that could drastically affect their usefulness is

the time of binding parameters to the template. If the implementation mechanism

used is compile-time binding as with C++ templates, we are faced with a similar

problem as with AOP — the services are statically bound, and no changes are pos-

sible after instantiation. The other problem that we saw with AOP, however, goes

away — since reasoning about the behavior of parameterized components does not

involve dealing with source code instrumentation.

The Service Facility pattern is aimed at building scalable, yet verifiable component-

based systems. The pattern also provides a clean way to construct extensible param-

eterized components. We plan to explore the construction of extensible containers

using the Service Facility pattern. This work is ongoing research, and some prelimi-

nary results are presented in [Sridhar and Hallstrom 2003].

128

7.2.2 Towards a Component Model

Modularity [Baldwin and Clark 2000] and changeability [Parnas 1979] in software

systems have been studied by many researchers in academia over the years. Further,

reusable software components have been recognized as an effective way to realize these

principles in software systems.

Several different definitions and accompanying theories of software components

have been proposed. While these definitions may disagree on specifics, most of them

agree on a few general characteristics components should possess. The most impor-

tant, and widely accepted, of these characteristics are:

• Components are reusable, and support local certification (modular verification)

of component properties;

• Components support predictable assembly — properties of a system composed

of smaller components can be derived (predicted) from the properties of the

constituent components;

• Components are units of change, and hence support reconfiguration

Although several such theories exist [Sitaraman and Weide 1994, Szyperski 1997,

Szyperski 2003], there is no model of development that the industry can use to de-

velop components with all these characteristics. The purported software component

industry of today only comes close to some of these characteristics; it is constrained by

the development model into which these theories are shoe-horned — object-oriented

languages such as Java, C++, and C#.

In order to be able to realize the full potential of component-based software, we

need to move beyond these object-oriented languages. We need to build new languages

129

in which true component-based systems can be engineered. Researchers must focus

on bringing the languages that they use as research vehicles into the mainstream so

developers can actually use them in building real, enterprise-scale systems.

However, just coming up with a new language is not going to be enough. The

development community today is too entrenched in using languages such as Java to

readily accept such a change. While the majority of the research energy should be

invested in developing the “science of design” for good software components, a strong

emphasis also should be placed on easing the transition into the new paradigm. In

the absence of such a comfortable transition, these new tools may never see the light

of day in the software development industry.

In order to accommodate the development community’s reluctance to move away

from object-oriented languages, the aforementioned transition must be housed in

these very languages. The Service Facility pattern offers a way for components built

in these languages to have the properties listed above. One of the future directions

for work on the Service Facility pattern is to develop it into a component model

that developers can use as a crutch to shift incrementally from the object-oriented

programming paradigm into the component-oriented programming paradigm.

130

APPENDIX A

UNIFIED MODELING LANGUAGE NOTATION

A.1 Introduction

The Unified Modeling Language (UML) [Booch et al. 1998, Jacobson, Booch and

Rumbaugh 1999] is a standardized language used for specifying, visualizing, con-

structing, and documenting artifacts of software systems. UML is used at various

phases of the software development life cycle to develop and communicate models of

the software system. UML static structure diagrams are used early on in the system

design phase to establish the different components of the system, as well as the static

relationships between them. The UML also includes other model languages for the

other phases of the development life cycle, but these other languages are outside of

the scope of this document. We only present the static structure notation that is

useful in understanding the UML diagrams that we use to describe design patterns

in this dissertation.

131

A.2 Static Structure Notation

A.2.1 Interface

An interface (abstract component) is denoted by using a rectangular box separated

into two rows (Figure A.1). The top row contains the name of the interface, preceded

by the stereotype <<interface>>. The bottom row contains the list of methods that

this interface exports. The names of the methods are written in italic font to denote

that these are just method signatures, and that the interface does not contain any

implementations for the methods.

«interface»
Interface

Figure A.1: A UML interface

A.2.2 Class

A class (concrete component) is denoted using a rectangular box (similar to the

interface box) with three rows (Figure A.2). The top row, like in the interface box

contains the name of the class. The middle row contains the list of data members

that the class contains. The bottom row contains the list of methods included in this

class.

132

Class

Figure A.2: A UML class

A.3 Relationships

A.3.1 Uses

The uses relationship is used whenever one class depends on another class in some

way. The relationship is denoted by drawing a solid line with an open arrow at the

end (Figure A.3).

