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ABSTRACT

Many physical systems can be modeled mathematically so that “responses” are

computable at arbitrary “experimental” inputs using numerical methods implemented

by a complex computer code. In some cases, such computer codes allow us to conduct

analogs of physical experiments that would not be possible due to the complexity of

the required physical system, cost of the physical experiment, or time constraints. In

a computer experiment, a response, y(x), usually deterministic, is computed for each

set of input variables, x, according to some experimental design strategy. Then, as in

physical experiments, the relationship between x, the inputs, and y(x), the outputs,

is studied.

We are concerned with the design of computer experiments when there are two

types of inputs: control variables, xc, and environmental variables, xe. Control

variables are set by a product designer and environmental variables are those that

are not controlled in the field but have some probability distribution characterizing a

population of interest. Our interest is in the mean response µ(xc) = E[y(xc,Xe)] as a

function of the control variables, where the expectation is taken over the distribution

of the environmental variables. The goal is to find a robust choice of control variables.

We review different methods of defining robustness and focus on finding a set of

control variables at which the response is insensitive to the value of the environmental

variables. Such a choice ensures that the mean response is insensitive to perturbations
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of the nominal environmental variable distribution. We present a sequential strategy

to select the inputs at which to observe the response so as to determine a robust

setting of the control variables. Our solution is Bayesian; the prior takes the response

as a draw from a stationary Gaussian stochastic process. The idea of the sequential

algorithm is to compute the “improvement” over the current optimal robust setting

for each untested site given the previous information; the design selects the next site

to maximize an expected improvement.
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CHAPTER 1

INTRODUCTION

Computer experiments are a new breed of experiment in the computer dependent

world of the 21st century. Classically, in order to study physical processes, a physical

experiment was necessary. The complexity of the physical system sometimes made

such experiments prohibitive, if not impossible, due to time constraints, physical con-

straints, and/or financial constraints. Today, complex systems that lend themselves

to mathematical modeling can be studied via computer codes that simulate the phys-

ical situation. These codes, often finite element models in engineering applications,

are able to compute responses at arbitrary inputs using numerical methods and/or

simulations run to the point of no simulation error. In other words, the process of

interest is governed by a mathematical model, which is solved by a computer code

that produces a response given the system inputs. Using the computer code, we are

able to perform what we call a computer experiment on the process of interest by

submitting arbitrary inputs (the experimental factors) to the code to obtain one or

more responses. This allows us to study the effect of various input variables, much

like a physical experiment.

Computer codes have been used to study phenomena in a number of scientific

areas. For example, Chang et al. (1999a) used computer codes to model proximal
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bone stress shielding and implant relative motion as a function of the design of a

hip prosthesis. Ye (1998) discusses using a computer model to simulate the cooling

system of an injection molding process. Other application areas include the design

and modelling of integrated circuits, controlled nuclear fusion devices, thermal energy

storage, and chemical kinetics (see Sacks, Welch, Mitchell and Wynn (1989b) and

Currin et al. (1991)).

In many ways computer experiments and physical experiments have similar fea-

tures. In both cases data are collected and analyzed to answer research hypotheses,

and to determine the relationship between the input variables and the response. Un-

like physical experiments, computer experiments are deterministic (i.e. rerunning the

experiment with the same inputs produces the same output). Thus, random error,

an important component of physical experiments, is not present in a computer ex-

periment, making the use of replication irrelevant to computer experiments. This

deterministic character of computer experiments must be kept in mind when devel-

oping models and generating designs for computer experimental data.

At first glance, the role of statistics in computer experiments may not be ap-

parent. A deterministic and computable response exists, making it appear that ex-

haustive sampling of the input space (essentially collecting infinite data) would allow

researchers to answer any question of interest. Unfortunately, this is impossible in

many computer experiments. The code can be very time consuming to run, often

taking longer than 5 hours to compute a single response, and it can involve high-

dimensional inputs. Both of these properties make a “large” number of code runs,

relative to the number of inputs, infeasible. Thus, statistical approaches have concen-

trated on building a “cheap” predictor (modeling) of the deterministic function based
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on a small training sample (design) of computed function values. As a fast surrogate,

the computationally inexpensive predictor is then used to predict the response at

untried inputs, and to approximately achieve research goals of interest.

Consider the problem of predicting a deterministic function based on a small train-

ing sample of computed function values. The first questions are what model should

be fit to the data, and what type of design should comprise the training sample? This

chapter presents the relevant background material and the statistical approaches pro-

posed in the computer experiments literature to answer these questions. We discuss

the analysis of computer experimental data, review some of the methods of input site

selection (design) involved in computer experiments, differentiate the types of vari-

ables that typically occur in computer experiments, and describe the experimental

goals typically associated with each type. Koehler and Owen (1996), Sacks, Welch,

Mitchell, and Wynn (1989b), and the forthcoming book by Santner, Williams, and

Notz (2003) are excellent references on the design and analysis of computer experi-

ments.

In the remaining chapters, we propose solutions to several analysis and design

problems for computer experiments. Chapter 2 presents a small simulation study

comparing the prediction accuracy of several types of predictors proposed for com-

puter experiments. In Chapter 3 we propose a strategy for the constrained optimiza-

tion of two computer codes when a subset of the input variables are uncontrollable

but vary according to some probability distribution. Chapter 4 introduces exploratory

data analysis methods for investigating the robustness of a design to variations in the

assumed distribution of the environmental variables. Finally, Chapter 5 proposes a

sequential design strategy for determining a “robust” set of control variables when a

3



subset of the input variables are uncontrollable but vary according to some probability

distribution.

1.1 Modeling

The modeling of computer experimental data is best viewed from the Bayesian

perspective with statistical models representing the prior beliefs about the uncer-

tain relationship between the inputs and the response. We denote the deterministic

function (computer code) as y(·) with inputs x ∈ X ⊂ R
p. One of the first goals

in computer experiments is prediction of y(·) at untried inputs in X . Best linear

unbiased prediction is one means of constructing a predictor of y(·). Sacks, Welch,

Mitchell andWynn (1989b) and Sacks, Schiller andWelch (1989a) discuss this method

of prediction in the context of computer experiments. From the Bayesian perspective,

prediction is accomplished by combining the prior information about the determinis-

tic function with information gathered from a set of training data. Currin, Mitchell,

Morris and Ylvisaker (1991), Koehler and Owen (1996) , and Neal (1999) present

the Bayesian interpretation of response prediction for this setting. In the following

sections we outline the approaches to modeling of computer experimental data. We

begin our discussion by defining the best linear unbiased predictor and stating its

form.

1.1.1 Best Linear Unbiased Prediction

Best linear unbiased prediction constructs a predictor of the computer code based

on a set of training data with a known joint distribution. In computer experiments

this distribution arises by treating the deterministic function as a realization of a

stochastic process (or random function), Y (x). The model that is typically used in

4



computer experiments is

Y (x) = f�(x)β + Z(x) (1.1)

where Z(x) is a random process assumed to have mean 0, variance σ2, and correlation

function R(x1,x2), so that the covariance between Z(x1) and Z(x2) is

Cov[Z(x1), Z(x2)] = σ2R(x1,x2).

The correlation function R(·, ·) and its properties are important in determining the

smoothness of the sample paths of Z(·) as we will see in Section 1.1.3. The regression

term f�(x)β allows for a global trend with f�(x) a k-vector of known regression

functions and β ∈ R
k a vector of unknown regression parameters.

In the analysis stage, the interest is in predicting the random variable Y (x0), for

some untried x0 ∈ X , based on the data Y n = (Y (x1), ..., Y (xn))
�. As in kriging,

the class of predictors is restricted to linear unbiased predictors of the form

Ŷ (x0) = c�(x0)Y
n

(see Cressie (1993), Chapter 3). To this end, we obtain the best linear unbiased

predictor (BLUP) by choosing the vector c(x0) to minimize the mean squared error

of prediction,

MSE[Ŷ (x0)] = E[(c�(x0)Y
n − Y (x0))

2] (1.2)

subject to the unbiasedness constraint

E[c�(x0)Y
n] = E[Y (x0)]. (1.3)

Let F = [f(x1), ...,f(xn)]
� be the n× k design matrix of Y n (assume F has full

column rank k), R = {R(xi,xj)} for i, j ∈ {1, ..., n} be the n× n correlation matrix
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of Y n, and r(x0) = (R(x1,x0), ..., R(xn,x0))
� be the n× 1 vector of correlations of

Y n with Y (x0). With these definitions, the unbiasedness constraint (1.3) becomes

c�(x0)Fβ = f
�(x0)β ∀ β ∈ R

k ⇐⇒ F�c(x0) = f(x0). (1.4)

Then, using (1.4) in (1.2) we have,

MSE[Ŷ (x0)] = σ2[1 + c�(x0)Rc(x0)− 2c�(x0)r(x0)]. (1.5)

To perform the constrained minimization, introduce Lagrange multipliers, λ(x0),

for the unbiasedness constraint, take derivatives with respect to c(x0) and λ(x0), and

set the derivative equal to zero to see that the coefficient vector, c(x0), must satisfy(
0 F�

F R

)(
λ(x0)
c(x0)

)
=

(
f(x0)
r(x0)

)
. (1.6)

Inverting the partitioned matrix on the left hand side and solving for c(x0), the BLUP

becomes

Ŷ (x0) = f
�(x0)β̂ + r

�(x0)R
−1(Y n − F β̂), (1.7)

where β̂ = (F�R−1F )−1F�R−1Y n, the usual generalized least-squares estimate of

β. Substituting back into (1.5), the MSE of the BLUP can be shown to be

MSE[Ŷ (x0)] = σ2

[
1 − (f�(x0) r

�(x0))

(
0 F�

F R

)−1 (
f(x0)
r(x0)

)]
, (1.8)

or, the more convenient form,

MSE[Ŷ (x0)] = σ2
[
1 − r�0R

−1r0 +

(f�
0 − r�0R−1F )(F�R−1F )−1(f�

0 − r�0R−1F )�
]
,

(1.9)

where r0 = r(x0) and f 0 = f(x0).

There are two important things to note about the formula (1.7) for the BLUP and

its MSE, (1.9). First, the BLUP is an interpolating predictor, i.e., it satisfies Ŷ (xi) =
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Y (xi) for i ∈ {1, ..., n}, a desirable property in light of the deterministic nature of

the computer code; we know the value of y(·) at xi, so our predictor should reflect

this knowledge. To see the interpolating character of Ŷ (xi), note that r(xi)R
−1 is a

unit vector with 1 in the ith position and 0 everywhere else. Using this fact it is easy

to show that Ŷ (xi) = Y (xi), and MSE[Ŷ (xi)] = 0 for i ∈ {1, ..., n}.

Second, the formula (1.7) for the BLUP assumes that R(·), the correlation func-

tion, is known, which is typically not the case. Usually a parametric family of cor-

relation functions is specified and the parameters of the family are estimated and

substituted into the above equations to produce the BLUP. We call the resulting

predictor the EBLUP (empirical best linear unbiased predictor) to reflect that this is

an empirical calculation based on the estimates of the correlation parameters. Sec-

tion 1.1.3 presents several common parametric families of correlation functions, and

Section 1.1.4 discusses several approaches to the estimation of the correlation param-

eters.

1.1.2 Bayesian Prediction and Posterior Distributions

The Bayesian perspective provides a more general development of prediction for

the computer experiments setting. Recall that, in general, the best MSE predictor

of Y (x0) given Y
n is the conditional expectation E[Y (x0)|Y n]. Letting Ŷ (x0) be an
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arbitrary predictor based on Y n we have

MSE(Ŷ (x0)) = E
[
(Ŷ (x0)− Y (x0))

2
]

= E
[
(Ŷ (x0)− E[Y (x0)|Y n] + E[Y (x0)|Y n]− Y (x0))

2
]

= E
[
(Ŷ (x0)− E[Y (x0)|Y n])2

]
+ MSE(E[Y (x0)|Y n]) +

2E
[
(Ŷ (x0)− E[Y (x0)|Y n])(E[Y (x0)|Y n]− Y (x0))

]
≥ MSE(E[Y (x0)|Y n]) +

2 E
[
(Ŷ (x0)− E[Y (x0)|Y n]) (E[Y (x0)|Y n]− Y (x0))

]
= MSE(E[Y (x0)|Y n]) + 0,

where the final equality holds by conditioning on Y n, and noting that given Y n the

second term is 0. Thus, E[Y (x0)|Y n] has smaller MSE than any other predictor that

depends on Y n. Currin, Mitchell, Morris and Ylvisaker (1991) propose using this

posterior mean of Y (x0) given Y
n as the prediction function. As we will see later,

the BLUP in Equation (1.7) is the posterior mean for a specific choice of the prior

distributions.

By calculating not only the posterior mean of Y (x0) given the data Y
n, but also

the complete posterior distribution [Y (x0)|Y n], we can obtain much more informa-

tion. As a simple example, suppose the parameters R(·), β, and σ2 in model (1.1)

are known, and that Z(·) is a Gaussian stochastic process. We obtain the posterior

distribution [Y (x0)|Y n] by noting that

(
Y (x0)
Y n

)
∼ Nn+1

((
f�(x0)
F

)
β, σ2

(
1 r�(x0)

r(x0) R

))
,
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where r(x0), F , and R are the quantities described in Section 1.1.1. Then, applying

Theorem B.0.7 from the Appendix we have

[Y (x0)|Y n] ∼ N1

(
f�(x0)β + r

�(x0)(Y
n − Fβ), σ2[1− r�(x0)R

−1r(x0)]
)
,

which gives

E[Y (x0) | Y n] = f�(x0)β + r
�(x0)R

−1(Y n − Fβ) (1.10)

Of course R(·) (or at least its parameters), β and σ2 are rarely known in practice.

One method of handling unknown parameters is to estimate them via maximum

likelihood (or some other means) and plug in the estimated values wherever necessary.

If R(·) is known and we estimate β by the typical generalized least squares estimate,

β̂ = (F�R−1F )−1F�R−1Y n, substituting into (1.10) gives the BLUP (1.7). The

fully Bayesian solution to the problem of unknown parameters is to assign prior

distributions to the parameters and integrate out those parameters to obtain the

posterior distribution, and/or the posterior mean. As an example, suppose now that

σ2 and R(·) are known, and β has the non-informative prior, [β] ∝ 1, then it can be

shown that the posterior distribution [Y (x0) | Y n] is Gaussian with mean given by

(1.7) and variance given by (1.8) (see Handcock and Stein (1993)).

If, in addition, we place Jeffrey’s prior on σ2 so that [β, σ2] ∝ 1
σ2 , the predictive

distribution of Y (x0) turns out to be a shifted t distribution with n − k degrees of

freedom (recall k is the dimension of β). O’Hagan (1992) also establishes a shifted t

distribution for the posterior of Y (x0) (see Lemma B.0.1), after placing a Gaussian

prior on the distribution of β given σ2 and an inverse chi-square prior on σ2.

A more extensive treatment of assigning priors to the parameters of this model

(still assuming R(·) is known) can be found in Williams (2000b) and in Santner et

9



al. (2003) where the following four priors, corresponding to informative and non-

informative choices for the terms [β|σ2] and [σ2], are considered. They show that if

[σ2]
[β | σ2] c0 × χ−2

ν0
1/σ2

N(b0, σ
2V 0) (1) (2)

1 (3) (4)

Table 1.1: Four [β, σ2] priors corresponding to informative and non-informative
choices for [β | σ2] and [σ2].

Z(·) in model (1.1) is a Gaussian process and if the parameters β, σ2 have one of the

priors corresponding to the four products (1) - (4) in Table 1.1, then the posterior

distribution of Y (x0) given Y
n is a scaled and shifted t distribution.

As before, these calculations assume that the correlation function is known. Where

this is not the case, the usual approach is to choose a parametric form for R(·) (eg.

(1.12)), estimate the parameters of the chosen parametric form, and use the estimated

R(·) as the known R(·) in constructing the required distributions and predictors. We

call the results empirical distributions and predictors. In Section 1.1.4 we discuss sev-

eral methods of estimating the parameters of a chosen parametric correlation function.

If we assume that R(·) has a parametric form that depends on the unknown param-

eters γ, the final piece of a fully Bayesian treatment is to assign a prior distribution

to γ and integrate out γ to obtain the posterior mean of Y (x0)

E[Y (x0)|Y n] =

∫
E[Y (x0)|Y n,γ]p(γ|Y n)dγ
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or the posterior distribution of Y (x0)

[Y (x0)|Y n] =

∫
[Y (x0)|Y n,γ]p(γ|Y n)dγ.

Of course this integration is non-trivial, typically high-dimensional (due to γ be-

ing high-dimensional), and is often prohibitive. So, the empirical Bayes procedure,

discussed above, is often used.

1.1.3 Parametric Correlation Functions

The derivations in the previous section have assumed that the correlation function,

R(·), and its parameters, which we will denote by γ, are known. To be a valid

correlation function R(·) must have R(0) = 1 and be a positive semidefinite function,

i.e. it must satisfy

n∑
j,k=1

cjckR(xi,xj) ≥ 0 (1.11)

for all finite n, all x1, ...,xn, and all real c1, ..., cn. We restrict ourselves to stationary

correlation functions which further satisfy R(x1,x2) = R(x1 −x2). This assumption

allows us to “learn” about the process based on a single realization of the process by

assuming that the correlation function depends only on the distance and direction

between two points, and not on the location of those points (see Stein (1999) Section

2.1 or Cressie (1993) Section 2.3).

Appendix A summarizes the properties of stochastic processes, and the relation-

ship that these properties have with the correlation function R(·). The primary

concept to note is that the properties of R(·) determine the smoothness of the sample

paths of the random process Z(·). This is important since we are using Z(·) as a

model for the computer code, and properties of Z(·) should reflect our prior beliefs

about the smoothness of the computer code output.
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This thesis will focus on two product type correlation functions: the Power Expo-

nential and the Matérn correlation function. In the following we assume that x ∈ R
p.

Definition 1.1.1 (Power Exponential). The product power exponential correla-

tion function has the form

R(x1 − x2) =

p∏
i=1

exp
(
− θi|x1,i − x2,i|αi

)
, (1.12)

where θi > 0 and 0 < αi ≤ 2 for i ∈ {1, ..., p}.

We call θi the scale parameter for the i
th coordinate. As θi increases the depen-

dence between fixed input sites decreases since R(·) decreases. If αi = 2, then the Z(·)

process from model (1.1) is infinitely mean square differentiable in direction i, and

if all αi = 2 then the sample paths of Z(·) are almost surely infinitely differentiable

(see Appendix A).

Definition 1.1.2 (Matérn Correlation Function). The product Matérn correla-

tion function has the form

R(x1 − x2) =

p∏
i=1

1

Γ(ν)2ν−1

(
2
√
ν|x1,i − x2,i|

θi

)ν

Kν

(
2
√
ν|x1,i − x2,i|

θi

)
, (1.13)

where ν > 0, θi > 0 and Kν(·) is the modified Bessel function of order ν (see Stein

(1999) Section 2.7).

The attractive property of this correlation function is that it has a parameter

that controls the smoothness of the Z process. For the power exponential, either

sample paths of Z(·) are infinitely differentiable (αi = 2 for all i), or they are not

differentiable at all (αi < 2). For the Matérn correlation function the parameter ν

controls the smoothness of Z(·) in that Z(·) is m times mean-square differentiable if
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and only if ν > m (see Stein (1999) Section 2.7), and if Z(·) is Gaussian, its sample

paths are almost surely m times differentiable if ν > m (see Cramér and Leadbetter

(1967) Secs. 9.2-9.5). Note that the power exponential correlation function with

α1 = · · · = αp = 2 and 1/θ
2
i in place of θi in (1.12) is the limiting case of the Matérn

correlation function (1.13) as ν −→∞

There are, of course, a large number of functions satisfying (1.11). For additional

examples of correlation functions used to model output of computer experiments see

Koehler and Owen (1996), Sacks et al. (1989a), and Currin et al. (1991).

1.1.4 Estimation of Correlation Parameters

Once a parametric correlation function is chosen, estimation of the parameters of

that function becomes necessary to compute the equations and formulas in Sections

1.1.1 and 1.1.2. As mentioned before, we typically estimate the parameters, γ, of the

correlation function, and plug the estimates into the prediction formulas as known

values, thereby producing empirical best linear unbiased predictors (EBLUPs). In

general, different estimates of γ will produce different EBLUPs. Sacks et al. (1989a)

and Currin et al. (1991) suggest estimation of γ via maximum likelihood, Stein

(1999 Chapter 6) and Cressie (1993 Chapter 2) present estimation of γ via restricted

maximum likelihood, and Handcock and Stein (1993) discuss a posterior mode method

of estimation. A fourth means of estimation of γ is cross validation. In Chapter 2 we

present a small simulation study comparing the predictive ability of the maximum

likelihood, restricted maximum likelihood, and cross validation EBLUPs.
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Maximum Likelihood Estimation

Let Y n = (Y (x1), ..., Y (xn))
� be the vector of output obtained from running the

computer code at the input sites x1, ...,xn. Then, using Model (1.1) and assuming

that Z(·) is a Gaussian process, we obtain

Y n ∼ Nn

(
Fβ, σ2R

)

where F = (f(x1), ...,f(xn))
� is the n × k regression matrix, β is the k × 1 vector

of unknown regression parameters, and the n× n matrix R is the correlation matrix

of Y n so that the (i, j)th entry of R is Corr[Y (xi), Y (xj)]. Note that this quantity

depends on the correlation function chosen and the values of its parameters. So, the

parameters of the model are β, σ2 and the parameters of the correlation function,

R(·), which we will denote as γ. The likelihood function is:

L(β, σ2,γ,Y n) = 1
(2π)n/2|σ2R|1/2 ×

exp
[
−1

2
(Y n − Fβ)�(σ2R)−1(Y n − Fβ)

]
.

(1.14)

Given γ, the MLE’s of β and σ2 are

β̂ = (F�R−1F )−1F�R−1Y n, (1.15)

and

σ̂2 =
1

n
(Y n − F β̂)�R−1(Y n − F β̂). (1.16)

Substituting these formulas into (1.14), maximizing (1.14) to obtain the MLE, γ̂, of

γ is equivalent to minimizing |R|1/nσ̂2, which is a function only of the correlation

parameters γ, and the data Y n, as desired. We then substitute γ̂ into (1.15) and

(1.16) to obtain the MLE’s of β and σ2, respectively.
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Welch et al. (1992) discuss an algorithm for calculating the maximum likelihood

estimate of γ when the input space is high-dimensional (i.e. p is large). For p large,

the number of correlation parameters for both the Matérn and power exponential

correlation functions is large and maximizing (1.14) becomes very difficult. Welch et

al. describe an iterative procedure to reduce the number of correlation parameters

by screening out “unimportant” variables and allowing only “important” variables to

have their own correlation parameter.

Restricted Maximum Likelihood

The restricted maximum likelihood (REML) approach to estimation of γ attempts

to reduce the bias present in the maximum likelihood estimate of the variance of the

process. REML estimators are found by maximizing the likelihood of a set of error

contrasts of the data. Stein (1999) and Harville (1974) state that the REML estimates

of (σ2,γ) maximize

!(σ2,γ|Y n) ∝ −1
2
[(n− k)log(σ2) + log|R| + log|F�R−1F | +

(Y n − F β̂)�R−1(Y n − F β̂)/σ2].

(1.17)

Maximizing (1.17) over σ2, for fixed γ, gives

σ̃2 =
1

n− k (Y
n − F β̂)�R−1(Y n − F β̂). (1.18)

Thus, the REML estimate of γ is obtained by maximizing

−1
2
[(n− k)log(σ̃2) + log|R| + log|F�R−1F |] (1.19)

which is a function of Y n and γ. The REML estimate of σ2 is then obtained by

substitution of γ̂ into (1.18). Harville (1974) gives a Bayesian justification for REML,

by showing that when a noninformative prior is placed on β, the posterior density of

(σ2,γ) is proportional to the restricted log likelihood in (1.17).
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Estimation Via Cross-Validation

Leave-one-out cross validation has been studied extensively in the standard re-

gression setting, and offers a heuristic prediction-oriented alternative to likelihood

based estimation in the computer experiments setting. The idea of cross-validation

is to remove the ith observation and use the BLUP based on the remaining n− 1 ob-

servations to predict the value for the ith observation. The cross-validation choice for

the correlation parameters is the one that makes the predicted value of y(xi) closest

to the true value, averaging over all n observations. More formally, to estimate γ we

minimize the quantity

f(γ) =
n∑
i=1

(Ŷ−i(xi)− y(xi))2, (1.20)

where Ŷ−i(xi) is the BLUP (equation (1.7)) of y(xi) based on the n− 1 observations

obtained by removing y(xi) from (y(x1), ..., y(xn)). This strategy of estimation is

investigated more closely in Chapter 2, where it is compared to maximum likelihood

and restricted maximum likelihood estimation.

Posterior Mode Estimation

A final, and fully Bayesian, method of estimating γ results from calculation of

the posterior distribution of γ given the data Y n and the prior distribution of γ,

[γ]. An empirical Bayes estimator of γ can be obtained as the posterior mode of this

distribution. The posterior mode of γ is the value that maximizes

[γ|Y n] =
[Y n|γ][γ]
[Y n]

.
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Handcock and Stein (1993) show that if [β, σ2] ∝ 1
σ2 (the non-informative choice

of prior corresponding to (4) in Table 1.1) then the posterior distribution of γ satisfies

p(γ | Y n) ∝ p(γ)|R|−1/2|F�R−1F |−1/2[σ̃2]−(n−k)/2, (1.21)

where p(γ) is the prior density of γ, β̂ and σ̃2 are defined in (1.15) and (1.18), and

R and F are as defined in (1.14). The posterior mode of γ is the value of γ that

maximizes (1.21). Note that if we assume p(γ) ∝ 1, the posterior mode of γ is

equivalent to the REML estimator of γ because maximizing (1.21) is equivalent to

maximizing the REML likelihood (1.19) (see Harville (1974)) .

