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ABSTRACT 
 

 

 

Flow and heat transfer inside non-isothermal, incompressible, flat and inclined 

squeezed thin films are analyzed in this study. Analytical solutions for the flow, 

temperature distribution and heat transfer under different physical constraints are 

obtained. For an oscillatory squeezed thin films, the influence of the thermal squeezing 

parameter, Eckert number, pressure gradient inside the thin film, internal pressure 

pulsations, the stiffness of the supporting seal, presence of suspended ultrafine particles 

in the fluid and the motion characteristics of the oscillating boundary of a thin film are 

determined on the flow and heat transfer process inside thin films.  

This study is extended to consider flow inertia, hydromagnetic and buoyancy 

effects on the flow and heat transfer inside oscillatory squeezed thin films. Also, flow and 

heat transfer is considered in thin films having the boundary squeezing effects caused by 

the fluctuation in the applied thermal load. The leakage from thin films and the 

possibility of fluid slip at the boundaries are investigated on the flow and heat transfer 

inside squeezed thin films. The present work plays an important role in modeling flow 

and heat transfer disturbances inside thin film fluidic cells and generates some remedies 

that can reduce the effects of these disturbances. 
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1

 
 
 
 
 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Significance of the Problem 

The study of flow and heat transfer inside thin films has received a lot of attention 

in recent years because they are widely used in engineering applications such as in 

lubrication, heat pipes used in cooling of electronic components, microchannels and in 

recent biological sensors. In certain applications, external disturbances such as 

unbalances in rotating machines and increased noise levels from the surroundings can 

result in an oscillatory motion at the boundary. Even small oscillating motion can have a 

substantial impact as the thickness of thin films is very small. Accordingly, the dynamics 

and thermal characterization of thin films will be altered. As a result, the present study 

establishes how both thermal and dynamical characteristics of flat or inclined thin films 

are affected by external or internal disturbances in the presence of various effects such as 

viscous dissipation, the presence of ultrafine suspensions, hydromagnetic and other 

effects. Also, the flow and thermal characteristics will be analyzed in the presence of 

non-Newtonian effects as in highly viscous oils and blood at low shear rates. 

1.2 Literature Review 

Thin films are widely used in lubrication. When these thicknesses are filled with 

fluid, they are said to have fluid-film lubrication. Lubrication usually occurs when the 
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plates of a bearing starts to move. Accordingly, the fluid will move by its viscous effect.  

At the same time, the fluid will be compressed due to the load on the bearing. The 

movement of the fluid creates a self-pumping effect as well as prevents contact between 

the plates of the bearing. This kind of lubrications is called hydrodynamic lubrication 

(Sezri, 1980). Hydrodynamic lubrication can be found in hydrodynamic journal and 

thrust bearings. It also can be used in high load capacity applications as discussed by 

Gross et al. (1980). 

Self-lubrication in fluid films, like hydrodynamic lubrication, can also be 

generated by reciprocating or oscillating motions of at least one of the plates of the 

bearing. These motions in certain intervals will have squeezing effects on the fluid. These 

will result in pressurizing the fluid due to its viscosity. Accordingly, the fluid will support 

the load. In the interval when the load is being removed and the plates of the bearing 

move apart, the fluid will be sucked in and will recover its thickness for the next 

application. These phenomena are repeated as oscillating motions of the bearing plates 

continue with no requirement for any external pumping. 

Thin films are also used in cooling of electronic devices. These devices use thin 

films in their cooling systems as in flat heat pipes (Moon et. al., 2000) or microchannel 

heat sink (Fedorov, 2000). External noise from a transformer, fan and others tends to 

vibrate the boundaries of the thin films. The resulting squeezing motion will affect the 

thermal characteristics of these components.  

Another important application for thin films is related to chambers for chemical 

and biological detection systems such as fluidic cells for chemical or biological 

microcantilever probes (Lavrik et. al., 2001). Microcantilever probes are based on 
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measuring the deflection of the microcantilever tip resulting from the reaction of the 

target molecules with one side of the microcantilever which has a special receptor 

coating. The integration of different microcantilever probes in one fluidic cell can form a 

biochip which can be used for detection of hundreds of DNA mismatches or proteins. 

This will result in better screening for diseases such as cancer. A special design for the 

fluidic cell of the biochip is needed in order to transport the target proteins to the probes 

with minimum effects of flow or thermal disturbances as discussed later. 

Fluidic cells can have large length to thickness ratios. Accordingly, external or 

internal noises may produce relatively large squeezing motions at the boundaries of the 

fluidic cells. In addition to the dynamical effects due to squeezing which can alter the 

deflection measurements, the thermal behavior inside the cell as a result of squeezing will 

also increase the bimaterial effects of the microcantilever. These bimaterial effects are 

due to the fact that the used microcantilever is composed of two layers having different 

thermal expansion coefficent: silicon substrate and gold coating. Further, the bimaterial 

effect is the second major problem after the effect of flow disturbances in microcantilever 

probes (Fritz et. al., 2001). 

Biofluids such as blood contain different molecules. These molecules could be 

proteins, lipids, minerals, vitamins and others. These suspensions will increase the 

effective thermal conductivity of the fluid as will be discussed later. They also increase 

the apparent viscosity of the biofluid as shown in the works of Eckmann et. al. (2000) and 

Saundres and Patel (1998), respectively. Further, biofluids behave like non-Newtonian 

fluid only at small shear rates because red-blood-cell deformability is negligible at small 

shear rates. As the deformation in red-blood-cell increases, the blood will behave like 
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Newtonian fluid having constant viscosity. This fact is demonstrated for the human blood 

and blood of turtles in the works of Eckmann et. al. (2000) and Saundres and Patel 

(1998), respectively. 

Heat transfer can be enhanced inside thin films by several methods (Huang and 

Vafai; 1993 and 1994, Lee and Vafai; 1999). Among these methods is the introduction of 

suspended ultrafine particles in the working fluid. This causes an enhancement in the 

effective thermal conductivity of the fluid as seen in the works of Xuan and Li (2000) and 

Eastman et. al. (2001). This is because ultrafine particles tend to increase the exposed 

heat transfer surface area. Further, the presence of ultrafine particles in fluids increases 

the mixing within the fluid which causes an additional increase in the fluid’s thermal 

conductivity due to thermal dispersion effects as discussed by Xuan and Li (2000). 

The relation between the geometry of the surfaces of a thin film, the properties of 

the fluid and the pressure inside the thin film was first derived by Reynolds (1886). 

Although, he did not include the compressibility effects of the fluid, his derived 

differential equation was the basic foundation for the fluid film lubrication theory. 

There are several studies that have analyzed flow in squeezed thin films like 

Langlois (1962) who solved the momentum equations analytically for hydrodynamic 

pressure in isothermal squeeze films with fluid density varying according to the pressure. 

He considered in his analytical work the possibility of having sinusoidal squeezing at one 

of the boundaries. His work can be used to describe the effects of external vibrations on 

the hydrodynamic pressure inside thin films.  

Later studies consider the effects of boundary squeezing on the temperature 

distribution inside the thin film like Hamza (1992) and Bhattacharyya et. al. (1996). 
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Although they considered thermal aspects in their analysis, their works were very 

restricted. For example, Hamza (1992) considered a specific squeezing velocity in order 

to have similarity solutions, also considered a one dimensional temperature field. 

Bhattacharyya et. al. (1996) considered a constant squeezing velocity at one boundary as 

well as they assumed that the temperature field is one dimensional. Moreover, both works 

were concerned with flow between two parallel disks and this simplified their flow 

formulations as the reduced transformed momentum equations ended to be one-

dimensional. 

Further studies considered two dimensional effects in non-isothermal squeezed 

thin films like Radakovic and Khonsari (1997) who studied the influence of heat transfer 

on the dynamic behavior of a thin film bearing when the fluid viscosity varies with 

temperature. Wang et. al. (2001) performed a thermodynamic analysis on journal 

bearings lubricated with fluids having couple stresses. However, these studies did not 

consider the heat transfer aspects of the squeezed thin films. Further, Radakovic and 

Khonsari (1997) and others such as Tashtoush et. al. (2001) ignored in their analysis 

transient terms associated with flow accelerations and fluid thermal capacitance. Those 

terms are important in our analysis especially at large squeezing frequencies or large 

thermal capacitance. 

Recently, Khaled and Vafai (2002) considered heat transfer in incompressible 

squeezed thin films with sinusoidal squeezing but they did not include effects of viscous 

dissipation or the possibility of presence of ultrafine particles in the fluid. It is clear that 

external disturbances such as vibrations will change the dynamic and thermal behavior of 

the fluid inside thin films. Accordingly, they may be considered to be important in 
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designing the cooling systems in lubrications and electronic cooling. Heat transfer aspects 

are also important in biosensors because it determines the optimum location of the probe 

from the inlet of the fluidic cell to avoid measuring alterations by the bimaterial effects. 

In this work, the effect of these disturbances will be analyzed to determine whether they 

can produce significant effects on the dynamic and thermal characteristics inside thin 

films. 

In the literature, there are many studies that consider hydromagnetic effects on the 

flow and heat transfer inside channels such as Chamkha (2001) yet few of them 

considered the hydromagnetic effects inside squeezed thin films as that by Bhattacharyya 

et. al. (1997).  As such, hydromagnetic effects on both flow and heat transfer are 

discussed in this study. Another effect that will be considered is the effect of wall slip 

conditions. In certain situations, the fluid may slip at the boundary of a surface when the 

size of the fluidic cell is relatively small (Shiping and Ameel, 2001). Also, wall slip 

occurs when the fluid contains suspensions (Soltani and Yilmazer, 1998) or when the 

flow is over a hydrophobic surface (Tretheway et. al., 2002). In these cases, the slip 

velocity is assumed to be proportional to the local shear stress at the surface (Navier, 

1823). 

Natural convection inside vertical channels can represent a good candidate for 

fluidic chambers, and has received increased attention in the past decade (Dyko et. al.; 

1999, Dyko and Vafai; 2002). Conjugate conductive and porous medium effects are 

considered as in the works of Morrone (2001) and Paul et. al. (1999), respectively. 

Further, the presence of internal sources, mass species and variable properties effects 

have been taken into account in various works concerning natural convection inside 
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cavities and vertical channels as in the work of Barozzi and Corticelli (2000), Kuan-Tzon 

(1999) and the work of Zamora and Hernandez (1997), respectively. In addition, 

turbulent, thermal radiation and two phase flow effects have been encountered recently in 

the study of natural convection inside vertical channels as in the works of Bessaih and 

Kadja (2000), Hall et. al. (1999) and Dalal et. al. (1999), respectively.  

There are only few works that have dealt with laminar heat transfer and flow 

induced by natural convection inside vibrating geometries. As an example, Fu and Shieh 

(1993) studied the effects of the buoyancy and vertical vibrations at the four walls of a 

square closed cavity. Further, Kwak (1998) discussed the effects of having vibrations on 

the temperature of one plate of a closed cavity on the natural convection inside the cavity. 

Although natural convection inside different geometries have been investigated for many 

effects as shown before, the literature lacks investigations that relate the behavior of 

vertical channels in a vibrated media with both horizontal and vertical vibrations.  

1.3 Scope and Objectives 

The purpose of the present work is to study the effects of pressure squeezing 

boundary conditions on the flow and heat transfer inside laminar flat or inclined thin 

films filled with Newtonian or non-Newtonian fluids. 

1.3.1 Objectives 

1- Derive analytical solutions for velocity and temperature fields as well as heat 

transfer characteristics for certain limiting cases. 

2- Develop a two dimensional model for laminar flat or inclined squeezed thin films 

with small Reynolds numbers. 

3- Study for the previous model the effects of  
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• Thermal squeezing parameter, squeezing amplitudes and the 

perturbation parameter on heat transfer inside oscillating thin films. 

• Viscous dissipation and squeezing amplitudes on heat transfer inside 

oscillating thin films. 

• Pressure gradient in the thin film and squeezing amplitudes on heat 

transfer inside oscillating thin films. 

• Presence of suspended ultrafine particles on heat transfer inside 

oscillating thin films. 

4- Develop a two-dimensional model for laminar squeezed thin films with large 

Reynolds numbers including hydromagnetic effects. 

5- Develop a two dimensional model for squeezed thin films supported by soft seals 

that accounts for the presence of internal pressure pulsations. 

6- Develop a model for thin films that have flows induced by both boundary 

squeezing and natural convection effects. 

7- Developing a two-dimensional model that accounts for non-Newtonian fluids. 

8- Develop analytical solutions that involve slip applications inside disturbed thin 

films. 

9- Develop a model for squeezed thin films having a complex flexible sealing. That 

is, the clearance of the thin film depends on both pressure and temperature. 
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CHAPTER 2 
 
 

PROBLEM FORMULATION 

 

 

2.1 Problem Definition 

 
Consider a two dimensional symmetrical thin film, Figure 2.1(a), that has a small 

thickness h compared to its length B. The x-axis is taken in the direction of the length of 

the thin film while y-axis is taken along its thickness as shown in Figure 2.1(b). The 

lower plate of the thin film is fixed while the vertical motion of the upper plate can have 

the following generic sinusoidal behavior under uniform external oscillating conditions: 







 κ+γωβ−=

B
x)tcos(1hh o  

(2.1) 

where κ, β and ω are the dimensionless slope of the thin film, upper plate motion 

amplitude and a reference frequency, respectively. The quantity γ is the dimensionless 

frequency.  It is assumed at this stage that the fluid is Newtonian and having constant 

properties except for the thermal conductivity. 
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Figure 2.1: (a) Schematic Diagram, (b) Coordinate systems and, (c) Boundary conditions   
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2.2 General Model 

The general two-dimensional continuity, momentum and energy equations for the 

laminar thin film are given as 
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(2.5) 

where T, ρ, p, µ, cp and k are the fluid temperature, density, pressure, dynamic viscosity, 

specific heat and the thermal conductivity of the fluid, respectively. 

A generalized set of initial and boundary conditions for this problem are, some of 

them are listed on Figure 2.1(c):  
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2.6(a) 

where pi, pe, 1T  and 2T  are application specified constants. C2 is taken to be either T1 or 

T2 for more generic conditions. If the value of C1 is set to zero, there will be no flow 
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entering the thin film at x=0. These cases will be studied in chapters 5 and 10. On the 

other hand, negative values of C1 insure that flow is always entering the thin film. The 

constant C1 can be function of time and will be determined later based on the assumption 

that either the average velocity at the inlet or the inlet flow rate is constant. The condition 

of constant inlet flow rate can be satisfied in applications where the fluid is pumped to the 

thin film using mechanical pumps while constant inlet average velocity can find its 

applications in thin films driven by gravitational effects such as in the fluidic cells used 

by Raiteri et. al. (2000) when the existing valve is automatically controlled. Constant 

average inlet velocity condition is preferable over constant inlet flow rate condition in 

fluidic cells to keep uniform detection since the reaction on the sensor surface is related 

to the rolling velocity (Pritchard et. al., 1995) rather than the inlet flow rate. Other values 

of C1 will be considered in chapters 10, 13 and 14. 

 Another set of thermal boundary conditions that assumes the boundaries of the 

thin film are subject to uniform heat flux conditions are 
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2.6(b) 

where q, um and Sn are a constant represents the heat flux applied at the lower plate, the 

mean axial velocity at the exit and the direction normal to the plate, respectively. It is 

assumed that the upper plate is insulated as in thin films used in biological sensing 

applications since the upper plate is usually made from glass, to allow laser beams to pass 

to probes inside the thin film, subjected from outside to a non-convective medium. In 

order to obtain the exit thermal boundary condition shown in conditions 2.6(b), integral 
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energy balance is utilized at the exit noticing that the axial mean bulk temperature 

gradient as well as time change of average temperature at the exit are approximated as 

equal to axial temperature gradients and time change of temperatures there for flat thin 

films, respectively. Also, it is assumed that convection at the exit is the main mechanism 

of heat transfer. 

2.3 The Model for Low Reynolds Numbers 

Equations (2.2)-(2.5) are non-dimensionalized using the following dimensionless 

variables: 

B
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where T1 and oV  are the temperature at the inlet of the thin film and a constant 

representing a reference inlet velocity, respectively. T∆ is equal to T2-T1 for constant 

wall temperature conditions (CWT) and it is equal to 
k

qho  for uniform wall heat flux 

conditions (UHF). The variables X, Y, τ, U, V, Π and θ are the dimensionless forms of x, 

y, t, u, v, p and T variables, respectively. The above transformations except for 
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dimensionless temperature have been used by Langlois (1962) along with the following 

perturbation parameter:  

B
ho=ε  

(2.8) 

where that ho is a reference thin film thickness. 

Substituting the variables (2.7) through (2.8) in equations (2.1) through (2.4) and 

then, eliminating the terms that contain ε raised to the power greater than one leads to the 

following set of non-dimensionalized governing equations 
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where RS and RL are squeezing and lateral modified Reynolds numbers, respectively. 

They are given as:  
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Both RS and RL are very small (much less than 1) for most of the applications of thin 

films. The dimensionless h value is 

oh
hH =  

(2.13) 

The corresponding dimensionless boundary conditions for flat thin films with 

constant wall temperature conditions (CWT) will be 
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The values of *
2C will be taken to be either 0 or 1. It is clear that this value is 

selected to be 1 in inclined thin films to satisfy the exit thermal boundary condition. In 

the subsequent chapters, new exit thermal boundary will be proposed for cases where the 

above one can not be satisfied as in highly convective applications. Moreover, these 

dimensionless thermal boundary conditions for thin films with uniform wall heat flux 

conditions (UHF) will be 
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2.14(b) 

where σ will be called the squeezing number and it is equal to 

( )BV1
12

o ω+
=σ   

          (2.15) 

Errors associated with the exit thermal boundary condition are proportional to the ratio of 

axial conductions to axial convections which is of order of ( ) ( )UP12 S
2σε . Accordingly, 

cases where convections are high and/or where axial conductions are low as for cases 

having lower values of ε are found to be less affected by the assumptions that are used to 
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set up this boundary condition. These assumptions are: (1) 
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τθ∂ ),H/Y,1(),1(AVG where they are satisfied for thin films having relatively low 

flow rates. In cases where the last parameter is low or having negative values when back 

flows are present, singularity will be introduced at the exit boundary condition when back 

flows are present. Thus, another exit thermal boundary condition will be proposed in the 

subsequent chapters.  

 Solving equations (2.10) and (2.11) for low Reynolds numbers results in 
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If Equation (2.16) is substituted in Equation (2.9), the result will be the Reynolds 

equation, derived by Reynolds (1886) 
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 Equation (2.16) reduces to the following after solving Equation (2.17): 
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The corresponding normal velocities will be 
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The constant  *
1C  can be obtained by equating the flow rate at the inlet calculated by 

integrating equation (2.16) to that the average velocity at the inlet which is assumed to be 
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constant, reference axial velocity Vo, multiplied by inlet film thickness. *
1C  is found to 

equal to ( ) ),0(H12 τσ−− . Accordingly, Equations 2.18(a) and 2.19(a) are reduced to the 

following: 
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In the case where the inlet flow rate is kept constant when the flow inside thin films is 

driven by variable head pumps, Equations 2.18(b) and 2.19(b) reduces to the following: 
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2.19(c) 

2.3.1 Effects of Ultrafine Particles Suspensions in the Working Fluid: 

The thermal conductivity of the fluid is considered to be variable since the 

existence of ultrafine particles in the working fluids in certain applications is expected to 

enhance the heat transfer to these fluids. These enhancements can be shown with metallic 

ultrafine particles in the works of Eastman et. al. (2001) and Xuan and Li (2000). Further, 

the work of Adams et. al. (1999) shows that heat transfer enhancements also occur in the 

presence of dissolved air molecules in fluids. These ultrafine particles at large velocities 
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tend to increase the thermal conductivity due to thermal dispersion effects (Xuan and 

Roetzel (2000)). 