Figure A.3: The uses arrow

When drawn between two classes, it means that ClassA makes a reference to ClassB

in its code, and the dependency is a concrete-to-concrete (class-to-class) dependency

(Figure A.4). The name of ClassB actually occurs in the code of ClassA.

The uses relation can also be established between a class ClassA and an interface

Interface (Figure A.5). When used in this manner, ClassA’s code does not name any

particular implementation of Interface, but can use any implementation of Interface.

This is a concrete-to-abstract dependency.

133

ClassA

ClassB

Figure A.4: The uses relation

ClassA

«interface»
Interface

Figure A.5: The uses interface between a class and an interface

A.3.2 Extends

The extends relationship in UML is used to denote inheritance. Extends is a

binary relationship that exists between two entities of the same kind (both classes,

or both interfaces). The relationship is shown by drawing a solid line with a closed,

but unshaded arrowhead (Figure A.6).

Figure A.6: The extends arrow

134

When a class ClassB extends another class ClassA, the derived class ClassB inherits

all the data members, as well as the methods that are included in the base class ClassA

(Figure A.7). Interface inheritance works the same way, except that only the signa-

tures of the methods are inherited, since interfaces do not contain implementations

for the methods.

ClassA

ClassB

Figure A.7: The extends relation

A.3.3 Implements

A class implements an interface when it provides a realization for all the method

signatures in the interface. The relationship is shown by drawing a dashed line with

a closed, but unshaded arrowhead (Figure A.8).

135

Figure A.8: The implements arrow

For a class Class to implement an interface Interface, the Class must provide im-

plementations for all the methods in the Interface (Figure ??). If any methods are

left out, this is not a legal relationship.

«interface»
Interface

Class

Figure A.9: The implements relation

136

A.3.4 Instantiates

The instantiates relation is used when objects of one class create instances of

another class. The relationship is shown by drawing a dashed line with an open

arrowhead (Figure A.10).

Figure A.10: The instantiates arrow

When this relation exists between two classes ClassA and ClassB, the code in

ClassA includes a call to the constructor of ClassB (Figure A.11). Since in most

object-oriented languages the name of the constructor is the same as the name of the

class, this is usually a concrete-to-concrete relationship.

ClassA

ClassB

Figure A.11: The instantiates relation

A.3.5 Composition

The composition relationship is used to denote that one class includes as part

of its state an instance of another class. The relation is shown by drawing a solid

137

line between the two classes, with a diamond on the side of the class that owns the

instance (Figure A.12).

Figure A.12: The composition arrow

One of ClassA’s data members is an instance of ClassB. When drawn between

two classes, this relationship is a concrete-to-concrete relationship because again, the

name of ClassB occurs in ClassA’s code (Figure A.13).

ClassA

ClassB

Figure A.13: The composition relation

The relationship can also be shown between a class ClassA and an interface Inter-

face; this shows a concrete-to-abstract relation (Figure A.14). Only the name of the

Interface occurs in the code of ClassA. An instance of any implementation of Interface

is handed to the ClassA instance.

138

ClassA

«interface»
Interface

Figure A.14: The composition relation between a class and an interface

139

BIBLIOGRAPHY

Alexander, C.: 1977, A Pattern Language, Oxford University Press, New York, NY.

Alexander, C.: 1979, The Timeless Way of Building, Vol. 1 of Center for Environ-
mental Structure Series, Oxford University Press, New York, NY.

Andersson, J., Comstedt, M. and Ritzau, T.: 1998, Run-time support for dynamic
java architectures, Proceedings of the ECOOP’98 Workshop on Object-Oriented
Software Architectures, Brussels. Available as Technical report 13/98 University
of Karlskrona/Ronneby.

Archer, T.: 2001, Inside C#, Microsoft Press.

Baldwin, C. and Clark, K.: 2000, Design Rules: The Power of Modularity, Vol. 1,
MIT Press, Cambridge, MA.

Barnes, J. G. P.: 1989, Programming ADA, Addison-Wesley Longman Publishing
Co., Inc.

Barnett, M. and Schulte, W.: 2001, The ABCs of specification: AsmL, Behavior, and
Components, Informatica 25(4).

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B. and Sirkin, M.: 1994, The
GenVoca model of software-system generators, IEEE Software 11(5), 89–94.

Baumgartner, G., Läufer, K. and Russo, V.: 1996, On the interaction of object-
oriented design patterns and programming languages, Technical Report CSD-
TR-96-020, Department of Computer Science, Purdue University .