1.1.5 Multivariate Modeling

Consider an application where multiple computer codes are available producing g

related or competing responses on the same input space. For example, in the design

of total hip replacements Chang et al. (1999a) discuss two competing responses, bone

stress shielding and implant toggling.

An important issue is how to model this multi-response computer experiment

data. One option is independent univariate modeling of each response. However, for

the case where the multiple responses are related, intuitively the data can be better

represented by a model that allows for some association between the outputs, Yi(·)

for i = 1, ..., g. We model the multiple outputs Yi(·) as in Model (1.1) so that

Yi(x) = f
�
i (x)β + Zi(x)

where Zi(x) is a mean zero, stationary Gaussian stochastic process with variance

σ2
i and correlation function Ri(·). To complete the model, we need to specify the

cross-correlation functions Rij(x1 − x2) = Corr[Zi(x1), Zj(x2)], so as to guarantee a
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positive definite joint covariance structure for Z1(·), ..., Zg(·). Note that if Rij(·) = 0

for all i �= j we have independent univariate modeling of each response.

The specification of a joint covariance structure that gives positive definite joint

covariances is not a trivial problem. The literature on cokriging, for example Sun

(1998), Stein and Corsten (1991) and Phillips et al. (1997), has modeled this type

of data using parametric cross-covariance functions, and restricting the parameters

to values that lead to positive definite joint covariance structures for the data sam-

pled. For the case where there are two responses of interest, Y1(·) and Y2(·), an

autoregressive model relating Z1(·) to Z2(·) is constructed by setting

Z2(x) = rZ1(x) + Zδ(x), (1.22)

where Zδ(x) is a mean zero Gaussian stochastic process that is independent of Z1(·)

and has variance σ2
δ and correlation function Rδ(·). From (1.22) the cross-correlation

function, R12(·), can be derived upon specification of the marginal correlation func-

tions R1(·) and Rδ(·) and the parameters of the model. Kennedy and O’Hagan (2000)

propose this model and present conditions which lead to positive definite joint covari-

ance structures. This model is used in Williams, Santner, and Notz (2000c) and in

Chapter 3.

Another model in the same spirit is that of VerHoef and Barry (1998) who discuss

the construction of valid cross correlation functions by modeling the spatial data as

a moving average over a white noise random process. This is potentially the most

promising method for assuring that a multi-response model has a valid correlation

structure, and can lead to a large variety of joint covariance structures.

18



1.2 Design

In the previous section we looked at prediction of the computer code based on

n observations of the code. Here, we discuss how to select the input sites at which

to observe the response (run the code). This is the design question for computer

experiments. Of course, the large subject of experimental design cannot be covered

in a single section, so we restrict our discussion to the designs often used in computer

experiments.

When choosing experimental designs for computer experiments it is important to

recall some of the distinguishing properties of computer experiments. First, responses

are deterministic so that repeated observations at the same input will produce identi-

cal responses. This suggests that replication in computer experiments is not necessary

and inefficient. Second, the relationship between the inputs and the response may be

different in different regions of the input space and a priori we do not know which

regions may contain features (such as extrema) that are of interest. This suggests

that all regions of the input space should be sampled. For these reasons, one intuitive

choice for the design of a computer experiment is a “space-filling” (or exploratory) de-

sign. Such designs are called space-filling because they attempt to spread observations

“evenly” to cover the full range of the input space, generally without replication. This

allows the researcher to gather information about the relationship between the inputs

and the response for all regions of the input space. Also, by covering the full range

of the input space, space-filling designs can (hopefully) lead to good prediction over

the entire input space, which is typically a primary goal in computer experiments.

Latin hypercube designs and distance based designs are two types of space-filling

designs. Latin hypercube sampling (LHS) designs spread out the observations so
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that the resulting design has nice one-dimensional projection properties. There is a

large body of work on LHS designs, their properties, and extensions. Section 1.2.1

discusses LHS designs and some of the proposed extensions of LHS designs. Distance

based designs, on the other hand, explicitly take into account the distances between

selected input sites in a candidate design or distances from selected input sites in a

design to untried input sites. They spread points out by preventing points in the

selected design from being too “close” (with respect to some measure of distance) to

one another or from being too “far” from any untried sites. Section 1.2.2 presents

several distance based design criteria, and discusses combinations of LHS designs with

distance based properties. Koehler and Owen (1996) and Santner et. al. (2003) give

overviews of these types of designs along with examples of each, and the computer

program ACED (Welch 1985) is useful in generating both Latin hypercube designs

and distance based designs.

Several other types of designs are also useful in computer experiments. When

the experimental goal is optimization of the response, sequential design strategies

are intuitively appealing. In Section 1.2.3 we present some of the sequential designs

proposed in the literature. When the goal is minimizing mean-squared error at a

given (set of) point(s), integrated mean square error designs (IMSE) and maximum

mean square error (MMSE) designs are proposed for computer experiments by Sacks,

Welch, Mitchell and Wynn (1989a). Mitchell, Morris and Ylvisaker (1994) discuss

the relationship between distance based designs and D-optimal, G-optimal or A-

optimal designs. Generating IMSE, MMSE, D-optimal, G-optimal, and A-optimal

designs in this setting can be problematic because the intersite correlations need to

be known before collecting any data (remember that in a typical computer experiment
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we estimate the correlation parameters from the data). Under a certain asymptotic

setup where the intersite correlations become progressively weaker, Mitchell et al.

show that D-optimal and G-optimal designs are equivalent to certain distance based

designs.

1.2.1 Latin Hypercube Sampling

Latin hypercube samples were first proposed by McKay, Beckman and Conover

(1979) as an alternative to simple random sampling and stratified sampling when

the interest is in estimating the mean, variance, and/or distribution function of an

output y = h(X), where X ∼ F (x). Similar to stratified sampling, Latin hypercube

samples attempt to ensure that all regions of the input space are sampled (at least

marginally) by dividing the range of each of the inputs into n bins, each with equal

probability, and then randomly sampling from each of these bins.

In more detail, to select an n-point Latin hypercube sample of X = (X1, ..., Xp)

we start by assuming the input X = (X1, ..., Xp) has independent components with

Xj ∼ Fj. Divide the range of each Xj into n strata of equal marginal probability

and sample once from each stratum, denoting the sample by xji for i = {1, ..., n}.

These values form the Xj component of the sample, j = {1, ..., p}. Then, we match

the various components randomly to form the n vectors x1, ..., xn.

Stein (1987) describes the selection of a Latin hypercube in the following manner.

Let Π be an n×p matrix, where each column is an independent random permutation

of {1, 2, ..., n}, and let εjk, (j = 1, ..., n; k = 1, ..., p) be np i.i.d. Uniform(0,1) random

variables. The kth component of the jth sample value, Xjk is defined as

Xjk = F−1
k (

1

n
(Πjk − 1 + εjk)). (1.23)
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McKay et al. (1978) demonstrate that Latin hypercube sampling (LHS) improves

upon simple random sampling when h(·) has certain monotonicity properties (h(X)

is monotonic in each of its arguments). In particular, their interest is in estimating

various properties, such as the mean and distribution function, of h(X). They show

that the estimates obtained from the Latin hypercube samples are more precise than

those obtained from simple random sampling when h(·) has the desired properties.

Stein (1987) investigates the asymptotic properties of Latin hypercube sampling and

shows that as long as n is large compared to p, Latin hypercube sampling gives an

estimator of the mean of h(X) with lower variance than simple random sampling for

any function h(X) that has a finite second moment and provided some main effect is

present.

For computer experiments, the initial goal is typically prediction of the response

at untried inputs, x. So, the inputs are often taken to have uniform distributions

over their domain. For the case p = 2, Figure 1.1 displays a five point LHS and a ten

point LHS when the marginal distributions for both X1 and X2 are uniform. Note the

one-dimensional projection property of these designs; if we project the points onto

either the horizontal or the vertical axes, we see the full range of both x1 and x2 are

represented since each bin of length 1
n
contains one point.

A relatively large literature on LHS has been written since it was introduced

by McKay, Beckman and Conover. In addition to the result mentioned above,

Stein (1987) also presents a method for producing Latin hypercube samples when

the components of X are not independent but have some joint distribution. Owen

(1992) extends Stein’s work to prove a central limit theorem for LHS, proving that
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Figure 1.1: Example of Latin hypercube sampling designs

h̄ = 1
N

∑N
i=1 h(xi) is asymptotically normal even when x1, ...,xN is a Latin hyper-

cube sample. Handcock (1991) introduces Cascading Latin Hypercube designs, whose

construction is motivated by the desire to not only estimate the scale and smoothness

parameters involved in the correlation function, but also the overall trend parameters

in the model. Cascading Latin hypercubes attempt to cover the input space with

some sites “clustered together”. The sites that are “clustered together” help to esti-

mate the parameters of the correlation function (local trend), while those that cover

the input space help to estimate the global trend (the β′s in Model (1.1)). Figure

1.2.1 shows an example of a 2-stage Cascading Latin hypercube design of size 15. In

the first stage we choose a 5 point LHS (denoted as the o’s in the figure), and in the

second stage we choose a 3-point Latin hypercube in the 3 × 3 grid surrounding each

of the sites from the first stage. Note that the final design (denoted as the +’s) is a

Latin hypercube design clustering sets of three points close together. The design can

be easily generalized to ! stages if desired.
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Figure 1.2: Example of a Cascading Latin hypercube design

Another extension of LHS designs are orthogonal array based Latin hypercubes

found in Tang (1993) and Hoshino and Takemura (2000). These designs make it

possible to stratify an m-variate margin as opposed to the usual univariate margin in

simple LHS designs. Ye (1998) discusses orthogonal column Latin hypercubes that

have the property that estimates of linear effects of all factors are uncorrelated with

each other.

1.2.2 Distance-Based Designs

Distance based designs try to spread out the input sites more explicitly. These

types of designs attempt to minimize or maximize properties of the distance between

pairs of design points or distances between design points and unobserved sites in the

input space. Johnson, Moore and Ylvisaker (1990) develop the setup for maximin
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and minimax distance designs. Let the input space be X ⊂ R
p and d(x1,x2) be a

distance measure on X . For example,

d(x1,x2) =

[
p∑
i=1

(x1,i − x2,i)
2

]1/2

is the Euclidean distance between x1 and x2. Let Sn = {x1, ...,xn} ⊂ X be a potential

n point design. We say that S0
n is a maximin distance design if

max
Sn

min
x,x′∈Sn

d(x,x′) = min
x,x′∈S0

n

d(x,x′) = d0, (1.24)

and we say that S0
n is a minimax distance design if

min
Sn

max
x∈X

d(x, Sn) = max
x∈X

d(x, S0
n) (1.25)

where d(x, Sn) = min
x0∈Sn

d(x,x0). Thus, maximin distance designs attempt to spread

points out by maximizing the minimum distance between any two points in the ex-

isting design. The intuition is that no two points should be too close to each other.

On the other hand, minimax distance designs attempt to spread points so that any

point not in the existing design is not too far away from a point that is in the existing

design. The intuition is that points not in the design should be as close as possible

to a point that is in the design.

There are many other criteria for distance based designs, such as maximizing the

average distance between all pairs of design points. The software program ACED

(Welch 1985) can determine various types of distance based designs. Figure 1.3

displays two distance based designs generated by ACED. The design on the right is

an eight point design on (0, 1)× (0, 1) that maximizes the average distance between

all pairs of design points, and the design on the left is a six point maximin distance

design on (0, 1)× (0, 1).
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Figure 1.3: Example of 6-point maximin distance design (left panel), and 8-point
distance based design that maximizes the average distance between all pairs of design
points (right panel).

In some sense both LHS designs and distance based designs can miss the mark in

terms of distributing the observations evenly over the input space. For example, in

the pictures above we see two distance based designs that concentrate most of their

observations on the outer regions of the input space, missing much of the interior

of the region. Likewise, LHS designs can potentially put all the observations on the

main diagonal (or anti-diagonal) of the input region. Morris and Mitchell (1995)

recognize that both Latin hypercube designs, with their nice projection properties,

and distance based designs have advantages for computer experiments. They propose

combining the two designs by searching for a distance based design within the class of

Latin hypercube designs. The program ACED (Welch (1985)) can generate distance

based designs within the class of Latin hypercube designs that are centered on the

marginal bins. Figure 1.4 displays the two distance based designs corresponding to

Figure 1.3 with the further restriction that the design be a Latin hypercube design.
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Figure 1.4: Example of 6-point LHS maximin distance design (left panel), and 8-point
LHS distance based design that maximizes the average distance between all pairs of
design points (right panel).

Johnson et al. (1990) point out that distance based designs are commonly non-

unique and that finding designs satisfying (1.24) or (1.25) can be very difficult when

X is infinite. Given this, they restrict themselves to the case where X is finite,

limiting competing designs to a finite number. Morris and Mitchell (1995), on the

other hand, present a simulated annealing approach to searching for optimal distance

based designs. Trosset (1999a) also attempts to handle the difficulty of computing

distance based designs by using an approximation that allows use of conventional

nonlinear programming algorithms.

1.2.3 Sequential Designs

In some applications, one of the primary goals of a computer experiment is to

find the values of the input variables that produce the “optimum” (in some sense)

response. For example, the goal might be to find the x that minimizes y(x) for x ∈ X .

This seems like a standard optimization problem, and one that could be solved by
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one of the many mathematical optimization routines widely available. The problem

is that essentially all mathematical programming algorithms require a large number

of function evaluations to find optima and this is not feasible due to the computing

costs of many runs of the computer code. In recent years, statistical algorithms have

been proposed for finding the “optimum” setting for the inputs. The basic approach

of these algorithms is to produce a fast predictor (via statistical modeling) of the code

based on a small training sample of computed responses (see Section 1.1), decide if the

predictions are sufficiently “accurate”, and, if so, the fast predictor is optimized over

the input space. However, if the predictions are not sufficiently “accurate”, more runs

of the code (observations) are taken at chosen input values. This is the perfect setup

for sequential design in that two questions are asked: ”Have we sampled enough?”,

and ”If not, where do we sample next?”.

One of the first strategies addressing this problem was proposed by Welch and

Sacks (1991) and Bernardo et al. (1992). The steps of their method are as follows:

1. Postulate an approximating model for the computer code.

2. Plan an initial experiment of n sets of x vectors and run the code at these input

vectors.

3. Use the data gathered in Step 2 to fit the model.

4. Check the accuracy of prediction of the model.

5. If the model is not sufficiently accurate, choose a subregion of the input space

in which the optimum appears to be and go back to Step 2 restricting the

experiment to the chosen subregion.
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6. If the model is sufficiently accurate, optimize the objective function using the

fitted model in place of the computer code.

The approximating model in Step 1 is Model (1.1), and the correlation function that

these authors use is the power exponential function given in (1.12). The prediction

accuracy of the model is assessed by cross validation. Welch and Sacks apply this

algorithm to the design of a voltage-shifter circuit and Bernardo et al. present several

examples involving the design of manufacturable integrated circuits. Trosset and

Torczon (1999) and Torczon and Trosset (1998) introduce a similar algorithm that

chooses an initial grid, adds points until a minimizer is confirmed on that grid, and

then refines the grid and repeats the procedure.

Jones, Schonlau and Welch (1998) present a criterion based sequential algorithm

and discuss choosing the next input site at which to observe the code so as to

maximize the expected improvement, which is computed as follows. Assume that

n runs of the computer code have produced observations (y(1), ..., y(n)). Let fmin =

min{y(1), ..., y(n)} and define the expected improvement at the untried input x as I(x)

= E[max{fmin − Y (x), 0}|Y n]. Note that the random variable in this calculation

is Y (x), since we are uncertain of the function’s value at x. Assuming that Y (·) is

a Gaussian stochastic process, we can compute the distribution of Y (x) given the

data and the parameters. Using this distribution, and the definition of expected im-

provement, Jones et al. begin their algorithm by fitting Model (1.1), using the power

exponential correlation function, to a set of initial points from a “space-filling”design.

Then, they maximize the expected improvement to find the (n+1)st input site for the

computer code. If the maximum expected improvement is very small, the algorithm

stops and the model is used as a surrogate for the computer code in an optimization
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routine. Otherwise, the computer code is run at the chosen (n + 1)st site, and the

procedure is repeated.

In Williams, Santner and Notz (2000a) a modification of this algorithm is inves-

tigated for the case where the inputs consist of both environmental variables, xe,

and control variables, xc (also see Welch, Yu, Kang and Sacks (1990) for this set-

ting). Control variables are those variables that can be set by the product designer

and environmental variables cannot be controlled but have values that follow some

probability distribution representing variation in these variables for the population

of interest (see Section 1.3.1 for more details of control and environmental variables).

In this setting, Williams et al. (2000a) define the objective function as the mean of

the computer code taken over the distribution of the environmental variables. The

procedure of Jones et al. calls for direct observation of the objective function, which is

infeasible in this setting since it would require too many evaluations of the code (one

for each environmental variable value). Williams et al. (2000a) present an algorithm

better suited for this situation.

Williams, Santner, and Notz (2000c) study the problem of constrained optimiza-

tion. Specifically, they deal with the setting where two responses (perhaps related or

competing) are computed on the same input space. One of the responses is consid-

ered the objective function, and the other is considered the constraint function. The

goal is to optimize the objective function subject to an upper bound on the constraint

function. In Chapter 3 we improve this algorithm, and further investigate the revised

algorithm on a variety of test problems.
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We test the sequential algorithm on a variety of test problems because evaluating

the relative merits of a sequential design strategy on a single problem may be inad-

equate for evaluating strategies and can lead to biases. Trosset and Padula (2000)

suggest measuring performance by replication. They propose not only presenting

the algorithm with multiple problems, but also starting the algorithm at different

starting points for the same problem. For sequential design of computer experiments,

the notion of solving multiple problems by an algorithm is useful. If the algorithm,

presented with a large number of random problems, manages to solve all of these

problems (or at least a large proportion of them), then we might put more confidence

in the merits of that algorithm. In Chapter 2 we use the proposal of Trosset and

Padula (2000) and Trosset (1999b) for generating random problems in the computer

experiments setting, and in Chapter 3 a parametric method of generating random

problems is presented.

1.3 Experimental Goals

As in physical experiments, computer experiments can involve a large variety of

experimental goals. As mentioned above, prediction of the computer code at untried

inputs is one of these goals. We would like to predict y(x) “well” for all x ∈ X

based on a set of training data {(x1, y(x1)), ..., (xn, y(xn))}. However, many other

experimental goals are of interest in this setting. For example, interest may be in

identifying important inputs (i.e., those that produce large variation in the response)

and screening out non-important ones. Kleijnen and Helton (1999) propose using

simple scatterplots to identify important factors (this is perhaps more useful when a

large number of experimental runs are available), and Welch et al. (1992), Jones et
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al. (1998), and Mrawira et al. (1999) discuss an approach for estimating the relative

importance of each input in a computer model by using the predictor of y(x) to

calculate “main effects” and “interaction” effects of the various inputs. The recent

book by Saltelli et al. (2000) presents a thorough explanation of sensitivity analysis,

the study of the relationship between the inputs of a system and the outputs of that

system.

For computer experiments, the experimental goal often depends on the nature

of the input variables. Input variables for computer experiments fall into several

different classes or types, each affecting the output of the computer code y(·). In this

section we consider three classes of variables that are encountered in the computer

experiments setting: control variables, environmental variables, and model variables;

and we discuss the experimental goals that are common for each of these.

1.3.1 Control and Environmental Variable Inputs

Control variables, or manufacturing variables as they are sometimes called, are

variables that can be set by the researcher or product designer. When the output y(·)

is a performance measure that depends on control variable values, we often attempt to

“design” the product or system by setting the control variable so that y(·) is optimal.

For example, in Chapter 4 the design of an acetabular cup for a hip replacement

is considered. The ultimate goal is to achieve optimal fixture/seating of the cup in

the acetabulum. The design of the cup is characterized by two control variables:

equatorial diameter of the cup and eccentricity of the cup. Determining the best

setting of these variables is important in promoting optimal seating of the cup in

32



the acetabulum, and ultimately, optimal performance of the hip implant system. We

denote control variables as xc.

Environmental variables describe the specific environment under which the prod-

uct is used and cannot be controlled by the researcher or product designer. The

environment can change over time, from location to location, and from subject to

subject. We typically think of environmental variables as being random with some

known or unknown distribution over the population of interest. For example, in the

acetabular cup example described above (and in Chapter 4), patient bone properties,

patient loading of the hip and surgical reaming of the bone cup interface are several

environmental variables that may also affect the proper fixation of the acetabular cup

into the acetabulum. We denote environmental variables as xe.

When the inputs consist only of environmental variables, researchers may be inter-

ested in describing how the distribution of the inputs propogates to the distribution

of the outputs, a topic referred to as uncertainty analysis. Suppose Xe ∼ F (xe),

we would like to describe the distribution of y(Xe) that is induced by F (xe). Typi-

cally, certain aspects of this distribution are investigated. For example, Haylock and

O’Hagan (1996) describe a Bayesian approach to uncertainty analysis in estimating

the quantity

K =

∫
X
y(xe)dF (xe).

If y(xe) is known, an estimate of K can be obtained by sampling from F and per-

forming a Monte Carlo analysis. For computer experiments this is infeasible since

it requires a very large number of runs of the code. Taking the Bayesian viewpoint

described in Section 1.1.2, we can obtain the posterior distribution of K given a set

of data Y n. Of course, other quantities relating to the distribution of y(Xe) are
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of interest as well. O’Hagan, Kennedy and Oakley (1998) discuss estimation of the

uncertainty distribution of y(Xe)

G(c) = P (y(Xe) ≤ c) =

∫
Xe

I(y(xe) ≤ c)dF (xe).

Often, computer experiment inputs consist of both control and environmental

variables, as is the case of the design of an acetabular cup in Chapter 4. For this sit-

uation, interest is in the distribution of the random variable y(xc,Xe), a distribution

that depends on xc and on the distribution ofXe. Again, attention is typically given

to certain aspects of this distribution. For example, in Williams, Santner and Notz

(2000a) sequential designs are introduced for the purpose of optimizing (minimizing

or maximizing) the quantity

µ(xc) =

∫
Xe

y(xc,xe)dF (xe).

Williams, Santner, and Notz (2000c) describes sequential designs for constrained op-

timization of µ1(xc) subject to a constraint on µ2(xc) when

µi(xc) =

∫
Xe

yi(xc,xe)dF (xe)

correspond to two (possibly related) computer codes y1(xc,Xe) and y2(xc,Xe). In

Chapter 3 we describe this setting and modify the algorithm of Williams et al. (2000c).

A second important aspect of the distribution of y(xc,Xe) is the variance

σ2(xc) = Var[y(xc,Xe)].

Finding xc that has optimal µ(xc) subject to “small” σ
2(xc) may also be of interest

in many applications. In the quality control literature it is well known that simply

optimizing µ(xc) may lead to unacceptably large variability of y(xc,Xe) across the
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distribution of Xe. So, instead of optimizing µ(xc), it may be more desirable to

minimize σ2(xc) subject to a constraint (“target”) on µ(xc). This may be called a

“robust” choice of xc. In Chapter 5 we discuss this approach, and consider several

other robustness formulations relevant to the situation where there are both control

and environmental variable inputs.

1.3.2 Model Variables

In addition to control and environmental variables, a third type of variable is

sometimes found in computer experiments. We call these “model variables” or “model

parameters”. As previously noted, a computer experiment is based on a mathematical

model that describes some physical process. The code implementing the mathemat-

ical model may involve parameters affecting the output of the code. These must be

specified by the user of the code, and we call these model variables, or, as they are

sometimes called, tuning parameters. For example, Kennedy and O’Hagan (2001)

describe a computer code that models the movement of a drug through various com-

partments of the body. This code allows the consequences of a given dose regime to

be explored. However, to use the code for a particular drug it is necessary to specify

rates of movement, from one compartment of the body to another, for that drug. In

this example, we would consider the dose regime as the control variables, and the

rates of movement as the model variables.

When model variables are unknown, attempts can be made to adjust them so that

the code “matches” the physical process. In other words, we would like to calibrate

the code so that the observed physical data for input x fits, as closely as possible,

the output of the code for input x. Note that here we are assuming that it is possible
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to collect physical data. Cox, Park and Singer (1996) discuss matching the computer

code to the “real” experimental data by setting the model variables of the computer

code so that the squared difference between the computer code output and the ex-

perimental data is small. Kennedy and O’Hagan (2001) present a Bayesian approach

to calibration which attempts to account for not only the uncertainty associated with

the model parameters, but also

1. Computer Model Inadequacy: the computer code may not give the true value

of the real physical process.

2. Residual Variability: the real process won’t always take the same value at the

same input.

3. Parametric Variability: some of the inputs are uncontrolled (eg. environmental

variables).

4. Observation error: the physical data may be observed with observation error.

5. Code uncertainty: the output of the code is unknown before we actually run

the code.

Thus, attempts are made to control all possible components of variability.
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CHAPTER 2

A COMPARISON OF THE SMALL SAMPLE
PROPERTIES OF SEVERAL EMPIRICAL PREDICTORS

Gaussian stochastic process models are often used in the analysis of computer

experimental data. Best viewed from the Bayesian perspective, the deterministic

computer code, y(·), is treated as a realization of a stochastic process (or random

function), Y (·) (see Chapter 1). The random function model used in most computer

experiments is

Y (x) = f�(x)β + Z(x) (2.1)

where Z(x) is a stationary stochastic process assumed to have mean 0, variance σ2

and correlation function R(·) that depends on unknown parameters denoted as γ.

Thus, the model parameters are β, σ2, and γ.