The following is a model suggested by Xuan and Roetzel (2000) in order to 

account for enhancements in the thermal conductivity due to the presence of suspended 

ultrafine particles. 

deffnf kkk +=  (2.20) 

where knf, keff, kd are the resulting thermal conductivity of the nanofluid (a term used to 

describe the continuum mixture composed of the fluid and the suspended ultrafine 

particles), effective flow thermal conductivity of the nanofluid at stagnant conditions and 

the thermal conductivity due dispersion effects. The effective thermal conductivity of the 

nanofluid at stagnant conditions needs to be determined experimentally and may be 

approximated using correlations derived for relatively large suspensions. The following 

represents an example of these correlations determined by Wasp (1977) 

( )
( )pffp

pffp

f

eff

kkk2k
kk2k2k

k
k

−ϕ++

−ϕ−+
=  

(2.21) 

where kp, kf and ϕ are the thermal conductivity of the solid particles, the thermal 

conductivity of the pure fluid and the volume fraction of the solid particles, respectively. 

The thermal conductivity due to dispersion effects inside pipes is suggested by Xuan and 

Roetzel (2000) to be linearly proportional to the fluid speed. 

( ) RucCk
nfp

*
d ρ=  (2.22) 

where R and u are the radius of the pipe and the speed of fluid, respectively.  
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It is worth noting that the other fluid-ultrafine mixture properties vary with the 

ultrafine particles volume fraction and their corresponding relationships are found in the 

works of Xuan and Roetzel (2000). Therefore, the fluid properties appearing in Equations 

(2.2-2.5) will be for the mixture properties when ultrafine suspensions are included. The 

previous model is utilized in the present work and the corresponding thermal conductivity 

of the fluid with suspended ultrafine particles is calculated from 

( ) ( )( ) ),Y,X(k,Y,XV,Y,XU1k),Y,X(k o
222

o τφ=τΛ+τλ+=τ  (2.23) 

where λ and Λ are the dimensionless thermal dispersion coefficient and dimensionless 

reference squeezing to lateral velocity ratio. They are  

( ) ( )BVhcC oonfp
* ω+ρ=λ  

12
εσ

=Λ  
 2.24(a, b) 

where *C  is constant depends on the diameter of the ultrafine particles, its volume 

fraction and both fluid and the ultrafine particles properties. ko is a reference thermal 

conductivity of the working fluid that contains ultra fine particles. This reference thermal 

conductivity is usually greater than the thermal conductivity of the pure fluid (Eastman 

(2001)).   

Equation (2.5) is reduced to the following when dimensionless variables (2.7) and 

(2.8) are used 
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(2.25) 
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where PS is a new parameter that contains the fluid properties as well as the oscillating 

characteristics of the thin film. It is therefore named thermal squeezing parameter. ES is 

the Eckert number. They are 

PrRP SS =  ( )
Tk

BV
E

o

2
o

S ∆
ω+µ

=  
 2.26(a, b) 

where 
o

p

k
c

Pr
υρ

= and it is the Prandtl number of the fluid. 

2.3.2 Assumptions: 

The following assumptions were utilized in the previous derivations: 

1- The variation of the pressure across the film is small and negligible. 

2- The rate of change of the U component of the velocity along the film is small 

when compared to the rate of change of this same velocity component across the 

film. Therefore, it can be neglected. 

3- The flow of the fluid in the film is predominantly two-dimensional. 

4- Flow Reynolds numbers are small. 

5- In the energy equation, the term  ε2 is not eliminated because axial conduction 

near inlet is not small. 

2.4 Large Squeezing Reynolds Numbers 

It is convenient to solve the vorticity equation and stream function formulations 

for cases with large squeezing Reynolds numbers. These equations are listed below in 

dimensional form: 
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(2.27) 
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Ω−=
∂

Ψ∂
+

∂
Ψ∂

2

2

2

2

yx
 

(2.28) 

where Ω  and Ψ  are the dimensional vorticity and stream functions, respectively. The 

vorticity and stream functions are related the velocity components through the following: 

y
u

x
v

∂
∂

−
∂
∂

=Ω  (2.29) 

y
u

∂
Ψ∂

=  
x

v
∂
Ψ∂

−=  
 2.30 (a, b) 

The following set of dimensionless variables is suggested 

B
xX = , 

oh
yY =  

 2.31(a, b) 

tω=τ    2.31(c) 

( ) oo

*

hBV ω+
Ω

=Ω , ( )BVh oo

*

ω+
Ψ

=Ψ   2.31(d, e) 

T
TT 1

∆
−

=θ  
  2.31(f) 

where *Ω  and *Ψ  are the corresponding dimensionless values of  Ω  and Ψ , 

respectively. The introduction of variable 2.31(e) in equations 2.30(a, b) results in the 

following dimensionless velocity components: 

BV
uU

o ω+
= , ( )BV

vV
o ω+ε

=   2.32(a, b) 

 The dimensionless vorticity-stream function formulations for the flow inside the 

thin film and the dimensionless energy equation are 
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(2.35) 

The dimensionless boundary conditions for flat thin film that will be implemented are 
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(2.37) 

where C3 and C4 are equal to one and H(0,τ) if inlet average velocity is kept constant 

(CIV condition) and they are equal to 1/ H(0,τ) and one if inlet flow rate is kept constant 

(CIF condition). For the last case, inlet flow rate is always kept at the value Voho. 

2.5 Coordinate Transformation: 

The following transformations are suggested in order to avoid time and spatial 

dependent grid points: 
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τ=τ* , X=ξ   2.38(a, b) 
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Accordingly, the transformed dimensionless energy and vorticity equations will have the 

following forms: 
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where a, b, c, d, d1 and e are  
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when f is set to be the dimensionless vorticity *Ω . When f is taken to be the 

dimensionless temperature, the constants changes to the following: 
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where the constant 2.41(c) changes to the following when large squeezing Reynolds 

numbers are considered 
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The transformed boundary conditions in terms of the squeezing number are 
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where both C5 and C6 are equal to H(0,τ) for CIV condition and to one for CIF condition. 

Boundary conditions 2.43(b) and 2.44(b) are derived from the knowledge that velocity 

profiles are fully developed at the exit and it is approximated as follows 
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The thermal boundary conditions for plates having constant wall temperatures are 
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The corresponding thermal boundary conditions for uniform heat flux conditions are 
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2.6 Dimensionless Heat Transfer Parameters 

From energy balance at the lower or upper surfaces of the thin film  
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(2.49) 

where hc, Tl, Tu and Tm are the local convective heat transfer coefficient, lower plate 

temperature, upper plate temperature and the mean bulk temperature at a given section, 
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respectively, The Nusselt number ( )( )ooc khhNu = evaluated at the upper (NuU) or 

lower (NuL) surfaces of a thin film and the total Nusselt number can be calculated from: 
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(2.50) 

where mθ is the dimensionless mean bulk temperature. It is defined as follows 
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The net local dimensionless heat transferred to the fluid for thin films Θ is 
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where ku is the fluid thermal conductivity at the upper plate. ku is usually greater than ko 

if dispersion effects is exist when ultrafine particles are suspended in the fluid. The 

positive sign for equation 2.52(b) is taken when both plates are kept at a similar 

temperature while the negative sign is used when the upper plate is kept at a temperature 

higher than that for the lower plate as in chapter 5. When the lower plate is kept under 

uniform wall heat flux condition as described by condition 2.6(b), the appropriate 



27

 

dimensionless heat transfer parameter is the local Nusselt number defined at the lower 

plate which is defined as follows: 

( ) ( ) ( )τθ−τθ
=τ

,X,0,X
1,XNu

m
L  (2.53) 

2.7 Mass Transfer 

 Disturbances in the concentration of species at the inlet of a thin film propagate to 

down stream until they diminish far from the inlet because of both mass convections and 

mass diffusions. The following equation is the dimensional governing equation for the 

concentration of certain species: 
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where C and DAB are the concentration of species and the mass diffusivity constant, 

respectively. Define χ as the dimensionless concentration as follows 
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where Ci and C∆  are the reference concentration and a reference differential value, 

respectively, Equation (2.54) reduces to the following equation after applying 

dimensionless variables (2.7) and (2.8): 
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where LS is referred as to the squeezing mass transfer parameter and it is equal to 
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According to Equation (2.56), there is an analogy between heat transfer equation, 

Equation (2.25), and mass transfer equation. Thus the generated results from the heat 

transfer equation are applicable for the mass transfer within the thin film by replacing PS 

with LS and the temperature with the concentration.  

2.8 Applications  

In chapters 8-12, different applications to the pressure squeezed problem inside 

thin films are investigated. One of these applications is concerned with hydromagnetic 

flow and heat transfer inside oscillatory squeezed thin films which will be modeled and 

discussed in chapter 8. Another study is conducted in chapter 9 is abut flow and heat 

transfer inside thin films supported by soft seals in the presence of internal pressure 

pulsations. Chapter 10 models and analyzes numerically heat transfer and flow induced 

by natural convection inside oscillatory squeezed thin films. Non-Newtonian effects and 

effect of side leakage on flow and heat transfer inside disturbed thin films are considered 

in chapter 11 while chapter 12 analyzes the squeezing effects that can be caused by 

variations in the thermal load. 
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CHAPTER 3 

 
 

 ANALYTICAL AND SIMILARITY SOLUTIONS  
 
 

3.1 Scale Analysis 

Consider a two dimensional infinite oscillating thin film where the film thickness 

h is much greater than the thermal boundary layer thickness δt. After the initial squeezing 

stage, the thermal boundary layer starts to develop during the first stage of the upper plate 

motion from the midsection of the thin film outward to both left and right sections. For 

this boundary layer problem and assuming slug flow conditions inside the thin film, the 

application of the scale analysis for the continuity equation inside the thermal boundary 

layer reveals that the order of magnitude of the dimensional velocity u is ( ) hBv  where v  

is the wall dimensional squeezing velocity. Note that the order of magnitude of squeezing 

velocities inside the thermal boundary layer is ( ) hv tδ . Utilizing this result along with a 

scale analysis for the energy equation results 
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This result is obtained by noting that both 
y
Tv
∂
∂  and 

x
Tu
∂
∂ are of order 

h
Tv ∆ . Further, the 

term 2

2

y
T

∂
∂  which is of order 2

t

T
δ
∆  is greater than 2

2

x
T

∂
∂  which is of order 2B

T∆ . Accordingly, 

Equation (2.25) in chapter 2 reduces to 
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(3.2) 

Note that the above analysis shows that the thermal boundary layer thickness is 

almost independent on the thin film length B and it is valid when 
hvc

k
h p

2
t

ρ
≈






 δ <<1. 

This is applicable for thin films having large squeezing velocities and operating at 

relatively large thicknesses as well as for situations where the working fluid has a low 

thermal diffusivity. That is, it is applicable for thin films having large a thermal 

squeezing parameter. 

3.2 Small Thermal Squeezing Parameter in the Absence of Viscous Dissipation 

For small thermal squeezing parameters and in the absence of thermal dispersion 

and viscous dissipation, Equation (2.25) in chapter 2 reduces to 

0
YX 2

2

2

2
2 =

∂
θ∂

+
∂

θ∂
ε  

(3.3) 

This case represents a pure conduction problem. The solution to Equation (3.3) for flat 

thin film having its lower and upper plate temperatures equal to T1 and T2, respectively, 

is 
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The corresponding average dimensionless heat transfer to the fluid will be 
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(3.5) 

where AVGΘ  is the average dimensionless heat transferred to the fluid from the upper and 

lower plates of the thin film between *ξ=ξ  to 1=ξ . 

3.3 Small Thermal Squeezing Parameter in the Presence of Viscous Dissipation 

For thin films having small thermal squeezing parameters, zero values of *
1C  and 

in the presence of viscous dissipation, Equation (2.25) in chapter 2 reduces to 
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(3.6) 

The solution to Equation (3.23) for flat thin film having its lower and upper plate 

temperatures equal to T1 and T2, respectively, is 
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The corresponding dimensionless heat transfer to the fluid will be 

( ) 3

2*222
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H
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12,
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(3.8) 

If QR is defined as the ratio of heat conduction at the upper plate to heat conduction at the 

lower plate of the thin film, That is 
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This will result in the following heat ratio for the present case 
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3.4 One Dimensional Steady State with Fixed and Permeable Boundaries 

For the case where the plates of a thin film are fixed, infinite and permeable 

leading to a constant permeable velocity as follows 

( ) ( ) aSVSV 21 −==  (3.11) 

Under steady state conditions, energy equation reduces to the following 
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where a is a constant. Further, the term Psa is equal to
α

oo wh
 where wo is the negative of 

the dimensional permeable vertical velocity at the bearing’s plates. Equation (3.12) 

prescribes a temperature distribution given by 

1e
1e)Y( aP

aYP

s

s
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=θ −

−

 
 

(3.13) 

where 1S  and 2S  are taken to be 0 and 1, respectively. Accordingly, the dimensionless 

heat parameter will be   

aPs=Θ  (3.14) 
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The values of Θ are positive when more heat is conducted from the fluid to the lower 

plate than that conducted from the upper plate to the fluid. This is for the values of T2 and 

initial fluid temperatures that are larger than or equal to T1 and in the absence of any heat 

source or sink in the fluid. On the other hand, negative Θ values mean that the heat 

conducted to the fluid from the upper plate is more than the heat transferred from the 

fluid to the lower plate under the same previous conditions. 

3.5 Transient Solution of Thin Films with Oscillating Boundaries 

Energy equation, Equation (2.25) in chapter 2 can be approximated by the 

following equation at dimensionless X values that result in either U =0 or 0
X
=

∂
θ∂ , at the 

exit of thin films or at the center section for infinite thin films. 
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(3.15) 

where 
τd

dH
H
Y  is used to approximate the fluid normal velocity V at the given sections. 

In the presence of ultrafine particles suspensions inside the working fluid, fluid 

average thermal conductivity can be expressed by the following equation, see Equation 

(2.23) in chapter 2. 

( )( )τλ+=τ V1k)(k o  (3.16) 

where V  is the average of fluid dimensionless normal velocity. Accordingly, Equation 

(3.15) changes to 
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Equation (3.17) reduces, for large squeezing velocities, to 
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The positive sign is when the thin film is in its relief stage while the negative is when it is 

in the squeezing stage. Transferring the domain into ξ, η, τ* domain, defined in the last 

chapter, results in 
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The solution to the above equation based on the following initial thermal condition 
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(3.20) 

where the positive sign is when the thin film is in its relief stage while the negative is 

when it is in the squeezing stage. Accordingly, the values of Θ can be approximated 

using the first term of the series 
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(3.21) 

The previous solution is valid only in the first stage of the upper plate motion because 

V(τ*) and the second term on the right side of equation (3.18) change their sign in the 

second stage resulting in a new partial differential equation. In order to solve this new 

equation, the initial fluid temperature can be replaced by the final temperature from the 
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previous stage and the result of solving the new equation will have similar terms as in 

Equations (3.20) and (3.21) with different coefficients. 

3.5.1 Sinusoidal Squeezing Velocity 

Assuming the upper plate is moving only in z-direction according to 

)(HS2 τ= where  

)cos(1)(H γτβ−=τ  (3.22) 

The dimensionless heat transfer parameter obtained from equation (3.21) can be written 

as 
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(3.23) 

This is valid for 0<γτ<π. Since it will results in V>0. The negative values of Θ indicate 

that heat conduction at the upper plate is larger than that at the lower plate. 

Figure 3.1 represents the behavior of the proposed oscillating thin film described 

by Equation (3.19) under conditions where the fluid encounters dispersion effects. The 

results of solving Equation (3.18), considering the exact normal velocity profile for the 

values of Θ shown in Figure 3.1, It is noticed that both the approximate analytical and 

numerical solution are in excellent agreement. Further, it is noticed that the dimensionless 

heat transfer parameter is always negative and decreasing asymptotically to zero. This 

can be noticed from Equation (3.23).  
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Figure 3.1: Transient Behavior for Θ 

 

3.6 Hydromagnetic Squeezed Flow and Heat Transfer over a Sensor Surface 

Consider flow over a horizontal surface. The surface is assumed to have a length 

L. The x-axis is taken along the length of the surface starting from its free end while the 

y-axis is taken normal to the upper surface as shown in Figure 3.2. The surface is 

enclosed inside a squeezed channel such that the height h(t) is much greater than the 

boundary layer thickness and the squeezing in the free stream is assumed to start from the 

tip of the surface as illustrated in Figure 3.2. This problem can find its application in flow 

over microcantilever sensor caused by an external squeezing at the boundaries of the 

fluidic cell. 
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    Figure 3.2: Schematic Diagram 

 

3.6.1 Governing Equations 

The working fluid is taken as Newtonian and electrically conducting with σm as 

its electrical conductance. It is assumed that a magnetic field of strength Bm is applied 

normal to the flow in the y-direction and that the induced magnetic Reynolds number is 

negligible. The continuity, momentum and energy governing equations are  
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where u, v, U, T, t and α are the axial component of the velocity, normal component of 

the velocity, axial free stream velocity, temperature, time and thermal diffusivity of the 

working fluid, respectively. Equations (3.25) and (3.27) are applicable within the 
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boundary layer while Equation (3.26) governs the outer stream flow which is assumed to 

be uniform with respect to the normal coordinate. Equation (3.25) is transferred to the 

following after eliminating the pressure gradient using Equation (3.26):  
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A generalized set of boundary conditions are imposed 

( ) 0t,0,xu =  ( ) ( )tvt,0,xv o=  ( ) ( )t,xUt,,xu =∞  3.29(a, b, c) 

( ) ( )xq
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t,0,xTk =
∂

∂
−  ( ) ∞=∞ Tt,,xT   3.29(c, d) 

where T∞, U(x,t) and q(x) are the free stream temperature, free stream velocity and the 

wall heat flux, respectively. It is assumed that wall heat flux is a prescribed function of 

the axial distance x. The reference velocity vo represents the velocity at the sensor surface 

for permeable surfaces. This velocity is proportional to the normal velocity at the 

disturbed boundary and it increases as the size of the surface pores increases or when the 

surface is placed close to the disturbed boundary. Equations (3.27) and (3.28) can be 

transformed as similarity equations when the following variables and conditions are 

implemented 
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where b and s are arbitrary constants. The parameters qo and k are the reference wall heat 

flux and the thermal conductivity of the fluid, respectively. Conditions 3.30(a) and 

3.30(c) reveal that the height belong to a certain time dependence relation: 

h(t)=ho/(s+bt)(1/b) for b>0 and h(t)=hoe-st for b=0 where ho is a constant. The parameters 

Bmo and vi are a reference magnetic field and a reference suction velocity, respectively. 

The result of the transformation is the following similar equations: 
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where Pr is the Prandtl number (Pr=υ/α). The prime is the derivative with respect to η. 

The corresponding transformed boundary conditions are 

( ) 00f =′  ( ) of0f −=  ( ) 1f =∞′  3.33(a, b, c) 

( ) 10 −=θ′  ( ) 0=∞θ   3.33(d, e) 

The parameters N and K are dimensionless parameters defined as  
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 3.34(a, b) 

The parameters: N and fo represent the dimensionless magnetic and permeable velocity 

parameters, respectively. These parameters are functions of time. In the absence of 

magnetic field and wall permeable conditions, Equations (3.31) and (3.32) become self 

similar equations. The dimensionless local wall shear stress τ* and the local Nusselt 

number Nu can be calculated from the following: 
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where µ, τW and hc are the dynamic viscosity of the fluid, wall shear stress and 

convective heat transfer coefficient, respectively. 

