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Abstract 

FEIGE, JONATHAN, M.S., April 2022, Computer Science 

Use of Somatic Mutations for Classification of Endometrial Carcinomas with CpG Island 

Methylator Phenotype 

Director of Thesis: Lonnie Welch 

Endometrial carcinoma begins in the cells within the inner lining of the uterus that, like 

many other cancers, grows out of control. A subset of these tumors shows genome wide 

hypermethylation. Hypermethylation results in down-regulation of tumor suppressor 

genes resulting in CpG Island Methylator Phenotype (CIMP) tumors. Individuals with 

this hypermethylation are classified as CIMP+ and have increase in cancer reproduction 

and growth. We have hypothesized that by using CIMP related samples and the mutations 

associated with them, we can classify with high accuracy, an unknown sample using only 

mutational data. Using machine learning, we found that it is possible to correctly classify 

unknown CIMP samples with 90% accuracies just using the somatic mutations within 

each sample. This breakthrough will be used for diagnostics and treatment of endometrial 

cancers. 
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Chapter 1: Introduction and Background 

The CpG island methylator phenotype (CIMP) is a phenotype in cancer which is 

caused by hypermethylation at CpG islands. These CpG islands can function as a driver 

for silencing of tumor suppressing genes like PTEN [1]. Individuals with the CIMP+ 

phenotype in endometrial carcinoma are much more resistant to chemotherapies 

compared to the individuals that are CIMP- [2]. When individuals develop cancer a full 

methylation profiling is not commonly taken, the mutations within the cells are much 

more commonly collected and analyzed. By analyzing the mutations that occur within 

CIMP samples we can better understand the biology of the tumors when the targeted 

chemotherapies fail, a better understanding of the CIMP phenotype, provide potential 

mutations as divers for CIMP, and provide potentially new treatments and diagnostics for 

CIMP+ individuals. 

To solve this problem, we developed a pipeline for analyzing the samples and 

mutations from The Cancer Genome Atlas (TCGA) as they provided data with the 

samples with the CIMP phenotypes and mutation data. We aim to evaluate the hypothesis 

that we can use mutations for Classification of Endometrial Carcinomas with CIMP 

phenotype. First, we will choose statistical ways to select the most prevalent and CIMP+ 

related samples. Then with these mutation groups we will use four unique supervised 

machine learning techniques to evaluate the connection between CIMP and the mutations 

in a sample. Once mutations are selected, the mutations will then be used for correlation 

analysis and for biological interpretation. The research was broken down into three major 

aims. Aim one is to discover the most CIMP related mutations. Aim two is to use the 
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mutations discovered in aim one to preform association and correlation analysis. Aim 

three is to use the mutations from aim one and interpret the biological significance of the 

mutations. 

This study will increase our understanding of the relationship between CIMP 

samples and the mutations that occur in them. By using a novel approach to CIMP 

samples and mutations we will develop a pipeline that uncovers the relationship between 

CIMP and mutations. This will then help the scientific community to develop new 

hypothesis for further experimentation and deepen the understanding of CIMP in cancer.  
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1.1: DNA Methylation  

All cancers have shown to be extraordinarily complex diseases. Endometrial 

carcinoma is no exception. One of these significant changed that can occur in the genome 

is DNA methylation. DNA methylation occurs when a methyl group (CH3) attaches to an 

adenine or a cytosine. This can be from via three unique DNA methyltransferases 

DNMT1, DNMT3a and DNMT3b which are all enzymes for the regulation of  

methylation in the genome [3]. DNMT1 controls the maintenance of the DNA 

methylation, maintains the DNA from parent strand to newly generated strand and assists 

in binding to the hemi-methylated strands [3]. DNMT3a and DNMT3b do not drive 

methylation and they do not need the hemi-methylated DNA. DNMT3a and DNMT3b do 

add additional methyl groups to locations across the DNA [3]. When these DNMT’s No 

longer work properly hypermethylation can occur. 

The most common methylation in humans is a methyl group -CH3 bonded to a 

cytosine on the DNA [4]. DNA methylation can regulate gene expression by inhibiting 

the binding to and from transcription factors (proteins that transcribe DNA) in the DNA 

[3]. DNA methylation is found in normal tissues along with cancer cells in the control of 

transcription factors across the DNA. A key difference in cancer cells is that this process 

can quickly grow out of control in either failing to remove the existing methyl groups or 

rapidly adding methyl groups to DNA loci that would not need it [4]. In the situation that 

this occurs in a tumor suppression gene like MLH1, the cancer cell loses its ability to 

apoptosis, this leading to widespread cancer within an individual. Having these increased 
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levels of methylation is dangerous to individuals with cancer due to how rapidly the 

cancer progress. 
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1.2: CpG Island Methylator Phenotype  

A cytosine – phosphate – guanine (CpG) is a pattern of base pairs that occur 

across the genome. In order to qualify as a CpG island the DNA CpG chain must be 

greater than two hundred base pairs in length and the C and G bases must count for at 

least 50% of total base pairs [5]. Sixty percent of mammalian promoters have 

unmethylated CpG islands [5]. CpG islands have three major functions. The first function 

is cell type expression, suppression of testis specific genes and the control of imprinted 

genes [5]. These CpG’s also tend to be outside the gene promoter due to their rule closely 

relating to gene suppression and silencing. The CpG islands are a common point for 

mutation due to methylation through deamination (A removal of an amino group). 

Methylation is a common occurrence due to the DNMT enzymes targeting the cytosine 

groupings within the CpG [5]. 

In the DNA there can be large changes to the 5-methylcytosine (5mC) that can 

have major alterations in the progression of cancer cells [6]. The majority of the 5mC are 

located on CG nucleotide pair which are denoted CpG’s [6]. If 5mC upregulates or 

downregulates a gene upstream of a gene promoter in cancer, it is considered a CpG 

island methylator phenotype (CIMP) location [7]. In normal samples the DNA has an 

open structure so it can be read, with the added CIMP the DNA becomes tightly coiled 

and is no longer able to be read. 
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Figure 1 

CpG Island Methylation Phenotype 

 

 
Note: Healthy DNA versus hypermethylated DNA on the gene MLH1. The diagram 

shows the effect of CIMP on DNA. 

Source: [7] 

 

As shown in the example above, the gene MLH1, which is a DNA repair gene, is 

silenced due to CIMP. Each yellow and blue dot represents a point on the DNA that there 

is a CpG site. The graphic demonstrates how the CpG itself is not harmful but the 

methylation that occurs at a CpG site can cause various problems within the cell. The 

blue Markers represent a methylated CpG island and, as seen on the bottom half of the 

graphic, causes exon (a location that encodes an amino acid) silencing. Due to the 

methylation of the CpG islands, the DNA is tightly coiled and no longer able to be read 

by the RNA polymerase causing gene silencing. Gene silencing in MLH1 causes the 

cancer cell to no longer repair mutations, leading to the cell to mutate out of control [7].  
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CIMP was originally identified in colorectal cancer, but CIMP has since been 

identified in multiple cancer types including, but not limited to, gastric cancer and 

endometrial cancers [7]. CIMP has been shown to be a non-random occurrence in pan-

cancers with a major relationship between CIMP and cancer growth [8]. CIMP tends to 

arise early in the tumor development process leading to much more aggressive tumors 

over the span of the lifetime. Identifying the CIMP phenotype for a sample takes 

substantial amounts of methylation profiling. It has been shown that using DNA probes 

across the genome can determine the hypermethylation level across the tumor [7]. 

Researchers used the HumanMethylation450 bead chip to determine methylation status 

across each samples genome [1]. In uterine carcinoma there were 1430 probes across the 

genome that were used to classify samples [1]. Each probe collects a methylation value, 

which is then converted to a beta value. A beta value is produced by the Illumina 

methylation assay and shows how high in methylation a probe is between 0 (low) and 1 

(high). These beta values are used in a K-Means Clustering where k (The number of 

clusters in the system) is equal to 3 representing positive, negative, and intermediate [7].  

K-means clustering is a supervised machine learning technique used to group like 

samples into k groups. In this study the k groups were substantial amounts of methylation 

across the genome, mild methylation across the genome, and low to no methylation 

across the genome. Each sample is then grouped into the category it fits best based on the 

samples already in each beta grouping. The highest valued beta grouping is considered 

CIMP positive (CIMP+), the smallest beta grouping is considered CIMP negative 
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(CIMP-) , lastly, the ambiguous grouping in the middle was coined CIMP Intermediate 

(CIMPi) [9].  
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1.3: Research Hypothesis and Aims 

The goal is to use mutation data to accurately classify CIMP status in endometrial 

carcinoma samples by using random forest, support vector machines, multilayer 

perceptron’s, and K-nearest neighbor supervised machine learning algorithms. 

