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Abstract 

PORDEL, SHABNAM, Ph.D., December 2022, Chemistry 

Design, Synthesis, and Evaluation of Manganese(I) Photoinduced CO-releasing 

Molecules and Water-Soluble Lanthanide Cages 

Director of Dissertation: Eric Masson 

Carbon monoxide (CO) is a toxic gas that has been known as the “silent killer” 

for decades. At high concentrations, CO reacts with hemoglobin, impairing its ability to 

transfer oxygen throughout the body. At low concentrations, however, CO has anti-cancer 

and anti-inflammatory effects. CO has also been shown to increase the sensitivity of 

certain types of cancer cells to the reactive oxygen species (ROS) produced by 

chemotherapeutics, thereby reducing drug resistance. One way to deliver CO in a 

controlled and safe manner is through the use of photoCORMs, or photoactivated CO 

releasing molecules. Transition metal-based photoCORMs are a class of molecules that 

release CO by breaking the M-CO bond upon exposure to light. 

In Chapters 2 and 3, my research study the effect of ligand set variation (both 

electronically and sterically) around the Mn(I) metal center on the photophysical and 

photochemical properties, as well as the assignment of photochemical intermediate 

formation during visible light irradiation. In Chapter 4, we designed a system that 

combined photo-activated CO delivery and singlet oxygen (1O2). The photophysical and 

photochemical properties of two Mn(I)-based photoCORMs sensitized with a 

luminescent BODIPY, as well as their ability to generate singlet oxygen during visible 

light irradiation were investigated. 
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In Chapter 5, my focus was on water-soluble 3D supramolecular coordination 

cages (SCCs). The internal cavity incorporated in these structures allows them to 

encapsulate various guest molecules. Water-soluble Ln(III)-based SCCs are scarce, and 

the arrangement of water molecules inside the cavity, as well as the recognition 

properties of the latter, are mostly unknown. The study of such interactions would be of 

interest to the growing field of SCCs.  

To this end, we designed and synthesized a water-soluble Eu(III)-based 

supramolecular coordination cage with the general formula of Eu2L3  and a triple-

stranded helicate structure. The guest binding properties of the Eu2L3 cage were studied 

with smaller mono- and di-cationic organic guests through 1H NMR titration in D2O. 
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Chapter 1: Introduction 

Despite the growing amount of research on developing new drugs for cancer 

treatment, they suffer from serious drawbacks, and the most concerning one is being 

harmful to healthy cells. While cisplatin has been a successful well-known 

chemotherapeutic drug for 40 years, its efficiency has been diminished by drug resistance 

and lack of selectivity. One way to address this issue is to use photosensitive drugs. In 

this method, light can be used as an external signal to activate the dark stable molecule at 

the desired time and location. 

Recent studies have suggested that carbon monoxide (CO), a toxic, odorless, and 

colorless gas from incomplete combustion of carbon containing compounds, not only 

shows anticancer activity in low doses but also can sensitize some certain types of cancer 

cells to the produced reactive oxygen species (ROS) from some common 

chemotherapeutics, thus reducing drug resistance.  

So far, the effect of exogenous CO in clinical and preclinical trials has been 

evaluated through inhalation and CO-releasing molecules.1 However, in the case of 

inhalation due to the low solubility of CO in the biological fluid, high concentrations of 

CO must be inhaled. Moreover, CO inhalation suffers from lack of selectivity.1  The 

photo-activated CO releasing molecules or “photoCORMs,” however, offer more 

selectivity and controlled delivery of CO into a specific target. photoCORMs are dark 

stable molecules that release CO upon exposure to light.  
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Despite many reported studies, photoCORMs are still in their infancy, and more 

in vitro and in vivo studies are required to gain a better understanding of such 

compounds’ photochemistry and mechanism of action. 

1.1. CO in Biology 

CO is a toxic and colorless gas resulting from incomplete combustion of carbon 

containing compounds.2 CO poisoning is caused by CO’s great affinity toward 

hemoglobin, as it exhibits an affinity about 200 times greater than O2. Once CO binds to 

one of hemoglobin’s four Fe2+ sites, the resulting carboxyhemoglobin (COHb) undergoes 

a conformational change in the three remaining sites, leading to a greater affinity for O2 

such that the bound O2 cannot be released to the tissue.3,4 However, as a gasotransmitter, 

CO is endogenously produced as a byproduct of heme’s degradation to regulate 

proliferation, inflammation, vascular function, metabolism, and many more in the body.1 

As a result, while CO is anti-inflammatory and anti-apoptotic at physiological 

concentrations, it is anti-proliferative and pro-apoptotic at higher concentrations.5 To 

determine the exposure time and appropriate doses of therapeutic CO for pharmaceutical 

purposes, COHb has been a precious tool.5  In a placebo-controlled Phase I trial the safe 

dose of inhaled CO in a human body was determined to be at 3.0 mg per kg per hour 

dosing (daily for 10 days).6 At this dose, the COHb levels in the blood stream were 

increased by 12% with no severe side effects.6 This is equal to the COHb level of heavy 

smokers.5 Figure 1 shows the dose response of CO in the human body. 
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Figure 1. The dose response of CO in the human body 
 

1.2. CO As a Therapeutic Agent 

Owing to the many beneficial biological functions, including antiproliferative 

activity, regulation of inflammation, and modulation of blood vessel tone, CO has 

attracted great attention as a potential therapeutic agent.1 Moreover, administration of 

exogenous CO in cancer cells inhibits cystathionine β-synthase (CBS), an enzyme known 

to have a cytoprotective effect.1 CBS is a key enzyme that catalyzes the biosynthesis of 

cysteine, the limiting reagent in glutathione (GSH) production. Reducing the activity of 

CBS in the cancer cell decreases the GSH abundance in return. GSH or  γ-l-glutamyl-l-

cysteinyl-glycine is a major sulfur containing antioxidant in the human body, fighting 

against free radicals and oxidative stress.7 As shown in Figure 2, during oxidative stress, 

the sulfur atom in GSH reacts with ROS and generates glutathione disulfide (GSSG). The 

GSH regenerates from GSSG via accepting electrons from NADPH.8  
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Figure 2. Role of GSH/GSSG during oxidative stress 
 

Reducing the glutathione level increases the reactive oxygen species (ROS) 

production and reduces the antioxidant capacity of the cancer cell, leading to the 

induction of apoptosis.9 This effect also increases the susceptibility of the cancer cells to 

the chemotherapy drugs.9  

One of the mechanisms by which most chemotherapeutic such as doxorubicin or 

vincristine treat cancer is through the generation of excessive ROS. ROS induce 

apoptosis by damaging proteins, lipids, and DNA. However, the effectiveness of these 

chemotherapeutics is diminished by the drug resistance developed in cancer cells.10 It has 

been shown that a high level of GSH caused by CBS overexpression in cancer cells is 

responsible for drug resistance.11 Administration of CO to cancer cells, reduces the drug 
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resistance by inhibiting the CBS production and diminishing the GSH level, as a result 

decreasing the antioxidant capacity of cancer cells.12 

In one study, CO was shown to mitigate chemotherapeutic resistance by 

sensitizing breast cancer cells to paclitaxel and doxorubicin by attenuating the GSH level 

through CBS inhibition.11 In this study, exogenous CO mediated cell death by more than 

40%.  

Another mechanism by which the high level of GSH in cancer cells could lead to 

drug resistance and deactivation is through the binding of GSH through its sulfur atom to 

the chemotherapeutic, thus interfering with drug activity.13 In another study, CO was 

demonstrated to lower the viability of ovarian cancer cells by sensitizing these cells to 

cisplatin by reducing GSH level.13  

1.3. Delivery of Therapeutic CO 

So far, the effect of exogenous CO in clinical and preclinical trials has been 

evaluated through inhalation or CO-releasing molecules.1 However, in case of inhalation 

due to the low solubility of CO in the biological fluid, high concentrations of CO must be 

inhaled.1 Moreover, CO inhalation suffers from lack of selectivity.14  

The carbon monoxide releasing molecules (CORMs), however, offer more 

selectivity and controlled delivery of CO into a specific target. The release of CO from a 

series of transition metal carbonyls known as CO-RMs for therapeutic purposes was first 

introduced by Motterlini and co-workers in 2002.15 CORMs release their CO ligands by 

either an internal or external trigger.16 An internal trigger CORM might release the COs 

upon an enzymatic reaction.16 The photo-activated CO releasing molecules or 

https://www.sciencedirect.com/topics/chemistry/paclitaxel
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“photoCORMs” release the CO ligands upon exposure to light, which serves as an 

external trigger (Figure 3). In photoCORMs the amount of released CO is a function of 

the incident light, allowing to determine the dosage of CO release.16 

 

 

Figure 3. Photochemical CO dissociation from a photoCORM in a coordinating solvent 
(Solv). 
 

photoCORMs 

 CO is coordinated to the metal through the C atom. Absorption of a photon 

causes M-C bond cleavage, and this leaves an open coordination site on the metal where 

a solvent molecule can coordinate. The advantage of photoCORMs is the use of light as a 

signal to determine the dose, time, and location of delivery.16 An ideal photoCORM 

should be stable in the dark in an aqueous solution or commonly used drug delivery 

solvents such as DMSO as well as biological fluids such as plasma.17 The photo-

intermediates and photoproducts should be non-reactive and non-toxic.18 Eventually, due 

to the poor penetration of UV light into the tissue and its deleterious effects on biological 

targets, an ideal photoCORM should be activated by visible or near-IR light, especially 

wavelengths in the phototherapeutic window (600-900 nm).18 

Among photosensitive molecules, transition metal-based complexes offer some 

advantages, including structural diversity and easily tunable photophysical, 
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photochemical, and redox properties by ligand set variation around the metal center.19 In 

addition, the kinetic and thermodynamic properties of such coordination complexes, 

including the rate of ligand exchange, can be easily tuned by rational ligand design.19 

The Mn2(CO)10 and Fe(CO)5 complexes shown in Figure 4 were the first two 

photoactive CORMs that were introduced by Motterlini and co-workers as 

pharmaceutical agents for CO delivery in 2002.15 However, their activation under UV 

light, low solubility in aqueous media, and lack of tunability limited their applications 

and excluded them from further studies.  

 

 

Figure 4. Early CORMs introduced by Motterlini et al. 
 

The term “photoCORM” was first used by Ford et al. in 2010. In this study, they 

reported a photoactive water-soluble tungsten carbonyl complex 

W(CO)5(TPPTS)3− (TPPTS: tris(sulphonatophenyl)phosphine) (Figure 5).  

 

 

Figure 5. W-based photoCORM introduced by Ford et al. 
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This photoCORM was shown to release one equivalent of CO upon UV light 

irradiation, followed by the release of additional CO as a result of the autooxidation of 

the tungsten center.20 

The water-soluble dicarbonylbis(cysteamine)iron(II) complex introduced by 

Westerhausen and co-workers in 2011 was the first visible light activated photoCORM 

(i.e., >400 nm).21 Irradiation of this photoCORM with visible light resulted in the release 

of CO ligands in just a few minutes (Figure 6). 

 

 

Figure 6. First visible light activated Fe-based photoCORM introduced by Westerhausen et 
al. 

 

Choice of Metals in photoCORMs 

The choice of metal in metal-based photoCORMs is of importance as their toxic 

or therapeutic response as pharmaceutical agents is dependent on their oxidation states.22 

For instance, while Cr+6 compounds are highly toxic, Cr+3 supplements can be purchased 

from supermarkets for their many health benefits, such as helping muscle development 

and lowering cholesterol.23  

Generally, metals in groups 3,4, and 5 (Sc, Ti, and V triads) with oxygen sensitive 

oxidation states are avoided as they can only form metal-carbonyl bonds under reducing 

conditions.24 Due to forming unsaturated 16 electrons complexes, metals from groups 9 
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and 10 are also avoided. A close scrutiny of the literature shows that the majority of 

reported metal-based photoCORMs are based on Cr, Mo, W, Mn, Re, Fe, and Ru from 

groups 6, 7, and 8. 25 The main drawback of the majority of these photoCORMs, 

however, is their activation under UV light irradiation. During the last decade, Mn(I)-

tricarbonyl photoCORMs have received increasing attention owing to their ability to 

release CO ligands upon exposure to visible light. It is known that CO with its strong π-

accepting properties can form strong bonds with low valent metal centers such as Mn(I) 

metal ions.26 The fac-[Mn(CO)3]+ motif was among the first class of Mn-based 

photoCORMs to be investigated.26 [Mn(tpm)(CO)3](PF6) (tpm = tris(pyrazolyl)methane) 

was the first complex of these series reported by Schatzschneiderin in 2008.27 This 

photoCORM releases 2 equivalents of CO and shows cytotoxicity against colon cancer 

cells upon photolysis with UV light. 

CO As a Ligand 

CO is a diatomic molecule, characterized by a triple bond between carbon and 

oxygen (C≡O) with high dissociation energy of 1070 kJ·mol−1.28 CO is only slightly 

soluble in water (35 mg/L), as the protonated form of CO (HCO+) is highly reactive in 

water. As mentioned previously, CO forms a strong bond with low valent metal centers. 

This can be further explained by the CO molecular orbital (MO) diagram.24 The 

simplified MO diagram of CO is illustrated in Figure 7. 
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Figure 7. The molecular orbital diagram of CO.  
 

As shown in Figure 8, donation of an electron pair from CO filled orbital 

(HOMO) to the empty d(σ) orbital of the metal center, results in the formation of a σ 

bond. A metal ion center with a low oxidation state such as Mn(I) can easily donate back 

its electron from its high energy d(π) orbital to the empty CO π* orbital to form a metal-

CO π-backbonding interaction.24 
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Figure 8. Interactions between an empty d(σ) orbital of the metal and filled σ molecular 
orbital of CO (σ bonding) (A) and interaction between a filled d(π) orbital of the metal 
and empty π* molecular orbital of CO (π-backbonding) (B). 
 

Mechanisms of CO Dissociation 

 CO loss from many first-row transition metals photoCORMs is initiated by the 

population of the lowest energy metal-to-ligand charge-transfer (MLCT) excited state by 

absorption of a photon.29 An MLCT transition results from the promotion of an electron 

from a primarily metal dπ-based orbital (the highest-occupied molecular orbital, or 

HOMO) to a primarily ligand-based π* orbital (the lowest unoccupied molecular orbital, 

or LUMO).30 The MLCT transition in the calculated HOMO and LUMO for fac-

[Mn(bpy)(CO)3Br] (bpy: 2,2′-Bipyridine ) with density functional theory (DFT) is shown 

in Figure 9. In this transition, while HOMO is mainly spread over (Mn–CO)dπ orbitals 

and p orbital of Br−, the LUMO is located on π* orbital of bpy ligand. Population of the 

MLCT excited state reduces the electron density on the metal center, thus weakening the 

metal-CO π-backbonding interaction.30 
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Figure 9. The MLCT transition from the HOMO which is mainly centered on the Mn 
center and the monodentate ligand to the LUMO which is mainly composed of the 
bidentate ligand. 

 

Choice of Ancillary Ligands in photoCORMs 

The MLCT absorption can be shifted into the visible region by tuning the HOMO 

and LUMO through the mono/bidentate ligand variations around the metal center. In a 

study performed by Mascharak and his group, they showed that the HOMO can be 

adjusted by the monodentate ligand, which is directly bound to the metal center.31 

A π-donating monodentate ligand, such as Br−, increases the energy level of 

HOMO by increasing the electron density on the metal. This will decrease the gap 

between the HOMO-LUMO, shifting the absorbance to the lower energy. In contrast, a π-

accepting monodentate ligand, such as CH3CN, decreases the energy level of HOMO by 

reducing the electron density on the metal.31 
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 On the other hand, the LUMO becomes more stabilized by increasing the π-

conjugation of the multidentate ligands, or by introducing an electron-withdrawing 

substituent on the NN bidentate ligand which increases the ligand’s π-acidity.31 

The quantum yield of CO dissociation (ΦCO), which is defined as moles of CO 

lost over the moles of absorbed photons, is also affected by the ligand sets around the 

metal center. As the π-acidity of the NN ligand and the π-donating ability of the 

monodentate ligand increase, the quantum yield also increases. 

 For example, Mascharak and his group have reported a series of fac-

[Mn(NN)(CO)3Br] compounds, in which NN = 2-quinoline-N-(2′-

methylthiophenyl)methyleneimine (qmtpm), (2-phenyliminomethyl)quinoline (pimq), 

and 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine (pmtpm), which shows increasing 

ΦCO with increasing NN conjugation or π-acidity (qmtpm > pmtpm > pimq).32 The 

structure of the complexes is shown in Figure 10. In the case of the monodentate ligand 

effect,  ΦCO in fac-[Mn(qmtpm)(CO)3L] photoCORMs decreases by exchange of π-

donating Br− with the π-accepting CH3CN ligand from 0.37 to 0.2.32 

 

 

Figure 10. Structures of fac-Mn(NN)(CO)3Br in order of increasing π-acidity of NN 
ligand. 
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1.4. Photodynamic Therapy (PDT) 

Photodynamic Therapy (PDT) refers to a non-invasive therapeutic procedure for 

cancer treatment. The discovery of this phenomenon, previously known as 

“photodynamic action” is dated back to 1897-1898, when Oscar Raab, a student at the 

Munich Pharmacological Institute, realized that paramecium cells stained by fluorescing 

dyes are destroyed under sunlight irradiation.33 The PDT approach utilizes a non-toxic 

photoactive compound known as photosensitizer (PS) to produce ROS in reaction with 

molecular oxygen under light irradiation. The generated ROS interfere with cancer cells’ 

function by damaging DNA, lipids, or proteins. 

When illuminated, the PS absorbs a photon and gets excited to the short-lived 

singlet excited state (Sx, x=1, 2, 3, …). If the PS has been excited to the higher excited 

state i.e. x= 2,3,…, it will relax back to the first excited state, or S1, through vibrational 

relaxation, as the fluorescence emission always occurs from S1 to S0.34 From S1, the PS 

can either relax back to S0 by emitting photons (fluorescence) or undergo intersystem 

crossing (ISC) to populate the triplet excited state (T1).34 From T1, the PS can return to 

the ground state (S0) by emitting light (phosphorescence), or alternatively, it can react 

with molecular oxygen to produce ROS. Triplet excited states are known to be 

chemically reactive, as they have a longer lifetime in comparison with singlet excited 

states.35 T1 reacts with molecular oxygen in one of the two ways, known as Type I and 

Type II mechanisms. The Type II process is depicted in Figure 11. 
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Figure 11. Simplified Jablonski diagram for Type II mechanism 
 

In the Type II process, the T1 state transfers its energy to the molecular oxygen in 

its ground state (3O2), to form an excited state oxygen (1O2). The type I process is more 

complicated and involves the formation of PS radical anion by one-electron transfer to 

produce hydrogen peroxide (H2O2), superoxide anion (O2•ꟷ), and hydroxyl radical 

(OHꟷ).36 It is generally agreed that most PS in PDT follow a Type II mechanism and 1O2 

is the main destructive species in PDT. It is worth mentioning that energy transfer in the 

Type II process for 1O2 production has a higher rate (k ≈1–3 × 109 M–1 s–1) compared 

with electron transfer in Type I (≈k ≤ 1 × 107 M–1 s–1 for O2•ꟷ).37  

Singlet Oxygen (1O2) 

While the molecular oxygen in its ground state is a spin triplet (3∑gꟷ), it has two 

low-lying singlet excited states known as 1Δg and 1∑g+. The first excited state with an 

electronic configuration of 1Δg is called singlet oxygen and is lying 94 kJ mol-1 above the 

ground state.38 The 1Δg state has a relatively long lifetime, as the O2 1Δg → 3∑gꟷ is 
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forbidden.35 In contrast, due to the spin-allowed transition 1∑g
+→ 1Δg, the O2 

1∑g
+ state 

has a short lifetime.35 The electronic states of oxygen are depicted in Figure. 12. 

 

 

Figure 12. Schematic representation of molecular oxygen electronic states 
 

Once 1O2 is formed, it can undergo a non-radiative decay, oxidize other 

molecules, or undergo a radiative decay 1Δg → 3∑gꟷ and emits at 1270 nm.39 Proteins, 

nucleic acids, lipids, and vitamins are the major targets for singlet oxygen. Singlet 

oxygen damages the amino acids by an oxidative attack at electron-rich unsaturations and 

sulfur.40 Singlet oxygen can also damage DNA by attacking guanosine residues to form 

8-oxo-2’-deoxyguanosine.40 

Singlet Oxygen Detection 

The emission at 1270 nm would allow for direct detection of 1O2 in the biological 

media. However, due to the low emission quantum yield and high reactivity of 1O2 this 

method remains challenging.39 Alternatively, 1O2 can be detected by indirect methods 

such as quenchers, and fluorescence probes.36 Fluorescence probes are emissive 
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molecules that are employed for studying 1O2 through changes in fluorescence properties 

such as fluorescence quantum yield, intensity, and lifetime upon reaction with 1O2.
41 1,3,-

diphenyllisobenzofuran (DPBF) and singlet oxygen sensor green (SOSG) are common 

examples of such probes. SOSG is only weakly emissive in the blue region. However, 

after reacting with 1O2  it becomes emissive at 530 nm.42 

Ideal Photosensitizer 

PDT has been successfully used for various cancerous and non-cancerous 

conditions. Porfimer sodium, or Photofrin is one of the earliest clinical PDT 

photosensitizers that was approved in the 1990s for treating cancers. Photofrin is a 

hematoporphyrin derivative consisting of porphyrin units connected by ethers and esters. 

Photofrin with an excitation wavelength of 630 nm and a singlet oxygen quantum yield of 

0.89 is still the most efficient photosensitizer.43 Photofrin is widely used in the UK for 

obstructing esophageal and lung cancer treatment. However, despite the widespread use 

of Photofrin, it suffers from some limitations, including but not limited to poor tissue 

penetration (3-5 mm) due to low absorbance in the red region, and low impurity as it is 

composed of 60 molecules.44 

These shortcomings have inspired the development of new and more efficient 

photosensitizers over the last few decades. An ideal photosensitizer should have a high 

extinction coefficient in the IR and NIR regions to reach deeper into the tissue. To 

efficiently populate the triplet excited state, an ideal photosensitizer should have a high 

quantum yield for ISC and singlet oxygen. It should show low dark toxicity and high 
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photostability. A photosensitizer should also be cost effective with high yielding and a 

suitable synthetic route.45  

So far, the majority of photosensitizers for clinical usage have been based on 

cyclic tetrapyrroles. However, tuning their photophysical and photochemical properties 

has remained challenging, as such structures are hard to chemically modified.46  Such 

limitations have led to the investigation of non-porphyrin photosensitizers.46 Boron-

dipyrromethenes (BODIPYs) are a new class of photosensitizers that have shown 

potential solutions to the previously mentioned limitations. 

BODIPY 

Boron-dipyrromethenes, 4,4- difluoro-4-borata-3a-azonia-4a-aza-s-indacene or 

BODIPY is an emissive organic dye characterized by a high extinction coefficient in the 

visible to IR/NIR region (up to 120 000 M-1 cm-1), high photostability and fluorescent 

quantum yield, as well as easy tunable structure and synthetic versatility.47 

The spectroscopic and chemical features of BODIPY dyes and their derivatives 

can be easily altered through functionalization at the meso and/or pyrrole C-ring 

positions, and the boron atom.48 The structure of the BODIPY core is shown in Figure 13.  
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Figure 13. BODIPY core structure 
 

While substitutions at the 3/5 and 2/6 positions result in a bathochromic shift of 

the absorbance and fluorescence wavelength, the meso position is being used to make the 

molecule water-soluble by introducing groups such as carboxyl anion or polymer chain.49 

Despite the mentioned advantages, the high fluorescence quantum yields of 

BODIPY dyes have resulted in low ISC quantum efficiency and negligible population of 

triplet states in these dyes. It was not until 2005, that Nagano et al. showed that BODIPY 

could be used as an efficient photosensitizer to produce singlet oxygen by introducing 

heavy atoms at the 2/6 positions of the BODIPY core.50This effect is known as the heavy 

atom effect. Electrophilic substitution at the 2/6 positions with heavy atoms such as I or 

Br, efficiently increases the ISC rate through spin-orbit coupling, resulting in the 

population of triplet excited states.50 

1.5. Multi-targeting Anticancer Drugs 

For a long time, the strategy of “one molecule, one target” has been used in 

medicinal chemistry.51 Despite the successful treatments of many diseases with this 

technique, there are still other diseases such as cancer in which a single therapy is not as 

effective.51 Recent studies show that the drug efficacy can be improved by multi-targeted 
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therapeutics by either drug combinations (cocktail therapy) or “single molecule, multiple 

targets” strategy.52,53 The latter offers several advantages over cocktail therapy. It reduces 

the risk of drug interactions and helps to overcome drug resistance.54 

 Cis-diammineplatinum(II) complex of curcumin is one example of a “single 

molecule, multiple targets” strategy. Curcumin is known for its anti-inflammatory 

properties and producing reactive singlet oxygen. This complex is able to release the 

cisplatin adduct and the curcumin upon exposure to the light.55 Another compound, 

Dichlorido(toluene)[3-(1′-cyano-2′-(3″-hydroxy-4″-methoxyphenyl)(Z) 

ethenyl)pyridine]ruthenium(II) complex can bind to the DNA and interfere with mTOR 

signaling.56  

As previously discussed, it has been shown that administration of CO along with a 

chemotherapy drug like doxorubicin increases the susceptibility of the cells to drug. 

Coupling the BODIPY ligand with the Mn(I) photoCORM not only generates singlet 

oxygen and releases CO under visible light but also might increase the susceptibility of 

the cancer cells toward singlet oxygen and reduces their resistance. 

1.6.  Project Description 

The primary goal of this project is to investigate the electronic and steric effects 

of ligand set variation on the photophysical, photochemical, and redox properties, as well 

as the formation of photo intermediates in Mn(I) monometallic photoCORMs complexes. 

To gain a good understanding of these fundamental properties and the factors that dictate 

the photo intermediate formation, there is a need to study a simpler system first.  
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Accordingly, to study the electronic effect of ligands, a series of Mn(I) 

photoCORMs with the general structures of fac-[Mn(NN)(CO)3(L)]n+ compounds, in 

which NN = 4,4′-dimethylester-2,2′-bipyridine (dmebpy), 2,2′-bipyridine (bpy), or 4,4′-

dimethyl-2,2′-bipyridine (Me2bpy), and L = Br− (n = 0) or pyridine (py; n = 1) were 

synthesized and their photophysical and photochemical properties were studied. The 

electronic effect of π-donor Br− and π-acceptor py monodentate ligand (L), as well as the 

impact of varying the π-acidity of the NN bidentate ligand through the 4,4′-substitution 

on both the quantum yield for CO dissociation (ΦCO) and the photo-generated 

intermediates investigated. 

Moreover, in an effort to study the steric effect of NN ligand, two methyl 

substitutions were introduced on the 6,6′ positions of bpy ligand and their impacts on the 

photophysical and photochemical properties, as well as the photo intermediates were 

studied, and compared with the 4,4′-dimethyl-2,2′-bipyridine analogues.  

Lastly, two Mn(I) photoCORMs sensitized with a fluorescent BODIPY, 

Mn(CO)3(bpy-R-BODIPY)Br (R = H or I), were synthesized and their photophysical and 

photochemical properties, as well as 1O2 production were investigated under low energy 

visible light irradiation. 
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Chapter 2: Impact of Mn(I) PhotoCORM Ligand Set on Photochemical 

Intermediate Formation during Visible Light-Activated CO Release 

This chapter is adapted from a published article entitled “Impact of Mn(I) 

PhotoCORM Ligand Set on Photochemical Intermediate Formation during Visible Light-

Activated CO Release” By Pordel S., and White J.K. Inorganica Chimica Acta, no. 500 

(2020): 119206. Copyright © 2020 Elsevier B.V. All rights reserved.57  

2.1. Introduction 

Carbon monoxide plays important roles in cell signaling pathways and has 

therapeutic potential as an anti-cancer agent.6,58–61 CO is known to be anti-inflammatory 

and anti-apoptotic at low concentrations in healthy cells, yet pro-apoptotic and anti-

proliferative at high concentrations in cancer cells.6 Recently, CO was shown to sensitize 

various cancer cells to chemotherapy drugs such as cisplatin, doxorubicin, and 

camptothecin.13,59 Clinical storage and delivery of gaseous CO presents health risks, as 

inhaled CO decreases the availability of O2 to tissue and causes asphyxiation as it binds 

to hemoglobin with high affinity.17 To overcome the safety issues concerning CO storage 

and delivery, a class of molecules called photoCORMs, or photoactivated CO releasing 

molecules, were developed to provide spatial and temporal control of CO delivery.16,17,31 

Transition metal-based photoCORMs provide a convenient method for storage and 

inactivation of CO in the form of chemical bonds until the M-CO bond is broken upon 

population of an excited state with UV or visible light. 

PhotoCORMs have been reported featuring transition metals such as Fe, Ru, Cr, 

Mo, and W,15,21,31,62–69 with much recent emphasis on Re and Mn.11,13,16,18,26,31,32,70–89 
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Mn(I)-tricarbonyl photoCORMs have been the focus of many researchers due to the 

ability to activate Mn-CO bond dissociation using visible light,16,31,68 as a drawback of 

fac-[Re(NN)(CO)3(phosphine)]n+ photoCORMs (NN = bidentate diimine ligand) is their 

requirement for triplet ligand field (3LF) state population with UV irradiation (λ < 400 

nm) to initiate CO dissociation.71,76,82,83 In contrast, analogous fac-[Mn(NN)(CO)3Br] 

complexes effectively release CO as a result of populating a metal-to-ligand charge 

transfer (MLCT) excited state, typically achieved with visible light. 16,31,68 In this MLCT 

state, electron density is transferred from a molecular orbital (MO) with significant metal 

character to an MO with significant NN(π*) character, thus weakening the π-backbonding 

from a filled Mn d-orbital to an empty CO(π*) orbital and labilizing the coordinated 

CO.90 Mascharak and co-workers have demonstrated that increased π-acidity of NN in 

fac-[Mn(NN)(CO)3Br] photoCORMs increases the CO release quantum yield (ΦCO). For 

example, the series of fac-[Mn(NN)(CO)3Br] compounds, in which NN = (2-

phenyliminomethyl)quinoline (pimq), 2-quinoline-N-(2′-

methylthiophenyl)methyleneimine (qmtpm), and 2-pyridyl-N-(2′-

methylthiophenyl)methyleneimine (pmtpm), exhibits increasing ΦCO with increasing NN 

conjugation (qmtpm > pmtpm > pimq).32 Given that the low energy visible and NIR light 

in the 600-900 nm range (termed the “phototherapeutic window”) is desirable for light-

activated drugs,91 the ability to enhance the ligand dissociation activity by lowering the 

activation energy is a great benefit of Mn(I) photoCORMs.  

 Recent reports have investigated the impact of the monodentate ancillary ligand, 

L, on CO release. Replacing a π-donating Br− with a π-accepting PPh3 decreases the rate 
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of CO release from the fac-[Mn(azpy)(CO)3(L)]n+ photoCORMs.72,74 Similarly, the π-

accepting CH3CN ligand in fac-[Mn(qmtpm)(CO)3(CH3CN)]+ and fac-

[Mn(pmtpm)(CO)3(CH3CN)]+ photoCORMs decreases the rate of CO release relative to 

the Br− analogues.[30] In both sets of compounds, the π-accepting ligand (PPh3 or 

CH3CN) blue shifts the MLCT band as it stabilizes the Mn(I)-based HOMO relative to L 

= Br−. Mn(I) tricarbonyl compounds featuring imidazolyl ligands as the ancillary L have 

been reported for antibacterial and antiparasitic activity, but the photochemistry was not 

studied.88 Imidazolyl- and piperazinyl-functionalized dansyl dyes were coupled to fac-

[Mn(phen)(CO)3(L)]+ photoCORMs, where L = imidazoledansyl (Imdansyl) or 1-

dansylpiperazine (Pipdansyl).80,92 While the photochemistry of these compounds were not 

directly compared, they were reported to release CO with ΦCO = 0.35 ± 0.03 and 0.39 ± 

0.03 for L = Imdansyl92 and Pipdansyl,80 respectively, when irradiated with broad band 

visible light.  

While this class of fac-[Mn(NN)(CO)3(L)]n+ photoCORMs has been primarily 

studied for the impact of ligand set on photophysical properties, CO dissociation 

efficiency and rate, and photocytotoxicity, fewer studies have focused on the 

photochemical intermediates formed during the ligand dissociation processes as a 

function of bidentate NN and monodentate L variation. Several fac-[Mn(NN)(CO)3Br] 

photoCORMs report the formation of a dicarbonyl intermediate following exchange of 

one equatorial CO by a coordinating solvent molecule.93 To the best of our knowledge, 

the only reports of structural information following the release of one CO from a Mn(I) 

photoCORM featuring a π-accepting monodentate L ligand is fac-[Mn(κ2-
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tpy)(CO)3(CH3CN)]+ (and related compounds in the series with substituted tpy ligands), 

which forms cis-[Mn(κ3-tpy)(CO)2(CH3CN)]+ when irradiated in CH3CN, as an 

equatorial CO is displaced by the uncoordinated py ring from the κ2-tpy which acts as a 

pre-organized chelating group.77,78Much information remains to be ascertained about the 

photochemical intermediate structures upon visible light-activated CO release from Mn(I) 

photoCORMs. 

To probe the impact of the NN π-acidity as well as the influence of a π-donating 

or π-accepting monodentate ancillary ligand L on the efficiency and mechanism of 

photochemical CO dissociation in fac-[Mn(NN)(CO)3L]n+ photoCORMs, we have 

studied a series of fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ complexes 

(pictured in Figure 14A). In this series, NN = 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), 

2,2′-bipyridine (bpy), or 4,4′-dimethylester-2,2′-bipyridine (dmebpy), and py = pyridine. 

These NN ligands are listed in order of increasing π-acidity as a result of their 4,4′-

substituents. The impact of π-donating Br− was investigated in comparison to π-accepting 

pyridine (py). While Br− is a commonly employed L in Mn(I) photoCORMs, py was 

chosen in this analysis because it has not been studied as an ancillary ligand in Mn(I) 

photoCORMs. Analytical techniques such as cyclic voltammetry, Fourier transform 

infrared (FTIR) spectroscopy, and electronic absorption spectroscopy indicate that the 

nature of L significantly impacts the electron density on the metal center, while varying 

the π-acidity of NN impacts the visible light absorption profile and only has a minor 

impact on the Mn(I) center’s electron density. Irradiation of the compounds with visible 

light promotes the release of all three CO ligands, and the mechanism by which these 
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ligands are exchanged with solvent depends on the nature of L, as observed by 1H NMR 

and FTIR spectroscopy. In particular, the nature of L dictates whether the first CO 

exchanges with a solvent molecule in the position trans to L or trans to NN (Figure 14B). 

Further irradiation of each complex eventually releases L and forms the same final 

dicarbonyl intermediate prior to decomposition and release of the remaining two CO 

ligands. In agreement with related compounds, the trend in the first CO release quantum 

yield as a function of NN π-acidity is observed, and in general, CO release is more 

efficient when L = Br− compared to py. 

 

 

Figure 14. Structural representations of the fac-[Mn(NN)(CO)3(L)]n+ compounds, where 
NN = 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-bipyridine (bpy), and 4,4′-
dimethylester-2,2′-bipyridine (dmebpy), and L = Br− (n = 0) and py (n = 1) (A), and a 
scheme highlighting the two possible initial CO dissociation steps in fac-
[Mn(NN)(CO)3(L)]n+ complexes (B). 
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2.2. Experimental Details 

Materials and Reagents 

All materials were used without further purification unless otherwise noted. 

Bromopentacarbonylmanganese(I) was purchased from Strem Chemicals. Silver 

trifluoromethanesulfonate (AgOTf) was purchased from Acros Organics. Trimethylamine 

N-oxide was purchased from TCI America. Pyridine, acetonitrile, diethyl ether, 

dichloromethane, chloroform, hexane, and methanol were purchased from Fisher 

Scientific. Tetrabutylammonium hexafluorophosphate (98 %; recrystallized from ethanol 

prior to electrochemical analyses) and potassium tris(oxalato)ferrate(III) were purchased 

from Alfa Aesar. Acetonitrile-d3 was purchased from Cambridge Isotope Laboratories. 

The previously reported compounds fac-[Mn(bpy)(CO)3Br], fac-[Mn(Me2bpy)(CO)3Br], 

and fac-[Mn(dmebpy)(CO)3Br] were prepared following published procedures.88,94 

Methods and Instrumentation 

All reactions and experiments were carried out in the absence of light to prevent 

photodecomposition of Mn(I) species. 

Synthesis of fac-[Mn(bpy)(CO)3(py)](OTf) 

The compound was synthesized by a modification to a previously reported 

procedure.95 The fac-[Mn(bpy)(CO)3Br] (30 mg, 0.080 mmol) and AgOTf (30 mg, 0.11 

mmol) were added to 20 mL of CH2Cl2 and stirred at room temperature for 16 h. To 

remove the precipitated AgBr, the mixture was filtered through Celite, and the solvent 

was removed under reduced pressure. The remaining solid was dissolved in 20 mL of 

methanol, and 1 mL of pyridine was added. The solution was heated at reflux under 
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argon for 16 h. After cooling to room temperature, the solvent was removed and the 

yellow residue was dissolved in 5 mL of CH2Cl2 and added dropwise to 150 mL of 

hexane to induce precipitation. The yellow solid was collected by vacuum filtration. 

