
Congestion Control for Next-Generation Global Internets

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Yuan Gao, M.S.

* * * * *

The Ohio State University

2002

Dissertation Committee:

Professor Jennifer C. Hou, Adviser

Professor Hitay Özbay, Co-adviser

Professor Yuan F. Zheng

Approved by

Co-Adviser

Co-Adviser

Department of Electrical
Engineering



c© Copyright by

Yuan Gao

2002



ABSTRACT

As the size and application domains of the Internet grow explosively during recent

years, several new phenomena have been observed and new research issues have emerged

in Internet congestion control.

First, as most Internet continuous media based applications do not support end-to-end

resource and congestion control, wide deployment of these applications can have a severe

negative impact on self-controlled TCP flows (which constitute the majority of the Internet

traffic). Before these applications can be fully deployed on the Internet, effective conges-

tion control mechanisms must be devised to ensure them respond to network congestion in

a TCP-friendly manner so as to coexist with TCP flows.

Second, with the proliferation of HTTP applications for document transport, there often

exist at a busy server (’hot spot’) multiple, concurrent, TCP or UDP connections destined

for the same destination host or destination subnet. This distinct scenario gives rise to sev-

eral issues that the current TCP does not adequately deal with. First, most TCP connections

(especially those initiated by HTTP) are short-lived and seldom have enough time to probe,

and fully utilize, the available network bandwidth. Second, without coordination, multiple,

concurrent connections may compete blindly for network resource with each other, leading

to increased packet losses and variation in the aggregate traffic throughput. These issues

call for an effective endhost congestion management scheme to coordinate competing con-

nections.

ii



Another phenomenon that has been observed in recent measurement and research of

Internet traffic is that network traffic exhibits self-similar and long-range dependent be-

haviors. In spite of the abundant correlation structure across multiple time scales, little

work has been carried out to judiciously exploit the structure (and hence the predictability)

of network traffic to better manage network resources for congestion control. Extracting

and exploiting the correlation structure at multiple time scales will enable congestion con-

trollers, e.g. router queues that employ active queue management (AQM) to better respond

to network dynamics.

Finally, significant research efforts have been made to study and improve the perfor-

mance of AQM based on feedback control theory. Several analytical models have been pro-

posed to approximate the dynamic additive increase and multiplicative decrease (AIMD)

behaviors of TCP in conjunction with AQM. There are, however, several protocol effects

that are not considered in these models. As a result, they can not fully characterize the dy-

namics of TCP and its interaction with AQM. Models that take into account of these effects

are needed to devise better AQM schemes based on control theory.

In this dissertation, we address the above congestion control issues for next-generation

Internets with the focus on both the transport and the IP layers. Specifically, we address the

following problems:

(I) Congestion control of multicast for continuous media applications with the objectives

of (weighted) fairness, TCP-friendliness, and scalability.

(II) End-host-based, coordinated congestion control of TCP/UDP traffic to enable con-

nections that traverse the same backbone link to share congestion information and to

coordinate among them all the congestion avoidance/control activities.

iii



(III) Exploitation of the correlation structure across multiple time scales (and hence the

predictability) of Internet traffic for better AQM scheme and TCP congestion control.

(IV) Incorporation of protocol effects ignored by previous TCP models in an enhanced

TCP model. Design of an AQM controller to stabilize the queue at a router based on

the enhanced model.

The dissertation is a combination of two synergistic components: design of algorithms/protocols

in an analytical framework and their validation with detailed ns-2 simulation and software

system building and experiments in FreeBSD on a network testbed.

iv



To My Parents

Jinshui Gao and Yicang Qin

To My Brother

Shang Gao

v



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my adviser, Professor Jennifer C. Hou,

for her guidance and support throughout the course of my research. I owe a great deal to

her for the knowledge that I have gained in the last five years in computer communications

as well as for the presentation skills that have been proved useful in my career pursuit.

I would also like to thank Professors Hitay Özbay and Professor Yuan F. Zheng for both

their help and intellectually stimulating discussion on my research.

A special thanks goes to all the members of DRCL originally at Ohio State University

and now at University of Illinois at Urbana-Champaign. Interaction with them both aca-

demically and socially has been enriching and enlightening my life. Many intellectually

intriguing discussions have broadened my spectrum of knowledge and been very benefi-

cial.

Last but not least, I wish to thank my family for their constant love, support and en-

couragement, without which this dissertation would not be possible.

vi



VITA

April 7, 1971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Born - P. R. China

1994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.S. Tsinghua University, Beijing, P. R.
China

1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.S. Tsinghua University, Beijing, P. R.
China

1997-present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graduate Research Associate, The Ohio
State University

PUBLICATIONS

Research Publications

Yuan Gao and Jennifer C. Hou, Stablizing Queue on AQM Routers for TCP Flows Sup-
porting ECN. Proceedings of IEEE INFOCOM 2003, San Francisco, USA, April 2003.

Guanghui He, Yuan Gao, and Jennifer C. Hou, A Case for Exploiting Self-Similarity of
Network Traffic in TCP Congestion Control. Proceedings of IEEE ICNP 2002, Paris,
France, November 2002.

Yuan Gao, Guanghui He, and Jennifer C. Hou, On the Exploiting Traffic Predictability in
Active Queue Management. Proceedings of IEEE INFOCOM 2002, New York City, USA,
June 2002.

Charles D. Cranor, Yuan Gao, Theodore Johnson, and Oliver Spatscheck, Gigascope: High
Performance Network Monitoring with an SQL Interface. ACM SIGMOD/PODS 2002,
Madison, Wisconsin, USA, June 2002.

Yuan Gao and Jennifer C. Hou, RACCOOM: A Rate-Based Congestion Control Scheme
for Multicasts. IEEE Transactions on Computers, to appear.

vii



Yuan Gao and Jennifer C. Hou, RACCOOM: A Rate-Based Congestion Control Scheme
for Multicasts. SPIE Conference on Scalability and Traffic Control, Denver, Colorado,
USA, August 2001.

Yuan Gao, Ye Ge, and Jennifer C. Hou, Reliable Multicasts for Core-based Multicast
Routing. Proceedings of IEEE ICNP 2000, Osaka, Japan, October 2000.

FIELDS OF STUDY

Major Field: Electrical Engineering

viii



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapters:

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Routing in Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Uniticast Routing . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Multicast Routing . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Reliable Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Reliable Transport in Unicast . . . . . . . . . . . . . . . . . . . 10
2.3.2 Reliable Transport in Multicast . . . . . . . . . . . . . . . . . . 11

2.4 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Active Queue Management . . . . . . . . . . . . . . . . . . . . 13
2.4.2 TCP Window-Based Congestion Control . . . . . . . . . . . . . 14

ix



2.4.3 Rate-based Congestion Control . . . . . . . . . . . . . . . . . . 15
2.4.4 End-Host Congestion Control . . . . . . . . . . . . . . . . . . . 16

3. RACCOOM: A Rate-Based Congestion Control Approach for Multicasts . . . . 18

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Acknowledgment Aggregation for Scalability . . . . . . . . . . . . . . . 21
3.3 Rate Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Handling of Persistent Congestion . . . . . . . . . . . . . . . . . . . . . 30
3.5 Capability to Handle Membership or Network Traffic Change . . . . . . 31
3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Setting Parameters to Achieve TCP-friendliness . . . . . . . . . . . . . . 36
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9.1 Validation of RACCOOM Properties . . . . . . . . . . . . . . . 47
3.9.2 Comparison with Other Schemes . . . . . . . . . . . . . . . . . 58

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. COCOON: An Alternative Scheme for End-Point Congestion Management . . 63

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Congestion Information Shared in a COCOON Group . . . . . . . . . . 68
4.3 Coordinated Congestion Control for TCP Connections in a COCOON

Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Window Set Up for New Connections in a COCOON Group . . . . . . . 73
4.5 Coordinated Congestion Control for UDP Connections in a COCOON

Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.2 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5. Exploiting Traffic Predictability in Active Queue Management . . . . . . . . . 104

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Design of the Traffic Predictor . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 LMMSE Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.2 Comparison with Fractional Model-Based Predictors . . . . . . . 112
5.2.3 Validation of the LMMSE Predictor . . . . . . . . . . . . . . . . 115

5.3 Design of the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

x



5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.1 Comparison Between RED, SRED, and PAQM . . . . . . . . . . 131
5.5.2 Comparison between AVQ and PAQM . . . . . . . . . . . . . . 139

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6. A State Feedback Control Approach to Stabilizing Queues for ECN-Enabled
TCP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 An Enhanced TCP Model . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3 Analysis of Interaction Between TCP and AQM . . . . . . . . . . . . . 151
6.4 State Feedback Control AQM . . . . . . . . . . . . . . . . . . . . . . . 154
6.5 Algorithm Implementation and Parameter Setting . . . . . . . . . . . . . 158
6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6.1 Performance Comparison Under the Single Bottleneck Topology 168
6.6.2 System Response . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.6.3 Performance Comparison Under Dynamic Traffic Changes . . . 169
6.6.4 Robustness w.r.t. RTT and # Connection Changes . . . . . . . . 172
6.6.5 Performance Comparison under the Multiple Bottleneck Topology172

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.1 Summary of Research Work . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xi



LIST OF FIGURES

Figure Page

2.1 Management of TCP congestion window. . . . . . . . . . . . . . . . . . . 15

3.1 Four fields in an acknowledgment message. . . . . . . . . . . . . . . . . . 21

3.2 An example of acknowledgment aggregation. The boxes above and below
a link indicate, respectively, the data packets and the acknowledgment mes-
sages that are in transit on the link in the snapshot. The number inside a
box indicates either the sequence number (of a data packet) or the AckSeq
value (of an acknowledgment). . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Procedure taken to adjust the sending rate when packet loss is not detected. 29

3.4 Procedure taken by RACCOOM to adjust the sending rate. . . . . . . . . . 30

3.5 Analysis model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Block diagram of the system under consideration. . . . . . . . . . . . . . 34

3.7 Congestion window adjustment of TCP. . . . . . . . . . . . . . . . . . . . 37

3.8 A network topology with a simple bottleneck link used in the simulation. . 43

3.9 A network topology with multiple bottleneck links used in the simulation . 45

3.10 An arbitrary network topology used in the simulation. . . . . . . . . . . . . 45

3.11 Another arbitrary network topology used in the simulation. . . . . . . . . . 46

3.12 The performance of RACCOOM in terms of Fr. . . . . . . . . . . . . . . . 48

xii



3.13 The performance of RACCOOM in terms of weighted fairness. . . . . . . . 50

3.14 The performance of RACCOOM in terms of TCP-friendliness. . . . . . . . 51

3.15 The performance of RACCOOM in terms of (a) the capability to deal with
membership change in the arbitrary topology and (b) the capability to deal
with persistent congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 The performance of RACCOOM (a) in the existence of multiple bottleneck
links and (b) in terms of ACK aggregation. . . . . . . . . . . . . . . . . . . 57

3.17 Performance comparison (in terms of the variation in the transmission rate)
among TCP, RAP, RACCOOM and CMTCP. . . . . . . . . . . . . . . . . . 60

3.18 The performance comparison (in terms of TCP friendliness) among RAP,
RACCOOM, and formula-based approaches. . . . . . . . . . . . . . . . . . 61

4.1 COCOON in the network protocol stack. . . . . . . . . . . . . . . . . . . . 67

4.2 The window adjustment procedure in the case that a connection incurs
packet loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 The single bottleneck network topology used in the simulation. . . . . . . . 81

4.4 The multiple bottleneck network topology used in the simulation. . . . . . . 82

4.5 Loss rate vs. the number of concurrent connections in the single bottleneck
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Loss rate vs. the number of concurrent connections in the multiple bottle-
neck topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Response time vs. # concurrent connections in the single bottleneck topology. 85

4.8 Response time vs. # concurrent connections in the multiple bottleneck
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Performance in the co-existence of TCP-Reno, TCP-Int and COCOON con-
nections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiii



4.10 The fairness index vs. the number of connections for transfer of files of
size 1M bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Performance in the existence of non-responsive UDP connections. . . . . . 93

4.12 Empirical results for HTTP requests initiated at UCSB. . . . . . . . . . . . 94

4.13 Empirical results for HTTP requests initiated at UCI. . . . . . . . . . . . . 95

4.14 Empirical results for HTTP requests initiated at UMD. . . . . . . . . . . . 97

4.15 Empirical results for HTTP requests initiated at Univ. of Wisconsin. . . . . 98

4.16 Empirical results for HTTP requests simultaneously initiated at UCSB,
UCI, UMD, and UM-Madison. . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 AQM with traffic prediction. . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Comparison of mean square errors among the FBM, FARIMA, and LMMSE
predictors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Actual and estimated traffic traces when TCP packets are generated using
the on-off model or real network traffic traces in ns-2. . . . . . . . . . . . . 116

5.4 The Hurst parameter and the estimation error versus the number of connec-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 An alternate block diagram for AQM with traffic prediction. . . . . . . . . 119

5.6 The packet dropping probability, p(k + 1), to be used in the next time
interval versus the queue length and the estimated traffic. (The values of
Q(k) and f̂(k + 1) are normalized with respect to the maximum buffer size.)122

5.7 The packet dropping probability, p(k +1), calculated in an ns-2 simulation
run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 The multiple bottleneck simulation topology. . . . . . . . . . . . . . . . . 130

5.9 Instantaneous queue length in the single bottleneck network with TCP sources.132

xiv



5.10 The standard deviation of the instantaneous queue length in the single bot-
tleneck network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.11 The packet loss ratio and attainable throughput in the single bottleneck
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.12 The instantaneous queue lengths at queue 2 in the multiple bottleneck net-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.13 The standard deviation of the instantaneous queue length at queue 2 in the
multiple bottleneck network. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.14 The packet loss ratio and link utilization at queue 2 in the multiple bottle-
neck network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.15 The instantaneous queue length in the case of dynamic connection estab-
lishment and termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.16 The packet loss ratio and link utilization versus Qopt. . . . . . . . . . . . . 142

5.17 Performance comparison between AVQ and PAQM. . . . . . . . . . . . . . 143

6.1 The system diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 The bound of k2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 The bound of k1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 The Nyquist diagram of the system of interest. . . . . . . . . . . . . . . . . 160

6.5 Bode plot of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.6 Enqueue procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Performance comparison with respect to instantaneous queue length among
different schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8 Performance comparison with respect to packet loss rate among different
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xv



6.9 Performance comparison with respect to link utilization among different
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.10 Performance comparison (in terms of the time taken for the queue to stabi-
lize) between PI and SFC. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.11 Performance comparison (in terms of instantaneous queue length) under
dynamic traffic changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.12 Robustness of system parameters chosen in SFC (link utilization with re-
spect to different values of RTTs and # of connections). . . . . . . . . . . . 173

6.13 Robustness of system parameters chosen in SFC (packet loss ratio with
respect to different values of RTTs and # of connections). . . . . . . . . . . 174

6.14 Instantaneous queue length at queue 2 under different schemes in the mul-
tiple bottleneck topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.15 Link utilization at queue 4 under different schemes in the multiple bottle-
neck topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.16 Packet loss ratio at queue 4 under different schemes in the multiple bottle-
neck topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xvi



CHAPTER 1

Introduction

As the size and application domains of the Internet grow explosively during recent

years, several new phenomena have been observed and new research issues have emerged

in Internet congestion control.

First, we have observed an explosive growth in transporting multimedia applications

on the Internet. Examples include continuous media servers, digital libraries, video con-

ferencing, WWW traffic, and distance learning. As most Internet continuous media based

applications do not support end-to-end resource and congestion control, wide deployment

of these applications can have a severe negative impact, ranging from starvation of self-

controlled TCP flows (which constitute the majority of the Internet traffic) to the potential

for congestion collapse. Effective congestion control mechanisms must be devised to en-

sure these applications respond to network congestion in a TCP-friendly manner so as to

coexist with TCP flows.

Second, with the proliferation of HTTP applications for document transport, there often

exist at a busy server (’hot spot’) multiple, concurrent, TCP or UDP connections destined

for the same destination host or destination subnet. This distinct scenario gives rise to sev-

eral issues that the current TCP does not adequately deal with. First, most TCP connections

(especially those initiated by HTTP) are short-lived and seldom have enough time to probe,

1



and fully utilize, the network bandwidth available under the current TCP congestion control

mechanism. This may lead to long response times. Second, without coordination, multi-

ple, concurrent connections may compete blindly for network resource with each other,

leading to increased packet loss and variation in the aggregate traffic throughput. These is-

sues call for an effective endhost congestion management scheme to coordinate competing

connections.

Another phenomenon that is recently observed as a result of transporting WWW traffic

is that network traffic in local and wide area networks exhibits self-similar and long-range

dependent behaviors, i.e., the measured time series is bursty across several time scales [96].

Scale-invariant burstiness introduces new complexities into resource control and QoS pro-

visioning. In particular, it implies the existence of concentrated periods of high activity

and low activity at a wide range of time scales, which adversely affects traffic control and

induces extended periods of either over-utilization or underutilization. On the other hand,

the abundant correlation structure across multiple time scales in long range dependent traf-

fic can be judiciously exploited to better better manage network resources for the purpose

of congestion control. For example, extracting and exploiting the correlation structure at

multiple time scales can enable AQM to better respond to network dynamics.

Finally, significant research efforts have been made to study and improve the perfor-

mance of AQM. The common approach envisions a network that consists of TCP con-

nections and AQM routers as a dynamic feedback control system, in which AQM routers

act as controllers and TCP traffic sources act as plants [47, 64]. Several analytical mod-

els have been proposed to approximate the dynamic additive increase and multiplicative

decrease (AIMD) behaviors of TCP in conjunction with AQM [47, 64]. Control theory is

then applied to analyze and design AQM controllers. In these models, two effects are not

2



considered. First, the congestion window is not gradually decreased at the rate of w2p

2
, but

suddenly halved upon receipt of congestion indication. Second, the congestion window is

halved at most once during one round trip time (RTT). A model that takes into account of

these effects is needed to better characterize the protocol interaction so that better AQM

schemes based on control theory can be devised.

1.1 Problem Definition and Motivation

The main goal of this thesis is to investigate congestion control issues for next gener-

ation Internets, in both the transport layer and the IP layer. Specifically, we address, and

develop solution approaches for, the following problems:

(I) Congestion control of multicast for continuous media applications with the objectives

of (weighted) fairness, TCP-friendliness, and scalability.

(II) End-host-based, coordinated congestion control of TCP/UDP traffic to enable con-

nections that traverse the same backbone link to share congestion information and to

coordinate among them all the congestion avoidance/control activities.

(III) Exploitation of the correlation structure across multiple time scales and the pre-

dictability of Internet traffic for better AQM design.

(IV) Incorporation of protocol effects ignored in previous TCP models in an enhanced

TCP model. Design of an AQM controller to stabilize the queue at a router based on

this enhanced model.

1.2 Contributions of the Dissertation

The contributions of this thesis include the following four parts:

3



Multicast congestion control We design and evaluate a rate-based congestion control

scheme for multicasts for continuous media multicast applications, with the objectives of

TCP-friendliness, scalability, and adaptability to membership and traffic change. In partic-

ular, we study how to achieve weighted fairness among competing multicast connections

based on results obtained from the feedback control theory.

End-host congestion control We investigate the issue of endpoint, coordinated conges-

tion management and propose a coordinated congestion management scheme for busy In-

ternet servers. The basic idea is to identify and group connections that may traverse the

same backbone link, to enable them to share congestion information, and to coordinate

among them all the congestion avoidance/control activities. The size of a group can be

dynamically adjusted so as to magnify the benefits of congestion management. In addition,

we propose to take into account non-responsive UDP connections and “bundles” them into

a virtual connection that is subject to TCP-like congestion control. We implement the pro-

posed approach in FreeBSD, with the minimal impact to the current protocol stack, and

empirically evaluate its performance against other existing proposals.

Exploiting traffic predictability in active queue management We investigate how to

take advantage of the predictability of Internet traffic to better design AQM controllers at

routers. We propose to exploit the correlation structure across multiple time scales on-line

and predict the future traffic to better stabilize the queue length at a router (which in turns

will lead to less variable and more predictable end-to-end packet delays). This is achieved

by figuring in in the calculation of packet dropping probability the prediction results.

4



An AQM scheme to stabilize queue for TCP flows supporting ECN We present an

analytical TCP model that takes into account of several protocol issues that were ignored

in the other existing models (such as those in [47, 64]), i.e., (i) the congestion window is

not gradually decreased at the rate of w2p

2
, but suddenly halved upon receipt of congestion

indication and (ii) the congestion window is halved at most once during one RTT. We

also include the delayed ACK option in the model. We show that this enhanced model

characterizes the TCP dynamics and its interaction with AQM more faithfully. With the use

of state feedback control theory, we then design an AQM controller to stabilize the queue

length at routers based on this enhanced model. The performance of the new controller is

shown, via ns-2 simulation, to outperform several other schemes under a variety of network

scenarios and traffic loads, in terms of fluctuation in the queue length, link utilization, and

packet loss ratio.

1.3 Structure of the Dissertation

The structure of the thesis is as follows. In Chapter 2, we present background ma-

terial that pertains to the issues addressed in the dissertation. In Chapter 3 and 4, we

focus on congestion control issues in the transport layer: Chapter 3 introduces a rate-based

multicast congestion control scheme for continuous media applications, while Chapter 4

presents an end-host congestion control scheme for busy Internet servers. Chapter 5 and

6 cover congestion control issues in the IP layer. In Chapter 5, we describe a prediction-

based AQM scheme that exploits the long range dependent characteristics of Internet traf-

fic. In Chapter 6, we present an enhanced TCP model based on which we devise an AQM

scheme for TCP flows with ECN support. All the schemes proposed in the thesis are

5



validate/evaluated by simulations, and some of them by empirical implementation and ex-

periment in FreeBSD/Linux kernels. The thesis concludes in Chapter 7 with a summary of

our contributions and a list of research avenues for future work.

6



CHAPTER 2

Background Material

In this chapter, we provide background material that pertains to the problems addressed

in the thesis.

2.1 Network Model

The network model considered is a packet-switched network that provides unreliable,

best-effort service [77]. The peer IP entities in the network layer fragments data into pack-

ets that can fit into datagrams, encapsulates each of them with a protocol header, and sends

them to the network. The protocol header of each packet contains, among other control in-

formation, the IP address of the destination host. When a data packet arrives at a router, the

IP entity at the router retrieves the header information, and determines on which outgoing

interface the packet should be forwarded. The decision is made based on the destination

address (and sometimes the source address) retrieved from the header and the routing table

(which is updated periodically and maintained by an underlying routing protocol). Each

data packet is forwarded by routers on a hop-by-hop basis toward the destination.

7



2.2 Routing in Internet

In a packet-switched network, the primary function of routing is to select the best route

to deliver data packets from a source to a destination, with the objectives of maximizing the

throughput and minimizing the packet delay. To this end, each router must know the (partial

or complete) network topology and the availability and status of resources (link bandwidth

and buffer at router) in the network. Periodic exchange of the topology information is

governed by the routing protocols.

2.2.1 Uniticast Routing

The well-known unicast routing protocols include distance vector routing protocol, e.g.

routing information protocol (RIP) [61], and link state routing protocol, e.g. open shortest

path first routing protocol (OSPF) [66]. They are designed to periodically exchange the

topology information among routers in an autonomous system. With the topology infor-

mation, each router then calculates the shortest path to each subnet by either the Dijkstra

or the Bellman-Ford algorithms, and updates its routing table (usually indexed by possible

destination hosts). Upon receipt of a data packet, a router looks up the routing table to

determine an appropriate outgoing interface on which the packet is forwarded.

2.2.2 Multicast Routing

The conventional data transport paradigm on the Internet is unicast, i.e. one-to-one

communication. Since early 90’s, multicast has been proposed as an efficient way of dis-

seminating data from a source to multiple members in a multicast group. Instead of sending

a separate copy of the data to each individual group member, the source simply sends a sin-

gle copy to all the members. An underlying multicast routing protocol determines, with

8



respect to certain optimization objectives, a multicast tree connecting the source(s) and the

group members. Data generated by the source(s) flows through the multicast tree, travers-

ing each tree edge exactly once. When group members join or leave a multicast group, the

multicast tree is dynamically reconfigured.

The approaches for constructing multicast trees can be classified into two categories: (i)

the source-based multicast tree approach, e.g., Distance-Vector Multicast Routing Protocol

(DVMRP) [78], Protocol Independent Multicast Dense Mode (PIM-DM) [25], and Multi-

cast extensions to Open Shortest Path First Protocol (MOSPF) [66]; and (ii) the core-based

multicast tree approach, e.g., the Core Based Tree (CBT) protocol [10] and the Protocol

Independent Multicast Sparse Mode (PIM-SM) [25, 97]. In the former (source-based) ap-

proach, a tree rooted at a source node is constructed and connected to every member in the

multicast group. Data packets originating from the source node are sent to all the destina-

tion nodes via the links of a multicast tree. In the latter (core-based) approach, one node

for each group is selected as the core [10] (or termed in [25, 97] as a rendezvous point)

for the group. A tree rooted at the core is then constructed to span all the group members.

Data packets flow from any source to its parent and children. A node forwards packets to

its parent and children except the one from which data packets arrive.

From the viewpoint of network management, it is more desirable for a multicast group

to maintain only one multicast tree. This reduces the number of states each on-tree node has

to keep, improves scalability, and makes handling of dynamic group membership changes

more tractable. The price core-based multicast routing has to pay is, however, that the

resulting multicast tree may be sub-optimal with respect to some source(s).

9



2.3 Reliable Transport

In the current Internet, packets are delivered on a best-effort basis, and may get delayed,

discarded, duplicated, or delivered out of order. To deal with packet retransmission and re-

ordering and to present reliable byte streams to applications, an end-host transport layer is

laid on top of the network layer (IP layer) and is responsible for reliable and in-sequence

transport of data.

2.3.1 Reliable Transport in Unicast

TCP [90] is an example transport layer that provides reliable transport for unicast. To

ensure reliable in-order data transmission, TCP uses the sliding-window algorithm [88] for

error control. The sliding window algorithm works as follows. The sender assigns a se-

quence number to each data byte to be sent. When a packet is transmitted, the sequence

number of the first byte in the packet and the packet length are recorded in the packet

header. The receiver can then determine the sequence number of each data byte in a packet

received. A sender maintains three variables: (i) the sending window size (SWS, which

is the maximum number of outstanding (unacknowledged) data bytes that the sender can

transmit at any time without acknowledgment); (ii) the sequence number of the last ac-

knowledgment received (LAR); and (iii) the sequence number of the last byte sent (LFS).

The sender ensures that the condition (LFS − LAR) ≤ SWS holds all the times.

When a receiver receives a data packet, it sends back to the sender an acknowledgment

(ACK) packet that contains the lowest sequence number of the data that has not been re-

ceived yet. For example, suppose a receiver receives data bytes 1, 2, 3, 4 and 6. On receipt

of data byte 6, it returns an ACK that contains 5 to (i) acknowledge receipt of data bytes 1

through 4, and (ii) request transmission of data byte 5.

10



When an ACK arrives, if the sequence number contained in the ACK is greater than

LAR, the sender updates LAR to be the ACK sequence number thereby allowing the sender

to transmit more packets.

After the sender sends a packet to the receiver, it sets a retransmission timer. If the

timer times out before an ACK returns, the sender retransmits the packet, and sets its timer

adaptively, according to the measured round trip time (RTT). In practice, TCP measures

this time with a granularity of 100 milliseconds, and uses a retransmission timer with a

granularity of half second. If successive retransmissions of the same packet fail, TCP

doubles the retransmission timer after each timeout. Note that the sender has to buffer up

to SWS bytes of data for possible retransmission, until they are acknowledged. The value

of SWS is selected according to the network congestion status.

2.3.2 Reliable Transport in Multicast

Reliable multicast is a challenging problem that differs in many aspects from reliable

unicast in packet-switched network. In particular, the error control method of unicast is

either ACK or NAK-based, and can not be directly deployed in multicast because of the

following reasons: first, simultaneous NAKs from a large number of receivers can lead to

sender and network overload, causing the famous NAK implosion problem [37, 53, 76].

Second, if only a small number of receivers experience data loss, it is inefficient to have

the sender multicast the lost data to the entire multicast group. Instead, recovery should be

isolated to members that experience data loss. To this end, it has been proposed that the

task of processing NAKs and retransmitting lost packets be shared among group members.

Several mechanisms have been devised to suppress duplicate NAKs and replies and to

designate certain group members to handle NAKs, so as to mitigate the NAK implosion

11



problem and to reduce recovery latency. Moreover, all the objectives stated above should

still be fulfilled when group members join/leave dynamically.

Existing reliable multicast schemes can be roughly classified into two categories: (i)

reactive repair-based approaches and (ii) pro-active forward error correction (FEC)-based

approaches. In repair-based approaches, the sender or designated router/host sends lost

data packets reactively in response to NAKs. They can be further classified into those

which are non-TCP-based, such as SRM [37], PGM [30], AIM [54], hierarchical schemes

(best represented by LBRRM [40], TMTP [102], and RMTP [57]), Turning Point (TP) [76],

Search Party [19], and ARM [53], and those which extend TCP to accommodate multicast,

such as IRMA [51] and MTCP [81].

In a radical departure from repair-based approaches, FEC-based approaches, such as

those reported in [13, 68, 83], combine FEC with automatic repeat request (ARQ), and

send repair packets proactively before they are required. Specifically, data is transmitted in

blocks, each of which consists of k data packets and n− k repair packets. Each block is so

encoded (by, for example, Reed-Solomon code) that as long as a receiver receives k out of

n packets in that block, it will be able to recover all n packets. Initially the sender transmits

k data packets and additional i repair packets, where 0 ≤ i ≤ n− k. Only when a receiver

fails to decode the entire block will it unicast a NAK (requesting additional repair packets)

to the sender. The sender responds to the NAKs by sending an appropriate number, `, of

repair packets, where ` is determined so as to satisfy all the receivers’ requests.