Beck, K. and Cunningham, W.: 1987, Using pattern languages for object-oriented
programs, OOPSLA’87: Object-Oriented Programming, Systems, Languages,
and Applications Conference, Proceedings.

Ben-Shaul, I., Holder, O. and Lavva, B.: 2001, Dynamic adaptation and deployment
of distributed components in HADAS, IEEE Transactions on Software Engineer-
ing 27(9), 769–787.

140

Bloom, T.: 1983, Dynamic Module Replacement in a Distributed Programming Sys-
tem, PhD thesis, Laboratory for Computer Science, The Massachussets Institute
of Technology, Cambridge MA.

Bloom, T. and Day, M.: 1993, Reconfiguration and module replacement in argus:
Theory and practice, IEE Software Engineering Journal 8(2), 102–108.

Booch, G.: 1987, Software Components with ADA, Benjamin-Cummings Publishing
Co., Inc.

Booch, G., Rumbaugh, J. and Jacobson, I.: 1998, The Unified Modeling Language
User Guide, Addison-Wesley, Reading, MA.

Bosch, J., Molin, P., Mattsson, M. and Bengtsson, P.: 2000, Object-oriented
framework-based software development: problems and experiences, ACM Com-
puting Surveys 32(1es), 3.

Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P.: 1998, Making the future
safe for the past: Adding genericity to the java programming language, Proceed-
ings of the conference on Object-oriented programming, systems, languages, and
applications, ACM Press, pp. 183–200.

Brooks, F. P.: 1975, The Mythical Man-Month, Addison-Wesley Publishing Co.,
Reading, Mass.

Bruce, K., Cardelli, L., Castagna, G., Group, T. H. O., Leavens, G. T. and Pierce,
B.: 1995, On binary methods, Theory and Practice of Object-Oriented systems
1(3), 221–242.

Büchi, M. and Weck, W.: 2000, Generic wrappers, Proceedings of the European Con-
ference on Object-Oriented Programming 2000, number 1850 in Lecture Notes in
Computer Science, Springer-Verlag, pp. 201–225.

Buxton, W.: 2001, Less is more (more or less), in P. J. Denning (ed.), The Invisible
Future: the seamless integration of technology into everyday life, McGraw Hill,
pp. 145–179.

Cardelli, L.: 1984, A semantics of multiple inheritance, in G. Kahn, D. MacQueen and
G. Plotkin (eds), Semantics of Data Types, International Symposium, Sophia-
Antipolis, France, Springer-Verlag, pp. 51–67. LNCS 173.

Castagna, G.: 1995, Covariance and contravariance: Conflict without a cause, ACM
Transactions on Programming Languages and Systems 17(3), 431–447.

Cheon, Y.: 2003, A runtime assertion checker for the java modeling language, Techni-
cal Report TR #03-10, Department of Computer Science, Iowa State University.

141

Cook, R. P.: 1980, *Mod — a language for distributed computing, IEEE Transactions
on Software Engineering 6(6), 563–571.

Day, M.: 1987, Replication and reconfiguration in a distributed mail repository, Mas-
ter’s thesis, Laboratory for Computer Science, The Massachussets Institute of
Technology, Cambridge MA.

Dijkstra, E. W.: 1972, Notes on structured programming, in O. Dahl, E. Dijkstra
and C. Hoare (eds), Structured Programming, number 8 in A.P.I.C. Studies in
Data Processing, Academic Press, chapter 1, pp. 1–82.

Edwards, S. H., Heym, W. D., Long, T. J., Sitaraman, M. and Weide, B. W.: 1994,
Specifying Components in RESOLVE, Software Engineering Notes 19(4), 29–39.

Edwards, S. H., Shakir, G., Sitaraman, M., Weide, B. W. and Hollingsworth, J.:
1998, A framework for detecting interface violations in component-based soft-
ware, Proceedings: Fifth International Conference on Software Reuse, pp. 46–55.

Endler, M.: 1992, Support for consistency-preserving dynamic reconfigurations in
distributed systems, Proceedings of the 3rd Workshop on Future Trends of Dis-
tributed Computing Systems, IEEE Computer Society Press, Los Alimitos, Cal-
ifornia, pp. 185–91.

Fayad, M. and Schmidt, D.: 1997, Object-oriented application frameworks, Commu-
nications of the ACM, Special Issue on Object-Oriented Application Frameworks
40(10).

Feldman, M. B.: 1996, Software Construction and Data Structures with ADA 95,
Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: 1995, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley.