Yield: 35 mg (0.066 mmol, 87 %). 1H NMR (500 MHz, CD3CN): δ 9.34 (2H, d), 9.27 

(2H, d), 8.19 (2H, m), 7.78 (2H, m), 7.75 (1H, m), 7.24 (2H, m). Elemental analysis 

calculated for C19H13O6N3MnF3S: 43.60% C, 2.50% H, 8.02% N, 6.12% S. Found: 

43.36% C, 2.47% H, 7.97% N, 5.95% S. HR-ESI(+)-MS (CH3CN): [M−OTf]+, m/z = 

374.03293 (calcd m/z = 374.03319). 

Synthesis of fac-[Mn(Me2bpy)(CO)3(py)](OTf) 

This compound was repaired as described above using fac-[Mn(CO)3(Me2bpy)Br] 

(10 mg, 0.024 mmol) and AgOTf (10 mg, 0.039 mmol). Yield: 6.5 mg (0.0011 mmol, 67 

%). 1H NMR (500 MHz, CD3CN): δ 9.14 (2H, d), 8.16 (2H, d), 8.12 (2H, s), 7.77 (1H, 

m), 7.60 (2H, m), 7.24 (2H, m), 2.53 (6H, s). Elemental analysis calculated for 

C21H17O6N3MnF3S: 43.60% C, 2.50% H, 8.02% N, 6.12% S. Found: 43.36% C, 

2.47% H, 7.97% N, 5.95% S. HR-ESI(+)-MS (CH3CN): [M−OTf]+, m/z = 402.06558 

(calcd m/z = 402.06449). 

Synthesis of fac-[Mn(dmebpy)(CO)3(py)](OTf) 

This compound was repaired as described above using fac-[Mn(CO)3(dmebpy)Br] 

(150 mg, 0.30 mmol) and AgOTf (150 mg, 0.58 mmol). Yield: 110 mg (0.17 mmol, 57 

%). 1H NMR (500 MHz, CD3CN): δ 9.52 (2H, d), 8.80 (2H, s), 8.22 (2H, dd), 8.13 (2H, 

m), 7.76 (1H, m), 7.23 (2H, m), 4.0 (6H, s). Elemental analysis calculated for 

C23H17O10N3MnF3S: 43.20% C, 2.68% H, 6.57% N, 5.01% S. Found: 42.93% C, 
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2.69% H, 6.30% N, 4.95% S. HR-ESI(+)-MS (CH3CN): [M−OTf]+, m/z = 490.04585 

(calcd m/z = 490.04415). 

Synthesis of [Mn(dmebpy)(CO)2(CH3CN)2](OTf) 

This complex was synthesized according to previously published procedure.93 A 

mixture of fac-[Mn(dmebpy)(CO)3Br] (100 mg, 0.204 mmol) and AgOTf (120 mg, 0.467 

mmol) in 25 mL of CH3CN was stirred at rt overnight. To remove the AgBr, the solution 

was filtered through Celite, the solvent was removed under vacuum, and the remaining 

solid was washed with ether. The resulting solid and trimethylamine N-oxide (45 mg, 

0.60 mmol) were then dissolved in 10 mL of anhydrous CH3CN and stirred for 5 h at 

room temperature. The mixture was filtered through Celite and the solvent was removed 

under reduced pressure. The remaining solid was dissolved in 5 mL of CH2Cl2 and added 

dropwise to 150 mL of hexanes. The solid was collected by vacuum filtration. The 1H 

NMR spectrum showed a mixture of two isomers, cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ 

and cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ . Yield: 20 mg, (0.032 mmol, 16 %). 

cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+  1H NMR (500 MHz, CD3CN): δ 9.19 (1H, dd), 

9.00 (1H, dd), 8.94 (1H, s), 8.75 (1H, dd), 8.20 (1H, dd), 7.75 (1H, dd), 4.05 (3H, s), 3.98 

(3H, s). cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+  1H NMR (500 MHz, CD3CN): δ 9.75 

(2H, dd), 8.97 (2H, s), 8.16 (2H,dd), 4.04 (6H, s). HR-ESI(+)-MS (CH3CN): [M−OTf]+, 

m/z = 465.059 (calcd m/z = 465.06). 
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1H NMR 

1H NMR spectra were recorded on a Bruker Ascend 500 MHz spectrometer at 

298 K. The spectra were calibrated to residual solvent peaks (acetonitrile at δ = 1.94 

ppm). 

High Resolution Electrospray Ionization Mass Spectrometry  

HR-ESI(+)-MS spectra were obtained using a Thermo Fisher Scientific Q 

Exactive Plus hybrid quadrupole–Orbitrap mass spectrometer in the positive ion mode. 1 

μM solution of each compound in CH3CN was injected into the ESI source for ionization. 

The injection flow rate was 50 μL/min, the applied potential for ionization was 4.0 kV, 

and the scan range was m/z 100–1500. 

Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra were recorded with a Shimadzu IRAffinity-1S Fourier transform 

infrared spectrophotometer in a CaF¬2 liquid IR cell using CH3CN solvent. 

Cyclic Voltammetry 

The electrochemical experiments were performed with a BASi Epsilon EClipse 

electrochemical analyzer (Bioanalytical Systems, Inc.; West Lafayette, Indiana, USA) 

with 1 mM complex in acetonitrile with 0.1 M n-Bu4NPF6 supporting electrolyte under 

N2 at room temperature with a scan rate of 200 mV/s. The reference, working and 

auxiliary electrodes were Ag/AgCl (3 M NaCl(aq)), glassy carbon (3 mm diameter), and 

Pt wire, respectively. Ferrocene (Fc) was added to the solution following each 

measurement, and the potentials were referenced to the Fc+/Fc couple (E1/2 = +0.44 V 
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vs. Ag/AgCl, ΔEp = 0.090 V in CH3CN). This potential agrees with the reported value vs 

Ag/AgCl in CH3CN.96 

Electronic Absorption Spectroscopy 

Electronic absorption spectra were obtained using an Agilent Cary 8454 diode 

array UV-visible spectrophotometer with 1 nm resolution and 0.5 s integration time in a 1 

× 1 cm quartz cuvette at 25 °C. Extinction coefficient measurements in CH3CN were 

carried out in triplicate. 

Photolysis Experiments 

All photolysis experiments were performed using either 405 or 470 nm LEDs 

(Luxeon Star LEDs, Quadica Developments, Inc., Lethbridge, Alberta, Canada). The 

sample was dissolved in CH3CN in a CaF2 cell (for FTIR analysis) or in a 1 × 1 cm 

quartz cuvette (for electronic absorption analysis) or CD3CN in an NMR tube (1H NMR 

analysis), exposed to the appropriate LED for intervals of time, and analyzed by the 

appropriate spectroscopic method. Ferrioxalate chemical actinometry97 was used to 

determine that the photon flux of the 405 and 470 nm LEDs were (5.7 ± 0.1) × 10−8 and 

(2.0 ± 0.1) × 10−8 mol photons/s, respectively. The quantum yield of CO dissociation 

was measured by monitoring the decreases in absorption at very early photolysis times (< 

10 % change in absorbance) as a function of time in CH3CN in a 1 × 1 cm quartz cuvette 

at room temperature. All the prepared samples had the same absorbance at the irradiation 

wavelength. The plot of the moles of reactant vs irradiation time resulted in a linear trend, 

and the slope represented the rate of moles of reactant lost. The value of ΦCO was 

calculated by dividing the rate of moles of reactant lost by the photon flux for the LED. 
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The values were corrected for the fraction of light absorbed by the sample at the 

irradiation wavelength. 

Computational Methods 

Using the M06 level98,99 of density functional theory (DFT) in the Gaussian 16 

program,the geometries for each of the fac-[Mn(NN)(CO)3Br], fac-[Mn(NN)(CO)3(py)]+, 

and proposed photochemical intermediates were fully optimized with the SMD 

continuum solvation model for CH3CN solvent.100 The 6-31G* basis set was used for H, 

C, N, and O,101 and the SDD energy consistent pseudopotentials were used for Mn and 

Br.102 Frequency analysis was performed after geometric optimization to confirm the 

presence of local minima on the potential energy surfaces. The calculated C-O stretching 

frequencies were obtained using the Avogradro program (Version 1.2.0)103 and multiplied 

by a frequency scaling factor of 0.96. 

2.3.  Results and Discussion 

Synthesis and Characterization 

The fac-[Mn(NN)(CO)3Br] complexes (NN = dmepby, bpy, and Me2bpy) were 

synthesized according to previously reported procedures by heating at reflux a solution of 

the appropriate NN with Mn(CO)5Br in Et2O.88,94 We adapted the previously reported 

procedure95  for the preparation of fac-[Mn(bpy)(CO)3(py)]+ to synthesize the new 

complexes fac-[Mn(Me2bpy)(CO)3(py)]+ and fac-[Mn(dmebpy)(CO)3(py)]+. The 

appropriate fac-[Mn(NN)(CO)3Br] was reacted with AgOTf in CH2Cl2 to replace Br− 

with weakly coordinating OTf−, followed by the reaction with an excess of py in MeOH 

to produce fac-[Mn(NN)(CO)3(py)](OTf). We attempted to synthesize cis,cis-
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[Mn(dmebpy)(CO)2(CH3CN)2]+, a proposed photochemical intermediate during 

photolysis in CH3CN, following the procedure93 reported for cis,cis-

[Mn(bpy)(CO)2(CH3CN)2]+ by first reacting fac-[Mn(dmebpy)(CO)3Br] with AgOTf in 

CH3CN, removing AgBr by vacuum filtration, then further reacting the product with 

trimethylamine-N-oxide. A mixture of cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ and 

cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ was isolated as identified by 1H NMR. The 

identities and purities of the compounds were confirmed by 1H NMR (Figures A1-A4), 

ESI-MS, and elemental analysis. 

Vibrational Spectroscopy 

The identity of NN and L directly impact the electron density on the Mn(I) center 

in the fac-[Mn(NN)(CO)3L]n+ compounds. The three CO ligands provide a convenient 

probe into this impact of NN and L variation, as the degree of π-backbonding from a 

filled Mn(dπ) orbital to an empty CO(π*) orbital is directly tuned by the electron density 

on the Mn(I) ion. The FTIR spectra of fac-[Mn(NN)(CO)3(L)]n+ complexes typically 

feature three C−O stretches as a result of their Cs point group. The impact of NN and L 

variation was assessed by comparing the CO stretching frequencies in the FTIR spectra. 

The C−O stretching region of the FTIR spectra are shown in Figure 15, and the 

experimental (CO) values and the theoretical (CO) values obtained by DFT 

calculations for all six compounds in CH3CN are presented in Table 1. The (CO) values 

measured in our lab are in close agreement with the values reported for all three fac-

[Mn(NN)(CO)3Br] compounds.81,88,89 All theoretical values are within 2% error of the 

experimental values. Two different ligand effects on (CO) are analyzed across this 
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series of compounds: the electron-donating/withdrawing effect of the 4,4ʹ-substituents on 

bpy, and the π-donating/accepting effect of the monodentate ligand L. 

 

 

Figure 15. FTIR spectra in the C−O stretching region for fac-[Mn(dmebpy)(CO)3Br] (blue 
solid), fac-[Mn(bpy)(CO)3Br] (black solid), fac-[Mn(Me2bpy)(CO)3Br] (red solid), 
[Mn(dmebpy)(CO)3(py)]+ (blue dashed), fac-[Mn(bpy)(CO)3(py)]+ (black dashed), and 
fac-[Mn(Me2bpy)(CO)3(py)]+ (red dashed),  in room temperature CH3CN. 
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Table 1. Experimental and theoretical C−O vibrational frequencies for fac-
[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)](OTf) in CH3CN.   

Compound Experimental  
(CO) (cm−1) a 

Theoretical 
(CO) (cm−1) b 

fac-Mn(dmebpy)(CO)3Br 2030, 1940, 1931 2022, 1946, 1937 

fac-Mn(bpy)(CO)3Br 2028, 1936, 1923 2020, 1940, 1932 

fac-Mn(Me2bpy)(CO)3Br 2026, 1933, 1919 2019, 1938, 1929 

fac-[Mn(dmebpy)(CO)3(py)](OTf) 2046, 1961, 1947 2037, 1960, 1954 

fac-[Mn(bpy)(CO)3(py)](OTf) 2043, 1955, 1941 2034, 1956, 1949 

fac-[Mn(Me2bpy)(CO)3(py)](OTf) 2042, 1954, 1939 2033, 1953, 1947 
a Data collected in rt CH3CN in a CaF2 cell. 
b Obtained from the energy optimized structures using the M06 level of DFT and the 6-
31G* basis set for H, C, N, and O and the SDD basis set for Mn and Br. 

 

Among each fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ pair,  (CO) is 

greater for the py compounds than for the Br− compounds. The neutral py ligand imparts 

an overall +1 charge on the compound, while its π-accepting nature decreases the electron 

density on the Mn(I) center. Conversely, the π-donating Br− ligand imparts an overall 

neutral charge and increases the electron density on the metal center, thereby 

comparatively enhancing π-backbonding to the CO(π*) orbitals. For example, the (CO) 

for fac-[Mn(dmebpy)(CO)3Br] at 2030, 1940, and 1931 cm−1 shift to 2046, 1961, and 

1947 cm−1 when Br− is replaced by py to form fac-[Mn(dmebpy)(CO)3(py)]+. The (CO) 

for the methyl ester substituents is not significantly impacted by monodentate ligand 

substitution (1739 and 1740 cm−1 for fac-[Mn(dmebpy)(CO)3Br] and fac-

[Mn(dmebpy)(CO)3(py)]+, respectively) due to the relatively large distance between the 

Br−/py ligand and the 4,4ʹ-methyl ester substituents on the bpy ligand.  
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Variation of NN also impacts the (CO) frequencies, although not to the same 

degree as the L variation. As the π-acidity of NN decreases from dmebpy to bpy to 

Me2bpy, the CO stretching frequencies decrease as a result of the increased Mn-CO π-

backbonding. In the case of the fac-[Mn(NN)(CO)3(py)]+ compounds, the three (CO) 

values are 2043, 1955, and 1941 cm−1 when NN = bpy. The presence of electron 

donating methyl substituents (NN = Me2bpy) slightly enhances the electron density on 

the Mn(I) center, shifting the  (CO) values to 2042, 1954, and 1939 cm−1. A larger effect 

is observed when electron-withdrawing methyl ester substituents (NN = dmebpy) 

decrease the electron density on Mn(I) relative to the NN = bpy compound, resulting in 

(CO) of 2046, 1961, and 1947 cm−1. The impact of NN is more subtle than the impact of 

L, as the electron-withdrawing (methyl ester) or electron-donating (methyl) 4,4ʹ-

substitution on bpy serves to fine-tune the metal center’s electron density.   

Cyclic Voltammetry 

The redox properties of the fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ 

compounds were investigated using cyclic voltammetry in CH3CN solution. Anodic 

scanning of tricarbonylmanganese(I) compounds typically reveals an irreversible MnI/II 

oxidation, and cathodic scanning is complicated by ligand dissociation and dimer 

formation. In the previously reported fac-[Mn(NN)(CO)3Br] complexes, the first 

reduction is assigned as MnI/0, an irreversible process that is followed by the rapid 

dissociation of Br− to form a five coordinate radical species.94 Two of the one-electron 

reduced radical species dimerize to form a [Mn(NN)(CO)3]2 compound, which is then 
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reduced by one electron upon further cathodic scanning to generate two fac-

[Mn(NN)(CO)3]− species. 

 The cyclic voltammograms for the six compounds are presented in Figure 16, and 

the redox potentials are listed in Table 2. The nature of L exhibits a strong influence on 

the irreversible MnI/II potential, while the nature of NN has a minor influence on this 

potential. When L = py, the Epa values (1.48-1.56 V vs. Ag/AgCl) are approximately 

0.38-0.40 V more positive than the L = Br−, consistent with the π-donating nature of Br− 

and the π-accepting nature of py. This trend is consistent with that observed in the FTIR 

data in comparing L = Br− vs py.  As the NN ligand’s π-acidity increases, the Mn(dπ) 

orbitals become slightly more stabilized, requiring a slightly greater potential to oxidize 

Mn(I) to Mn(II). This is reflected by the Epa values of 1.48, 1.52, and 1.56 V vs Ag/AgCl 

for fac-[Mn(Me2bpy)(CO)3(py)]+, fac-[Mn(bpy)(CO)3(py)]+, and fac-

[Mn(dmebpy)(CO)3(py)]+, respectively. This trend resulting from NN ligand π-acidity is 

also observed in the series of fac-[Mn(NN)(CO)3Br] compounds. The Epc values for the 

first reduction are also influenced by the nature of L and NN. Replacing the π-donating 

Br− with a π-accepting py shifts the Epc to a less negative potential by 0.07-0.14 V, as 

observed in each pair of fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ complexes. 

Among the L = py compounds, the first Epc value decreases from −0.83 to −1.09 to 

−1.19 V vs. Ag/AgCl for fac-[Mn(dmebpy)(CO)3(py)]+, fac-[Mn(bpy)(CO)3(py)]+, and 

fac-[Mn(Me2bpy)(CO)3(py)]+, respectively, consistent with the decreasing π-acidity of 

the NN ligand. 
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Figure 16. Cyclic voltammograms for 1 mM solutions of fac-[Mn(dmebpy)(CO)3Br] (blue 
solid), fac-[Mn(bpy)(CO)3Br] (black solid), fac-[Mn(Me2bpy)(CO)3Br] (red solid), 
[Mn(dmebpy)(CO)3(py)]+ (blue dashed), fac-[Mn(bpy)(CO)3(py)]+ (black dashed), and 
fac-[Mn(Me2bpy)(CO)3(py)]+ (red dashed), in room temperature CH3CN under a N2 
atmosphere with 0.1 M Bu4NPF6 as the supporting electrolyte, a glassy carbon working 
electrode, Pt wire auxiliary electrode, Ag/AgCl reference electrode, and a scan rate of 200 
mV/s. Arrows indicate the scan direction. 
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Table 2. Cyclic voltammetry data for fac-[Mn(NN)(CO)3Br] and fac-
[Mn(NN)(CO)3(py)](OTf) in CH3CN. 

  Epa 
(V) a 

Epc 
(V) a 

Epc 
(V) a 

Mn(dmebpy)(CO)3Br 1.18 −0.90 −1.04 
Mn(bpy)(CO)3Br 1.13 −1.27 −1.48 
Mn(Me2bpy)(CO)3Br 1.08 −1.33 −1.55 
[Mn(dmebpy)(CO)3(py)](OTf) 1.56 −0.83 −1.05 
[Mn(bpy)(CO)3(py)](OTf) 1.52 −1.09 −1.49 
[Mn(Me2bpy)(CO)3(py)](OTf) 1.48 −1.19 −1.63 

a Room temperature CH3CN under a N2 atmosphere with 0.1 M Bu4NPF6 as the supporting 
electrolyte, a glassy carbon working electrode, Pt wire auxiliary electrode, Ag/AgCl 
reference electrode, and a scan rate of 200 mV/s. Potentials are reported vs. Ag/AgCl. 

 

Electronic Absorption Spectroscopy 

The electronic absorption spectra of the compounds in room temperature CH3CN, 

as displayed in Figure 17 with absorption maxima (λmax) and extinction coefficients (ε) 

given in Table 3, exhibit spectral features in both the UV and visible region (λ < 600 nm) 

that vary as a function of the ligand set. In all cases, the UV region is dominated by NN 

π→π* transitions (λmax = 285-314 nm, ε = 1.7-1.9 × 104 M−1cm−1). The visible absorption 

band for fac-[Mn(NN)(CO)3Br] is known to have contributions from both 

Mn(dπ)→NN(π*) 1MLCT (singlet metal-to-ligand charge transfer) and Br(p)→NN(π*) 

1XLCT (singlet halide-to-ligand charge transfer).31,74 The λmax values are directly related 

to the electron-donating/withdrawing nature of the NN substituents (λmax = 460, 416, and 

411 nm for NN = dmebpy, bpy, and Me2bpy, respectively), as a more electron-

withdrawing substituent stabilizes the NN molecular orbital, thereby lowering the 
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1MLCT/1XLCT transition energy. These values for fac-[Mn(bpy)(CO)3Br] and fac-

[Mn(Me2bpy)(CO)3Br] are in agreement with the reported values.[59] Replacement of π-

donating Br− with π-accepting py stabilizes the Mn(dπ) orbitals (as demonstrated with the 

CV data above), causing a blue-shift in the 1MLCT band. The λmax values for fac-

[Mn(NN)(CO)3(py)](OTf) are 420, 383, and 378 nm when NN = dmebpy, bpy, and 

Me2bpy, respectively. These three compounds follow the same trend in NN electron-

withdrawing/donating effect as described for the L = Br− analogues. 

 

 

Figure 17. Overlaid electronic absorption spectra for fac-[Mn(dmebpy)(CO)3Br] (blue 
solid), fac-[Mn(bpy)(CO)3Br] (black solid), fac-[Mn(Me2bpy)(CO)3Br] (red solid), fac-
[Mn(dmebpy)(CO)3(py)](OTf)  (blue dashed), fac-[Mn(bpy)(CO)3(py)](OTf) (black 
dashed), and fac-[Mn(Me2bpy)(CO)3(py)](OTf)  (red dashed), in room temperature 
CH3CN. 
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Table 3. Electronic absorption spectroscopy data for fac-[Mn(NN)(CO)3Br] and fac-
[Mn(NN)(CO)3(py)](OTf) in CH3CN.a 
Compound λ (nm) ε × 10−4 (M−1cm−1) λ (nm) ε × 10−4 (M−1cm−1) 
fac-Mn(dmebpy)(CO)3Br 460 0.32 314 1.8 
fac-Mn(bpy)(CO)3Br 416 0.29 292 1.8 
fac-Mn(Me2bpy)(CO)3Br 411 0.29 290 1.8 
fac-[Mn(dmebpy)(CO)3(py)](OTf) 420 0.40 308 1.9 
fac-[Mn(bpy)(CO)3(py)](OTf) 383 0.34 287 1.8 
fac-[Mn(Me2bpy)(CO)3(py)](OTf) 378 0.34 285 1.7 
a Data collected in rt CH3CN in a 1×1 cm quartz cuvette. 

Photochemical CO Dissociation 

As observed in related MnI(NN)(CO)3L photoCORMs, irradiation of each 

compound with visible light causes dissociation of the CO ligands. The photoinduced 

dissociation of CO from the fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ 

compounds in CH3CN was monitored by FTIR, electronic absorption, and 1H NMR 

spectroscopy. A combination of these techniques provides important information about 

the photochemical intermediate formation and efficiencies of CO dissociation upon 

photolysis with visible light. It is important to note that all six compounds are stable in 

CH3CN solution when kept in the dark for at least one hour, as no FTIR spectral shifts are 

observed (Figure A5). 

The photochemical ligand dissociation in CH3CN was monitored by FTIR, as the 

C−O stretching frequencies are sensitive to the set of ligands coordinated to Mn(I). The 

FTIR spectral changes resulting from the irradiation of all six compounds with both 405 

nm and 470 nm showed similar trends. The data for the 470 nm photolysis of fac-
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[Mn(dmebpy)(CO)3(py)]+ and fac-[Mn(dmebpy)(CO)3Br] are depicted in Figure 18, 

while the 470 nm data for the remaining four compounds and the 405 nm data for all six 

compounds are shown in Figures A6-A7. The FTIR spectra of the intermediate 

irradiation times provide important information about photochemical reaction 

intermediates. A comparison of each of the L = Br− vs py analogues shows that one set of 

intermediate peaks is apparent for the fac-[Mn(NN)(CO)3(py)]+ complexes, while two 

sets of intermediate peaks are apparent for the fac-[Mn(NN)(CO)3Br] complexes. In the 

case of fac-[Mn(dmebpy)(CO)3(py)]+, irradiation at early times shows a decrease in the 

original three ν(CO) bands at 2046, 1961, and 1947 cm−1 concomitant with the 

appearance of two new ν(CO) bands at 1877 and 1954 cm−1. Further irradiation leads to 

the emergence of slightly higher energy shoulders on these bands at 1888 and 1966 cm−1, 

and continued photolysis leads to eventual loss of all ν(CO) bands. In a similar first step, 

irradiation of fac-[Mn(dmebpy)(CO)3Br] at early times shows a decrease in the intensity 

of the original three ν(CO) bands at 2030, 1940, and 1931 cm−1 concomitant with the 

appearance of two new ν(CO) bands at 1868 and 1941 cm−1. Further irradiation decreases 

these first intermediate bands as a second set of intermediate bands form at 1891 and 

1967 cm−1. Further irradiation also leads to eventual loss of all ν(CO) bands. It should be 

noted that free CO is observed at 2143 cm−1 for all six compounds after the first 

irradiation interval, further supporting the loss of CO in the first photochemical step. 
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Figure 18. FTIR spectra for fac-[Mn(dmebpy)(CO)3(py)]+ (A) and fac-
[Mn(dmebpy)(CO)3Br] (B) in rt CH3CN during photolysis with λirr = 470 nm. The observed 
intermediate bands are denoted by blue circles for fac-[Mn(dmebpy)(CO)3(py)]+ (A), and 
the first and second observed intermediate bands are denoted with blue circles and red 
squares, respectively, for fac-[Mn(dmebpy)(CO)3Br] (B). 

 

To aid in identification of the photochemical intermediates, the samples were 

irradiated in CD3CN with 470 nm, and the 1H NMR spectrum was monitored as a 

function of irradiation time for fac-[Mn(dmebpy)(CO)3(py)]+ and fac-

[Mn(dmebpy)(CO)3Br] (Figures 19 and 20, respectively). The 1H NMR spectrum of fac-

[Mn(dmebpy)(CO)3Br] displays three aromatic signals prior to photolysis due to the 

molecule’s symmetry (Figure 19). After 470 nm irradiation for 2 s, six new signals with 

equal integrations appear at 7.64, 8.12, 8.67, 8.89, 9.09, and 9.30 ppm, as the original 
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signals slightly decrease in intensity. Based on related analyses of photochemical CO 

dissociation,77,78,86,89,93 and in agreement with the first photochemical intermediate 

observed in the FTIR spectrum which suggests a dicarbonyl species, we propose that the 

first photochemical step is exchange of an equatorial CO with CD3CN to form cis,cis-

[Mn(dmebpy)(CO)2(CD3CN)Br]. After 4 s of irradiation, a second set of six signals is 

observed at 7.75, 8.20, 8.75, 8.95, 9.00, and 9.19 ppm, suggesting the second 

intermediate has retained the same symmetry as the first intermediate. As the FTIR 

analysis indicates decreased π-backbonding to the bound CO ligands, this is consistent 

with the exchange of Br− with CD3CN to form cis,cis-[Mn(dmebpy)(CO)2(CD3CN)2]+ as 

the second intermediate. While only two intermediates are apparent by FTIR analysis, a 

third intermediate with three signals at 8.16, 8.97, and 9.75 ppm was observed. The 

reduction in aromatic signals suggests that each ring of the dmebpy ligand is equivalent, 

and we propose that this photochemical intermediate is cis,trans-

[Mn(dmebpy)(CO)2(CD3CN)2]+. The stacked 1H NMR spectra comparing the sample 

after 20 s of irradiation (containing both the second and third intermediate) and the 

synthesized mixture of cis,cis- and cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ are provided 

in Figure A8 to highlight the presence of these two intermediates. Photolysis for up to 90 

s causes the disappearance of all peaks, as the Mn(I) center has presumably become 

photooxidized to form a paramagnetic species. While we have not identified the final 

photodecomposition products at this time, this has been the subject of much investigation, 

with the photoproducts often described as oxidized Mn species. Oxidized species such as 

MnO2, [Mn(NN)2(solv)2]2+, [Mn(NN)3]2+, [Mn(solv)4(OTf)]+, [Mn(NN)2(OTf)]+, and 
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[Mn(NN)(solv)3Br]+ are potential photoproducts based on reports of structurally related 

photoCORMs.32,79,80,84  

 

 

Figure 19. 1H NMR spectra for fac-[Mn(dmebpy)(CO)3Br] in rt CD3CN during photolysis 
with λirr = 470 nm for 0, 2, 4, 10, 20, 56, and 120 s. Spectra are normalized as a 
paramagnetic photoproduct form during the photolysis, lowering the overall signal 
intensity. The first, second, and third intermediate bands are denoted with blue circles, red 
squares, and green triangles, respectively. 

 

The 1H NMR spectrum of fac-[Mn(dmebpy)(CO)3(py)]+ displays six aromatic 

signals prior to photolysis: three dmebpy signals (all integrate to 2 H) and three py 

signals (two integrate to 2 H and one integrates to 1 H), as shown in Figure 20. After 

irradiation with 470 nm for 4 s, a new set of six signals with the same distribution of 

integrations arises at 6.95, 7.51, 8.01, 8.21, 8.89, and 9.93 ppm. This first step is quite 

different from that of the fac-[Mn(dmebpy)(CO)3Br] analogue. Because the symmetry of 

the first intermediate remains the same as the original species, and the first intermediate 

observed by FTIR indicates the formation of a dicarbonyl species, we propose that the 

first photochemical step when L = py is the exchange of the axial CO (trans to py) with 
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CD3CN to form cis,trans-[Mn(dmebpy)(CO)2(CD3CN)(py)]+. With further photolysis, a 

new set of three signals arises at 8.16, 8.97, 9.75 ppm, suggesting exchange of py with 

CD3CN to form the symmetric cis,trans-[Mn(dmebpy)(CO)2(CD3CN)2]2+ species. The 

stacked 1H NMR spectra comparing the sample after 20 s of irradiation (containing the 

second intermediate) and the synthesized mixture of cis,cis- and cis,trans-

[Mn(dmebpy)(CO)2(CH3CN)2]+ are provided in Figure A8 to confirm the formation of 

the cis,trans isomer. The third intermediate spectrum in the photolysis of the fac-

[Mn(dmebpy)(CO)3Br] analogue matches the spectrum for this second intermediate in the 

photolysis of the L = py analogue.  

 

 

Figure 20. 1H NMR spectra for fac-[Mn(dmebpy)(CO)3(py)]+ in rt CD3CN during 
photolysis with λirr = 470 nm for 0, 4, 12, 20, 30, and 60 s. Spectra are normalized as a 
paramagnetic photoproduct forms during the photolysis, lowering the overall signal 
intensity. The first and second intermediate bands are denoted with blue circles and green 
triangles, respectively. 

 

To further support the proposed photochemical intermediate identities, the 

theoretical ν(CO) frequencies for each of the proposed intermediates were calculated 
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using DFT. The experimental and theoretical vibrational frequencies for all proposed 

intermediates are provided in Table 4. The theoretical values are within 2% error of the 

experimental values, and the same trends are observed regardless of the nature of NN. 

The calculated frequencies for cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ and cis,trans-

[Mn(dmebpy)(CO)2(CH3CN)2]+ (1974 and 1919 cm−1 vs 1975 and 1918 cm−1, 

respectively) are nearly identical; this explains why the second and third intermediates 

during the photolysis of fac-[Mn(dmebpy)(CO)3Br] were not obvious in the FTIR spectra 

in Figure 17 as they appear as a single intermediate. Upon close inspection of the spectra 

following formation of the first intermediate during photolysis of fac-

[Mn(dmebpy)(CO)3(py)]+, a higher energy shoulder is observed on each of the cis,trans-

[Mn(dmebpy)(CO)2(CH3CN)(py)]+ bands, consistent with substituting a π-accepting py 

ligand with a slightly stronger π-accepting CH3CN.  

 

Table 4. Experimental and theoretical C−O vibrational stretching frequencies for the 
photochemical intermediates during photolysis of fac-[Mn(NN)(CO)3Br] and fac-
[Mn(NN)(CO)3(py)]+ in CH3CN. 

Photochemical intermediate Experimental  
(CO) (cm−1) a 

Theoretical 
(CO) (cm−1) b 

cis,cis-[Mn(dmebpy)(CO)2(CH3CN)Br] 1941, 1868 1950, 1892 

cis,trans-[Mn(dmebpy)(CO)2(CH3CN)(py)]+ 1954, 1877 1960, 1903 

cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ 1967, 1891 1974, 1919 

cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+  1966, 1888 c 1975, 1918 

cis,cis-[Mn(bpy)(CO)2(CH3CN)Br] 1939, 1855 1945, 1883 

cis,trans-[Mn(bpy)(CO)2(CH3CN)(py)]+ 1948, 1867 1958, 1897 
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cis,cis-[Mn(bpy)(CO)2(CH3CN)2]+ 1961, 1882 1969, 1911 

cis,trans-[Mn(bpy)(CO)2(CH3CN)2]+  1960, 1879 c 1972, 1911 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)Br] 1935, 1852 1943, 1880 

cis,trans-[Mn(Me2bpy)(CO)2(CH3CN)(py)]+ 1948, 1867 1956, 1894 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)2]+ 1960, 1878 1968, 1908 

cis,trans-[Mn(Me2bpy)(CO)2(CH3CN)2]+  1962, 1879 c 1970, 1909 
a Data collected in rt CH3CN in a CaF2 cell.  
b Obtained from the energy optimized structures using the M06 level of DFT and the 6-31G* basis 
set for H, C, N, and O and the SDD basis set for Mn and Br. 
c Approximate values obtained from the shoulders on the corresponding cis,cis-
[Mn(NN)(CO)2(CH3CN)(py)]+ intermediates bands.  
 
 

Scheme 1 summarizes the proposed step-wise photochemical ligand dissociation 

processes as a function of ancillary ligand L π-donating/accepting nature based on the 

combination of FTIR and 1H NMR spectroscopic analysis of intermediates. In the case of 

the fac-[Mn(NN)(CO)3Br] compounds, absorption of a photon first exchanges an 

equatorial CO (trans to NN) with a CH3CN solvent molecule to form the cis,cis-

[Mn(NN)(CO)2(CH3CN)Br] intermediate. Next, the Br− ligand exchanges with a second 

CH3CN molecules to form the cis,cis-[Mn(NN)(CO)2(CH3CN)2]+ intermediate. While we 

observed this ligand exchange during constant irradiation, this step also proceeds in a 

dark thermal reaction. A sample of each fac-[Mn(NN)(CO)3Br] was irradiated until the 

first set of intermediate bands formed, then the sample was protected from light for 15 

minutes and the FTIR spectrum was collected (Figure A10). The thermal Br− substitution 

is evident by the complete loss of the first intermediate bands along with the evolution of 

the second intermediate bands. This Br− exchange from the intermediate was also 
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observed in the Ru(II),Mn(I) photoCORMs reported by us.86 Finally, absorption of a 

photon drives an isomerization reaction to form the cis,trans-[Mn(NN)(CO)2(CH3CN)2]+ 

compound. Further irradiation then causes dissociation of the remaining two CO ligands 

as evidenced by FTIR analysis.  

 

Scheme 1.Proposed step-wise photochemical ligand dissociation and intermediate 
formation for fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+. 

 
 

 

 

In the case of the fac-[Mn(NN)(CO)3(py)]+ analogues, the first photochemical 

step drives the exchange of the axial CO (trans to py) with a solvent CH3CN molecule to 

provide the cis,trans-[Mn(NN)(CO)2(CH3CN)(py)]+ intermediate. Absorption of a second 

photon exchanges py with a second CH3CN, forming the cis,trans-

[Mn(NN)(CO)2(CH3CN)2]+ compound. In contrast to the cis,cis-

[Mn(NN)(CO)2(CH3CN)Br] analogues, the py ligand does not dissociate by a dark 

thermal reaction (Figure A11), so a photon is required for this step.  As observed for the 

L = Br− intermediate, further photolysis dissociates the remaining two CO ligands. By 
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comparing these two photochemical mechanisms, we conclude that while the same final 

intermediate, cis,trans-[Mn(NN)(CO)2(CH3CN)2]+, is formed regardless of the nature of 

L, a π-donating L directs the dissociation of an equatorial CO (COeq) in the first step, 

while a π-accepting L directs the dissociation of the axial CO (COax) in the first step. The 

accepted mechanism for CO dissociation from fac-[Mn(NN)(CO)3L]n+ photoCORMs 

involves population of the Mn(dπ)→NN(π*) MLCT state with a formally oxidized 

Mn(II) center and a formally reduced NN•−.90 When L = Br−, its π-donation provides a 

stronger bond Mn(II)−COax due to π-backbonding relative to the Mn(II)−COeq bonds, 

causing COeq dissociation. However, when L = py, the Mn(II)−COax bond is significantly 

weaker in the excited state than the Mn(II)−COeq bonds because the transferred electron 

density on NN is trans to the COeq ligands and not the COax ligand; this causes COax to 

dissociate more readily than COeq. 

The ligand dissociation was also monitored by electronic absorption spectroscopy. 