3.6.2 Results and Discussions  

Figure 3.3 shows the effect of the dimensionless magnetic parameter N on both 

velocity and temperature profiles over a horizontal surface inside squeezed free stream. It 

is noticed that the flow boundary layer thickness decreases as N increases causing the 

flow to be more attached to the horizontal surface. This causes an increase in the 

convective heat transfer coefficient. Thus, the surface temperature decreases as N 

increases which can be seen from Figure 3.3.  
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       Figure 3.3: Effects of N on f’ and θ   Figure 3.4: Effects of Pr on θ 
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Based on heat and mass transfer analogy with respect to chemical and biological 

applications, it is expected that the difference between analyte concentration at the 

microcantilever and the free stream concentration will decrease as N increases. Thus not 

only magnetic field can reduce flow instabilities inside thin film fluidic cells but it also 

increases mass transfer to the surface of the microcantilever. On the other hand, the 

increase in the velocity of the analyte molecules near the sensor due to magnetic may 

decrease the binding rate at the sensor surface (Pritchard et. al., 1995) since they will be 

in contact with the sensor surface for less time. Finally, cooling enhancements for the 

microantilever become prominent as the Pr increases as shown in Figure 3.4. 
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Figure 3.5. Effects of fo on f’ and θ 

 

Figure 3.5 illustrates the effects of the wall dimensionless permeable velocity fo 

on both f’ and θ.  Suction conditions at the surface for negative fo values causes the flow 

to be more attached to the surface when compared with blowing conditions as shown in 
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Figure 3.5 Thus, surface cooling is enhanced under suction conditions as shown in Figure 

3.5 By heat and mass transfer analogy, it is expected that analyte concentration 

approaches free stream analyte concentration for suction conditions causing an 

enhancement in the sensor signal. It is worth noting that suction conditions is achieved if 

the active surface of the sensor is opposing the disturbed boundary       

3.6.3 Correlations 

 The correlations shown in Table (1) relate the local wall shear stress and the local 

Nusselt number to the controlling parameters: b, N, K and Pr. it can be seen from these 

correlations that an increase in “b” cause reductions in both the local wall shear stress and 

the local Nusselt number. 
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Table 3.1: Correlations for Local wall Shear Stress and Local Nusselt Number 
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CHAPTER 4 
 
 

NUMERICAL METHODS 
 
 

4.1 Introduction 

The energy and vorticity-stream function equations derived in chapter two 

represent non-linear partial differential equations that need to be solved numerically 

subject to boundary conditions in ξ and η directions and initial conditions with respect to 

τ*. No closed-form solution for the governing equations appears to be possible because of 

the presence of convective terms as well as the inertia terms. Also, approximate solutions 

are also difficult to be obtained because of the presence of the transient terms. Due to all 

of the above, the governing equations will be solved by both simple implicit finite-

difference numerical method and using Alternating Direction Implicit ADI finite-

difference methods. Successive over relaxation method will be used to solve for stream 

function formulation. 

4.2 The Simple Implicit Method 

For flat thin film, the energy equation in the last chapter has the following form: 
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By applying three points central differencing with respect to ξ and η for the first 

and second derivatives with respect to ξ and η and two points backward in time will 

result in the following difference equation: 
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(4.2) 

where i, j  is a specified point along ξ and η directions respectively. All dimensionless 

temperatures and their coefficients are evaluated at time step n+1 except for one 

presenting in the first derivative with respect to time. The system presented by Equation 

(4.1) is unconditionally stable for any values of ξ∆ , η∆  and *τ∆ where they are the step 

size along the ξ-direction, η-direction and the time step size, respectively. The resulting 

errors are of order ( *22 ,, τ∆η∆ξ∆ ). The only disadvantage is that the CPU time increases 

rapidly as the mesh becomes finer. To overcome this disadvantage, the Alternating 

Direction Implicit ADI technique is suggested. 

4.3 The Alternating Direction Implicit Method (ADI) 

In applying the ADI method for inclined thin films, the energy equation is 

transformed from its physical domain X, Y and τ into the computational domain ξ, η, τ* 

as shown in Figure 4.1. The resulting equation has the following form: 
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(4.3) 

where Φ can be the dimensionless temperature θ or the dimensionless vorticity Ω*. 

Equation (4.3) is nonlinear because the coefficients are functions of the dependent 
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variables like U and V. To overcome this non-linearity, the coefficients are evaluated 

initially at the previous half time step. Further, the time step is taken to be relatively small 

in order to reduce errors associated with the latter approximation.  

 

      Figure 4.1(a): Physical Domain                  Figure 4.1(b): Computational Domain 

 

The process of ADI technique assumes that each time step *τ∆  is divided into two 

equal halves. For the first half, Equation (4.3) is discretized in certain way so that the 

resulting numerical system can be solved by sweeping the grid points in ξ-direction.  The 

solution from the previous step is utilized for the second half where Equation (4.3) is now 

descretized to allow sweeping of the grid points in the η-direction. The resulting 

numerical system along each line, ξ=constant or η=constant, represents a tri-diagonal 

system of algebraic linear equations when three points finite differencing are used. This 

system can be solved using Thomas algorithm as discussed by Blottner (1970). 
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4.3.1 Finite Differencing in ξ-Sweep 

 The following approximations are suggested for the derivatives in Equation (4.3) 
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(4.9) 

The above differencing terms are of order 2ξ∆ and 2η∆ except for the finite difference 

term (4.9) which is of order 2ξ∆ and η∆ . The central differencing term (4.5) is expecting 

to create a stability problem in highly convective flows. Therefore, a backward 

differencing will be used instead to avoid this problem (see Ettefaqh et. al., 1991). 

Applying terms (4.4-4.9) to Equation (4.3) yields to the following finite difference 

equation: 
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4.3.2 Finite Differencing in η-Sweep 

 The following approximations are suggested for the derivatives in Equation (4.3) 
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(4.16) 

The above differencing terms are of order 2ξ∆ and 2η∆ except for the finite 

difference term (4.16) which is of order ξ∆  and 2η∆ . The term (4.12) will be changed to 

a backward difference term for highly convective cases as discussed before. Applying 

terms (4.11-4.16) to Equation (4.3) yields to the following finite difference equation: 
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(4.17) 

The ADI technique is found to be unconditionally stable for small values of the 

time step. The resulting linear tri-diagonal systems represented by the finite difference 
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equations (4.10) and (4.17) can be solved with a lower CPU time compared to simple 

implicit method discussed earlier. This will allow us to consider fine meshes and small 

time increments. Accordingly, errors due the finite differencing and linearizations are 

reduced. 

4.4 Solution to the Stream Function Formulation 

 The transformed stream function formulation is: 
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This equation is a linear partial differential equation and the most appropriate 

method that can be used to solve this equation is Successive-Over-Relaxation (SOR) 

method. This method is given by 
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(4.19) 

where ς  is the over-relaxation parameter and 21 ≤ς≤ . The notation m represents the 

iteration number. Equation (4.19) was derived using approximations (4.6), (4.7), (4.8) 

and (4.9) so that the grid points are swept in the increasing order in j and i. The solution 

is obtained by solving in a periodic manner, equations (4.10) and (4.19) and then 

equations (4.17) and (4.19). In each time step, iterations are required to correct for 

velocities and boundary conditions. The summary of the procedure of the solution is 

illustrated in Hoffmann and Chiang (1998).  

Boundary conditions are discretized according to either first or second order 

backward or forward schemes. For example, the vorticity at the lower and upper plates 

are discretized according to a second order forward and backward differencing schemes 
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with respect to the normal dimension, respectively. While first order backward 

differencing were taken to descretize the exit thermal conditions for both CWT and UHF 

conditions. For UHF conditions, the time derivative in the exit thermal condition was 

discretized according to the first order backward scheme.  

4.5 Validations of Numerical Results 

Figure 4.2 shows a comparison between the solution of the Equation (4.2), simple 

implicit method, and the solution of the energy equation using ADI method for a special 

case of non-isothermal flat squeezed thin film with plates having different temperatures. 

The dimensionless time step used for ADI method was selected after many numerical 

experiments to be 0.001. However, this cannot be implemented for the simple implicit 

method because large CPU time will be needed. Accordingly, the dimensionless time step 

selected when simple implicit method is used is 0.05. An excellent agreement is noticed 

between the two approaches as shown in Figure 4.2. 

 Figure 4.3 shows a comparison between an analytical solution of a special case of 

squeezed thin film represented by Equation (3.10) shown in the last chapter and the 

corresponding numerical solution using simple implicit method. Excellent agreement 

exists between these two results as seen in Figure 4.3. Accordingly, a parametric study is 

established in the proceeding chapters in order to find out the influence of squeezing 

motions on the thermal behavior of incompressible thin films with various effects. 
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Figure 4.2: Implicit versus ADI 
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Figure 4.3: Analytical versus Implicit 
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CHAPTER 5 

 
 
HEAT TRANSFER INSIDE THIN FILMS SUBJECT TO PURE OSCILLATORY 

SQUEEZING FLOW 
 

 
 
In the parametric study performed in this chapter, the following are assumed: 1- 

the flow inside the thin film is only induced by the effect of oscillatory squeezing, thus 

σ=12, 2-the thermal boundary conditions are obtained from Equations 2.14(a) ( 0C*
2 = ) 

and 3- cases where the squeezing Reynolds number is negligible are considered. Further, 

the effects of thermal squeezing number, dimensionless amplitude, perturbation 

parameter, viscous dissipation and the presence of ultrafine particles suspensions on heat 

transfer to the working fluid inside thin films are discussed in this chapter. The results of 

this chapter include figures for the average value of both the dimensionless heat transfer 

parameter and the dimensionless heat ratio against the dimensionless time for the various 

effects. These parameters were averaged between ξ=0.00625-1.0.   

5.1 Effects of the Thermal Squeezing Parameter and the Dimensionless Motion 
Amplitude 
 

Figure 5.1 and 5.2 represent the effects of thermal squeezing parameter PS on the 

average dimensionless heat transfer parameter Θ for a thin film with oscillating 

squeezing having a constant thermal conductivity. It is noticed that the frequency of the 

average Θ is similar to the frequency of the upper plate motion. The increase in PS values 
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results in enhancing the convection inside the thin film as predicted from Equation (2.25) 

in chapter 2 and this causes increases in the absolute values of average Θ as shown in 

Figures 5.1 and 5.2. Further, it is noticed from Equation (2.39) in chapter 2 that axial 

convections play the significant role in the behavior of the average Θ values. 
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Figure 5.1: Effects of PS on Average Θ (1)     Figure 5.2: Effects of PS on Average Θ (2) 

 

The absolute values of average Θ are maximized during squeezing stages as 

shown in Figures 5.1 and 5.2. This can be interpreted to the fact that induced velocities 

during squeezing stages are directed outward from the thin film end that has the 

minimum temperature. Thus, the heat transfer from the upper plate is expected to 

increase due to enhancements in the convective heat transfer. On the other hand, absolute 

values of average Θ are minimized when induced velocities are directed toward that end 

since they result in increasing the average fluid temperatures. Accordingly, the heat 

transfer from the upper plate is reduced. In addition, the peaks of average Θ values are 
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observed to occur at periods where the thickness has almost its average value for larger 

values of PS because dimensionless velocities U and V are maximum at these points thus 

convection is maximized as can be seen from Equations (2.18) and (2.19) in chapter 2. 

This is not the case for lower values of PS since the conduction is dominant in these 

applications. 

Figures 5.3 and 5.4 show the effects of the dimensionless motion amplitude β of 

the upper plate on the average dimensionless heat transfer parameter Θ for two different 

values of PS with a constant thermal conductivity. It is observed that increases in the 

values of β result in increases in the absolute values of the average Θ in squeezing stages 

due to increased induced velocities as β increases. However, the increased induced 

velocities in relief stages due increases in β values results in increases in average fluid 

temperatures which cause average absolute Θ values to decrease. Further, it is noticed 

that the trend of the absolute average Θ values becomes more flat during relief stages and 

gets sharper as β increases as shown from Figure 5.4. This is because convective terms 

shown in Equation (2.39) in chapter 2 increase as β increases. However, the effects of 

these convective terms become smaller at the end of squeezing stages due to sharp 

decrease in the heat diffusion. Accordingly and due to the presence of large heat transfer 

enhancements during squeezing stages, the trend of average Θ values gets sharper during 

squeezing stages as β increases as shown in Figure 5.4. 
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Figure 5.3: Effects of  β on Average Θ (1)       Figure 5.4: Effects of  β on Average Θ (2) 

 

Figure 5.5 shows the effect of the perturbation parameter ε on the average Θ 

values. It is shown that as ε increases, the absolute values of the average Θ increase. As ε 

increases, axial conduction increases resulting in increases in average Θ values. It is 

worth noting that as ε increases, two-dimensional effects on velocity profiles increases 

and solutions for the complete momentum equations are needed which will be discussed 

later. Finally, enhancements of heat transfer inside thin films are achieved by the 

following: increasing the amplitude of the motion of the oscillating plate, considering 

thin films with large thermal squeezing parameter and pumping fluid with minimum 

temperature to the thin film during relief stages. 
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Figure 5.5: Effects of Perturbation Parameter ε on Average Θ 

 

5.2 Effects of Viscous Dissipation and the Presence of Suspended Ultrafine Particles 

Figure 5.6 represents the effects of the viscous dissipation on the average heat 

ratio QR for a thin film having an oscillating squeezing and constant thermal conductivity. 

The average heat ratio QR is defined as 
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(5.1) 

 It is noticed that the frequency of the average QR is also similar to the frequency of the 

upper plate motion. Further, it is noticed from this figure that the average QR decreases as 

ES increases. Viscous dissipation effects on the average dimensionless heat parameter Θ 

are shown in Figures 5.7 and 5.8 for two different values of PS. The increase in PS results 

in enhancing the convection inside the thin film at constant ES number. Accordingly, this 
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results in a decrease in the average values of Θ as shown in Figures 5.7 and 5.8. In 

addition, the following can be noticed from Figures 5.6, 5.7 and 5.8: 

- the maximum average QR and the minimum average Θ are found to occur in the 

early squeezing stages. 

- the minimum average QR and maximum average Θ are found to occur at times 

that makes the induced horizontal velocities reach almost their maximum and 

minimum values due to increases in viscous dissipation. 
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Figure 5.6: Effects of ES on QR   Figure 5.7: Effects of ES on Average Θ (1) 
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Figure 5.8: Effects of ES on Average Θ (2)               Figure 5.9: Effects of  λ on QR             

 

 

 

Figure 5.9 shows the effects of thermal dispersion coefficient λ on the average 

heat ratio QR in the absence of viscous dissipation. It is noticed that the average QR 

increases as λ increases and these increases are significant early during the squeezing 

stage.  The effects of thermal dispersion coefficient λ on the average Θ are seen in 

Figures 5.10 and 5.11 for two different values of thermal squeezing parameters. The 

following are observed from Figures 5.10 and 5.11: 

- the average Θ decreases (absolute value of average Θ increases) as λ increases. 

This is expected due enhancements in the fluid thermal conductivity. 

- the significant enhancements in the average value of Θ occur during the 

squeezing stage. This is because induced velocities are directed outward from the 
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thin film’s end that has the minimum temperature. During the relief stage, the 

induced velocities tend to increase the average fluid temperatures and this causes 

enhancements during the relief stage to be lower than those during squeezing 

stage. 

- the performance of the thin film is improved during the relief stage due to 

enhancements in the thermal conductivity.  

 

τ

0 1 2 3 4 5 6

Av
er

ag
e 

Θ

-0.50

-0.45

-0.40

-0.35

-0.30

λ=0.0

ES=0.0
PS=1.0
β=0.5
ε=0.2
γ=2.0
σ=12.0

λ=0.2

λ=0.4

τ

0 1 2 3 4 5 6

Av
er

ag
e 

Θ

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25
ES=0.0
PS=5.0
β=0.5
ε=0.2
γ=2.0
σ=12.0

λ=0.0,0.2,0.4

 

Figure 5.10: Effects of λ on Average Θ (1)    Figure 5.11: Effects of  λ on Average Θ (2) 

 

Figure 5.12 represents the influence of the motion amplitude β on the average 

dimensionless heat parameter Θ in the presence of viscous dissipation effects. Induced 

velocities increase by an order of β as β increases. Meanwhile, viscous dissipation 

increases by an order of β2 as β increases. Accordingly, as seen in Figure 5.12, the values 

of the average Θ are expected to increase as β increases. 
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Figure 5.12: Effects of  β on Average Θ (ES and λ are none zeros)   

 

Finally, enhancements of heat transfer inside thin films with oscillating squeezing 

can be achieved by the following: introducing suspensions of metallic ultrafine particles 

in the working fluid such as suspensions of copper ultrafine particles, selecting the 

working fluid that will result in a minimum Eckert number, considering a thin film with 

large thermal squeezing parameter and increasing the motion amplitude if Eckert number 

is negligible. 

5.3 Comments 

 From previous figures, it is noticed that the mean value of the average Θ is 

unaffected by any changes in the values of PS or β (in absence of viscous dissipation). 

However, it is clearly noticed that the mean value of the average Θ  is a function of the 

parameters ε, ES and λ. Therefore, external disturbances to an existing thin film can 
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change its mean thermal behavior which in turn can result in excessive cooling in cases 

where suspended ultrafine particles are present in the fluid and more heating when the 

fluid is viscous. The percentage fluctuation in the average Θ increases as PS,  β  and λ 

increase and decreases as both ε and ES increase. The fluctuation in thermal 

characteristics of thin films is an important aspect to be considered in the design of thin 

films especially for fluidic cells of many sensors. This is because many sensors are 

bimaterial such as the microcantilever. The presence of squeezing effects inside these 

thin films due to external disturbances can move the position for the thermally developed 

flow conditions forward and backward. As such, these sensors need to be placed in the 

fully developed regions where fluctuations in the temperature are minimized. 
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CHAPTER 6 

 
 

ANALYSIS OF HEAT TRANSFER CHARACTERISTICS INSIDE 
OSCILLATORY SQUEEZED THIN FILMS SUBJECT TO A VARYING 

CLEARANCE 
 
 
 

 In this chapter, a parametric study is performed on inclined thin films in order to 

find out the influence of the geometry changes on the thermal characteristics of 

oscillatory squeezed thin films. In addition, the effects of the squeezing number and the 

thermal squeezing parameter are studied. Moreover, the effects of the presence ultrafine 

particles suspensions in the working are studied. The squeezing number is considered to 

be different than 12 in this chapter. The previous effects are considered for both constant 

wall temperature conditions and for the condition where the lower plate is under uniform 

wall heat flux condition while the upper plate is insulated. The values of ξ∆ , η∆ and τ∆  

are chosen to be 0.0055, 0.03 and 0.0015 for constant wall conditions and 0.01, 0.03 and 

0.0025 for uniform wall heat flux conditions. These result in time and grid independent 

solutions.  

6.1 Controlling Parameters 

The parameters studied in this chapter are the squeezing number σ, thermal 

squeezing parameter PS, Eckert number ES, dimensionless slope κ, dispersion coefficient 

λ and the dimensionless amplitude β. The values of PS are varied from 1.0 to 8.0. This 
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corresponds to actual disturbance frequency varying from 1.5 to 13 s-1 for a thin film 

having a thickness equal to 0.5 mm with water as the working fluid. The Eckert number 

is varied from 0 to 1 and the dispersion coefficient is allowed to vary from 0 to 2. These 

ranges are found to cause obvious variations in heat transfer, Nusselt number and fluid 

temperatures. The values of σ is varied from 5 where inlet average velocity is very large 

compared to squeezing velocities, for β=0.2, to 11 where inlet average velocity is 

relatively small. The values of β are considered to change from 0.1 for a stiff thin film to 

0.4 for soft thin film. Finally, the generated results in this chapter except for section 6.8 

are based on constant inlet average velocity. 