The prediction of the computer code at untried inputs is a basic requirement at the

heart of all statistical procedures used to analyze data from computer experiments. As

seen in Chapter 1, the best linear unbiased predictor (BLUP) of Y (x0) can be derived

assuming that the correlation parameters, γ, are known. In practice, γ is typically

unknown but can be estimated. The estimate of γ is then plugged into the prediction

equations as if it were a known value, producing an empirical best linear unbiased
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predictor (EBLUP). This makes “good” estimation of γ an important component of

accurate prediction. In this chapter we will compare the prediction accuracy of three

methods of estimating the correlation parameters: restricted maximum likelihood,

maximum likelihood, and cross-validation. A simulation study is performed to make

this comparison.

2.1 Modeling and Estimation

In Model (2.1), Z(x) is a stationary stochastic process assumed to have mean

0, variance σ2 and correlation function R(x1 − x2), so that the correlation between

Z(x1) and Z(x2) is Corr[Z(x1), Z(x2)] = R(x1 − x2). The regression term f
�(x)β

allows for a global (nonstationary) trend with f�(x) a k-vector of known regression

functions and β ∈ R
k a vector of unknown regression parameters.

For computer experiments, restricted maximum likelihood (REML) and maxi-

mum likelihood (ML) are both estimation procedures that depend on the additional

assumption that Z(·) is a Gaussian stochastic process. This assumption allows calcu-

lation of the likelihood as a function of β, σ2, and the vector of correlation parameters,

γ, and calculation of the restricted likelihood as a function of σ2 and γ. The ML and

REML estimates of these parameters are obtained by maximizing the likelihood and

restricted likelihood, respectively, where both likelihoods are given below.

Let Y n = (Y (x1), ..., Y (xn))
� be the vector of output obtained from running the

computer code at the n input sites (x1, ...,xn). It can be shown (see Section 1.1.4)

that given γ, the ML estimate of β is

β̂ = (F�R−1F )−1F�R−1Y n, (2.2)
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where F = (f(x1), ...,f(xn))
� is the n × k regression matrix, and R = R(γ) is

the n × n correlation matrix of Y n so that the (i, j)th entry of R is computed as

R(xi − xj). Note that R depends on the correlation parameters, γ, through the

correlation function R(·). The ML estimate of σ2 is

σ̂2 =
1

n
(Y n − F β̂)�R−1(Y n − F β̂). (2.3)

To obtain the ML estimate of γ, we minimize |R|1/nσ̂2, which is a function of only the

correlation parameters, γ, and the data Y n. The REML estimate of γ is obtained

by maximizing

−1
2
[(n− k)log(σ̃2) + log|R| + log|F�R−1F |], (2.4)

where

σ̃2 =
1

n− k (Y
n − F β̂)�R−1(Y n − F β̂). (2.5)

Note that (2.4) is also a function of only Y n and γ. Section 1.1.4 in Chapter 1

contains additional details of these calculations.

Cross validation (XVAL) is a method of estimating γ that does not depend on

any distributional assumptions. It is a prediction based criterion that depends only

on the BLUP of Y (x0) for any x0 ∈ X . As shown in Section 1.1.1 of Chapter 1, the

formula for the BLUP based on the data, Y n, is

Ŷ (x0) = f
�(x0)β̂ + r

�(x0)R
−1(Y n − F β̂), (2.6)

where β̂ is defined by (2.2), and r(x0) is the n × 1 vector of correlations of Y n

with Y (x0) so that r(x0) = (R(x1 − x0), ..., R(xn − x0))
�. The XVAL estimation

procedure removes the ith observation and uses the BLUP based on the remaining
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n−1 observations to predict the value for the ith observation. The “best” correlation

parameters, γ, are chosen as those that make the predicted value closest to the true

value, averaging over all n observations. Formally, we choose γ to minimize

n∑
i=1

(Ŷ−i(xi)− y(xi))2, (2.7)

where Ŷ−i(xi) is the BLUP of Y (xi) based on the the n− 1 observations obtained by

removing y(xi) from (y(x1), ..., y(xn)). Note that this formula only depends on the

data Y n and the value of the correlation parameters, γ.

We will compare the REML, ML and XVAL estimation procedures by generating

random surfaces, and fitting Model (2.1) to a small training sample for each surface

and for each estimation method. Since prediction is often the primary interest in

computer experiments, the criterion of primary interest is the mean squared error of

prediction of the true surface over a grid of sites in the input space.

2.2 Simulation Study

2.2.1 Generating Random Surfaces

To compare the three methods of estimation, a method of generating random

problems is necessary. In the computer experiments setting, a problem consists of a

response, y(·), defined on X ⊂ R
p. Sampling y(·) at a set of n inputs (the training

sites) and fitting Model (2.1) to the data, we obtain the predictor. We generate

random responses using the krigifier of Trosset and Padula (2000) and Trosset (1999).

The krigifier generates a response by simulating from a stochastic process observed

at m sites and interpolating the result using (2.6) as the true y(·). The steps are as

follows:
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1. Specify an underlying trend, f�(x)β, a correlation function, R(·), and a process

variance, σ2, corresponding to the stationary Gaussian process, Z(·), in Model

(2.1).

2. Choose a finite number of points, x1, ...,xm at which to observe Z(·).

3. Generate z1, ..., zm, the values of Z(·) at x1, ...,xm.

4. Interpolate zm = (z1, ..., zm)
� using the BLUP in Equation (2.6) (with the

known correlation function) to obtain the noise term, z(x0) for any x0 ∈ R
p

5. Add the trend, f�(x0)β, and noise term, z(x0), to produce the objective func-

tion, y(x0).

Using the krigifier, we are able to generate a large number of random problems which

can be used to evaluate the three estimation procedures.

For the simulations presented here we let p = 2, X = (0, 1) × (0, 1), f�(x)β =

β0 = 100, σ
2 = 1, and the correlation function corresponding to the stationary Gaus-

sian process be the Matérn correlation function or the power exponential correlation

function. The Matérn correlation is

R(x1 − x2) =

p∏
i=1

1

Γ(ν)2ν−1

(
2
√
ν|x1,i − x2,i|

θi

)ν

Kν

(
2
√
ν|x1,i − x2,i|

θi

)
, (2.8)

where θi > 0, ν > 0, and Kν(·) is the modified Bessel function of order ν (see Stein

(1999) Section 2.7). The parameter ν controls the smoothness of realizations of the

Gaussian process with realizations being almost surely m times differentiable if ν > m

(see Section 1.1.3). The power exponential correlation function is

R(x1 − x2) =

p∏
i=1

e−θi(x1i−x2i)
αi , (2.9)
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where θi > 0, 0 < αi ≤ 2. Note that with α1 = α2 = 2 and 1/θ2
i in place of θi

in (2.9) the power exponential correlation function is the limiting case of (2.8) as

ν →∞. Thus, for large ν (for numerical purposes ν ≥ 50 is assumed large enough to

be the limiting case of the Matérn) the generated surfaces could have likewise been

simulated using the power exponential correlation function. Using the steps in the

previous paragraph, we set θ1 = 1/
√
8, θ2 = 1/

√
15 and generate 50 random “true”

surfaces for each of ν = 5, ν = 10, and ν = 50 (ν = 50 is roughly equivalent to the

power exponential function with α1 = α2 = 2, θ1 = 8, and θ2 = 15) by defining an

11 × 11 equispaced grid in X (step 2 above), sampling from a multivariate normal

with mean 100 and covariance matrix computed from (2.8) for each pair of points

in the grid (step 3 above), and computing the BLUP for any x ∈ X . Figure 2.1

displays two draws from this class of surfaces. Some corresponding REML EBLUPs

are displayed in Figure 2.2.
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Figure 2.1: Examples of two surfaces generated using the krigifier.
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2.2.2 Estimation and Prediction Details

For each of the 150 surfaces we compute the true response, y(·), at a set of 20

training sites, xi ∈ (0, 1) × (0, 1), i = 1, ..., 20, chosen as a Latin hypercube sample

that maximizes the minimum inter-point distance (see Conover et al. (1979)). This

type of design tends to spread observations throughout the input space. From the

computed values, we form yn = (y(x1), ..., y(x20)), and fit Model (2.1) (i.e. esti-

mate the parameters of the model) using each of REML, ML and XVAL, and the

two correlation functions, the power exponential and Matérn. In addition, a cubic

polynomial model was fit to yn using ordinary least squares. Thus, for each of the

150 true surfaces a total of seven predicted surfaces were produced.

Each predictor was evaluated over an equispaced 625-point grid on X , and the

mean-squared error of prediction was calculated by comparing each predicted value

to the true value, squaring their difference and taking the mean of the 625 squared

differences. As an example, the REML predicted surfaces using the power exponen-

tial correlation function corresponding to the true surfaces shown in Figure 2.1 are

displayed in Figure 2.2.

For those predicted surfaces corresponding to Model (2.1), the optimization of

the likelihood estimates α1 = α2 = 2 and ν = 50 if the log likelihood or restricted

log likelihood for these values is within 1 (corresponding to a change of 2 in the

-2*log-likelihood) of the respective maximum likelihood achieved by allowing these

parameters to vary over their full ranges. For the cross validation estimation method,

we set α1 = α2 = 2 and ν = 50 if the minimum criterion achieved with this setting

is within 10% of the minimum achievable by allowing these parameters to vary over

their full ranges. This places a penalty on choosing a less-parsimonious model (i.e.
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Figure 2.2: Examples of predicted surface corresponding to true surfaces in Figure 2.1.
Predicted surfaces are based on REML estimation of the power exponential correlation
function parameters. Parameter estimates for the left panel are θ1 = 7.91, θ2 =
20.37, α1 = α2 = 2, and for the right panel are θ1 = 9.26, θ2 = 5.92, α1 = α2 = 2.

one where ν < 50 for the Matérn correlation function and αi �= 2 for some i for the

power exponential correlation function).

2.3 Results

The θ1 and θ2 correlation parameter estimates corresponding to predicted surfaces

arising from Model (2.1) with the Matérn correlation function are displayed in Figure

2.3. Recall that the “true” surfaces were generated using the Matérn correlation

function with θ1 = 1/
√
8 = .3535 (vertical line in left panel), θ2 = 1/

√
15 = .2582

(vertical line in right panel), and values of 5, 10, and 50 for ν. Note that the ML

and REML estimation methods appear to be generally on target, while estimation

via XVAL appears to overestimate both θ1 and θ2. Estimates above 8 have been

truncated in the boxplots.
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Figure 2.3: Boxplots of estimates of θ1 (left panel) and θ2 (right panel) for the Matérn
correlation function. The true values θ1 = .3535 and θ2 = .2582 are indicated by the
vertical lines in the figures.

Figure 2.4 displays boxplots of the θ1 and θ2 estimates of the power exponential

correlation function parameters for the 50 true surfaces generated using the Matérn

correlation function with θ1 = .3535, θ2 = .2582, and ν = 50. Recall that this is

equivalent to the power exponential correlation function with θ1 = 8, θ2 = 15, and

α1 = α2 = 2. It appears that θ1 and θ2 are slightly underestimated by both ML

and REML, and more severely underestimated by the XVAL estimation procedure.

Estimates above 50 have been truncated in the boxplots.
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Figure 2.4: Boxplots of estimates of θ1 (left panel) and θ2 (right panel) for the power
exponential correlation function. The true values θ1 = 8 and θ2 = 15 are indicated
by the vertical lines in the figures.

Table 2.1 contains summary statistics for the MSE of prediction for the three

factors: fit type, model type, and true correlation function. The factor fit type corre-

sponds to the three estimation techniques (ML, REML, and XVAL). The model type

factor has three levels corresponding to the three types of models used: the regression

based cubic polynomial model, and Model 2.1 with the power exponential correlation

function or with the Matérn correlation function. The true correlation function has

three levels and corresponds to the three “true” values of ν that were used in gener-

ating the “true” responses. Figure 2.5 displays boxplots of the MSE of prediction for

each of the predicted surfaces. In general, the REML and ML estimation methods
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perform better then XVAL for all combinations of the above factors, and the XVAL

based predictor can lead to very poor prediction for some cases (note the outliers).

The cubic polynomial predictors, in general, do not perform as well as any of the

predictors corresponding to Model (2.1).

True Matérn Correlation Function Fits
ν Fit Type Min Q1 Median Mean Q3 Max

REML 0.0472 0.0947 0.1292 0.1755 0.2181 0.5088
5 ML 0.0483 0.0930 0.1358 0.1820 0.2239 0.6351

XVAL 0.0559 0.1030 0.1758 0.3300 0.4161 1.8124
REML 0.0362 0.0833 0.1149 0.1251 0.1473 0.4521

10 ML 0.0371 0.0819 0.1119 0.1174 0.1459 0.3711
XVAL 0.0433 0.1109 0.1876 0.5482 0.7834 4.4537
REML 0.0262 0.0617 0.0809 0.0931 0.1079 0.2570

50 ML 0.0220 0.0613 0.0815 0.1047 0.1093 0.6978
XVAL 0.0219 0.0790 0.1218 0.2769 0.2994 2.3363

True Power Exponential Correlation Function Fits
ν Fit Type Min Q1 Median Mean Q3 Max

REML 0.0472 0.1078 0.1537 0.1876 0.2597 0.4880
5 ML 0.0483 0.1073 0.1439 0.1747 0.2108 0.4227

XVAL 0.0559 0.1138 0.1980 0.3216 0.3494 1.8123
REML 0.0370 0.0901 0.1155 0.1377 0.1589 0.4520

10 ML 0.0373 0.0874 0.1104 0.1219 0.1496 0.3712
XVAL 0.0433 0.1110 0.1702 0.3582 0.3808 2.4338
REML 0.0262 0.0623 0.0864 0.0998 0.1148 0.2542

50 ML 0.0221 0.0619 0.0824 0.1050 0.1093 0.6301
XVAL 0.0219 0.0901 0.1597 0.2862 0.3171 2.3363

True Cubic Polynomial Regression Fits
ν Min Q1 Median Mean Q3 Max
5 0.1699 0.3748 0.4258 0.5585 0.7825 1.1507
10 0.0770 0.2906 0.4247 0.4905 0.6166 1.3390
50 0.1304 0.2595 0.3745 0.4951 0.6668 1.6230

Table 2.1: Summary statistics for the MSE of prediction.

Comparing the ML and REML estimation procedures, there is no clear winner.

REML is generally thought to be superior to ML (see Stein (1999)), however, in

these examples the choice is not clear. Figure 2.6 plots the prediction MSE for the
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Figure 2.5: Boxplots of MSE of prediction on 625-point equispaced grid for each
combination of factors.

REML procedure paired with that for the corresponding ML procedure. For the power

exponential correlation function fits, it appears that more of the points fall below the

diagonal lines, indicating that the MSE for REML is more often larger than the

MSE for ML. Table 2.2 displays p-values for simple signed rank tests comparing the

MSE for REML and ML for each subplot found in Figure 2.6. In general, it appears

that the ML based estimators have smaller MSE (the Z-statistic is always negative),

with significantly smaller MSE for surfaces fit with the power exponential correlation

function and generated using the Matérn correlation function with ν = 5.
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Figure 2.6: Scatter Plot of MSE for REML and ML EBLUP estimation procedures
for each combination of fit type and true correlation function.

Figure 2.7 plots the MSE of prediction for the Matérn based predictor with the

corresponding power exponential based predictor. The two correlation functions per-

form similarly in many of the cases with the Matérn based predictor appearing to

have lower MSE in some cases. Due to the many ties in the MSE values, no formal

tests were performed for these comparisons.
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Fitted R(·) True R(·) Z Stat P-value
Matérn Matérn(ν = 5) -0.4827 0.629
Matérn Matérn(ν = 10) -1.7955 0.073
Matérn Matérn(ν = 50) -1.4866 0.137

Power Exp. Matérn(ν = 5) -2.4133 0.016
Power Exp. Matérn(ν = 10) -1.9596 0.050
Power Exp. Matérn(ν = 50) -1.8148 0.070

Table 2.2: Table of p-values for two-sided signed rank test comparing MSE’s of ML
and REML based predictors.
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Figure 2.7: Scatter plot of MSE for Matérn and power exponential based predictors
for each combination of estimation method and true correlation function.
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2.4 Discussion

In the examples above we fit the predictive models based on a 20-point Latin

hypercube sampling (LHS) design that maximizes the minimum inter-point distance.

For this design and the “true” surfaces considered here, comparing classical response

surface models, such as cubic polynomial regression models, to the stochastic process

models that are typically used in computer experiments, we find that the predictors

arising from stochastic process models perform significantly better. Of course, other

choices of designs and other choices of design size may be worthy of further investiga-

tion for these predictors. For example, the cascading LHS of Handcock (1991), with

their potential for local and global estimation (see Chapter 1), or an LHS design with

different distance properties, may lead to better prediction of the “true” surface.

In addition, further investigation for more and different classes of random sur-

faces can lead to a clearer picture of the merits of each predictor. For example, the

krigifier, which produced the “true” random surfaces for these comparisons, required

specification of the number of inputs, p, the “true” correlation function, R(·), and

the “true” trend term, f(·). In our simulations, we chose p = 2, made a single choice

for the form of the “true” correlation function and three choices for the values of

the parameters of that correlation function corresponding to surfaces with different

smoothness properties. Increasing p, choosing a different form for R(·), such as the

cubic correlation function (see Currin et al. (1991)), or choosing different values of the

parameters in (2.8) can lead to a class of random surfaces that have different smooth-

ness (local) properties. Also, choosing different trend terms f(·) will yield random

surfaces having different global properties. For each class of random surfaces (or each
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means of generating random surfaces), predictors can be evaluated via replication as

seen in the simulation above.

For stochastic process models corresponding to (2.1), the results above do not sug-

gest an overwhelming advantage, and perhaps no advantage at all, of using the Matérn

correlation function versus the power exponential correlation function for these types

of models. Theoretically, the Matérn correlation function is more attractive since it

includes a parameter (ν) that controls the smoothness of realizations of the stochastic

process Z(·) in Model (2.1). However, practically, the power exponential correlation

function appears to perform almost as well (if not as well) in terms of prediction for

the problems presented above. For these problems, the smallest value of ν was ν = 5,

which still leads to a reasonably smooth surface. Perhaps the lesson is that unless you

know the true surface is not very smooth, the power exponential correlation function

is adequate. In addition, the power exponential has the advantage that it is faster to

compute than the Matérn correlation function.

Similarly, estimation via restricted maximum likelihood does not in general ap-

pear to have an advantage over estimation via maximum likelihood. However, REML

estimation does manage to avoid, for the most part, situations where the predictor

fails drastically (see Figure 2.6). It may prove informative to investigate more closely

those surfaces where the ML based predictors performed poorly. These typically cor-

responded to instances where the likelihood was “flat” in the correlation parameters

and optimization attempted to push the parameters to large values. Perhaps, as in

log linear modeling, indicators can be developed that suggest numerical problems

with the maximization of the likelihood. More research in this area is necessary to

answer this question.
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CHAPTER 3

A MODIFICATION OF THE WILLIAMS, SANTNER,
AND NOTZ ALGORITHM FOR CONSTRAINED

OPTIMIZATION

This chapter discusses an improved version of the algorithm proposed by Williams,

Santner, and Notz (2000c) for optimizing the mean of one computer code (the objective

function) subject to constraints on the mean of a second computer code (the constraint

function). This chapter assumes that there are two types of inputs, x = (xc,xe),

where xc is a set of control variables and xe is a set of environmental variables.

Control variables can be set by the product designer, and environmental variables

have values that follow some probability distribution representing variation in these

variables for a population of interest. For example, in the hip prosthesis problem

of Chang et al. (1999a), the control variables specify the geometry of the implant

and the environmental variables account for variability in patient bone properties and

level of activity. The means of the objective and constraint functions are computed

with respect to the distribution of the environmental variables, so that the means

depend only on the value of the control variables. We then determine the “optimal”

settings of the control variables for the population of interest.

There are many algorithms in the mathematical literature that study constrained

optimization; however, such algorithms are prohibitive in a computer experiment
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because they require many function evaluations. The statistical approach to opti-

mization of a computer code produces a fast predictor of the code, and uses a tradi-

tional optimization algorithm to optimize the predictor. For example, Bernardo et al.

(1992) implemented an algorithm for response minimization that sequentially focuses

on the region of the input variable space where the optimum appears to be located.

Jones, Schonlau and Welch (1998) and Williams, Santner and Notz (2000a) examine

criterion-based sequential strategies for minimization of a single response.

Here, we investigate several modifications to the constrained optimization algo-

rithm of Williams, Santner, and Notz (2000c). They assume that both of the re-

sponses are observed at the same sites not only in the initial design, but throughout

the algorithm. This means that once the algorithm decides on the next site at which

to observe the response, both computer codes are run for that input. We refine the

improvement criterion to: (1) better accomodate situations where the location of the

global optimum is an “easily” describable part of the feasible region and thus it is

inefficient to take as many additional observations on the constraint function as on

the objective function, and (2) improve the current guess at the constrained optimum.

The algorithm proposed here allows the responses to be observed on different numbers

of sites and at different sites. At each step it chooses which of the two responses to

observe and the next site at which to observe that response.

We also examine the question of sample size for the initial design. In computer

experiments, approximately 10 observations per input dimension has been proposed

as a rule of thumb (see Jones et al. (1998) p. 473). We provide guidelines for the

number of initial design sites for the algorithm in this paper, which may be useful in

other sequential settings.
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In Section 3.1 we outline the setup for the Bayesian modeling of the responses.

Section 3.2 presents the expected improvement algorithm based on these models.

Section 3.3 contains some random examples which use a class of closed-form test

functions to allow the optimum found by the algorithm to be checked with the true

constrained optimum. In Section 3.4, we discuss the implications of these results, as

well as areas for future research.

3.1 Modeling

For i = 1, 2 we model the true response yi(·) by the random function

Yi(x) = f
�
i (x)βi + Zi(x) (3.1)

where Zi(·) is a covariance stationary Gaussian stochastic process having mean zero,

correlation function Ri(·), and unknown variance τ 2
i > 0. The linear model f

�
i (·)βi

represents the global (nonstationary) mean of the Yi process with f i(·) a ki-vector of

known regression functions and βi ∈ R
ki a vector of unknown regression parameters.

The model is completed by specifying a positive definite, joint covariance structure

for Y1(·) and Y2(·). In the following, we take Cov(Y1(x1), Y2(x2)) = τ1τ2R12(x1−x2),

where R12(·) is called the cross-correlation function.

Specifying a valid correlation structure for (Y1(·), Y2(·)) via (R1, R2, R12) is non

trivial and most frequently these three functions are assumed to belong to a given

parametric family of known correlation functions (eg. see Ver Hoef and Barry (1998)

for some examples). We assume that the three correlation functions R1(·), R2(·) and

R12(·) depend on the parameter vector ξ which is allowed to take any value for which

the covariance structure of the joint process Y (x) = (Y1(x), Y2(x)),x ∈ X is positive
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definite. In Section 3.3, we consider a specific spatial autoregressive model for the

processes and a parametric family of correlation functions: the power exponential.

The approach is Bayesian, it assumes a non-informative prior for the parameters

(β, τ 2
1 )

[β, τ 2
1 ] ∝

1

τ 2
1

and the calculations take the parameters γ = (τ 2
2 , ξ) that appear in the correlation

of (Y1(·), Y2(·)) to be known. In the algorithm below we follow an empirical Bayes

strategy, whereby we set γ equal to its posterior mode and substitute these values

wherever necessary.

3.2 The Minimization Algorithm

Define the control and environmental variable portions of x as xc ∈ Xc and

xe ∈ Xe (so x = (xc,xe)), and assume that the joint distribution of the environmental

variables is discrete on {xe,j}ne
j=1 with weights {wj}ne

j=1. Denote the mean response

calculated over the distribution of the environmental variables by

µi(xc) = EXe
[yi(xc,Xe)] =

ne∑
j=1

wjyi(xc,xe,j) for i = 1, 2.

The goal of this experiment is to identify the settings of the control variable, xc, that

minimize the mean of the first response, µ1(xc), subject to a constraint on the mean

of the second response, µ2(xc). In symbols, the objective is to find x
∗
c satisfying

x∗
c = argmin

xc∈Xc

µ1(xc) subject to µ2(x
∗
c) ≤ U.

We let Mi(xc) =
∑ne

j=1wjYi(xc,xe,j) be the random variable associated with µi(·).

In the following sections, we propose a sequential design algorithm for finding x∗
c .
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3.2.1 Overview

The starting point for the minimization algorithm involves choosing initial designs

for both the Y1(·) and Y2(·) processes. Denote the initial design for Y1(·) as Sn1 =

{s1, ..., sn1}, and the initial design for Y2(·) as T n2 = {t1, ..., tn2}. This notation

allows for different numbers of runs to be taken on each process and at different sites

in the input space. Let Y n1
1 and Y n2

2 represent the vector of responses associated with

the initial designs Sn1 and T n2 , respectively. Denote the control variable portion of

Sn1 by S
C
n1
= {sc,1, ..., sc,n1} and set Mn1

i = [Mi(sc,1), ...,Mi(sc,n1)]
�, the vector of

values for the objective and constraint functions associated with SCn1
. Define Mmin,c

1

= min{M1(sc,i) : sc,i such that M2(sc,i)− tn1+n2−k,.95
√
V ar(M2(sc,i)) ≤ U}, where

k = k1 + k2 and tn1+n2−k,.95 is the upper 95th percentile of a t-distribution with

(n1+n2−k) degrees of freedom. In words,Mmin,c
1 is the minimum ofM1(·) at control

sites previously computed on the Y1(·) process that appear to be in or “close” to the

feasible region. Define the improvement at a potential new control variable site xc

as:

I(xc) = max(0,M
min,c
1 −M1(xc)) χ(M2(xc) ≤ U) (3.2)

where χ(A) is 1 if event A occurs and 0 otherwise. Williams et al. (2000c) use Mmin
1

= min{M(sc,i)} rather than Mmin,c
1 in (3.2) and thus fails to restrict the minimum

to those values of sc,i that appear to be in the feasible region. This can cause the

following problem. Consider the hypothetical µ1(·) and µ2(·) pictured in Figure 3.1.

