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Abstract

OFORI-ATTA, WILLIAM, Ph.D., May 2024, Mathematics

Weak Diffusive Stability Induced by High-Order Spectral Degeneracies (104 pp.)

Director of Dissertation: Qiliang Wu

The Lyapunov stability of equilibria in dynamical systems is determined by the interplay

between the linearization and the nonlinear terms. In this work, we study the case when

the spectrum of the linearization is diffusively stable with high-order spectral degeneracy

at the origin. In particular, spatially periodic solutions called roll solutions at the zigzag

boundary of the Swift-Hohenberg equation (SHE), typically selected by patterns and

defects in numerical simulations, are shown to be nonlinearly stable. This also serves as

an example where linear decay weaker than classical diffusive decay, together with

quadratic nonlinearity, still gives nonlinear stability of spatially periodic patterns.

The study is conducted on two physical domains: the 2D plane, R2, and the cylinder,

T2π × R. Linear analysis reveals that instead of the classical t−1 diffusive decay rate, small

localized perturbation of roll solutions with zigzag wavenumbers decay with slower

algebraic rates (t−
3
4 for the 2D plane; t−

1
4 for the cylindrical domain) due to the high order

degeneracy of the translational mode at the origin of the Bloch-Fourier spaces. The

nonlinear stability proofs are based on decompositions of the neutral translational mode

and the faster decaying modes, and fixed-point arguments, demonstrating the irrelevancy

of the nonlinear terms.
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List of Notations
The following notations are used in this work.

• The one-dimensional torus of length α is given by Tα = R/αZ.

• The standard inner product on R2 is given by

x · y :=
2∑

j=1

x jy j, for any x = (x1, x2), y = (y1, y2) ∈ R2,

• The standard inner product on the Hilbert space L2(T2π) is given by

〈u, v〉 :=
∫
T2π

u(ξ)v̄(ξ)dξ, for any u, v ∈ L2(T2π)

where v̄ denotes the complex conjugate of v.

• The standard inner products on `2, or the `p–`q pairing, is given by

〈〈u, v〉〉 :=
∑
j∈Z

u jv̄ j, for any u = {u j} j∈Z ∈ `
p, v = {v j} j∈Z ∈ `

q with
1
p

+
1
q

= 1, 1 6 p, q 6 ∞

where v̄ denotes the complex conjugate of v.

• For p ∈ [1,∞), n ∈ N, we define the discrete Sobolev space wn,p :=
{
u

∣∣∣‖u‖wn,p < ∞
}

where the Sobolev norm takes the form

‖u‖wn,p :=


n∑

i=0

∑
j∈Z

| jiu j|
p




1
p

;

while for p = ∞, n ∈ N, we have wn,∞ :=
{
u

∣∣∣‖u‖wn,∞ < ∞
}

where

‖u‖wn,∞ := max
i=0,··· ,n

sup
j∈Z
| jiu j|

 .
We note that w0,p = `p.

• For any u ∈ L2(R2), we use the notations F u and û interchangeably for its Fourier
transform, and F −1u and qu for its inverse Fourier transform; that is,

(F u)(ν) = û(ν) :=
1

(2π)2

∫
R2

u(x)e−ix·νdx; (F −1u)(ν) = qu(ν) :=
∫
R2

u(x)eix·νdx.
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• For u ∈ L2(T2π), we use the notations Fdu and û interchangeably for its Fourier
series; that is,

(Fdu) j = û j :=
1

2π

∫
T2π

u(ξ)e−i jξdξ.

• The convolution of two functions u, v : X → C is defined as

u ∗ v(ν) :=
∫

X
u(x − x̃)v(x̃)dx̃,

where we use the Lebesgue measure if X is Euclidean and the counting measure if X
is discrete. In addition, we denote

u∗n :=
n of u︷     ︸︸     ︷

u ∗ · · · ∗ u .

We denote the Euclidean norm in Euclidean spaces as | · |, the norm in a general Banach
space X as ‖ · ‖X , and the norm of a linear operator from a Banach space X to Y as
|||·|||X→Y . For the case Y = X , the last norm notation simply becomes |||·|||X . For
X = Lp(R2), Lp(T2π), Lp(T1 × R), or `p, the second norm notation simply becomes ‖ · ‖p,
if there is no ambiguity. At last, we use the universal notation C for positive constants
throughout the paper.
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List of Acronyms
Swift-Hohenberg Equation- SHE



13

1 Introduction

1.1 Background and Stability of Patterns

1.1.1 Background of Patterns

Patterns appear in many different systems in the world, including biological,

chemical, and physical systems [4],[5],[6]. We can see patterns everywhere in nature,

ranging from cloud structures, dessert formation, fingerprints, animal skins, biological

tissues, and the counterpart patterns in the laboratory, ranging from fluid convection,

chemical reactions, lasers, liquid crystals, and many others. See figure 1.1 for some

examples of patterns. Our interest is understanding the rich structure of patterns, where

they come from, and how they evolve with time. Understanding patterns could help

predict earthquakes, forecast the weather, fight against infectious diseases that spread on

human bodies [19], and other non-equilibrium systems. Researchers in many different

academic disciplines have studied pattern formation systems for many decades [14],[15].

Still, it was not until Alan Turing’s work was published in 1952 that rigorous

mathematical analysis was introduced into the study of pattern formation [20]. Since that

time, numerous well-known mathematical pattern-forming systems, including the

Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Laudau

equation, the Swift-Hohenberg equation, the Bousinesseq equation, and many

reaction-diffusion models, to name a few, have been used to extensively study spatially

periodic patterns. The fact that pattern-forming systems in distinctly different settings can

be modeled by the same mathematical model, or by different mathematical models with,

say, the same modulated equation near interested patterns, demonstrates the universality

of patterns and their dynamics from the perspective of dynamical systems [30]. Given that

the patterns we witness in nature are generally resilient and enduring, it is only natural to

demand that solutions corresponding to the mathematical pattern formation system exist
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and exhibit similar dynamical qualities to their physical counterparts, which leads us to

study the stability of pattern solutions. Pattern-forming systems giving rise to spatially

periodic patterns, called roll solutions, typically accommodate a family of roll solutions

parameterized by a continuum of wave numbers. While the wave numbers on the zigzag

boundary have been shown to be selected by patterns and their defects in numerical

simulations [43], the nonlinear stability of these roll solutions on the zigzag boundary is

yet to be proved, and thus the topic of this research work.

Figure 1.1: Examples of Patterns. Courtesy of Qiliang Wu

1.1.2 Stability of Patterns

In dynamical systems, structural stability and Lyapunov stability are the two

traditional conceptions of stability. An equilibrium point of a dynamical system is said to

be Lyapunov stable if small perturbations around the equilibrium remain small at all

times. An equilibrium point is asymptotically stable if it is Lyapunov stable and small

perturbations around the equilibrium go to zero as time goes to infinity. Asymptotic

stability often happens in dissipative systems. On the other hand, in dispersive systems,

the Lyapunov stability is generically not asymptotic. Instead, it’s called neutral or orbital
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stability due to the existence of conserved quantities of the systems. Extensive studies on

the stability of pattern-forming systems have been conducted in both directions in the past

half century with the development of two drastically different sets of toolboxes; see [44]

and the references therein. The other stability is structural stability; a dynamical structure,

say, an invariant manifold, for example, persists under sufficiently small perturbations to

the system. Much less attention has been paid to the study of structural stability in

pattern-forming systems; see [45–47] for recent progress.

In the context of smooth dissipative systems, we investigate how the connection of

weak linear stability and nonlinearity influences the nonlinear asymptotic stability. For

further illustration, consider the dynamical system

ut = F(u), (1.1.1)

where F is smooth and u∗ is an equilibrium such that F(u∗) = 0. We then study the

Lyapunov stability of u∗ via the perturbed system w = u − u∗,
wt = Lw + N(w),

w(0) = w0,

(1.1.2)

where

L :=
∂F
∂u

(u∗), N(w) = F(u∗ + w) − F(u∗) − Lw.

If the spectrum of operator L denoted σ(L) lives in the complex plane C and has negative

real parts, then we say u∗ is spectrally stable. The equilibrium u∗ is said to be linearly

stable if w = 0 is stable in the linearized flow

wt = Lw,

Likewise, if w = 0 is stable in the whole nonlinear flow, then we say that u∗ is nonlinearly

stable. In the case when L is hyperbolic and satisfies certain extra condition(s), linear
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(in)-stability leads to nonlinear (in)-stability. More specifically, if L is of finite

dimensional, or, satisfies some regularity condition such as being sectorial [9], and every

member of the spectrum of L, denoted as σ(L), admits negative real part (at least one

member of σ(L) admits positive real part), then u∗ is asymptotically stable (unstable). In

the case when u∗ is asymptotically stable, the decay rate is exponential; that is, there exists

some c > 0 such that

lim
t→∞
‖ectv(t)‖ = 0,

where ‖ · ‖ is a proper norm varying from case to case.

Remark 1.1.1. Even when the linearized flow is Lyapunov unstable, nonlinear

stabilization can take place for C1 (in the Frechet sense) discrete dynamical systems posed

on infinite-dimensional Hilbert space; see [41, 42] for details.

The nontrivial and most interesting case happens when the spectrum σ(L) lies in the

left half of the complex plane and touches the imaginary axis; that is,

σ(L) ⊆ {a + bi | a 6 0, b ∈ R}, σ(L) ∩ iR , ∅.

The spectrum σ(L) can land on the imaginary axis in countless ways: σ(L) ∩ iR = {0} as

in the linear heat equation; σ(L) ∩ iR = {±i} as in the Hopf bifurcation; σ(L) ⊆ iR as for

many dispersive systems. We focus on the simple but interesting case when the

neutral-stable spectrum σ(L) only touches the imaginary axis at the origin; that is,

σ(L) ⊆ {a + bi | a 6 0, b ∈ R}, σ(L) ∩ iR = {0}.

While previous studies emphasized how different types of nonlinear terms affect the

nonlinear dynamics of patterns, we instead focus on the effect of weakening in the linear

decay on the nonlinear dynamics of patterns; see [10] for the recent work in this direction.
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1.1.3 Heat Equation Stability Example: Relevancy and Irrelevancy of Nonlinear

Terms

To illustrate the ideas, we look at the nonlinear heat equation,

ut = ∆xu + f (u), (1.1.3)

where u(t; x) ∈ R with (t, x) ∈ R+ × Rn and x = (x1, · · · , xn), and f (0) = f ′(0) = 0. The

equilibrium u ≡ 0 is linearly stable. More specifically, we have that

σ(∆x) = (−∞, 0],

and the linear heat equation ut = ∆xu admits the Gaussian decay estimates

‖∂αxu(t; ·)‖Lp(Rn) 6 Ct−[ n
2 ( 1

q−
1
p )+ |α|2 ]

‖u(0; ·)‖Lq(Rn),

where 1 6 q 6 p 6 ∞ and α = (α1, · · · , αn) ∈ Nn is the multi-index of partial derivatives

with |α| =
n∑

i=1

αi. In particular, for p = ∞, q = 1 and α = 0, the decay estimate reduces to

‖u(t; ·)‖L∞(Rn) 6 Ct−
n
2 ‖u(0; ·)‖L1(Rn), (1.1.4)

which we refer to as the diffusive decay estimate and the algebraic decay rate t−n/2 is called

the diffusive decay rate.

The stability of the equilibrium u = 0 in the nonlinear case (1.1.3), however, depends

on the type of nonlinearity, f (u). Intuitively, assuming L1 initial data, we can exploit the

Gaussian estimates (1.1.4) to determine whether the diffusion term ∆xu or the nonlinear

term f (u) is dominant in terms of their temporal decay rates, leading to the classification

of nonlinear terms into relevant, irrelevant and critical [33],[34],[35],[36],[37]. More

explicitly, we have

‖∆xu‖L∞(Rn) ∼ t−( n
2 +1), ‖ f (u)‖L∞(Rn) ∼ t−k,

where the latter estimate is derived based on the Gaussian estimates (1.1.4) on u and its

derivatives. The nonlinear term f is called irrelevant if k > n/2 + 1, relevant if
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k < n/2 + 1, and critical if k = n/2 + 1. We expect that, given any irrelevant nonlinear

term, the equilibrium u = 0 is nonlinearly stable with the same diffusive decay rate as the

linear case; any relevant nonlinear term makes the local nonlinear dynamics near the

equilibrium u = 0 different from its linear counterpart; the case for the critical one is

undetermined and typically needs to be handled on a case-by-case basis. For example, we

let f (u) = um and the application of Gaussian estimates leads to

‖ f (u)‖L∞(Rn) = ‖um‖L∞(Rn) = ‖u‖mL∞(Rn) ∼ t−
mn
2 ,

which implies that f (u) = um is irrelevant if m > 1 + 2/n, relevant if m < 1 + 2/n and

critical if m = 1 + 2/n; see Table 1.1 for more examples. Indeed, Fujita showed in 1966

[33] that, if m < 1 + 2/n, then the solution u blows up in finite time; if m > 1 + 2/n, then

u = 0 is asymptotically stable with the decay rate t−n/2. The critical case m = 1 + 2/n also

admits finite-time blow-up, according to the work by Hayakawa [34].

Classification Example Dynamics

Irrelevant (k > n/2 + 1) f = u∆u, |∇u|2, um(m > 1 + 2/n) ‖u‖L∞ ∼ t−n/2

Critical (k = n/2 + 1) f = ±u1+2/n Undetermined

Relevant (k < n/2 + 1) f = um(m < 1 + 2/n) Finite time blow up

Table 1.1: Classification of Nonlinear Terms : Irrelevant, Critical, and Relevant.

1.2 Spatially Periodic Patterns: Previous Results and Open Questions

Despite being non-rigorous, this intuitive classification of nonlinear terms still works

in the study of spatially periodic patterns, not directly but in a more subtle way, which

typically involves a proper change of coordinates based on a decomposition of the neutral

modes and stable modes. To fix ideas, we study the prototypical model of spatially
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periodic patterns–the isotropic Swift-Hohenberg Equation (SHE)

ut = −(1 + ∆x)2u + µu − u3 (1.2.1)

where u(t, x) is a real-valued function defined on [0,∞) × Rn and µ ∈ R is the bifurcation

parameter. The homogeneous equilibrium u ≡ 0 is stable for µ < 0 and unstable for µ > 0.

For 0 < µ � 1, the instability of the homogeneous equilibrium gives rise to a family of

even spatially periodic solutions, called roll solutions. More specifically, setting µ > 0 for

the rest of the paper and denoting ε :=
√
µ, we have the following lemma from

[38],[39],[1].

Lemma 1.2.1 (Existence of roll solutions). There exists 0 < ε0 � 1 such that for any

ε ∈ (0, ε0) and the wave number k ∈ (k−, k+) with k± =
√

1 ± ε, the stationary rescaled

one-dimensional SHE,

−(1 + k2∂2
ξ)

2u + ε2u − u3 = 0,

admits a unique roll solution up(ξ; k) which is 2π-periodic and even in ξ with up(0; k) > 0;

see Figure 1.2. The roll solution has the property up(ξ + π; k) = −up(ξ; k) and the leading

order expansion

up(ξ) = a1 cos (ξ) + a3 cos (3ξ) + O(̃a5), (1.2.2)

where

a1 = 1
π

∫ 2π

0
up(ξ) cos (ξ)dξ = ã + ã3/512 + O(̃a4),

a3 = 1
π

∫ 2π

0
up(ξ) cos (3ξ)dξ = −ã3/256 + O(̃a4),

ã =

√
4[ε2 − (k2 − 1)2]

3
.

Remark 1.2.2. We note that the symmetric property up(ξ + π; k) = −up(ξ; k) results from

the persistence of translation symmetry u(ξ)→ u(ξ + ξ0) and the reflection symmetry

u→ −u in the construction of roll solutions via the Lyapunov-Schmidt reduction.
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The rotational and translational symmetries of the system (1.2.1) guarantee that

up(k · x + φ; |k|)

for any φ ∈ R, k = (k1, · · · , kn) ∈ Rn with |k| =
√∑n

i=1 k2
i ∈ (k−, k+) is also a roll solution.

Figure 1.2: Existence and Stability Results of Roll Solutions Shown in the Busse Balloon.

Eckhaus first discovered in 1965 that not all roll solutions are spectrally stable, due to

sideband instability induced by perturbations with a period close to, but not equal to the

period of roll solutions [23].

1.2.1 Stability Results in the Swift-Hohenberg Equation

In [1], a method for studying stability analysis of bifurcating spatially periodic

patterns under non-periodic perturbations was developed. In particular, they considered

the stability of the roll solution in the 2-dimensional Swift-Hohenberg equation. They

came up with a condition depending on the wave number and amplitude of the rolls which

is necessary and sufficient to establish stability. After 30 years of Eckhaus instability

results at the Eckhaus boundary in 1965 [23], the first nonlinear stability result of the roll

solutions was given by Guido Schneider. In [21], the nonlinear stability of the rolls

solution of the 1-dimensional Swift-Hohenberg equation at the Eckhaus boundary,
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k ∈ (k−e , k
+
e ) where k±e = 1 ±

√
µ

12 + O(µ) was investigated under small non-periodic

perturbation. The challenge in showing stability for the roll solutions was because

linearization around the rolls possesses a continuous spectrum up to zero which has the

expansion

λ(ν1; k) = −a12(k)ν2
1 + O(ν3

1),

where ν1 is the Fourier wave number and a12(k) > 0 if and only if k ∈ (k−e , k
+
e ). Using

renormalization theory, Guido Schneider in [21] showed that the nonlinear terms are

irrelevant; thereby, the nonlinear problem behaves asymptotically as the linearized one

under a diffusive regime. To be more specific, the perturbed solution w = u − u∗ was

shown to decay with a rate of one-half, that is,

‖w‖L∞(R) ∼ t−
1
2 .

In [2], the nonlinear stability of roll solutions of the 2-dimensional Swift-Hohenberg

equation was investigated for k > kz where the zigzag boundary is given by

kz = 1 − µ2

512 + O(ν3). This results from the roll solution undergoing secondary instability

due to transversal perturbation of roll solutions. The linearization around the roll solution

in Bloch wave representation has a continuous spectrum up to 0 with a locally parabolic

shape at the critical Bloch vector 0 and has the expansion

λ(ν; k) = −a12(k)ν2
1 − a22(k)ν2

2 + O(|ν|3),

where ν := (ν1, ν2) is the Fourier wave-number vector and a22(k) > 0 if and only if k > kz

with kz = 1 − µ2

512 + O(ν3). Using renormalization theory, Hannes Uecker proved in [2] that

the perturbations w = u − u∗ of a spectrally stable roll solution u∗, that is sufficiently small

in a suitable Banach space, converge diffusively to zero in infinite time with a decay rate

of one. That is

‖w‖L∞(R2) ∼ t−1.



22

Thirty years ago, similar and more general results were obtained in the

Ginzburg-Landau equation [7, 24]. Recently, we have had similar results in viscous

conservation laws [26, 27] and in reaction-diffusion systems [28, 29].

In 2018, Guillod et al. [10] proved the nonlinear stability of spatially periodic

solutions of the Ginzburg Landau equation at the Eckhaus boundary. Putting this result in

the same context as the previous ones, the continuation of the zero eigenvalue in [10] takes

the expansion

λ(ν1) = −a14ν
4
1 + O(ν5

1),

and the perturbation w = u − u∗ decays diffusively with decay rate t−
1
4 as time goes to

infinity; that is,

‖w‖L∞(R) ∼ t−
1
4 .

1.2.2 Nonlinear Stability of Periodic Solutions in Abstract System

This study by Guillod et al. [10] serves as an illustration of how weakening linear

stability and higher order nonlinearity can nevertheless result in the nonlinear stability of

spatially periodic patterns, which inevitably raises the following intriguing unanswered

questions.

• Does weakening of linear stability of spatially periodic patterns always lead to

nonlinear stability? If the answer is no, what is the threshold of the linear decay rate

after which nonlinear stability is no longer valid? Also if such a threshold of linear

decay rate exists, is it possible to explain the local dynamics of spatially periodic

patterns beyond the threshold?

• Is there a general formula demonstrating the relationship between the leading order

expansion of the 0 eigenvalue and the nonlinear decay rate in the context where the

weakening of linear stability of spatially periodic patterns still leads to nonlinear
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stability? More specifically, we recall the abstract dynamical system (1.1.1),

ut = F(u),

where u(t, x) : [0,∞) × Rn → R is a real-valued function and F is smooth. Suppose

u∗ is a spatially periodic solution solving F(u∗) = 0, and recall that the perturbation

w = u − u∗ yields the perturbed system (1.1.2)

wt = Lw + N(w),

where L is a linear operator and N(w) represents nonlinear terms in w. If the

spectrum σ(L) lies in the left half of the complex plane and touches the imaginary

axis only at the origin; that is,

σ(L) ⊆ {a + bi | a 6 0, b ∈ R}, σ(L) ∩ iR = {0},

and the continuation of the eigenvalue 0 in the Fourier space admits the expansion

λ(ν) = −

n∑
i=1

ai(2mi)ν
2mi
i + h.o.t,

where ν is the Fourier wave-number vector and ai(2mi) > 0 for all i = 1, · · · , n. We

want to investigate if the perturbation v decays algebraically with decay rate

t−
∑n

i=1 1/2mi as time goes to infinity; that is,

‖w‖L∞(Rn) ∼ t−
∑n

i=1 1/2mi .

