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ABSTRACT

Following earlier work of T. Brady, we construct locally CAT(0) classifying spaces

for those Artin groups which are three dimensional and which satisfy the FC (flag

complex) condition. The approach is to verify the “link condition” by applying gluing

arguments for CAT(1) spaces and by using curvature testing techniques as suggested

by the work of M. Elder and J. McCammond.
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CHAPTER 1

INTRODUCTION

It remains an open problem to decide whether or not every Artin group acts geomet-

rically on a CAT(0) space. The answer, in fact, is not even known for the classical

braid groups on more than four strings. In addition to providing a rich class of exam-

ples, an affirmative answer to this question would give a geometric proof of a number

of group-theoretic properties which conjecturally hold for all Artin groups, including

solvable word and conjugacy problems. We begin our investigation of this problem

with an overview of “CAT(0) groups”.

Let G be a group and let (X, d) be a geodesic metric space. Recall that a geodesic

metric space is a metric space in which every pair of points x1, x2 can be joined by

a geodesic path; i.e., there is a path γ : [0, d(x1, x2)] → X from x1 to x2 which is an

isometric embedding. The image of such a path is called a geodesic segment and, by

abuse of notation, is denoted by [x1, x2]. We say that G acts geometrically on X if

the action is properly discontinous, cocompact, and by isometries.

Let ∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] be triangle in X, and consider a comparison

triangle, ∆̄ = [x̄1, x̄2] ∪ [x̄2, x̄3] ∪ [x̄3, x̄1], in the Euclidean plane E2. By definition,

this is a Euclidean triangle with vertices x̄i and the same corresponding side lengths:

|x̄i− x̄i+1| = d(xi, xi+1) for i = 1, 2, 3, indices read mod 3. We say that ∆ satisfies the
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CAT(0) inequality if for each p, q ∈ ∆, d(p, q) ≤ |p̄− q̄|, where p̄ and q̄ are the points

in ∆̄ that are the same corresponding distance from the vertices: d(p, xi) = |p̄ − x̄i|

and d(q, xi) = |q̄ − x̄i| for i = 1, 2, 3. If every triangle in X satisfies the CAT(0)

inequality, we say that X is a CAT(0) space. If a group G acts geometrically on a

CAT (0) space X, then we say that G is a CAT(0) group.

CAT(0) spaces are necessarily uniquely geodesic and contractible. So, for instance,

the Euclidean and hyperbolic planes are CAT(0) spaces, but a sphere (with any

metric) is not a CAT(0) space. If a group G acts geometrically on a CAT(0) space

X, then X is a classifying space for G. The CAT(0) groups generalize the class of

groups which which are the fundamental group of a compact, non-positively curved

Riemannian manifold. We refer the reader to the book by M. Bridson and A. Haefliger

[BH] for a systematic study CAT(0) groups. The terminology and notation used

herein is generally consistent with their book.

Returning to the open problem, we may re-phrase it as follows:

Open Problem. Is every Artin group a CAT(0) group?

There are some partial answers to this question. R. Charney and M. Davis [CD]

have shown that each Artin group acts geometrically its “Salvetti complex”. This

is a piecewise Euclidean cube complex; the complex is CAT(0) if and only if the

Artin group is “right-angled”. Some (trivial) examples of right angled Artin groups

are finitely generated free groups and finitely generated free abelian groups. Each of

these is easily seen to be a CAT(0) group by considering its action, respectively, on

a metric tree or on Euclidean space.
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T. Brady and J. McCammond [BM] recently approached the problem in a novel

way. They discovered new finite presentations for “two dimensional” Artin groups.

Then they showed that many of the associated presentation 2-complexes are locally

CAT(0). It follows from the Cartan-Hadamard theorem for locally CAT(0) spaces

that the universal cover of such a complex is (globally) CAT(0); hence, the funda-

mental group is acting geometrically on a CAT(0) space via deck transformations.

Thus, many of the two-dimensional Artin groups are CAT(0); in particular, their

techniques show that “two dimensional FC” Artin groups are CAT(0).

T. Brady [Br1] continued this line of investigation for the finite type Artin groups

with three generators. These are precisely the Artin groups whose associated Coxeter

group is an essential finite reflection group on R3; there are only three such Coxeter

groups which do not split as a direct product: the full symmetry groups of the

tetrahedron, the cube, and the dodecahedron. For each such Artin group, G, Brady

constructed a three dimensional, connected, piecewise Euclidean complex K (with a

single vertex v0) so that π1(K, v0) ∼= G. He then showed that K is a locally CAT(0)

space by cleverly verifying the link condition, i.e. that the (geometric) link of v0 in

K is a CAT(1) space. As a corollary, he concludes that G acts geometrically via

deck transformations on the universal cover of K. Inspired by this last result, we will

prove the following:

Main Theorem. Every three dimensional FC Artin group is CAT(0).

The complex we will consider is an amalgamation of the spaces considered by

Brady. However, unlike Brady’s complex, the link of v0 does not split as a join of
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CAT(1) spaces. In his case, the link is a (spherical) suspension of a 1-complex. As the

spherical suspension of a CAT(1) space is CAT(1), it sufficed to check that a certain

1-complex was CAT(1); this is essentially a combinatorial condition. Whereas in the

complexes we will consider, the link is not a suspension. The difficulty, then, is to

check that a given piecewise spherical 2-complex is CAT(1). With the exceptions of

Gromov’s “all-right” criterion for cubical complexes [G] and Moussong’s Lemma for

complexes with polyhedral cells of “size≥ π/2” [M], there are no known combinatorial

characterizations of CAT(1) 2-complexes. We are able to overcome this difficulty by

using gluing arguments for CAT(1) spaces and by using “curvature testing” techniques

as in the recent work of M. Elder & J .McCammond [EM]. Combined with some deep

results of B. Bowditch on locally CAT(1) spaces [Bow], we demonstate that curvature

testing is an effective way to study piecewise spherical 2-complexes.

The structure of the complex we will consider is closely related to the structure of

special subgroups in Coxeter groups. Thus, we begin with an introduction to Artin

groups and their associated Coxeter groups.
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CHAPTER 2

ARTIN GROUPS AND COXETER GROUPS

2.1 Overview

Definition. Let S be a finite set of cardinality n. A Coxeter matrix for S is an

n × n symmetric matrix with entries mij ∈ {1, 2, . . . ,∞} such that mij = 1 if and

only if i = j. Fix a Coxeter matrix M , and let A be the group given by the following

presentation:

A = 〈S | 〈si, sj〉mij = 〈sj, si〉mij〉,

where 〈si, sj〉mij means the string sisjsi · · · having mij letters when mij < ∞. Such

a relation will be called an Artin relation of length mij. If mij = ∞, the relation

〈si, sj〉mij = 〈sj, si〉mij is omitted from the presentation. The pair (A, S) is called an

Artin system and the group A is called an Artin group.

Similarly, we define a group W by the following presentation:

W = 〈S | (sisj)
mij = 1〉,

where, again, we omit the relation if mij = ∞. In particular, we note that if i = j,

then we have the relation s2
i = 1. The pair (W, S) is called a Coxeter system, and the

group W is called a Coxeter group.
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Given an Artin system (A, S), we refer to (W, S) as the associated Coxeter system.

If the associated Coxeter group W is finite, we say that the Artin system is spherical.

Similarly, by a spherical Coxeter system, we mean that the Coxeter group is finite. If

the associated Coxeter group is infinite, then we say the Artin or Coxeter system is

of infinite type. Note that it is common in the literature to use the term “finite type

Artin group” instead of “spherical Artin group”.

Example. Let M be the n × n Coxeter matrix with entries mij = 2, for |i − j| > 2,

mi,i+1 = 3, and mii = 1. Then the presentation for A is exactly the usual presentation

of the braid group on n+1 strings. The generator si represents the braid which crosses

the i-th string over the (i+1)-st string and which leaves the other n−1 strings fixed.

The braid relations are exactly those appearing in the presentation for A, namely si

and sj commute if |i− j| > 2 and si and si+1 satisfy the relation sisi+1si = si+1sisi+1.

The associated Coxeter group W is the symmetric group on n + 1 letters. As the

symmetric group is a finite group, the braid group is an example of a spherical Artin

group.

Note that the associated Coxeter group W is naturally a quotient of its Artin

group. We have a surjective homomorphism π : A → W sending each generator

s ∈ S ⊂ A to the generator denoted by the same letter in W . The kernel of this map

is referred to as the pure Artin group. In the example above, the kernel of the map

from Braid(n+1) to Sym(n+1) is the pure braid group— those braids whose strings

begin and end at the same node.
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Definition. Given a (possibly empty) subset T ⊆ S. Define AT and WT to be the

subgroups of A and, respectively, W generated by T . These subgroups are called

special subgroups. The spherical special subgroups (or in the case of Coxeter groups,

the finite special subgroups) will be referred to as spherical subgroups. They are

indexed by the spherical subsets of S:

S = {T ⊆ S | WT is finite }.

For any subset T ⊆ S, one can define a new Artin system, (A(T ), T ), or a new

Coxeter system, (W (T ), T ), by forming the Coxeter matrix MT whose entries are

those entries of M indexed by pairs (i, j) ∈ T×T . There are obvious homomorphisms

A(T ) → AT and W (T ) → WT . In fact, these maps are isomorphisms. Also, it is a

fact that AT ∩ AT ′ = AT∩T ′ and WT ∩WT ′ = WT∩T ′ . The proofs for Coxeter groups

are in Bourbaki [Bo]. The proofs for Artin groups are in van der Lek’s Ph.D. thesis

[L].

Definition. There is another, more visual, way to define an Artin system or Coxeter

system: let S be a set of cardinality n and let M be a Coxeter matrix for S. Let G

be the labeled graph with vertex set S having a single edge labeled mij joining si to

sj whenever 1 < mij < ∞. The graph G is called a Coxeter graph. Clearly, a Coxeter

graph contains precisely the same information as a Coxeter matrix.

Remark. Note that what we call a Coxeter graph is not the same as the “Dynkin

diagrams” encountered in the study of Lie algebras. In Lie theory, the graph has,

again, S as its vertex set; but its edges join those vertices for which mij > 2. Such

an edge is labeled by mij if mij > 3 and no label is given if mij = 3.
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Definition. Let Γ have vertex set S. Say that a nonempty set of vertices T ⊆ S

spans a simplex in Γ whenever T ∈ S. We will refer to Γ as the link complex of the

Artin or Coxeter system. As the only two generator spherical Coxeter groups are

the finite dihedral groups (mij < ∞), the graph G (without labels) is precisely the

1-skeleton of Γ.

Definition. The dimension of an Artin system (A, S) is max {|T | : T ∈ S}. It follows

that dim(A, S) = dimΓ + 1, where Γ is the link complex of (A, S). When the context

is clear, we say that dim(A, S) is the dimension of the Artin group.

In particular, if (A, S) is a three dimensional Artin system and W is the associated

Coxeter group, then there is some T ⊆ S of cardinality three such that the special

subgroup WT is finite and such that any other subset T ⊆ S, having four or more

elements, generates an infinite subgroup of W .

Remark. It is conjectured and, in many cases, known that the dimension of an Artin

system (A, S) is equal to the cohomological dimension of A [CD]. To each Artin

system, there is an associated complexified hyperplane complement, Q. The Artin

group acts freely on the universal cover Q̃ and the quotient space is conjectured to

be a K(A, 1) space. Those familiar with this work will recognize the cone on the link

complex as a chamber of the Deligne complex— a piecewise Euclidean cell complex

which is homotopy equivalent to Q̃. For many Artin groups, it is known that the

Deligne complex is CAT(0). However, this does not answer the CAT(0) question for

Artin groups— the groups do not act properly on this complex.
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Definition. An Artin system is said to satisfy the FC condition if for each T ⊆ S

we have T ∈ S if and only if mij < ∞ for all si, sj ∈ T . This is equivalent to the

requirement that the link complex Γ be a flag complex (FC), i.e. a subset T ⊆ S

spans a simplex of Γ if and only if every distinct pair of vertices si, sj ∈ T spans an

edge. When the context is clear, we say that the group is FC.

Example. Let (A, S) be the Artin system with S = {s1, s2, s3} and with mij = 3

for i 6= j. Geometrically, the associated Coxeter group, W , can be realized as the

subgroup of isometries of the Euclidean plane generated by the affine reflections across

three lines which meet pairwise, forming an equilateral triangle. The product of two

such reflections is a rotation by 2π/3. So each special subgroup with two generators

is a dihedral group of order six. But, the group W is not finite: the W -orbit of

any equilateral triangle covers the entire plane. So, in terms of the complex Γ, we

have that each distinct pair {si, sj} spans a simplex; but {s1, s2, s3} does not— the

subgroup, namely all of W , is not finite. Thus (A, S) is not FC.

We briefly recall some of the theory of Coxeter groups. We refer the reader to the

books by N. Bourbaki [Bo], K. Brown [Bro], and J. Humphreys [H] for an introduction

to Coxeter groups.

Definition. Let (W, S) be a Coxeter system. The reflections of (W, S) are the el-

ements of the set R = {wsw−1 ∈ W | w ∈ W, s ∈ S }. Given 1 6= w ∈ W ,

define its reflection length or simply its length, denoted by `(w), to be the smallest

k ∈ { 1, 2, . . . } such that w = r1 . . . rk, where each ri is a reflection. By convention,

`(1) = 0. Similarly, given T ⊂ S, we define RT := {wtw−1 ∈ W | w ∈ WT , t ∈ T }. If
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w ∈ WT , we denote its reflection length with respect to RT by `T (w). Let R denote

the union of all RT such that T ∈ S. We refer to these reflections as the reflections

of spherical type.

Remark. In the standard references on Coxeter groups, `(w) denotes the length of w

with respect to the Coxeter generating set S. As we will have no need to use this

length function, there should be no confusion.

The term “reflection” is justified by the following fact about Coxeter groups.

Theorem. (Geometric Representation) Let (W, S) be a Coxeter system. Let V be a

vector space of dimension |S|. Then there is a canonical faithful linear representation

σ : W → GL(V ).

A proof of this theorem can be found in any of the references on Coxeter groups.

As in [Bo], the geometric representation is used to study the relationship between W

and its special subgroups WT . Passing to the contragredient representation of σ, W

acts on the dual space V ∗. From here, it can be shown that there is a polyhedral

cone C̄ which is a strict fundamental domain for the action of W on a W -invariant

subset U ⊂ V ∗ called the Tits cone. The stabilzer of a point in an open face CT of C̄

is precisely the special subgroup WT . The maximal open face, C = C∅ is called the

fundamental chamber.

If (W, S) is a spherical Coxeter system, then W can be faithfully represented

as a discrete subgroup of O(V ), where O(V ) is the subgroup of GL(V ) preserving a

positive definite bilinear form. Moreover, the matrix C which represents the form with

respect to the standard basis is C = (cos (π/mij)), where M = (mij) is the Coxeter
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matrix of (W, S). The set of elements of W which act as orthogonal reflections with

respect to this form is precisely the set of reflections as defined above. In fact, the

finite Coxeter groups are precisely the finite subgroups of GL(n, R) generated by

reflections. For this reason, the finite Coxeter groups are often called finite reflection

groups.

When (W, S) is an infinite type Coxeter system, the form is no longer positive

definite. Still, each reflection r ∈ R acts by a “reflection” in the sense that σ(r) fixes

a codimension 1 hyperplane in V , has a simple (−1) eigenvalue, and σ(r)2 = 1.

Coxeter groups admit other interesting geometric interpretations too. Every Cox-

eter group W acts geometrically on its Coxeter −Davis complex X (see [DM] for a

good survey). It was shown by Moussong [M] that X admits a CAT(0) metric in a

very natural way. Moreover, the elements of R act by reflections in the “walls” of X.

Definition. Let (W, S) be a Coxeter system, where S has cardinality n. An element

x ∈ W of the form x = si1 . . . sin , where { i1, . . . , in } is a permutation of { 1, . . . , n },

is called a Coxeter element.

Our construction of a non-positively curved K(A, 1) space for each three dimen-

sional FC Artin group is directly related to a partial ordering of the associated Coxeter

group with respect to a family of Coxeter elements chosen for each spherical subgroup

WT ⊆ W . We describe this partial ordering in the next section.
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2.2 Allowable elements and allowable expressions

Definition. Let (W, S) be a spherical Coxeter system. Let R be the set of reflections.

Then the reflection length ` defines a relation, ≤, on W as follows:

w ≤ w′ if an only if `(w) + `(w−1w′) = `(w′).

Regarding R as a generating set for W , we say a word, r1 . . . rk, is reduced if

`(r1 . . . rk) = k. A prefix of a reduced word r1 . . . rk is a word of the form r1 . . . ri for

some i, 1 ≤ i ≤ k. The empty word is also considered a prefix.

Lemma 2.1. Let (W, S) be a spherical Coxeter system, let R be the set of reflections,

and let ≤ be the relation as above. Suppose w, w′ ∈ W . Then w ≤ w′ if and only if

w is prefix of a reduced word in R representing w′. Thus, the relation, ≤, defines a

partial order on W .

Proof. This follows from the following more general observation:

If G is group with a finite generating set S, then G is a poset via the relation g ≤ g′

if and only if there is a geodesic from 1 to g′ passing through g in the Cayley graph

Γ(G, S). The relation is clearly reflexive. If g ≤ g′ and g′ ≤ g, then the geodesics

have the same end vertex: g = g′. So, the relation is anti-symmetric. Finally, by

possibly replacing a geodesic subpath from 1 to g′ with one passing through g, we see

that g ≤ g′ and g′ ≤ g′′ imply that g ≤ g′′. So, ≤ defines a partial order.