Understanding how the CIMP subtype is related to mutations, which may lead to 

new treatment techniques. The results come from three targeted aims. The first is to find 

the relevant mutations that are strongly related to CIMP via supervised machine learning. 

We expect prominent levels of accuracy using mutations to classify unknown CIMP 

samples. Once the mutations are found, aim two looks at the correlation / causation 

between the mutations and attempts to uncover the relationship between cancer samples, 

CIMP, and the significant mutations. The goal would be to build a deeper understanding 

of the interrelationships between mutations and the CIMP phenotype. The last analysis 

analyses the biological significance of the mutations selected by analyzing signaling 

pathways and large scale effects on the cell due to mutations. When an individual has 

cancer the first thing done is not typically a 450 methylation probing to determine CIMP 

status, but an analysis of the mutations always occurs [1]. Using mutations to classify 

CIMP would help give new insights into CIMP’s effect on cancer cells and how CIMP 

alters the progression in these cells. This may also lead to new diagnostic techniques for 

individuals with the CIMP+ phenotype.  

The data was collected from the Cancer Genome Atlas, which is the most 

comprehensive cancer genomics study to date. The data used consists of 250 unique 

samples. 108 samples are CIMP+ while the other 142 samples are CIMP-. The CIMPi 
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group is removed to make each classification problem a clear two group binary 

classification problem, being that the CIMPi group tends to be a muddy area between the 

two groups. There are 8085 total mutations. Of the 8085 mutations, 739 demonstrated a 

strong correlation to either the CIMP+ or the CIMP- grouping. 
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Figure 2 

Data and CIMP distribution 

 
Note: This is an example of the data for mutations GOT1, TEX36, and KIAA1217 and 

their relationship to the first four samples. On the right is the sample distribution of the 

CIMP+ vs CIMP- samples. 

 

The first aim is to find the important CIMP related mutation. We will select 

mutations using supervised machine learning classification. Using machine learning we 

are able to show connections between mutations and CIMP with high confidence 

Using the strongly correlated CIMP mutations, the second aim is to find the 

relationships between the data features. This takes the form of association rule mining. 

The goal will be to build strong correlations between any two mutations. The scope is 

also extended to finding the relationships between gene-level mutations within a single 

cancer type.  

Using the strongly correlated CIMP mutations, the third aim is to interpret the 

findings from a biological perspective. This would take form in various biological 

analyses to determine a link between biological pathways, cancer, and CIMP. 
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Chapter 2: Aim 1 – Finding Important CIMP Mutations 

The goal is to classify CIMP in cancer using only mutations. Each step expresses 

small parts of the pipeline in order to reach the classification models used. The goal of 

the first aim is to use statistical methods in order to find the most influential mutations 

that exist within the samples for the CIMP+ and CIMP- phenotype. It is important to find 

these strong mutations in order to have a strong statistical significance in the following 

two aims. 
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Figure 3 

Pipeline Diagram 

 

 
Note: This is the broad flowchart of the pipeline used for the classification model. 

 

The approach for this chapter is to identify relevant mutations in relationship to 

CIMP. The pipeline in the figure above shows the outline of the code used in order to 

produce results. First the mutational selectors must be established. Then using the 

mutational selectors, we can choose the mutations we want to use in the classification 

problem. This will be achieved first by analyzing the raw statistics of a mutation, then 

evaluating each mutational grouping (mutational selector) in a classification model.  
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2.1: Mutation Selectors and Classification 

The most low-level statistical concept used was the confusion matrix. The 

confusion matrices used have the standard build of true positive (TP), false positive (FP), 

false negative (FN), and true negative (TN). As an example, from the data 

“RPL22_GRCh38_1:6197725-6197725_Frame-Shift-Del_DEL_T-T—" has TP = 27, FP 

= 10, FN = 81, and TN = 261. From a biological perspective, this actively demonstrates 

that the mutation RPL22_GRCh38_1:6197725-6197725_Frame-Shift-Del_DEL_T-T— 

exists in 27 CIMP+ samples (TP) and 10 Non-CIMP+ samples (FP), It does not exist in 

81 CIMP+ samples (FN) and does not exist in 261 CIMP- samples (TN). These base 

level statistics are used in all mutational selector 

2.1.1: Mutational Selectors 

After analyzing at the base level statistics, we began the development of our 

mutational selectors. These mutational selectors are metrics that determine if a mutation 

will or will not be used in the classification problem. The selectors chosen were: 

• Fisher’s Exact P-Value < 0.05, 0.01, 0.005.  

• The Chi-Squared Significance Test > 3.84, 7.68, 15.36. 

• FP <= 0, 1, 2 

• FP = 0, TP > 2, 3, 4 (TPX_FP0). 

• All mutations 

Stepping through each of these selectors, Fisher's Exact P-Value is a test that analyzes 

the significance of a confusion matrix. The main focus of the test is to show how likely 



22 
 
the data is by random chance based on the values of the confusion matrix. The value is 

most commonly calculated by: 

𝑝 =
(𝑇𝑃 + 𝐹𝑁)! ∗ (𝐹𝑃 + 𝑇𝑁)! ∗ (𝑇𝑃 + 𝐹𝑃)! ∗ (𝐹𝑁 + 𝑇𝑁)!

𝑇𝑃! ∗ 𝐹𝑁! ∗  𝐹𝑃! ∗ 𝑇𝑁! ∗ 𝑡𝑜𝑡𝑎𝑙!
 

Typically, a significant value is less than 0.05. To ensure this is not too tolerant 

we also chose mutations that were less than 0.01 and 0.005. Using RPL22 as an example.  

𝑝 =
(27 + 81)! ∗ (10 + 261)! ∗ (27 + 10)! ∗ (81 + 261)!

10! ∗ 81! ∗  10! ∗ 261! ∗ 379!
 

We find the p-value for RPL22 to be 3.86 * 10^-9. This falls far under the 0.05 threshold 

typically used by this statistic.  

The Chi-Squared Significance Test is used to determine how unique the data is 

based on the difference from the expected mean.  

𝐶𝐻𝐼 =
(𝑇𝑃 − 𝑇𝑃̅̅̅̅ )2

𝑇𝑃̅̅̅̅ +
(𝐹𝑁 − 𝐹𝑁̅̅ ̅̅ )2

𝐹𝑁̅̅ ̅̅ +  
(𝐹𝑃 − 𝐹𝑃̅̅ ̅̅ )2

𝐹𝑃̅̅ ̅̅ +  
(𝑇𝑁 − 𝑇𝑁̅̅ ̅̅ )2

𝑇𝑁̅̅ ̅̅   

TP, FN, FP, and TN represent the values for a single mutation, while 𝑇𝑃̅̅̅̅ , 𝐹𝑁̅̅ ̅̅ , 𝐹𝑃̅̅ ̅̅ ,

𝑇𝑁̅̅ ̅̅  represent the mean of all values for that static. Again, with RPL22 as the example 

mutations 

𝐶𝐻𝐼 =
(27 − 1.421)2

1.421
+

(10 − 1.988)2

1.988
+  

(81 − 106.579)2

106.579
+ 

(261 − 269.011)2

269.011
  

We find that RPL22 has a CHI squared value of 499.0767, which is well over the 

3.84 threshold of significance. CHI is a reliable test that checks if the entire confusion 

matrix of a mutation is significant. Once a value is calculated, each value is checked 

against the Chi-squared distribution table. A chosen p-value is on the x-axis and the 

degrees of freedom are on the y. The p-value is chosen by the users (in this case the 
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standard 0.05), while the degrees of freedom must be calculated. It can be calculated by 

the (rows in confusion matrix – 1) * (column in confusion matrix -1). In this case all 

values will be (2 -1) * (2 – 1) = 1. With a p-value 0f 0.05 and degree of freedom at 1, the 

table shows that all CHI greater than 3.84 are considered significant. Once again, to have 

a more thorough exploration of the mutational space, we had two more increased 

thresholds, each double the previous one. These thresholds are CHI greater than 7.68 and 

CHI greater than 15.36. 

The next selector analysis mutations that exist in little to no no-CIMP+ samples. 

FP = 0 indicates that the mutation occurs in exactly 0 non-CIMP+ samples making this an 

extremely strict threshold for classification. The other two options are less strict being FP 

<= 1, allowing mutations that occur in 1 non-CIMP+ sample to be included and FP <= 2, 

allowing for mutations that occur in two or less non-CIMP+ samples. Removing the 

background class has many potential benefits in classification problems. Classifying just 

the foreground tends to lead to higher accuracies for multiclass classification models. 