Figure 21 shows the spectral changes for fac-[Mn(dmebpy)(CO)3(py)]+ and fac-

[Mn(dmebpy)(CO)3Br] in rt CH3CN upon irradiation with 470 nm light. The electronic 

absorption spectra for the 470 nm photolysis of the remaining four compounds and the 

405 nm photolysis for all six compounds are provided in Figures A12-A13. The 

decreased absorbance of the lowest energy transition is observed in all cases, indicating 

consumption of the original species. Irradiation with 405 nm results in the formation of 

an intermediate species with a broad, low energy absorption band concomitant with the 

decrease in the lowest energy transition for all six compounds. This low energy 

absorption band is consistent with the formation of the dicarbonyl intermediates as 
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described in Scheme 1.77 The intermediate bands cannot be resolved, as the FTIR data 

indicates a mixture of the dicarbonyl intermediates forms upon photolysis, especially at 

longer irradiation times. Interestingly, the low energy intermediate band upon 470 nm 

irradiation is only observable for fac-[Mn(dmebpy)(CO)3(py)]+ and not for fac-

[Mn(bpy)(CO)3(py)]+ or fac-[(Mn(Me2bpy)(CO)3(py)]+, which agrees with the FTIR 

spectral changes shown in Figures 18 and A6. We propose that the dicarbonyl 

intermediates for the NN = bpy and Me2bpy compounds more efficiently absorb the 

incident 470 nm photons compared to the NN = dmebpy compound, so the intermediate 

is consumed at a rate in which not enough intermediate accumulates to be detected. In 

contrast, the 405 nm incident light is not absorbed by the dicarbonyl intermediates as 

efficiently as the original species, so a significant quantity of the intermediate 

accumulates before it undergoes further ligand photodissociation processes.  
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Figure 21. Electronic absorption spectra for the 470 nm photolysis of fac-
[Mn(dmebpy)(CO)3(py)]+ (A) and fac-[Mn(dmebpy)(CO)3Br] (B) in rt CH3CN. 

 

The efficiency of the first CO dissociation in CH3CN solution to form the cis,cis-

[Mn(NN)(CO)2(CH3CN)Br] or cis,trans-[Mn(NN)(CO)2(CH3CN)(py)]+ photoproduct 

upon irradiation with 405 nm can be compared for each compound by measuring the 

quantum yield for CO release (ΦCO). This value was determined by monitoring the loss of 

the original absorption spectrum at very early photolysis times (< 10 % change in 
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absorbance while isosbestic points are still present). Two clear trends exist between the 

six compounds involving the nature of NN and L. First, in both the series of L = Br− and 

py compounds, the first CO dissociation event with λirr = 405 nm (flux = 5.7 ± 0.1 × 10−8 

mol photons/s) is most efficient when NN = dmebpy and least efficient when NN = 

Me2bpy. In the case of the fac-[Mn(NN)(CO)3Br] series, ΦCO = 0.32 ± 0.02, 0.22 ± 0.01, 

and 0.20 ± 0.01 when NN = dmebpy, bpy, and Me2bpy, respectively (Table 5). Similarly 

in the case of the fac-[Mn(NN)(CO)3(py)]+ series, ΦCO = 0.19 ± 0.01, 0.17 ± 0.01, and 

0.15 ± 0.01 when NN = dmebpy, bpy, and Me2bpy, respectively. This trend, in which CO 

release efficiency increases with increasing NN ligand π-acidity, is in agreement with 

related Mn(I) photoCORMs.31,32,72,74 The second trend is that the first CO dissociation is 

more efficient when L = Br− compared to when L = py. This trend agrees with that 

reported for fac-[Mn(azpy)(CO)3Br] and fac-[Mn(azpy)(CO)3(PPh3)]+ in which the π-

donating Br− ligand causes a greater rate of CO dissociation than the π-accepting PPh3 

ligand.74 The authors used time dependent density functional theory (TD-DFT) to 

propose that this difference arises from a greater charge transfer from the PPh3 ligand 

than the Mn-CO bonding MO to the azpy(π*) LUMO, while in the case of L = Br−, the 

charge transfer to the LUMO exhibits a bigger contribution from the Mn-CO bonding 

MO than from Br−. This explanation may explain the differences between L = Br− vs py, 

as this series also compares the effects of a π-donor to a π-acceptor. 
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Table 5. Quantum yield of the first CO dissociation (ΦCO) for fac-[Mn(NN)(CO)3Br] and 
fac-[Mn(NN)(CO)3(py)](OTf) in CH3CN with λirr = 405 nm. 

 

 

 

 

 

 

 

2.4. Conclusions 

We have studied the redox and photophysical properties and the visible light-

induced ligand dissociation reactions in a series of fac-[Mn(NN)(CO)3(L)]n+ complexes 

(NN = dmebpy, bpy, or Me2bpy; L = Br− or py; n = 0 or 1) to compare the effects of the 

bidentate and monodentate ancillary ligands on photochemical CO dissociation efficiency 

and mechanism. The relative energy of the Mn(I) center is strongly impacted by the 

nature of L, as observed in the FTIR and cyclic voltammetry data, and the Mn(I) HOMO 

is destabilized by L = Br− relative to L = py. As a result, the absorption spectra for the 

fac-[Mn(NN)(CO)3Br] compounds extend further into the visible region than the fac-

[Mn(NN)(CO)3(py)]+ analogues, and these observations follow the expected trends based 

on previously report related systems. The first CO dissociation efficiency follows a clear 

trend, in which the stronger NN π-acidity enhances CO dissociation efficiency, and a π-

donating Br− causes more efficient CO dissociation in the first step. A combination of 

Compound ΦCO  

fac-Mn(dmebpy)(CO)3Br 0.32 ± 0.02 

fac-Mn(bpy)(CO)3Br 0.22 ± 0.01 

fac-Mn(Me2bpy)(CO)3Br 0.20 ± 0.01 

fac-[Mn(dmebpy)(CO)3(py)](OTf) 0.19 ± 0.01 

fac-[Mn(bpy)(CO)3(py)](OTf) 0.17 ± 0.01 

fac-[Mn(Me2bpy)(CO)3(py)](OTf) 0.15 ± 0.01 



 
 

55 

 

FTIR and 1H NMR analysis throughout the irradiation of the photoCORMs provided 

valuable information to identify the structures of the photochemical intermediates. The 

first photochemical ligand dissociation is quite different between the compounds with L = 

Br− or py, as the π-donating Br− directs the exchange of an equatorial CO (cis to L) while 

the π-accepting py directs the exchange of the axial CO (trans to L). The exchange of Br− 

with CH3CN solvent from the first dicarbonyl intermediate occurs by a thermal process, 

while the exchange of py with CH3CN solvent from the first dicarbonyl intermediate 

requires absorption of a photon. Despite the differences in the ligand exchange 

mechanisms, the final dicarbonyl intermediate observed for each compound regardless of 

the nature of L is cis,trans-[Mn(NN)(CO)2(CH3CN)2]+. Work is underway to expand the 

series with varied L and further investigate the photochemical reaction mechanism of 

photoCORMs.  
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Chapter 3: Impact of steric bulk on photoinduced ligand exchange reactions in 

Mn(I) photoCORMs 

This chapter is adapted from a published article entitled “Impact of steric bulk on 

photoinduced ligand exchange reactions in Mn(I) photoCORMs” By Pordel S., Schrage 

B.R., Ziegler C.J., and White J.K. Inorganica Chimica Acta, no. 511 (2020): 119845. 

Copyright © 2020 Elsevier B.V. All rights reserved.104 

3.1.  Introduction 

Carbon monoxide is a gaseous signaling molecule that participates in several cell 

signaling pathways. As a result, endogenously produced CO plays important 

physiological roles such as anti-inflammation, cytoprotection, vasodilation, and blood 

vessel formation.6,14,15,58,60,105 Recent research has also indicated therapeutic potential for 

CO, such as anti-bacterial and anti-cancer activity.6,11,13,58,59,106 At high concentrations, 

CO is anti-proliferative and pro-apoptotic in cancer cells, while it is anti-apoptotic and 

anti-inflammatory in healthy tissue.6 Due to the toxicity and storage safety issues arising 

from inhalation of gaseous CO,107 delivery of the small molecule with high 

spatiotemporal control is an important goal. The tendency of CO to act as a Lewis base, 

forming coordinate covalent (or dative) bonds with transition metal ions, has enabled the 

development of CO-releasing molecules (termed “CORMs”), in which the CO is 

deactivated through formation of metal-CO bond.28,108,109 Upon bond cleavage, the CO is 

released and its pharmacological activity is restored.  

CORMs that release CO through photochemical bond dissociation are known as 

“photoCORMs,” or photo-activated CO-releasing molecules.16–18,31,110–112 PhotoCORMs 



 
 

57 

 

allow for CO to remain coordinated to a metal complex pro-drug until irradiation with 

UV or visible light at a desired location, such as a tumor or infection, releases one or 

more equivalents of CO. The wavelength required for bond cleavage and the number of 

CO molecules released per metal complex depend on the molecular architecture. While 

many photoCORMs have been reported featuring Fe, Ru, Cr, W, Mo, and 

Re,15,21,31,62,63,65–69 those featuring Mn(I) have been increasingly studied due to their 

ability to release multiple equivalents of CO with visible light,11,13,57,61,70,72–75,77–81,84–

89,92,93,95,113,114 a desirable feature to decrease photoinduced damage to healthy cells and 

tissue.91  

A frequently studied architecture for Mn(I) photoCORMs is fac-

[Mn(NN)(CO)3(L)]n+, in which NN is typically a diimine bidentate ligand and L is a 

monodentate ancillary ligand such as Br−, CH3CN, phosphines, or N-containing 

heterocycles. The identities of NN and L influence the photophysical properties and 

photochemical ligand dissociation. Excitation with visible light results in population of a 

lowest-lying metal-to-ligand charge transfer (MLCT) state, which may also have a 

significant amount of halide-to-ligand charge transfer (XLCT) character if L is a 

halide.16,31 The reduced electron density on the metal weakens the π-backbonding 

between Mn and CO ligands, allowing ligand dissociation. It is generally reported that 

the quantum yield for CO release (ΦCO) increases as π-acidity of the bidentate ligand 

increases.31 For example, in the set of fac-[Mn(NN)(CO)3Br] compounds in which NN = 

(2-phenyliminomethyl)quinoline (pimq), 2-quinoline-N-(2′-

methylthiophenyl)methyleneimine (qmtpm), and 2-pyridyl-N-(2′-
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methylthiophenyl)methyleneimine (pmtpm), the value for ΦCO with 509 nm irradiation 

increases from NN = pimq to pmtpm to qmtpm as conjugation on the NN ligand 

increases.32  

The efficiency and rate of CO release are also influenced by the nature of the 

monodentate ancillary ligand L, as π-donor ligands tend to provide greater CO release 

efficiency compared to π-acceptor ligands. In the case of the fac-[Mn(qmtpm)(CO)3L]n+ 

and fac-[Mn(pmtpm)(CO)3L]n+ complexes, the CO release rate is greater when L = Br− 

compared to L = CH3CN.32 The π-donor Br− destabilizes the Mn(dπ) orbitals relative to 

the case when L is the π-acceptor CH3CN, resulting in a lower energy MLCT state and 

enhanced absorptivity at longer wavelengths.  Similarly, in photoCORMs with the fac-

[Mn(azpy)(CO)3(L)]n+ (azpy = 2-phenylazopyridine) architecture, the rate of CO release 

from the compound when L = Br− is greater than the rate when L = PPh3.72,74 

Monodentate ligands that coordinate through imidazolyl groups also increase the 

quantum yield for CO dissociation compared to those with piperazinyl groups, as 

observed in the fac-[Mn(phen)(CO)3(L)]+ complexes, where phen = 1,10-phenanthroline 

and L = imidazoledanysl or 1-dansylpiperazine.80,92 

Our previous work with fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ 

photoCORMs, in which NN = 4,4′-dimethyl-2,2′-bipyridine (4,4′-Me2bpy), 2,2′-

bipyridine (bpy), and 4,4′-dimethylester-2,2′-bipyridine (4,4′-dmebpy), highlighted the 

strong influence of the monodentate L ligand in the photochemical ligand dissociation 

reactions.57 We discovered that a π-donating Br− directs photodissociation of an 

equatorial CO in the first step, while a π-accepting py directs photodissociation of the 
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axial CO in the first step. We observed this trend regardless of the electron-donating 

(methyl) or electron-withdrawing (methyl ester) substituents at the 4,4′ positions of 2,2′-

bipyridine. Additionally, in agreement with reports of related Mn(I) photoCORMs, the 

ΦCO increases with increasing NN π-acidity (4,4′-Me2bpy < bpy < 4,4′-dmebpy) in each 

series, and all compounds with L = Br− displayed larger ΦCO values than their L = py 

analogues.   

The purpose of this work is to broaden our investigation by probing the impact of 

a sterically bulky NN bidentate ligand on the photochemical ligand dissociation 

efficiency and mechanism in fac-[Mn(NN)(CO)3L]n+ photoCORMs. The impact of steric 

distortion on fac-[Mn(NN)(CO)3L]n+ photoCORMs has not been clearly investigated. In 

this study, we utilized 6,6′-dimethyl-2,2′-bipyridine (6,6′-Me2bpy) to prepare two new 

photoCORMs, fac-[Mn(6,6′-Me2bpy)(CO)3Br] (6,6′-Me2bpy-Br) and fac-[Mn(6,6′-

Me2bpy)(CO)3(py)]+ (6,6′-Me2bpy-py) for direct comparison to our previously reported 

fac-[Mn(4,4′-Me2bpy)(CO)3Br] (4,4′-Me2bpy-Br) and fac-[Mn(4,4′-Me2bpy)(CO)3(py)]+ 

(4,4′-Me2bpy-py) analogues.57 The photoCORMs discussed in this work are shown in 

Figure 22. The methyl groups at the 4,4′- and 6,6′-positions are expected to impart similar 

electronic effects but significantly different steric effects as a result of the placement of 

the substituents relative to the Mn-CO bonds. Herein we present an investigation into the 

impact of steric bulk on the structure and photophysical and photochemical properties of 

fac-[Mn(NN)(CO)3L]n+ photoCORMs. 
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Figure 22. Structural representations and naming scheme for the Mn(I) photoCORMs. 

 

3.2. Experimental Details 

 Materials 

Bromopentacarbonylmanganese(I) was purchased from Strem Chemicals. Silver 

trifluoromethanesulfonate (AgOTf) was purchased from Acros Organics. Acetonitrile, 

pyridine, dichloromethane, diethyl ether, methanol, hexane, and chloroform were 

purchased from Fisher Scientific. Potassium tris(oxalato)ferrate(III) was purchased from 

Alfa Aesar. Acetonitrile-d3 were purchased from Cambridge Isotope Laboratories. 

[Mn(4,4′-Me2bpy)3]ClO4,115 fac-[Mn(4,4’-Me2bpy)(CO)3Br] (4,4′-Me2bpy-Br),94 and fac-
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[Mn(4,4’-Me2bpy)(CO)3py]+ (4,4′-Me2bpy-py),57 were synthesized according to reported 

procedures. 

Methods 

All reactions and experiments were performed in the dark (unless otherwise 

noted) to prevent unintentional photodecomposition. 

Synthesis of fac-[Mn(6,6′-Me2bpy)(CO)3Br] (6,6′-Me2bpy-Br) 

The synthetic procedure was adapted from a previously reported procedure for 

related Mn(I) compounds.94 Mn(CO)5Br (270 mg, 0.98 mmol) and 6,6′-dimethyl-2,2′-

dipyridyl (200 mg, 1.0 mmol) were added to 30 mL of diethyl ether and heated at reflux 

for 4 h under Ar. After cooling to room temperature, the yellow precipitate was collected 

by vacuum filtration and washed with diethyl ether. Yield: 320 mg (0.79 mmol, 81%). 1H 

NMR (500 MHz, CD3CN): δ 8.01 (2H, d), 7.93 (2H, t), 7.48 (2H, m), 3.1 (6H, s). 

Elemental analysis calculated for C15H12O3N2MnBr: 44.69% C, 3.00% H, 6.94% N. 

Found: 44.6% C, 2.98% H, 7.00% N. HR-ESI(+)-MS (CH3CN): [M−Br+CH3CN]+, m/z 

= 364.048 (calcd m/z = 364.049). 

Synthesis of fac-[Mn(6,6′-Me2bpy)(CO)3(py)](OTf) (6,6′-Me2bpy-py) 

The synthetic procedure was adapted from a previously reported procedure for 

related Mn(I) compounds.57 A mixture of fac-[Mn(6,6′-Me2bpy)(CO)3Br] (100 mg, 0.24 

mmol) and AgOTf (110 mg, 0.42 mmol) in 15 mL of CH2Cl2 was stirred at room 

temperature for 16 h. The precipitated AgBr was filtered through Celite, and the solvent 

was evaporated under reduced pressure. The obtained yellow solid was dissolved in 20 

mL of methanol followed by addition of 1 mL of pyridine. The solution was heated at 
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reflux under argon for 5 h. After cooling to room temperature, the solvent was removed 

under reduced pressure. The yellow residue was dissolved in 5 mL of CH2Cl2 and added 

dropwise to 100 mL of hexane to induce precipitation. The yellow solid was collected by 

vacuum filtration and washed with diethyl ether. Yield: 90 mg (0.16 mmol, 67 %). 1H 

NMR (500 MHz, CD3CN): δ 7.97 (2H, t), 7.90 (2H, d), 7.76 (1H, m), 7.66 (2H, d), 7.62 

(2H, d), 7.16 (2H, t), 3.15 (6H, s). Elemental analysis calculated for 

C21H17O6N3MnF3S•0.5H2O: 45.01% C, 3.24 % H, 7.50% N, 5.72% S. Found: 45.22% C, 

3.00% H, 7.53% N, 5.76% S. HR-ESI(+)-MS (CH3CN): [M−OTf]+, m/z = 402.064 (calcd 

m/z = 402.065).  

Elemental Analysis 

Elemental analysis (C, H, N, S) was performed by Atlantic Microlabs, Inc. 

(Norcross, GA). Prior to combustion, samples were protected from light to prevent 

photodecomposition. 

High Resolution Electrospray Ionization Mass Spectrometry 

HR-ESI(+)-MS spectra were recorded using a Thermo Fisher Scientific Q 

Exactive Plus hybrid quadrupole–Orbitrap mass spectrometer with solvent flow rate of 20 

μL/min in the positive mode. A potential of 4.0 kV was applied to ionize the 5 μM 

solution of each compound in CH3CN. 

Single Crystal X-ray Crystallography 

Crystals suitable for X-ray diffraction were obtained by slow vapor diffusion of 

diethyl ether into a CH2Cl2 solution of each complex. X-ray intensity data were measured 

on a Bruker PHOTON II CPAD-based diffractometer with dual Cu/Mo ImuS microfocus 
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optics (Cu Kα radiation, λ = 1.54178 Å, Mo Kα radiation, λ =0.71073 Å). Crystals were 

mounted on a cryoloop using Paratone oil and placed under a steam of nitrogen at 100 K 

(Oxford Cryosystems). The detector was placed at a distance of 5.00 cm from the crystal. 

The data were corrected for absorption with the SADABS program.  The structures were 

refined using the Bruker SHELXTL Software Package (Version 6.1) and were solved 

using direct methods until the final anisotropic full-matrix, least squares refinement of F2 

converged. Crystallographic data for 4,4′-Me2bpy-Br, 6,6′-Me2bpy-Br, 4,4′-Me2bpy-py, 

and 6,6′-Me2bpy-py are provided in Tables A1 and A2. CCDC numbers 1989788-

1989791 contain the supplementary crystallographic data for this paper and can be 

obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/structures. 

Computational Methods 

The geometries for 6,6′-Me2bpy-Br, 6,6′-Me2bpy-py, and proposed photochemical 

intermediates were fully optimized using the M06 level98,99 of density functional theory 

(DFT) with the SMD continuum solvation model for CH3CN solvent100 in the Gaussian 

16 program.116  The 6-31G* basis set was utilized for C, H, N, and O,101 while the SDD 

energy consistent pseudopotentials were utilized for Mn and Br.117 To confirm the 

presence of local minima on the potential energy surfaces, frequency analysis was 

performed after geometric optimization. The Avogadro program (Version 1.2.0)103 was 

used to obtain the calculate C−O stretching frequencies which were multiplied by an 

frequency scaling factor of 0.96 for comparison to experimental data. 

1H NMR 

http://www.ccdc.cam.ac.uk/structures
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1H NMR spectra were obtained on a Bruker Ascend 500 MHz spectrometer at 298 

K. The chemical shifts were referenced to the CD3CN solvent peak (δ = 1.94 ppm). 

Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR spectra were collected using a Shimadzu IRAffinity-1S Fourier transform 

infrared spectrophotometer and a CaF¬2 liquid IR cell with CH3CN solvent. 

 Electronic Absorption Spectroscopy 

Electronic absorption spectra were recorded with an Agilent Cary 8454 diode 

array UV-visible spectrophotometer with 1 nm resolution and 0.5 s integration time in a 1 

× 1 cm quartz cuvette at room temperature. Extinction coefficients in CH3CN were 

measured in triplicate. 

Photolysis Experiments 

The photolysis studies were carried out with CH3CN solutions of the compounds 

at room temperature and 405 nm LEDs (Luxeon Star LED, Quadica Developments, Inc., 

Lethbridge, Alberta, Canada). Each sample was irradiated for varied time intervals and 

analyzed by the appropriate spectroscopic method (FTIR, electronic absorption and 1H 

NMR analysis). Analogous dark control experiments were performed in the absence of 

irradiation. Ferrioxalate chemical actinometry was performed to determine the photon 

flux of the 405 nm light source (2.7 × 10−8 mol photons/s).97 The quantum yield of CO 

dissociation (ΦCO) was measured using electronic absorption spectroscopy by monitoring 

the decrease in the MLCT absorbance band at very early times (<10% change in 

absorbance).  All samples were absorbance matched at the irradiation wavelength (405 

nm). The rate of moles of reactant lost was obtained from the slope of the moles of 
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reactant vs irradiation time plot. Values were corrected for the fraction of light absorbed 

by the sample at the 405 nm. The ΦCO values were calculated by dividing the rate of 

moles of reactant lost (in moles reactant/s) by the photon flux (moles of photons/s). 

Representative data for 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py are provided in Figure A14. 

3.3. Results and Discussion 

Synthesis and Characterization 

The new compounds 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py were prepared by 

adapting the previously reported methods for the 4,4′-Me2bpy analogues.57,94. It is critical 

to keep all Mn(I)-containing solids and solutions in the dark, as rapid 

photodecomposition occurs under ambient light conditions. Elemental analysis (C, H, N, 

S) and ESI-MS were consistent with the proposed compositions, and the 1H NMR spectra 

in CD3CN (Figures A15 and A16) were consistent with the proposed structures.  

Structural Analysis 

A comparison of bond lengths and bond angles obtained by single crystal X-ray 

diffraction provides important information about the impact of steric bulk on the fac-

[Mn(NN)(CO)3(L)]n+ complexes. The crystal structures for 4,4′-Me2bpy-Br, 6,6′-Me2bpy-

Br, 4,4′-Me2bpy-py and 6,6′-Me2bpy-py are provided in Figure 23, and tabulated bond 

distances and angles are provided in Tables A3 and A4. For 6,6′-Me2bpy-Br and 4,4′-

Me2bpy-py, there are three and two multiple equivalents in the asymmetric unit, 

respectively. In general, the bond lengths are not impacted significantly between the 4,4′-

Me2bpy complexes and their 6,6′-Me2bpy analogues. The most notable exception is the 

Mn(1)−N(1) and Mn(1)-N(2) bonds (i.e. the bonds between Mn and the N atoms on 



 
 

66 

 

Me2bpy), which increase from 2.023(3) and 2.040(3) Å to 2.079(2) and 2.080(2) Å for 

4,4′-Me2bpy-Br and 6,6′-Me2bpy-Br, respectively, as a result of this interference between 

the methyl substituents and equatorial CO ligands.  A comparison of bond angles 

suggests the structural impacts of steric bulk. In 4,4′-Me2bpy-Br, the C(1)−Mn(1)−C(3) 

bond angle (between the two equatorial CO ligands) is 88.8(2)°, whereas this same bond 

angle in 6,6′-Me2bpy-Br is contracted to 84.1(1)°, as a result of the interference between 

the 6,6′-methyl groups and the equatorial CO ligands (Figure 24). It should be noted that 

we cannot rule out contribution of crystal packing effects toward the differences in these 

bond angles, as a small yet significant difference in Mn-C bond lengths are observed as a 

function of methyl group placement (Table A3). Finally, the methyl substituents at the 

6,6′-positions cause the bidentate ligand to tilt out of the “normal” plane as a result of 

interferences with the equatorial CO ligands (Figure 3). By defining the “normal” 

Me2bpy ligand plane with Mn(1), N(1), and N(2), and the Me2bpy plane with N(1), N(2), 

C(8), and C(11) (as shown in Figure A17), the 6,6′-Me2bpy ligand is tilted toward L by 

~21° and ~26° in the structure of 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py, respectively, 

while the 4,4′-Me2bpy ligand only tilts by ~9° and ~10° in 4,4′-Me2bpy-Br and 4,4′-

Me2bpy-py, respectively. Tilting of the ligand is consistent with similar tilt angles 

reported in Ru(II) complexes with bulky bidentate ligands such as 6,6′-Me2bpy, 2,2′-

biquinoline, 2,9-dimethyl-1,10-phenathroline, and 3,6-dimethyldipyridylphenazine.118–121  
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Figure 23. Crystal structures of 4,4′-Me2bpy-Br, 6,6′-Me2bpy-Br, 4,4′-Me2bpy-py and 
6,6′-Me2bpy-py with thermal ellipsoids set at 50% probability level. Triflate counter ion 
for 4,4′-Me2bpy-py and 6,6′-Me2bpy-py is omitted for clarity. 
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Figure 24. Crystal structures of 4,4′-Me2bpy-Br (A), 6,6′-Me2bpy-Br (B), 4,4′-Me2bpy-py 
(C) and 6,6′-Me2bpy-py (D) viewed from the side (left) and down the Br-Mn or py-Mn 
bond (right). Thermal ellipsoids set at 50% probability level. 

 

 

 



 
 

69 

 

Vibrational Spectroscopy 

FTIR spectral analysis provides insight into the electron density on the Mn center 

by virtue of the C−O stretching frequencies. The FTIR spectra for all four compounds are 

shown in Figure 25, and the experimental vibrational frequencies compared to the 

calculated values predicted from DFT calculations are presented in Table 6. The FTIR 

spectra for all fac-[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ compounds exhibit 

three vibrational bands in the C−O stretching region (1800-2200 cm−1), in agreement 

with the compounds’ Cs symmetry. The νCO values for the compounds are determined by 

the ligand set’s impact on the Mn center’s electron density, as decreasing the electron 

density on Mn causes weaker Mn-CO π-backbonding and higher C-O stretching 

frequency. Similar to our previously reported 4,4′-Me2bpy compounds,57 replacing the π-

donor Br− with π-accepting py in the 6,6′-Me2bpy compounds shifts νCO from 2023, 1926, 

and 1919 cm−1 to 2042, 1954, and 1939 cm−1, respectively. The placement of the methyl 

groups at either the 4,4′- or 6,6′-positions of bpy have very little impact on the vibrational 

frequencies, indicating that the electron donation is not significantly different at the ortho 

vs para positions of the pyridine rings.  
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Figure 25. FTIR spectra for 4,4′-Me2bpy-Br (black solid), 6,6′-Me2bpy-Br (blue solid), 
4,4′-Me2bpy-py (black dashed) and 6,6′-Me2bpy-py (blue dashed) in rt CH3CN. 

 

Table 6. Experimental and calculated C−O vibrational frequencies for fac-
[Mn(NN)(CO)3Br] and fac-[Mn(NN)(CO)3(py)]+ (NN = 4,4′-Me2bpy and 6,6′-Me2bpy) in 
rt CH3CN. 
Compound Experimental ν(CO) (cm−1) a Calculated ν(CO) (cm−1) b 

4,4′-Me2bpy-Br c 2026, 1933, 1919  2019, 1938, 1929 

6,6′-Me2bpy-Br 2023, 1926, 1919 2015, 1938, 1928 

4,4′-Me2bpy-py c 2042, 1954, 1939  2033, 1953, 1947 

6,6′-Me2bpy-py 2039, 1950, 1936 2031, 1951, 1946 
a Data collected in rt CH3CN in a CaF2 cell. 
b Obtained from the energy optimized structures using the M06 level of DFT and the 6-
31G* basis set for H, C, N, and O and the SDD basis set for Mn and Br. 
c From reference.57  
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Electronic Absorption Spectroscopy 

The electronic absorption spectra of the four photoCORMs in CH3CN are 

presented in Figure 26, and the absorption maxima and extinction coefficients are 

provided in Table 7. For fac-[Mn(NN)(CO)3Br] compounds, the lowest energy 

absorbance band is known to have both Mn(dπ)→NN(π*) singlet metal-to-ligand charge 

transfer (1MLCT) and Br(p)→NN(π*) singlet halide-to-ligand charge transfer (1XLCT) 

character, while the fac-[Mn(NN)(CO)3(py)]+ analogues’ lowest energy band is expected 

to have primarily 1MLCT character. As expected based on the previously reported 4,4′-

Me2bpy-Br and 4,4′-Me2bpy-py complexes,57 a blue shift in the lowest energy band is 

observed by replacing the Br− in 6,6′-Me2bpy-Br (λmax = 397 nm; ε = 2800 M−1cm−1) with 

py to afford 6,6′-Me2bpy-py (λmax = 374 nm; ε = 3300 M−1cm−1) due to the stabilization 

of the Mn(dπ) orbitals by the π-accepting py. In comparing the effects of the methyl 

substituent placement on Me2bpy, a small blue shift in the MLCT band is observed for 

the 6,6′-Me2bpy complexes compared to their 4,4′-Me2bpy analogues. Moving the methyl 

substituents from the 4,4′ positions to the 6,6′ positions causes shifting from 411 to 397 

nm (4,4′-Me2bpy-Br and 6,6′-Me2bpy-Br, respectively) and from 378 to 374 nm for 4,4′-

Me2bpy-py and 6,6′-Me2bpy-py, respectively. While the cause of this small blue shift is 

not clear, and it may be a combination of both steric and electronic factors, a similar trend 

has been observed in related compounds featuring lowest energy 1MLCT absorbance 

bands. For the analogous fac-[Re(Me2bpy)(CO)3(py)]+ compounds in CH3CN, the 

1MLCT band was found at 369 and 364 nm for 4,4′-Me2bpy and 6,6′-Me2bpy, 

respectively.122 Similarly, moving the methyl substituents from 4,4′ to 6,6′ caused a shift 



 
 

72 

 

from 441 to 418 nm for the 1MLCT band for [Mo(Me2bpy)(CO)4] in acetone.123 This 

shift was also observed for [Ru(bpy)2(Me2bpy)]2+, in which the lowest energy band, 

comprising both Ru(dπ)→bpy(π*) and Ru(dπ)→Me2bpy(π*) MLCT transitions, has a 

maximum at 455 and 453 nm for 4,4′-Me2bpy and 6,6′-Me2bpy, respectively.124  

 

Figure 26. Electronic absorption spectra for 4,4′-Me2bpy-Br (black solid), 6,6′-Me2bpy-
Br (blue solid), 4,4′-Me2bpy-py (black dashed) and 6,6′-Me2bpy-py (blue dashed) in rt 
CH3CN. Inset: zoom-in region highlighting the lowest energy absorbance bands. 

 

Table 7. Electronic absorption spectroscopy data for fac-[Mn(NN)(CO)3Br] and fac-
[Mn(NN)(CO)3(py)]+ (NN = 4,4′-Me2bpy and 6,6′-Me2bpy) in rt CH3CN. 

 

Compound 

MLCT 

λ, nm (ε × 10−4, M−1cm−1) 

π→π* 

λ, nm (ε × 10−4, M−1cm−1) 

4,4′-Me2bpy-Br a 411 (2.9) 290 (18) 

6,6′-Me2bpy-Br 397 (2.8) 328 (9.8) 

4,4′-Me2bpy-py a 378 (3.4) 287 (18) 

6,6′-Me2bpy-py 374 (3.3) 330 (13) 
a From reference.57  
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Photochemical Ligand Dissociation 

In our previous work using both FTIR and 1H NMR to interrogate the 

photointermediates produced during irradiation with visible light,57 we reported that 

irradiation of 4,4′-Me2bpy-Br and 4,4′-Me2bpy-py in CH3CN results in formation of two 

dicarbonyl intermediates. In the first step, one CO is exchanged with a solvent molecule, 

and in the second step, the monodentate ligand L is replaced with a second solvent 

molecule. The carbonyl ligands provide a convenient probe into the ligand exchange 

processes that occur during photolysis of the fac-[Mn(NN)(CO)3(L)]n+ complexes with 

visible light, as the number of νCO signals and relative frequencies can be correlated to the 

molecule’s point group and ligand set. Figure 6 highlights the comparison between the 

FTIR spectral changes during photolysis of the NN = 4,4′-Me2bpy compounds (A and B) 

with the NN = 6,6′-Me2bpy compounds (C and D). No spectral shifts are observed by 

FTIR, 1H NMR, or electronic absorption spectroscopy when samples are stored in 

solution in the dark for at least 1 h (Figures A18-A21). 1H NMR analysis (Figures A22-

A23) complements the information obtained by FTIR because, although it gives no clear 

information about the number of CO ligands coordinated, it provides information about 

whether a mirror plane bisecting the NN ligand is present.  

In the case of 4,4′-Me2bpy-Br and 6,6′-Me2bpy-Br, the most notable difference is 

that while two sets of intermediate νCO bands are observed for 4,4′-Me2bpy-Br (Fig. 

27A), only one set of intermediate bands is observed for 6,6′-Me2bpy-Br (Fig. 27C). The 

loss of the original signals at 2023, 1926, 1919 cm−1 is accompanied by the appearance of 

new bands at 1960 and 1876 cm−1. Considering the similar frequencies between this set 
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and the second intermediate bands for the 4,4′-Me2bpy-Br analogue, this intermediate is 

likely a dicarbonyl intermediate in which one CO and Br− are both replaced by CH3CN 

solvent. The observed νCO bands are found at frequencies similar to those predicted by 

DFT calculations (Table A5) for either cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ (1967 

and 1908 cm−1) or cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ (1966 and 1908 cm−1). 

As no evidence of a Br−-containing intermediate is observed on the time scale of this 

experiment, we propose that the Mn-Br bond is considerably more labile following the 

first CO dissociation with the addition of steric bulk at the 6,6′ positions than in the 4,4′-

Me2bpy analogue. 1H NMR analysis for 4,4′-Me2bpy-Br indicated that loss of Br− from 

the cis,cis-[Mn(4,4′-Me2bpy)(CO)2(CH3CN)Br] intermediate forms cis,cis-[Mn(4,4′-

Me2bpy)(CO)2(CH3CN)2]+ followed by conversion to the cis,trans-[Mn(4,4′-

Me2bpy)(CO)2(CH3CN)2]+ isomer (in which both CO ligands are in equatorial positions 

and both CH3CN ligands are in axial positions). A similar analysis of 6,6′-Me2bpy-Br by 

1H NMR (Figure A22) shows only the formation of a symmetric intermediate, cis,trans-

[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+. DFT calculations predict that the νCO are very 

similar between the cis,cis and cis,trans isomer, so only 1H NMR can differentiate 

between these two species. We propose that the structural distortion imparted by the 6,6′-

Me2bpy ligand increases the photolability, causing the formation and consumption of 

cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)Br] and cis,cis-[Mn(6,6′-

Me2bpy)(CO)2(CH3CN)2]+ to occur on a timescale too fast to observe by FTIR and 1H 

NMR spectroscopy (Scheme 2). 
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Figure 27. FTIR spectra for 4,4′-Me2bpy-Br (A), 4,4′-Me2bpy-py (B), 6,6′-Me2bpy-Br (C), 
and 6,6′-Me2bpy-py (D), in rt CH3CN (1 mM) following irradiation with λ = 405 nm.  
 
