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Abstract 

YUAN CHEN, Ph.D., August 2021, Mechanical and Systems Engineering 

Joint Design of Redundancy and Maintenance for Parallel-Series Continuous-State 

Systems 

Director of Dissertation: Tao Yuan 

System reliability models are usually developed for binary-state systems and multi-state 

systems. Indeed, the performance degradation of some systems is a continuous process in 

consecutive time. So far, however, there have been few studies about reliability modeling 

and optimization for continuous-state systems.  Thus, this study attempts to build a 

redundancy optimization model, an age-based replacement model, and a joint design of 

redundancy and maintenance model for continuous-state systems. A key component of 

multi-state models and continuous-state models is to find the relationship between the 

states of components and the states of systems. Hence, a structure function is presented to 

give an expression of the relationship between the continuous state of the system and the 

continuous states of its components over time with the assumption that the individual 

component degradation is modeled by a Gamma process, which is widely used to model 

monotonic degradation paths. The most popular design method for reliability 

optimization problems is to increase the number of redundant components, which is the 

so-called redundancy allocation problem. In addition to adding redundant components, 

maintenance design, which includes a series of activities to restore a system, is another 

method to prolong the lifespan of the system. However, very little attention has been paid 

to the joint models of redundancy design and maintenance optimization, especially for 



4 

 

continuous-state systems. To recognize this gap, this study proposes a joint design of 

redundancy and maintenance for parallel-series continuous-state deteriorating systems. 

The growing number of components and the increasing frequency of maintenances give a 

push to the lifecycle cost of the system. Taken this into consideration, this dissertation 

focuses on building an optimization model that minimizes the system cost while 

satisfying the constraint of the system reliability on the basis of the degradation level of 

the system to find the optimal redundancy design. Based on the redundancy design of the 

continuous-state system, an age-based replacement strategy that minimizes the long-run 

expected maintenance cost rate to find the optimal maintenance interval is proposed in 

this study. Both the preventive replacement and the corrective replacement strategies are 

considered in the age-based replacement maintenance design. Then, a joint model of 

redundancy and maintenance design for continuous-state parallel-series systems 

consisting of degrading components is proposed in this study. Finally, this dissertation 

studies the degradation of the battery pack system which is a continuous–state parallel-

series system related to the configuration of the battery pack system and the state-of-

health of cells in electric vehicles to illustrate the proposed methodology. 
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Chapter 1: Introduction 

1.1 Objective and Motivation  

The objectives of this dissertation are to propose a new redundancy optimization 

model to optimally design parallel-series continuous-state systems composed of 

continuously degrading components, an age-based replacement model, and a new joint 

redundancy and maintenance optimization model for such systems, and to apply those 

newly proposed models to the battery pack systems for electric vehicle (EV) applications.  

Reliability is a critical performance measure when designing and operating a 

complex system. An important design method to increase system reliability is to add 

redundant components. One example of redundant design is the battery pack systems for 

EV applications. Redundant lithium-ion cells are included in the battery pack to improve 

reliability and safety. Another example is the redundant array of independent disks 

(RAID) used by some computer systems to prevent data loss due to hard disk failures. 

Corrective and preventive maintenance actions are widely used to prolong the life of a 

system. There has been very rich literature related to redundancy optimization and 

maintenance optimization. But two gaps in existing studies and one practical system have 

motivated this study. 

First, existing system reliability models and redundancy optimization methods are 

usually based on the binary-state and multi-state assumptions. A binary-state system 

(BSS) and its components have only two possible states, namely, completely functioning 

and non-functioning.  However, the performance of some systems may not be simply 

characterized by those two states. For instance, the states can be grouped into excellent, 
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average, and poor [1]. Such as computer systems in real-world problems, the component 

performance is classified by the data processing speed. Hence, the multi-state 

assumption, which is an extension of the binary-state assumption, with more practical 

significance and wider applicability was introduced in the 1970s. As a matter of fact, 

some systems applied to practical life experience continuous degradation over 

consecutive time, and then continuously perform multiple levels of performance range 

from full functioning to fatal failure among these complicated systems. Due to their 

practical importance, continuous-state systems (CSS) composed of degrading 

components have been increasingly common. However, reliability modeling and 

optimization for CSS have not been well studied. This study proposes a redundancy 

optimization model for parallel-series CSS. 

Second, redundancy optimization and maintenance design are usually performed 

separately. The joint design of redundancy and maintenance design for a multi-state 

system is studied by some researchers [2]. The joint redundancy and maintenance design 

approach is shown to be more cost effective than the traditional separate designs of 

redundancy and maintenance. Joint design of redundancy optimization and maintenance 

for CSS with degrading components is however a still underexplored area. Hence, this 

dissertation proposes a joint design of redundancy and maintenance for parallel-series 

CSS with degrading components. 

This study is motivated by the battery pack systems for EVs shown in Figure 1. It 

is a parallel-series CSS with continuously degrading cells. Redundancy is commonly 

used for system reliability and safety improvement. However, very limited studies have 
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been considered to optimally design the redundancy and maintenance for the battery pack 

system.  

 

Figure 1  

The Battery Pack System in Electrical Vehicles [3] 

 

 

1.2 Background 

In the manufacturing industry, the influence of equipment and system reliability 

on the lives and property of humans is unallowable to be neglected. The improvement of 

reliability is important for a wide range of scientific and industrial processes. As the 

complexity of equipment and system increases, the study of reliability design has been 

brought to the forefront. It has been applied to both repairable and non-repairable 

systems. The improvement of reliability based on the redundancy design and 

maintenance design has been studied extensively in recent years. Some basic concepts 

and models of reliability, redundancy design, and maintenance design are introduced in 

this section.  
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1.2.1 Reliability 

Reliability, which is generally denoted by 𝑅, is the probability that a product, 

which may consist of hardware, software, and human resources, performs its intended 

function adequately under given operating conditions for a stated time interval [4]. It is 

usually represented by the probability that the item keeps functioning during a stated 

period. Generally, there are two kinds of models to evaluate the reliability of a system, 

i.e., failure-time-based models and degradation-based models. In the failure-time-based 

models, reliability is measured by the decreased probability as time goes on based on 

some lifetime distributions. The mathematical expression is shown as 𝑅(𝑡) =

𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝜏)𝑑𝜏
∞

𝑡
, where 𝑓(𝑡) is the probability density function (pdf) of the time 

to failure random variable 𝑇. The lifetime distribution of products is evaluated by the 

failures in a stated time interval on the basis of a failure-time data set that comes from 

reliability tests [5], which may be difficult to be applied to highly reliable products due to 

very few or even no failures occur during the tests. The experiments for these products 

are expensive and time-consuming for both manufacturers and customers. For example, 

the costly accelerated outdoor tests for paint and coating products often take time and the 

results from laboratory tests are also unsuccessful to obtain the prediction of the failure 

[6]. Hence, the performance of products as a characteristic function of time is proposed to 

describe the degradation of these products for reliability estimation. The failure of a 

degradation-based model, which is relevant to the physical state of the item, is defined as 

the performance of an item exceeds a pre-specified failure threshold. It is also called “soft 

failure”.  
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Hence, the reliability of a degradation-based model is denoted by the probability 

that the performance measure does not reach a pre-defined failure threshold. The 

mathematical expression is described as 𝑅(𝑡) = 𝑃(𝑋(𝑡) > 𝑤) = ∫ 𝑓𝑋(𝜏)𝑑𝜏
∞

𝑤
 if the 

performance measure is monotonically decreasing or 𝑅(𝑡) = 𝑃(𝑋(𝑡) < 𝑤)  =

∫ 𝑓𝑋(𝜏)𝑑𝜏
𝑤

−∞
 if the performance measure is monotonically increasing, where 𝑋(𝑡) is the 

degradation level at time 𝑡, 𝑤 is the pre-determined failure threshold, and 𝑓𝑋(𝑡) is the pdf 

of 𝑋(𝑡). Stochasticity is one of the features in a system during operation. The degradation 

process of a component is generally assumed to be a stochastic process, such as the 