6.2 Effects of the Squeezing and the Thermal Squeezing Numbers 

Figure 6.1 shows the behavior of the average dimensionless heat transfer 

parameter Θ as functions of the dimensionless time τ* and the squeezing number σ for 

constant wall temperature conditions CWT. It is noticed that the average Θ has an 

oscillatory trend and it decreases as σ increases. This is because the average axial 

velocities increase as σ decreases thus heat transfer by convection increases. The 

maximum and minimum values of average Θ were found to occur at times where the 

upper plate has almost its maximum speed in squeezing and relaxation stages, 

respectively. The behavior of average lower plate temperature θW as a function of σ is 

shown in Figure 6.2 for UHF conditions. Decreases in the values of  σ results in increases 

in average axial velocities thus more cooling is encountered for the lower plate and its 

average temperature is reduced as σ decreases.  
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     Figure 6.1: Effects of σ on Average Θ          Figure 6.2: Effects of σ on Average θW 

 

 

The effects of σ on the Nusselt number at the lower plate NuL is shown in Figure 

6.3 for the uniform heat flux UHF condition. Its noticed that σ does not have a great 

effect on NuL and that NuL has an oscillatory behavior. The maximum values of NuL 

occur when the film thickness reaches almost its minimum values while the minimum 

values of NuL occur when the film thickness is almost maximum. Figure 6.4 represents 

the effect of thermal squeezing parameter PS on the NuL for the UHF condition. It is 

found that NuL increases as PS increases. However, increasing PS by a factor of 8 resulted 

in a maximum increase in NuL by factor of 1.09 as can be shown from Figure 6.4. This 

indicates that NuL is not sensitive to either σ and PS as long as the mean flow inside the 

thin film produces thermally developed conditions at the exit. Also, it is noticed that the 
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plot of NuL moves slightly to the right as PS increases as a result of increases in transient 

effects. 

 

τ*

0 1 2 3 4 5 6

N
u L

2.00

2.25

2.50

2.75

3.00

3.25

3.50
ES=0.0
PS=1.0
β=0.2
ε=0.1
γ=3.0
κ=0.0
λ=0.0
ξ=1.0

σ=5,6,7

τ*

0 1 2 3 4 5 6
N

u L
2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75
ES=0.0
β=0.2
ε=0.1
γ=3.0
κ=0.0
λ=0.0
σ=6.0
ξ=1.0

PS=1.0,2.0,4.0,8.0

 

     Figure 6.3: Effects of σ on NuL (UHF)  Figure 6.4: Effects of PS on NuL (UHF) 

 
 
6.3 Effects of the Dimensionless Slope of the Thin Film 

Figures 6.5 and 6.6 illustrate the effect of the dimensionless slope of the upper 

plate of the thin film  κ on the Nusselt number for CWT and UHF conditions, 

respectively. It is noticed that the trend of NuL and NuU for CWT conditions and the trend 

of NuL for UHF condition have an oscillatory behavior. Further, the values of both NuL 

and NuU for CWT conditions and NuL for UHF conditions decrease as  κ increases due 

decreases in both the average axial velocities and the local velocities near the plates as κ 

increases. An interesting feature for inclined thin films is that variations in the Nusselt 

number due to the squeezing effects decreases as κ increases. Moreover, it is noticed 
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from Figure 6.5 that the values of NuU is always greater than that for NuL for convergent 

thin films while the opposite is true for divergent thin films. 
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     Figure 6.5: Effects of κ on Nu (CWT)             Figure 6.6: Effects of κ on NuL (UHF) 

 

  As initial thermal effects diminish, kinks are noticed to appear for Nusselt 

numbers as in Figures 6.5 and 6.6 due to the transition with the steady periodic solution. 

These are clear for divergent thin films and at larger σ values. This is because the 

increased fluid volume in divergent cells and the decreased inlet velocities for larger σ 

values increase the transient effects and accordingly we see these kinks occur at further 

times. These kinks can be seen in many vibrated dynamical systems.  

The axial distribution of NuL is shown in Figure 6.7 and 6.8 for CWT conditions 

and UHF conditions, respectively. The trend of NuL is almost constant for κ=0.0 except 

near the inlet where the flow there is not thermally developed. However for the cases 
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where κ is different than zero, The values of NuL increase almost linearly as ξ increases 

far from the inlet for negative values of κ and they decrease almost linearly for positive 

values of  κ as ξ increases. These facts are observed from Figures 6.7 and 6.8. 

ξ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
u L

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0
ES=0.0
PS=1.0
β=0.1
ε=0.1
γ=3.0
λ=0.0
σ=8.0

κ=-0.25,0.0,0.25,0.5

τ*=6.283
τ*=5.339

κ=-0.25,0.0,0.25,0.5

ξ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
u L

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
ES=0.0
PS=1.0
β=0.2
ε=0.1
γ=3.0
λ=0.0
σ=5.0

κ=-0.25,0.0,0.25,0.5

τ*=6.283
τ*=5.339

κ=-0.25,0.0,0.25,0.5

        

    Figure 6.7: NuL Distribution (CWT)                  Figure 6.8: NuL Distribution (UHF) 

 

The influence of κ on θm is shown in Figure 6.9 for CWT conditions. The values 

of θm increase as κ decreases. As κ decreases, the Nusselt numbers increase resulting in 

more heat transferred to the fluid for CWT conditions. This additional heat will result in 

increasing the fluid temperatures. For UHF conditions, average lower plate temperature 

θW is found to increase as κ increases due to decreases in convective heat transfer 

coefficients. This can be seen from Figure 6.10. Further, it is noticed that the average θW 

has an oscillatory behavior almost similar to the upper plate motion with an approximate 

phase shift equal to π/6. That is the maximum average θW occurs at times that results in 
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maximum upper plate velocity in relaxation stages and the minimum are at times that 

makes the velocity of that plate maximum in squeezing stages.  
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      Figure 6.9: Effects of κ on  θm (CWT)         Figure 6.10: Effects of κ on  θW (UHF) 

  

6.4 Effects of Viscous Dissipation and Thermal Dispersion Effects 

 External vibrations have a significant influence on heat transfer inside thin films 

especially if the working fluid possesses a high viscosity. The induced motions results in 

increasing viscous dissipation especially at large values of σ as shown in the previous 

chapter. This results in reducing the cooling capacity of the thin film as shown in Figure 

6.11 which describes the relation between the average dimensionless heat parameter and 

the squeezing Eckert number for CWT conditions. On the other hand, the cooling 

capacity of the thin film can be increased in the presence of metallic ultrafine suspensions 

inside the thin film due to thermal dispersion effects as shown in Fig. 6.12 for UHF 
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conditions. This figure shows the effects of the dimensionless thermal dispersion 

parameter λ on the average lower plate temperature. 
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Figure 6.11: Effects of ES on Average Θ (CWT)    Figure 6.12: Effects of λ on  θW (UHF) 

 

6.5 Effects of Dimensionless Amplitude of the Upper Plate Motion 

Figure 6.13 display the effect of the dimensionless amplitude of the upper plate of 

the thin film  β on the Nusselt number for CWT conditions. It is seen that the amplitude 

of NuL (NuU=NuL) increases as β increases. Further, it is also noticed that mean value of 

the Nusselt number at the steady periodic behavior is independent of β. The increase in 

the noise level at the upper plate motion is expected to increase the fluctuation in the 

lower plate temperature for UHF conditions as shown in Figure 6.14.  

Figure 6.14 shows that average lower plate temperature is increased by 40% over 

the mean plate temperature for PS=1.0 and β=0.4. This increase will reduce the viscosity 
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especially in lubrications where the viscosity of the lubricant is a strong function of 

temperature. Accordingly, the thin film will not be able to carry the load at all times and 

the possibility of wear increases. As PS and β increase, the working temperatures at 

certain times for the electronic component increases when the thin film is used to cool 

these devices. Therefore, a correction factor has to be included in designs of 

microchannels or heat pipes to account for external vibrations. 
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Figure 6.13: Effects of  β on NuL (CWT)           Figure 6.14: Effects of β on   θW (UHF) 

 

6.6 Correlations 

The following equation represents the behavior of Nusselt numbers for both CWT 

and UHF conditions as a function of the dimensionless time τ* in the absence of transient 

effects and viscous dissipation. 
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(6.1) 

where the square root term represents the reciprocal of the average of the term 1/H. The 

values of NuLm are obtained from Table 6.1. These values can be taken for different 

values of PS and σ as long as the mean flow produce thermally developed conditions at 

the exit as shown before. Equation (6.3) can be applied also for evaluating the Nusselt 

number at the upper plate for CWT conditions. The mean value of the Nusselt number 

NuLm or NuLm and the percentage fluctuation in the Nusselt number are evaluated from 

the following relations 
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Equations (6.1)-(6.3) are also valid for the Nusselt number and its corresponding 

variation at the upper plate. It is noticed that some of correlations in Table 6.1 are 

functions of the dimensionless distance X and they are valid for X far from the inlet. This 

generalization is obtained by noticing that the Nusselt numbers at X=Xo can be evaluated 

at X=1.0 for a different case with a dimensionless slope and perturbation parameter equal 

to κXo and ho/(XoB) instead of κ and ho/B. The squeezing number will be reduced but as 

shown before Nusselt numbers are less influenced by σ and axial conductions are small 

compared to axial convections far from the inlet. The maximum error between these 
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correlations and the numerical results are 6% for the Nusselt numbers and about 15% for 

the values of mLL NuNu∆ and mUU NuNu∆ .  
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Table 6.1: Correlations for mean Nusselt numbers and Fluctuations in Nusselt numbers 

(ES=0, PS=1.0, 4.01.0 ≤β≤ , σ=5.0) 
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6.7 An Approximate Correlation for the Exit Thermal Boundary Condition 

Figure 6.15 shows the axial development of the temperature inside the thin film 

for UHF conditions at two different times and flow conditions.  
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Figure 6.15:Temperature Development(UHF)  Figure 6.16:Validation for Eq. (6.4)(CWT)     

 

According to Figure 6.15, the following exit condition is suggested as the exit 

thermal boundary condition for UHF conditions: 
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(6.4) 

Equation (6.4) will be used in subsequent chapters when backflows occur at the exit, 

negative velocities appear, for UHF conditions since singularity is introduced by the 

original boundary condition when axial velocity reaches zero at the exit and axial 

conduction can not be neglected for these conditions. Figure 6.16 represents a 

comparison between a solution to a squeezed thin film having CWT conditions, σ=6.0 



 

73

and ε=0.244 with exit thermal condition represented by equation (6.4) and a portion of a 

long squeezed thin film having σ=8.5 and ε=0.1 satisfying at its exit approximately the 

zero values for the axial gradient of the temperature at two different PS values. The 

plotted portion of the last thin film which ranges from X=0.0 and extending to X=0.41 

represents a thin film having σ=6.0 and ε=0.244. The solution for θm of the chopped thin 

film with equation (6.4) as an exit thermal condition is found to be in excellent agreement 

with the resulting solution of the extended thin film as shown in Figure 6.16. Therefore, 

Equation (6.4) is also suggested for cases where the gradient of θm is not zero for CWT 

conditions.  

6.8 Effects of Inlet Axial Velocity Conditions on Nusselt Numbers 

Figure 6.17 show the Nusselt number at the lower plate of the thin film at two 

different inlet flow conditions for CWT and UHF thermal wall conditions. The two 

different inlet flow conditions are the constant inlet flow rate CIF condition and the 

constant inlet average velocity CIV condition. It is noticed from these figures that the 

fully developed values for the Nusselt number are almost unaffected by changes that 

occur in the inlet flow conditions except for CWT conditions near the maximum relief at 

large β values. Therefore, the previously generated correlations for CIV conditions can 

also be applied also for CIF conditions. 
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Figure 6.17: Inlet Flow Conditions versus Nusselt: (a) CWT and (b) UHF 

 

6.9 Comments 

  Two main factors affect the function of a fluidic cell. Flow factors and thermal 

factors. With regards to flow factors, the bioprobes are calibrated for certain flow rates. 

Accordingly, external disturbances will cause inaccurate readings due to the resulting 

fluctuations in the flow rate. The fluctuations in the flow rate increases as the distance 

between the probe and the inlet of the cell increases. Therefore, one idea is to place the 

probe as close as possible to the inlet.  

As for thermal factors, many bioprobes are bimaterial such as the microcantilever. 

Decreasing the squeezing number σ will move the fluctuations in the temperature further 

down stream. Also, increasing the thermal squeezing number PS and the dimensionless 

amplitude β will increase the fluctuations in the fluid temperature and the possibility of 
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inaccurate measurements due to bimaterial effects increases. To eliminate bimaterial 

effects, both PS and β have to be reduced. They can be reduced by the following: 

• Increasing fluid thermal conductivity by using high conductive solvent or by 

using thermal conductivity enhancers such as suspended ultrafine particles. 

• Decreasing thermal capacitance by removing any scales from the biofluid that 

have high thermal capacitance. 

• Decreasing the thickness of the cell in order to minimize bimaterial effects. 

• Eliminate any sources of disturbances from the surroundings. 

• Using stiff sealing between the plates of the cell. 

• Using rigid upper plate  

• Operating the fluidic cell at low flow rates. 

• Using convergent cells as they tend to reduce the thermal entrance length. 

Although these factors can reduce bimaterial effects, they can produce counter 

actions. For example, a stiff seal will increase the leakage problem thus decreasing the 

accuracy of the measurements. Finally, decreasing the thickness of the thin film results in 

increasing the values of β. In the previous analysis, the inertia of the fluid is neglected as 

for fluidic cells designed for a single microcantilever. However, this might not be the 

case for cells containing array of sensors, operating at large flow rates or when the 

frequency of the disturbance is large. Therefore, inertia effects on flow and heat transfer 

inside oscillatory squeezed thin films will be discussed in the next chapter. 
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CHAPTER 7 

 
 

ANALYSIS OF FLOW AND HEAT TRANSFER INSIDE OSCILLATORY 
SQUEEZED THIN FILMS WITH LARGE INERTIA EFFECTS  

 
 
 

 In this chapter, inertia effects are considered in the analysis of flow and heat 

transfer inside oscillatory squeezed thin films. The effects of changing the squeezing 

Reynolds number on the velocity profiles as well as thermal characteristics of squeezed 

thin films are discussed. Further, influences of increasing the disturbance frequency, 

dimensionless slope of the upper plate and the squeezing number of the thin film are 

analyzed taking in the presence of inertia effects. The values of ξ∆ , η∆ and τ∆  are 

chosen to be 0.0125, 0.04 and 0.001 for both constant wall temperature and uniform wall 

heat flux conditions below which grid independent solutions are obtained. The maximum 

error between the subsequent values for the dimensionless stream function and the 

dimensionless velocity at each time step were selected to be 10-6 and 10-5, respectively. 

7.1 Controlling Parameters 

The parameters studied in this chapter are the Prandtl number Pr, squeezing 

Reynolds number RS, squeezing number σ, squeezing frequency, dimensionless 

amplitude of the motion β,  and the dimensionless slope κ, The Pr values are taken to be 

0.03 and 3.0. The first value represents a typical value for liquid metals (mercury) while 

the second value represents a moderate value for Pr. The values of RS are varied from 



 

77

from 0.5 to 80. This corresponds to thin films filled with water and having intermediate 

film thicknesses ranges from 0.4mm to 6mm. Also, this corresponds to thin films filled 

with liquid metals (e.g. mercury) having intermediate film thicknesses, 0.2mm to 2mm. 

the previous thin films are designed to produce a mean wall shear stress of 2 dyn/cm2 

when the squeezing number σ is equal to 5.14. 

The values of σ are varied from 5 where inlet average velocity is very large 

compared to squeezing velocities to 9 where inlet average velocity is relatively small. β 

values are considered to change from 0.1 for stiff thin film to 0.3 for soft thin film. The 

dimensionless slope is taken to be -0.2 for convergent thin film and 0.4 for divergent thin 

film. It should be mentioned that all the results are generated for constant inlet average 

velocity conditions CIV unless stated where comparisons is performed between CIV and 

constant inlet flow rate CIF conditions. 

7.2 Effects of Varying the Squeezing Reynolds Number 

Figures 7.1(a) and 7.1(b) show the effects of the squeezing Reynolds number RS 

on the axial velocity profiles at τ*=3π/2 when the upper plate reaches its maximum speed 

in a relaxation stage. It is noticed that inlet effects convect to large distances from the 

inlet as RS increases. This is shown in Figure 7.1(b) where the core of the velocity profile 

becomes more flat at ξ=0.25 as RS increases. Further, it is observed at this time that the 

vorticty at both boundaries decreases as RS increases while they are expected to increase 

during squeezing stages as RS increases. Flow instabilities start to appear at larger RS 

values during relief stages as shown in Figure 7.1(b). It is worth noting the values of RS 

can be increased either by increasing the film thickness or by decreasing the fluid 
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viscosity and that the frequency of disturbance is kept constant since the squeezing 

number σ is kept constant.  
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   (a)      (b) 

Figure 7.1: Effects of RS on U: (a) Low RS and (b) High RS 

 

Although the average velocity at all times for the previous case is always positive, 

negative velocities appear near the lower plate for RS greater than 40 as shown in Figure 

7.1(b). This instability or flow separation is due to reductions in the flow kinetic energy 

and increases in fluid pressure as a result of upper plate relaxation. The critical RS value 

that causes flow separations from both the lower and upper plates is found to decrease as 

the dimensionless slope κ increases as shown in Figure 7.2 for both CIV and CIF 

conditions, respectively. Figure 7.2 shows that constant inlet flow rate condition enlarge 
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exit flow instabilities during relief stages because flow kinetic energy is reduced due to 

reductions in inlet velocities and flow induced by vibration.  
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Figure 7.2: U for Divergent Film (High RS)      Figure 7.3: Effects of RS on Nu (CWT, 1)      

 

Figures 7.3 and 7.4 represent the effects of RS on the history of the local Nusselt 

numbers NuL at the exit of the thin film for CWT conditions. Variations in Nusselt 

numbers are significant in relaxation stages where fluid inertia, thermal transient effects 

and thermal convections are maximized due to increases in flow rates as the volume 

inside the thin film increases in these stages. This can be seen from Figures 7.3 and 7.4 

for CWT conditions and from Figure 7.5 for UHF conditions. It is noticed from Figure 

7.6 that there is no significant difference between the Nusselt number history for CIV and 

CIF conditions. 
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   Figure 7.4: Effects of RS on Nu (CWT, 2)       Figure 7.5: Effects of RS on NuL (UHF) 

 

The effects of RS on mean bulk temperature θm at dimensionless times τ*=3π/2, 

5π/3, 11π/6 and 2π is illustrated in Figure 7.6 for CWT conditions at constant frequency 

of disturbance and the Prandtl number. These values of dimensionless times represent the 

values when the upper plate has maximum speed in a relaxation stage, zero speed in a 

relaxation stage, maximum speed in a squeezing stage and zero speed in a squeezing 

stage, respectively. Increasing RS can be achieved in this case by increasing the film 

thickness. As the film thickness increases, the flow rate increases. Accordingly, inlet 

conditions are furthermore convected toward the down stream as observed from Figure 

7.6. It is also noticed that fluctuations in θm at the exit is increased when RS is increased 

as depicted from Figure 7.6.  
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Figure 7.6: Effects of RS on  θm (CWT) 

 

 Also, Figure 7.6 shows that maximum and minimum cooling effects near the inlet 

occur at τ*=5π/3 and τ*=2π, respectively. This is because the flow at these times are 

maximum and minimum at τ*=5π/3 and τ*=2π, respectively, while squeezing effects are 

minimum near the inlet. Far from the inlet, the maximum and minimum cooling effects 

occur at τ*=11π/6 and τ*=3π/2 as long as σ is large enough to cause increases in 

squeezing effects. 