 
Scheme 2. Proposed photochemical ligand exchange mechanism for fac-[Mn(6,6′-
Me2bpy)(CO)3Br] in CH3CN. 
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The FTIR spectra collected during photolysis of 4,4′-Me2bpy-py (Figure 27B) and 

6,6′-Me2bpy-py (Figure 27D) show very similar changes. In our previous work with 4,4′-

Me2bpy-py,57 we found that the first photochemical intermediate is cis,trans-[Mn(4,4′-

Me2bpy)(CO)2(CH3CN)(py)]+ which forms through exchange of the axial CO with 

CH3CN. Absorption of a photon is then required to exchange py with CH3CN to form the 

second intermediate, cis,trans-[Mn(4,4′-Me2bpy)(CO)2(CH3CN)2]+. Unlike the L = Br− 

analogue, this process does not occur in the absence of light. In the FTIR spectrum 

(Figure 27B), the cis,trans-[Mn(4,4′-Me2bpy)(CO)2(CH3CN)(py)]+ bands at 1948 and 

1867 cm−1 are followed by a slightly higher energy set (1962 and 1879 cm−1) that appear 

as shoulders on the first intermediate bands, corresponding to cis,trans-[Mn(4,4′-

Me2bpy)(CO)2(CH3CN)2]+.57 The same trend is observed for 6,6′-Me2bpy-py, in which 

the original bands at 2039, 1950, and 1936 cm−1 decrease in intensity as the new bands at 

1948 and 1863 cm−1 appear (Figure 6D). Further irradiation causes the decrease in the 

first intermediate bands concomitant with the appearance of the second intermediate 

bands at 1958 and 1875 cm−1. These two intermediates are assigned as cis,trans-

[Mn(6,6′-Me2bpy)(CO)2(CH3CN)(py)]+ and cis,trans-[Mn(6,6′-

Me2bpy)(CO)2(CH3CN)2]+, respectively, based on the 4,4′-Me2bpy analogues and the 1H 

NMR of the photointermediates (Figure A23). The theoretical νCO bands calculated by 

DFT for cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)(py)]+ (1893 and 1953 cm−1) and 

cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ (1908 and 1966 cm−1), which highlight a 

small increase in stretching frequency upon replacement of py with CH3CN, are in sound 

agreement with experimental results (Table A5). 
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The most notable difference arising from the placement of the methyl substituents 

is the lability of the py ligand from the cis,trans-[Mn(NN)(CO)2(CH3CN)(py)]+ 

intermediate. A sample of 6,6′-Me2bpy-py was irradiated in CH3CN for 25 s (red line, 

Figure 28). At this time, both the first and second intermediates, cis,trans-

[Mn(NN)(CO)2(CH3CN)(py)]+ and cis,trans-[Mn(NN)(CO)2(CH3CN)2]+, respectively, 

were observed. The FTIR spectrum was then measured after the sample was stored in the 

dark for 5 min (gray line, Figure 28). At this point, the first intermediate completely 

converted into the second intermediate, indicating thermal dissociation of py from this 

dicarbonyl intermediate, as shown in Scheme 3. This is in stark contrast to the analogous 

experiment with 4,4′-Me2bpy-py, in which this py exchange required irradiation.57 The 

structural distortion imparted by the 6,6′-Me2bpy apparently weakens the Mn-py bond in 

this intermediate, facilitating facile exchange with solvent. This thermal exchange of L 

with solvent in the dark was observed for 4,4′-Me2bpy-Br,57 and the Br− ligand is even 

more labile in the 6,6′-Me2bpy case, as no cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)Br] 

intermediate can be observed on the timescales of these experiments. This steric bulk also 

leads to a shorter irradiation time required to fully dissociate all CO ligands from 1 mM 

CH3CN solutions of 6,6′-Me2bpy-py vs 4,4′-Me2bpy-py, as shown in Figures 27B and 

27D. 
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Figure 28. FTIR spectra for 6,6′-Me2bpy-Br in CH3CN after irradiation for 25 s with 405 
nm light to form the first intermediate (red line), and after storing the sample (containing 
the original species and first intermediate) in the dark in solution for 5 minutes (gray line). 
The first and second intermediates are indicated with circles and asterisks, respectively. 

 

Scheme 2. Proposed photochemical ligand exchange mechanism for fac-[Mn(6,6′-
Me2bpy)(CO)3(py)]+ in CH3CN. 

 

 

 

The quantum yield for exchange of the first CO ligand (ΦCO) from Mn(I) 

photoCORMs has been reported to generally increase with increasing π-acidity of the NN 

ligand. We investigated the impact of steric distortion on ΦCO by irradiating solutions of 
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6,6′-Me2bpy-Br and 6,6′-Me2bpy-py in CH3CN with 405 nm light (flux = 2.7 × 10−8 mol 

photons/s). The electronic absorption spectra for the photolysis of 6,6′-Me2bpy-Br in 

CH3CN is presented in Figure A14. For 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py, the values 

for ΦCO were calculated to be 0.38 ± 0.01 and 0.27 ± 0.01, respectively. The greater ΦCO 

for 6,6′-Me2bpy-Br compared to 6,6′-Me2bpy-py is consistent with the trend for 4,4′-

Me2bpy-Br and 4,4′-Me2bpy-py (ΦCO = 0.20 ± 0.01 and 0.15 ± 0.01, respectively).57 The 

increased ΦCO for each NN = 6,6′-Me2bpy complex compared to its 4,4′-Me2bpy 

analogue is presumably due to the steric distortion caused by the location of the methyl 

substituents and resulting bond angle distortions, as discussed above, which destabilize 

the metal-ligand bonds and makes them more susceptible to exchange with solvent. For 

6,6′-Me2bpy-Br and 6,6′-Me2bpy-py, it should be noted that the measured ΦCO is an 

“apparent” ΦCO, as exchange of the first CO and Br−/py occur on similar timescales. The 

inability to resolve these two processes from each other complicates the measurement of 

this value; however, the presence of an isosbestic point during early photolysis times 

(Figure A14) allows for determination of a quantum yield for the photochemical process. 

As irradiation of 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py with 405 nm leads to the 

eventual loss of all three coordinated CO ligands, as observed by FTIR analysis, the 

question remains about the fate of the rest of the metal complex. Analyses of related 

Mn(I) photoCORMs described the photoproducts containing oxidized Mn species, 

including [Mn(NN)3]2+, [Mn(NN)2(solvent)2]2+, MnO2, and solvated Mn2+ ion.32,79,80,84 

During irradiation of the fac-[Mn(NN)(CO)3L]n+ complexes, the 1H NMR signals become 

significantly broadened, suggesting the formation of a paramagnetic species. An analysis 
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of the electronic absorption spectra of solutions following exhaustive photolysis (Figure 

A24), in comparison to the free 4,4′-Me2bpy and 6,6′-Me2bpy ligands, suggests that a 

significant amount of free 6,6′-Me2bpy is present in solution following irradiation of both 

6,6′-Me2bpy-Br and 6,6′-Me2bpy-py. In contrast, the electronic absorption spectra for the 

4,4′-Me2bpy-Br and 4,4′-Me2bpy-py photoproduct solutions are much more similar to the 

spectrum of [Mn(4,4′-Me2bpy)3]2+ (Figure A24). Additionally, free 6,6′-Me2bpy is 

detected by 1H NMR in solution after photolysis (Figure A25), while 4,4′-Me2bpy is not. 

The 6,6′-position of the methyl groups is expected to inhibit the formation of [Mn(6,6′-

Me2bpy)3]2+, resulting in a greater amount of free ligand in solution. 

3.4. Conclusions 

Two new fac-[Mn(NN)(CO)3(L)]n+ photoCORMs, 6,6′-Me2bpy-Br and 6,6′-

Me2bpy-py, featuring a sterically bulky bidentate ligand, were prepared, and their 

photophysical and photochemical properties were investigated compared to the 

previously reported 4,4′-Me2bpy analogues. While the placement of the methyl 

substituents has little impact on the electronic properties of the complexes, the steric 

distortion is apparent in the crystal structures of the four compounds. Notably, the steric 

bulk of the 6,6′-Me2bpy ligand causes a contraction of the angle between the two 

equatorial CO ligands and a significantly canted bidentate ligand relative to the 4,4′-

Me2bpy complexes. The steric bulk enhances the ligand exchange efficiencies and 

increases the labilities of both CO and ancillary Br− or py ligands during irradiation with 

visible light while maintaining stability in solution in the dark. Work is underway to 
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further study the impact of ligand sets on photochemical ligand dissociation in 

photoCORMs.  
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Chapter 4: Release of CO and Production of 1O2 from a Mn-BODIPY PhotoCORM 

with Visible Light 

This chapter is adapted from a published article entitled “Release of CO and 

production of 1O2 from a Mn-BODIPY photoCORM with visible light” By Pordel S., 

Pickens R.N., and White J.K. Organometallics, no. 40 (2021): 2983-2994. Copyright 

© 2021 American Chemical Society.125 

4.1.  Introduction 

The main mechanism with which most chemotherapeutic and nonchemical 

therapies, such as radiation, effectively treat cancer is through production of highly 

reactive oxygen species (ROS).126 ROS interfere with cellular functions by damaging 

DNA, lipids, and proteins.127 However, the effectiveness of most chemotherapeutics is 

limited by drug resistance and lack of selectivity.10 Drug resistance of some cancer cells 

is due to an elevated level of a tripeptide, γ-l-glutamyl-l-cysteinyl-glycine known 

as glutathione (GSH).12 GSH is a cysteine-containing antioxidant that protects cells from 

the damaging effects of ROS, increasing the antioxidant capacity of cancer cells.128 The 

elevated levels of GSH in cancer cells has been linked to the overexpression of 

cystathionine β-synthase (CBS).12 CBS is an enzyme that catalyzes the first step of 

transsulfuration, forming cysteine, the limiting reagent in GSH production.9,129 

A recent study by Mascharak, et. al. showed that released CO from a 

photoactivated CO releasing molecule (photoCORM) labeled as [Mn(CO)3(phen)(PTA)]+ 

(phen = 1,10-phenanthroline; PTA =  1,3,5-triaza-7-phosphaadamantane) increases the 

sensitivity of breast cancer cells lines to the generated ROS from doxorubicin by 
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inhibiting CBS activity and decreasing GSH level, diminishing the antioxidant capacity.11 

In addition to sensitizing cancer cells to ROS, CO has been shown to exhibit anticancer 

activity in various cancer cell lines.75,80,130,131 In many studies the effect of exogenous CO 

has been investigated by photoCORMs. While stable in the dark, photoCORMs offer 

selectivity and controlled delivery of CO into a specific target upon exposure to light.132 

The majority of reported metal-based photoCORMs are based on Mn(I)  complexes.  

One of the main challenges in designing an efficient photoCORM is activation by 

light in the phototherapeutic window (600-950 nm). To date, various strategies, including 

ancillary ligand modifications,133,134 multi-photon excitation,135,136 mixing with a triplet-

state photosensitizer,137 quantum dots,138 upconverting nanoparticles,139 or as previously 

reported by our group, coupling with a visible light absorbing metal complex,86 etc.,  

have been employed to activate the photo-CO dissociation under visible and NIR 

irradiation. Alternatively, the use of dye photosensitizers as light harvesting components 

of the design allow for visible light-activated photoCORMs.140 

In our system, we seek to take advantage of combining the CO release from the 

Mn(CO)3 moiety and a dye photosensitizer capable of producing reactive singlet oxygen 

(1O2). This system would allow for visible light-activated production of 1O2 and release 

of CO, allowing a single molecule to sensitize cells to ROS while simultaneously 

producing ROS (1O2). 

The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes have attracted 

growing attention due to their high molar extinction coefficients and strong absorption in 

the visible region, easy structural modifications, and high photostability.141 BODIPY 



 
 

84 

 

dyes are highly fluorescent molecules (S1→S0), limiting the ability to populate their 

triplet excited (T1) states as the result of low intersystem crossing (ISC, S1→T1) 

efficiency.142 Triplet excited state population is a requirement for singlet oxygen 

generation in photodynamic therapy (PDT) , where molecular oxygen in its triplet ground 

state reacts with a long-lived triplet excited state to produce 1O2 by energy transfer.142 

BODIPY dyes can be easily modified in structure to increase the ISC and produce 1O2. 

One strategy is to introduce a heavy atom on the 2,6 positions of the BODIPY core to 

facilitate the ISC and populate the triplet excited state.143 So far, multiple studies have 

been done on various BODIPY-metal complexes including those of Ru(II),144–146 

Re(I),147,148 Pt(II),149–151 Ir(III),152 and Co(II)153,154 with different applications, mainly 

focused on PDT and photocatalysis. To the best of our knowledge, the Mn-BODIPY 

complex, with potential application in PDT, has yet to be reported. Herein, we report the 

synthesis, photophysical and photochemical properties, and formation of photo-

intermediates from two Mn(I) complexes sensitized by emissive BODIPY (BDP) 

chromophores (4-BDP,4′-methyl-2,2′-bipyridine), in which two iodide (I−) substituents 

have been incorporated on the 2,6 positions of one of the BDP ligands, labeled as Mn-

bpy-I-BDP, and the other one with H atoms on the 2,6 positions labeled as Mn-bpy-H-

BDP (Figure 29).  

According to previous studies, the BDP units are anticipated to have 

perpendicular orientation with respect to the pyridine.155 The iodide substituents facilitate 

the ISC in the bpy-I-BDP ligand, resulting in high 1O2 quantum yield. Population of the 

triplet excited state in the bpy-I-BDP free ligand and Mn-bpy-I-BDP complex was 
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confirmed by a phosphorescence peak at 77 K. In comparison with Mn-bpy-H-BDP, 

introducing I− substituents extends the Mn-bpy-I-BDP absorption further into the visible 

region, allowing the CO to photo-dissociate from the Mn(I) center with low energy light 

(590 nm) upon BDP excitation. The emission intensity of bpy-R-BDP (R = H or I) 

ligands quench by > 90%, upon complexation with Mn(CO)3 moiety. Our mechanistic 

studies suggest that bpy-R-BDP (R = H or I) ligands photo-dissociate from Mn(I) center 

and restore their full emission intensity after releasing all CO. In addition to producing 

1O2, the I atoms significantly increase the dark stability of complex in the solution 

compared to non-iodinated Mn-bpy-H-BDP.  

 

 

Figure 29. Schematic representation of BDP-based ligands and corresponding Mn(I) 
complexes 
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4.2. Results and Discussion 

Synthesis  

The 4‐carbaldehyde‐4′‐methyl‐2,2′‐bipyridine and bpy-H-BDP ligands were 

prepared according to the previous reported methods.156,157 The bpy-I-BDP was 

synthesized by a few modifications to a previously reported procedure.158 The bpy-I-BDP 

was obtained by reacting the bpy-H-BDP with N-iodosuccinimide (NIS) in a mixture of 

CH3Cl/AcOH at room temperature. The Mn-bpy-H-BDP and Mn-bpy-I-BDP complexes 

were prepared by reacting the Mn(CO)5Br with each of the bpy-H-BDP and bpy-I-BDP 

ligands, respectively, in Et2O at reflux for 3 h (Scheme 3). The 1H and 13C NMR of the 

new compounds are shown in Appendix Figures A26, A27, S28, S29 and A30. 
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Scheme 3. Synthetic approach for BDP-based ligands and corresponding Mn(I) complexes. 

  

 

Photophysical and Electrochemical Properties 

The spectroscopic properties for all compounds are collected in Table 8. As 

depicted in Figure 30 the absorption spectra of the bpy-R-BDP (R = H or I) ligands are 

dominated by the intense bands at 500 and 535 nm with high extinction coefficients of 

64,400 and 68,000 M−1cm−1 and a higher energy shoulder at 485 and 505 nm for bpy-H-

BDP and bpy-I-BDP, respectively. The main intense band is attributed to the 0-0 

vibrational band of the S0→S1 transitions, (i.e. BDP-based spin allowed π→π*), while 

the high energy shoulder is assigned as the 0-1 vibrational band of the same 
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transition.159,160 The 35 nm bathochromic shift of the absorption band in the bpy-I-BDP 

arises from the electron withdrawing ability of I atoms to conjugate with the BDP core.161 

The Mn complexes show similar absorption profiles to those of the free bpy-R-BDP (R = 

H or I) ligands. Upon complexation, the sharp BDP band undergoes a slight red shift of 

about 4 nm (25 × 105 cm−1) in both Mn-bpy-H-BDP (504 nm) and Mn-bpy-I-BDP (539 

nm). The reduced π conjugation between the BDP and pyridine portion of the bpy ligand 

due to the perpendicular orientation of BDP might account for the small red shift after 

coordination to the Mn.162 

The photophysical and photochemical properties of these two new complexes 

have been compared to our previously reported model Mn(Me2bpy)(CO)3Br complex 

where Me2bpy is 4,4′-dimethyl-2,2′-bipyridine.57,104 In Figure A31, the model complex 

Mn(Me2bpy)(CO)3Br shows a Mn(dπ) → bpy(π*) MLCT band at 411 nm, suggesting that 

the peaks between 360 and 420 nm in both Mn-bpy-R-BDP (R = H or I) complexes are 

arising from π→π* of BDP ligands with significant contribution from Mn(dπ) → bpy(π*) 

transition. This assignment is further supported by the higher intensity of this band in the 

both Mn-bpy-R-BDP (R = H or I) complexes compared to the free ligands seen in Figure 

30. 
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Figure 30. Overlaid electronic absorption spectra for bpy-H-BDP (red dashed), bpy-I-BDP 
(black dashed), Mn-bpy-H-BDP (red solid) and Mn-bpy-I-BDP (black solid) in room 
temperature CH3CN. 

 

As shown in Figure 31, 490 nm excitation of the bpy-R-BDP (R = H or I) ligands 

in CH3CN resulted in a very strong emission band at 515 nm with Φfl = 0.32 for bpy-H-

BDP, and a relatively weak emission peak at 560 nm with Φfl = 0.014 for bpy-I-BDP 

ligand (Rhodamine B as reference in EtOH, Φfl = 0.5).163 The lower Φfl of iodinated BDP 

ligand is attributed to the enhanced intersystem crossing (ISC) from 1ππ* to 3ππ* as the 

result of the heavy atom effect.164–166   Upon complexation to the Mn center, the 

fluorescence quantum yields decrease from 0.32 to 0.012 for Mn-bpy-H-BDP, and from 

0.014 to 0.0046 for Mn-bpy-I-BDP, suggesting the existence of a competitive non-

emissive process.  
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Figure 31. Overlaid emission spectra (relative intensities) (A) and normalized emission 
spectra (B) for bpy-H-BDP (red dashed), bpy-I-BDP (black dashed), Mn-bpy-H-BDP (red 
solid) and Mn-bpy-I-BDP (black solid) in room temperature CH3CN, λexc  = 490 nm, λabs 
at 490 nm: 0.1 

 

Table 8. Photophysical properties of BDP-based ligands and corresponding Mn(I) 
complexes 

Compound  λabs / nma ε × 10−3 / M-1 
cm-1a λem / nma Φfl

b 

bpy-I-BDP 535 68 560 0.014 

bpy-H-BDP 500 64 515 0.39 

Mn-bpy-I-BDP 539 76 570 0.004 

Mn-bpy-H-BDP 504 68 521 0.012 

Mn(Me2bpy)(CO)3Br 411 - - - 
a in CH3CN, b fluorescence quantum yield was measured in EtOH using Rhodamine B (RhB) as 
reference (EtOH, Φfl = 0.5) 

 

The excitation spectra in CH3CN (Figure A32) overlay well with the 

corresponding absorption spectra throughout the scan range, alluding to no emissive 

impurities being present. The excitation peak for Mn-bpy-H-BDP, however, is blue 
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shifted by a few nanometers and matches with the free bpy-H-BDP ligand. We suggested 

that this is due to the partial bpy-H-BDP ligand dissociation from the Mn center during 

the excitation.  

The electrochemical properties of all compounds were studied by cyclic 

voltammetry in room temperature DCM solution and the redox potentials are tabulated in 

Table 9. All potentials were referenced to the ferrocenium/ferrocene (Fc+/Fc) couple 

(E1/2 = 0.43 V vs Ag/AgCl in DCM). Both bpy-H-BDP and bpy-I-BDP ligands exhibited 

a quasi-reversible one-electron reduction peak at −1.65 and −1.38 V and a quasi-

reversible one-electron oxidation peak at 0.85 and 0.99 V in DCM, respectively (Figure 

32 and Figure A33). Each of the reduction and oxidation peaks are attributed to the 

formation of the π-radical anion and π-radical cation, respectively.155,167 The higher 

chemical reversibility of bpy-I-BDP with respect to bpy-H-BDP ligand is attributed to the 

higher stability of the π-radical anion and cation as a result of the 2,6-substitution on 

BDP.168 

Compared to bpy-H-BDP ligand, the introduction of two I atoms on the 2,6 

positions shift both the oxidation and reduction potentials to more positive values. In line 

with UV-Vis data, the electron-withdrawing I substituents stabilize the π and π* orbitals 

of BDP by decreasing the electron density on the BDP core, leading to more positive 

oxidation and reduction BDP potentials.169 This observation agrees with previously 

reported BDP data.170 Complexation with Mn shifts the BDP redox potentials to more 

positive values with an additional irreversible manganese oxidation observed at 0.75 and 

0.82 V for Mn-bpy-H-BDP and Mn-bpy-I-BDP, respectively. In the reduction region, in 
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addition to the peak observed for BDP ligand, formation of two new reduction peaks 

were observed at −1.58 and −1.87 V for Mn-bpy-H-BDP. Two additional reduction peaks 

were also observed for Mn-bpy-I-BDP, the first of which overlapped with the BDP peak 

at around −1.28 V, and the second new reduction peak appeared at −1.59 V in DCM.  

After comparing the potentials with free ligands and the model complex 

Mn(Me2bpy)(CO)3Br potentials,57 we attributed the first irreversible oxidation peak in 

both complexes to the MnI/II oxidation and second oxidation peak to the oxidation of 

BDP unit. The first reduction peak was attributed to BDP0/−, and the next two reduction 

peaks assigned as MnI/0, followed by the rapid dissociation of Br− to form a five 

coordinate radical species.94 These assignments suggested that while the HOMO in both 

Mn-bpy-R-BDP (R = H or I) complexes is localized on the Mn orbitals, the LUMO is 

mainly centered on the BDP units. 
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Figure 32. Cyclic voltammograms for 1 mM solutions of bpy-I-BDP (black dashed), Mn-
bpy-I-BDP (black solid) in room temperature DCM under N2 atmosphere with 0.1 M 
Bu4NPF6 as the supporting electrolyte, a Pt working electrode, Pt wire auxiliary electrode, 
Ag/AgCl reference electrode, and a scan rate of 200 mV/s. Potentials are referenced to the 
Fc+/Fc couple (+0.43 V vs. Ag/AgCl). 
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Table 9. Cyclic voltammetry data for BDP-based ligands and corresponding Mn(I) 
complexes in DCM. 

Compound  Ep
a (V) a Ep

a (V) a Ep
c (V) a Ep

c (V) a Ep
c (V) a 

bpy-I-BDP 0.99 - -1.38  
 

 
- 

bpy-H-BDP 0.85b - -1.65 b - - 

Mn-bpy-I-BDP       0.82 1.02 −1.26 -1.28 -1.59 

Mn-bpy-H-BDP 0.75 b 0.96 b −1.50 b -1.58 b -1.87 b 

Mn(Me2bpy)(CO)3Br 0.69 b - -1.90 b -2.11 b  
a Room temperature DCM under a N2 atmosphere with 0.1 M Bu4NPF6 as the supporting 
electrolyte, a Pt working electrode, Pt wire auxiliary electrode, Ag/AgCl reference 
electrode, and a scan rate of 200 mV/s. Potentials are reported vs. Ag/AgCl.b Room 
temperature DCM under a N2 atmosphere with 0.1 M Bu4NPF6 as the supporting 
electrolyte, a glassy carbon working electrode, Pt wire auxiliary electrode, Ag/AgCl 
reference electrode, and a scan rate of 200 mV/s. All potentials were referenced to the 
ferrocenium/ferrocene (Fc+/Fc) couple (E1/2 = 0.43 V vs Ag/AgCl in DCM). 

 

The IR spectra of the two Mn-bpy-R-BDP (R = H or I) complexes in the carbonyl 

region (1800-2200 cm-1) exhibited three CO stretches similar to previously reported fac-

Mn(I) tricarbonyl complexes.32,130 The FTIR spectra in CH3CN are shown in Figure 33. 

The three CO stretches showed up at 2027, 1936 and 1923 cm-1 for Mn-bpy-H-BDP, and 

2027, 1934 and 1924 cm-1 for Mn-bpy-I-BDP. These values are in good agreement with 

the previously reported values for the model complex Mn(Me2bpy)(CO)3Br.57 The 

similar CO stretches in both Mn-bpy-R-BDP (R = H or I) complexes are consistent with 

the observed redox potentials discussed above. Since the Mn-based HOMOs are less 

affected by the complexation (shown by the similar oxidation potentials before and after 

complexation in Table 9), the CO stretches show up at similar frequencies for both Mn-

bpy-R-BDP (R = H or I) complexes. The CO stretching frequencies calculated by DFT 
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were very similar for both Mn-bpy-R-BDP (R = H or I) complexes and in agreement with 

experimental values (Table 10). 

 

Figure 33. FTIR spectra in the C−O stretching region for Mn-bpy-H-BDP (red solid), Mn-
bpy-I-BDP (black solid) and fac-[Mn(Me2bpy)(CO)3Br] (blue solid) in rt CH3CN. 

 

Table 10. Experimental and calculated C−O vibrational frequencies for Mn-bpy-R-BDP 
(R = H or I) in CH3CN. 

Compound Experimental 
(CO) (cm−1) a 

Calculated 
(CO) (cm−1) b 

Mn-bpy-H-BDP 2027, 1936, 1923 2026, 1945, 1936 

Mn-bpy-I-BDP 2027, 1934, 1924 2026, 1945, 1937 

fac-Mn(Me2bpy)(CO)3Br 2026, 1933, 1919 2019, 1938, 1929 
a Data collected in rt CH3CN in a CaF2 cell. 
b Obtained from the energy optimized structures using the B3LYP level of DFT and the 6-31G* 
basis set for H, C, N, and O and the SDD basis set for Mn, Br and I. 
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Photochemical Ligand Dissociation 

The photolysis studies were performed with CH3CN solutions of the compounds 

with 535 and 590 nm LEDs for Mn-bpy-H-BDP and Mn-bpy-I-BDP, respectively. In 

dark control experiments (Figure A34) no spectral changes were observed through 

emission spectroscopy up to 90 min for both complexes. While the Mn-bpy-I-BDP was 

stable up to 24 h in the dark, a gradual bpy-H-BDP dissociation was observed for Mn-

bpy-H-BDP after 90 min. The dark stability was further investigated by FTIR. No 

evidence of CO dissociation was observed for either complex in the solution up to 1 h in 

room temperature CH3CN (Figure A35).  

To study the photochemical behavior of Mn-bpy-R-BDP (R = H or I) complexes, 

a solution of each compound in CH3CN was photolyzed with the appropriate LED, and 

the spectral changes were monitored at specified time intervals with emission, absorption, 

FTIR and 1H NMR spectroscopies. Figure 34 exhibits the electronic absorption and 

emission spectral changes for Mn-bpy-I-BDP in CH3CN during irradiation with 590 nm 

LED. The electronic absorption and fluorescence emission spectra for Mn-bpy-H-BDP 

(535 nm LED) are shown in Figure A36.  During photolysis, the absorbance for Mn-bpy-

I-BDP, blue shifted from 539 to 535 nm, accompanied by a decrease in intensity of the 

bands around 400 and 300 nm. Similarly, the emission spectral changes showed a gradual 

increase in the emission intensity as well as a blue shift in the emission maximum from 

570 to 560 nm. Comparison of photoproducts with that of free ligands (Figure A37) 

revealed gradual release of bpy-I-BDP during photolysis. The Mn-bpy-H-BDP photolysis 
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also showed similar spectral changes. Such “turn on” fluorescence behavior has been 

previously reported by other groups.70,92,171,172 

 

 

Figure 34. Absorption (A) and emission (B) spectra for the photolysis of Mn-bpy-I-BDP 
in rt CH3CN with 590 nm LED. 

 

To study the CO dissociation resulting from photolysis of Mn(I) photoCORMs 

and formation of corresponding photo-intermediates, the changes in the CO stretches 

were monitored by FTIR and 1H NMR spectroscopies. Solutions of Mn-bpy-I-BDP and 

Mn-bpy-H-BDP in CH3CN/CD3CN were irradiated with the appropriate LED, and the 

FTIR and 1H NMR spectra were collected at irradiation time intervals. For both 

complexes, photolysis resulted in very similar spectral observations. As illustrated in 

Figure 35A and Figure A38, FTIR irradiation at early time leads to emergence of two 

new stretches at 1936 and 1857 cm-1 along with a decrease in all three original bands, 

corresponding to the release of one CO and formation of the first dicarbonyl intermediate 

(shown by black circles). These values are comparable to our previously reported CO 
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stretches for the first intermediate during photolysis of Mn(Me2bpy)(CO)3Br 

compound.57,104  

In accordance with our previous studies of CO release, we assigned this 

intermediate as the exchange of one of the equatorial CO ligands with CH3CN to form 

cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)Br] (R = H or I). Further irradiation results in 

appearance of the second dicarbonyl intermediate at 1963 and 1882 cm-1
.
 The frequencies 

of this intermediate are quite similar with the frequencies of the second intermediate 

detected in the model complex Mn(Me2bpy)(CO)3Br. We attributed this intermediate to 

the loss of Br− and formation of the cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)2]+ (R = H or 

I) (shown by black asterisks). Further irradiation led to disappearance of all bands and 

loss of all remaining CO molecules. 

 During the 1H NMR photolysis (Figure 35B and Figure A38), only one 

intermediate was detected for both complexes (shown by red squares) with similar 

chemical shifts. In this intermediate, the two proton signals on the 2 and 6 positions of the 

BODIPY pyrroles in Mn-bpy-H-BDP, appear as one signal (integrated as 2), consistent 

with those two protons experiencing the same chemical environment. We attributed this 

intermediate to the formation of cis,trans-[Mn(bpy-R-BDP)(CO)2(CH3CN)2]+ (R = H or 

I) in both complexes as the third photochemical intermediate, which cannot be 

distinguished from the cis,cis isomer through the use of FTIR.57 Further irradiation leads 

to loss of all signals and very likely formation of an oxidized, paramagnetic Mn species.79 
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Figure 35. FTIR spectra (A) and 1H NMR (B) photolysis of Mn-bpy-I-BDP in rt 
CH3CN/CD3CN. λirr = 590 nm 

 

Table 11. Experimental and calculated C−O vibrational stretching frequencies for the 
photochemical intermediates during photolysis 

Photochemical intermediate Experimental  
(CO) (cm−1) a 

Calculated 

(CO) (cm−1) b 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)Br] 1935, 1852 1943, 1880 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)2]+ 1960, 1878 1968, 1908 

cis,trans-[Mn(Me2bpy)(CO)2(CH3CN)2]+  1962, 1879  1970, 1909 

cis,cis-[Mn(bpy-I-BDP)(CO)2(CH3CN)Br] 1936, 1857 1956,1884 

cis,cis-[Mn(bpy-I-BDP)(CO)2(CH3CN)2] 1963, 1882 1977,1910 

cis,cis-[Mn(bpy-H-BDP)(CO)2(CH3CN)Br] 1936, 1857 1955,1883 

cis,cis-[Mn(bpy-H-BDP)(CO)2(CH3CN)2] 1963, 1884 1977,1909 
a Data collected in rt CH3CN in a CaF2 cell.  
b Obtained from the energy optimized structures using the B3LYP level of DFT and the 6-
31G* basis set for H, C, N, and O and the SDD basis set for Mn, Br and I. 
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In probing the photo reactivity of these intermediates, their stability in the absence 

of light was studied with FTIR (Figure A39). A solution of each sample was prepared in 

CH3CN, partially photolyzed with the appropriate LED, and kept in the dark for 30 min. 

After irradiation of both Mn complexes for a few seconds, the FTIR spectrum revealed 

three CO stretches of the parent complex as well as the first intermediate’s bands shown 

by circles at 1936 and 1857 cm-1. After 2 min in the dark, these intermediate bands 

disappeared and new bands (asterisks) at 1963 and 1882 cm-1 were observed, consistent 

with the first intermediate cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)Br] (R = H or I) 

converting to the second intermediate cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)2]+ (R = H 

or I) by a thermal exchange reaction in the dark. Keeping the samples in the dark up to 30 

min did not show any further changes. From the emission, absorption, FTIR, and 1H 

NMR photolysis discussed above and based on our previous CO release studies, we 

proposed that upon photolysis of the Mn-bpy-R-BDP (R = H or I) complexes in CH3CN, 

one of the equatorial CO ligands exchanges with a CH3CN solvent molecule to form 

cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)Br] (R = H or I). In the next step, the Br− can be 

thermally replaced by another CH3CN solvent molecule to generate cis,cis-[Mn(bpy-R-

BDP)(CO)2(CH3CN)2]+ (R = H or I) . The last detectable intermediate is formed by 

photoisomerization of cis,cis-[Mn(bpy-R-BDP)(CO)2(CH3CN)2]+ to cis,trans-[Mn(bpy-

R-BDP)(CO)2(CH3CN)2]+ (R = H or I). Further irradiation results in release of remaining 

CO ligands, and as shown by emission and absorption photolysis, release of the bpy-R-

BDP (R = H or I) ligands. The proposed mechanism for the CO dissociation and 

formation of intermediates is depicted in Scheme 4. 
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Scheme 4. Proposed mechanism for intermediates formation for Mn-bpy-R-BDP 
complexes 

 

 

The I  heavy atom is known to increase the spin-orbit coupling leading to a non-radiative 

transition from 1ππ* to populate the 3ππ* excited state.173 In comparison with singlet 

excited states, triplet excited states have a longer lifetime which make them chemically 

reactive, allowing for reaction with molecular oxygen to produce singlet oxygen through 

energy transfer mechanism.35,151  

To evaluate our compounds’ singlet oxygen production, the decrease in the 

emission intensity of 1,3-diphenylisobenzofuran (DPBF), a well-known fluorescent 1O2 

scavenger, was monitored during irradiation with 513 nm light. The quantum yields of 

singlet oxygen (ΦΔ) in Table 12 are reported with reference to Rose Bengal (QY of 0.53 

in CH3CN).174  As expected, while the bpy-I-BDP generated a high amount of 1O2 (Φ∆ = 

1.08) the value for bpy-H-BDP was not quantifiable. Interestingly, the Mn-bpy-I-BDP 

produced less singlet oxygen (ΦΔ = 0.27) than that of free ligand. As previously 

discussed, this might further suggest the formation of a state upon coordination to the Mn 

that quenches the triplet excited state of bpy-I-BDP, and therefore singlet oxygen 

production, in the coordinated BDP. No changes were observed in the emission spectrum 
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of the complex after the experiment, indicating that the bpy-I-BDP ligand does not 

dissociate from Mn to a significant extent during the time frame of the experiment 

(Figure A40). However, partial ligand dissociation was observed from Mn-bpy-H-BDP 

complex during the experiment, making it impossible to collect a viable data for 

comparison. Another set of experiments was performed on the photoproducts of Mn-bpy-

I-BDP complex. The measured ΦΔ was comparable to the free bpy-I-BDP ligand, 

supporting the release of the ligand upon further irradiation.  

To investigate the singlet oxygen generation in aqueous media, SOSG (singlet 

oxygen sensor green) was used as a probe in water with 5 % (v/v) methanol. The SOSG 

is highly selective for singlet oxygen and emits green fluorescence with a maximum at 

525 nm upon reaction with singlet oxygen.175,176 As shown in Figure A41, the increase in 

the emission intensity of SOSG at 525 nm in water:MeOH (95:5) was monitored during 

irradiation with 535 nm light to avoid SOSG photosensitization. The reported values are 

with reference to Rose Bengal (QY of 0.75 in H2O).35 It is worth mentioning that 

irradiation of SOSG alone with 535 nm light, did not produce a significant amount of 

singlet oxygen (Figure A41).  
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Table 12. Singlet oxygen quantum yields 

Compound  ΦΔ
a ΦΔ

b 

bpy-I-BDP    
 

1.08±0.01 
 

 
0.90±0.004 

 

bpy-H-BDP - - 

Mn-I-BDP 0.27±0.02 0.17±0.02 

Photoproduct of Mn-bpy-I-BDP 0.97±0.01 0.85±0.002 

Mn-bpy-H-BDP - - 

Mn(Me2bpy)(CO)3Br - - 
a determined in CH3CN with DPBF as 1O2 scavenger and Rose Bengal (RB) as the reference 
(QYΔ = 0.53) with 513 nm light. 

b determined in H2O with SOSG as the 1O2 probe and Rose Bengal (RB) as the reference (QYΔ = 
0.75) with 535 nm light.  

 

To provide more insights into the singlet oxygen production and quenching 

mechanism of the bpy-I-BDP ligand upon complexation, we measured the emission 

spectra of bpy-I-BDP and Mn-bpy-I-BDP at 77 K in an EtOH glass matrix (Figure 36). 

While the fluorescence intensity of coordinated bpy-I-BDP in Mn-bpy-I-BDP complex is 

quenched by about 90% at room temperature (Figure 31), at 77 K fluorescence intensity 

is restored to the same as that of free bpy-I-BDP, suggesting that electron transfer is the 

main mechanism of fluorescence quenching in the coordinated form.162 The fluorescence 

maxima at 77 K showed small blue shifts compared to those recorded at room 

temperature, (i.e. from 560 to 551 nm in  bpy-I-BDP, and from 570 to 556 nm in Mn-

bpy-I-BDP). Interestingly, as shown in the insets of Figure 36, phosphorescence peaks 

with lower intensities at about 770 and 780 nm were detected for bpy-I-BDP and Mn-
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bpy-I-BDP, respectively. This peak is assigned as the triplet excited state (3ππ*) of the 

bpy-I-BDP ligand.177,178 The energies of these triplet excited states were measured as 1.61 

and 1.58 eV for bpy-I-BDP and Mn-bpy-I-BDP, respectively. The higher energy levels of 

these triplet excited states compared to the energy required for producing singlet oxygen 

(0.98 eV) are consistent with the production of singlet oxygen by energy transfer.179,180  

 

 
Figure 36. Fluorescence spectra of bpy-I- BDP (black dashed) and Mn-bpy-I-BDP (black 
solid), (inset: detected phosphorescence) in EtOH at 77 K, λexc 490 nm, λabs at 490 nm: 
0.1 

 

Computational Studies (TD-DFT) 

We further studied the involved electronic transitions and absorption spectra of 

our compounds with the time-dependent DFT (TDDFT) at B3LYP level using SDD 

pseudopotentials for Mn, I, and Br, and 6-311G(d) basis set for other elements. Graphical 

representations of HOMOs and LUMOs and transitions for bpy-I-BDP and its Mn 
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complex are depicted in Figure 37. In the bpy-I-BDP ligand, the experimentally observed 

absorption maximum at 535 nm stem from the HOMO (πBDP)→LUMO(π*BDP) (84%, f: 

0.43) transition corresponds to the first excited state (S1) calculated at 452 nm (2.73 eV). 