The strictest selector is the FP = 0, TP > 2. This includes only mutations that exist 

strictly in the CIMP+ phenotype. This is an important separator because of its pseudo-

unary classification system. With only CIMP+ mutations in the dataset, the classification 

model should have an easier time with classifications. Since in the data preprocessing all 

mutations that existed in less than two samples were removed. FP = 0, TP > 2 is a 

redundant statement since TP > 2 would be implied, because of this the results FP = 0, TP 

> 2 is referred to just as FP = 0 due to the initialization step the removed mutations that 
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occur in less than 2 CIMP+ samples. There are also more strict options such as FP = 0, 

TP > 3, and FP = 0, TP > 4 

The last mutational selector is labeled “All mutations.” While including all 

mutations does not seem like a ‘selection,’ it functions as a baseline statistic to compare 

to other mutational selectors.  

2.1.2: Building Classifiers for Mutations 

We explored four different classification methods. The four used are Random 

Forest, Support Vector Machines, K-Nearest Neighbors, and Multilayer Perceptron. Each 

of these classification models came from the python library SciKitLearn. 

After the mutation selection the next step is cross-validation. Cross-validation 

aims to not over-fit or overgeneralize the classification model for new unknown samples. 

In this research, k-fold cross-validation was used. Three, five and ten fold cross 

validation were all evaluated, but ten folds was chosen as the k value due to its ability to 

have a larger sampling of testing data. With this cross-validation, the dataset is split into 

two sets, the training set, and the testing set. The sets are split is for each fold of the 

Random Forest, 9/10 of the data goes into the training set, which is passed to the Random 

Forest for classification, the other 1/10 is used to evaluate the Random Forest as an 

accuracy threshold. The samples divided in each group are randomly selected with each 

fold. Once completed, the 10-fold are averaged to give a single value for the overall 

performance of the Random Forest. The cross-validation step functions as a for loop 

around a classifier. Using Sklearn train_test_split the data can be divided into the random 

training and testing set. 
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The next step is the tuning of hyperparameters. In any classification model, there 

are a large number of parameters that can be used to better the results. In hyperparameter 

tuning, a collection of parameters is evaluated in order to find the best results. We chose 

the most important hyperparameters and enumerated various combinations of parameters. 

Each combination of parameters is used and assessed with SciKitLearn GridSearchCV. 

The classifier with the highest accuracy is chosen from the battery of tests each time. 

Once finished, the best parameter combination, based on accuracy, is selected as for that 

fold by using the best_estimator_ function from GridSearchCV.  

The best results produced came from the random forest classifier. When given the 

sample and mutation data, the forest builds a collection of decision trees based on the 

mutations. With the trees, the samples are classified as CIMP+ or CIMP- based on the 

decision from the majority of trees. Similar to before, a confusion matrix is built on the 

correctness of the forest. The random forest was built from SciKitLearn 

RandomForestClassifier and the list of parameters can be found in appendix B.1. For 

most future results, the graphics will be based on the random forest statistics due to it 

having the best performance and the added interpretability due to each mutation being 

assigned an importance (Gini index) to the classification model. This showing what were 

the driving mutations that occurred in each iteration of the random forest. The process 

that was used to create the random forest was repeated three more times on three other 

classification models. 

Multilayer Perceptron is a type of neural network [10]. It consists of three layers: 

the input layer, output layer, and hidden layer. The input layer receives the input. The 
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prediction of samples and classification are performed by the output layer. Between the 

input and output layers, an arbitrary number of hidden layers is placed between the input 

layer and output layer. This is where all computation is done for the MLP. The major 

change in the pipeline is hyperparameter tuning. The multilayer perceptron was built 

from SciKitLearn MLPClassifier and the list of parameters can be found in appendix B.2. 

K-Nearest Neighbors classifier is a pseudo-k means clustering approach where 

samples are grouped by the number of mutations they have in common. The K-Nearest 

Neighbors algorithm assumes that similar things are near each other. The classifier 

randomly selects a sample that has already been classified, then takes the K closest (by 

mutational overlap) and classifies the K samples as the same class as the base. This 

machine assumes proximity in the data therefor it tends to underperform compared to 

other classifiers for this dataset due to the sparsity in the data. The K-Nearest Neighbors 

was built from SciKitLearn KNeighborsClassifier and the only change is the 

hyperparameter tuning. The list of parameters can be found in appendix B.3. 

Support Vector Machines are supervised learning models that uses fit vectors for 

classification. The objective of the Support Vector Machine algorithm is to find a vector 

that distinctly classifies the data points [11]. It is done by repetitive vector placements 

until a best fit is found. In this dataset, the number of features is two, CIMP+ and CIMP-. 

The support vector machine was built from SciKitLearn svm and the list of parameters 

can be found in appendix B.4. 
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2.1.3: Classification Mutation Selection 

Once all classifiers have produced results, we selected the feature that had the 

highest impact on the classifier. This comes in a variety of forms. For the Random Forest 

classifier, each mutation in the classifier is given a "gini index". The gini index provides 

a percentage importance of each mutation for each classification. This means the score is 

relative to the number of mutations in the mutational selector. The K-Nearest Neighbors 

selects mutations based on the connections made in the neighborhoods within the 

classification model. The Multilayer Perceptron selects features by selecting the network 

that was generated which produced the best performance. Once a network is selected, 

features can be extracted from each of the nodes in the network. Lastly, the Support 

Vector Machine classifier selects features by choosing the features that are constantly on 

the same side of the hyperline over numerous iterations, this indicates a feature that is 

strongly linked to one of the two classes. 
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2.2: Results  

In this data processing and classification stage, there were a large number of 

mutations found to be incredibly significant in numerous ways for our statistical analysis. 

Using the classification models, we found accuracies of up to 90% using only the 

mutations in the TCGA endometrial carcinoma data. The results in this section support 

the claim that mutations and CIMP are connected and with just mutations we can 

accurately classify unknown CIMP samples. 

2.2.1: Mutational Selectors 

The mutational selectors are the basis for the classification models. Without these 

stricter guidelines all of the following results would fall under the 'All' row, and as seen 

in the following tables, this tends not to perform well compared to the other selectors (Up 

to a 20% increase in accuracy). Having these selectors also brings new insight into how 

the classification models react to different datasets with differing characteristics. Another 

aspect to consider when looking at the following tables is that the FP=0 classifier always, 

regardless of accuracy, has a specificity near 100%. All tables for classification have 

been placed in Appendix C. 
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Table 1 

Mutational Selectors 

Mutational Separator Number of mutations 

Fishers Exact P value > 0.05 845 

Fishers Exact P value > 0.01 326 

Fishers Exact P value > 0.005 174 

Chi Squared > 3.84 739 

Chi Squared > 7.68 383 

Chi Squared > 15.36 196 

FP = 0, TP > 2 556 

FP = 0, TP > 3 159 

FP = 0, TP > 4 57 

TP – 2 * FP > 2 609 

TP – 2 * FP > 3 214 

TP – 2 * FP > 4 80 

All mutations 8085 

Note: Table 1 shows the thirteen different mutational selectors described in the previous 

sections with the number of mutations included within each selector.  

 

 
The results for each mutational selector and the respective classifier are shown 

below. 
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Figure 4 

All Results for each mutation selector and classifier 

 
Note: This diagram shows all four classification models, each set of bars represents a 

mutational selector. The blue bar is accuracy, the orange bar is sensitivity, and the gray 

bar is specificity. 

 

This graphic shows a strong connection between the CIMP phenotype and the 

mutations that occur in the cancerous samples. The highest performance from all 

classifiers is the random forest  CHI > 3.84 at just over 90%. The top results from the 

multilayer perceptron and support vector machine are not far behind with approximately 

89% accuracies. Having all classification models produce such high results strengthens 

the connection between these mutations and the CIMP phenotype due to these high level 

accuracy classifications. 

2.2.2 Random Forest 

Table C.1 shows how each mutational selector performed. Each selector has a TP, 

FP, TN, and FN calculated which is the base for the rest of the columns calculations. In 
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this data, we found that Chi>3.84 is able to correctly identify samples using only 

mutations 90% of the time, giving testament to how strong some of the mutational 

selectors are.  

 

Figure 5 

Random Forest Statistics 

 
Note: This graphic shows the random forest classifier where each set of bars represents a 

mutational selector. The blue bar is accuracy, the orange bar is sensitivity, and the gray 

bar is specificity. 

 

All selectors in the random forest classifier are able to correctly classify samples 

with at least 73% accuracy. Showing that even picking the worst mutational selector there 



32 
 
is still a reasonable amount of accuracy. On the other hand, these low-performing 

selectors based on accuracy have achieved 100% specificity. This meaning, which given 

a mystery sample, the mutational selector can identify a CIMP- sample as negative every 

single time.  

2.2.3: MLP, KNN, SVM results 

Table C.2 shows how each mutational selector performed. Each selector has a TP, 

FP, TN, and FN calculated which is the base for the rest of the columns calculations. In 

this data, we found that FP=0 is able to correctly identify samples using only mutations 

88% of the time.  