Suppose that the goal is to minimize µ1(xc) subject to the constraint µ2(xc) < −8,

which restricts xc to the interval (0.1101, 0.4762). Also, suppose that the current

input data are the points denoted by ∗’s, and that Mmin
1 and M1(xc) are as shown
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in the figure. Then, we have for xc ∈ (0.1101, 0.4762), max(0,Mmin
1 −M1(xc)) = 0

since Mmin
1 << M1(xc), and for xc /∈ (0.1101, 0.4762), χ(M2(xc) ≤ −8) = 0. Thus,

I(xc) ≈ 0 for all xc ∈ (0, 1), and there is no improvement for any xc. This problem is

avoided by using Mmin,c
1 instead of Mmin

1 in (3.2).
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Figure 3.1: Hypothetical M1(xc) (left panel) and M2(xc) (right panel).

The proposed algorithm is:

1. Choose the initial set of design points on which to observe the Y1(·) process,

Sn1 = {s1, ..., sn1} and the Y2(·) process, T n2 = {t1, ..., tn2}.

2. Estimate the covariance parameter vector by γ̂, the mode of the posterior den-

sity of γ given (Y n1
1 ,Y

n2
2 ).

3. Choose the next control variable site, x∗
c , to maximize the posterior expected

improvement given the current data and γ̂, i.e.,

x∗
c = argmin

xc∈Xc

E{I(xc) | Y n1
1 ,Y

n2
2 , γ̂} (3.3)
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where I(xc) is given by (3.2).

4. Choose the process and the environmental variable site corresponding to the

control site x∗
c as follows. Let Y

j
e = [Yj(x

∗
c ,xe),Y

n1�
1 ,Y n2�

2 ]�, and define the

following for j = 1, 2:

MSEj(xe) = E{(M̂ j
1 (x

∗
c)−M1(x

∗
c))

2 | Y n1
1 ,Y

n2
2 , γ̂} +

P [M2(x
∗
c) > U | Y n1

1 ,Y
n2
2 , γ̂]E{(M̂ j

2 (x
∗
c)−M2(x

∗
c))

2 | Y n1
1 ,Y

n2
2 , γ̂}.

(3.4)

where M̂ j
1 (x

∗
c) and M̂

j
2 (x

∗
c) are the posterior means ofM1(x

∗
c) andM2(x

∗
c) given

the vector Y j
e and γ. We choose x

∗
e,j as the following:

x∗
e,j = argmin

xe∈Xe

MSEj(xe).

The process (either j = 1 or j = 2) and the xe for the next run of the exper-

iment are Yj(·) and x∗
e,j where j = 1 if MSE1(x

∗
e,1) ≤ MSE2(x

∗
e,2) and j = 2

otherwise.

5. If the stopping criterion is not met, then we calculate yj(·) at the new point

(x∗
c ,x

∗
e,j), add that point to the corresponding initial design, set nj = nj + 1

and go to Step 2. If the criterion is met, the global minimizer is set to be the

minimizer of the empirical BLUP of M1(·) subject to the empirical BLUP of

M2(·) satisfying the constraint. Several stopping criteria are discussed in the

examples.

The intuition of this algorithm is as follows. In Step 3 we choose the next control

variable site xc to maximize the expected improvement inM1(·) over the minimum of

M1(·) for control variable sites already observed that appear to satisfy the constraint.

In Step 4 we choose the next environmental variable site xe to minimize a weighted
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sum of the mean-squared prediction error of M1(x
∗
c) and M2(x

∗
c). The weight for the

MSE of M1(x
∗
c) is 1 since we always want to make this MSE as small as possible.

The weight for the MSE of M2(x
∗
c) is the probability that x

∗
c is outside the feasible

region. If this probability is small (i.e. we are confident that x∗
c is in the feasible

region), then there is no need to make the MSE of prediction for the M2(·) process

any smaller, and only the M1(·) prediction error is of concern.

3.2.2 Details

Step 1: Choosing the Initial Design

How best to choose Sn1 and T n2 is a difficult problem. A simple approach is to

generate a space filling design (eg. Latin hypercube) for Sn1 and set T n2 = Sn1 . This

would observe both y1(·) and y2(·) at the same sites and allow all points to contribute

to the estimation of the R12(·) parameters. In Section 3.3 we propose an initial choice

of design so that both Sn1 and T n2 are Latin hypercubes that have only half of their

points in common.

Step 2: Maximizing the Posterior of γ given Y n1
1 and Y n2

2

The probability density function of the posterior distribution of γ given Y n1
1 and

Y n2
2 is

p(γ | Y n1
1 ,Y

n2
2 ) ∝ p(γ)|V 22|−1/2|F�V −1

22 F |−1/2[τ̂ 2
1 ]

−(n1+n2−k)/2, (3.5)

where p(γ) is a prior distribution on the correlation parameters in γ. The matrices

F and V 22 are defined in the following sections, and τ̂
2
1 is found in (3.10).
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Step 3: Selection of Control Variables

We need to obtain a formula for the posterior expected improvement given in

(3.3). We use iterated expectation and Monte Carlo for this calculation. Let Y c =

(Mn1�
1 ,Mn1�

2 , Y n1�
1 , Y n2�

2 )� (recall thatMn1
i = [Mi(sc,1), ...,Mi(sc,n1)]), and write

(3.3) as an iterated expectation

E{I(xc) | Y n1
1 ,Y

n2
2 ,γ} = EMn1

1 ,Mn1
2 |Y n1

1 ,Y n2
2 ,γ{E[I(xc) | Y c,γ]}. (3.6)

To evaluate the inner expectation, E[I(xc) | Y c,γ], we need the distribution of

[M1(xc), M2(xc)] given [Y c, γ], since given these, I(xc) depends only on M1(xc) and

M2(xc). For i ∈ {1, 2}, define Y ne
i = [Yi(xc,xe,1), ..., Yi(xc,xe,ne)]

� to be the ne × 1

vector of observations from process i evaluated at control site xc paired with each of

the ne support points for the environmental variable. Let Y
n1ne
i = (Yi(sc,1,xe,1), ...,

Yi(sc,1,xe,ne), ..., Yi(sc,n1 ,xe,1), ..., Yi(sc,n1 ,xe,ne))
� be the nen1 × 1 vector of obser-

vations on the Yi process evaluated at each of the n1 control points present in S
C
n1
,

paired with each of the support points for the environmental variable.

The joint distribution of the vector [Y ne
1 , Y

ne
2 , Y

n1ne
1 , Y n1ne

2 , Y n1
1 , Y

n2
2 ] given β =

(β�
1 , β

�
2 )

�, τ 2
1 , and γ is multivariate normal with mean (F

�
c ,F

�
M)

�β and variance-

covariance matrix τ 2
1 ((Cpq)) for p, q ∈ {1, 2, 3, 4, 5, 6}, where the components are

defined next. Let F ne
i = [f i(xc,xe,1), ...,f i(xc,xe,ne)]

�, F n1ne
i = [f i(sc,1,xe,1), ...,

f i(sc,1,xe,ne), ..., f i(sc,n1 ,xe,ne)]
�, F n1

1 = [f 1(s1), ... f 1(sn1)]
�, and F n2

2 = [f 2(t1),

..., f 2(tn2)]
� be the regression matrices for Y ne

i , Y
n1ne
i , Y n1

1 , and Y
n2
2 , respectively.

Then let

F c =

(
F ne

1 0
0 F ne

2

)
, FM =


 F n1ne

1 0
0 F n1ne

2

F


 , and F =

(
F n1

1 0
0 F n2

2

)
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where 0 is a matrix of zeroes of the appropriate size. The indices p, q ∈ {1, ..., 6}

for the covariance matrices Cpq correspond to the six components Y
ne
1 , Y

ne
2 , Y

n1ne
1 ,

Y n1ne
2 , Y n1

1 , Y
n2
2 in this order, so that, for example, Cov[Y ne

2 , Y
n1ne
1 ] = τ 2

1C23.

We apply a linear transformation to [Y ne
1 , Y

ne
2 , Y

n1ne
1 , Y n1ne

2 , Y n1
1 , Y

n2
2 ] to obtain

[M1(xc), M2(xc), M
n1
1 , M

n1
2 , Y

n1
1 , Y

n2
2 ]. Because Gaussian random vectors remain

Gaussian under linear transformations, this vector has a Gaussian distribution with

mean

(
F c

FM

)
β, and variance-covariance matrix τ 2

1 ((Σc,jk)) for j, k ∈ {1, 2}, where

F c = (I2 ⊗w�)F c,W n1 = In1 ⊗w,

FM =


 W�

n1
F n1ne

1 0
0 W�

n1
F n1ne

2

F


 , Σc,11 = w

�
(
C11 C12

· C22

)
w,

Σc,12 = w
�
(
C13W n1 C14W n1 C15 C16

C23W n1 C24W n1 C25 C26

)
,

Σc,22 =



W�

n1
C33W n1 W�

n1
C34W n1 W�

n1
C35 W�

n1
C36

· W�
n1
C44W n1 W�

n1
C45 W�

n1
C46

· · C55 C56

· · · C66




and Σc,21 = Σ�
c,12. Here, Ir denotes the r × r identity matrix, w = (w1, ..., wne)

� is

the vector of weights defining the distribution of the environmental variables, and ⊗

denotes the Kronecker product operator. The dot entries in the covariance matrices

are defined by symmetry.

Let Tq(µ,Σ, ν) denote the q-variate t distribution with location shift µ, scale

matrix Σ, and ν degrees of freedom (see Definition B.0.8). To obtain the posterior

distribution of (M1(xc),M2(xc)), given Y c and γ, we apply Lemma B.0.1 in Appendix

B (see O’Hagan (1992)) and find

[M1(xc),M2(xc) | Y c,γ] ∼ T2(mc, τ̂
2
1,cRc, 3n1 + n2 − k), (3.7)
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where

mc = F cβ̂c + Σc,12Σ
−1
c,22(Y c − FM β̂c),

β̂c = (FM
�
Σ−1
c,22FM)

−1FM
�
Σ−1
c,22Y c,

τ̂ 2
1,c =

Y �
c Σ

−1

c,22Y c − ˆβc

�
(FM

�
Σ−1

c,22FM )
ˆβc

3n1+n2−k ,

and

Rc = Σc,11 −Σc,12Σ
−1
c,22Σ

�
c,12 +

(F c −Σc,12Σ
−1
c,22FM)(FM

�
Σ−1
c,22FM)

−1(F c −Σc,12Σ
−1
c,22FM)

�.

Using this distribution we can calculate the inner conditional expectation in (3.6).

Let ν = 3n1 + n2 − k, r̂ = Rc,12√
Rc,11Rc,22

, U1 =
Mmin,c

1 −mc,1√
ˆτ2
1,cRc,11

, U2 =
U−mc,2√

ˆτ2
1,cRc,22

, C(z) =

√
ν
ν−2

tν−2

(
z
√

ν−2
ν

)
, and ζ2

r̂ (z) = (1 − r̂2) z
2+ν
ν−1

, where tκ(·) denotes the standard t

density function with κ degrees of freedom, and apply a linear transformation with

Lemma B.0.2 to compute

E[I(xc) | Y c,γ] =
√
τ̂ 2
1,cRc,11

[
U1 T2,r̂(U1, U2, ν) +

C(U1) Tν−1

(
U2−r̂U1

ζr̂(U1)

)
+ r̂ C(U2) Tν−1

(
U1−r̂U2

ζr̂(U2)

) ] (3.8)

where T2,r̂(·, ·, κ) is the joint CDF of the bivariate t with κ degrees of freedom, lo-

cation vector

(
0
0

)
= 02 and scale matrix

(
1 r̂
r̂ 1

)
, i.e. the T2(02,

(
1 r̂
r̂ 1

)
, κ)

distribution, and Tκ(·) is the CDF of the univariate t distribution with κ degrees of

freedom.

Finally, calculation of the unconditional posterior expected improvement is ac-

complished by integrating (3.8) using Monte Carlo. We generate N random samples

from the distribution of [Mn1
1 ,M

n1
2 ] given Y

n1
1 , Y

n2
2 , and γ. For each of the N sam-

ples we calculate Mmin,c
1 and compute (3.8). The posterior expected improvement is
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the average of these N quantities. In order to accomplish this we need to find the

posterior distribution of [Mn1
1 ,M

n1
2 ] given Y

n1
1 , Y

n2
2 , and γ.

As before, we know that, given (β, τ 2
1 ,γ), the random vector Y c has a joint

Gaussian distribution with mean FMβ and covariance matrix τ
2
1Σc,22. To partition

these matrices into the components associated with [Mn1
1 ,M

n1
2 ] and the data vector

Y d = [Y n1�
1 ,Y n2�

2 ]� we define the following:

FM,1 = (In1 ⊗w�)
(
F n1ne

1 0
0 F n1ne

2

)
, V 12 = (In1 ⊗w�)

(
C35 C36

C45 C46

)
,

V 11 = (In1 ⊗w�)
(
C33 C34

· C44

)
(In1 ⊗w), V 22 =

(
C55 C56

· C66

)
.

Again applying Lemma B.0.1 we see that [Mn1
1 ,M

n1
2 ] given Y

n1
1 , Y

n2
2 , and γ is

2n1-variate t:

[Mn1
1 ,M

n1
2 | Y d,γ] ∼ T2n1(m, τ̂

2
1R, n1 + n2 − k), (3.9)

where m = FM,1β̂ + V 12V
−1
22 (Y

d − F β̂), β̂ = (F�V −1
22 F )

−1F�V −1
22 Y

d,

R = V 11 − V 12V
−1
22 V

�
12 +

(FM,1 − V 12V
−1
22 F )(F

�V −1
22 F )

−1(FM,1 − V 12V
−1
22 F )

�,

and

τ̂ 2
1 = [Y

d�V −1
22 Y

d − β̂�
(F�V −1

22 F )β̂]/(n1 + n2 − k). (3.10)

Step 4: Selection of Environmental Variables

To calculate (3.4) we start by fixing i, j ∈ {1, 2} and letting J ji (xe) = (M̂i

j
(x∗

c)−

Mi(x
∗
c))

2. We have

E{J ji (xe) | Y n1
1 ,Y

n2
2 ,γ} = E

Yj(x∗
c ,xe)|Y d

,γ{E[J
j
i (xe) | Y j

e,γ]} (3.11)
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where Y j
e =[Yj(x

∗
c ,xe), Y

n1�
1 , Y n2�

2 ]. To calculate the inner expectation, we first

obtain the joint distribution of the random variables Y ne
1 (x

∗
c), Y

ne
2 (x

∗
c) and Y

j
e where

Y ne
i (x

∗
c) = (Yi(x

∗
c ,xe,1), ...,Yi(x

∗
c ,xe,ne))

�. Define

F 1
p =

(
f�

1 (x
∗
c ,xe) 0
F

)
, F 2

p =
(

0 f�
2 (x

∗
c ,xe)

F

)
, F ∗

c =
( F ne∗

1 0
0 F ne∗

2

)
,

where F ne∗
i = [f i(x

∗
c ,xe,1), ... f i(x

∗
c ,xe,ne)]

� is ne × ki. The joint distribution

of Y 1(x
∗
c), Y 2(x

∗
c), Yj(x

∗
c ,xe), Y

n1
1 , Y

n2
2 is Gaussian with mean

(
F ∗
c

F j
p

)
β and

variance-covariance matrix τ 2((Epq)) for p, q ∈ {1, 2, 3, 4, 5} where the indices p and

q correspond to the five components Y 1(x
∗
c), Y 2(x

∗
c), Yj(x

∗
c ,xe), Y

n1
1 , Y

n2
2 so that,

for example, Cov[Y 1(x
∗
c), Y

n1
1 ] = τ 2

1E14.

Applying a linear transformation and Lemma B.0.1 with

Σe,11 = w
�
(
E11 E12

· E22

)
w, Σe,12 = w

�
(
E13 E14 E15

E23 E24 E25

)
,

and Σe,22 the 3 × 3 block matrix with elements Epq for p, q ∈ {3, 4, 5}, the posterior

distribution of M1(x
∗
c), M2(x

∗
c) given Y

j
e and γ is the scaled and shifted bivariate t:

[M1(x
∗
c),M2(x

∗
c) | Y j

e,γ] ∼ T2(me, τ̂
2
1,eRe, n1 + n2 + 1− k), (3.12)

where

me = F ∗
cβ̂e +Σe,12Σ

−1
e,22(Y

j
e − F j

pβ̂e),

β̂e = (F j�
p Σ−1

e,22F
j
p)

−1F j�
p Σ−1

e,22Y
j
e,

τ̂ 2
1,e =

Y j�
e QeY

j
e

n1 + n2 + 1− k
,

Qe = Σ−1
e,22 −Σ−1

e,22F
j
p(F

j�
p Σ−1

e,22F
j
p)

−1F j�
p Σ−1

e,22,

and

Re = Σe,11 −Σe,12Σ
−1
e,22Σ

�
e,12 +

(F ∗
c −Σe,12Σ

−1
e,22F

j
p)(F

j�
p Σ−1

e,22F
j
p)

−1(F ∗
c −Σe,12Σ

−1
e,22F

j
p)

�.
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For i ∈ {1, 2}, the posterior meanme,i is the best linear unbiased predictor ofMi(x
∗
c)

based on the data Y j
e, thus E{J ji (xe) | Y j

e,γ} is the posterior variance of Mi(x
∗
c) for

the distribution given in (3.12), i.e.,

E{J ji (xe) | Y j
e,γ} =

(
n1 + n2 + 1− k
n1 + n2 − 1− k

)
τ̂ 2
1,e Re,ii. (3.13)

To calculate the outer expectation in (3.11) we note that the formula for the

inner expectation given in (3.13) is just a constant times a quadratic form in Y j
e,

whose expectation can be evaluated using the well known formula for expectations of

a quadratic form (see Theorem B.0.6 in Appendix B). The distribution of Yj(x
∗
c ,xe)

given Y d and γ has mean m = F j
p,1β̂ + a12V

−1
22 (Y

d − F β̂) where a12 = (E34, E35).

Setting Z�
e = (m,Y

d�) and applying Theorem B.0.8, we compute the outer expec-

tation in (3.11) as

E{J ji (xe) | Y n1
1 ,Y

n2
2 ,γ} =

Re,ii
n1 + n2 − 1− k

(
Z�
e QeZe +

n1 + n2 − k
n1 + n2 − k − 2

τ̂ 2
1

)
where β̂ is given below (3.9) and τ̂ 2

1 is given in (3.10).

Finally, to calculate P (M2(x
∗
c) > U | Y n1

1 ,Y
n2
2 ,γ) we note that

[M2(x
∗
c) | Y n1

1 ,Y
n2
2 ,γ] ∼ T1(mp, τ̂

2
1Rp, n1 + n2 − k)

where mp = F
ne∗
2 β̂ +w12V

−1
22 (Y

d − F β̂),

Rp = W11 −w12V
−1
22w

�
12 +

(F ne∗
2 −w12V

−1
22 F )(F

�V −1
22 F )

−1(F ne∗
2 −w12V

−1
22 F )

�,

W11 = w
�E22w, w12 = w

� (E24 E25), and F
ne∗
2 = w�(0,F ne∗

2 ). Using this distri-

bution we obtain,

P (M2(x
∗
c) > U | Y n1

1 ,Y
n2
2 ,γ) = 1 − Tn1+n2−k


U −mp√

τ̂ 2
1Rp


 , (3.14)

where Tκ(·) is the univariate T cdf with κ degrees of freedom.
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3.3 Examples

The examples in this section will demonstrate the proposed algorithm, and inves-

tigate the effects of initial sample size and design. We fit the spatial autoregressive

model proposed by Kennedy and O’Hagan (2000). This model specifies a joint distri-

bution for (Z1(·),Z2(·)) by starting with independent processes Z1(·) and Zδ(·) that

are stationary Gaussian processes with mean zero, variances τ 2
1 and τ

2
δ , and correla-

tion functions R1(·) and Rδ(·) respectively. Set

Z2(x) = rZ1(x) + Zδ(x), (3.15)

for x ∈ X . Then we can determine τ 2
2 , R2(·) and R12(·) for this model: τ 2

2 = r2τ 2
1 +τ

2
δ ,

R2(x1 − x2) = Corr[Z2(x1), Z2(x2)] =
(
r2R1(x1 − x2) + (η − r2)Rδ(x1 − x2)

)
/η,

and R12(x1 − x2) = Corr[Z1(x1), Z2(x2)] = rR1(x1 − x2)/η, where η = τ 2
2 /τ

2
1 .

In the following examples, we utilize the power exponential class of correlation

functions for R1(·) and Rδ(·). For h ∈ {1, δ},

Rh(x1 − x2) =

p∏
i=1

exp
(
− θhi |x1,i − x2,i|α

h
i
)
,

where θhi > 0 and 0 < αhi ≤ 2. As θhi increases, the dependence between fixed input

sites decreases since Rh(·) decreases. If αhi = 2, then the Zh process is infinitely

mean square differentiable and the sample paths are infinitely differentiable in the i-

th direction. However, if αhi < 2 then the process is mean square continuous but not

differentiable in the i-th direction (see Cramér and Leadbetter (1967) secs. 9.2-9.5).

For the power exponential class, the parameter vector is γ = (τ 2
2 , r, θ

1
1, ..., θ

1
p, α

1
1, ...

α1
p, θ

δ
1, ..., θ

δ
p, α

δ
1, ..., α

δ
p) or, reparametrizing, γ = (η, r, θ1

1, ..., θ
1
p, α

1
1, ... α

1
p, θ

δ
1, ...,

θδp, α
δ
1, ..., α

δ
p).
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The Matérn family of correlation functions (see Stein (1999), Section 2.7) allows

for a parameter that controls the smoothness (or mean square differentiability) of

the process. In practice, we have found that this family does not add significant

improvement to the accuracy of our algorithm, but merely increases the computing

time needed in the estimation procedure (Step 2), and at times causes numerical

problems in the necessary calculations. Of course, most of our examples involve fairly

smooth functions. If the computer code was believed to produce output that was not

so smooth (perhaps having only a single derivative) the Matérn family might be more

reasonable.

3.3.1 Two-Dimensional Examples

The numerical examples study the characteristics of the algorithm when solving

a sequence of randomly generated test problems. The input space is (0, 1) × (0, 1)

with the first component being a control variable, and the second component being

an environmental variable having a discrete uniform distribution on the 10 points

(0.05, 0.15, ..., 0.85, 0.95). The class of test functions for y1(·) are draws from

y1(xc, xe) = (xc − θ1)(xc − θ2)(xc − xe)cos(θ3xc) + 0.1sin(
θ3
2
xe) (3.16)

with θ1 and θ2 independent and uniformly distributed on (-1,1) and θ3, independent

of θ1 and θ2, and uniformly distributed on (0, 8π). This is a very flexible class in

that the responses have between 0 and 8 zeroes and multiple local optima. y1(·)

can be very “smooth” when θ3 is small, and very “bumpy” when θ3 is large. The

functions in this class are continuous and infinitely differentiable, which may explain

why the Matérn class of correlation functions offered no improvement over the power
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exponential class. Figure 3.2 shows the wide variety of shapes that this class allows

by displaying 9 µ1(xc)’s corresponding to draws from (3.16).
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Figure 3.2: Nine µ1(xc) draws from (3.16)

The y2(·) function is fixed for all runs to be

y2(xc, xe) = −([1− e
−1
2xe ]× 2300x

3
c + 1900x

2
c + 2092xc + 60

100x3
c + 500x

2
c + 4xc + 20

).

We choose the constraint U to be either -6.8 or -8, each with probability 1/2. If U =

−6.8, then the feasible region for xc is (0.0783, 1.0), and if U = −8, then the feasible
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region for xc is (0.1101, 0.4762). Figure 3.3 shows the true y2(·) process, and the

corresponding constraint function with horizontal lines drawn at both -8 and -6.8.
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Figure 3.3: True constraint function

For each of 25 draws of y1(·) and U, we ran the proposed algorithm four times

corresponding to two choices for the initial design size and two choices for the “type”

of initial design. The two initial design sizes that we chose are n1 = n2 = 18 and n1 =

n2 = 10. The Jones et al. (1998) rule of thumb of 10 observations per input dimension

suggests n1 = n2 = 20. We investigate the effect of taking fewer observations on

the accuracy of the answer produced by the algorithm and on the total number of

observations required to obtain that answer. The two “types” of designs that we

consider here are as follows;

(1) All n1 = n2 observations on y1(·) and y2(·) are taken at the same input sites,

a Latin hypercube design that approximately maximizes the average distance

between all pairs of points. (Generated using ACED of Welch (1985)).
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(2) The n1 sites for y1(·) are chosen as in (1). The n2 (= n1) sites for y2(·) are

chosen in the following manner: First we choose n2/2 of the y1(·) input sites

so as to form a size n2/2 Latin hypercube. These will be the common sites at

which both y1(·) and y2(·) are observed. The remaining n2/2 sites for y2(·) are

chosen by randomly pairing the p components of the remaining n2/2 sites from

the y1(·) observations. For example, Figure 3.4 displays a mixed design with

n1 = n2 = 18. The +’s are those sites where y1(·) is observed and are chosen as

a Latin hypercube design that maximizes the average distance between all pairs

of points. The o’s are those sites where y2(·) is observed and are chosen using the

individual components of the sites where y1(·) is observed. As described above,

we first choose 9 points from the y1(·) sites to form a 9-point Latin hypercube

on which to observe both y1(·) and y2(·). The remaining 9 sites for y2(·) are

obtained by randomly pairing the x1 and x2 components of the remaining 9

sites for y1(·). Note that this construction allows the design for both y1(·) and

y2(·) to be a Latin hypercube. We will refer to this design as the mixed design.