The same transition was observed for bpy-H-BDP at 411 nm (95%, f: 0.47) (Figure A42). 

It should be noted that TDDFT calculations have been shown to overestimate the 

transition energies for BODIPY dyes.181  In agreement with our experimental results, 

while the nature of the HOMO and LUMO are unaffected, introduction of electron-

withdrawing I substituents on the BDP core stabilizes both the HOMO and LUMO in 

bpy-I-BDP compared to the bpy-H-BDP. In the case of Mn-bpy-I-BDP and Mn-bpy-H-

BDP, in line with the cyclic voltammetry experiment, the HOMO and HOMO-1 are 

mainly located on the (Mn-CO)dπ orbitals and p orbital of Br−, and the HOMO-2 is on the 

π orbital of the BDP ligand. The LUMO is on the π* orbital of BODIPY and LUMO+1 is 

spread over the bpy(π*) and Mn(dσ*). The TDDFT calculation predicts that the lowest 

absorption band observed at 539 nm in the absorption spectrum of Mn-bpy-I-BDP is 

mainly resulting from HOMO-2(πBDP)→LUMO(π*BDP) (80%, f: 0.36) calculated at 462 

nm (2.67 eV) corresponds to the fifth singlet excited state (S0→S5).  Additionally, the 

MLCT band in Mn-bpy-I-BDP was calculated at 405 nm (3.05 eV) from HOMO-4 

(Mn(dπ)-πCO
*)→LUMO+1((bpy(π*)/Mn(dσ*)) (79%, f: 0.063). A similar transition was 

computed for Mn-bpy-H-BDP.  

The impact of I on the singlet oxygen generation was studied by calculating the 

triplet excited states in bpy-I-BDP and its Mn complex. In line with the observed 

phosphorescence at 770 nm (1.61 eV) and 780 nm (1.58 eV) at 77 K for bpy-I-BDP and 
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Mn-bpy-I-BDP, respectively, the first triplet excited states (T1) were calculated at 826 nm 

(1.49 eV) and 851 nm (1.45 eV) from the same orbital transition components as the first 

and fifth singlet excited states in bpy-I-BDP and Mn-bpy-I-BDP, respectively. This 

further illustrates the BDP-based 3ππ* nature of observed phosphorescence at 77 K 

emission.  

 

Table 13. Selected transitions and excitation energies of BDP-based ligands and 
corresponding Mn complexes 

Compound  Stat
e 

   
Oscillator  
    strength 

(f)   

Calculated 
   energy 

(eV) 

 Observed 
    energy 

(eV) 
Transition Character 

bpy-I-BDP 
S1 

T1 

0.43 

0 

2.73 

1.49 

2.31 

1.61 
HOMO→LUMO 

HOMO→LUMO 

πBDP→π*BDP/ ILCTa 

3ππ* 

bpy-H-BDP S1 0.47 3.01 2.47 
 

HOMO→LUMO 
 

πBDP→π*BDP/ ILCT 
 

Mn-bpy-I-
BDP 

S5 

S14 

T1 

0.36 

0.06 

0 

2.67 

3.05 

1.45 

2.31 

- 

1.58 

HOMO-2→LUMO 

HOMO-4→LUMO+1 
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Figure 37. Frontier molecular orbitals, relative energies, and transitions of bpy-I-BDP 
(left) and Mn-bpy-I-BDP (right). 

 

Based on absorption, emission, and CV experiments and TD-DFT calculations, 

we proposed the following excited states and transitions involved in the photolysis of 

Mn-bpy-I-BDP. Upon irradiation, the molecule is excited to its BDP-based singlet 

excited state (1ππ*) HOMO-2 (πBDP)→LUMO(π*BDP). As evidenced by 77 K emission, 

the singlet excited state undergoes intersystem crossing to the BDP-based triplet excited 

state (3ππ*). An electron from Mn(dπ) (HOMO) is likely transferred to the π orbital of 

BDP to create a charge separated (CS) state (Mn+BDP−). The lower energy of CS state 

compared to the 3ππ* is the probable reason for lower Φ∆ for Mn-bpy-I-BDP than the free 
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ligand. The reduced electron density on the Mn center as a result of electron transfer to 

the π of BDP weakens the π-backbonding between the Mn and CO, leading to CO 

photodissociation. After releasing all CO ligands, the formally oxidized Mn center 

dissociates from the bpy-I-BDP ligand.  

4.3. Conclusions 

In conclusion, we herein report the synthesis, characterization, and photo-

reactivity of two emissive Mn-bpy-R-BDP (R = H or I) photoCORMs. Through the 

combination of emission, absorption, FTIR and 1H NMR photolysis with DFT 

calculations, we demonstrated that in these complexes, the excitation of BDP core with 

low energy visible light resulted in CO photo dissociation through the formation of 

dicarbonyl species as intermediates followed by release of bpy-R-BDP (R = H or I) 

ligand from the Mn center. Introduction of two I substituents on the 2,6 positions of BDP 

core enhanced the ISC, leading to 1O2 production. The presence of triplet excited in the 

bpy-I-BDP and its Mn complex were supported by a phosphorescence peak at 77 K 

emission. With respect to the non-iodinated analogue, the electron withdrawing I 

substituents extended the Mn-bpy-I-BDP absorption further into the visible region, 

leading to release of all CO by 590 nm light irradiation. Based on the obtained results 

from CV and TD-DFT calculations, we proposed that upon irradiation, the BDP excites 

to its singlet excited state (1ππ*) and due to the I heavy atom effect, undergoes ISC to 

populate its 3ππ*. Upon excitation, an electron from the HOMO-based Mn fills the hole 

on the π orbital of BDP, reducing the electron density on the Mn center, weakening the 
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Mn-CO bond, allowing the CO to dissociate. A deeper investigation into the electron 

transfer is in progress to provide insight into the proposed mechanism of this system. 

4.4. Experimental Section 

Materials and Reagents 

All materials were used without further purification. Selenium dioxide, 

2,4dimethylpyrrole, 1,4-Benzoquinone, Boron trifluoride diethyl etherate and 

triethylamine were purchased from Acros Organics. 4,4'-Dimethyl-2,2'-bipyridine, N-

Iodosuccinimide (NIS), 1,3-Diphenylisobenzofuran (DPBF) were purchased form TCI. 

Rose Bengal was purchased from Sigma Aldrich. Mn(CO)5Br was purchased from Strem 

Chemicals. SOSG, Dioxane, dichloromethane, acetonitrile, ethyl acetate, acetic acid and 

chloroform were purchased from Fischer Scientific. Acetonitrile‑d3 and chloroform-d 

was purchased from Cambridge Isotope Laboratories. All reactions and experiments were 

performed in the dark to prevent photodecomposition.  

1H and 13C NMR Spectroscopy 

The spectra were collected on a Bruker Ascend 500 MHz spectrometer at 298 K. 

The spectra were calibrated to residual solvent peaks for acetonitrile at δ = 1.94 and 

118.26 and chloroform at δ = 7.26 and 77.16 ppm. 

 Elemental Analysis 

Elemental analysis (C, N, H) was carried out by Atlantic Microlabs, Inc. 

(Norcross, GA). samples were protected from light to prevent photodecomposition. 

 

 

https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
https://www.fishersci.com/shop/products/selenium-iv-oxide-99-999-trace-metal-basis-acros-organics-2/AC193980100
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FTIR 

FTIR spectra were obtained in CH3CN solvent in a CaF2 liquid IR cell or in the 

form of KBr pellet using a Shimadzu IRAffinity-1S Fourier transform infrared 

spectrophotometer. 

High Resolution Electrospray Ionization Mass Spectrometry  

HR-ESI(+)-MS spectra were collected using a Thermo Fisher Scientific Q 

Exactive Plus hybrid quadrupole–Orbitrap mass spectrometer in the positive mode. A 

potential of 4.0 kV was applied to ionize the 1 μM solution of each compound in CH3CN 

with flow rate of 50 μL/min. 

Electronic Absorption Spectroscopy 

Electronic absorption spectra were obtained in a 1 × 1 cm quartz cuvette at room 

temperature using an Agilent Cary 8454 diode array UV–visible spectrophotometer. 

Extinction coefficient measurements were performed in triplicate in CH3CN. 

Cyclic Voltammetry 

The electrochemical experiments were carried out with a BASi Epsilon EClipse 

electrochemical analyzer (Bioanalytical Systems, Inc.; West Lafayette, Indiana, USA) 

with 1 mM compound in DCM with 0.1 M n-Bu4NPF6 supporting electrolyte under N2 

with a scan rate of 200 mV/s at room temperature. The working, reference and auxiliary 

electrodes were glassy carbon or Pt (3 mm diameter), Ag/AgCl (3 M NaCl(aq)), and Pt 

wire, respectively. Ferrocene (Fc) was added to the solution following each measurement, 

and the potentials were referenced to the Fc+/Fc couple (E1/2 = +0.43 V vs. Ag/AgCl in 

DCM). 
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Emission and Excitation Spectroscopies 

Steady-state emission and excitation spectra were recorded at room temperature 

and 77 K in CH3CN or EtOH solvent using a Horiba Scientific Fluoromax-4C system 

equipped with a 150 W Xe arc lamp, Czerny-Turner excitation (1200 g/mm grating 

blazed at 330 nm) and emission (1200 g/mm grating blazed at 500 nm) monochromators, 

and a red-sensitive R928 PMT detector. Fluorescence quantum yields were measured by 

absorbance matching of each sample in EtOH at 470 nm to the reference compound, 

Rhodamine B ( Φfl = 0.5).163  Singlet oxygen quantum yields with DPBF (1,3-

diphenylisobenzofuran)  as 1O2 scavenger were performed with CH3CN solutions 

containing 10 μM DPBF and the desired compound (A(513)=0.1). Each solution was 

photolyzed with 513 nm light (40 μW cm-2) and excited at 405 nm. The decrease in the 

emission intensity of DPBF was monitored as a function of time at 479 nm for each 

compound. The slopes were calculated and compared to that of Rose Bengal as the 

reference (ΦΔ = 0.53 in CH3CN). When SOSG was used as the 1O2 probe, a stock solution 

of 2.5 mM was prepared by adding 66 μL methanol into 100 μg of SOSG. 1.2 μL of 

SOSG stock solution was added to an emission cuvette containing 2.84 mL of water, 

followed by the addition of 0.15 mL of desired compound dissolved in methanol 

(A(535)=0.1). Each solution was photolyzed with 535 nm light (1 mW cm-2) and excited 

at 505 nm. The increase in the emission intensity of SOSG was monitored as a function 

of time at 525 nm for each compound. The slopes were calculated and compared to that 

of Rose Bengal as the reference (ΦΔ = 0.75 in H2O). 
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Photolysis Experiment 

All photolysis experiments were carried out using either 590 or 535 nm in-house 

built LEDs (35-50 mW cm-2) (Luxeon Star LED, Quadica Developments, Inc., 

Lethbridge, Alberta, Canada). Each sample was dissolved in the appropriate solvent in a 

1 × 1 cm quartz cuvette (for electronic absorption and emission analysis), CaF2 cell (for 

FTIR analysis), and an NMR tube (1H and 13C NMR analysis), irradiated using the 

appropriate LED for different time intervals and analyzed by the appropriate instrument. 

All the experiments were performed in the dark to limit unwanted reactions initiated by 

room light. 

Computational Methods 

The ground state geometry optimization and frequency calculations were 

performed with DFT at B3LYP level using SDD pseudopotentials for Mn, I and Br and 

6-311G(d) basis set for other elements with the Polarizable Continuum Model 

(PCM) solvation model for CH3CN solvent in the Gaussian 16 program. The excited state 

calculations were performed with TD-DFT with the same functional and basis sets of 

ground state in the gas phase. To calculate CO stretching frequencies and visualize 

orbitals we used Avogadro program (Version 1.2.0). All stretching frequencies are 

multiplied by a frequency scaling factor of 0.97. 

Synthesis of 4‐carbaldehyde‐4′‐methyl‐2,2′‐bipyridine 

The compound was prepared according to the previously reported procedure.157 

4,4’-dimethyl-2,2’-bipyridine (1.5 g, 8.1 mmol) and SeO2 (1.8 g, 16 mmol) were added to 

60 ml of dioxane and heated at reflux for 3 days under Ar. After stopping the reaction, 
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the hot mixture was filtered through Celite to remove Se. The solvent was removed under 

reduced pressure and the remaining solid suspended in 500 ml of ethyl acetate. The 

solution was washed with 0.1 Na2CO3(aq) and extracted with 0.2 NaHSO4(aq). After 

adjusting the pH to 9, the product was extracted from bisulfite layer with DCM. Yield: 

280 mg (1.4 mmol, 17%). 1H NMR (500 MHz, CDCl3): δ 10.18 (s, 1H), 8.89 (d, 1H), 

8.83 (s, 1H), 8.57 (d, 1H), 8.28 (s, 1H), 7.72 (d, 1H), 7.19 (d, 1H), 2.46 (s, 3H). 

Elemental analysis calculated for C12H10N2O*0.15H2O: 71.73%C, 5.17%H, 13.94%N. 

Found: 71.79%C, 4.96%H, 13.85%N. HR-ESI(+)-MS (CH3CN): calcd for C12H10N2O 

[M+H]+, m/z = 199.085; found, m/z = 199.087. 

Synthesis of 4-BDP(H),4′-methyl-2,2′-bipyridine (bpy-H-BDP) 

The synthetic procedure was adapted from a previously reported procedure.156 

2,4‐dimethylpyrrole (0.14 ml, 1.3 mmol), followed by a few drops of trifluoroacetic acid 

was added to a degassed solution of 4‐carbaldehyde‐4’‐methyl‐2,2’‐bipyridine (130 mg, 

0.65 mmol) in 30 ml DCM. After stirring at rt for 45 min, 2,3‐dichloro‐5,6‐dicyano‐p‐ 

benzoquinone (170 mg, 69 mmol) was added to the solution and stirred for 45 min. 

Subsequently, 1.5 ml of triethylamine was added and stirred for 30 min. Then 1.5 ml 

BF3‐OEt2 was added to the solution and stirred for 4 h at rt. The solvent was removed 

under reduced pressure and the remaining solid was purified by column chromatography 

(DCM:ethyl acetate (90:10)). The product was obtained as orange solid. Yield: 80 mg 

(0.19 mmol, 29%). %). 1H NMR (500 MHz, CDCl3): δ 8.82 (dd, 1H), 8.52 (d, 1H), 8.48 

(s, 1H), 8.31 (s, 1H), 7.31 (dd, 1H), 7.17 (d, 1H), 5.99 (s, 2H), 2.56 (s, 6H), 2.47 (s, 3H), 
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1.46 (s, 6H). Elemental analysis calculated for C24H23BF2N4*0.5 H2O: 67.78%C, 

5.69%H, 13.17% N. Found: 67.83%C, 5.6%H, 12.99%N. HR-ESI(+)-MS (CH3CN): 

calcd for C24H23BF2N4 [M+H]+, m/z = 417.206; found, m/z = 417.204. 

Synthesis of 4-BDP(I),4′-methyl-2,2′-bipyridine (bpy-I-BDP) 

The compound was synthesized by a few modifications to a previously reported 

procedure.158 bpy-BDP (100 mg, 0.23 mmol) and N-Iodosuccinimide (NIS) (1.4 mg, 0.62 

mmol) were added to 25 ml of chloroform: acetic acid (3:1) and stirred under Ar at rt for 

6 h. The solution was then washed with water and the solvent was removed under 

reduced pressure. The remaining residue was purified by column chromatography 

(DCM:ethyl acetate (90:10)). The product was obtained as red solid. Yield: 100 mg (0.15 

mmol, 621H NMR (500 MHz, CDCl3): δ 8.85 (dd, 1H), 8.51 (d, 1H), 8.47 (s, 1H), 8.33 

(s, 1H), 7.28 (dd, 1H), 7.18 (d, 1H), 2.65 (s, 6H), 2.47 (s, 3H), 1.49 (s, 6H). 13C NMR 

(500 MHz, CDCl3):1.13, 14.24, 16.28, 17.75, 21.48, 15,31.80, 86.62, 120.94, 122.27, 

122.96, 125.74, 130.42, 145.09, 150.34, 157.86. Elemental analysis calculated for 

C24H21BF2I2N4: 43.15%C, 3.17H, 8.39N. Found: 43.14%C, 3.16%H, 8.24%N. HR-

ESI(+)-MS (CH3CN): calcd for C24H21BF2I2N4 [M+H]+, m/z = 668.999; found, 

m/z = 669.013. 

Synthesis of Mn(bpy-H-BDP)(CO)3Br (Mn-bpy-H-BDP) 

The compound was synthesized by our previously reported procedure.57 

Mn(CO)5Br  (10 mg, 0.037 mmol) and bpy-H-BDP (18 mg, 0.043 mmol) were added to 

15 ml diethyl ether and heated to reflux for 3 h under Ar. After cooling to room 
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temperature, the orange precipitate was collected by vacuum filtration and washed with 

diethyl ether. Yield: 10 mg (0.015 mmol, 43%). 1H NMR (500 MHz, CD3CN): δ 9.39 (d, 

1H), 9.09 (d, 1H), 8.43 (s, 1H), 8.24 (s, 1H), 7.69 (d, 1H), 7.49 (d, 1H), 6.20 (s, 1H), 6.17 

(s, 1H), 2.54 (s, 6H), 2.53 (s, 3H), 1.59 (s, 3H), 1.44 (s, 3H). The 13C NMR (number of 

scans: 1500) could not collect due to the stability issue of the complex. FTIR (KBr pellet, 

cm−1): 2962 (C-H stretching aromatic), 2868 (C-H stretching aliphatic), 2024, 1918 and 

1937 (C O stretching), 1400-1600 (C=C and C=N stretching) and 530-650 (Mn-CO 

bending). Elemental analysis calculated for C27H23BBrF2MnN4O3: 51.06%C, 3.65%H, 

8.82%N. Found: 51.35%C, 3.85%H, 8.60%N. HR-ESI(+)-MS (CH3CN): calcd 

for C27H23BBrF2MnN4O3 [M−Br−CO+2CH3CN]+, m/z = 609.179; found, m/z = 609.172. 

Synthesis of Mn(bpy-I-BDP)(CO)3Br (Mn-bpy-I-BDP). 

This compound was prepared as described above using Mn(CO)5Br (10 mg, 

0.037 mmol) and bpy-I-BDP (25 mg, 0.037 mmol). Yield: 10 mg (0.011 mmol ,31%). 1H 

NMR (500 MHz, CD3CN): δ 9.42(d, 1H), 9.09 (d, 1H), 8.40 (s, 1H), 8.20 (s, 1H), 7.69 

(d, 1H), 7.50 (d, 1H), 2.65 (s, 3H), 2.64 (s, 3H), 2.53 (s, 3H), 1.61 (s, 3H), 1,45 (s, 3H). 

13C NMR (500 MHz, CD3CN): δ 158.94, 158.25, 155.78, 155.59, 153.87, 152.53, 146.14, 

146.20, 137.25, 131.01, 128.80, 126.61, 125.71, 123.44, 66.23, 21.26, 18.29, 16.54, 

15.57. FTIR (KBr pellet, cm−1): 2932 (C-H stretching aromatic), 2848 (C-H stretching 

aliphatic), 2024, 1916 and 1940 (C O stretching), 1400-1600 (C=C and C=N stretching) 

and 530-650 (Mn-CO bending). Elemental analysis calculated for 

C27H21BBrF2I2MnN4O3.0.50.5: 37.70%C, 2.84%H, 6.06%N. Found: 37.73%C, 2.65%H, 
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6.01%N. HR-ESI(+)-MS (CH3CN): calcd for C27H21BBrF2I2MnN4O3 

[M−Br−CO+2CH3CN]+, m/z = 860.972; found, m/z = 860.963. 
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Chapter 5: Design, Synthesis and Recognition Properties of Water-Soluble 

Lanthanide Cages 

5.1. Introduction 

In contrast to the molecular chemistry that deals with the covalent bond, 

supramolecular chemistry can be described as the “chemistry beyond the molecule”.182 

Supramolecular chemistry is generally defined as the spontaneous self-assembly of 

molecular structures of higher complexity from smaller components.183 The self-

assembly process is central to life and demonstrated by nature, from protein folding and 

cytoplasmic membrane to the viral coats of all viruses.184 

These structures are being held together through weak intermolecular forces, 

including van der Waals forces, ionic forces, hydrophilic and hydrophobic interactions, 

hydrogen bonding, and electrostatic interactions.183 Supramolecular structures have wide 

applications in drug delivery, metal extraction, sensing, and as nanoreactors in catalytic 

reactions. 

5.2. Supramolecular Coordination Chemistry 

Over the last few decades, two interesting new branches of supramolecular 

coordination chemistry, including Metal Organic Frameworks (MOFs) and 

Supramolecular Coordination Complexes (SCCs) have emerged (Figure 38). While 

MOFs are defined as infinite coordination polymers or networks, consisting of metal 

centers bridged by organic linkers, SCCs are described as finite 2D or 3D structures, in 

which the metal centers undergo self-assembly with multidentate ligands.185  
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Figure 38. Metal-based supramolecular assemblies 
 

5.3. Supramolecular Coordination Cages 

Among the SCCs family, the coordination-driven self-assembly 3D cage-like 

structures, also known as metallacages, with the general formula of MXLY (M=metal, L= 

ligand), are of much interest due to their fascinating structures and remarkable 

applications.186 Such assemblies are usually obtained by mixing the metal cation 

precursor with the organic linkers to form the thermodynamically most stable structure 

through the spontaneous metal-ligand bond formation.185 The SCCs have been classified 

based on their shapes, including octahedral, tetrahedral, lantern, cubic, spherical, etc.187  

One of the main goals of supramolecular chemistry is the construction of water-

soluble coordination cages with wide applications in industrial, environmental, and 

medical processes.188 Water-soluble coordination cages can be prepared by introducing 

an overall positive or negative charge on the cage, as well as incorporation of polar 

groups on the ligand framework.188 However, the construction of a stable water-soluble 
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cage can be challenging as the water may prevent the formation of the cage by competing 

with the ligand to bind with metal ions. Furthermore, the hydrophobic effect of water 

may result in aromatic ligand stacking, preventing cage construction.188  

Host-Guest Complexation in Water 

The hydrophobic effect is the primary driving force for the formation of host-

guest complexes in water, but other factors such as electrostatic interactions, hydrogen 

bonding, dispersion interactions, and the shape and size of the host and guest cannot be 

overlooked. 

Entropically, the dissolution of a non-polar guest in water is an unfavorable 

process. One possible (and to some extent accepted) explanation for the hydrophobic 

effect is when a non-polar molecule (gray objects in Figure 39) is dissolved in water 

(blue circles), the hydrogen bonds between the water molecules break to accommodate 

the molecule. Water molecules then surround the dissolved molecule, forming a so-called 

ice cage and reaching a highly ordered state. Once the guest is removed from water, the 

ice-like cage around the molecule breaks and releases the water molecules into the bulk 

solution, leading to a positive entropy (Figure 39).189,190 This process is crucial in 

entropy-driven guest binding. 
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Figure 39. Hydrophobic effect 
 

Interestingly, in 2005, the formation of a “molecular ice” with ten water 

molecules inside the cavity of a Pd6L4 cage was confirmed by X-ray structural 

analysis.191 The analysis revealed that the molecular ice is encapsulated within the cavity 

through the H2O:···π interaction. Fujita and co-workers suggested that melting the 

molecular ice and release of water molecules upon guest binding is the main driving force 

for the guest binding. 

 

 

Figure 40. Crystal structure of Pd6L4 with ten water molecules encapsulated inside the 
cavity. (Adapted with permission from ref. 191. Copyright 2005 American Chemical 
Society.) 
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As mentioned previously, for a host-guest complex to form, different 

intermolecular interactions should work synergistically. As a result, in addition to the 

hydrophobic effect, there are other interactions that may also be involved. Some of these 

forces are as follows192: the CH−π and the π–π stacking interactions, ionic interactions 

between two oppositely charged species, and aromatic interactions including cation−π 

and anion-π interactions. While the cation−π interactions increase the free energy of 

binding, the anion-π interactions are repulsive in nature, as the interaction between the π-

electrons of the aromatic rings and the negatively charged species is unfavorable. It is 

worth mentioning that enhancing the nonpolar contacts between the guest and the internal 

cavity of the host would increase the binding affinity values.192 

Examples of “host-guest” complexes in the following section provide more details 

on different interactions between various guests and supramolecular coordination cages 

in aqueous media. 

Water Soluble Coordination Cages 

The first Pd6L4 cage-like structure with octahedral geometry shown in Figure 41 

was synthesized by Fujita and co-workers in 1995 using palladium (II) and tridentate 

ligand 2,4,6-tris (4-pyridyl)-1,3,5-triazine (TPT) as the building components. This water-

soluble assembly was reported to encapsulate both anionic and neutral guests.193 The 

cation−anion interactions were suggested as the main driving force for the anionic guests 

encapsulation. Neutral guests, on the other hand, were shown to be strongly size 

dependent, as 1:4, 1:2, and 1:1 host−guest complexations were reported for spherical, 

twisted medium sized, and larger guests, respectively. 
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Figure 41. M6L4 octahedral self-assembly 
 

Using the above-mentioned Pd cage, Fujita, Takezawa, and a co-worker reported 

the non-covalent inclusion of twisted conformers of secondary aromatic amides in the 

cavity of the Pd6L4 cage with Td-symmetry in 2020.194 Distortion of the amide groups 

increases their reactivity towards nucleophiles. Crystal structures revealed that upon 

inclusion of the secondary aryl amides, the cis-twisted conformation is favored over the 

trans-planar conformation. Inclusion of five secondary electron-rich amides including N-

(2,4-dimethoxyphenyl)-4-methoxybenzamide (A1), N-(2,4-dimethoxyphenyl)thiophene-

2-carboxamide (A2), N-(2,4-dimethoxyphenyl)furan-2-carboxamide (A3), N-(2,4-

dimethoxyphenyl)-2-methoxybenzamide (A4), and -Methoxy-1-(4′-

methoxybenzoyl)indole (A5) were confirmed by 1H NMR in D2O. In contrast, the non-

electron-rich amides (shown in Figure 42 B) did not show any binding, suggesting the 

necessity of interactions between the electron-deficient cage and the electron-rich amides. 

Under basic conditions, the confined cis-twisted amides displayed increased reactivity for 

hydrolysis. 
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Figure 42. Secondary electron-rich amides (A), secondary electron-deficient amides (B) 

 

As a near relative of the above-mentioned Pd6L4 cage, Sun and co-workers 

introduced a new redox-active water-soluble Pd4L2 cage in 2018.195Compared to the 

previous cage, two cis-blocked palladium were replaced by p-xylene bridges to expand 

the internal cavity. The presence of pyridinium moieties in this structure, not only 

provided redox and photochromic activities but also increased the electron deficiency of 

the cage framework.  

 

 

Figure 43. Pd4L2 cage with expanded cavity. (Adapted with permission from ref. 195. 
Copyright 2018 American Chemical Society.) 
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The guest binding properties of this cage were studied by a series of aromatic 

guests, including thiolesters (dibenzothiophene (DBT), thioanisole (MBT), diphenyl 

sulfide (DPS)), and polycyclic aromatic hydrocarbons (PAHs, pyrene, and naphthalene). 

In all cases, the formation of host-guest complexes was confirmed by 1H NMR 

spectroscopy. In the cases of naphthalene, DPS, and DBT guests, the inclusion of more 

than one guest was evidenced by NMR titration and the host-to-guest integral ratio. The 

crystal structure of the DBT⊂cage showed the inclusion of three DBT guests inside the 

cavity, stabilized by π−π stacking interactions between the TPT panel of the framework 

and DBT molecules. In addition to organic guest binding, three POMs anions, including 

Mo6O19
2−, Mo8O26

4−, and PMo12O40
3− (in the order of increasing size), were also 

investigated. The formation of Mo6O19
2−⊂cage and Mo8O26

4−⊂cage with the inclusion of 

two Mo6O19
2− and one Mo8O26

4− inside the cavity was confirmed by NMR experiments. 

Anion-π and electrostatic interactions between the Mo6O19
2− and the pyridinium panels 

were suggested as the main driving forces for guest inclusion. Due to the larger size of 

PMo12O40
3−, no encapsulation was observed. 

 

Figure 44. Prospective guests for binding studies 
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In another study, Raymond and co-workers introduced an M4L6 tetrahedron cage-

like structure, using Ga(III) and Fe(III) and  1,5-Bis(2,3-

dihydroxybenzamido)naphthalene as the bridging ligand.196 This water-soluble cage was 

used for encapsulation of Et4N+. The structure is shown in Figure 45.  

 

 

Figure 45. M4L6 tetrahedral self-assembly 
 

In 2013, Ward, Hunter, and co-workers studied the impact of solvent (water 

versus acetonitrile) on the binding of a series of organic guests (Figure 46). In this study, 

they prepared a water-soluble cubic cage, [Co8(Lw)12](BF4)16, and compared it with an 

organic-soluble cubic cage [Co8(L)12](BF4)16.197 Guest encapsulation is usually a 

combination of three factors; 1) non-polar interactions such as van der Waals and 

aromatic interactions, 2) hydrogen-bonding interactions, and 3) solvophobic interactions. 

The authors quantified the solvophobic contribution by comparing the obtained ΔG 

values for the guest binding in acetonitrile and water. This study was performed with 

guests that only differed in the presence or absence of a fused aromatic ring. While using 
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the organic-soluble cage allows identification of aromatic and s bonding contributions, 

the water-soluble cage allows for quantification of hydrophobic contributions. The ΔG 

values showed that while the bicyclic guest encapsulation in acetonitrile is associated 

with the aromatic interactions, its binding in water is mainly governed by the 

hydrophobic effect, with an insignificant contribution from H-bonding. 

 

Figure 46. Water-soluble cubic coordination cage [Co8(Lw)12](BF4)16 (A), and organic 
soluble cubic cage [Co8(L)12](BF4)16 (B)ss 

 

In another study, Ward and co-workers showed that the previously mentioned 

[Co8(Lw)12](BF4)16 cage catalyzes the aldol condensation of indane-1,3-dione to bindone 

in water.198 A general scheme of the aldol condensation reaction is shown in Figure 47. 

The presence of two stacked indane-1,3-dione molecules inside the cage cavity and 

another molecule bound to the exterior of the cage through hydrogen binding were 

confirmed by the crystal structure. The authors suggested that the outside bounded guests 

are either neutral indane-1,3-dione or the enolate anions that are stabilized by the positive 

charge of the cage. They proposed that the cage facilitates the reaction by attracting the 

neutral indane-1,3-dione to its hydrophobic cavity, and stabilizing the enolate anion 



 
 

127 

 

through the 16+ surface of the cage. The binding constant of indane-1,3-dione was 

determined as 2.4 (±1.2) × 103 M−1.  

 

 

Figure 47. Aldol condensation reaction. 
 

In another study led by Nitschke and co-workers, they reported the formation of a 

water-soluble enantiopure cage, ΔΔΔΔ-Fe4L6, and its enantiomer, ΛΛΛΛ-Fe4L6.199 This 

cage was shown to encapsulate organic guests of different sizes and differentiate between 

the enantiomers of organic guests. The selected guests of various sizes, depicted in Figure 

48 B (i-iii), showed binding to the ΔΔΔΔ-Fe4L6 cage. However, guests shown in Figure B 

(iv) were either too hydrophilic or too large to bind. Due to the large hydrophobic cavity 

of ΔΔΔΔ-Fe4L6, while the 
1H NMR titration with larger guests resulted in slow exchange, 

titration with smaller guests led to fast exchange. The authors proposed that the flexible 

glyceryl groups allow the  ΔΔΔΔ-Fe4L6 cage to adjust the volume of its cavity to the size 

of the guest, allowing guests of various sizes to encapsulate.  
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Figure 48. ΔΔΔΔ-Fe4L6 cage (A), larger guests (B-i), medium guests (B- ii), smaller guests 
(B- iii), and guests that did not show binding (B-iv). (Adapted with permission from 
ref. 199. Copyright 2013 John Wiley and Sons.) 

 

 
In 2017, Nitschke and co-workers reported an anion exchange protocol for 

making a water-soluble cage by exchanging the trifluoromethanesulfonate counterions 

for the hydrophilic sulfate.200 In this process, they initially prepared a cubic FeII
8L6 built 

on zinc porphyrin faces with trifluoromethanesulfonate counterions (FeII
8L6.OTf). This 

cage was reported to be insoluble in water. The water-soluble cage was then prepared by 

adding the FeII
8L6.OTf into a solution of tetrabutylammonium or potassium sulfate to 

obtain FeII
8L6.SO4 (Figure 49A). It is worth mentioning that direct synthesis of 

FeII
8L6.SO4 is not possible. The preliminary host–guest studies were performed with 

FeII
8L6.OTf and FeII

8L6.SO4 in acetonitrile and water, respectively. 1H NMR titration of 

FeII
8L6.SO4 with the selected guests exhibited in Figure 49 B (left) showed fast exchange 

binding in water. Surprisingly, none of the shown guests showed binding to FeII
8L6.OTf 

in acetonitrile. These findings suggest that the hydrophobic effect is the main driving 
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force for the guests’ binding. The selected guests in Figure 49 (right), however, did not 

show any binding, suggesting the necessity of conformational flexibility for the guest 

encapsulation.  

 

 

Figure 49. Reversible counterions exchange (A) selected guests for binding studies, 
guests that showed binding to FeII

8L6.SO4 in water (B) left, guests that did not show 
binding (B) right. (Adapted with permission from ref. 200. Copyright 2017 John Wiley 
and Sons) 
 

 

Similarly, a research from Ward and Weinstein’s groups corroborates the use of 

counterion exchange from perchlorate to chloride to prepare a water-soluble luminescent 

octanuclear cubic cage [Os4Zn4(L)12]Cl16 where L is a bis-bidentate bridging ligand 

containing two pyrazolyl−pyridine chelating units separated by a 1,5-naphthalenediyl 

group.201 Encapsulation of electron-deficient 1,4-naphthoquinone (NQ), 1,2,4,5-

tetracyanobenzene (TCNB), and 1-nitronaphthalene (NN) guests with binding constants 

of 103 −104 M−1 (shown in Figure 50B) resulted in quenching of the cage luminescence. 

Ultrafast transient absorption revealed that the formation of a charge-separated 
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Os(III)/guest•− state is responsible for the observed quenching upon binding of the 

electron-accepting guests. The addition of the cycloundecanone with a large binding 

constant as the competing guest to a solution of electron-deficient guest⊂cage, resulted in 

the disappearance of the charge-separated state. 

 

 

Figure 50. Cubic [Os4Zn4(L)12]Cl16 cage (A), electron-deficient guests (B) 

 
 
In 2012, Mukherjee and co-workers introduced a cationic highly water-soluble 

PdII
6L4 semi-cylindrical open cage, where L= 1,3,5-tris(1-imidazolyl)benzene.202 The 

imidazole moieties can easily rotate around the single bonds (attached to the benzene 

ring), resulting in a flexible framework. This cage was studied for the encapsulation of 

hydrophobic and hydrophilic guests. The obtained crystal structures showed that while 

the hydrophobic 1-pyrenecarboxaldehyde guest can encapsulate inside the cavity and 

form a 2:1 (guest:cage) complex in water, the hydrophilic 2,3-dichloro-5,6-dicyano-1,4-

https://chemistry-europe.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Mukherjee%2C+Partha+Sarathi
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benzoquinone (DDQ) would form weak interactions with the outside walls of the cages 

and stack between them. This further suggested that while the Pd6L4 cage possesses a 

hydrophobic cavity, the outer sphere is hydrophilic. The authors also showed that this 

cage can be used in the catalysis of a series of aromatic mono-aldehydes in the 

Knoevenagel condensation reactions with 1,3-dimethylbarbituric acid and Meldrum′s 

acid in water under ambient conditions. They further utilized the hydrophobic confined 

cavity for the catalytic Diels–Alder reactions of 9-hydroxymethylanthracene with N-

cyclohexylmaleimide or N-phenylmaleimide. 