1.3 Main Results: Nonlinear Stability of Zigzag-Rolls in SHE

In this dissertation, we do not claim to provide definitive solutions to the

aforementioned unanswered problems; instead, we add two examples where weaker linear

stability leads to nonlinear stability. We state the following results about the nonlinear

stability of zigzag-roll solutions of the Swift-Hohenberg equation defined on the plane and

the cylinder. We employ methods comparable to those in [10], [22], and [11].
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Theorem 1.3.1. For any 0 < µ = ε2 � 1, up(kzx1; kz) is nonlinearly stable in the

two-dimensional SHE (1.2.1). Specifically, there exists δ > 0 such that for any initial

perturbation v0(x) := u(0, x) − up(kzx1; kz) ∈ L2(R2), satisfying

∥∥∥v̂0

∥∥∥
L1(R2)

+
∥∥∥v̂0

∥∥∥
L∞(R2)

6 δ,

where v̂0 represents the Fourier transform of v0, the L∞-norm of the perturbation

v(t, x) = u(t, x) − up(kzx1; kz) goes to zero as time goes to infinity. In particular, there exists

C > 0 such that ∥∥∥v(t, ·)
∥∥∥

L∞(R2)
6 C

∥∥∥v̂0

∥∥∥
L1(R2)

+
∥∥∥v̂0

∥∥∥
L∞(R2)

(1 + t)3/4 , ∀t > 0.

Conjecture 1.3.2. For any 0 < µ = ε2 � 1, the zigzag-rolls u∗(kzx; kz) of the SHE (1.2.1)

defined on the cylindrical domain, T2π × R is nonlinearly stable. Specifically, there exists

a δ > 0 such that for any initial perturbation w0(x) := u(0, x) − u∗(kzx; kz) ∈ L2(T2π × R),

satisfying

‖w0‖L1(T2π×R) +‖w0‖L∞(T2π×R) 6 δ,

the L∞-norm of the perturbation w(t, x) = u(t, x) − u∗(kzx1; kz) goes to zero as time goes to

infinity. In particular, there exists a C > 0 such that

‖w‖L∞(T2π×R) 6 C
‖w0‖L1(T2π×R) +‖w0‖L∞(T2π×R)

(1 + t)
1
4

∀t > 0.

The rest of this dissertation is organized as follows. In Chapter 2, we will lay down

the foundations for the proofs of Theorem 1.3.1 and Conjecture 1.3.2 by discussing

spectral analysis and linear decay intuitions. The proof of Theorem 1.3.1 is done in

Chapter 3. In Chapter 4, we will discuss the steps to prove Conjecture 1.3.2.
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2 Spectral Analysis and Intuitive Decay Estimation

To prove Theorem 1.3.1 and Conjecture 1.3.2, we first discuss the spectral properties

arising from linearization around the roll solutions in each case. We also provide intuitive

decay estimations based on the spectral properties in this chapter.

2.1 Perturbed SHE on the 2D Plane

Recalling the SHE given in (1.2.1), we fix

n = 2, 0 < ε < ε0, k ∈ (k−, k+), x = (x1, x2), ν = (ν1, ν2),

and denote

κ := k2 − 1. (2.1.1)

We introduce the rescaling x1 → kx1, and study the initial value problem of the rescaled

SHE, 
ut = −

(
1 + (1 + κ)∂2

x1
+ ∂2

x2

)2
u + ε2u − u3,

u(0, x) = up + v0,

(2.1.2)

or equivalently, the perturbation equation of v := u − up, where up is a roll solution.
vt = Lpv +Np(v),

v(0, x) = v0(x),
(2.1.3)

where

Lpv := −
(
1 + (1 + κ)∂2

x1
+ ∂2

x2

)2
v + ε2v − 3u2

pv, Np(v) = −3upv2 − v3. (2.1.4)

2.1.1 Spectral Analysis of the Linearized Operator Lp on the 2D Plane

The linearized operator of the stationary SHE at the roll solution up is given by

Lp : H4(R2) −→ L2(R2)

v 7−→ −
(
1 + (1 + κ)∂2

x1
+ ∂2

x2

)2
v + ε2v − 3u2

pv.
(2.1.5)
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As a differential operator, Lp has coefficients that are 2π-periodic in x1 and constant in x2.

It is well-known that the spectral analysis of constant-coefficient differential operators can

be readily done via the Fourier transform, while the spectral analysis of

periodic-coefficient differential operators can be achieved via the Bloch wave

decomposition [40]. To analyse the spectrum of Lp, we recall the notation Tα = R/αZ,

and introduce the Bloch-Fourier transform

B : L2(R2) 7−→ L2(T1 × R, L2(T2π))

v −→ Bw(ν, ξ) =
∑

k∈Z v̂(ν1 + k, ν2)eikξ,
(2.1.6)

We note that the Bloch-Fourier transform B is an isomorphism [40] and the linearized

operator Lp is block-diagonalized on the Bloch-Fourier space; that is, L̂p := B ◦ Lp ◦ B
−1

admits the direct integral form

L̂p =

∫
T1×R
L̂p(ν)dν,

where

L̂p(ν) : H4(T2π) −→ L2(T2π)

v(ξ) 7−→ −
(
1 + (1 + κ)(∂ξ + iν1)2 − ν2

2

)2
v + ε2v − 3u2

p(ξ)v.
(2.1.7)

We now introduce a proposition about the spectrum of the linear operators Lp, L̂p

and L̂p(ν).

Proposition 2.1.1 (Spectral stability). For any fixed ε ∈ (0, ε0), the operator Lp admits

the following spectral properties.

(i) σ(Lp) = σ(L̂p) =
⋃

ν∈T1×R

σ(L̂p(ν)) ⊆ R.

(ii) There exist κz(µ), κ+
e (µ) ∈ (k−, k+) so that σ(Lp) ⊆ (−∞, 0] if and only if κ ∈ [kz, k+

e ].

(iii) 0 is a simple eigenvalue of L̂p(0) with e0 :=
u′p
‖u′p‖2

as its associated normalized

eigenfunction. Moreover, there exists ν0 > 0 such that the eigenpair (0, e0) admits
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the unique analytic continuation (λ(ν), e(ν; ξ)) for |ν| < ν0 and e(ν; ξ) normalized,

satisfying L̂p(ν)e(ν) = λ(ν)e(ν) with

〈e(ν; ·) − e0, e0〉 = 0, e(ν) − e0 = O(|ν|), e(ν) = er(ν) + iν1ei(ν), (2.1.8)

where er(ν) is an odd real-valued function and ei(ν) is an even real-valued function.

Moreover, we have

λ(ν, ε2, κ) = a20(ε2, κ)ν1
2 + a02(ε2, κ)ν2

2 + a04(ε2, κ)ν2
4 + O(ν4

1 + ν6
2), (2.1.9)

where

(a) a20, a02 < 0 if and only if κ ∈ (kz, k+
e );

(b) For κ = κz, a20 = −4 + O(̃a3) < 0, a02 = 0, a04 = −1 + O(̃a4) < 0;

(c) For κ = k+
e , a20 = 0, a02 < 0.

Proof. Mielke [1] did the expansion of the eigenvalue λ(ν) up to the quadratic order, but

we need the expansion up to the quartic order. Our proof is built upon Mielke’s proof in

[1] and thus delegated to Appendix A. �

2.2 Perturbed SHE on the Cylindrical Domain

Recalling the SHE given in (1.2.1), we fix

(x, y) ∈ T2π × R, 0 < ε < ε0 and k ∈ (k−, k+).

We introduce the rescaling ξ := kx, and study the initial value problem of the rescaled

SHE, 
ut = −

(
1 + k2∂2

ξ + ∂2
y

)2
u + ε2u − u3,

u(0; ξ, y) = u∗ + w0,

(2.2.1)
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or equivalently, the perturbation equation of w := u − u∗, where u∗ is a roll solution.
wt = L∗w +N(w),

w(0, ξ, y) = w0(ξ, y),
(2.2.2)

where

L∗w := −
(
1 + k2∂2

ξ + ∂2
y

)2
w + ε2w − 3u2

∗w, N(w) = −3u∗w2 − w3. (2.2.3)

2.2.1 Spectral Analysis of the Linearized Operator L∗ on the Cylindrical Domain

The linearized operator of the stationary SHE at the roll solution u∗ is given by

L∗ : H4(T2π × R) −→ L2(T2π × R)

w 7−→ −
(
1 + k2∂2

ξ + ∂2
y

)2
w + ε2w − 3u2

∗w.
(2.2.4)

As a differential operator, L∗ has coefficients that are 2π-periodic in ξ and constant in y.

The spectral analysis of L∗ can be achieved via the Fourier transform in the y direction

due to the fact that ξ ∈ T2π. We have

F : L2(T2π × R) 7−→ L2(R, L2(T2π))

w −→ Fw(ξ, y) = ŵ(ξ, ν2), where ν2 ∈ R.
(2.2.5)

We note that the Fourier transform F is an isomorphism and the linearized operator L∗ is

diagonalized on the Fourier space; that is, L̂∗ := F ◦ L∗ ◦ F −1 has the direct integral form

L̂∗ =

∫
R
L̂∗(ν2)dν,

where
L̂∗(ν2) : H4(T2π) −→ L2(T2π)

w(ξ) 7−→ −
(
1 + k2∂2

ξ − ν
2
2

)2
w + ε2w − 3u2

∗(ξ)w.
(2.2.6)

We now introduce a proposition about the spectrum of the linear operators L∗, L̂∗ and

L̂∗(ν).
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Proposition 2.2.1 (Spectral stability). For any fixed ε ∈ (0, ε0), the operator L∗ admits the

following spectral properties.

(i) σ(L∗) = σ(L̂∗) =
⋃
ν2∈R

σ(L̂∗(ν2)) ⊆ R.

(ii) There exist the zigzag wavenumber k∗(ε2) := kz(ε2) and the Eckhaus wavenumber

k±e (ε2) so that σ(Lp) ⊆ (−∞, 0] if and only if k ∈ [k∗, k+
e ].

(iii) 0 is a simple eigenvalue of L̂∗(0) with e0 := u′∗ as its associated eigenfunction.

Moreover, there exists ν0 > 0 such that the eigenpair (0, e0) admits the unique

analytic continuation (λ(ν2), e(ν2; ξ)) for |ν2| < ν0, satisfying

L̂∗(ν2)e(ν2) = λ(ν2)e(ν2) with

〈e(ν2; ·) − e0, e0〉 = 0. (2.2.7)

Moreover, we have

λ(ν2, ε
2, k) = a02(ε2, k)ν2

2 + a04(ε2, k)ν2
4 + O(ν6

2), (2.2.8)

where a02(ε2, k∗(ε2)) = 0, a04(ε2, k∗(ε2) = −1 + O(̃a4) < 0 for all 0 < ε2 � 1.

Proof. Recall that ν = (ν1, ν2), we have from (2.1.7) that

L̂p(ν) = −
(
1 + (1 + κ)(∂ξ + iν1)2 − ν2

2

)2
+ ε2 − 3u2

p(ξ).

Taking ν1 = 0 in L̂p, we have

L̂∗(ν2) = L̂p(0, ν2).

Thus, the spectral properties of L∗ are the same as that of Lp(0, ν2). As a result, the proof

of this proposition is a direct consequence of the proof of Proposition 2.1.1 by taking

ν1 = 0. �
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2.3 Intuitive Decay Estimation

Let’s consider the perturbed SHE given in equations (2.1.3) and (2.2.2); that is

vt = Lpv +Np(v) and wt = L∗w +N(w).

Propositions 2.1.1 and 2.2.1 provide the zero eigenvalue expansion in (2.1.9) and (2.2.8),

respectively. By utilizing these expansions and the fact that Lp or L∗ is a generalized

Laplacian, we can draw the following intuitions about the decay estimations in the table

below.

Equation Bloch-Fourier Continuation of λ = 0 Decay

vt = ∂2
xv (Bv)t =

(
−ν2

2

)
Bv λ = −ν2

1

‖u‖L∞ ∼ t−
1
2vt = Lpv,

κ ∈ (κ−e , κ
+
e )

(Bv)t = L̂pBv λ = −a20ν
2
1 + O(ν4

1)

vt = (∂2
x + ∂2

y)v (Bv)t =
[
(∂ξ + iν1)2 − ν2

2

]
Bv λ = −ν2

1 − ν
2
2

‖u‖L∞ ∼ t−1
vt = Lpv,

κ ∈ (κz, κ
+
e )

(Bv)t = L̂pBv λ = −a20ν
2
1 − a02ν

2
2 + O(|ν|4)

vt = (∂2
x + ∂4

y)v (Bv)t =
[
(∂ξ + iν1)2 − ν4

2

]
Bv λ = −ν2

1 − ν
4
2

‖u‖L∞ ∼ t−3/4
vt = Lpv,

κ = κz

(Bv)t = L̂pBv λ = −a20ν
2
1 − a04ν

4
2 + O(ν4

1 + ν6
2)

wt = ∂4
yw (Bw)t = (−ν4

2)Bw λ = −ν4
2

‖u‖L∞ ∼ t−1/4
wt = L∗w,

κ = κz

(Bw)t = L̂∗Bw λ = −a04ν
4
2 + O(ν6

2)

Based on the table, we expect a t−
3
4 decay rate for the planar SHE and a t−

1
4 decay rate

for the SHE defined on the cylindrical domain.
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3 Nonlinear Stability of Zigzag-Rolls of Planar SHE

In this chapter, we shall discuss the proof of the nonlinear stability of zigzag-roll

solutions up on the plane R × R; that is Theorem 1.3.1. The chapter is organized as

follows. Section 3.1 introduces the discrete Bloch-Fourier space and the mode filter

decomposition. Here, the irrelevancy of nonlinear terms can be observed intuitively, as in

the case of the nonlinear scalar heat equation. The linear semigroup estimations and the

nonlinear irrelevancy are done in sections 3.1.3 and 3.1.4, respectively. The rigorous proof

of Theorem 1.3.1 is given in section 3.2 via a contraction mapping argument on the

variation of constants formula posed on a fine-tuned Banach space. For clarity and

conciseness, we relegate to the appendix C and D, the sectorial properties of Lp in the

Bloch-Fourier space and the estimates of various secondary nonlinear terms respectively.

3.0.1 Nonlinear Terms Seem Relevant

From the analogies obtained in Table 2.3, we exploit the intuition we derive from the

heat equation to evaluate the temporal decay rates of both linear and nonlinear terms via

the linearized flow; that is,

‖Lpv‖L∞ ∼ t−7/4, ‖Np(v)‖L∞ = ‖ − 3upv2 − v3‖L∞ ∼ t−3/2,

which misleadingly indicates that the nonlinear terms are relevant. This false conclusion

results from applying our intuitive reasoning on v, the sum of both neutral and stable

modes, instead of the neutral modes. As a result, the remedy here is to study the system in

a refined coordinate system where the neutral and stable modes are properly separated via

the mode filter decomposition; see [10] for a similar analysis in the Ginzburg-Laudau

equation.
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3.1 Mode Filter Decomposition and Irrelevancy of Nonlinear Terms

In this section, we split the SHE into neutral and stable modes via a mode filter

decomposition in the discrete Bloch-Fourier space. Moreover, we also give refined linear

estimates and detailed expressions of nonlinear terms under such a decomposition, from

which the irrelevancy of nonlinear terms is followed via the intuitive counting of decay

rates analogous to the heat equation case. A rigorous proof of the nonlinear irrelevancy

will be given in section 3.1.4.

3.1.1 SHE in the Discrete Bloch-Fourier Space

In the Bloch-Fourier space, the SHE (2.1.3) in terms of the perturbation v takes the

form

Vt = L̂p(ε2, κ, ν)V − 3upV∗2 − V∗3, (3.1.1)

where we introduced the notation V := Bv.

Remark 3.1.1. We exploit the fact that, for u ∈ L2(T2π), v1, v2 ∈ L2(R2),

B(uv1) = uB(v1), B(v1v2) = Bv1 ∗ Bv2, (3.1.2)

where the function (uv1)(x) = u(x1)v1(x); see Appendix B.1 for the proof.

It is typically inevitable to go beyond the L2 space to general Lp space to perform

proper analysis on nonlinear terms. Noting that

‖̂v‖p
Lp(R2) =

∫
R2
|̂v(ν)|pdν =

∫
T1×R

∑
j∈Z

|̂v(ν1 + j, ν2)|p

 dν =

∫
T1×R
‖FdBv‖p

`pdν,

we readily see that it is more proper to work in the discrete Bloch-Fourier space

Lp(T1 × R, `p) than its continuous counterpart Lp(T1 × R, Lp(T2π)) for p ∈ [1,∞]. For

convenience, we introduce the discrete Bloch-Fourier transform Bd := FdB; that is,

Bd : L2(R2) 7−→ L2(T1 × R, `2)

v −→ Bdv(ν) = (FdBv)(ν) = {̂v(ν1 + j, ν2)} j∈Z,
(3.1.3)
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and the discrete version of L̂p, denoted as

L̂d =

∫
T1×R
L̂d(ν)dν, where L̂d(ν) := Fd ◦ L̂p(ν) ◦ F −1

d ;

that is,

L̂d(ν) : w4,p −→ `p

v = {v j} j∈Z 7−→ {µ j(ν; κ)v j} j∈Z + (ε2 − κ2)v − 3Fd(u2
p) ∗ v,

(3.1.4)

where µ j(ν; κ) := −(1 − (1 + κ)( j + ν1)2 − ν2
2)2 + κ2. Introducing the notation

V(ν) := Bdv = {̂v(ν1 + j, ν2)} j∈Z,

the SHE with respect to the perturbation in the discrete Bloch-Fourier space takes the form

V t = L̂dV − 3ûp ∗ V∗2 − V∗3. (3.1.5)

Before we introduce the mode filter decomposition, we first prove that the spectral

properties of L̂d(ν) are independent of the choice of p ∈ [1,∞].

Proposition 3.1.2. For any ν ∈ T1 × R and p ∈ [1,∞], the closed operator

L̂d(ν) : w4,p → `p is sectorial with compact resolvents. More specifically, the sectoriality

of L̂d(ν) is independent of the choice of ν and p; that is, there exist C > 0, ω ∈ (π/2, π)

and λ0 ∈ R, independent of ν and p, such that

|||(L̂d(ν) − λ)−1|||`p 6
C

|λ − λ0|
, for any λ ∈ S (λ0, ω) :=

{
λ ∈ C

∣∣∣ | arg(λ − λ0)| < ω, λ , λ0
}
.

Moreover, the spectrum of L̂d(ν) is independent of the choice of the underlying space `p

and thus denoted as σ(L̂d(ν)), consisting only of isolated eigenvalues with finite

multiplicities.

Proof. See Appendix C. �
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3.1.2 Mode Filter Decomposition

We introduce the notation Xp := Lp(T1 × R, `p) and define an even smooth cut-off

function χ : T1 × R→ [0,∞) as

χ(ν) =


1, |ν| 6 1,

0, |ν| > 2,
(3.1.6)

as well as its rescaled version χε(ν) := χ( ν
ε
) for any ε > 0. We recall from Proposition

2.1.1 that the eigenpair at ν = 0 admits an analytic continuation for |ν| < r0, and introduce

the pseudo-eigenfunction

ec(ν) := (1 − χr1(ν))e0 + χr1(ν)e(ν), (3.1.7)

where r1 := r0/4, and the projection mapping

P : Xp −→ Xp

V 7−→ ‖êc‖
−2
`2 〈〈V , êc〉〉êc.

(3.1.8)

We readily see that P is a bounded projection but not commutative with L̂d; that is

P2 = P, PL̂d , L̂dP.

Introducing Q := Id − P, Xp
c := Rg (P) and Xp

s := Rg ( Id − P), we note the subspaces Xp
c

and Xp
s are closed in X, and

Xp = Xp
c

⊕
Xp

s ,

in the sense that Xp = Xp
c + Xp

s and Xp
c ∩ Xp

s = {0}. Introducing the neutral and stable

modes respectively,

a(t, ν) := K〈〈V(t, ν), êc〉〉, Vs(t, ν) := QV(t, ν), (3.1.9)

where K(ν) := ‖êc(ν)‖−2
`2 = ‖ec(ν)‖−2

L2(T2π). We apply the mode filter decomposition

Tm f V :=

 a

Vs

 , (3.1.10)
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which is an isomorphism from Xp → Lp(T1 ×R1) ×Xp
s to the SHE and rewrite the SHE in

terms of the mode-filter coordinates W := (a,Vs)T ; that is,

Wt = Lm f W + Nm f (W), (3.1.11)

where

Lm f :=

L11 L12

L21 L22

 , Nm f (W) :=

Nc(W)

Ns(W)

 ,
with

L11a := K〈ec,Lpec〉a,

L12Vs := K〈〈Vs, L̂dêc〉〉,

L21a :=
(
L̂dêc − êcL11

)
a,

L22Vs :=
(
L̂d − êcL12

)
Vs,

Nc := −K〈〈3ûp ∗ (aêc + Vs)∗2 + (aêc + Vs)∗3, êc〉〉,

Ns := −3ûp ∗ (aêc + Vs)∗2 − (aêc + Vs)∗3 − Ncêc.

3.1.3 Linear Semigroup Estimates

We, for now, restrict ourselves to the initial value problem of the linearized flow of

(3.1.11); that is, 
Wt = Lm f W,

W(0) = W0 = (a0,Vs0
)T ,

whose solution takes the form

W(t) = eLm f tW0. (3.1.12)

Introducing the notation

M := eLm f t =

M11 M12

M21 M22

 ,
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we study the temporal decay estimates of this semigroup and its physical derivatives on

general Lp spaces. Our analysis is split into two subcases: when ν is close to zero and

when ν is away from zero. More specifically, we rewrite M as follows.

M = χ r1
2

M + (1 − χ r1
2

)M.

For |ν| 6 r1, we denote Ls(ν) := L̂d(ν) |(e(ν))⊥ and have Lm f diagonal; that is,

Lm f (ν) =

λ(ν) 0

0 Ls(ν)


and thus

M =

M11 M12

M21 M22

 =

e
λt 0

0 eLst

 .
Moreover, we have the following estimations for χ r1

2
M.

Lemma 3.1.3. For any 1 6 p 6 q 6 ∞, there exists a positive constant C such that the

cut-off analytic semigroup χ r1
2

M11(t) admits the estimates

|||ναχ r1
2

M11(t)|||Lq→Lp 6 C(1 + t)−[ α1
2 +

α2
4 + 3

4 ( 1
p−

1
q )], (3.1.13)

where να = να1
1 ν

α2
2 with α = (α1, α2) ∈ N2 and the space Lp stands for Lp(T1 × R).