Gibbs, W. W.: 1994, Software’s chronic crisis, Scientific American (International
Edition) pp. 72–81.

Goguen, J.: 1984, Parameterized programming, IEEE TSE SE–10(5), 528–543.

Goguen, J. and Malcolm, G.: 1996, Algebraic Semantics of Imperative Programs, MIT
Press.

Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K. and Jouannaud, J.-P.: 1993,
Introducing OBJ, in J. Goguen (ed.), Applications of Algebraic Specification
using OBJ, Cambridge.

142

Hallstrom, J. O., Leal, W. M. and Arora, A.: 2003, Scalable evolution of highly-
available systems, IEICE/IEEE Joint Special Issue on Assurance Systems and
Networks . (to appear).

Hallstrom, J. O. and Soundarajan, N.: 2002, Incremental development using object-
oriented frameworks: A case study, Journal of Object Technology 1(3).

Harold, E. R. and Means, W. S.: 2, XML in a Nutshell, 2nd edn, O’Reilly & Asso-
ciates.

Harrison, W. and Ossher, H.: 1993, Subject-oriented programming: a critique of pure
objects, Proceedings of the eighth annual conference on Object-oriented program-
ming systems, languages, and applications, ACM Press, pp. 411–428.

Hejlsberg, A.: 2003, Visual C# “Whidbey”: Language enhancements, Presentation
at Microsoft Professional Developers Conference 2003.

Herlihy, M. P. and Liskov, B.: 1982, A value transmission method for abstract data
types, ACM Transactions on Programming Languages and Systems (TOPLAS)
4(4), 527–551.

Hicks, M.: 2001, Dynamic Software Updating, PhD thesis, Department of Computer
and Information Science, University of Pennsylvania.

Hjálmtýsson, G. and Gray, R.: 1998, Dynamic C++ classes, Proceedings of the
USENIX 1998 Annual Technical Conference, USENIX Association, Berkeley,
USA, pp. 65–76.

Hofmeister, C. and Purtilo, J. M.: 1993, Dynamic reconfiguration in distributed
systems: Adapting software modules for replacement, International Conference
on Distributed Computing Systems, pp. 101–110.

Hofmeister, C. R.: 1993, Dynamic Reconfiguration of Distributed Applications, PhD
thesis, Department of Computer Science, University of Maryland.

Jacobson, I., Booch, G. and Rumbaugh, J.: 1999, The Unified Software Development
Process, Addison-Wesley.

JML: n.d., The java modeling language home page, URL:http://www.jmlspecs.org.

Kennedy, A. and Syme, D.: 2001, Design and implementation of generics for the .NET
common language runtime, Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation, ACM Press, pp. 1–12.

143

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.
and Irwin, J.: 1997, Aspect-oriented programming, in M. Akşit and S. Matsuoka
(eds), Proceedings European Conference on Object-Oriented Programming, Vol.
1241, Springer-Verlag, Berlin, Heidelberg, and New York, pp. 220–242.

Kramer, J. and Magee, J.: 1985, Dynamic configuration for distributed systems,
IEEE Transactions on Software Engineering SE-11(4), 424–436.

Kramer, J. and Magee, J.: 1990, The evolving philosophers problem: Dynamic change
management, IEEE Transactions on Software Engineering 16(11), 1293–1306.

Lamport, L. and Lynch, N.: 1990, Distributed computing: Models and methods,
in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. B,
Elsevier Science Publishers, chapter 18, pp. 1157–1199.

Lee, I.: 1983, DYMOS: A Dynamic Modification System, PhD thesis, Department of
Computer Science, University of Wisconsin, Madison, WI.

Liang, S. and Bracha, G.: 1998, Dynamic class loading in the java virtual machine,
Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, ACM Press, pp. 36–44.

Liskov, B.: 1981, CLU reference manual, Vol. 114 of Lecture Notes in Computer
Science, Springer-Verlag Inc., New York, NY, USA.

Liskov, B.: 1988, Distributed programming in argus, CACM 31(3), 300–312.

Liskov, B.: 1993, A history of CLU, ACM SIGPLAN Notices 28(3), 133–147.

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C.: 1990, Abstraction mecha-
nisms in CLU, in S. B. Zdonik and D. Maier (eds), Readings in Object-Oriented
Database Systems, Kaufmann, San Mateo, CA, pp. 47–58.

Lynch, N.: 1996, Distributed Algorithms, Morgan Kaufmann Publishers, San Fran-
cisco, California.