2.4 Congestion Control

As mentioned above, data packets are forwarded by routers from their sources to their

destinations on a hop-by-hop basis. An IP router has a number of interfaces each of which

12



is connected to a transmission link and is equipped with a finite amount of buffers to hold

packets that cannot be immediately forwarded. If the packet arrival rate is continuously

larger than the packet transmission rate on an interface, a queue of packets will be built

up in the buffer and congestion occurs at this router. When congestion occurs (or is about

to occur), the common practice is for the router to drop/tag packets according to a queue

management policy to signal congestion to the source, in the hope that the source will take

appropriate control actions in response to congestion. In essence, the queue management

policy deployed at a router and the congestion control algorithm employed at an end-host

interact with each other to handle congestion.

2.4.1 Active Queue Management

Among all the queue management policies, drop tail, which drops packets only when

its buffer is used up, is the most widely deployed and simplest one. However, it has several

drawbacks. First, since a drop tail queue drops packets and conveys congestion signals only

at the time of congestion, a significant amount of time may have elapsed between the instant

when congestion occurs and the instant when end hosts reduce their sending rates. During

this time period, packets may be sent and eventually dropped. Second, the queue length

of a drop-tail queue is usually large [24], due to the fact that the drop-tail policy drops

packets only when the queue is full. This is against the common belief that the steady-

state queue size should be kept small in order to reduce the delay packets experience at the

router. Third, as reported in [85], the drop tail policy may result in global synchronization

1, which usually results in a sustained period of low link utilization.

1Global synchronization of TCP occurs when multiple TCP connections reduce their transmission rates
in response to packet dropping and then increase their rates at the same time when the congestion reduces. It
occurs because packets from multiple TCP connections are dropped at routers all at once.

13



To remedy the aforementioned drawbacks, several active queue management (AQM)

algorithms have been introduced. By “active,” we mean that a router detects congestion

and notifies end hosts of (incipient) congestion before congestion actually occurs so that

the latter can adapt their sending rates. These algorithms differ in (i) the parameter used as

an indicator of traffic load (and congestion); (ii) the policy used to detect congestion (or the

likelihood of congestion); and (iii) the policy used to adjust the packet dropping probability

in response to (an increased likelihood of) congestion.

The most well-known AQM algorithm is perhaps random early drop (RED) [24, 35].

RED operates by calculating upon packet arrival the average queue length, avg queue, us-

ing an exponentially weighted moving average. The parameter avg queue is used to mea-

sure traffic load. The policy used to detect the likelihood of congestion is characterized

by two thresholds, minth and maxth. If avg queue is less than minth, the router is consid-

ered congestion free and no arriving packet is dropped. When avg queue is greater than

maxth, the router is likely to incur congestion, and all arriving packets are dropped. When

avg queue is between the two thresholds, the probability of dropping a packet linearly

increases with avg queue from 0 to pmax, where pmax is the maximum packet dropping

probability. RED has been shown to prevent global synchronization, accommodate bursty

traffic, incur little overheads, and interact well with TCP under serious congestion con-

ditions. The performance of RED, however, heavily depends on whether or not the two

thresholds are properly selected.

2.4.2 TCP Window-Based Congestion Control

The TCP congestion control mechanism maintains, for each connection, a sliding con-

gestion window to bound the number of packets that can be outstanding (sent but not yet

14



packet that is awaited

Data Data

Acknowledged

Data Data

(a) Congestion window at the source node (b) Receiver window at the destination node

Received and 
delivered

Receiver Window

Sent but not
yet acknowledged

Usable window

Congestion window

Received but not yet delivered

Figure 2.1: Management of TCP congestion window.

acknowledged) for the connection (Fig. 2.1). The size, cwnd, of the congestion window is

governed by the slow start, congestion avoidance, and fast retransmit/fast recovery algo-

rithms [43]. In the slow start phase, upon receipt of an non-duplicated ACK that acknowl-

edges receipt of a new data packet, the sender increases its cwnd by one packet size (i.e.,

the value of cwnd is doubled every RTT) and slides congestion window to the right to allow

transmission of new data (Section 2.3.1). When cwnd exceeds the ssthresh threshold, the

congestion avoidance phase commences. In the congestion avoidance phase, upon receipt

of a non-duplicated ACK, the sender linearly increases its cwnd and slides the congestion

window to the right. On the other hand, upon receipt of three duplicate ACKs (which is

taken as an indication of packet loss), the sender reduces its cwnd by half, in addition to

retransmitting the lost packet. This is the well-known additive increase and multiplicative

decrease (AIMD) algorithm [17]. In the case of retransmission timeouts, which is taken as

an indication of severe congestion, the sender reduces cwnd to 1.

2.4.3 Rate-based Congestion Control

In contrast to window-based congestion control, in rate-based congestion control a

sender adjusts its sending rate according to the network congestion status. To co-exist with

TCP window-based congestion control, it is required that rate-based congestion control

15



should not deprive self-controlled TCP connections of their fair share of network band-

width. That is, a connection that employs rate-based congestion control should approxi-

mately receive, under the same delay and packet loss conditions, the same share of band-

width as a TCP connection, which shares bottleneck link with it [60]. Approaches in this

category can be further classified into two sub-categories: TCP-emulation methods and

formula-based methods.

In the TCP-emulation methods (e.g. [80]), the sender emulates the TCP congestion

control algorithms (slow start and congestion avoidance) in the following manner: it re-

duces the packet transmission rate by half when a packet loss is detected and increases the

transmission rate by a small amount when no packet loss is detected in one RTT.

In the formula-based methods [72], the TCP-friendly sending rate is determined using

the TCP throughput formula derived in [71]. As the throughput of a TCP connection is

expressed in [71] as a function of the RTT and the packet loss probability, a sender estimates

its packet loss rate and RTT periodically and then calculates and adjusts the TCP-friendly

sending rate accordingly.

2.4.4 End-Host Congestion Control

End-host congestion control aims to develop a unified congestion control mechanism

for active unicast connections at a host. The most notable work is the Congestion Manager

(CM) proposed by Balakrishnan et al. [9]. In CM, unicast connections destined for the same

destination are bundled together into a single (logical) flow for the purpose of congestion

control. All the flows are subject to a single congestion window governed by the AIMD

congestion control algorithm. A CM sender also employs a rate-based traffic shaper and

a scheduler to regulate packet transmission and to apportion available bandwidth among

16



flows. In addition, CM uses a loss-resilient protocol to elicit feedback information period-

ically from receivers about losses and network status.

End-host congestion control applies to both TCP and UDP-based transport. UDP-based

connections are controlled in a TCP-friendly manner and respond to indication of network

congestion (e.g., packet loss or explicit congestion notification).

17



CHAPTER 3

RACCOOM: A Rate-Based Congestion Control Approach for
Multicasts

In this chapter, we elaborate on how we design and evaluate a rate-based congestion

control scheme for multicasts, called RACCOOM. We first discuss the issues that must be

considered in designing such a scheme. Then we provide an overview of RACCOOM (Sec-

tion 3.1), followed by detailed descriptions of each component mechanism (Section 3.2-

Section 3.5). Following that, we present an analysis on how RACCOOM achieves weighted

fairness and/or TCP-friendliness (Section 3.6-Section 3.7). Finally, we categorize and sum-

marize related work (Section 3.8) and present the simulation results (Section 3.9).

Issues: There are several important issues we consider in designing a rate-based con-

gestion control scheme for multicast. The first issue is support of the notion of TCP-

friendliness as described in Section 2.4.3. Since multicast applications may co-exist with

TCP-based applications, TCP-friendly congestion control prevents multicast connections

from depriving self-controlled TCP connections of their fair share of the network band-

width.

The second challenge is scalability. Most, if not all, congestion control schemes are

ACK-based, NAK-based, or a combination thereof. In the context of multicasts, the ACKs

18



and NAKs (which we collectively call acknowledgments) received by a sender from multi-

ple receivers reflect diverse congestion conditions in various parts of the network, and have

to be appropriately combined when making a single rate control decision. This leads to the

problem of what information is carried in an ACK to best represent the congestion status

and how ACKs are aggregated for scalability.

The third issue concerns judicious diagnosis of the congestion condition based on the

ACK received so as to isolate the effect of independent losses of the same packet in a

multicast tree. A packet may be lost on one or more tree branches in a multicast tree, and

as a result, several receivers may independently report loss of the same packet. If a sender

reduces its sending rate for every such loss report, its sending rate will be severely throttled.

This is termed as the loss path multiplicity problem in [12].

The next challenge is how to interpret and use RTT in congestion detection. Usually a

prolonged RTT in unicasts is a good indication of congestion at some intermediate router

(which in turn serves as a preamble to packet loss). However, as there are multiple on-tree

paths in a multicast tree, one for each receiver, it is neither practical nor scalable to keep

track of RTTs along all on-tree paths. This leads to the problems of (i) along which on-tree

path(s) the RTT(s) are kept track of and estimated, (ii) how the estimated RTT(s) are used

in congestion detection, and (iii) what action to take if the RTT(s) on certain on-tree path(s)

change because of dynamic traffic or membership change.

The last but not the least important issue is the mechanism used to adjust the sending

rate. Two most widely used objectives in designing the rate adjustment mechanism are

TCP-friendliness and fairness (among competing connections that use the same method).

No matter which objective is targeted, a good rate adjustment mechanism should be devised

19



in an analytically provable manner. Also, in order to be widely deployed over the Internet,

the mechanism should require as little router support as possible.

3.1 Overview

We design a new rate-based multicast congestion control approach, called RACCOOM,

that addresses all the above issues. In RACCOOM, each acknowledgment message con-

tains, among other things, the sequence number, LostSeq, of the packet (if any) most re-

cently detected to be lost, and the sequence number, AckSeq, of the packet most recently

received. Acknowledgment messages are sent along the reverse path on which data packets

are sent and are appropriately aggregated either by intermediate routers, or in the case of

no router support, by non-leaf, designated receivers.

In the absence of packet loss, a RACCOOM session keeps track of the congestion status

of the on-tree path with the largest RTT (called the target path), and adjusts its sending rate

in a TCP Vegas-like manner [2, 16]. Upon detection of packet loss anywhere in the mul-

ticast tree, RACCOOM then responds by reducing its sending rate in a TCP Reno manner.

By judiciously using parameters in the aggregated acknowledgment and the local states

maintained at the sender, a RACCOOM session is able to identify independent losses of

the same packet, to diagnose the reason of RTT changes (network congestion or dynamic

network traffic/membership changes), and to react correspondingly.

To achieve TCP-friendliness, we devise a simple method in RACCOOM to emulate

how a TCP connection would behave under the same packet loss and delay characteristics.

The results thus derived are used by RACCOOM to on-line adjust the parameters of its

rate adjustment method. Alternatively, we can achieve (weighted) fairness (in terms of

bandwidth sharing) among competing RACCOOM connections by tuning its parameters

20



using results obtained from the feedback control theory. We have implemented RACCOOM

on ns-2 [50] and conducted simulation to test the TCP-friendliness, fairness, and scalability

properties of RACCOOM and to compare RACCOOM against other existing approaches.

The encouraging simulation results, coupled with the fact that all the operations can be

performed at end hosts, suggest that RACCOOM is a practical yet effective congestion

control solution for continuous media multicast applications.

3.2 Acknowledgment Aggregation for Scalability

LostSeq TimeStampAckSeq Rcv_id

Figure 3.1: Four fields in an acknowledgment message.

Every packet (except retransmitted ones) sent by the source is associated with a unique

sequence number and a time stamp (the time instant the packet is sent). A receiver detects

packet loss by observing a gap in the sequence number. When a receiver receives a packet,

it sends an acknowledgment message to the sender. An acknowledgment message contains

the following fields (Fig. 3.1):

1. LostSeq: The sequence number of the packet most recently detected to be lost (ini-

tially it is set to 0);

2. AckSeq: The sequence number of the packet received most recently (initially it is set

to 0);

3. Rcv id: The id of the receiver that reports AckSeq;

21



4. TimeStamp: the time at which the data packet to be acknowledged was sent. This

information is copied from the data packet and used to estimate every packet’s RTT.2

Acknowledgment messages are sent, and appropriately aggregated, along the reverse

path on which data packets are forwarded, to prevent ACK implosion at the sender. We

present two versions of acknowledgment aggregation mechanisms: one relies on router

support, and the other relies on the help of designated receivers.3 For clarity of presenta-

tion, we first present the version that relies on intermediate routers to aggregate acknowl-

edgment messages, and then discuss how the first version can be modified to eliminate

router support.

Router-assisted acknowledgment aggregation: In this version, every on-tree router ag-

gregates the acknowledgment messages received on all of its downstream interfaces, and

sends upstream a single acknowledgment message. Note that RACCOOM does not keep

track of downstream interfaces as receivers join/leave, but relies on the underlying multicast

routing protocol to maintain such information. A RACCOOM-aware router simply obtains

such information in the associated (source, multicast group) entry of the forwarding cache.

By the same token, the robustness of the acknowledgment aggregation mechanism is en-

sured by the soft state signaling approach commonly used in underlying multicast routing

protocols. For example, if a receiver does not leave gracefully, the downstream interface

that leads to this receiver will be deleted by the underlying soft-state based multicast rout-

ing protocol as a result of lack of refresh messages arriving on that interface, and will hence

not participate in acknowledgment aggregation.

2Note that no information is kept at the sender regarding when packets are sent.

3Note that designated receivers are only used for acknowledgment aggregation in RACCOOM. They
should not be confused with designated receivers used for reliable multicasts (the latter usually serve for
multiple purposes).

22



The rules used to aggregate acknowledgment messages are as follows. An on-tree router

keeps, for each downstream interface, the latest acknowledgment message received on that

interface. Initially the router keeps for each downstream interface a null message with

LostSeq = 0, AckSeq = 0, Rcv id = null, and TimeStamp = 0. It also keeps the latest ac-

knowledgment message sent upstream. Whenever a new acknowledgment message arrives

on one of its downstream interfaces, the router (i) replaces the old acknowledgment mes-

sage kept for that interface with the new one; (ii) composes an aggregated acknowledgment

by setting

1. LostSeq to be the maximum value of LostSeqs received on all the downstream inter-

faces.

2. AckSeq to be the minimum value of AckSeqs received on all the downstream inter-

faces.

3. Rcv id to be the id of the receiver that gives the minimum value of AckSeq.

4. TimeStamp to be the TimeStamp value in the acknowledgment message with the min-

imum value of AckSeq.

If a new downstream interface is included (as a result of member join) when a multicast is

in session, the router initializes the message for that interface as LostSeq = 0, AckSeq =

the value of the AckSeq forwarded upstream, Rcv id = null, and TimeStamp = 0.

Finally, the following rules are used to determine whether or not an acknowledgment

message should be forwarded upstream: When the value of Rcv id in the newly composed

acknowledgment message differs from that in the last acknowledgment message sent up-

stream, the acknowledgment message is forwarded upstream. Otherwise, the acknowledg-

ment message is forwarded only when LostSeq or AckSeq is greater than the corresponding

23



value in the last acknowledgment message sent upstream. This acknowledgment aggrega-

tion mechanism is in essence similar to that used in IRMA [51] (but with much less number

of acknowledgment fields) and requires router support.

Example 3.1 Fig. 3.2 gives an example that shows how acknowledgment messages are

aggregated. S is the sender, R1 and R2 are the receivers, and G is an on-tree router.

The RTT from S to R1 (R2) is approximately equal to the time to transport 8 packets (10

packets). In the snapshot of Fig. 3.2, AckSeq in the aggregated acknowledgment message

at router G is set to that in the acknowledgment message forwarded by R2 (min{3, 5} = 3).

AckSeq received by S is 1. Shown below are the AckSeq values received from R1 and R2

at router G, the AckSeq value forwarded upstream by router G, and the AckSeq value

received at S at the kth packet time, k ≥ 0.

Time k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

G AckSeq received from R1 1 2 3 4 5 6 7 8 . . .
AckSeq received from R2 1 2 3 4 5 6 . . .
AckSeq forwarded 1 2 3 4 5 6 . . .

S AckSeq received 1 2 3 4 . . .

Designated receiver-assisted acknowledgment aggregation: The above router-assisted

mechanism can be modified to eliminate the router support as follows: the RACCOOM

module that handles acknowledgment aggregation now runs at some hosts, called desig-

nated receivers (DRs). For each multicast group (sender, multicast group), some routers

are selected using, for example, the designated receiver selection approaches reported

in [46, 55, 56] and the DRs on the directly attached subnets of these selected routers are

“forced” to join the multicast group. In this manner, the multicast tree developed by the

24



6

S

R1

R2

G

1 2

3

4

5

6

7

8

910 5

8

7

Figure 3.2: An example of acknowledgment aggregation. The boxes above and below a
link indicate, respectively, the data packets and the acknowledgment messages that are in
transit on the link in the snapshot. The number inside a box indicates either the sequence
number (of a data packet) or the AckSeq value (of an acknowledgment).

25



underlying multicast routing protocol contains a subset of the selected routers as intermedi-

ate, relay routers and the associated DRs as non-leaf members. Use of designated receivers

to handle certain router functions has been reported in RMTP [57] and MTCP [81].

Acknowledgment messages are sent along the reverse path as in the router-assisted ap-

proach, but only aggregated at the non-leaf DRs. The router to which a DR is attached

intercepts acknowledgment messages and forwards to the DR. The router also passes to the

DR the number of the downstream receivers and DRs from which acknowledgment mes-

sages will be received. This information can be derived by the underlying multicast routing

protocol that employs an EXPRESS-like method4 [39]. A DR then keeps, for each down-

stream (pure or designated) receiver from which acknowledge messages are received, the

latest acknowledgment message received, and aggregates/forwards acknowledgment mes-

sages in the same manner as an intermediate router does in the router-assisted mechanism.

Use of aggregated acknowledgment messages: As demonstrated in Example 3.1, be-

cause of the way in which acknowledgment messages are aggregated, the AckSeq, Rcv id,

and TimeStamp values received by the sender are always those in the acknowledgment mes-

sage sent along the on-tree path with the largest RTT. As indicated in [12], a path with a

large RTT usually includes at least one link with long queues5, and hence the congestion

status along this path is usually more severe than along other on-tree paths. Let this path

be denoted as the target path. A RACCOOM session keeps track of the congestion status

(implied in AckSeq, Rcv id, and TimeStamp values) on the target path before packet loss

takes place. On the other hand, when packet loss is detected anywhere in the multicast

4Succinctly, each EXPRESS-aware router sends back the number of downstream receivers in its state
refresh messages sent upstream. Each EXPRESS-aware router will then be able to sum over all downstream
interfaces the number of downstream receivers, and provide this information to applications that need it. Note
that the EXPRESS mechanism is part of the multicast routing protocol but not part of RACCOOM.

5Here we exclude the case of satellite links.

26



tree, it is reported in the LostSeq field, and by virtue of the way in which acknowledgment

messages are aggregated (i.e., LostSeq, if non-zero, contains the sequence number of the

most recently lost packet), it is delivered to the sender. This allows the RACCOOM sender

to detect as early as possible any packet loss along any on-tree path.

The use of the Rcv id field will be elaborated on when we discuss how RACCOOM

handles dynamic traffic and/or membership changes. Finally, the TimeStamp field is used

to estimate the RTT along the target path. When a sender receives an acknowledgment

message at time t, it calculates the current RTT estimate using the difference t− TimeStamp,

and will only keep the minimum value of RTT values estimated.6

3.3 Rate Adjustment

Fig. 3.3 outlines the procedure taken by the sender to adjust its sending rate before

packet loss is detected. The sender keeps the minimum value, RTTmin, of RTTs that it has

measured so far along the target path. In other words, RTTmin is used to keep track of the

round trip propagation time along the target path under the condition that all the routers

along the target path are queue free and all the packets on the path are in transit. We will

discuss in Section 3.5 how RACCOOM deals with the situation in which congestion persists

and RTTmin is overestimated.

Let SndMax denote the maximum sequence number that the sender has sent. Nreal
4
=

SndMax−AckSeq is the total number of data packets outstanding in the network. On the

other hand, let R denote the sending rate and S the packet size, then Nexp
4
= R×RTTmin

S
is

the expected number of outstanding packets under the queue free condition.

6The reason we do not estimate RTT using a low-pass filter with an exponential weighted moving average
is because we are only interested in the minimum value (rather than the average value) of RTTs along the
target path.

27



If no queue is building up along the target path, the difference between Nreal and Nexp

should not be significant. On the other hand, when data or acknowledgment messages are

queuing up at congested routers along the target path, the difference between Nreal and

Nexp increases. Note that RTTmin remains the same when queues develop at intermediate

routers along the target path, because we keep track of the minimum value, RTTmin, of

RTTs and hence RTTmin will not updated when the RTT increases.

Based on the above observation, we use diff = Nreal − Nexp as an index of congestion

status, under the case of no packet loss. Specifically, the sender adjusts its sending rate as

follows:

Ra ←





Ra +
k2·|diff|·S
RTTmin

diff < α,

Ra −
k2·|diff|·S
RTTmin

diff > β,

Ra, otherwise,

(3.1)

and

Rsnd ← Ra − k1 ·
diff× S

RTTmin

, (3.2)

where Ra is the accumulated rate change, Rsnd is the sending rate, and k1, k2, α, and β are

all positive and tunable parameters. Intuitively Eqs. (3.1)–(3.2) intend to keep the number,

Nreal, of outstanding packets along the target path in the interval [Nexp + α, Nexp + β], or,

equivalently, the number of packets that are queued at some intermediate routers (rather

than in transit) along the target path in the interval [α, β]. The rate adjustment method used

here is similar to the window adjustment method used in TCP Vegas [2, 16], except for the

k1 ·
diff×S

RTTmin
term. The reason for including this term in Rsnd is for system stability and will

be elaborated on in Section 3.6.

By control theory analysis, we can show that the sending rate of a RACCOOM session

is irrelevant to the values of k1 and k2 (as long as they are appropriately selected to drive the

system into equilibrium), but is greatly affected by the values of α and β. We will discuss

28



in Section 3.6 these issues and how to fine tune α and β to achieve either weighted fairness

or TCP-friendliness.

/* Upon receipt of an acknowledgment message msg */
1. RTTest ← RTT estimate();
2. if (RTTest < RTTmin) {
3. RTTmin ← RTTest;
4. Rcv id← msg.Rcv id;
5. }
6. Nreal ← SndMax−AckSeq;
7. Nexp ←

Rsnd×RTTmin

S
;

8. diff← Nreal −Nexp;
9. if (diff < α)

10. Ra ← Ra +
k2·|diff|·S
RTTmin

;
11. else if (diff > β)

12. Ra ← Ra +
k2·|diff|·S
RTTmin

;
13. else Ra ← Ra;
14. Rsnd ← Ra − k1 ·

diff×S
RTTmin

;

Figure 3.3: Procedure taken to adjust the sending rate when packet loss is not detected.

Similar to TCP, the congestion avoidance phase commences when packet loss is de-

tected (anywhere in the multicast tree) or upon acknowledgment timeout. Lines 1–6 in

Fig. 3.4 give the procedure taken by the sender to adjust its sending rate in the congestion

avoidance phase. In particular, to handle the lost path multiplicity problem [12], the sender

keeps a parameter LastCut (initialized to zero) to keep track of the value of SndMax at the

time when the sending rate is reduced by half in response to packet loss or acknowledg-

ment timeout. The sender reduces its sending rate only if LostSeq contained in the received

acknowledgment message is non-zero and is greater than LastCut. That is, the sender only

reduces its sending rate once during the interval of transmitting a window worth of packets.

Only when congestion persists beyond that interval will the sending rate be further reduced.

29



/* Upon session initialization */
1. LastCut← 0; Rcv id← null;

2. if ((LostSeq 6= 0 && LostSeq > LastCut) || acknowledgment timeout) {
/* congestion avoidance phase */

3. Ra ← Ra/2;
4. Rsnd ← Rsnd/2;
5. LastCut← SndMax;
6. }
7. else {

/* procedure taken to adjust the sending rate when packet loss is not detected.
Figure 3.3 goes here */

8. } /* else */

Figure 3.4: Procedure taken by RACCOOM to adjust the sending rate.

3.4 Handling of Persistent Congestion

If at the time when a RACCOOM session is set up, queues already develop at the routers

on the target path, the RTTs thus estimated will be considerably larger than the actual

propagation delay of the path, leading to an overestimate of RTTmin (and hence Nexp). As

a result, a RACCOOM session may set its sending rate to a value such that it believes its

expected number of packets queued along the target path lies between α and β, when in

fact it has sent more backlogged packets. This in turn worsens the congestion situation,

and is termed as the persistent congestion problem that has been reported to exist in TCP

Vegas [65].

We deal with this problem by switching, upon packet loss, from the TCP Vegas-like rate

adjustment method to the TCP Reno-like rate reduction method. When a RACCOOM over-

estimates RTTmin and sends more packets than it should, packet loss in the multicast tree

occurs. A RACCOOM session then reduces its sending rate by half, and if the congestion

persists, the RACCOOM session will further reduce its sending rate.

30



3.5 Capability to Handle Membership or Network Traffic Change

Because members may dynamically join and leave a multicast group, the on-tree path

with the largest RTT (i.e., the target path) may change as a result of member join/leave.

Similarly, because other traffic being carried over the network may change, the target path

may also change as a result of traffic load change. In both cases, the value of RTTmin

maintained by the sender should be updated so as for the sender to adequately adjust its

sending rate. We discuss below how RACCOOM deals with each of the cases.

Handling of dynamic traffic changes: Recall that the Rcv id field in an acknowledg-

ment message is used to notify the sender of which receiver lies on the target path. When

an on-tree router or a designated receiver aggregates all the acknowledgment messages ar-

rived on downstream interfaces, it sets Rcv id to be the identifier of the receiver that gives

the minimum value of AckSeq (and hence the most “distant” receiver). In the case of target

path change, the Rcv id field in the aggregated acknowledgment will change as well.

To detect whether or not the target path has changed, a RACCOOM sender hence keeps

a local state variable, Target rcv id, which keeps track of the receiver on the target path. If

the Rcv id contained in an acknowledgment message differs from Target rcv id, it implies

the target path has changed, and the sender should update both Target rcv id and RTTmin to

reflect this fact. Specifically, the condition in which RTTmin is updated (line 2 in Fig. 3.3)

is changed from “if (RTTest < RTTmin)” to

if ((RTTest < RTTmin) || (Target rcv id 6= msg.Rcv id)). (3.3)

31



Handling of dynamic membership changes: As discussed in Section 3.2, when a mem-

ber joins the multicast tree at an on-tree router, the underlying multicast routing proto-

col updates the associated (source, multicast group) entry of the forwarding cache. A

RACCOOM-aware router or a designated receiver can obtain this information from the

forwarding cache and will be able to adequately aggregate acknowledgment messages. Be-

cause of the way in which acknowledgment messages are aggregated, the AckSeq, Rcv id,

TimeStamp values received by the sender are those in the acknowledgment message sent

along the on-tree path with the largest RTT. If the on-tree path from the sender to the new

member is not the one with the largest RTT, then this member join changes neither the

Rcv id field of the aggregated message nor RTTmin. On the other hand, if the on-tree path

leading to the new member does become the one with the largest RTT, then the second

test condition in Eq. (3.3) holds true (because the Rcv id field of the aggregated acknowl-

edgment contains the id of the new member). The sender will then update RTTmin and

Target rcv id accordingly.

Similarly, the fact that a downstream member leaves (whether gracefully or not) is

reflected in the associated entry of the forwarding cache kept by the underlying multicast

routing protocol. (If a receiver does not leave gracefully, the downstream interface that

leads to this receiver will be deleted upon state refresh timeout under the soft state approach

most multicast routing protocols employ.) In the case that the leaving member is the most

“distant” one (i.e., the leaving member is the leaf member to which the target path leads)

the acknowledgment message the sender receives will be routed along a new target path

(and contains a new Rcv id); the sender can update RTTmin and Target rcv id accordingly.

In the case that a non-leaf member or a leaf member that does not lie on the target path

leaves, the target path does not change and hence RTTmin will not be affected.

32



r1

Acknowledgement

r2
Buffer

Flow 1

Flow 2 Bottlrneck Link

R
Sink

Figure 3.5: Analysis model.

3.6 Analysis

In this section, we analyze, with the use of feedback control theory, the behavior of

RACCOOM before packet loss occurs. We show that if the parameters α and β in the rate

adjustment method are appropriately selected, RACCOOM can achieve weighted fairness

among competing RACCOOM sessions. Apart from leading to a better understanding of the

control feedback capability of RACCOOM, the analysis also offers guidelines for setting α

and β for achieving (weighted) fairness among RACCOOM sessions.

Fig. 3.5 depicts the system under consideration. We consider two flows, flow 1 and flow

2 that share the bottleneck link of capacity R on the target path. A flow may be a unicast

or multicast session. In the latter case, the flow refers to the data stream (of the multicast

session) that traverses the target path. For ease of analysis, we also assume that packets

are infinitely divisible, i.e., we use the fluid model. Let r1 and r2 denote, respectively, the

rate at which flow 1 and flow 2 send their data packets. Both flows adjust, based on the

acknowledgments fed back from the receiver (which the target path leads to), their sending

rates r1 and r2 using the RACCOOM rate adjustment mechanism.

Let q(t) denote the queue length at the bottleneck link at time t. Since the rate at which

data arrives at the bottleneck link is r1(t) + r2(t) and the link capacity is R, q(t) can be

33



s
R

E C A

F

+

-

+
-

1 q(s)r(s)
s

Figure 3.6: Block diagram of the system under consideration.

calculated as

q(t) =

∫ t

−∞
[r1(s) + r2(s)−R]+ ds, (3.4)

where [a]+ = max(a, 0). When the sender of flow i receives an acknowledgment message

from the receiver, it estimates the queue length, qi(t), of its data at the bottleneck. Let

qi(t)
4
= fi · q(t), where fi is the fraction of flow-i data packets in the buffer queue. Because

of the propagation and queuing delays incurred, the queue length estimated at time t is in

fact fi · q(t− d), where d is the round trip delay.