7.3 Effects of Varying the Squeezing Frequency 

Figures 7.7 and 7.8 illustrate the effects of varying the squeezing frequency on the 

average dimensionless heat transfer Θ and average θW for CWT and UHF conditions, 

respectively, at relatively low frequencies. It is observed from Figure 7.7 that increasing 

the squeezing frequency resulted in an increase in both the delay phase shift between the 

plots and the variations in the average Θ. Regarding UHF conditions, Figure 7.8 predicts 
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that fluctuations in average θW decrease as the squeezing frequency increases for two 

different inlet flow conditions.  For large squeezing frequencies, both fluctuations in 

average Θ and θW decrease as the squeezing frequency increases as shown in Figures 7.9 

and 7.10. This is because changes that happen to the flow at large squeezing frequencies 

occur at fast rate as the frequency increases causing inefficient heat diffusion.  
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Figure 7.7: Effects of ω on Average Θ            Figure 7.8: Effects of ω on Average θW  

 

Figures 7.9 and 7.10 shows that mean cooling effects for both conditions increase 

until reaching asymptotic values as squeezing frequency increases for large frequencies. 

These asymptotic values represent the average values of Θ and θW at zero amplitude of 

vibrations as shown in Figures 7.9 and 7.10. Also, these figures suggest that thermal 

disturbance effects due to external squeezing are more pronounced at relatively low 

squeezing frequencies which necessitate isolations of thin films against vibrations having 

lower frequencies.   
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     Figure 7.9: Effects of ω on ∆Θ (CWT)        Figure 7.10: Effects of γ on ∆θW (UHF)                    

 

7.4 Effects of Varying the Inlet Velocity 

Figures 7.11(a) and 7.11(b) represent the contour plots for the stream lines at two 

different times, τ*=3π/2 and 11π/6, for σ=9. This case represents a case where the inlet 

velocity is small such that backflow is resulted during the relaxation stage as shown in 

Figure 7.11(a). It is noticed from Figure 7.11(a) and 7.11(b) that stream lines are directed 

toward the exit of the thin film and they are sloped towards the lower plate during 

squeezing stages. In relaxation stages, the stream lines are directed to the exit and they 

are sloped towards the upper plate before occurrence of the backflow. After the backflow, 

the stream lines are directed toward the inlet and they are tilted upwards. These can be 

shown in Figure 7.11(a). Figures 7.11(a) and 7.11(b) suggest that the least affected region 
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by the disturbance at the upper plate is the lower region and near the inlet of the thin film 

since variations in the slops stream lines is small in this region. 
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Figure 7.11: Stream lines: (a) τ*=3π/2 and (b) τ*=11π/6  

(Pr=3.0, RS=1.0, β=0.3, ε=0.1, γ=3.0, κ=0.0, σ=9.0) 

 

Figure 7.12(a) describes the axial behavior of θm for two different inlet velocities 

for CWT conditions. The inlet velocity for the dashed lines is one third that for the solid 

lines. It is observed from this figure that both thermal entrance length and fluctuations in 

θm are increased as the inlet velocity increases. Decreasing inlet flow rates result in more 
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heating to the fluid. Therefore, the values of θm are increased as σ increases a shown in 

Figure 7.12(a). Flow fluctuations are expected to increase for CIV conditions and 

therefore fluctuations in the mean bulk temperature increases for CIV conditions 

compared to CIF conditions as shown in Figure 7.12(b).   
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   (a)      (b) 

Figure 7.12: Effects of (a) Vo and (b) Inlet Flow Conditions on θm (CWT) 

                        

Figures 7.13(a) and 7.13(b) show the contour plots for the isotherms at two 

different times, τ*=3π/2 and 11π/6 for σ=9, for CWT conditions. It is noticed from both 

figures that isotherms are almost symmetric. Further, more energy is being convected 

down streams in squeezing stages than in relaxation stages. Figures 7.13(a) and 7.13(b) 

suggest that the least affected region by the disturbance from thermal point of view is the 

exit region near either the lower or the upper plates. This is because the dimensionless 

temperature is almost unity. 
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Figure 7.13: Isotherms: (a) τ*=3π/2 and (b) τ*=11π/6  

(Pr=3.0, RS=1.0, β=0.3, ε=0.1, γ=3.0, κ=0.0, σ=9.0, CWT) 

 

7.5 Effects of Varying the Dimensionless Slope 

Figures 7.14 and 7.15 explain the influences of dimensionless slope of the upper 

plate κ on the axial and normal velocity profiles at the exit of the thin film, respectively. 

Axial velocities and the corresponding shear rates increase as κ decreases as illustrated in 

Figure 7.14. For undisturbed thin films, the minimum normal velocities are for flat thin 
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films but convergent thin films have higher normal velocities than divergent ones because 

these velocities are proportional to the gradient of the axial velocities which is 

proportional to κ/(κ+1)2. Yet the variation in normal velocities near the fixed plate of 

squeezed thin films can be minimized significantly for divergent thin films. This can be 

seen from Figure 7.15. Also, Equation 2.19(c) suggests that divergent cells having κ near 

unity have a minimized normal velocities near the lower plate for small values of β and at 

large values of σ. 
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        Figure 7.14: Effects of κ on U Profiles         Figure 7.15: Effects of κ on V Profiles 

 

The effects of κ on mean bulk temperature θm and θW at dimensionless times 

τ*=3π/2, 5π/3, 11π/6 and 2π is exemplified in Figures 7.16 and 7.17 for CWT and UHF 

conditions, respectively. The values of θm for the studied convergent thin film, κ=-0.2, 

are found to be greater than those for the studied divergent thin film, κ=0.4. The 
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increased axial velocities in convergent thin films results in increasing the convective 

heat transfer coefficient. This in turn increases the heat transfer to the fluid for CWT 

conditions. Accordingly, θm increases as κ increases. Further, increases in convective 

heat transfer coefficient causes θW to decrease as shown in Figure 7.17. It is further 

noticed from Figures 7.16 that fluctuations in θm at the exit of the thin film increase as  κ 

increases. 
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     Figure 7.16: Effects of κ on θm (CWT)            Figure 7.17: Effects of κ on θW (UHF)                    

 

Figures 7.18(a) and 7.18(b) present the contour plots for the isotherms at two 

different times, τ*=3π/2 and 11π/6 for σ=5.14, for a flat thin film at UHF conditions. It is 

noticed that more energy is being convected down streams during squeezing stages than 

during relaxation stages. The plots show that the least affected region by the disturbance 

from thermal point of view is the region close to the upper plate where heat transfer is 

minimized there. 
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Figure 7.18: Isotherms: (a) τ*=3π/2 and (b) τ*=11π/6  

(Pr=3.0, RS=1.0, β=0.3, ε=0.1, γ=3.0, κ=0.0, σ=5.14, UHF) 

 

 It is clear from Figure 7.18 that axial gradients of the fluid temperature at the exit 

are not uniform. This arises the fact that the assumption of the uniformity of the exit 

gradients of the temperature is not valid. Although this is true at certain times, the 

suggested thermal condition at the exit, Equation 2.48(d), produce small errors if it is 

applied near the inlet because it satisfies the integral energy balance as long as the 

perturbation parameter is small which ensures negligible conductions. Further, the 
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suggested boundary condition presented in Equation 6.4 can be applied resulting in 

reducing the errors associated with Equation 2.48(d). 

Finally, it is noticed from Figure 7.19 that the effects of increasing RS on the 

Nusselt number are dominant for divergent thin films and during relief stages. This figure 

is developed based on equal PS values for each case to ensure a similar average thermal 

convection for each plot. The Nusselt number is found to decrease as RS increases for 

divergent thin films because it is expected that velocities near the wall will decrease at 

larger rates during relief stages as RS increases as can be seen from Figure 7.1. 
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Figure 7.19: Inertia effects on NuL (PS=const., UHF) 

 

 

 



 

91

7.6 Comments 

 It was found earlier that backflows and the disturbance level due to external 

squeezing can be reduced by using relatively short thin films. However, flow separations 

and flow instabilities start to appear at relatively large squeezing Reynolds numbers and 

especially for divergent thin films. One way to eliminate these instabilities in fluidic cells 

is to use convergent fluidic cells. However, variations in normal velocities inside 

disturbed convergent cells are higher than those for divergent cells. Also, the wall shear 

stress in convergent cells is relatively higher than that for divergent cells leading to a fact 

that the efficiency of the detection of the bioprobes may be reduced for convergent cells 

for certain applications as target molecules will be in contact with the receptor for short 

periods of times. Therefore, divergent cells are recommended to eliminate flow 

disturbances in the absence of flow instabilities while convergent cells are preferred when 

flow instabilities are encountered. 

 Most chemical and biological sensors are sensitive to the temperature such as 

bimaterial microcantilevers. The use of convergent cells as fluidic cells is found to reduce 

variations in fluid temperatures due to external disturbances as well decrease the thermal 

entrance length. Further, reducing inlet flow rates results in reducing the variations in 

fluid temperatures. Variations in fluid temperatures are found to be great only at 

relatively low squeezing frequency. This requires a design of fluidic cells that are highly 

isolated against external vibrations having small band of vibrating frequencies. If such a 

cell is designed, then convergent cells represent a good candidate for fluidic cells that can 

reduce bimaterial effects. 
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 One of the bad influences of flow separations and instabilities is that they cause 

the Nusselt number to decrease especially during relief stages. This may effects the 

cooling capacity of microchannels or heat pipes in electronic cooling applications in the 

presence of disturbed conditions. Therefore, an additional factor of safety is needed in 

their designs to account for these disturbances. Finally, the presence of flow instabilities 

inside thin film channels when inertia of the fluid is not negligible can be eliminated by 

introducing hydromagnetic effects on the working fluid inside squeezed thin films. This 

will be discussed in the next chapter. As such, the performance of divergent fluidic cells 

can be improved. 
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CHAPTER 8 
 
 

HYDROMAGNETIC CONTROL OF FLOW AND THERMAL EXIT 
CONDITIONS INSIDE OSCILLATORY SQUEEZED THIN FILMS 

 
 
 

8.1 Mathematical Model for the Magnetic Field Effects 

 In the presence of a uniform transverse magnetic field normal to the flow 

direction inside a flat thin film, the dimensional momentum equations for a flat squeezed 

thin film having its upper plate moving according to Equation (2.1) will be 
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where σm and Bm are the electric conductivity of the fluid and the applied magnetic 

strength, respectively. The vorticity-stream function formulation resulted from Equation 

(8.1) and (8.2) are approximated by the following 
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The last term in Equation (9.3), 
y
u

∂
∂ , is of order 

o

o

h
BV ω+

which is much greater than 

x
v

∂
∂ that is of order

( )
B

BVo ω+ε
. Therefore it can be approximated by the vorticity Ω. That 

is Equation (8.3) can be approximated by the following for thin films filled with 

electrically conducting fluids in the presence of magnetic field normal to the flow: 
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Utilizing dimensionless variables listed in Equations (2.31) in Equations (8.5) results in 
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where Ha is the Hartmann number. It is equal to 

om
m hBHa

µ
σ

=  
 

(8.7) 

The boundary conditions for the vorticity-stream function formulation are similar to those 

of Equations (2.36) and (2.37) where constant inlet average velocity is considered at the 

inlet. 

8.1.1 Effects of the Magnetic Field on the Flow inside Squeezed Thin Films 

 Figures 8.1 and 8.2 show the influence of the square of Hartmann number Ha2 on 

dimensionless axial and normal velocity profiles at the exit, respectively. Imposition of a 

magnetic field normal to axial flow produces a resistive force. This force is called the 

Lorentz force which has a tendency to suppress the movement of the fluid. This 

suppression is noticed in Figure 8.1 where the core of the velocity profiles decreases as 
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Ha increases. However the uniformity of the velocity profiles increases as Ha increases. 

With regards to normal velocities, increases in the values of Ha is noticed to increase the 

variations in the dimensionless velocity profiles near the lower plate, yet these variations 

are small compared to the variations in the values of Ha. This can be noticed from Figure 

8.2. 
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Figure 8.1: Effects of Ha on U  Figure 8.2: Effects of Ha on V 

 

 Figure 8.3 shows the effects of Ha on axial dimensionless velocity profiles for 

relatively large value of squeezing Reynolds number RS at τ*=3π/2. The increased 

uniformity in the velocity profile that resulted from the imposition of the normal 

magnetic field caused the fluid near the plates to have enough kinetic energy to overcome 

the instabilities due to increases in the pressure during relief stages. 
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      Figure 8.3: Effects of Ha on U (high RS)           Figure 8.4: Effects of Ha on Ω*(ξ,1) 

 

 Figure 8.4 describes the effects of Ha on the axial distribution of the vorticity 

evaluated at the top surface Ω*(ξ,1) of the thin film at two different times. It is noticed 

that Ω*(ξ,1) increases as Ha increases due to increases in the Lorentz resistive force. This 

implies that surface stresses increases as Ha increases since wall shear stress is 

proportional to Ω*(ξ,1). Note that wall shear stresses increase as dimensionless axial 

distance ξ increases during squeezing periods while they decrease during relief stages as 

seen in Figure 8.4. While magnetic field resulted in a reduction in flow instabilities inside 

the thin film at large RS values, it introduced larger flow resistances. As such, larger 

pumping power is required to maintain a constant average velocity.  

8.1.2 Effects of the Magnetic Field on the Heat Transfer inside Squeezed Thin films 

 Figure 8.5 illustrates the effects of Ha on the Nusselt numbers for constant wall 

temperature CWT conditions. Increasing the magnetic strength when Ha increases results 
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in increasing the flow near the plates of the thin film resulting in increasing heat transfer 

at the thin film plates by convections thus Nusselt numbers increases as Ha increases for 

thin films having similar average flow rates. These increases in convective heat transfer 

are also noticeable for uniform wall heat flux UHF conditions as seen from Figure 9.6. 

Furthermore, Figures 8.5 and 8.6 show that fluctuations in the Nusselt numbers decrease 

as Ha increases. 
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Figure 8.5: Effects of Ha on NuL (CWT)     Figure 8.6: Effects of Ha on NuL (UHF) 

 

 Figure 8.7 displays the effects of Ha on the dimensionless temperature profiles at 

maximum squeezing velocity for CWT conditions. The plotted dimensionless 

temperature is the ratio of the difference between the wall temperature and the 

temperature at specific point to the difference between the wall temperature and the mean 

bulk temperature. This plotted temperature is found to increase slightly as Ha increases. 

This is because increases in heat transfer as a result of increases in Ha causes the mean 
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bulk temperature θm to increase thus the difference between the wall temperature and θm 

to decrease. 
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     Figure 8.7: Effects of Ha on θ (CWT)           Figure 8.8: Effects of Ha on θm(CWT)  
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Figure 8.9: Effects of Ha on θW (UHF) 
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Figure 8.8 demonstrates that the values of θm increase as Ha increases for CWT 

conditions. For UHF conditions, increases in Ha cause increases in convective heat 

transfer coefficient which lower the temperature of the heated plate compared to the 

effects of having small values of Ha as seen from Figure 8.9. 

8.3 Comments 

 In the previous analysis, it is found that imposition of the magnetic field normal to 

the flow has mainly two influences on flow and heat transfer inside squeezed thin films: 

1- Reducing the possibility of flow separations and flow instabilities near the plates of the 

thin film, and 2- Increasing heat transfer convections inside the thin films having similar 

inlet flow rates. By the analogy between heat and mass transfer, mass transfer to 

biosensors can be increased by hydromagnetic effects. Also, flow instabilities can be 

damped within fluidic cells in the presence of magnetic fields resulting in a reduction in 

the noise in the biosensor measurement. On the other hand, the variation in the normal 

velocity increases as the magnetic strength increases. 

By imposing of a magnetic field normal to the flow direction, fluctuations in the 

temperature due to external squeezing will be reduced and the temperature will reach its 

far stream value at a shorter distance compared to cases where the magnetic field is not 

present. Thus, thermal noise in the measurement of many bimaterial sensors are expected 

to be reduced as the strength of the applied magnetic field is increased. 
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CHAPTER 9 
 
 

EFFECTS OF INTERNAL PRESSURE PULSATIONS ON FLOW AND HEAT 
TRANSFER INSIDE OSCILLATORY SQUEEZED FLAT THIN FILMS 

  
 
 
 
 

The plates of thin films are usually separated by seals as shown in Figure 9.1(a). 

These are elastic materials and can be deformed easily as a result of any external 

disturbances or changes that occur to the pressure inside the thin film. The effects of 

variations in external disturbances on flow and heat transfer inside thin films are studied 

in the previous chapters. In this chapter, the effects of pulsations in the inlet pressure on 

heat transfer characteristics will be analyzed inside thin films supported by soft seals. 

Also, the effects of the softness of the supporting seals are analyzed on flow and thermal 

characteristics inside thin films subject to oscillatory variations in both internal pressures 

and external disturbances. The supporting seals are considered soft because they can 

eliminate fluid leakage problems. 

9.1 Problem Formulation 

The dimensionless pressure defined earlier in Equation 2.7(f) is reconsidered to be 

2o

e

B
V
pp

−ε
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
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−
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(9.1) 
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where pe is constant representing the exit pressure. This will result in zero dimensionless 

pressure at the exit, i.e. 0e =Π . Further, the inlet dimensionless pulsating pressure is 

considered to have the following relation: 

( ))tsin(1 pppoi ϕ+ωγβ+Π=Π  (9.2) 

where βp, iΠ and oΠ are the dimensionless amplitude in the pressure, inlet dimensionless 

pressure and the mean dimensionless pressure, respectively. pγ and pϕ are the 

dimensionless frequency of the pressure and a phase shift angle so that iΠ  will have a 

more general form, respectively. 

Due to both pulsations in internal pressure and external disturbances, the 

dimensionless film thickness, Equation (2.13), can be represented by the following: 

pH)tcos(1H +γωβ−=  (9.3) 

where Hp is dimensionless deformation of the seals that resulted from pulsations in the 

internal pressure. It is assumed that the lower plate is fixed and that the upper plate of the 

thin film is rigid such that the magnitude of the deformation in the seals is similar to 

displacement of the upper plate, Figure 9.1(a). The dimensionless deformation in the 

seals due variations in the external pressure is the second term of Equation 9.3 on the 

right. The dimensionless frequency γ is allowed to be different than γp. 
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Figure 9.1: (a) Schematic Diagram for a Thin Film and, (b) Coordinate system 

 
 
 Most flows inside thin films are laminar and could be creep flows especially in 

the applications of biological detection systems. Therefore, the model of low Reynolds 

numbers is adopted in this chapter. The dimensionless pressure gradient inside the thin 

film as a result of the solution to the Reynolds equation, Equation 2.17, for thin films is 
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The reference velocity Vo that is used to define the dimensionless pressure, axial 

dimensionless velocity and the squeezing number is taken to be related to the average 

velocity, um, inside the thin film at zero β and βp and the dimensionless thickness of the 

thin film that results from the application of the corresponding inlet mean pressure, Hm, 

through the following relation: 

2
m

m
o H

uV =  
(9.5) 

The previous scaled reference velocity is only function of the mean pressure, viscosity 

and the reference dimensions of the thin film and it results in the following relation 

between the inlet mean dimensionless pressure to the squeezing number: 

σ−=Π 12o  (9.6) 

Accordingly, the dimensionless pressure gradient, the dimensionless pressure and the 

average dimensionless pressure AVGΠ inside the thin film are related to the squeezing 

number through the following equations: 
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The average dimensionless change in the film thickness is related to the average 

dimensionless pressure inside the thin film fluidic cell ΠAVG through the theory of linear 
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elasticity. It assumes that the pressure force on the upper plate is linearly proportional to 

the average change in the thin film thickness (Boresi et. al., 1978), by the following 

relation: 

AVGnp FH Π=  (9.10) 

It is assumed that in Equation (9.10) that the displacement of the upper plate due to 

internal pressure pulsations is independent on the axial coordinate. This serves as a good 

approximation and can be clearly seen in symmetrical thin films where the fluid is being 

injected from the center at the axis of symmetry, Figure 9.1(a). The injection can be made 

by syringe or peristaltic pumps.  