The reflection length of w ∈ W is evidently the same as the distance from the

identity to w in the Cayley graph Γ(W, R). And prefixes are just geodesic subpaths

beginning at the identity. This proves the lemma.
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We will use < to denote the strict partial order on W . Thus, w < w′ if and only

if w ≤ w′ and w 6= w′ if and only if w ≤ w′ and `(w) < `(w′).

Now let (W, S) be an arbitrary Coxeter system. For each T ∈ S, there is a partial

order ≤T on WT with respect to the reflections RT . We will show that these partial

orders agree on the intersection of any collection of spherical subgroups.

A first step in this direction is the well known fact that R ∩ WT = RT . Here is

a quick proof: (See K. Brown’s book for the definitions of walls and galleries [Bro].)

Given r ∈ R ∩ WT , choose an S-reduced word for r. By the solution to the word

problem for W , this word only involves letters in T . If we consider the resulting

minimal gallery from C to rC, we see that it must cross the wall corresponding to r.

Thus, r = wtw−1 for some w ∈ WT and t ∈ T . The other inclusion is obvious.

We will use the following theorem due to R. Carter; refer to Lemma 2.8 in [Ca] for

a proof. The theorem in its stated form is due to D. Bessis [Be]. Also, see Proposition

2.2 in [BW] for an independent proof.

Theorem. (Carter’s Lemma) Let (W, S) be a finite Coxeter system with reflections

R and reflection length function `. Suppose ρ : W → GL(V ) is a faithful linear

representation of W on a finite dimensional vector space V ∼= Rn such that, for every

w ∈ W , codim(ker(ρ(w) − Id)) = 1 if and only if w ∈ R. Suppose w ∈ W . Then

the reflection length of w is equal to the codimension of its fixed subspace: `(w) =

codim(ker(ρ(w)− Id)).

Remark. For any Coxeter group, the geometric representation σ : W → GL(V ) has

the stated property: a non-trivial w ∈ W fixes a codimension one hyperplane in V
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if and only if w is a reflection. However, the conclusion of Carter’s Lemma does not

hold for arbitrary infinite Coxeter groups. For instance, the Coxeter group W with

the Coxeter graph consisting of three disjoint vertices acts on R3 via its geometric

representation. But the square of the product of the three generators has reflection

length four. However, Carter’s Lemma does hold for the Ãn Coxeter groups, and

likely holds for all Euclidean and, perhaps, many hyperbolic Coxeter groups.

The following theorem is due to R. Charney and the author. A similar result for

finite Coxeter groups can be found in [CP].

Theorem 2.1. Let (W, S) be a Coxeter system and let R be the set of reflections.

Suppose that w = r1 . . . rk is R-reduced. If w ∈ WT and T ∈ S, then ri ∈ RT for all i.

Proof. Let n = |S| and consider the geometric representation σ : W → GL(V ). Pass

to the contragredient representation, so that W acts on V ∗. Each reflection of W acts

by a reflection in a hyperplane of V ∗ ∼= Rn. Let w ∈ WT and write w = r1 . . . rk as an

R-reduced word. Assume that T ∈ S so that WT is a finite Coxeter group. We can

also write w as an RT -reduced word: w = q1 . . . ql, where each qi ∈ RT . Necessarily,

k ≤ l. Let F := ∩k
i=1Hi, where each Hi is the codimension one hyperplane fixed by ri.

Let Fix(w) := { v ∈ V ∗ : w.v = v }. Carter’s Lemma, applied to σ restricted to WT ,

tells us that l = `T (w) is equal to the codimension of Fix(w) ⊂ V ∗. On the other

hand, w fixes the subspace F ; so F ⊂ Fix(w). As codim(F ) ≤ k ≤ l, we must have

equality: F = Fix(w). In particular, each ri fixes every point in Fix(w). Choose a

point x ∈ CT , the open face of the fundamental chamber C. The stabilizer of x is
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WT . So, x ∈ Fix(w) = F , and, hence, each ri fixes x. Thus, each ri belongs to WT ;

and so, each ri ∈ R ∩WT = RT .

The following is an immediate corollary:

Corollary 2.1. Let (W, S) be a Coxeter system, let R be the set of reflections, and

let ` denote the reflection length. If w ∈ WT and T ∈ S, then `(w) = `T (w). In

particular, the reflection length functions, `T , and the partial orders, ≤T , agree on

the intersection of spherical subgroups.

Definition. Let (W, S) be a Coxeter system together with a total ordering ≺. Set

xT := t1 . . . tk where T = {t1 ≺ · · · ≺ tk}. Thus, the total ordering chooses a Coxeter

element xT for each Coxeter system (WT , T ).

For each T ∈ S, let ≤T be the partial order on WT with respect to the reflections

RT . Define the allowable elements of WT thus:

Allow(xT ) := {w ∈ WT | 1 6= w ≤T xT }.

Define the allowable elements of W to be the set

Allow(W ) :=
⋃
T∈S

Allow(xT )

Each set Allow(xT ) is a subset of W ; so the union is understood to be a union of

subsets in W .

By Lemma 2.1, the xT -allowable elements are precisely the nontrivial elements

of WT which can be represented as a prefix of an RT -reduced expression of xT . In

particular, by repeated application of the move x = r1r2 . . . rn = r2(r
−1
2 r1r2)r3 . . . rn,
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it is easy to deduce that T ⊂ Allow(xT ). In fact, as we shall prove later, every

reflection in RT is allowable, i.e. RT ⊂ Allow(xT ).

The posets (WT ,≤T ) are subposets of a larger poset (W,≤).

Theorem 2.2. Let (W, S) be a Coxeter system and let ` denote the reflection length

with respect to R. Define W :=
⋃

T∈S WT . Then W is a poset via the relation w ≤ w′

if and only if w, w′ ∈ WT and w ≤T w′ for some T ∈ S. Moreover, w ≤ w′ if and

only if w is a prefix of some R-reduced expression for w′.

Proof. It is easy to see that the relation is reflexive and anti-symmetric. Suppose

w ≤ w′ and w′ ≤ w′′, then there exists T, T ′ ∈ S such that w ≤T w′ ∈ WT and

w′ ≤T ′ w′′inWT ′ . By Lemma 2.1, w is an RT reduced prefix of w′. But w′ ∈ WT ′ ,

so, by Theorem 2.1, each reflection appearing in this reduced word also belongs to

RT ′ . And, as `T (w) = `T ′(w), the word is RT ′-reduced. Substituting this word for the

prefix representing w′ in an RT ′-reduced word for w′′, we see that w ≤T ′′ w′′. Thus,

the relation is transitive.

Now suppose w ≤ w′. So, w ≤T w′ for some T ∈ S such that w, w′ ∈ WT . Lemma

2.1 says that w is a prefix of and RT -reduced word for w′. By Theorem 2.1, this word

is R-reduced. On the other hand, if w is a prefix of an R-reduced word for w′ ∈ W.

Then, by Theorem 2.1, the word is RT -reduced, where w′ ∈ WT for some T ∈ S.

Hence, w ≤T w′.
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The following is an easy corollary:

Corollary 2.2. Let (W, S) be a Coxeter system together with a total ordering of S

and let (W,≤) be the poset as above. Then

Allow(W ) = {w ∈ W : 1 < w ≤ xT for some T ∈ S}.

Proof. Suppose w ∈ W and 1 < w ≤ xT for some T ∈ S. Then, by Theorem 2.2, w

is a prefix of an R-reduced expression of xT . We can write xT as a RT -reduced and,

hence, an R-reduced expression in WT . Thus, 1 < w ≤T xT . So, w ∈ Allow(xT ).

The opposite inclusion is immediate from the definitions.

Proposition 2.1. Let (W, S) be a Coxeter system together with a total ordering of

S. Suppose T, T ′ ∈ S are such that T ⊂ T ′. Then Allow(xT ) ⊂ Allow(xT ′) is an

inclusion of posets.

Proof. We have that xT ≤T ′ xT ′ and xT , xT ′ ∈ WT ′ . So, xT ≤ xT ′ . Now, observe

the following: if r1 . . . rk is an R-reduced expression, then we may perform a shift

move: ri(rir1ri) . . . (riri−1ri)ri+1 . . . rk is also R-reduced. Suppose T = {ti(1) ≺ · · · ≺

ti(m)} ⊂ T ′ = {t1 ≺ · · · ≺ tk}. Apply the shift move to xT ′ = t1 . . . tk until xT appears

as a prefix of a reduced word. This is possible because the total ordering of S gave a

consistent choice of Coxeter elements.

To summarize, the set of allowable elements, Allow(W ) is a poset under the

relation ≤. Two elements are related if and only if one is a prefix of a reduced

expression for the other. Moreover, the notions of R-reduced and RT -reduced are the

same on WT . In particular, every allowable element w has a well defined length `(w).
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Remark. These partial orders have been studied by a number of other researchers in

the case where (W, S) is a spherical Coxeter system, cf. D. Bessis [Be]; D. Bessis,

F. Digne, J. Michelle [BDM]; J. Birman, K. Ko, & J. Lee [BKL]; T. Brady [Br2];

T. Brady & C. Watts [BW]; and M. Picantin [P]. Our notation is consistent with

[Be]. In each of these articles, the object of study is a “dual braid monoid”. D. Bessis,

building on the other authors’ partial results, proves that if the Coxeter element xS is

correctly chosen, then the group of fractions of the dual braid monoid is isomorphic

to the associated Artin group. However, it is unclear how or if this result generalizes

to an infinite type Artin group.

Definition. We say a sequence of allowable elements (w1, . . . , wk) in Allow(xT ) de-

fines an allowable expression of length k, k > 0, if the product w1 · · ·wk ∈ Allow(xT )

and
∑k

i=1 `(wi) = `(w1 . . . wk). Denote the allowable expressions of length k by

Expr(xT ; k) and all the allowable expressions by Expr(xT ).

We define allowable expressions in W to be the set

Expr(W ) =
⋃
T∈S

Expr(xT ).

Expr(W ) is understood to be a union of sequences in W . Note that Allow(W ) =

Expr(W ; 1).

In particular, the allowable expressions of length |T | in Expr(xT ) correspond to

all the R-reduced words which represent xT . It also noteworthy that, equivalently,

an allowable expression is a sequence (w1, . . . , wk) of elements of Allow(W ) such that

Σk
i=1`(wi) = `(w1 . . . wk), and w1 . . . wk ∈ Allow(W ). For, by definition w1 . . . wk ≤
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xT for some T ∈ S. It follows that each wi ≤ xT , as well. Thus, (w1, . . . , wk) ∈

Expr(xT ; k).

Proposition 2.2. If T ⊂ T ′ ∈ S, then Expr(xT ) ⊂ Expr(xT ′).

Proof. Use the fact that Allow(xT ) ⊂ Allow(xT ′) (Proposition 2.1). If (w1, . . . , wk) ∈

Expr(xT ; k), then each wi belongs to Allow(xT ′) and so does the product w1 . . . wk.

The length condition, Σk
i=1`(wi) = `(w1 . . . wk), is stated independent of T or T ′.

Lemma 2.2. Let (W, S) be a Coxeter system of dimension ≤ 3 together with a total

ordering of S. Let T, T ′ ∈ S and let w ∈ W. Suppose w ≤ xT , xT ′. If `(w) = |T ∩T ′|,

then w = xT∩T ′. Moreover, for each nonempty T ∈ S, there is a unique allowable

element w of length |T | belonging to WT .

Proof. First, observe that if w ≤ xT , xT ′ , then w ∈ WT ∩WT ′ = WT∩T ′ . If T ⊂ T ′,

then `(w) = |T ∩T ′| = |T |. But `(w)+ `(w−1xT ) = `(xT ) = |T |. So, w = xT = xT∩T ′ .

Everything so far is true regardless of the dimension.

Now suppose that neither T nor T ′ is a subset of the other. If the intersection has

cardinality one, then w belongs to WT∩T ′— a group with only one non-trivial element.

So w ∈ T ∩T ′ and the conclusion holds. The only remaining possibility is that w has

length two and T and T ′ have have three elements. Suppose T = {t1 ≺ t2 ≺ t3} and

T ∩ T ′ = {ti ≺ tj}. Then, by shifting, we can write xT = titju, reduced, for some

u ∈ R. But u cannot belong to RT∩T ′ , because xT /∈ WT∩T ′ . Now w ≤ xT has length

two, so there exists a q ∈ R such that r1r2q = xT = titju. So, uq = tjtir1r2 ∈ WT∩T ′ .

By Theorem 2.1, uq cannot be reduced— u would belong to RT∩T ′ . So, uq = 1. Thus,

w = r1r2 = titj = xT∩T ′ .
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For the second statement, suppose w ∈ Allow(W ; |T |) ∩ WT , where T ∈ S is

nonempty. If |T | = 1, there is only one nontrivial element in WT . So, w = xT . If

|T | = 2, suppose x ≤ xT ′ . Because `(w) = 2, we must have that T ⊂ T ′. From

the above, we may assume that |T ′| = 3. So, there is an R-reduced expression

xT ′ = wq = titju, where q and u are reflections and T = {ti ≺ tj} ⊂ T ′. As above,

we must have that uq = 1. So, w = titj = xT . Finally, if |T | = 3, suppose w ≤ xT ′ .

Again, `(w) = 3 forces T ⊂ T ′ (every element of a dihedral group is a product of

at most two reflections). But, then, W is three dimensional, so T = T ′ and, hence,

w = xT .

A more unified statement is the following:

Proposition 2.3. Let (W, S) be a Coxeter system of dimension ≤ 3 together with

a total ordering of S. Suppose T ∈ S. Then Allow(W ) ∩ WT = Allow(xT ) and

Expr(W ; k) ∩ (WT )k = Expr(WT ; k) for each k.

Proof. Suppose w ∈ Allow(W ) ∩ WT . If `(w) = 1, then w is a reflection in RT .

Corollary 3.1 (proof in the next chapter) implies that w ∈ RT ⊂ Allow(xT ). Suppose

`(w) = 2 and w ≤ xT ′ for some T ′ ∈ S. By Proposition 2.1, we may assume T is

minimal. So, T ⊂ T ′. Either |T | = 2, forcing y = xT , or T = T ′. In either case, w ∈

Allow(xT ). Finally if `(w) = 3, then w = xT . Thus, Allow(W ) ∩WT ⊂ Allow(xT ).

The opposite inclusion is immediate. Similarly, there is only one nontrivial inclusion

in the second statement. Suppose (w1, . . . , wk) ∈ Expr(W ; k) ∩ (WT )k. Then, each

wi ∈ Allow(W ) ∩ WT = Allow(xT ). By subgroup closure, the product w1 . . . wk

belongs to Allow(W ) ∩WT . It follows that (w1, . . . , wk) ∈ Expr(xT ; k).
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Remark. Lemma 2.2 and Proposition 2.3 probably admit generalizations to all dimen-

sions. However, the brute force arguments given here provide little insight. The work

of D. Bessis [Be] is particularly recommended to those who may want to generalize

these statements.

We are now ready to define the proposed non-positively curved K(A, 1) space for

a three dimensional FC Artin group A. This complex is defined purely in terms of a

three dimensional Coxeter system together with a total ordering of its generating set.
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CHAPTER 3

BRADY’S COMPLEX

3.1 The construction

Let Γ be a link complex of dimension together with a total ordering of its vertices.

So, the complex Γ defines a Coxeter system (W, S) together with a total ordering of

its generating set S. To emphasize its origin, we may denote the Coxeter group by

WΓ. Similarly, the Artin group defined by Γ may be denoted by AΓ.

Assume that Γ is a simplicial complex of dimension ≤ 2. Thus, Coxeter group

W = WΓ has dimension ≤ 3. Let K = KΓ be the cell complex (Brady’s complex )

defined as follows:

• 0-skeleton K(0): a single vertex labeled v0.

v

w

v0 0

Figure 3.1: A labelled, oriented 1-cell.
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• 1-skeleton K(1): a labelled, oriented edge for each allowable element, w ∈

Allow(W ), with both ends attached at v0.

• 2-skeleton K(2): a two simplex for each allowable expression of length two:

(w1, w2) ∈ Expr(W ; 2). The edges of the simplex are labeled by w1, w2, and

w1w2, viewed as elements of W , not as words. The boundary of this 2-simplex

is attached to the 1-skeleton according to its labeling and orientation. Refer to

Figure 3.2.

v

0v0v

w1 w2

w1 w2

0

Figure 3.2: A 2-cell.

• 3-skeleton K(3): a three simplex for each allowable expressions of length three:

(w1, w2, w3) ∈ Expr(W ; 3). It’s six edges are labeled by the following elements

of W :

w1, w1w2, w2, w2w3, w3, w1w2w3.

Their orientation and adjacency is shown in Figure 3.3. The boundary of this

3-simplex is attached to the 2-skeleton accordingly.
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v

0v0v

w1 w2

w1 w2

0v

w
w

2
3 w3

w 3

w 1
w 2

0

Figure 3.3: A typical 3-cell in K.