Table C.3 shows how each mutational selector performed. Each selector has a TP, 

FP, TN, and FN calculated which is the base for the rest of the columns calculations. In 

this data, we found that Chi > 5.36 is able to correctly identify samples using only 

mutations 83% of the time. We have found in the past that the K nearest neighbor 

algorithm tends to be the worst performing in terms of accuracy. Seeing that the range is 

from  53% to 83% it is easy to see the drastic falloff in later selectors compared to the 

other classifiers. The way these classifiers are built does not intuitively work with the 

way the endometrial data is built. The K Nearest Neighbor algorithm thrives when there 

are two strongly unique classes. Unfortunately, the line between CIMP+ and CIMP- is 

not strong enough for this classifier to outperform the others. 

Table C.4 shows how each mutational selector performed. Each selector has a TP, 

FP, TN, and FN calculated which is the basis for the rest of the columns calculations. In 

this data, we found that FP=0 is able to correctly identify samples using only mutations 
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89% of the time. The support vector machine has the largest room to grow. In previous 

iterations of the data, the top performer has reached an accuracy of up to 94%, but this 

has not been a consistent occurrence. Being that these high accuracies are not consistent 

shows that there is potential growth in this classifier. 

2.2.4: Strongest Mutation from Classification 

From the random forest classification model came a collection of mutations that 

promoted high accuracy for the random forest. P-value < 0.005 contained 147 mutations 

and had an accuracy of 89%. CHI > 15.36 contained 196 mutations with 88% accuracy. 

TP > 3, FP = 0  contained 159 mutations with 83% accuracy. These selectors were 

chosen due to their high accuracy while having a minimal number of mutations. The P-

value < 0.005 and CHI > 15.36 came in second and third respectively by accuracy in the 

random forest, and the TP > 3, FP = 0 came in second for the multilayer perceptron and 

third for the support vector machine. The mutations in each selector are clear divers of 

the classification model and all exist as good candidates for a CIMP and mutation 

relationship. Looking at the intersection of these statistics provided a list of mutations 

that are the drivers across all three classifiers. 
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Figure 6 

Mutation Overlap 

 

Note: The Venn diagram shows the overlap of the mutational selectors p-value < 0.005, 

TP > 3 FP = 0, and CHI > 15.36. The chart of the right shows the center most twenty-

three mutations. The mutations in red indicate mutations with existing relationships to 

cancer. 

 

The most central twenty-three mutations occur in all three mutational selectors 

and function as the driver to all three classifiers. These can function as the base for the 

significant mutations that relate to CIMP. Combining the inner circles will also lead to 

insights into CIMP.  
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Table 2 

P-Value < 0.005 ∩ TP >3, FP=0 mutations 

 

Note: The list depicts the intersection of P-Value < 0.005 and TP >3, FP=0. This 

intersection results in thirty-four mutations that have a significant relationship to CIMP. 

 

This interesting list is the right inner circle in figure 8. It contains thirty-four 

genes. These mutations are still especially important, but a deeper analysis would be 

required in order to fully understand their connections to CIMP and cancer. 
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Table 3 

P-Value < 0.005 ∩ CHI > 15.36 mutations 

 
Note: The list depicts the intersection of P-Value < 0.005 and CHI > 15.36. This 

intersection results in ninety mutations that have a significant relationship to CIMP. 

 

This interesting list is the left inner circle in figure 8. It contains ninety genes. 

These mutations are still especially important, but a deeper analysis would be required in 

order to fully understand their connections to CIMP and cancer. Combining the pink, 

orange, and gray middle circles we find a list of 147 mutations that have a strong 

relationship to the CIMP phenotype through classification. This list of mutations will be 

important to understanding the biology of the CIMP phenotype and the following aims of 

the research.  
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Chapter 3: Using Uterine Carcinoma Mutations to Classify Other Cancer Types 

This section focuses on the classification of other cancer types using the TCGA 

data. The goal is to prove the model built in chapter two is a strong and accurate model 

using various other datasets as validation. The approach is wildly the same as the 

previous chapter, but with aim to validate our model and classify CIMP from a pan-

cancer perspective.  

In this chapter we will evaluate four unique datasets (Colorectal TCGA, Gastric 

TCGA, Uterine ICGC, and Uterine Cell-line) in classification with the TCGA data. 
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Figure 7 

Validation Flow Chart 

 
Note: This flowchart is similar to the previous chart with the exception of the generation 

and inclusion of the validation set. 

 

The process for using the Endometrial Classifier to classify other cancers is 

similar to the previous section on Random Forests with additional preprocessing data 

steps. First, if the samples do not have a CIMP classification (Cell line and ICGC) they 

must first go through the K-means clustering process described in the in the first chapter 

and Sánchez-Vega paper [1]. At this point all four datasets will be at the same stage of 

preparation. The mutations in endometrial must be the same as the mutations in other 
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cancers. The validation cancer dataset was prepared in the same way endometrial cancer 

was prepared. The mutation columns that do not exist in both cancers will be removed. 

The mutational selectors are then applied to the existing mutations based on the 

mutational selectors from endometrial cancer. Once the subset is generated the 

endometrial cancer is split into the training and testing set. The training set builds the 

chosen classifier, and the testing set is set aside and replaced with the validation cancer 

data. This produces a similar table as shown in appendix C.  
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3.1: Results 

The classification was performed on all four classification models. These tables 

tend to be quite large, therefore, will be included as supplementary tables. Each 

supplementary table is in the same format as the classification model tables in appendix 

C. Each dataset performed in a remarkably equivalent way giving ~80% max accuracy 

across most runs. 

3.1.1: Validation Mutational Selectors 

Almost identical to single cancer classification, mutations must be selected for the 

classification model. There is a slight alteration because they are two unique cancer 

types; all mutations used in one, must be included in the other or the classification model 

will no longer function. 
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Table 4 

Mutational Selectors on validation data 

Mutational Selectors ColRec Gastric ICGC Elnitski 

Cell line 

Fishers Exact P value > 0.05 210 66 5 121 

Fishers Exact P value > 0.01 85 38 3 63 

Fishers Exact P value > 0.005 45 22 3 36 

Chi Squared > 3.84 153 33 10 52 

Chi Squared > 7.68 75 20 4 26 

Chi Squared > 15.36 30 11 3 16 

FP = 0, TP > 2 131 22 3 79 

FP = 0, TP > 3 42 10 1 36 

FP = 0, TP > 4 19 3 1 15 

TP – 2 * FP > 2 151 39 1 23 

TP – 2 * FP > 3 55 20 1 9 

TP – 2 * FP > 4 26 10 3 59 

All mutations 1460 215 28 345 

Note: Table 2 shows the number of mutations for each mutational selector and the chosen 

secondary dataset. The process to find the values functions similar to an intersection 

where the mutations included are the mutations in TCGA that fit the mutational selector 

and exist in the validation set. 

 

As seen in the table 2 above, there is a drastic falloff in mutations when the two 

sets are compared. Where previously, there were 8085 total mutations that were spread 

across the mutational selectors, there are only 1460 mutations to choose from in ColRec. 

It is important to know that all 1460 mutations came from the original 8085 mutations 

and that there are no new mutations included from colorectal cancer dataset. This lower 
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level of mutations occurs across all four validation sets. Regardless of the mutation falloff 

the classification models were able to still perform up to 80% accuracy. 

3.1.2: TCGA Colorectal Cancer 

The Random Forest classifier showed Endometrial Carcinoma classifying 

colorectal cancer at 81.60% accuracy using the p-value < 0.005 mutational Selector. The 

worst performance was from TP >4 and FP = 0 at 70.63% accuracy. The Multilayer 

Perceptron classifier showed Endometrial Carcinoma classifying Colorectal Cancer at 

76.69% accuracy using the Chi-Squared > 15.36 mutational selector. The worst 

performance was from TP >4 and FP = 0  at 67.40% accuracy. The K Nearest Neighbors 

classifier showed Endometrial Carcinoma classifying Colorectal Cancer at 76.42% 

accuracy using the Fisher’s exact p-value < 0.005 mutational selector. The worst 

performance was from TP-FP > 2 at 65.73% accuracy. The Support Vector Machine 

classifier showed Endometrial Carcinoma classifying Colorectal Cancer at 79.39 

accuracies using the All mutational selector. The worst performance was from TP > 3 and 

FP = 0 at 65.93% accuracy. 

These are two completely unique types of cancer, which do not even share 

biological systems. The ability to classify at ~80% attests to the capability to use 

mutations in the classification of CIMP. 

3.1.3: TCGA Gastric Cancer 

Another completely unique dataset evaluated against was TCGA’s gastric cancer. 

The ICGC dataset contained 256 samples with a 215 mutation overlap. The data was 

classified at about 80% accuracy. The highest preforming mutational selector was all 
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mutations selectors. Other selectors came close with 79% accuracies (p value, CHI, TP-

FP). The smallest high accuracy set was CHI > 7.68 only including 20 of the 215 

mutations. 