Winner process, Gamma process, and inverse-Gaussian process. In this dissertation, the 

Gamma process is applied to describe the performance degradation of a component in a 

system. The Gamma process shown in Figure 2, which has been widely used to describe 

the degradation process and data analysis, is a stochastic process with independent, 

stationary and nonnegative increments ∆𝑋(𝑡) when no maintenance actions are 

performed. The Gamma process {𝑋(𝑡)𝑡≥0} is parameterized by 𝛼(𝑡) and 𝛽, which can be 

estimated by historical data/information. The increments ∆𝑋(𝑡) = 𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) 

follows the Gamma distribution, Gamma (𝛼(𝑡 + ∆𝑡) − 𝛼(𝑡), 𝛽) [7]. The mean of 𝑋(𝑡) is 

𝛼(𝑡) ∙ 𝛽, and its variance is 𝛼(𝑡) ∙ 𝛽2.  
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Figure 2  

Gamma Process Degradation 

 

 

Two approaches have been used to model and analyze the system reliability. The 

first approach is to consider a system as one unit, measuring and/or modeling its 

degradation at the system level. This is the so-called black-box approach for reliability 

analysis of continuous-state systems [8]. The second approach, i.e., the white-box 

approach, derives the system reliability via the degradation modeling of its components 

[8]. Some studies modeled the component-level degradation but assumed the system to 

be binary [9]–[11]. Their study of the reliability modeling for continuous-state systems 

consisting of continuous-state components is limited. For such a system with 𝐽 

components, the system's state 𝑋𝑠(𝑡) can be related to its components' states, 𝑌𝑗(𝑡), 𝑗 =

1,2, . . . , 𝐽,according to a structure function 𝑋𝑠(𝑡) = 𝜑(𝑋1(𝑡) , 𝑋2(𝑡) , . . . , 𝑋𝐽(𝑡) ), where 

both 𝑋𝑠(𝑡)and 𝑋𝑗(𝑡)'s are continuous random variables [12]. An example of such systems 

is the polymer electrolyte membrane fuel cell (PEMFC) stack [13], which is seen as a 

∆𝑋(𝑡) =  𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) 

𝑡 

𝑋(𝑡) 

w 

𝑡 𝑡 + ∆𝑡 
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continuous-state system with multiple continuously degrading fuel cells connected in 

series. The voltage degradation of individual cells causes the performance of the whole 

stack to degrade continuously.    

1.2.2 Reliability Optimization 

In the industrial field, degradation with age and usage of machines and products 

are inevitable. And it has a great impact on both the producers and customers. For 

example, a production line is composed of hundreds of parts and components. The failure 

of a small part may lead the whole line to be shut down which results in the loss of 

unpredictable labor and material resources for manufactures. Concerning safety and cost, 

the machines on the line are required to be highly reliable. For customers, the end result 

of unreliability is the increased cost of ownership. The safety of people's life and property 

are seriously affected by unreliable machines and products. Hence, reliability 

improvement has become an important goal for enterprises to enhance their market 

competitiveness. To obtain the most reliable machines and products, one possible 

solution is that the machines and products which can be seen as systems should be 

designed to slow down the degradation at the utmost by the system designers. Therefore, 

some researchers focus on reliability optimization problems that evaluate the system 

reliability by using a degradation-based model. 

Obviously, the direct method to enhance the reliability of a system is to improve 

the reliability level of each component in the system which is generally seen as a 

reliability allocation problem. However, a lot of labor and material resources are required 

for manufacturers to improve the reliability of the components. Hence, researchers shift 
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their focus to the entire system instead of a single component. The most popular design 

method for reliability improvement is to increase the number of redundant components in 

the system. However, the cost also increases as the growing number of redundant 

components meet the required system reliability level. Hence, numerous studies focus on 

redundancy allocation problems (RAP) which has a critical goal to find the tradeoff 

between the total investment cost of redundant units used in the system and the 

performance of the system. Redundancy design is widely used in the industrial field. For 

example, a data center generally maintains multiple power generators which are only 

used in case of the power grid failure. Severs can be designed with two or three power 

supplies and one of them reserved as a cold standby. In this study, the redundancy 

optimization model is applied to the EV battery pack systems. 

1.2.3 Maintenance Design 

Maintenance design, which includes a series of activities to restore a system, 

keeps on seeking the improvement of system reliability and the effectiveness of technical 

actions. Two maintenance strategies, time-based maintenance (TBM) and condition-

based maintenance (CBM), have been widely applied in the industrial areas. TBM is a 

technique that provides maintenance decisions based on the historical failure time data, 

i.e. lifetime distribution, of the system; while CBM collects the current state information 

to make maintenance decisions by analyzing the present condition of the system. For 

example, the model is defined as a TBM if the engine oil changed every three months and 

the engine oil in CBM is changed when the oil service light is on which means the 

condition detected by a monitoring sensor is not good. The main goal of CBM is to 
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improve the effectiveness of the operations and reduce the related cost based on the 

assessment of machines by making maintenance decisions. However, the condition of a 

system is detected by the condition monitoring sensors. Hence, CBM has a high 

requirement of monitoring sensors which may be costly. This study focuses on the TBM 

models which are easier to control the states of the system. The basic purpose of TBM is 

to reduce the system cost and optimize system reliability based on the mean time to 

failure (MTTF) or the failure rate of components that comes from failure time analyses 

by using various statistical tools. Maintenance activities generally include two categories: 

preventive maintenance (PM) and corrective maintenance (CM). The PM actions are put 

into force on elapsed time before the system fails, while the CM actions are taken after a 

sudden failure takes place. The failures include “soft failures”, which is defined as the 

failure in deteriorating systems that the degradation level reaches the pre-decided failure 

level, and “hard failures”, which means the component suddenly breaks down due to 

degradation or traumatic events. The system failure is decided by whichever comes first. 

And the maintenance actions taken by the engineers for different failure modes may be 

various due to the complexity and influence during functioning. PM is an effective way 

to reduce the failure rate of the system and the occurrences of “hard failures”. 

Furthermore, it helps to prevent some unnecessary costs and protecting human life. In 

this study, the combination of PM and CM which is an effective way for system 

performance improvement is implemented. 
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1.3 Significance and Contribution  

To improve the system reliability, this dissertation proposes a redundancy 

optimization model to determine the optimal design and then an age-based replacement 

model to find the optimal maintenance interval as a separate design for parallel-series 

CSS which has limited research. Subsequently, this dissertation introduces a joint design 

model of redundancy and maintenance for parallel-series CSS. For the redundancy 

optimization model, this dissertation builds an optimization model with reliability 

constraints to determine the cost-optimal redundancy design. Based on the system design 

obtained from the redundancy optimization model, the optimal maintenance interval is 

determined by solving an expected lifecycle cost rate minimization problem. In addition 

to the separate design model, a joint design model is introduced later. The objective of 

the joint design model is to minimize the expected lifecycle cost rate during the system 

operational time with reliability constraints. The system design and maintenance interval 

are calculated simultaneously in this joint model. And the lithium-ion battery pack 

system for electrical vehicles is used as an illustrative example to demonstrate the 

application of the proposed redundancy optimization model, the age-based replacement 

model, and the joint design model in this dissertation.  The redundancy design, 

especially, the joint redundancy and maintenance design for CSS, has not been studied 

previously. This dissertation will contribute to the new models and tools for the reliability 

design of CSS with degrading components, which are becoming increasingly common.   
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1.4 Overview 

This dissertation is organized into the following four chapters. In Chapter 2, a 

literature review of redundancy and maintenance is summarized, respectively, to point 

out the significance of this study. A redundancy optimization model, an age-based 

replacement model, and a joint model of redundancy design and maintenance design for 

series-parallel CSS are described in detail, respectively, in Chapter 3. In Chapter 4, the 

corresponding discussions, models, and results applied to the battery-pack systems for 

electrical vehicles are presented. Chapter 5 concludes this study first, then points out the 

contributions and future study of this dissertation.  
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Chapter 2: Literature Review 

Both redundancy design and maintenance design are popular methods for the 

improvement of system reliability. They have received considerable attention. The 

specific objective of these two methods is to find the trade-off between system reliability 

and system cost. This chapter gives a literature review of the previous studies of 

redundancy optimization and maintenance for system designs. In addition, this chapter 

also mentions the issue of EVs which is an increasingly important topic in the automobile 

industry.  