Proof. We recall from (2.1.9) that, for |ν| < r0 = 4r1 and ε ∈ (0, ε1),

λ(ν) = −[4 + O(̃a3)]ν2
1 − [1 + O(̃a4)]ν4

2 + O(ν4
1 + ν6

2),

from which we readily have that for |ν| 6 r1 and ε ∈ (0, ε1), there exist constants d1 and

d2, independent of the choice of ν and ε, such that

λ(ν) 6 −d1ν
2
1 − d2ν

4
2.

As a result, we conclude that, for any 1 6 p 6 q 6 ∞,∥∥∥∥ναχ r1
2

eλta
∥∥∥∥

Lp
6

∥∥∥ναχ r1
2

e(−d1ν
2
1−d2ν

4
2)t
∥∥∥

Lr
‖a‖Lq 6 C(1 + t)−[ α1

2 +
α2
4 + 3

4 ( 1
p−

1
q )]
‖a‖Lp ,

where 1
r := 1

p −
1
q . �
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Lemma 3.1.4. For any given p ∈ [1,+∞], there exists positive constants C and λ1,

independent of the choice of p, such that the cut-off analytic semigroup χ r1
2

M22(t) admits

the estimates

|||χ r1
2

M22(t)|||Lp(T1×R,Xp
s ) 6 Ce−λ1t. (3.1.14)

Proof. For any |ν| 6 r1, we have M22 = eLst, which also takes the form

M22 = eLst =
1

2πi

∫
Γ

eλt(λ − Ls)−1dλ,

where Γ is a sectorial curve in the left half of the complex plane so that σ(Ls) stays to the

left of the Γ. Moreover, we choose Γ independent of ν, and there exist λ1 > 0 so that

sup{Re (λ) | λ ∈ Γ} < −λ1. A proof similar to Proposition 3.1.2, thus omitted, shows that

there exists C > 0, independent of ν and p, so that, for any λ ∈ Γ,

|||(λ − Ls)−1|||`p 6
C

|λ − λ1|
,

which concludes the proof. �

For ν away from zero, that is |ν| > r1/2 , we have the following estimations for

(1 − χ r1
2

)M.

Lemma 3.1.5. For any given p ∈ [1,+∞], there exists positive constants C and λ2,

independent of the choice of p such that the analytic semigroup (1 − χ r1
2

)M admits the

estimates

|||να(1 − χ r1
2

)Mi j|||Lp→Lp 6 Ct−
α2
4 e−λ2t, (3.1.15)

for i, j = 1, 2 and α = (α1, α2) ∈ N2.

Proof. The operator Lm f (ν) is conjugate with L̂d(ν); that is,

Lm f (ν) = Tm f (ν)L̂d(ν)T−1
m f (ν),
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and thus

M(t) = eLm f (ν)t = Tm f (ν)eL̂d(ν)tT−1
m f (ν).

Recalling that the maps Tm f defined in (3.1.10) and its inverse are uniformly bounded with

respect to ν and p, we are left to prove that

|||να(1 − χ r1
2

)eL̂dt|||Lp(T1×R,`p) 6 Ct−
α2
4 e−λ2t. (3.1.16)

To prove the inequality (3.1.16), we first infer from Proposition 3.1.2 that for |ν| > r1
2 the

operator L̂d(ν) is sectorial with

σ(L̂d(ν)) ⊂ (−∞,−λ̃2), (3.1.17)

for some λ̃2 > 0, indepedent of p and ν. As a result, a proof similar to the one of Lemma

3.1.4, thus omitted, shows that, for any p ∈ [1,∞] and |ν| > r1
2 , there exists C > 0,

independent of p and ν,

|||eL̂d(ν)t|||`p 6 Ce−λ̃2t. (3.1.18)

Moreover, we have improved spectral estimates of L̂d(ν) to absorb να for |ν| � 1. More

specifically, we recall that σ(L̂d(ν)) = σ(L̂p(ν)) and for any λ ∈ σ(L̂d(ν)), there exists

k ∈ Z such that

λ = −[ν2
2 + (k + ν2

1)2 − 1]2 + O(ε2);

see (A.0.2) and its subsequent discussion for details. As a result, we readily see that, for

sufficiently large R � 1 and any |ν| > R, there is a sharper spectral estimate than (3.1.17);

that is,

σ(L̂d(ν)) ⊂ (−∞,−
1
2

(ν4
2 + 1)),

where we note that 1
2 can be replaced with any number in (0, 1) by adjusting the size of R.

Again, a proof similar to the one of Lemma 3.1.4, thus omitted, shows that, for any

p ∈ [1,∞] and |ν| > R, there exists C > 0, independent of p and ν,

|||ναeL̂d(ν)t|||`p 6 C|ν|αe−
1
2 (ν4

2+1)t. (3.1.19)
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We now show that the estimate (3.1.16) is true by exploiting the estimates (3.1.18) and

(3.1.19); that is,∥∥∥∥να(1 − χ r1
2

)eL̂dtV
∥∥∥∥p

Lp(T1×R,`p)
6

∫
r1
2 6|ν|6R

(
|ν|α

∥∥∥∥eL̂d(ν)tV
∥∥∥∥
`p

)p
dν +

∫
|ν|>R

(∥∥∥∥ναeL̂d(ν)tV
∥∥∥∥
`p

)p
dν

(3.1.18)
6 C

∫
r1
2 6|ν|6R

(
|ν|αe−λ̃2t

∥∥∥V
∥∥∥
`p

)p
dν +

∫
|ν|>R

(∥∥∥∥ναeL̂d(ν)tV
∥∥∥∥
`p

)p
dν

(3.1.19)
6 C

e−λ̃2 pt‖V‖p
Lp(T1×R,`p) +

∫
|ν|>R

(
|ν|αe−

1
2 (ν4

2+1)t
∥∥∥V

∥∥∥
`p

)p
dν


6C

(
e−λ̃2 pt + t−

α2 p
4 e−

p
2 t
)
‖V‖p

Lp(T1×R,`p)

6Ct−
α2 p

4 e−λ2 pt‖V‖p
Lp(T1×R,`p),

(3.1.20)

where we take λ2 := min{̃λ2,
1
2 } and conclude the proof. �

Taking advantage of Lemmas 3.1.3, 3.1.4 and 3.1.5, we summarize linear estimates

results of the linear flow (3.1.12) in the proposition below.

Proposition 3.1.6. For any 1 6 p 6 q 6 ∞, there exists positive constants C,λ2 and λ3

independent of the choice of p, such that the linear solution W given in (3.1.12) admits the

estimates

∥∥∥W(t)
∥∥∥

Lp =

∥∥∥∥∥∥∥∥∥∥M(t)

 a0

Vs0


∥∥∥∥∥∥∥∥∥∥

Lp

6 C

(1 + t)−
3
4 ( 1

p−
1
q ) e−λ2t

e−λ2t e−λ3t


‖a0‖Lp +‖a0‖Lq∥∥∥∥Vs0

∥∥∥∥
Lp

 , (3.1.21a)

∥∥∥ναa(t)
∥∥∥

Lp 6C
[
(1 + t)−[ α1

2 +
α2
4 + 3

4 ( 1
p−

1
q )]
‖a0‖Lq + t−

α2
4 e−λ2t

(
‖a0‖Lp +

∥∥∥∥Vs0

∥∥∥∥
Lp

)]
(3.1.21b)

Proof. First, we estimate∥∥∥∥M(t)11a0 + M(t)12Vs0

∥∥∥∥
Lp

=
∥∥∥∥(χ r1

2
M11 + (1 − χ r1

2
)M11)a0 + (χ r1

2
M12 + (1 − χ r1

2
)M12)Vs0

∥∥∥∥
Lp
,

6
∥∥∥∥χ r1

2
M11a0

∥∥∥∥
Lp

+
∥∥∥∥(1 − χ r1

2
)M11a0

∥∥∥∥
Lp

+
∥∥∥∥(1 − χ r1

2
)M12Vs0

∥∥∥∥
Lp
,

6C
(
(1 + t)−

3
4 ( 1

p−
1
q )
‖a0‖Lq + e−λ2t‖a0‖Lp

)
+ Ce−λ2t

∥∥∥∥Vs0

∥∥∥∥
Lp
,

6C(1 + t)−
3
4 ( 1

p−
1
q ) (
‖a0‖Lp +‖a0‖Lq

)
+ Ce−λ2t

∥∥∥∥Vs0

∥∥∥∥
Lp
.
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Next, we estimate∥∥∥∥M(t)21a0 + M(t)22Vs0

∥∥∥∥
Lp

=
∥∥∥∥(χ r1

2
M21 + (1 − χ r1

2
)M21)a0 + (χ r1

2
M22 + (1 − χ r1

2
)M22)Vs0

∥∥∥∥
Lp

6
∥∥∥∥(1 − χ r1

2
)M21a0

∥∥∥∥
Lp

+
∥∥∥∥(1 − χ r1

2
)M22Vs0

∥∥∥∥
Lp

+
∥∥∥∥(1 − χ r1

2
)M22Vs0

∥∥∥∥
Lp

6Ce−λ2t‖a0‖Lq + Ce−λ1t
∥∥∥∥Vs0

∥∥∥∥
Lp

+ Ce−λ2t
∥∥∥∥Vs0

∥∥∥∥
Lp

6Ce−λ2t‖a0‖Lp + Ce−λ3t
∥∥∥∥Vs0

∥∥∥∥
Lp

where λ3 = min{λ1, λ2}. The conclusion of the proposition follows from the above

estimations. �

3.1.4 Irrelevancy of Nonlinear Terms

We produce a bound on the slowest dangerous term which allows us to show

irrelevance of the nonlinearity with respect to the linear dynamics. Recalling the fact from

(3.1.9) that

Vs(t, ν; ξ) = V(t, ν; ξ) − a(t, ν)ec(ν; ξ),

we expand the nonlinear terms Nc and Ns from their definitions given in Equation (3.1.11);

that is,

Nc = − 3K〈up(aec + Vs)∗2, ec〉 − K〈(aec + Vs)∗3, ec〉,

=

:=Nc,1(a,a)︷                 ︸︸                 ︷
−3K〈up(aec)∗2, ec〉

:=Nc,2(a,Vs)︷                        ︸︸                        ︷
−6K〈up((aec) ∗ Vs), ec〉

:=Nc,3(Vs,Vs)︷                ︸︸                ︷
−3K〈up(Vs)∗2, ec〉

:=Nc,4(a,a,a)︷            ︸︸            ︷
−K〈(aec)∗3, ec〉

:=Nc,5(a,a,Vs)︷                    ︸︸                    ︷
−3K〈(aec)∗2 ∗ Vs, ec〉

:=Nc,6(a,Vs,Vs)︷                       ︸︸                       ︷
−3K〈(aec) ∗ (Vs)∗2, ec〉

:=Nc,7(Vs,Vs,Vs)︷           ︸︸           ︷
−K〈(Vs)∗3, ec〉,

(3.1.22)

Ns = − 3ûp ∗ (âec + Vs)∗2 − (âec + Vs)∗3 − Nc êc,

:=Ns,1(a, a) + Ns,2(a,Vs) + Ns,3(Vs,Vs)+

Ns,4(a, a, a) + Ns,5(a, a,Vs) + Ns,6(a,Vs,Vs) + Ns,7(Vs,Vs,Vs),

(3.1.23)

where each Nc, j is a multilinear operator, and we define Ns, j in a similar fashion and omit

the details.
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We now give intuitions on why the nonlinear terms are all irrelevant. We first note

that the linear flow of the Vs component decays exponentially and the leading order

nonlinear term is Ns,1(a, a). As a result, we have that in the nonlinear flow (3.1.11), the

L1(T1 ×R, `1) norm of Vs(t) has the same temporal decay as the L1(T1 ×R) norm of a∗2 as

t goes to +∞; that is, ∥∥∥∥Vs(t, ·)
∥∥∥∥

L1(T1×R,`1)
∼
∥∥∥a∗2

∥∥∥
L1(T1×R)

∼ t−
3
2 .

On the other hand, the temporal decay rate of the L1(T1 × R) norm of the linear terms in

the neutral mode equation in (3.1.11) is t−
7
4 and thus any irrelevant nonlinear terms should

have a better temporal decay rate than that. Noting that

‖a(t, ·)‖L1(T1×R) ∼ t−
3
4 ,

we readily derive that all nonlinear terms in Nc are irrelevant except for the first term

Nc,1(a, a). The term Nc,1(a, a) is potentially relevant since based on∥∥∥Nc,1

∥∥∥
L1(T1×R)

∼
∥∥∥a∗2

∥∥∥
L1(T1×R)

∼ t−
3
2 , it seems that Nc,1 admits a weaker decay than the linear

terms. But a careful analysis below reveals a refined structure of Nc,1, providing extra

spatial derivative in the x1 direction and thus rendering extra t−
1
2 decay, which in turn

shows that Nc,1 is also irrelevant. More specifically, we have

Nc,1 = −3K〈up(aec)∗2, ec〉

= −3K
∫

T2π

up(aec)∗2ecdξ

= −3K
∫

T2π

up(ξ)ec(ν; ξ)


∫

ν̃∈T1×R

a(ν − ν̃)ec(ν − ν̃; ξ)a(̃ν)ec(̃ν; ξ)dν̃

 dξ

=

∫
ν̃∈T1×R

:=k1(ν,̃ν,ν−ν̃)︷                                                     ︸︸                                                     ︷
−3K

∫
T2π

up(ξ)ec(ν; ξ)ec(̃ν; ξ)ec(ν − ν̃; ξ)dξ
 a(ν − ν̃)a(̃ν)d̃ν,

(3.1.24)
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where we note Nc,1 is a weighted convolution with kernel k1 and we suppressed

t-dependence of a for conveniences. Leveraging the parities in the expansion (2.1.8) of the

eigenfunction e, we have the following refined estimate of the kernel k1.

Lemma 3.1.7. There exist positive constants M,C > 0, independent of the choice of

ν, ν̃ ∈ T1 × R, such that ∣∣∣k1(ν, ν̃, ν̃ − ν)
∣∣∣ 6 M, (3.1.25a)∣∣∣k1(ν, ν̃, ν̃ − ν)
∣∣∣ 6 C

( ∣∣∣ν1 − ν̃1

∣∣∣ +
∣∣∣̃ν1

∣∣∣ .) . (3.1.25b)

Proof. Recalling from (3.1.7) that

ec(ν; ξ) = (1 − χr1(ν))e0(ξ) + χr1(ν)e(ν; ξ),

and the fact that k1 =
∫

T2π
up(ξ)ec(ν; ξ)ec(̃ν; ξ)ec(ν − ν̃; ξ)dξ, we readily conclude that the

integrand of k1 is uniformly bounded for ξ ∈ T2π, ν, ν̃ ∈ T1 × R and thus there exists

M > 0 such that |k1(ν, ν̃, ν̃ − ν)| 6 M. To show the second inequality, we exploit the

expansion of e(ν) = er(ν) + iν1ei(ν) in (2.1.8) to rewrite ec in (3.1.7); that is,

ec(ν) =

:=ẽr︷                            ︸︸                            ︷
(1 − χr1(ν))e0 + χr1(ν)er(ν) +iν1

:=ẽi︷︸︸︷
χr1ei . (3.1.26)

where the real-valued functions er and ei are respectively odd and even in ξ for |ν| < r1.

Since e0 and er are odd, it follows that ẽr is odd. Also since ei is even, so is ẽi. Noting that

up is even in ξ and the integrand up(ξ)ec(ν; ξ)ec(̃ν; ξ)ec(̃ν − ν; ξ) is 2π-periodic in ξ, we

readily see that the odd part vanishes under the integration on T2π, yielding

k1(ν, ν̃, ν̃ − ν) =

∫
T2π

iν1

[
3Kupẽi(ν; ξ)ẽr (̃ν; ξ)ẽr(ν − ν̃; ξ)

]
dξ+∫

T2π

ĩν1

[
−3Kupẽr(ν; ξ)ẽi(̃ν; ξ)ẽr(ν − ν̃; ξ)

]
dξ+∫

T2π

i(ν1 − ν̃1)
[
−3Kupẽr(ν; ξ)ẽr (̃ν; ξ)ẽi(ν − ν̃; ξ)

]
dξ+∫

T2π

iν1̃ν1(ν1 − ν̃1)
[
−3Kupẽi(ν; ξ)ẽi(̃ν; ξ)ẽi(ν − ν̃; ξ)

]
dξ,
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where all the four terms in the brackets are uniformly bounded in ξ ∈ T2π and

|ν|, |̃ν| ∈ T1 ×R. As a result, there exists a positive constant C independent of ν, ν̃ such that

∣∣∣k1(ν, ν̃, ν̃ − ν)
∣∣∣ 6 C

( ∣∣∣ν1 − ν̃1

∣∣∣ +
∣∣∣̃ν1

∣∣∣) .
�

As a result, we have

∥∥∥Nc,1

∥∥∥
L1(T1×R)

∼
∥∥∥a ∗ (ν1a)

∥∥∥
L1(T1×R)

∼ t−2,

which decays faster than the linear terms and is thus irrelevant.

3.2 Proof of Theorem 1.3.1: Nonlinear Stability of Zigzag-Rolls of the Planar SHE

We now give a proof of Theorem 1.3.1 via a fixed point argument on the variation of

constants formula. More specifically, the solution to (3.1.11) with the initial condition

W0 := (a0,Vs0
)T satisfies the variation of constants formula,

W(t) =

:=T (W)︷                                       ︸︸                                       ︷
:=T1(W0)︷  ︸︸  ︷
eLm f tW0 +

:=T2(W)︷                         ︸︸                         ︷∫ t

0
eLm f (t−s)Nm f (W(s))ds . (3.2.1)

Our task is to show that T is a well-defined contraction mapping on a bounded closed set

in a proper Banach space, whose norm directly gives rise to the nonlinear weak diffusive

decay in Theorem 1.3.1.

3.2.1 The SpaceH

Based on our intuitive analysis of the irrelevancy of nonlinear terms in Section 2.3,

we introduce the Banach space

H :=

W(t, ν) =

 a(t, ν)

Vs(t, ν)


∣∣∣∣∣∣∣‖W‖H < +∞

 , (3.2.2)
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in which we introduce the following norms

‖W‖H :=‖a‖Hc
+

∥∥∥Vs

∥∥∥
Hs
, (3.2.3)

‖a‖Hc
:= sup

t>0
(1 + t)3/4

∥∥∥a(t, ·)
∥∥∥

1
+ sup

t>0

∥∥∥a(t, ·)
∥∥∥
∞

+ sup
t>0

(1 + t)5/4
∥∥∥ν1a(t, ·)

∥∥∥
1
, (3.2.4)∥∥∥Vs

∥∥∥
Hs

:= sup
t>0

(1 + t)3/2
∥∥∥Vs(t, ·)

∥∥∥
1

+ sup
t>0

∥∥∥Vs(t, ·)
∥∥∥
∞
, (3.2.5)

where
∥∥∥a(t, ·)

∥∥∥
p

:=
∥∥∥a(t, ·)

∥∥∥
Lp(T1×R)

and
∥∥∥∥Vs(t, ·)

∥∥∥∥
p

:=
∥∥∥∥Vs(t, ·)

∥∥∥∥
Lp(T1×R,`p)

.

3.2.2 Linear Estimates of T1 in H

We first derive an upper bound of T1(W0) in H.

Proposition 3.2.1. There exists a positive constant C such that

∥∥∥T1(W0)
∥∥∥

H =
∥∥∥M(t)W0

∥∥∥
H 6 C

(
‖W0‖1 +‖W0‖∞

)
. (3.2.6)

where‖W0‖1 :=‖a0‖1 +
∥∥∥∥Vs0

∥∥∥∥
1

and‖W0‖∞ :=‖a0‖∞ +
∥∥∥∥Vs0

∥∥∥∥
∞

.

Proof. By the definition of the H-norm and the notation of the semigroup M(t), we have

∥∥∥T1(W0)
∥∥∥

H =

∥∥∥∥∥∥∥∥∥∥M(t)

 a0

Vs0


∥∥∥∥∥∥∥∥∥∥

H

,

=
∥∥∥∥M(t)11a0 + M(t)12Vs0

∥∥∥∥
Hc

+
∥∥∥∥M(t)21a0 + M(t)22Vs0

∥∥∥∥
Hs
,

=

:=I︷                                          ︸︸                                          ︷
sup
t>0

(1 + t)3/4
∥∥∥∥M(t)11a0 + M(t)12Vs0

∥∥∥∥
1

+

:=II︷                               ︸︸                               ︷
sup
t>0

∥∥∥∥M(t)11a0 + M(t)12Vs0

∥∥∥∥
∞

+

:=III︷                                                ︸︸                                                ︷
sup
t>0

(1 + t)5/4
∥∥∥∥∥ν1

(
M(t)11a0 + M(t)12Vs0

)∥∥∥∥∥
1
+

:=IV︷                                          ︸︸                                          ︷
sup
t>0

(1 + t)3/2
∥∥∥M(t)21a0 + M(t)22Vs0

∥∥∥
1
+

:=V︷                               ︸︸                               ︷
sup
t>0

∥∥∥M(t)21a0 + M(t)22Vs0

∥∥∥
∞
.

Taking advantage of Proposition 3.1.6, we derive upper bounds of the terms I − V

respectively.
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(i) We exploit the estimates of M11 and M12 in (3.1.21a) with p = 1 and q = ∞, yielding

I 6 sup
t>0

(1 + t)−
3
4

(
(1 + t)

3
4
(
‖a0‖1 +‖a0‖∞

)
+ e−λ2t

∥∥∥∥Vs0

∥∥∥∥
1

)
6 C

(
‖a0‖1 +‖a0‖∞ +

∥∥∥∥Vs0

∥∥∥∥
1

)
.