From the description of the the 2-skeleton, it follows that the fundamental group

of K is presented thus:

π1(K, v0) = 〈{[w] : w ∈ Allow(W )} | {[w1][w2] = [w1w2] : (w1, w2) ∈ Expr(W ; 2)}〉,

or, informally, π1(K) = 〈Allow(W ) | Expr(W ; 2)〉. The generator [w] is called a lift

of the allowable element w ∈ W . We use these brackets to distinguish the element of

the fundamental group from the element of the Coxeter group.

Suppose Γ defines Artin system of dimension ≤ 3 together with a total ordering

of its generating set. We may form the complex KΓ by considering the associated

Coxeter group. If the AΓ is a spherical Artin group with generators S = {b ≺ a ≺ c}

such that mac = 2, then K is exactly the complex considered by T. Brady [Br1]. If

AΓ is a spherical Artin group with two generators, this is the 2-complex considered

by T. Brady and J. McCammond in [BM]. And, if AΓ has only one generator, then

KΓ is just a single oriented, labelled edge with its vertices identified.
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If T ∈ S is a spherical subset, then we have an associated Brady complex. Define

KT to be the Brady complex associated to the Coxeter system (WT , T ) together with

the total ordering of S restricted to T . Thus, KT is a subcomplex of KΓ. Also, if

T, T ′ ∈ S, then it follows from Proposition 2.1 and Proposition 2.2 that KT∩T ′ is a

subcomplex of KT and K ′
T .

The goal of the next few sections is to prove that π1(KΓ, v0) ∼= AΓ.

3.2 The fundamental group of KΓ

If AΓ is a spherical Artin group of dimension ≤ 3 and WΓ is its associated Coxeter

group, then, regardless of the choice of total ordering, the cell complex KΓ always

has the same fundamental group. More precisely, we prove the following:

Theorem 3.1. Let (W, S) be a spherical Coxeter system. Let x and y be two Coxeter

elements for (W, S). Then there is an element w0 ∈ W such that w0yw−1
0 = x

in W . The automorphism of W , φ, mapping w 7→ w0ww−1
0 restricts to a bijection

between Allow(y) and Allow(x). This, in turn, gives a bijection between Expr(y) and

Expr(x). Moreover, if W has three or fewer generators, φ induces an isomorphism

Φ : π1(Ky) → π1(Kx), by setting Φ([a]) := [φ(a)], where Ky and Kx are the Brady

complexes defined by their respective Coxeter elements.

Proof. The first statement, that all Coxeter elements in a finite Coxeter group are

conjugate, is classical [Bo]. That φ is a bijection follows from the fact that it permutes

the reflections and preserves the reflection length of any element of W .
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In the special case of length two expressions, we see that the relation [φ(a1)][φ(a2)] =

[φ(a1a2)] holds in π1(Kx). Hence,

Φ([a1][a2]) = [φ(a1)][φ(a2)] = [φ(a1a2)] = Φ([a1a2]).

Thus, Φ takes relators to relators, and so, Φ is a well-defined group homomorphism.

Moreover, Φ is clearly invertible and, hence, is an isomorphism.

As a corollary, we deduce that all the reflections in a spherical Coxeter system are

allowable, regardless of the choice of Coxeter element.

Corollary 3.1. Let (W, S) be a spherical Coxeter system and let x be a Coxeter

element. Then every reflection is x-allowable.

Proof. The hard work has already been done by D. Bessis. He proves that every

spherical Coxeter system admits a “chromatic” Coxeter element y for which the set

of reflections are y-allowable (use Lemma 1.3.4 in [Be]). Now, apply the bijection

between Allow(x) and Allow(y) from the theorem above. The bijection preserves the

set of reflections. Hence, every reflection is x-allowable.

To establish an isomorphism between an (infinite type) Artin group AΓ and the

fundamendal group of its Brady complex KΓ, we seek compatible isomophisms AT →

π1(KT , v0) for each T ∈ S. As AΓ will be assumed to have dimension≤ 3, the spherical

subgroups will have at most three generators. We consider each case separately.

Recall that π : A → W denotes the natural map.

If A = AT is a spherical Artin group with one generator, s, and W is its associated

Coxeter group, then:
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1. A = 〈 s | 〉 ∼= Z,

2. W = 〈 s | s2 = 1 〉 ∼= Z/2Z, and

3. π1(K) = 〈 [s] | 〉 ∼= Z.

So, the map β : s → [π(s)] defines an isomorphism A → π1(K).

If A = AT is a spherical Artin group with two generators, s1 and s2, and W is its

associated Coxeter group, then there is an integer m > 1 such that

1. A = 〈 s1, s2 |< s1, s2 >m=< s2, s1 >m 〉,

2. W = 〈 a, b | (ab)m = 1 〉, a dihedral group of order 2m, and

3. π1(K) = 〈 [x], [r1], . . . , [rm] | [x] = [r1][r2], . . . , [x] = [rm][r1] 〉.

The last statement appears in [BM]. For clarity and for purposes of introducing

notation, we repeat the proof:

Proposition 3.1. (T. Brady, J. McCammond) Let (A, S) be the two generator spher-

ical Artin group with generating set S = {s1, s2}, and let (W, S) be the associated

Coxeter system. Fix a Coxeter element: either x = s1s2 or x = s2s1. In either case,

we have π1(K) = 〈 [x], [r1], . . . , [rm] | [x] = [r1][r2], . . . , [x] = [rm][r1] 〉, where K is the

Brady complex of (W, S) with respect to x.

Proof. By Corollary 3.1, every reflection is x-allowable; and, clearly, x is the only

allowable element of length 2. Let r1 = s1, r2 = s2, and let ri := ri−2ri−1r
−1
i−2 for

i = 1, . . . ,m. This enumerates the set of reflections. Geometrically, the reflections act

by reflection in hyperplanes in R2. The hyperplanes of ri and ri+1 meet with dihedral
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angle π/m. The Coxeter element, x, acts by rotation by 2π/m. From the complete

description of the dihedral group of order 2m, it is easy to deduce that if x = s1s2, then

the allowable expressions of length two are precisely (r1, r2), (r2, r3), . . . , (rm−1, rm),

and (rm, r1). If x = s2s1, then we set r1 = s2 and r2 = s1 and the list of allowable

expressions is the same. Thus, π1(K) has the desired presentation.

By performing Tietze transformations on this presentation, we can eliminate the

generator [x] to obtain an alternate presentation of the fundamental group:

Corollary 3.2. Let Γ, together with a total ordering ≺ of the vertices, define a two

generator spherical Artin group with generating set S = {s1 ≺ s2}. Let W be the

associated Coxeter group, and let R = {r1, . . . , rm} be the set of reflections. Then

π1(KΓ = 〈 {[ri] : ri ∈ R} | [r1][r2] = [r2][r3], . . . , [r1][r2] = [rm][r1] 〉.

As in the one generator case, the fundamental group of the Brady complex is

naturally isomorphic to the Artin group:

Proposition 3.2. (T. Brady, J. McCammond [BM]) Let (A, S) be the two generator

spherical Artin group with generating set S = {s1, s2}, and let (W, S) be the associated

Coxter system. Then, for either choice of Coxeter element, the map β, which takes

each generator si ∈ S to the allowable element [π(si)], defines an isomorphism of A

onto π1(K, v0).

Refer to [BM] for a proof of Proposition 3.2. Bascially, consider the cases of m

odd or m even separately and direcly verify that the desired relations hold in both

presentations.
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As in the case of spherical Artin groups with one or two generators, we want to

have a complete understanding of the fundamental group of the Brady complex with

respect to any Coxeter element in a three generator Coxeter group. Specifically, we

will prove

Theorem. Let (A, S) be a spherical three generator Artin group and let W be its

associated Coxeter group. Then, regardless of the choice of Coxeter element in W ,

the map β : A → π1(K, v0) sending each generator s to [π(s)] is an isomorphism.

We will prove this theorem in the next section (Theorem 3.3). Assuming this

result, we prove that the fundamental group of KΓ is isomorphic to AΓ. We begin by

deriving an alternate presentation for the fundamental group of Brady’s complex in

the case of a three generator finite Coxeter group.

Lemma 3.1. Let WΓ be a finite three generator Coxeter group together with a total

ordering,≺, of the generating set S = {s1 ≺ s2 ≺ s3}. Let x := s1s2s3 denote the

Coxeter element, and let R be the set of reflections in W . Then

π1(K, v0) = 〈{[r] : r ∈ R | {[s1][s2][s3] = [r1][r2][r3] : (r1, r2, r3) ∈ Expr(x; 3)}〉.

Proof. We perform the following Tietze transformations on the presentation:

First, for every allowable element y of length two, there are exactly two allowable

expressions involving y: (y, t) and (q, y), where q and t are reflections. So, we have

exactly two defining relations, [x] = [y][t] and [x] = [q][y], which involve [y]. There

are also defining relations of the form [y] = [r][s] for each pair of reflections r and s

such that y = rs in W . Thus, the following are consequences of the defining relations:
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[x] = [r][s][t] and [x] = [q][r][s]. Add all such relations to the given presentation. In

particular, we have added the relation [x] = [s1][s2][s3].

Second, we remove all the relations we first considered; that is, we remove all

relations of the form [x] = [y][t] and [x] = [q][y]. This is permissible because each

such relation is a consequence. (Use the relations [x] = [r][s][t], [x] = [q][r][s], and

[y] = [r][s].)

Third, fix a relation of the form [y] = [r][s] for each allowable element [y] of

length two. Any other relation [y] = [r′][s′] is a consequence of the relations [x] =

[r][s][t], [x] = [r′][s′][t], and [y] = [r][s]. So we can remove those other relations.

Fourth, remove each generator [y] and its fixed relation [y] = [r][s] from the

presentation. This is permissible, as this is the only relation remaining which involves

[y].

The generating set which remains consists of lifts of allowable elements of length

1 (reflections) and the lift of the Coxeter element. The relations which remain cor-

respond precisely to the allowable expressions of length three. For, clearly all the

remaining relations may be viewed as allowable expressions of length three; and, con-

versely, given an allowable expression (r, s, t), then y := rs is allowable of length two

and so the initial defining relations [x] = [y][t] and [y] = [r][s] would give rise to the

relation [x] = [r][s][t].

Finally, we can eliminate the generator [x] by first adding a relation [r1][r2][r3] =

[s1][s2][s2] for each allowable expression (r1, r2, r3) and by then removing [x] and all

relations involving [x].
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For the general complex KΓ associated to a Coxeter group WΓ of dimension ≤ 3,

we may proceed as above and deduce that

π1(KΓ, v0) = 〈{[r] : r ∈ R} | { [si1 ] . . . [sik ] = [r1] . . . [rk] } 〉,

where the relations are indexed by {(r1, . . . , rk) ∈ Expr(xT ; |T |), T ∈ S, |T | ≥ 2}.

Here, T = {si1 ≺ · · · ≺ sik} and R is the set of spherical reflections. Informally, we

may say that

π1(K) ∼= 〈R | expressions of each xT as a product of reflections 〉.

Theorem 3.2. Let Γ define an Artin group of dimension ≤ 3 together with a total

ordering of the generating set. Then π1(KΓ, v0) ∼= AΓ.

Proof. Let (A, S) be the Artin system defined by Γ and let (W, S) be the associated

Coxter system. Suppose T ( T ′ ∈ S. Let i : AT → AT ′ be the map induced by the

inclusion T ⊂ T ′. Then i is injective. (This is result is due to van der Lek [L] in

general, though inclusions of spherical Artin groups were known to be injective by

earlier work of Brieksorn & Saito [BS] and Deligne [De].) Let j : π1(KT ) → π1(KT ′)

be defined by mapping [r] → [r]. Here we are using the alternate presentations of

the fundamental groups as generated by lifts of reflections. The map j is well-defined

because xT is xT ′-allowable. If T = {r1 ≺ r2}, then the following are both xT and

xT ′-allowable expressions: (r1, r2), . . . , (rm, r1). So, in particular, the image of each

defining relation [r1][r2] = [ri][ri+1] in π1(KT ) is a consequence of the following relation

in π1(KT ′): [r1][r2][q] = [ri][ri+1][q], where (xT , q) ∈ Expr(xT ′ ; 2) for some q ∈ RT ′ .

We have such a relation because xT is a prefix of a reduced word representing xT ′ .
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Now consider the following diagram:

AT −−−→ AT ′y y
π1(KT ) −−−→ π1(KT ′)

The horizontal maps are the maps i and j above; the vertical maps are the maps βT

and βT ′ which map t 7→ [π(t)].

We have shown that βT and βT ′ are isomorphisms when |T ′| ≤ 2. By assuming

Theorem 3.3, we have that these maps are also isomorphisms when |T ′| = 3. To check

the diagram commutes, it suffices to chase the generating set T . By construction,

these maps restrict to the identity on T . So, the diagram commutes. As the vertical

maps are isomorphisms, it follows that the bottom horizontal map is also injective.

Taking colimits over T ∈ S, we get an isomorphism

colim
T∈S

AT
∼= colim

T∈S
π1(KT ).

By examining the alternate presentations of the fundamental groups as generated

by lifts of reflections, we see that we have defined the desired isomorphism.

3.3 Three generator spherical Artin groups

Let (A, S) be an Artin system. Let W be the associated Coxeter group, and let

R ⊂ W be the set of reflections. Let π : A → W be the natural map.
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Definition. Given S ′ ⊂ A, we say that S ′ is equivalent to S if

• S ′ generates A

• there is a bijection S ↔ S ′, and

• the corresponding Artin relations, < s′i, s
′
j >mij=< s′j, s

′
i >mij , are a set of

defining relators for A.

We specialize to the case where (A, S) a three generator spherical Artin group.

The Coxeter graph which defines A is thus:

m

s1

s2 s32

n

Figure 3.4: The Coxeter graph for A.

The only cases for which the group is spherical is when m = 2 and 2 ≤ n < ∞ or

when m = 3, and n ∈ {3, 4, 5}.

Suppose S ′ = {s′1, s′2, s′3} ⊂ A generates A as an Artin group, where si ↔ s′i. Let

x′ = s′1s
′
2s

′
3. We emphasize that x′ is the product of the elements of the Artin gen-

erating set in a particular order; specifically, the first two generators satisfy an Artin

relation of length m and the last two generators commute. Denote the corresponding
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Coxeter element by y′ := π(x′). We may then construct Brady’s complex; we denote

it by Ky′ . In particular, we can describe the fundamental group as follows:

π1(Ky′) = 〈 {[y′]} ∪ {[r] : r ∈ R} | {[y′] = [r1][r2][r3] : r1r2r3 =W y′, ri ∈ R} 〉.

In [Br1], T. Brady proves that the map βS′,x′ : A → π1(Ky′) taking s′ 7→ [π(s′)] is an

isomorphism. The inverse map is obtained by noting that the set of reflections is the

closure of π(S ′) ⊂ W under the action of conjugation by y′. Given r ∈ R, we can

thus write

r = (y′)−kπ(s′i)(y
′)k = π((x′)−ks′i(x

′)k)

for some integer k. The inverse map sends [r] 7→ (x′)−ks′i(x
′)k ∈ A. That this map is

well-defined is the main content of Brady’s proof. We wish to extend this result to

the case where Ky is defined by an arbitrary Coxeter element y ∈ W .

Remark. Given an arbitrary Coxeter element y in a spherical Coxeter system (W, S),

it need not be true that the reflections are the closure of S under the action of

conjugation by y. D. Bessis [Be] has shown that this is the case provided y is a

“chromatic” Coxeter element, i.e. 2-color the Coxeter diagram of W (the Coxeter

diagram of a spherical Coxeter group is a forest with at most one vertex of valence

three in any component) by say ‘red’ and ’blue’; then a Coxeter element which is

a product of the ‘red’ generators followed by the product of the ‘blue’ generators

is called chromatic. However, in the case of an infinite type Coxeter system, it is

not always possible to make a consistent choice of chromatic Coxeter elements for

each spherical subgroup. Nonetheless, as we argue below, given y, one can find an

alternate Coxeter generating set for which y is chromatic. We only have a case by
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case proof for the three generator spherical Coxeter groups. It is reasonable to expect

that this could generalized in a unified way by, perhaps, viewing alternate generating

sets as different chambers in the Coxeter-Davis complex.

b

2

nm

ca

Figure 3.5: The Coxeter graph of (W, S).

Let S = {a, b, c} so that the Coxeter graph is as shown in Figure 3.5. Let x =

abc ∈ A, and let y := π(x) ∈ W be the Coxeter element. Define S ′ := aSa−1 = {a′ :=

a, b′ := aba−1, c′ = c} ⊂ A. Then, as conjugation by a is an automormism of A and

c′ = aca−1, we see that S ′ is equivalent to S. Let x′ := b′a′c′ and y′ := π(x′). Then

(S ′, x′, y′) has the form of Brady’s setup, namely x′ is defined to be the product of the

elements of an Artin generating set in the prefered order. So, the map βS′,x′ : A →

π1(Ky′) is an isomorphism. To simplify our notation, we use the following convention:

if g ∈ A, then [g] := [π(g)].

Lemma 3.2. The map βS,x : A → π1(Ky) sending s 7→ [s] is an isomorphism. In

fact, βS,x = βS′,x′ .
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Proof. The second statement makes sense because π1(Ky′) = π1(Ky). The choice of

x′ is such that x′ = (aba−1)(a)(c) = abc = x. So, y′ = y and the presentations of

the fundamental groups are identical. It suffices to prove that βS′,x′(s′) = βS,x(s
′) for

every s′ ∈ S ′. If s′ = a′ or c′, there is nothing to prove. If s′ = b′, then

βS,x(b
′) = βS,x(aba−1) = [a][b][a]−1.