For the stopping criterion we follow Williams et al. (2000c) and stop the algorithm

when both a moving average and a moving range of the expected improvements are

“small”. Let Îj be the observed expected improvement at iteration j. Then for j ≥ g

let Aj = (Îj+ ...+ Îj−g+1)/g and Rj = max{Îj, ..., Îj−g+1}−min{Îj, ..., Îj−g+1} be the

moving average and range of the expected improvements for the previous g iterations

of the algorithm. We stop the algorithm at the first j ≤ 45 for which Aj ≤ 0.000005

and Rj ≤ 0.00005, or at j = 45. Note that this stopping rule is problem specific in that

it depends on the scale of the responses for the moving average and range criterion
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Figure 3.4: 18-Point mixed design

and on the number of dimensions in the input space for the maximum number of runs

criterion.

3.3.2 An Illustration

We present one simulation run of our algorithm for illustrative purposes. The true

objective and true constraint functions are shown as dashed lines in Figure 3.5. For

this simulation we set g = 5, N = 300, and U = −8 (shown by the horizontal line in

the right hand plot). The feasible region for xc is (0.1101, 0.4762), and the constrained

optimum (also the global optimum in this case) is xc = 0.22866. The initial design for

this example was the 10-point Latin hypercube where the two responses were observed
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at the same sites. The algorithm added a total of 19 observations with 14 of those

taken on Y1(·) and 5 taken on Y2(·). Figure 3.5 also shows the final predicted surfaces

for µ1(xc) and µ2(xc) along with corresponding error bars and the true surface. As you

can see, the boundary of the feasible region is closely approximated, and, within the

feasible region, the objective function is predicted with virtually no visible difference

from the true objective function. Figure 3.6 displays the control variable portions of

the points where each response was observed.
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Figure 3.5: Final predictions for one draw of y1(·) objective function

3.3.3 Results

Table 3.1 summarizes the 25 simulated examples solved by the algorithm (with

g = 5 and N = 300). The column labeled Size corresponds to the initial sample size

taken on each of y1(·) and y2(·). The column labeled Type refers to the two initial

design types, corresponding to whether y1(·) and y2(·) are observed at the same sites

or at a mixed set of sites. The table presents summary statistics taken over the 25
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constrained optimization example.

draws (surfaces). The primary interest here is in minimizing the number of runs of the

two computer codes, while being sure to find the constrained minimizer. In general,

it appears that the algorithm observes the y1(·) response more often then the y2(·)

response, and it manages to find the approximate optimal xc value with the predicted

optimal value being within 0.005 of the true optimal value for most algorithm runs.

The algorithm runs where the predicted optimal value was further than 0.005 from the

true optimal value correspond to situations where the constrained optimum was on

the boundary of the feasible region. For these cases, the algorithm was stopped at the

maximum number of iterations, not by the moving average/moving range stopping

criterion. Continuing the algorithm further (i.e. until the moving average/moving
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range criterion is met) will improve the estimation of the optimal value. Table 3.2

displays the summary of the 17 random situations where the moving average/moving

range stopping criterion was used, removing those algorithm runs that stopped at

45 iterations for any of the four starting designs. Here, we see that in all four cases

for each draw the predicted constrained optimum, x∗c was within 0.005 of the true

optimum, indicating that for small dimensions it is feasible to start the algorithm

with less than 10 observations per dimension on each response.

Size Type y1 Code Runs y2 Code Runs
Min Median Mean Max Min Median Mean Max

18 Same 26.0 32.0 33.3 48.0 20.0 26.0 30.6 51.0
18 Mix 22.0 33.0 32.9 47.0 19.0 28.0 30.5 53.0
10 Same 19.0 28.0 27.9 43.0 11.0 19.0 25.3 46.0
10 Mix 18.0 26.0 28.2 39.0 12.0 22.0 25.2 46.0

Size Type Algorithm Iterations (x∗
c − xtruec )2

Min Median Mean Max Min Median Mean Max
18 Same 10.0 29.0 27.9 45.0 0.19e-04 2.19e-04 4.24e-04 27.3e-04
18 Mix 10.0 23.0 27.4 45.0 0.01e-04 1.10e-04 6.48e-04 61.6e-04
10 Same 13.0 35.0 33.2 45.0 0.01e-04 2.43e-04 4.33e-04 20.6e-04
10 Mix 11.0 31.0 33.3 45.0 0.19e-04 2.34e-04 17.4e-04 304e-04

Table 3.1: Summary statistics for 25 random objectives

Figure 3.7 displays boxplots of the total number of computer code runs for algo-

rithm runs that used the moving average stopping criterion. We see that the 10-point

starting designs require fewer total computer runs than the 18-point starting designs.

On the other hand, comparing the initial design that observes both responses at the

same sites with the “mixed” design of the same size there doesn’t appear to be an
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Size Type y1 Code Runs y2 Code Runs
Min Median Mean Max Min Median Mean Max

18 Same 26.0 32.0 32.8 42.0 20.0 25.0 25.0 41.0
18 Mix 25.0 35.0 33.6 47.0 19.0 22.0 24.4 42.0
10 Same 19.0 29.0 29.4 43.0 11.0 18.0 18.3 26.0
10 Mix 18.0 30.0 29.0 39.0 12.0 19.0 18.8 30.0

Size Type Algorithm Iterations (x∗
c − xtruec )2

Min Median Mean Max Min Median Mean Max
18 Same 10.0 20.0 21.8 37.0 0.57e-04 2.36e-04 4.91e-04 27.3e-04
18 Mix 10.0 20.0 21.9 41.0 0.01e-04 0.90e-04 5.37e-04 18.3e-04
10 Same 13.0 27.0 27.6 42.0 0.01e-04 2.43e-04 3.39e-04 11.5e-04
10 Mix 12.0 27.0 27.8 43.0 0.67e-04 4.08e-04 7.16e-04 25.3e-04

Table 3.2: Summary statistics for algorithm runs using moving average stopping
criterion

advantage to either design type. Heuristically, it would seem that observing the re-

sponses at different sites might offer some improvement for prediction since this allows

more “coverage” of the input space. On the other hand, it may be necessary to have

the observations at the same sites so as to gather as much information as possible

about how the two responses are related. In general, the “mixed” design is a broader

class of designs as it includes the possibility of observing the two responses at all the

same sites.

3.4 Discussion

This algorithm improves the sequential design algorithm of Williams et al. (2000c)

by refining the improvement criterion and by allowing the algorithm to observe y1(·)

and y2(·) at different sites. It is of greatest use when y1(·) and y2(·) are both com-

putationally expensive and only a few calculations of y2(·) are necessary to establish
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Figure 3.7: Boxplots of total number of computer code runs for those cases using the
moving average stopping criterion.

that the optimum of µ1(·) is clearly within the µ2(·) feasible region. In such a case,

all further computing effort is best spent identifying µ1(·).

The algorithm calls for several optimization routines. The first is in Step 2 where

the posterior mode of γ must be determined. This optimization can be very time

consuming. Williams et al. (2000c) suggest several approaches for decreasing the

computation time involved in this step. One idea is to only update the γ estimates

after groups of points have been added, particularly once a sufficiently large number

of points have been computed. Further, as the algorithm nears the stopping criterion

the γ estimates become more and more stable, and so an approach that skips Step

2 for larger groups of points might be appropriate. For the 25 y1(·) draws in the
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previous section, we update γ every other time after 25 yj(·) values have been added,

and every 5 times after 35 yj(·) evaluations.

There are other ways for decreasing the computing time required to run the algo-

rithm. In the examples of Section 3.3, we found that when the constrained optimum is

on a boundary of the feasible region the algorithm took the maximum number of runs

before stopping. In this case it makes intuitive sense to allow the algorithm to take

an observation on both y1(·) and y2(·). When the next xc chosen appears to be on the

boundary of the feasible region, we should evaluate both of the computer codes at the

next point and proceed with the algorithm. Perhaps by using P (M2(xc) ≤ U | Y d),

a criterion for deciding when xc is on the boundary of the feasible region can be

established.

The criterion in Section 3.3 is but one approach to stopping the algorithm. An-

other idea is to predict the global optimum at each stage and stop when the improve-

ment in this prediction (and its standard error) are “small”, or to stop when the

change in the values for the global optimum are “small”.

This algorithm can be extended to incorporate more complicated situations. First,

measurement error can be added to the observations and accounted for in the algo-

rithm. We considered the case where observations were measured without error, and

so only one observation at each input site was taken. When measurement error is

present, multiple observations need to be taken at a single input site to obtain in-

formation about the magnitude of the measurement error. In this situation it is not

clear how to best form the initial design of the experiment. Second, other types of

cokriging models or cross-correlation structures might prove more useful in modeling
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the multivariate data. For example, Ver Hoef and Barry (1998) construct valid cross-

variogram models by modeling the spatial data as a moving average of a white noise

random process. Empirical work is needed to investigate if the Section 3.2 algorithm

would be computationally feasible for such a (Y1(·), Y2(·)) model and its performance

relative to that presented here.

A final area for further research is in the construction of the initial design for

the two responses. First, how should observations be allocated to the initial design

and the following sequential design strategy when there is a limited number of total

runs allowed? In the examples above, we saw that starting designs with as few as 5

observations per input dimension can lead to accurate results, although the Jones et al.

(1998) rule of 10 observations per input dimension, when feasible, seems a reasonable

approach. Second, how should the points be chosen for the initial design? In Section

3.3 we present one heuristic for constructing an initial design for the two responses

that has the property that the design for each yi(·) is a Latin hypercube and each yi(·)

is observed the same number of times. For the case where we observe each process

the same number of times, there are many designs that have the above property and

there may be an optimal choice of one of these. Also, initial designs allowing for

different numbers of observations on the two responses need to be investigated. For

example, the fast code/slow code situation of Kennedy and O’Hagan (2000) is one

example where this type of design may be a more efficient use of computing time.
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CHAPTER 4

EXPLORATORY METHODS OF ASSESSING
ROBUSTNESS

In this chapter we present a prototype of an exploratory method for assessing

robustness. The method is illustrated by an example of a computer experiment

involving the design of an acetabular cup in a total hip replacement. Determining

the optimal cup geometry (the design of the acetabular cup) that promotes the best

“fixation” of the cup, or minimizes the incidence of cup loosening, is an important

research question. Interfacial gaps between the acetabular cup and the periacetabular

bone, the pelvic bone into which the cup is implanted, have been identified as a

factor in cup loosening. The presence of these gaps inhibits bony ingrowth and allows

particulate debris to penetrate the joint space, thereby inhibiting “fixation” of the

acetabular cup.

Ong et al. (2002) conducted a computer experiment to analyze a class of acetab-

ular cup designs using a three-dimensional finite element model of a cadaver pelvis

undergoing cup insertion followed by peak gait joint loading. At the end of the load-

ing cycle, the cups were evaluated for the amount of total and rim bone-implant

apposition (total contact area and rim contact area), and the change in volume of the

periprosthetic joint space (change in gap volume). These three responses are affected
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by two control (engineering) variables and three environmental variables. The control

variables, cup polar diameter and cup equatorial diameter, describe the geometry of

the cup. The environmental variables, peak joint load magnitude, peak joint load di-

rection and cup penetration into the acetabulum, are subject specific and have values

that follow a probability distribution that characterizes some population of interest.

The objective of the experiment was to determine the cup geometry (control vari-

ables) that minimizes the mean change in periprosthetic gap volume, maximizes the

mean cup-acetabulum total contact area, and maximizes the mean cup-acetabulum

rim contact area. The means are taken over the distribution of the environmental

variables. Ideally, a single cup geometry will accomplish these goals, however, as with

any multi-objective experiment, different goals often lead to different solutions.

To accomplish these goals, we fixed a nominal distribution for the environmental

variables and performed a heuristic sequential optimization to determine the best

setting of the control variables for each of the three responses. This was accom-

plished by minimizing or maximizing a predictor of each response based on a small

training sample of computed responses. Since the optimal setting of the control vari-

ables depends on the assumed nominal distribution of the environmental variables,

we also performed an exploratory robustness analysis by perturbing the environmen-

tal variable distributions and then determining the optimal cup geometry. In other

words, we asked the question: is the cup geometry that is optimal for the nominal

Xe distribution also optimal for otherXe distributions? Comparing the optimal cup

geometry based on several alternative Xe distributions to that based on the nominal

environmental variable distribution gives a sense of how robust the cup design is to

misspecification of the environmental variable distribution. In Section 4.1 we describe
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each input variable and the nominal distribution of the environmental variables. Sec-

tion 4.2 discusses the heuristic sequential scheme. Section 4.3 explores the robustness

of the chosen design to perturbations in the nominal distribution of the environmental

variables.

4.1 Input Variables

The acetabular cup computer code requires five input variables to produce the

three responses.

1. Cup equatorial diameter (control variable)

2. Cup eccentricity (control variable)

3. Displacement from nominal penetration (surgical/environmental variable)

4. Joint load magnitude (environmental variable)

5. Joint load direction (environmental variable)

As seen in Figure 4.1 the two control variables describe the geometry (design) of the

acetabular cup. The cup equatorial diameter is restricted to values of 56 mm, 57

mm, 58 mm, 59 mm, and 60 mm. Cup eccentricity, the difference between the cup

equatorial diameter and the cup polar diameter, is restricted to the values 0 mm, 1

mm, 2 mm, and 3 mm, so that the polar diameter is always less than or equal to the

equatorial diameter.

The surgical variable displacement, which is treated as an environmental variable

in these analyses, describes the variability of the insertion of the cup into the acetab-

ulum. Ideally, the surgeon is able to exactly achieve nominal insertion, defined as a
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Figure 4.1: Cup geometry descriptors: polar (Rp) and equatorial (Re) radii. Nominal
insertion of cup allowed 0.25 mm penetration of cup into the acetabulum.

0.25 mm penetration of the cup dome into the acetabulum (see Figure 4.1), but in

practice, perfect insertion is rarely achieved. The nominal distribution of displace-

ment is assumed to be a discretized normal with mean 0 and standard deviation 0.3

mm (see Figure 4.3).

The final two environmental variables, peak joint load magnitude and peak joint

load direction, (shown in Figure 4.2) have distributions that are taken from the Biome-

chanics literature (Bergmann et al. (1993), Kotzar et al. (1991), Crowninshield et al.

(1978), and Pedersen et al. (1997)). The load directions in these studies ranged from

a polar angle, the angle made by the load direction and the polar axis of the cup, of

27.51 degrees to 39.77 degrees. A discretized normal distribution was fit to the load

directions to obtain a nominal distribution with mean polar angle of 34 degrees and

standard deviation 2.45 degrees (see Figure 4.3). The load magnitudes ranged from

2.04 to 5.31 times body weight. We fit a discretized version of a constant times a

chi-squared distribution to these magnitudes so that 1% of the distribution was less
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Figure 4.2: Environmental variables: joint load magnitude and load direction.

than 2.04 BW and 1% was above 5.31 BW, resulting in a constant of 0.0716 and 47.1

degrees of freedom (see Figure 4.3).
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Figure 4.3: Plots of the discretized nominal environmental variable distributions.
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4.2 Sequential Statistical Optimization

For each of the three responses, the following statistical optimization methodology

was performed. Suppose y(xc,xe) is the selected response; it is a function of both

control, xc, and environmental variables, xe. If g(·) is the distribution of the environ-

mental variables that incorporates the variation in the environmental variables over

the population of interest, the optimization goal is to minimize or maximize the mean

of y(xc,xe) over this distribution, i.e. to minimize or maximize

µ(xc) =

∫
y(xc,xe)g(xe)dxe. (4.1)

The finite element models used to compute the responses y(·) are sufficiently

complicated so that up to 24 hours of CPU time are required for each run. This

precludes the use of traditional numerical techniques to perform optimization. The

statistical methodology involves constructing an inexpensive (rapidly computable)

predictor ŷ(xc,xe) of the true response y(xc,xe). Given g(xe) and the predictor

ŷ(xc,xe), a predictor of the mean function can be defined as

µ̂(xc) =

∫
ŷ(xc,xe)g(xe)dxe,

and can be optimized using traditional numerical techniques.

The predictor ŷ(xc,xe) is determined from the computed response, y(xc,xe), at

a set of “training” sites located in the control and environmental variable space. For

this study, the training sites are chosen using a two stage procedure. In the first stage,

15 points are chosen as a Latin hypercube design that filled the 5-dimensional design

× environmental space in that the points approximately maximize the average inter-

point distance among all 15 sites. The second stage design consists of 10 additional
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points chosen as in Stage 1 and concentrated in the region of the optimal xc based

on ŷ(·) computed from the first stage training data. For each of the three responses,

the optimal xc from Stage 1 appeared to be in the same region of the input space,

making it possible to use a common Stage 2 design. The software program ACED

(Welch (1985)) was used to generate these designs.

To construct the final predictor, ŷ(xc,xe), we adopt the Bayesian viewpoint and

model the true response as a stochastic process or random function. The prior model

for each of the true responses, y(·), is the random function

Y (x) = β0 + Z(x), (4.2)

where Z(·) is a covariance stationary Gaussian stochastic process having mean zero,

correlation function R(·), and unknown variance τ 2 > 0. The model is completed by

specifying a positive definite correlation function R(·). For this analysis we let

R(x1 − x2) =
5∏
i=1

exp
(
− θi|x1,i − x2,i|αi

)
,

where θi > 0 and 0 < αi ≤ 2. The empirical best linear unbiased predictor (EBLUP)

of y(xc,xe) based on our training sample is then used for prediction purposes. See

Chapter 1 for more details of the modeling and analysis of computer experiments

data.

4.2.1 Stage 1 Predictor

The control variable portion of the 15-point Stage 1 design is displayed in Figure

4.4. Based on this 15 point initial design and Model (4.2), the predictors of the

mean response as functions of the two control variables, equatorial diameter and

eccentricity, are constructed for each of the three responses and plotted in Figure 4.5.
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Figure 4.4: Plot of initial 15 point design projected into the control variable space.

The mean response is obtained by averaging over the nominal environmental variable

distributions described in Section 4.1. Note that the 56, 57, or 58 mm hemispherical

cups (i.e. equatorial diameter = 56, 57, or 58, and eccentricity = 0) minimize or are

close to minimizing the mean change in gap volume (CGV), maximizing the mean

total contact area (TCA), and maximizing the mean rim contact area (RCA). So, the

10 additional training sites were restricted to equatorial diameters of 56, 57, or 58

mm, and eccentricities of 0 or 1 mm.

4.2.2 Stage 2 Predictor and Optimal Cup Geometry

Combining the 15 original training data with the additional 10 points, Model

(4.2) is refit to obtain the Stage 2 predictors of the mean response for all three

outcomes. Figure 4.6 and the corresponding values in Table 4.1 show that the 58
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Figure 4.5: Plots of predicted mean responses (averaging overXe distribution) based
on the 15-point training data (Stage 1).

mm hemispherical design minimizes the mean change in gap volume, and the 56 mm

hemispherical design maximizes both the rim contact area and the total contact area.

Since minimizing the mean change in gap volume is the primary concern, and the

58 mm hemispherical cup is “close” to optimal for both rim contact area and total

contact area, it is determined that, based on the nominalXe distribution, the 58 mm

hemispherical cup is the optimal cup geometry.

We can also use the predictor ŷ(·) to assess the effect of each variable on the

response by calculation of main effects and interaction effects. Introduced by Welch et
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Control Responses
Variables

Equatorial Eccentricity Change in Total Contact Rim Contact
Diameter Gap Volume Area Area

56 0 87.2212 3909.75 1000.600
56 1 74.5597 3305.28 887.391
56 2 76.2167 2564.83 817.638
56 3 82.8377 2153.42 709.957
57 0 55.9476 3675.73 919.637
57 1 64.9652 2511.70 892.695
57 2 70.9466 2046.51 892.432
57 3 92.0168 1797.38 881.530
58 0 34.0771 3193.07 806.240
58 1 59.4245 2173.17 805.483
58 2 66.4370 1871.50 818.326
58 3 101.8417 1679.85 821.672
59 0 44.5186 2495.75 662.704
59 1 73.5903 1859.57 704.248
59 2 78.3555 1671.41 751.999
59 3 121.7628 1543.18 777.702
60 0 86.9900 1932.77 579.316
60 1 109.6684 1705.57 606.922
60 2 111.4190 1628.96 651.382
60 3 153.3120 1490.21 700.159

Table 4.1: Predicted mean responses (averaging over Xe distribution) based on 25
point training data (Stage 2 results).
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Figure 4.6: Plots of predicted mean responses (averaging overXe distribution) based
on the 25-point training data (Stage 2).

al. (1992) , and seen in Jones et al. (1998), Table 4.2 lists the percentage contribution

of each input variable and each two-way interaction to total variability in each of the

three responses. It appears that the main contributors to variability in each response

are the control variables and their interaction. The environmental variables, on the

other hand, are relatively “inactive,” and do not seem to significantly affect the

response.
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Variable Change in Total Contact Rim Contact
Gap Volume Area Area

Load Magnitude (MAG) 1.76% 0.93% 0.22%
Load Direction (DIR) 0.01% 0.00% 0.00%
Displacement (DISP) 0.00% 0.80% 0.03%
Equ. Diameter (DIAM) 38.91% 40.31% 73.30%
Eccentricity (ECC) 39.97% 47.36% 0.32%
MAG * DIR 0.00% 0.00% 0.00%
MAG * DISP 0.00% 0.00% 0.00%
MAG * DIAM 3.51% 0.02% 0.30%
MAG * ECC 0.80% 0.09% 0.00%
DIR * DISP 0.00% 0.00% 0.00%
DIR * DIAM 0.47% 0.00% 0.00%
DIR * ECC 0.01% 0.00% 0.00%
DISP * DIAM 0.00% 0.25% 0.52%
DISP * ECC 0.00% 0.54% 0.00%
DIAM * ECC 14.51% 9.56% 25.26%

Table 4.2: Percentage contribution of main effects and interactions to the total vari-
ability in each response y(xc,xe) based on 25-point predictors.

4.3 Robustness of Optima to Misspecification of F (xe)

The sequential optimization scheme and the results obtained in Section 4.2 are

specific to the nominal environmental variable distributions described in Section 4.1.

Now assume these distributions are not known with certainty; we wish to determine

the sensitivity of the design of the acetabular cup to perturbations in the distribution

of the environmental variables. In the above analysis, the environmental variables

did not appear to be “active” for any of the three responses, contributing a small

portion to the total variability in the response. This suggests that perturbing the

distribution of the environmental variables will show little affect on the optimizing

xc. In this section, we investigate the effect of perturbing the environmental variable

distributions by answering three questions (for each of the three responses):

91



1. Does the optimal cup geometry change as we change the distribution of the

environmental variables?

2. How much does the value of the mean response change at the nominal optima

as we change the distribution of the environmental variables?

3. If the optimal cup geometry changes, by how much does the response for the

new cup design beat the response for the old cup design?

To answer these questions we first describe the alternative environmental variable

distributions that were considered.

4.3.1 Alternative Environmental Variable Distributions

The nominal distribution for peak joint load magnitude was a discretized constant

times a chi square distribution. Prior information suggests that the minimum possible

value for the load magnitude is approximately 1.8 times body weight (BW) and the

maximum is approximately 5.5 times body weight. So, the alternative distributions

for the peak joint load are restricted to this interval. Figure 4.7 displays the nominal

distribution (solid line) along with several proposed alternative distributions. These

alternative distributions have weights that follow a Beta(α, 5) distribution scaled

to the interval (1.8, 5.5). The entire class of distributions is obtained by allowing

α to take values in {0.2, 0.25, ..., 0.75, 0.8}, corresponding to mean load magnitudes

between 2.54 and 4.76. This gives a total of 13 alternative distributions for the peak

joint load magnitude.

The nominal distribution for the peak loading direction (polar angle) was normal

with a mean of 34 degrees and standard deviation of 2.45 degrees. To perturb this
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Figure 4.7: Nominal (−) and four alternative (− · −·) load magnitude distributions

distribution we allow the mean to take values in {29.1, 30.1, 31.1, ..., 39.1} giving a to-

tal of 11 alternative distributions. Figure 4.8 displays the nominal distribution (solid

line) of loading direction and the two extreme distributions (dashed line) correspond-

ing to means of 29.1 and 39.1 degrees.