The parameter Fn is named, the fixation parameter. A larger Fn value indicates 

softer sealing. The fixation parameter Fn is equal to 

( )
( ) s

2
o

n hED5.0B2
DBV

F
ε+

ω+µ
=  

(9.11) 

where E and hs are the effective modulus of elasticity and the effective dimension of the 

seal (hs=ho for a square seal cross section), respectively. The parameter Fn can have 

different forms depending on the type of the fixation of the thin film plates and whether 

the seals are originally unloaded or compressed. The parameter Fn becomes apparent 

when the thin film thickness is very small. The fixation parameter Fn represents a ratio 

between shear stresses inside thin films to the elastic forces exerted by the seal. The 

values of Fn are of order 0.001-0.1 for long thin films supported by soft seals. 

Equation (9.10) is based on the assumption that the inertia effect of the upper 

plate is negligible. This effect, relative to stiffness of the seal, is proportional to 

( ) ( )EBm 2ω  where m is the mass of the upper plate. The previous parameter is negligible 
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at low pulsation frequencies as in our studied cases. In large frequency applications, the 

film thickness may encounter resonance leading to instability in the film thickness 

response. Also, the assumptions of creep flows will not be valid at large frequencies and 

the problem becomes more complex.  

The first set of dimensionless boundary conditions that will be used is for constant 

wall temperatures CWT at both the lower and the upper plates while the second set is by 

assuming that the lower plate is at uniform wall heat flux conditions UHF and the upper 

plate is insulated. As such the dimensionless boundary conditions can be written as 
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(9.13) 

The last condition of Equation (9.12) is based on the assumption that the flow at the exit 

of the thin film is thermally fully developed. Moreover, the last thermal condition of 

Equation (9.13) is derived based on an integral energy balance at the exit of the thin film 

realizing that the axial conduction is negligible at the exit. The calculated thermal 

parameters that will be considered are the Nusselt numbers at the lower and upper plates, 

and the dimensionless heat transfer from the upper and lower plates, Θ, for CWT 

conditions. They are defined according to the following equations: 
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9.2 Numerical Methods 

The dimensionless thickness of the thin film was determined by solving Equations 

(9.3), (9.9) and (9.10) simultaneously. Accordingly, the velocity field, U and V, was 

determined from low Reynolds number flow model. The reduced energy equation was 

then solved using the Alternative Direction Implicit techniques (ADI) by transferring the 

problem to one with constant boundaries using the following transformations: τ*=τ, ξ=X 

and 
H
Y

=η . Iterative solution was employed for the ξ-sweep of the energy equation for 

CWT conditions so that both the energy equation and the exit thermal condition, 

Equation (9.12), are satisfied. The values of 0.008, 0.03, 0.002 were chosen for ∆ξ, ∆η 

and ∆τ*. 

9.3 Effects of Pressure Pulsations on the Dimensionless Film Thickness 

 Figures 9.2 and 9.3 describe the importance of the fixation parameter Fn on the 

dimensionless film thickness H and the dimensionless normal velocity at the upper plate  

V(X,H,τ), respectively. It is noticed that as Fn increases, H and absolute values of 

V(X,H,τ) increase. It is worth noting that Soft fixations have large Fn values. Increases in 
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the viscosity and flow velocities or a decrease in the thin film thickness, perturbation 

parameter and the seal’s modulus of elasticity increase the value of Fn. 

The effects of pressure pulsations on H are clearly seen for large values of Fn as 

shown in Figures 9.2 and 9.3. At these values, the frequency of the local maximum or 

minimum of H is similar to the frequency of the pressure pulsations as seen from Figure 

9.2. Further, the degree of turbulence at the upper plate is increased when Fn increases as 

shown in Figure 9.3. The fluctuations and the number of local maximum and minimum in 

V(X,H,τ) are meant by the degree of turbulence at the upper plate. This is also obvious 

when the values of γp increase as shown in Figure 9.4. The increase in turbulence level at 

the upper plate may produce back flows inside the thin film at large values of γp. This 

affects the function of the thin film. 
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Figure 9.2: Effects of Fn on H      Figure 9.3: Effects of Fn on V(X,H,τ) 
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    Figure 9.4: Effects of γp on V(X,H,τ)               Figure 9.5: Effects of σ on H 

 

For σ=12 where the time average of the average gage pressure inside the thin film 

is zero, the variation in H decreases as Fn increases. This effect can be seen from 

Equations (9.9) and (9.10) and will cause reductions in the flow and in the cooling 

process. However, the mean value of ΠAVG is always greater than zero for other values of 

σ which causes an increase in the mean value of H as Fn increases resulting in an increase 

in the mean value of the flow rate inside the thin film. 

Figure 9.5 shows the effects of the squeezing number σ on H. Small values of σ 

indicates that the thin film is having relatively large inlet flow velocities thus it has large 

pressure gradients and large values of oΠ . Accordingly, H increases as σ decreases as 

seen in Figure 9.5. Further, it is noticed that the degree of turbulence at the upper plate 

increases as σ decreases. This is shown in Figure 9.6. The changes in the pressure phase 
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shift results in similar changes in the dimensionless thin film thickness phase shift as 

shown in Figure 9.7. 
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       Figure 9.6: Effects of σ on V(X,H,τ)              Figure 9.7: Effects of ϕp on H 

 

9.4 Effects of Pressure Pulsations on Heat Transfer Characteristics of Thin Films 

 Figures 9.8 and 9.9 illustrate the effects of Fn and PS on the dimensionless mean 

bulk temperature θm and the average lower plate temperature θW, average of θ(X,0,τ), for 

constant wall temperature CWT and uniform heat flux UHF conditions, respectively. As 

Fn increases when softer seals are used, the induced pressure forces inside the thin film 

due to internal pressure pulsations will increase the displacement of the upper plate as 

shown before. This enables the thin film to receive larger flow rates since all the cases 

presented in these figures have similar values for the dimensionless pressure at the inlet. 
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Thus, more cooling to the plates results as Fn increases resulting in a decrease in the θm 

and average θW values and their corresponding fluctuations for CWT and UHF 

conditions, respectively. The effect of the thermal squeezing parameter PS on the cooling 

process is also shown in Figures 9.8 and 9.9. It is shown that the cooling at the plates is 

enhanced as PS increases. 
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Figure 9.8: Effects of Fn and PS on θm      Figure 9.9: Effects of Fn and PS on θW (UHF) 

 

Figures 9.10 and 9.11 show the effects of Fn on the Nusselt number at the lower 

plate NuL for CWT and UHF conditions, respectively. It is noticed that the irregularity in 

NuL decrease as Fn decreases. This is because the upper plate will not be affected by the 

turbulence in the flow if the used seals have relatively large modulus of elasticity.  In 

other word, the induced flow due to the upper plate motion is reduced as Fn decreases 

resulting in less disturbances to the flow inside the thin film. This can be seen in Figure 

9.12 for UHF conditions where NuL reaches a constant value at low values of Fn after a 
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certain distance from the inlet. The values of NuL and the corresponding fluctuations are 

noticed to decrease as Fn increases. 
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Figure 9.10: Effects of Fn on NuL (CWT)      Figure 9.11: Effects of Fn on NuL (UHF) 
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Figure 9.12: NuL versus ξ and Fn (UHF)        Figure 9.13: Effects of γp on Average Θ          
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 Figures 9.13 and 9.14 illustrate the effects of dimensionless frequency of the inlet 

pressure pulsations γp on the average dimensionless heat transferred from the plates Θ 

and the average θW for CWT and UHF conditions, respectively. The figures show that the 

mean value of Θ and θW are unaffected by γp and that the frequency of the average values 

of Θ and θW increase as γp increases. Figure 9.15 describes the effects of γp on the 

fluctuation in the average Θ and θW, half the difference between the maximum and the 

minimum values of the average Θ and θW. The effects of γp on the fluctuation in the 

average Θ, δΘ, and the fluctuation in the average θW, δθW, are more pronounced at 

relatively lower values of γp. 
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Figure 9.14: Effects of γp on Average θW     Figure 9.15: Effects of γp on δΘ and δθW 
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9.5 Comments 

 So far, it was found that disturbances at the upper plate increase as both Fn and γp 

increase while they decrease as σ increases. The increase in the disturbance level at the 

upper plate result in an increase in fluctuations in both the axial and normal velocity 

components and may result in an increase in the fluctuation in the thermal behavior of the 

thin film especially at low frequency of inlet pressure pulsations. As such, the noise level 

in the measurements of many sensors inside fluidic cells will increase. 

 To eliminate these disturbances, it is recommended to decrease the value of Fn. 

That is to have stiff seals. However, leakage problems rise as the seals become stiffer. 

Another way to reduce the values of Fn is to consider working fluids with minimized 

viscosity. However, this will be the possibility for flow instabilities to occur as both the 

thickness of the thin film and frequency of vibration increase. 

One of the methods that can be used to eliminate the disturbances at the upper 

plate is to try to reduce the frequency of the pressure pulsations or to eliminate them. This 

may be achieved by introducing the flow inside the thin film fluidic cell by gravitational 

effects because it will produce minimum pulsations. 
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CHAPTER 10 

 

FLOW AND HEAT TRANSFER INDUCED BY NATURAL CONVECTIONS 
INSIDE AN OSCILLATORY SQUEEZED OPEN-END VERTICAL CHAMBER 

 
 
 

10.1 Mathematical Model 

 Figure 10.1 shows a schematic diagram for a vertical chamber which is open from 

the top. The laminar two-dimensional vorticity-stream function formulations that are 

applicable for this chamber and accounts for buoyancy forces are 
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where βo and g are the volumetric thermal expansion coefficient of the of the working 

fluid and the acceleration of the gravity, respectively. It is assumed that Boussinesq 

approximation is valid and that the x-axis is directed to the opposite direction of g as 

shown in Figure 10.1. Utilizing dimensionless variables listed in Equations (2.31) in 

Equations (10.1) and setting the reference velocity Vo to zero results in 
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where Gr is the Grashof number. It is equal to 

( )
2

3
o12o hTTg

Gr
υ

−β
=  

 

(10.4) 

 

 

 

   Squeezing  g 

       T2     x,u  T1   B 

           

     
              y,v 
        

 
               h 

 

Figure 10.1: Schematic Diagram 

 

The dimensionless stream function formulation and the dimensionless energy 

equation can be reduced to the following when Vo is set to zero: 
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(10.6) 

Notice that as the perturbation parameter decreases, buoyancy effects decreases. The 

dimensionless boundary conditions that are suitable for the studied problem are: 
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The isothermal cold wall conditions used in Equations (10.9) were found to enhance the 

convection (Sezai and Mohamad, 2000). The left wall was heated except near the lower 

left corner to avoid the discontinuity in the temperature. That is, the boundary condition 

1),H,X( =τθ  is valid when 2/XX ∆>  below which this wall is insulated (∆X: step size 

along X). The Nusselt numbers at the left and right walls are defined as follows: 
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where AVGθ  is defined as follows: 
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10.2 Analytical Solution for a Special Case  

Equations (10.3) and (10.6) can be reduced to the following for small values of 

the following parameters: RS, Pr and ε numbers 
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Accordingly, the dimensionless analytical solutions for the velocities, temperature and 

thermal parameters are listed below for the first case: 
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The numerical procedure is similar to that discussed in chapter 4. The values of 

∆X, ∆(Y/H), ∆τ, the maximum error for both the stream function and the iterations for 

the velocity field were chosen to be 0.0125, 0.04, 0.001 and 10-6, respectively. The 

numerical results of Equations (10.3-6) for the dimensionless axial velocities are in 

excellent agreement with the Equation (10.14) as shown in Figure 10.2. As such, a 

parametric study is performed to investigate the effects of external squeezing on natural 

convection inside vertical chambers. 
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Figure 10.2: Validation for Numerical Results 

 

10.3 Contours of Stream lines and Isotherms  

Figure 10.3 shows the effects of the Gr on the stream lines for an oscillatory 

squeezed vertical chamber. It is noted that a cell originates at the lower right portion of 

the chamber at relatively low values of Grashof number during squeezing 

stages, π≤τ≤π 235 * . As the Gr increases, suction velocities near the right wall increase 

such that they can exceed the induced squeezed velocities due to vibration or squeezing. 

As a result, this cell collapses and the flow achieves normal conditions for large Gr 

values. This could create a problem in controlling the outdoor vibrations since they can 

isolate the measuring device for certain times resulting in inaccurate measurements. 

Figure 10.4 illustrates the effects of RS on the corresponding isotherms. It is noticed that 

as RS increases, axial convection increases resulting in a maximum convections around 

611* π=τ . Note that RS can be increased by increasing the vibrational frequency. 
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Figure 10.3: Dimensionless Stream Lines: 
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Figure 10.4: Dimensionless Isotherms (a) RS=1.0, (b) RS=10 

(Pr=1.0, 600
R
Gr

S
= , ε=0.25, β=0.2, γ=3.0) 
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10.4 Effects of RS and Gr on Average Nusselt Numbers  

Equation 10.14 suggests that vibrations affect both buoyancy forces and the flow 

induced by the motion of the wall. This interaction between vibrations and the oscillatory 

buoyancy forces resulted from variations in the channel thickness cause the trend of the 

average Nusselt number to change according to Figure 10.5 as 
SR

Gr increases. Figure 10.5 

shows that amplitude of oscillations for Nusselt numbers decrease as 
SR

Gr increases at the 

vibrated wall because a substantial increase in the Nusselt number at maximum thickness 

is expected due to buoyancy effects. Fluid temperatures inside the channel are expected 

to decrease as the Grashof number increases due to enhancements in thermal convections. 

Therefore, average Nusselt numbers at the vibrated wall increase as 
SR

Gr increases while it 

is decreased at the fixed wall with increases in 
SR

Gr  as clearly seen from Figure 10.5. The 

suggested correlations that are presented at the end of this chapter show that mean 

Nusselt numbers are less affected by RS at fixed values of Gr. 

10.5 Effects of RS and Gr on Flow inside Vertical Chambers 

Dimensionless axial velocity profiles are seen in Figure 10.6 at four different 

times. It can be seen that induced velocities increase as 
SR

Gr increases. Also, it is noticed 

that as RS increases, the flow becomes more attached to the left wall, the source of 

disturbance. The effects of 
SR

Gr on dimensionless vorticity at the right wall Ω*(ξ,0) are 
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shown in Figures 10.7 for two different RS values. As 
SR

Gr increases, Ω*(ξ,0) increases. 

Further, it should be noted that as RS increases, instabilities in Ω*(ξ,0) start to appear at 

larger values of 
SR

Gr . 
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Figure 10.5: Effects of Gr on NuAVG: (a) RS=1.0 and (b) RS=10 
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Figure 10.6: Effects of 
SR

Gr on U at Different Times 
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Figure 10.7: Effects of 
SR

Gr on Ω*(ξ,0): (a) RS=1.0 and (b) RS=10 

 
 
10.6 Correlations 

The correlations listed in Table 10.1 are for the mean value of the average Nusselt 

numbers, ( )
meanRavg,LNu  , at the right and left walls and their corresponding fluctuation, 

Ravg,LNu∆ . These are defined as follows: 

( ) ( )∫
π









γ

−π

ττ
π
γ

≅
2

112

**
Ravg,LmeanRavg,L dNu

2
Nu  

 

(10.18) 
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( ) ( )
2

NuNu
Nu MinRavg,LMaxRavg,L

Ravg,L

−
=∆  

 

(10.19) 

where ( )
MaxRavg,LNu and ( )

MinRavg,LNu are the maximum and minimum average Nusselt 

numbers. In these correlations, NuL,Ravg stands for either NuLavg or NuRavg which are the 

average Nusselt numbers for the left or the right walls, respectively. The listed 

correlations are derived for a Prandtl number equal to unity and a perturbation parameter 

equal to one-fourth. The maximum value of RS was selected to be 5. As such these 

correlations are valid for actual vibrational frequency less than 20 rpm for a vertical 

channel having a thickness equal to 10-20 mm. 

 

Correlations  

 

Maximum 

Error 

( ) ( )
( )

( )( ) 9214.04
4599.02

0134.0
S

meanLavg Gr5010725.4
1

R1298.2
Nu ++
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= −  

 

1% 
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067.1
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Lavg

R1Gr110
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Nu
Nu

++
β
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∆

 
 

14% 

( )
( )
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S02355.0meanRavg 1R14564.0

Gr110
682.2Nu β−+−

+
=  

 

5% 

( ) ( ) 04196.0042.1

meanRavg

Ravg Gr1109326.0
Nu

Nu
+β=

∆
 

 

1%, RS=1 

 

Table 10.1: Correlations for Nusselt Numbers and their Corresponding Fluctuations  
(Pr=1.0, ε=0.25, γ=3.0, 5R0 S ≤≤ , 1000RGr0 S ≤≤ , 3.00 ≤β≤ ) 
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 In addition to the above correlations, the steady periodic behavior for the average 

Nusselt number at either left or right wall can be approximated by the following 

correlation for relatively low values of 
SR

Gr ratio: 

( )
( )tcos1

1Nu
)t(Nu

2
meanRavg,L

Ravg,L γωβ−

β−
=  

 

(10.18) 
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CHAPTER 11 
 
 

ANALYSIS OF OSCILLATORY FLOW DISTURBANCES AND THERMAL 
CHARACTERISTICS INSIDE FLUIDIC CELLS DUE TO FLUID LEAKAGE 

AND WALL SLIP CONDITIONS  
    

  
 
Flow disturbances in fluidic cells can be generated by many sources like external 

disturbance due to the presence of pulsations in external ambient pressure or due to 

internal pressure pulsations like irregularities in the pumping process.  These disturbances 

can produce a noise in the sensor measurement especially the microcantilever (Fritz et. 

al., 2000). Part of the noise in the measurement is ascribed due to the fact that oscillations 

in the flow may produce an oscillatory drag force on the microcantilever surface causing 

it to vibrate. Meanwhile, flow oscillations may change the microcantilever temperature 

causing it to produce an additional noise as the microcantilever is composed of two layers 

(bimaterial) having different coefficients of the thermal expansion, Fritz et. al. (2000). 

The rate of receptor/analyte binding changes with the flow velocity, Pritchard et. al. 

(1995). As such, flow oscillations add an extra noise due to surface stresses. In order to 

minimize flow oscillations, a special concern is needed in designing fluidic cells so that 

they incubate minimum flow oscillations. 

Another source for flow disturbance is the flow leakage which can seriously affect 

the operation of the microcantilever (Raiteri et. al., 2000)). Also, fluidic cells may 

encounter wall slip conditions and the literature lacks enough studies on their effects on 
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flow fluctuations. It is worth noting that wall slip conditions can be achieved either when 

the fluid contains suspensions or when the plates are coated with water repellent resigns 

(Watanabe and Udagawa, 2001). Also, slip occur when the size of the thin film is so 

small that the Kundsen number, a ratio of the molecular mean free path to the 

characteristic length of the cell is between 10-3 and 10-1 (Shiping and Ameel, 2001). This 

chapter will analyze analytically and numerically the effects of side leakage, wall slip 

condition and non-Newtonian effects of flow fluctuations and heat transfer inside thin 

films supported by soft seals in the presence of pulsatile flows or external squeezing 

effects in order to better design fluidic cells. 