We analyze the rate adjustment method expressed in Eqs. (3.1)–(3.2) under the assump-

tion that αi
∼
= βi. The rate adjustment method can now be described as follows: it first

calculates the difference between the expected queue length, Ei (= Nexp in Section 3.3),

and the actual queue length, qi(t− d), at the bottleneck link and then adjusts its rate by

diff = Ei − fi · q(t− d),

ri(t) = k1 · diff +

∫ t

−∞
k2 · diff dt,

where k1 and k2 are the rate gains used in the rate adjustment method.

After Laplace transform the system can be represented in Fig. 3.6 with the following

parameters:

34



1. E =

[
E1

s
E2

s

]
: the column vector of the expected queue lengths of flows at the bot-

tleneck link, where Ei (i = 1, 2) is the queue length of flow i. Because RACCOOM

operates by keeping the number of packets queued at the bottleneck link along the

target path in the dead zone [αi, βi], without loss of generality, we set Ei = αi+βi

2
,

α = Ei −4 and β = Ei +4, respectively, where4 is a small value. (In the simu-

lation study, we found that the value of4 does not affect the performance as long as

it is set to a reasonably small value.)

2. F =

[
f1e

−d1s

f2e
−d2s

]
: the column vector of the feedback from the receiver, where fi

(i = 1, 2) is the fraction of data packets in the queue that are from flow i.

3. C =

[
k1 + k2

s
0

0 k1 + k2

s

]
: the rate controllers of flows.

4. r(s) =

[
r1(s)
r2(s)

]
: the column vector of the flow sending rates.

5. A =
[

1 1
]
: the adder that performs r1(s) + r2(s).

6. R: the link capacity of the bottleneck link.

Now the rates of flows can be calculated as follow:

r(s) = C(E −
F

s
(Ar(s)−

R

s
)) =

1

s
CF [

R

s
− Ar(s)] + CE.

By plugging into the expressions for C, F, A, and E and solving for r(s), we have

r(s) =

R

[
(k1s + k2)f1e

−d1s

(k1s + k2)f2e
−d2s

]

s3 + (k1s + k2)f1se−d1s + (k1s + k2)f2se−d2s

+

R

[
(k1s + k2)E1

(k1s + k2)E2

]

s2 + (k1s + k2)f1e−d1s + (k1s + k2)f2e−d2s
.

(3.5)

35



Note that the term k1 · diff is introduced to ensure the system will reach equilibrium. By

properly selecting k1, we can shorten the time needed for the system to reach equilibrium.

The flow sending rates after the system reaches equilibrium can be obtained by letting

t→∞:

r(∞) = lim
s→0

sr(s) =

[
R·f1

f1+f2
R·f2

f1+f2

]
(3.6)

Eq. (3.6) indicates that the sending rate of a RACCOOM flow i is proportional to fi.

This is a nice feature that we can exploit to realize different levels of fairness. For example,

to enforce (weighted) fairness between two flows that share the bottleneck link, i.e. r1(t) =

` · r2(t), we set f1 = ` · f2. Since the control system operates by keeping the number

of flow-i data packets queued at the bottleneck link as close to Ei as possible, we have

fi = Ei/q(t). Hence, we can achieve (weighted) fairness by setting E1 = `E2.

In the case that the traffic sources are of variable bit rate (VBR), ri(t) (and hence αi and

βi) can be dynamically adjusted (on a coarse time scale) to match the data generation rate.

3.7 Setting Parameters to Achieve TCP-friendliness

To achieve TCP-friendliness, a RACCOOM flow should adjust its desired queue length

(i.e., the parameters α and β) to attain the throughput that a TCP connection would have

received under the same packet loss and delay characteristics. When a RACCOOM flow

detects packet loss, it adjusts its sending rate according to Eqs. (3.1)–(3.2). In addition, it

also adjusts E (or equivalently α and β) as discussed below.

Fig. 3.7 depicts an instance of the window adjustment process of a TCP flow in the

steady-state congestion avoidance phase (i.e., the slow start phase in the initial stage of a

36



Window Size

Wm

Wm

Wm

1

2

3

4

n RTT

Time

Figure 3.7: Congestion window adjustment of TCP.

TCP flow and the effect of timeouts are not considered). In this phase, a TCP flow increases

its congestion window linearly until it encounters packet loss, at which point it reduces its

congestion window by half. The average TCP throughput is thus 3
4

Wm

RTT
, where Wm is the

maximum TCP congestion window size. In order to attain approximately the same average

throughput as a TCP flow, a RACCOOM flow should adjust its sending rate so that it sends

3
4
·Wm packets per RTT. That is,

Nreal
∼
=

3Wm

4
. (3.7)

Let the time interval between two consecutive packet losses be denoted as a period. From

Fig. 3.7 we know that a period is of length n RTTs, where

n =
Wm

2
. (3.8)

Combining Eq. (3.7) and Eq. (3.8), we have Wm = Nreal + n
2
. Let E(k) denote the desired

queue length in the kth period and nk the length (in units of RTTs) of the kth period. Then,

37



when a RACCOOM flow reaches equilibrium and attains the same TCP throughput,

E(k) = Nreal −Nexp =
3Wm

4
−Nexp

=
3

4
(Nreal +

nk

2
)−Nexp (3.9)

Since in the previous period (i.e., the (k − 1)th period), Nreal = Nexp + E(k−1), we have

E(k) =
3E(k−1)

4
+

3nk

8
−

Nexp

4
. (3.10)

By keeping track of the time interval (in units of RTTs) between the (k − 1)th packet

loss and the kth packet loss (i.e., nk), we can use Eq. (3.10) to adjust E(k)’s (and hence the

parameters α and β) upon every packet loss.

Note that fairness among competing RACCOOM sessions and TCP friendliness with

co-existent TCP connections can be simultaneously achieved by having each RACCOOM

session on-line adjust its parameters using Eq. (3.10). This is because under the above

iterative approach, the on-line adjusted values of α and β will be approximately the same

among all RACCOOM sessions. However, weighted fairness among RACCOOM sessions

with different weights and TCP-friendliness cannot be simultaneously achieved.

3.8 Related Work

There are two approaches used in TCP-friendly congestion control: window-based

and rate-based approaches as described in Section 2.4.2. Among several proposed TCP-

friendly congestion control schemes, the approaches in [42,51,81,82,91] are window-based

and those in [44, 63, 72, 80, 94, 99] are rate-based.

38



Window based approaches: All existing window-based approaches [42, 51, 81, 82, 91]

use the TCP congestion control and avoidance method to adjust their window sizes, when-

ever an ACK message is received or packet loss is detected. In what follows, we highlight

their major differences. The approach proposed in [42] does not consider packet retrans-

mission. Upon packet loss, only the window size is reduced by half, but the packet is not

retransmitted. SCE [91] is layered between TCP and IP. All the receivers acknowledge the

data packets they have received. When the number of ACK messages for a data packet

exceeds a pre-determined threshold, a single ACK is generated and sent to the TCP layer.

The major drawback of SCE is that it is not scalable, as a sender has to keep the states for

all the receivers.

IRMA [51] requires that multicast routers be modified so as to (i) keep track of nu-

merous states (e.g., the identities of downstream routers and upstream router, and for each

downstream router, the sequence number, the number of duplicate ACK for the last se-

quence number) for ACK aggregation, to (ii) estimate RTTs, and to (iii) support TCP se-

mantics at end hosts. In MTCP [81], all receivers are organized into a multicast tree at the

transport layer and data are reliably transmitted among them. The drawback is, however,

that the resulting tree at the transport layer may not be optimal.

PGMcc [82] is based on the router functions and packet formats defined in PGM, but is,

in general, applicable to all router-assisted protocols. PGMcc emulates the evolution of the

TCP congestion window when ACK or NAK from a selected representative receiver (called

Acker) is received. The receivers report to the sender their estimated packet loss rates in

their NAKs. The sender estimates RTTs to all the receivers and uses the TCP throughput

39



characterization equation derived in [71] to calculate the throughput that a TCP connection

would attain under the same condition (i.e., with the same RTT, packet loss rate, and so

on). The sender then selects, among all the receivers, the one that attains the minimum

throughput as the Acker. Since a sender is responsible for Acker selection, it has to handle

all the NAKs from the receivers, and hence is subject to the NAK implosion problem.

Rate-based Approaches: The rate-based approaches can be further classified into two

categories: those that adjust their sending rate in an additive increase/multiplicative de-

crease fashion as in TCP [80, 95] and those [72, 98, 99] that adjust the sending rate in

compliance with the TCP throughput characterization equations derived in [69, 71].

The rate adaptation protocol (RAP) [80] falls in the first category. In RAP, the packet

transmission rate is reduced by half when packet loss is detected and is increased by a small

amount in the absence of packet loss in one RTT. Also included in RAP are (i) a method

to use the ratio of long-term and short-term averages of RTT to fine tune the sending rate

on a per-packet basis; and (ii) a mechanism (similar to TCP-Sack) to identify a cluster

of packet losses that are potentially caused by the same congestion. Sisalem et al. [87]

proposed to use a modified RTP/RTCP report transmitted between the receiver and the

sender to estimate the RTT, the packet loss rate, and the bottleneck link bandwidth. Based

on these estimated parameters, the scheme then adjusts the sending rate using an additive

increase and multiplicative decrease method. Although simple and feasible, this scheme

contains several tunable parameters that must be determined by the user. Both of the above

40



schemes focus on unicast, and it is not clear whether or not, and how, they can be extended

to multicast.

In [44, 63, 95], congestion control is realized by transmitting data in a layered man-

ner. Video data is encoded into a number of layers that can be incrementally combined to

provide progressive refinement. Lower layers encode coarse information while high layers

encode details. The receivers of each layer constitute a multicast group. The number of

layers that a receiver subscribes to depends on its perceived packet loss rate and outcomes

of its join experiments. The work in [95] achieves TCP-like additive increase and multi-

plicative decrease congestion control by using strict time limits on when a receiver may

join/leave a group. Although the above layered multicast approaches [63, 95] in general

perform well, they have been shown in [52] to exhibit significant instability and several

pathological behaviors, such as slow convergence, high loss rate, conservative or aggres-

sive behaviors in some cases as compared to TCP. In [44], the authors argue that join/leave

coordination is difficult to achieve in [63,95] if the tree topology is not known. Hence, they

develop an algorithm that uses the tree topology and the loss information to determine the

optimal subscription bandwidth for each receiver. The major drawbacks of this approach

are that it is centralized and that the multicast tree topology and the bandwidth available on

each link may not be readily available in reality.

In the second category of rate-based approaches, the sending rate is adjusted with re-

spect to the measured loss rate and RTTs, using the TCP characterization equation derived

in [62, 69, 71]. In particular, the protocol proposed in [94] is based on the TCP throughput

characterization that does not take into account of timeouts (reported in [62, 69]), while

41



those in [72, 98] are based on the TCPs throughput characterization that does (reported

in [71]). The scheme in [94] relies on the notion of layering. A receiver estimates its

RTT and packet loss rate, and calculates the TCP-friendly rate. Based on the calculated

rate, each receiver then determines dynamically whether or not to join/leave certain lay-

ers. Because the TCP characterization in [69] does not take into account of TCP timeouts

and is not accurate when the packet loss rate is higher than 5%, the scheme may not be

TCP-friendly when the loss rate exceeds 5%.

Padhye et al. [72] proposed the CMTCP protocol in which a more accurate TCP char-

acterization equation reported in [71] is used to adjust the sending rate. Although CMTCP

has been validated by simulation and real-world experimentation to be TCP-friendly, au-

thors of CMTCP also observed the following difficulties: (i) measuring packet loss rates

accurately is not an easy task; (ii) the re-computation interval, M , over which on-line esti-

mated parameters are updated has an impact on the performance and has to be fine tuned;

(iii) CMTCP behaves more aggressively than TCP under the small RTT case.

TFMCC [99] extends the TCP-friendly TFRC [34] protocol from unicast to multicast.

In TFMCC, receivers estimate their packet loss rates and RTTs between them and the

sender. Using the equation derived in [71], receivers calculate TCP-friendly transmission

rates. The rates are fed back to the sender. The sender continuously receives feedbacks

from the receivers. If a receiver sends back a rate, which is lower than the sender’s current

rate, the sender will immediately reduce its sending rate to that rate. Feedback suppression

is achieved by using a random feedback timer method. The major pitfall of TFMCC is

42



that it is difficult to set timers to effectively suppress feedbacks while responding to con-

gestion promptly. This is especially true when TFMCC is deployed in a wide-area and

heterogeneous environment.

3.9 Simulation Results

Senders Receivers

Router Router

Figure 3.8: A network topology with a simple bottleneck link used in the simulation.

We have implemented RACCOOM on ns-2 [50], and conducted a simulation study to (i)

validate the proposed design in terms of fairness, TCP-friendliness, capability to deal with

persistent congestion and membership change; to (ii) measure the overhead for ACK ag-

gregation; and to (ii) compare RACCOOM against RAP [80] and other formula-based con-

nections (such as CMTCP [72]). All algorithms used in the simulation, except RACCOOM,

were part of the standard ns-2 distribution. In particular, the codes for implementing RAP

and formula-based approaches are directly downloaded from the ns-2 website.

43



We consider network topologies with a single bottleneck link (Fig. 3.8) and multiple

bottleneck links (e.g., Fig. 3.9), and arbitrary network topologies (e.g., Figs. 3.10– 3.11)

generated by GT-ITG. To test the performance and scalability of RACCOOM, most of the

experiments are made on topologies that are composed of hundreds of receivers. Also, we

use an assortment of traffic sources (mainly infinite-duration TCP, finite-duration TCP, and

on-off UDP sources). Due to the space limitation, we report below only results for the

cases of infinite-duration RACCOOM, TCP and UDP sources (unless otherwise stated).

In spite of quite a number of system parameters (topology, link capacity, buffer size,

and packet size) and algorithm parameters (α, β, k1, k2, location of designated receivers)

involved, the results are found to be quite robust in the sense that the conclusion drawn from

the performance curves for a representative set of parameters is valid over a wide range of

parameter values (unless otherwise stated). In particular, the performance of RACCOOM

is rather insensitive to the values of k1 and k2 (as long as they are appropriately chosen to

drive the system into equilibrium). In all the experiments reported below, k1 and k2 are

fixed at 4 and 0.25, respectively. The initial sending rate of a RACCOOM session is set

to 5K bytes/second. Packets are of length 500 bytes. The values of α and β are on-line

adjusted (using Eq. (3.10)) in experiments in which TCP-friendliness is the performance

measure. Designated receivers are selected using the algorithm reported in [46].

The performance metrics of interest are the “friendliness ratio,” F , defined as

F =
rRACCOOM

rTCP
,

44



Racoom Receiver

0.5Mbps,10ms

1M
bp

s,
5m

s

1M
bp

s,
5m

s

1Mbps,5ms 1M
bp

s,
5m

s

1M
bp

s,
5m

s

0.5Mbps,10ms

TCP ReceiverTCP Sender CBR Sender CBR Receiver

1M
bp

s,
5m

s

1M
bp

s,
5m

s

Racoom Sender

Figure 3.9: A network topology with multiple bottleneck links used in the simulation

Group 2

Sender

Receiver

2Mbps, 2ms

2Mbps, 2ms

2Mbps, 2ms

2M
bp

s,
 2

m
s

Sender

2M
bp

s,
 2

m
s

1Mbps, 5ms

1Mbps, 5ms

1Mbps, 5ms

1M
bp

s,
 5

m
s

1Mbps, 5ms1Mbps, 5ms

Group 1

Group 4

Group 3

Figure 3.10: An arbitrary network topology used in the simulation.

45



Receiver 1

Sender

Receiver

2Mbps, 2ms

2Mbps, 2ms

2Mbps, 2ms

2M
bp

s,
 2

m
s

1Mbps, 5ms

1Mbps, 5ms
0.5Mbps, 5ms

0.5Mbps, 5ms0.
5M

bp
s,

 5
m

s

1Mbps, 5ms

1Mbps, 5ms

1M
bp

s,
 5

m
s

1M
bp

s,
 5

m
s

Sender
1Mbps, 5ms

2M
bp

s,
 2

m
s

1Mbps, 5ms

1Mbps, 5ms1Mbps, 5ms

1Mbps, 5ms

1M
bp

s,
 5

m
s

1M
bp

s,
 5

m
s1Mbps, 5ms

1Mbps, 5ms

1Mbps, 5ms

1Mbps, 5ms

1M
bp

s,
 5

m
s

1M
bp

s,
 5

m
s

1Mbps, 5ms

1Mbps, 5ms

1Mbps, 5ms

1Mbps, 2ms

1Mbps, 5ms

1Mbps, 5ms

1Mbps, 2ms

1Mbps, 5ms
1Mbps, 2ms

Receiver 2

0.5Mbps, 10ms

Receiver 3

1Mbps, 2ms

0.5Mbps, 5ms

0.5Mbps, 5ms

0.3Mbps, 20ms

Receiver 4

Receiver 5

Receiver 6

Receiver 7

Receiver 8

Receiver 9

Receiver 10

Receiver 11

Receiver 12

1M
bp

s,
 5

m
s

Figure 3.11: Another arbitrary network topology used in the simulation.

46



where rRACCOOM and rTCP are the attainable throughput of a RACCOOM session and a

TCP connection under competition; and the fairness ratio, Fr, of a RACCOOM connection

to the other competing RACCOOM connections, defined as

Fr =
ri

minj rj

,

where ri is the sending rate of the RACCOOM connection under consideration and minj rj

is the minimum value of the sending rates of the other competing RACCOOM connections.

3.9.1 Validation of RACCOOM Properties

Fairness amongst RACCOOM connections: In the first and second experiments, we

study fairness amongst RACCOOM connections with different RTTs. In the first experi-

ment, the single-bottleneck network topology is used. The bottleneck link is shared among

10 RACCOOM connections and has a capacity of 0.5 Mbps, a delay of 20 ms, and a buffer

of size 10 Kb. The links between a sender and the left router and between a receiver and the

right router have a capacity of 1 Mbps and a delay that ranges from 5 to 140 ms in different

simulation runs. A total of 10 simulation runs are conducted. In the ith (1 ≤ i ≤ 10)

simulation run, the delays between senders/receivers and their attached routers are evenly

distributed in [5, 15 ∗ i− 10] ms. Thus, the maximum value, MaxRTT, of the RTTs among

the 10 connections is 2(15∗i−10)+20
2∗5+20

= i times of the minimum value, MinRTT, of RTTs.

The values of α and β are set to 2 and 6, respectively, for all 10 connections in each of the

10 simulation runs. Fig. 3.12 (a) gives the simulation results in terms of Fr with respect

to MaxRTT
MinRTT . As shown in Fig. 3.12 (a), the values of Fr’s ranges from 1.0 to 1.15 in all

47



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

R
at

e/
M

in
R

at
e

MaxRTT/MinRTT

(a) single bottleneck topology

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (Sec)

G
ro

up
 T

hr
ou

gh
pu

t (
M

bp
s)

 

Group1
Group2
Group3
Group4

(b) arbitrary topology

Figure 3.12: The performance of RACCOOM in terms of Fr.

48



the simulation runs, i.e., the bottleneck link bandwidth is shared, independently of RTT,

among the 10 RACCOOM connections in a fair manner.

The second experiment is conducted in the arbitrary network topology given in Fig. 3.10:

there are four multicast groups, each with 100 receivers. Four RACCOOM multicast ses-

sions are established between the sender and the receivers. Four groups share the bottleneck

link of 1 Mbps. Receivers are randomly located inside their associated groups. The values

of α and β are set to 2 and 6, respectively, for all 4 sessions. Fig. 3.12 (b) gives the sending

rate attained by the four sessions in a period of 10 seconds. Consistent with the analysis

in Section 3.6, after an initial transient time, each of the RACCOOM sessions approxi-

mately attains a throughput of 0.25 Mbps. Both the first and second experiments validate

the fairness analysis in Section 3.6.

Weighted fair share amongst RACCOOM connections: In the third experiment, we

evaluate RACCOOM in terms of its weighted fairness capability. The single-bottleneck

network topology is used. The bottleneck link has the same attributes as in the first exper-

iment, and is shared by 31 RACCOOM connections. One RACCOOM connection is used

as the reference connection (with α = 2, β = 6, and E = α+β

2
= 4), and the other 30

RACCOOM connections are evenly grouped into 3 groups. The connections in the first,

second, and third group are assigned a weight of 2, 3, 4, respectively, and the (α, β, E)

values used for the connections in the first, second, third group are (6, 10, 8), (10, 14, 12),

and (14, 18, 16), respectively. The links between a sender and the left router and between

a receiver and the right router have a capacity of 1 Mbps. The delays of those links for

49



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
at

e/
B

as
eR

at
e

RTT/BaseRTT

Weight=2
Weight=3
Weight=4

Figure 3.13: The performance of RACCOOM in terms of weighted fairness.

reference connection are 5ms. For other connections, they vary from 5 to 140 ms. Within

each group, the values of the RTTs used for the 10 connections then vary from 1 to 10 times

of that used for the reference connection.

As shown in Fig. 3.13, the ratio of the sending rate of a group-i connection to that of

the reference connection is approximately equal to the weight assigned to the connection,

and is rather insensitive to RTT changes. This validates the analysis (Section 3.6) that with

the expected queue length along the target path appropriately assigned, RACCOOM can

achieve weighted fairness among competing connections.

TCP-friendliness: In the fourth and fifth experiments, we evaluate RACCOOM in terms

of TCP friendliness. In the fourth experiment, the single-bottleneck network topology is

50



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

RACOOM Flow Number

R
at

e R
A

C
O

O
M

/R
at

e T
C

P

RTT=40ms
RTT=60ms
RTT=80ms

(a) single bottleneck topology

5 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

e R
A

C
O

O
M

/R
at

e T
C

P

Number of Receivers in the Group

 

(b) arbitrary topology

Figure 3.14: The performance of RACCOOM in terms of TCP-friendliness.

51



used. The bottleneck link has the same attributes as in the first experiment, and is shared

by 1 RACCOOM connection (with k1 = 2, and k2 = 0.25) and 10 TCP connections. The

values of α and β used in RACCOOM are on-line adjusted according to Eq. (3.10). Three

simulation runs are conducted. The values of RTTs are the same for all the connections and

are set to 40, 60, and 80 ms in the three simulation runs, respectively.7 Fig. 3.14 (a) gives

the ratio of the bandwidth attainable by the RACCOOM connection to that by each TCP

connection. The ratio is very close to 1 for all the TCP connections in all three simulation

runs. This shows that RACCOOM achieves TCP-friendliness, for a wide variety of RTT

values.

To verify whether or not RACCOOM sessions still exhibit TCP-friendliness in arbi-

trary network topologies, we conduct simulation in an arbitrary network topology given in

Fig. 3.10 in the fifth experiment: one RACCOOM multicast session is established between

the sender and each multicast group. The group size of each multicast group varies from

5 to 100. In addition, one TCP connection is established between the sender and the re-

ceiver that lies on the target path in each multicast group. All the connections share the

bottleneck link of 1 Mbps. Fig. 3.14 (b) gives the ratio of the sending rate of a RACCOOM

session to that of the corresponding TCP connection of group 1. The ratios ranges from

0.8 to 1.5, which indicates that RACCOOM can achieve TCP-friendliness in an arbitrary

topology with numerous receivers.

7As the RTT value from a host at OSU to a host at UCSB is approximately 60 ms, we consider the range
of [40, 80] in which RTT varies adequate.

52



Performance in the case of membership change: In the sixth experiment, we study

how RACCOOM responds to membership change. We use the arbitrary network topology

given in Fig. 3.11 (with the link delay and the link bandwidth labeled in the figure). There

is one RACCOOM multicast session (with α = 2 and β = 6), with one sender and 400

hundred receivers. Among the receivers, 12 representative receivers that are on potential

target paths are labeled in the figure. The RTT values and the bandwidth of the bottleneck

links between the sender and the receivers are listed in Table. 3.1. Initially only receivers

1, and 4–12 are in the multicast group, and the on-tree path from the sender to receiver

1 incurs the largest RTT value and is identified as the target path. Hence, the throughput

the RACCOOM session can attain is constrained by the bandwidth of the bottleneck link

(1 Mbps) on the target path. At time instant 3, receiver 2 joins the group and introduces a

new target path with RTT= 64 ms and the bottleneck link bandwidth of 0.5 Mbps. At time

instant 8, receiver 3 joins the group and introduces a new target path with RTT= 94 ms and

the bottleneck link bandwidth of 0.3 Mbps. Finally, at time instant 16 and 24, receiver 2

and 3 leave respectively.

As shown in Fig. 3.15 (a), the sending rate of the sender is initially 1 Mbps, reduced

to 0.5 Mbps when receiver 2 joins the multicast group (at time instant 3), further reduced

to 0.3 Mbps when receiver 3 joins the group (at time instant 8), increased to 0.5 Mbps

when receiver 3 leaves (at time instant 16), and finally increased to 1.0 Mbps when receiver

2 leaves (at time instant 24). This demonstrates the capability of RACCOOM in keeping

track of the correct target path in the case of membership change.

53



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
en

di
ng

 R
at

e 
(M

bp
s)

(a)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (Sec)

P
ac

ke
t N

um
be

r

 

Existing Racoom Flow
TCP Flow            
New Racoom Flow     

(b)

Figure 3.15: The performance of RACCOOM in terms of (a) the capability to deal with

membership change in the arbitrary topology and (b) the capability to deal with persistent

congestion. 54



Receiver BW(Mbps) RTT(ms)

1 1 54
2 0.5 64
3 0.3 94

4,5,6 0.5 30
7,8,9,12 1 48

10,11 0.5 44

Table 3.1: The RTT values and the bandwidth of bottleneck links between the sender and
the receivers.

Performance in the case of persistent congestion: In the seventh experiment, we study

the effect of persistent congestion on the performance of RACCOOM. The single-bottleneck

network topology is used. The bottleneck link has a capacity of 0.5 Mbps, a latency of 30

ms, and a buffer of 10 Kb. The links between a sender and the left router and between

a receiver and the right router have a capacity of 1 Mbps and a delay of 10 ms. Initially

the bottleneck link is shared, and fully utilized, by a TCP connection and a RACCOOM

connection (with the values of α and β on-line adjusted). At time instant 0, a new RAC-

COOM connection is established. Since the bottleneck link is fully utilized by existing

connections, the new RACCOOM connection will over-estimate the value of RTTmin un-

der the persistent congestion condition. Fig. 3.15 (b) depicts the throughput attainable for

each of the three connections for a time period of 5 seconds. Initially the new RACCOOM

connection starts with a high sending rate because of the over-estimated value of RTTmin.

As a result, congestion occurs and packets are dropped at the bottleneck link. When both

the existing and new RACCOOM senders detect packet loss, they reduce their sending rates

by half, but only once every RTT. In contrast, the TCP connection repeatedly reduces its

55



congestion window by half, and at certain point, even shuts down the congestion window.

After a transient period of approximately 2.8 seconds, the sending rates of the three con-

nections stabilize at approximately 0.16 Mbps and the bandwidth of the bottleneck link is

evenly shared by the three connections.

Performance in the existence of multiple bottleneck links: In the eighth experiment,

we analyze how the throughput attainable by a RACCOOM connection is affected when

the connection traverses more than one bottleneck link. The multiple-bottleneck network

topology shown in Fig. 3.9 is used. Both bottleneck links have a capacity of 0.5 Mbps, a

latency of 10 ms, and a buffer of 10 Kb. The capacity and latency of other links are 1 Mbps

and 5 ms, respectively. One bottleneck link is shared by a RACCOOM connection and a

TCP connection (that lasts for 20 seconds), and the other is shared by the same RACCOOM

connection and a UDP CBR connection (that sends at 0.4 Mpbs and lasts for 10 seconds).

The values of α and β of the RACCOOM connection are on-line adjusted. As shown in

Fig. 3.16 (a), because of the existence of the non-responsive UDP CBR connection in the

time interval of [0,10 sec], the RACCOOM connection only attains the throughput of 0.1

Mbps (which is the bandwidth left on the second bottleneck link). The TCP connection

that traverses the other bottleneck link thus attains the throughput of 0.4 Mbps. When the

UDP CBR connection terminates at time = 10 seconds, there is only one bottleneck link

on which the RACCOOM connection shares the bandwidth with the TCP connection in a

TCP-friendly manner (each attains a throughput of 0.25 Mbps). When the medium-duration

56



5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Time (Sec)

T
hr

ou
gh

pu
t (

M
bp

s)

 

Racoom Flow
TCP Flow   

(a)

0 500 1000 1500
0

500

1000

1500

Number of Sent Packet

N
um

be
r 

of
 R

ec
ei

ve
d 

A
ck

no
w

le
dg

m
en

t

 

Acknowledgment Number vs. Packet Number
45o Line                              

(b)

Figure 3.16: The performance of RACCOOM (a) in the existence of multiple bottleneck

links and (b) in terms of ACK aggregation.

57



TCP connection terminates at time = 20 seconds, the RACCOOM connection responds by

capturing all the bandwidth on the bottleneck link.

Ack aggregation for scalability: In the ninth experiment, we measure how many ACK

messages arrive at a RACCOOM sender. The arbitrary network topology given in Fig. 3.11

is used. The simulation setup is the same as that in the sixth experiment, except that both

the router-assisted and designated receiver-assisted ACK aggregation approaches are used

in two simulation runs. Fig. 3.16 (b) gives the number of ACK messages received versus

the number of data packets sent. (The results obtained under both aggregation approaches

are indistinguishable from each other and only one curve is depicted.) Ideally (one ACK

for each data packet sent), the result should be a 45 degree straight line. As shown in

Fig. 3.16 (b), the result even falls below the 45-degree line, due to the round trip delay

between sending of a data packet and receipt of its corresponding acknowledgment. This

also shows that the ACK aggregation mechanism used in RACCOOM indeed aggregates

ACK messages effectively and prevents the occurrence of ACK implosion.

3.9.2 Comparison with Other Schemes

In this subsection, we compare the performance of TCP, RAP, RACCOOM, and CMTCP

in terms of smoothness in the transmission rate and TCP friendliness. As TCP, RAP, and

CMTCP are all targeted for unicast connections, the comparison is only made among uni-

cast connections.