Finally, the nominal distribution for displacement (the deviation from the nom-

inal cup penetration) was normal with a mean of 0 mm and a standard devia-

tion of 0.3 mm. To perturb this distribution we allow the mean to take values

in {−0.25,−0.20, ..., 0.20, 0.25}, again yielding 11 alternative distributions. Figure

4.9 displays the nominal distribution (solid line) and the two extreme distributions

(dashed line) corresponding to means of −0.25 mm and 0.25 mm.
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Figure 4.8: Nominal (−) and the extreme alternative (− ·−·) load direction distribu-
tions

4.3.2 Results of Varying Environmental Distributions

Because some of the alternative distributions considered above contain support

points outside of the initial parameter space (and thus outside of the 25-point training

sample), we added 8 more training points with inputs located in the extreme regions of

the input space. For each outcome, the predictor of y(xc,xe) based on the 33 training

sites is used to determine the optimal value of xc (i.e. the optimal cup geometry)

for each of the 1573 = 13 ∗ 11 ∗ 11 (13 alternative distributions for load magnitude

and 11 for both load direction and displacement) alternative environmental variable

distributions. Table 4.3 lists the 33 training points (15 from Stage one, 10 from Stage

2 and 8 additional points) and their corresponding responses.
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Control Evironmental Responses
Variables Variables

Diameter Eccentricity Load Direction Displacement CGV TCA RCA
56 3 2.8710 30.8602 0.05037 76.2 2121.3 722.2
60 0 3.0453 34.4113 -0.38447 95.0 1799.3 574.6
58 0 2.5226 35.7834 0.29023 37.4 3134.1 821.2
59 0 3.5679 29.5069 0 42.3 2499.7 661.3
60 2 4.0905 31.6298 -0.10221 102.1 1662.7 648.2
56 1 2.3484 32.7152 -0.21837 55.2 3118.9 909.7
58 2 3.2195 38.4931 -0.29023 71.3 1762.7 814.3
57 1 3.2195 36.3702 -0.05037 66.1 2445.8 895.7
56 2 3.7421 35.2848 0.15732 82.5 2583.1 815.6
59 2 2.8710 33.1653 0.38447 79.9 1710.1 764.5
57 0 4.4390 33.5887 0.10221 47.8 3869.0 922.1
57 3 3.7421 32.2166 -0.55017 99.7 1796.9 911.0
60 3 3.3937 37.1398 0.21837 161.4 1465.4 703.0
58 1 3.9163 34.0000 0.55017 58.7 2739.2 813.4
59 3 4.7874 34.8347 -0.15732 112.0 1606.7 766.9
57 0 4.6132 33.0560 0.03770 50.6 3808.2 924.8
58 0 2.6968 31.4607 -0.11560 38.2 3095.2 810.7
56 1 3.5679 32.3475 -0.49346 83.0 3244.5 868.1
58 0 3.7421 33.6921 0.49346 32.3 3304.0 814.2
56 1 4.2647 35.6525 -0.03770 75.9 3460.5 865.2
58 1 3.2195 38.0299 0.11560 64.5 2195.6 810.2
56 0 3.0453 34.9440 0.20235 87.3 3860.6 1019.3
57 1 2.3484 34.3079 -0.20235 49.1 2223.0 900.5
57 0 3.3937 36.5393 -0.31093 58.9 3641.7 928.5
57 1 3.9163 29.9701 0.31093 73.5 2739.6 878.2
58 3 5.5722 43.5000 1.10000 143.6 1478.4 751.0
56 3 3.2539 33.6602 -1.10000 82.0 1880.8 772.7
58 1 4.5828 25.5000 -0.97590 89.8 1958.5 820.0
60 2 1.9789 26.6011 -0.02380 105.1 1375.8 582.1
60 0 1.8000 42.0325 0.17970 102.5 1246.1 526.6
56 0 4.0819 40.5174 -0.99930 40.5 4568.2 1019.3
59 3 5.8000 35.4695 -0.88430 131.8 1574.1 778.0
59 1 3.8502 43.5000 0.74970 61.9 2294.1 719.5

Table 4.3: Training data (33 points) from actabular cup computer code.
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Figure 4.9: Nominal (−) and the extreme alternative (− · −·) displacement distribu-
tions

As in the case of the nominal distribution, for every alternative environmental

distribution the maximum mean total contact area was attained for a 56 mm hemi-

spherical cup. This is the ideal situation and indicates that the optimal cup design is

robust to misspecification of the environmental variable distribution, as was indicated

from the ANOVA results in Table 4.2 that showed little variation due to the envi-

ronmental variables. Figure 4.10 displays the predicted maximum total contact area

as a function of the three values governing the alternative Xe distributions: mean of

the load magnitude distribution, mean of the load direction distribution, and mean

of the displacement distribution. The maximum total contact area as a function of

these means ranges from 3760 mm2 to 4368 mm2 with the maximum total contact

area being 4024 mm2 for the nominal distribution.
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Figure 4.10: Predicted maximum total contact area as a function of the means of the
alternative environmental variable distributions.

For the rim contact area, a 56 mm hemispherical cup maximized the mean rim

contact area for the nominal distribution and for most (1320 out of 1573) of the alter-

native environmental distributions. For the remaining alternative distributions a 57

mm hemispherical cup maximized the mean rim contact area. The distributions for

which the 57 mm hemispherical cup was optimal tended to place more weight on the

higher end of the load magnitude range. Figure 4.11 displays the predicted maximum

97



rim contact area (left panel) and the equatorial diameter producing this maximum

(right panel) as functions of the three values governing the alternative Xe distribu-

tions. The maximum mean rim contact area ranges from 910 mm2 to 1083 mm2 with

the maximum mean rim contact area being 989 mm2 for the nominal distribution.

From Figure 4.11 we see that the distribution for displacement does not appear to

affect the results, whereas, there is an obvious interaction effect between the load

direction and load magnitude distributions, with smaller mean load directions (polar

angles) and larger mean load magnitudes being associated with smaller maximum

mean rim contact areas.
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Figure 4.11: Predicted maximum rim contact area (left panel) and the equatorial
diameter (right panel) that produces this maximum as functions of the means of the
alternative environmental variable distributions.
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The 58 mm hemispherical cup minimized the mean change in gap volume for the

nominal environmental variable distribution and for most (1183 out of 1573) of the

alternative distributions. A 56 mm hemispherical cup minimized the mean change

in gap volume for the remaining 390 alternative distributions which again tended

to place more weight on the higher end of the load magnitude range. Figure 4.12

displays the predicted minimum change in gap volume (left panel) and the equatorial

diameter corresponding to this minimum (right panel) as functions of the three values

governing the alternative Xe distributions. The range of the minimum mean change

in gap volume was 36 mm3 to 48 mm3 with the minimum mean change in gap volume

being 39 mm3 for the nominal distribution. In Figure 4.12 we again see that the

distribution for displacement appears to have little affect on the results, whereas, there

is an interaction effect between the load direction and load magnitude distributions.

4.4 Discussion

In this case study we see the importance of considering the sensitivity of the opti-

mal solution to the assumed nominal distribution of the environmental variables. We

would like to choose the design of the acetabular cup so that the response is “insensi-

tive” to the distribution of the environmental variables. We would call such a design

a “robust” design. There are several reasonable methods of defining insensitivity, and

hence robust design. We consider several below, and define the concept of robustness

more formally in Chapter 5.

For the total contact area response the robust cup design is a 56 mm hemispherical

cup, since for all alternative environmental variable distributions this cup geometry
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Figure 4.12: Predicted minimum change in gap volume (left panel) and the equatorial
diameter producing this minimum (right panel) as functions of the means of the
alternative environmental variable distributions.

minimizes the mean total contact area, averaging over the distribution of the en-

vironmental variables. However, for both the rim contact area and change in gap

volume responses, the optimal cup geometry depends on the assumed distribution of

the environmental variables. A robust choice of cup geometry is more difficult in this

situation. Choosing the design that is optimal the majority of the time, or choosing

the design that is never too suboptimal may be appropiate strategies. Chapter 5

discusses several robustness considerations and outlines some sequential strategies for

finding robust control variable settings.
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In addition to choosing a “robust” cup geometry, we must also consider the impact

of choosing a given design on all three responses. In the above example, univariate

modeling was used to compute the optimal setting for each response separately. This

can and does lead to different choices for the cup design depending on which response

is optimized. The decision between the 56, 57, and 58 mm hemispherical cups is dif-

ficult to make since we have competing objectives, minimizing change in gap volume

and maximizing total contact area and rim contact area. The 56 mm hemispherical

cup maximizes the total contact area regardless of the Xe distribution, and maxi-

mizes the rim contact area for most of the Xe distributions. However, the 58 mm

hemispherical cup minimizes the change in gap volume for most Xe distributions. A

more comprehensive approach that models all three responses together, and defines

an optimization formulation so as to lead to a single choice of optimal cup design may

be more appropriate. For example, in Chapter 3 the bivariate response setting was

investigated, and the optimal control variable value was chosen so as to minimize the

first response with a constraint on the second response. A similar approach may be

useful in the three-response setting.
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CHAPTER 5

OPTIMAL ROBUST PARAMETER DESIGN

We again consider the computer experiments setting where there are two types

of input variables: control variables and environmental variables. Control variables

are those that can be set by the product designer and environmental variables are

uncontrollable but have values that follow some probability distribution. Williams

(2000b), and Williams, Santner, and Notz (2000a) investigate this setting and present

sequential algorithms for finding the setting of the control variables that minimizes

(or maximizes) the mean response taken over the distribution of the environmental

variables. This choice of control variables may be “sensitive” to the nominal (cho-

sen) distribution of the environmental variables and “sensitive” to the value of the

environmental variables. A more “robust” choice of control variables may be obtain-

able by considering other characteristics of the induced distribution (induced by the

distribution of the environmental variables) of the response at given control variable

values.

In this chapter we discuss the goal of finding a “robust” value for the control

variables. We review different methods of defining robustness and focus on finding

a set of control variables at which the response is “insensitive” to the value of the

environmental variables. Such a choice ensures that the mean response is “insensitive”
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to perturbations of the nominal environmental variable distribution. We present a

sequential strategy to select the inputs at which to observe the response to determine

a robust setting of the control variables.

5.1 Concepts of Robustness

Let y(·) denote the true response function, the computer code output, and denote

the input by x = (xc,xe) where xc is the vector of control variables and xe is

the vector of environmental variables with Xe ∼ F (xe). Our goal is to identify a

“robust” setting of xc by examining the properties of y(xc,Xe), a random variable

with a distribution that is induced byXe. Note that the distribution of y(xc,Xe) will

change as xc changes and as the Xe distribution, F (·), changes. In this section we

define several types of robustness and compare these concepts using a simple example.

When F (·) is known, we typically focus attention on some aspect of the distribu-

tion of y(xc,Xe). For example, Williams (2000b) and Williams, Santner and Notz

(2000a) propose sequential algorithms for minimizing the mean response

µF (xc) = EF [y(xc,Xe)] (5.1)

as a function of the control variables. However, as is well recognized in the quality

control literature, simply minimizing (or maximizing) the mean µF (xc) can lead to a

choice of xc for which the variability in y(xc,xe) across the range of xe is unaccept-

ably large. In other words, it may be possible to find a setting for xc that minimizes

µF (xc), but has widely fluctuating values for y(xc,xe) across Xe. Suppose there are

other settings for the control variables that have a mean response that is “almost” as

small and for which y(xc,xe) is relatively “insensitive” to the value of the environ-

mental variables. In some sense, the “insensitive” alternative is a better choice for the
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control variables. It performs consistently well for all elements of the environmental

variable population, whereas simply minimizing the mean response may lead to great

performance for certain elements of the environmental variable distribution and poor

performance for others.

In addition, if y(xc,xe) is “sensitive” to the value of xe, then µF (xc) is “sensitive”

to the assumed distribution of Xe, which is problematic if the distribution is not

known precisely. In this case, different environmental variable distributions can lead

to very different choices for the optimal setting of the control variables. For example,

suppose that xFc minimizes µF (xc) for some assumed nominal Xe distribution F (·).

If the true distribution of Xe is G �= F and

µG(x
F
c )� min

xc

µG(xc), (5.2)

then xFc is actually an inferior setting of the control variables. In this case a “robust”

choice of control variable is a value that comes “close” to minimizing µF (xc) for the

nominal Xe distribution and avoids the situation in (5.2) for plausible alternative

Xe distributions. An xc value that accomplishes these objectives can be considered

“robust” to misspecification of the environmental variable distribution.

More generally, suppose that Xe ∼ G(xe) with G(·) ∈ G, where G is a class of

distributions representing the set of plausible environmental variable distributions. A

minimax approach to defining robustness (Huber (1981)) is to choose xc to minimize

max
G∈G

µG(xc). (5.3)

The goal is to make µG(xc) small, and the minimax approach attempts to guard

against the worst case scenario (a pessimistic view) among all environmental variable
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distributions in G. We will say that xG
c is G-robust if

max
G∈G

µG(x
G
c ) = min

xc∈Xc

max
G∈G

µG(xc). (5.4)

This formulation requires specification of G and the minimax computation of the

G-robust design, both of which may be challenging.

Another robustness formulation, more Bayesian in nature, starts by placing a

prior distribution π(·) on G ∈ G with G being a known set of environmental variable

distributions. In this setting we find xc that minimizes µG(xc) averaged over the set

of distributions G in G. In particular, suppose that the class of environmental variable

distributions is parametrized by θ, so Xe ∼ Gθ(xe) ∈ G; then π(·) is a distribution

on θ. We call xπc π(·)-robust if

µπ(x
π
c ) = min

xc

µπ(xc),

where

µπ(xc) =

∫
θ

µGθ
(xc)π(θ)dθ. (5.5)

This formulation requires not only the specification of a class G, as in the G-robust

setting, but also the specification of a prior on G. However, computation of the

π(·)-robust design is typically easier than computation of the G-robust design.

A final formulation of robustness returns to the direct analysis of the sensitivity

of y(xc,xe) to xe and to the quality control notion of minimizing the variability of

y(xc,Xe). This formulation requires only that a nominal Xe distribution F (·) be

specified. Suppose that y(xc,xe) is relatively “flat” in xe. Then the value of the mean

of y(xc,Xe) will be relatively independent of the choice of F (·), and thus be robust

to misspecification of F (·). If small values of µF (xc) are desirable, a robust value of
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xc minimizes µF (xc) among xc’s for which y(xc,xe) is flat in xe. One measure of

flatness is the variability of y(xc,Xe)

σ2
F (xc) = VarF [y(xc,Xe)]. (5.6)

However, this measure depends on the chosen F (·), a quantity that is not assumed

to be known with certainty. As a more general measure of flatness we define

σ2
G(xc) = VarG[y(xc,Xe)], (5.7)

where G(·) is a distribution on Xe selected by the user. For example, one could

simply set G = F , or take G(·) to be a uniform or noninformative distribution on

Xe. In particular, if Xe is bounded on the hyper-rectangle
∏
i[ai, bi] then we have

σ2
G(xc) =

1∏
i(bi − ai)

∫
y2(xc,xe)dxe −

(
1∏

i(bi − ai)

∫
y(xc,xe)dxe

)2

as the “variance” of y(xc,Xe) with respect to a uniform distribution.

In this setting, a robust value of xc might minimize µF (xc) subject to an upper

bound constraint on σ2
G(xc). We will define x

M
c to be M -robust if it minimizes

µF (xc)

subject to

σ2
G(xc) ≤ min

x∗
c∈Xc

σ2
G(x

∗
c) × a + c,

(5.8)

where a ∈ {0, [1,∞)} and c ≥ 0. The constraint parameters a and c can be set to

reflect the goal of the experiment. If an absolute bound on σ2
G(·) is desired we let

a = 0 and c be the desired bound. If a relative bound that requires σ2
G(x

M
c ) be close

to the minimum of σ2
G(·) we set a ≥ 1 and c ≥ 0. Note that a constraint involving a

relative bound has the advantage that the feasible region is nonempty when a ≥ 1 and

106



c ≥ 0, whereas there need not exist xc for which a chosen absolute bound (a = 0 and

c ≥ 0) is satisfied. Alternatively, perhaps more in keeping with the quality control

concept of having a “target” mean, a robust xc might minimize σ
2
G(xc) subject to a

constraint on µF (xc). We will define x
V
c to be V -robust if it minimizes

σ2
G(xc)

subject to

µF (xc) ≤ c or µF (xc) ≤ min
xc∈Xc

µF (xc) + c,

(5.9)

where the “target” for µF (xc) is to make it small. Of course, other constraint set-

tings, such as restricting µF (xc) to an interval, could be used in this formulation. V

robustness allows us to choose the xc that minimizes σ
2
G(xc) from a class of xc’s that

satisfy the given constraints on µF (xc).
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Figure 5.1: True y(xc, xe) for robustness example.
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We demonstrate these robustness definitions with a hypothetical example. Figure

5.1 plots the response y(·) that depends on a single control variable, xc ∈ (0, 1), and

a single environmental variable, xe ∈ (0, 1). Figure 5.2 displays four environmen-

tal variable distributions that constitute the class G of Xe distributions considered;

these distributions are admittedly different in character. To find the G-robust de-
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Figure 5.2: Class of four environmental variable distributions.

sign (Equation (5.4)) we plot max
F∈G

µF (xc) in the left panel of Figure 5.3; xc ≈ 0.82

minimizes this quantity, and, thus, is the G-robust design. The right panel of Figure

5.3 plots µπ(xc) (Equation (5.5)), assuming that each of the four Xe distributions in

Figure 5.2 are equally probable (i.e. π(·) is uniform). The optimal π(·)-robust setting

is also xπc ≈ 0.82, however, xc ≈ 0.22 produces a value of µπ(xc) that is very close to

optimal.
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Figure 5.3: Plot of max
F∈G

µF (xc) (left panel) and µπ(xc) (right panel) corresponding to

the true response in Figure 5.1.

ForM -robust and V -robust control variable values, Figure 5.4 plots µF (xc) (Equa-

tion (5.1)) in the left hand panel and σ2
F (xc) (Equation (5.7)) in the right hand panel

for each of the four Xe distributions. We see clearly the dependence of the minimizers
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Figure 5.4: True µF (xc) (left panel) and σ
2
F (xc) (right panel) for each environmental

variable distribution.
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of µF (xc) and σ
2
F (xc) on F (·). The value of xc that minimizes µF (xc) is xc ≈ 0.22 for

distributions one and two, and xc ≈ 0.82 for distributions three and four. In addition,

xc ≈ 0.22 is associated with “large” (relatively) σ2
F (xc) for all four Xe distributions,

whereas, xc ≈ 0.82 produces small values of σ2
F (xc) for each Xe distribution. Setting

G as a uniform distribution (Distribution 1) with a = 0 and c = 0.01 in (5.8), the

optimal M -robust setting is xc ≈ 0.82, and setting c = −0.05 in the first contraint of

(5.9), the V -robust setting is also xc ≈ 0.82. Of course, other constraint settings will

lead to other M -robust and V -robust control variable values.

Finally, note that the value of µF (0.22) is relatively unstable in F (·), whereas

µF (0.82) is relatively stable regardless of the Xe distribution. Figure 5.5 displays the

quantity

vπ(xc) =

∫
θ

(µFθ
(xc)− µπ(xc))2π(θ)dθ, (5.10)

where π(·) is uniform over the 4 Xe distributions in Figure 5.2. Again we see that

xc ≈ 0.22 may be a poor choice for a robust control variable value because it is

associated with larger values of vπ(xc). Intuitively, it seems that high values of vπ(·)

are associated with high values of σ2
F (xc) (and low values with low values) since if we

choose an xc for which σ
2
F (xc) is small, then the values for y(xc,Xe) are relatively

stable (or “flat”) across the support points for Xe. Thus, changing the distribution

of Xe should not significantly change the value for µF (xc), as indicated by small

values of vπ(xc). For discrete Xe and assuming π(·) is a Dirichlet distribution, this

relationship can be established more rigorously, indicating that choosing xc to make

σ2
F (xc) small, will also ensure that the value of µF (xc) will change minimally as the

distribution of the environmental variables changes.
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Figure 5.5: Plot of variability of µF (xc) for varying F (·).

In this simple example we see the importance of choosing robust control variables.

If we had assumed that xe is uniformly distributed on (0, 1) and minimized µF (xc)

based on that assumption, we would choose an xc for which σ
2
F (xc) is very large and

µF (xc) is very sensitive to F (·). Instead, we would like to find control variable values

for which the response is most “stable” regardless of the Xe setting.

In the following sections, we propose algorithms that can be used to find M -

robust and V -robust control variable values. In Section 5.2 we present the model

for the response. Section 5.3 outlines the sequential algorithm proposed for finding

these robust designs, and Section 5.4 presents examples illustrating the performance

of these algorithms for several different experimental goals. Finally, Section 5.5 dis-

cusses several computational considerations for these algorithms and areas for future

research.
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5.2 Modeling

As before, let y(x) be the true response function with input x ∈ X , and denote

the control and environmental variable portions of the input by xc ∈ Xc and xe ∈ Xe

so that x = (xc,xe). The modeling approach taken here is Bayesian. The prior model

for the true response y(·) is the random function

Y (x) = f�(x)β + Z(x), (5.11)

where Z(·) is a covariance stationary Gaussian stochastic process having mean zero,

positive definite correlation function R(·), and unknown variance τ 2 > 0. The linear

model f�(·)β represents the (nonstationary) global mean of the Y (·) process with

f(·) a k-vector of known regression functions and β ∈ R
k a vector of unknown

regression parameters. Note that there is no noise component of this model, reflecting

the deterministic property of a computer experiment (running the code at the same

inputs will produce the same output).

We complete specification of the model by assuming the non-informative prior

[β, τ 2] ∝ 1

τ 2

for the parameters (β, τ 2), and by choosing R(·) from a parametric family of known

correlation functions. We assume that the correlation function R(·) depends on the

parameter vector γ which is allowed to take any value for which the covariance struc-

ture of the process Y (x), for x ∈ X , is positive definite. In the examples below

we follow an empirical Bayes strategy and set γ equal to its posterior mode, and

substitute these values in wherever necessary.

We will assume that the joint distribution of the environmental variables is discrete

on {xe,j}ne
j=1 with probabilities PF{Xe = xe,j} = wj and PG{Xe = xe,j} = λj. Here
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F (·) is the nominal distribution of Xe, and G(·) is the Xe distribution associated

with the desired measure of flatness σ2
G(·). Note that we allow G �= F . We define the

following quantities

µF (xc) = EF [y(xc,Xe)] =
ne∑
j=1

wjy(xc,xe,j) = w
�yne

(xc), (5.12)

and

σ2
G(xc) = VarG[y(xc,Xe)] =

∑ne

j=1 λj(y(xc,xe,j)− µG(xc))2

= yne
(xc)

�(Ine − 1neλ
�)�diag(λ)(Ine − 1neλ

�)yne
(xc),

(5.13)

where w = (w1, ..., wne)
�, λ = (λ1, ..., λne)

�, yne
(xc) = (y(xc,xe,1), ..., y(xc,xe,ne))

�,

In is the n×n identity matrix, 1n is an n×1 vector of ones, and diag(λ) is an ne×ne

diagonal matrix with λ down the diagonal. Note that these correspond to (5.1) and

(5.7) in the previous section. Typically, G is taken as a uniform distribution on Xe

so that λj = 1/ne. The prior model in (5.11) induces the distribution of MF (xc) =∑ne

j=1wjY (xc,xe,j) for the mean µF (·), and VG(xc) =
∑ne

j=1wj(Y (xc,xe,j)−MG(xc))
2

for the “variance” (or flatness) σ2
G(·). For the remainder of this chapter, we will

suppress the dependence of σ2
G(xc) on G(·) and the dependence of µF (xc) on F (·),

simply writing σ2(xc) as the measure of “flatness” and µ(xc) as the mean of y(xc,Xe)

over F (·).

5.3 Sequential Algorithms

This section presents sequential strategies for determiningM -robust and V -robust

designs. Williams (2000b) and Williams, Santner and Notz (2000a) outline a sequen-

tial scheme for choosing input sites at which to run the computer code when the

objective is to find an x∗
c satisfying

x∗
c = argmin

xc∈Xc

µ(xc).
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Recalling the robustness motivations in Section 5.1 and the definitions of theM -robust

and V -robust designs, we propose sequential algorithms for finding theM -robust and

V -robust control variable settings.

The starting point for both algorithms involves choosing an n-point initial design

for y(·), denoted as Sn = {s1, ..., sn}. Let Y n =
[
Y (s1), ..., Y (sn)

]�
represent the

vector of responses associated with the initial design sites in Sn. An outline of the

steps of the sequential algorithms are as follows:

1. Choose the initial set of design points Sn = {s1, ..., sn} at which to observe y(·).

We used ACED (Welch (1985)) to generate a maximin distance based design

within the set of Latin Hypercube designs.

2. Estimate the covariance parameter vector by γ̂, the mode of the posterior den-

sity of γ given Y n. The posterior density function of γ given Y n satisfies

p(γ|Y n) ∝ p(γ) |R33|−1/2
∣∣F�

nR
−1
33 F n

∣∣−1
[τ̂ 2](n−k)/2, (5.14)

where p(γ) is a prior distribution for γ. The matrices F n and R33 are defined

in the following sections, and τ̂ 2 is defined in (5.24).

3. Choose the next control variable site x∗
c by an improvement criterion.

4. Choose the next environmental variable site x∗
e, corresponding to x

∗
c , by a pre-

cision criterion.

5. Determine if the algorithm should be stopped. If not, set Sn+1 = Sn
⋃
(x∗

c ,x
∗
e),

compute the response y(x∗
c ,x

∗
e) and return to Step 2. If the stopping criterion

is met, then the optimal robust setting for xc is obtained using traditional
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optimization techniques with the posterior means of M(·) and V (·) substituted

for µ(·) and σ2(·).

The criterion for selecting the input site at which to take the next observation (Steps

3 and 4 above) will depend on the goal of the experiment. In Section 5.3.1 we present

the criterion for adding points when the goal is to find the V -robust control variable

values, and in Section 5.3.2 we present the criterion for adding points when the goal

is to find the M -robust control variable value.

For both algorithms let the control variable portion of Sn be denoted by S
C
n =

{sc,1, ..., sc,n}. Assume thatXe is discrete on {xe,j}ne
j=1 with nominal weights {wj}ne

j=1.

For a given control variable value xc we let Y ne(xc) = [Y (xc,xe,1), ..., Y (xc,xe,ne)]
�

and define the random variables corresponding to (5.12) and (5.13) as

M(xc) = w
�Y ne(xc), (5.15)

and

V (xc) = Y ne(xc)
�AY ne(xc), (5.16)

where A = (Ine −1neλ
�)diag(λ)(Ine −1neλ

�)� and λ is the vector of weights associ-

ated with the desired measure of “flatness”. Finally, letMn = [M(sc,1), ...,M(sc,n)]
�

be the vector of values for the mean response associated with SCn .