2.1 Redundancy Optimization 

 The improvement of the reliability of a product is the primary purpose for 

engineers and managers. The former aims to strengthen safety and the latter aims to 

enhance profit. Reliability optimization has attracted a great deal of scholarly research to 

develop various techniques to maximize system reliability. The reliability of the system 

can be boosted by enhancing the reliability levels of the components in the system, 

adding redundant components, or the adjustment of the system configuration. In brief, the 

reliability optimization problems as shown in Figure 3 are divided mainly into three 

categories: the reliability allocation problems, the redundancy allocation problems 

(RAPs), and the reliability-redundancy allocation problems (RRAPs). The objective of 

reliability allocation problems is to improve the reliability level of each component in the 

system with fixed redundancy levels, namely the system has a fixed structure. Soltani 

[14] presented a brief literature review on reliability allocation problems for non-

repairable systems. A lot of researchers focus on the reliability allocation problems in the 
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early study of reliability optimization problems. In 1977, Ching-Lai et al. [15] proposed 

the Hooke and Jeeves (H-J) pattern search method which is a sequential search routine 

for system reliability maximization in combination with a heuristic approach proposed by 

Aggarwal et al. [16] to solve the reliability allocation problems. Additionally, many other 

methods have been put forward and implemented in the study of the reliability allocation 

problems such as GAG2 [17], Fuzzy non-linear programming [18], ECAY (exact) [19], 

to name a few. 

 

Figure 3  

Reliability Optimization Problems [14] 

 

 

However, a lot of labor and resources are required for manufacturers to improve 

the reliability of each component in a system. Hence, RAP that improves reliability by 

adding redundant components in the system is the most popular design method to 

improve system reliability. The focus of this section is on the review of RAP models. 

Previous research has shown that redundancies can be assigned at the component level, 

Reliability Optimization

Reliability Allocation Redundancy Allocation

System Redundancy

Modular Redundancy

Component Redundancy

Reliability-Redundancy 
Allocation
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sub-system level, or system level. In general, it is better to assign the redundant 

components at the component level than the system level in the case of the usual 

stochastic order. However, Boland and El-Neweihithe [20] concluded that modular 

redundancy (subsystem redundancy) is more effective than component redundancy for 

non-identical spare parts. In general, users have multiple choices of components. 

Accordingly, RRAP, which is a combination of components selection problem and 

redundancy level decision problem, is a more general model to improve system 

reliability. This dissertation mainly focuses on RAP models. 

Several researchers have done a meta-analysis of the literature on reliability 

optimization problems. Tillman et al. [21] provided a state-of-art review of optimization 

techniques used in small-scale RAPs, and this review firstly grouped the papers by the 

system configuration and solution method, which are important factors for system 

optimization. Multiple heuristic methods were proposed during the 1970s. In a 2000 

report, a sketch of system reliability optimization problems is summarized by Kuo and 

Prasad [22]. They classified papers by the system structure and optimization method. 

Heuristic methods and metaheuristic algorithms for RAPs are summarized in [22]. Then, 

Kuo and Wan [23] discussed more recent research in RAPs after the publication of [22]. 

Several classification methods for RAPs are summarized in Figure 4.   
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Figure 4  

Classification of RAP Models [14] 

 

 

As shown in Figure 4, the RAP models have multiple classification criteria. The 

most common classification criteria are the number of states. Existing RAPs have been 

mainly focused on BSS and MSS. In the real world, new products degrade with age and 

usage and ultimately fail. For the purpose of convenience, a system traditionally only 

allows two states: totally functioning and completely failed. However, as systems grow 

more complex, the multi-state systems (MSS) with more practical significance and wider 

applicability attract more attention in RAP models. The BSS is a special case of the MSS, 

and many BSS models have been extended to MSS. And the fundamental problem of 

MSS models is to find the relationship between the states of components and the states of 

the system. 

Generally, the RAPs are grouped into deterministic and non-deterministic models 

based on the status of parameters. For deterministic models, all parameters in the system 

are conclusively precisely known. Conversely, the models that are composed of at least 

one uncertainty parameter are named non-deterministic. The uncertainty can be 
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considered as stochastic uncertainty[24], [25], fuzzy uncertainty[26], chaos 

uncertainty[27], and so on. 

Note that the cost of the system will increase as more and more redundant 

components are added to improve reliability. The tradeoff between the number of 

redundant components used in the system, the configuration of the system, and the 

reliability of the system is the primary goal for designers. On the basis of the number of 

objective functions, there are two kinds of RAP models: single-objective models and 

multi-objective models. For single-objective models, scholars generally maximize the 

reliability of the system under the constraints of the cost or minimize the cost based on 

the specified system reliability requirement. Although cost minimization and reliability 

maximization are two competing objectives, from the perspective of system designers, 

the two objectives mentioned above need to be considered simultaneously. It also has 

been taken into account that the cost constraints are fluctuant and difficult to determine. 

In order to solve this kind of multi-objective optimization problem, Kuo and Rajendra 

Prasad [28] mentioned that interactive decisions can be made according to a bunch of 

non-dominated feasible solutions. 

The redundancy strategies can be separated into two methods, which are active 

redundancy and standby redundancy. In an active redundancy system, all components 

start operating simultaneously at time zero although the system could function well with 

one component at any particular time. Also, all components in the system share the load 

of the overall system so that the load on each component is reduced. Hence, the 

performance of the system is generally decided by the component with the best 
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performance. In a standby redundancy system, the original component is replaced by a 

standby component which can be switched on and operate only when the original one 

fails. As a result, the performance of the system is the combined performance of the 

original components and the standby redundant components [29].  

Standby can be divided into three forms: cold standby, hot standby, and warm 

standby. The redundant components are protected from operational stresses to keep full 

performance until substituted for failed components as parts of the functioning system 

when the cold standby strategy is applied to the system. The redundant components with 

hot standby strategy can immediately be active in the system with an increased failure 

rate when the system control is switched to them. In a system with hot standby strategy, 

the mathematical models are the same as active redundancy systems [30]. Finally, the 

warm standby redundant components fall in the middle condition between cold standby 

and hot standby. Hence, redundant components used for warm standby systems have a 

lower failure rate than the hot standby redundancies and enter in an active mode faster 

than cold standby redundancies. More classification rules about standby redundancies are 

shown in a review by Yearout et al. [31]. Active redundancy strategy and cold standby 

strategy are the most two popular redundancy design strategies considered so far. 

Next, this dissertation summarizes the literature with its characteristics according 

to the number of system states in the following two subsections. 

2.1.1 Binary-State System 

For deterministic models, all parameters are determined in the system. 