 

 

Figure 51. Interaction of two hydrophobic (red) and hydrophilic (green) guests with 
PdII

6L4 semi-cylindrical cage 
 

In 2022, Klajn, Bialek, and co-workers reported the encapsulation of resorufin 

and resazurin dyes within the above-mentioned PdII
6L4 cage.203The inclusion of the 

guests notably reduced the resazurin to resorufin conversion and subsequent reduction of 

resorufin to dihydroresorufin. Furthermore, encapsulation within the PdII
6L4 cage resulted 
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in modulating the photophysical properties of the mentioned dyes by shifting their 

absorbances and quenching the emission of resorufin. The authors suggested that the 

driving force for the guest encapsulation is a combination of the hydrophobic effect, van 

der Waals, and π–π stacking interactions, with a significant contribution from the 

Coulombic interactions resulting from the negative charge of the guests, and the positive 

charge (+12) on the cage. In both the resorufin and resazurin cases, the crystal structures 

revealed the inclusion of two guests inside the cage cavity with cumulative binding 

constants of Ka1Ka2 = 1.1 × 1012 M−2 for (resorufin)2⊂cage and 1.2 × 1012 M−2 for 

(resazurin)2 ⊂cage. They further showed that at lower concentrations, the cage 

disassembles to yield PdII
2L2 species. However, interestingly, adding strongly binding 

resorufin/resazurin guests can reverse this process to the assembled cage.  

 

 

Figure 52. PdII
6L4 cage (A), prospective dyes for binding study (B) 
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In another study, Su, Pan, and co-workers presented a nanosized Pd−Ru 

(Pd6(RuL3)8) heteronuclear cage with a rhombododecahedral shape and 12 open 

windows.204 The large incorporated hydrophobic cavity with a volume of 5350 Å3 

prompted the authors to study the host-guest chemistry of the Pd−Ru cage with water-

immiscible and neutral nonpolar guests, including phenanthrene, pyrene, anthracene, and 

perylene (in order of increasing size). The DOSY/1H NMR titration suggested that the 

Pd−Ru cage can encapsulate ∼18 ±2 phenanthrene guest molecules in DMSO/D2O (1:2) 

mixture. Similarly, a Pd−Ru cage can encapsulate 12 larger pyrene or longer anthracene. 

However, no evidence of inclusion was observed for the bulky perylene. The cage was 

also investigated for the encapsulation of photosensitive polar guests that are also soluble 

in the  DMSO/D2O mixture. All three 2,2-dimethoxy-2-phenylacetophenone (DMPA), 2-

hydroxy-2-methylpropiophenone (HMPP),1-hydroxycyclohexyl phenyl ketone (HCPK)  

guests were encapsulated inside the cavity with a fast exchange mechanism as the result 

of solubility in the solvent mixture. More interestingly, the Pd−Ru cage protected these 

photosensitive encapsulated guests from UV irradiation. The cage was shown to protect 

the trapped guests from 365 nm light irradiation for up to 120 h.  
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Figure 53. The nanosized Pd6(RuL3)8 cage (A), nonpolar guests (B), and photosensitive 
polar guests (C). (Adapted with permission from ref. 204. Copyright 2014 American 
Chemical Society.) 

 

In 2018, Mukherjee and co-workers introduced a new Pd8L4 barrel shape cage, 

where L= [benzene-1,4-di(4-terpyridine)].205 As shown in Figure 54, treatment of L with 

cis-(tmeda)Pd- (NO3)2 (M) in a 1:2 ratio in DMSO yielded two isometric Pd(II) barrels 

(B1 and B3). However, interestingly, the pure B1 form was obtained by heating the B1 

and B3 mixture in water. 
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Figure 54. Isomeric Pd8L4 barrels. (Adapted with permission from ref. 205. Copyright 
2018 American Chemical Society.) 
 

While existing in a closed spiro form under visible light, the spiropyran 

compounds convert to a transient open merocyanine form upon heating or under UV light 

irradiation. This process can be reversed under visible light irradiation (Figure 55). The 

inclusion of a merocyanine molecule inside the B1 cavity was shown to protect this 

unstable molecule from converting to the closed spiro form under visible/UV light or 

heating. 

 

 

Figure 55. Reversible conversion of closed spiropyran compounds to the open 
merocyanine form 
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Recently, Ballester, Escobar, and co-workers have reported the self-assembly of a 

water soluble (Pt-L)6+ cage (L: tetra-cationic super aryl-extended calix[4]pyrrole tetra-

pyridyl) by the inclusion of polar mono- and ditopic pyridyl N-oxide and aliphatic 

formamide guests.206Despite the positive charges on both the free ligand L4+ and the (Pt-

L)6+ cage, they experienced aggregation in water. The authors showed that the 1:1 

inclusion of polar guests shown in Figure 56 with (Pt-L)6+ reduces the aggregation 

tendency of guest⊂(Pt-L)6+. They reported that while the ditopic guests completely fill 

the cage’s cavity and complement the two endohedral polar binding sites, the monotopic 

guests only partially fill the cavity and are bound to the C[4]P unit of the cage. 

 

 

Figure 56. Tetra-cationic super aryl-extended calix[4]pyrrole tetra-pyridyl ligand (A), 
mono- and ditopic pyridyl N-oxide (B), and mono- and ditopic and aliphatic formamide 
guests 
 

So far, due to the high thermodynamic stability and predictable stereochemical 

outcomes, the majority of reported metallacages have been based on transition metals and 
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main group ions.207 However, due to the increasing demands for more efficient 

luminescent and magnetic materials for lighting devices, LEDs, lasers, sensors, and 

biological imaging, lanthanide ions (Ln(III)) are attracting growing attention.  

Lanthanide Based Supramolecular Cages 

In 2009, He and co-workers reported two new tetrahedral (Ce4L6
1) and (Ce4L6

2) 

cages and studied their host−guest interactions for sensing natural saccharides.208 From 

crystal structures, the inner volumes of (Ce4L6
1) and (Ce4L6

2) were calculated as 300 and 

550 Å3, respectively. As evidenced by the luminescence titration (in DMF: acetone) and 

ESI-MS (in DMF: methanol), the (Ce4L6
2) cage showed size-selective (1:1) inclusion 

toward disaccharides (maltose, sucrose, and trehalose,). In the case of (Ce4L6
1), only 

mannose and glucose monosaccharides showed binding. No inclusion was observed for 

the larger disaccharides or smaller pentoses. 

 

 

Figure 57. Two tetrahedral (Ce4L6
1) and (Ce4L6

2) cages 
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In 2017, Sun and co-workers reported a concentration- and/or solvent-triggered 

helicate to tetrahedron transformation.209 When Eu(OTf)3 was treated with L1 ligand in 

low concentration in CH3CN, the 1H NMR and ESI-MS suggested the formation of a 

dinuclear Eu2L3 with a helicate structure (Figure 58A). Interestingly, at a higher 

concentration of L, another set of signals corresponding to Eu4L6 with a tetrahedron 

structure showed up in the 1H NMR. The crystal structure of pure Eu4L6 was obtained 

when a less polar solvent (ethyl acetate) was diffused into the reaction mixture 

(acetonitrile). The Eu4L6 was used as a safe container for the encapsulation of explosive 

nitroaromatic compounds. Emission quenching titration experiments were carried out 

using Eu4L6 in acetonitrile with electron-deficient 1-(4-nitrophenyl) ethanone, 1-methyl-

4-nitrobenzene, 1,3-dinitrobenzene, and 1-methyl-2,4-dinitrobenzene nitroaromatic 

compounds (Figure 58B). In all these cases, significant fluorescence quenching was 

observed. However, this effect was more than 3 times higher when picric acid was used 

as the guest, suggesting that Eu4L6 is highly efficient in sensing picric acid at ppb levels. 

The formation of ground state charge transfer between the electron-deficient 

nitroaromatic guests and the electron-rich cage framework was proposed to be 

responsible for the Eu4L6 emission quenching. 
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Figure 58. Helicate to tetrahedron transformation (A), electron deficient nitroaromatic 
guests (B) 
 

In another study by Sun and co-workers, they reported the synthesis of a group of 

Ln2Pd6 heterometallic cages, where Ln= NdIII, EuIII, and YbIII.210 The crystal structure of 

Eu2Pd6 showed a cage with a triple-stranded helicate structure, with an overall M helicity 

(Figure 59A). This cage was studied for the sensing of antibiotics. To this end, 

luminescence titration was performed with five classes of common antibiotics in 

methanol. The results indicated that the Eu2Pd6 cage was sensitive to β-lactams at ppb 

levels (Figure 59B). 
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Figure 59. Formation of EuIII based triple-stranded helicate structure (A), selected β-
lactams antibiotics (B) (Adapted with permission from ref. 210. Copyright 2018 
American Chemical Society.) 
 

Recently, Yan and co-workers have reported a Eu4L4 (where L is 4,4′,4″-

Tri(4,4,4-trifluoro-1,3-dioxobutyl)triphenylamine) tetrahedral cage as a fluorescence 

sensor for volatile compounds (Figure 60).211 The designed cage showed a turn-on 

fluorescence response toward NH3. 
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Figure 60. Eu4L4 tetrahedral self-assembly 
 

In another study, Liu and co-workers introduced three lanthanide-based defective 

coordination cages, using bulky bis-tridentate ligands with pyridine-2,6-dicarboxamides 

(pcam) L1–L3.212 Treating the lanthanides with L1, L2, and L3 resulted in the formation 

of defective Ln8(L1)10 hexahedral with two missing edges, Ln4(L2)5 tetrahedron with one 

missing edge, and twisted Ln6(L3)9 triangular prism without any missing edges, where 

Ln= Eu, Sm, Gd and La (Figure 61). Using a DOSY experiment, the hydrodynamic radii 

for Ln8(L1)10, Ln4(L2)5 , and Ln6(L3)9 were measured as 19.6, 14.7, and 18.4 Å, 

respectively. In each of these cages, different guests were bound in CH3CN solution. 

Encapsulation of fullerene, leucocrystal violet, mes-BODIPY, anthracene, and perylene 

guests within the Eu8(L1)10, Eu4(L2)5, and Eu6(L3)9 cages were monitored via UV-Vis 

titration in CH3CN. Interestingly, while the non-defective Eu6(L3)9 cage did not bind to 

any of the above guests, the Eu8(L1)10 with two missing edges formed host-guest 

complexes with all the guests. The binding constants increased from 6.8×103 to 1.4×104 

M−1 as a function of increase in the π-conjugation of the guests. These findings suggest 
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that the missing edges provide more conformation flexibility to adjust the internal cavity 

for the accommodation of larger guests. 

 

 

Figure 61. Lanthanide-based defective coordination cages 

 

Despite the growing interest and advancement of Ln(III) supramolecular cages, 

the host-guest chemistry of Ln(III) based cages are far less well studied due to the 

liability of Ln(III) coordination bonds.213 Due to the same reason, the majority of 

reported lanthanide cages and their host-guest chemistry are reported in organic solvents 

such as acetonitrile, since water can compete with the ligand to bind with metal ions, 

preventing cage formation. More studies are needed to unravel the factors that govern the 

Ln(III) cage formation and guest binding in aqueous media. 
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5.3. Lanthanide Ions 

Lanthanide ions, also known as rare earth elements, consist of  15 elements, from 

Lanthanum to Lutetium. The lanthanide ions’ electronic configurations are [Xe]4fn (n=0-

14) with the most stable oxidation number of +3 and a high coordination number of 9. All 

lanthanide ions are paramagnetic and have unpaired electrons in their f orbitals, except 

for La3+ and Lu3+
. 

In the lanthanides series, the formation of covalent bonds with ligands is almost 

impossible as the 4f orbitals are shielded by 5s and 5p orbitals.214 Consequently, the 

interaction between the lanthanide ions and the ligand is only weakly covalent and 

largely electrostatic, and the complex stereochemistry is mainly governed by the steric 

properties of the ligand, rather than electronic properties. The resulting magnetic and 

photophysical properties of lanthanide ions are less impacted by the environment 

surrounding them.215  

Due to the poor shielding of electrons in f orbitals on the 5s and 5p orbitals, the 

lanthanide ionic radii decrease across the series, known as “lanthanide contraction”.216 

This is because the nuclei shielding effect is caused by the electron-electron repulsion in 

the orbital, and since f orbitals are larger compared to s and p orbitals, the electron 

repulsion is less noticeable, leading to a poor shielding effect. 

The high charge density of lanthanide ions causes them to behave as a hard 

“Lewis acid” and tend to interact with hard “Lewis base” ligands such as carboxylates.216 

Generally, lanthanide ions have a large hydration enthalpy in aquas media, and this value 

increases across the series. This means that the ligand of choice has to overcome the 
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unfavorable endothermic desolvation enthalpy to form a stable complex with the 

lanthanide ions.215 Thermodynamically, the positive enthalpy in the complexation process 

can be compensated by increasing the entropy to the variation in Gibbs free energy using 

multidentate ligands, known as the “chelating effect”.217 The trend in lanthanide ionic 

radii and hydration enthalpy are shown in Figure 62.218 

 

 

Figure 62. Ionic radii (black circles) and hydration enthalpy (red squares) of Ln(III) ions. 
(Adapted with permission from ref. 218. Copyright 2009 American Chemical Society.) 

 

Luminescence Properties of Lanthanide Ions 

The lanthanide ions are either fluorescent or phosphorescent with long lifetimes 

ranging from seconds (s) to microseconds (μs). While the strong shielding effect of 5s 

and 5p on the 4f orbital, results in the line-like shape of the lanthanide emission band, 

their long life arises from the forbidden transition in the 4f orbital.219  
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As mentioned above, the lanthanide ions’ electronic transitions and photophysical 

properties involve 4f orbital.219 For an emission to happen, the lanthanide ions are 

required to get excited to their excited state, and relax back to the ground state by 

emitting a photon. However, the direct excitation of lanthanide ions is not very efficient 

and is close to impossible as the f-f transition is Laporte forbidden and shows a very low 

extinction coefficient in the range of 5-10 M-1cm-1.  

Using light absorbing chromophores or ligands, also known as antennas, to 

efficiently populate the 4f excited state of a lanthanide ion is one strategy to remove this 

limitation. In this strategy, the antenna absorbs the irradiated light and gets excited to its 

singlet excited state, followed by an inter system crossing to populate its triplet excited 

state (Figure 42). The excited antenna, in its triplet state, can now excite the lanthanide 

ion by passing its energy to the lanthanide ion through intramolecular energy transfer 

(ET). The excited lanthanide ion then relaxes back to its ground state by emitting 

photons, leading to the lanthanide emission spectra (Figure 63).220 In most cases, the ISC 

in the antenna can be facilitated by the heavy atom effect of the lanthanide ions. 
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Figure 63. Jablonski diagram for Eu3+ luminescence.  
 

5.4. Host-Guest Interaction 

The internal cavity incorporated in these structures allows them to encapsulate the 

guest molecules. Consequently, such 3D structures can be used as nanoreactors for 

catalytic reactions, drug delivery, in host-guest chemistry for encapsulation, stabilizing 

unstable intermediates, and molecular recognition.221 The incorporated cavity has a 

different microenvironment from the bulk solution. This may change the physical and 

chemical properties of the guest.187 The guest encapsulation within the cage cavity is 

dictated by several factors, including solvation, size, charge, and the shape of both guest 

and host.187 Due to the release of trapped solvent molecules into the bulk solution, the 

guest encapsulation is entropically driven.222 

Interaction between the host and guest is mainly through weak supramolecular 

interactions, including van der Waals, hydrogen bonding, Coulombic, steric interactions, 

and ion association forces.222 Without strong bonds such as covalent bonds to glue the 
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guest molecules to the internal cavity of the supramolecular hosts, the guests can freely 

exchange from the interior to the exterior of the cavity.223 This process is known as 

“guest exchange”.  

Guest Exchange Mechanism 

The guest exchange usually follows either a dissociative or non-dissociative 

pathway. The former refers to a mechanism in which partial dissociation of the host 

structure is necessary to temporarily open a gate for guest ingress.224 The temporary 

partial dissociation of the ligand from the metal center happens in a way that preserves 

the entire host assembly structure during the guest exchange. This process resembles a 

door on a hinge.224 On the other hand, the non-dissociative mechanism requires the host 

assembly to undergo deformation without rupture, to make enough space for the guest 

exchange.224 The mechanisms are shown in Figure 64. The exchange pathway is usually 

determined by the existing interactions among the components of the host as well as the 

orientation of the host and guest, and the cavity accessibility.224  
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Figure 64. Associative mechanism (A), Dissociative mechanism (B) 
 

Binding Constant 

In host-guest chemistry, the binding constant is a quantitative measurement of the 

interaction between the host and guest. The binding constant, which is the inverse of the 

dissociation constant with the simple 1:1 equilibrium, is shown in equation 1. 

𝐻𝑜𝑠𝑡 + 𝐺𝑢𝑒𝑠𝑡 ↔ 𝐻𝑜𝑠𝑡. 𝐺𝑢𝑒𝑠𝑡        𝐾 =
[𝐻𝑜𝑠𝑡.𝐺𝑢𝑒𝑠𝑡]

[𝐻𝑜𝑠𝑡][𝐺𝑢𝑒𝑠𝑡]
         equation 1 

The  [Host] and [Guest] are the free species in the solution, and [Host.Guest] is the 

encapsulated guest inside the host. The binding constant of the [Host.Guest] complex can 

be measured by host-guest titration. In this method, the guest is gradually added to the 

host solution and the changes in the physical property of the system are monitored via 

different techniques, including NMR, isothermal titration calorimetry (ITC), and UV-vis. 

The obtained information is then used to derive information such as enthalpy (ΔH), 
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entropy (ΔS), Gibbs free energy (ΔG), binding constant, and stoichiometry from the fitted 

binding models.225 Binding constant is related to ΔH, ΔS, and ΔG by equations 2 and 3. 

                                                 ∆𝐺 = −𝑅𝑇𝑙𝑛𝐾                      equation 2 

                                                ∆𝐺 = ∆𝐻 − 𝑇∆𝑆                    equation 3 

T represents the temperature and R is the ideal gas constant. 

5.5.  Project Description 

The primary focus of this project is on designing and synthesizing a bridging 

ligand with limited rotational freedom and functionalized with pyridine 2,6-dicarboxylate 

groups.  An aqueous solution of EuCl3(H2O)6 is then titrated into a solution of the ligand 

in D2O, and SCC formation with the general formula Eu2L3 is monitored by nuclear 

magnetic resonance spectroscopy (NMR). 

Accordingly, to study the recognition properties of the as-prepared cage-like 

structure, a series of mono- and di-cationic guests were synthesized and their 

encapsulation was monitored by NMR spectroscopy and Isothermal Titration Calorimetry 

(ITC) in aqueous media.  

5.6. Experimental Details 

General Synthetic Scheme 

The synthetic scheme for the preparation of the bridging ligand (L) precursor to 

the Eu2L3 cage is shown in Scheme 5. The bridging ligand (L) functionalized with two 

pyridine 2,6-dicarboxylate groups was prepared in seven steps. The scheme starts with 

the commercially available 3-bromo-2,6-dimethyl-pyridine, which is converted to 3-

bromo-pyridine-2,6-dicarboxylic acid (1) by an oxidation reaction in the presence of 
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KMnO4.226 Through an esterification reaction, (1) converts to 3-bromo-pyridine-2,6-

dimethyl ester (2) in high yield.226 The 3-[2-(trimethylsilyl)ethynyl]-pyridine-2,6-

dimethyl ester (3) obtained from (2) through the Sonogashira cross-coupling reaction, 

followed by a deprotection reaction in the presence of KF to afford the 3-ethynyl-

pyridine-2,6-dimethyl ester (4).226,227 We adapted a one-pot copper-catalyzed azide–

alkyne cycloaddition (CuAAC) method from a previously reported procedure to prepare 

compound (5).228 The final bridging ligand (L) was obtained from (5) through a 

saponification reaction in the presence of LiOH. The Eu2L3 was prepared by mixing an 

appropriate ratio of L and EuCl3.6H2O precursor in D2O. 1H NMR was used to monitor 

the formation of Eu2L3 upon mixing. The 1H NMR spectra of the bridging ligands (5 and 

L) and Eu2L3 assemblies are shown in Appendix Figures A43, A44, and A45. 
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Scheme 5. Synthetic approach for L and corresponding Eu2L3 assembly 
 

Synthesis of 3-Bromo-pyridine-2,6-dicarboxylic acid (1) 

 

The compound was synthesized by a modification to a previously reported 

procedure.226 To a solution of 3-bromo-2,6-dimethyl-pyridine (4.0 g, 21 mmol) in water 

(0.10 L), KMnO4 (13 g, 85 mmol) was added over the course of 5 h at 90°C. The solution 

was heated at 90°C overnight. The mixture was filtered hot and washed with hot water. 

HCl (7.0 mL) was added to the concentrated filtrate to induce precipitation. The filtrate 

was stored in the fridge overnight. The resulting white precipitation was filtered off, 

washed with cold water (0.060 L) and dried under vacuum to give 5-bromo-pyridine-2,6-
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dicarboxylic acid. Yield: 2.6 g (0.010 mol, 50%); (1H-NMR (500 MHz, d6-DMSO) δ 8.38 

(1 H, s), 8.01 (1H, s). 

 Synthesis of 3-Bromo-pyridine-2,6-dimethyl ester (2) 

 

The compound was synthesized according to a previously reported procedure.226 

The 3-bromo-pyridine-2,6-dicarboxylic acid (1) (2.0 g, 8.1 mmol) was dissolved in 

SOCl2 (6.0 mL) and heated at reflux for 4 h. The solvent was removed and methanol (15 

mL) was added. The solution was heated at reflux for 1 h. After cooling down, the 

solvent was removed under reduced pressure to give 3-bromo-pyridine-2,6-dimethyl ester 

(2). Yield: 1.7 g (6.1 mmol g, 75%); 1H-NMR (500 MHz, d6-DMSO) δ 8.46 (1H, d), 8.09 

(1H, d), 3.93 (3H, s), 3.89 (3H, s). 

Synthesis of 3-[2-(trimethylsilyl)ethynyl]-pyridine-2,6-dimethyl ester (3) 

 

The compound was prepared according to a previously reported procedure.229 To 

a degassed Et3N solvent (3.0 mL) were added (2) (150 mg, 0.54 mmol), trimethylsilyl 

acetylene (0.090 mL, 0.65 mmol), (Ph3P)2PdCl2 (8.0 mg, 0.012 mmol), and CuI (2.2 mg, 

0.012 mmol). The mixture was stirred at room temperature overnight. After stopping the 

reaction, dichloromethane (0.020 L) was added to the mixture and filtered through a 
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silica plug (3x). The solvent was removed under reduced pressure and the remaining solid 

was purified by column chromatography (hexanes/ethyl acetate (50:50)). The product 

was obtained as orange oil. Yield: 0.10 g (0.34 mmol, 62%). 1H-NMR (500 MHz, d6-

DMSO) δ 8.22 (1H, d), 8.16 (1H, d), 3.31 (6H, s), 0.25 (9H, s). 

Synthesis of 3-ethynyl-pyridine-2,6-dimethyl ester (4) 

 

The compound was prepared according to a modified previously reported 

procedure.227  3-[2-(trimethylsilyl)ethynyl]-pyridine-2,6-dimethyl ester (3) (0.090 g, 0.30 

mmol) and KF (0.040 g, 0.75 mmol) were added to methanol (8.0 mL) and stirred for 25 

min at room temperature. The mixture was poured into ethyl acetate (0.030 L), washed 

with brine, and dried over MgSO4. The product was obtained as a brown solid. Yield: 52 

mg (23 mmol, 77%). 1H-NMR (500 MHz, d1-CDCl3) δ 8.22 (1H, d), 8.09 (1H, d), 4.02 

(6H, s), 3.67 (1H, s). 

Synthesis of (5) 
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The compound was synthesized according to a modified previously reported 

procedure.228 N,N’-dimethylethylenediamine (18 μL, 0.70 mmol), NaN3 (85 mg, 1.3 

mmol), sodium ascorbate (64 mg, 0.32 mmol), and CuI (25 mg, 0.13 mmol) were added 

to a degassed solution of 1,3-diiodobenzene (220 mg, 0.66 mmol) in H2O/ethanol (0.010 

L) and heated to reflux under Ar. After 2 h, the mixture was cooled to room temperature 

and 3-ethynyl-pyridine-2,6-dimethyl ester (4) (0.30 g, 1.4 mmol), sodium ascorbate (64 

mg, 0.32 mmol), and CuSO4 (42 mg, 0.17 mmol) were added to the mixture and stirred 

overnight at room temperature under Ar. The reaction mixture was then poured into 

NH4OH/EDTA (0.020 L). The resulting brown precipitation was filtered, washed with 

water, and dried under the vacuum. The crude was purified by column chromatography 

(ethyl acetate/methanol (97:3). The product was obtained as an orange solid. Yield: 66 

mg (0.11 mmol, 17%). 1H-NMR (500 MHz, d6-DMSO) δ 9.62 (2H, s), 8.65 (1H, s), 8.53 

(2H, d), 8.36 (2H, d), 8.16 (2H, d), 7.95 (1H, dd), 3.94 (6H, s), 3.90 (6H, s). 

Synthesis of L 

 

 

Compound 5 (45 mg, 0.075 mmol) and LiOH (7.6 mg, 0.30 mmol) were added to 

a 6.0 mL of H2O/dioxane (1:1) and heated at 50°C for 5 h. The solvent was removed 
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under reduced pressure and the desired product was obtained as an orange solid. Yield: 

0.030 g (0.052 mmol, 71%). 1H-NMR (500 MHz, d2-D2O) δ 8.78 (2H, s), 8.46 (1H, s), 

8.41 (2H, d), 8.05 (2H, d), 8.04 (2H, d), 7.88 (1H, dd).  

 Preparation of Eu2L3     

Generally, 0.50 mL of L solution in D2O (3.0- 0.50 mM) was placed into an NMR 

tube. Aliquots of EuCl3.6H2O in D2O (10- 30 mM) were added to the NMR tube. The 

Formation of Eu2L3 (2:3 ratio) was monitored by 1H-NMR upon mixing. The desired 

ratio (Eu2L3) resulted in two sets of signals in 1H-NMR spectrum. 1H-NMR (500 MHz, 

d2-D2O) δ 9.98 (2H, s), 9.09 (1H, s), 7.98 (2H, d), 7.67 (1H, dd), 6.10 (2H, d), 4.58 (2H, 

d). 1H-NMR (500 MHz, d2-D2O) δ 9.96 (2H, s), 8.89 (1H, s), 8.00 (2H, d), 7.73 (1H, dd), 

6.03 (2H, d), 4.63 (2H, d). 

1H NMR   

The spectra were collected on a Bruker Ascend 500 MHz spectrometer at 298 K. 

The spectra were calibrated to residual solvent peaks for D2O at δ = 4.79 ppm. 

 ITC 

ITC experiments were carried out using an iTC200 calorimeter (Microcal Inc., 

GE Healthcare, Piscataway, NJ).  

Host-Guest NMR Titration Experiments 

Aliquots of each guest solution (20-40 mM) in D2O were added to a solution of 

cage Eu2L3 (0.5 mM) in D2O into the NMR tube, and the changes in the cage and guest 

signals were recorded after each addition upon mixing.  
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5.7. Results and Discussion 

Self-assembly of Eu2L3     

Upon the addition of EuCl3.6H2O into the solution of free ligand in D2O, two new 

sets of signals shown by black circles and squares started to show up. This was 

concomitant with the decrease in the free ligand’s signals. When 0.64 equivalent of 

EuCl3.6H2O was added, all signals corresponding to the free ligand vanished. The 

titration is shown in Figure 65. The two new sets of signals (circles and squares) were 

assigned to the formation of two new assemblies with a 2:3 (Eu:L) ratio with different 

chirality.  

 

 

Figure 65. 1H NMR titration of L (3 mM in 500μL D2O) with EuCl3.6H2O (30 mM) 
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To further assign all the signals in the Eu2L3 assemblies, we performed two-

dimensional nuclear Overhauser effect spectroscopy (NOESY) and Correlation 

spectroscopy (COSY) experiments (Figures 66 and 67). The assignments are shown in 

Figure 68.  

 

Figure 66. COSY spectrum of Eu2L3 assemblies in D2O 
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Figure 67. NOESY spectrum of Eu2L3 assemblies in D2O 
 

  

Figure 68. Assignment of the protons 
  

Diffusion-ordered NMR spectroscopy (DOSY) confirmed the formation of two 

assemblies with very similar diffusion coefficients (Figure 69). This further suggested 
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that both assemblies have the same chemical structures but different conformations. Each 

set of proton signals of both assemblies showed a diffusion coefficient of D=1.80×10−10 

m2 ⋅ s−1. The Stoke-Einstein equation (equation 4) was used to calculate the Stokes radius 

(rs) of Eu2L3 assemblies.230 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟𝑠
        equation 4 

Where 𝑘𝐵 is the Boltzmann constant, T is the absolute temperature, 𝜂 is the viscosity of 

the solvent, and 𝑟𝑠 is the radius. Using the above equation, the hydrodynamic radius of 

both assemblies was calculated as 12 Å.  

 

Figure 69. DOSY spectrum of Eu2L3 assemblies in D2O 
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To predict the conformations of the two assemblies observed in the NMR 

spectrum, we optimized the Eu2L3 assemblies using the GFN2 XTB method. To avoid 

problems during optimization, we have used Lu instead of Eu. 

Computational calculations suggest that the two assemblies are a mixture of two 

structures with M, M and M, P chiralities. Figure 70A shows a structure with an M, M 

helical chirality, meaning that all 6 pyridyl groups are left-handed around the lanthanide. 

On the other hand, Figure 70B exhibits a structure with an M, P chirality, i.e., one 

lanthanide has left-handed pyridyl blades and the other one right-handed pyridyl.  

 

 

Figure 70. Optimized structures of Lu2L3 with (A) M,M chirality (B) M,P chirality 
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Encapsulation of Cationic Guests 

The incorporated cavity inside the Eu2L3 structure prompts us to study the cationic 

guests’ encapsulation inside the internal cavity. As shown in Figure 71, as the result of 

the overall negative charge on the Eu2L3 cage, a series of water-soluble mono- and di-

cationic guests were synthesized, and their encapsulation was studied through 1H NMR 

titration in D2O. In this series, while the smaller mono-cationic guest did not show any 

binding, the 2,2':6',2''-terpyridinium,1-methyl iodide with a bigger size was encapsulated 

inside the cavity of Eu2L3. On the other hand, most of the di-cationic guests bound within 

the Eu2L3.  

During the titration, we monitored the changes in the signals of protons 3 and 4 on 

the host (see Figure 67 for the assignment), as those are the protons that point toward the 

inside of the cavity and are involve directly with the guest’s binding. Any guest 

encapsulation should lead to bigger shifts in those protons. Similarly, compared with the 

free guest, the guest encapsulation should result in bigger chemical shifts in the bound 

guest signals. The chemical shift of the bound guest results from changing its electronic 

environment due to encapsulation, as the host’s cavity has a different microenvironment 

from the bulk solution.187 

 



 
 

162 

 

 

Figure 71. A series of mono- (A) and di-cationic (B) guests. 

 

1H NMR Mono-Cationic Guests Titration 

The mono-cationic guest binding was studied by adding aliquots of guest solution 

(20 mM) into a solution of Eu2L3 (0.5 mM) in D2O in the NMR tube, and the changes in 

the host and guest signals were monitored after each addition upon mixing. As shown in 

Figure 72, no shift was observed after adding 1 eq of the trimethylphenylammonium 

bromide guest, indicating that no binding is happening.  
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Figure 72. 1H NMR titration of Eu2L3 with trimethylphenylammonium bromide in D2O 
 

Interestingly, as exhibited in Figure 73 titration of the Eu2L3 cage with mono-

cationic 2,2':6',2''-terpyridinium,1-methyl guest resulted in an upfield shift of protons 3 

and 4’s signals on the host. The guest’s signals also showed up at different chemical 

shifts as compared to the free guest. The observed encapsulation can be attributed to the 

larger size of the guest, which provides a better fit for the cage’s cavity, resulting in a 

stronger dispersion interaction. 
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Figure 73. 1H NMR titration of Eu2L3 with 2,2':6',2''-terpyridinium,1-methyl iodide in 

D2O 

 

1H NMR Di-Cationic Guests Titration 

Similar to mono-cationic guest titration, we monitored the changes in the 

chemical shift of protons 3 and 4 on the host, as well as the guest’s signals. Starting with 

1,1′-dimethyl-4,4′-bipyridinium dichloride (methyl viologen) guest titration, gradual 

addition of methyl viologen into the host solution resulted in a progressive upfield shift of 

protons 3 and 4’s signals on the host (Figure 74). The bound guest’s signals also appeared 

as broad signals at more downfield chemical shifts as compared to the free guest.  
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The addition of more guests resulted in an upfield shift of the bound guest toward 

the free guest’s signals. The steady change in the chemical shifts is an indication of a fast 

guest exchange.190  

Similar results were observed for 1,1′-dimethyl-4,4′-bipyridinium diiodide, 1,1′-

dimethyl-3,3′-bipyridinium diiodide, 1,1′-diethyl-3,3′-bipyridinium diiodide, 1,1′-

dipropyl-3,3′-bipyridinium diiodide, and 1,1'-propylenedipyridinium diiodide. The 1H 

NMR titrations are shown in Figures 75-80. 

Binding of di-cationic guests might be arising from the fact that higher charged 

guest molecules are surrounded by more water molecules, resulting in a more significant 

entropic driving force for binding.231 Additionally, di-cationic guests provide stronger 

electrostatic interactions with the overall negative charge on the Eu2L3 assembly. 
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Figure 74. 1H NMR titration of Eu2L3 with 1,1′-dimethyl-4,4′-bipyridinium dichloride in 
D2O 
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Figure 75. 1H NMR titration of Eu2L3 with 1,1′-diethyl-4,4′-bipyridinium dichloride in D2O 
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Figure 76. 1H NMR titration of Eu2L3 with 1,1′-dimethyl-3,3′-bipyridinium diiodide in D2O 
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Figure 77. 1H NMR titration of Eu2L3 with 1,1′-diethyl-3,3′-bipyridinium diiodide in D2O 
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Figure 78. 1H NMR titration of Eu2L3 with 1,1′-propyl-3,3′-bipyridinium diiodide in D2O 
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Figure 79. 1H NMR titration of Eu2L3 with 1,1'-propylenedipyridinium diiodide in D2O 
 

In case of titration with 5,6-dihydropyrazino[1,2,3,4-lmn]-1,10-phenanthrolinium 

diiodide, addition of guest to the host solution resulted in an immediate precipitation. 

This might be arising from cage aggregation due to outside binding of the guest.232 
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Figure 80. 1H NMR titration of Eu2L3 with 5,6-dihydropyrazino[1,2,3,4-lmn]-1,10-
phenanthrolinium diiodide in D2O 
 

ITC Guests Titration 

To determine the binding constant (KA) and the binding stoichiometry of each 

host: guest complex, a 100 μL, 5 mM of the guest, and a 300 μL, 0.5 mM of the host 

(Eu2L3) solution were prepared in water. The guest solution (60 μL) was loaded into the 

syringe, and 300 μL of the host was loaded into the cell. ITC experiments were 

performed by adding 2 μL aliquots of the guest solution into the host solution in the cell 

up to 1.6 eq. After the first injection, the microcalorimeter records the heat released until 

the binding reaches to an equilibrium. The data collected results in a plot of heat released 

after each injection in the solution over time. The area under each peak is calculated and 
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plotted over the molar ratio of ligand to host. The binding constant is then obtained by 

fitting the resulting isotherm to a binding model. 

 In agreement with 1H NMR titration with trimethylphenylammonium bromide, 

no binding was observed during ITC titration with the same guest. Titration of di-cationic 

guests i.e., 1,1′-dimethyl-4,4′-bipyridinium dichloride and 3,3′-dimethyl-4,4′-

bipyridinium diiodide, however, resulted in a weak binding between the guest and the 

host. This is also in good agreement with the fast exchange mechanism observed during 

1H NMR titrations. The binding affinities for 1,1′-dimethyl-4,4′-bipyridinium dichloride 

and 3,3′-dimethyl-4,4′-bipyridinium diiodide were calculated as 1.1 (± 0.03) × 103 M−1 

and 2.0 (±0.08) × 103 M−1, respectively. The enthalpograms are shown in Figures 81 and 

82. Unfortunately, due to the solubility issues and precipitation at the higher guest’s 

equivalent, we were unable to obtain good results for the other di-cationic guests.  
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Figure 81. ITC titration with 1,1′-dimethyl-4,4′-bipyridinium dichloride (A) enthalpogram 
isotherm (B) 
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Figure 82. ITC titration with 3,3′-dimethyl-4,4′-bipyridinium diiodide (A) enthalpogram 
isotherm (B) 

 

5.8. Conclusions 

In this study, a bridging ligand with limited rotational freedom and functionalized 

with pyridine 2,6-dicarboxylate groups was designed and synthesized. An aqueous 

solution of EuCl3(H2O)6 was then titrated into a solution of the ligand in D2O, and SCC 

formation was monitored by NMR spectroscopy. At a 3:2 ligand-to-metal ratio, 2 sets of 

signals corresponding to two conformations of the SCC were observed. Optimized 

structures obtained by semi-empirical methods suggest the formation of a pair of chiral 

and achiral M2L3 cages. Each proton was further assigned by 2D NOESY and COSY 

NMR techniques. We assigned protons 3 and 4, as the three protons that face toward the 

inside of the cavity and used them as a probe to monitor the guest encapsulation during 
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the NMR titration.  Using a 2D DOSY experiment, we measured the diffusion coefficient 

of both assemblies as 1.80×10−10 m2 ⋅ s, and the hydrodynamic radius of the incorporated 

cavity was calculated as 12 Å using the Stoke-Einstein equation. 