On the other hand, as y = π(abc) = π(aba−1)π(a)π(c), the relation

[a][b][c] = [b′][a][c]

holds in π1(Ky). Solving the equation in the group, we find that

[b′] = [a][b][a]−1.

Hence, βS′,x′(b′) = βS,x(b
′), as claimed.

The cases where the Coxeter elements are defined by other permutations of the

set S = {a, b, c} are similar. Given x = permutation of S, we define a corresponding

element g ∈ A:

• if x = bac or bca, let g = 1

• if x = abc, let g = a (this is the case above)

• if x = cba, let g = c

• if x = acb or cab, let g = ac

36



Let S ′ := gSg−1. Then a′ := gag−1 = a, b′ := gbg−1, c′ := gcg−1 = c and S ′ is

equivalent to S. Let x′ = b′a′c′. Then x′ = gbacg−1 = x. In particular, x and x′ define

the same Coxeter element. Moreover, (S ′, x′) takes the form of Brady’s theorem.

The Brady complexes have identical fundamental groups. To show that βS′,x′ =

βS,x, we check that this holds for each generator s′ ∈ S ′. As a′ = a and c′ = c, we

need only check that βS′,x′(b′) = βS,x(b). So, we write b′ in terms of the generating

set S: b′ = gbg−1. So, βS,x(b
′) = (βS,x(g))[b](βS,x(g))−1. To see that this equals

βS′,x′(b′) = [b′], we only need to verify that that the relation (βS,x(g))[b] = [b′](βS,x(g))

holds in π1(K). We return to cases:

• if g = 1, then βS,x(g) = 1 and the relation follows from b′ = b.

• if g = a, this is the case above

• if g = c, then βS,x(g) = [c] and the relation follows from

[x] = [c][b][a] = [cbc−1][c][a] = [b′][c][a]

• if g = ac, then βS,x(g) = [a][c] and the relation follows from

[x] = [a][c][b] = [acbc−1a−1][a][c] = [b′][a][c]

We conclude that

Theorem 3.3. Given a three generator spherical Artin system (A, S) and given a

Coxeter element y ∈ W chosen by any total ordering of S, the map β : A → π1(Ky)

sending s 7→ [π(s)] is an isomorphism.
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CHAPTER 4

THE GEOMETRY OF BRADY’S COMPLEX

4.1 The metric on KΓ

Let Γ define an Artin group of dimension ≤ 3 together with a total ordering of the

generating set. Define a piecewise Euclidean structure on K by assigning a length of
√

k to each edge labelled by an allowable element of length k. The metric on each

cell is then determined. The model polyhedral 3-cell is shown below.

Above is the 3-cell corresponding to the allowable expression (w1, w2, w3). It is

isometric to the tetrahedron {(x, y, z) ∈ R3 | 0 6 z 6 y 6 x 6 1}. In Figure 4.1, the

allowable rotations (length two allowable elements) are denoted by w12 := w1w2 and

w23 := w2w3; a Coxeter element is denoted by w123 := w1w2w3.

We will study the geometry of K within the formal framework of Mκ- polyhedral

and simplicial complexes. Let Mn
κ denote the complete simply connected Riemannian

manifold of constant curvature κ and dimension n. So, Mn
0 is Euclidean n-space, Mn

1

is the unit n-sphere, and Mn
−1 is the hyperbolic n-space.

Roughly speaking, an M0 or an M1-complex is cell complexes whose cells are

metrized, respectively, as convex Euclidean or convex spherical polyhedra. The reader

38



(0,0,0)

1 w2
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(1,0,0)

(1,1,0)

(1,1,1)

w

Figure 4.1: A model metric 3-cell in K.

is refered to our standard reference [BH]. But to facilitate the notation, we state the

formal definitions in the following supplement:

4.2 Supplement: Mκ-complexes

Definition. A convex Mκ-polyhedral cell C is the convex hull of a finite set of points

in Mn
κ . If κ > 0, we require that these points lie in an open hemisphere of Mn

κ . The

dimension of C is the dimension the smallest geodesic hyperplane containing it. The

faces of C are those nonempty subsets F ⊆ C of the form F = H∩C, where H ⊂ Mn
κ
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is a hyperplane such that C lies entirely in one of the closed half-spaces determined

by H. A face is proper if it is not all of C. Note that every face is itself a geodesic m-

cell for some m ≤ dim(C). The 0-dimensional faces are called vertices. Given a face

F ⊆ C, we define the interior of F to be the set int(F ) := F − {proper faces of F}.

The interiors of faces are called open faces. Given x ∈ C, we denote by supp(x) its

support in C, i.e. the unique face F such that x ∈ int(F ). Note that unless x ∈ C is

a vertex, int(supp(x)) is the interior in the usual topological sense.

Definition. An Mκ-polyhedral complex is a metric space K arising as follows: Let

{Cλ|λ ∈ Λ} be a family of convex Mκ-polyhedral cells. Let Y =
⋃

λ∈Λ(Cλ × {λ}).

Let ∼ be an equivalence relation on Y and let K = Y/ ∼. Let q : Y → K be the

quotient map. For each λ we have a map qλ : Sλ → K defined by restriction. The

maps (qλ)λ∈Λ are required to satisfy the following compatibility conditions:

(1) For every λ ∈ Λ, the restriction of qλ to the interior of Cλ is injective, and

(2) For all λ1, λ2 ∈ Λ and x1 ∈ Cλ1 , x2 ∈ Cλ2 , if qλ1(x1) = qλ2(x2), then there is an

isometry h : supp(x1) → supp(x2) such that qλ1(x) = qλ2(h(x)) for all x ∈ supp(x1).

The metric on K is given by the intrinsic psuedometric. That is to say, the

distance between points x, y ∈ K is defined to be the infimum of lengths of paths

which join x to y.

Definition. An Mκ-polyhedral complex K is called an Mκ simplicial complex if the

following conditions also hold:

(3) Every convex polyhedral n-cell is a simplex, i.e. it is the convex hull of n + 1

points in general position,
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(4) For every λ ∈ Λ, qλ is injective, and

(5) If p(Cλ1) ∩ p(Cλ2) 6= ∅, then there is an isometry h from a face F1 of Cλ1 to a

face F2 of Cλ2 such that p(x1, λ1) = p(x2, λ2) if and only if x2 = h(x1).

(Note that conditions (4) and (5) imply conditions (1) and (2).)

The basic theorem about an Mκ-polyhedral complex or simplicial complex K is

that if there are only finitely many isometry types of cells in K (referred to as finite

shapes), then intrinsic psuedometric is, in fact, a metric. Moreover, K is a complete

geodesic metric space (Theorem I.7.50 of [BH]).

M0- and M1-polyhedral complexes are often called, respectively, piecewise Eu-

clidean and piecewise spherical cell complexes.

The following is left as an exercise in using the above definitions:

Proposition 4.1. Let K = KΓ be assigned the piecewise Euclidean metric as above.

Then K is a M0-polyhedral complex. Moreover, as the complex is finite, K is compact.

We now recall the definition of the geometric link of a vertex of K. Let Vert(Sλ)

denote the set of vertices of Cλ. Then, by definition, the vertices of K are

Vert(K) :=
⋃
λ∈Λ

qλ(Vert(Cλ)).

Let v be a vertex of K. So, v = qλ(vλ) for some vertex vλ ∈ Cλ, for some λ ∈ Λ.

We say that vλ covers v. Generally, a vertex v may be covered by vertices belonging

to the same cell. However, if K is a simplicial complex, then the vertices which cover

v must belong to different cells. The geometric link of vλ in the polyhedral cell Cλ,
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denoted by Lk(vλ, Cλ), is the set of initial unit tangent vectors of locally geodesic

rays in Cλ ⊂ Mn
κ based at vλ. The geometric link of v in K is then defined to be

Lk(v, K) :=
∐

{vλ covers v}

Lk(vλ, Sλ) / ∼,

where ∼ is equivalence relation generated by the adjacency of cells in K. More

precisely, if t1 and t2 are the initial unit tangent vectors of locally geodesic paths

[v1, x1] ⊂ Cλ1 and [v2, x2] ⊂ Cλ2 which are glued in K, then the tangent vectors are

glued in L.

4.3 The metric on LΓ

Let L = LΓ := Lk(v0, KΓ) be the geometric link of v0 in K. This is naturally a M1-

polyhedral complex. Each cell of the link is given a spherical metric by identifying

the set of unit tangent vectors in Cλ ⊂ Mn
0 at the vertex v with the convex polyhedral

cell described on the unit tangent sphere SvCλ ⊂ SvM
n
0
∼= Mn−1

1 .

We describe the vertices of L. Each 1-cell of K contributes exactly two vertices

to L. Suppose that the the 1-cell C1
λ is oriented from the vertex v1 to v2 and labelled

by the allowable element w. The attaching map qλ maps both vertices to v0 in K.

Thus, Lk(v0, C
1
λ) consists of two vertices—one for the initial tangent vector of the

geodesic path from v1 to v2 and one for the initial tangent vector of the reverse path.

We label the vertex in the link contributed by the path from v1 to v2 by (w, 1); the

other vertex is labelled (w,−1). (Refer to Figure 4.2.) As every vertex of L must

arise in this way, we see that the vertices of L are in bijective correspondence with
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the set Allow(W )× {±1}. Given a vertex (w, ε) of L, we say it has length `(w) and

sign ε.

Remark. The set Allow(W )×{±1} becomes a poset by via the reverse lexicographic

order: (w1, ε1) ≤ (w2, ε2) iff ε1 < ε2 or ε1 = ε2 and w1 ≤ w2. We can use this to label

each cell of L purely in terms of its vertices.

1

v1

v3

v2

w2

w12

w1

12(w    ,  1) 12(w    ,  −1)

(w  ,  1)21(w  ,  −1)

2(w  ,  −1)(w  ,  1)

Figure 4.2: Each vertex contributes a 1-cell in L.

Next, we describe the 1-cells of L. Suppose C2
λ is a 2-cell in K. So, C2

λ is isometric

to a Euclidean triangle and indexed by an allowable expression λ := (w1, w2) of length

2. Let the vertices of C2
λ be v1, v2, and v3, and let the directed edge from vi to vi+1 be

labelled by wi, i = 1, 2. Label the directed edge from v1 to v3 by w12 := w1w2 ∈ W .

The attaching map qλ maps all of the vertices to v0 and maps each directed edge to
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the 1-cell of K with the same label and orientation. Thus, the link of of a 2-cell of

K consists three disjoint arcs:

Lk(v0, qλ(C
2
λ)) =

⊔
i=1,2,3

Lk(vi, C
2
λ).

Notice that the vertices of a 1-cell in L are necessarily related by the reverse

lexicographic ordering on Allow(W ) × {±ε}. Making the convention that vertices

are listed in ascending order, we can list the 1-cells according to their vertex set as

follows:

[(w1, 1), (w12, 1)], [(w1,−1), (w2, 1)], and [(w2,−1), (w12,−1)].

This is a complete list if we range over all ordered pairs (w1, w2) ∈ Expr(W ; 2).

We observe that the following algebraic properties characterize those vertices

which span a 1-cell in L:

Proposition 4.2. Let w1, w2 ∈ Allow(W ). Then,

1. the vertices {(w1, 1), (w2, 1)} or {(w1,−1), (w2,−1)}, span a 1-cell in L if and

only if w1, w2 ∈ Allow(xT ), for some T ∈ S and either w1 < w2 or w2 < w1

2. the vertices {(w1,−1), (w2, 1)} span a 1-cell in L if and only if (w1, w2) ∈

Expr(W ; 2).

We now list all the 1-cells of L up to the length and sign of their vertices. We will

also compute the (spherical) length of each cell.

Notation. Henceforth, we will use the convention that the reflections will be indicated

by the letters p, q, r, s or t. Likewise, the rotations (i.e. elements in W of length two)
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will be indicated by the letters y or z. Lastly, we will reserve the letter x or xT for

elements of length three in W .

Below are the three different oriented, metric 2-cells of K. They correspond to

expressions of the form (r, s), (y, t), and (q, y) in Expr(x; 2). Recall that the lengths

of the edges are 1 for a reflection,
√

2 for a rotation, and
√

3 for and element of

length three. The first triangle is an isoceles right triangle. The angles in the second

two triangles are indicated, where α = arctan (
√

2) and β = arctan (1/
√

2). Thus,

0 < β < π/4 < α < π/2.

β

r
y

s

y = rs

y

t

x

x = ty

x
q

y

x = qy

α

α

β

Figure 4.3: The metric 2-cells of K.

From the left 2-cell, we get the following contributions to the link:

• [(r, 1), (y, 1)] of length π/4; (algebraically: r < y)

• [(r,−1), (s, 1)] of length π/2; (rs = y is a reduced expression)
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• [(s,−1), (y,−1)] of length π/4; (s < y)

The middle 2-cell contributes:

• [(y, 1), (x, 1)] of length β; (y < x)

• [(y,−1), (t, 1)] of length π/2; (yt = x is reduced)

• [(t,−1), (x,−1)] of length α; (t < x)

And the right 2-cell contributes:

• [(q, 1), (x, 1)] of length α; (q < x)

• [(q,−1), (y, 1)] of length π/2; (qy = x is reduced)

• [(y,−1), (x,−1)] of length β; (y < x)

So, we see that if we consider all unordered pairs of vertices { (w, ε), (w′, ε′) } up to

their length and signs { (`(w), ε), (`(w′), ε′) }, we get exactly nine different 1-cells in

L. This list is complete because every 1-cell in L necessarily arises from a link of one

of the three different oriented, metric 2-cells of K as in Figure 4.3 .

We now repeat this analysis for the 2-cells of L. Each 2-cell of L is a simplex.

Each such simplex arises by looking at the link of v0 in a fixed 3-cell of K.

The 3-cells of K are in one to one correspondence with the allowable expressions

of length three. For each allowable expression λ := (r, s, t), we get four 2-cells in

L by considering Lk(v0, qλ(C
3
λ)) =

⊔
i=1,...,4 Lk(vi, C

3
λ). We study the 2-cells of L by

considering the links of each of these vertices in turn as in Figure 4.4.
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v3

r
s

ty

z

v

Figure 4.4: Each vertex of the above 3-cell contributes a 2 cell to the link.

We get the following 2-cells in L (refer to Figure 4.5): The counter-clockwise from

the upper left corner, these are, respectively, the links of v1, v3, v4, and v2. They are

illustrated in the order shown so as to suggest how the 2-cells will fit together in L.

Two 2-cells are glued along a face if and only if they have the same vertices (labelled

by the same allowable element and sign). In particular, such vertices must have the

same length. We have illustrated the length of a vertex as follows: a reflection is

symbolized by a solid circle, a rotation by an open circle, and a element of length

three by a solid triangle. When needed, we may indicate the sign of the vertex by

adding a ± symbol to the diagram, as in the list to the right.

In the right column, we list the lengths of the edges of these 2-cells. Recall that

β < π/4 < α < π/2. Below each vertex is listed either a + or a − sign. We recover

our complete listing of 1-cells in L (up to length and sign of the vertices) if we change

all the + signs to − signs. Note that the bottom 1-cell does not give rise to a new
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(y,1)

(r,−1)

(s,1)(z,1)

π/2

π/4

(y,−1)

(t,1)

(s,−1)

β

+ +

π/4

+ +

α

+ +

π/2

+ −

π/4

π/3

π/2

π/4 π/2

+ −

(x,1)

(r,1)

π/3

π/4

(x,−1)

(z,−1) (t,−1)

Figure 4.5: The metric 2-cells of L.

1-cell if we change the signs— it is characterized (up to the length and signs of its

vertices) as a pair of vertices of length one with opposite signs.

The 2-cells are spherical triangles. From the spherical law of cosines or by con-

sidering the dihedral angles between the faces of the model polyhedral 3-cell of K,

we can compute their angles. The measures of the angles in each spherical triangle

is indicated to the side of the vertex (in the left column). The unlabelled angles are

understood to be π/2.

We note that we can list the vertices of each 2-cells in ascending order with respect

to the ordering on Allow(W )× {±1}:
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• Lk(v1, C
3) = [(r, 1), (y, 1), (x, 1)]. The vertices are related as follows: r < y < x.

• Lk(v2, C
3) = [(r,−1), (s, 1), (z, 1)]. The vertices satisfy rz = x and s < z.

• Lk(v3, C
3) = [(s,−1), (y,−1), (t, 1)]. The vertices satisfy s < y and yt = x.

• Lk(v4, C
3) = [(t,−1), (z,−1), (x,−1)]. The vertices satisfy t < z < x.

We can characterize the 2-cells in L algebraically according to their vertex set as

follows:

Proposition 4.3. Given vertices {(w1, ε1), . . . , (w3, ε3)}. These vertices span a 2-cell

in L if and only if

1. all the vertices have the same sign and the vertices are totally ordered: wi ≤

wj ≤ wk for some permutation (i, j, k) of (1, 2, 3), or

2. exactly two vertices, wi ≤ wj, are positive and wkwj = xT for some xT ∈

Allow(W ; 3), or

3. exactly two vertices, wi ≤ wj, are negative and wjwk = xT for some xT ∈

Allow(W ; 3).

In each of the last two, the negative vertex right multiplied by the positive vertex gives

an allowable element.

Proposition 4.4. L is an M1-simplicial complex.