(ii) We exploit the estimates of M11 and M12 in (3.1.21a) with p = q = ∞, yielding

II 6 sup
t>0

(
‖a0‖∞ + e−λ2t

∥∥∥∥Vs0

∥∥∥∥
∞

)
6 C

(
‖a0‖∞ +

∥∥∥∥Vs0

∥∥∥∥
∞

)
.

(iii) We exploit the estimate (3.1.21b) with p = 1, q = ∞ and α = (1, 0), yielding

III = sup
t>0

(1 + t)
5
4

∥∥∥∥∥ν1

(
M(t)11a0 + M(t)12Vs0

)∥∥∥∥∥
1

6 C sup
t>0

(1 + t)−
5
4

(
(1 + t)

5
4 ‖a0‖∞ + e−λ2t‖a0‖1 + e−λ2t

∥∥∥∥Vs0

∥∥∥∥
1

)
6 C

(
‖a0‖∞ +‖a0‖1 +

∥∥∥∥Vs0

∥∥∥∥
1

)
.

(iv) We exploit the estimates of M21 and M22 in (3.1.21a) with p = 1 and p = ∞

respectively, yielding

IV 6 sup
t>0

(1 + t)
3
2

(
e−λ2t‖a0‖1 + e−λ3t

∥∥∥∥Vs0

∥∥∥∥
1

)
6 C

(
‖a0‖1 +

∥∥∥∥Vs0

∥∥∥∥
1

)
,

V 6 sup
t>0

(
e−λ2t‖a0‖∞ + e−λ3t

∥∥∥∥Vs0

∥∥∥∥
∞

)
6 C

(
‖a0‖∞ +

∥∥∥∥Vs0

∥∥∥∥
∞

)
.

Combining the above estimates concludes the proof. �

3.2.3 Nonlinear Estimates of T2 in H

We now show that T2(W) is bounded in H. More specifically, we have the following

proposition.

Proposition 3.2.2. There exists C > 0 such that, for any W ∈ H,

∥∥∥T2(W)
∥∥∥

H 6 C
(
‖W‖2H +‖W‖3H

)
. (3.2.7)
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Moreover, T2 is locally Lipschitz continuous in the sense that there exists C > 0 such that,

for any W1,W2 ∈ H,

∥∥∥T2(W1) − T2(W2)
∥∥∥

H 6 C‖W1 −W2‖H
(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
. (3.2.8)

Remark 3.2.3. We note that the estimate (3.2.7) is only a special case of the Lipschitz

continuity estimate (3.2.8) when W1 = W and W2 = 0. The reason why we keep the

estimate (3.2.7) is two-fold. Firstly, we need to use (3.2.7) in our fixed point argument.

Secondly, it is more natural to prove (3.2.7) first and observe that the more general

estimate (3.2.8) is a natural consequence of the special estimate (3.2.7) by exploiting the

fundamental theorem of calculus.

Proof. To prove the estimate (3.2.7), we first recall that

T2(W) =

∫ t

0
eLm f (t−s)Nm f (W(s))ds =

∫ t

0

M11(t − s) M12(t − s)

M21(t − s) M22(t − s)


Nc(W(s))

Ns(W(s))

 ds,

where we already have the estimates on the semigroup M(t) in Lemma 3.1.3-3.1.5 and

Proposition 3.1.6 and estimates on the nonlinear terms are yet to be given. We claim that

the L1(T1 × R)-norm and L∞(T1 × R)-norm of nonlinear terms Nc and Ns admits the

following estimates

∥∥∥Nc(t, ·)
∥∥∥

1
6C(1 + t)−2

(
‖W‖2H +‖W‖3H

)
,

∥∥∥Nc(t, ·)
∥∥∥
∞
6 C(1 + t)−

5
4
(
‖W‖2H +‖W‖3H

)
;

(3.2.9a)∥∥∥Ns(t, ·)
∥∥∥

1
6C(1 + t)−

3
2
(
‖W‖2H +‖W‖3H

)
,

∥∥∥Ns(t, ·)
∥∥∥
∞
6 C(1 + t)−

3
4
(
‖W‖2H +‖W‖3H

)
.

(3.2.9b)

To prove (3.2.9a), we recall the expansion Nc =
∑7

j=1 Nc, j in (3.1.22) and derive L1 and L∞

estimates of Nc, j respectively. Due to the hidden refined structure of Nc,1 as shown in

(3.1.25b), we derive in detail the estimates of Nc,1, from which the estimates of the rest
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Nc, j terms follow naturally. More specifically, using the notations Nc,1(W(t)) and Nc,1(t, ν)

interchangeably, we have

|Nc,1(t, ν)| =

∣∣∣∣∣∣
∫
T1×R

k1(ν, ν̃, ν − ν̃)a(t, ν − ν̃)a(t, ν̃)d̃ν

∣∣∣∣∣∣
(3.1.25b)
6 C

∫
T1×R

∣∣∣a(t, ν − ν̃)
∣∣∣ ∣∣∣ν1a(t, ν̃)

∣∣∣ d̃ν
=C|a| ∗ |ν1a|,

(3.2.10)

which, via the Young’s inequality for convolution and the definition of ‖ · ‖Hc , yields that∥∥∥Nc,1(t, ·)
∥∥∥

1
6C

∥∥∥a(t, ·)
∥∥∥

1

∥∥∥ν1a(t, ·)
∥∥∥

1
6 C(1 + t)−

3
4 ‖a‖Hc

(1 + t)−
5
4 ‖a‖Hc

= C(1 + t)−2‖a‖2Hc
;∥∥∥Nc,1(t, ·)

∥∥∥
∞
6C

∥∥∥a(t, ·)
∥∥∥
∞

∥∥∥ν1a(t, ·)
∥∥∥

1
6 C‖a‖Hc

(1 + t)−
5
4 ‖a‖Hc

= C(1 + t)−
5
4 ‖a‖2Hc

.

(3.2.11)

For Nc, j, 2 6 j 6 7, recalling the definition of Nc, j in (3.1.22), similarly to Nc,1, we can

always rewrite Nc, j in the form of weighted convolutions of a and Vs with respect to

ν ∈ T1 × R by taking integration with respect to ξ ∈ T2π first. Noting that all the weight

functions are uniformly bounded and that the product of 2π-periodic functions in ξ

corresponds to the zero Fourier mode of convolution in discrete `p spaces, we conclude

that

|Nc, j(t, ν)| 6C|a|∗m j ∗

∥∥∥∥Vs

∥∥∥∥∗(n j−k j)

`1
∗

∥∥∥∥Vs

∥∥∥∥k j

`∞
, (3.2.12)

where k j := min{1, n j}, the convolutions are with respect to ν ∈ T1 × R and the

nonnegative integers m j, n j satisfies that m j + n j = 2 for j = 2, 3; and m j + n j = 3 for

4 6 j 6 7. In combination with the Young’s inequality for convolution and the definition

of ‖ · ‖Hc , (3.2.12) yields that∥∥∥Nc, j(t, ·)
∥∥∥

1
6C

∥∥∥a(t, ·)
∥∥∥m j

1

∥∥∥∥Vs(t, ·)
∥∥∥∥n j

1
6 C(1 + t)−( 3

4 m j+
3
2 n j)‖W‖m j+n j

H ;∥∥∥Nc, j(t, ·)
∥∥∥
∞
6C

∥∥∥a(t, ·)
∥∥∥̃k j

∞

∥∥∥∥Vs(t, ·)
∥∥∥∥1−̃k j

∞

∥∥∥a(t, ·)
∥∥∥m j−̃k j

1

∥∥∥∥Vs(t, ·)
∥∥∥∥n j+̃k j−1

1

6C(1 + t)−
3
4 (m j−̃k j)− 3

2 (n j+̃k j−1)‖W‖m j+n j

H ,

(3.2.13)
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where k̃ j := min{1,m j}. Noting that for j > 1,

3
4

m j +
3
2

n j >
9
4
,

3
4

(m j − k̃ j) +
3
2

(n j + k̃ j − 1) >
3
2
,

we conclude from the estimates (3.2.11) and (3.2.13) that (3.2.9a) is true.

The proof of (3.2.9b) is similar to the one of (3.2.9a). We recall the expansion

Ns =
∑7

j=1 Ns, j in (3.1.23) and derive L1 and L∞ estimates of Ns, j respectively. Based on

the above analysis of Nc, we readily see that, for any 1 6 j 6 7, t > 0 and ν ∈ T1 × R,∥∥∥Ns, j(t, ν)
∥∥∥
`1 6C|a|∗m j ∗

∥∥∥∥Vs

∥∥∥∥∗n j

`1
,∥∥∥Ns, j(t, ν)

∥∥∥
`∞

6C|a|∗m j ∗

∥∥∥∥Vs

∥∥∥∥∗(n j−k j)

`1
∗

∥∥∥∥Vs

∥∥∥∥k j

`∞
,

(3.2.14)

which, via the Young’s inequality for convolution, yields that∥∥∥Ns, j(t, ·)
∥∥∥

1
6C

∥∥∥a(t, ·)
∥∥∥m j

1

∥∥∥∥Vs(t, ·)
∥∥∥∥n j

1
6 C(1 + t)−( 3

4 m j+
3
2 n j)‖W‖m j+n j

H ;∥∥∥Ns, j(t, ·)
∥∥∥
∞
6C

∥∥∥a(t, ·)
∥∥∥̃k j

∞

∥∥∥∥Vs(t, ·)
∥∥∥∥1−̃k j

∞

∥∥∥a(t, ·)
∥∥∥m j−̃k j

1

∥∥∥∥Vs(t, ·)
∥∥∥∥n j+̃k j−1

1

6C(1 + t)−
3
4 (m j−̃k j)− 3

2 (n j+̃k j−1)‖W‖m j+n j

H ,

(3.2.15)

which in turns leads directly to (3.2.9b).

We now prove (3.2.7). By the definition of the H norm, we have

∥∥∥T2(W)
∥∥∥

H =

∥∥∥∥∥∥∥∥∥∥
∫ t

0

M11(t − s)Nc(W(s)) + M12(t − s)Ns(W(s))

M21(t − s)Nc(W(s)) + M22(t − s)Ns(W(s))

 ds

∥∥∥∥∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
∫ t

0

(
M11(t − s)Nc(W(s)) + M12(t − s)Ns(W(s))

)
ds

∥∥∥∥∥∥
Hc

+∥∥∥∥∥∥
∫ t

0

(
M21(t − s)Nc(W(s)) + M22(t − s)Ns(W(s))

)
ds

∥∥∥∥∥∥
Hs

6

:=Ic︷                                                                               ︸︸                                                                               ︷
∥∥∥∥∥∥
∫ t

0
M11(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M21(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hs

 +

:=Is︷                                                                               ︸︸                                                                               ︷
∥∥∥∥∥∥
∫ t

0
M12(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M22(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hs



(3.2.16)
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Estimate of Ic We evaluate Ic for small and large ν respectively; that is,

Ic =

∥∥∥∥∥∥
∫ t

0
M11(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M21(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hs

6

:=Ic,1︷                                     ︸︸                                     ︷∥∥∥∥∥∥
∫ t

0
χ r1

2
M11(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hc

+

:=Ic,2︷                                            ︸︸                                            ︷∥∥∥∥∥∥
∫ t

0
(1 − χ r1

2
)M11(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hc

+

:=Ic,3︷                                            ︸︸                                            ︷∥∥∥∥∥∥
∫ t

0
(1 − χ r1

2
)M21(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hs

,

(3.2.17)

where we use the fact that χ r1
2

M21 = 0. Moreover, recalling the definition of‖·‖Hc
and‖·‖Hs

,

we have

Ic,1 6

:=Ac,1︷                                                    ︸︸                                                    ︷
sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥

1
ds +

:=Bc,1︷                                          ︸︸                                          ︷
sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥
∞

ds +

:=Cc,1︷                                                       ︸︸                                                       ︷
sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥

1
ds,

Ic,2 6

:=Ac,2︷                                                           ︸︸                                                           ︷
sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥

1
ds +

:=Bc,2︷                                                  ︸︸                                                  ︷
sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥
∞

ds +

:=Cc,2︷                                                              ︸︸                                                              ︷
sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥

1
ds,

Ic,3 6

:=Dc,3︷                                                           ︸︸                                                           ︷
sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)Nc(W(s))
∥∥∥∥

1
ds +

:=Ec,3︷                                                  ︸︸                                                  ︷
sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)Nc(W(s))
∥∥∥∥
∞

ds .

(3.2.18)
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In other words, we have

Ic 6
3∑

j=1

Ic, j 6
2∑

j=1

(
Ac, j + Bc, j + Cc, j

)
+ Dc,3 + Ec,3. (3.2.19)

We are left to estimate all the terms on the right-hand side of (3.2.19). Taking advantage

of the neutral mode estimate (3.1.13) and the estimate (3.2.9a) of Nc, we have

Ac,1 = sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥

1
ds

6 sup
t>0

(1 + t)
3
4

 ∫ t/2

0

∥∥∥∥χ r1
2

M11(t − s)
∥∥∥∥

L∞→L1

∥∥∥Nc(W(s))
∥∥∥
∞

ds+∫ t

t/2

∥∥∥∥χ r1
2

M11(t − s)
∥∥∥∥

L1→L1

∥∥∥Nc(W(s))
∥∥∥

1
ds


(3.1.13), (3.2.9a)

6 C
(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

∫ t/2

0
(1 + t − s)−

3
4 (1 + s)−

5
4 ds +

∫ t

t/2
(1 + s)−2ds


6C

(
‖W‖2H +‖W‖3H

)
;

Bc,1 = sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥
∞

ds

6 sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M11(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Nc(W(s))
∥∥∥
∞

ds

(3.1.13), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

 ∫ t

0
(1 + s)−5/4ds


6C

(
‖W‖2H +‖W‖3H

)
;

Cc,1 = sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1χ r1
2

M11(t − s)Nc(W(s))
∥∥∥∥

1
ds

6 sup
t>0

(1 + t)
5
4

 ∫ t/2

0

∥∥∥∥ν1χ r1
2

M11(t − s)
∥∥∥∥

L∞→L1

∥∥∥Nc(W(s))
∥∥∥
∞

ds+∫ t

t/2

∥∥∥∥ν1χ r1
2

M11(t − s)
∥∥∥∥

L1→L1

∥∥∥Nc(W(s))
∥∥∥

1
ds


(3.1.13), (3.2.9a)

6 C
(
‖W‖2H +‖W‖3H

)
·

sup
t>0

(1 + t)
5
4

∫ t/2

0
(1 + t − s)−

5
4 (1 + s)−

5
4 ds +

∫ t

t/2
(1 + t − s)−

1
2 (1 + s)−2ds


6C

(
‖W‖2H +‖W‖3H

)
,

(3.2.20)
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Similarly, taking advantage of the estimates (3.1.15) and (3.2.9a), we have

Ac,2 = sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)
∥∥∥∥

1

∥∥∥Nc(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

∫ t

0
e−λ2(t−s)(1 + s)−2ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

e− λ2t
2

∫ t/2

0
(1 + s)−2ds + (1 + t/2)−2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Bc,2 = sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥
∞

ds

6C sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M11(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Nc(W(s))
∥∥∥
∞

ds

(3.1.15), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

∫ t

0
e−λ2(t−s)(1 + s)−

5
4 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

e− λ2t
2

∫ t/2

0
(1 + s)−

5
4 ds + (1 + t/2)−

5
4

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Cc,2 = sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1(1 − χ r1
2

)M11(t − s)Nc(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1(1 − χ r1
2

)M11(t − s)
∥∥∥∥

L1→L1

∥∥∥Nc(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

∫ t

0
e−λ2(t−s)(1 + s)−2ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

e− λ2t
2

∫ t/2

0
(1 + s)−2ds + (1 + t/2)−2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
,

(3.2.21)
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At last, taking advantage of the estimates (3.1.15) and (3.2.9a) again, we have

Dc,3 = sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)Nc(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)
∥∥∥∥

L1→L1

∥∥∥Nc(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
2

∫ t

0
e−λ2(t−s)(1 + s)−2ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
2

e− λ2t
2

∫ t/2

0
(1 + s)−2ds + (1 + t/2)−2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Ec,3 = sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)Nc(W(s))
∥∥∥∥
∞

ds

6C sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M21(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Nc(W(s))
∥∥∥
∞

ds

(3.1.15), (3.2.9a)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

∫ t

0
e−λ2(t−s)(1 + s)−

5
4 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

e− λ2t
2

∫ t/2

0
(1 + s)−

5
4 ds + (1 + t/2)−

5
4

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
.

(3.2.22)

Combining (3.2.19), (3.2.20), (3.2.21) and (3.2.22), we conclude that

Ic 6 C
(
‖W‖2H +‖W‖3H

)
. (3.2.23)

Estimate of Is By employing similar arguments as in the proof of (3.2.23), we readily

exploit (3.1.14),(3.1.15) and (3.2.9b) to conclude that

Is 6 C
(
‖W‖2H +‖W‖3H

)
. (3.2.24)

We refer interested readers to Appendix D fora detailed proof.

Combining (3.2.16),(3.2.23) and (D.0.7), we conclude the proof of the estimate

(3.2.7) of T2(W).
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To prove (3.2.8), we note that, similar to (3.2.16) for T2(W), we have∥∥∥T2(W1) − T2(W2)
∥∥∥

H

6

:=IIc︷                                                                                                                    ︸︸                                                                                                                    ︷
∥∥∥∥∥∥
∫ t

0
M11(t − s)

(
Nc(W1) − Nc(W2)

)
(s)ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M21(t − s)

(
Nc(W1) − Nc(W2)

)
(s)ds

∥∥∥∥∥∥
Hs

 +

:=IIs︷                                                                                                                    ︸︸                                                                                                                    ︷
∥∥∥∥∥∥
∫ t

0
M12(t − s)

(
Ns(W1) − Ns(W2)

)
(s)ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M22(t − s)

(
Ns(W1) − Ns(W2)

)
(s)ds

∥∥∥∥∥∥
Hs



(3.2.25)

The proof of estimates of IIc and IIs are exactly the same as the ones for Ic and Is, except

for that we need to replace the estimates (3.2.9) of Nc(W) and Ns(W) with the ones of

Nc(W1) − Nc(W2) and Ns(W1) − Ns(W2); that is,∥∥∥Nc(W1) − Nc(W2)
∥∥∥

1
6C(1 + t)−2‖W1 −W2‖H

(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
,∥∥∥Nc(W1) − Nc(W2)

∥∥∥
∞
6C(1 + t)−

5
4 ‖W1 −W2‖H

(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
,∥∥∥Ns(W1) − Ns(W2)

∥∥∥
1
6C(1 + t)−

3
2 ‖W1 −W2‖H

(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
,∥∥∥Ns(W1) − Ns(W2)

∥∥∥
∞
6C(1 + t)−

3
4 ‖W1 −W2‖H

(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
.

(3.2.26)

We are left to show that (3.2.26) is true, whose proof is again similar to the one of (3.2.9).

Therefore, we omit the details except for a brief discussion on the estimate of

Nc,1(W1) − Nc,1(W2) for clarity. Noting that

|Nc,1(W1(t, ν) − Nc,1(W2(t, ν))|

=

∣∣∣∣∣∣
∫
T1×R

k1(ν, ν̃, ν − ν̃)
(
a1(t, ν − ν̃)a1(t, ν̃) − a2(t, ν − ν̃)a2(t, ν̃)

)
d̃ν

∣∣∣∣∣∣
(3.1.25b)
6 C

(
|a1| ∗ |ν1(a1 − a2)| + |a2| ∗ |ν1(a1 − a2)| + |ν1a1| ∗ |(a1 − a2)| + |ν1a2| ∗ |(a1 − a2)|

)
.

we readily conclude∥∥∥Nc,1(W1(t)) − Nc,1(W2(t))
∥∥∥

1
6C(1 + t)−2(‖a1‖Hc

+‖a2‖Hc
)‖a1 − a2‖Hc

;∥∥∥Nc,1(W1(t)) − Nc,1(W2(t))
∥∥∥
∞
6C(1 + t)−

5
4 (‖a1‖Hc

+‖a2‖Hc
)‖a1 − a2‖Hc

,
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Lastly, we point out that Nc(W) and Ns(W) consist of quadratic and cubic terms in W, and

thus are smooth with respect to W, yielding

Nc\s(W1) − Nc\s(W2) =

∫ 1

0
N′c\s(τW1 + (1 − τ)W2)(W1 −W2)dτ,

which in turn explains naturally the occurrence of the ‖W1 −W2‖H term in the estimate

(3.2.8). �

3.2.4 The Variation of Constant Formulation and the Contraction Mapping of T

We aim to show that the map T is a well-defined contraction in some neighborhood

of T1(W0) in the Banach spaceH and thus has a fixed point, which corresponds to a

solution to the perturbed Swift-Hohenberg equation (2.1.3). Moreover, the H-norm

implies the nonlinear stability of the roll solution at the zigzag boundary. More

specifically, introducing the notation

B(W,R) := {V ∈ H | ‖V −W‖H 6 R}, for any W ∈ H,R > 0,

we have the following theorem.

Theorem 3.2.4. There exists δ > 0 such that, given
∥∥∥T1(W0)

∥∥∥
H < δ, the mapping

T : B(T1(W0),
∥∥∥T1(W0)

∥∥∥
H)→ B(T1(W0),

∥∥∥T1(W0)
∥∥∥

H)

is a well-defined continuous contraction in the sense that

(i) T (W) ∈ B(T1(W0),
∥∥∥T1(W0)

∥∥∥
H) for any W ∈ B(T1(W0),

∥∥∥T1(W0)
∥∥∥

H);

(ii)
∥∥∥T (W1) − T (W2)

∥∥∥
H < 1

2‖W1 −W2‖H for any W1,W2 ∈ B(T1(W0),
∥∥∥T1(W0)

∥∥∥
H).