58



Smoothness in the transmission rate: The single-bottleneck network topology is used.

The simulation setup is the same as that in the first experiment, except that the bottleneck

link is shared by 10 identical connections that employ a specific congestion control scheme.

The links between a sender and the left router and between a receiver and the right router

have a capacity of 1 Mbps and a latency of 30 ms. The parameters used in RAP and CMTCP

are tuned (according to the guideline that comes with the ns-2 distribution) to achieve the

best performance.

Fig. 3.17 shows the instantaneous goodput of a connection under TCP, RAP, RAC-

COOM, and CMTCP, respectively. The TCP connection incurs the largest variation in the

transmission rate. The other approaches are all rated-based, and hence incur smaller vari-

ations as compared to TCP. Among the three rate-based approaches, RAP adopts TCP’s

additive increase and multiplicative decrease method to adjust its sending rate, and hence

incurs the largest variation. CMTCP, on the other hand, incurs the smallest rate variation.

TCP friendliness: In this experiment, the single bottleneck topology is use. In each

simulation run (i.e., each data point in Fig. 3.18), the bottleneck link is shared by ` TCP

connections and ` connections that employ a specific scheme (e.g., RAP, RACCOOM, or

CMTCP), where ` varies from 1 to 50. The bottleneck link has a bandwidth of 50Kbps×2`

and a delay of 20 ms. The links between a sender and the router and between a receiver

and the router have a capacity of 1 Mbps and a delay of 3 ms. The size of data and ACK

packets is 500 bytes and 40 bytes, respectively.

59



0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

T
ra

ns
m

is
si

on
 R

at
e(

M
bp

s)

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

T
ra

ns
m

is
si

on
 R

at
e(

M
bp

s)

(a) Transmission rate of a TCP connection (b) Transmission rate of a RAP connection

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

T
ra

ns
m

is
si

on
 R

at
e(

M
bp

s)

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

T
ra

ns
m

is
si

on
 R

at
e(

M
bp

s)

(c) Transmission rate of a RACCOOM connection (d) Transmission rate of a CMTCP connection

Figure 3.17: Performance comparison (in terms of the variation in the transmission rate)

among TCP, RAP, RACCOOM and CMTCP.

60



Fig. 3.18 gives the performance comparison (in terms of TCP friendliness ratio F )

among RAP, RACCOOM, and CMTCP. All the approaches are not perfectly TCP friendly

when the number of connections is small. In particular, RAP and CMTCP sustain a TCP

friendliness ratio of F = 2 – 2.5. The reason why formula-based approaches do not per-

form well is because when the number of connections is small, the packet loss probabil-

ity estimated by these approaches may not be accurate, as dropped packets may not be

evenly distributed among connections. When the number of connections is large, all the

approaches achieve reasonable TCP friendliness, among which RACCOOM performs best.

1 2 5 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of Each Type of Flows

F
rie

nd
lin

es
s 

R
at

io
s

Racoom Flows       
Formula−based Flows
RAP Flows          

Figure 3.18: The performance comparison (in terms of TCP friendliness) among RAP,

RACCOOM, and formula-based approaches.

61



3.10 Conclusion

We have presented in this chapter a rate-based congestion control scheme, RACCOOM.

In the absence of packet loss, a RACCOOM sender adjusts its sending rate in a TCP-Vegas

fashion, based on the congestion status of the on-tree path with the largest RTT (called

the target path). In case of packet loss, a RACCOOM sender then responds by reducing

its sending rate by half. An ACK aggregation method is judiciously devised to prevent

ACK implosion and yet to provide the sender with a simple but comprehensive view of

congestion conditions in the multicast tree. RACCOOM also achieves (weighted) fairness

among competing connections by exploiting feedback control theory and appropriately

selecting the parameters used in the rate adjustment mechanism. On the other hand, if

TCP friendliness is the performance criterion, then a simple iterative approach can be used

to on-line adjust the parameters α and β so as for a RACCOOM session to exhibit TCP-

friendliness.

Simulation experiments indicate that RACCOOM connections can achieve, irrespec-

tively of the RTTs of individual connections, TCP-friendliness, can handle membership/network

traffic changes, can deal with persistent congestion, and can achieve (weighted) fairness

among competing connections with different RTTs. In terms of the level of TCP friendli-

ness, RACCOOM also outperforms RAP and other formula-based approaches (e.g., CMTCP).

62



CHAPTER 4

COCOON: An Alternative Scheme for End-Point Congestion

Management

In this chapter, we present an endpoint congestion management (ECM) scheme, called

COordinated COngestion cONtrol (COCOON). The basic idea is to identify and group con-

nections that are destined for the same destination host/subnet and coordinate among them

all the congestion avoidance/control operations. We first give the technical motivation and

design objectives and present an overview of COCOON (Section 4.1). Following that, we

delve into the detailed description of each component mechanism (Section 4.2-Section 4.5).

In particular, we elaborate on how groups are dynamically merged or split, and to which

group a new connection should join. Then we summarize related work (Section 4.6) and

present a performance study that involves both ns-2 simulation and Internet experiments

(Section 4.7).

Motivation: As reported in [92], TCP traffic constitutes the majority — as high as 95%

— of the Internet traffic, and World Wide Web (WWW) constitutes approximately 65–75%

63



of the TCP traffic today. This is because web servers and clients communicate with each

other using the Hypertext Transfer Protocol(HTTP/1.0 or HTTP/1.1) [27,29], which in turn

uses TCP as the underlying reliable transport protocol [28]. Consequently, the Web traffic

has become the dominant component of the Internet backbone traffic. This observation

is corroborated by the statement in [5] that the Web traffic constitutes 50% of the bytes

traversing busy backbone links.

The rapid growth of WWW traffic has caused significant characteristic changes in the

Internet data traffic. This is because the characteristics of WWW traffic are significantly

different from those of other traditional TCP applications (such as Telnet and FTP) in the

following three aspects. First, a web page typically contains several embedded compo-

nents (e.g. images). In order to reduce the latency perceived by users, a Web browser often

launches multiple, simultaneous TCP connections to a given server to obtain the embedded

objects of a web page. Second, the average size of a web page and its embedded com-

ponents is usually small, and hence the TCP connections initiated to retrieve a web page

and its embedded components are usually short-lived. Third, Web surfing is inherently an

interactive activity, and from the user’s perspective, the response time is perhaps the most

important performance criterion.

The above distinct characteristics give rise to several issues, which the current TCP does

not adequately deal with. First, most TCP connections initiated by HTTP are short-lived

and seldom have enough time to probe, and fully utilize, the available network bandwidth.

Hence, they may experience unnecessarily long response times. This is because each TCP

connection commences the slow-start phase with a small window size. For a long-lived

64



connection, e.g., a FTP connection that transfers a large file, this slow-start period is short

as compared to the entire duration of the connection, and the average window size over the

entire duration is reasonably large. It is, however, not the case for a short-lived connection,

as the window size may not reach the congestion avoidance threshold (ssthresh) before the

connection completes its transmission. Second, use of multiple, concurrent connections

for web page retrieval may lead to blind competition among these connections (and hence

increased traffic burstiness).

HTTP/1.1 [27] alleviates the above problems by enabling a web client/server to trans-

fer multiple components sequentially over one persistent TCP connection. The persistent

connection approach avoids blind competition among concurrent connections, and allows a

new connection to start with a larger congestion window (and hence the small window size

in the slow-start phase does not impact the response time so dramatically). However, as re-

ported in [6], only 21% of all (1.35 billion) requests to FIFA’98 websites used HTTP/1.1. A

similar report is also found in [3] for requests made to the NASA’s Glenn Research Center

website over a one and half year time period. Moreover, use of HTTP/1.1 only alleviates

the above problems in the case that a single client requests multiple components from the

same server. Connections from a server destined for the same destination client host/subnet

(e.g., employees from the same corporate may connect to the same website to quote/trade

stocks simultaneously) and/or connections established by applications other than WWW

may still compete for network resources with one another. This is corroborated by the re-

search work on WWW clients [20], which shows that clients on the same subnet usually

65



share the same interest, and that computers in a lab (on the same subnet) access some pop-

ular websites in a much higher frequency than other websites. Hence it is highly likely that

more than one clients from the same subnet visit a popular website at the same time. What

is needed is an ECM scheme that is not application-specific.

Design Objectives: As discussed in Section 2.4.4, a good ECM scheme should not be

application-specific and should and possess the following properties:

1. Multiple, concurrent connections that traverse the same backbone bottleneck link

should not compete blindly, but rather cooperate with one another.

2. A new, short-lived connection should be allowed to start with a congestion window

that is reasonably large so as to reduce latency, while not inducing congestion.

3. Connections should be treated fairly in the sense that no connection should starve, or

attain more throughput than others. Also, connections that employ the ECM scheme

should remain TCP-friendly.

4. The scheme should be easy to implement, should not require router support (so that

it can be directly deployed on the Internet), and should scale well.

4.1 Overview

As mentioned above, the basic idea of COCOON is to identify and group connec-

tions that are destined for the same destination host/subnet and coordinate among them

all the congestion avoidance/control operations (Fig. 4.1). The granularity of groups can

be dynamically adjusted so as to magnify the advantage of control information sharing

66



to subnet C

Web Browser/
ServerFTP Telnet

Continuous 

Application
Media 

TCP UDP

IP

Cocoon

connection

group
to

subnet A
to host B

Figure 4.1: COCOON in the network protocol stack.

and congestion control coordination. Co-existing with TCP/UDP in the Internet protocol

stack, COCOON also regulates non-responsive UDP traffic and bundles UDP connections

destined for the same destination host/subnet into a virtual connection that is subject to

TCP-like congestion control. COCOON requires only minor modification at server hosts,

is totally transparent to client hosts, and hence can be incrementally deployed over the In-

ternet. Both our ns-2 simulation and FreeBSD empirical studies indicate that as compared

to TCP-Reno, TCP-Int, Ensemble-TCP, CM HTTP/1.0, and HTTP/1.1, COCOON signifi-

cantly reduces the packet loss rate, while sustaining the throughput comparable to the best

scheme.

67



COCOON resides at each sender host, and identifies and groups concurrent TCP and

UDP connections that are destined to the same destination host or subnet. The rationale be-

hind this design is that these connections are likely to be routed along some common back-

bone links, are subject to similar congestion characteristics and RTTs, and hence should

coordinate on their congestion control activities. COCOON enables these connections to

share the congestion information so that (i) they can, rather than competing blindly, coop-

erate with one another in congestion control; (ii) new connections may leverage the shared

congestion information and commence with a reasonably large congestion window; and

(iii) UDP connections can be regulated so as not to deprive well-behaved TCP connections

of their fair resource share and exhibit TCP-friendly behavior.

The granularity of the group of connections that are subject to the same “fate” can

be dynamically adjusted. The finest grain, called an atom, is the bundle of all TCP/UDP

connections destined for the same destination host. Connections whose destination hosts

have the same network prefix (e.g., the IP addresses of destination hosts AND’ed with a

subnet mask) can also form a group, if they are “observed” to share certain backbone links.

Under this case, a group may consist of several atoms.

4.2 Congestion Information Shared in a COCOON Group

As all the connections in a group are likely to be routed along the backbone links and

hence are subject to the same RTT (except for the minor variation among different sub-

nets), they should share the information of RTT and RTT variance. The way in which a

68



group estimates its group RTT and group RTT variance is the same as that in which a TCP

connection estimates these parameters [90]. That is, when a connection in a group receives

a non-duplicate acknowledgment, the group estimates its group RTT (RTT variance) as

the weighted average of the previous estimate and the new measured value. Should con-

nections that traverse the same backbone links be group into a group, the parameter thus

estimated is more accurate, because approximately n times more samples are used, where

n is the number of connections in the group.

The group RTT and RTT variance are used to set up retransmission timers for all the

connections in the group, in the same way in which a TCP connection sets up its retrans-

mission timer. Note that all the information shared is the information TCP typically uses

for congestion control, but not the user information, and hence security/privacy is not com-

promised.

4.3 Coordinated Congestion Control for TCP Connections in a CO-

COON Group

In addition to sharing congestion information, all the connections in a group coordinate

on congestion control activities as follows:

When a connection detects congestion: When a connection Ci receives 3 duplicate ac-

knowledgments (which is taken as the signal for packet loss), the congestion window of Ci

(cwndi) is reduced to half of its outstanding data size, FlightSizei, as described in [26] (i.e.

69



/* Upon receipt of 3 duplicate ACKs for the packet with sequence number k,
connection Ci performs the following operation */
If (k > watermark) {

cwndi ←
1
2 FlightSizei;

inform connection Cj in the same group;
}

/* Upon being notified by connection Ci in the same group of its packet loss,
connection Cj performs the following operation */
If FlightSizej ≥ FlightSizei {

cwndj ← max(1
2FlightSizej, FlightSizei);

ssthreshj ← cwndj ; /* congestion avoidance phase commences */
}
else if FlightSizej ≥

1
2 FlightSizei {

cwndj ← FlightSizej ;
ssthreshj ←

1
2FlightSizei; /* congestion avoidance phase commences */

}
else

ssthreshj ← min(1
2FlightSizei, ssthreshj);

/* update watermark to avoid repeated reduction of the window size within
one RTT. */
watermark← the largest sequence number of Cj’s current outstanding data;

Figure 4.2: The window adjustment procedure in the case that a connection incurs packet
loss.

70



cwndi ←
1
2

FlightSizei). Meanwhile, since packet loss may be a result of other concurrent

connections aggressively probing available bandwidth, the other connections in the same

group should also adjust their congestion windows. In COCOON, the congestion windows

of connections in a group are adjusted as follows (Fig. 4.2):

(1) If the outstanding data size, FlightSizej, of a connection Cj is greater than or equal

to that of connection Ci, Cj may potentially be responsible for the congestion, and

hence its congestion window size, cwndj , is reduced to the maximum value of 1
2

FlightSizej and FlightSizei. That is, if FlightSizej ≥ 2× FlightSizei, the cwndj is ad-

justed as if Cj experienced packet loss; otherwise, cwndj is set to FlightSizei. In the

latter case, the reduction in the congestion window is not as aggressive as cwndj ←
1
2

FlightSizej so that Cj does not experience significant throughput fluctuation. The

slow start threshold, ssthreshj, is also set to the same value of cwndj so as to enforce

Cj to enter the congestion avoidance phase.

(2) If FlightSizej, of a connection Cj falls in [1
2

FlightSizei, FlightSizei), then cwndj is

set to FlightSizej, implying that Cj is not allowed to send any data until receipt of

a new acknowledgment. Moreover, ssthreshj is set to 1
2

FlightSizei. Since cwndj ≥

ssthreshj, the congestion avoidance phase commences.

(3) If FlightSizej of a connection Cj is less than 1
2

FlightSizei, then cwndj is not ad-

justed because Cj does not grasp the bandwidth as aggressively as Ci and should

not be penalized. However, ssthreshj is set the to minimum value of ssthreshj and 1
2

71



FlightSizei, so that Cj will commence the congestion avoidance phase (and behaves

less aggressively) when its congestion window reaches 1
2

FlightSizei.

When a connection incurs timeout: When a congestion Ci incurs timeout, it com-

mences the slow-start phase. The connections in the same group whose outstanding data

size is larger than or equal to F lightSizei reduce their congestion windows to half of their

outstanding data size, while those whose outstanding data size is less than F lightSizei do

not reduce their congestion windows, but instead set ssthreshj ←
1
2
F lightSizej . Also, if

the first unacknowledged packet of a connection was transmitted before the packet that in-

curs the timeout, the connection immediately retransmits its first unacknowledged packet,

with the hope of avoiding a timeout.

When multiple packet losses or timeouts occur within one RTT: To prevent the con-

gestion window from being reduced multiple times within one RTT, each TCP connection

keeps a watermark which is set to the largest sequence number of its outstanding data at

the last time the congestion window was adjusted. When a connection incurs packet loss

or timeout, it compares the sequence number of the lost packet or the packet that incurs the

timeout against its watermark. Only when the former is larger than the latter will the con-

nection, along with the other connections in the same group, adjusts its congestion window.

72



4.4 Window Set Up for New Connections in a COCOON Group

To allow a new connection to start with a congestion window that is large enough to

reduce latency while not inducing congestion, we propose the following window setup

procedure in COCOON: When a new TCP connection, Ck, is established and added to a

group, it chooses as its reference connection the TCP connection, Cr, with the smallest

congestion window among all the active TCP connections in the group. (By “active”, we

mean connections with data to send.) Ck then sets its congestion window to cwndk ←

1
2
cwndr and its slow start threshold to ssthreshk ← min{cwndr, ssthreshr}. In the case

that there is no active TCP connection in the group which Ck joins, then Ck follows the

TCP slow start procedure and starts with cwndk = 1.

Note that by setting cwndk ←
1
2
cwndr, the new connection will catch up with the

reference connection in one round trip time and will not suffer from the effect of the

small window size in the slow start phase. On the other hand, by setting ssthreshk ←

min{cwndr, ssthreshr}, the new connection always starts in the slow start phase, but if the

reference connection is itself in the congestion avoidance phase (cwndr ≥ ssthreshr), the

new connection will enter the congestion avoidance phase in one RTT, thus not behaving

too aggressively.

73



4.5 Coordinated Congestion Control for UDP Connections in a CO-

COON Group

To prevent non-responsive UDP connections from depriving TCP connections of their

fair share of network resources, COCOON treats all the UDP connections in a group as a

virtual connection. The virtual connection is then regulated by a virtual congestion win-

dow, cwndv. The rules for adjusting cwndv and FlightSizev of the virtual connection and

for regulating UDP connections are as follows:

(1) The congestion window, cwndv, of the virtual connection is set to the average conges-

tion window (averaged over all the TCP connections in the group) times the number

of UDP connections. If at the time when the virtual connection is established, no

TCP connection exists in the group, cwndv is set to a default value. The outstanding

data size, FlightSizev, is initialized to 0.

(2) When a virtual connection is established (i.e., some UDP connection(s) are established

in a group), it is given the congestion window cwndv calculated above. UDP con-

nection(s) in a group are allowed to send packets in a round-robin fashion (for the

purpose of fairness) among active UDP connections only if FlightSizev is less than or

equal to cwndv. When a UDP packet is sent, FlightSizev is increased by the amount

of data bytes sent. When a non-duplicate acknowledgment is received by a TCP

connection in the group, cwndv is updated (after the TCP connection’s cwnd is up-

dated), and FlightSizev is reduced by the amount of TCP data bytes acknowledged.

74



This, in some sense, regulates the aggressiveness of a UDP connection to that of TCP

connections.

(3) When a TCP connection incurs packet loss and reduces its congestion window, the

virtual connection updates its cwndv accordingly. If after the update, FlightSizev ≥

cwndv, the virtual connection freezes its transmission until enough non-duplicate

ACKs are received by TCP connections in the group and cwndv > FlightSizev.

(4) When a TCP connection times out, the virtual connection immediately freezes its trans-

mission, no matter if FlightSizev is less than or equal to cwndv. The virtual connec-

tion only resumes transmission (with a updated cwndv), when a new acknowledgment

is received by the TCP connection that incurs timeout.

(5) If all TCP connections in the group are either inactive (i.e., idle without sending pack-

ets) or closed, no acknowledgments will be received within the group. Under this

case, cwndv and F lightSizev remain unchanged and the virtual connection is al-

lowed to send at the rate cwndv/group RTT, until one of the TCP connections be-

comes active again or a new TCP connection is established. During the period with

no TCP acknowledgment, UDP connections may not respond to network dynamics,

due to the lack of up-to-date control messages. 8

8COCOON may deliberately avoid the situation by artificially creating a TCP connection with the same
destination as the UDP connection. The TCP connection periodically sends one-byte date packets to probe
the network status on the behalf of the UDP connection. As this paper is more focused on how COCOON
prevents UDP connections from depriving TCP connections of their bandwidth shares, we do not discuss this
issue.

75



4.6 Related Work

Several approaches have been proposed in the realm of ECM, among which T/TCP

[14, 15, 89], TCP-Int [8], Ensemble-TCP [21], TCP Fast Start [73, 74], and most recently

Congestion Manager (CM) [9] may have received the most attention.

The TCP extension for transaction (T/TCP [14, 15, 89]) was proposed to cache RTT,

maximum segment size (MSS), congestion window size, and connection counter to expe-

dite the catching up (of the sending rate) of new, repeated connections in the slow start

phase. Touch [93] further proposed to share congestion-related information, such as the

congestion window size and the estimate of RTT, among TCP connections. They also

differentiated information sharing between existing TCP connections from caching of tem-

poral information from previous connections.

TCP-Int was proposed by Balakrishnan et al. [8] in which all concurrent TCP connec-

tions destined for the same destination use the same congestion window. The congestion

window increases when an acknowledgment is received by any connection and is halved

whenever packet loss is detected by any connection. Ensemble-TCP proposed by Eggert et

al. [21] leveraged this information sharing concept, and in addition, used caching of tem-

poral information to avoid the three-way handshake operation and the slow-start phase for

repeated connections.

Both TCP-Int and ensemble-TCP require the use of schedulers to schedule packet trans-

mission so that TCP connections can share in some fair fashion the “quota” dictated by the

congestion window. Another drawback of the single congestion window approach is that

76



if one connection incurs packet loss, the congestion window is halved. This may be too

conservative, as it is equivalent to reducing the congestion windows of all the connections

by half. In contrast, COCOON enables multiple, concurrent connections to have their indi-

vidual congestion windows, but coordinates their congestion control activities. This elim-

inates the need for a packet scheduler. Also, when a single connection incurs packet loss,

only those that may potentially be responsible for the congestion adjust their congestion

windows. Finally, COCOON considers how to regulate, based on the control information

carried in TCP traffic, non-responsive UDP connections in a TCP-friendly way.

TCP Fast Start [73, 74] used the cached information, such as the TCP congestion win-

dow and RTT, to expedite the start up of new connections. More packets can be sent in

the slow start phase, and are marked with a higher dropping preference. In case of conges-

tion, these packets will be dropped by intermediate TCP-Fast-Start-aware routers. Router

support is thus required for the best performance.

In TCP trunking [48], a TCP trunk is first established and all the connections destined

for the same host are multiplexed in the truck. The major drawbacks of TCP trunking

are that a TCP trunk has to be established with the exchange of several, additional control

messages and that packets have to be scheduled in order to share among connections the

bandwidth of a trunk in some fair manner.

The work that comes closest to ours is the CM [9] work by Balakrishnan et al. CM

maintains congestion parameters, performs congestion control/avoidance operations, and

schedules packet transmission, for all the connections destined for the same destination. A

CM sender ensembles concurrent unicast flows with the same destination host into a single

77



flow. All the flows are subject to a single congestion window governed by a window-

based AIMD congestion control algorithm. Congestion parameters are shared among the

flows. In particular, packet loss from any of the flows leads to multiplicative decrease of the

congestion window. A CM sender also employs a rate-based traffic shaper and a scheduler

to regulate packet transmission and to apportion available bandwidth among flows. In

addition, CM uses a loss-resilient protocol to elicit feedback information periodically from

receivers about losses and network status.

The major differences between CM and COCOON lie in (i) COCOON supports in-

formation sharing and coordinates congestion management not only among connections

destined for the same host but also among connections destined for the same subnet; (ii)

all concurrent connections are not subject to the same congestion window, but are instead

governed by their individual congestion windows. What is being shared is the congestion

information. This eliminates the need for traffic shapers or schedulers (to regulate/schedule

packet transmission among flows). Moreover, a single packet loss will not significantly im-

pact the instantaneous throughput attainable by the flows as in CM. (iii) COCOON does

not introduce additional control protocol/messages to elicit feedback information; and (iv)

COCOON requires modification only at senders (which are usually the servers) and is trans-

parent to receivers.

78



4.7 Performance Evaluation

We have implemented COCOON both in ns-2 and in FreeBSD 2.2.8, and conducted per-

formance studies to (i) validate the proposed design in terms of packet loss rate, frequency

of retransmission timeouts, attainable throughput, and response time, and (ii) compare CO-

COON against TCP-Reno, TCP-Int, CM, HTTP/1.0, and HTTP/1.1.

4.7.1 Simulation Study

In the simulation study, we compare COCOON against TCP-Reno and TCP-Int with

respect to packet loss rate and response time. TCP-Reno is used as the base scheme, while

the reason for selecting TCP-Int for comparison is because in the ns-2 distribution, TCP

Fast Start has been included in the TCP-Int implementation as part of the mechanism to

expedite the start up of connections. The combination of TCP-Int and TCP Fast Start

contains essentially all the features of Ensemble-TCP.

We consider network topologies with a single bottleneck link (e.g., Fig. 4.3), multiple

bottleneck links (e.g., Fig. 4.4), and arbitrary network topologies. We use an assortment of

traffic sources (mainly infinite-duration TCP, finite-duration TCP, and on-off UDP sources).

Due to the space limitation, we only report on a small set of simulations that we believe is

most representative. In spite of quite a number of system parameters (topology, link capac-

ity, buffer size, object size, distribution of destination hosts) and algorithm parameters (M ,

N , and c) involved, the results are found to be quite robust in the sense that the conclusion

79



drawn from the performance curves for a representative set of parameters is valid over a

wide range of parameter values (unless otherwise stated).

In the single-bottleneck network topology shown in Fig. 4.3, there are one sender

(server) and n subnets (each of which contains a client), where n varies from 10 to 100. To-

tally n concurrent TCP connections are established for file transfer. The link bandwidth and

delay between the sender and R1 are 10Mbps and 2ms, respectively, while those between

R1 and R2 are 1Mbps and 20ms, respectively. The link bandwidth and delay between R2

and the first half of receivers are 10Mbps and 2ms, respectively, and those between R2 and

the other half of receivers are 10Mbps and (2+δ) ms, respectively, where δ is set to 0, 2,

4, 6, 8, 10 or 12 ms to assess the capability of COCOON group management. Each router

employs a FCFS, drop-tail buffer management policy and is equipped with buffers of size

20 packets. The packet size is set to 500 bytes. Two file sizes are used: 30Kbytes (which

is the average size of a webpage [59]) and 1M bytes (which represents large file trans-

fer). Transfer of 30-Kbyte files mimics the scenario in which multiple clients request web

objects from the same server. Each connection starts at a random time that is uniformly

distributed in [0, 30] ms.

In the simulation runs for TCP-Reno and COCOON, one TCP connection is established

between the sender and each receiver. On the other hand, to magnify the benefits of using

TCP-Int, two TCP connections are established between the sender and receiver 2i in the

simulation runs for TCP-Int, for 1 ≤ i ≤ n
2
, resulting in totally n

2
flows.

In the multiple-bottleneck network topology shown in Fig. 4.4, in addition to the n

TCP connections mentioned above, there are other five infinite-duration TCP connections

80



(labeled in the figure) traversing the bottleneck links between R1 and R2 and between R3

and R4, respectively. Finally, to demonstrate the capability of COCOON in regulating non-

responsive UDP connections, in one of the experiments reported below, we replace 2 of the

n TCP connections with non-responsive UDP connections with a total sending rate of 0.40

Mbps.

2+d ms

Sender R1 R2

10 Mbps

2 ms

1 Mbps, 20 ms

10 Mbps
2 ms

Receiver1

10 Mbps
2 ms

Receiver n/2

Receiver n/2+1

Receivern

10 Mbps

10 Mbps
2+d ms

Figure 4.3: The single bottleneck network topology used in the simulation.

Performance in terms of packet loss rate Figs. 4.5–4.6 give the performance of TCP-

Reno, TCP-Int and COCOON with respect to packet loss rate in both the single and mul-

tiple bottleneck topologies (δ = 4 ms). COCOON groups the n TCP connections into two

81



Cross−traffic

Receiver1

2 ms
10 Mbps

10 Mbps
2 ms

Receiver n/2

Receiver n/2+1

Receiver n

10 Mbps

10 Mbps

2+d ms

2+d ms

R1 R2 R3 R4 R510 Mbps
2 ms

Sender
1 Mbps
20 ms

1 Mbps
20 ms

1 Mbps
20 ms

1 Mbps
20 ms

sender 4sender 3sender 2sender 1
Cross−traffic

sender 5
Cross−traffic

receiver 1 receiver 2
Cross−traffic

receiver 3 receiver 4 receiver 5

Figure 4.4: The multiple bottleneck network topology used in the simulation.

groups, with the first n/2 connections in the first group and the rest in the second group.

The two curves labeled as COCOON and COCOON2 in Figs. 4.5–4.6 give the loss rates

experienced by the two groups. Under all cases, COCOON performs best, and the per-

formance discrepancy becomes more significant as the number of concurrent connections

increases or as the size of files transferred increases. The fact that COCOON outperforms

TCP-Reno demonstrates the benefit of coordination among potentially competing connec-

tions. The fact that COCOON outperforms TCP-Int, on the other hand, demonstrates that

the scope of coordination should not be restricted to connections destined for the same

destination.

Performance in terms of response time Recall that a COCOON connection may reduce

its congestion window and/or enter the congestion avoidance phase when some other peer

connection incurs packet loss. That is, COCOON is pro-active in congestion control and

82



10 20 30 40 50 60 70 80 90 100
0

5

10

15

Lo
ss

 R
at

e 
[%

]

Number of Connections

Loss Rate for Single Bottleneck, 2 RTT, δ =4ms, Filesize 30K

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(a) 30K bytes

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Lo
ss

 R
at

e 
[%

]

Number of Connections

Loss Rate for Single Bottleneck, 2 RTT, δ =4ms, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(b) 1M bytes

Figure 4.5: Loss rate vs. the number of concurrent connections in the single bottleneck

topology.

83



10 20 30 40 50 60 70 80 90 100
0

5

10

15

Lo
ss

 R
at

e 
[%

]

Number of Connections

Loss Rate for Multiple Bottleneck, 2 RTT, δ =4ms, Filesize 30K

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(a) 30K bytes

10 20 30 40 50 60 70 80 90 100
0

5

10

15

Lo
ss

 R
at

e 
[%

]

Number of Connections

Loss Rate for Multiple Bottleneck, 2 RTT, δ =4ms, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(b) 1M bytes

Figure 4.6: Loss rate vs. the number of concurrent connections in the multiple bottleneck

topology.