Mathematical programming algorithms, which include exact solution methods and 
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approximation solution methods, and some heuristic methods, are introduced to solve 

deterministic models. Fyffe et al. [32] initially proposed the model for active redundancy 

optimization with a single objective function that maximizes the reliability of the system 

subject to the required cost and weight by using the Lagrangian multiplier method, which 

is a mathematical programming algorithm. Subsequently, Nakagawa and Miyazaki [33] 

proposed the surrogate constraint approach, which was improved by Onishi et al. [34] for 

that Lagrangian multiplier may be inefficient sometimes. In addition to Lagrangian 

multiplier and surrogate constraint, many other exact search and mathematical 

programming methods such as dynamic programming, branch and bound, integer 

programming, partial bound enumeration, and lexicographic search method are used to 

solve optimization problems. Dynamic programming, also known as a multistage 

decision process, is a well-known method to solve complicated problems by breaking 

them down into simpler steps adopted by Yalaoui et al. [35]. The branch and bound 

algorithm proposed by Amari and Dill [36] is a method based on underlying knapsack 

problems to solve nonlinear integer models related to the design of an optimal series-

parallel system.  

Conversely, the models that are composed of at least one uncertainty parameter 

are named non-deterministic models. The uncertainty parameters can be considered as 

stochastic uncertainty, interval uncertainty, fuzzy uncertainty, robust optimization, and so 

on. Stochastic uncertainty means the distribution, or the mean value and standard 

deviation of the system performance are unknown. Coit and Smith [24] introduced a 

redundancy optimization model with random Weibull scale parameters by using generic 
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algorithm (GA). Several algorithms proposed by Tekiner-Mogulkoc and Coit [25] are 

used to minimize the coefficient of system reliability variation, which considered both the 

mean and the standard deviation estimates concerning a minimum system reliability 

constraint, and some other constraints that related to the system itself. Ravi et al. [26] 

established an optimization model as a fuzzy multi-objective optimization problem. 

Besides the system reliability, system cost, weight, and volume are all regarded as fuzzy 

objectives. 

Table 1 and Table 2 summarized the literature of RAPs for binary-state systems 

with a single objective and multi-objective, respectively. This dissertation analyzed the 

literature by configuration, the status of parameters, redundancy level, redundancy 

strategy, number of objectives, and the solution method. 



Table 1  

Binary-State RAPs with Single-Objective 

Reference Configuration Parameters Redundancy 

level 

Redundancy 

strategy 

Objective  Solution method 

Amari et al. (2010) [36] K-out-of-n Deterministic Component 

level 

Active and 

warm-standby 

System reliability Linear programming 

Hu et al. (2018) [37] Parallel-series 

system 

Deterministic Component 

level 

Warm-standby System reliability/ 

lifetime/cost 

Simulation 

Nahas & Thien-My 

(2010) [38] 

Series–parallel 

system   

Deterministic Component 

level 

Active System reliability Harmony search algorithm (HSA) 

Agarwal & Sharma 

(2010) [39] 

Series-parallel; 

parallel-series; 

bridge system 

Deterministic Component 

level 

Active System reliability Ant colony approach 

Yeh (2009) [40] Series–

parallel system 

Deterministic Multiple multi-

level 

Active System reliability Two-stage discrete PSO (2DPSO) 

Tavakkoli-Moghaddam 

et al (2008) [30] 

Series–

parallel system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability GA 

Onishi et al. (2007) [34] Series–parallel 

system   

Deterministic Component 

level 

Active System reliability Improved surrogate constraint method 

Young et al. (2006) [41] Series–parallel 

system   

Deterministic Multi-level Active System reliability SA 

Nahas et al. (2007) [42] Series–parallel 

system   

Deterministic Component 

level 

Active System reliability A heuristic method based on ant 

colony meta-heuristic optimization 

method and the degraded ceiling local 

search technique 

Juang et al. (2008) [43] Series–parallel 

system   

Deterministic Component 

level 

Active System 

availability 

GA 

Yeh (2014) [44] Series-parallel 

system 

Deterministic Component 

level 

Active System reliability Orthogonal simplified swarm 

optimization scheme (OSSO) 

Chambari et al. (2013) 

[45] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability simulated annealing algorithm (SA) 
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 Agarwal et al. (2010) 

[46] 

Complex system Deterministic Component 

level 

Active System 

reliability 

The proposed algorithm in this 

research searches for a possibly 

improved solution in the k-

neighborhood of the current best 

feasible solution 

Yue et al. (2015) [47] Smart grid 

communication 

network 

Deterministic Component 

level 

Active System cost Improved GA 

Yun et al. (2007) [48] Series system Deterministic Multi-level Active System reliability GA 

Ziaee (2013)[49] Hierarchical 

series-parallel 

system 

Deterministic Component 

level 

Active System reliability Mixed-integer programming 

Zangeneh et al. (2015) 

[50] 

Bridge system Deterministic Component 

level 

Active and 

cold-standby 

System reliability Improved GA 

Najafi et al. (2013) [51] Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

Mean time to 

failure 

Simulated annealing (SA) and Genetic 

algorithm (GA) 

Sharifia & 

Yaghoubizadeh (2015) 

[52] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability SA and GA 

Ramezani & 

Poutdarvish (2016) [53] 

Bridge network Deterministic Component 

level 

Hot standby 

and cold 

standby 

System reliability Hierarchical memetic algorithm 

(HMA) 

Peiravi et al. (2019) [54] Series-parallel 

system 

Deterministic Component 

level 

Active and 

standby 

System reliability GA 

Han et al. (2015) [55] Multi-level 

system 

Deterministic Multi-level Active System cost Simulation-based optimization 

procedure 

Chang & Kuo (2018) 

[56] 

Generalized 

(typically 

complex) 

network 

Deterministic Component 

level 

Active System reliability Partitioning-based simulation 

optimization method for reliability 

optimization (PSORO) 

Guilani et al. (2016) 

[57] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability Simulation and GA 

Kong et al. (2015) [58] Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability Simplified particle swarm 
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Soltani et al. (2013) [59] Series-parallel 

system 

Deterministic Component 

level 

Active System reliability Heuristic and meta-heuristic 

Sadjadi & Soltani 

(2009) [60] 

Series-parallel 

system 

Deterministic Component 

level 

Active System reliability Hybrid genetic algorithm 

Sahoo (2010) [61] Series-parallel; 

parallel-series; 

complex system 

Interval 

reliability 

Component 

level 

Active System reliability GA 

Chen et al. (2018) [62] Series–

parallel system 

Fuzzy lifetime Component 

level 

Standby System lifetime Hybrid particle swarm optimization 

algorithm with local search 

Zhao & Liu (2005) [63] Series-parallel 

system 

Fuzzy lifetime Component 

level 

Standby Expected system 

lifetime/ system 

reliability 

Fuzzy simulation, neural network, and 

GA 

Chatwattanasiri et al. 

(2016) [64] 

Series–parallel 

system   

Uncertain stress Component 

level 

Active Minimization of 

the maximum 

regret 

Nonlinear programming. 

Neighborhood search heuristic method 

Feizollahi & Modarres 

(2012) [65] 

Series–parallel 

system   

Interval 

reliability 

Component 

level 

Active System reliability Min-Max regret approach 

Gupta et al. (2009) [66] Series–parallel 

system   

Interval 

reliability  

Component 

level 

Active System reliability GA based penalty function technique 

Soltani & Sadjadi 

(2014)[67] 

Series–parallel 

system   

Fuzzy  Component 

level 

Active Expected value of 

system reliability 

Robust 

Mousavi et al. (2016) 

[68] 

Series-parallel 

system 

Fuzzy  Component 

level 

Active System reliability Improved fruit fly optimization 

algorithm (IFOA) 

Wang et al. (2016) [69] Series-parallel 

system 

Interval 

uncertainty 

Component 

level 

Cold-standby System reliability GA-based searching approach 

Feizollahi et al. (2015) 

[70] 

Series-parallel 

system 

Budgeted 

uncertainty 

Component 

level 

Cold-standby System reliability Robust optimization approach. 