Magee, J., Kramer, J. and Sloman, M.: 1989, Constructing distributed systems in
conic, IEEE Transactions on Software Engineering 15(6), 663–675.

Malabarba, S., Pandey, R., Gragg, J., Barr, E. and Barnes, J. F.: 2000, Runtime
support for type-safe dynamic java classes, Proceedings of the 14th European
Conference on Object-Oriented Programming, pp. 337–361.

Meyer, B.: 1988, Object-Oriented Software Construction, Prentice-Hall.

Meyer, B.: 1992, Design by contract, Prentice Hall, chapter 1.

144

Meyer, B.: 2001, Overloading vs. object technology, Journal of Object Oriented Pro-
gramming .

Microsoft: 2002a, Microsoft Visual C# .NET Language Reference, Microsoft Press,
Redmond, Washington.

Microsoft: 2002b, Vs live conference.

Microsoft: 2003, Professional developers conference, Microsoft Corporation, Los An-
geles, CA.

Moore, G. E.: 2000, Cramming more components onto integrated circuits, Readings
in computer architecture, Morgan Kaufmann Publishers Inc., pp. 56–59.

Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S. and Zdancewic, S.: 1999, TALx86: A realistic typed assembly
language, Second Workshop on Compiler Support for System Software, Atlanta,
GA.

Morrisett, G., Walker, D., Crary, K. and Glew, N.: 1999, From system F to typed
assembly language, ACM Transactions on Programming Languages and Systems
21(3), 527–568.

Musser, D. R. and Stepanov, A. A.: 1989, The Ada Generic Library linear list pro-
cessing packages, Springer-Verlag New York, Inc.

Musser, D. and Saini, A.: 1996, STL Tutorial and Reference Guide: C++ Program-
ming with the Standard Template Library, Addison-Wesley.

Necula, G. C.: 1997, Proof-carrying code, Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM Press,
pp. 106–119.

Neilsen, M. L. and Mizuno, M.: 1991, A dag-based algorithm for distributed mutual
exclusion, Proceedings of the 11th International Conference on Distributed Com-
puting Systems (ICDCS), IEEE Computer Society, Washington, DC, pp. 354–
360.

Parnas, D. L.: 1972, On the criteria to be used in decomposing systems into modules,
Communications of the ACM 15(12), 1053–1058.

Parnas, D. L.: 1979, Designing software for ease of extension and contraction, IEEE
Transactions on Software Engineering SE-5(2), 128–138.

Platt, D. S.: 2003, Introducing Microsoft .NET, 3 edn, Microsoft Press.

145

Purtilo, J. M.: 1990, The PolyLith software bus, Technical Report University of
Maryland Institute for Advanced Computer Studies Report No. UMIACS-TR-
90-65, University of Maryland at College Park.

Qian, Z., Goldberg, A. and Coglio, A.: 2000, A formal specification of java class
loading, Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, ACM Press, pp. 325–336.

Raymond, K.: 1989, A tree-based algorithm for distributed mutual exclusion, ACM
TOCS 7(1), 61–77.

Richter, J.: 2002, Applied Microsoft .NET Programming, Microsoft Press.

Robinson, S.: 2002, Advanced .NET Programming, Wrox Press.

Rodrigues, R., Castro, M. and Liskov, B.: 2001, BASE: Using abstraction to improve
fault tolerance, Proceedings of the 18th ACM Symposium on Operating System
Principles, Banff, Canada, pp. 15–28.

Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F.: 2000, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, Vol. 2
of Software Design Patterns, John Wiley & Sons Ltd”, West Sussex, England.

Sharp, J. and Jagger, J.: 2002, Microsoft Visual C# .NET Step by Step, Microsoft
Press.

Sitaraman, M. and Weide, B. W.: 1994, Special feature: Component-based software
using RESOLVE, ACM SIGSOFT Software Engineering Notes 19(4), 21–67.

Sitaraman, M., Weide, B. W., Long, T. J. and Ogden, W. F.: 2000, A data abstraction
alternative to data structure/algorithm modularization, in M. Jazayeri, R. Loos
and D. Musser (eds), Generic Programming, Vol. 1766 of LNCS, Springer-Verlag,
pp. 102–113.

Soundarajan, N.: 2000, Documenting framework behavior, ACM Computing Surveys
(CSUR) 32(1es), 14.

Sridhar, N. and Hallstrom, J. O.: 2003, Generating configurable containers
for component-based software, Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering.