84



10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Connections

Response Time for Single Bottleneck, 2 RTT, δ =4ms, Filesize 30K

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(a) 30K bytes

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Connections

Response Time for Single Bottleneck, 2 RTT, δ =4ms, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(b) 1M bytes

Figure 4.7: Response time vs. # concurrent connections in the single bottleneck topology.

85



10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Connections

Response Time for Multiple Bottleneck, 2 RTT, δ =4ms, Filesize 30K

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(a) 30K bytes

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Connections

Response Time for Multiple Bottleneck, 2 RTT, δ =4ms, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  
Cocoon2 

(b) 1M bytes

Figure 4.8: Response time vs. # concurrent connections in the multiple bottleneck topol-

ogy.

86



is not as aggressive as TCP-Reno in utilizing available bandwidth. On the other hand, by

coordinating congestion control among connections, COCOON incurs less packet losses

(and hence less packet retransmission and timeouts, as illustrated in Figs. 4.5–4.6). This,

coupled with the fact that a new COCOON connection may begin with a larger congestion

window, helps to sustain more throughput. To study which factors dominate, we measure

the time it takes to transfer files of 30K bytes and 1M bytes using TCP-Reno, TCP-Int and

COCOON. Figs. 4.7-4.8 give the results in both the single bottleneck and multiple bottle-

neck topologies, respectively. Again, the two curves labeled as COCOON and COCOON2

represent the response time experienced by the two COCOON groups.

As shown in Fig. 4.7, the curves are very close to one another in the single bottleneck

case. However, in the existence of interfering traffic (Fig. 4.8), TCP-Reno and COCOON

outperform TCP-Int. This is because in TCP-Int all connections destined for the same des-

tination host are treated as single flow that is subject to a single congestion window, so

in the existence of interfering traffic, the total throughput sustained by TCP-Int flows is

less than that in the other two schemes. In contrast, the n connections are still treated as

n flows in COCOON, each of which is subject to its own congestion window (but shares

the congestion information with the other connections in the same group). When a packet

loss occurs, only connections (in the same group) that may potentially contribute to the

congestion reduces their congestion windows. As a result, the total throughput sustained

by COCOON flows is comparable to that by TCP-Reno flows, and a TCP-Reno and a CO-

COON client do not perceive much difference in the response time. From the perspective

87



of network management, however, the bandwidth is better utilized under COCOON as a

result of reduced packet loss rate.

Performance in the co-existence of TCP-Reno, COCOON, and TCP-Int servers To

evaluate the performance when TCP-Reno, COCOON, and TCP-Int connections co-exist

and compete against each other, we set δ = 0 (i.e., all n TCP connections are subject to the

same RTTs), and divide the n TCP connections into three groups, each of which running

TCP-Reno, COCOON, and TCP-Int, respectively. Under TCP-Int, two TCP connections

are established between the sender and receiver 6i, for 1 ≤ i ≤ n
6
, resulting in totally n

6

flows. Fig. 4.9 gives the packet loss rate and response time incurred in sending files of 1M

bytes in the multiple bottleneck topology (in the presence of cross traffic). First, COCOON

performs best in terms of packet loss rate, because of its better coordination among con-

current connections, while TCP-Reno performs worst due to the blind competition among

concurrent TCP connections. Second, TCP-Reno performs best in terms of response time,

because each individual TCP-Reno connection probes and grabs the available bandwidth

on its own. TCP-Int, on the other hand, gives the worst performance, because there are

effectively n
6

TCP-Int flows competing against other connections (as well as against cross

traffic) for the available bandwidth. The performance of COCOON lies in between, be-

cause similar to TCP-Reno, the n
3

connections are still treated as n
3

individual flows, but

when a connection incurs packet loss, the other connections in the same group may have to

backoff and hence do not grab the available bandwidth as aggressively as TCP-Reno.

88



5 10 15 20 25 30
0

2

4

6

8

10

12

Lo
ss

 R
at

e 
[%

]

Number of Connections in each Group

Heterogenous Loss Rate for Multiple Bottleneck, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  

(a) Loss rate

5 10 15 20 25 30
0

100

200

300

400

500

600

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Connections in each Group

Heterogenous Response Time for Multiple Bottleneck, Filesize 1M

TCP−Reno
TCP−Int 
Cocoon  

(b) Response time

Figure 4.9: Performance in the co-existence of TCP-Reno, TCP-Int and COCOON connec-

tions.

89



5 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Lo
ss

 R
at

e 
[%

]

Number of Connections

Comparison of Fairness, Multiple Bottle neck, Filesize 1M

TCPReno
TCP−Int
Cocoon 

Figure 4.10: The fairness index vs. the number of connections for transfer of files of size

1M bytes.

90



Fairness amongst Cocoon connections To study the impact of congestion coordination

in COCOON on the fairness among connections in the same group, we repeat the experi-

ments in Figs. 4.5–4.8 with δ = 0, and calculate the fair index defined in [17]

F (x) =
(
∑n

i=1 xi)
2

n(
∑n

i=1 x2
i )

, (4.1)

where xi is the throughput attained by the ith connection in a group. Fig. 4.10 depicts the

fair index under TCP-Reno, TCP-Int, and COCOON, respectively. (As the curves repre-

senting results obtained under the single multiple bottleneck topologies are indistinguish-

able, only the one for the multiple bottleneck topology is shown.) The fairness index for

COCOON is inferior to that for TCP-Int, but is superior to that for TCP-Reno. This dif-

ference results from the fact that TCP-Int uses a scheduler to fairly regulate packet trans-

mission among connections. COCOON, on the other hand, coordinates congestion control

among connections in a group by requiring connections with large congestion windows to

back off more in the case of packet losses.

Performance in the existence of non-responsive UDP connections We run the same

set of experiments as in Fig. 4.10, except that 2 of the n TCP connections are replaced with

non-responsive UDP connections with a total sending rate of 0.40 Mbps. Fig. 4.11 gives

the TCP performance of TCP-Reno, TCP-Int and COCOON with respect to packet loss

rate and response time incurred in transferring files of 1M bytes in the existence of UDP

connections and other interfering connections in the multiple bottleneck topology.

91



Client host name Client OS Avg RTT to server
alpha.ece.ucsb.edu SunOS 5.7 66.699 ms
rodan.ics.uci.edu SunOS 5.7 67.101 ms
dsp7.eng.umd.edu Digital UNIX 26.298 ms
hertz.ece.wisc.edu SunOS 5.6 23.688 ms

Table 4.1: The host and network characteristics for experiments run on the Internet.

COCOON achieves the best performance in both measures because it regulates UDP

connections in a TCP-compliant manner and prevents them from depriving TCP connec-

tions of their fair bandwidth share. TCP-Reno incurs the worst packet loss rate, due to the

lack of coordination among the n TCP connections. On the other hand, TCP-Int incurs the

largest response time, because the number ( n
2
) of concurrent TCP connections in TCP-Int is

less than that in the other schemes, and hence the total throughput attained in the presence

of other UDP/interfering connections is also the least.

4.7.2 Empirical Study

We have implemented COCOON in FreeBSD 2.2.8. We then carried out experiments

over the Internet, with clients located at UCSB (alpha.ece.ucsb.edu), UCI (rodan.ics.uci.edu),

UMD (dsp7.eng.umd.edu), and UW-Madison (hertz.ece.wisc.edu) and the server located at

OSU (eepc121.eng.ohio-state.edu). The host and network characteristics are listed in Ta-

ble 4.1.

In the empirical study, we compare COCOON against CM, HTTP/1.0, and HTTP/1.1

with respect to attainable throughput, frequency of retransmission timeouts, and response

92



5 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Lo
ss

 R
at

e 
[%

]

Number of Concurrent Connections

Comparison of Loss Rate, Multiple Bottle neck, Filesize 1M

NewReno
TCP−Int
Cocoon 

(a) Packet loss rate (1M bytes)

5 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

R
es

po
ns

e 
T

im
e 

[S
ec

on
d]

Number of Concurrent Connections

Comparison of Response Time, Multiple Bottle neck, Filesize 1M

NewReno
TCP−Int
Cocoon 

(b) Response time (1M bytes)

Figure 4.11: Performance in the existence of non-responsive UDP connections.

93



10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

x 10
5

Number of files
 T

hr
ou

gh
pu

t b
yt

es
/s

ec

UCSB,  12:00−4:00pm 30k file

COCOON
HTTP1.0
HTTP1.1
CM

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UCSB,  12:00−4:00pm 1M file

COCOON
HTTP1.0
HTTP1.1
CM

(a) Throughput

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

Number of files

 N
um

be
r 

of
 ti

m
eo

ut

UCSB,  12:00−4:00 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

20

40

60

80

Number of files

 N
um

be
r 

of
 ti

m
eo

ut
 

UCSB,  12:00−4:00pm 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

(b) # Retransmission timeouts

Figure 4.12: Empirical results for HTTP requests initiated at UCSB.

94



10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UCI,  12:00−4:00pm 30k file

COCOON
HTTP1.0
HTTP1.1
CM

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UCI,  12:00−4:00pm 1M file

COCOON
HTTP1.0
HTTP1.1
CM

(a) Throughput

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Number of files

 N
um

be
r 

of
 ti

m
eo

ut

UCI,  12:00−4:00 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

5

10

15

20

Number of files

 N
um

be
r 

of
 ti

m
eo

ut
 

UCI,  12:00−4:00pm 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

(b) # Retransmission timeouts

Figure 4.13: Empirical results for HTTP requests initiated at UCI.

95



time. The experiments were carried out in 3 different time intervals (morning 8:00-11:00am,

afternoon 1:00-4:00pm, and night 9:00-12:00pm) on a daily basis for a period of 2 weeks.

In each set of experiments, four methods are used:

HTTP 1.0 n HTTP requests of the form “GET file name HTTP/1.0” are made from a client

to the HTTP 1.0 web server, where n varies from 5 to 100. In this case n parallel

connections are established. No modification is made in the kernel at the server host.

HTTP 1.1 HTTP requests of the form “GET file name 1 HTTP/1.1; ... ; GET file name n

HTTP/1.1” are made from a client. In this case, one persistent connection is es-

tablished. No modification is made in the kernel at the server host.

CM n HTTP 1.0 requests of the form “GET file name HTTP/1.0” are made from a client

to the web server. An implementation of CM alpha release is used at the server host.

COCOON n HTTP 1.0 requests are made from a client to the web server. An implementation

of COCOON is used at the server host.

All the web servers run on an Intel Pentium II 400MHz machine with 128M byte mem-

ory. In each run, the throughput attainable by a client and the total number of retransmis-

sion timeouts were recorded. Five experiments were carried out for each combination of

(# HTTP requests, method) in each time interval (i.e., each data point reported below is the

average value over 5× 7× 2 = 70 runs).

Figs. 4.12–4.15 give the empirical results for the experiments carried out in the after-

noon time intervals, with the client being the host at UCSB, UCI, UMD, and UW-Madison,

96



10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UMD,  12:00−4:00pm 30k file

COCOON
HTTP1.0
HTTP1.1
CM

10 15 20 25 30 35 40 45 50
2

4

6

8

10

12

14
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UMD,  12:00−4:00pm 1M file

COCOON
HTTP1.0
HTTP1.1
CM

(a) Throughput

10 15 20 25 30 35 40 45 50
0

50

100

150

Number of files

 N
um

be
r 

of
 ti

m
eo

ut

UMD,  12:00−4:00 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Number of files

 N
um

be
r 

of
 ti

m
eo

ut
 

UMD,  12:00−4:00pm 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

(b) # Retransmission timeouts

Figure 4.14: Empirical results for HTTP requests initiated at UMD.

97



10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UWISC,  12:00−4:00pm 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of files

 T
hr

ou
gh

pu
t b

yt
es

/s
ec

UWISC,  12:00−4:00pm 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

(a) Throughput

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

Number of files

 N
um

be
r 

of
 ti

m
eo

ut

UWISC,  12:00−4:00 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Number of files

 N
um

be
r 

of
 ti

m
eo

ut
 

UWISC,  12:00−4:00pm 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

(b) # Retransmission timeouts

Figure 4.15: Empirical results for HTTP requests initiated at Univ. of Wisconsin.

98



respectively. Experiments carried out in the morning/night intervals give similar, but less

pronounced results, and hence are not shown. We believe this is because the Internet carries

more traffic in the afternoons and hence different congestion control methods can be better

differentiated in this interval.

Several observations are in order: first, HTTP 1.1 and HTTP 1.0 achieves, respectively,

the best and worst performance in terms of retransmission timeouts in all experiments. This

is because with the persistent connection approach, HTTP 1.1 establishes one connection to

sequentially transfer the n files. Timeouts occur only as a result of competition with other

Internet traffic. HTTP 1.0, on the other hand, establishes n independent connections that

compete blindly with one another as well as other Internet traffic, thus yielding the worst

performance. Both COCOON and CM lie in between, with COCOON performing slightly

better than CM.

Second, in the case of transferring large files, the performance in terms of attainable

throughput (from best to worst) is HTTP 1.0, COCOON, CM, and HTTP 1.1. This is

attributed to (i) both CM and HTTP 1.1 establish only one connection, which has to com-

pete with other Internet traffic. COCOON and HTTP 1.0, on the other hand, establish n

individual TCP connections and hence are capable of grabbing more bandwidth shares;

(ii) COCOON coordinates congestion control among group members, and hence is not as

aggressive as HTTP 1.0 in grabbing bandwidth (but at the same time incurs less retrans-

mission timeouts); and (iii) in case of packet loss in a group, CM reduces the composite

congestion window by half (which is equivalent to reducing the congestion windows of all

99



individual connections by half), while COCOON selectively reduces the congestion win-

dows of those which may be potentially responsible for the congestion.

Third, in the case of transferring small files, HTTP 1.0, COCOON, and CM achieve

similar performance in terms of attainable throughput (and all of them outperform HTTP

1.1). This may be due to the fact that in the case of small file sizes, the time taken to transfer

files is relatively small as compared to the time taken to perform three-way handshaking

operations. As a result, the difference in the attainable throughput (which is amortized by

the connection setup time) becomes insignificant. Furthermore, during the small file trans-

fer period, not many packet losses or retransmissions occur, so the benefit of congestion

management via COCOON or CM cannot be magnified.

To demonstrate the grouping capability of COCOON, we also carry out the follow-

ing set of experiments (again in three time intervals on a daily basis over a period of two

weeks): four clients from UCSB, UCI, UMD, and UW simultaneously make HTTP re-

quests to the web server to transfer n files, where n varies from 10 to 50. In the case of

HTTP 1.0 (HTTP 1.1), 4n (4) parallel connections are established. In the case of CO-

COON, 4n connections are established and grouped into 4 groups, and in the case of CM,

connections are ensembled into 4 flows. Fig.4.16 gives the empirical results for experi-

ments carried out in the afternoon intervals. COCOON and HTTP 1.0 achieve comparable

performance and outperform HTTP 1.1 and CM in terms of response time. Also, COCOON

better coordinates congestion management among n connections in a group, as the number

of retransmission timeouts is smaller than that incurred in HTTP 1.0 and CM.

100



10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Number of files
R

es
po

ns
e 

T
im

e 
(s

ec
on

d)

Mixed,  12:00−4:00pm 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Number of files

R
es

po
ns

e 
T

im
e 

(s
ec

on
d)

Mixed,  12:00−4:00pm 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

(a) Avg. response time

10 15 20 25 30 35 40 45 50
0

5

10

15

20

Number of files

 N
um

be
r 

of
 ti

m
eo

ut

Mixed,  12:00−4:00 30k file

COCOON 
HTTP1.0
HTTP1.1
CM     

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Number of files

 N
um

be
r 

of
 ti

m
eo

ut
 

Mixed,  12:00−4:00pm 1M file

COCOON 
HTTP1.0
HTTP1.1
CM     

(b) # Retransmission timeouts

Figure 4.16: Empirical results for HTTP requests simultaneously initiated at UCSB, UCI,

UMD, and UM-Madison.

101



4.8 Conclusion

In this chapter, we present an alternate endpoint congestion management scheme, called

coordinate congestion control (COCOON). COCOON groups concurrent TCP and UDP

connections destined for the same destination host or subnet, enables them to share con-

gestion information (but not the congestion window, and coordinates congestion control

activities among them. The size of a COCOON group can be dynamically adjusted, and

the overhead of group management has been analytically shown to be reasonably small

(no more than 2.5%) under an extreme wide spectrum of subnet distribution and network

loads. COCOON also expedites the start up of a new connection by allowing it to com-

merce with a congestion window that is large enough to catch up with other connections

but not to induce congestion. Finally, COCOON takes into account non-responsive UDP

connections in a group and “bundles” them into a virtual connection, which is subject to

TCP-like congestion control.

COCOON requires modification only at the server hosts and can be readily deployed

over the Internet. We have implemented COCOON in ns-2 and in FreeBSD and performed

simulation/empirical studies with respect to various network topologies and traffic loads.

We observe that as compared to TCP-Reno, TCP-Int, CM, HTTP 1.0, and HTTP 1.1, CO-

COON indeed reduces packet loss rate of concurrent connections, while sustaining through-

put comparable to the best scheme. In particular, in the empirical study conducted over the

Internet, we observe that there exists a tradeoff between maximizing the attainable band-

width and minimizing the packet loss. Approaches that treat all connections destined for the

102



same destination as one flow and subject them to a single congestion window (e.g., HTTP

1.1 and CM) avoids blind competition but attains less throughput in the existence of other

Internet traffic. Approaches without coordination of congestion management (e.g., HTTP

1.0) attains the most throughput, but also suffers from blind competition among individ-

ual connections (which is evidenced by the higher frequency of retransmission timeouts).

The best approach is to treat connections as individual flows but coordinate congestion

management activities among them.

103



CHAPTER 5

Exploiting Traffic Predictability in Active Queue Management

In this chapter, we elaborate on how the predictability of Internet traffic can be exploited

to facilitate design of AQM. We first give the technical motivation and present an overview

of AQM with traffic prediction (Section 5.1). Then we delve into the detailed descriptions

of PAQM. In particular, we propose an LMMSE-based predictor (Section 5.2), and present

the design of the controller and derive the expression of packet dropping probability to

be used in the next time interval (Section 5.3). Following that, we give taxonomy, and

a detailed summary, of existing AQM schemes (Section 5.4), and present the simulation

results (Section 5.5).

Motivation: A number of recent empirical studies of network traffic measurements from

a variety of working packet networks have convincingly demonstrated that network traffic

is self-similar or long-range dependent (LRD) in nature [22, 96, 100, 101]. This implies

the existence of concentrated periods of high activity and low activity (i.e., burstiness)

at a wide range of time scales. Scale-invariant burstiness introduces new complexities

into resource control and QoS provisioning. On the one hand, burstiness at coarser time

104



scales induces extended periods of either over-utilization or under-utilization. Packets that

arrive in the periods of over-utilization experience long delays and are even dropped due

to buffer overflow, while packets that arrive in the periods of under-utilization experience

the opposite. The large variation in the end-to-end delay packets experience has an adverse

impact on transport of QoS-sensitive traffic such as multimedia traffic. On the other hand,

if resource reservation is deployed for QoS provisioning, resources have to be reserved with

respect to the peak rates over a wide range of time scales. This adversely affects resource

control and degrades the overall performance.

While the LRD characteristic of network traffic introduces difficulty and complexity

into traffic and resource management, it also opens up a new direction for research —

the existence of nontrivial correlation structure at larger time scales can be judiciously ex-

ploited for better congestion and resource control. How to exploit the abundant correlation

structure to improve the performance of AQM is the subject matter of this chapter.

Central to the notion of AQM with traffic prediction is prediction of the future traf-

fic based on recent traffic measurements and use of the prediction results to modulate the

magnitude of the packet dropping probability at a router. We first design a traffic predictor

based on the linear minimum mean square error (LMMSE) estimation. Through ns-2 simu-

lation and analytical reasoning, we show that the LMMSE predictor performs as accurately

as the other fractional-model based predictors (e.g., Fractional Brownian Motion (FBM)

model and the Fractal ARIMA (FARIMA) model), and yet can be practically implemented

in hardware/software with readily available fast algorithms. Then, we design a simple con-

troller that takes the prediction result (i.e., the amount of traffic to arrive in the next a few

105



measurement intervals) as input to determine the packet dropping probability. The objec-

tive function used here is to stabilize the queue length at a desirable level. We choose this

objective function for two reasons: if the queue length can be controlled (in anticipation of

future traffic) stable at a certain small value (or an pre-determined trajectory), (i) the delay

jitter experienced by packets that traverse the router remain approximately constant (which

is an important criterion for transporting QoS-sensitive multimedia applications); and (ii)

the capacity of the link can be fully utilized even under pro-active packet dropping/marking.

The resulting AQM scheme is termed as predictive AQM (PAQM).

The controller output of PAQM indicates that RED can be viewed as a special case of

PAQM, with the predicted future traffic always fixed at certain value. In other words, PAQM

augments the set of congestion indices with a new dimension — the amount of traffic to

arrive in the next a few measurement intervals (or equivalently the future arrival rate). This

also avoids the use of the queue length as both the congestion and performance indices —

which is commonly believed to be the cause that queue-length-based AQM schemes (such

as RED) cannot simultaneously achieve high link utilization and low packet loss ratio [7].

By stabilizing, with consideration of future traffic, the queue at a desirable level, PAQM

enables the link capacity to be fully utilized, while not incurring excessive packet loss ratio.

Through ns-2 simulation, we show that PAQM can indeed simultaneously achieve both.

106



5.1 Overview

RED was shown in [36] to prevent global synchronization,9 accommodate bursty traffic,

incur little overheads, and coordinate well with TCP under serious congestion conditions.

The performance of RED, however, heavily depends on whether or not the two thresholds

are properly tuned. Also, RED was shown to be unfair to individual flows [58], be unable to

achieve high link utilization and low packet loss ratio simultaneously [7,33,49], and exhibit

short-term fluctuation in the queue length [70]. In particular, it was shown in [7,33,41,49]

that queue length should not be the only parameter to be observed and controlled. Instead,

other control variables and control policies should be deployed. To this end, we propose a

novel AQM scheme that takes a new angle and manages the queue in anticipation of future

incoming traffic.

The block diagram of PAQM is shown in Fig. 5.1. Let f(i) denote a time series rep-

resenting the amount of data (in bytes) in a packet that arrives at a router. The predictor

keeps track of the aggregate series samples, fm(1), fm(2), . . . , fm(n), measured in the past

n measurement intervals, where fm(k), 1 ≤ k ≤ n, is the aggregate series sample taken in

the (n + 1− k)th most recent interval, i.e.,

fm(k) =
1

l

∑

i∈interval(k)

f(i), (5.1)

where l is the number of packets that arrive in a measurement interval (and may vary from

an interval to another). Based on these aggregate series samples, the predictor predicts

the amount of traffic, f̂(n + 1)
4
= fm(n + 1), and f̂(n + 2)

4
= fm(n + 2), in the next

9Global synchronization results from signaling all TCP connections to reduce their congestion windows
at the same time, and is usually followed by a sustained period of low link utilization.

107



two (or more) intervals. The controller then uses the predicted results to modulate the

packet dropping probability, p, to be used in the next time interval, with the objective of

stabilizing the instantaneous queue length at a desirable and stable level. As mentioned

before, the fact that the amount of future traffic is figured in in the calculation of packet

dropping probability is equivalent to augmenting the set of congestion indices with a new

dimension.

X

Estimator &
Predictor

Controller

Queue
qf(t)

1-p

Figure 5.1: AQM with traffic prediction.

5.2 Design of the Traffic Predictor

Several issues have to be addressed in designing a good traffic predictor: First, we have

to determine the traffic quantity to measure and predict. In this work, we measure and

predict the amount of traffic averaged over a measurement interval of length τ (Eq. (5.1)).

This is due to the following two reasons: (i) the LRD characteristic of the Internet traffic

implies that the autocorrelation function of the average traffic obeys the same law as that

of the original traffic. Hence, the aggregate time series is still a good representative of the

108



original time series. (ii) The averaging operation in Eq. (5.1) can be viewed as sampling

and smoothing operations. As reported in [84], smoothed and sampled traffic exhibits more

predictable behaviors, and hence prediction based on the aggregate traffic is more accurate.

Second, we have to determine which prediction method to use (and hence the math-

ematical model upon which the predictor is based). On the one hand, prediction should

provide enough accuracy, but on the other hand, the resulting predictor should be easy to

implement, and the parameters that have to be on-line measured/estimated should be kept

minimal. Third, we have to determine how far ahead traffic prediction is made. As in-

dicated in the predictability study of network traffic [84], there exists a trade-off between

how far ahead prediction can be made and how significant the prediction error is.

Instead of using existing fractional models for time series with LRD, we propose an

LMMSE predictor. In what follows, we elaborate on the design of the LMMSE based

predictor, and compare it against two widely used fractional models: FBM model and the

FARIMA, in terms of accuracy and ease of implementation. We also comment on how we

determine the length, τ , of each measurement interval.

5.2.1 LMMSE Predictor

Specifically, given the aggregate series fm(k), k = 1, ..., n, where fm(k) is given in

Eq. (5.1), we predict the aggregate series sample, fm(n + 1), in the next interval as a

109



weighted sum of the past n average samples:

f̂m(n + 1) =

[
a1 a2 ... an

]




fm(1)

fm(2)

...

fm(n)




, (5.2)

where a1, a2, ..., an are the LMMSE coefficients and can be expressed as
[

a1 a2 ... an

]
=

[
R(n) R(n− 1) ... R(1)

]

×




R(0) R(1) ... R(n− 1)
R(1) R(0) ... R(n− 2)
... ... ... ...

R(n− 1) R(n− 2) ... R(0)




−1

, (5.3)

where R(n) is the covariance function of the time series, and can be estimated (due to the

property of asymptotically second-order self- similarity) in practice as

R(i) =
1

n

n∑

t=i+1

fm(t)fm(t− i), 0 ≤ i ≤ n− 1, (5.4)

where n is the number of aggregate series samples kept and is a tunable parameter. (In

the simulation study, we use n = 20, as in all the simulation runs conducted the perfor-

mance improvement is marginal as n exceeds 20.) Note that the Hurst parameter H that

characterizes the LRD property has been implicitly calculated in the covariance function

R(i).

Similarly, to estimate the aggregate series sample, fm(n + 2), in the interval following

the next time interval, we take the estimated value of fm(n + 1) as a series sample, and

110



calculate

f̂m(n + 2) =

[
a1 a2 ... an

]




fm(2)

fm(3)

...

f̂m(n + 1)




.

The mean square error of the LMMSE predictor can be calculated (after a few algebraic
operations) as

σ2 = σ2
x −

[
R(n) R(n− 1) ... R(1)

]
·




R(0) ... R(n− 1)
R(1) ... R(n− 2)
... ... ...

R(n− 1) ... R(0)




−1

·




R(n)
R(n− 1)

...
R(1)


 . (5.5)

Since the LMMSE predictor does not depend on any fractional model, the close form

of σ2 cannot be easily obtained. Instead, we use the following asymptotic result as an

approximation:

R(τ) ∼ H(2H − 1)τ 2H−2. (5.6)

Implementation issues: To practically implement the LMMSE predictor, we consider

the following three issues:

1. The LMMSE predictor is derived under the assumption of zero mean stationary

stochastic process. As the stochastic time series on-line measured may not be of zero

mean, we subtract the mean value from the original time series, apply the LMMSE

predictor to estimate the average of the time series in the next interval, and then add

back the mean value.

111



2. We have to determine how far ahead traffic prediction is made. This translates into

the problem of determining an appropriate value, τ , for the interval between two cal-

culations of fm(k). Fortunately the LRD characteristic of the network traffic implies

the relatively low decay of the autocorrelation function, and hence the value of τ is

not very critical to the performance. In the simulation study, we set the value of τ to

be in the range of 0.02 to 0.05 seconds.

3. The operations involved in the calculation of LMMSE coefficients (Eqs. (5.3) and

(5.4)) are multiplication of time series samples and matrix manipulation, for which

fast algorithms exist [1]. Hence they can be readily implemented in hardware. In

particular, the author of [1] gave an adaptive algorithm in linear prediction in which

the matrix inverse operation in Eq. (5.4) can be avoided. Succinctly, the algorithm

starts with an initial estimate of the coefficient vector A0. Each time a new data point,

fm(n), is obtained, the algorithm updates An+1 using the recursive equation:

An+1 = An + µ · e(n) · fm(n), (5.7)

where e(n) is the prediction error and µ is a constant. If fm(n) is stationary, Ai is

shown to converge in the mean to the optimal solution [1]. The interested reader is

referred to [1] for a detailed account.

5.2.2 Comparison with Fractional Model-Based Predictors

Several fractional models and their corresponding predictors have been proposed for

time series with LRD characteristics, among which the FBM model and the FARIMA

112



model may have received the most attention. The interested reader is referred to the ex-

tended version of this paper [38] for a brief summary of the two fractional model-based

predictors and several important results that are relevant to the discussion of traffic predic-

tion in Section 5.2.3.

The reason why we use the LMMSE predictor instead in predicting incoming traffic at

a router is two fold:

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hurst parameter H

M
ea

n 
S

qu
ar

e 
E

rr
or

Non model
FBM model
FARIMA model

Figure 5.2: Comparison of mean square errors among the FBM, FARIMA, and LMMSE

predictors.

Accuracy: The most important criterion in choosing a predictor is the accuracy. We depict

the relative mean square errors versus the Hurst parameter H under the LMMSE

113



predictor (Eq. (5.5)/ρ2
x), the FBM predictor (Eq. (17) in [38]), and the FARIMA

predictor (Eq. (22) in [38]) in Fig. 5.2. When H → 1 the relative error converges to 0

under all three models, suggesting that the more pronounced the LRD characteristic,

the better the performance of predictors. Moreover, the three curves are close to one

another when H ≤ 0.85 (beyond which the curve corresponding to the FARIMA

model based predictor differs notably). Since analysis of real traffic traces indicates

that the H parameter rarely exceeds 0.85 [101], from the theoretic perspective, all

three predictors are equally well suited for Internet traffic prediction.