A series of mono- and di-cationic guests were synthesized, and their 

encapsulation was monitored by the NMR spectroscopy and ITC. At this point, we 

cannot draw any precise conclusions as this study is still in its infancy. Further studies 

with a series of more guests are needed to confirm the impact of the charge and size of 

the guests on their encapsulation. 
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Chapter 6: Future Work 

6.1. Extending the Absorbance of Mn(I) Based BODIPY photoCORM into the NIR 

Region 

The presented studies in Chapters 2,3, and 4 were focused on designing a series of 

Mn(I) photoCORMs and studying the electronic and steric impacts of ligand variations 

around the Mn(I) metal centers on the photophysical, photochemical properties, and 

formation of photo intermediates. In order to enhance the efficacy of Mn(I) photoCORM, 

we combined the Mn(CO)3 moiety with the BODIPY ligand to concurrently produce 1O2 

while releasing CO under visible light irradiation. Coordination of BODIPY to the Mn(I) 

center, extended the Mn(I) photoCORM absorption more into the visible region, such that 

the CO release was activated under low energy 590 nm light irradiation. Despite the 

improvement in the extending the absorption of Mn(I) photoCORM into the visible 

region, it is not still within the phototherapeutic window (600-950 nm).  

This goal can be achieved by introducing electron withdrawing groups at 

positions 3 and 5 on the BODIPY core. Previous studies have shown that this is a 

straightforward strategy to push the BODIPY absorption toward the IR/NIR region.48,233 

Therefore, designing a Mn(I) based BODIPY photoCORM, with  suitable substituents at 

3 and 5 position, not only would allow to produce 1O2 at longer wavelength but also 

activate the CO release with IR/NIR light. 

6.2.  Studying the Interaction of Mn(I) Based BODIPY photoCORM with DNA 

The next goal will be studying the DNA photocleavage in the presence of Mn(I) 

based BODIPY photoCORM under NIR light irradiation. It’s been previously shown that 
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DNA is one of the main targets of singlet oxygen. A convenient way to investigate the 

impact of produced singlet oxygen from Mn(I) based BODIPY photoCORM on the DNA 

is using the gel electrophoresis. In this experiment, as the result of photocleavage, the 

supercoiled DNA (SC) converts to the nicked-circular (NC) form. This conversion will 

be evident by the slower migration of NC DNA in the gel following photolysis as 

compared to the SC DNA. 

6.3. Studying the Effect of Charge and Size on the Guest Binding 

The presented work in Chapter 5 was focused on designing and synthesizing a 3D 

cage-like structure composed of lanthanide ions (Eu(III)) as the metal nodes and bridging 

ligands as the organic linkers with general formula of  M2L3. The internal cavity 

incorporated in the as-prepared assembly encouraged us to study its host-guest chemistry 

with smaller organic molecules. To this end, we synthesized a series of mono- and di-

cationic guests and monitored their encapsulation within the cavity by 1H NMR.  

However, to fully understand the impact of the charge and size on guest binding 

we need to expand our guest library and conduct a more systematic study of guests of 

different sizes and charges, including various mono-, di-, and tri-cationic guests. To 

achieve this goal, the proposed structures in Figure 83 can be used to study the systematic 

effect of size and charge on guest binding. 

 



 
 

179 

 

 

Figure 83. Proposed structures for studying the impact of size and charge on the guest 
binding 

 

6.4. Measuring the Binding Constants 

The second goal will be the quantitative measurement of the binding constants 

with UV-Vis spectroscopy. Similar to the NMR titration, in the UV-Vis titration, aliquots 

of each guest solution in H2O are added to an aqueous solution of the host in the cuvette, 

and the change in the absorbance is recorded after each addition upon mixing. The 

binding constants for 1:1 host-guest assemblies are calculated by a nonlinear least-

squares fit of the absorbance (A) against the concentration of guest added (CG) using 

below equation (5)234: 
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𝐴 = 𝐴0 +
𝐴𝑙𝑖𝑚 − 𝐴0

2[𝐶0]
{[𝐶0] + [𝐶𝐺] +

1

𝐾𝐴
− [([𝐶0] + [𝐶𝐺] +

1

𝐾𝐴
)2 − 4[𝐶0][𝐶𝐺]]

1
2} 

Where, A is the absorbance of the host at the given wavelength in the presence of the 

guest, and A0 is the absorbance of the host in the absence of the guest, Alim is the limiting 

value of absorbance in the presence of excess guest, C0 is the concentration of the host, 

CG is the concentration of the guest, and KA is the binding constant.  
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Appendix: Supplementary Materials 

 

Figure A1. 1H NMR spectrum of fac-[Mn(dmebpy)(CO)3(py)](OTf) in CD3CN. 
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Figure A2. 1H NMR spectrum of fac-[Mn(bpy)(CO)3(py)](OTf) in CD3CN. 
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Figure A3. 1H NMR spectrum of fac-[Mn(Me2bpy)(CO)3(py)](OTf) in CD3CN. 
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Figure A4. 1H NMR spectrum of a mixture of cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ 
(circles, ~29%) and cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ (squares, ~71%) in 
CD3CN. 
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Figure A5. FTIR spectra for fac-[Mn(dmebpy)(CO)3Br] (A), fac-[Mn(bpy)(CO)3Br] (B), 
fac-[Mn(Me2bpy)(CO)3Br] (C), fac-[Mn(dmebpy)(CO)3(py)]+ (D), fac-
[Mn(bpy)(CO)3(py)]+ (E), and fac-[Mn(Me2bpy)(CO)3(py)]+ (F) in rt CH3CN initially 
(black) and protected from light for 1 h (red). 
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Figure A6. FTIR spectra for fac-[Mn(bpy)(CO)3Br] (A), fac-[Mn(Me2bpy)(CO)3Br] (B), 
fac-[Mn(bpy)(CO)3(py)]+ (C), and fac-[Mn(Me2bpy)(CO)3(py)]+ (D) in rt CH3CN during 
photolysis with λirr = 470 nm. The first and second intermediate bands are denoted with 
black and red asterisks, respectively. 
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Figure A7. FTIR spectra for fac-[Mn(dmebpy)(CO)3Br] (A), fac-[Mn(bpy)(CO)3Br] (B), 
fac-[Mn(Me2bpy)(CO)3Br] (C), fac-[Mn(dmebpy)(CO)3(py)]+ (D), fac-
[Mn(bpy)(CO)3(py)]+ (E), and fac-[Mn(Me2bpy)(CO)3(py)]+ (F) in rt CH3CN during 
photolysis with λirr = 405 nm. The first and second intermediate bands are denoted with 
black and red asterisks, respectively. 
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Figure A8. 1H NMR spectra of a sample of fac-[Mn(dmebpy)(CO)3Br] in CD3CN 
following 470 nm irradiation for 20 s (red spectrum) and a mixture of synthesized cis,cis-
[Mn(dmebpy)(CO)2(CH3CN)2]+ (circles) and cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ 
(squares) in CD3CN (blue spectrum). 
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Figure A9. 1H NMR spectra of a sample of fac-[Mn(dmebpy)(CO)3(py)]+ in CD3CN 
following 470 nm irradiation for 20 s (red spectrum) and a mixture of synthesized cis,cis-
[Mn(dmebpy)(CO)2(CH3CN)2]+ (circles) and cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ 
(squares) in CD3CN (blue spectrum). 
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Figure A10. FTIR spectra for fac-[Mn(dmebpy)(CO)3Br] (A), fac-[Mn(bpy)(CO)3Br] 
(B), and fac-[Mn(Me2bpy)(CO)3Br] (C) in CH3CN before irradiation (black), after 
irradiation for 10 s with 470 nm to form the first intermediate (red), and after storing the 
sample (containing the original species and first intermediate) in the dark in solution for 
15 minutes (gray). 

 

 

Figure A11. FTIR spectra for fac-[Mn(dmebpy)(CO)3(py)]+ (A), fac-
[Mn(bpy)(CO)3(py)]+ (B), and fac-[Mn(Me2bpy)(CO)3(py)]+ (C) in CH3CN before 
irradiation (black), after irradiation for 10 s with 470 nm to form the first intermediate 
(red), and after storing the sample (containing the original species and first intermediate) 
in the dark in solution for 15 minutes (gray). 
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Figure A12. Electronic absorption spectra for fac-[Mn(bpy)(CO)3Br] (A), fac-
[Mn(Me2bpy)(CO)3Br] (B), fac-[Mn(bpy)(CO)3(py)]+ (C), and fac-[Mn(Me-
2bpy)(CO)3(py)]+ (D) in rt CH3CN during photolysis with λirr = 470 nm.  
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Figure A13. Electronic absorption spectra for fac-[Mn(dmebpy)(CO)3Br] (A), fac-
[Mn(bpy)(CO)3Br] (B), fac-[Mn(Me2bpy)(CO)3Br] (C), fac-[Mn(dmebpy)(CO)3(py)]+ 
(D), fac-[Mn(bpy)(CO)3(py)]+ (E), and fac-[Mn(Me2bpy)(CO)3(py)]+ (F) in rt CH3CN 
during photolysis with λirr = 405 nm. 

 

Summary of DFT coordinates:  

(All coordinates are in units of Ångströms) 

fac-[Mn(dmebpy)(CO)3Br] energy-optimized geometry (0 charge, singlet multiplicity) 

Atom    X        Y           Z 

Br         0.00149       -2.08310       -2.13061 

C         -3.68529        2.99931       -0.01537 

C          3.68362        3.00102       -0.01591 

O          4.99171        2.76575        0.02224 

C          5.83335        3.91805       -0.09356 

O          3.18509        4.09789       -0.14104 

O         -3.18727        4.09658       -0.13897 
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O         -4.99328        2.76325        0.02125 

C         -5.83547        3.91516       -0.09440 

C         -3.46955        0.48859        0.25237 

C         -2.63851       -0.61525        0.36602 

N         -1.30370       -0.52246        0.35038 

C         -0.73378        0.69640        0.22159 

C         -1.50254        1.84793        0.10157 

C         -2.88775        1.74492        0.11549 

C          0.73320        0.69676        0.22167 

N          1.30370       -0.52173        0.35127 

C          1.50141        1.84858        0.10084 

C          2.88667        1.74631        0.11547 

C          2.63856       -0.61383        0.36745 

C          3.46907        0.49039        0.25354 

Mn         0.00041       -2.11153        0.43435 

C         -0.00041       -2.12716        2.21192 

O         -0.00083       -2.14336        3.37082 

C          1.25558       -3.38712        0.34330 

C         -1.25398       -3.38781        0.34208 

O          2.05572       -4.21951        0.26400 

O         -2.05355       -4.22066        0.26183 

H         -4.54727        0.35809        0.27063 

H         -3.06208       -1.61065        0.47498 

H         -1.04592        2.82844       -0.00421 
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H          1.04433        2.82873       -0.00631 

H          3.06261       -1.60895        0.47706 

H          4.54685        0.36048        0.27241 

H          6.85770        3.54453       -0.04565 

H          5.65758        4.42476       -1.04821 

H          5.64306        4.61355        0.73064 

H         -6.85965        3.54106       -0.04737 

H         -5.65937        4.42251       -1.04865 

H         -5.64608        4.61029        0.73032 

 

 

fac-[Mn(dmebpy)(CO)3(py)]+ energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N         -0.08450       -2.05832        1.34306 

C          1.04835       -2.08620        2.06758 

C          1.05537       -2.10927        3.45341 

C         -0.15654       -2.10628        4.13276 

C         -1.33184       -2.08292        3.39209 

C         -1.25325       -2.06111        2.00862 

C          3.75464        2.95291        0.06471 

C         -3.60330        3.11380        0.02057 

O         -4.91253        2.92687       -0.10528 

C         -5.72952        4.07892        0.13422 
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O         -3.08049        4.16671        0.31131 

O          3.27434        4.02845        0.34586 

O          5.05510        2.71376       -0.06333 

C          5.91737        3.83629        0.15645 

C          3.49255        0.49195       -0.48555 

C          2.64154       -0.58498       -0.68357 

N          1.30953       -0.48185       -0.59460 

C          0.76195        0.72633       -0.33093 

C          1.55242        1.84647       -0.10807 

C          2.93493        1.72868       -0.18052 

C         -0.70508        0.76162       -0.35110 

N         -1.30088       -0.41702       -0.64285 

C         -1.44833        1.91499       -0.13317 

C         -2.83304        1.85999       -0.23522 

C         -2.63326       -0.45699       -0.76732 

C         -3.43884        0.65480       -0.57236 

Mn      -0.03198       -2.03541       -0.77157 

C          0.01356       -1.90702       -2.56288 

O          0.04163       -1.81036       -3.71273 

C         -1.31048       -3.29448       -0.86699 

C          1.18718       -3.35517       -0.79606 

O         -2.11882       -4.11758       -0.93951 

O          1.95810       -4.21611       -0.81413 

H          1.98673       -2.08979        1.51650 
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H          2.00461       -2.13098        3.98212 

H         -2.30726       -2.08381        3.87127 

H         -2.16319       -2.04553        1.41179 

H          4.56630        0.35377       -0.56802 

H          3.04567       -1.56682       -0.91914 

H          1.11338        2.81520        0.11425 

H         -0.97282        2.86088        0.11299 

H         -3.07610       -1.41585       -1.02635 

H         -4.51563        0.56686       -0.68006 

H         -0.18460       -2.12547        5.22009 

H         -6.75984        3.74724       -0.00483 

H         -5.58151        4.44417        1.15583 

H         -5.48573        4.87373       -0.57832 

H          6.93320        3.46285        0.01650 

H          5.78952        4.22096        1.17361 

H          5.70051        4.63018       -0.56583 

 

 

cis,cis-[Mn(dmebpy)(CO)2(CH3CN)Br] energy-optimized geometry (0 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

Br        -1.82705       -0.68496       -2.17111 

C         -4.59270        0.89952        0.16715 
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C         -5.83829        1.61639        0.01561 

O          4.21368       -4.09081        0.04615 

O          4.85692       -1.93761       -0.07161 

C          6.21661       -2.36884       -0.18274 

O          1.45329        5.51189        0.07001 

O          3.14263        4.03300       -0.07595 

C          4.06331        5.12302       -0.18584 

C         -0.39789        3.38526        0.28961 

C         -1.22915        2.28191        0.39025 

N         -0.76755        1.02712        0.36935 

C          0.56140        0.81961        0.25176 

C          1.45968        1.87790        0.14300 

C          0.97244        3.17941        0.16056 

C          0.96095       -0.59183        0.25174 

N         -0.06139       -1.47268        0.36961 

C          2.28253       -1.01346        0.14239 

C          2.56579       -2.37351        0.15255 

C          0.22307       -2.78404        0.38052 

C          1.51229       -3.27476        0.27531 

Mn      -1.91066       -0.69155        0.42896 

C         -1.97456       -0.73991        2.18932 

O         -2.01772       -0.79602        3.35333 

C         -2.79092       -2.22891        0.32954 

N         -3.59369        0.32546        0.28478 
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O         -3.37933       -3.23087        0.25845 

H         -0.80679        4.39176        0.30939 

H         -2.30519        2.40094        0.48956 

H          2.52626        1.69853        0.04528 

H          3.08854       -0.29208        0.04769 

H         -0.61850       -3.46485        0.47710 

H          1.69745       -4.34545        0.28746 

C          1.86116        4.37134        0.04865 

C          3.95123       -2.90792        0.03830 

H         -6.65757        0.90996       -0.15943 

H         -5.77486        2.30344       -0.83576 

H         -6.05469        2.19212        0.92257 

H          6.34970       -2.98872       -1.07567 

H          6.81281       -1.45799       -0.26188 

H          6.51074       -2.93887        0.70492 

H          3.83932        5.72436       -1.07316 

H          5.05237        4.67013       -0.27510 

H          4.01439        5.75603        0.70647 

 

 

cis,trans-[Mn(dmebpy)(CO)2(CH3CN)(py)]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 
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N          2.18166       -0.00048       -1.57716 

C          1.59241       -0.01137        3.58688 

C          1.32287       -0.01037        5.00587 

C          2.18723       -1.14771       -2.27965 

C          2.20428       -1.18589       -3.66532 

C          2.21956        0.01007       -4.37248 

C          2.22071        1.20064       -3.65609 

C          2.20296        1.15194       -2.27079 

H          2.18122       -2.07293       -1.70675 

H          2.20876       -2.14723       -4.17251 

H          2.23843        2.16574       -4.15578 

H          2.20939        2.07283       -1.69095 

H          2.23565        0.01416       -5.46028 

O         -2.85894        4.99281        0.06716 

O         -2.88537       -4.97995        0.05386 

O         -4.06423       -3.08646       -0.24620 

O         -4.04653        3.10648       -0.24364 

C         -5.23267        3.89528       -0.38912 

C         -5.25471       -3.86882       -0.39107 

C         -0.51554       -3.46656        0.33266 

C          0.59302       -2.64375        0.44983 

N          0.51772       -1.30989        0.36256 

C         -0.69115       -0.73512        0.17673 

C         -1.84776       -1.49655        0.03869 
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C         -1.75735       -2.88202        0.11236 

C         -0.68717        0.73615        0.17941 

N          0.52441        1.30392        0.36917 

C         -1.83936        1.50418        0.04198 

C         -1.74184        2.88890        0.12073 

C          0.60656        2.63698        0.46180 

C         -0.49746        3.46609        0.34577 

Mn       2.12347       -0.00749        0.49841 

C          3.39882       -1.24046        0.60574 

O          4.24837       -2.03153        0.68031 

C          3.40589        1.21740        0.61490 

N          1.81451       -0.01142        2.45065 

O          4.26026        2.00254        0.69662 

H         -0.41482       -4.54567        0.40819 

H          1.58063       -3.06943        0.61505 

H         -2.81298       -1.02494       -0.11883 

H         -2.80657        1.03811       -0.11940 

H          1.59618        3.05670        0.63036 

H         -0.39122        4.54438        0.42555 

C         -2.94664       -3.77316       -0.02613 

C         -2.92614        3.78666       -0.01761 

H          1.85371        0.81913        5.48621 

H          1.65865       -0.95357        5.45110 

H          0.24765        0.10464        5.18282 
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H         -5.13314        4.58041       -1.23755 

H         -6.04215        3.18538       -0.56766 

H         -5.42371        4.46828        0.52430 

H         -5.16042       -4.55258       -1.24120 

H         -6.06090       -3.15437       -0.56630 

H         -5.44678       -4.44288        0.52148 

 

 

cis,cis-[Mn(dmebpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          1.86214       -0.77952        1.69730 

C          4.74834        0.64040       -0.00339 

C          6.02619        1.28975        0.17005 

C          1.77198       -0.75126        2.85024 

C          1.66171       -0.71984        4.28902 

O         -4.27905       -3.95955       -0.07747 

O         -4.82735       -1.78377        0.09747 

C         -6.20622       -2.15595        0.19595 

O         -1.11435        5.51805       -0.11123 

O         -2.86690        4.11236        0.01735 

C         -3.74554        5.24026        0.09375 

C          0.64766        3.31608       -0.28294 
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C          1.43567        2.17840       -0.34881 

N          0.92115        0.94554       -0.30210 

C         -0.41662        0.79117       -0.19957 

C         -1.27122        1.88693       -0.12312 

C         -0.72972        3.16696       -0.16226 

C         -0.87643       -0.60374       -0.19972 

N          0.10528       -1.53003       -0.31918 

C         -2.21553       -0.96770       -0.10294 

C         -2.55712       -2.31445       -0.13533 

C         -0.23423       -2.82661       -0.35408 

C         -1.54605       -3.26004       -0.26733 

Mn       1.99503       -0.82403       -0.33505 

C          2.07437       -0.81275       -2.11378 

O          2.12186       -0.81019       -3.27292 

C          2.81962       -2.40422       -0.32141 

N          3.72444        0.11867       -0.14484 

O          3.37464       -3.42449       -0.32603 

H          1.09651        4.30471       -0.32337 

H          2.51628        2.25163       -0.44235 

H         -2.34532        1.75317       -0.03666 

H         -2.98935       -0.21232       -0.00409 

H          0.57623       -3.54311       -0.45774 

H         -1.77889       -4.32080       -0.29967 

C         -1.57160        4.39700       -0.08424 
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C         -3.96717       -2.78987       -0.03749 

H          6.76340        0.56824        0.53973 

H          5.93509        2.10857        0.89250 

H          6.37237        1.69480       -0.78735 

H          2.54654       -1.18239        4.74003 

H          0.76922       -1.27115        4.60523 

H          1.58350        0.31677        4.63461 

H         -6.36762       -2.79370        1.07137 

H         -6.76030       -1.22143        0.30029 

H         -6.52344       -2.68712       -0.70759 

H         -3.51591        5.84329        0.97838 

H         -4.75345        4.82814        0.16694 

H         -3.65110        5.85833       -0.80516 

 

 

cis,trans-[Mn(dmebpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N         -2.14877       -0.07764        1.97448 

C         -2.13049        0.11700       -3.10112 

C         -2.01407        0.17563       -4.53922 

C         -2.00131       -0.11909        3.12160 

C         -1.82491       -0.16975        4.55391 
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O          2.67410        4.99400        0.03594 

O          2.69067       -4.98534       -0.09756 

O          3.90085       -3.08984       -0.01473 

O          3.89114        3.10128        0.00235 

C          5.08695        3.88904        0.00266 

C          5.09894       -3.87410       -0.01209 

C          0.30628       -3.46846       -0.10904 

C         -0.80751       -2.64395       -0.10167 

N         -0.71748       -1.30998       -0.05742 

C          0.50489       -0.73520       -0.02471 

C          1.66822       -1.49837       -0.01978 

C          1.56676       -2.88442       -0.06255 

C          0.50249        0.73618        0.00399 

N         -0.72176        1.30729        0.02934 

C          1.66338        1.50303       -0.00352 

C          1.55730        2.88912        0.02265 

C         -0.81638        2.64149        0.05107 

C          0.29466        3.46970        0.05082 

Mn      -2.32567       -0.00483        0.01516 

C         -3.60471       -1.24916       -0.00359 

O         -4.44919       -2.04565       -0.01308 

C         -3.60909        1.23269        0.09318 

N         -2.22995        0.07054       -1.94902 

O         -4.45595        2.02487        0.14718 
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H          0.19560       -4.54863       -0.14610 

H         -1.80800       -3.06880       -0.13110 

H          2.64628       -1.02875        0.02077 

H          2.64310        1.03616       -0.03412 

H         -1.81841        3.06334        0.06884 

H          0.18036        4.54994        0.07042 

C          2.76302       -3.77714       -0.06081 

C          2.75074        3.78560        0.02079 

H         -2.54024        1.05815       -4.92015 

H         -2.45408       -0.72260       -4.98656 

H         -0.95870        0.23756       -4.82697 

H         -2.68729        0.28742        5.05178 

H         -0.91814        0.37556        4.83847 

H         -1.73367       -1.21094        4.88281 

H          5.13532        4.50769        0.90483 

H          5.91338        3.17636       -0.01334 

H          5.12092        4.53116       -0.88362 

H          5.12279       -4.53112        0.86358 

H          5.92285       -3.15943        0.02743 

H          5.16141       -4.47716       -0.92391 

 

 

fac-[Mn(bpy)(CO)3Br] energy-optimized geometry (0 charge, singlet multiplicity) 
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Atom    X        Y           Z 

Br        -1.04774        0.00019        2.09748 

C          1.65808       -3.46869       -0.13240 

C          0.56223       -2.63910       -0.31692 

N          0.65341       -1.30371       -0.29781 

C          1.86218       -0.73414       -0.09547 

C          3.00546       -1.50533        0.09765 

C          2.90207       -2.88881        0.08076 

C          1.86209        0.73433       -0.09555 

N          0.65326        1.30372       -0.29803 

C          3.00525        1.50568        0.09759 

C          2.90169        2.88914        0.08053 

C          0.56191        2.63910       -0.31728 

C          1.65765        3.46885       -0.13277 

Mn      -0.93293       -0.00010       -0.47069 

C         -0.84783       -0.00031       -2.24306 

O         -0.79836       -0.00051       -3.40194 

C         -2.21035        1.25356       -0.45054 

C         -2.21023       -1.25388       -0.45018 

O         -3.04621        2.05458       -0.41856 

O         -3.04600       -2.05499       -0.41806 

H          1.52657       -4.54699       -0.15638 

H         -0.42611       -3.06044       -0.48698 
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H          3.97020       -1.03374        0.26244 

H          3.97003        1.03422        0.26252 

H         -0.42648        3.06030       -0.48745 

H          1.52600        4.54713       -0.15688 

H          3.78563       -3.50476        0.23168 

H          3.78516        3.50522        0.23147 

 

 

fac-[Mn(bpy)(CO)3(py)]+ energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N          1.41989       -0.00019       -0.87549 

C          1.71529       -1.15096       -1.50581 

C          2.29398       -1.19399       -2.76457 

C          2.58903       -0.00010       -3.41085 

C          2.29471        1.19373       -2.76415 

C          1.71598        1.15062       -1.50541 

C         -1.75494       -3.46431       -0.24256 

C         -0.84213       -2.63731        0.39446 

N         -0.85527       -1.30447        0.25772 

C         -1.81658       -0.73408       -0.50413 

C         -2.75542       -1.50456       -1.18361 

C         -2.71969       -2.88619       -1.05673 

C         -1.81622        0.73505       -0.50394 
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N         -0.85467        1.30479        0.25810 

C         -2.75464        1.50616       -1.18328 

C         -2.71826        2.88774       -1.05604 

C         -0.84089        2.63758        0.39517 

C         -1.75328        3.46519       -0.24167 

Mn       0.53123       -0.00027        1.04917 

C         -0.32295       -0.00036        2.62596 

O         -0.88637       -0.00039        3.63422 

C          1.68341        1.24685        1.63264 

C          1.68289       -1.24806        1.63224 

O          2.43704        2.03269        2.02303 

O          2.43621       -2.03432        2.02241 

H          1.48033       -2.07566       -0.98239 

H          2.50784       -2.15673       -3.22140 

H          2.50917        2.15651       -3.22063 

H          1.48156        2.07527       -0.98168 

H         -1.69849       -4.53950       -0.09763 

H         -0.06832       -3.05712        1.03395 

H         -3.51406       -1.03296       -1.80182 

H         -3.44704       -3.50158       -1.58101 

H         -3.51345        1.03507       -1.80167 

H         -3.44529        3.50361       -1.58021 

H         -0.06692        3.05685        1.03482 

H         -1.69632        4.54031       -0.09646 
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H          3.04392       -0.00006       -4.39902 

 

 

cis,cis-[Mn(bpy)(CO)2(CH3CN)Br] energy-optimized geometry (0 charge, singlet multiplicity) 

Atom    X        Y           Z 

Br        -0.57619       -0.62776       -2.14437 

C         -3.57616        0.27039        0.26774 

C         -4.97250        0.62146        0.14067 

C         -0.20213        3.80237        0.11599 

C         -0.70154        2.51978        0.29098 

N          0.07749        1.43351        0.29018 

C          1.40782        1.58471        0.11644 

C          1.98137        2.84117       -0.06624 

C          1.16588        3.96354       -0.06780 

C          2.17606        0.33446        0.13663 

N          1.44086       -0.78507        0.33283 

C          3.55758        0.28119       -0.03472 

C          4.20128       -0.94672       -0.00702 

C          2.07303       -1.96684        0.36064 

C          3.44369       -2.09386        0.19586 

Mn      -0.55919       -0.53171        0.46452 

C         -0.53032       -0.51137        2.22090 

O         -0.50226       -0.52156        3.38836 
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C         -0.98790       -2.24974        0.46699 

N         -2.45648       -0.01103        0.36376 

O         -1.27979       -3.37813        0.46613 

H         -0.87982        4.65207        0.12430 

H         -1.76592        2.34908        0.43618 

H          3.05379        2.94477       -0.20777 

H          4.12605        1.19371       -0.19336 

H          1.45216       -2.84544        0.52020 

H          3.89882       -3.08027        0.22655 

H          1.59617        4.95250       -0.20958 

H          5.27890       -1.00527       -0.14205 

H         -5.56226       -0.27060       -0.09927 

H         -5.10292        1.35756       -0.66071 

H         -5.34223        1.04868        1.07955 

 

 

cis,trans-[Mn(bpy)(CO)2(CH3CN)(py)]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          1.86146       -0.40275        0.07370 

C         -3.20883       -1.52863        0.00619 

C         -4.63904       -1.72955       -0.02250 

C          2.56890       -0.29844       -1.06584 
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C          3.88094        0.14781       -1.10438 

C          4.50741        0.50271        0.08376 

C          3.78842        0.39107        1.26735 

C          2.47950       -0.06291        1.21921 

H          2.06288       -0.58809       -1.98476 

H          4.39609        0.20852       -2.05956 

H          4.22928        0.64719        2.22737 

H          1.90191       -0.16317        2.13558 

H          5.53688        0.85403        0.08793 

C         -0.69863        1.30913       -3.57273 

C         -0.49126        0.27094       -2.67609 

N         -0.47445        0.44843       -1.34927 

C         -0.69658        1.68716       -0.85553 

C         -0.89908        2.77960       -1.69560 

C         -0.89499        2.58851       -3.07048 

C         -0.75174        1.77205        0.61309 

N         -0.55946        0.60228        1.26208 

C         -1.02912        2.94921        1.30381 

C         -1.12926        2.91733        2.68768 

C         -0.67526        0.57754        2.59563 

C         -0.95968        1.70778        3.34813 

Mn      -0.11631       -1.03480        0.06122 

C          0.22167       -2.34993       -1.08075 

O          0.43843       -3.22938       -1.81232 
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C          0.17037       -2.20352        1.36620 

N         -2.06134       -1.37599        0.03002 

O          0.36359       -2.98810        2.20427 

H         -0.69996        1.10782       -4.64045 

H         -0.32633       -0.74375       -3.03434 

H         -1.06330        3.77273       -1.28691 

H         -1.17634        3.88413        0.77096 

H         -0.52652       -0.38581        3.08012 

H         -1.04285        1.63013        4.42868 

H         -1.05162        3.43167       -3.73926 

H         -1.34623        3.82849        3.24040 

H         -4.96320       -2.24361        0.88924 

H         -4.91356       -2.33796       -0.89145 

H         -5.15143       -0.76341       -0.08819 

 

cis,cis-[Mn(bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N          0.54746       -0.50749        1.69353 

C          3.63717        0.09832       -0.12579 

C          5.04006        0.41950       -0.00596 

C          0.51196       -0.41823        2.84643 

C          0.47133       -0.30840        4.28528 

C          0.34703        3.72003       -0.34359 
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C          0.81541        2.41601       -0.41659 

N          0.00790        1.35450       -0.32646 

C         -1.31989        1.54864       -0.17025 

C         -1.85997        2.82911       -0.08338 

C         -1.01519        3.92715       -0.16849 

C         -2.12227        0.31879       -0.12181 

N         -1.41786       -0.83126       -0.24929 

C         -3.50667        0.31087        0.02690 

C         -4.18398       -0.89979        0.04010 

C         -2.08156       -1.99557       -0.24157 

C         -3.45862       -2.07574       -0.10087 

Mn       0.59644       -0.63563       -0.34152 

C          0.60738       -0.68654       -2.11659 

O          0.60538       -0.72557       -3.27736 

C          0.98693       -2.37111       -0.30265 

N          2.51224       -0.15806       -0.22536 

O          1.25844       -3.50171       -0.29282 

H          1.04442        4.54963       -0.42254 

H          1.87432        2.20773       -0.55226 

H         -2.92918        2.97214        0.04556 

H         -4.05401        1.24351        0.13308 

H         -1.48429       -2.89720       -0.35445 

H         -3.94236       -3.04867       -0.10179 

H         -1.42077        4.93422       -0.10312 
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H         -5.26499       -0.92147        0.15668 

H          5.59646       -0.46029        0.33645 

H          5.17785        1.23181        0.71637 

H          5.43558        0.73507       -0.97788 

H          0.92859       -1.19424        4.73969 

H         -0.56760       -0.22855        4.62356 

H          1.02148        0.58316        4.60605 

 

cis,trans-[Mn(bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N         -0.90347        1.91982       -0.44485 

C         -0.82292       -3.02527        0.70083 

C         -0.68287       -4.42528        1.02667 

C         -0.76119        3.03912       -0.70279 

C         -0.59204        4.43700       -1.02398 

C          1.57014        0.77361        3.38554 

C          0.45618        0.59521        2.57763 

N          0.54554        0.29113        1.27778 

C          1.76898        0.15065        0.72080 

C          2.93063        0.31530        1.47061 

C          2.82941        0.63021        2.81871 

C          1.76937       -0.18284       -0.71306 

N          0.54622       -0.30141       -1.27584 
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C          2.93147       -0.36721       -1.45760 

C          2.83091       -0.67914       -2.80647 

C          0.45742       -0.60232       -2.57643 

C          1.57189       -0.79958       -3.37933 

Mn      -1.06410        0.00925       -0.00292 

C         -2.34377        0.30029        1.20215 

O         -3.19070        0.48811        1.97516 

C         -2.34261       -0.25970       -1.21426 

N         -0.94103       -1.90379        0.44013 

O         -3.18886       -0.43324       -1.99133 

H          1.44103        1.01966        4.43602 

H         -0.54641        0.69957        2.98714 

H          3.90841        0.19996        1.01141 

H          3.90902       -0.26942       -0.99386 

H         -0.54507       -0.68841       -2.99058 

H          1.44336       -1.04225       -4.43067 

H          3.72778        0.76165        3.41756 

H          3.72959       -0.82588       -3.40130 

H         -1.23968       -5.03405        0.30549 

H         -1.07479       -4.61569        2.03211 

H          0.37388       -4.71297        0.99536 

H         -1.50305        4.82536       -1.49291 

H          0.24738        4.56291       -1.71676 

H         -0.38937        5.00872       -0.11141 
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fac-[Mn(Me2bpy)(CO)3Br] energy-optimized geometry (0 charge, singlet multiplicity) 

Atom    X        Y           Z 

Br        -1.32611       -0.00024        2.11722 

C          3.79115       -3.75091        0.14113 

C          3.79091        3.75108        0.14167 

C          1.31467       -3.46104       -0.19725 

C          0.21350       -2.63836       -0.34995 

N          0.29673       -1.30089       -0.33689 

C          1.51145       -0.73467       -0.17134 

C          2.65915       -1.50506       -0.01181 

C          2.57920       -2.89514       -0.02104 

C          1.51144        0.73469       -0.17129 

N          0.29677        1.30086       -0.33722 

C          2.65907        1.50511       -0.01127 

C          2.57905        2.89520       -0.02057 

C          0.21347        2.63833       -0.35027 

C          1.31455        3.46104       -0.19723 

Mn      -1.29480       -0.00006       -0.45692 

C         -1.26738        0.00036       -2.22981 

O         -1.25375        0.00072       -3.38999 

C         -2.56894        1.25478       -0.39342 

C         -2.56902       -1.25484       -0.39391 
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O         -3.40200        2.05754       -0.33347 

O         -3.40223       -2.05748       -0.33433 

H          1.18522       -4.54162       -0.21361 

H         -0.77754       -3.06562       -0.48768 

H          3.62820       -1.03005        0.12492 

H          3.62810        1.03016        0.12585 

H         -0.77757        3.06554       -0.48820 

H          1.18507        4.54162       -0.21357 

H          3.64125       -4.49442        0.93466 

H          4.67779       -3.15465        0.38350 

H          3.99543       -4.30863       -0.78311 

H          3.64058        4.49525        0.93449 

H          4.67741        3.15503        0.38495 

H          3.99573        4.30804       -0.78294 

 

fac-[Mn(Me2bpy)(CO)3(py)]+ energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N         -1.40351       -0.01332        1.24492 

C         -1.44716       -1.14596        1.96828 

C         -1.60312       -1.15495        3.34570 

C         -1.72322        0.05538        4.01721 

C         -1.68312        1.23067        3.27727 

C         -1.52393        1.15325        1.90254 
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C          3.91721       -3.60995        0.48171 

C          3.64199        3.88277        0.37333 

C          1.53158       -3.41802       -0.28879 

C          0.42958       -2.64201       -0.59668 

N          0.43774       -1.30299       -0.51607 

C          1.58236       -0.68740       -0.14504 

C          2.72357       -1.41061        0.18464 

C          2.71465       -2.80254        0.12532 

C          1.52860        0.78143       -0.17032 

N          0.34847        1.29920       -0.57848 

C          2.60639        1.59672        0.15602 

C          2.50011        2.98137        0.04390 

C          0.24573        2.63047       -0.70656 

C          1.28399        3.49463       -0.41096 

Mn      -1.17016       -0.06269       -0.86044 

C         -0.85192       -0.09912       -2.62345 

O         -0.62939       -0.12132       -3.75691 

C         -2.48362        1.13837       -1.09128 

C         -2.39825       -1.36155       -1.01779 

O         -3.33886        1.90033       -1.25476 

O         -3.19956       -2.18858       -1.12933 

H         -1.35265       -2.08332        1.42353 

H         -1.63071       -2.10438        3.87388 

H         -1.77567        2.20483        3.75021 
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H         -1.49041        2.06246        1.30543 