Proof. We have seen that every cell of L is a simplex. The simplices are glued

according to the labelling of their vertices. Each simplex injects into L as none of
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the faces of a given simplex have the same vertex set. From the classification of all

such cells, we see that the intersection of two simplices is always another simplex.

Moreover, the metric on each simplex is compatible along the intersection.

We have the following corollary:

Corollary 4.1. Let T ∈ S and let KT be the Brady complex of (WT , T ) together with

the total ordering of S restricted to T . Denote the link of v0 by LT . Then LT is

subcomplex of L; moreover, the inclusion LT → L restricts to an isometry on each

face.
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CHAPTER 5

LOCAL CURVATURE OF LΓ

5.1 Review of CAT(0) spaces and the link condition

Let κ be a real number. Let Dκ := π/κ if κ > 0 and Dκ = ∞ if κ ≤ 0. A metric

space, (X, d), is Dκ-geodesic if every two points x, y ∈ X of distance less than Dκ

may be joined by a geodesic segment [x, y]. Note that we will allow for the possibility

that there are points x, y ∈ X are such that d(x, y) = ∞.

Let Mn
κ denote the unique complete, simply connected, n-dimensional Riemannian

manifold with constant sectional curvature κ. In particular, Mn
1 is the unit sphere,

Mn
0 is Euclidean space, and Mn

−1 is hyperbolic space. These manifolds are Dκ-geodesic

metric spaces with respect to the intrinsic length metric.

Definition. Let (X, d) be a Dκ-geodesic metric space. A triangle ∆ = [x, y]∪ [y, z]∪

[x, z] satisfies the CAT(κ) inequality if for each point p in the arc [y, z], d(x, p) 5

|x̄− p̄|, where x̄ and p̄ are the comparison points on a comparison triangle ∆̄ ⊂ M2
κ .

If every triangle in X of perimeter < 2Dκ satisfies the CAT(κ) inequality, we say that

X is a CAT(κ) space.
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A geodesic metric space (X, d) is said to bee locally CAT(κ) if each point has

a open neighborhood in which all triangles satisfy the CAT(κ) inequality. Locally

CAT(κ) spaces are said to have curvature ≤ κ.

In particular, any finite 1-complex is a locally CAT(1) space if we assign positive

lengths to the edges and consider the intrinsic length metric.

By the comparison theorems of Riemannian geometry, if X is a Riemannian man-

ifold of non-positive sectional curvature and d is the intrinsic length metric, then X

is a locally CAT(0) space. The study of CAT (0) spaces, thus, extends the study

of non-positive curvature to the more general setting of metric spaces. However, we

emphasize that the complexes we are considering are not manifolds.

We will show that the universal covering space of KΓ is a CAT(0) space whenever

Γ defines a three dimensional FC Artin group. So, AΓ
∼= π1(KΓ) will act geometrically

on K̃Γ by deck transformations.

There are two key theorems which allow one to construct piecewise Euclidean cell

complexes which are CAT(0) spaces. The first is the following generalization of the

Cartan-Hadamard Theorem of Riemannian geometry: if X is a complete, connected,

locally CAT(0) space, then the universal cover of X, equipped with the pullback

metric, is (globally) a CAT(0) space. This local to global theorem is, perhaps, the

most remarkable fact about non-positive curvature. In the case of positive curvature

bounded above by a constant, there is an analogous local to global result: if X is a

cocompact, proper, geodesic metric space of curvature ≤ κ which has no isometrically

embedded circle of length < 2Dκ, then X is (globally) CAT(κ).

The second theorem is called the ”Link Condition”. Let X be an Mκ-polyhedral
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complex. If the link of every vertex p ∈ X is a CAT(1) space, then X is locally

CAT(κ).

As both of these theorems are pivotal to the arguments herein, we state them

formally:

Theorem. (Local to Global) A Mκ-polyhedral complex K, with Shapes(K) finite, is

(globally) CAT(κ) if and only if K is locally CAT(κ) and contains no isometrically

embedded circles of length less than 2Dκ. In particular, such a M0-polyhedral complex

is CAT(0) if and only if it is locally CAT(0) and simply connected.

Theorem. (Link Condition) A Mκ-polyhedral complex K, with Shapes(K) finite, is

a locally CAT(κ) space if and only if for every vertex v of K, the geometric link,

Lk(v, K), is CAT(1) space.

We refer the reader to [BH] for proofs of the above theorems, as well for a discus-

sion of a more general class of metric complexes. The condition of Shapes(K) finite

(i.e. K is modelled on finitely many isometry types of cells) is satisfied for both the

complexes KΓ and LΓ. Refer to the appendix for more on Mκ-complexes.

Together, these theorems reduce the question of whether an M0-polyhedral com-

plex is locally CAT(0) to the question of whether the links of the vertices in the

complex are CAT(1). The difficulty is ruling out the existence of isometrically em-

bedded circles of length < 2π in the link. Such loops are defined by closed (local)

geodesics:

Definition. Let X be a geodesic metric space. A path γ : [a, b] → X is a local

geodesic if it is locally an isometric embedding. This path defines a closed local
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geodesic if γ(a) = γ(b) and the induced map from [a, b]/(a ∼ b) → X defines a local

isometric embedding with respect to the quotient metric. A closed local geodesic of

length < 2π will be referred to as a short loop.

We will rule out the existence of short loops in L. In the case of a finite Mκ-

complex X, a path defines a local geodesic if and only if for each a ≤ t ≤ b, the

distance in Lk(γ(t), X) between the incoming and outgoing unit vectors is ≥ π. This

is a practical way to decide if a given path is locally geodesic because such a path

must necessarily “look” like a geodesic in Mn
κ when restricted to an open cell. So,

in practice, we only need to study the links of the finite number of points along the

path which are limit points of more than one open cell.

Remark. When the context is clear, we will think of the path γ : [a, b] → X as a subset

of X. So, for instance, given a subspace Y ⊆ X, we will say that γ “intersects” or

“meets” Y instead of referring to the image of γ. Similarly, we will write γ ∩ Y = ∅,

instead of γ([a, b]) ∩ Y = ∅.

5.2 Outline of the proof of the Main Theorem

Here is an outline of the proof of the Main Theorem. Let Γ define a three dimensional

FC Artin group. Let K = KΓ be its Brady complex. We will show that K is a locally

CAT(0) space. We prove this by verifying the link condition for sole vertex, v0. The

link, LΓ will be shown to be locally CAT(1) by verifying the link condition. Then we

will verify that LΓ does not contain any short loops.
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The rest of the proof is immediate from the link condition and the local to global

properties: First, by the Local to Global theorem, locally CAT(1) and no short loops

implies that LΓ is CAT(1). Next, the Link Condition implies that K is locally CAT(0).

Finally, by the Local to Global theorem, the universal cover of K is (globally) CAT(0).

So, the Artin group, which is isomorphic to π1(K), acts geometrically on the universal

cover of K by deck transformations. Thus, AΓ is a CAT(0) group.

As noted before, the difficulty is to understand the link L. We begin by studying

its local curvature.

5.3 Links of edges

Let L = LΓ be the link of the Brady complex defined by an FC Artin group AΓ of

dimension ≤ 3. . To show that L is locally CAT(1), the link condition tells us to

consider the links of each of the vertices in L. Recall that the vertices of L are of the

form (w, ε) ∈ Allow(W )× {±1}.

Suppose (w, ε) is a vertex in L. Recall that (w, ε) is the initial unit tangent vector

of the locally geodesic path along an edge of K labelled by the allowable element w.

The sign tells us whether or not the unit vector is in the same or opposite direction

of the oriented edge.

Lemma 5.1. Let (w, ε) ∈ L and let Ew be the edge in K labelled by w. Then

Lk((w, ε), L) is isometric to Lk(Ew, K), the geometric link of the edge Ew.

The geometric link of an edge in an M0-complex, K is, by definition, the M1-

complex determined by all initial unit tangent vectors of geodesics in K which are
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orthogonal to the edge. More formally, it is the M1-complex whose cells are defined

as follows: Suppose Cλ is convex polyhedral cell of K which contains an edge Eλ that

is attatched to E. Then there is a (possibly empty) cell, C⊥
λ , of Lk(E, K) which is,

by defintion, the the convex M1-cell determined by the inital unit tangent vectors of

geodesic rays from x ∈ int(Eλ) into Cλ which are perpendicular (in Mn
0 ) to Eλ. Here,

we choose x to be some interior point of Eλ.

All the cells of Lk(E, K) arise in this way. Two such cells C⊥
λ(1) and C⊥

λ(2) are glued

along the common face (Cλ1 ∩Cλ(2))
⊥ whenever Cλ(1) and Cλ(2) are both attached to

the edge E ⊂ K. The metric on Lk(E, K) is defined by the intrinsic pseudometric.

Now for the proof of the lemma:

Proof. Let (w, 1) ∈ L. Let Ew ⊂ K be the edge of K labelled by the allowable element

w. The initial unit tangent vector of a geodesic ray based at v0 that traverses Ew

with the same orientation (ε = 1) defines (w, 1). Choose a point x in the interior Ew

which lies in the initial segment of the geodesic ray. Then the points of Lk(Ew, K)

correspond to initial unit tangent vectors of rays based at x. If x is sufficiently close

to v0, then we may view these vectors as being tangent to the spheres of radius

d(v0, x) at v0 in each cell that attaches to the edge Ew. Dilating the spheres till

they have radius one, we can identify these vectors, these points of Lk(Ew, K), with

the initial unit tangent vectors of geodesics in Lk((w, 1), L) based at (w, 1). This

defines a continuous map Lk(Ew, K) → Lk((w, 1), L). This map is easily seen to

have a continuous inverse by reversing the process— given an initial tangent vector

of a geodesic ray in Lk((w, 1), L), for each cell that attaches to Ew, we can view the
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vector as being tangent to the unit tangent sphere of vertex. Then shrink the unit

tangent sphere till it meets an interior point of the edge attaching to Ew. The scaled

vector, regardless of how much it is scaled, determines the same point in Lk(Ew, K).

To see that this map is an isometry, it suffices to check that corresponding edges

are assigned the same (spherical) length. A pair of adjacent vertices in Lk(Ew, K)

occurs whenever there are two faces F1 and F2 of cell C which are attached at Ew:

F1∩F2 is glued to Ew. The distance in C between these two vertices is defined to be the

dihedral angle between the faces. On the other hand, if we consider the hyperplanes

supported by each Fi (C ⊂ Mn
0 ) and consider their intersection with the appropriate

unit tangent sphere, we can see that the corresponding vertices of Lk((w, 1), L) are

separated by a distance equal to this dihedral angle. Thus, the metrics agree on every

edge, and because these are piecewise spherical simplicial complexes, they metrics

agree on every face. So, the intrinsic psuedometrics are the same; and, hence, the

map is an isometry. The argument for ε = −1 is basically the same. In particular,

we have shown that Lk((w, 1), L) ∼= Lk(Ew, K) ∼= Lk((w,−1), L).

Notation. The link L is a simplicial complex; so, the vertices in Lk((w, ε), L) are

naturally labelled by another vertex in L, i.e. they can be labelled by an element

(w, ε) ∈ Allow(W ) × {±1}. This, in turn, defines a labelling of the vertices in the

link of an edge of K: Given Ew ⊂ K, the label of a vertex of Lk(Ew, K) is chosen to

be the same as the label on the corresponding vertex of Lk((w, 1), K). We illustrate

this in Figure 5.1.
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ε)

[x] = [r][s][t] = [rs][t] = [r][st]

Lk( [s] , K) = 
[x] [s]

[r]

(st,1)(r,−1)

[st]

[t][rs]

base of [s]

length = dihedral angle

vertices labeled by (w,

Figure 5.1: Labeling the vertices in the link of an edge of K.

Now we begin an analysis of the link of an edge Ew. There are three cases

according to the length of w.

Case 1: Let w ∈ Allow(W ) have length one. So, w is a reflection; let r := w.

We can enumerate the vertices of Lk(Er, K) by finding all the two cells which are

attached to Er. These two cells correspond to precisely those allowable expressions

of length two (w1, w2) for which r = w1 or w2. Thus, using the notation as above,

(r, w2) corresponds to the vertex (rw2, 1) ∈ Lk(Er, K) and (w1, r) corresponds to the

vertex (w1,−1) ∈ Lk(Er, K). So

1. (w, 1) ∈ Lk(Er, K) if and only if r < w, and

2. (w,−1) ∈ Lk(Er, K) if and only if wr is allowable.

Similarly, we can enumerate all the edges of Lk(Er, K) by considering all three

cells which are attached to Er. These correspond to allowable expressions (w1, w2, w3)

in which r = wi for some i. As we will be most interested in which edges share a
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common vertex, we will use a more suitable notation. The allowable expression

(w1, w2, w3) is a product of three reflections, one of which is r. Their product is an

allowable element x = xT , for some T ∈ S. To see the general picture, it suffices

to consider three overlapping R-reduced words: x = pqr = qrs = rst. These words

define allowable expressions (p, q, r), etc. The edges in Lk(Er, L) corresponding to

these expressions are listed below. Refer to Figure 5.2. Notice the similarities between

vertices of these edges and the vertices which define 2-cells in L.

length pi/4

x = pqr x = rstx = qrs

r
pq

x

q

(pq,−1) (q,−1) (q,−1) (rs,1) (rs,1) (x,1)

p

r r
q rs rs x

s

tx

s

length pi/4 length pi/2

Figure 5.2: The edges of Lk(Er, L).

1. (r, s, t) corresponds to an edge from (rs, 1) to (rst, 1) in the link of Er, i.e. an

edge from (y, 1) to (x, 1), where r < y < x. This edge has length π/4.
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2. (q, r, s) corresponds to an edge from (q,−1) to (rs, 1) in the link of Er, i.e. an

edge from (q,−1) to (y, 1), where qy = x and r < y. This edge has length π/2.

3. (p, q, r) corresponds to an edge from (pq,−1) to (q,−1) in the link of Er, i.e.

an edge from (xr,−1) to (q,−1), where q < xr. This edge has length π/4.

From this, we observe a simple description of the link of Er in the subcomplex

KT :

Lemma 5.2. Let (W, S) be three dimensional Coxeter system with a total ordering S.

Let T ∈ S have cardinality three. Suppose r < xT . Then Lk(Er, KT ) is isometric to

the spherical suspension {(xT , 1), (xr,−1)} ∗ {p1, . . . , pk}, where each pi corresponds

to a unique allowable rotation y ∈ Allow(xT ; 2) such that r < y.

X ∗ Y denotes the spherical join of two M1-complexes. Refer to [BH] for precise

definitions. When X has just two elements this is called the spherical suspension. The

basic fact is that the spherical join of CAT(1) spaces in CAT(1). So, as a corollary,

we have

Corollary 5.1. Let (W, S) be a three dimensional Coxeter system with a total order-

ing of S and let T ∈ S. Then Lk(Er, KT ) is CAT(1).

Now for the proof of Lemma 5.2:

Proof. The vertices of Lk(Er, KT ) are labelled by elements of Allow(xT ) × {±1}.

There is a unique allowable element of length three, namely x = xT ; and there

is a unique allowable element of length two y such that yr = x, namely y = xr.
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From the list of vertices in Lk(Er, KT ), we conclude that (x, 1) is the only vertex

of length three and (xr,−1) is the only negative vertex of length two. There are no

positive vertices of length one. So, the remaining vertices are of the form (y, 1) where

r < y < x or (q,−1) where qr ∈ Allow(xT ). Given r < y < x, we can write x = rst,

reduced, where y = rs. By shifting, we get a reduced word x = (rstsr)(r)(s);

let q = rstsr = xy−1. So, these these vertices arise in pairs. From the reduced

expressions x = rst = qrs = pqr, where pq = xr, we obtain edges in Lk(Er, KT ) from

(x, 1) to (y, 1) to (q,−1) to (xr,−1). (Refer to the characterization of the edges and

to Figure 5.3. In this figure, we have illustrated an alternate point of view: the link

of the link). On the other hand, these are all the edges. If (w, ε) is adjacent to (x, 1),

then, by the characterization above, r < w < x and ε = 1. A vertex (w, ε) adjacent

to (y, 1), where r < y, must satisfy y < w if ε = 1 and must satisfy wy = x if ε = −1.

So, w is, respectively, x or xy−1. The other two cases are similar.

Now, let py be the midpoint of the edge from (y, 1) to (xy−1,−1). The distance

from py to (x, 1) or to (xr,−1) is exactly π/2. Thus, Lk(Er, KT ) is the spherical

suspension over these points with poles (x, 1) and (xr,−1).

To describe the link of Er in the entire complex K, we consider the intersections

of subcomplexes.
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(y,1)

(xr    ,−1)−1(xy   ,−1)
−1(xr    ,−1)

−1(xy   ,−1)

(x,1)

(y,1)
(r,1)

Lk( (r,1) , L )  = 

(x,1)

−1

Figure 5.3: The link of the link is isometric to the link of the edge.

Lemma 5.3. Let T, T ′ ∈ S be distinct and of cardinality three. Suppose r < xT , xT ′.

Then Lk(Er, KT )∩Lk(Er, KT ) = {(xT∩T ′ , 1), (xT∩T ′r,−1)}. In particular, the inter-

section is empty if |T ∩T ′| < 2. If there are two common points, then they lie distance

π apart in each of the links.