Ease of implementation: To implement the two fractional model based predictors, one

has to on-line estimate the H parameter and engage in complicated calculation of

weight coefficients. Specifically, one has to estimate the value of H in the FBM

model and calculate the weight coefficient in the form of

sin[π(H − 1
2
)]

π
[−t(T + t)]−H+ 1

2

∫ a

0

[τ(τ + T )]H− 1
2

τ − t
dτ.

Similarly, one has to estimate the value of d = H − 1/2 in the FARIMA model and

calculate the weight coefficient in the form of

βkj = −




k

j




Γ(j − d)Γ(k − d− j + 1)

Γ(−d)Γ(k − d + 1)
,

where Γ() is the gamma function. (The interested reader is referred to [38] for a de-

tailed account.) Furthermore, to estimate Hurst parameter H for a satisfactory accu-

racy, a much longer time series of traffic samples is needed. As a result, it is more dif-

ficult to practically implement model-based predictors in router hardware/software.

114



The LMMSE predictor, on the other hand, does not require estimation of such pa-

rameters, but instead calculates these parameters (in particular, R(i)’s in Eq. (5.4))

directly from the collected traffic samples. Moreover, as mentioned in Section 5.2.1,

there exist fast algorithms that can be readily implemented to perform operations

involved in the calculation of LMMSE coefficients (Eqs. (5.3) and (5.4)) [1].

5.2.3 Validation of the LMMSE Predictor

To validate the design of the LMMSE predictor, we have implemented it in a router in

ns-2 and tested its prediction capability in both single-bottleneck networks and networks

of arbitrary topology. We found that the actual traffic and the estimated traffic agree very

well. To illustrate this, we depict in Fig. 5.3 the actual traffic over a bottleneck link and its

corresponding LMMSE estimate. The single bottleneck has a capacity of 20Mbps and a

buffer size of 100 packets (each of 1000 bytes). Totally 60 connections are established over

the bottleneck link, with each source generating packets either (i) using the on-off traffic

model or (ii) using real network traffic traces. The H parameter estimated under both cases

in Fig. 5.3 are 0.75 ((a)) and 0.65 ((b)), respectively. This confirms the LRD characteristic

of the traffic. Moreover, under both cases, the estimated traffic agrees very well with the

actual traffic. In the former case, the ratio of the mean estimate error to the actual value is

0.08, while in the latter case, the ratio is approximately 0.15.

To study the effect of the number of connections on the performance, we repeat the

above experiment, but vary the number of connections on the bottleneck link. Fig. 5.4

115



0 5 10 15 20 25 30 35 40 45 50
0

1

2

Time in second

T
ra

ffi
c

estimated value
true value

(a) on-off model

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

Time in second

T
ra

ffi
c

estimated value
true value

(b) real network traffic traces

Figure 5.3: Actual and estimated traffic traces when TCP packets are generated using the

on-off model or real network traffic traces in ns-2.

116



depicts the Hurst parameter and the estimation error versus the number of connections. As

shown in Fig. 5.4, the traffic observed on the bottleneck link exhibits the LRD characteristic

under both cases, regardless of the number of connections. In particular, the estimation

error of the LMMSE predictor is less than 0.2 when the number of connections exceeds 10

in the former case, and less than 0.1 when the number of connections exceeds 4 in the latter

case.

5.3 Design of the Controller

Recall that in Fig. 5.1 the controller utilizes the prediction results (i.e., the amount

of traffic that arrives in the next two intervals) to determine the magnitude of the packet

dropping probability. The controller in Fig. 5.1 is not easy to analyze, as it is a non-linear

system. Hence we replace the controller with an alternative, but equivalent one in Fig. 5.5.

In this system, the output, u(t), of the controller is the amount of packets that should be

dropped (0 ≤ u(t) ≤ f(t), where f(t) is the amount of traffic that arrives at the router).

By setting p = u(t)
f(t)

, the two systems are equivalent.

Recall that traffic predication is made on a per-interval basis (where the interval is of

duration τ ). Let Q(k) denote the queue length at the end of the kth interval, and f(k + 1)

the amount of traffic that arrives in an interval of duration τ (which may vary from interval

to interval). Then, the discrete-time function of the queue length is Q(k + 1) = Q(k) +

f(k + 1)− u(k + 1)− C , where C = R × τ is the number of packets transmitted on the

outgoing link and R is the capacity of the outgoing link.

117



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of connections

H−parameter
prediction error mean

(a) on-off model

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of connection

Hurst Parameter          
Relative Prediction Error

(b) real network traffic traces

Figure 5.4: The Hurst parameter and the estimation error versus the number of connections.

118



+Predictor
Estimator &

Controller Queue
u    -

+

f(t) q

Figure 5.5: An alternate block diagram for AQM with traffic prediction.

The objective function used in the controller is to keep the queue length at an ap-

propriate level or follow a pre-determined, time-variant trajectory. Specifically, let Q̂(k)

and Qopt(k) denote, respectively, the discrete-time functions of the predicted and desirable

queue lengths at the end of the kth interval. Then, the objective function we consider is

either

J =
M∑

i=1

(
Q̂(k + i)−Qopt(k + i)

)2

, or (5.8)

J =

M∑

i=1

(
Q̂(k + i)−Qopt(k + i)

)2

+

M−1∑

i=0

biu
2(k + i), (5.9)

where M is the number of time intervals to be predicted ahead and bi is the weight for the

controller output. Note that the second term in Eq. (5.9) is used to prevent the system from

dropping packets excessively. The optimization problem can then be formally stated as

Problem 5.1 Find u∗ = arg min
u

J , where J is expressed in either Eq. (5.8) or Eq. (5.9),

subject to 0 ≤ u(k + i) ≤ f̂(k + i), 1 ≤ i ≤M .

We first solve Problem 5.1 with the objective function of Eq. (5.8) in the case of M = 2

and Qopt(k) = Q, ∀k, where Q is a pre-determined value. To obtain u∗(k) and u∗(k + 1),

119



we take the derivatives of J with respect to u(k + 1) and with respect to u(k + 2), and set

them to zero:

∂J

∂u(k + 1)
= 0, and

∂J

∂u(k + 2)
= 0.

The results of the above equations are (after a few algebraic operations) are




u∗(k + 1) = Q(k) + f̂(k + 1)− C −Q,

u∗(k + 2) = f̂(k + 2)− C.

(5.10)

Using a similar procedure, we can solve problem 5.1 with the objective function of Eq. (5.9)

in the case of M = 2 and Qopt(k) = Q, ∀k. The results are




u∗(k + 1) = − (4b1−1)(Q(k)+f̂(k+1)−Q)+2b1f̂(k+2)+(1−6b1)C
1−4b1−2b0+4b0b1

,

u∗(k + 2) = − 2b0(Q(k)+f̂(k+1)−Q)+(2b0−1)f̂(k+2)+(1−4b0)C
1−4b1−2b0+4b0b1

.

(5.11)

Note that Eq. (5.11) reduces to Eq. (5.10) when b1 = b2 = 0. As u∗(k + 1) and u∗(k + 2)

obtained in Eq. (5.11) may violate the constraints of 0 ≤ u(k + 1) ≤ f̂(k + 1) and

0 ≤ u(k + 2) ≤ f̂(k + 2), we consider the following four cases:

(C1) If u∗(k +1) ∈ [0, f̂(k +1)] and u∗(k +2) ∈ [0, f̂(k +2)], then u(k +1)← u∗(k +1)

and u(k + 2)← u∗(k + 2).

(C2) If u∗(k + 1) /∈ [0, f̂(k + 1)] and u∗(k + 2) /∈ [0, f̂(k + 2)], then the optimal solution

is one of the four possible pairs, (0, 0) , (f̂(k + 1), 0) , (0, f̂(k + 2)) and (f̂(k +

1), f̂(k+2)) . One can compute J(0, 0), J(f̂(k+1), 0) , J(0, f̂(k+2)) and J(f̂(k+

1), f̂(k + 2)) and select the one that gives the smallest value.

(C3) If u∗(k + 1) ∈ [0, f̂(k + 1)] and u∗(k + 2) /∈ [0, f̂(k + 2)], then the optimal solution

is one of the two possible pairs, (u∗(k + 1), 0) and (u∗(k + 1), f̂(k + 2)). One

120



can compute J(u∗(k + 1), 0) and J(u∗(k + 1), f̂(k + 2)) and determine the optimal

controller output accordingly.

(C4) If u∗(k + 1) /∈ [0, f̂(k + 1)] and u∗(k + 2) ∈ [0, f̂(k + 2)], then the optimal solution

is one of the two possible pairs, (0, u∗(k + 2)) and (f̂(k + 1), u∗(k + 2)) . One

can compare J(0, u∗(k + 2)) and J(f̂(k + 1), u∗(k + 1)) and determine the optimal

controller output accordingly.

After u(k + 1) is determined, we set p(k + 1) = u(k+1)

f̂(k+1)
as the packet dropping probability

to be used in the next interval. For example, if we use u∗ derived in Eq. (5.10), then

p(k + 1) =



0, Q(k) < C + Q− f̂(k + 1),

Q(k)+f̂(k+1)−C−Q

f̂(k+1)
, C + Q− f̂(k + 1) < Q(k)

< C + Q,

1, Q(k) > C + Q.

Note that p(k + 1) is a linear function of Q(k) when f̂(k + 1) is at a fixed value.

Fig. 5.6 gives the values of p(k + 1) as a function of Q(k) and f̂(k + 1), with Qopt = 0.6·

MaximumBufferSize and R = (0.5 · MaximumBufferSize )/τ (i.e., half of the queue can

be emptied in one measurement interval). As shown in Fig. 5.6 (b)-(c), the projection of

p(k + 1) onto the plane that corresponds to a fixed value of f̂(k + 1) is a RED-like curve.

That is, RED can be viewed as a special case of PAQM with the estimated future incoming

121



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

CurrentQueue/MaximumBufferPredictedTraffic/MaximumBuffer

D
ro

pp
in

g 
P

ro
ba

bi
lit

y

(a) Dropping probability as a function of current queue size and predicted incoming traffic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CurrentQueue/MaximumBuffer

D
ro

pp
in

g 
P

ro
ba

bi
lit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CurrentQueue/MaximumBuffer

D
ro

pp
in

g 
P

ro
ba

bi
lit

y

(b) f̂(k + 1) = 0.5·MaxBufSize (c) f̂(k + 1) = 0.3·MaxBufSize

Figure 5.6: The packet dropping probability, p(k + 1), to be used in the next time interval

versus the queue length and the estimated traffic. (The values of Q(k) and f̂(k + 1) are

normalized with respect to the maximum buffer size.)

122



traffic fixed at certain value. Another interpretation of Fig. 5.6 is that a RED queue can be

stabilized at a desirable queue length, if it considers the amount of incoming traffic and sets

the values of the two thresholds, min th and max th, in compliance with the curves given

in Fig. 5.6.

Figure 5.7: The packet dropping probability, p(k +1), calculated in an ns-2 simulation run.

Fig. 5.7 gives the packet dropping probability, p(k+1), calculated in an ns-2 simulation

with the same setting as in Fig. 5.6. Comparing Fig. 5.7 against Fig. 5.6, we observe that

the packet dropping probability used by a router in the simulation indeed lies on the plane

depicted in Fig. 5.7.

123



5.4 Related Work

Several AQM schemes have been proposed after the pioneer work of random early

detection (RED) [36], e.g., FRED [58], balanced RED (BRED) [4], BLUE [33], stabi-

lized RED (SRED) [70], random exponential marking (REM) [7], PI controller [41], and

AVQ [49]. They can be roughly categorized into three groups with respect to their design

objectives: (i) Per-flow fairness: fair RED (FRED) [58], balanced RED (BRED) [4], and

Stochastic Fair Blue (SFB) [32]; (ii) Stabilizing the instantaneous queue length: stabilized

RED (SRED) [70]; and (iii) Achieving high link utilization and low packet loss ratio si-

multaneously: BLUE [33], PI controller [41], random exponential marking (REM) [7], and

adaptive virtual queue (AVQ) [49]. These schemes differ in (1) the performance objectives

(in addition to that of notifying end hosts of incipient congestion by dropping/marking

packets); (2) the parameters used as an indicator of congestion; and (3) the policies used

to detect (incipient) congestion and to drop/mark packets. In what follows, we summarize

these schemes, and give in Table 5.1 a taxonomy with respect to the above three aspects.

Schemes that aim to achieve fairness: In FRED, a router monitors, not only the global

average queue length, but also the average queue length, qleni, of each individual active

connection i. Moreover, two minimum and maximum thresholds are defined for the per-

flow average queue length. When a packet from flow i arrives, qleni is compared against

these two thresholds. A flow with qleni less than the minimum limit is not subject to

random early dropping even if minth ≤ avg queue ≤ maxth. On the other hand, a flow,

which consistently exceeds the maximum threshold is subject to more aggressive dropping.

124



Category Scheme Congestion
index

Policies used to detect congestion and to drop/mark pack-
ets

Achieving
fairness

FRED
[58]

queue length Monitors the per-flow queue length and fine-tunes the
dropping/marking decision w.r.t. the per-flow queue
length.

BRED [4] queue length Defines three thresholds and divides the state of per-
flow queue length into 4 regions. Fine-tunes the drop-
ping/marking decision w.r.t. the per-flow state.

Achieving
high utiliza-
tion and low
packet loss

BLUE
[33]

queue length,
link idle event

Increases p if the instantaneous queue length exceeds L
and has not been updated for over freeze time. Decreases
p if the link is idle for over freeze time.

REM [7] queue length,
input rate

Defines the price function, c(k), as in Eq. (5.12), and cal-
culates the marking probability as p(k) = 1−φ−c(k),φ>1.

AVQ [49] input rate Maintains a virtual queue. At each packet arrival, enqueue
a fictitious packet and update the virtual queue capacity
using Eq. (5.14). Mark/drop a real packet only if the vir-
tual queue overflows.

Stabilizing
queue

SRED
[70]

queue length keeping a zombie list to keep track of recently seen flows,
to detect misbehaving flows, and to estimate the number,
N , of active flows. Figures in N in the packet dropping
probability.

PI [41] queue length,
input rate

Calculates the marking probability as in Eq. (5.15).

Scalable
con-
trol [75]

input rate Router updates its price function, pl(t), as in Eq. (5.16),
and marks packets with probability as 1− φ−pl(t), φ > 1.

Source sets its rate as xi(t) = xmax,ie
−

αiqi(t)

Miτi .

Table 5.1: A taxonomy of AQM schemes.

BRED extends FRED and imposes three thresholds, `1, `2, and `3, on per-flow queue

length, qleni. The three thresholds divide the space of qleni into 4 regions: (0, `1), (`1,

`2), (`2, `3), and (`3,∞), each of which is associated with a dropping probability of 0, p1,

p2(> p1), and 1, respectively. A router keeps, for each active flow i, the queue length,

qleni, and the number of its packets accepted into the queue since last drop, gapi. The

dropping probability for a packet from flow i is then a function of (i) the region qleni is

in and (ii) gapi. The reason for figuring gapi into the dropping probability is to prevent

125



consecutive multiple drops from a flow. In essence, both FRED and BRED aim to improve

the fairness of RED at the expense of keeping per-active-flow state information.

Schemes that decouples the congestion index and the performance index: Schemes

in this category aim at achieving both high utilization and low packet delay (queue length).

The key idea is to decouple the congestion measure from the performance measure. Specif-

ically, these schemes either use additional measures (e.g., link utilization, input rate) as

congestion indices, or introduce an intermediate entity (the price function in REM or the

virtual queue in AVQ) so that calculation of the dropping probability is not directly related

to the actual queue length.

In BLUE, the instantaneous queue length and the link utilization are used as the indices

of traffic load, and a single dropping probability p is maintained and used to mark or drop

packets upon packet arrival. If the instantaneous queue length exceeds a pre-determined

threshold, L, a BLUE router increases p by an amount of delta (which is a system pa-

rameter). To avoid dropping packets too aggressively, BLUE keeps a minimum interval,

freeze time, between two successive updates of p. Conversely, if the link is idle (i.e., the

queue is empty), the BLUE gateway decreases p by an amount of delta periodically (once

every freeze time). By adjusting p with respect to the instantaneous queue length and link

utilization (idle events), BLUE is shown through simulation to make the instantaneous

queue length converge to an operational point with small buffer sizes, while retaining all

the desirable features of RED.

126



REM decouples the congestion measure from the performance measure by defining the

price function, c(k + 1), as

c(k + 1) = max(0, c(k) + γ(α(Q(k)−Qopt) + x(k)− R)), (5.12)

where x(k) is the aggregate input rate and R is the capacity of the outgoing link. The

(α(Q(k) − Qopt) term is the queue mismatch, and the x(k) − R term the rate mismatch.

Since x(k)−R measures the rate at which the queue length grows, it can be approximated

as Q(k + 1)−Q(k), and Eq. (5.12) reduces to

c(k + 1) = max(0, c(k) + γ(Q(k + 1)− (1− α)Q(k)− αQopt)). (5.13)

The price increase if the weighted sum of these mismatches is positive, and decrease other-

wise. A REM router calculates the marking probability periodically as p(k) = 1− φ−c(k),

where φ is an arbitrary constant that is greater than 1.

The AVQ scheme, on the other hand, takes a dramatically different approach, and uses

solely the input rate, x(t), as the congestion index. An AVQ router maintains a virtual

queue whose capacity, R̂, is adjustable. Upon packet arrival, the virtual queue capacity is

updated according to

dR̂

dt
= α(γR− x(t)). (5.14)

where γ is the desired utilization. The rationale behind Eq. (5.14) is to mark/drop packets

more aggressively when the arrival rate exceeds the desired utilization (γR) and vice versa.

Also, a fictitious packet is enqueued in the virtual queue if space is available. Otherwise, the

fictitious packet is not enqueued and the real packet in the real queue is marked/dropped.

127



The rule for choosing the parameter α is rigorously analyzed using a control theoretic ap-

proach to ensure system stability. Through simulation in [49], AVQ is shown to outperform

REM in terms of reducing the packet drop rate and average queue length and achieving high

utilization.

Schemes that stabilize the instantaneous queue length: SRED argues that the instan-

taneous queue length may fluctuate dramatically under RED if the number of active flows

varies. To stabilize the instantaneous queue, SRED equips each queue with a zombie list

that keeps a list of M recently seen flows. When a packet arrives, it is compared with a

randomly chosen zombie in the zombie list. The result of a hit or a miss is used to detect

potential misbehaving flows for more aggressive dropping and to estimate the number of

active flows. The estimated value of N is then figured into the calculation of the dropping

probability p (e.g., p is an increasing function of N ) so as to avoid, upon packet loss, the

situation of significant system throughput decrease in the case that there are only a few

active flows. The simulation results indicated that SRED keeps the buffer occupancy close

to the specified value and away from overflow or underflow.

The PI controller also aims to stabilize the instantaneous queue length, but it is built

upon on a fluid model proposed in [64] and takes a more systematic approach. The PI

controller marks each packet with a probability p which is updated periodically using

p(k + 1) = p(k) + a(Q(k + 1)−Qopt)− b(Q(k)−Qopt), (5.15)

where a > 0 and b > 0 are constants chosen according to the design rules given in [41].

128



The scalable control scheme proposed in [75] uses the link’s price pl(t) as the conges-

tion index and marks packets with probability 1− φ−pl(t), φ > 1. The link then updates its

price pl(t) using the aggregate input rate yl(t) according to:

·
pl(t) =





yl−cl

cl
if pl(t) > 0;

max{0, yl−cl

cl
} if pl(t) = 0

(5.16)

in which cl is the virtual capacity that is strictly less than the actual link capacity. The

source will set its sending rate as an exponential function of aggregate price qi(t), i.e.

xi(t) = xmax,ie
−αiqi(t)

Miτi . To utilize this scheme, the current TCP congestion control and

avoidance scheme has to be changed.

The work that comes closest to ours is SRED, as both share the same objective of

stabilizing the instantaneous queue. Hence, we will make comprehensive performance

comparisons between SRED and PAQM in Section 5.5. On the other hand, as a side effect

of using the amount of traffic that arrive in the next few intervals to determine the packet

dropping probability, PAQM also decouples the congestion measure and the performance

measure and can be classified into the second category. Hence, we will also compare PAQM

against AVQ (which is reported to give the best performance in the second category) in

Section 5.5.

129



Queue 5
R RR R R R

Senders Receivers

Cross−traffic 
Senders

Cross−traffic
Receivers

Senders
Cross−traffic 

Cross−traffic
Receivers

10Mbps, 5ms

10Mbps, 5ms

10Mbps, 10ms 10Mbps, 10ms 10Mbps, 10ms

10Mbps, 5ms

10Mbps, 5ms

10Mbps, 10ms 10Mbps, 10ms

10Mbps, 5ms

10Mbps, 5ms 10Mbps, 5ms

Queue 1 Queue 2 Queue 3 Queue 4

Figure 5.8: The multiple bottleneck simulation topology.

5.5 Simulation Results

We have implemented PAQM along with RED [36], SRED [70], and AVQ [49] in ns-2,

and conducted a simulation study to validate the proposed design and compare the perfor-

mance of PAQM against the other schemes. We examine the behavior of these schemes

under a variety of network topologies and traffic sources. In particular, we have considered

the network topologies with a single bottleneck link, (e.g., Fig. 3.8), with multiple bottle-

neck links (e.g., Fig. 5.8), as well as of arbitrary topology. The maximum buffer size of

each router is set to 100 packets (of size 1000 bytes) under PAQM, RED, and AVQ, and

20 packets under SRED. The reason for choosing a different maximum buffer size under

SRED is that through extensive simulation, we find that SRED always attempts to keep the

queue close to full. The value is so chosen that the queue length is comparable to those

of PAQM and RED. We use an assortment of traffic sources (namely TCP sources that

generate packets according to the on-off model or real traffic traces down-loaded from the

130



Internet, and constant bit rate UDP sources). Due to the space limitation, we only report on

a small set of the simulations that we believe is the most representative.

The parameters used in PAQM are: Qopt is set to 20 packets10, and τ is in the range

of seconds. The parameters of RED are set as recommended in http://www.aciri.org /floyd

/REDparameters.txt, and those of SRED are chosen as recommended in [70] (i.e., M =

1000, α = 1/M = 0.001, and pmax = 0.15). Finally, the desirable utilization, γ, of AVQ is

set to 0.98, and the damping factor, α, is determined in compliance with Theorem 1 in [49]

to ensure system stability (α = 0.15).

Each data point is the result averaged over 10 simulation runs. In spite of numerous

system parameters involved, the results are found to be quite robust in the sense that the

conclusion drawn from the performance curves for a representative set of parameter values

(reported below) is valid over a wide range of parameter values.

5.5.1 Comparison Between RED, SRED, and PAQM

In this set of experiments we compare PAQM against RED and SRED with respect to

instantaneous queue length, packet loss ratio, and total throughput attained by receivers

under different network topologies and traffic mixes.

Simulation results under the single bottleneck topology: k TCP connections are es-

tablished over a single bottleneck link of capacity 20 Mbps. where k varies from 20 to

100. Fig. 5.9 gives the instantaneous queue length in the cases that 60 TCP connections

10As a matter of fact, the performance of PAQM is not very sensitive to Qopt.

131



0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

RED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

SRED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

time in second

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

PAQM Queue length

(a) on-off model

0 5 10 15 20 25 30 35 40 45 50
0

50

100

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

RED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

SRED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

time in second

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

PAQM Queue length

(b) real traffic trace

Figure 5.9: Instantaneous queue length in the single bottleneck network with TCP sources.

132



50 55 60 65 70 75 80 85 90 95 100
2

4

6

8

10

12

14

Number of connections

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 q

ue
ue

 s
iz

e

RED
SRED
PROPOSED

Figure 5.10: The standard deviation of the instantaneous queue length in the single bottle-

neck network.

133



are established and generate packets using either the on-off model ((a)) or the real traffic

traces ((b)). Fig 5.10 gives the standard deviation of instantaneous queue length with the

same setting in Fig. 5.9 (a) (except that the number of connections varies from 50 to 100).

As compared to RED and SRED, PAQM indeed keeps the queue at the desirable level and

better stabilizes the queue.

Fig 5.11 gives the packet loss ratio and the throughput attained by all receivers under

the case of TCP sources with the on-off model. PAQM performs better than SRED w. r. t.

attainable throughput, but slightly worse than SRED w. r. t. packet loss ratio. This is

because SRED always attempts to keep the queue (close to) full, and hence does not pro-

actively drop packets that aggressively. However, keeping the queue full also makes the

queue more susceptible to the global synchronization effect. This is evidenced in Fig. 5.9

(a) that the instantaneous queue length frequently oscillates between empty and full. This

also accounts for the fact that SRED does not attain as much throughput as PAQM.

Simulation results under the multiple bottleneck network: We repeat the same exper-

iments in a network with multiple bottlenecks. As shown in Fig. 5.8, there are 5 queues

among which queue 2 and queue 4 are shared with cross traffic of 20 TCP connections.

Again we establish k TCP connections with senders at the left hand side and receivers at

the right hand side, where k varies from 20 to 100. The cross traffic is composed of TCP

connections as well, and the number of TCP connections in each cross traffic bundle is

set to 0.5k. The simulation results show that the queue length at queue 5 is always 0 or

1, suggesting that the link is not a bottleneck link. The other four queues exhibit similar

134



50 55 60 65 70 75 80 85 90 95 100
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095
Drop probability for single−bottleneck−link: TCP

Number of connections

D
ro

p 
pr

ob
ab

ili
ty

RED
SRED
PROPOSED

(a) packet loss ratio

50 55 60 65 70 75 80 85 90 95 100
1.984

1.985

1.986

1.987

1.988

1.989

1.99

1.991
x 10

6 Attainable throughput for single−bottleneck−link: TCP

Number of connections

A
tta

in
ab

le
 th

ro
ug

hp
ut

:b
ps

RED
SRED
PROPOSED

(b) attainable throughput

Figure 5.11: The packet loss ratio and attainable throughput in the single bottleneck net-

work.

135



trends as far as the performance comparison is concerned. Hence, we arbitrarily choose to

depict the instantaneous queue length, the packet loss ratio and the attainable throughput of

queue 2 in Fig. 5.12 and 5.14, respectively. PAQM outperforms the other two schemes with

respect to all three measures. The reason why SRED does not perform as well in terms of

packet loss ratio is because as SRED has the tendency to keep the queue (close to) full, it

becomes more likely that packet losses occur as a result of buffer overflow, when the link

traffic becomes more bursty/congested with cross traffic.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

RED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

SRED Queue length

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

time in second

qu
eu

e 
le

ng
th

 in
 p

ac
ke

ts

PAQM Queue length

Figure 5.12: The instantaneous queue lengths at queue 2 in the multiple bottleneck network.

136



50 55 60 65 70 75 80 85 90 95 100
2

3

4

5

6

7

8

9

10

11

12

Number of connections

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 q

ue
ue

 s
iz

e

STD for Queue 2

RED
SRED
PROPOSED

Figure 5.13: The standard deviation of the instantaneous queue length at queue 2 in the

multiple bottleneck network.

137



50 55 60 65 70 75 80 85 90 95 100
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022
Drop probability for queue 2: TCP

Number of connections

D
ro

p 
pr

ob
ab

ili
ty

RED
SRED
PROPOSED

(a) loss ratio

50 55 60 65 70 75 80 85 90 95 100
1.965

1.97

1.975

1.98

1.985

1.99
x 10

6 Attainable throughput for queue 2: TCP

Number of connections

A
tta

in
ab

le
 th

ro
ug

hp
ut

:b
ps

RED
SRED
PROPOSED

(b) utilization

Figure 5.14: The packet loss ratio and link utilization at queue 2 in the multiple bottleneck

network.

138



We have also conducted simulation on several arbitrary network topologies but do not

report the results here due to the space limitation. The interested reader is referred to [38]

for a detailed account of these results.

Simulation results in the case of dynamic connection establishment and termination:

To test the responsiveness in stabilizing the queue in the case that connections are dynam-

ically established and terminated, we repeat the same experiment in the single bottleneck

network except that initially 40 TCP connections commence at time 0, at time 10 another

20 connections are established, and finally at time 30, 20 connections are terminated. All

the simulation runs last for 50 seconds. Fig. 5.15 gives the instantaneous queue length

under RED, SRED, and PAQM. The queue length under PAQM is always stable around

Qopt = 20 packets, regardless of change of the number of connections. The queue size

under RED, on the other hand, oscillate dramatically almost all the times. SRED again

keeps its queue length close to the maximum buffer size, and hence is subject to the global

synchronization effect experienced by a drop-tail queue. This is evidenced by the fact that

the instantaneous queue length frequently oscillates between empty and full.

5.5.2 Comparison between AVQ and PAQM

As mentioned in Section 5.4, although PAQM is not targeted to decouple the congestion

measure and the performance measure, the fact that it takes into account of the amount of

future traffic in the next two measurement intervals (or equivalently, the future arrival rate)

does help to achieve this objective. To illustrate this, we repeat the same experiment in the

139



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

time in seconds

qu
eu

e 
si

ze
 in

 p
ac

ke
ts

Queue size for RED

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

time in seconds

qu
eu

e 
si

ze
 in

 p
ac

ke
ts

Queue size for SRED

(a) RED (b) SRED

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

time in seconds

qu
eu

e 
si

ze
 in

 p
ac

ke
ts

Queue size for PROPOSED

(c) PAQM

Figure 5.15: The instantaneous queue length in the case of dynamic connection establish-

ment and termination.

140



single bottleneck network, but change Qopt from 4 to 30, and measure the packets loss ratio

and attainable throughput. Fig. 5.16 gives the simulation results. As Qopt changes from

4 to 35, the packet loss ratio changes from 0.206 to 0.19, while the attainable throughput

changes from 1.95 Mbps to 1.99 Mbps (the latter levels off when Qopt ≥ 8). This suggests

that under PAQM the equilibrium value of the congestion measure is independent of the

equilibrium performance measure (e.g., packet loss or attainable throughput).