H          1.46664       -4.50108       -0.37249 

H         -0.49963       -3.10748       -0.91979 

H          3.63483       -0.89718        0.48376 

H          3.54198        1.16054        0.49827 

H         -0.71079        3.01623       -1.05385 

H          1.14159        4.56682       -0.53119 

H         -1.84954        0.08215        5.09739 

H          3.71283       -4.23418        1.36214 

H          4.78124       -2.97437        0.70369 

H          4.18395       -4.29188       -0.33618 

H          3.31833        4.69978        1.03065 

H          4.45904        3.34010        0.86104 

H          4.03805        4.34690       -0.54041 

 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)Br] energy-optimized geometry (0 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

Br        -0.89673       -0.71917       -2.15156 

C         -3.85956        0.37147        0.22291 

C         -5.21996        0.83808        0.07723 

C         -0.24543        3.64886        0.18531 

C         -0.83716        2.40659        0.33207 
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N         -0.14068        1.26391        0.32703 

C          1.19801        1.33014        0.17579 

C          1.85863        2.54622        0.02341 

C          1.13946        3.73837        0.02493 

C          1.87969        0.02960        0.18590 

N          1.06685       -1.03719        0.35651 

C          3.25559       -0.11375        0.02877 

C          3.83878       -1.37701        0.04441 

C          1.62546       -2.25680        0.37154 

C          2.98392       -2.46771        0.22194 

Mn      -0.91507       -0.65416        0.46246 

C         -0.91420       -0.65840        2.21763 

O         -0.90589       -0.68527        3.38562 

C         -1.45459       -2.33959        0.43609 

N         -2.76785        0.00041        0.33535 

O         -1.81571       -3.44805        0.41782 

H         -0.86227        4.54597        0.19491 

H         -1.91396        2.31426        0.45710 

H          2.93948        2.57472       -0.09935 

H          3.88388        0.76365       -0.11099 

H          0.94882       -3.09759        0.50718 

H          3.37490       -3.48356        0.24235 

C          1.81310        5.06216       -0.12895 

C          5.31113       -1.56773       -0.11417 
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H         -5.89396       -0.01185       -0.07860 

H         -5.29530        1.51162       -0.78403 

H         -5.53286        1.37750        0.97838 

H          1.35943        5.63924       -0.94536 

H          2.88354        4.95060       -0.33479 

H          1.70075        5.66181        0.78470 

H          5.52918       -2.26061       -0.93759 

H          5.82321       -0.61968       -0.31338 

H          5.74503       -2.00766        0.79419 

 

 

cis,trans-[Mn(Me2bpy)(CO)2(CH3CN)(py)]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N         -1.81472        0.00003       -1.03052 

C          0.61172        0.00086        3.56366 

C          1.38823        0.00110        4.78192 

C         -2.07534        1.14933       -1.67905 

C         -2.58330        1.19275       -2.96828 

C         -2.84254       -0.00050       -3.63117 

C         -2.58405       -1.19348       -2.96750 

C         -2.07607       -1.14954       -1.67830 

H         -1.87139        2.07212       -1.13989 
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H         -2.77238        2.15596       -3.43542 

H         -2.77373       -2.15688       -3.43401 

H         -1.87271       -2.07211       -1.13853 

H         -3.24317       -0.00071       -4.64261 

C          1.39619        3.46171       -0.22792 

C          0.40661        2.64055        0.28956 

N          0.43322        1.30718        0.18141 

C          1.49047        0.73630       -0.44137 

C          2.51048        1.50127       -0.99237 

C          2.47785        2.89353       -0.89726 

C          1.49020       -0.73703       -0.44103 

N          0.43276       -1.30723        0.18205 

C          2.50991       -1.50263       -0.99170 

C          2.47680       -2.89483       -0.89588 

C          0.40567       -2.64053        0.29086 

C          1.39495       -3.46230       -0.22623 

Mn      -1.01714        0.00040        0.88811 

C         -2.16623        1.22848        1.45083 

O         -2.93440        2.01871        1.82782 

C         -2.16661       -1.22700        1.45152 

N         -0.01566        0.00068        2.59045 

O         -2.93500       -2.01678        1.82901 

H          1.31767        4.54051       -0.10936 

H         -0.44863        3.07062        0.80863 
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H          3.34862        1.02517       -1.49745 

H          3.34820       -1.02710       -1.49707 

H         -0.44972       -3.07003        0.81015 

H          1.31605       -4.54101       -0.10713 

C          3.57324        3.72241       -1.48115 

C          3.57189       -3.72439       -1.47936 

H          1.15392       -0.89008        5.37494 

H          1.15560        0.89368        5.37350 

H          2.45791       -0.00011        4.54476 

H          3.36659        4.79331       -1.37893 

H          3.71107        3.49336       -2.54603 

H          4.52836        3.50715       -0.98308 

H          3.36485       -4.79517       -1.37659 

H          3.70979       -3.49594       -2.54435 

H          4.52707       -3.50923       -0.98140 

 

cis,cis-[Mn(Me2bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          0.89142       -0.70285        1.68714 

C          3.95024        0.15689       -0.09463 

C          5.32811        0.56802        0.04117 

C          0.83718       -0.65564        2.84184 
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C          0.77122       -0.59762        4.28288 

C          0.43579        3.57187       -0.24136 

C          0.99042        2.30693       -0.32610 

N          0.25523        1.18921       -0.28399 

C         -1.08427        1.30191       -0.16079 

C         -1.70602        2.54322       -0.06991 

C         -0.94747        3.71072       -0.10820 

C         -1.81164        0.02459       -0.14708 

N         -1.03708       -1.07728       -0.28251 

C         -3.19284       -0.06619       -0.01343 

C         -3.82279       -1.30846       -0.02456 

C         -1.63915       -2.27589       -0.29314 

C         -3.00806       -2.43254       -0.16915 

Mn       0.96357       -0.76147       -0.35185 

C          0.98760       -0.75360       -2.12610 

O          0.99398       -0.75390       -3.28789 

C          1.44929       -2.47161       -0.36787 

N          2.84508       -0.17063       -0.20688 

O          1.77732       -3.58728       -0.39579 

H          1.08095        4.44780       -0.27922 

H          2.06501        2.17472       -0.43198 

H         -2.78725        2.61352        0.02800 

H         -3.79171        0.83455        0.10354 

H         -0.99325       -3.14380       -0.40571 
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H         -3.43649       -3.43295       -0.18289 

C         -1.58101        5.05963       -0.02456 

C         -5.30545       -1.43427        0.09104 

H          5.93442       -0.26983        0.40342 

H          5.40302        1.39649        0.75451 

H          5.71757        0.89624       -0.92900 

H          1.22703       -1.49594        4.71364 

H         -0.27386       -0.53663        4.60571 

H          1.30939        0.28547        4.64480 

H         -1.10635        5.66658        0.75729 

H         -2.65355        4.99142        0.18829 

H         -1.45347        5.60348       -0.97054 

H         -5.58228       -2.28308        0.72833 

H         -5.75748       -0.52277        0.49812 

H         -5.75083       -1.61586       -0.89728 

 

cis,trans-[Mn(Me2bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

N          1.27107       -0.00896        1.96284 

C          1.14715        0.01396       -3.11224 

C          0.99277        0.02167       -4.54827 

C          1.13602       -0.01325        3.11239 

C          0.97449       -0.01808        4.54768 
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C         -1.22826        3.46425        0.01569 

C         -0.11363        2.64391        0.01044 

N         -0.19344        1.30717        0.00433 

C         -1.41766        0.73580        0.00358 

C         -2.57843        1.50231        0.00758 

C         -2.50192        2.89371        0.01193 

C         -1.41786       -0.73733       -0.00042 

N         -0.19295       -1.30890       -0.00646 

C         -2.57794       -1.50353        0.00455 

C         -2.50142       -2.89574       -0.00148 

C         -0.11326       -2.64496       -0.00865 

C         -1.22843       -3.46584       -0.00553 

Mn       1.41739       -0.00059        0.00052 

C          2.69443        1.24099        0.00748 

O          3.53927        2.03922        0.01203 

C          2.69485       -1.24177       -0.00293 

N          1.27683        0.00818       -1.96208 

O          3.53996       -2.03972       -0.00482 

H         -1.10192        4.54520        0.02400 

H          0.88629        3.07321        0.01343 

H         -3.55658        1.02627        0.00833 

H         -3.55610       -1.02748        0.01514 

H          0.88653       -3.07463       -0.01012 

H         -1.10169       -4.54666       -0.00366 
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C         -3.72930        3.74254       -0.00356 

C         -3.73238       -3.73915       -0.02475 

H          1.42002       -0.89243       -4.97537 

H          1.50888        0.88899       -4.97491 

H         -0.06975        0.07489       -4.81037 

H          1.83875       -0.49901        5.01918 

H          0.06736       -0.56880        4.82045 

H          0.89250        1.00981        4.91818 

H         -3.63679        4.58270        0.69586 

H         -4.62384        3.16457        0.25416 

H         -3.88282        4.17318       -1.00296 

H         -3.57940       -4.68181        0.51387 

H         -4.58856       -3.21306        0.41307 

H         -3.99739       -3.99574       -1.06029 
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Table A1: X-ray crystal data and structure parameters for 4,4′-Me2bpy-Br and 6,6′-Me2bpy-Br. 

Compound 4,4′-Me2bpy-Br 6,6′-Me2bpy-Br 

Empirical formula C15H12BrMnN2O3 C15H12BrMnN2O3 

Formula weight 403.12 403.12 

Crystal system Monoclinic Triclinic 

Space group P21/c P-1 

a/ Å 15.2930(12) 7.8133(8) 

b/ Å 13.1490(10) 17.1490(15) 

c/ Å 7.5014(6) 17.9215(18) 

α(°) 90 73.446(4) 

β(°) 95.145(3) 89.536(4) 

γ(°) 90 79.143(4) 

Volume (Å3) 1502.4(2) 2257.9(4) 

Z 4 6 

Dc (Mg/m3) 1.782 1.779 

µ (mm−1) 3.551 3.544 

F(000) 800 1200 

reflns collected 37037 112390 

indep. reflns 3751 11324 

GOF on F2 1.099 1.004 

R1 (on Fo
2, I > 2σ(I)) 0.0481 0.0259 

wR2 (on Fo
2, I > 2σ(I)) 0.1159 0.0614 

R1 (all data) 0.0609 0.0350 

wR2 (all data) 0.1204 0.0640 

Table A2: X-ray crystal data and structure parameters for 4,4′-Me2bpy-py and 6,6′-Me2bpy-py. 

Compound 4,4′-Me2bpy-py 6,6′-Me2bpy-py 

Empirical formula C21H17F3MnN3O6S C21H17F3MnN3O6S 

Formula weight 551.38 551.38 

Crystal system Monoclinic Triclinic 

Space group P21 P-1 

a/ Å 12.186(3) 8.725(5) 
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b/ Å 11.931(3) 11.379(6) 

c/ Å 15.609(3) 11.891(7) 

α(°) 90 105.02(2) 

β(°) 94.620(6) 93.53(3) 

γ(°) 90 97.11(2) 

Volume (Å3) 2261.8(8) 1126.1(12) 

Z 4 2 

Dc (Mg/m3) 1.619 1.626 

µ (mm−1) 0.745 0.748 

F(000) 1120 560 

reflns collected 52272 64224 

indep. reflns 11373 5587 

GOF on F2 1.036 1.020 

R1 (on Fo
2, I > 2σ(I)) 0.1364 0.0248 

wR2 (on Fo
2, I > 2σ(I)) 0.3382 0.0666 

R1 (all data) 0.2234 0.0265 

wR2 (all data) 0.3836 0.0671 

 
 
 
Table A3: Selected bond distances in Å for 4,4′-Me2bpy-Br, 6,6′-Me2bpy-Br, 4,4′-Me2bpy-py, 
and 6,6′-Me2bpy-py from X-ray crystallography. 
Bond 4,4′-Me2bpy-Br 6,6′-Me2bpy-Br 4,4′-Me2bpy-py 6,6′-Me2bpy-py 
Mn-X(Br, N(py)) 2.5327(7) 2.5423(4) 

2.5270(4) 
2.5403(4) 

2.089(17) 
2.114(18) 

2.1063(14) 

Mn−N(bpy) 2.023(3) 
2.040(3) 

2.0787(16) 
2.0799(16) 
2.0776(17) 
2.0843(16) 
2.0713(16) 
2.0755(16) 

2.014(16) 
2.065(16) 
2.040(19) 
2.024(17) 

2.0733(15) 
2.0670(16) 

Mn−C(C≡O) 1.822(4) 
1.828(4) 
1.809(4) 

1.813(2) 
1.794(2) 
1.801(2) 
1.799(2) 
1.815(2) 
1.804(2) 

1.79(3) 
1.796(19) 
1.81(2) 
1.77(2) 
1.80(2) 
1.79(3) 

1.8130(17) 
1.8185(16) 
1.8088(16) 
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1.806(2) 
1.795(2) 
1.806(2) 

C−O(C≡O) 1.136(5) 
1.106(5) 
1.146(5) 

1.145(2) 
1.151(3) 
1.149(2) 
1.151(2) 
1.126(3) 
1.148(3) 
1.145(2) 
1.145(2) 
1.149(2) 

1.17(3) 
1.16(2) 
1.14(3) 
1.20(3) 
1.18(3) 
1.19(3) 

1.1424(18) 
1.1431(18) 
1.1449(17) 

 
 
Table A4: Selected bond angles in degrees for 4,4′-Me2bpy-Br, 6,6′-Me2bpy-Br, 4,4′-Me2bpy-py, 
and 6,6′-Me2bpy-py from X-ray crystallography. 
Angle 4,4′-Me2bpy-Br 6,6′-Me2bpy-Br 4,4′-Me2bpy-py 6,6′-Me2bpy-py 
Br−Mn−N(bpy) 85.02(10) 

86.80(9) 
87.61(5) 
86.66(4) 
87.68(4) 
86.12(5) 
87.30(5) 
88.01(5) 

-- -- 

Br−Mn−C(C≡O) 88.55(13) 
88.19(12) 
179.07(13) 

82.48(7) 
88.54(6) 
174.03(6) 
86.43(7) 
85.99(8) 
175.34(6) 
83.73(6) 
88.52(7) 
176.23(6) 

-- -- 

N(py)−Mn−N(bpy) -- -- 86.5(7) 
85.4(6) 
88.0(7) 
85.4(7) 

85.07(6) 
84.95(5) 

N(py)−Mn−C(C≡O) -- -- 90.8(8) 
90.1(8) 
179.3(8) 
90.3(8) 
94.0(9) 
175.0(9) 

88.37(7) 
88.73(6) 
177.81(5) 

N(bpy)−Mn−C(C≡O) 96.92(15) 
94.48(15) 
170.98(15) 
94.79(15) 
174.01(16) 

97.00(8) 
175.96(8) 
96.53(8) 
97.95(8) 
100.01(7) 

174.9(9) 
93.5(8) 
93.6(8) 
95.7(8) 
95.3(8) 

98.90(6) 
97.10(7) 
172.10(5) 
96.32(6) 
95.78(6) 



 
 

252 

 

93.88(15) 168.29(8) 
99.69(8) 
173.58(9) 
95.37(8) 
172.51(8) 
99.27(8) 
97.89(8) 
96.40(7) 
96.80(8) 
175.82(8) 
93.37(8) 
170.91(8) 
100.66(8) 

172.1(8) 
174.0(9) 
95.6(9) 
96.3(9) 
96.9(8) 
174.0(10) 
87.7(9) 

173.42(5) 

C(C≡O)−Mn−C(C≡O) 88.82(17) 
92.39(17) 
90.74(17) 

86.93(9) 
93.19(9) 
84.14(9) 
81.00(9) 
89.58(9) 
91.01(10) 
95.11(9) 
87.78(9) 
82.97(9) 

89.2(9) 
90.8(8) 
89.2(9) 
90.5(10) 
87.7(10) 
88.8(10) 

85.33(7) 
89.50(7) 
90.60(6) 

N(bpy)−Mn−N(bpy) 78.93(12) 78.58(6) 
79.20(6) 
78.96(6) 

79.7(6) 
78.9(7) 

78.74(5) 

Mn−C(C≡O)−O(C≡O) 177.8(4) 
178.5(4) 
179.2(4) 

175.79(18) 
174.45(17) 
174.12(17) 
171.95(19) 
174.92(18) 
172.42(19) 
174.45(19) 
175.87(17) 
172.78(18) 

178.2(19) 
176.6(17) 
177.0(19) 
174.1(19) 
176.7(19) 
176(2) 

175.60(12) 
175.44(13) 
176.80(12) 

 

 

Table A5. Experimental and calculated C−O vibrational stretching frequencies for the 
photochemical intermediates during photolysis of 6,6′-Me2bpy-Br and 6,6′-Me2bpy-py 

Photochemical intermediate Experimental  
(CO) (cm−1) a 

Calculated 

(CO) (cm−1) b 

cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)Br] not observed 1944, 1880 

cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)(py)]+ 1948, 1863 1953, 1893 



 
 

253 

 

cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ not observed 1967, 1908 

cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+  1960, 1876 c 

(1958, 1875) d 1966, 1908 
a Data collected in rt CH3CN in a CaF2 cell.  
b Obtained from the energy optimized structures using the M06 level of DFT and the 6-31G* basis 
set for H, C, N, and O and the SDD basis set for Mn and Br. 
c Obtained from intermediate bands observed during photolysis of 6,6′-Me2bpy-Br. 
d Approximate values obtained from the shoulders on the corresponding cis,cis-[Mn(6,6′-
Me2bpy)(CO)2(CH3CN)(py)]+ intermediates bands during photolysis of  6,6′-Me2bpy-py.  
 

 

 

 

Figure A14. Change in absorbance as a function of 405 nm irradiation time for 110 μM 
6,6′-Me2bpy-Br in CH3CN (A) and change in moles of 6,6′-Me2bpy-Br vs irradiation time 
(B). Photon flux = 2.7 × 10−8 mol photons/s. 
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Figure A15. 1H NMR of 6,6′-Me2bpy-Br in CD3CN. 
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Figure A16. 1H NMR of 6,6′-Me2bpy-py in CD3CN. 
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Figure A17. Crystal structures of 4,4′-Me2bpy-Br (A), 6,6′-Me2bpy-Br (B), 4,4′-Me2bpy-py (C) 
and 6,6′-Me2bpy-py (D) with the tilt angles between the plane defined by Mn(1), N(1), and N(2) 
(blue plane) and the plane defined by N(1), N(2), C(8), and C(11) (red plane). 

 

 

Figure A18. FTIR spectra for 6,6′-Me2bpy-Br (A) and 6,6′-Me2bpy-py (B) in CH3CN in the dark 
at t = 0 (black) and 1 h (red). 



 
 

257 

 

 

Figure A19. 1H NMR spectra for 6,6′-Me2bpy-Br in the aromatic region (A) and aliphatic region 
(B) in CD3CN in the dark at t = 0 min (black), 30 min (red), and 60 min (blue). 
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Figure A20. 1H NMR spectra for 6,6′-Me2bpy-py in the aromatic region (A) and aliphatic 
region (B) in CD3CN in the dark at t = 0 min (black), 30 min (red), and 60 min (blue). 
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Figure A21. Electronic absorption spectra for 6,6′-Me2bpy-Br (A) and 6,6′-Me2bpy-py 
(B) in CH3CN in the dark at t = 0 (black solid) and 1 h (red dashed). 
 

 

Figure A22. 1H NMR spectrum of 6,6′-Me2bpy-Br in CD3CN irradiated with 405 nm light 
for 0, 3, 6, 10, 15, 20, and 25 s. Asterisks denote intermediate, and triangles denote free 
6,6′-Me2bpy ligand. 
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Figure A23. 1H NMR spectrum of 6,6′-Me2bpy-py in CD3CN irradiated with 405 nm light for 0, 
10, 40, 100, and 200 s. Asterisks denote cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ 
intermediate, circles denote cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)(py)]+ and triangles denote 
free 6,6′-Me2bpy ligand. 

  

 

Figure A24. Electronic absorption spectra for the final photoproducts of 6,6′-Me2bpy-Br 
(blue solid), 6,6′-Me2bpy-py (blue dashed), and free 6,6′-Me2bpy ligand (green) in CH3CN 
(A), and final photoproducts of 4,4′-Me2bpy-Br (black solid), 4,4′-Me2bpy-py (black 
dashed), free 4,4′-Me2bpy ligand (green), and [Mn(4,4′-Me2bpy)3]2+ (purple) in CH3CN 
(B). 
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Figure A25. 1H NMR spectrum of 6,6′-Me2bpy in CD3CN (red) and 6,6′-Me2bpy-Br 
following irradiation with 405 nm light for 15 s. 

 

Summary of DFT coordinates:  

(All coordinates are in units of Ångströms) 

6,6′-Me2bpy-Br energy-optimized geometry (0 charge, singlet multiplicity) 

Atom    X        Y           Z 

Br        -0.08788       -0.56103        2.24707 

C          3.49397        1.73120       -0.36029 

C          2.69962        0.59852       -0.55164 

N          1.35967        0.65455       -0.40284 

C          0.78055        1.84912       -0.13015 

C          1.52837        3.00423        0.07108 

C          2.90948        2.93885       -0.02639 

C         -0.69139        1.87026       -0.13158 
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N         -1.29985        0.70978       -0.47738 

C         -1.41174        3.02602        0.14851 

C         -2.79288        3.00439        0.02773 

C         -2.63582        0.70325       -0.66102 

C         -3.40271        1.84338       -0.41033 

Mn        -0.00652       -0.93798       -0.30844 

C          0.05240       -1.23052       -2.05770 

O          0.09417       -1.43126       -3.19974 

C         -1.22621       -2.21346       -0.02464 

C          1.13113       -2.26511        0.06312 

O         -1.92105       -3.11218        0.20455 

O          1.76571       -3.19386        0.34206 

C         -3.33235       -0.52425       -1.14734 

C          3.37195       -0.67891       -0.93114 

H          4.57092        1.64306       -0.48364 

H          1.04540        3.95137        0.28871 

H          3.51606        3.82765        0.13268 

H         -0.90906        3.93731        0.45639 

H         -3.37920        3.89358        0.24871 

H         -4.47846        1.79562       -0.56386 

H         -3.58305       -1.19608       -0.31615 

H         -2.73031       -1.08233       -1.87276 

H         -4.27699       -0.24594       -1.62831 

H          3.51183       -1.32886       -0.05766 
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H          4.36791       -0.46711       -1.33579 

H          2.80808       -1.23631       -1.68753 

 

 

 

 

6,6′-Me2bpy-py energy-optimized geometry (+1 charge, singlet multiplicity) 

Atom    X        Y           Z 

N          0.05196        0.30612        1.58356 

C          1.22713        0.74784        2.06634 

C          1.31644        1.68379        3.08467 

C          0.14618        2.19046        3.63678 

C         -1.07213        1.73751        3.14507 

C         -1.07636        0.79990        2.12443 

C          3.43307        1.09747       -1.48872 

C          2.63222        0.00526       -1.14645 

N          1.30466        0.15337       -0.95836 

C          0.73337        1.35929       -1.20668 

C          1.49067        2.47981       -1.52301 

C          2.86680        2.34910       -1.64268 

C         -0.73846        1.38536       -1.18710 

N         -1.34519        0.20838       -0.89055 
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C         -1.46323        2.52223       -1.52234 

C         -2.84618        2.44004       -1.59603 

C         -2.68321        0.10578       -1.03020 

C         -3.45374        1.21741       -1.37887 

Mn        -0.02424       -1.12747        0.02924 

C         -0.09798       -2.26501       -1.35732 

O         -0.14709       -2.98582       -2.25894 

C         -1.20400       -2.08264        0.98177 

C          1.16236       -2.15348        0.89691 

O         -1.87296       -2.74005        1.65982 

O          1.83519       -2.86112        1.51836 

C         -3.37458       -1.19797       -0.80856 

C          3.28035       -1.32918       -0.98576 

H          4.50078        0.94147       -1.62456 

H          1.02160        3.44488       -1.68523 

H          3.48190        3.21317       -1.88344 

H         -0.96361        3.46029       -1.74262 

H         -3.43602        3.31766       -1.85064 

H         -4.53057        1.09899       -1.47441 

H         -3.59330       -1.35763        0.25571 

H         -2.78903       -2.04892       -1.17311 

H         -4.33599       -1.19723       -1.33376 

H          3.55152       -1.51724        0.06166 

H          4.21078       -1.35602       -1.56372 
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H          2.64097       -2.14844       -1.33169 

H          2.12941        0.33894        1.61371 

H          2.29513        2.00311        3.43301 

H          0.18291        2.92486        4.43863 

H         -2.01652        2.10019        3.54208 

H         -2.01733        0.43183        1.71750 

cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)Br] energy-optimized geometry (0 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

Br        -0.13833       -0.40582       -2.23486 

C         -3.39559       -0.97532       -0.27357 

C         -4.78872       -1.11401       -0.63138 

C         -1.36782        3.58918        0.49206 

C         -1.43101        2.22937        0.80800 

N         -0.39831        1.40700        0.54369 

C          0.76059        1.93646        0.08311 

C          0.87495        3.28015       -0.25597 

C         -0.22067        4.11261       -0.07612 

C          1.90796        1.01400        0.04973 

N          1.65222       -0.26628        0.42139 

C          3.18913        1.45065       -0.27061 

C          4.24739        0.56018       -0.18274 

C          2.69025       -1.11670        0.56965 
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C          3.99520       -0.72416        0.26595 

Mn        -0.35237       -0.69780        0.38182 

C         -0.49282       -0.99607        2.10415 

O         -0.58155       -1.22311        3.24754 

C         -0.29393       -2.43718        0.04850 

N         -2.28516       -0.83052        0.01998 

O         -0.37913       -3.57528       -0.18390 

C          2.46558       -2.50521        1.06992 

C         -2.65972        1.72028        1.49037 

H         -2.22813        4.21934        0.70938 

H          1.80299        3.68337       -0.64887 

H         -0.16162        5.16540       -0.34420 

H          3.36752        2.47677       -0.57660 

H          5.25753        0.87526       -0.43527 

H          4.80131       -1.44404        0.38991 

H          2.13517       -3.17269        0.26379 

H          1.71295       -2.53822        1.86558 

H          3.40368       -2.91282        1.46386 

H         -3.47316        1.54260        0.77466 

H         -3.01803        2.47832        2.19793 

H         -2.47419        0.79107        2.03593 

H         -5.17532       -2.07909       -0.28531 

H         -4.90587       -1.05492       -1.71946 

H         -5.37460       -0.31124       -0.16759 
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cis,cis-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          0.21811       -0.25815        1.75337 

C          3.42892       -0.97879        0.42467 

C          4.82785       -1.08446        0.76625 

C          0.15546        0.00866        2.87738 

C          0.07655        0.33850        4.28046 

C          1.34486        3.48912       -0.75707 

C          1.42219        2.10583       -0.94448 

N          0.39781        1.30376       -0.59863 

C         -0.76569        1.86243       -0.18105 

C         -0.88612        3.22830        0.04495 

C          0.20027        4.05038       -0.22292 

C         -1.91002        0.93967       -0.07264 

N         -1.64528       -0.37200       -0.30956 

C         -3.19952        1.40081        0.16803 

C         -4.25540        0.50341        0.13001 

C         -2.67803       -1.23705       -0.40501 

C         -3.99145       -0.81693       -0.18514 

Mn         0.36864       -0.77630       -0.22723 

C          0.49703       -1.19701       -1.94506 

O          0.57089       -1.48002       -3.07026 
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C          0.34171       -2.50409        0.19841 

N          2.31542       -0.86489        0.12996 

O          0.45795       -3.62577        0.47955 

C         -2.43925       -2.66848       -0.75310 

C          2.65620        1.54636       -1.57411 

H          2.19616        4.10482       -1.04031 

H         -1.81221        3.65718        0.41442 

H          0.13446        5.12200       -0.04777 

H         -3.38796        2.45174        0.36334 

H         -5.27283        0.84004        0.31605 

H         -4.79476       -1.54561       -0.26705 

H         -2.11500       -3.24422        0.12323 

H         -1.68138       -2.78231       -1.53610 

H         -3.37083       -3.12201       -1.10939 

H          3.46548        1.43715       -0.84022 

H          3.01424        2.24312       -2.34179 

H          2.48171        0.57285       -2.04006 

H          5.21646       -2.06317        0.46367 

H          4.96068       -0.96698        1.84754 

H          5.39515       -0.30059        0.25019 

H          0.52333       -0.46502        4.87639 

H         -0.97139        0.46212        4.57513 

H          0.61615        1.27182        4.47557 
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cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)2]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          0.01334        0.44766        1.99934 

O          1.78539       -2.64326        1.98254 

C         -0.07043       -3.26396       -3.36095 

C          0.02928        1.22267        2.85884 

C          0.04984        2.18535        3.93506 

C          3.47131        1.41022       -0.99566 

C          2.67459        0.33409       -0.59700 

N          1.34227        0.47172       -0.44608 

C          0.76427        1.65614       -0.76315 

C          1.51498        2.76283       -1.14556 

C          2.89301        2.64088       -1.24480 

C         -0.71178        1.68097       -0.76008 

N         -1.32808        0.51747       -0.43770 

C         -1.42626        2.81139       -1.14255 

C         -2.80796        2.73564       -1.23638 

C         -2.66496        0.42469       -0.58221 

C         -3.42648        1.52595       -0.98111 

Mn        -0.01283       -0.84795        0.51338 

N         -0.03664       -1.92601       -1.12961 

C         -0.05133       -2.51974       -2.12311 
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C         -1.19143       -1.86883        1.36551 

C          1.13673       -1.90645        1.35894 

O         -1.85936       -2.58612        1.99151 

C         -3.36413       -0.86854       -0.32328 

C          3.33062       -0.98324       -0.34698 

H          4.54317        1.25947       -1.10277 

H          1.03937        3.70997       -1.37890 

H          3.50074        3.49371       -1.53927 

H         -0.92010        3.74134       -1.38092 

H         -3.38785        3.60752       -1.53124 

H         -4.50320        1.41128       -1.08360 

H         -3.55328       -1.00998        0.74881 

H         -2.78712       -1.72594       -0.68603 

H         -4.33828       -0.87016       -0.82501 

H          3.52587       -1.13344        0.72280 

H          4.29895       -1.01783       -0.85874 

H          2.72023       -1.81930       -0.70493 

H         -0.13571        1.67985        4.88945 

H         -0.72640        2.94195        3.77558 

H          1.02712        2.67902        3.97671 

H         -0.22425       -4.32892       -3.15392 

H         -0.88374       -2.90400       -4.00098 

H          0.88145       -3.13705       -3.88868 

 



 
 

271 

 

cis,trans-[Mn(6,6′-Me2bpy)(CO)2(CH3CN)(py)]+ energy-optimized geometry (+1 charge, singlet 

multiplicity) 

Atom    X        Y           Z 

N          1.39111       -0.04835       -1.14653 

C          2.13279        1.07104       -1.23369 

C          3.50166        1.05467       -1.45226 

C          4.14710       -0.16804       -1.59090 

C          3.38935       -1.32981       -1.50658 

C          2.02462       -1.22725       -1.28611 

C         -4.96945        0.17693        0.73572 

C          0.41008        3.42732        1.81561 

C         -0.28716        2.67140        0.86991 

N         -0.14998        1.33209        0.81217 

C          0.60456        0.70746        1.74945 

C          1.34228        1.41429        2.69215 

C          1.25775        2.79941        2.70980 

C          0.53478       -0.76627        1.75106 

N         -0.25202       -1.32206        0.79711 

C          1.17561       -1.53303        2.71765 

C          0.97020       -2.90524        2.73168 

C         -0.50560       -2.64479        0.84912 

C          0.10026       -3.45824        1.80999 

Mn        -0.65368        0.03157       -0.77735 
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N         -2.53042        0.09700       -0.16950 

C         -3.61512        0.13235        0.23435 

C         -0.96916       -1.10770       -2.09377 

C         -0.87807        1.21087       -2.07779 

O         -1.16185       -1.76197       -3.03881 

O         -1.01710        1.89110       -3.01384 

C         -1.43950       -3.26982       -0.13384 

C         -1.18472        3.37719       -0.09190 

H          0.27832        4.50702        1.82787 

H          1.96913        0.90016        3.41405 

H          1.82807        3.37550        3.43521 

H          1.81456       -1.07307        3.46501 

H          1.46383       -3.52757        3.47491 

H         -0.12371       -4.52265        1.81511 

H         -0.92148       -3.52053       -1.06937 

H         -2.28057       -2.61176       -0.37565 

H         -1.83547       -4.20647        0.27480 

H         -0.65943        3.60490       -1.02934 

H         -1.50726        4.33355        0.33535 

H         -2.07379        2.78569       -0.33362 

H          1.60440        2.01637       -1.12015 

H          4.04422        1.99460       -1.51263 

H          5.21993       -0.21454       -1.76541 

H          3.84120       -2.31285       -1.61134 
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H          1.40911       -2.12264       -1.21628 

H         -5.67654        0.21128       -0.10072 

H         -5.17542       -0.71441        1.33891 

H         -5.10985        1.06819        1.35751 
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Figure A26. 1H NMR spectrum of bpy-I-BDP in CDCl3 
 

 

Figure A27. 13C NMR spectrum of bpy-I-BDP in CDCl3 
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Figure A28. 1H NMR spectrum of Mn-bpy-H-BDP in CD3CN 
 

 

Figure A29. 1H NMR spectrum of Mn-bpy-I-BDP in CD3CN 
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Figure A30. 13C NMR spectrum of Mn-bpy-I-BDP in CD3CN 
 

 

Figure A31. Overlaid electronic absorption spectra for bpy-H-BDP (red dashed), bpy-I-
BDP (black dashed), Mn-bpy-H-BDP (red solid) and Mn-bpy-I-BDP (black solid) and 
Mn(Me2bpy)(CO)3Br (blue solid) in room temperature CH3CN 
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Figure A32. Overlaid absorption and excitation spectra of bpy-H-BDP (A) bpy-I-BDP 
(B) Mn-bpy-H-BDP (c) and Mn-bpy-I-BDP (D) in room temperature CH3CN 
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Figure A33. Cyclic voltammograms for 1 mM solutions of bpy-H-BDP (red dashed), Mn-
bpy-H-BDP (red solid), and fac-[Mn(Me2bpy)(CO)3Br]  (blue solid), in room temperature 
DCM under a N2 atmosphere with 0.1 M Bu4NPF6 as the supporting electrolyte, a glassy 
carbon working electrode, wire auxiliary electrode, Ag/AgCl reference electrode, and a 
scan rate of 200 mV/s. Potentials are referenced to the Fc+/Fc couple (+0.43 V vs. 
Ag/AgCl) 
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Figure A34. Emission spectra of Mn-bpy-H-BDP (A), and Mn-bpy-I-BDP (B) in room 
temperature CH3CN in the dark at time intervals 

 

 

Figure A35. FTIR spectra for Mn-bpy-H-BDP initially (red solid) and kept in the dark for 
1 h (green solid) (A) and Mn-bpy-I-BDP initially (black solid) and kept in the dark for 1 
h (green solid) (B) in rt CH3CN 
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Figure A36. Absorption (A) and emission (B) spectra for the photolysis of Mn-bpy-H-BDP 
in rt CH3CN with 535 nm LED 

 
Figure A37. Overlaid Absorption (A) and emission spectra of Mn-bpy-I-BDP 
photoproduct (orange solid), and bpy-I-BDP (black dashed) in rt CH3CN 
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Figure A38. FTIR spectra (A) and 1H NMR (B) photolysis of Mn-bpy-H-BDP in rt 
CH3CN/CD3CN, λirr = 535 nm 

 

Figure A39. FTIR spectra for Mn-bpy-I-BDP after irradiation for 40 s with 590 nm LED 
and keeping in the dark up to 30 min (A) and Mn-bpy-H-BDP after irradiation for 20 s 
with 535 nm LED and keeping in the dark up to 30 min (B) in rt CH3CN 
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Figure A40. Emission spectra of Mn-bpy-I-BDP before the singlet oxygen detection 
experiment (black solid), and after the experiment (green solid), in rt CH3CN, λexc  = 490 
nm, λabs at 490 nm: 0.1 
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Figure A41. Increase in the emission intensity of SOSG during irradiation with 535 nm 
light in H2O:MeOH (5%)  in the presence of Rose Bengal (A), bpy-I-BDP (B), Mn-bpy-I-
BDP (C), photoproducts of Mn-bpy-I-BDP (D), blank (SOSG+light) (E) and the change 
in the emission intensity of SOSG at 525 nm over time in the presence of Rose Bengal 
(orange circles), bpy-I-BDP (black circles), Mn-bpy-I-BDP (blue circles), photoproducts 
of Mn-bpy-I-BDP (red circles), and the blank (SOSG+light) (green circles) (F) 
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Figure A42. Frontier molecular orbitals, relative energies, and transitions of bpy-H-BDP 
(left) and Mn-bpy-H-BDP (right). 

 



 
 

285 

 

 

Figure A43. 1H NMR spectrum of (5) in DMSO 
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Figure A44. 1H NMR spectrum of L in D2O 
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Figure A45. 1H NMR spectrum of Eu2L3 assemblies in D2O 
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