Proof. Suppose (w, 1) belongs to each link. Because xT 6= xT ′ , w has length less than

three. By the characterization of vertices, we see that r < w and w < xT , xT ′ . But

Lemma 2.2 tells us that w = xT∩T ′ . On the other hand, if (w,−1) is a common

vertex, then xT r 6= xT ′r combined with the characterization of vertices, we see that

wr is a rotation and wr < xT , xT ′ . Again, apply Lemma 2.2.

To see that these two common points lie distance π apart in each link, simply

observe that they are not joined by an edge (the product xT∩T ′rxT∩T ′ would have

to equal both xT and xT ′). Thus, the two points lie on different great arcs in the
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suspension. From its description, it is easy to see that they are joined by a geodesic

of length π.

Theorem 5.1. Let (W, S) be a three dimensional FC Coxeter system together with

a total ordering of S. Suppose r ∈ Allow(W ; 1) is an allowable reflection. Then

Lk(Er, K) is CAT(1).

Proof. As Lk(Er, K) is a 1-complex, it suffices to show that it contains no short

loops (length < 2π). Suppose we are given a geodesic loop γ. If γ is contained in a

subcomplex Lk(Er, KT ) for some T ∈ S, then γ is either constant (|T | = 2) or has

length equal to 2π. The first statement is just taking into account the dimension of

the subcomplex; the second statement follows from Corollary 5.1. So, γ must meet

two or more subcomplexes of the form KT , |T | = 3, along a subspace which contains

an edge. The path γ consists of two or more segments which join common vertices. A

segment is, by definition, an edge path which joins two vertices which could possibly

belong to two distinct complexes of the form Lk(Er, KT ) with |T | = 3 and T ∈ S.

A common vertex is, by definition, a vertex which is common to two or more such

subcomplexes. We have already characterized the common vertices. The segments,

on the other hand, have one of the following three forms:

1. an edge path from (y, 1) to (xT , 1) to (y′, 1)

2. an edge (path) from (y, 1) to (xT y−1,−1)

3. an edge path from (xT y−1,−1) to (xT r,−1) to (xT y′−1,−1).
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All of these edge paths have length π/2. So, we only need to rule out loops

consisting of two or three segments. (One segment cannot form a loop— the path

would not be geodesic.)

An edge path of two segments must consist of segments of the same form, and

these segments must lie in a distinct subcomplexes. The first and third are not

possible (use Lemma 2.2— the common vertices would be the same). The second

would not be geodesic— it traverses the same edge twice.

An edge path of three segments must lie in either two or three distinct subcom-

plexes. In the first case, let the complexes be indexed by T and T ′. There are two

common vertices along the path, and each is labelled by an element of WT∩T ′ . The

vertices cannot have the same sign (as before, use Lemma 2.2). Then the negative

vertex right multiplied by the positive vertex defines an allowable element of length

three. This is impossible— the product belongs to WT∩T ′ .

In the second case, there are three spherical subsets, T, T ′, and T ′′, and there

are three common vertices. These subsets intersect pairwise in subsets of cardinality

two (Lemma 5.3). In light of the FC condition and the hypothesis of dimension

three, the link complex must look like three triangles with a common edge. (Refer

to Figure 5.4.) So, |T ∩ T ′ ∩ T ′′| = 2. An edge loop which consists entirely of

segments of the first type or entirely of segments of the second type gives rise to

three common rotations: xT∩T ′ , xT ′∩T ′ , xT∩T ′ . But the indices are all the same. So,

the path cannot be geodesic. And edge loop which uses different segments must join

either two positive and one negative common vertex or two negative and one positive

vertex. In the case of two positive common vertices, they are each labelled by some
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xT (i)∩T (j); but |T ∩ T ′ ∩ T ′′| = 2, so they are the same. So, the path is not geodesic.

In the other case, the vertices are labelled by elements of the form xT (i)∩T (j)r. Again,

they are the same, and the path cannot be geodesic.

Thus, every edge loop must consist of at least four segments, i.e. every closed

geodesic has length ≥ 2π. So, by the Local to Global theorem, Lk(Er, K) is CAT(1).

Remark. Observe that if we omit the FC condition, the K, with its given metric, need

not be locally CAT(0). For instance, let WΓ be defined by a link complex Γ which is

the boundary of a three simplex. There is a short loop of length 3π/2 in Lk(Er, K)

which consists of segments of the first form.

Case 2: Now we turn to the second type of edge in K, where Ew is labelled by

an allowable rotation. Here, the situation is much simpler. We write y := w. As

before, we characterize the vertices and edges in the complex Lk(Ey, K). Each vertex

corresponds to a 2-cell labelled by an allowable expression (w1, w2) which is attached

to Ey. Thus, y = w1, w2, or w1w2. The 2-cell labelled by (y, w2) contributes the

vertex (yw2, 1) ∈ Lk(Ey, K). Similarly, (w1, y) contributes (w1,−1), and (w1, w2),

where y = w1w2 contributes (w1, 1). So, the vertices fall into exactly one of the

following categories:

1. (x, 1) ∈ Lk(Ey, K) if and only if y < x,

2. (q,−1) ∈ Lk(Ey, K) if and only if qy ∈ Allow(W ; 3).

3. (r, 1) ∈ LK if and only if r < y.
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As usual, the letters q, r, s, and t represent reflections and x represents an allowable

element of length three (Coxeter element for some T ∈ S such that |T | = 3).

Edges correspond to allowable expressions (w1, w2, w3) of length three for which

y = w1w2 or y = w2w3. As before, we use a more suggestive notation to enumerate

the edges. It suffices to consider two R-reduced expressions of length three: x =

qrs = rst, where y = rs. The lengths of the edges are determined by the dihedral

angles between faces. The corresponding 3-cells in K give rise to the following edges

in Lk(Er, K)

1. A reduced expression x = qrs = qy corresponds to an edge from (q,−1) to

(r, 1), i.e. and edge from (xy−1,−1) to (r, 1) where r < y < x. This edge has

length π/2.

2. A reduced expression x = rst = yt corresponds to an edge from (r, 1) to (x, 1),

where r < y < x. This edge has length π/2.

Lemma 5.4. Let (W, S) be a three dimensional Coxeter system with a total ordering

of S. Let T ∈ S have cardinality three. Suppose y < xT is an allowable rotation. Then

Lk(Ey, KT ) is isometric to the spherical suspension {(xT , 1), (xT y−1,−1)} ∗ {(r, 1) :

r < y}. Thus, Lk(Ey, KT ) is CAT(1).

Proof. (w, 1) ∈ Lk(Ey, KT ) if and only if w < y or y < w. Only w = xT satisfies

the second condition, and only reflections w = r < y satisfies the first. (w,−1) ∈

Lk(Ey, KT ) if and only if (w, y) is an allowable expression of length three if and only

if w = xT y−1; so this vertex is unique. We have already enumerated all the edges
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between such vertices: there is an edge of length π/2 from (xT , 1) to each (r, 1) such

that r < y and there is an edge of length π/2 from each (r, 1) to (xT y−1 because

r < y < x. Thus, we have described Lk(Ey, KT ) as a spherical suspension with poles

(xT , 1) and (xT y−1,−1). It is the suspension of two CAT(1) spaces (discrete sets); so

it is CAT(1).

The singular points in Lk(Ey, K) are easy to describe:

Lemma 5.5. Let (W, S) be a three dimensional Coxeter system together with a total

ordering of S. Let T, T ′ ∈ S be distinct and of cardinality three. Suppose y < xT , xT ′.

Then Lk(Ey, KT ) ∩ Lk(Ey, KT ′) = {(r, 1) : r < y} = RT∩T ′. These common points

lie distance π apart in each of the links.

Proof. As xT 6= xT ′ , the common vertices must have the form (r, 1) where r < y.

These points lie at the equator of the suspensions; thus, two such points are always

distance π apart. In fact, by Lemma 2.2, we have that y = xT∩T”. Every reflection

in RT∩T ′ is y-allowable.

Theorem 5.2. Let (W, S) be a three dimensional Coxeter system together with a

total ordering of S. Suppose y ∈ Allow(W ; 2) is an allowable rotation. If y is a

maximal element ( @ w ∈ Allow(W ) such that w > y), then Lk(Ey, K) is the discrete

set {(r, 1) : r < y} and y = xT for some T ∈ S of cardinality two. If y is not a

maximal element, then Lk(Ey, K) ∼= {(xT , 1), (xT y−1,−1) : y < xT}∗{(r, 1) : r < y}.

In either case, Lk(Ey, K) is CAT(1).

Proof. The case of y maximal is obvious from the characterization of vertices. A dis-

crete space is CAT(1). If y is not maximal, then there are subcomplexes Lk(Ey, KT )
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such that y < xT . The union of these subcomplexes is Lk(Ey, K). Their common

intersection is precisely the set {r < y : r ∈ RT}. The description of Lk(Ey, K) as a

spherical suspension follows. In particular, the complex is CAT(1).

Remark. We have shown that if y is not maximal, then Lk(Ey, K) has diameter π.

That is, every pair of points in the complex lie distance ≤ π apart. This follows from

the fact that the complex is a spherical suspension. If y is maximal, then Lk(Ey, K)

is discrete. This will be useful later on for describing the paths in L which are locally

geodesic at the vertex (y, ε) ∈ L.

T(j)T(i) T(i) T(i) T(i)T(j) T(j) T(j)

Figure 5.4: How three (maximal) spherical subsets can define a three dimensional FC
Artin group.

Case 3: Finally, consider the third type of edge in K, where Ew is labelled by an

allowable element of length three, i.e. w = xT for some spherical subset of cardinality

three. Let x := xT . The vertices of Lk(Ex, K) correspond to allowable expression of

length two (w1, w2) such that w1w2 = x. So, the vertices have the form (w1, 1), where

w1 < x. These vertices are labelled by either a reflection r < x or a rotation y < x.
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There is an edge from (r, 1) to (y, 1) if and only if r < y < x; the length of this edge

is π/3. Observe that Lk(Ex, K) = Lk(Ex, KT ).

Theorem 5.3. Let (W, S) define a three dimensional FC Coxeter system together

with a total ordering of S. Let x = xT ∈ Allow(W ; 3). Then Lk(Ex, K) is CAT(1).

Proof. As the link is equal to the subcomplex Lk(Ex, KT ), the argument is identical

to T. Brady’s argument in [Br1]. Brady’s observation is that the complex is bipartite

graph all of whose edges have length π/3. So, it suffices to eliminate short loops which

are made up of two or four edges. A loop of two edges would not be geodesic. A loop

of four edges corresponds to the algebraic problem r, q < y, z < x. The reflections,

r and q, and the rotations, y and z, belong to the finite three generator Coxeter

group WT . Considering geometric representation σ : WT → O(R3), we see that the

intersection of the hyperplanes corresponding to r and q is the axis of rotation for

both y and z. There is only one such allowable rotation; so y = z and the path is not

geodesic. Thus, every loop is made up of at least six edges, and, hence, has length

≥ 2π.

Thus, we have verified that the link of each edge in K is a CAT(1) space. By

Lemma 5.1 and the Link Condition, we conclude that

Theorem 5.4. Suppose Γ defines a three dimensional FC Artin group together with

a total ordering of the generating set. Then LΓ is locally CAT(1).

The remainder of the paper is dedicated to proving that LΓ is globally CAT(1)

whenever Γ defines a three dimensional FC Artin group. First, we show that there
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do not exist short loops inside the 1-skeleton of L. Next, we will show that if γ is

an isometrically embedded loop of minimal length in L, then it can be “rotated”,

preserving it’s length, into the 1-skeleton of L. Thus, the analysis of the 1-skeleton

of L is sufficient to rule out all short loops that might occur in L.

5.4 Basic gluing of CAT(1) spaces

Recall that a subspace Y of a geodesic metric space (X, d) is r-convex if every pair

of points x, y ∈ Y ⊂ X such that d(x, y) < r may be joined by a geodesic segment,

and, moreover, every such segment lies in Y .

Theorem. (Basic Gluing of CAT(1) Spaces) Let X1 and X2 be CAT(1) spaces and

let Y be a complete metric space. Suppose we are given π-convex subspaces Ai ⊂ Xi

and isometries φi : Y → Yi ⊂ Xi for i = 1, 2. Then the space obtained by gluing X1

and X2 along Y , denoted by X := X1 tY X2, is CAT(1).

The proof may be found in [BH]. The idea is to use Aleksandrov’s Lemma.

Basically, the lemma says that if two triangles satisfy the CAT(1) inequality, then so

does the triangle obtained gluing the two given triangles together along an isometric

edge. Then one gives sufficient hypotheses to guarantee that every triangle in X of

perimeter < 2π may be decomposed into two triangles which each lie in either X1 or

X2.

By applying the basic gluing lemma, we will prove that LΓ is CAT(1) whenever the

Coxeter graph Γ is sufficiently simple. For such a Coxeter graph, it will be relatively
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easy to decide that the subcomplexes Yi are π-convex. More precisely, successive

application of either of the following two lemmas will apply:

Lemma 5.6. Let Xi be CAT(1) and let Yi ⊂ Xi, i = 1, 2. Assume that Y1 and Y2

are finite discrete sets of the same cardinality. If every pair of points x, y ∈ Yi are

distance ≥ π apart in Xi, then Basic Gluing applies to X1 tY1=Y2 X2.

Proof. Each Yi is trivially a π-convex subspace of Xi. The proof of the Basic Gluing

Lemma is based on Aleksandrov’s lemma that says that if two triangles sharing a

common edge satisfy the CAT(κ) inequality, then so does the bigger triangle. The

only debate is whether a triangle which meets both X1 and X2 satisfies the CAT(1)

inequality. Usually, one proceeds by decomposing such a triangle into two smaller

triangles which, individually, lie entirely in X1 or X2, but which share a common

edge in the identified subspaces Y1 ∼ Y2. But, as every pair of points in each Yi are

distance ≥ π apart, any such triangle already has perimeter ≥ 2π.

Lemma 5.7. Let Y and X1 be connected CAT(1) spaces. Suppose we are given a

continuous bijection φ1 : Y → Y1 ⊂ X1 which takes local geodesics to local geodesics.

If Y has diameter ≤ π then φ1 is an isometry and Y1 is a π-convex subspace of X1.

Proof. Let x, y ∈ Y . Let λ parameterize a geodesic segment from x to y. Then φ ◦ λ

parameterizes a locally geodesic segment in X of length ≤ π. As X is CAT(1), this

segment is, in fact, a geodesic. Hence, φ is an isometry. So, every pair of points in

Y1 may be joined by a geodesic which lies in Y1. As geodesics in a CAT(1) space of

length < π are unique, every geodesic, which joins a pair of points in Y1 which are
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distance < π apart in X1, is contained in Y1. Hence, Y1 is a π-convex subspace of

X1.

5.5 Simple three dimensional FC Artin systems

We will prove that if Γ is sufficiently simple, then LΓ is CAT(1). We begin by recalling

what is known about the (global) curvature of LT , the link of the Brady complex KT

associated to a spherical Coxeter group WT .

Theorem. (T. Brady, J. McCammond) If (WT , T ) defines a spherical Coxeter group

with one, two, or three generators, then LT is CAT(1).

The one generator case is trivial, the two generator case was studied by T. Brady

and J. McCammond in [BM], and the three generator case is the subject of T. Brady’s

article [Br1]. Each link decomposes as a spherical suspension:

If |T | = 2, then LT
∼= { (y, 1), (y,−1) } ∗ { pr : r < y }, where y = xT . Thus,

LT is CAT(1). The point pr is the midpoint of the edge [(yr,−1), (r, 1)]. The lon-

gitudinal arcs in the suspension are the union of three edges: [(y,−1), (yr,−1)] ∪

[(yr,−1), (r, 1)] ∪ [(r, 1), (y, 1)]. In particular, LT has diameter π.

If |T | = 3, then LT
∼= {(x, 1), (x − 1)} ∗ Lk(Ex, KT ), where x = xT . Thus, LT is

CAT(1).

Now, consider the intersection of such subcomplexes in L:

Lemma 5.8. Let (W, S) be a Coxeter system of dimension ≤ 3. Suppose T, T ′ ∈ S

are distinct and T∩T ′ 6= ∅. Then the vertices common to LT and LT ′ are the elements

of Allow(xT∩T ′ × {±1}.
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Proof. Suppose (w, ε) is a vertex of LT and LT ′ . Then w ≤ xT , xT ′ . If `(w) = |T ∩T ′|,

then, by Lemma 2.2, w = xT∩T ′ . Otherwise, `(w) < |T ∩ T ′| ≤ 2; so w is a reflection

in RT ∩RT ′ = RT∩T ′ . Every such reflection is xT∩T ′-allowable.

Lemma 5.9. Let (W, S) be a Coxeter system of dimension ≤ 3. Suppose T, T ′ ∈ S

are distinct and |T ∩ T ′| = 2. Then the edges common to LT and LT ′ are precisely

the edges of LT∩T ′. If |T ∩ T ′| < 2, then there are no common edges.

Proof. The second statement is just a dimension count. For the first statement, we

only need to show that there are no more edges than those in LT∩T ′ . If there is an

edge [(w, ε), (w′, ε)] in common, then w,w′ ≤ xT∩T ′ . So, each is either a reflection in

RT∩T ′ or equal to xT∩T ′ . Let y := xT∩T ′ . According to the characterization of edges,

there are, naively, five possible types:

(r,−1), (y,−1)], [(r,−1), (q, 1)], [(r, 1), (y, 1)], [(y,−1), (q, 1)], [(r,−1), (y, 1)],

where r, q ≤ y. The first three (left to right) necessarily lie in LT∩T ′ and the final two

are not possible. (The product of the negative multiplied on the right by the positive

defines an allowable element of length three; but the product belongs to WT∩T ′ .)