3.1.4: International Cancer Genome Consortium Dataset 

The ICGC dataset is classified as uterine carcinoma. The data used for the 

previous research focused on the endometrium inside the uterus. From a biological 

perspective, this dataset compares the entirety of the uterine cancer compared to the 

endometrium within the uterus. The test was performed again using two more unique 

datasets. The first was a uterine carcinoma dataset that came from the International 

Cancer Genome Consortium (ICGC). The ICGC dataset contained thirty-eight samples 

with a twenty-eight mutation overlap. The data was classified at about 80% accuracy.  

The highest preforming mutational selector was the p value < 0.05. This included only 

five of the twenty-eight mutations that were included in the data. It is important to note 

that while some of the selectors used less mutations they did not perform to the same 

level as the p value mutational selector. 
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Table 5 

ICGC Mutations 

Gene Location Mutation 

KRAS 12:25398284-25398284 Missense-Mutation_SNP_C-C-A_C-C-T_C-C-

G 

PTEN 10:89692923-89692923 Missense-Mutation_SNP_G-G-A_G-G-T 

BCOR X:39921444-39921444 Missense-Mutation_SNP_T-T-C 

SET 9:131457395-131457395 3'UTR_SNP_C-C-T 

VEGFA 6:43753880-43753880 3'Flank_SNP_G-G-A 

Note: This shows the most useful mutations in the classification of the ICGC data. 

 

 

3.1.5: Elnitski Cell Line Dataset 

The Elnitski cell line dataset was provided by the Elnitski lab at NIH. The data is 

classified as uterine carcinoma (12 samples) and ovarian carcinoma (8 samples). The data 

contained 25 samples and ~400 mutation overlap, this as well classified around the 80% 

marker. There is a small collection of samples that was the driving factor in the 

classification, of the ~400 mutations only 9 of them were used in the TP >= 4 and FP = 0 

mutational selector. This metric produced equivalent results to those who used more 

mutations. 

The nine mutations are provided in the table below. 
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Table 6 

Elnitski Cell line Mutations 

Gene Location Mutation 

BTBD11 12:107544001-107544001 Frame-Shift-Helideck-C-- 

DDX3X X:41347847-41347847 3'UTR_DEL_T-T-- 

LMAN1 18:59346053-59346053 Splice-Site_DEL_T-T-- 

ZMIZ1 10:79312689-79312689 Frame-Shift-Del_DEL_C-C-- 

PLXND1 3:129555548-129555548 3'UTR_DEL_A-A-- 

ARID1A 1:26779439-26779440 Frame-Shift-Ins_INS_----G 

SRRT 100881710-100881711 Frame-Shift-Ins_INS_----G 

TTC3 21:37151943-37151943 Frame-Shift-Del_DEL_A-A-- 

KCNA4 30012016-30012016 Frame-Shift-Del_DEL_A-A-- 

Note: This shows the most useful mutations in the classification of the Elnitski Cell line 

data. 
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Chapter 4: Aim 2 – Finding Groups of Associated Mutations 

The second aim of the research is to find the relationships between mutations, 

samples, and other types of cancers in correspondence to uterine cancer and a selection of 

other cancer types. The goal of the second aim is to find the associations between 

mutations in comparison to other mutations that show strong correlation in the data. 

Finding the association is a crucial step because there is not just one mutation that causes 

CIMP. CIMP is typically characterized by a collection of mutations. This will be done 

through a variety of statistical measures. This may give insights that a single mutation or 

gene cancer cannot be done alone. 

Association rule mining is a tool used in data mining that builds an association 

between two different objects. By using the python library mlxtend, we can take the 

mutation data and the samples the mutations exist in to perform an association rule 

mining. First, you choose a K, where K is the minimum number of samples two 

mutations need to have in common. These mutations are added to an association set 

together showing that one mutation implies the next. This process is repeated iterating 

through all mutations and all association sets combining sets that share K samples in 

common. This continues until there are no more mutations that can be added to sets. The 

result is a large set of mutations that all share common samples. Large sets, with large 

samples sizes, show a strong association in comparison to smaller sets, with smaller 

sample sizes, which show a weaker association. 

To build the rules the mutations that are not in the 149 from figure 6 are removed. 

The data frame is then used as an input for the mlxtend apriori algorithm with the 
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parameter min support ≥ 4 samples (0.01) which returns all frequent sets that contain at 

least four samples. The frequent item sets are then used in the mlxtend association rules 

function along with the minimum confidence threshold of 80%. The output is a list of 

association rules that have a support > 0.01 and a confidence > 80%. 

Each association rule functions like an “if then” statement. The antecedent 

functions as the “if” statement. The consequent functions as the “then” statement. If these 

mutations exist, then the consequent exists. The most common way association rules are 

measured is by support and confidence. Support is calculated by taking the number of 

samples covered by the rule and dividing it by the total number of samples.  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =  𝑃(𝐴 ∩ B) =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Confidence is calculated by taking the support of the rule and dividing it by the 

support of the antecedent.  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 ∩ B)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)
=  

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐴
 

This shows if there are any situations the new rule does not apply in the existing 

rule. Together these two metrics provide insight into the power of each association rule. 

Below only rule that have a support * confidence ≥ 0.013193 are shown. all other rules 

are in the supplementary files. 
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4.1: Association Rule Mining 

The full table will be included in the supplementary tables. The association rule 

mining was performed again on the 149 selected mutations from figure 6. As an example, 

for calculations where the first rule covers 9 samples, the total number of samples is 379 

and the antecedent covers 11 samples: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  
9

379
=  0.023747 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
9

11
=  0.818182 

Confidence is calculated by taking the support of the rule and dividing it by the 

support of the antecedent. The association rules in the tables below are filtered by support 

* confidence > 0.013. For table 7 each association rule has a support greater than 0.01%, 

confidence greater than 80% and support * confidence being greater than 0.013%. 
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Table 7 

Association Rules 

A B Support(A) 
𝒔𝒖𝒑𝒑𝒐𝒓𝒕  

(𝑨 ∩ 𝐁) 
Support Confidence 

Supp * 

Conf 

ANKH DRD51 11 9 (8+, 1-) 0.023747 0.818182 0.019429 

ANKH, 

RPL22 
DRD51 6 6 (5+, 1-) 0.015831 1 0.015831 

CLVS1, 

RNF43 
RPL22 7 6 (4+, 2-) 0.015831 0.857143 0.01357 

DRD52, 

BTBD7 
RPL22 7 6 (6+, 0-) 0.015831 0.857143 0.01357 

COBLL1 RNF43 7 6 (5+, 1-) 0.015831 0.857143 0.01357 

RNF2 RPL22 7 6 (5+, 1-) 0.015831 0.857143 0.01357 

NFIA, 

BCL7A 
RPL22 5 5 (5+, 0-) 0.013193 1 0.013193 

DRD52, 

NFIA 
DRD51 5 5 (4+, 1-) 0.013193 1 0.013193 

DRD52, 

DZIP1 
DRD51 5 5 (4+, 1-) 0.013193 1 0.013193 

DRD52, 

CLVS1 
RPL22 5 5 (4+, 1-) 0.013193 1 0.013193 

DRD51, 

JAK1 
DRD52 5 5 (5+, 0-) 0.013193 1 0.013193 
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Note: This table depicts 12 of 144 association rules present from the 149 mutations. 

There are two unique DRD5 mutations that exist each DRD5 mutations has been denoted 

with a subscript to identify each mutation. 

 

The first row shows the highest support from the association rules the mutation 

ANKH and DRD5 had a support of 0.023 (nine samples in common). This is the first 

DRD5 (DRD5_GRCh38_4:9783725-9783725_3'UTR_SNP_G-G-C). The second one is 

indicated by a subscript two (DRD5_GRCh38_4:9783797-9783797_3'UTR_SNP_G-G-

T). The following two rows show variations of the longest association rule. The two rules 

have a common RPL22 mutation between each set. This shows that not one mutation 

contributes to the CIMP classification, but various collections of mutations can attribute 

to CIMP status.   
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Table 8 

CIMP Relationship 

Mutation TP FP FN TN P-Value CHI 

Squared 

ANKH 9 2 269 99 0.000307 43.07737 

DRD5 14 5 266 94 3.61E-05 118.6723 

RPL22 27 10 261 81 3.86E-09 499.0767 

CLVS1 11 3 268 97 0.000109 67.69992 

PRKCE 6 1 270 102 0.002592 17.5628 

RNF43 22 13 258 86 1.29E-05 364.2054 

ZFP91 10 1 270 98 2.16E-05 54.69303 

JAK1 11 5 266 97 0.000754 71.97775 

Note: The table shows the previous 8 mutations found from association rule mining. 