Proof. We firstly show that there exists δ1 > 0 such that, if
∥∥∥T1(W0)

∥∥∥
H < δ1, then (i) holds.

To prove that, we recall the bound given in (3.2.7) and have that, for all W ∈ H,

∥∥∥T (W) − T1(W0)
∥∥∥

H =
∥∥∥T2(W)

∥∥∥
H 6 C

(
‖W‖2H +‖W‖3H

)
. (3.2.27)
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Restricting W ∈ B(T1(W0),
∥∥∥T1(W0)

∥∥∥
H), it follows that‖W‖H 6 2

∥∥∥T1(W0)
∥∥∥

H, which,

together with the above estimate (3.2.27) and
∥∥∥T1(W0)

∥∥∥
H < δ1, yields∥∥∥T (W) − T1(W0)

∥∥∥
H 6C

(
4
∥∥∥T1(W0)

∥∥∥
H + 8

∥∥∥T1(W0)
∥∥∥2

H

)∥∥∥T1(W0)
∥∥∥

H

64C(δ1 + 2δ2
1)
∥∥∥T1(W0)

∥∥∥
H

6
∥∥∥T1(W0)

∥∥∥
H ,

where the last inequality is true as long as we take

0 < δ1 6 min
{

1
2
,

1
8C

}
, (3.2.28)

which completes our search for δ1.

We now show that there exists δ2 > 0 such that, if
∥∥∥T1(W0)

∥∥∥
H < δ2, then (ii) holds.

Similarly to the search of δ1 above, we have, for any W1,W2 ∈ B(T1(W0),
∥∥∥T1(W0)

∥∥∥
H) with∥∥∥T1(W0)

∥∥∥
H < δ2,∥∥∥T (W1) − T (W2)

∥∥∥
H =

∥∥∥T2(W1) − T2(W2)
∥∥∥

H
(3.2.8)
6 C

(
‖W1‖H +‖W2‖H +‖W1‖

2
H +‖W2‖

2
H

)
‖W1 −W2‖H

64C(δ2 + 2δ2
2)‖W1 −W2‖H

6
1
2
‖W1 −W2‖H,

where the last inequality is true as long as we take

0 < δ2 6 min
{

1
2
,

1
16C

}
, (3.2.29)

which completes our search for δ2. We note that the positive constants C in (3.2.28) and

(3.2.29) are the distinct constants from (3.2.7) and (3.2.8) respectively but bear the same

notation for conveniences.

Finally, we find that if we choose δ such that

δ = min (δ1, δ2) ,

then both (i) and (ii) are true and this concludes the proof of Theorem 3.2.4 is proven. �
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We now give the proof of the main theorem.

Proof of Theorem 1.3.1. From Theorem 3.2.4 and the estimate (3.2.6) of T1, for any

‖W0‖1 +‖W0‖∞ 6 δ0 := δ/C,

where the positive constant C is the one in (3.2.6), we have that T is a contraction map,

which, by Banach’s fixed point theorem, gives rise to a unique fixed point

W∗(t, ν) =

 a∗(t, ν)

Vs
∗
(t, ν)

 ∈ H,

which in turn solves the initial value problem of the perturbed Swift-Hohenberg equation

(3.1.11) with the initial condition W(0, ν) = W0(ν). Moreover, recalling the mode filter

decomposition Tm f in (3.1.10) and the discrete Bloch-Fourier transform Bd in (3.1.3), we

have that

v(t, x) :=
(
B−1

d ◦ T−1
m f W∗

)
(t, x) = B−1

d

(
a∗(t, ν)êc(ν) + Vs

∗
(t, ν)

)
solves the perturbed Swift-Hohenberg equation (2.1.3)

vt = Lpv +Np(v),

v(0, x) = v0(x) :=
(
B−1

d ◦ T−1
m f W0

)
(x) = B−1

d

(
a0(ν)êc(ν) + Vs0

(ν)
)
.

As a result, we also have∥∥∥v(t, ·)
∥∥∥

L∞(R2)
6‖a∗(t, ·)êc(·) + Vs

∗
(t, ·)‖L1(T1×R,`1)

6C
(
‖a∗(t, ·)‖1 + ‖Vs

∗
(t, ·)‖1

)
6C(1 + t)−3/4‖W‖H

6C(1 + t)−3/4
∥∥∥TW0

∥∥∥
H

6C(1 + t)−3/4 (
‖W0‖1 + ‖W0‖∞

)
6C(1 + t)−3/4

(
‖v̂0‖L1(R2) + ‖v̂0‖L∞(R2)

)
,

which concludes the proof. �
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4 Nonlinear Stability of Zigzag-Rolls of the SHE

Defined on the Cylinder

In this chapter, we shall discuss the steps needed to prove the nonlinear stability of

zigzag-roll solutions u∗(ξ) on the cylindrical domain, T2π × R; that is Conjecture 1.3.2.

The chapter is organized as follows. In Section 4.1.1, we split the SHE into neutral and

faster modes using a phase modulation decomposition where the neutral mode is

represented by a spatial-temporal phase modulation function ψ. The function ψ satisfies

the linear diffusion equation given by ψt = −A1ψ, whereA1 = ∂4
y . The central idea for

this decomposition relies on capturing the leading order dynamics of perturbations given

by the scheme u(t; ξ, y) = u∗(ξ + ψ(t, y)) + w(t; ξ + ψ(t, y), y). The linear semigroup

estimations and the nonlinear irrelevancy are done in sections 4.1.2 and 4.1.3 respectively.

4.0.1 Nonlinear Terms Seem Relevant

From the analogies obtained in the Table in 2.3, we exploit the intuition we derive

from the heat equation to evaluate the temporal decay rates of both linear and nonlinear

terms via the linearized flow; that is,

‖Lpw‖L∞ ∼ t−
5
4 , ‖Np(w)‖L∞ = ‖ − 3upw2 − w3‖L∞ ∼ t−

1
2 ,

which misleadingly indicates that the nonlinear terms are relevant. This false conclusion

results from the fact that we applied our intuitive reasoning on w, the sum of both neutral

and stable modes, instead of the neutral modes. As a result, the remedy here is to study the

system in a refined coordinate system where the neutral and stable modes are properly

separated via phase modulation decomposition.
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4.1 Phase Modulation and Irrelevancy of Nonlinear Terms

In this Section, we split the SHE into neutral and faster modes via a phase

modulation scheme in physical space. Under this phase modulation scheme, we derive the

detailed expressions of nonlinear terms, from which the irrelevancy of nonlinear terms is

intuitively interpreted but the rigorous proof of irrelevancy is given in the next Section.

There are well-known techniques for deriving the normal form of the perturbed

system where the neutral and stable modes are well separated in proving nonlinear

stability results. We will discuss some of the techniques. In [31] and [32], Johnson et al

introduced a phase modulation scheme for the splitting into neutral and stable modes. The

phase shift was a function that depended on both time and space and was a sum of

well-separated Gaussian waves propagating in opposite directions. In [11], the authors

used a mode filter technique for splitting into neutral and stable modes by using a smooth

cut-off function and a projection onto the pseudo-eigenfunction space.

The techniques discussed above have their advantages and disadvantages concerning

the normal form system that arises after the decomposition into neutral mode and stable

modes. In the mode filter decompositions, it is almost inevitable to work in the

Bloch-Fourier space, which is mostly good as there are good tools for decay analysis in

Fourier space compared to the physical space where phase decomposition is used. Also

for the mode filter decompositions, we often have a small number of nonlinear terms that

arise from the decompositions, as a result, analyzing them to show they are irrelevant is

not as daunting compared to the phase decompositions where we get a high number of

nonlinear terms, and often some quasilinear terms, which means a tool like maximal

regularity may be needed to show the irrelevancy of nonlinear terms. Nevertheless, the

phase decomposition gives us a much more zoomed-in separation of the modes than the

mode filter decomposition, where irrelevancy could be easily seen. In this work, we first

approached the problem using the mode filter technique as in [11], however we found out



59

it is more advantageous to use the phase modulation technique because the mode filter was

not zoomed-in enough and many of the nonlinear terms were either seen as relevant or

critical in our analysis. We will discuss the phase modulation technique in Section 4.1.1.

4.1.1 Phase Modulation Decomposition

Our phase modulation scheme stems from the fact that any element sufficiently close

to the neutral ring,

{u∗(· + ψ) | ψ ∈ T2π},

can be uniquely parameterized by the phase ψ and the stable mode

w ∈ L2
⊥(T2π) := {u ∈ L2(T2π)| 〈u, u′∗〉 = 0}.

More specifically, we have the following lemma.

Lemma 4.1.1. There exists δ > 0 such that for any

u ∈ Bδ(u∗) := {u ∈ L2(T2π)
∣∣∣ ‖u − u∗‖L2(T2π) < δ},

u admits the unique phase modulation decomposition

u(ξ) = u∗(ξ + ψ) + w(ξ + ψ), (4.1.1)

where w ∈ L2
⊥(T2π), in the sense that there exists a small open neighborhood of the origin

in R × L2
⊥(T2π), denoted as Ω, such that the mapping

C : Ω −→ Bδ(u∗)

(ψ,w) 7−→ u∗(ξ + ψ) + w(ξ + ψ),
(4.1.2)

is a diffeomorphism.

Remark 4.1.2. The above result can be easily extended to the whole neutral ring, thanks

to the compactness of the ring. We only state and prove the result for a neighborhood of u∗

since it is sufficient for our work.
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Proof. We introduce the functional

H : R × L2
⊥(T2π) × L2(T2π) −→ L2(T2π)

(ψ,w, u) 7−→ u∗(ξ + ψ) + w(ξ + ψ) − u(ξ),

and solve

H(ψ,w, u) = 0.

We first note thatH(0, 0, u∗) = 0. Moreover, introducing the notation

W := (ψ,w) ∈ R × L2
⊥(T2π) andH0 := ∂H

∂W |W=(0,u∗), we have that

H0 : R × L2
⊥(T2π) −→ L2(T2π)

(φ, v) 7−→ φu′∗(ξ) + v(ξ),

is an isomorphism, which, together with the implicit function theorem, concludes the

proof. �

Based on Lemma 4.1.1, we now introduce the nonlinear phase modulation scheme

u(t, ξ, y) = u∗(ξ + ψ(t, y)) + w(t, ξ + ψ(t, y), y). (4.1.3)

where w(t, ·, y) ∈ L2
⊥(T2π). Defining

z := ξ + ψ(t, y), ũ(t, z, y) := u(t, ξ, y) = u(t, z − ψ(t, y), y), (4.1.4)

we obtain a modified scheme of (4.1.3) given as

ũ(t, z, y) = u∗(z) + w(t, z, y), with 〈w(t, ·, y), u′∗(·)〉 = 0. (4.1.5)

Remark 4.1.3. For systems posted on the whole Euclidean space, the phase variable in

the phase modulation scheme [31],[32], typically depends on all spatial and temporal

directions and the remaining correction term is not perpendicular to the neutral mode. In

this sense, our scheme admits a simpler structure and provides a more explicit geometric

and physical interpretation.
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We now derive the SHE in terms of (ψ,w) under the modified independent variables

(t; z, y). Noticing from (4.1.4) that 

ut = ũt + ψtũz,

uξ = ũz,

uy = ũy + ψyũz,

(4.1.6)

we rewrite the SHE in terms of ũ(t; z, y); that is,

ũt + ψtũz = −
(
1 + k2

∗∂
2
z + (∂y + ψy∂z)2

)2
ũ + µũ − ũ3, (4.1.7)

which, plugging in the scheme (4.1.5), ũ(t, z, y) = u∗(z) + w(t, z, y), becomes

wt + ψt(u′∗ + wz) =

:=G(ψ,w)︷                                                                           ︸︸                                                                           ︷
−

(
1 + k2

∗∂
2
z + (∂y + ψy∂z)2

)2
(u∗ + w) + µ(u∗ + w) − (u∗ + w)3 .

(4.1.8)

Exploiting the orthogonal condition (4.1.5), we further rewrite (4.1.8) in the following

form 
ψt =

〈
u′∗ + wz, u′∗

〉−1 〈
G(ψ,w), u′∗

〉
wt = G(ψ,w) −

〈
u′∗ + wz, u′∗

〉−1 〈
G(ψ,w), u′∗

〉
(u′∗ + wz).

(4.1.9)

We now sort out linear and nonlinear terms with respect to (ψ,w) in (4.1.9). To do

that, recalling that u∗ is a stationary solution to the rescaled SHE (2.1.2) and independent

of y; that is,

−
(
1 + k2

∗∂
2
z

)2
u∗ + µu∗ − u3

∗ = 0, (4.1.10)
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we first simply the expression of G in (4.1.8); that is,

G(ψ,w) =G(ψ,w) −
[
−

(
1 + k2

∗∂
2
z

)2
u∗ + µu∗ − u3

∗

]
=

[
−

(
1 + k2

∗∂
2
z + ∂2

y

)2
(u∗ + w) + µ(u∗ + w) − (u∗ + w)3

]
−

[
−

(
1 + k2

∗∂
2
z

)2
u∗ + µu∗ − u3

∗

]
+[(

1 + k2
∗∂

2
z + ∂2

y

)2
−

(
1 + k2

∗∂
2
z + (∂y + ψy∂z)2

)2
]

(u∗ + w)

=

:=L∗w︷                                      ︸︸                                      ︷
−

(
1 + k2

∗∂
2
z + ∂2

y

)2
w + µw − 3u2

∗w +

:=N1(w)︷            ︸︸            ︷(
−3u∗w2 − w3

)
+

:=K(ψ)︷                                                       ︸︸                                                       ︷[(
1 + k2

∗∂
2
z + ∂2

y

)2
−

(
1 + k2

∗∂
2
z + (∂y + ψy∂z)2

)2
]
(u∗ + w).

(4.1.11)

In order to further simply the expression of G, we would like to sort out the linear terms

and leading order nonlinear terms in ψ in the differential operator K , where the leading

order is in the sense of its temporal decay rate. Noting that intuitively we have the

temporal decay rate for the phase modulation ψ as t−1/4 and any extra derivative in y gives

rise to an extra t−1/4 decay, we have

K(ψ) =
(
1 + k2

∗∂
2
z + ∂2

y

)2
−


:=J1︷            ︸︸            ︷(

1 + k2
∗∂

2
z + ∂2

y

)
+

:=J2︷                          ︸︸                          ︷(
ψyy∂z + 2ψy∂y∂z + ψ2

y∂
2
z

)
2

= −
(
J1J2 +J2J1 +J2

2

)
= −

(
2J2J1 + ∂2

yJ2 − J2∂
2
y +J2

2

)
= −

[
2
(
ψyy∂z + 2ψy∂y∂z

)
J1 + ψyyyy∂z + 4ψyyy∂y∂z + 4ψyy∂

2
y∂z

]
+[

(−2)ψ2
y∂

2
z (1 + k2

∗∂
2
z ) − 2ψ2

y∂
2
y∂

2
z − (ψ2

y)yy∂
2
z − 2(ψ2

y)y∂y∂
2
z − J

2
2

]
.

(4.1.12)
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As a result, noting that u∗(z) is independent of y and K(ψ)w admits only nonlinear terms

in (ψ,w), we have

K(ψ)u∗ =
[
−u′∗ψyyyy − 2(u′∗ + k2

∗u
′′′
∗ )ψyy

]
+

:=N2(ψ)︷                                                                                ︸︸                                                                                ︷[
−2

(
u′′∗ + k2

z u(4)
∗

)
ψ2

y − 3u′′∗ ψ
2
yy − 4u′′∗ ψyψyyy − 6u′′′∗ ψ

2
yψyy − u(4)

∗ ψ
4
y

]
,

:=N3(ψ,w)︷ ︸︸ ︷
K(ψ)w =

:=N3,1(ψ,w)︷                                                  ︸︸                                                  ︷[
−2ψyy

(
wz + k2

∗wzzz

)
− 4ψy

(
wzy + k2

∗wzzzy

)]
+

:=N3,2(ψ,w)︷︸︸︷
h.o.t. ,

(4.1.13)

where N3,2(ψ,w) := K(ψ)w − N3,1(ψ,w) is higher order in the sense that the temporal

decay rate of the L∞-norm of N3,2 is faster than N3,1. We now introduce the following

useful lemma.

Lemma 4.1.4. At the zigzag boundary k = k∗, we have that

〈u′∗ + k2
∗u
′′′
∗ , u

′
∗〉 = 0. (4.1.14)

Proof. We recall from Proposition 2.2.1 that (λ(ν2), e(ν2; ξ)) is an eigenpair of L̂∗(ν2); that

is,

L̂∗(ν2)e(ν2; ξ) = λ(ν2)e(ν2; ξ), (4.1.15)

where λ admits the Taylor expansion as given in (2.2.8); that is,

λ(ν2) = a02ν
2
2 + a04ν

4
2 + O(ν6

2).

Noting that L̂∗(ν2) admits the expansion

L̂∗(ν2) = L̂∗(0) + 2ν2
2(1 + k2

∗∂
2
ξ) − ν

4
2,

and introducing the expansion

e(ν2; ξ) = e0 + ν2
2e2 + O(ν4

2),
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where e0 = u′∗, we plug all the expansions of L̂∗, λ and e into (4.1.15) and have the

following identity for all the terms of order O(ν2
2),

L̂∗(0)e2 + 2(u′∗ + k2
∗u
′′′
∗ ) = a02u′∗,

whose inner product with u′∗, together with the fact that a02(µ, k∗(µ)) = 0, in turns yields

〈u′∗ + k2
∗u
′′′
∗ , u

′
∗〉 =

1
2

a02〈u′∗, u
′
∗〉 = 0.

�

Taking advantage of (4.1.11)and (4.1.13), we have

G(ψ,w) = L∗w +
[
−u′∗ψyyyy − 2(u′∗ + k2

∗u
′′′
∗ )ψyy

]
+

3∑
i=1

Ni, (4.1.16)

which, together with (4.1.14), the parity of u∗ and u∗ ∈ Ker (L∗), yields

〈G(ψ,w), u′∗〉 = −
∥∥∥u′∗

∥∥∥2

2
ψyyyy + 6

∥∥∥u′′∗
∥∥∥2

2
ψ2

yψyy + 〈N1 +N3, u′∗〉. (4.1.17)

Introducing the notations

A1 := ∂4
y , A2 := −L∗ |L2(R,L2

⊥(T2π)), A3 := −2(u′∗+k2
∗u
′′′
∗ )∂2

y , P(w) :=
〈
u′∗ + wz, u′∗

〉−1
−
∥∥∥u′∗

∥∥∥−2

2
,

(4.1.18)

we now plug (4.1.11),(4.1.13) and (4.1.17) into (4.1.9), yielding the SHE in its phase

modulation coordinates W := (ψ,w)T form,

Wt = LpmW +Npm(W), (4.1.19)

where

Lpm :=

−A1 0

A3 −A2

 , Npm(W) :=

N
ψ(W)

Nw(W)

 ,
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with

Nψ(ψ,w) = − P(w)
∥∥∥u′∗

∥∥∥2

2
ψyyyy +

〈
u′∗ + wz, u′∗

〉−1
[
6
∥∥∥u′′∗

∥∥∥2

2
ψ2

yψyy + 〈N1 +N3, u′∗〉
]

= − P(w)
∥∥∥u′∗

∥∥∥2

2
ψyyyy + 6‖u′′∗ ‖

2
2‖u
′
∗‖
−2
2 ψ

2
yψyy + 〈N1 +N3, u′∗〉‖u

′
∗‖
−2
2 + 6P(w)‖u′′∗ ‖

2
2ψ

2
yψyy+

P(w)〈N1 +N3, u′∗〉,

Nw(ψ,w) =

3∑
i=1

Ni + ψyyyywz + (u′∗ + wz)Nψ.

Before studying the linear semigroup estimates, it is advantageous to work in the

discrete Fourier space. We recall the definitions of the Fourier transforms in 6, and

introduce the following

Â1 := −ν4
2, Â2 := −L̂∗ |Lp(R,`p

⊥), Â3 := 2
(
û′∗ + k2

∗ û′′′∗
)
∗ν2

2, P̂(w) := 〈〈û′∗+ŵz, û
′
∗〉〉
−1
−
∥∥∥u′∗

∥∥∥−2

2
,

(4.1.20)

The system (4.1.19) in the discrete Fourier space becomes

Ŵt = L̂pmŴ + N̂pm(Ŵ), (4.1.21)

where

Ŵ(t, ν2) =

ψ̂(t, ν2)

ŵ(t, ν2)

 , L̂pm :=

 ν
4
2 0

Â3 −Â2

 , N̂pm(Ŵ :=

N̂
ψ(Ŵ)

N̂w(Ŵ)

 ,
with

N̂ψ(ψ̂, ŵ) = − ‖u′∗‖
2
2P̂(w) ∗ ν4

2ψ̂ − 6‖u′′∗ ‖
2
2‖u
′
∗‖
−2
2

(
iν2ψ̂ ∗ iν2ψ̂

)
∗ ν2

2ψ̂ − 6‖u′′∗ ‖
2
2P̂(w) ∗

(
iν2ψ̂ ∗ iν2ψ̂

)
∗ ν2

2ψ̂+

〈〈N̂1 + N̂3, û′∗〉〉‖u
′
∗‖
−2
2 + P̂(w) ∗ 〈〈N̂1 + N̂3, û′∗〉〉,

N̂w(ψ̂, ŵ) =

3∑
i=1

N̂i − ν
4
2ψ̂ ∗ ŵz + (û′∗ + ŵz) ∗ N̂

ψ.

4.1.2 Linear Semigroup Estimates

We consider the initial value problem of the linearized flow of (4.1.21); that is,
Ŵt = L̂pmŴ,

Ŵ(0) = Ŵ0 = (ψ̂0, ŵ0)T ,
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whose solution takes the form

Ŵ(t) = eL̂pmtŴ0. (4.1.22)

Denoting

M =

M11 M12

M21 M22

 := eL̂pmt =

 e−Â1t 0∫ t

0
e−Â2(t−s)Â3e−Â1 sds e−Â2t

 , (4.1.23)

we state the following temporal decay estimates about the semigroup generated by the

operatorM.