As PAQM does exhibit the decoupling behavior, we compare it against AVQ — the

scheme currently reported in [49] to give the best performance in the second category (Ta-

ble 5.1). Again we repeat the same experiment in the single bottleneck network except

that we set Qopt = 2.5 under PAQM. This is because AVQ usually keeps its average queue

length at 2.5 packets under the given simulation setting. By setting Qopt = 2.5 packets, a

fair comparison can then be made with respect to packet loss ratio and attainable through-

put. Fig. 5.17 gives the simulation results. The average queue length both under AVQ and

PAQM is kept around 2.5 packets, but PAQM achieves better performance both in terms of

packet loss ratio and attainable throughput. This demonstrates the powerfulness of exploit-

ing LRD and taking into account of future arrival rate in determining the packet dropping

probability. We have observed similar trends in simulation runs conducted in the multiple

bottleneck network and in the network of arbitrary topology, but due to the space limitation,

do not include the results.

141



5 10 15 20 25 30
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Queue size in packets

P
ac

ke
t d

ro
p 

ra
ito

(a) packet loss ratio

5 10 15 20 25 30
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2
x 10

6

Queue size in packets

A
tta

in
ab

le
 g

oo
dp

ut
: b

ps

(b) link utilization

Figure 5.16: The packet loss ratio and link utilization versus Qopt.

142



50 55 60 65 70 75 80 85 90 95 100
0.24

0.26

0.28

0.3

0.32

0.34

0.36

Number of connection

P
ac

ke
t d

ro
p 

ra
tio

 (
%

)

PROPOSED
AVQ

(a) packet loss ratio

50 55 60 65 70 75 80 85 90 95 100
1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9
x 10

6

Number of connections

A
tta

in
ab

le
 g

oo
dp

ut
:b

ps

PROPOSED
AVQ

(b) link utilization

Figure 5.17: Performance comparison between AVQ and PAQM.

143



5.6 Conclusion

We have explored in this chapter the issue of exploiting traffic predictability to enhance

the performance of AQM. We show that the correlation structure present in long-range

dependent traffic can be detected on-line and used to accurately predict the future traffic.

We then figure in in the calculation of the packet dropping probability the prediction results

as a new dimension of congestion index. By stabilizing the instantaneous queue length at

a desirable level (in anticipation of future traffic), PAQM enables the link capacity to be

fully utilized, while not incurring excessive packet loss ratio. Through ns-2 simulation,

we show that under most cases PAQM outperforms SRED in stabilizing the instantaneous

queue length, and AVQ in reducing packet loss ratio and utilizing the link capacity.

It is worth mentioning that PAQM is orthogonal to REM, PI, and AVQ in the sense that

the effect of incoming traffic (predicted through exploitation of LRD) can be figured in in

the calculation of the price function (Eq. (5.12)) or in the adjustment of the virtual queue

capacity (Eq. (5.14)) to further improve their performance. As PAQM has been shown to

be a generalized scheme of RED with future traffic figured in (Fig. 5.6), one can expect that

REM/PI/AVQ, when coupled with PAQM, also gives a more generalized version expectedly

with better performance.

144



CHAPTER 6

A State Feedback Control Approach to Stabilizing Queues for

ECN-Enabled TCP Connections

In this chapter, we present an enhanced TCP model that considers effects ignored in the

previous models and design a state feedback AQM controller based on the enhanced model.

We first give an overview of the states of art in TCP models and indicate their deficiencies

(Section 6.1). Then we present our enhanced TCP model (Section 6.2). Following that,

we linearize our model and analyze its local stability (Section 6.3), and design a state

feedback AQM controller based on our linearized model (Section 6.4). Finally, we discuss

through theoretical reasoning, the algorithm implementation and parameter setting issues

(Section 6.5), and present simulation results (Section 6.6).

6.1 Overview

In the past few years, significant research efforts have been made to study/improve the

performance of RED (or, in general, AQM). These efforts can be roughly classified into

three categories. In the first category, approaches are devised to adaptively, on-line adjust

145



RED parameters according to the condition of network congestion [4, 33, 58, 70]. Most of

the approaches proposed in this category are heuristic-based and validated through simu-

lation. In the second category, interactive behaviors of TCP connections and AQM con-

trollers are characterized as a gradient optimization problem [47,49,75], with the objective

of maximizing the utility of the network. The optimization based approaches proposed

in this category primarily focus on the steady state equilibrium, rather than the transient

behavior, of the queue. The third category envisions a network that consists of TCP con-

nections and AQM routers as a dynamic feedback control system, in which AQM routers

act as controllers and TCP traffic sources act as plants [47, 64]. Several analytical models

are proposed to approximate the dynamic AIMD behaviors of TCP in conjunction with

AQM [47, 64]. Automatic control theory is then used to analyze (with respect to control-

lability and stability) and design AQM controllers. Our proposed work falls in the third

category.

The analytical models proposed in the third category provide new insights on designing

better AQM controllers and detecting problematic parameter settings. Succinctly, in the

TCP congestion avoidance phase, a TCP connection uses the AIMD algorithm to adjust

its congestion window size cwnd. That is, for each positive acknowledgment received, it

increases cwnd by 1
cwnd

, and in the case of congestion indication (i.e., receipt of three du-

plicate acknowledgments or ECN), it reduces cwnd by half to cwnd
2

[43]. These analytical

models characterize the AIMD behavior of TCP as follows [47]: as each positive acknowl-

edgment increases cwnd by 1/cwnd and each congestion indication reduces the cwnd by

half to cwnd
2

, the rate at which the expected congestion window size changes is expressed as

146



1−p

τ
− w2p

2τ
, where τ is the round-trip delay of a TCP connection, w is the current congestion

window size, and p is the dropping or marking probability. The changing rate is then taken

as the TCP dynamic behavior for analysis and design.

Although the controllers designed under the aforementioned models are shown, via

simulation, to perform well, two effects are not considered in these models. First, the con-

gestion window is not gradually decreased at the rate of w2p

2
, but suddenly halved upon

receipt of congestion indication. Second, the congestion window is halved at most once

during one RTT. In this chapter, we present an enhanced model that takes into account of

these effects as well as the TCP option of delay acknowledgment. We show that the new

model characterizes the TCP dynamics more realistically and that under the new model

cwnd decreases faster. We then analyze the stability of its linearized model and design,

with the use of state feedback control theory, a controller to stabilize the queue at an AQM

router. The resulting AQM controller is called the state feedback controller (SFC). All the

algorithm implementation and parameter setting issues are carefully considered and vali-

dated through theoretical reasoning. We also evaluate via ns-2 simulation the performance

of the new controller and compare it against other existing schemes. The simulation results

show that SFC outperforms other schemes in terms of fluctuation in the queue length, link

utilization, and packet loss ratio.

147



6.2 An Enhanced TCP Model

In this section, we take into account of (i) effects that were previously ignored in other

analytical models and (ii) the TCP option of delay acknowledgment, and derive a new

model to characterize the expected transient behavior of the TCP congestion window in the

congestion avoidance phase. We also compare the new model against existing models.

Similar to the existing models [47, 64], we assume that (A1) TCP connections operate

in the congestion avoidance phase11; (A2) the change in the packet dropping/marking prob-

ability is insignificant in one RTT, τ ; and (A3) packets are marked independently. While

other models take the expected rate at which cwnd changes over one acknowledgment as

the approximate cwnd change rate, we calculate the expected cwnd change, E(∆w), over

one RTT (τ ), and use E(∆w)
τ

as the cwnd change rate. As will be clearer below, with this

subtle change we will be able to figure in effects ignored in other models.

We model the TCP behavior in the congestion avoidance phase in terms of “cycles.”

An old cycle ends and a new cycle begins when all data packets in the previous congestion

window are acknowledged. In the time axis, a cycle takes approximately one RTT, τ .

Let the size of the current congestion window and the size of the congestion window one

RTT before be denoted, respectively, as w and w′. By definition, totally w′ packets are

acknowledged in the current cycle. Let the number of packets that are acknowledged by

a received acknowledgment (ACK) be denoted as b. If each ACK acknowledges only one

11It has been observed in [18] that the majority of Internet traffic is still dominated by long-lived TCP
connections and most long-lived TCP connections operate in the congestion avoidance phase most of the
time.

148



packet, b = 1. On the other hand, if the delayed ACK option is used (i.e., one ACK is sent

for every two data packets received), b = 2.

If the ECN bit of the kth acknowledgment is marked, the current congestion window

size, cwnd = w + k−1
bw

, will be halved. As the congestion window is halved at most once

in one RTT, after one cycle, the change in the congestion window size (in unit of MSS) is

1
b
− w

2
− k−1

2bw
. Let p denote the probability that the ECN bit of a packet is marked in the

current cycle. Then, under assumptions (A2) and (A3), the probability that the kth data

packet is the first with the ECN bit marked in the current congestion window (so that the

kth acknowledgment carry the ECN indication) is (1 − p)k−1p. If no ECN bit is marked

or three duplicate ACKs received, cwnd will be increased by w′

bw
, and the corresponding

probability is (1 − p)w′

. By the end of each cycle, the expected change in the congestion

window size can be expressed as

E(∆w) =

w
′

∑

k=1

(1− p)k−1p

(
w

′

bw
−

w

2
−

k − 1

2bw

)
+

w
′

(1− p)w
′

bw

= −
1− (1− p)w

′

w
′

p− (1− p)w
′

− p + p(1− p)w
′

2bwp

−
w

2

[
1− (1− p)w

′
]

+
w

′

bw
. (6.1)

When p is small, i.e. wp � 1, we can consider first-order items of p while ignoring high-

order items and simplify Eq. (6.1) to

E(∆w) ≈ −
w

′

(w
′

− 1)

2bw
p−

ww
′

2
p +

w
′

bw

=
w

′

bw
+ (

w
′

2bw
−

w
′2

2bw
)p−

ww
′

2
p. (6.2)

The rate at which cwnd changes can then be approximated as

dE(w)

dt
≈

E(∆w)

τ
. (6.3)

149



Notice that w′ = w(t− τ) and the packet dropping probability that a TCP connection

perceives also incurs a time delay τ , i.e., p = p(t − τ). Substituting w ′ and p(t − τ) into

Eq. (6.3), we have

dE(w)

dt
=

w(t− τ)

bτw(t)
+

[
w(t− τ)

2bτw(t)
−

w2(t− τ)

2bτw(t)

]
p(t− τ)

−
w(t)w(t − τ)

2τ
p(t− τ). (6.4)

Comparison against other models: Now we compare the newly derived model with

other analytical models. Misra’s model [64] (which is scaled by b to take into account of

the delayed ACK option) is given below:

dE(w)

dt
=

1

bτ
−

w(t)w(t − τ)

2τ
p(t− τ). (6.5)

Comparing Eqs. (6.4) and (6.5), we can see that when w(t− τ) ≈ w(t) and w(t− τ) > 1

(which is always true, as we assume TCP connections operate in the congestion avoidance

phase and hence w(t− τ) ≥ 3.),

w(t− τ)

2bτw(t)
−

w2(t− τ)

2bτw(t)
< 0. (6.6)

Eq. (6.6) implies the second term in Eq. (6.4) is negative, and hence the congestion window

size decreases faster in our model than in Misra’s model.

Let the sending rate be x(t) = w(t)
τ

. Then Eq. (6.4) can be re-written as

dx

dt
=

x(t− τ)

bτ2x(t)
+

[
x(t− τ)

2bτ2x(t)
−

x2(t− τ)

2bτx(t)

]
p(t− τ)

−
x(t)x(t− τ)

2
p(t− τ). (6.7)

150



Kelly’s model [47] (which is again scaled by b to take into account of the delayed ACK

option) is given below:

dx

dt
=

x(t− τ)

bτ2x(t)
−

x(t− τ)

bτ2x(t)
p(t− τ)−

x(t)x(t− τ)

2
· p(t− τ). (6.8)

Comparing Eqs. (6.7) and (6.8), we can see when x(t− τ) > 3
τ
, we have

x2(t− τ)

2bτx(t)
−

x(t− τ)

2bτ2x(t)
>

x(t− τ)

bτ2x(t)
, (6.9)

i.e., the second term in Eq. (6.7) is less than that in Eq. (6.8). By assumption (A1), the

congestion window size should always be greater than 3 MSS, and hence x(t − τ) > 3
τ

always holds. As a result, the sending rate decreases more rapidly in our model than in

Kelly’s model. This fact that the congestion window size decreases more rapidly cautions

us for the importance of designing appropriate AQM controllers as the impact of the packet

dropping/marking probability on the congestion window change is larger than other models

expect.

6.3 Analysis of Interaction Between TCP and AQM

In this section, we consider a system in which N homogeneous TCP connections tra-

verse a bottleneck link with bandwidth C. By homogeneous, we mean all the TCP con-

nections incur roughly the same RTT and share the same bottleneck link, although they do

not necessarily traverse the same end-to-end path. Let the queue length on the bottleneck

link be denoted q and the congestion window size of each TCP connection w. The dynamic

151



system can be described by




·
q , g(w(t), q) = N

τ
w − C,

·
w , f(w(t), w(t − τ), p) = w(t−τ)

bτw(t) −
w(t)w(t−τ)

2τ
p(t− τ)

+
[

w(t−τ)
2bτw(t) −

w2(t−τ)
2bτw(t)

]
p(t− τ).

(6.10)

The first differential equation (Eq. (6.10)) states that the queue length is an integral of the

difference between the packet arrival rate and the link capacity. The second differential

equation (Eq. (6.10)) describes the dynamic behavior of the TCP congestion window and

is developed in Section 6.2.

As the system model (Eq. (6.10)) is nonlinear with a time delay, it is impossible to

analyze it analytically. Hence, we will first approximate the system model with its small-

deviation linearized model around an operating point, say (w0, p0), to analyze its local

stability. We assume that τ is constant. Let δw , w − w0 and δp , p − p0, in which δw

and δp are, respectively, deviations of the congestion window and the dropping probability

from the operating point. By setting g(w(t), q) = 0 and f(w(t), w(t− τ), p) = 0, we have

w0 =
τC

N
,

p0 =
2

bw2
0 + w0 − 1

=
2N2

bτ2C2 + τCN −N 2
. (6.11)

Also,

∂g

∂w
=

N

τ
,

∂f

∂w
= −

p0 + 2bw0p0

2bτ
,

∂f

∂p
=

1

2bτ
−

w0

2bτ
−

w2
0

2τ
= −

1

bτp0
.

152



Hence, the equations that characterize the system dynamics around the operating point are

δ
·
q =

∂g

∂w
δw =

N

τ
δw,

δ
·
w =

∂f

∂w
δw +

∂f

∂p
δp

= −
p0 + 2bw0p0

2bτ
δw −

1

bτp0
δp(t− τ). (6.12)

For the system model to be meaningful around the operating point, we require that w0 ≥ 0

and 0 ≤ p0 ≤ 1. As τ > 0, C > 0 and N > 0, w0 is always greater than 0. To satisfy

0 ≤ p0 ≤ 1, we should have 0 ≤ N < 1+
√

12b+1
6

τC. All our analysis and design will be

restricted to the parameter region mentioned above, because otherwise the system has no

equilibrium and can not be stabilized according to the linear model. The transfer function

of the system is

T (s) =
W (s)

P (s)
= −

1
bτp0

s + p0+2bw0p0

2bτ

e−τs , G(s)e−τs, (6.13)

i.e., T (s) is a pure-delay system with a non-delay part G(s). As G(s) has a pole at

−p0+2bw0p0

2bτ
that lies on the left half of the complex plane, G(s) is stable.

In summary, the system in which N homogeneous TCP connections traverse a bottle-

neck link with capacity C can be approximated by the following linear differential equation:




·
δq = N

τ
δw,

·
δw = −p0+2bw0p0

2bτ
δw − 1

bτp0
p(t− τ).

(6.14)

In the matrix form, the system can be represented as
·
x = Ax + Dp(t − τ), where x =

[
x1 x2

]T

=

[
δq δw

]T

, A =




0 N
τ

0 −p0+2bw0p0

2bτ


 and D =

[
0 − 1

bτp0

]T

. Since

153



[
D AD

]
is full ranked, the system is controllable. Hence by using the proper con-

trol law, we can take system’s states, i.e. the queue length at the bottleneck link and the

congestion window size, cwnd, of TCP connections, to some desirable equilibrium point.

6.4 State Feedback Control AQM

AQM Controller x=Ax+Dp(t−  )τp x

Figure 6.1: The system diagram.

In this section, we design, based on the state feedback control theory, an AQM con-

troller under the linearized model (formulated in Section 6.3), and discuss how tunable

parameters should be set to stabilize the system, i.e. to make δq and δw as close to zero

as possible. The reasons for using state feedback control are: (i) it is desirable to remove

the operation of averaging the queue length (and using it as a congestion index) in several

AQM schemes, as it has been believed that this operation brings in more sluggish behaviors

to a delay system; (ii) since all system states in state feedback control can be readily ob-

tained or estimated, a state feedback controller can be easily implemented and can quickly

respond to system dynamics.

154



Fig. 6.1 shows the block diagram of the feedback control system that characterizes the

interaction between TCP and AQM. The controllable plant is the linearized TCP model

and the AQM controller marks the arrived packets with probability p (which is a function

of system states) and is the entity to be designed. With the use of state feedback control,

we can express the marking/dropping probability as a linear combination of system’s states,

i.e. x1 = δq and x2 = δw. Specifically, let p (t) = K · x (t). We have

·
x = Ax + Dp(t− τ) = Ax + D ·K · x(t− τ),

=




0 N
τ

0 −p0+2bw0p0

2bτ


x +




0 0

−k1
bτp0

−k2
bτp0


x(t− τ). (6.15)

After Laplace transform, the characteristic polynomial, D(s), of the system can be ex-

pressed as:

D(s) = det(sI −A−D ·Ke−sτ )

=
p0 (1 + 2bw0)

2bτ

[
2N

(1 + 2bw0) p2
0τ

k1 +
2k2

(1 + 2bw0) p2
0

s

]
e−sτ

+
p0 (1 + 2bw0)

2bτ

[
1 +

2bτ

(1 + 2bw0) p0
s

]
s. (6.16)

Stable region of k2: To make the feedback control system stable, we should choose pa-

rameters k1 and k2 such that the roots of D(s) all lie in the left half complex plane. Here we

leverage the results reported in [86]: the sufficient and necessary condition for the system

to be stable is that k2 fulfills the following inequality (after the value of k2 is determined,

k1 is chosen accordingly; we will elaborate on how to choose k1 below):

0 ≤ k2 ≤ bp0

√

θ2 +
(1 + 2bw0)

2 p2
0

4b2

=
2bN2

bτ 2C2 + τCN −N2

√

θ2 +
(1 + 2bw0)

2 p2
0

4b2
,

155



in which θ is a solution to tan (θ) = −
b(bτ2C2+τCN−N2)

N2(1+2b τC
N )

θ in the interval of
(

π
2
, π
)
.

In summary, let α = τC
N

. The sufficient and necessary condition for system stability

is that 0 ≤ k2 ≤
2b

α2b+α−1

√
θ2 + 1

b2

(
2ab+1

α2b+α−1

)2
= K2 max in which θ is a solution to

tan (θ) = −b bα2+α−1
2αb+1

θ in the interval of
(

π
2
, π
)
.

The bound of k2 as a function of N
τC

in the case of b = 1 and b = 2 is depicted in

Fig. 6.2. From the figure, we can see that the larger the value of N
τC

, the larger the bound

of k2. This implies when the number, N , of connections gets larger or the RTT, τ , gets

smaller, we can choose a larger value of k2. Alternatively, if we choose the value of k2 for

a minimal number of connections, say Nmin and a maximal value of τ , say τmax, then for

all N ≥ Nmin and τ ≤ τmax, the system is still stable, as N
τC
≥ Nmin

τmaxC
. Also, as shown

in Fig. 6.2, when the delayed ACK option is used, i.e. b = 2, we should choose a smaller

value of k2.

Stable region of k1: After the value of k2 is determined, the region of k1 to stabilize the

system can be determined by finding the roots of the following equation [86]:

k2 +
(2αb + 1) cos(z)

(bα2 + α− 1)2 −
bz sin(z)

(bα2 + α− 1)
= 0. (6.17)

Specifically, let the non-negative roots of Eq. (6.17) be arranged in the increasing order

of magnitude and denoted as zi, i = 0, 1, 2, . . . (of which z0 = 0). Next we compute

ai = a(zi), i = 0, 1, 2, . . . using the following equation:

a(z) = 2(2ab+1)
N

(
1

ba2+a−1

)2
z

[
sin(z) +

b(ba2+a−1)
(1+2ab)

cos(z)

]
. (6.18)

156



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−3

10
−2

10
−1

10
0

10
1

10
2

Bound for k
2

10
lo

g(
K

2m
ax

)

N/τC

b=1
b=2

Figure 6.2: The bound of k2.

The lower and upper bound of k1 will be 0 < k1 < mini=1,3,5,... ai. In fact, we do not

need to find all the roots of Eq. (6.17). After finding z2j+1 that makes cos(z2j+1) > 0, the

algorithms can stop and proceeds to find the bound for k1. In what follows, we give an

example to illustrate how to choose these parameters.

Example 6.1 Given the network parameters: C = 10Mbps = 1250 packets/second with the

average packet size 1000 bytes, Nmin = 300, τmax = 0.6sec, and b = 2 (i.e., the delayed

ACK option is used), only when N < 1+
√

12b+1
6

τC = 750, the system equilibrium is mean-

ingful. Also, Nmin

τmaxC
= 0.4. As shown in Fig. 6.2, if we choose 0 < k2 < 0.4, the system will

be stable for N ≥ Nmin and τ ≥ τmax. The bound of k1 as a function of k2 in the cases

157



of b = 1 and b = 2 is shown in Fig. 6.3. Also shown in Fig. 6.3 is that when the delayed

ACK option is used, i.e. b = 2, we should choose a smaller value of k1. Given all the above

criteria, we choose k2 = 0.2 and k1 = 0.0005.

The stability of the system with the chosen parameters can be validated by drawing the

open-loop Nyquist plot of the system. Specifically, the open-loop transfer function is G(s) =

1.167s+0.5833
s(s+0.6548)

e−0.6s. The system is strictly proper and has a pole on the imaginary axis at

s = 0, so Γs (a clockwise circle that covers the whole right-half complex plane including

the imaginary axis) should exclude it. The Nyquist plot is obtained by drawing G(s) for

two segments, which are (1) s = εejθ with ε→ 0 and θ varying from 0 to π
2
, and (2) s = jω

with ω varying from ε to +∞. For the first segment, by simple substitutions, we have

G(s) ≈
0.891

ε
e−jθe−0.6εejθ

=
0.891

εe0.6ε cos θ
e−j(θ+0.6ε sin θ) (6.19)

and as θ varies from 0 to π
2

and ε→ 0, this segment follows the quarter circle that starts at

0.891
ε

and ends at 0.891
ε

e−j( π
2
)+ . The second segment is shown in Fig. 6.4. As both segments of

the Nyquist plot do not encircle point (-1, 0), the closed-loop system is stable. Also as shown

in Fig. 6.5, the magnitude margin and the phase margin are 9dB and 60◦, respectively.

6.5 Algorithm Implementation and Parameter Setting

The algorithm of the AQM controller is outlined in Fig. 6.6. Lines 1–4 determine if

the queue length already exceeds the buffer limit. If so, the incoming packet is discarded.

Lines 5–11 calculate the packet marking/dropping probability, p, according to the current

158



0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3 Bound for k

1

K
1m

ax

K
2

b=1
b=2

Figure 6.3: The bound of k1.

159



Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−6

−4

−2

0

2

4

6

Figure 6.4: The Nyquist diagram of the system of interest.

Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

−450

−360

−270

−180

−90

0

−20

−10

0

10

20
Gm = 9dB Pm = 60 deg 

Figure 6.5: Bode plot of the system.

160



/* Called upon arrival of a new packet */
/* Qlim is the buffer size at the router, C0 is the capacity of the
* outgoing link, q0 is the desired queue length, and k1 and a = k2

C

* are parameters chosen to stabilize the queue length */
1. if (q ≥ Qlim) {
2. Drop the packet;
3. Return;
4. }
5. R← R estimate();
6. δq ← q − q0;
7. p← k1 · δq + a · (R− C0);
8. if (p < 0)
9. p = 0;
10. else if (p > 1)
11. p = 1;
12. drop← Random uniform(0,1);
13. if (drop > p) {
14. Put the packet into the queue;
15. } else if (ECN is enabled) {
16. Mark the ECN bit of the packet;
17. Put the packet into the queue;
18. } else
19. Drop the packet;
20. Return;

Figure 6.6: Enqueue procedure.

161



system states, and reset the probability to 0 or 1, if the calculated value exceeds region

[0, 1]. In Lines 12–19, the packet is marked/dropped with probability p.

Line 7 in the algorithm is worthy of further discussion, as it is related to the issues of

how to practically implement the AQM controller and how to measure/gather all the pa-

rameters such as k1 and k2. One key objective of choosing these parameters is that we

should ensure that the controller is robust to a wide variety of network condition changes.

The value of k1 can be determined as described in Section 6.4, after the value of k2 is de-

termined. On the other hand, to practically implement the algorithm, we replace k2δw with

a(R−C0). The value of δw cannot be directly obtained at the router, but can be estimated by

τ
N

δ
·
q, where δ

·
q is the difference between the incoming rate and the link capacity, i.e. R−C0.

The remaining problem is how to determine the values of τ and N . As mentioned in Sec-

tion 6.4, the equilibrium state of the system is meaningful only when N < 1+
√

12b+1
6

τC.

Hence, we can use Nmax = 1+
√

12b+1
6

τC (which is 0.77τC and τC, respectively, when b is

1 and 2.). Thus, in the case of b = 2, we have | τ
Nmax

δ
·
q| = | 1

C
δ
·
q| ≤ | τ

N
δ
·
q| = |δw|. Because

|k2

C
δ
·
q| ≤ |k2δw|, the net effect of setting a = k2

C
is that we choose a smaller value of k2

than that determined according to the method described above, and hence the system is still

stable.

p = k1 · δq + a · (R−C0) implies that the packet dropping/marking probability in SFC

consists of two parts: the first part is proportional to the difference between the current

queue length and the target queue length; and the second part is proportional to the ratio

of the difference between the incoming rate and the link capacity to the link capacity.

162



Continuing Example 6.1, we discuss in the following example how the parameters are

practically chosen:

Example 6.2 As shown in Fig. 6.3, for the nominal value of k2 = 0.2 obtained in Ex-

ample. 6.1, the appropriate value of k1 ranges from 0 to 0.0007. As described above, we

estimate the number, N , of connections to be Nmax, the net effect of which is that we actu-

ally use a smaller value of k2 than the chosen value of k2. Consequently, we should choose

the value of k1 so that the system remains stable given a smaller value of k2. From Fig. 6.3,

we can see that k1 = 0.0005 is in the stable region for all values of k2 ∈ [0, 0.2] and hence

is a safe choice.

6.6 Simulation Results

We have implemented our scheme along with RED [36], SRED [70], PI [41] and AVQ

[49] in ns-2 [50], and conducted a simulation study to validate the performance of proposed

design and compare its performance against other schemes. The performance study was

conducted with respect to queue stability, packet loss rate, link utilization, and parameter

robustness. The work that comes closest to ours is SRED and PI controller, as both of them

share the same objective of stabilizing the instantaneous queue. Hence we will conduct a

comprehensive performance study between SRED, PI and SFC. On the other hand, as a

side effect of using both the deviations of the queue length and the incoming rate from the

operating point to determine the packet dropping/marking probability, SFC also decouples

163



50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

S
F

C

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

R
E

D

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

S
R

E
D

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

D
ro

pT
ai

l

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

P
I

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
0

50

100

A
V

Q

Time (s)

Figure 6.7: Performance comparison with respect to instantaneous queue length among

different schemes.

164



100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Connection Numbers

Lo
ss

 R
at

e 
(%

)

Loss Rate Comparison

SFC     
RED     
SRED    
DropTail
PI      
AVQ     

Figure 6.8: Performance comparison with respect to packet loss rate among different

schemes.

165



100 200 300 400 500 600 700 800 900 1000
80

82

84

86

88

90

92

94

96

98

100

Connection Numbers

T
hr

ou
gh

pu
t (

%
)

Throughput Comparison

SFC     
RED     
SRED    
DropTail
PI      
AVQ     

Figure 6.9: Performance comparison with respect to link utilization among different

schemes.

166



the congestion measure and the performance measure. Hence, we will also compare SFC

against AVQ (which is reported to give the best performance in the second category).

We examine the behavior of these schemes under a variety of network topologies and

traffic sources. In particular, we have considered the network topologies with a single

bottleneck link of various RTTs (Fig. 3.8) and network topology with multiple bottlenecks

(Fig. 5.8). In the single bottleneck topology, the bottleneck link has a capacity of 10 Mbps,

a delay of 20 ms. The links between a sender and the left router and between a receiver and

the right router have a capacity of 10 Mbps and a delay of 40ms. The link bandwidth and

propagation delay used in the multiple bottleneck topology are specified in Fig. 5.8.

The average packet size is 1000 byte and buffer size on each link is 100 packets. The

traffic sources we use include long-termed TCP connections and short-termed TCP connec-

tions, both of which support ECN but do not enable the delayed ACK option. The number

of connections varies from 100 to 1000. The target queue length is set to 50 packets.

The setting of parameters in the various AQM schemes is as follows. The parameters

of RED are set as recommended in http://www.aciri.org/floyd/REDparameters.txt, and

those of SRED are chosen as recommended in [70] (i.e., M = 1000, α = 1/M = 0.001,

and pmax = 0.15). The desirable utilization, γ, of AVQ is set to 0.98, and the damping

factor, α, is determined in compliance with Theorem 1 in [49] to ensure system stability

(α = 0.15). The parameters of our scheme are k2 = 0.2 and k1 = 0.0005 as calculated in

the previous example. Each data point is the result averaged over 20 simulation runs. In

spite of numerous system parameters involved, the results are found to be quite robust in

167



the sense that the conclusion drawn from the performance curves for a representative set of

parameter values (reported below) is valid over a wide range of parameter values.