 

 
This table shows the relationship between the mutations and CIMP. Each of these 

mutations have. It shows that all mutations found in the association rule mining for the 

most prominent mutations are all strongly CIMP+ and have a large sample coverage. 
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Figure 8 

RPL22 / DRD5 Cloud for 149 mutations 

 

Note: The graphic above shows the genes that had association rules with either RPL22 or 

DRD5. Where the weight of a line represents the support x confidence 

 

 The image above shows both a RPL22 cloud and a DRD5 cloud. A mutational 

cloud is a type of graphic that represents the connection between mutations. The central 

orange mutation is the center of the cloud with every white mutation being connected to 

the center by high support x confidence. These show the mutations that co-occurred in 

the association rule mining for the 149 mutations. At least one of the two central genes 

above existed in almost every rule in table 7. Showing possible relationships between 

mutations that could lead to the CIMP+ phenotype. 

The result for using all mutations showed a group of several mutations that co-

occurred in CIMP samples, using all mutations, in the dataset. For each association rule 



53 
 
in table 9 the support is greater than 0.01%, confidence is greater than 80% and support * 

confidence is greater than 0.015%. These thresholds are in place in order to only select 

the most prevalent mutations.  
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Table 9 

Mutations selected from association rule mining from all mutations 

A B Support(A) 
𝒔𝒖𝒑𝒑𝒐𝒓𝒕  

(𝑨 ∩ 𝐁) 
Support Confidence 

Supp * 

Conf 

ANKH DRD51 11 9 (8+, 1-) 0.024 0.818 0.019 

ZNF148 RPL22 8 7 (4+,3-) 0.018 0.875 0.016 

REP15, RNF43 RPL22 6 6 (4+,2-) 0.016 1 0.016 

C12orf29, DRD52 DRD51 6 6 (5+, 1-) 0.016 1 0.016 

C12orf29, DRD51 DRD52 6 6 (5+, 1-) 0.016 1 0.016 

LATS2, DRD52 ANKH 6 6 (5+, 1-) 0.016 1 0.016 

LATS2, ANKH DRD52 6 6 (5+, 1-) 0.016 1 0.016 

LATS2 

DRD52, 

ANKH 6 6 (5+, 1-) 0.016 1 0.016 

PTENP1, DRD51 RPL22 6 6 (4+, 2-) 0.016 1 0.016 

RPL22, ANKH DRD52 6 6 (5+, 1-) 0.016 1 0.016 

LATS2 ANKH 6 6 (5+, 1-) 0.016 1 0.016 

LATS2 DRD52 6 6 (5+, 1-) 0.016 1 0.016 

RHOBTB3 DRD52 6 6 (5+, 1-) 0.016 1 0.016 

ABI2 RPL22 6 6 (5+, 1-) 0.016 1 0.016 

NSD1 RPL22 6 6 (5+, 1-) 0.016 1 0.016 

SEC24A RPL22 6 6 (4+, 2-) 0.016 1 0.016 
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Note: The list of mutations above are the highest order association rule (7) to be produced 

while using all mutations. 

 

 
Above are the seven mutations found from association rule mining. These 

mutations all have at least four samples in common. Each mutation was also given a 

support value, which shows the percentage of samples covered by the mutation. These 

mutations are formatted in the heatmap below to show the sample coverage. 

 

Figure 9 

RPL22 / DRD5 Cloud for all mutations 

 
Note: The graphic above shows the genes that had association rules with either RPL22 or 

DRD5. Where the weight of a line represents the support x confidence. 

 

The image above shows both a RPL22 cloud and a DRD5 cloud. These show the 

mutations that co-occurred in the association rule mining for all mutations. These one of 
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the two hub genes above existed in almost every rule. These two mutations were also the 

driving factor for the smaller, more significant set of mutations. This strengthens the idea 

of relationships between mutations that could lead to the CIMP+ phenotype 

As an example, PTENP1 is in the PTEN family which is responsible for a tumor 

suppressor protein [13]. PTENP1 is in an association rule with both RPL22 and DRD5 

showing six samples that have a relationship with cancer, RPL22, and DRD5. This 

chaining effect could be applied across all of the mutation clouds shown showing how 

closely related the top mutations in association are to CIMP samples. 

Each cancer will provide its own unique set of mutations that are categorized across the 

cancer type. While this process will need refinement in future research this shows the 

beginnings of mutation and CIMP relationships between samples. Finding the 

associations between mutations within a single cancer then expanding to multiple cancers 

could build a network of mutations to categorize CIMP from a Pan-Cancer perspective.  
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Chapter 5: Aim 3 – Biological Interpretation of Mutations 

The last aim is to interpret the findings from the previous two aims and interpret 

the biological significance of the mutations. This aim is highly theoretical and is the 

focus of the next steps, but in this section, we explored ways to move forward with this 

aim. The first interpretation was to analyze mutations that already have a connection to 

cancer. 

   

Table 10 

List of mutations with connection to cancer 

 
Note: The list depicts the mutations that have an existing connection to cancer and the 

effect the mutation has in the genome. 

Source: [14] 
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 The table shows ten mutations that existed in the most central twenty-three 

mutations from the Venn diagram from figure 8. These red mutations all have 

connections to different cancer cells. To highlight the most important ones; HAS2 is 

found to commonly occur in Ovarian cancers, MAGI1 is common in cervical cancers, 

and CDC25A is a tumor suppressor gene that we found to be very prevalent in classifying 

CIMP samples. 

 

Table 11 

List of mutations without connection to cancer 

 

Note: The list depicts the mutations that do not have an existing connection to cancer and 

the effect the mutation has in the genome. 

Source: [14] 
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There are also genes that do not have an apparent connection to cancer, but we 

found to be highly correlated with CIMP. These mutations are remarkably interesting 

because we found them in endometrial carcinoma, indicating they may have connections 

to other cancers, but the mutation is not commonly documented.  
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Table 12 

Association Rule mining mutations and Cancer 

 
 

Note: The list depicts the mutations that occurred in association rule mining. A red gene 

represents a mutation that has a connection to cancer, a black gene indicates one that does 

not. 

Source: [14] 

 

 The last set of mutations for a deeper look came from the association rule mining. 

These mutations have a support of four samples, and they are all very strongly CIMP+. 

Four of the seven mutations found in association rule mining were found to be related to 

cancer. RPL22, PTENP1, DDHD1 are both commonly found in endometrial and colon 

cancer as seen by TCGA data. TNFSF11 is also found, and just like KRAS, is a tumor 

suppressor gene that is commonly found mutated. 
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The last way we chose to interpret the data was to take all previously discovered 

mutations and check them against a DAVID pathway analysis. This analysis takes a list 

of genes and shows what mutations in those genes would affect across the cell. In the 

case below we looked at the Endometrial KEGG pathway. The KEGG pathway is one of 

the major pathways in cell cycle and cell life regulation [15]. 

 

Figure 10 

KEGG Pathway for Endometrial Cancer 

 
Note: The graphic shows the Endometrial KEGG pathway where each green box is a 

gene, a gene with a red name is a tumor suppressor and if a gene has a red star the gene is 

mutated in the TCGA data. 

 

As seen in the graphic above there are a large number of mutated genes present in 

this pathway. The cell cycle line, represented by the top section, has a single mutation on 
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the PTEN gene. PTEN in this pathway functions as a tumor suppressor gene therefor a 

mutation may lead to cancer within the cell. This is found again in the K-Ras gene on the 

middle path. Even with a small look at the biological significance of the mutations we are 

already finding key results between CIMP, mutations, and cancer. 
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Chapter 6: Next Steps and Conclusions 

The third aim of the research which was the analysis of the CIMP samples from a 

biological perspective was not able to be achieved in great detail in the timeframe 

allowed. Steps that would relate to this would be building classification models that 

would be able to classify CIMP on a pan-cancer scale, similar to the analysis presented in 

the third chapter when comparing the endometrial carcinoma to the colorectal carcinoma. 

Analyzing the most important mutations identified by the classification model by 

research into the relationships between CIMP related mutations and biological pathways. 

Another potential step would analyze the most important mutations identified by the 

classification model. This could be done by a knock down expression approach using 

RNA interference, then analyzing the change in methylation patterns that occur across the 

cell. A fully explored system to collect mutations that are relevant to CIMP, and all 

cancers could be the steppingstone needed to unlock the mystery of CIMP in Cancer. 