Lemma 4.1.5. For any given 1 6 p 6 q 6 ∞, there exists C > 0 such that the analytic

semigroup M11 admits the estimate

|||νk
2M11(t)|||q→p 6 Ct−

1
4

(
1
p−

1
q

)
− k

4 , (4.1.24)

where k ∈ N and q→ p stands for Lq(R)→ Lp(R).

Proof. For any given 1 6 p 6 q 6 ∞, we apply Holders inequality to νk
2M11ψ̂0; that is,

‖νk
2e−ν

4
2tψ̂0‖p 6 ‖ν

k
2e−ν

4
2t‖r‖ψ̂0‖q

= t−
1
4r−

k
4 ‖ψ̂0‖q

6 Ct−
1
4

(
1
p−

1
q

)
− k

4 ‖ψ̂0‖q,

where r is the constant such that 1
p = 1

r + 1
q . �

From Proposition 2.3 in [11], we have that the operator Â2 is sectorial and its

spectrum lives strictly in the left half plane bounded away from the imaginary axis. That

is, the spectrum of Â2 is contained in the interval (0,−d) for some d > 0. As a result, we

have the following lemma.

Lemma 4.1.6. For any fixed p ∈ [1,+∞], there exist C, d > 0 such that the analytic

semigroupM22 = e−Â2t admits the estimate

|||M22|||p→p 6 Ce−dt (4.1.25)
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where p stands for Lp(R, `p
⊥)).

Proof. The proof is a direct consequence of Lemma 3.1.4 where ν1 = 0. �

Lemma 4.1.7. For any fixed 1 6 p 6 q 6 ∞, there exist a C > 0 such thatM21 admits

the estimate

|||M21(t)|||q→p 6 Ct−
1
4

(
1
p−

1
q

)
− 1

2 , (4.1.26)

where k ∈ N and q→ p stands for Lq(R)→ Lp(R, `p
⊥).

Proof. The estimation of the Lp(R, `p
⊥) norm ofM21 is

‖M21ψ̂0‖p =

∥∥∥∥∥∥
∫ t

0
e−Â2(t−s)Â3e−Â1 sψ̂0ds

∥∥∥∥∥∥
p

6
∫ t

0

∥∥∥∥e−Â2(t−s)Â3e−Â1 sψ̂0

∥∥∥∥
p

ds

6
∫ t

0
|||e−Â2(t−s)|||p‖Â3e−Â1 sψ̂0‖pds

(4.1.25)
6 C

∫ t

0
e−d(t−s)‖Â3e−Â1 sψ̂0‖pds

(4.1.24)
6 C

∫ t

0
e−d(t−s)s−

1
4

(
1
p−

1
q

)
− 1

2 ‖ψ̂0‖qds

=C‖ψ̂0‖q

∫ t
2

0
e−d(t−s)s−

1
4

(
1
p−

1
q

)
− 1

2 ds +

∫ t

t
2

e−d(t−s)s−
1
4

(
1
p−

1
q

)
− 1

2 ds


6C‖ψ̂0‖q

e− dt
2

(
t
2

)− 1
4

(
1
p−

1
q

)
+ 1

2

+

(
t
2

)− 1
4

(
1
p−

1
q

)
− 1

2 1
d


6Ct−

1
4

(
1
p−

1
q

)
− 1

2 ‖ψ̂0‖q.

�

4.1.3 Irrelevancy of Nonlinear Terms

We provide intuitive details on why the nonlinear terms N̂ψ and N̂w in (4.1.21) are

irrelevant with respect to the linear flow. We first recall the linear flow of (4.1.21) and
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suppress the nonlinear terms; that is
Ŵt = L̂pmŴ,

Ŵ(0) = Ŵ0 = (ψ̂0, ŵ0)T ,

and the estimates (4.1.5) and (4.1.7) of Lemmas 4.1.5 and 4.1.7 respectively, we have the

following linear decay estimates for Ŵ = (ψ̂, ŵ) for p = 1 and q = ∞; that is

‖νk
2ψ̂(t, ·)‖L1(R) = ‖νk

2e−Â1tψ̂0‖L1(R) 6 Ct−
1
4−

k
4 ‖ψ̂0‖L∞(R),

‖νk
2ŵ(t, ·)‖L1(R,`1

⊥) =

∥∥∥∥∥∥∥νk
2

∫ t

0
e−Â2(t−s)Â3e−Â1 sψ̂0ds


∥∥∥∥∥∥∥

L1(R,`p
⊥)

6 Ct−
3
4−

k
4 ‖ψ̂0‖L∞(R).

(4.1.27)

We now consider the full system (4.1.21),

Ŵt = L̂pmŴ + N̂pm(Ŵ),

or equivalently, 
ψ̂t = −ν4

2ψ̂ + N̂ψ(ψ̂, ŵ)

ŵt = −Â2ŵ + Â3e−Â1tψ̂0 + N̂w(ψ̂, ŵ).

Based on the estimates in (4.1.27), the linear flow has the following temporal decay

estimations in the L∞(R)→ L1(R) and L∞(R, `p
⊥)→ L1(R, `p

⊥) norm respectively as t goes

to +∞,

‖ − ν4
2ψ̂‖L1(R) ∼ t−

5
4 ,

‖ − Â2ŵ + Â3e−Â1tψ̂0‖L1(R,`1
⊥) ∼ t−

3
4 .

More specifically, we have
ψ̂t =

O(t−
5
4 )︷︸︸︷

−νk
2ψ̂ +N̂ψ(ψ̂, ŵ)

ŵt =

O(t−
3
4 )︷                   ︸︸                   ︷

−Â2ŵ + Â3e−Â1tψ̂0 +N̂w(ψ̂, ŵ).

(4.1.28)
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We can classify the nonlinear terms N̂ψ and N̂w in (4.1.28) as irrelevant as long as they

have faster temporal decay rates than their linear flow counterparts.

Recalling the nonlinear terms in (4.1.21) and plugging in the linear estimations of ψ̂

and ŵ in (4.1.27), we have the following temporal decay estimations of the nonlinear terms

N̂ψ(ψ̂, ŵ) =

O(t−2)︷                ︸︸                ︷
−‖u′∗‖

2
2P̂(w) ∗ ν4

2ψ̂+

O(t−
7
4 )︷                                                                                       ︸︸                                                                                       ︷

−6‖u′′∗ ‖
2
2‖u
′
∗‖
−2
2

(
iν2ψ̂ ∗ iν2ψ̂

)
∗ ν2

2ψ̂ − 6‖u′′∗ ‖
2
2P̂(w) ∗

(
iν2ψ̂ ∗ iν2ψ̂

)
∗ ν2

2ψ̂+

=O(t−
3
2 )︷                                                       ︸︸                                                       ︷

〈〈N̂1 + N̂3, û′∗〉〉‖u
′
∗‖
−2
2 + P̂(w) ∗ 〈〈N̂1 + N̂3, û′∗〉〉,

N̂w(ψ̂, ŵ) =

O(t−1)︷︸︸︷
3∑

i=1

N̂i −

O(t−2)︷   ︸︸   ︷
ν4

2ψ̂ ∗ ŵz +

O(t−
3
2 )︷            ︸︸            ︷

(û′∗ + ŵz) ∗ N̂
ψ,

(4.1.29)

where

P̂(w) =〈〈û′∗ + jŵ, û′∗〉〉
−1
−
∥∥∥u′∗

∥∥∥−2

2
;

N̂1 =

O(t−
3
2 )︷               ︸︸               ︷

−3û′∗ ∗ ŵ∗2 − ŵ∗3;

N̂2 =


O(t−1)︷                                ︸︸                                ︷

2
(
û′′∗ + k2

∗ û
(4)
∗

)
∗
(
iν2ψ̂ ∗ iν2ψ̂

) O(t−
3
2 )︷                 ︸︸                 ︷

−

(
3û′′∗ iν2

2ψ̂
)
∗ iν2

2ψ̂

O(t−
3
2 )︷                 ︸︸                 ︷

−

(
4û′′∗ iν2ψ̂

)
∗ iν3

2ψ̂−

O(t−
7
4 )︷                        ︸︸                        ︷(

6û′′′∗ iν2ψ̂ ∗ iν2ψ̂
)
∗ ν2ψ̂

O(t−2)︷                                     ︸︸                                     ︷
−

(
û(4)
∗ iν2ψ̂ ∗ iν2ψ̂

)
∗
(
iν2ψ̂ ∗ iν2ψ̂

) ;
N̂3 =

O(t−
3
2 )︷                                                                ︸︸                                                                ︷[

−2ν2
2ψ̂ ∗

(
ŵz + k2

∗ŵzzz

)
− 4iν2ψ̂ ∗

(
iν2ŵz + k2

∗iν2ŵzzz

)]
+h.o.t.

The temporal decay of the higher order terms denoted h.o.t, has faster temporal decay

rates than 3/2 in N̂3. Refer to the analysis in (4.1.13) for further details. From above, we

readily see that the leading order nonlinear term in N̂ψ in (4.1.29) has a faster temporal

decay rate than the linear temporal decay rate of t−
5
4 ; that is∥∥∥∥〈〈N̂1 + N̂3, û′∗〉〉‖u

′
∗‖
−2
2 (t, ·)

∥∥∥∥
L1(R)
∼ t−

3
2 as t → +∞.
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Similarly, the leading order nonlinear term of N̂w in (4.1.29) is the N̂2 term

2
(
û′′∗ + k2

∗ û
(4)
∗

)
∗ iν2ψ̂ ∗ iν2ψ̂ has a faster decay temporal rate than the linear temporal decay

rate of t−
3
4 ; that is∥∥∥∥∥2

(
û′′∗ + k2

∗ û
(4)
∗

)
∗
(
iν2ψ̂ ∗ iν2ψ̂

)
(t, ·)

∥∥∥∥∥
L1(R,`1

⊥)
∼ t−1 as t → +∞.

More specifically, we have
ψ̂t =

O(t−
5
4 )︷︸︸︷

−ν4
2ψ̂ +

O(t−
3
2 )︷     ︸︸     ︷

N̂ψ(ψ̂, ŵ)

ŵt =

O(t−
3
4 )︷                   ︸︸                   ︷

−Â2ŵ + Â3e−Â1tψ̂0 +

O(t−1)︷     ︸︸     ︷
N̂w(ψ̂, ŵ),

(4.1.30)

as such, we conclude that the nonlinear terms in the phase modulation coordinate (ψ̂, ŵ)

are irrelevant. This means the dynamics of the system (4.1.21) follow the linear flow and

consequently give a decay rate of t−
1
4 .

Remark 4.1.8. We are left to formally prove the nonlinear irrelevancy and the t−
1
4 decay

rate by constructing a well-defined contraction map on a suitable Banach space which,

via Banach fixed point theorem, gives rise to the nonlinear stability results we covet. This

could be done in the physical space by following the analysis in [31] or in Fourier space

by following the analysis in Section 3.2 of Chapter 3. We shall leave this for future work.
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Appendix A: Proof of Proposition 2.1.1

To prove this proposition, we first note from (1.2.2) in Lemma 1.2.1 that

up(ξ + π; k) = −up(ξ; k), and thus it is more convenient to work on the discrete group πZ,

which gives a refined block diagonalization than 2πZ. More specifically, we

block-diagonalize Lp via the Bloch-Fourier transform onto T2 × R; that is,

B2 : L2(R2) 7−→ L2(T2 × R, L2(Tπ))

v −→ B2v(ν, ξ) =
∑

k∈Z v̂(ν1 + k, ν2)ei2kξ,

yielding

L̂p,2 := B2 ◦ Lp ◦ B
−1
2 =

∫
T2×R
L̂p,2(ν)dν,

where the Block-Fourier operators L̂p,2(ν; ε2, κ) : H4(Tπ)→ L2(Tπ) is given by

L̂p,2(ν; ε2, κ)U := −(1 + (1 + κ)(∂ξ + iν1)2 − ν2
2)2U + ε2U − 3u2

pU,

where L̂p,2 and L̂p are the same operators defined on different domains, and their

wave-number vector ν also lives in different spaces. More specifically, we have the

following lemma, which concludes the proof of part (i) and paves the foundation for the

proof of the rest parts.

Lemma A.0.1. The operators Lp, L̂p and L̂p,2 admit the following spectral property,

σ(Lp) = σ(L̂p) =
⋃

ν∈T1×R

σ(L̂p(ν)) = σ(L̂p,2) =
⋃

ν∈T2×R

σ(L̂p,2(ν)) ⊆ R. (A.0.1)

Moreover, L̂p(ν) is isomorphic to the direct sum of L̂p,2(ν) and L̂p,2(ν + e1), where

e1 := (1, 0).

Proof. The spectral property (A.0.1) is a direct consequence of the self-adjointness of Lp

and the fact that the Bloch-Fourier transform of a periodic-coefficient differential operator

is block diagonal; see [40] for details. We also note that for any given
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ν = (ν1, ν2) ∈ T1 × R and u1(ξ), u2(ξ) ∈ H4(Tπ),

L̂p(ν)
(
u1 + eiξu2

)
= L̂p,2(ν)u1 + eiξL̂p,2(ν + e1)u2,

which, introduces the isomorphism

M : L2(Tπ) × L2(Tπ) −→ L2(T2π)

(u1, u2) 7−→ u1 + eiξu2,

can be rewritten as

M−1 ◦ L̂p(ν) ◦ M =

L̂p,2(ν) 0

0 L̂p,2(ν + e1)

 ,
and we thus conclude the proof. �

In order to investigate spectral properties of L̂p,2(ν), we first prove the following

symmetric property.

Lemma A.0.2. (λ, e(ξ)) is an eigenpair of L̂p,2(ν; ε2, κ) if and only if (λ, e(−ξ)) is an

eigenpair of L̂p,2(−ν1, ν2; ε2, κ).

Proof. Denoting ξ̃ := −ξ and ẽ(ξ) := e(−ξ), we have(
L̂p,2(−ν1, ν2; ε2, κ)̃e

)
(ξ) =

[
−

(
1 + (1 + κ)(∂ξ + i(−ν1))2 − ν2

2

)2
+ ε2 − 3u2

p(ξ)
]

ẽ(ξ)

=

[
−

(
1 + (1 + κ)(−∂ξ + iν1)2 − ν2

2

)2
+ ε2 − 3u2

p(ξ)
]

ẽ(ξ)

=

[
−

(
1 + (1 + κ)(∂ξ̃ + iν1)2 − ν2

2

)2
+ ε2 − 3u2

p(̃ξ)
]

e(̃ξ)

=

(
L̂p,2(ν; ε2, κ)e

)
(̃ξ) = λe(̃ξ) = λ̃e(ξ).

�

Taking advantage of the symmetric properties from Lemma A.0.2 and that L̂p,2(ν) is

even in ν2, we restrict our analysis to the region ν ∈ [0, 1] × [0,∞), which is a quarter of
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T2 × R. Recalling that up(ξ) = O(̃a), where ã =
√

4(ε2 − κ2)/3, and introducing the

leading-order constant-coefficient operator

N(ν; κ) := L̂p,2(ν; κ2, κ) = −(1 + (1 + κ)(∂ξ + iν1)2 − ν2
2)2 + κ2,

we now view L̂p,2(ν) as a small perturbation of N(ν; κ) with the estimate

L̂p,2(ν; ε2, κ) − N(ν; κ) = ε2 − κ2 − 3u2
p = O(̃a2),

or, more specifically, to fix ideas, there exists ε1 < min{ε0, 1} such that, for any κ < ε < ε1,

|||L̂p,2(ν; ε2, κ) − N(ν; κ)|||L2 6
9
2

ã2 < 6ε2. (A.0.2)

It is straightforward to see that the spectrum of N(ν; κ) : H4(Tπ)→ L2(Tπ) consists only

of eigenvalues

µn(ν; κ) := −(1 − (1 + κ)(n + ν1)2 − ν2
2)2 + κ2,

with corresponding eigenfunctions φn := einξ, n ∈ 2Z. Moreover, for any |κ| 6 1/2,

ν ∈ [0, 1] × [0,∞), we have

µmax(ν; κ) := max
n∈2Z
{µn(ν; κ)} = max{µ0(ν; κ), µ−2(ν; κ)}; µn(ν; κ) 6 −

3
4
, for n , 0,−2.

(A.0.3)

As a result, we identify the set where unstable modes stem from; that is,

U0 :=
{
ν ∈ T2 × R

∣∣∣ ν2
1 + ν2

2 = 1, or (ν1 − 2)2 + ν2
2 = 1

}
. (A.0.4)

In other words, if ν is bounded away fromU0 and ε is sufficiently small, then the

spectrum of L̂p,2 sits strictly in (−∞, 0). More specifically, to fix ideas, we fix r0 ∈ (0, 1)

and introduce the set

Sr0 :=
{
ν ∈ [0, 1] × R

∣∣∣ |ν2
1 + ν2

2 − 1| > r0, |(ν1 − 2)2 + ν2
2 − 1| > r0

}
. (A.0.5)

For any ν ∈ Sr0 and κ < ε < r0/5, we have

µmax 6 −
8

25
r2

0. (A.0.6)
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Combining (A.0.2), (A.0.3) and (A.0.6), we conclude that, for any ν ∈ Sr0 and

κ < ε < ε2 := min{r0/5, ε1},∫ π

0
(L̂p,2V)Vdξ 6 (−

8
25

r2
0 + 6ε2)‖V‖2L2(0,π) 6 −

2r2
0

25
‖V‖2L2(0,π). (A.0.7)

We are now left to study the spectrum of L̂p,2(ν; ε2, κ) for ν ∈ Ω := ([0, 1] × R)\Sr0 . To

this end, we distinguish the two subregions

Ω1 :=
{
ν ∈ Ω

∣∣∣ ν2 >
√

r0

}
, Ω2 :=

{
ν ∈ Ω

∣∣∣ ν2 6
√

r0

}
.

Based on estimates (A.0.3) and (A.0.6), we note that L̂p,2 admits respectively one small

eigenvalue and two small eigenvalues in region Ω1 and Ω2, and we only need to keep track

of these small eigenvalues since all other eigenvalues are stable modes with strictly

negative real parts. According to [1], the set of (ε, κ) when L̂p,2 is spectrally stable when

ν ∈ Ω2 is a subset for its counterpart when ν ∈ Ω1 and thus we skip the discussion of the

subregion Ω1 and refer interested readers to [1] for more details. We now restrict

ourselves to the subdomain Ω2, where both neutral modes admit small eigenvalues. We

apply the Lyapunov-Schmidt reduction to reduce the eigenvalue problem

F(U, λ; ν, ε2, κ) := (L̂p,2(ν; ε2, κ) − λ)U = 0,

to a two-dimensional problem in the subspace spanned by the neutral modes,

U0 := span{φ0, φ−2}. More specifically, noting that L2(Tπ) = U0
⊕
U⊥0 , we let P be the

orthogonal projection from L2(Tπ) ontoU0, Q := Id − P and introduce the decomposition

U = U0 + U⊥0 , where U0 := PU, U⊥0 := ( Id − P)U,

under which, the eigenvalue problem can be rewritten as
PF(U0 + U⊥0 , λ; ν, ε2, κ) = 0,

QF(U0 + U⊥0 , λ; ν, ε2, κ) = 0.
(A.0.8)
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We can apply an implicit-function-theorem argument and the compactness of Ω2 to solve

the second equation in (A.0.8) for U⊥0 in terms of ν ∈ Ω2 and small λ, U0, ε, and κ. More

specifically, we have QF(0, 0; ν, ε2, κ) = 0 and

∂QF
∂U⊥0

(0, 0; ν, ε2, κ) = QN(ν; κ) |U⊥0 +O(̃a2)

which, based on the spectral estimate (A.0.3), is invertible. As a result, for

|λ|, ‖U0‖L2(Tπ) � 1,

U⊥0 = V(λ; ν, ε2, κ)U0,

where

VU := (N(ν; κ)−λ+ ε2− κ2−3Qu2
p)−1(3Qu2

pU) = (N(ν; κ) + ε2− κ2−λ)−1(3Qu2
p) +O(̃a4).

By substituting U⊥0 = V(λ; ν, ε2, κ)U0 into the first equation in (A.0.8), we now

analyze the reduced two-dimensional problem PF(U0 +VU0, λ; ν, ε2, κ) = 0, which takes

the following explicit form,

(
N(ν; κ) − λ

)
U0 +

(
(ε2 − κ2)U0 − 3P(u2

pU0)
)
− 3P

(
u2

pVU0

)
= 0. (A.0.9)

We now convert the two-dimensional problem (A.0.9) into its matrix form with respect to

the basis

{
U1 := e−iξ cos ξ =

1
2

(φ0 + φ−2), U2 := e−iξ sin ξ =
1
2i

(φ0 − φ−2)
}
; (A.0.10)

that is, introducing U0 = c1U1 + c2U2 with c := (c1, c2)T and the matrix

M(λ; ν, ε2, κ) :=


〈PF(U1+VU1,λ),U1〉L2(Tπ)

‖U1‖
2
L2(Tπ)

〈PF(U2+VU2,λ),U1〉L2(Tπ)

‖U1‖
2
L2(Tπ)

〈PF(U1+VU1,λ),U2〉L2(Tπ)

‖U2‖
2
L2(Tπ)

〈PF(U2+VU2,λ),U2〉L2(Tπ)

‖U2‖
2
L2(Tπ)

 ,
the two-dimensional problem (A.0.9) becomes

Mc = 0. (A.0.11)
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Taking advantage of the expression (A.0.9) and the fact that ‖U1‖
2
L2(Tπ) = ‖U2‖

2
L2(Tπ) = π

2 ,

We split the matrix M into three parts; that is, M = M0 + M1 + M2, where, Mk = (mk
i, j)2×2

for k = 0, 1, 2, with

m0
i, j := 2 −

∫
Tπ

Ûi
(
N(ν; κ) − λ

)
U j dξ,

m1
i, j := 2 −

∫
Tπ

Ûi

(
ε2 − κ2 − 3u2

p

)
U j dξ,

m2
i, j := 2 −

∫
Tπ

Ûi

(
−3u2

p

)
VU j dξ.