6.6.1 Performance Comparison Under the Single Bottleneck Topology

In this set of experiments, we compare SFC against other schemes in the single bot-

tleneck topology (Fig. 3.8). Totally k TCP connections are established over a single bot-

tleneck link of capacity 10 Mbps, where k varies from 100 to 1000. Fig. 6.7 gives the

instantaneous queue length in the cases that 200 TCP connections are established and con-

tinuously transmit packets. As shown in the figure, the instantaneous queue length under

SFC fluctuates around the target level, while the queue lengths under other schemes are

either always full or oscillates between empty and full.

Figs. 6.8–6.9 depict, respectively, the packet loss ratio and the goodput attained by all

receivers. SFC outperforms than other schemes with respect to packet loss rate (by reducing

as much as 50% packet losses), because it keeps the queue size at the desirable level. As a

result, buffer overflow seldom occurs and fewer packets are dropped. As the PI controller

also attempts to keep the queue length at a target level, it also achieves good performance.

Although SRED shares the same objective of stabilizing the queue at a desirable level, it

incurs much higher packet losses. This is attributed to the fact that SRED always attempts

to keep the queue full (as shown in Fig. 6.7). On the other hand, as shown in Fig. 6.9,

AVQ, SRED, and SFC (almost) fully utilize the bandwidth of the bottleneck link. This is

because the queue under SFC and AVQ is seldom empty, while SRED always keeps the

168



queue full (which in turns leads to high packet losses). The PI controller, on the other

hand, does not perform as well (10% less utilization), as the queue under the PI controller

cannot control the queue length constantly at the desirable level and the queue is sometimes

empty. Overall, SFC strikes a balance between reducing packet losses and queuing delay,

and utilizing link bandwidth.

6.6.2 System Response

In this set of experiments, we set the number of connections to 100, the target queue

length to 100, the buffer size to 300 packets, and compare the time it takes for the queue to

stabilize at the desirable level under the PI controller and SFC. As shown in Fig. 6.10, SFC

stabilizes the queue much faster than the PI controller. Furthermore, the former incurs very

low overshoot. The fact that the PI controller incurs slower response and larger overshoot

is attributed to its integral part in the controller.

6.6.3 Performance Comparison Under Dynamic Traffic Changes

In this set of experiments, we compare RED, PI, and SFC in terms of their responses

to dynamic traffic changes in the single bottleneck topology (Fig. 3.8). 200 TCP connec-

tions (with bulk data transfer) are established over a single bottleneck link of capacity 10

Mbps. 50 TCP connections stop their transmitting at the 60th second, and resume at the

70th second again. Fig. 6.11 depicts the instantaneous queue length under PI controller,

RED and SFC. The instantaneous queue length under PI and RED fluctuates significantly

169



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Q
ue

ue
 L

en
gt

h

Time (s)

SFC
PI 

Figure 6.10: Performance comparison (in terms of the time taken for the queue to stabilize)

between PI and SFC.

170



between the 60th and 70th seconds, while that under SFC is less susceptible to dynamic

traffic changes. The reason why RED does not respond well to dynamic traffic changes

is because the packet marking/dropping probability of RED is a linear function of the av-

erage queue length, and averaged queue length responds slowly to instantaneous queue

length changes and even more slowly to the incoming rate change. The integral part of the

PI controller makes it response slowly to dramatic traffic changes. In contrast, the mark-

ing/dropping probability in SFC is a linear combination of the instantaneous queue length

and the incoming rate, and hence can adapt to traffic changes.

50 55 60 65 70 75 80
0

20

40

60

80

100

120

140

160

180

200

Q
ue

ue
 L

en
gt

h

Time (s)

SFC
PI 
RED

Figure 6.11: Performance comparison (in terms of instantaneous queue length) under dy-

namic traffic changes.

171



6.6.4 Robustness w.r.t. RTT and # Connection Changes

In this set of experiments, we test the robustness of the system parameters chosen in

SFC with respect to different values of RTT and different # of TCP connections. The sim-

ulation setup is the same as in the first experiment, except that the number of connections

varies from 200 to 600 and the RTT value varies from 200ms to 800ms. Figs. 6.12 and

6.13 depict, respectively, the link utilization (i.e., the goodput attained by all receivers) and

the packet loss ratio for different values of RTTs and different numbers of TCP connec-

tions. It is clear that although the system parameters chosen in SFC are for the case of

τmax = 600ms and Nmin = 300, the controller still achieves high link utilization and low

packet loss ratio, regardless of the RTT and connection number changes.

6.6.5 Performance Comparison under the Multiple Bottleneck Topol-

ogy

Although SFC is designed for the case of homogeneous TCP connections sharing a

single bottleneck, we have conducted simulation to evaluate its multiple in the bottleneck

topology (Fig. 5.8). As shown in Fig. 5.8, there are 5 queues among which queue 2 and

queue 4 are shared by cross traffic of some other TCP connections. Again we establish

k TCP connections with senders at the left hand side and receivers at the right hand side,

where k varies from 100 to 1000. The cross traffic is composed of TCP connections as

well, and the number of TCP connections in each cross traffic bundle is set to 0.2k.

172



200 300 400 500 600 700 800
90

91

92

93

94

95

96

97

98

99

100

101

RTT (ms)

T
hr

ou
gh

pu
t (

%
)

Throughput Robustness

200 flows
400 flows
600 flows

Figure 6.12: Robustness of system parameters chosen in SFC (link utilization with respect

to different values of RTTs and # of connections).

173



200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

RTT (ms)

Lo
ss

 R
at

e 
(%

)

Loss Rate Robustness

200 flows
400 flows
600 flows

Figure 6.13: Robustness of system parameters chosen in SFC (packet loss ratio with respect

to different values of RTTs and # of connections).

174



The simulation results show that the queue length at queue 5 is always 0 or 1, suggesting

that the link is not a bottleneck link. The other four queues exhibit similar trends as far

as the performance comparison is concerned. Hence, we arbitrarily choose to depict the

instantaneous queue lengths of queue 2 in Fig. 6.14 and the packet loss ratio and the link

utilization of queue 4 in Figs. 6.15–6.16, respectively. As shown in Fig. 6.14, although

the capability of SFC to stabilize the instantaneous queue length degrades in the multiple

bottleneck topology, its queue length still oscillates around the desirable level (except that

the level of oscillation is larger than that in the single bottleneck topology). This is perhaps

due to the fact that every router attempts to control its queue level locally, so that the

interaction among them becomes complicated.

The link utilization achieved under SFC is the highest, as the controller attempts to

keep the queue length stabilized and responds quickly to the queue length and incoming

rate changes. The packet loss ratio under SFC is the second smallest and that under PI is

the smallest. However, PI suffers from low link utilization. The reason why SRED does

not perform as well in terms of packet loss ratio is because SRED has the tendency to keep

the queue (close to) full, and hence packet losses occur as a result of buffer overflow.

6.7 Conclusion

In this chapter, we introduce an analytical TCP model that takes into account of several

issues that were ignored in other existing models (such as those in [47, 64]), i.e., (i) the

congestion window is not gradually decreased at the rate of w2p

2
, but suddenly halved upon

receipt of congestion indication and (ii) the congestion window is halved at most once

175



10 15 20 25 30 35 40 45 50
0

50

100

S
F

C

10 15 20 25 30 35 40 45 50
0

50

100

R
E

D

10 15 20 25 30 35 40 45 50
0

50

100

S
R

E
D

10 15 20 25 30 35 40 45 50
0

50

100

D
ro

pT
ai

l

10 15 20 25 30 35 40 45 50
0

50

100

P
I

10 15 20 25 30 35 40 45 50
0

50

100

A
V

Q

Time (s)

Figure 6.14: Instantaneous queue length at queue 2 under different schemes in the multiple

bottleneck topology.

176



100 200 300 400 500 600 700 800 900 1000
80

82

84

86

88

90

92

94

96

98

100

Connection Numbers

T
hr

ou
gh

pu
t (

%
)

Throughput Comparison on Multiple Bottleneck Topology

SFC     
RED     
SRED    
DropTail
PI      
AVQ     

Figure 6.15: Link utilization at queue 4 under different schemes in the multiple bottleneck

topology.

177



100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Connection Numbers

Lo
ss

 R
at

e 
(%

)

Loss Rate Comparison on Multiple Bottleneck Topology

SFC     
RED     
SRED    
DropTail
PI      
AVQ     

Figure 6.16: Packet loss ratio at queue 4 under different schemes in the multiple bottleneck

topology.

178



during one RTT. We also include the delayed ACK option in the model. We show that

this enhanced model more realistically characterizes the TCP dynamics and that under this

model the change in the congestion window size is more significant in response to packet

losses. The latter cautions us for designing an appropriate AQM controller. Based on this

model, we then design, with the use of state feedback control theory, an AQM controller,

called SFC, to stabilize the queue at a router. The performance of the new controller is

shown via ns simulation to outperform other schemes in terms of fluctuation in the queue

length, link utilization, and packet loss ratio. In particular, SFC can reduce packet loss

by more than 50% as compared to other schemes and yet achieve full link utilization. As

compared to PI controller proposed in [41], SFC achieves 10% more link utilization.

179



CHAPTER 7

Conclusions and Future Work

In this chapter, we summarize our research accomplishments and suggest several re-

search avenues for future work.

7.1 Summary of Research Work

The major contributions of this thesis are:

(I) We present a rate-based multicast congestion control scheme, RACCOOM for contin-

uous multimedia applications. In the absence of packet loss, a RACCOOM sender

adjusts its sending rate in a TCP-Vegas fashion, based on the congestion status of

the on-tree path with the largest RTT (called the target path). In case of packet loss,

a RACCOOM sender then responds by reducing its sending rate by half. An ACK

aggregation method is judiciously devised to prevent ACK implosion and yet to pro-

vide the sender with a simple but comprehensive view of congestion conditions in

the multicast tree. RACCOOM also achieves (weighted) fairness among compet-

ing connections by exploiting feedback control theory and appropriately selecting

180



the parameters used in the rate adjustment mechanism. On the other hand, if TCP

friendliness is the performance criterion, then a simple iterative approach can be used

to on-line adjust the parameters α and β so as for a RACCOOM session to exhibit

TCP-friendliness. Simulation experiments indicate that RACCOOM connections can

achieve, irrespectively of the RTTs of individual connections, TCP-friendliness, can

handle membership/network traffic changes, can deal with persistent congestion, and

can achieve (weighted) fairness among competing connections with different RTTs.

In terms of the level of TCP friendliness, RACCOOM also outperforms RAP and

other formula-based approaches (e.g., CMTCP).

(II) We present an alternate endpoint congestion management scheme, called COCOON.

COCOON groups concurrent TCP and UDP connections destined for the same des-

tination host or subnet, enables them to share congestion information (but not the

congestion window), and coordinates congestion control activities among them. The

size of a COCOON group can be dynamically adjusted, and the overhead of group

management has been analytically shown to be reasonably small (no more than 2.5%)

under an extreme wide spectrum of subnet distribution and network loads. COCOON

also expedites the start up of a new connection by allowing it to commerce with a

congestion window that is large enough to catch up with other connections but not to

induce congestion. Finally, COCOON takes into account non-responsive UDP con-

nections in a group and “bundles” them into a virtual connection, which is subject

to TCP-like congestion control. COCOON requires modification only at the server

hosts and can be readily deployed over the Internet. We implement COCOON in

181



ns-2 and in FreeBSD and perform simulation/empirical studies with respect to vari-

ous network topologies and traffic loads. We observe that as compared to TCP-Reno,

TCP-Int, CM, HTTP 1.0, and HTTP 1.1, COCOON indeed reduces packet loss rate of

concurrent connections, while sustaining throughput comparable to the best scheme.

The encouraging results show that a good trade-off between maximizing the attain-

able bandwidth and minimizing the packet loss is to treat connections as individual

flows but coordinate congestion management activities among them.

(II) We explore the issue of exploiting traffic predictability to enhance the performance of

AQM. We show that the correlation structure present in long-range dependent traffic

can be detected on-line and used to accurately predict the future traffic. We then

figure in in the calculation of packet dropping probability the prediction results as a

new dimension of congestion index. By stabilizing the instantaneous queue length

at a desirable level (in anticipation of future traffic), the new AQM scheme, called

PAQM, enables the link capacity to be fully utilized, while not incurring excessive

packet loss. Through ns-2 simulation, we show that under most cases PAQM out-

performs SRED in stabilizing the instantaneous queue length, and AVQ in reducing

packet loss ratio and utilizing the link capacity.

(IV) We develop an analytical TCP model that takes into account of several issues that

were ignored in other existing models (such as those in [47, 64]), i.e., (i) the conges-

tion window is not gradually decreased at the rate of w2p

2
, but suddenly halved upon

receipt of congestion indication and (ii) the congestion window is halved at most

once during one RTT. We also include the delayed ACK option in the model. We

182



show that this enhanced model more realistically characterizes the TCP dynamics

and that under this model the change in the congestion window size is more signif-

icant in response to packet loss. The latter cautions us for designing an appropriate

AQM controller. Based on this model, we then design, with the use of state feedback

control theory, an AQM controller, called SFC, to stabilize the queue at a router. The

performance of the new controller is shown via ns-2 simulation to outperform other

schemes in terms of fluctuation in the queue length, link utilization, and packet loss

ratio. In particular, SFC can reduce packet loss by more than 50% as compared to

the other schemes and yet achieve full link utilization. As compared to PI controller

proposed in [41], SFC achieves 10% more link utilization.

7.2 Future Work

Based on our previous research work and experiences, we have identified several

avenues for conducting congestion control issues for next-generation Internets.

Prototype and evaluate RACCOOM over Internet 2: Since all the RACCOOM

operations can be implemented at end hosts, we plan to prototype RACCOOM on

FreeBSD and conduct experiments over Internet 2. (Currently NCSA [67] provides

Illinois academic institutions the opportunity to do research on Internet 2 through

connectivity to Abilene.) This is made possible by the fact that Internet2 has experi-

enced a reasonable amount of success in deploying multicast. Both vBNS [45] and

183



Abilene current run PIM-SM [23]/MBGP [11]/MSDP [31] as the inter-domain multi-

cast routing protocol and source discovery protocol. We will study how to implement

RACCOOM on top of these protocols. The implementation will be DR-based and re-

quire minimum router support. We also plan to investigate how RACCOOM sessions

interact with TCP connections when a different queue management mechanism, such

as RED, is used.

Combine traffic prediction and TCP/AQM model in AQM design: We have

shown that with traffic prediction and state feedback control, AQM schemes can be

better designed and give better performance. A natural extension is then to exercise

predictive control by combining traffic prediction and TCP/AQM models to stabilize

the queue.

Use non-linear control in AQM design: The current research trend TCP-model

based AQM design is to linearize the system model at the equilibrium point. The

limitation of linearization is that the resulting linear system model is only accurate

around the operating point. To remedy this problem, we will exploit non-linear,

adaptive control on the original non-linear system model and enable the controller to

be on-line adaptive to system parameter changes.

184



BIBLIOGRAPHY

[1] A. M. Adas. Using Adaptive Linear Prediction to Support Real-Time VBR Video
Under RCBR Network Service Model. IEEE/ACM Transactions on Networking,
6(5), October 1988.

[2] J.S. Ahn, P.B. Danzig, Z. Liu, and Y. Yan. Experience with TCP Vegas: Emulation
and Experiment. Proceedings of ACM SIGCOMM’95, August 1995.

[3] M. Allman. A Web Server’s View of the Transport Layer. ACM Computer Commu-
nication Review., October 2000.

[4] F.M. Anjum and L. Tassiulas. Fair Bandwidth Sharing Among Adaptive and Non-
Adaptive Flows in the Internet. Proceedings of IEEE INFOCOM’99, March 1999.

[5] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder. OC3MON: Flexible, Afford-
able, High-Performance Statistics Collection. http://www.nlanr.net/NA/Oc3mon/,
August 1996.

[6] M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup Web
Site. HP Technical Report http://www.hpl.hp.com/techreports/1999/HPL-1999-
35R1.html, September 1999.

[7] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin. REM: Active Queue Management.
IEEE Network Magazine, 15(3), May/June 2001.

[8] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R.H. Katz. TCP
Behavior of a Busy Web Server: Analysis and Improvements. Proceedings of IEEE
INFOCOM’98, March 1998.

[9] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated Congestion Management
Architecture for Internet Hosts. Proceedings of ACM SIGCOMM’99, August 1999.

[10] A. Ballardie. Core Based Trees (CBT version 3) Multicast Routing: Protocol Spec-
ification. Internet draft, August 1998.

185



[11] T. Betes, R. Chandra, D. Katz, and Y. Rekhter. Multiprotocol Extensions for BGP-4.
RFC-2283, IETF, February 1998.

[12] S. Bhattacharyya, D. Towsley, and J. Kurose. The Loss Path Multiplicity Problem in
Multicast Congestion Control. Proceedings of IEEE INFOCOM’99, March 1999.

[13] J. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-based Error Control for
Interactive Audio in the Internet. Proceedings of IEEE INFOCOM’99, March 1999.

[14] R. Braden. Extending TCP for Transaction - Concepts. RFC-1379, IETF, November
1992.

[15] R. Braden. T/TCP - TCP Extensions for Transactions. Functional Specification.
RFC-1644, IETF, July 1994.

[16] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoidance
on a Global Internet. IEEE Journal on Selected Areas in Communications, October
1995.

[17] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms for Congestion
Avoidance in Computer Networks. Journal of Computer Networks and ISDN, June
1989.

[18] K. Claffy, G. Miller, and K. Thompson. The Nature of the Beast: Recent Traffic
Measurements from An Internet Backbone. Proceedings of INET’98, 3(3), Septem-
ber 1998.

[19] A. Costello. Search Party: An Approach to Reliable Multicast With Local Recovery.
Proceedings of IEEE INFOCOM’99, March 1999.

[20] C. R. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of WWW Client-
based Traces. Technical Report Boston University CS Department, April 1995.

[21] L. Eggert, J. Heidemann, and J. Touch. Effects of Ensemble-TCP. ACM Computer
Communication Review, January 2000.

[22] A. Erramilli, O. Narayan, and W. Willinger. Experimental Queuing Analysis with
Long-Range Dependent Traffic. IEEE/ACM Transactions on Networking, April
1996.

[23] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson,
C. Liu, P. Sharma, and L. Wei. Protocol Independent Multicast Sparse-mode (PIM-
SM): Protocol Specification. RFC-2362, IETF, June 1998.

[24] B. Braden et al. Management and Congestion Avoidance in the Internet. RFC-2309,
IETF, April 1998.

186



[25] D. Estrin et al. Protocol Independent Multicast (PIM) Sparse Mode/Dense Mode.
ftp://netweb.usc.edu/pim. Working drafts, 1996.

[26] M. Allman et al. TCP Congestion Control. RFC-2581 IETF, April 1999.

[27] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC-2616, IETF, June
1999.

[28] T. Berners-Lee et al. The World Wide Web. Communications of the ACM, August
1994.

[29] T. Berners-Lee et al. Hypertext Transfer Protocol – HTTP/1.0. RFC-1945, IETF,
May 1996.

[30] T. Speakman et al. PGM Reliable Transport Protocol. Internet draft, April 2000.

[31] D. Farinacci, Y. Rekhter, P. Lothberg, H. Kilmer, and J. Hall. Multicast Source
Discovery Protocol (MSDP). Internet Draft, June 1998.

[32] W. Feng, D. Kandlur, and K. Shin. Stochastic Fair Blue: A Queue Management
Algorithm for Enforcing Fairness. Proceedings of IEEE INFOCOM 2001, April
2001.

[33] W. Feng, K. Shin, D. Kandlur, and D. Saha. A Self-Configuring RED Gateway.
Proceedings of IEEE INFOCOM’99, March 1999.

[34] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based Congestion Control
for Unicast Applications. Proceedings of ACM SIGCOMM 2000, September 2000.

[35] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking, August 1993.

[36] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking, 1(4), August 1993.

[37] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang. A reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. Proceedings
of ACM SIGCOMM’95, October 1995.

[38] Y. Gao, G. He, and J. Hou. On Leveraging Traffic Predictability in Active
Queue Management (Extended version). Available at http://eewww.eng.ohio-
state.edu/∼heg., August 2001.

[39] H. W. Holbrook and D. R. Cheriton. IP Multicast Channels: EXPRESS Support
for Large-scale Single-source Applications. Proceedings of ACM SIGCOMM’99,
September 1999.

187



[40] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-based Receiver-
reliable Multicast for Distributed Interactive Simulation. Proceedings of ACM SIG-
COMM’95, October 1995.

[41] C. Hollot, V. Misra, D. Towsley, and W. Gong. On Designing Improved Controllers
for AQM Routers Supporting TCP Flows. Proceedings of IEEE INFOCOM 2001,
April 2001.

[42] S. Jacobs and A. Eleftheriadis. Providing Video Services over Networks without
Quality of Service Guarantees. World Wide Web Consortium Workshop on Real-
Time Multimedia and the Web, October 1996.

[43] V. Jacobson. Congestion Avoidance and Control. Proceedings of ACM SIG-
COMM’88, 1988.

[44] S. Jagannathan, K. Almeroth, and A. Acharya. Topology Sensitive Congestion Con-
trol for Real-Time Multicast. Proceedings of NOSSDAV 2000, June 2000.

[45] J. Jamison, R. Nicklas, G. Miller, K. Thompson, R. Wilder, L. Cunningham, and
C. Song. vBNS: Not Your Father’s Internet. IEEE Spectrum, July 1999.

[46] M. Kadansky. Reliable Multicast Tree-building Techniques. RMRG Meeting, July
1998.

[47] F. Kelly. Mathematical Modeling of the Internet. Mathematics Unlimited - 2001 and
Beyond (Editors B. Engquist and W. Schmid), Springer-Verlag 2001.

[48] H.T. Kung and S.Y. Wang. TCP Trunking: Design, Implementation, and Perfor-
mance. Proceedings of IEEE ICNP’99, October 1999.

[49] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. Proceedings of ACM SIGCOMM
2001, August 2001.

[50] LBNL. UCB/LBNL/VINT Network Simulator - ns-2. http://www-
mash.cs.berkeley.edu/ns/.

[51] K. W. Lee, S. Ha, and V. Bharghavan. IRMA: A Reliable Multicast Architecture for
the Internet. Proceedings of IEEE INFOCOM’99, March 1999.

[52] A. Legout and E. W. Biersack. Pathological Behaviors for RLM and RLC. Proceed-
ings of NOSSDAV 2000, June 2000.

[53] L. W. Lehman, S. J. Garland, and D. L. Tennenhouse. Active Reliable Multicast.
Proceedings of IEEE INFOCOM’98, March 1998.

188



[54] B. N. Levine and J. J. Garcia-Luna-Aceves. Improving Internet Multicast with Rout-
ing Labels. Proceedings of IEEE ICNP’97, October 1997.

[55] B.N. Levine, S. Paul, , and J.J. Garcia-Luna-Aceves. Organizing multicast receivers
deterministically according to packet-loss correlation. Proceedings of ACM Multi-
media 98, September 1998.

[56] D. Li and D. R. Cheriton. OTERS (On-tree Efficient Recovery using Subcasting): a
Reliable Multicast Protocol. Proceedings of IEEE ICNP’98, October 1998.

[57] J. Lin, S. Paul, K. Sabnani, and S. Bhattacharyya. A Reliable Multicast Transport
Protocol (RMTP). IEEE Journal on Selected Areas in Communications, April 1997.

[58] W. Lin and R. Morris. Dynamics of Random Early Detection. Proceedings of ACM
SIGCOMM’97, September 1997.

[59] B.A. Mah. An Empirical Model of HTTP Network Traffic. Proceedings of IEEE
INFOCOM’97, April 1997.

[60] J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based Flow Control. Technical
Note, January 1997.

[61] G. Malkin. RIP version 2. RFC-2453, IETF, November 1998.

[62] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. ACM Computer Communication Review, July
1997.

[63] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. Pro-
ceedings of ACM SIGCOMM’96., 1996.

[64] V. Misra, W. Gong, and D. Towsley. A Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED. Proceedings of ACM
SIGCOMM 2000, September 2000.

[65] J. Mo, R. J. La, V. Anantharam, and J.Walrand. Analysis and Comparison of TCP
Reno and Vegas. Proceedings of IEEE INFOCOM’99, March 1999.

[66] J. Moy. OSPF version 2. RFC-2178, IETF, July 1997.

[67] NCSA. NCSA Projects Database. http://www.ncsa.uiuc.edu/TechFocus/Projects/.,
1996.

[68] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based Loss Recovery for
Reliable Multicast Transmission. IEEE Transactions on Networking, January 1998.

189



[69] T. J. Ott, J. H. B. Kemperman, and M. Mathis. The Stationary Behavior of Ideal
TCP Congestion Avoidance. Proceedings of IEEE INFOCOM’99, March 1999.

[70] T.J. Ott, T.V. Lakshman, and L.H. Wong. SRED: Stabilized RED. Proceedings of
IEEE INFOCOM’99, March 1999.

[71] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: a
Simple Model and its Empirical Validation. UMass-CMPSCI Technical Report TR
98-004, Feburary 1998.

[72] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A TCP-friendly Rate Adjustment
Protocol for Continuous Media Flows over Best Effort Networks. UMass-CMPSCI
Technical Report TR 98-004, October 1998.

[73] V. N. Padmanabhan. Addressing the Challenges of Web Data Transport. PhD Dis-
sertation Univ. of California at Berkeley, September 1998.

[74] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Technique for Speeding Up
Web Transfers. Proceedings of IEEE GlOBECOM ’98, November 1998.

[75] F. Paganini, J. C. Doyle, and S. H. Low. Scalable Laws for Stable Network Con-
gestion Control. Proceedings of Conference on Decision and Control, December
2001.

[76] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error Control Scheme for Large-
scale Multicast Applications. Proceedings of IEEE INFOCOM’98, March 1998.

[77] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Kauf-
mann, Second edition, 1999.

[78] T. Pusateri. Distance Vector Multicast Routing Protocol. Draft, IETF, March 2000.

[79] K. K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC-3168, IETF, September 2001.

[80] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-end Rate-based Conges-
tion Control Mechanism for Realtime Streams in the Internet. Proceedings of IEEE
INFOCOM’99, March 1999.

[81] I. Rhee, N. Balaguru, and G. N. Rouskas. MTCP: Scalable TCP-like Congestion
Control for Reliable Multicast. Proceedings of IEEE INFOCOM’99, March 1999.

[82] L. Rizzo. Pgmcc:a TCP-friendly Single-rate Multicast Congestion Control Scheme.
Proceedings of ACM SIGCOMM 2000, September 2000.

190



[83] D. Rubenstein, S. Kasera, D. Towsley, and J. Kurose. Improving Reliable Multi-
cast using Active Parity Encoding Services (APES). Proceedings of IEEE INFO-
COM’99, March 1999.

[84] A. Sang and S. q. Li. A Predictability Analysis of Network Traffic. Proceedings of
IEEE INFOCOM 2000, March 2000.

[85] S. Shenker, L. Zhang, and D. Clark. Some Observations on the Dynamics of a
Congestion Control Algorithm. Proceedings of ACM SIGCOMM’90, 1990.

[86] G. Silva, A. Datta, and S. P. Bhattacharyya. PI Stabilization of First-order Systems
with Time Delay. Automatica, December 2001.

[87] D. Sisalem and H. Schulzrinne. The Loss-delay Adjustment Algorithm: a TCP-
friendly Adaptation Scheme. Proceedings of NOSSDAV’98, July 1998.

[88] W. Stallings. Data and Computer Communications. Prentice-Hall, Sixth edition,
1996.

[89] W. Stevens. TCP/IP Illustrated, Volume 3: The Protocols. Addison-Wesley, 1998.

[90] W. Richard Stevens. TCP/IP Illustrated, Volum 1: The Protocols. Addison-Wesley,
1994.

[91] R. Talpade and M. H. Ammar. An Architecture for Providing a Reliable Multicast
Transport Service. Proceedings of ICDCS’95, 1995.

[92] K. Thompson, G.J. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns and
Characteristics. IEEE Network Magazine, November 1997.

[93] J. Touch. TCP Control Block Interdependence. RFC-2140, IETF, July 1994.

[94] T. Turletti, S. Parisis, and J. Bolot. Experiments with a Layered Transmission
Scheme over the Internet. Technical report RR-3296 INRIA, 1996.

[95] L. Vicisano, L Rizzo, and J. Crowcroft. TCP-like Congestion Control for Layered
Multicast Data Transfer. Proceedings of IEEE INFOCOM’98, March 1998.

[96] W. Willinger W. E. Leland, M. S. Taqqu and D. V. Wilson. On the Self-Similar
Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Net-
working, February 1994.

[97] L. Wei, D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S.Deering, M. Handley, V. Ja-
cobson, C. Liu, and P. Sharma. Protocol Independent Multicast - Sparse Mode (PIM-
SM): Protocol Specification. Internet draft, November 1999.

191



[98] B. Whetten and J. Conlan. A Rate Based Congestion Control Scheme for Reliable
Multicast. Technical White Paper, GlobalCast Communications, October 1998.

[99] J. Widmer and M. Handley. Extending Equation-based Congestion Control to Mul-
ticast Applications. Proceedings of ACM SIGCOMM 2001, August 2001.

[100] W. Willinger, V. Paxson, and M. S. Taqqu. Self-Similarity and Heavy Tails: Struc-
tural Modeling of Network Traffic. A Practical Guide to Heavy Tails: Statistical
Techniques and Applications, 1998.

[101] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-Similarity Through
High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level.
Proceedings of ACM SIGCOMM’91, 1991.

[102] R. Yavatkar, J. Griffioen, and M. Sudan. A Reliable Dissemination Protocol for
Interactive Collaborative Applications. ACM Multimedia, 1995.

192