The results show a strong indication that the mutations in cancer can predict the 

CIMP status of cancer. The classifiers all scored between 83% and 90% accuracy. The 

results also show that the highest performing accuracy was from two Chi-squared and 

two FP = 0. Throughout all classifiers, the sensitivity (the likelihood of a CIMP+ sample 

being classified as CIMP+) tends to be low, falling as low as 49%. This is the largest 

problem faced in the data and classifiers. We believe this is due to the sparse amount of 

CIMP+ grouping within the data. The most CIMP+ mutation (RPL22) only covers 27 of 

the 108 total CIMP+ mutations. This number only goes down from RPL22.  
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Being that the Support Vector Machine and the Random Forest Classifier share 

the highest place in terms of accuracy, either could be used in the future for data 

prediction or classification of endometrial cancers. Although random forest has the added 

benefit of each mutation having a Gini Importance, giving more insight to each 

classification. The results show a strong correlation between the mutations that occur in 

endometrial cancer and the CIMP phenotype. Proving that mutations can be used to 

predict CIMP status in unknown samples. 

All of the results from the validation show a consistent area of accuracy when 

classifying validation data with uterine carcinoma, all of which have about an 80% 

maximum accuracy while only including as little as 6.67% of the mutations in the 

original classification problem. The validation of the pipeline, showed by using four 

unique datasets, that there are mutations present across the pan-cancer perspective that 

can accurately classify CIMP at approximately 80% accuracies. This process is then 

repeated again for pan-cancer classification and produces ~80% results showing that the 

mutations in CIMP are not only an endometrial carcinoma occurrence, but a pan-cancer 

one as well. 

The results from the previous chapters show a strong connection between CIMP, 

uterine cancer, and mutations. It was found that it is possible to correctly classify samples 

as CIMP with high accuracy of up to 90% on classification using only mutational data. 

The classification models were then verified with unique datasets at ~80% accuracies 

over four unique datasets. We have found a distinct selection of mutations that can 

accurately sperate the CIMP+ cancer samples from the CIMP- samples. This 
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breakthrough in technology could give us the ability to classify unknown samples, which 

could lead to improved diagnostics and therapeutics and give a deeper understanding to 

the CIMP phenotype. 
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Appendix A: Materials, Preprocessing, and Data Exploration 

This appendix covers the original raw data, how CIMP is classified, the data 

preprocessing and the structure of the data for the exact purpose of the research. The 

creation of the CIMP classes combined with the processed raw data builds the dataset 

used for all statistical models in future chapters. In each section, a small part of the 

overall pipeline will be explained. 

This chapter covers the original raw data, how CIMP is classified, the data 

preprocessing and the structure of the data for the exact purpose of the research. The 

creation of the CIMP classes combined with the processed raw data builds the dataset 

used for all statistical models in future chapters. In each section, a small part of the 

overall pipeline will be explained. 
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A.1: TCGA Data 

The dataset used for this experiment was collected by The Cancer Genome Atlas 

program. The Cancer Genome Atlas (TCGA) is a database with over 20,000 primary 

cancers, spanning thirty-three cancer types. This joint effort between NCI and the 

National Human Genome Research Institute began in 2006 [12]. The data from TCGA 

has been used in hundreds of projects around the world. There is a combination of two 

datasets used for the exact purpose of this research. Both datasets were collected from 

cBioPortal. cBioPortal contains a diverse collection of biologic samples for the purpose 

of open source research. 

The First dataset selected was Uterine Carcinosarcoma (TCGA, Pan-Cancer Atlas)  

(https://www.cbioportal.org/study/summary?id=ucs_tcga_pan_can_atlas_2018)  

And the second dataset selected was Uterine Corpus Endometrial Carcinoma  

(https://www.cbioportal.org/study/summary?id=ucec_tcga_pan_can_atlas_2018)

.  

When combined, these two datasets form the full file. 
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A.2: Raw Data Files 

When extracted to a folder, there are a variety of files, all containing different 

information about the cancer, patients, patient information, clinical record, RNA 

sequences, and other raw metadata. The file needed for data generation is the 

data_mutations_extended.txt file. The file is easily read if opened in excel. Looking at the 

most important columns; Column A is the gene name for the mutation, Column D is the 

build (GrCh37 - human genome 37), Column E is the chromosome number, Columns F 

and G are the start and end positions in the genome respectively, Column I is the type of 

mutation, and columns L, M, and N are the change in nucleotide for the mutation. When 

combining these columns, we can produce a pinpoint mutation that looks like 

“RPL22_GRCh37_1:6197725-6197725_Frame-Shift-Del_DEL_T-T—”. The last two 

columns of importance are Q and R. This is the tumor sample barcode, and the matched 

normalized tumor sample, respectively.  
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A.3: CIMP Classifications  

Alongside the cancer data, there is one other file needed to build the initial 

dataset. This file contains the CIMP classes for every sample in the TCGA database. In 

this CIMP classes file, there are three columns. The first column is the sample name, 

second is the cancer type (for the purposes of the research the cancer type is UCEC). The 

last column counts the CIMP typing. This can be Positive (+), Negative (-), or 

intermediate (i). There are also samples in the data marked as “control,” these will not be 

used. The patterns for producing CIMP phenotypes stems from 2015 research on pan-

cancer stratification of solid human epithelial tumors and cancer cell lines which revealed 

commonalities between cancers and tissue-specific features of the CpG island methylator 

phenotype [1]. The researchers analyzed DNA methylation data from the Illumina 

HumanMethylation450K platform. 5253 solid tumors were used in this study. Being that 

it was k-means clustering, the approximate lowest third by total levels of methylation was 

classified as CIMP-, the middle third was classified as CIMPi, and the upper third was 

classified as CIMP+. The CIMP classification file was the result of this research and the 

samples within are the classified samples in the study. By matching the samples in the 

CIMP classification file with the mutation and sample file, each sample will receive a 

CIMP classing. 
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A.4: Cimpshare Tools 

There is already an existing tool to combine the CIMP classifications with the 

cancer mutation and methylation data. “Cimpshare” 

(https://github.com/CatherineBaugher/cimpshare), produced by Catherine Baugher, was 

the tool used to combine the two datasets. This tool requires that Python3 and pip3 be 

installed. Additional python packages are required. These packages can all be pip 

installed via terminal (NumPy, pandas, CSV, and SciPy). Before running the tool, some 

file management needs to be done. First, it is best to create a "mutations" file where the 

data_mutations_extended.txt files can be placed. There is only one per cancer type, but 

by combining cancer types (uterine carcinosarcoma and uterine corpus endometrial 

carcinoma) it is possible to produce a single data file. Also needed is the path to the 

CIMP_Classification file referred to earlier. The data processing part of the tool requires 

two command-line arguments: a path to a directory where the 

data_mutations_extended.txt files may be found and a path to the CSV file with the 

CIMP_Classification data. To run the tool, the command, 

python3 analyzecimp.py -p mutations/dir/path class/CSV/path -s --outputdir output –

verbose  

is used. From left to right, python 3 initializes the python code architecture, 

analyzecimp.py is the main code base for the tool, -p processes the raw data and builds 

the 1/0 matrix architecture used for future calculations, mutations/dir/path class/CSV/path 

is the directory to the data_mutations_extended.txt files, -s takes the 0/1 matrix from -p 

and builds a statistics file based on the matrix, -outputdir output declares an output 

directory named output, and lastly -verbose gives a detailed log of all processes done to 

the raw data. 

Once the program is finished running, there will be a new folder in the working 

directory called "output" with three files: a 0/1 matrix called mutfeats.csv, the table 

statrankedmuts.csv, and a txt file of details log.  
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A.5: Mutations and Samples 

The data is in the format of samples on the y axis and mutations on the x-axis. 

This forms a 1/0 grid in the data. If there is a one for any (x,y), it indicates that the 

mutation y occurs in sample x. A zero indicates the opposite where the mutation y did not 

occur in the sample x. There are a total of 8085 mutations that exist in two or more 

samples. There are 379 unique samples in the dataset. Each sample in the data has a 

respective class indicated by the "class" column. These values can be 1 – CIMP+, -1 – 

CIMP- and 2 – CIMPi. The breakdown of samples is CIMP+: 108, CIMP-:142, and 

CIMPi: 129.  
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Appendix B: Classification Parameters 

This appendix covers the dictionary of each parameter used for the classification models. 

Each following section shows the combination of parameters and setting via the specified 

classification model. This was done using the Sklearn library GridsearchCV. 
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B.1: Random Forrest 

 

Table 13 

Random Forest parameters 

n_estimators 10 50 100 1000 5000 

max_features Auto Sqrt Log2   

Max_samples 0.5 0.65 0.75   

criterion Gini entropy    

Note: Table B.1 shows the parameters for RF 

 

n_estimators is the number of trees in the forest. 

max_features are the number of features to consider when looking for the best split. 

max_samples are the number of samples to draw from X to train each base estimator. 

criterion is the function to measure the quality of a split. Supported criteria are “gini” for 

the Gini impurity and “entropy” for the information gain. [16] 
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B.2: Multilayer Perceptron 

 

Table 14 

Multilayer Perceptron Parameters 

solver Adam sgd   

hidden_layer_sizes (500, 400, 300, 

200, 100), 

(400, 400, 

400, 400, 

400) 

(300, 300, 

300, 300, 

300), 

(200, 200, 

200, 200, 

200) 

activation Logistic Tanh relu  

alpha 0.0001 0.001 0.005  

early_stopping True False   

Note: Table B.2 shows the parameters for MLP 

 

Solver is the solver for weight optimization. ‘sgd’ refers to stochastic gradient descent. 