A.0.1 Computing M0

We compute the matrix coefficients of M0,

m0
i, j = 2 −

∫
Tπ

Ûi
(
N(ν; κ) − λ

)
U j dξ.

Noting that

(
N(ν; κ) − λ

)
U1 =

1
2

(
N(ν; κ) − λ

)
(φ0 + φ−2) =

1
2

[
(µ0(ν; κ) − λ)φ0 + (µ−2(ν; κ) − λ)φ−2

]
(
N(ν; κ) − λ

)
U2 =

1
2i

(
N(ν; κ) − λ

)
(φ0 − φ−2) =

1
2i

[
(µ0(ν; κ) − λ)φ0 − (µ−2(ν; κ) − λ)φ−2

]
we derive the expression for the entries; that is,

m0
1,1 =

1
2
−

∫
Tπ

(φ0 + φ2)
[
(µ0(ν; κ) − λ)φ0 + (µ−2(ν; κ) − λ)φ−2

]
dξ

=
µ0(ν; κ) + µ−2(ν; κ)

2
− λ,

m0
1,2 = m̂0

2,1 =
1
2i
−

∫
Tπ

(φ0 + φ2)
[
(µ0(ν; κ) − λ)φ0 − (µ−2(ν; κ) − λ)φ−2

]
dξ

=
µ0(ν; κ) − µ−2(ν; κ)

2i
,

m0
2,2 =

1
2
−

∫
Tπ

(φ0 − φ2)
[
(µ0(ν; κ) − λ)φ0 − (µ−2(ν; κ) − λ)φ−2

]
dξ

=
µ0(ν; κ) + µ−2(ν; κ)

2
− λ.



81

Denoting ρ := (µ0(ν; κ) + µ−2(ν; κ))/2 and β := (µ0(ν; κ) − µ−2(ν; κ))/2, we have the

matrix

M0 =

ρ − λ −iβ

iβ ρ − λ

 .
A.0.2 Computing M1

We compute the matrix coefficients of M1,

m1
i, j = 2 −

∫
Tπ

Ûi

(
ε2 − κ2 − 3u2

p

)
U jdξ,

which admit the following expressions,

m1
1,1 =

1
2
−

∫
Tπ

(φ0 + φ2)
(
ε2 − κ2 − 3u2

p

)
(φ0 + φ−2)dξ

= ε2 − κ2 − 6 −
∫

Tπ
u2

p cos2(ξ)dξ,

m1
1,2 = m̂1

2,1 =
1
2i
−

∫
Tπ

(φ0 + φ2)
(
ε2 − κ2 − 3u2

p

)
(φ0 − φ−2) dξ

= 0,

m1
2,2 =

1
2
−

∫
Tπ

(φ0 − φ2)
(
ε2 − κ2 − 3u2

p

)
(φ0 − φ−2)dξ

= ε2 − κ2 − 6 −
∫

Tπ
u2

p sin2(ξ)dξ.

To obtain more explicit expressions of the integrals in m1
1,1 and m1

2,2, we recall from

Lemma 1.2.1 that

up = a1 cos(ξ) + a3 cos(3ξ) + O(̃a5),

where

a1 = ã+ã3/512+O(̃a4), a3 = −ã3/256+O(̃a4), ã =

√
4[µ − (k2 − 1)2]

3
=

√
4(ε2 − κ2)

3
.
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As a result, we plug the expansion of up into the integrals in m1
1,1 and m1

2,2, yielding

−

∫
Tπ

u2
p cos2(ξ)dξ = −

∫
Tπ

(
a2

1 cos2(ξ) + 2a1a3 cos(ξ) cos(3ξ) + O(̃a5)
)

cos2(ξ)dξ

=
3
8

a2
1 +

1
4

a1a3 + O(̃a5),

−

∫
Tπ

u2
p sin2(ξ)dξ = −

∫
Tπ

(
a2

1 cos2(ξ) + 2a1a3 cos(ξ) cos(3ξ) + O(̃a5)
)

sin2(ξ)dξ

=
1
8

a2
1 −

1
4

a1a3 + O(̃a5).

We now conclude that

M1 =

ε
2 − κ2 − 9

4a2
1 −

3
2a1a3 + O(̃a5) 0

0 ε2 − κ2 − 3
4a2

1 + 3
2a1a3 + O(̃a5)


=

−
3
2 ã2 − 3

1024 ã4 + O(̃a5) 0

0 − 9
1024 ã4 + O(̃a5)

 .
(A.0.12)

A.0.3 Computing M2

We compute the matrix coefficients of M2,

m2
i, j = 2 −

∫
Tπ

Ûi

(
−3u2

p

)
VU jdξ = 2 −

∫
Tπ

Ûi

(
−3u2

p

) (
N(ν; κ) + ε2 − κ2 − λ

)−1 (
3Q(u2

pU j)
)

dξ.

Recalling the expansion of u2
p, we readily conclude that u2

p = ã2 cos2(ξ) + O(̃a4) and thus

derive the following leading order expansion of m2
i, j,

m2
i, j = −18̃a4 −

∫
Tπ

(
Ûi cos2(ξ)

) (
N(ν; κ) + ε2 − κ2 − λ

)−1
(
Q

(
U j cos2(ξ)

))
dξ + O(̃a6).

For convenience of computation, we now rewrite U j cos2(ξ) in terms of φn. More

specifically, noting that cos2(ξ) = 1
2φ0 + 1

4 (φ2 + φ−2), we have

U1 cos2(ξ) =
1
2

(φ0 + φ−2)[
1
2
φ0 +

1
4

(φ2 + φ−2)] =
1
8

(
φ−4 + 3φ−2 + 3φ0 + φ2

)
,

Û1 cos2(ξ) =
1
8

(
φ4 + 3φ2 + 3φ0 + φ−2

)
,

U2 cos2(ξ) =
1
2i

(φ0 − φ−2)[
1
2
φ0 +

1
4

(φ2 + φ−2)] =
1
8i

(
φ0 + φ2 − φ−2 − φ−4

)
,

Û2 cos2(ξ) =
1
8i

(
φ4 + φ2 − φ0 − φ−2

)
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which, together with the fact that N(ν; κ)φn = µκn(ν)φn, gives the explicit expressions of

m2
i, j,

m2
1,1 = −

9̃a4

32
−

∫
Tπ

(
φ4 + 3φ2 + 3φ0 + φ−2

) (
N(ν; κ) + ε2 − κ2 − λ

)−1 (
φ−4 + φ2

)
dξ + O(̃a6)

= −
9̃a4

32

[(
µ2(ν; κ) + ε2 − κ2 − λ

)−1
+

(
µ−4(ν; κ) + ε2 − κ2 − λ

)−1
]

+ O(̃a6)

= −
9̃a4

32

[(
µ2(ν; κ) − λ

)−1
+

(
µ−4(ν; κ) − λ

)−1
]

+ O(̃a6),

m2
1,2 = −

9̃a4

32i
−

∫
Tπ

(
φ4 + 3φ2 + 3φ0 + φ−2

) (
N(ν; κ) + ε2 − κ2 − λ

)−1 (
φ2 − φ−4

)
dξ + O(̃a6)

= −
9̃a4

32i

[(
µ2(ν; κ) + ε2 − κ2 − λ

)−1
−

(
µ−4(ν; κ) + ε2 − κ2 − λ

)−1
]

+ O(̃a6)

= −
9̃a4

32i

[(
µ2(ν; κ) − λ

)−1
−

(
µ−4(ν; κ) − λ

)−1
]

+ O(̃a6),

m2
2,1 = −

9̃a4

32i
−

∫
Tπ

(
φ4 + φ2 − φ0 − φ−2

) (
N(ν; κ) + ε2 − κ2 − λ

)−1 (
φ−4 + φ2

)
dξ + O(̃a6)

=
9̃a4

32i

[(
µ2(ν; κ) + ε2 − κ2 − λ

)−1
−

(
µ−4(ν; κ) + ε2 − κ2 − λ

)−1
]

+ O(̃a6)

=
9̃a4

32i

[(
µ2(ν; κ) − λ

)−1
−

(
µ−4(ν; κ) − λ

)−1
]

+ O(̃a6),

m2
2,2 =

9̃a4

32
−

∫
Tπ

(
φ4 + φ2 − φ0 − φ−2

) (
N(ν; κ) + ε2 − κ2 − λ

)−1 (
φ2 − φ−4

)
dξ + O(̃a6)

= −
9̃a4

32

[(
µ2(ν; κ) + ε2 − κ2 − λ

)−1
+

(
µ−4(ν; κ) + ε2 − κ2 − λ

)−1
]

+ O(̃a6)

= −
9̃a4

32

[(
µ2(ν; κ) − λ

)−1
+

(
µ−4(ν; κ) − λ

)−1
]

+ O(̃a6)

Denoting

η± := −
9̃a4

32

[(
µ2(ν; κ) − λ

)−1
±

(
µ−4(ν; κ) − λ

)−1
]
,

We conclude that

M2 =

η+ −iη−

iη− η+

 + O(̃a6).
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A.0.4 Determinant of M

We now summarize the above computation and conclude the leading order expansion

of the matrix M,

M =

ρ + m1
1,1 + η+ − λ −i(β + η−)

i(β + η−) ρ + m1
2,2 + η+ − λ

 + O(̃a6), (A.0.13)

from which we now derive the leading order Taylor’s expansion of the two small

eigenvalues with respect to ν at ν = e1 = (1, 0) in the subdomain Ω2.

For the convenience of computation, we introduce the notations

µn,e(ν; κ) :=
µn(ν; κ) + µn(−ν; κ)

2
; µn,o(ν; κ) :=

µn(ν; κ) − µn(−ν; κ)
2

.

We also introduce the shift

ν = ν̃ + e1.

Noting that µn(−ν; κ) = µ−n(ν; κ) and

µn(̃ν + e1; κ) = −(1 − (1 + κ)(n + 1 + ν1)2 − ν2
2)2 + κ2 = µn+1(̃ν; κ),

we rewrite ρ, β and η± in terms of ν̃ and λ; that is,

ρ =(µ0(ν; κ) + µ−2(ν; κ))/2 = (µ1(̃ν; κ) + µ−1(̃ν; κ))/2 = µ1,e(̃ν; κ)

:=µ1,20ν
2
1 + µ1,02ν

2
2 + µ1,40ν

4
1 + µ1,22ν

2
1ν

2
2 + µ1,04ν

4
2,

β =(µ0(ν; κ) − µ−2(ν; κ))/2 = (µ1(̃ν; κ) − µ−1(̃ν; κ))/2 = µ1,o(̃ν; κ)

:=µ1,10ν1 + µ1,30ν
3
1 + µ1,12ν1ν

2
2,

η± = −
9̃a4

32

[(
µ2(ν; κ) − λ

)−1
±

(
µ−4(ν; κ) − λ

)−1
]

= −
9̃a4

32

[(
µ3(̃ν; κ) − λ

)−1
±

(
µ−3(̃ν; κ) − λ

)−1
]

:=
∞∑

n=0

η±,nλ
n =

∞∑
n=0

∑
j,k

η±,n, jkν
j
1ν

k
2

 λn,

(A.0.14)
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where

η±,n := −
9

32
ã4

[
µ3(̃ν; κ)−n−1 ± µ−3(̃ν; κ)−n−1

]
,

and µ1, jk and η±,n, jk are respectively the Taylor coefficients of µ1 and η±,n at ν = 0.

We first investigate the two small eigenvalues when ν̃ = 0. Noting that

ρ |̃ν=0 = µ1,00 = µ1,e(0; κ) = 0, β |̃ν=0 = µ1,o(0; κ) = 0.

η− |̃ν=0 = 0, η+ |̃ν=0 = −
9̃a4

16
(
µ3(0; κ) − λ

)−1

From the translation symmetry, it’s straightforward to see that (0, e−iξu′p) is an eigenpair of

the operator L̂p,2(e1; ε2, κ); that is, one of the small eigenvalues, denoted as λs,1, is zero.

Moreover, recalling that {U1,U2} defined in (A.0.10) is given as the shifted basis of the

center space and noting that

〈e−iξu′p,U1〉 = 0, 〈e−iξu′p,U2〉 , 0,

we conclude that 0 is always an eigenvalue of M(0; 0, ε2, κ) with e2 := (0, 1)T as its

eigenvector. As a result, we readily see that the second column of M(0; 0, ε2, κ) is always

trivial. In addition, from the symmetry of the system, we conclude that the off-diagonal

elements of M are always complex conjugate to each other, which yields

M(0; 0, ε2, κ) =

−
3
2 ã2 + O(̃a4) 0

0 0

 .
To derive the expansion of the other small eigenvalue, denoted as λs

2, we now have the

following expansion

M(λ; 0, ε2, κ) =

−
3
2 ã2 − λ + O(̃a4 + ã4|λ|) 0

0 −λ + O(̃a4|λ|)

 ,
where we use the parity argument to show that the off-diagonal elements are zero. We now

conclude that

λs,2 = −
3
2

ã2 + O(̃a4) < 0,
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when |ε| and |κ| are sufficiently small.

As a result, we conclude that 0 is a simple eigenvalue of L̂p,2(e1; ε2, κ) and the

spectral stability problem boils down to the continuation of the eigenvalue zero of

L̂p,2(e1; ε2, κ) with respect to the small wave-number vector perturbation ν̃, which can be

derived by plugging in the scheme

λs,1(ε2, κ, ν̃) = a20(ε2, κ)ν̃1
2

+ a02(ε2, κ)ν̃2
2

+ a04(ε2, κ)ν̃2
4

+ O(|̃ν|4), (A.0.15)

into the determinant of M. We note that in the leading order expansion of λs,1 we single

the ν̃4
2 term out of the O(|ν|4) terms since later we will focus on the the zigzag boundary

case where a02 = 0 and the O(|ν|4) term becomes dominant. Recalling the leading order

expansion of M in (A.0.13) and η± in (A.0.14), we derive the expansion of the determinant

of M in terms of λ; that is,

det(M) = N0 + N1λ + N2λ
2 + O(λ3), (A.0.16)

where the coefficients Ni admits the following expressions,

N0 =
(
µ1,e + m1

1,1 + η+,0

) (
µ1,e + m1

2,2 + η+,0

)
−

(
µ1,o + η−,0

)2
+ O(̃a6),

N1 = −
(
1 − η+,1

) (
2µ1,e + 2η+,0 + m1

1,1 + m1
2,2

)
− 2η−,1

(
µ1,o + η−,0

)
+ O(̃a6),

N2 =η+,2

(
2µ1,e + 2η+,0 + m1

1,1 + m1
2,2

)
+

(
1 − η+,1

)2
− 2η−,2

(
µ1,o + η−,0

)
− η2

−,1 + O(̃a6).

Taking advantage of η±,n in terms of ã in (A.0.14), m1
1,1 and m1

2,2 in terms of ã in (A.0.12),

we could further simplify the above expansions of Ni’s by only keeping terms up to O(̃a4)

in the expansions, yielding

N0 =µ2
1,e +

(
−

3
2

ã2 −
3

256
ã4 + 2η+,0

)
µ1,e − µ

2
1,o − 2η−,0µ1,o + O(̃a5),

N1 = − 2
(
1 − η+,1

)
µ1,e +

3
2

ã2 +
3

256
ã4 − 2η+,0 − 2η−,1µ1,o + O(̃a5),

N2 =1 − 2η+,1 + 2η+,2µ1,e − 2η−,2µ1,o + O(̃a5).

(A.0.17)
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Moreover, we recall the expansion of µ1,e, µ1,o, η±,n in terms of ν in (A.0.14) and derive the

expansions of Ni, i = 1, 2, 3, in terms of ν; that is,

N0 = Aν̃1
2

+ Bν̃2
2

+ Cν̃2
4

+ O(|ν̃1|
3 + |ν̃2|

5 + ã5),

N1 = D + Eν̃1
2

+ Fν̃2
2

+ O(|ν|3 + ã5),

N2 = G + O(|̃ν|2 + ã5),

(A.0.18)

where the coefficients admits the following expressions,

A =

(
−

3
2

ã2 −
3

256
ã4 + 2η+,0,00

)
µ1,20 − µ

2
1,10 − 2η−,0,10µ1,10,

B =

(
−

3
2

ã2 −
3

256
ã4 + 2η+,0,00

)
µ1,02,

C = µ2
1,02 + 2η+,0,02µ1,02 +

(
−

3
2

ã2 −
3

256
ã4 + 2η+,0,00

)
µ1,04,

D = −

(
−

3
2

ã2 −
3

256
ã4 + 2η+,0,00

)
,

E = −2(1 − η+,1,00)µ1,20 − 2η+,0,20 − 2η−,1,10µ1,10,

F = −2(1 − η+,1,00)µ1,02 − 2η+,0,02,

G = 1 − 2η+,1,00.

(A.0.19)

A.0.5 Coefficients of the Expansion of λ

We plug the scheme (A.0.15) into (A.0.16) and obtain

0 = N0 + N1(a20ν̃1
2

+ a02ν̃2
2

+ a04ν̃2
4) + N2(a20ν̃1

2
+ a02ν̃2

2
+ a04ν̃2

4)2 + O(|ν|6), (A.0.20)

where, collecting up to leading order terms of ν̃1
2, ν̃2

2 and ν̃2
4 in (A.0.20) via expansions

in (A.0.18), yields

O(ν̃1
2) : A + Da20 + O(̃a5) = 0 =⇒ a20 = −

A + O(̃a5)
D

,

O(ν̃2
2) : B + Da02 + O(̃a5) = 0 =⇒ a02 = −

B + O(̃a5)
D

,

O(ν̃2
4) : C + Fa02 + Da04 + Ga2

02 + O(̃a5) = 0 =⇒ a04 = −
−CD2 + FBD −GB2 + O(̃a5)

D3 .
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We find by plugging the expressions of A, B, C, D, E, F and G found in (A.0.19) that,

a20 = µ1,20 −
µ2

1,10 + 2η−,0,10µ1,10 + O(̃a5)(
−3

2 ã2 − 3
256 ã4 + 2η+,0,00

)
a02 = µ1,02 + O(̃a3)

a04 = µ1,04 +
µ2

1,02 + 2η+,0,02µ1,02(
−3

2 ã2 − 3
256 ã4 + 2η+,0,00

) − 2(1 − η+,1,00)µ2
1,02 + 2η+,0,02µ1,02(

−3
2 ã2 − 3

256 ã4 + 2η+,0,00

) −
(1 − 2η+,1,00)µ2

1,02(
−3

2 ã2 − 3
256 ã4 + 2η+,0,00

)
where a lengthy but straightforward calculation shows the exact expressions of µ1, jk and

η±,n, jk which are respectively the Taylor coefficients of µ1 and η±,n at ν = 0 as

µ1,20 = −2(1 + κ)(2 + 3κ),

µ1,02 = −2κ,

µ1,04 = −1,

µ1,10 = −4κ(1 + κ),

η+,0,00 = −
9̃a4

16(ε2 − (8 + 9κ)2)
,

η−,0,10 = −
27̃a4(1 + κ)(8 + 9κ)
4(ε2 − (8 + 9κ)2)2 ,

η−,1,10 = −
27̃a4(1 + κ)(8 + 9κ)
2(ε2 − (8 + 9κ)2)3 ,

η+,0,02 = −
9̃a4(8 + 9κ)

8(ε2 − (8 + 9κ)2)2 ,

η+,0,20 = −
9̃a4(1 + κ)

(
ε2(26 + 27κ) + (8 + 9κ)2(46 + 45κ)

)
8(ε2 − (8 + 9κ)2)3 ,

η+,1,00 = −
9̃a4

16(ε2 − (8 + 9κ)2)2 .

We then readily compute the Eckhaus boundary by setting a20 = 0, yielding

κ±e = ±
ε
√

3
+ h.o.t.,
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where a02(κ−e ) = −2κ−e + h.o.t > 0 and a02(κ+
e ) = −2κ+

e + h.o.t. < 0. In addition, a20 < 0 for

κ ∈ (κ−e , κ
+
e ). On the other hand, the zigzag boundary is given by a02 = 0, yielding the

implicit scheme

κz = O(̃a3),

which is sufficient to show that

a20 = −4 + O(̃a3), a04(κz) = −1 + O(̃a4) < 0,

which in turns concludes the proof of (2.1.9).

Recalling that 0 is a simple eigenvalue of L̂p,2(e1; ε2, κ) and that

L̂p(ν) = L̂p,2(ν)
⊕
L̂p,2(ν + e1) as shown in Lemma (A.0.1), we conclude that 0 is a

simple eigenvalue of L̂p(0). It is straightforward to see that L̂p(0)u′p = 0 and conclude that

(0, e0) is an eigenpair of L̂p(0), where we recall that e0 :=
u′p
‖u′p‖2

. Introducing the

eigen-problem functional

F(λ, e, ν) : R × L2(T2π) × T1 × R −→ L2(T2π)

(λ, e, ν) 7−→ L̂p(ν)e − λe,

we readily see that

F(0, e0, 0) = 0, ∂(λ,e)F(0, e0, 0) = (−e0, L̂(0)) is invertible.