11.1 Analysis 

A two-dimensional thin film fluidic cell that has a small thickness h compared to 

its length 2B and its width D is considered. The inlet of this fluidic cell is taken to be at 

its center forming a symmetrical fluidic cell, Figure 11.1(a), in order to assure an almost 

uniform deformation in the seal along its length under pulsative flows. The analysis will 

be concerned with one half of the fluidic cell shown in Figure 11.1(b) due to the 

symmetry of the proposed cell. The x-axis is taken along the axial direction starting from 

the inlet while y-axis and z-axis are taken along its thickness and width, respectively, as 

shown in Figure 11.1(b). 
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Figure 11.1: Schematic diagram of (a) a symmetrical fluidic cell and, (b) corresponding 
coordinate systems with leakage directions 

 
 
11.1.1 Fluid Leakage in the Presence of Internal Pressure Pulsations 

The lower plate of the thin film is assumed to be fixed while the upper plate is 

attached to the lower plate by soft seals. The average dimensionless motion of the upper 

plate H is expressed according to the following relation: 
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( )p
o

H1
h
hH +=≡  

(11.1) 

where h, ho and Hp are the dimensional average thin film thickness, a reference thin film 

thickness and the average dimensionless change in the film thickness due to internal 

pressure forces, respectively.  

The following dimensionless variables will be utilized in the analysis: 

B
xX =  

oh
yY =  

B
zZ =  

11.2(a, b, c) 

tω=τ    11.2(d) 

)VB(
uU

o+ω
=  

ω
=

oh
vV  

)VB(
wW

o+ω
=  

11.2(e, f, g) 

2o

e

B
V
pp

−ε





 +ωµ

−
=Π  

  11.2(h) 

( ) kqh
TT

o

1−
=θ  

  11.2(i) 

where ω, T1, pe, oV , µ, k, and ε are the reference frequency of internal pulsations, inlet 

temperature of the fluid, a constant representing the exit pressure, a constant representing 

a reference dimensional velocity, dynamic viscosity of the fluid, thermal conductivity of 

the fluid and the perturbation parameter ( Bh o=ε ), respectively. The pressure at the exit 

and the outside pressure are assumed to be at the exit pressure. The lower plate is 

maintained at a uniform wall heat flux condition qo. The variables t, u, v, w, p and T are 

the time, axial velocity component, normal velocity component, lateral velocity 

component, pressure and the temperature, respectively. The dimensionless variables X, 
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Y, Z, τ, U, V, W, Π and θ are the dimensionless forms of x, y, z, t, u, v, w, p and T 

variables, respectively. 

The average dimensionless change in the film thickness is related to the average 

dimensionless pressure inside the thin film fluidic cell ΠAVG through the theory of linear 

elasticity. It assumes that the pressure force on the upper plate is linearly proportional to 

the average change in the thin film thickness (Boresi et. al., 1978), by the following 

relation: 

AVGnp FH Π=  (11.3) 

where Fn is named, the fixation parameter. A larger Fn value indicates softer seal-upper 

plate assembly. The inertia of the upper plate is negligible because the frequency of 

pulsations is usually small. The fixation parameter Fn is equal to 

( )
( ) s

2
o*

n hED5.0B2
DBV

KF
ε+

ω+µ
=  

(11.4) 

where E and hs are the effective modulus of elasticity and the effective dimension of the 

seal (hs=ho for a square seal cross section), respectively. The factor K* reflects the 

contribution of the elastic behavior of the upper plate. The parameter Fn becomes 

apparent when the thin film thickness is very small (ho<0.15mm). The parameter Fn can 

have different forms depending on the type of the fixation of the thin film plates and 

loading conditions on the seal.  

Most flows inside thin films are in the creep flow regime as in biological 

applications. Therefore, the application of the low Reynolds number flow model to 

continuity, momentum and energy equations for a flat thin film filled with Newtonian 

fluid results in the following reduced non-dimensionalized equations: 



 

133







 −







∂
Π∂

= 1
H
Y

H
YH

X2
1U 2  

 

(11.5) 

















−








τ
=

32

H
Y2

H
Y3

d
dHV  

(11.6) 







 −





Π−= 1

H
Y

H
Y

H
ZM

2
1W L  

(11.7) 

τ
σ

=Π−
∂
Π∂

d
dH

HH
M

X 33
L

2

2

 (11.8) 

2

2

S YY
V

X
U12P

∂
θ∂

=







∂
θ∂

+
∂
θ∂

σ
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τ∂
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(11.9) 

According to Equation (11.7), the leakage inside the thin film is distributed 

equally on both sides of the thin film and it is relatively small thus linearization of the 

lateral pressure gradient is used. As seen in Equation (11.7), side leakage is proportional 

to the pressure difference between internal and external (at Pe) pressures of the thin film. 

Equation (11.8) is the corresponding modified Reynolds equation of the problem. 

Equation (11.9) is applicable at the plane of symmetry at Z=0. The parameter ML in 

Equation (11.7) is named the dimensionless leakage parameter. It is related to the total 

leaked mass mL through the following relation: ( )dXBVDhM
12
1m

1

0
ooLL ∫ ω+ρΠ= . The 

inlet pulsative pressure is considered to have the following relation: 

( ))tsin(1 poi γωβ+Π=Π  (11.10) 

where βp, γ , iΠ and oΠ are the dimensionless amplitude in the pressure, dimensionless 

frequency of the pressure pulsations, inlet dimensionless pressure and the mean 

dimensionless inlet pressure, respectively. The solution to Equation (11.8) is obtained as 
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(11.11) 

The reference velocity Vo is taken to be the velocity inside the thin film in absence of any 

turbulence. Therefore, it can be related to Πo according to following relation: 

σ−=Π 12o  (11.12) 

11.1.2 Slip Effects and non-Newtonian Effects in the Presence of External Squeezing 

In this part, the effects of fluid slip at the boundaries and non-Newtonian effects 

in the presence of external turbulence are analyzed. The dimensionless oscillating upper 

plate oscillations are based on the following generic relationship: 

)cos(1H γτβ−=  (11.13) 

where β and γ are the amplitude of the motion and a selected dimensionless frequency, 

respectively. The apparent viscosity µ of a non-Newtonian fluid such as a biofluid at low 

flow rates can be expressed according to the following power-law formula: 

1n

o y
u

−

∂
∂

µ=µ where n is a constant representing the power law index. As a result, axial 

momentum equation for creep flow reduces to the following, µo replaces µ in Equation 

11.2(h): 
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According to The slip velocity at the boundary is proportional to the shear rate through 

the slip parameter sβ  (Navier, 1823) such that the dimensionless boundary conditions at 

the plates are:  

( ) ( )

( ) ( ) 0
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,HU
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0
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,0U
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o

s
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−τ

 

(11.15) 

where βs is the dimensional slip parameter. By solving Equation (11.15) and the 

continuity equation, the modified Reynolds equation is 
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For a constant average inlet velocity condition Vo during the oscillations, Equation 

(11.16) can be used for determining the velocity field, U and V, for the lower half of the 

thin film (Y/H<0.5). They are found to be 
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(11.18) 

Accordingly, the fluid slip velocity at the wall is obtained as 



 

136

( ) ( ) ( ) ( )[ ]
H

,0H12Xsin

H
1

h
2

1n2
n12

H
1

h
2

,XU

o

s

o

s

Slip
τσ−−γτσβγ


















 β
+

+








 β
−

=τ  

(11.19) 

11.1.3 Thermal Boundary Conditions 

It is assumed that the upper plate is insulated while the lower plate is maintained 

at a constant heat flux. Accordingly, the dimensionless thermal boundary and initial 

conditions are 

( ) ( ) ( ) ( ) 0
Y

,H,X,1
Y

,0,X,0,Y,0,00,Y,X =
∂

τθ∂
−=

∂
τθ∂

=τθ=θ  
(11.20) 

11.2 Numerical Methods 

The dimensionless thickness of the thin film for the leakage problem was 

determined by solving Equations (11.1) and (11.3) and the average of Equation (11.11), 

simultaneously, using the explicit formulation with respect to time. Accordingly, the 

velocity field U, V and W was determined. The energy equation, Equation (11.9), was 

transferred to a problem with constant boundaries using the following transformations: 

τ*=τ, ξ=X and 
H
Y

=η . It is then solved using a marching scheme in both the axial 

direction and time. The values of 0.008, 0.03, 0.002 were chosen for ∆ξ, ∆η and ∆τ*. 

11.3 Discussion of the Results 

The used dimensionless parameters in the leakage problem were selected 

according to the following data from the literature: the estimated volume of the fluidic 

cell, Figure 11.1(b), is 50µl and the flow rate of the liquid is between 0.5-1.0 ml/min. The 
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thin film thickness was taken to be less than 0.2mm and the effective modulus of 

elasticity of the seal was considered to of order 105pa. 

11.3.1 Leakage and Slippage Effects on Flow Dynamics inside Thin Films 

It is noticed from Figure 11.2(a) that the thin film thickness decreases as the 

dimensionless leakage parameter ML increases. A relief in the average internal pressure is 

expected when the leakage rate increases at a constant inlet pressure. This reduced 

pressure results in a reduction in the force holding the upper plate thus the thickness 

decreases. Accordingly, the absolute values of the inlet pressure gradient increases as the 

leakage rate increases, Figure 11.2(b). This causes the inlet flow rate to increase.  

According to Figure 11.2(a), the leakage rate has almost an insignificant effect on 

the fluctuation rate at the upper plate, dH/dτ. However, the associated reduction in the 

film thickness increases fluctuations in axial and normal velocities at the sensor position 

which tend to magnify the noise in the sensor measurements especially if the sensor is 

placed near the disturbed plate. Induced lateral flow due to leakage may cause a lateral 

bending or twisting of the sensor (e.g. microcantilever). Both effects tend to reduce the 

accuracy of the measurement and may damage the microcantilever over a long period of 

time. The fluctuations due to mass leakage can be minimized if the fluidic cell width D is 

maximized.  
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          Figure 11.2: Effects of ML on (a) H, and (b) Inlet Pressure Gradient 

 

When the used seal-upper plate assembly is soft as for large Fn values, the film 

thickness will be more sensitive to internal pressure pulsations. As a result, an increase in 

the fixation parameter Fn causes an increase in the fluctuation rate at the upper plate 

(Figure 11.3) and  consequently an increase in flow fluctuations is associated (Equations 

11.5-11.7 and 11.12). Meanwhile, an increase in the squeezing number σ means a 

reduction in pressure pulsations levels thus a reduction in the fluctuation rate is noticed 

(Figure 11.4). As such, soft sealing assembly and large velocities produce large 

fluctuations in the flow within the fluidic cell. Similar trends can be extracted for the 

lateral fluctuations in view of Equation (11.7). Accordingly, the noise in the measurement 

with respect to a microcantilever sensor is magnified for relatively large values of the 

fixation parameter Fn especially at large pulsation rates. 
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Figure 11.3: Effects of Fn on dH/dτ           Figure 11.4: Effects of σ on dH/dτ 

 

The resistance against the flow decreases as the dimensionless wall slip parameter 

βs/ho increases. Thus the slip velocity increases as βs/ho increases, Figure 11.5(a). This 

results in a reduction in the maximum axial velocity since the average flow velocity is 

kept constant for each case. The maximum slip velocity occurs during the squeezing 

stages. Due to the increase in the uniformity of the axial velocity profiles as βs/ho 

increases, flow fluctuations increase near the fixed plate, Figure 11.5(b). This causes 

enlargement in the noise with respect to microcantilever measurements. 
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   Figure 11.5: Effects of βs/ho on (a) wall slip velocity Uslip, and (b) normal velocity V 
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Figure 11.6: Effects of n on (a) wall slip velocity Uslip, and (b) normal velocity V 
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Due to the expected increase in wall shear stresses for pseudoplastic (n<1) fluids 

as the power law index n decreases, the wall slip velocity increases as n decreases, Figure 

11.6(a). The uniformity of the axial velocity profiles increases as n decreases. However, 

flow fluctuations increase near the fixed plate as n decreases, Figure 11.6(b). This 

indicates that dilute solutions of analytes are preferred over blood and many biofluids in 

biosensing applications as they produce minimal flow fluctuations near the undisturbed 

plate. 
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11.3.2 Effects of Leakage on Thermal Characteristics of the Thin Film 

 The reduction in internal pressures associated with an increase in the leakage rate 

results in an increase in the inlet flow rate which reduces the average dimensionless lower 

plate temperature as seen in Figure 11.7. This causes the temperature levels around the 

microcantilever surface to be closer to the inlet temperature, Equation 11.2(i). These 

temperatures could be quite different from the original microcantilever temperature. 
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Thus, the deflection of the bimaterial microcantilever due to thermal effects is magnified 

when leakage is present. Similarly, thermal effects on bimaterial sensors can be 

magnified by an increase in Fn and a decrease in σ since both effects cause a reduction in 

the dimensionless average lower plate temperature (Figures 11.8 and 11.9). According to 

Figure 11.7, for the range of ML used, thermal variations can be neglected when 

compared to variations in ML. 
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Figure 11.9: Effects of σ on Average θW 

 

11.4 Recommendations 

It was established in this chapter that fluctuations inside the fluidic cell and 

consequently the noise in the measurement due to flow disturbances, can be minimized 

by considering the following effects: 

• Minimizing the working velocities 
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• Maximizing the thickness of the upper plate 

• Maximizing the thin film width if relatively large leakage rate is involved 

• Minimizing the thin film width in the absence of leakage 

• Maximizing the perturbation parameter 

• Utilizing dilute working fluid 

• Maximizing the thin film thickness 

However, the last three effects may increase the microcantilever deflection due to thermal 

effects. As such, the problem of reducing flow oscillations was alleviated by considering 

a new suggested design for fluid cells so that reliable and accurate detections of 

biological agents can be achieved 
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CHAPTER 12 
 
 

COOLING ENHANCEMENTS IN THIN FILMS SUPPORTED BY FLEXIBLE 
COMPLEX SEALS IN THE PRESENCE OF ULTRAFINE SUSPENSIONS 

    
  

 
It is shown in chapter 9 that cooling achieved by having thin films supported by 

soft seals are more than when these seals are stiff. This is due to an increase in thickness 

resulting from pressure forces when soft seals are used. Soft sealing provides an excellent 

method of reducing fluid leakage from the thin film. Further, Additional cooling can be 

achieved if the thin film thickness is allowed to increase by an increase in the thermal 

load which will cause the coolant flow rate to increase. This task can be reached if the 

sealing assembly supporting the plates of the thin film is composed of the following: soft 

seals and voids of a stagnant fluid having a large value of the volumetric thermal 

expansion coefficient βT. This proposed sealing assembly will be named a “flexible 

complex seal” and will be used regularly in the text. It is worth noting that the 

enhancement in the cooling when flexible complex seals are used is expected to be 

apparent at larger thermal loads for stagnant liquids while it is prominent at lower 

temperatures for stagnant gases, especially ideal gases. This is because the volumetric 

thermal expansion coefficient increases for liquids and decreases for gases as their 

temperatures increases. 
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12.1 Analysis 

Figure 12.1 shows a thin film having a flexible complex seal. It is composed of 

the coolant flow, the working fluid, passage and the sealing assembly. This assembly 

contains closed voids filled with a stagnant fluid having relatively a large coefficient of 

volumetric thermal expansion. The sealing assembly contains also soft seals in order to 

allow the thin film to expand. A candidate for the soft seal is the closed cell rubber foam 

(Friis et. al., 1988). Any excessive heat increases the temperature of the hot plate thus the 

stagnant fluid becomes warmer and expands. The seals are soft enough so that the 

expansion results in an increase in the separation between the lower and the upper plates. 

Accordingly, the flow resistance of the working fluid passage decreases causing a 

flooding of the coolant. As a result, the excessive heating from the source is removed. It 

is worth noting that the soft seals can be placed between special guiders as shown in 

Figure 12.1(b). As such, side expansion of the seals can be minimized and the transverse 

thin film thickness expansion is maximized. 

The analysis is concerned with a thin film that has a small thickness h compared 

to its length B and its width D. Therefore, a two-dimensional flow is assumed. The x-axis 

is taken along the axial direction of the thin film while y-axis is taken along its thickness 

as shown in Figure 12.1(a). Further, it is assumed in this work that the film thickness is 

independent of the axial coordinate. For example, this occurs in two main cases: 

symmetric thin films having a fluid injected from the center as shown in Figure 12.1(c) 

and in multiple passages thin films having alternating coolant flow directions.  
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Figure 12.1: Schematic diagram for a thin film with flexible complex seal and the 
corresponding coordinate system: (a) front view, (b) side view, and (c) a three 

dimensional diagram 
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The lower plate of the thin film is assumed to be fixed to a heating source while 

the upper plate is attached to the lower plate by flexible complex seals allowing it to 

expand. The motion of the upper plate due to both internal variations in the stagnant fluid 

temperature and the induced internal pressure pulsations as a result of oscillating thermal 

loads is expressed according to the following relation: 

( )pT
o

HH1
h
hH ++=≡  

(12.1) 

where h, ho and H are the thin film thickness, a reference film thickness and the 

dimensionless thin film thickness, respectively. The variables HT and Hp are the 

dimensionless motion of the upper plate due to the thermal expansion of the stagnant 

fluid and the dimensionless motion of the upper plate as a result of the deformation of 

seals due to the average internal pressure of the working fluid, respectively.  It is assumed 

that the fluid is Newtonian having constant average properties except for the thermal 

conductivity. Also, it is assumed that the upper plate is insulated to simplify the analysis 

and that the lower plate is subjected to periodically varying wall heat flux Lq  condition 

according to the following relation: 

( )( )tsin1qq qoL γωβ+=  (12.2) 

where βq and γ are the dimensionless amplitude of the lower plate’s heat flux and a 

dimensionless frequency, respectively.  

For the thin film shown in Figure 12.1(c), the displacement of the upper plate due 

to internal pressure variations is related to the average dimensionless pressure of the 

working fluid, AVGΠ , through the theory of linear elasticity by the following relation: 
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AVGnp FH Π=  (12.1) 

This is based on the fact that the upper plate is assumed to be rigid and that the applied 

force on an elastic material, the soft seal is assumed to behave as an elastic material is 

proportional to the elongation of this material (Norton, 1998). The parameter Fn is 

referred to as the fixation parameter and it is a measure of the softness of the seal, soft 

seals have large Fn values. It is equal to 

( )
s

2
o

n dE
BVF

ε
ω+µ

=  
(12.4) 

where E and ds are the effective modulus of elasticity for the complex seal and a 

characteristic parameter which depends on the seal’s dimensions and the thin film width 

D, respectively. The quantity ds is equal to the effective dimension of the seal’s cross 

section times the ratio of the total length of the seal divided by the thin film width D. The 

seal is considered to have isotropic properties. Further, the effective dimension of the 

seals times their total length represents the contact area between the seals and the upper 

or lower plates when the seals have a rectangular cross section as shown in Figure 12.1. 

Other than this, the effective diameter requires a theoretical determination.  