Combining the above two lemmas, we conclude that the subcomplex LT ∩ LT ′ ,

with its intrinsic metric, is isometric to LT∩T ′ .

Lemma 5.10. Let (W, S) be an FC Coxeter system of dimesion ≤ 3. Totally order

S, and let K be the Brady complex and L its link. Let T ∈ S and let LT be the link

of KT . Assume that L is CAT(1).
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1. If |T | = 1, then LT is a finite discrete set and every pair of points x, y ∈ LT ⊂ L

are distance ≥ π apart.

2. If |T | = 2, then LT has diameter ≤ π and the inclusion LT → L takes local

geodesics to local geodesics.

The two cases in the Lemma 5.10 correspond to the two cases where we can apply

basic gluing (Lemmas 5.6 and 5.7). At first glance, Lemma 5.10 is only applicable in

the base cases where (W, S) is a spherical Coxeter system of three or fewer generators;

for, only in these, cases do we know that the links are CAT(1). But, given two such

links, LT1 and LT2 with |T1 ∩ T2| = 1 or 2, we can apply Basic Gluing along the sub-

complex LT1∩T2 . Thus, we deduce that LT1∪T2 is CAT(1). This process can continue,

but only if we glue along a common spherical subset with one or two generators. In

terms of link complexes, if we know that LΓ1 and LΓ2 are CAT(1) and Γ1 ∩ Γ2 is

a single vertex or a single edge, then we can deduce that LΓ1∪Γ2 is CAT(1). The

link complex of an arbitrary three dimensional FC Artin group cannot be so easily

described; for instance, the link complex might be the cone on a loop with four or

more edges. But this method will be sufficient to detect all short loops in L.

Definition. Let (W, S) be a Coxeter system. We say that T ∈ S is a maximal

spherical subset if it is not a proper subset of any T ′ ∈ S. A subcomplex indexed by

a maximal spherical subset is called a maximal subcomplex. This descriptor may be

applied to the complexes LT or Lk(Ew, KT ).

Proof. (of Lemma 5.10) Let L be the link of the Brady complex of an FC Coxeter

system (W, S) of dimension ≤ 3. Let T ∈ S have a single element: T = {r}. Then,
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LT = {(r, 1), (r,−1)}. We need to show that these points lie distance ≥ π apart

from one another inside L. As we are assuming that L is CAT(1) and as every local

geodesic of length ≤ π is a (global) geodesic, it suffices to find a locally geodesic

segment from (r, 1) to (r,−1). If T is maximal, then (r, 1) and (r,−1) are connected

components of L, and, so, they lie distance ≥ π apart. Suppose T ⊂ T ′ = {r, s}. Let

y := xT ′ .

If T ′ is maximal, then the connected component of LT ′ is a 1-complex. Every

path along the edges which does not double back on itself is a local geodesic. We find

a path γ consisting of the following adjacent edges:

[(r, 1), (y, 1)] ∪ [(ry, 1), (y, 1)] ∪ [(r,−1), (ry, 1)].

This path has length π/4+π/4+π/2 = π. Note that as r < y, `(ry). (Either y = rs

or y = sr according to the total order; thus, ry = s or ry = rsr.)

If T ′ is not maximal, then we consider T ′′ = {r, s, t}. The connected component of

LT ′′ is a piecewise spherical 2-complex. In fact, the same path above remains locally

geodesic. We only need to verify that the path γ is locally geodesic at vertices (y, 1)

and (ry, 1). We appeal to our analysis of the links Lk((y, 1), L) ∼= Lk(Ey, K) and

Lk((ry, 1), L) ∼= Lk(Ery, K):

There is a (locally geodesic) path in Lk(Ey, K) of length π which joins (r, 1) to

(ry, 1). As Lk(Ey, K) is CAT(1), this path is a geodesic. Thus, the distance between

(r, 1) and (ry, 1) is equal to π. Thus, γ is locally geodesic at (y, 1).

Likewise, there is a locally geodesic path in Lk(Ery, K) of length π which joins

(y, 1) to (r,−1). As Lk(Ery, 1) is CAT(1), this path is a geodesic. Thus, the distance
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between (y, 1) and (r,−1) is equal to π. Thus, γ is locally geodesic at (ry, 1). We

conclude that γ is a geodesic in L; and, hence, (r, 1) and (r,−1) are distance π apart

in L.

Now suppose that T ∈ S has two elements: T = {r, s}. As we have already

remarked above, LT has diameter π. To show that the inclusion LT → L takes local

geodesics to local geodesics, it suffices to compute distances in the links of the link or,

equivalently, in the links of the edges. Let (w, ε) be a vertex of LT . We want to show

that if (w′, ε′) and (w′′, ε′′) are vertices adjacent to (w, ε) in LT , then the distance

between (w′, ε′) and (w′′, ε′′) in Lk(Ew, K) is equal to π. As Lk(Ew, K) is CAT(1), it

suffices to find a locally geodesic path from (w′, ε′) to (w′′, ε′′) of length π. There are

several cases, but the computations are straightforward.

Definition. Let Γ define a three dimensional FC Artin group AΓ together with a

total ordering of the generating set S. We say that Γ is simple if there are at most

three maximal spherical subsets in S.

Theorem 5.5. Let Γ define an FC Artin group of dimension ≤ 3. If Γ is simple,

then LΓ is CAT(1).

Proof. Let T1, . . . , Tk be the maximal spherical subsets. As Γ is simple, k ≤ 3. Each

maximal spherical subset defines a top dimensional simplex in Γ. As Γ has dimension

≤ 2, these subsets define either a vertex, an edge, or a 2-simplex. If every simplex is

a vertex, then L is discrete and, hence, trivially CAT(1). Suppose that Γ has least

one simplex of dimension > 0 and assume that Γ is connected. We observe that

LΓ =
⋃

LTi
. Moreover, LΓ may be constructed by gluing (in some order) the Ti’s so
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that each gluing occurs along either a single vertex or a single edge. This follows from

the FC hypothesis. Refer to Figure 5.4 to visualize all such possibilities. There are

at most two such stages of gluing, and at each stage, the pieces which are glued are

of the form LTi
or LTi∪Tj

. These are glued along intersections of the form LTi∩Tj
or

LT1∩T2∩T3 . The links arise from Coxeter systems of dimension ≤ 3 with at most two

maximal spherical subsets. The intersections arise from spherical Coxter groups with

one or two generators. Thus, we may apply Lemma 5.10 at each stage of the gluing.

The resulting complex, namely LΓ, is CAT(1). If Γ has more than one connected

component, then the links of these components are disjoint in LΓ. A disjoint union

of CAT(1) spaces is obviously CAT(1).

5.6 Subcomplexes of CAT(1) M1-simplical complexes

Lemma 5.11. If L and L′ are M1-simplicial complexes and L′ ⊂ L is a subcomplex,

then every closed geodesic γ : S1 → L such that γ(S1) ⊂ L′ defines a closed geodesic

in L′ with respect to its intrinsic metric. Therefore, if L′ is CAT(1) with respect to

its intrinsic metric, then γ has length ≥ 2π.

Proof. A path in L′ ⊂ L which minimizes the distance in L between points in its

image clearly minimizes the distance between these points in L′. Thus, a geodesic

in L with image in L′ defines a geodesic in L′. In particular, if L′ is CAT(1) with

respect to its intrinsic metric, then the length of this geodesic must be ≥ 2π.
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We will use this lemma to rule out the existence of short loops in LΓ. Apply-

ing Lemma 5.11 in conjuction with Theorem 5.5, we see that no short loop can be

contained in any subcomplex LΓ′ ⊂ LΓ such that Γ′ is simple.
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CHAPTER 6

GLOBAL CURVATURE OF LΓ

6.1 Locally Geodesic Edge Loops in LΓ

By a locally geodesic edge loop, we mean the image of a locally isometrically embedded

loop which lies entirely in the 1-skeleton of L. We begin by proving that certain certain

edge paths in L(1) are not locally geodesic.

Recall that a path γ : (a, b) → L is locally geodesic at γ(t0), a < t0 < b, if

and only if the distance between −γ′(t0) and γ′(t0) is greater than or equal to π in

Lk(γ(t0), L). Here −γ denotes the reverse path, and γ′(t0) denotes the unit tangent

vector at t = t0.

Lemma 6.1. A locally geodesic edge path in L cannot contain a subpath of the form

xT (1) → y1 → xT (2) → y2 → xT (3).

The signs of the vertices of this path are all the same; strictly speaking, we mean

(xT (1), ε), etc. In the proof, we assume that all the vertices have positive sign. Thus,

we have only labelled the vertices by their allowable element. The argument for the

case where the vertices have a negative sign is essentially the same. As usual, the

letter x denotes an allowable element of length three and the letter y denotes an

allowable element of length two (rotation).
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Proof. For this path to be locally geodesic we must have that xT (1) 6= xT (2) and

xT (2) 6= xT (3). We do not exclude T1 = T3. (L is a simplicial complex. There are

unique edges joining these vertices; and, clearly, a local geodesic cannot “double back”

along an edge just traversed.) Using the same reasoning, we see that y1 and y2 must

be distinct. By Lemma 2.2, y1 = xT (1)∩T (2) and y2 = xT (2)∩T (3).

Suppose that T (2) = {a ≺ b ≺ c} and xT (2) = abc. Then each yi must be one of

ab, bc or ac. These fit together to make the following 2-cell in LT (2):

(x,1)

(ab,1) (b,1)(a,1)

(c,1)

(ac,1) (bc,1)

Figure 6.1: The 2-cells of L form an all-right spherical triangle.

y1 and y2 must be different allowable rotations of length two from among ab, bc, and

ac. Regardless of which particular rotations they are in WT2 , the path y1 → xT (2) → y2

makes an angle of 2π/3 at xT (2); and so, this path is not locally geodesic. So, this

configuration cannot appear as a subpath of a locally geodesic edge path in L.
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We seek a list of all potentially short edge loops in L. As in the analysis of the

links of edges in K, we consider locally geodesic edge paths which join vertices in

common to the subcomplexes LT and LT ′ , where T, T ′ ∈ S. (Refer to Lemmas 5.8

and 5.9.) We can refine the search by using the following observation:

Lemma 6.2. Let L = LΓ where Γ defines a three dimensional Coxeter system together

with a total ordering of its generating set. Suppose γ is a local geodesic in L which

passes through a vertex (y, ε), where y is an allowable rotation. Then either y is not

contained in any WT with T ∈ S and |T | = 3, or the distance between incoming and

outgoing unit tangent vectors is equal to π.

Proof. This is just a restatement of the observation that Lk(Ey, K) is a suspension.

The link has diameter π or is discrete (Theorem 5.2).

In particular, Lemma 6.2 implies that every local geodesic in L which extends

an edge from (w, ε) to (y, ε′) (and through this vertex) must first traverse another

edge in L. Moreover, if w is a reflection and ε = ε′, then the other edge lies in the

same subcomplex, LT , which contained the initial edge. (See Figure (insert picture).)

In particular, an edge path of the form [(r, ε), (y, ε)] ∪ [(r′, ε), (y, ε)] stays within any

subcomplex LT , where y ≤ xT . Thus, in some sense, the vertices in L of length two

are not “singular”.

Remark. There are several different ways to extend a path geodesically through a

vertex (r, ε) of length one or a vertex (x, ε) of length three; for, the links Lk(Er, K)

and Lk(Ex, K) do not have diameter π. These vertices will be called singular vertices.
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By a segment in L, we mean one of the geodesic edge paths appearing in Figure

6.2. Refer to the explanation below.

+

π/4

+ +

π/4

+

β

+ +

β

+

π/2

+ −

π/2

+ −

α

+

α

+ +

β

+

α

+

Figure 6.2: The six segments in L(1).

The black squares denote vertices of length one (reflections), the white squares

denote vertices of length two (rotations), and the white triangles denote vertices of

length three. We have displayed the sign of the vertices. Four of the segments have

vertices with the same sign; two have vertices of opposite sign. These polarities may

be reversed, changing all positive signs to negative signs.

The lengths of the segments in the left column are (from top to bottom) 2β, 2α,

and π/2. The lengths of every segment in the right column is π/2. Note that α+β =

π/2. It is also helpful to keep in mind the following estimates: β < π/4 < α < π/2,

4β > π/2, and α + β = π/2.

Proposition 6.1. Every locally geodesic edge loop in L can be decomposed into seg-

ments which meet only at vertices.
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Proof. Every possible sequence of two adjacent edges can be formed by using the list

of segments except for the following two:

1. •−◦−4 ; e.g. [(r, 1), (y, 1)]∪[(y, 1), (x, 1)]. All the vertices in this configuration

have the same sign. The two edges make a right angle at the center vertex. This

is due to the fact that the path belongs to the boundary of a 2-cell in L.

2. • − ◦ − −• ; e.g. [(r, 1), (y, 1)] ∪ [(q,−1), (y, 1)]. The two ends have opposite

signs; the double dash denotes an edge of length π/2. The two edges make a

right angle at the center vertex. This is due to the fact that the edges belong

to the boundary of a 2-cell.

So, neither of these paths is locally geodesic.

We now try to list all locally geodesic edge loops which have length < 2π. Observe

that each segment in Figure 6.2 which contains a vertex x of length three is entirely

contained in the subcomplex LT , where x = xT . Similarly, the segment •−◦−• where

the middle vertex is the allowable rotation y, is entirely contained in the subcomplex

LT (y), where T (y) is the smallest spherical subset T ∈ S such that y ∈ WT . Finally,

the remaining two segments are labelled by vertices of opposite sign. Suppose the

negative vertex is labelled by the allowable element w1, and the positive vertex is

labelled by the allowable element w2. Then w := w1w2 is allowable and the segment

is contained in the subcomplex LT (w). Thus, given a locally geodesic edge loop γ, we

can study the subcomplexes it meets along (at least) an edge by decomposing it into

segments.
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Applying Lemma 5.11 in conjuction with Theorem 5.5, we observe that γ cannot

be a short loop in L unless it consists of at least four segments. If there are three

or fewer segments, then the Artin system defined by the union of the subsets T

corresponding to the segments would define a simple Artin system. So, this leaves

only geodesic edge loops consisting of four or more segements. Considering their

lengths, at least on one of the segments must be of the form ◦−N−◦. A path three

or more of these segements is forbidden by Lemma 6.1. |T | = 3, T ∈ S. So, in fact,

every short loop can contain at most four segments.

But now consider what happens along the path γ at the end vertices of ◦−N−◦.

Suppose the middle vertex of length three is labelled by xT and the end vertices are

labelled by y1 and y2. At each end vertex, (yi, ε), either the next segment of the path

lies in the same maximal subcomplex LT or it lies in a distinct maximal subcomplex

LT ′ , where T ′ ∈ S and |T ′| = 3. In the first case, γ is contained in a subcomplex

involving three or fewer maximal subcomplexes; So, by Lemma 5.11 and Theorem

5.5, γ would have length ≥ 2π. In the second case, we may assume that both y1 and

y2 belong to maximal subcomplexes distinct from LT . But, then we can apply the

arguments of Lemma 6.1: the vertices (y1, ε), (y2, ε), and (xT , ε) belong to a 2-cell as

in Figure 6.1. Thus, such a path can not be locally geodesic at the vertex (xT , ε).

This completes the proof of the following theorem:

Theorem 6.1. Let Γ define a three dimensional FC Artin system together with a

total ordering of the generating set. Let LΓ be the link of Brady’s complex KΓ. Then

LΓ does not contain any short loops in its 1-skeleton.
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6.2 Developing galleries onto the sphere

The following definitions are due to M. Elder and J. McCammond [EM] and [EM2].

Definition. Let γ : [a, b] → X define a local geodesic in an M1-simplicial complex

X. Let (σ1, . . . , σk) be the sequence of closed simplices σ ⊂ X such that σ̊ ∩ γ 6= ∅

(if σ is a vertex, then we define σ̊ = σ). These simplices are ordered according to the

order in which γ meets each one. Let G(γ) denote the M1-simplicial complex defined

by gluing σi to σj if σi is a proper face of σj and j = i−1 or i+1, where 1 ≤ i, j ≤ k.

This complex is called the linear gallery determined by γ.

If γ defines a closed local geodesic, then we give the sequence of closed simplices

(σ1, . . . , σk) a cyclic ordering and define an M1-complex as before but allow the first

and last cells to be glued along their common face. Such a gallery is called a circular

gallery.

To each circular gallery G there is an associated linear gallery G′ obtained by

“cutting open G along σi”. Consider the cyclically ordered sequence of closed cells,

(σ1, . . . , σk). Choose a fixed σi, and consider the sequence (σi, . . . , σk, σ1, . . . , σi−1, σi).

We define G′ to be the linear gallery defined by this sequence.

For each gallery G, there is a unique locally geodesic path (or loop) defined by

gluing the restrictions of γ to each closed cell. This path is called the lift of γ.

Theorem 6.2. (M. Elder, J. McCammond) Let γ be a local geodesic path (or loop) in

a 2-dimensional M1-complex X. Then the interior of the linear (or circular) gallery

γ immerses into X and retracts onto the lift of γ.