As a result, we conclude from the implicit function theorem that there exists r0 > 0 such

that for all |ν| < r0, the eigenpair (0, e0) admits a unique analytic continuation

(λ(ν), e(ν; ξ)) with e(ν; ξ) − e0 = O(|ν|) and 〈e(ν; ·) − e0, e0〉 = 0. We are left to show the

parity properties in (2.1.8). We readily see from their Taylor’s expansions that the

eigen-pair takes the following forms

λ(ν) = λr(ν) + iν1λi(ν), e(ν; ε) = er(ν; ε) + iν1ei(ν; ε), (A.0.21)
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where λr\i(ν) and er\i(ν) are all real-valued and even in ν1 and ν2 respectively. Noting that

λ(ν) ∈ σ(L̂p(ν)) ⊆ R, we conclude that λi(ν) ≡ 0 and

λ(−ν1, ν2) = λ(ν1, ν2) = λr(ν),

which, together with Lemma A.0.2 and the uniqueness of the eigen-pair, leads to

e(−ν1, ν2;−ξ) = e(ν1, ν2; ξ).

We rewrite this equality in terms of the real and imaginary formulation of e in (A.0.21),

yielding

er(ν1, ν2;−ξ) − iν1ei(ν1, ν2;−ξ) = er(ν1, ν2; ξ) + iν1ei(ν1, ν2; ξ),

that is;

er(ν1, ν2; ξ) = er(ν1, ν2;−ξ), ei(ν1, ν2; ξ) = −ei(ν1, ν2;−ξ),

which concludes the proof of the proposition.
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Appendix B: Properties of the Bloch Transform

B.1 Proof of Remark 3.1.2

Proof. Let v1, v2 ∈ L2(R2), we will first show that B(v1v2) = Bv1 ∗ Bv2. By the definition

of the inverse Fourier transform, we have

v1v2 =

(∫
R2

v̂1(ν)eix·νdν
) (∫

R2
v̂2(ν)eix·νdν

)
=

(∫
R2

v̂1(ν − ν̃)eix·(ν−ν̃)dν
) (∫

R2
v̂2(̃ν)eix·(̃ν)dν

)
=

∫
R2

(∫
R2

v̂1(ν − ν̃)v̂2(̃ν)dν̃
)

eix·νdν

=

∫
R2

v̂1 ∗ v̂2(ν)eix·νdν

= v̂1 ∗ v̂2,

which, combined with the definition of the Bloch transform of v1v2, yields

B(v1v2)(ν) =
∑
k∈Z

(̂v1v2)(ν1 + k, ν2)eikξ =
∑
k∈Z

(v̂1 ∗ v̂2)(ν1 + k, ν2)eikξ

=
∑
k∈Z

∑
j∈Z

∫
T1×R

v̂1(ν1 + k − ω1 − j, ν2 − ω2)v̂2(ω1 + j, ω2)dω

 ei(k− j)ξei jξ

=

∫
T1×R

∑
j∈Z

v̂2(ω1 + j, ω2)eiξ· j

∑
k∈Z

v̂1(ν1 + k − ω1 − j, ν2 − ω2)eiξ·(k− j)


 dω

=

∫
T1×R

(Bv1)(ν − ω)(Bv2)(ω)dω

= (Bv1 ∗ Bv2)(ν).
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Next, we will show that B(uv1) = uBv1 for any u ∈ L2(T2π), v1 ∈ L2(R2). By

definition of the Fourier transform, we have

ûv1(ν) =
1

(2π)2

∫
R2

u(x1)v1(x)e−ix·νdx

=
1

(2π)2

∫
R2

(
∑
j∈Z

u jei jx1)v1(x)e−ix·νdx

=
1

(2π)2

∑
j∈Z

u j

∫
R2

v1(x)e−ix·(ν− je1)dx

=
∑
j∈Z

u jv̂1(ν − j) = (̂u ∗ v̂1)(ν).

Now by the definition of Bloch transform of uv1,

B(uv1)(ν) =
∑
k∈Z

̂(uv1)(ν1 + k, ν2)eikξ

=
∑
k∈Z

∑
j∈Z

u jv̂1(ν1 + k − j, ν2)ei(k− j+ j)ξ


=

∑
j∈Z

u jei jξ

∑
k∈Z

v̂1(ν1 + k − j, ν2)ei(k− j)ξ


= uB(v1)(ν).

�
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Appendix C: Proof of Proposition 3.1.2: Sectoriality of the

Linearized Operator L̂d in Discrete Bloch-Fourier Space

We recall µ j(ν; κ) = −(1 − ( j + ν1)2 − ν2
2)2 + κ2 as in (3.1.4), denote h := −3u2

p, and

rewrite the operator in the form

L̂d = L0 + H,

where
L0 : w4,p −→ `p

u 7−→ {
(
µ j(ν; κ) + ε2 − κ2

)
u j} j∈Z,

and
H : `p −→ `p

u 7−→ ĥ ∗ u.

We only need to show that the proposition holds for L0 and adding H does not alter these

properties. The closedness of L0 follows from the fact that the w4,p norm and the graph

norm of L0 are equivalent. Noting that L0 is a multiplication operator, we have the

spectrum of L0 independent of p; that is,

σ(L0) = {µ j(ν; κ) + ε2 − κ2} j∈Z,

and, for any λ ∈ ρ(L0) = C\σ(L0),

|||(L0 − λ)−1|||`p 6
1

dist(λ, σ(L0))
, for any p ∈ [1,+∞].

In addition, (L0 − λ)−1 : `p → w4,p is bounded and the inclusion w4,p ↪→ `p is compact, so

the resolvent of L0 is always compact and thus the spectrum of L0 only consists of

eigenvalues. Denoting µmax := sup
ν∈T1×R

max
j∈Z
{µ j(ν; κ) + ε2 − κ2} and fixing ω ∈ (π/2, π), we

introduce the sector

S (µmax, ω) :=
{
λ ∈ C

∣∣∣ | arg(λ − µmax)| < ω, λ , µmax
}
,
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and readily derive that, for any λ ∈ S (µmax, ω),

|||(L0 − λ)−1|||`p 6
1

(sinω)|λ − µmax|
, for any p ∈ [1,+∞].

As a result, we conclude that all properties in the proposition hold for L0.

On the other hand, we note that H : `p → `p is bounded, uniformly with respect to

p ∈ [1,∞]; that is,

∥∥∥Hu
∥∥∥
`p 6

∥∥∥̂h
∥∥∥
`1

∥∥∥u
∥∥∥
`p , for any u ∈ `p, p ∈ [1,+∞].

Choosing

λ0 := µmax +
2‖̂h‖`1

sinω
,

we have that, for any λ ∈ S (λ0, ω) :=
{
λ ∈ C

∣∣∣ | arg(λ − λ0)| < ω, λ , λ0
}
⊂ S (µmax, ω),

|||H(L0 − λ)−1|||`p 6 |||H|||`p |||(L0 − λ)−1|||`p 6 ‖̂h‖`1
1

2‖̂h‖`1

=
1
2
, for any p ∈ [1,+∞],

and thus L̂d − λ is invertible with compact resolvent whose operator norm admits the

following estimate.

|||(L̂d−λ)−1|||`p = |||(L0−λ)−1
(
I + H(L0 − λ)−1

)−1
|||`p 6

2
(sinω)|λ − λ0|

, for any p ∈ [1,+∞].

We are left to show that the spectrum of L̂d : `p → `p, denoted for now as σ(L̂d, p), is

independent of the choice of p. For any p, q ∈ [1,∞], if λ∗ ∈ σ(L̂d, p), then λ is an

eigenvalue for L̂d : `p → `p and admits an eigenvector u
∗
∈ D(L̂d) = w4,p ⊂ `q. Moreover,

given any λ ∈ S (λ0, ω), we have

u
∗

= (λ∗ − λ)(L̂d − λ)−1u
∗
∈ w4,q,

and thus λ∗ ∈ σ(L̂d, q) with u
∗

as its eigenfunction. As a result, we have

σ(L̂d, p) ⊆ σ(L̂d, q), for any p, q ∈ [1,∞]; that is, equivalently, σ(L̂d, p) = σ(L̂d, q), for

any p, q ∈ [1,∞], which concludes the proof.
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Appendix D: Estimates of Is

In the proof of the estimate (3.2.7) of T2(W) in Propsition 3.2.2, we exploited the

estimate (3.2.16); that is,

∥∥∥T2(W)
∥∥∥

H 6

:=Ic︷                                                                               ︸︸                                                                               ︷
∥∥∥∥∥∥
∫ t

0
M11(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M21(t − s)Nc(W(s))ds

∥∥∥∥∥∥
Hs

 +

:=Is︷                                                                               ︸︸                                                                               ︷
∥∥∥∥∥∥
∫ t

0
M12(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M22(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hs

,
where we discuss the derivation of the estimate (3.2.23) of Ic in details. We give the

estimates of Is in this section.

Estimate of Is We evaluate Is for small and large ν respectively; that is,

Is =

∥∥∥∥∥∥
∫ t

0
M12(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hc

+

∥∥∥∥∥∥
∫ t

0
M22(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hs

6

:=Is,1︷                                            ︸︸                                            ︷∥∥∥∥∥∥
∫ t

0
(1 − χ r1

2
)M12(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hc

+

:=Is,2︷                                     ︸︸                                     ︷∥∥∥∥∥∥
∫ t

0
χ r1

2
M22(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hc

+

:=Is,3︷                                            ︸︸                                            ︷∥∥∥∥∥∥
∫ t

0
(1 − χ r1

2
)M22(t − s)Ns(W(s))ds

∥∥∥∥∥∥
Hs

.

(D.0.1)
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where we use the fact that χ r1
2

M12 = 0. Moreover, recalling the definition of‖·‖Hc
and‖·‖Hs

,

we have

Is,1 6

:=As,1︷                                                           ︸︸                                                           ︷
sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)Ns(W(s))
∥∥∥∥

1
ds +

:=Bs,1︷                                                  ︸︸                                                  ︷
sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)Ns(W(s))
∥∥∥∥
∞

ds +

:=Cs,1︷                                                           ︸︸                                                           ︷
sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)Ns(W(s))
∥∥∥∥

1
ds,

Is,2 6

:=As,2︷                                                    ︸︸                                                    ︷
sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)Ns(W(s))
∥∥∥∥

1
ds +

:=Bs,2︷                                          ︸︸                                          ︷
sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)Ns(W(s))
∥∥∥∥
∞

ds +

:=Cs,2︷                                                       ︸︸                                                       ︷
sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1χ r1
2

M22(t − s)Ns(W(s))
∥∥∥∥

1
ds,

Is,3 6

:=Ds,3︷                                                           ︸︸                                                           ︷
sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)Nc(W(s))
∥∥∥∥

1
ds +

:=Es,3︷                                                  ︸︸                                                  ︷
sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)Ns(W(s))
∥∥∥∥
∞

ds .

(D.0.2)

In other words, we have

Is 6
3∑

j=1

Is, j 6
2∑

j=1

(
As, j + Bs, j + Cs, j

)
+ Ds,3 + Es,3. (D.0.3)
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We are left to estimate all the terms in the right hand side of (D.0.3). Taking

advantage of the neutral mode estimate (3.1.15) and the estimate (3.2.9b) of Ns, we have

As,1 = sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)Ns(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)
∥∥∥∥

L1→L1

∥∥∥Ns(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

∫ t

0
e−λ2(t−s)(1 + s)−

3
2 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

e− λ2t
2

∫ t/2

0
(1 + s)−

3
2 ds + (1 + t/2)−

3
2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Bs,1 = sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)Ns(W(s))
∥∥∥∥
∞

ds

6 sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M12(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Ns(W(s))
∥∥∥
∞

ds

(3.1.15), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

∫ t

0
e−λ2(t−s)(1 + s)−

3
4 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

e− λ2t
2

∫ t/2

0
(1 + s)−

3
4 ds + (1 + t/2)−

3
4

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Cs,1 = sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1(1 − χ r1
2

)M12(t − s)Nc(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1(1 − χ r1
2

)M12(t − s)
∥∥∥∥

L1→L1

∥∥∥Ns(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

∫ t

0
e−λ2(t−s)(1 + s)−

3
2 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

e− λ2t
2

∫ t/2

0
(1 + s)−

3
2 ds + (1 + t/2)−

3
2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
,

(D.0.4)
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Similarly, taking advantage of the estimates (3.1.14) and (3.2.9b), we have

As,2 = sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)Ns(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
3
4

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)
∥∥∥∥

L1→L1

∥∥∥Ns(W(s))
∥∥∥

1
ds

(3.1.14), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

∫ t

0
e−λ1(t−s)(1 + s)−

3
2 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
4

e− λ1t
2

∫ t/2

0
(1 + s)−

3
2 ds + (1 + t/2)−

3
2

∫ t

t/2
e−λ1(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Bs,2 = sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)Ns(W(s))
∥∥∥∥
∞

ds

6 sup
t>0

∫ t

0

∥∥∥∥χ r1
2

M22(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Ns(W(s))
∥∥∥
∞

ds

(3.1.14), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

∫ t

0
e−λ1(t−s)(1 + s)−

3
4 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

e− λ1t
2

∫ t/2

0
(1 + s)−

3
4 ds + (1 + t/2)−

3
4

∫ t

t/2
e−λ1(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Cs,2 = sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1χ r1
2

M22(t − s)Nc(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
5
4

∫ t

0

∥∥∥∥ν1χ r1
2

M22(t − s)
∥∥∥∥

L1→L1

∥∥∥Ns(W(s))
∥∥∥

1
ds

(3.1.14), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

∫ t

0
e−λ1(t−s)(1 + s)−

3
2 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
5
4

e− λ1t
2

∫ t/2

0
(1 + s)−

3
2 ds + (1 + t/2)−

3
2

∫ t

t/2
e−λ1(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
,

(D.0.5)
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At last, taking advantage of the estimates (3.1.15) and (3.2.9b) again, we have

Ds,3 = sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)Ns(W(s))
∥∥∥∥

1
ds

6C sup
t>0

(1 + t)
3
2

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)
∥∥∥∥

L1→L1

∥∥∥Ns(W(s))
∥∥∥

1
ds

(3.1.15), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
2

∫ t

0
e−λ2(t−s)(1 + s)−

3
2 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

(1 + t)
3
2

e− λ2t
2

∫ t/2

0
(1 + s)−

3
2 ds + (1 + t/2)−

3
2

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
;

Es,3 = sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)Ns(W(s))
∥∥∥∥
∞

ds

6C sup
t>0

∫ t

0

∥∥∥∥(1 − χ r1
2

)M22(t − s)
∥∥∥∥

L∞→L∞

∥∥∥Ns(W(s))
∥∥∥
∞

ds

(3.1.14), (3.2.9b)
6 C

(
‖W‖2H +‖W‖3H

)
sup
t>0

∫ t

0
e−λ2(t−s)(1 + s)−

3
4 ds


6C

(
‖W‖2H +‖W‖3H

)
sup
t>0

e− λ2t
2

∫ t/2

0
(1 + s)−

3
4 ds + (1 + t/2)−

3
4

∫ t

t/2
e−λ2(t−s)ds


6C

(
‖W‖2H +‖W‖3H

)
.

(D.0.6)

Combining (D.0.3), (D.0.4), (D.0.5) and (D.0.6), we conclude that

Is 6 C
(
‖W‖2H +‖W‖3H

)
. (D.0.7)



100

Appendix E: Maximal Regularity Estimates

In this section, we develop the tools of maximal regularity to find optimal bounds for

the N(W) terms involving the quasilinear term ψyyyy.

We consider the IVP problem
ut(t, y) = A1u(t, y) + f (t, y),

u(0, y) = u0.

(E.0.1)

whereA1 = ∂4
y , (t, y) ∈ [0,∞) × R and u ∈ R. The solution to this problem is given by the

variation of constant formula

us(t, y) = e−A1tu0 +

∫ t

0
e−A1(t−s) f (s, y)ds, (E.0.2)

where the nonlinear convolutional solution is given by

u(t, y) =

∫ t

0
e−A1(t−s) f (s, y)ds, (E.0.3)

We have the following maximal regularity results about the solution u.

Lemma E.0.1. Consider the IVP problem (E.0.1), for any r ∈ (1,∞) and t > 0 , if

f ∈ Lr
(
(0, t),W4,2(R)

)
and u(t, y) is given as in (E.0.3), then there exist a C > 0 such that

‖A1u‖
Lr
(

(0,t),L2(R)
) 6 C‖ f ‖Lr((0,t),W4,2(R)). (E.0.4)

Proof. It suffices to show thatA1 has maximal L2 regularity property, and conclude from

Proposition 2.4 in Monniaux [12] that it will be true for Lr for any r ∈ (1,∞). We note that

the operatorA1 is a generalized Laplacian and its spectrum is given by

σ(A1) = (−∞, 0].

There exists an M > 0 such that the resolvent operator

‖R(λ, A)‖ 6
M
λ
,
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for some λ in the resolvent set. The operatorA1 is a densely defined since its domain

W4,2(R) is dense in L2(R). closed operator. Moreover,A1 is a closed operator since its

graph norm is norm equivalent to W4,2(R) norm. From the above properties ofA1, we

infer from the Hille-Yosida semigroup theorem to conclude that −A1 generates a bounded

analytic semigroup.

Let f ∈ L2
(
(0, t), L2(R)

)
and u(t,y) be given by the convolutional term in (E.0.3).

Then we have

A1u(t, y) =

∫ t

0
A1e−A1(t−s) f (s, y)ds. (E.0.5)

We extend the integral in (E.0.5) to R by letting

f (t, y) = 0 if t < 0,

l(t) = A1e−A1t if t > 0,

l(t) = 0 if t 6 0.

With this extension, (E.0.5) becomes

A1u(t, y) =

∫
R

l(t − s) f (s, y)ds. (E.0.6)

We take the Fourier transform in t and have for any λ ∈ R

Â1u(λ, y) =

∫
R

e−itλA1u(t, y)dt

(E.0.6)
=

∫
R

∫
R

e−itλl(t − s) f (s, y)dsdt

=

∫
R

∫
R

e−i(t+s)λl(t) f (s, y)dsdt

=

(∫ ∞

0
e−itλe−A1tdt

) (∫
R

e−isλA1 f (s, y)ds
)

=(iλ +A1)−1A1 f̂ (λ, y).

Since −A1 generates a bounded analytic semigroup, we have

sup
λ∈R
‖(iλ +A1)−1A1‖ < ∞.
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Hence

‖Â1u‖L2 6 C‖ f̂ ‖L2 .

We infer from Plancherel’s theorem that

‖A1u‖L2 6 C‖ f ‖L2 .

This proves thatA has maximal regularity for L2
(
(0, t),W4,2(R)

)
and hence maximal

regularity for Lr
(
(0, t),W4,2(R)

)
.

�

Lemma E.0.2. For any r0 ∈ R and r ∈ (1,∞), If

u(t, y) =

∫ t

t−1
e−A1(t−s) f (s, y)ds for all t > 1,

then there exists C > 0 such that∫ ∞

1
(1 + t)r0‖A1u‖rL2(R)dt 6 C

∫ ∞

0
(1 + t)r0‖ f ‖rL2(R)dt holds . (E.0.7)

Proof. Suppose u is as given in (E.0.7). Then for t ∈ [n, n + 1) and n > 1,

u(t, y) =
( ∫ t

n−1
−

∫ t−1

n−1

)
e−A1(t−s) f (s, y)ds,

=
( ∫ t−n+1

0
−

∫ t−n

0

)
e−A1(t−n+1−s) f (s + n − 1, y)ds,

= u1(t, y) − u2(t, y).

(E.0.8)

We claim applying the estimate (E.0.4) in Lemma E.0.1 to (E.0.8) gives∫ n+1

n
‖A1u‖rL2(R)dt 6 C

∫ n+1

n−1
(‖ f ‖L2(R))rdt. (E.0.9)

To show this claim, we take advantage of the fact the solution u1(t, y) in (E.0.8) can be

written in terms of convolution as

u1(t, y) = G ∗t,y fn−1(t)
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where

fn−1(t) := f (t + n − 1, y) and G(t) := e−A1(t−n+1).

With this form of u1(t, y) , we have∫ n+1

n
‖A1u1‖

r
L2dt =

∫ n+1

n

∥∥∥A1(G ∗t,y fn−1)(t − n + 1, y)
∥∥∥r

L2 dt

6
∫ n+1

n−1

∥∥∥A1(G ∗t,y fn−1)(t − n + 1, y)
∥∥∥r

L2 dt

t̃=t−n−1
=

∫ 2

0

∥∥∥A1(G ∗t̃+n−1,y fn−1)(t̃, y)
∥∥∥r

L2 dt̃

(E.0.4)
6 C

∫ 2

0
‖ fn−1(t̃, ·)‖rL2dt̃

=C
∫ n+1

n−1
‖ f (t, ·)‖rL2dt.

This proves the claim is true for u1.

Next we look at u2(t, y) which is given in (E.0.8) as

u2(t, y) =

∫ t−n

0
e−A1(t−n+1−s) f (s + n − 1, y)ds.

We let h(s, y) = e−A1 f (s + n − 1, y) and write

u2(t, y) =

∫ t−n

0
e−A1(t−n−s)h(s, y)ds.

We rewrite the solution in the convolutional form

u2(t, y) = G ∗t,y h(t − n, y), where G(t) := e−A1(t−n).
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With this form of u2(t, y), we have∫ n+1

n
‖A1u1‖

r
L2dt =

∫ n+1

n
‖A1(G ∗t,y h)(t − n, y)‖rL2dt

τ=t−n
=

∫ 1

0
‖A1(G ∗τ+n,y h)(τ, y)‖rL2dτ

(E.0.4)
6 C

∫ 1

0
‖h(τ, ·)‖rL2dτ

=

∫ n+1

n
‖eA1 f (t − n + n − 1, ·)‖rL2dt

6C
∫ n+1

n
‖ f (t − 1, ·)‖rL2dt

6C
∫ n+1

n−1
‖ f (t, ·)‖rL2dt.

This proves the claim is true for u2 and hence u.

Now if we multiply both sides of the claim in (E.0.9) by nr0 ∼ (1 + t)r0 and sum over

all n > 1, we get the results we desire∫ ∞

1
(1 + t)r0‖A1u‖rL2(R)dt 6 C

∫ ∞

0
(1 + t)r0(‖ f ‖L2(R))rdt.

�
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