In this work, the analysis is performed for relatively small thermal load 

frequencies in order to ascertain that squeezing generated flows have relatively small 

Reynolds numbers. For these frequencies, Equation (12.3) is applicable and the inertia 

effect of the upper plate is negligible. Moreover, the increase in the thickness due to a 

pressure increase in the thin film causes a reduction in the stagnant fluid pressure. This 

action stiffens the sealing assembly. Therefore, the parameter E is considered to be the 

effective modulus of elasticity for the sealing assembly not for the seal itself. For ideal 
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gases, the effective E can be shown to be approximately equal to the following when the 

mass of the stagnant fluid is kept constant for the configuration shown in Figure 12.1(b):  









+≅

ossm

1
sm DhdE

mRT
1EE  

(12.5) 

where m, R and Esm are the mass of the ideal gas in the voids, gas constant and the 

modulus of elasticity for the pure seal material, respectively. In case where additional 

mass can be added to the voids when the pressure falls below the initial stagnant pressure 

as when check valves are used, E is expected to approach Esm. Practically, the void width 

G is assumed to be large enough such that a small increase in the stagnant fluid pressure 

due to the expansion can support the associated increase in the elastic force on the seal. 

Moreover, the fixation parameter can be enhanced by replacing segments of the seals at 

different locations by elastic membranes especially the outermost ones so the effective 

length of the seal is reduced.  

The dimensionless displacement of the upper plate due to thermal expansion is 

related to the dimensionless average temperature of the lower plate, ( )AVGWθ , by the 

following linearized model: 

( )AVGWTT FH θ=  (12.6) 

where FT is named the dimensionless thermal expansion coefficient. It is equal to 

F
o

ooT*
T C

k
hq

AF
β

=  
(12.7) 

where A* is a constant depending on voids dimensions (equal to unity for Fig. 12.1(b)). 

The parameter Tβ  is the volumetric thermal expansion coefficient of the stagnant fluid in 
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its approximate form: ( )( ) ( )
1sp1s1sssoT TTVVV1 −−≈β  evaluated at the pressure ps1 

corresponding to the stagnant fluid pressure at the inlet temperature T1 condition. The 

quantities Vs1 and Vs represent the void volumes at the operating condition when the 

stagnant fluid is at temperature T1 and at the present stagnant fluid temperature Ts, 

respectively. The volume Vso represents the void volume at the reference condition. The 

factor CF
 represents an average volumetric thermal expansion correction factor. This 

factor is introduced in order to account for the increase in the stagnant pressure due to the 

increase in the elastic force in the seal during the expansion which tends to decrease the 

effective volumetric thermal expansion coefficient. Also, it accounts for the decrease in 

the stagnant pressure associated with elongation of the seal due flow pressure. For ideal 

gases and assembly shown in Figure 12.1(b), the parameter βT times CF is: 

( ) ( ) ( )mRDhdEhhT
1C

mm pssmpo1
FT +

≅β  12.8(a,b) 

where hpm is the mean value for the dimensional film thickness prior thermal effects. 

The parameter FT is enhanced at elevated temperatures for liquids and at lower 

temperature for gases because Tβ  increases for liquids and decreases for gases as the 

stagnant temperature increases. Dimensionless thermal expansion parameter is also 

enhanced by a decrease in ko, an increase in qo, an increase in Fn or by increases in ho. It 

is worth noting that Equation (12.6) is based on the assumption that the stagnant fluid 

temperature is similar to the lower plate temperature since entire void surfaces are 

considered insulated except that facing the lower plate. It is worth noting that the heat 

flux of the heating source is considered to be applied on the portion of the lower plate 

that is facing the working fluid. The other portion which faces the seals is taken to be 
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isolated from the heating source and the environment to minimize the variation in the 

lower plate temperature along the width direction.    

In the presence of suspended ultrafine particles in the working fluid, the thermal 

conductivity of the working fluid composed from the pure fluid and suspensions is 

expected to vary due to the thermal dispersion (Xuan and Roetzel, 2000). To account for 

these variations, the following model which is similar to Xuan and Roetzel (2000) model 

that linearly relates the effective thermal conductivity of the working fluid to the fluid 

speed is utilized: 

( ) ( )( ) ),Y,X(k,Y,XV,Y,XU1k),Y,X(k o
222

o τφ=τΛ+τλ+=τ  (12.9) 

where λ and Λ are the dimensionless thermal dispersion coefficient and reference 

squeezing to lateral velocity ratio. They are  

( ) ( )BVhcC oofp
* ω+ρ=λ  

12
εσ

=Λ  
 12.10 (a, b) 

where *C  is the coefficient of the thermal dispersion which depends on the diameter of 

the ultrafine particles, its volume fraction (ratio of the particles volume to the total thin 

film volume), and both fluid and ultrafine particles properties. 

It is worth noting that the term ultrafine suspensions indicate that the particle is 

extremely small compared with the thickness of the thin film. The coefficient C* is 

expected to increase by an increase in the diameter of the particles, their volume fraction, 

their surface roughness and the working fluid Prandtl number, Pr=(ρcpυ)/ko. On the other 

hand, the stagnant thermal conductivity ko increases with an increase in both the volume 

fraction and the surface area of the particles (Xuan and Roetzel, 2000). In the work of Li 

and Xuan (2002), they showed experimentally that dilute mixture of ultrafine suspensions 
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and water produced no change in the pressure drop compared to pure water which reveals 

that the viscosity is a weak function of the fluid dispersion for a dilute mixture.   

Generally, flows inside thin films are in laminar regime and could be creep flows 

as in lubrication. Therefore, the low Reynolds numbers (the modified lateral Reynolds 

number ( ) υε= ooL hVRe  and the squeezing Reynolds number ( ) υω= 2
oS hRe ) flow 

model is adopted here. This model neglects the transient and convective terms in 

momentum equations. These terms become incomparable to the pressure gradient and 

diffusive terms for small squeezing frequencies and reference velocities. Utilizing 

variables (2.7) in chapter 2, the outcome of the application of the low Reynolds number 

model to momentum equations along with the dimensionless energy equation will be: 
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(12.14) 

Note that Equation (12.14) is based on the assumption that the axial conduction is 

negligible when compared to the transverse conduction. The parameters σ and PS are the 

squeezing number and the thermal squeezing parameter. They are previously defined. It 

should be noted that both inlet and exit dimensionless pressures are assumed constant and 

the following relationship is obtained between the inlet dimensionless pressure and the 
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squeezing number based on the assumption that the reference velocity Vo represents the 

average velocity in the thin film at zero values of FT and Fn: 

σ−=Π 12i  (12.15) 

Accordingly, the dimensionless pressure gradient, the dimensionless pressure and the 

average dimensionless pressure AVGΠ inside the thin film are related to the squeezing 

number through the following equations: 

( ) ( )σ−−

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τ
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d
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(12.16) 
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3 −σ−−−
τ

σ
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(12.17) 

( ) ( )
2

12
d
dH

H12 3AVG
σ−

+
τ

σ
−=τΠ  

(12.18) 

12.1.1  Thermal Boundary Condition 

The dimensionless thermal boundary conditions for the previously defined 

problem are taken as follows: 

( ) ( ) ( ) ( )( ) ( ) 0
Y

,H,X,sin1
Y

,0,X,0,Y,0,00,Y,X q =
∂

τθ∂
γτβ+−=

∂
τθ∂

=τθ=θ  
(12.19) 

Based on the physical conditions, the Nusselt number is defined as 

( ) ( ) ( ) ( ) ( )τθ−τθ
=

τθ−τθ
=≡τ

,X,X
1

,X,0,X
1

k
hh

,XNu
mWm

oc
l  (12.20) 

The parameter θm is the dimensionless mean bulk temperature. It is given as 

12.2 Numerical Procedure 

The procedure for the numerical solution is summarized as follows: 

1. Initially, a value for HT is assumed. 
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2.  At the present time, the dimensionless thickness of the thin film H is determined 

by solving Equations (12.1), (12.3), (12.6) and (12.8), simultaneously, using an 

explicit formulation. The velocity field, U and V, is then determined from 

Equations (12.11), (12.12) and (12.16).  

3. At the present time, The reduced energy equation, Equation (12.14) is transferred 

into one with constant boundaries using the following transformations: τ*=τ, ξ=X 

and HY=η . A tri-diagonal solution (Blottner, 1971) was implemented along 

with a marching scheme. Backward differencing was chosen for the axial 

convective and transient terms and central differencing was selected for the 

derivatives with respect to η. The values of 0.008, 0.03, 0.001 were chosen for 

∆ξ, ∆η and ∆τ*, respectively. 

4. HT is updated from Equation (12.6) and steps (2)– (4) are repeated until 

( ) ( )
( )

6

newT

oldTnewT 10
H

HH −<
−

 
 

(12.21) 

5. The converged solution for the flow and heat transfer inside the thin film is 

determined at the present time. 

6. Time is advanced by ∆τ* and steps (1)-(5) are repeated. 

Numerical investigations were performed using different mesh sizes and time 

steps to assess and ascertain grid and time step independent results. It was found that any 

reduction in the values of ∆ξ, ∆η and ∆τ* below ∆ξ=0.008, ∆η=0.03 and ∆τ*=0.001 

results in less than 0.2 percent error in the results.  
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In the results, the maximum value of the parameters PS is chosen to be 1.0. 

Beyond this value, the error associated with the low Reynolds number model will 

increase for moderate values of the dimensionless thermal expansion parameter, fixation 

parameter, and the Prandtl number. As an example, the order of transient and convective 

terms in the momentum equations were found to be less 1.0 percent that of the diffusive 

terms for PS=1.0, Pr=6.0, Fn=0.05, FT=0.25, βq=0.1 and σ=6.0. The parameters 

correspond, for example, to a thin film filled with water and having B=D=60mm, 

ho=0.3mm, ds=1.0mm, ω=2.0s-1, Vo=0.12m/s and E=1.6 (105)pa.  

12.3 Discussions of the Results 

Ideal gases produce a 15 percent increase in the void volume at room conditions 

for a 45°C maximum temperature difference. Further, Li and Xuan (2002) reported a 60 

percent increase in the convective heat transfer coefficient for a volume fraction of 

copper ultrafine particles of 2.0 percent. Accordingly, the parameters FT and λ were 

varied until comparable changes have been attained in the dimensionless thin film 

thickness and the Nusselt number. 

12.3.1 Effects of Dimensionless Coefficient of Thermal Expansion 

Figure 12.2(a) illustrates the effects of the dimensionless thermal expansion 

parameter FT on the dimensionless thickness H of the thin film. The parameter FT can be 

increased either by an increase in the volumetric thermal expansion coefficient of the 

stagnant fluid or by an increase in dimensional reference temperature ( ) ooo khq . Both 

factors make the flexible complex seal softer thus dimensionless thickness H is increased 

as FT increases as shown in Figure 12.2(a). This allows more coolant to flow causing 
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reductions in the average dimensionless lower plate’s temperature (θW)AVG  as clearly 

seen in Figure 12.2(b) which can provide additional cooling to any heated surface such as 

surfaces of electronic components.  

 
                            (a)                      (b)                                                    

        (c)                               (d) 
 
 

Figure 12.2: Effects of the dimensionless thermal expansion parameter FT on (a) 
dimensionless thin film thickness H, (b) dimensionless average lower plate temperature 

(θW)AVG, (c) dH/dτ, and (d) exit Nusselt number NuL 
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Figure 12.2(b) can be also read as follows: as thermal load increases, the average 

lower plate’s temperature increases however this increase can be reduced by using a 

flexible complex seal. This additional cooling is obtained with no need for external 

controlling devices which provides extra safety for an electronic component, as an 

example for a heated surface, when their thermal loads increase over the projected 

capacity. The fluctuation rate at the upper plate, |dH/dτ|, is noticed to increase as FT 

increases as shown in Figure 12.2(c). This could be an advantage for the cooling process 

especially at high levels of fluctuation rates since it will enhance the thermal dispersion in 

the coolant when suspended ultrafine particles are present. 

The Nusselt number is decreased as FT increases as shown in Figure 12.2(d) 

because it is inversely proportional to H. This is the reason for the fact that the percentage 

decrease in lower plate temperatures is lower than the percentage increase in the thin film 

thickness as FT increases.  

12.3.2 Effects of Dimensionless Thermal Dispersion Parameter 

Figure 12.3(a) describes the effects of the dimensionless thermal dispersion 

parameter λ of the coolant fluid on the average lower plate’s temperature of the thin film. 

This parameter can be increased either by increasing the diameter of the ultrafine 

particles or increasing the roughness of these particles while keeping a fixed volume 

fraction inside the coolant. This insures that thermal squeezing parameter remains 

constant. Figure 12.3(a) physically shows that the thermal dispersion can provide 

additional cooling to a heated element, thus it causes an additional reduction in the 

average dimensionless lower plate temperature (θW)AVG. Part of this cooling is due to the 

expansion process since it results in flooding of the working fluid which increases the 
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irregularity and the random motion of the particles. This causes additional enhancements 

in the energy exchange rate. Another part for the enhancement in the cooling is attributed 

to the fact that the noise in the thermal load, especially those having heterogeneous 

fluctuation rates, produces additional squeezing due to the velocities that appear in 

Equation (12.9). 

 

 

 

 

 

 

 

 

 

 

 

  

                                  (a)                                                                          (b) 

 

Figure 12.3: Effects of the dimensionless thermal dispersion parameter λ on (a) 
dimensionless average lower plate temperature (θW)AVG, (b) dimensionless thickness H, 

(c) temperature Profile, and (d) exit Nusselt number NuL  
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(c)                                                                           (d) 

Figure 12.3: Effects of the dimensionless thermal dispersion parameter λ on (a) 
dimensionless average lower plate temperature (θW)AVG, (b) dimensionless thickness H, 

(c) temperature Profile, and (d) exit Nusselt number NuL ………Continued 
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Figure 12.3(c). Accordingly, the Nusselt number increases as λ increases as seen in 

Figure 12.3(d). It can be seen in Figure 12.4 that the fluctuation rate at the upper plate, 

|dH/dτ|, decreases as λ increases. As a result, ultrafine particle suspensions inside thin 

films supported by flexible complex seals not only cause enhancements in heat transfer 

but also make these thin films dynamically more stable. In this example, an increase in λ 

between zero and unity cause a reduction in the average lower temperature by 

dimensionless temperature of 0.12 and an increase in the Nusselt number by 50 percent. 

 

Figure 12.4: Effects of the dimensionless dispersion parameter λ on the time variation of 
the dimensionless thin film thickness dH/dτ  
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Both effects tend to increase thermal convection which decreases the lower plate 

temperature. The increase in PS means an increase in the thermal capacitance of the 

working fluid and a decrease in σ indicates an increase in the reference velocity. 

Accordingly, the dimensionless thickness H decreases as PS increases as shown in Figure 

12.5(b). In addition, the pressure force inside the thin film increases as σ decreases 

causing an increase in Hp while HT decreases as σ decreases due to the enhancement in 

the cooling. As a result, the thin film thickness is noticed to vary slightly when σ 

decreases as illustrated in Figure 12.5(b).  As seen in Figure 12.5(c), the fluctuation rate 

at the upper plate is found to increase as σ increases while it decreases as PS increases. 

Also, the fluctuation rate at the upper plate is shown to more pronounced to PS more than 

to σ.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a)                            (b) 
 

 
Figure 12.5: Effects of the thermal squeezing parameter PS and the squeezing number σ 
on (a) dimensionless average lower plate temperature (θW)AVG, (b) dimensionless thin 

film thickness H, and (c) dH/dτ  
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(c) 
 

Figure 12.5: Effects of the thermal squeezing parameter PS and the squeezing number σ 
on (a) dimensionless average lower plate temperature (θW)AVG, (b) dimensionless thin 

film thickness H, and (c) dH/dτ …….Continued 
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(a)               (b) 

 
 

Figure 12.6: Effects of the fixation parameter Fn and the dimensionless thermal load 
amplitude βq on (a) dimensionless average lower plate temperature (θW)AVG, and (b) 

dimensionless thin film thickness H 
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measurable quantity in order to read, diagnose or for feedback to control the heating 

source. 

 

 

Figure 12.7: Effects of the dimensionless thermal expansion parameter FT on the average 
dimensionless pressure inside the thin film ΠAVG  
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CHAPTER 13 

 

CONCLUSIONS 
 
 
 

The flow and heat transfer inside incompressible thin films have been considered 

in this work in the presence of pressure squeezing of the plates. Although flow inside thin 

films have been studied in the past, the heat transfer characteristics of thin films having a 

boundary moving under oscillatory motion have not been studied. The proper energy 

equation and its limiting cases were obtained. Energy and momentum equations have 

been non-dimensionlaized and properly set to model two regimes: low and large flow 

Reynolds number models. Special cases for the squeezed problem have been solved 

analytically and numerically and excellent agreement was found between both results. It 

was found that the oscillating dynamic behavior of the thin film also results in a 

corresponding oscillatory thermal behavior. 

It was found that heat transfer increases by an increase in the thermal squeezing 

parameter, presence of suspended ultrafine particles in the fluid and the perturbation 

parameter of the thin film, while it decreases as both the Eckert number and amplitude 

motion parameter are increased for viscous fluids.  

Flow instabilities and flow separation were found to occur at lower squeezing 

Reynolds number for divergent thin films in contrast to convergent thin films. However, 

wall shear stress and the fluctuation in the axial and normal velocities were found to be 
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greater for convergent thin films as compared to divergent thin films especially at higher 

squeezing numbers. Further, Nusselt numbers and their amplitudes were found to 

decrease when the dimensionless slope of the upper plate was increased. Convergent thin 

films were found to be thermally more stable as lubricating thin films, for microchannels 

or fluidic cells of chemical or biological nano-sensors. 

In the presence of a magnetic field normal to the flow, flow instabilities were 

found to decrease as the Hartmann number increases. The Nusselt number was found to 

be affected by variations in the squeezing Reynolds number and also the Nusselt number 

was found to increase as the Hartmann number increases for similar inlet flow conditions. 

In the presence of internal pressure pulsations, the disturbance level at the upper plate 

was found to increase by an increase in both the Fixation parameter of the supporting seal 

and the frequency of the internal pressure pulsations. However, an increase in the 

squeezing number decreases the disturbance level at the upper plate. The fluid 

temperatures and the corresponding fluctuations were found to decrease when the 

Fixation parameter and the thermal squeezing parameter were increased for both CWT 

and UHF conditions. Also, fluctuations in the heat transfer and the fluid temperatures are 

more pronounced at relatively lower frequencies of internal pressure pulsations. 

For flow inside thin films induced by both natural convection and boundary 

squeezing effects as in vertical channel with one open-end from the top, oscillatory 

vibration at one wall may result in a separated cell inside the vertical channel at low 

Grashof numbers. Mean values for average Nusselt numbers at the vibrated wall were 

found to be mainly affected by the Grashof number and the amplitude of horizontal 

vibrations. The amplitude of Nusselt numbers was found to increase with an increase in 
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the amplitude of vibrations. However, it decreases at the vibrated wall with an increase in 

the Grashof number. 

In the presence of lateral flow leakage and wall slip conditions inside thin films 

supported by soft seals, flow fluctuations within a fluidic cell increase with an increase in 

the fixation parameter, the leakage rate and the wall slip condition while it decreases as 

the squeezing number and the power index n of the fluid increase. Slip velocity was 

found to increase as the power index n decreases. The cooling was enhanced by an 

increase in the fixation parameter and leakage rate. Moreover, hydromagnetic effects and 

suction wall velocity effects were found to enhance heat and mass transfer over a surface 

under squeezed conditions  

Enhancements in the cooling can be achieved when the supporting seals contain 

voids of fluids having large coefficient of thermal expansion, these enhancements were 

found to increase by an increase in the coefficient of thermal expansion, dispersion 

parameter, fixation parameter and the thermal squeezing parameter. Finally, the thermal 

dispersion parameter was found to increase the stability of the thin film by reducing the 

fluctuation rate at the moving plate.  
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