MIP model iteratively in a Benders' 

decomposition framework, and single 

binary linear model 

Sadjadi & Soltani 

(2015) [71] 

Series–parallel 

system 

Uncertainty Component 

level 

Active and 

cold standby 

System reliability  Min-max regret method 

Tekiner & Coit (2011) 

[25] 

Series–parallel 

system 

Stochastic 

reliability 

Component 

level 

Active The coefficient of 

variance 

Linear programming 
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Table 2  

Binary-State RAPs with Multi-Objective 

Reference Configuration Parameters Redundancy 

level 

Redundancy 

strategy 

Objective  Solution method 

Khalili-Damghani 

et al. (2013) [72] 

Series-parallel 

system 

Deterministic Component 

level 

Active System reliability 

and system cost 

DSAMOPSO 

Chambari et al. 

(2012) [73] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability 

and system cost 

Non-dominated sorting genetic 

algorithms (NSGA-II) 

Azizmohammadi et 

al. (2013) [74] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

standby 

System reliability 

and cost and 

volume 

minimization 

Hybrid multi-objective imperialist 

competition algorithm (HMOICA), 

based on imperialist competitive 

algorithm (ICA) and genetic algorithm 

(GA) 

Salazar et al. (2006) 

[75] 

Series-parallel 

system; complex 

system 

Deterministic Component 

level 

Active System reliability 

and system cost 

NSGA-II 

Coit & Konak 

(2006) [76] 

Series-parallel 

system 

Deterministic Component 

level 

Active Subsystem 

reliability 

MWO2 heuristic 

Zhao et al. (2007) 

[77] 

Series-parallel 

system; gearbox 

Deterministic Component 

level 

Active System weight 

and system cost 

Multi-objective ACS algorithm 

 Zoulfaghari et al. 

(2014) [78] 

Series-parallel 

system 

Deterministic Component 

level 

Active System reliability 

and system cost 

GA 

Zhang et al. (2014) 

[79] 

Series-parallel 

system 

Deterministic Component 

level 

Active System reliability, 

system weight, 

and system cost 

Barebones multi-objective particle 

swarm optimization algorithm (BB-

MOPSO) 

Dolatshahi & 

Damghani (2015) 

[80] 

SCADA system Deterministic Component 

level 

Cold-standby 

and hot-

standby 

System reliability 

and system cost 

Multi-objective particle swarm 

optimization (MOPSO) 

Sooktip et al. 

(2012) [81] 

K-out-of-n Deterministic Component 

level 

Active System reliability 

and system cost 

Genetic Algorithm Approach with 

Penalty Function 

Panda & Jagadev Series-parallel Deterministic Component Active System reliability Multi-objective evolutionary 
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(2016) [82] system level and system cost algorithms (MOEA) 

Hemmati et al. 

(2018) [83] 

K‐out‐of‐n system 

containing s 

independent 

subsystems 

Deterministic Component 

level 

Active MTTF and system 

cost 

Multi‐objective harmonic search 

(MOHS) 

Govindan et al. 

(2016) [84] 

Series-parallel 

system 

Deterministic Component 

level 

Cold-standby  System reliability 

and system cost 

NSGA-II and APBSA 

Ardakan et al. 

(2015) [85] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

standby 

System reliability 

and system cost 

Non-dominated sorting genetic 

algorithms (NSGA-II) 

Sadjadi et al. (2014) 

[86] 

Series-parallel 

system 

Deterministic Component 

level 

Cold-standby System reliability, 

system weight, 

and system cost 

Compromise programming approach 

Soltani et al. (2015) 

[87] 

Series-parallel 

system 

Deterministic Component 

level 

Active and 

cold-standby 

System reliability, 

entropy, entropy 

weight, and 

system cost 

Compromise programming approach 

Chen & Liu (2011) 

[88] 

Series-parallel 

system 

Type-2 fuzzy 

lifetimes 

Component 

level 

Standby System lifetime 

and cost 

Approximation-based PSO algorithm 



2.1.2 Multi-State System 

With the in-depth study, the performance of the system or the component cannot 

be simply classified as perfect operating and complete failure. Many industrial systems 

are operating under multiple states of degradation. For instance, the performance of the 

components in a power generation station has multiple de-rated capacity states [89]. 

Therefore, MSS was introduced into redundancy optimization problems [90], and several 

binary-state configurations were extended to MSS [91]. Gürler et al. [92] introduced a 

system reliability maximization model, which divides the states of components into good 

states, doubtful states, PM due states, and failed states, with a constraint on the cost for 

series-parallel systems. Tian et al. [93] proposed a method to obtain the optimal design 

which includes the number of redundancy and a bunch of technical actions for a multi-

state series-parallel RRAP at the subsystem level. The objective function is to minimize 

the consumption of resources under restrictions on system availability. Li et al. [94] 

studied a redundancy optimization model, which minimizes the system cost subject to 

common cause failures, for a multi-state series-parallel system. The mixture of 

components with variety of types in this model is analyzed by using universal generating 

function (UGF). And then genetic algorithm (GA) is applied to this model to obtain the 

optimal solutions. Similar to the methods used for the BSS, the methods for the MSS 

include mathematical programming, heuristics, meta-heuristic, and so on as summarized 

in [91]. 

Many authors have contributed to evaluating the reliability of MSS models. The 

UGF based on meta-heuristics is the most popular method for reliability optimization of 

MSS [91]. [95] published by Lisnianski and Levitin is the earliest paper that using UGF 
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to analyze the reliability of power systems. Levitin et al. [96] proposed an algorithm 

using UGF to evaluate the performance of complex series-parallel MSS with different 

kinds of failures and imperfect protections. GA, which was inspired by the biological 

phenomenon of evolution that selects the best gens for offspring, is one of the most 

widely used metaheuristics for MSS [97]. Monte-Carlo (MC) simulation methodology is 

a general method to evaluate the system reliability for almost all MSS in practice. 

Billinton and Wenyuan [98] proposed a hybrid approach using MC simulation and an 

enumeration technique to evaluate the reliability of large-scale composite generation-

transmission systems. Zio and Podofillini [99] presented an MC simulation approach to 

evaluate the system performance with some constraints that originated from its multi-

state elements. In addition, numerous studies have adopted many other metaheuristic 

algorithms such as variable neighborhood search [100], ant colony optimization [101], 

and particle swarm optimization [102]. 

Table 3 and Table 4 summarized the literature of RAPs for binary-state systems 

with a single objective and multi-objective, respectively. The same summary method is 

used in multi-state systems. Based on the literature reviewed above, the study of 

continuous-state systems for RAPs has not been well studied. The continuous-state 

system is a new area for RAPs. Hence, this dissertation considers constructing reliability 

models for continuous-state systems.       



Table 3  

Multi-State RAPs with a Single Objective 

Reference Configuration Parameters Redundancy 

level 

Redundancy 

strategy 

Objective  Solution method 

Li et al. (2010) [94] Series–parallel system Deterministic Component 

level 

Active System cost Analyzed by UGF and solved by GA 

Nahas & Thien-My 

[38] 

Series–parallel  Deterministic Component 

level 

Active System reliability Harmony search algorithm (HSA) 

Ouzineb et al 

(2011) [103] 

Series–parallel  Deterministic Component 

level 

Active System cost A combination of space 

partitioning,GA, and tabu search (TS) 

Liu et al. (2013) [2] Three-stage coal 

transportation system 

Deterministic Component 

level 

Active System reliability GA 

Ebrahimipour et al. 

(2010) [104] 

Series–Parallel;k-out-

of-n System 

Deterministic Component 

level 

Hot-standby System cost UGF and GA 

Ouzineb et al. 

(2008) [105] 

Series–parallel  Deterministic Component 

level 

Active System cost TS 
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Table 4  

Multi-State RAPs with Multi-Objective 

Reference Configuration Parameters Redundancy level Redundancy 

strategy 

Objective  Solution method 

Taboada et al. 