5.3.1 Algorithm Details for Finding V -Robust Designs

Recall that x∗
c is V -robust if it satisfies

x∗
c = argmin

xc∈Xc

σ2(xc)

subject to either

µ(x∗
c) ≤ µ(xminc ) + c, or µ(x∗

c) ≤ c,

(5.17)
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where xminc = argmin
xc∈Xc

µ(xc). In words, the goal is to find x
∗
c that minimizes σ

2(·)

subject to µ(x∗
c) being “small” (i.e., close to min

xc∈Xc

µ(xc) or satisfying a given con-

straint). The constraint equation in (5.17) and the constraint parameter c are chosen

to reflect the research objective. If it is necessary to choose an xc that is a global

minimizer of µ(·), then set c = 0 and use the left hand constraint equation. On the

other hand, if it is sufficient to choose between values of xc such that µ(xc) < 5, for

example, then set c = 5 and use the right hand constraint equation. To complete

specification of the algorithm for finding the V -robust design we need to define the

improvement criterion for selecting the next control variable value (Step 3), and the

precision criterion for selecting the next environmental variable value (Step 4). The

stopping criterion (Step 5) will be discussed in the examples in Section 5.4 and in

Section 5.5.

Selection of Control Variables

We choose the next control variable site x∗
c to maximize

I(xc) = E[max{0, vmin,f − V (xc)} | Y n,γ]× P [ constraint |Y n,γ], (5.18)

where the constraint is either

M(xc) ≤ Mn,min + c, (5.19)

or

M(xc) ≤ c. (5.20)

The random variable Mn,min is the minimum of Mn, the vector of M(·) values at

control variable sites in SCn , and the constant, vmin,f , is the current best guess at the

116



constrained minimum of σ2(·); vmin,f is the minimum of the posterior expectation of

V (·) for control variable values in SCn that are estimated to be in the feasible region.

Formally, we let Mn,min = min{M(sc,i) : 1 ≤ i ≤ n}, and define the constant

vmin,f to be the minimum of E
[
V (xc)|Y n,γ

]
for xc ∈ Cn where Cn = {sc,i ∈ SCn :

M.025(sc,i) ≤ constraint} and M.025(sc,i) is the lower 2.5
th percentile of the posterior

distribution of M(sc,i) given Y n and γ (this posterior distribution is given in (5.31)).

Thus, we choose x∗
c such that

x∗
c = argmax

xc∈Xc

I(xc).

The intuition behind this criterion is as follows. We choose the next control

variable value site x∗
c to maximize the improvement in V (·) over the minimum of

the posterior expected values of V (·) for control variable sites already observed that

appear to satisfy the constraint. We multiply this improvement by the probability

that the constraint is satisfied thus “downweighting” observations in the infeasible

region of the control variable space. The calculations necessary for computing (5.18)

are outlined next. Lemma B.0.1 in Appendix B will be used throughout.

We begin calculation of (5.18) with the joint distribution of (Y ne(xc), Y n,ne , Y n)

given β, τ 2, and γ, where Y n,ne = (Y (sc,1,xe,1), ..., Y (sc,1,xe,ne), ..., Y (sc,n,xe,1),...

Y (sc,n,xe,ne))
� is the (n ·ne)×1 vector of responses at control sites in SCn paired with

each support point for the environmental variables. From Model (5.11) the joint dis-

tribution of [Y ne(xc), Y n,ne , Y n] given (β, τ
2,γ), is multivariate normal with mean

(F�
ne
(xc), F

�
n,ne
, F�

n )
�β and variance-covariance matrix τ 2((Σpq)) for p, q ∈ {1, 2, 3},

where the components are defined next. The vectors F ne(xc) = [f(xc,xe,1),...,

f(xc,xe,ne)]
�, F n,ne = [f(sc,1,xe,1), ...,f(sc,1,xe,ne), ... f(sc,n,xe,ne)]

�, and F n =
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[f(s1), ..., f(sn)]
� are the regression matrices for Y ne(xc), Y n,ne , and Y n respec-

tively. The indices p, q ∈ {1, 2, 3} for the covariance matrices Σpq correspond to

the three components Y ne(xc), Y n,ne , and Y n in this order, so that, for example,

Cov[Y n,ne ,Y n] = τ 2Σ23.

Because Gaussian random vectors remain Gaussian under linear transformations

we have
 Y ne(xc)

Mn

Y n


 |β, τ 2,γ ∼ N




 F ne(xc)

F̄ n,ne

F n


β, τ 2


 R11 R12 R13

· R22 R23

· · R33




 , (5.21)

where F̄ n,ne = (In ⊗ w�)F n,ne , R11 = Σ11, R13 = Σ13, R33 = Σ33, R12=Σ12(In ⊗

w�)�, R23=(In ⊗w�)Σ23, and R22=(In ⊗w�)Σ22(In ⊗w�)�.

To calculate E[max{0, vmin,f−V (xc)}|Y n,γ] we first compute the constant vmin,f .

From (5.16), V (xc) = Y
�
ne
(xc)AY ne(xc) is a quadratic form in Y ne(xc) for all xc.

Using Lemma B.0.1, the posterior distribution of Y ne(xc) given Y n and γ is

[Y ne(xc)|Y n,γ] ∼ Tne(m, τ̂
2R, n− k) (5.22)

where Tq(µ,Σ, ν) denotes the q-variate t distribution with location shift µ, scale

matrix Σ and ν degrees of freedom (see Definition B.0.8),

m = F ne(xc)β̂ + R13R
−1
33 [Y n − F nβ̂],

β̂ = (F�
nR

−1
33 F n)

−1F�
nR

−1
33 Y n, (5.23)

τ̂ 2 =
Y �
nR

−1
33 Y n − β̂

�
(F�

nR
−1
33 F n)β̂

n− k , (5.24)

and

R = R11 −R13R
−1
33R

�
13 +

(F ne(xc)−R13R
−1
33 F n)(F

�
nR

−1
33 F n)

−1(F ne(xc)−R13R
−1
33 F n)

�.
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Applying the well known formula for expectations of a quadratic form (see Theorem

B.0.6) we obtain

E[V (xc)|Y n,γ] =
n− k

n− k − 2trace[τ̂
2RA] +m�Am. (5.25)

We calculate (5.25) for each control variable value in Cn, set vmin,f as the minimum

of these expected values, and compute E[max{0, vmin,f − V (xc)}|Y n,γ] via Monte

Carlo by generating Nv samples of Y ne(xc) from distribution (5.22).

To sample from a multivariate t-distribution, Y ∼ Tq1(µ,Σ, ν), we follow these

steps (see Johnson and Kotz chapter 37 (1972)):

1. Sample x from a chi-square distribution with ν degrees of freedom.

2. Sample Y from a q1-variate normal distribution with mean µ and covariance

matrix ν
x
Σ.

A formula for the posterior probability of (5.19) (the first constraint) is obtained

via iterated expectations and Monte Carlo. We have

P [M(xc) ≤Mn,min + c | Y n,γ] =

EMn|Y n,γ
[
P
(
M(xc) ≤Mn,min + c |Mn,Y n,γ

)]
.

(5.26)

To compute the inner expectation we apply a linear transformation and Lemma B.0.1

to distribution (5.21) to obtain

[M(xc)|Z2n,γ] ∼ T1(µM,1, τ̃
2σM,1, 2n− k), (5.27)

where Z2n = (M�
n ,Y

�
n )

�. Letting R1,23 = (R12,R13), F 2n =

(
F̄ n,ne

F n

)
, and

R2n =

(
R22 R23

· R33

)
, we have

µM,1 = w
�F ne(xc)β̃ +w

�R1,23(Z2n − F 2nβ̃), (5.28)
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β̃ = (F�
2nR

−1
2nF 2n)

−1F�
2nR

−1
2nZ2n,

τ̃ 2 =
Z�

2nR
−1

2nZ2n − ˜β
�

(F �
2nR

−1

2nF 2n)
˜β

2n−k ,

and

σM,1 = w�R11w −w�R1,23R
−1
2nR

�
1,23w +

w�(F ne(xc)−R1,23R
−1
2nF 2n)(F

�
2nR

−1
2nF 2n)

−1(F ne(xc)−R1,23R
−1
2nF 2n)

�w.
(5.29)

Thus, the inner expectation is

P
[
M(xc) ≤Mn,min + c |Mn,Y n,γ

]
=

T2n−k
[
(Mn,min + c− µM,1)/

√
τ̃ 2σM,1

]
,

(5.30)

where Tν(·) is the univariate t-distribution cdf with ν degrees of freedom. The outer

expectation is obtained via Monte Carlo. We generate Nµ random samples from the

distribution of [Mn|Y n,γ], which is given next, and compute (5.30) for each sample.

The value for (5.26) is then obtained as the average of these Nµ quantities.

The distribution of [Mn|Y n,γ] is computed by applying Lemma B.0.1 to the

[Mn,Y n] portion of distribution (5.21). We have

[Mn|Y n,γ] ∼ Tn(µMn
, τ̂ 2ΣMn , n− k), (5.31)

where µMn
= F̄ n,neβ̂ +R23R

−1
33 (Y n − F nβ̂), β̂ as in (5.23), τ̂

2 as in (5.24), and

ΣMn = R22 −R23R
−1
33R

�
23 +

(F̄ n,ne −R23R
−1
33 F n)(F

�
nR

−1
33 F n)

−1(F̄ n,ne −R23R
−1
33 F n)

�.

The Nµ random samples from this multivariate t-distribution are generated using the

steps above.

A formula for P [M(xc) ≤ c | Y n,γ], the posterior probability of (5.20) follows in a

similar fashion. Applying a linear transformation to the distribution of [Y ne(xc),Y n]
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given (β, τ 2,γ), and then applying Lemma B.0.1 to the result gives

[M(xc)|Y n,γ] ∼ T1(µM,2, τ̂
2σM,2, n− k),

where the formulas for µM,2 and σM,2 are identical to formulas (5.28) and (5.29) for

µM,1 and σM,1 with β̃ replaced by β̂, R1,23 replaced by R13, Z2n replaced by Y n, F 2n

replaced by F n, and R2n replaced by R33. We obtain

P [M(xc) ≤ c | Y n,γ] = Tn−k((c− µM,2)/
√
τ̂ 2σM,2), (5.32)

where Tν(·) is the univariate T cdf with ν degrees of freedom.

Selection of Environmental Variables

We select the next environmental variable site x∗
e, corresponding to x

∗
c , to mini-

mize the posterior mean-squared prediction error for M(x∗
c)

E[(M(x∗
c)− M̂(x∗

c))
2 | Y n,γ], (5.33)

where M̂(x∗
c) is the posterior mean of M(x

∗
c) given Y (x

∗
c ,xe), Y n, and γ. A formula

for (5.33) can be computed via iterated expectations

E[(M(x∗
c)− M̂(x∗

c))
2|Y n] =

E
Y (x∗

c ,xe)|Y n,γ

{
E[(M(x∗

c)− M̂(x∗
c))

2|Y (x∗
c ,xe),Y n,γ]

}
.

(5.34)

Define the following correlation matrices,

Rne = Corr(Y ne(x
∗
c),Y ne(x

∗
c)), rne = Corr(Y (x

∗
c ,xe),Y ne(x

∗
c)),

Rne,n = Corr(Y ne(x
∗
c),Y n), rn = Corr(Y n, Y (x

∗
c ,xe)), and

Rn = Corr(Y n,Y n).

Then, using the Gaussian assumption and a linear tranformation, given β, τ 2 and γ
 M(x∗

c)
Y (x∗

c ,xe)
Y n


 ∼ N




 F̄ ne(x

∗
c)

f�(x∗
c ,xe)
F n


β, τ 2


 w�Rnew w�rne w�Rne,n

· 1 rn
· · Rn




 ,
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where F̄ ne(x
∗
c) and F n are defined as before. Using Lemma B.0.1 and letting E11 =

w�Rnew, E12 = (w
�rne ,w

�Rne,n), E22 =

(
1 rn
· Rn

)
, Z = (Y (x∗

c ,xe),Y
�
n )

�, and

F e = (f(x
∗
c ,xe),F

�
n )

� we obtain

[M(x∗
c)|Z,γ] ∼ T (me, τ̈

2Re, n+ 1− k),

where

me = F̄ ne(x
∗
c)β̈ +E12E

−1
22 (Z − F eβ̈),

β̈ = (F�
e E

−1
22 F e)

−1F�
e E

−1
22 Z,

τ̈ 2 = [Z�QZ]/(n+ 1− k),

Q = E−1
22 −E−1

22 F e(F
�
e E

−1
22 F e)

−1F�
e E

−1
22 ,

and

Re = E11 − E12E
−1
22E

�
12 +

(F̄ ne(x
∗
c)−E12E

−1
22 F e)(F

�
e E

−1
22 F e)

−1(F̄ ne(x
∗
c)−E12E

−1
22 F e)

�.

Since M̂(x∗
c) is the posterior mean of M(x

∗
c) given Z, the inner expectation in

(5.34) is the variance of this t-distribution, which is

E[(M(x∗
c)− M̂(x∗

c))
2|Y (x∗

c ,xe),Y n,γ] = (
n+ 1− k
n− k − 1) Re τ̈

2. (5.35)

To calculate the outer expectation in (5.34) we note that given Y n (5.35) is a constant,

( 1
n−k−1

)Re, times a quadratic form in Z, Z�QZ. Using Lemmas B.0.3 and B.0.4 in

the Appendix with

µ(x∗
c ,xe) = E[Y (x∗

c ,xe)|Y n,γ] = f
�(x∗

c ,xe)β̂ + rnR
−1
n (Y n − F nβ̂),

and me = (µ(x
∗
c ,xe),Y

�
n )

�, we have

E[Z�QZ|Y n,γ] =m
�
e Qme + trace[

n− k
n− k − 2 τ̂

2 ∗ 1]. (5.36)
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Thus the outer expectation in (5.34) is

E[(M(x∗
c)− M̂(x∗

c))
2|Y n,γ] = (

1

n− k − 1) Re [m
�
e Qme +

n− k
n− k − 2 τ̂

2]. (5.37)

5.3.2 Algorithm Details for Finding M-Robust Designs

Recall that x∗
c is M -robust if it satisfies

x∗
c = argmin

xc∈Xc

µ(xc)

subject to

σ2(x∗
c) ≤ a× σ2(x•

c) + c,

(5.38)

where x•
c = argmin

xc∈Xc

σ2(xc), a ∈ {0, [1,∞)}, and c ≥ 0. In words, the goal is to find x∗
c

that minimizes µ(·) subject to σ2(x∗
c) being close to min

xc∈Xc

σ2(xc) (c ≥ 0 and a ≥ 1)

or satisfying a given constraint (c > 0 and a = 0). To complete specification of the

algorithm for finding theM -robust design we need to define the improvement criterion

for selecting the next control variable value (Step 3), and the precision criterion for

selecting the next environmental variable value (Step 4). The stopping criterion (Step

5) will be discussed in the examples and in Section 5.5.

Selection of Control Variables

We choose the next control variable site x∗
c to maximize

I(xc) = E
[
max{0,Mmin,f −M(xc)} | Y n,γ

]
× P [ constraint |Y n,γ], (5.39)

where the constraint is

V (xc) ≤ a× vn,min + c. (5.40)

Intuitively, the constant vn,min is the minimum of the posterior expected values of V (·)

for control variable values in SCn , and the random variable Mmin,f is the minimum of
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M(·) at control variable values in Scn that appear to be in the feasible region. Formally,

we let vn,min = min{E[V (sc,i)|Yn,γ] : 1 ≤ i ≤ n}, and Mmin,f = min{M(sc,i) :

E[V (sc,i)|Yn,γ] ≤ a× vn,min + c}. Thus, we choose x∗
c such that

x∗
c = argmax

xc∈Xc

I(xc).

The intuition behind this criterion is as follows. We choose the next control

variable x∗
c to maximize the improvement in M(·) over the minimum of M(·) for

control variable sites already observed that appear to satisfy the constraint. We

multiply this improvement by the probability that the constraint is satisfied so as to

“downweight” observations in the infeasible region of the control variable space. The

calculations necessary to determine (5.39) are outlined below.

As in Williams (2000b, Chapter 3), E[max{0,Mmin,f −M(xc)} | Y n,γ] is com-

puted by iterated expectations and Monte Carlo. RecallMn = [M(sc,1), ...,M(sc,1)]
�

and write

E[max{0,Mmin,f − M(xc)} | Y n,γ] =

EMn|Y n

[
E
(
max{0,Mmin,f −M(xc)} |Mn,Y n,γ

)]
.
(5.41)

The inner expectation is computed from distribution (5.27), the posterior distribution

of M(xc) givenMn, Y n, and γ. We obtain

E
[
max{0, Mmin,f −M(xc)} |Mn,Y n,γ

]
=

(Mmin,f − µM,1)T2n−k
(
Mmin,f−µM,1√

τ̃2σM,1

)
+

1
2n−k

[
(2n− k)

√
τ̃ 2σM,1 +

(Mmin,f−µM,1)
2

√
τ̃2σM,1

]
t2n−k

(
Mmin,f−µM,1√

τ̃2σM,1

)
,

(5.42)

where Tν(·) and tν(·) denote the standard t cumulative distribution function and

density function with ν degrees of freedom, and the values of µM,1, σM,1, and τ̃
2 are

defined below equation (5.27).

124



The outer expectation is computed via Monte Carlo. A random sample of size

Nc is taken from the posterior n-variate t distribution of Mn given Y n and γ in

(5.31). For each sample, we calculateMmin,f and compute (5.42). The value of (5.41)

is then obtained as the average of these Nc numbers. Note that the distribution in

(5.31) does not depend on xc so that the same Monte Carlo sample can be used in

calculation of (5.41) for any xc.

Calculation of P
[
V (xc) ≤ a× vn,min + c | Y n,γ

]
is also accomplished via Monte

Carlo. First, the constant vn,min = min{E[V (sc,i)|Yn,γ] : 1 ≤ i ≤ n} is computed

using the well known formula for expectations of a quadratic form (see Theorem B.0.6

in the Appendix). Then a random sample of size Np is selected from the distribution

of Yne(xc) given Y n and γ (see (5.22)), and the desired probability is calculated as

the proportion of the Np samples satisfying the constraint.

Selection of Environmental Variables

We select the next environmental variable site x∗
e, corresponding to x

∗
c , to maxi-

mize the distance between (x∗
c ,x

∗
e) and the point in Sn that is closest to (x

∗
c ,x

∗
e). In

other words, let d(x1,x2) be a distance measure and define

D(x,Sn) = min{d(x, sc,i) : 1 ≤ i ≤ n},

to be the distance from x to the closest point in Sn. We choose x
∗
e as

x∗
e = argmax

xe∈Xe

D[(x∗
c ,xe),Sn].

Since maximin optimization problems are generally difficult to solve, we will restrict

the search for x∗
e to a grid of points in Xe (a reasonable restriction because Xe is

assumed to have discrete support).
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5.4 Examples

The following examples illustrate the performance of the M -robust and V -robust

sequential algorithms. All calculations are performed using Model (5.11) with f(x) =

1 and the product power exponential correlation function

R(h) =

p∏
i=1

exp (−θi|hi|αi) , (5.43)

where θi > 0, 0 < αi ≤ 2, so that γ = (θ1, ..., θp, α1, ..., αp).

5.4.1 Simple V -Robust 2-D Example

We illustrate the algorithm for finding V -robust designs with a simple example.

Consider the hypothetical y(·) shown in Figure 5.1 that depends on a single control

variable and a single environmental variable, each on (0, 1). We assume that Xe has

a discretized uniform distribution on the 20 points {0.025, 0.075, ..., 0.975, 1}. For this

example we wish to minimize σ2(xc) subject to an absolute bound µ(xc) ≤ −0.08.

The first step of the sequential algorithm involves choosing an initial set of de-

sign points at which to observe y(·). We use a space filling design, and, following

the recommendations of Jones, Schonlau and Welch (1998), use 10 observations per

input dimension. Figure 5.7 displays the 20-point maximin distance Latin hypercube

design (+’s) used as the starting design for this example. y(·) is evaluated at each of

the 20 points in the starting design, and the posterior mode of γ is obtained using

Model (5.11). Figure 5.6 displays the true µ(xc) (left panel) and σ
2(xc) (right panel)

along with the posterior means of M(xc) and V (xc) given the data from the starting

design and the posterior mode of γ. Note that the constraint µ(xc) ≤ −0.08 (dotted

horizontal line in the left panel) restricts xc to values in the approximate interval
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(0.176, 0.30). For this constraint the optimal setting of xc is on the lower boundary

of the feasible region at xc = 0.176. If no points are added to this design and the

posterior means of M(xc) and V (xc) based on the initial design are optimized we set

xc = 0.811, a value of xc that does not satisfy the constraint of interest but appears

to do so in the initial predictions.
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Figure 5.6: True µ(·) (left panel) and σ2(·) (right panel) and their posterior mean
predictors based on the 20-point starting design for the V -robust example.

Using the V -robust sequential algorithm with Nv = 500, points are added to the

starting design until we reach a predefined stopping criterion. In general, we would

like to stop the algorithm when there is no longer any improvement in adding points

and/or when prediction in the feasible region is “accurate”. For this example, we

choose to stop the algorithm when a moving average of the improvement criterion

is “small”. The definition of “small” is problem specific since it is relative to the

values of σ2(·). One means of defining a small improvement is to require that the

improvement be a small fraction (eg. a thousandth) of the range for the posterior
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expected value of V (·) at the current stage. Here, we stop the algorithm when a 5-

point moving average of the improvement is less than 0.00001. Figure 5.7 displays the

18 points that the algorithm added, and Figure 5.8 displays the final posterior means

ofM(·) and V (·) given the combined 38 (20 initial plus 18) point set of training data.

The V -robust optimal value based on the posterior means matches the true V -robust

optimal value of xc = 0.176.
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Figure 5.7: Locations of 38 points for the final design. +’s denote the 20 points in the
initial design and the numbered sites are the sites added by the V -robust sequential
algorithm in that order.

5.4.2 Simple M-Robust 2-D Example

We illustrate the M -robust sequential algorithm again using the hypothetical y(·)

shown in Figure 5.1, and the same discretized uniform distribution on the points
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Figure 5.8: True µ(·) and σ2(·) and their posterior mean predictors based on the
38-point final design (20 points in initial design and 18 points added by the V -robust
sequential algorithm).

{0.025, 0.075, ..., 0.975, 1} for Xe. The M -robust goal is to minimize µ(xc) subject to

a relative bound on σ2(xc), σ
2(xc) ≤ 1.1× min

x∗c∈Xc

σ2(x∗c) + 0.01 (see Figure 5.9).

The M -robust algorithm is started using the same 20-point maximin distance

Latin hypercube design as in Section 5.4.1 (see +’s in Figure 5.10). The posterior

mode of γ is obtained using Model (5.11) and the initial 20 observations from the

starting design. Figure 5.9 displays the true µ(xc) (left panel) and σ
2(xc) (right

panel) along with the posterior means of M(xc) and V (xc) given the data from the

starting design and the estimate of γ. The constraint σ2(xc) ≤ 1.1 × σ2(x•c) + 0.01

(dotted horizontal line in right panel) restricts the xc feasible region to approximately

(0, 0.15) ∪ (0.37, 0.95), and the value of the true M -robust control variable is xc =

0.838. If no points are added to the initial design and the posterior means of M(xc)

and V (xc) are used to find the M -robust xc we set xc = 0.822, the approximate true

M -robust value.
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Figure 5.9: True µ(·) and σ2(·) and their initial posterior mean predictors based on
the 20-point starting design for the M -robust example.

Using the M -robust sequential algorithm with Nc = Np = 500, points are added

to the starting design until a predefined stopping criterion is met. For this example

we stop the algorithm when a 5-point moving average of the improvement criterion

is “small”, less than 0.00001. A “small” improvement is problem specific since it is

relative to the range of the values of µ(·), and may be set as a fraction of the range

of the posterior mean of M(·). Figure 5.10 displays the 17 points that the algorithm

added. Note that most of the additional points are added in the xc = 0.83 region,

the value of the constrained minimum of µ(xc), while several are added around the

global minimum of µ(xc), xc = 0.23. Figure 5.11 displays the final posterior means of

M(·) and V (·) given the 37 point set of training data (20 initial plus 17 added). The

M -robust optimal value based on the posterior means matches the true M -robust

optimal value of xc = 0.838.

130



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Control Variable

E
nv

iro
nm

en
ta

l V
ar

ia
bl

e

Figure 5.10: Locations of 37 points for the final design. +’s denote the 20 points
in the initial design and the numbered sites are the sites added by the sequential
algorithm in that order.
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Figure 5.11: True µ(·) and σ2(·) and their final posterior mean predictors based on the
37-point final design (20 points in initial design and 17 points added by theM -robust
sequential algorithm).
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5.4.3 A 4-D Example

In this example, the Branin function of Dixon and Szego (1978), defined on X =

[−5, 10]× [0, 15] by

z(x1, x2) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

is used in the specification of the true reponse. The true response function has four

inputs and is set to be

y(x1, x2, x3, x4) =
1

30
z(x1, x2)z(x3, x4) + (x1 − π)2

with x1 and x2 being the control variables, xc = (x1, x2), and x3 and x4 being the

environmental variables, xe = (x3, x4). Table 5.1 lists the assumed joint distribution

of the environmental variables and Figure 5.12 displays the true µ(xc) (left panel)

and the true σ2(xc) (right panel).

x3

-2 1 4 7
3.75 0.0375 0.0875 0.0875 0.0375

x4 7.5 0.0750 0.1750 0.1750 0.0750
11.25 0.0375 0.0875 0.0875 0.0375

Table 5.1: Joint distribution of environmental variables.

We search for the M -robust control variable setting that minimizes µ(xc) subject

to σ2(xc) < 10000. The left panel of Figure 5.13 plots the xc feasible region along

with the global minimum of µ(xc), which occurs at the point (π, 2.275) (denoted by

� in the figure).
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example.
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Figure 5.13: Plot of xc feasible region (left panel) and 120 point final design projected
into the control variable space (right panel). The +’s indicate initial design sites and
the numbers indicate the additional design sites in the order they were chosen.