‘adam’ refers to a stochastic gradient-based optimizer. 

hidden_layer_sizes are the ith element represents the number of neurons in the ith hidden 

layer. 

Activation is the function for the hidden layer. ‘Logistic,’ the logistic sigmoid function, 

returns f(x) = 1 / (1 + exp(-x)). ‘Tanh,’ the hyperbolic tan function, returns f(x) = tanh(x). 

‘Relu,’ the rectified linear unit function, returns f(x) = max(0, x). 

Alpha is the L2 penalty parameter.  

early_stopping is whether to use early stopping to terminate training when validation 

score is not improving. [17] 
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B.3: K-Nearest Neighbors 

 

Table 15 

K-Nearest Neighbor parameters 

n_neighbors 2 3 4 5 10 

algorithm Auto ball_tree Kd_tree brute  

weights uniform distance    

Note: Table B.3 shows the parameters for KNN 

 

n_neighbors is Number of neighbors to use by default for kneighbors queries. 

algorithm is used to compute the nearest neighbors. 

weights are a function used in prediction. [18] 
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B.4: Support Vector Machine 

 

Table 16 

Support Vector Machine Parameters 

C 0.5 1 2 

gamma Auto scale  

tol 0.001 0.0001 0.0000001 

Note: Table B.4 shows the parameters for SVM 

 

C is the regularization parameter. The strength of the regularization is inversely 

proportional to C. Must be strictly positive. 

gamma is the kernel coefficient. 

tol is Tolerance and for stopping criterion. [19]  
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Appendix C: Classifcation Tables 

Below are the results for each individual classifier given in a table format. The 

tables express the separator, True Positive value, False Positive value, False Negative 

vale, True Negative vale, Accuracy, Sensitivity , Specificity, Precision, ROC_AUC, and 

Precision Recall Logistics Curve. 
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C.1: Random Forest 

 

Table 17 

Random Forest Results 

Separator 

Type TP FP FN TN Accuracy Sensitivity Specificity 

Chi>3.84 8.5 0.6 1.7 14.2 0.908 0.833333 0.959459 

Pval<0.005 8.1 0.5 2.1 14.3 0.896 0.794118 0.966216 

Chi>15.36 7.9 1.2 1.7 14.2 0.884 0.822917 0.922078 

Pval<0.01 7.4 0.5 3.9 13.2 0.824 0.654867 0.963504 

TP3_FP0 6 0 4.4 14.6 0.824 0.576923 1 

Pval<0.05 8.2 0.7 3.8 12.3 0.82 0.683333 0.946154 

FP<=2 5.6 0.3 4.7 14.4 0.8 0.543689 0.979592 

TP4_FP0 6.1 0 5.4 13.5 0.784 0.530435 1 

Chi>7.68 8.1 1.5 4.1 11.3 0.776 0.663934 0.882813 

TP5_FP0 5.7 0 5.6 13.7 0.776 0.504425 1 

FP<=1 4.4 0.2 5.6 14.8 0.768 0.44 0.986667 

All 6.7 1.1 4.7 12.5 0.768 0.587719 0.919118 

FP=0 4.4 0 5.9 14.7 0.764 0.427184 1 

Note: Table C.1 shows the results of 10-fold cross-validation using the random forest 

classifier as the base classification metric. Each row represents a mutational selector, 

each column is a different statistical measure. 
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C.2: Multilayer Perceptron 

 

Table 18 

Multilayer perceptron Results 

Separator 

Type TP FP FN TN 

Accurac

y 

Sensitivit

y 

Specificit

y 

FP=0 

6.7272

7 0 

2.6363

6 

13.636

3 0.88537 0.720094 1 

TP3_FP0 

7.7272

7 0 

2.8181

8 

12.454

5 0.87747 0.726432 1 

All 6.8181 0.454 2.4545 13.272 0.87351 0.744205 0.968254 

Pval<0.01 7.6363 

0.454

5 2.5454 12.363 0.86956 0.753777 0.967657 

FP <= 1  6.7272 

0.363

6 3.1818 12.727 0.84585 0.666286 0.974392 

TP4_FP0 6 0 3.6363 13.363 0.84189 0.622084 1 

Chi>7.68 6.4545 0.727 3.0909 12.727 0.83399 0.665586 0.940422 

Pval<0.00

5 5.6363 0.272 3.7272 13.363 0.82608 0.599357 0.979181 

Chi>15.36  6.4545 0.636 3.8181 12.090 0.80632 0.628591 0.949369 

FP <= 2 7 0.909 3.5454 11.545 0.80632 0.660535 0.927454 

TP5_FP0 6.1818 0.272 4.1818 12.363 0.80632 0.605323 0.979181 

Chi>3.84 7.3636 0.636 3.9090 11.090 0.80237 0.640598 0.946052 

Pval<0.05 6.2727 0.272 4.5454 11.909 0.79051 0.568576 0.978682 

Note: Table C.2 shows the results of 10-fold cross-validation using the Multilayer 

Perceptron as the base classification metric. Each row represents a mutational selector, 

each column is a different statistical measure. 
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C.3 K-Nearest Neighbors 

 

Table 19 

K-Nearest Neighbor Results 

Separator 

Type TP FP FN TN Accuracy Sensitivity 

Chi>15.36 5.545455 0.909091 3 13.54545 0.83004 0.657556 

Chi>7.68 6.636364 0.727273 3.909091 11.72727 0.798419 0.625187 

Pval<0.01 5.181818 0.181818 4.727273 12.90909 0.786561 0.507327 

Pval<0.005 4.090909 0.272727 5.090909 13.54545 0.766798 0.438292 

Chi>3.84 3.636364 0.454545 5.545455 13.36364 0.73913 0.400551 

Pval<0.005 23.81818 12.09091 86.18182 237.9091 0.72702 0.216529 

TP3_FP0 2.181818 0 7.363636 13.45455 0.679842 0.228343 

TP5_FP0  1.727273 0.090909 7.454545 13.72727 0.671937 0.18824 

TP4_FP0  2.545455 0 8.090909 12.36364 0.648221 0.21883 

FP <= 2  3.272727 1.272727 7 11.45455 0.640316 0.326699 

All  1 0.363636 8.363636 13.27273 0.620553 0.107369 

Pval<0.05 2.181818 0.090909 9.272727 11.45455 0.592885 0.186167 

FP <= 1 1.909091 2.454545 8.181818 10.45455 0.537549 0.200503 

FP=0  1 0 10.63636 11.36364 0.537549 0.087619 

Note: Table C.3 shows the results of 10-fold cross-validation using the K-Nearest 

Neighbor classifier as the base classification metric. Each row represents a mutational 

selector, each column is a different statistical measure. 
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C.4: Support Vector Machine 

 

Table 20 

Support Vector Machine Results 

Separator 

Type TP FP FN TN 

Accurac

y 

Sensitivit

y 

Specificit

y 

FP=0 6.54545 0 2.45454 14 0.89328 0.726358 1 

FP <= 1  7.18181 0.27272 2.36363 13.1818 0.88537 0.758953 0.978749 

TP3_FP0 7.09090 0 2.90909 13 0.87351 0.723753 1 

Pval<0.05  6.18181 0.36363 2.63636 13.8181 0.86956 0.714948 0.975917 

FP <= 2 6.90909 0 3 13.0909 0.86956 0.690674 1 

Chi>3.84  7.81818 0.63636 2.45454 12.0909 0.86561 0.772591 0.954317 

All  8.09090 0.72727 2.54545 11.6363 0.85770 0.766217 0.946065 

Pval<0.01  7.36363 0.27272 3.09090 12.2727 0.85375 0.71247 0.972174 

TP5_FP0  5.63636 0.27272 3.36363 13.7272 0.84189 0.636652 0.980583 

Pval<0.00

5  5.54545 0.18181 3.72727 13.5454 0.83004 0.606061 0.988456 

Chi>7.68 5.90909 1.18181 3 12.9090 0.81818 0.669998 0.915438 

Chi>15.3

6  6.54545 

0.63636

4 

3.54545

5 

12.2727

3 

0.81818

2 0.645362 0.943939 

TP4_FP0 

4.63636

4 0 

4.63636

4 

13.7272

7 

0.79841

9 0.494933 1 

Note: Table C.4 shows the results of 10-fold cross-validation using the Support Vector 

Machine as the base classification metric. Each row represents a mutational selector, each 

column is a different statistical measure. 
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