(2008) [106] 

Series-parallel 

system 

Deterministic Component level Active Maximization of 

the system 

availability, and 

the minimization 

of system cost and 

weight 

UGF; multi-objective multi-state 

genetic algorithm (MOMS-GA) 

Attar et al. 

(2017) [107] 

Series-parallel 

system 

Deterministic Component level and 

subsystem level 

Hot standby 

and cold 

standby 

System cost and 

system 

availability 

Simulation based optimization (SBO) 

and GA 

Mousavi et al. 

(2015) [108] 

Series-parallel 

system 

Fuzzy Component level Active System cost and 

system 

availability 

Controlled elitism non-dominated 

ranked genetic algorithm (CE-NRGA) 



2.1.3 Continuous-State System 

As a matter of fact, the degradation of some system performance is a continuous 

process in consecutive time. It may degrade continuously so that it can exhibit various 

performance levels range from fully functioning to complete failure. Hence, some 

scholars extended the discrete-state system to the most general case of CSS, such as the 

polymer electrolyte membrane fuel cell (PEMFC) stack presented by Bae et al [109]. The 

CSS first introduced by Baxter [110] is a special kind of system in which the states of the 

system and its components degrade continuously, changes between two extreme cases of 

perfect functioning, and total failure over time [111]. To evaluate the system 

performance, Gámiz and Miranda [112] built a structure function for a CSS by using 

multivariate nonparametric regression techniques. The structure function gives an 

expression of the relationship between the continuous state of the system and the state of 

the components over time, varied according to the distribution of the performance.  

Together, these studies indicate that redundancy design has been widely used to 

solve various reliability optimization problems. However, such studies remain narrow in 

focus dealing only with the BSS and the MSS. Hence, the CSS is introduced in this study 

to solve RAPs. 

2.2 Maintenance Design 

 The past decade has seen the rapid development of maintenance functions in 

industrial scenarios with the advancement of technology, such as the ongoing automation 

of production processes [113]. A comprehensive review of TBM models and CBM 

models in industrial applications is presented by Ahmad and Kamaruddin [114]. A brief 
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summarize of maintenance is shown in Figure 5. This section focuses on an overview of 

TBM.  

 

Figure 5  

Maintenance Design Process 

 

 

2.2.1 Time-Based Maintenance Design 

There is a growing body of literature that recognizes the importance of 

maintenance design. TBM models, as a traditional maintenance technique, have been 

studied by a considerable amount of literature. The basic assumption of TBM models is 

the failure state is predictable based on the hazard rate function of the components.  In the 
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earlier studies of TBM models, the researchers generally assumed the system failure is 

caused by hard failures which mean the system suddenly breaks down. The maintenance 

time 𝑇 which generally is the decision variable is decided by the failure time data [115].  

Generally, there are two processes, failure data analysis, and maintenance 

decision making, of TBM models shown in Figure 5. The failure characteristics, such as 

mean time to failure (MTTF) and failure rate based on the bathtub curve process [116], 

are obtained by analyzing gathered failure data through statistical models. The most 

popular statistical model used for data analysis is the Weibull distribution due to the 

various aging classes of life distribution [117]. The Weibull distribution with scale 

parameter 𝜃 and shape parameter 𝛽 which represents the lifetime characteristics is widely 

modeled in TBM models. The cumulative distribution of Weibull distribution is defined 

as, 

𝐹(𝑡) = 1 − exp {−(
𝑡

𝜃
)
𝛽

} ,   𝑡 > 0 

where 𝛼 > 0 and 𝛽 > 0. And the hazard rate function is  

ℎ(𝑡) =
𝛽

𝜃
(
𝑡

𝜃
)
𝛽−1

,   𝑡 > 0 

However, only the case when 𝛽 > 1 with an increasing failure rate is meaningful 

for the process to make maintenance decisions in TBM models. The MTTF is calculated 

as, 

𝑀𝑇𝑇𝐹 = 𝜃Γ (1 +
1

𝛽
) 

where Γ(𝑥) is the gamma function.  
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Subsequently, the cost assessment and the mechanism assessment are carried out 

to make decisions. The maintenance action, as we all know, is costly due to the expensive 

labor cost and many unpredictable costs. Hence, the aim of cost assessment is to keep the 

system costs down as best as we can. And the PM which is an effective way to reduce the 

breakdown cost is introduced in the TBM models. Hence, the system cost includes the 

PM cost (𝑐𝑝𝑚) and the CM cost (𝑐𝑐𝑚), which is much higher than preventive cost due to 

the unpredicted environment. The mechanism assessment groups the structures of 

components into repairable and non-repairable. For non-repairable components, the only 

maintenance policy is replacement. The most popular maintenance strategy of TBM 

models is the age-replacement strategy which minimizes the maintenance cost to find the 

optimal PM interval 𝑇. The general method of age-replacement models to find the 

optimal interval is to minimize the cost function per unit time developed by [118]. The 

cost function is modeled by 

𝐶(𝑇) =
𝐶𝑐𝑚𝐹(𝑇) + 𝐶𝑝𝑚𝑅(𝑇)

∫ 𝑅(𝑇)
𝑇

0
𝑑𝑡

,    𝑇 > 0 

where 𝐶(𝑇) is the system cost per unit time, 𝐹(𝑇) is the cumulative distribution function 

(CDF) of the system and 𝑅(𝑇) is the reliability function of the system. 

Ideally, perfect maintenance, which means the state of the system will back to the 

initial state after maintenance, is assumed in many existing CBM models. That is the so-

called replacement. However, the state of the system may be restored to as-bad-as-old 

after PM for repairable components. Hence, both perfect maintenance and imperfect 

maintenance have been considered in the maintenance design for repairable components. 

The state of the system will be as-good-as-new when the perfect maintenance is 
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implemented, while the state of the system falls between as-good-as-new and as-bad-as-

old after imperfect maintenance. Huynh et al. [119] considered minimal repairs, which 

improves the state of the system back to the previous state for degrading systems. 

Furthermore, Wu et al. [120] proposed a degradation-based maintenance optimization 

model with imperfect repair which helps to reduce the degradation of the system.  Then, 

Le and Tan [121] proposed an optimization model with an extension that assumes the 

state of the system can be improved to a better state with probability 𝑝 instead of a 

random amount. The improvement factor is another point for researchers to consider for 

maintenance optimization models. Zhang et al. [122] proposed an imperfect maintenance 

decision model, which improves the degradation rate of the system after an imperfect 

maintenance.  

In recent years, the stochastic process is considered in the TBM models. And the 

soft failures are also introduced to TBM models instead of hard failures. Abdel-Hameed 

[123] proposed an age-replacement policy that minimizes the average replacement cost 

subject to a gamma wear process. It is assumed that the maintenance action is either a 

corrective replacement when the system fails or a preventive replacement when the 

gamma wear process reaches a prespecified threshold, whichever occurs first. The cost of 

replacement is a function of component degradation level. And both the continuous 

version and discrete version are analyzed in [123]. The special case which is a discrete 

age replacement model in [123] is applied to a cylinder on a swing bridge by Van 

Noortwijk [124]. Numerous researchers focus on modeling the TBM models based on the 

degradation process[124], [125]. However, it is impractical to assume that the system 
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suffers the degradation process only. In addition to the degradation of components over 

operational time, the sudden failures caused by traumatic events and shocks also exist in 

practice. Both hard failures and soft failures can be considered simultaneously during 

system operation.  