Sridhar, N., Pike, S. M. and Weide, B. W.: 2003, Dynamic module replacement
in distributed protocols, Proceedings of the 23rd International Conference on
Distributed Computing Systems, pp. 620–627.

146

Sridhar, N. and Weide, B. W.: 2003, Reasoning about parameterized components with
dynamic binding, Proceedings of the Workshop on Specification and Verification
of Component-Based Systems at ESEC/FSE 2003, Helsinki, Finland, pp. 92–95.

Sridhar, N., Weide, B. W. and Bucci, P.: 2002, Service facilities: Extending abstract
factories to decouple advanced dependencies, Proceedings of the 7th International
Conference on Software Reuse, pp. 309–326.

Stroustrup, B.: 1991, The C++ Programming Language, second edn, Addison-Wesley,
Reading, MA.

SunMicrosystems: 2001, J2ee 1.3 specification,
http://java.sun.com/j2ee/download.html.

Szyperski, C.: 1999, Components and objects together, Software Development 7(5).

Szyperski, C.: 2003, Component technology: what, where, and how?, Proceedings of
the 25th International Conference on Software Engineering, pp. 684–693.

Szyperski, C. A.: 1997, Component Software: Beyond Object-Oriented Programming,
Addison-Wesley.

Tardo, J. J.: 1981, The design, specification, and implementation of OBJ-T: A lan-
guage for writing and testing abstract algebraic program specifications, PhD the-
sis, Department of Computer Science, University of California Los Angeles.

Tarr, P., Ossher, H., Harrison, W. and Sutton, S. M.: 1999, N degrees of separation:
multi-dimensional separation of concerns, Proceedings of the 21st international
conference on Software engineering, IEEE Computer Society Press, pp. 107–119.

Thimbleby, H.: 1988, Delaying commitment, IEEE Software 5(3), 78–86.

van der Linden, P.: 1998, Just Java 2, Prentice Hall.

Weide, B., Edwards, S., Heym, W. and Long, T.: 1994, Characterizing observability
and controllability of software components, Proceedings of the 4th International
Conference on Software Reuse, pp. 62–71.

Weide, B. W.: 2002, Component-based systems, in J. J. Marciniak (ed.), Encyclopedia
of Software Engineering, John Wiley and Sons.

Weide, B. W., Ogden, W. F. and Sitaraman, M.: 1994, Recasting algorithms to
encourage reuse, IEEE Software 11(5), 80–88.

Wirth, N.: 1980, Modula-2, Technical Report Report 36, Institut für Informatik, ETH,
8092 Zürich, Switzerland.

147

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Figures
	Introduction
	The Problem
	The Proposed Approach
	The Thesis
	Contributions
	Organization of the Thesis

	Parameterized Components
	Introduction
	Static Parameterization
	Dynamic Parameterization
	Dependent Parameterization
	Chapter Summary

	The Service Facility Design Pattern
	Introduction
	Dependencies in Software Systems
	Design Patterns
	The Abstract Factory Pattern
	The Proxy Pattern
	The Strategy Pattern

	The Service Facility Pattern
	Implementing Service Facilities
	Performance Considerations
	Enhancements
	Separating Code from Data
	Serflets: Keeping Code and Data Together
	Mediation in Service Facility Wrappers

	Bringing It All Together: Resource Allocation Example
	Chapter Summary

	Ensuring Type-Correct Dynamic Parameter Binding
	Introduction
	Specifying Parameterized Components
	Specifying Serfs in RESOLVE
	Realizing RESOLVE Contracts as Serfs

	Specifying Dynamically-Bound Parameterized Components
	Instantiation-Checking Components
	Chapter Summary

	Dynamic Reconfiguration using the Service Facility Pattern
	Introduction
	Dynamic Reconfiguration
	Dynamic Module Replacement
	Conditions for Dynamic Module Replacement

	Dynamic Module Replacement using Service Facilities
	Allowing Reconfiguration

	Case Study: Mutual Exclusion
	Performance Considerations

	Distributed Service Facilities
	Chapter Summary

	Related Work
	Parameterized Programming
	Language Support
	OO Frameworks

	Dynamic Reconfiguration
	Specialized Languages and Architectures
	Language/Architecture Enhancements

	Conclusions
	Summary of Contributions
	Future Work
	Component Containers
	Towards a Component Model

	Unified Modeling Language Notation
	Introduction
	Static Structure Notation
	Interface
	Class

	Relationships
	Uses
	Extends
	Implements
	Instantiates
	Composition

	Bibliography