The proof can be found in [EM2].
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We want to measure the length of a closed local geodesic γ in the link L by

developing the it onto the unit sphere M2
1 . In fact, we develop the entire gallery

determined by γ onto M2
1 :

Definition. (Developing a circular gallery onto the sphere) Let γ : [0, h] → L define

a closed local geodesic. Choose a parametrization so that γ(0) belongs to an edge

or vertex of L. Let G be the gallery determined by γ. Let G′ be the linear gallery

obtained by cutting open G along the closed cell containing γ(0) in its interior. Let γ̂

denote the lift of γ. Fix a point p (pole) in the unit sphere and fix an oriented great

arc from p to the antipodal point −p. Let φ : G′ → M2
1 be defined by mapping γ̂(0)

onto the midpoint of the oriented great arc. If we insist that the image of the γ̂ define

a local geodesic which makes an (oriented) angle of 90 degrees with the oriented great

arc, then the map φ is uniquely determined. φ is called a developing map. We say

that φ develops G onto the sphere.

The key fact about a the developing map is that, by construction, the lift of γ is

mapped to a great arc (or circle) on the unit sphere. In particular, if φ(γ̂) meets any

other great arc in two points, then γ must have length ≥ π.

Local geodesics in L develop in a very special way onto the 2-sphere. Let S2 denote

the unit 2-sphere, M2
1 , together with the following simplicial structrure: First divide

the sphere into eight spherical triangles by intersecting with the usual coordinate

planes. Each of these triangles is a spherical triangle with all lengths and angles

measuring 2π. Such a triangle is called an all-right triangle. Then, secondly, take the
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barycentric subdivision of this complex. The resulting M1-simplicial complex has 48

spherical triangles is denoted by S2.

(z,1)

���
�

���
�

���
�

���
�

��	
	

(r,−1)

(s,1) (y,1)

(x,1)

Figure 6.3: A top view of the simplicial complex S2. To the right are shown the two
types of spherical 2-simplices which occur in L. Each simplex is isometric
to a subcomplex of S2

Each of the 48 spherical triangles is isometric to the 2-cell of L with edge lengths

β, π/4, and α. Such 2-cells are labelled by allowable elements satisfying r < y < x.
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The other 2-cells of L are isometric to subcomplexes of S2. The 2-cells with edge

lengths π/4, π/2, π/2 are isometric to one half of an all-right triangle. Such a 2-cell

is isometric to a subcomplex consisting of three adjacent 2-simplices in S2. Refer to

Figure 6.3.

Recall that the vertices of L of length one or three are called singular vertices.

The link of these vertices in L have diameter > π.

Proposition 6.2. Let Γ define a three dimensional FC Artin system together with a

total ordering of the generating set, and let L = LΓ be the link of Brady’s complex KΓ.

Suppose γ : [0, h] → L is a local geodesic. Assume that either γ does not meet any

singular vertices or that such vertices only occur at its endpoints. Then γ determines

a gallery which develops onto a subcomplex of S2.

Proof. Let G be the gallery determined by γ. If γ is closed, then let G′ be the linear

gallery obtained by cutting open G along the closed cell containing γ(0) in its interior.

Choose a point p (pole) in S2 and an oriented great arc from p to the antipodal point

−p so that the initial cell of the gallery maps to a simplex. We may adjust the choice

of pole and oriented arc so that the first top dimensional cell crossed by γ develops

onto an isometric simplex in S2. (The dimensions of the cells in G alternate going up

and down. Insist that the larger of the first two cells be mapped to a simplex).

Once this choice is made, the developing map is determined by the condition that

the lift of γ be geodesic in S2. But as γ does not meet any singular points between

time 0 and h, the gallery G′ develops onto a subcomplex of S2. This follows from the

fact that the link of any non-singular point in L has components which are discrete
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or of diameter π. We have already observed that the link of a vertex labelled by an

allowable rotation has this property (Theorem 5.2). And it is easy to see that the

link of an interior point of an edge or 2-cell of L has this property.

On the other hand, if γ meets a singular vertex in its interior, it may well make

an angle larger than π at this vertex. The resulting cells in gallery near this vertex

need not develop onto a subcomplex of S2.

In particular, given a local geodesic γ in L, we view its gallery as subcomplex of

typical galleries determined by the geodesics in S2.

We can refine the developing map further in the case of a closed local geodesic

which does not lie entirely in the 1-skeleton of L. As L is simplicial, every such

geodesic, admits a parametrization so that it begins in at least one of the following

general positions :

1. There exists a δ > 0 such that γ(0) is a vertex of length three and γ(t) /∈ L(1)

for all 0 < t < δ.

2. There exists a δ > 0 such that γ(0) belongs to a segment of type • − ◦ − • or

• − −• and γ(t) /∈ L(1) for all 0 < t < δ.

In Figure 6.4, we have sketched the intial few cells of galleries (cut-open and

developed onto S2) determined by local geodesics of L beginning in general position.

89



end

��

��

��

start

Figure 6.4: Typical galleries of local geodesics in general position.

6.3 Extra-short loops

Definition. A closed local geodesic is called an extra-short loop if it has length 5 π.

In practice, given a closed local geodesic γ, which does not lie entirely in the 1-

skeleton, we can choose a parametrization so that its cut-open and developed gallery

develops onto a subcomplex of S2 which begins at one of the general positions. In

terms of Figure 6.3, either we develop the local geodesic beginning at a vertex of
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length three or we develop beginning at one of the points in the large boundary arc

(a great arc of the sphere) as in Figure 6.4.

and a positve length two vertex.

All−right

All−right All−right

start

end negative

positive

a local geodesic beginning on the boundary
meets at most three all−right triangles
before traveling distance pi.

Each all−right

triangle 

determines a

maximal spherical
subcomplex.

A vertex of length three is unique to a maximal
spherical subcomplex; so is the product

of the label of a negative length one vertex

Figure 6.5: These all-right triangles encode subcomplexes LT which contain the local
geodesic γ.

Observe that the gallery of such a closed local geodesic develops onto at most three

all-right triangles as depicted in Figure 6.5. Fix one such all-right triangle ∆. Then,

the simplices in L which develop onto ∆ all belong to the same maximal subcomplex

LT for some T ∈ S. This follows from the fact that the only edges which are common
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to two distinct maximal subcomplexes belong to a segment of type •−◦−• or •−−•.

(Use Lemma 5.9.) The spherical subset T is determined by either a vertex of length

three or by the product of a negative and a positive vertex: one of length one, one of

length two, the product of length three. (Refer two the two types of 2-cells in L as

in Figure 4.5.) Using this technique, we prove the following:

Proposition 6.3. Let Γ define a three dimensional FC Artin system together with

a total ordering of the generating set, and let L = LΓ be the link of Brady’s complex

KΓ. Suppose γ is a closed local geodesic which does not lie entirely in the 1-skeleton

of L. Then, γ has length > π.

Proof. Choose a parametrization of γ so that it is in one of the general positions. As

in the above discussion, either γ(0) is a vertex of length three or γ(0) belongs to an

edge of the form •−◦−• or •−−•. Then cut-open and develop the gallery onto S2.

If γ had length ≤ π, then, by inspection of the all-right triangles in S2, we find that γ

lies in the union of at most three maximal spherical subcomplexes. But with respect

to its intrinsic metric, this complex is CAT(1). (Theorem 5.5.) So, by Lemma 5.11,

γ has length ≥ 2π. Contradiction.

Thus, we conclude that there are no extra short loops in LΓ:

Theorem 6.3. Let Γ define a three dimensional FC Artin system together with a

total ordering of the generating set, and let L = LΓ be the link of Brady’s complex

KΓ. Suppose γ : [0, h] → L is a closed local geodesic. Then, γ has length > π. In

other words, LΓ does not contain any extra-short loops.
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Proof. By Theorem 6.1, we may assume that γ does not lie entirely in the 1-skeleton

of L. Thus, Proposition 6.3 applies.

Using the same arguments as in Proposition 6.3, we also have the following:

Lemma 6.3. Let Γ define a three dimensional FC Artin system together with a total

ordering of the generating set, and let L = LΓ be the link of Brady’s complex KΓ.

Suppose γ is a local geodesic which joins two singular vertices in L. If γ is not an

edge path, then it has length ≥ π.

Proof. We are assuming that γ(0) is a singular vertex and that γ is not an edge path.

Thus, γ begins in general position. Choose a parametrization so that γ begins in

general position and develop its gallery onto S2. Observe, using Figure 6.3, that the

only geodesics which join (potentially) singular vertices are either edge paths or have

length = π. We are using the fact that the lift of γ must be a great arc in S2.

6.4 Shrinking and rotating local geodesics

It remains to show that L does not contain any isometrically embedded circles of

length < 2π which do not lie entirely in the 1-skeleton. The arguments are inspired

by an alternate characterization of CAT(1) spaces due to B. Bowditch [Bow]. We

would like to thank J. McCammond for first bringing Bowditch’s work to our atten-

tion. The actual implementation of Bowditch’s ideas are in the spirit of the curvature

testing techniques in [EM] and, especially, the more recent paper by M. Elder, J. Mc-

Cammond, and J.Meier [EMM].
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The following theorems of B. Bowditch are of interest. Refer to the original article

for proofs [Bow]. In each of the below, we apply the theorems to X = LΓ.

Theorem 6.4. (Bowditch) Let X be a compact locally CAT(1) space. If X is not

CAT(1), then there exists a minimal length closed geodesic of length < 2π. Moreover,

a closed local geodesic of minimal length is, in fact, a closed geodesic.

Theorem 6.5. (Bowditch) Let X be a compact locally CAT(1) space. If γ is a closed

local geodesic in X of length < 2π, then γ may be freely homotoped via non-length

increasing paths to constant loop. γ is said to be shrinkable.

Theorem 6.6. (Bowditch) Let X be a compact locally CAT(1) space. If γ is a loop in

X, then either γ is shrinkable or γ freely homotoped via non-length increasing paths

to closed geodesic α.

Remark. The above three theorems use a reformulation of the locally CAT(1) con-

dition in terms of the length of a minimal closed geodesic. He defines a space to be

ε-CAT(1) if every triangle of perimeter < 2ε satisfies the CAT(1) inequality. (So,

π-CAT(1) is the same thing as CAT(1).) Then he proves that for a compact, locally

CAT(1) space there is a unique ε, 0 < ε < π, such that X is ε-CAT(1), and X con-

tains an isometrically embedded circle of length 2ε. The analogous 2ε in differential

geometry is the systole.

Theorems 6.5 and 6.6 use the Birkhoff curve shortening process. This process

takes a closed loop and iterates the process by which we subdivide the loop into

segments, join the midpoints of adjacent segments by geodesics, and consider this
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new loop as the next input. The difficult problem is to decide when this process

converges.

We apply Bowditch’s theorems to a minimal length local geodesic γ in LΓ. If LΓ

is CAT(1), we are done; otherwise, by Theorem 6.4, such minimal closed geodesic

exists and has length < 2π. We will derive a contradiction.

Definition. Let γ be a closed local geodesic of length ≥ π in LΓ. Suppose α ⊂ γ is

an arc of length equal to π. A rotation of α is a constant length homotopy of α which

leaves endpoints fixed. The loop γ′ obtained by removing the arc α and replacing it

by the rotated arc is said to be obtained by rotating the arc α. In particular, γ and

γ′ have the same length.

at the endpoints

rotation of
an arc rel endpoints

generally, rotation does not
preserve local geodesity

Figure 6.6: An arc α ⊂ γ of length π may be rotated.
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(Rotation of Geodesics): Let LΓ be the link of a Brady complex KΓ for a three

dimensional FC Artin group. Suppose γ is a minimal length closed geodesic of length

< 2π. By Theorem 6.1, we may assume γ is not contained in the 1-skeleton of L. By

Theorem 6.3, we may assume that the length of γ is greater than π. Choose an arc

α in γ of length π which is not contained in the 1-skeleton. This is possible because

the singular vertices are distance at least π apart. The singular vertices are the only

points in L where a locally geodesic path may switch from an arc contained in the

1-skeleton to an arc which is an edge path. Moreover, we may choose an arc α which

admits a parametrization which begins in general position.

If the endpoints of α are not singular points, then we may rotate the arc α by a

small amount. In practice, this is done by developing the gallery determined by α

onto the two sphere. Then rotate the lift of α by a small amount within the developed

gallery. This is possible because the lift of α is, by construction, a great arc in S2.

This rotation induces a rotation of α in L. We are using the fact that the interior

of the gallery determined by α immerses into S2 (Elder and McCammond’s Theorem

6.2).

But, the loop γ′ obtained by rotation now fails to be geodesic at the endpoints

of α. (This need not be the case if the endpoints were singular!) Choose small balls

about each endpoint so that γ′ meets each ball in two points. Then join each pair

of points by geodesics. The resulting loop has length strictly less than the length

of γ′. Moreover, we may realize this reduction by a sequence of homotopies which

do not increase length (these are local computations in unit 2-sphere). But then, by

composing these homotopies, we see that we have homotoped γ through non-length

96



increasing paths to a path of strictly smaller length. This contradicts the minimality

of γ.

On the other hand, if we have chosen an arc α in γ which joins singular points, then

the path may be rotated into the 1-skeleton. Use Figure 6.3 to help with visualization.

If α(0) is a vertex of length one, then we may rotate α into the central line or the

boundary arc, whichever is closer. (By general position, the lift of α begins at a

vertex in the boundary.) Both the central line and the boundary arc in S2 correspond

to an edge in L. Figure 6.4 is particularly instructive. As the cells of the gallery

are developed onto the sphere the, central arc lies in the image. There are other

cases besides the gallery shown there. However, by symmetry, the arc begins along

the boundary in the region labelled “start”. Because the arc is great arc, it must

terminate in the opposite region of the boundary labelled “end”. If α(0) is a vertex

of length three, then we may rotate α into either of the arcs which bound the typical

gallery as shown in Figure 6.4.

The only possible obstruction to continuing to rotate an arc occurs when a rotated

arc meets a vertex. If the rotated arc is already an edge path, there is no need to

rotate further. We never have need to rotate through a singular vertex; for we have

already observed that the only paths which join singular vertices which are less than

π apart are in fact edge paths. In the present case, α(0) is singular; if the rotation

α′ ever met a singular point in its interior, then all of α′ would be an edge path. So,

we would stop rotating.

On the other hand, it is possible that a rotated arc meet a vertex of length two.

This is okay, however— the link is either discrete or a suspension. In the first case,

97



the arc must be an edge path; in the second case, it is clear that rotation may be

continued (see Figure 6.7).

is allowable.

(y,1)

(q,−1)

(r,1)

an arc may be rotated

through a vertex of length 

two;  the 2 cell
in question always
exists because qr

Figure 6.7: Rotating a locally geodesic arc through a vertex of length two.

Now consider the rotated loop γ′. If γ′ is not geodesic at the endpoints, is may

be shortened, contradicting minimality. So, instead we have obtained a geodesic loop

which now contains an arc of length π which is contained in the 1-skeleton of L. If

there were an arc of γ′ which was not contained in the 1-skeleton, then the arc must

join singular vertices. But, then γ′ must have length at least 2π. On the other hand,

if γ′ is contained in the 1-skeleton, it must have length at least 2π. Thus, we have

proved that LΓ is CAT(1):
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Theorem 6.7. Let Γ define a three dimensional FC Artin system together with a

total ordering of the generating set. Then the link LΓ is CAT(1).
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CHAPTER 7

RESULTS AND CONCLUDING REMARKS

The proof of Theorem 6.7 is the final ingredient in the outline of the proof of the

Main Theorem:

Main Theorem. Let Γ define a 3 dimensional FC Artin system, and fix a total

ordering of S = vert(Γ). Then the link LΓ = Lk(KΓ, v0) is CAT(1); and, moreover,

the Artin group, AΓ
∼= π1(KΓ, v0), is CAT(0): it acts geometrically on the universal

cover of KΓ by deck transformations.

The proof given also works for FC Artin systems of dimension less than three.

Two dimensional FC Artin groups were shown to be CAT(0) by T. Brady and J. Mc-

Cammond in [BM]. Brady and McCammond used the same cell complex K, but

with a different metric: every edge was assigned length one, so that boundary of

every 2-cell was an equilateral triangle. When considering the link L, a simplicial

1-complex, checking the link condition became equivalent to deciding if L contained

any edge loops of fewer than six edges (in the link, the edges have length π/3). It

would be worthwhile to investigate to what extent the three dimensional complexes

KΓ considered herein admit flexiblity (if any) in a choice of locally CAT(0) metric.

However, this would require further analysis of T. Brady’s original treatment of the

three generator spherical Artin groups in [Br1].
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The partial ordering on by reflection length on W left many open questions. Re-

lated to these questions is the idea of a “dual” theory of Coxeter groups. The question

of whether Coxeter groups admit a classification purely in terms of reflection length

was asked by D. Bessis in [Be]. For finite Coxeter groups, he defines an abstract finite

reflection group to be a group W together a generating set R and a faithful linear

representation ρ : W → V ∼= Rn. The generating set R (reflections) is characterized

as precisely those elements w ∈ W such that codim(ker(ρ(w) − Id)) = 1. But, it

is unclear what is the correct definition of an infinite abstract reflection group. The

natural question to ask in the present context, is whether such a clarification is related

to finding K(π, 1) spaces for Artin groups.

In spite of these prospects for future research, the question of whether Artin groups

are CAT(0) remains open.
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