The TBM models for dynamic systems that fail when the degradation state 

exceeds the critical threshold or a shock occurs before the degradation reaches the 

threshold are the so-called Degradation-Threshold-Shock (DTS) models, which were 

firstly analyzed by Lemoine and Wenocur [126]. Singpurwalla [127] reviewed the 

literature about stochastic-process-based reliability which includes DTS models 

published before this paper. Lehmann [128] proposed the system survival function and 

the system failure rate of DTS models. The DTS models are not only applied to TBM 

models but also CBM models as described by Deloux et al. [129]. The maintenance 

policy is optimized by using the combination of Statistical Process Control (SPC) and 

CBM models. Van Noortwijk et al. [125] presented a new method which is a combination 

of two stochastic processes for DTS models to obtain structural system reliability. Instead 

of independent failure modes of DTS models analyzed in the literature above, Huynh et 

al.[119] proposed several age-based maintenance strategies for DTS models with the 

assumption that the degradation level of the system and the occurrence of shocks are 

dependent. And minimal repairs for repairable components are considered in [119] based 

on the time-based decision, which depends on the system operational age, and 

degradation-based decision, which depends on the system degradation state.  
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In this dissertation, an age-based replacement model with an assumption that all 

failure modes are independent is added to the redundancy optimization problems to build 

a joint model for redundancy and maintenance optimization. And the maintenance actions 

are assumed to be perfect maintenance, which is the so-called replacement. 

2.2.2 Condition-Based Maintenance Design 

Due to the rapid development of industrial systems based on condition 

monitoring, the CBM technique has also been widely discussed in the literature. The 

main goal of CBM is to enhance the effectiveness of the operations and reduce the related 

cost based on the assessment of machines by making maintenance decisions. 

Maintenance decisions for CBM strategies are made by engineers to optimize system 

performance defined in the mathematical model based on specific criteria. The objective 

of CBM models includes the PM threshold and the inspection schedule [130]. Hence, this 

section focuses on the review of inspection quality and the optimization criteria to make 

maintenance decisions. 

Generally, researchers assumed the inspections are perfect, which means the 

actual condition of the system is detected by the monitoring sensors accurately, without 

any error. However, it is more realistic to assume for the model that imperfect inspection 

occurs during the system in service. A great number of studies have been published under 

different assumptions of inspection quality [131]–[133]. Lam [132] proposed a 

maintenance policy that only consists of imperfect inspections for a deterioration system 

with an increasing failure rate. It is assumed that the inspection is related to the 

probability of a wrong alarm occur. Berrade et al. [134]constructed a CBM model with 
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the consideration of the false positives, which are actually false alarms and false 

negatives, are allowed. The probability of inspection errors for imperfect inspections is 

generally assumed to be constant for convenience. In reality, the inspection errors are 

influenced by the degrading parameters in a deteriorating system. Vast literature with 

imperfect inspections under Gamma process assumption for degrading systems is 

reviewed by Van Noortwijk [135]. Recently, Tang et al. [136] and Ye et al. [137] 

proposed similar models under different stochastic processes with the imperfect 

inspection assumption. 

The primary purpose of the maintenance design problem is to minimize the cost 

of the system during working. Hence, the cost minimization model is widely used in 

maintenance design problems. The cost parameters generally include the PM cost 𝐶𝑝𝑚, 

the CM cost 𝐶𝑐𝑚, the inspection cost 𝐶𝑖, and an additional cost that the system functions 

under failure state at a cost rate 𝐶𝑑. Grall et al. [138] introduced a new predictive-

maintenance policy for degrading systems composed of a single component with 

continuous-state. The purpose of their article is to make the decision of the optimal 

schedule of inspection based on the system state and the threshold of PM to minimize the 

total cost caused by maintenance actions and system failure. The system state under 

stochastic degradation is analyzed by using regenerative and semi-regenerative process 

theory. Then, the long-run expected cost of the system is obtained based on the steady-

state derived in the previous process. The cumulative cost of this system is defined as 

[138], 

𝐶(𝑡) ≡ 𝐶𝑖 ∗ 𝑁𝑖(𝑡) + 𝐶𝑝𝑚 ∗ 𝑁𝑝(𝑡) + 𝐶𝑐𝑚 ∗ 𝑁𝑐(𝑡) + 𝐶𝑑 ∗ 𝑑(𝑡) 
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where 𝑁𝑖(𝑡), 𝑁𝑝(𝑡), 𝑁𝑐(𝑡) represent the random number of inspections, PM times, and 

CM times in [0, 𝑡]. And 𝑑(𝑡) is the time function elapsed during the system performance 

falls in the failure state. Then the long-run cost can be deducted by using elementary 

renewal theory [138],  

𝐸𝐶∞ = lim
𝑡→∞

[
𝐸0[𝐶(𝑡)]

𝑡
]

= 𝐶𝑖 ∗ lim
𝑡→∞

[
𝐸0[𝑁𝑖(𝑡)]

𝑡
] + 𝐶𝑝𝑚 ∗ lim

𝑡→∞
[
𝐸0[𝑁𝑝(𝑡)]

𝑡
] + 𝐶𝑐𝑚 ∗ lim

𝑡→∞
[
𝐸0[𝑁𝑐(𝑡)]

𝑡
]

+ 𝐶𝑑 ∗ lim
𝑡→∞

[
𝐸0[𝑑(𝑡)]

𝑡
] 

The same maintenance policy was also applied in [139] for deteriorating systems. 

Huynh et al. [140] introduced traumatic events in the system to find the optimal 

maintenance design that minimizes the expected long-run cost.  

2.3 Electric Vehicles 

 Electric vehicles (EVs) first introduced in the mid-19th century are the trend of 

the development future because of the environmental problem of exhausting fossil fuel 

and the emission of air-borne pollution. Renewable clean energy and power provided by 

the battery pack used in EVs are important for the sustainable development of our planet.  

To drive the vehicle with enough power, hundreds of cells are needed in parallel 

or series connections assembled in the battery pack. The lithium-ion batteries have 

advantages in energy density, power density, and service life [141] in comparison with 

other batteries. It is also the so-called environmentally friendly energy without any 

polluting gases are released. Based on these advantages, it is widely used in EVs. Most 
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research about EVs focused on the high cost of the battery pack and the limited driving 

range [142]. The high cost of the battery actually is the problem related to the 

replacement based on the life of the battery. In order to reduce the cost of replacement, 

the reliability of the battery pack is an important performance index to improve. Hence, 

the degradation of battery pack capacity under extended cycling is the main problem for 

the operation of EVs. In the traditional reliability method, the batteries in the system are 

considered as identical components in the system. Actually, the battery pack of EVs is a 

combination of more than 100 lithium-ion batteries with an individual variation that can 

never be eliminated. Hence, the difference among the batteries that influence the 

performance of the system should also be taken into account. When the capacity of one 

cell in the battery pack faded, the other cells need to share the load of the aged cell, which 

is an accelerated factor of the degradation of the other cells [143]. On the other hand, it 

means that the life of the battery can be extended by adding batteries in the battery pack 

system to share the load. And the entire battery pack needs to be replaced and maintained 

when a few cells degraded to the level of safety use which causes prohibitive cost. Under 

the consideration of the cost, redundant cells are necessary to prolong the life span of the 

battery pack and reduce the replacing frequency. Also, maintenance and repair are 

important for vehicles. As we all know, vehicle maintenance needs to be performed 

regularly. In electrical vehicles, the replacement of the battery pack system has a great 

influence on the life of vehicles and drivers. Hence, maintenance design for EVs is an 

important issue to be studied. 
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In summary, both reliability optimization problems and maintenance design for 

stochastically deteriorating systems are reviewed in this section. As the most popular 

method for reliability optimization problems, RAP model is studied in this dissertation. 

Because the continuous-state systems have not been well studied in RAP models, this 

dissertation proposes a continuous-state optimization model for redundancy design. For a 

stochastically deteriorating system, maintenance reviewed in this section is necessary for 

further improvement of the reliability during the continuous degradation process under 

consecutive time.  Both the PM and CM are considered in this dissertation to minimize 

the lifecycle cost rate of the system under the assumption of the Gamma process to 

describe the system degradation.  
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Chapter 3: Proposed Methodology 

A general model for redundancy and maintenance design is proposed to solve the 

problem described in Section 3.1. Section 3.1 also lists the basic assumptions of the 

models presented in this study. Section 3.2 gives a detail of the degradation process of the 

components in the system and the system itself. Section 3.3 and Section 3.4 introduce a 

redundancy optimization model and a maintenance design model, respectively, for CSS 

parallel-series systems. The joint model of redundancy and maintenance design is derived 

in Section 3.5. 