We start the M -robust sequential algorithm by computing the response on a 40-

point (again 10 observations for each dimension) maximin Latin hypercube design,

fitting Model (5.11), and plotting the posterior means of M(·) and V (·) based on
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the initial design in Figure 5.14. Setting Nc = Np = 1000 and using the M -robust

criterion defined above, 80 points are added to the initial design. The right panel of

Figure 5.13 plots the set of 120 (40 initial plus 80 added) final design sites projected

onto the control variable space, and Figure 5.15 plots the posterior means of M(·)

and V (·) based on the final 120 point design. Note the improvement in accuracy of

the final predictors over the initial predictors, and note that the algorithm performs

as desired by adding sites around the feasible region and slowly zeroing in on the true

M -robust value of (π, 2.275). Table 5.2 lists the value of the improvement and the

predicted constrained minimizer as points are added. After 80 points are added, the

final predicted M -robust value is (3.15, 2.25).
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Figure 5.14: Posterior mean predictors of µ(xc) (left panel) and σ
2(xc) (right panel)

based on the initial 40 point design.

134



−5

0

5

10

0

5

10

15
0

50

100

150

200

250

300

350

400

X
1

Plot of Predicted µ(x
c
)

X
2

µ(
x c)

−5

0

5

10

0

5

10

15
0

0.5

1

1.5

2

2.5

x 10
4

X
1

Plot of Predicted σ2(x
c
)

X
2

σ2 (x
c)

Figure 5.15: Posterior mean predictors of µ(xc) (left panel) and σ
2(xc) (right panel)

based on the final 120 point design.

# Points Added Improvement Predicted Minimizer
1 2.904673 (2.65, 0.00)
40 0.236627 (3.31, 2.02)
60 0.020322 (2.92, 1.98)
80 0.019231 (3.15, 2.25)

Table 5.2: Summary results for 4-D example

5.5 Discussion

The numerical optimization in Steps 2 and 3 of the algorithms can be computa-

tionally challenging. In Step 2, the algorithm calls for optimization of the posterior

distribution of γ at each stage to obtain the posterior mode of γ. Computational sav-

ings can be obtained by updating correlation parameter estimates only after groups
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of points have been added to the existing design and/or by using the previous cor-

relation parameter estimates as a starting point for the current stage’s numerical

optimization.

In Step 3, the algorithm calls for numerical optimization of the improvement

to obtain the next control variable value at which to observe y(·). The improvement

surface typically contains many local optima, making numerical optimization difficult

without good starting values for the optimization. We obtain promising starting

values by evaluating the improvement criterion on a grid of points in Xc. This helps

the optimization avoid local optima in the improvement surface.

In Step 4 of these algorithms we select the next environmental variable site at

which to observe y(·). Two methods of selecting the next environmental variable site

are presented. In the V -robust sequential design algorithm the next environmental

variable site is chosen to minimize the MSE of prediction for M(x∗
c). However, in

the M -robust sequential design algorithm we choose the next environmental variable

value by maximizing the minimum distance between the current design and the next

point. In other words, given the next control variable site x∗
c we choose xe so that

the distance between (x∗
c ,xe) and any other point already in the design is maximized.

The results of McKay et al. (1979) suggest that, for a fixed set of values of the control

variables, the environmental variables should be chosen as a Latin hypercube design

if we intend to compute a mean over the values of the environmental variables. Since

we are only adding one observation at a time, the distance based criterion attempts

to spread out observations much like a Latin hypercube. In addition the distance

based choice of xe has the advantage of ease of computation. For this reason, we

suggest using the distance criterion to choose the next environmental variable site.
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Comparing Figures 5.7 and 5.10 it appears that the final design obtained using the

distance based choice of xe manages to spread out the observations more uniformly.

As seen in the examples, the stopping criterion for the algorithm is problem spe-

cific. Generally, we want to stop the algorithm when our predictions are accurate

and/or the improvement is small. For accurate prediction, an intuitive stopping cri-

terion is based on the leave one out mean square prediction error being “small”. For

optimization, a stopping criterion based on the improvement is more appropriate. In

general, the improvement at each stage decreases. However, due to updated correla-

tion parameter estimates and additional information from the new observed response,

it is possible to find improvements larger than previously observed. For this reason,

we suggest stopping the optimization algorithm when a moving average of the im-

provement is “small”. The actual value of a “small” improvement depends on the

scale of the objective function. For the V -robust algorithm a “small” improvement

may be determined as a small fraction of the range of the posterior expected values of

V (·), and for theM -robust algorithm a “small” improvement may be a small fraction

of the range of the posterior expected values of M(·).

Both the V -robust and M -robust sequential algorithms require a starting design

at which the responses are calculated. In the examples above, maximin distance LHS

designs were used as starting designs. However, any other space filling design may be

appropriate for the goals presented above. Intuitively, since all points in the input

space are equally likely to be the location of an optimum, all portions of the input

space are equally important to observe in the initial stage. Thus, designs that spread

out observations in order to “cover” the input space (i.e. space filling designs) seem
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a natural choice. Generating space filling designs and determining which are best

suited to computer experiments is an area of active research.

In addition to the location of the sites in the initial design we must also consider the

number of sites to include in the initial design. Allocation of runs to the initial design

and subsequent sequential design can be an important component of minimizing the

number of runs of the code necessary to find the desired optimal value. Too many

sites in the initial design will “waste” observations, while too few may lead to poor

correlation parameter estimates and a larger number of sequential steps to find the

optimum. In the examples, we use the Jones, Schonlau and Welch (1998) suggestion

of 10 observations per input dimension, which is a reasonable rule of thumb.

In this chapter we have considered the case of a single deterministic response y(·)

that depends on both control and environmental variables. Straightforward extensions

of these concepts can be made for the case where the single response also involves

measurement error. However, many computer experiments involve multiple related

responses. For these situations, extensions of the above algorithms and concepts may

be appropriate and are an open area of research.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This dissertation has been concerned with the design and analysis of data from

a computer experiment. The modeling approach we have taken is Bayesian with

statistical models representing the prior beliefs about the relationship between the

inputs and the response. We model the true response as a stochastic process or

random function with a parametric correlation function having unknown parameters.

Chapter 2 compares the predictive ability of stochastic process models using different

parameter estimation procedures and standard regression based cubic polynomial

models. For the design considered and the variety of “true” responses investigated,

we show that the stochastic process models we propose, which use a simple mean

structure and a complex correlation structure, have much higher predictive ability

then simple polynomial regression models having a more complex mean structure and

no correlation structure. Of course, model (1.1) allows a complex mean structure and

a complex correlation structure, which may also prove useful, and perhaps preferrable,

for prediction purposes. In addition, we show that REML or ML should be used to

estimate the correlation parameters of the stochastic process model. Future research

in this area involves comparing the predictive ability of the various models for different

design strategies and for a larger variety of “true” surfaces.
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The experimental design aspect of computer experiments must consider the scien-

tific or engineering goals of the experimenters. For exploratory purposes, space filling

designs, such as those used in Chapter 2, are intuitively (and empirically) appeal-

ing, while for optimization of computer responses or integrals of computer responses,

sequential design strategies, such as those proposed in Chapters 3, 4, and 5, are

appropriate.

These sequential design strategies involve the commonly occurring situation where

the input variables consist of both control variables, which can be set by the product

designer, and environmental variables, which are uncontrollable but vary according

to some probability distribution. In this situation, we study the distribution of the

response that is induced by the distribution of the environmental variables. We

propose sequential experimental design strategies for the constrained optimization of

various characteristics of this induced distribution. For univariate responses, interest

is in finding values of the control variables that are robust to the environmental

variable setting, and, for bivariate responses, interest is in optimizing the expectation

of the first response subject to a constraint on the expectation of the second response,

where the expectation is taken over the distribution of the environmental variables.

We present motivations for these algorithms and examples of their performance in

various settings.

The algorithms in Chapters 3 and 5 are highly computational and we suggest

strategies for reducing the computational costs of these algorithms. The primary

computational cost is in the estimation of the correlation parameters corresponding

to the data model, particularly when there are a large number of inputs or a large
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number of observations. One approach to reducing this cost is to update the correla-

tion parameter estimates only after groups of points have been added to the existing

design, especially as the number of observations increases and the parameter esti-

mates remain fairly stable from one iteration to the next. If further reductions in

computational costs are desired, simpler correlation structures that reduce the num-

ber of correlation parameters, such as isotropic versions of the power exponential and

Matérn correlation functions, and/or Bayesian Markov chain methods for sampling

from the posterior distribution of the correlation parameters (thereby avoiding their

expensive estimation) may prove useful and are viable avenues for future research.

Another area for future research in computer experiments involves the combination

of information from different sources, as may be the case where both data from a

computer experiment and a “real” experiment are available. The multi-response

models mentioned in Section 1.1.5 and other hierarchical models may be ideal for this

situation since they allow for different data sources. In addition, hierarchical models

are able to account for different observation scales, for multiple measurement errors,

and can accommodate high-dimensional problems with huge amounts of data, making

them suitable for those computer experiments where large amounts of data can be

collected.

Finally, future work also involves investigation of computer experiments where the

inputs consist of all three types of inputs introduced in Chapter 1: control variables,

environmental variables, and model variables. The treatment of these model variables

when describing the “optimal” or “robust” choice of control variables is an area of

open research.
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APPENDIX A

PROPERTIES OF RANDOM PROCESSES AND THEIR
CORRELATION FUNCTIONS

The relationship between the properties of the correlation function and the prop-

erties of the corresponding random process is important to understand when trying

to choose a parametric family of correlation functions. In the following, we give

an overview of this relationship. For more details of the definitions and theorems

presented, the reader is referred to Adler (1981 chapters 2 and 3) or Cramér and

Leadbetter (1967 Chapters 4, 7 and 9).

Let Z be a random field (stochastic process) on R
p. We need to be able to “learn”

about Z based on partial information from a single sample path. To this end we

will assume that Z is stationary, which essentially means that Z behaves similarly in

different parts of the input space.

Definition A.0.1. A stochastic process Z(x) is strictly stationary provided that for

any k ≥ 1, any x1, ...,xk ∈ R
p and any h ∈ R

p we have

L(Z(x1), ..., Z(xk)) = L(Z(x1 + h), ..., Z(xk + h)),

i.e., the distribution of (Z(x1), ..., Z(xk)) is equivalent to the distribution of (Z(x1+

h), ..., Z(xk + h)).
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Definition A.0.2. A stochastic process Z(x) is weakly stationary or second order

stationary if it has second moments, E[Z(x)] is independent of x and Cov[Z(x1),

Z(x2)] = K(x2 − x1).

Definition A.0.3. A stochastic process Z(x) is mean square (MS) continuous at x0

if for all {xn} with xn → x0 we have

E[(Z(xn)− Z(x0))
2]→ 0.

Z(x) is mean square continuous on X if it is mean square continuous at each x ∈ X .

Definition A.0.4. A stochastic process Z(x) ismean square differentiable at x0 ∈ X

in direction j provided there is a value Z
(1)
j (x0) such that for any sequence of real

numbers hn → 0

E[(
Z(x0 + hnej)− Z(x0)

hn
− Z(1)

j (x0))
2]→ 0

where ej is the unit vector with a 1 in position j and zeroes elsewhere. Z(x) is mean

square differentiable on X in direction j if it is mean square differentiable in direction

j at every x ∈ X . The process Z(1)
j (x0) is called the mean square derivative of Z(x)

in direction j.

Note that the definitions of mean square continuity and mean square differentia-

bility are not properties of the sample paths of the process. In other words, Z(·)

being mean square differentiable does not imply that a realization of Z(·) will be

differentiable. Realizations of Z(·) being continuous or differentiable are stronger

conditions.

Definition A.0.5. A stochastic process Z(x) is almost surely continuous at x0 if

P{ω : Z(·, ω) is continuous at x0} = 1
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Definition A.0.6. A stochastic process Z(x) is almost surely differentiable at x0 in

direction j if

P{ω : Z(·, ω) is differentiable in direction j at x0} = 1

So, Z(x) is almost surely continuous (differentiable) if realizations of Z(x) are

continuous (differentiable) with probability 1. In this probability statement ω is the

random variable and it denotes the realization of the stochastic process Z(·).

The properties described above are intimately related to the properties of the

covariance function of the random field. In the following discussion assume that Z(·)

is a weakly stationary process with mean zero, variance σ2 and correlation function

R(h).

Theorem A.0.1. Z(·) is MS continuous on X if and only if R(h) is continuous at

h = 0.

Proof. Fix {xn} with xn → x0 then

E[(Z(xn)− Z(x0))
2] = 2σ2(1−R(xn − x0))

which converges to 0 if and only if R is continuous at 0.

Theorem A.0.2. Z(·) is MS differentiable on X in direction j provided

∂2R(h)

∂h2
j

∣∣∣∣∣
h=0

exists. The covariance function for the derivative process Z
(1)
j (x0) is then −σ2 ∂

2R(h)

∂h2
j
.

This can be generalized to Z(·) being m-times mean-square differentiable in direction

j provided that the 2mth partial derivative of R(h) in direction j exists.
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Proof. see Adler (1981) Theorem 2.2.2.

Theorem A.0.3. Suppose Z(·) is a weakly stationary Gaussian process over an open

set X ⊂ R
p that has mean zero, variance σ2 and continuous correlation function R(·).

Then Z(·) is almost surely continuous on X provided one of the following hold:

1. There is a finite c, 0 < c <∞ and ε > 0 such that

R(0)−R(h) ≤ c

|log(||h||)|1+ε

for all h ∈ R
p.

2. There is an ε > 0 such that

∫
Rp

(log(1 + ||w||))1+εf(w)dw <∞

where R(h) =
∫

Rp cos(w
�h)f(w)dw. The function f(w) is called the spectral

density corresponding to R(h).

Proof. see Adler (1981) Theorem 3.4.1 and 3.4.3.

Theorem A.0.4. Suppose Z(·) is a weakly stationary Gaussian process over an open

set X ⊂ R
p that has mean zero, variance σ2 and correlation function R(·) that

has continuous second partial derivatives in direction j. Then Z(·) is almost surely

differentiable on X in direction j provided one of the following holds:

1. There is a finite c, 0 < c <∞ and ε > 0 such that

∂2R(h)

∂h2
j

− ∂2R(0)

∂h2
j

≤ c

|(log||h||)|1+ε
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2. There is an ε > 0 such that

∫
Rp

(log(1 + ||w||))1+εw2
jf(w)dw <∞

where R(h) =
∫

Rp cos(w
�h)f(w)dw. The function f(w) is called the spectral

density corresponding to R(h).

Proof. The proof follows from Theorem A.0.3. Note that since the correlation

function R(·) has continuous second partial derivatives in direction j, we know, by

Theorem A.0.2, that the derivative process Z
(1)
j (x) exists and has covariance function

−σ2 ∂
2R(h)

∂h2
j
. Conditions 1 or 2 guarantee that the derivative process Z

(1)
j (x) is almost

surely continuous by Theorem A.0.3, so, certainly Z
(1)
j (x) almost surely exists.

Theorem A.0.5. Suppose Z(·) is a weakly stationary Gaussian process over an open

set X ⊂ R
p that has mean zero, variance σ2 and correlation function R(·) that has

continuous 2m partial derivatives in direction j. Then Z(·) is almost surely m-times

differentiable on X in direction j provided one of the following holds:

1. There is a finite c, 0 < c <∞ and ε > 0 such that

(−1)m∂
(2m)R(h)

∂h
(2m)
j

∣∣∣∣∣
h=0

− (−1)m∂
(2m)R(h)

∂h
(2m)
j

≤ c

|(log||h||)|1+ε

2. There is an ε > 0 such that

∫
Rp

(log(1 + ||w||))1+εw2m
j f(w)dw <∞

where R(h) =
∫

Rp cos(w
�h)f(w)dw. The function f(w) is called the spectral

density corresponding to R(h).

Proof. The proof follows in the same manner as Theorem A.0.4.
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Applying these theorems to the stationary Power Exponential correlation function,

defined for x1,x2 ∈ R
p as

R(x1 − x2) =

p∏
i=1

exp
(
− θi|x1,i − x2,i|αi

)
,

where θi > 0 and 0 < αi ≤ 2, we note that if αi = 2, then the Z process is infinitely

mean square differentiable in direction i, and if all αi = 2 then the sample paths are

infinitely differentiable. We can demonstrate the infinitely mean square differentiable

claim by simply noting that R(h) is infinitely differentiable in the ith direction and

applying Theorem A.0.2. The infinite differentiability of the sample paths follows

from noting that,

∫
Rp

cos(w�h)
p∏
i=1

1

2
√
πθi

e−w
2
i /4θidwi =

∫
Rp

p∏
i=1

cos(wihi)
1

2
√
πθi

e−w
2
i /4θidwi

= R(h).

Thus the spectral density is f(w) =
∏p
i=1

1
2
√
πθi
e−w

2
i /4θi , and we can check that the

condition of Theorem A.0.5 holds for all m. For any other values of αi we know that

the process is mean-square continuous, because R(h) is continuous at 0, but is not

mean-square differentiable in the ith direction, since R(h) is not differentiable in the

ith coordinate.

For the Matérn correlation function, defined for x1,x2 ∈ R
p as

R(x1 − x2) =

p∏
i=1

1

Γ(ν)2ν−1

(
2
√
ν|x1,i − x2,i|

θi

)ν

Kν

(
2
√
ν|x1,i − x2,i|

θi

)
, (A.1)

where ν > 0, θi > 0 and Kν(·) is the modified Bessel function of order ν, we note that

the parameter ν controls the smoothness of Z(·) in that Z(·) is m times mean-square

differentiable if and only if ν > m (see Stein (1999) Section 2.7), and its sample paths

are almost surely m times differentiable if ν > m (see Cramér and Leadbetter (1967)
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Secs. 9.2-9.5). This follows from noting that the spectral density for the Matérn

correlation function is a t-density with ν degrees of freedom (see Stein (1999) Section

2.7), and applying Theorem A.0.5.

So, what does all this mean to the stochastic process modeler? If we are sure that

the function producing the response is very smooth, and even infinitely differentiable,

then we should use the power exponential correlation function and set αi = 2 for all

i. This highlights one of the objections to the power exponential class. Either the

sample paths are assumed to be infinitely differentiable, or they are not differentiable

at all. The Matérn family of correlation functions offers an alternative family of cor-

relation functions which includes a parameter that controls the degree of smoothness

of the sample paths, and thus seems more flexible when dealing with surfaces having

unknown smoothness properties.
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APPENDIX B

LEMMAS AND THEOREMS FOR POSTERIOR
CALCULATIONS

The definitions, lemmas and theorems in this section are useful in deriving the

formulas and equations in Chapters 1, 3, and 5.

Definition B.0.7. The density of the q-variate Normal distribution Nq(µ,Σ) is

given by:

f(x) =
1

(2π)q/2|Σ|1/2 exp[−
1

2
(x− µ)�Σ−1(x− µ)],

for x ∈ R
q.

Definition B.0.8. The density of the q-variate t distribution Tq(µ,Σ, ν) is given by:

f(x) =
Γ[(ν + q)/2]

|Σ|1/2(νπ)q/2Γ[ν/2]

(
1 +

1

ν
(x− µ)�Σ−1(x− µ)

)−(ν+q)/2

for x ∈ R
q. See Berger (1985) for several properties of this distribution (e.g. Mean

= µ if ν > 1 and Covariance matrix = νΣ/(ν − 2) if ν > 2).

Theorem B.0.6. Suppose U is a q × 1 vector with mean µ and covariance matrix

Σ. Let Q(U ) = U�AU , where A is a known symmetric matrix, then

E[Q(U)] = µ�Aµ+ Trace(AΣ).
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Proof. The proof can be found in most standard books on linear models (see Seber

(1977) for example).

In particular, for U ∼ Tq(µ,V , ν) we have E[U�AU ] = ν
ν−2
Trace(V A)+µ�Aµ.

Theorem B.0.7. Suppose U i for i ∈ 1, 2 denote qi × 1 random vectors having the

Gaussian distribution

(
U 1

U 2

)
| β, σ2 ∼ Nq1+q2

[(
F 1

F 2

)
β, σ2

(
R11 R12

R21 R22

)]
,

where β ∈ R
k and σ2 > 0. Assuming that each of the elements of F i and Rij are

known, each F i has full column rank, and the correlation matrix is positive definite.

Then

U 1|U 2,β, σ
2 ∼ Nq1

(
m1|2, σ2R1|2

)
,

where m1|2 = F 1β +R12R
−1
22 (Y 2 − F 2β), and R1|2 = R11 +R12R

−1
22R

�
12.

Proof. The proof can be found in most standard books on linear models (see Seber

(1977) for example).

The following Lemma appears in O’Hagan (1992).

Lemma B.0.1. (O’Hagan (1992)) Suppose U i for i ∈ 1, 2 denote qi × 1 random

vectors having the Gaussian distribution

(
U 1

U 2

)
| β, σ2 ∼ Nq1+q2

[(
F 1

F 2

)
β, σ2

(
R11 R12

R21 R22

)]
,

where β ∈ R
k and σ2 > 0. Assuming that each of the elements of F i and Rij are

known, each F i has full column rank, the correlation matrix is positive definite and

the parameter vector β, σ2 has the noninformative prior [β, σ2] ∝ 1/σ2, the posterior
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distribution of U 1 given U 2 is q1-variate t: [U 1 | U 2] ∼ Tq1(m1|2, σ̂2R1|2, q2 − k)

where:

m1|2 = F 1β̂ +R12R
−1
22 (U 2 − F 2β̂),

β̂ = (F�
2R

−1
22 F 2)

−1F�
2R

−1
22U 2,

σ̂2 =
U�

2R
−1

22U 2− ˆβ
�

(F �
2R

−1

22 F 2)
ˆβ

q2−k

R1|2 = R11 −R12R
−1
22R

�
12 +

(F 1 −R12R
−1
22 F 2)(F

�
2R

−1
22 F 2)

−1(F 1 −R12R
−1
22 F 2)

�.

Lemma B.0.2. For any (w1, w2) ∈ !2

∫ w2

−∞

∫ w1

−∞
z1 t2,r(z1, z2, ν) dz1dz2 =

−
[
Cν(w1)Tν−1

(w2 − rw1

ζr,ν(w1)

)
+ rCν(w2)Tν−1

(w1 − rw2

ζr,ν(w2)

)
.

where Cν(u) =
√

ν
ν−2

tν−2

(
u
√

ν−2
ν

)
, ζ2

r,ν(u) = (1− r2)u
2+ν
ν−1

, Tν−1(·) is the univariate

t cdf and t2,r(·, ·, ν) is the joint density function of the bivariate t distribution given

above with mean vector 0 and scale matrix

(
1 r
r 1

)
.

Proof. see Williams (2000b) Lemma B.2.2

Lemma B.0.3. Let Y 1 and Y 2 be q1 × 1 and q2 × 1 random vectors with µ1|2 and

Σ1|2 denoting the conditional mean vector and covariance matrix of Y 1 given Y 2,

and let m� = (µ�
1|2,Y

�
2 ). If

A =

(
A11 A12

A�
12 A22

)
and Q = (Y �

1 ,Y
�
2 )A

(
Y 1

Y 2

)
,

then

E[Q | Y 2] = m�Am + trace[A11Σ1|2].
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Proof. See Williams (2000b) Lemma B.1.6.

Lemma B.0.4. Consider the setting of Lemma B.0.3 and let A have the form

A = Σ−1 − Σ−1F (F�Σ−1F )−1F�Σ−1,

where Σ is the variance-covariance matrix of the random vector (Y �
1 ,Y

�
2 ) and F

� =

(F�
1 ,F

�
2 ). Assume that Σ is partitioned in the same way as A and that Σ22 is

invertible. Then

A−1
11 = Σ11|2 + (F 1 −Σ12Σ

−1
22 F 2)(F

�
2 Σ

−1
22 F 2)

−1(F 1 −Σ12Σ
−1
22 F 2)

�.

where Σ11|2 = Σ11 − Σ12Σ
−1
22 Σ

�
12.

Proof. See Williams (2000b) Lemma B.1.7.

Theorem B.0.8. Let Y e = (Y (x
∗
c ,xe),Y

d�)� given β, τ 2
1 and γ have a q+1-variate

normal distribution with mean F pβ and variance-covariance matrix τ
2
1Σe,22. Assume

that β ∈ R
k and let Qe = Σ−1

e,22 - Σ
−1
e,22F p (F

�
pΣ

−1
e,22F p)

−1F�
pΣ

−1
e,22 where

F p =

(
f
F

)
and Σe,22 =

(
a11 a12

a�
12 V 22

)
.

Then

E[Y �
e QeY e | Y d,γ] =

(
M�

e QeM e +
q − k

q − k − 2 τ̂
2
1

)

where m = fβ̂+a12V
−1
22 (Y

d−F β̂),M�
e = (m,Y

d�), β̂ = (F�V −1
22 F )

−1F�V −1
22 Y

d,

and

τ̂ 2
1 = [Y

d�V −1
22 Y

d − β̂�
(F�V −1

22 F )β̂]/(q − k).
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Proof. First apply Lemma B.0.1 to obtain the posterior mean and variance of

Y (x∗
c ,xe) given (Y

d,γ) asm = fβ̂+a12V
−1
22 (Y

d−F β̂) andΣ1|2 =
q−k
q−k−2

τ̂ 2
1R respec-

tively, where R = a11−a12V
−1
22 a

�
12+ (f −a12V

−1
22 F )(F

�V −1
22 F )

−1(f −a12V
−1
22 F )

�.

Then applying Lemma B.0.3 we get

E[Y �
e QeY e | Y d,γ] =

(
M�

e QeM e + trace

(
q − k

q − k − 2 τ̂
2
1RQe,11

)
. (B.1)

And applying Lemma B.0.4 we have that Qe,11 = R
−1 which, upon substitution into

(B.1), gives the result.
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