3.1 Problem Description  

The structure of the continuous-state parallel-series system is shown in Fig. 3. The 

original system consists of 𝑚 subsystems in series connections, and each subsystem 

includes 𝑛 components in parallel connection. In order to slow the degradation rate and  

improve the system performance, a number of (𝑚 + ∆𝑚)(𝑛 + ∆𝑛) −𝑚𝑛 redundant 

components are supposed to be added to the system. The configuration of the system 

determines the relationship between the performance of the components and the 

performance of the system. And the performance of the whole system can be expressed 

by the performance of the subsystems in several ways. Hence, the configuration of the 

system is an important decision to be decided to improve system reliability.  

In addition to improving the system reliability by adding active redundant 

components, prolonging the lifespan of the system which is another aim for engineers to 

achieve should also be considered in the process of system design. The most effective 

way is to carry out maintenance actions. In this study, both the PM and CM are 
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implemented in the maintenance design. To construct a joint model of redundancy design 

and maintenance design for parallel-series continuous-state systems, the following 

assumptions are necessary: 

• The components are independent. 

• All components come from a homogeneous population and the initial degradation 

levels of all components are zero. 

• All redundant components are active in the system, which means that the 

redundant components and the components in the basic structure degrade 

simultaneously. 

• The system fails when the system-level degradation measure exceeds a pre-

specified failure threshold for the first time. 

• The maintenance time interval is negligible. 

 

Figure 6  

The Configuration of the Continuous-State Parallel-Series Systems 
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3.2 Degradation Process  

This dissertation evaluates the system reliability according to the system 

degradation level. The increasing length of operation time leads to the continuous 

degradation of the performances of components. A general degradation- model uses a 

linear or nonlinear regression to describe an observed degradation path and the failure 

time is usually defined as the time when the mean degradation path crosses a pre-defined 

failure threshold. An observed degradation path can also be modeled and analyzed by a 

stochastic process, e.g., the Wiener process, Gamma process, and inverse Gaussian 

process. When a stochastic process is used, the failure occurs when the degradation path 

exceeds a prespecified failure threshold for the first time. This dissertation assumes the 

degradation path model of the component is modeled by a gamma process which is a 

continuous-time process with independent, stationary, and nonnegative increments when 

no maintenance actions are performed. A degradation-based failure occurs when the 

degradation path reaches the failure threshold for the first time. Other degradation models 

can certainly be used. The general performance function, which is a degradation path for 

an individual component (𝑖, 𝑗), is considered to be a Gamma process {𝑌𝑖𝑗(𝑡), 𝑡 ≥ 0} 

where 𝑌𝑖𝑗(𝑡) represents the degradation level at time 𝑡 with identical scale parameter 𝛽 

and shape parameter 𝛼(𝑡). The Gamma process has the following properties [135]: 

1) 𝑌𝑖𝑗(0) = 0 and 𝛼(0) = 0 with probability one. 

2) Increments in Gamma process, ∆𝑌𝑖𝑗(𝑡) ≡ 𝑌𝑖𝑗(𝑡 + ∆𝑡) − 𝑌𝑖𝑗(𝑡)~𝐺(∆𝛼(𝑡), 𝛽) , are 

independent and non-negative. 
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3) 𝛼(𝑡) as the shape parameter of Gamma process is a monotone increasing 

function. 

The probability density function of Gamma process with parameters ∆𝛼(𝑡) ≡

𝛼(𝑡 + ∆𝑡) − 𝛼(𝑡) and 𝛽 is then given by, 

𝑓(∆𝑦𝑖𝑗; ∆𝛼(𝑡), 𝛽) =
1

𝛤(∆𝛼(𝑡)) ∙ 𝛽∆𝛼(𝑡)
∙ ∆𝑦𝑖𝑗

∆𝛼(𝑡)−1 ∙ exp (−
∆𝑦𝑖𝑗

𝛽
) ∙ 𝐼{∆𝑦𝑖𝑗≥0} 

where 𝐼{∆𝑦𝑖𝑗≥0} = {
1, 𝑖𝑓  ∆𝑦𝑖𝑗 ≥ 0

0, 𝑖𝑓  ∆𝑦𝑖𝑗 < 0
 and 𝛤(∆𝛼(𝑡)) = ∫ 𝑧∆𝛼(𝑡)−1

∞

0
𝑒−𝑧𝑑𝑧 is the gamma 

function. Various degradation processes are modeled by the value of parameters 𝛽 and 

∆𝛼(𝑡). 𝐸(∆𝑌𝑖𝑗(𝑡)) = 𝛽 ∙ ∆𝛼(𝑡), and 𝑉𝐴𝑅(∆𝑌𝑖𝑗(𝑡)) = 𝛽
2 ∙ ∆𝛼(𝑡).  

The failure of the components in a deteriorating system occurred when the 

degradation level exceeds the prespecified failure threshold 𝑤. Define the failure time 

𝜎𝑤 = inf {𝑡 ≥ 0, 𝑌𝑖𝑗(𝑡) ≥ 𝑤 } and the cumulative distribution 𝐹𝜎𝑤𝑖𝑗
(𝑡) of the performance 

of an individual component  is defined as, 

 

𝐹𝜎𝑤𝑖𝑗
(𝑡) = 𝑃𝑟 (𝜎𝑤𝑖𝑗 ≤ 𝑡) 

= 𝑃𝑟(𝑌𝑖𝑗(𝑡) ≥ 𝑤) 

= ∫ 𝑓(𝑦𝑖𝑗; 𝛼(𝑡), 𝛽)
∞

𝑤

𝑑𝑦𝑖𝑗  

=
𝛤 (𝛼(𝑡),

𝑤
𝛽
)

𝛤(𝛼(𝑡))
, 𝑡 ≥ 0 

(1) 

where 

𝛤(𝛼, 𝑥) = ∫ 𝑧𝛼−1
∞

𝑥

𝑒−𝑧𝑑𝑧,      𝑥 ≥ 0   𝛼 ≥ 0 

is the incomplete gamma function. And the probability density function of the first hitting 

time is denoted by [135], 
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 𝑓𝜎𝑤𝑖𝑗
(𝑡) =

𝜕𝐹𝜎𝑤𝑖𝑗
(𝑡)

𝜕𝑡
=

𝛼

𝛤(𝛼(𝑡))
∫ {log(𝑧) − 𝜓(𝛼(𝑡))}𝑧𝛼(𝑡)−1
∞

𝑤
𝛽

𝑒−𝑧𝑑𝑧,   𝑡 ≥ 0 (2) 

where the digamma function 𝜓(𝑥) is defined as, 

𝜓(𝑥) =
𝛤′(𝑥)

𝛤(𝑥)
=
𝜕𝑙𝑜𝑔𝛤(𝑥)

𝜕𝑥
. 

When the specific performance of the system cannot be fulfilled, the system is 

deemed to be failed. Indeed, the degradation levels of the components in the system 

differing from each other. The performance of the system may be still reliable even 

though the performances of some components are lower than the mean required 

performance in the traditional reliability method. Hence, the consideration of system-

level reliability has an advantage in cost reduction of replacement. Upon the expression 

of performance for a single component and specific rules, the performance of the entire 

system can be described by a deterministic structure function given by  

 𝑌𝑠(𝑡) = Φ(𝑌11(𝑡), 𝑌12(𝑡), … , 𝑌𝑖𝑗(𝑡), … , 𝑌𝑛𝑚(𝑡))   

The structure function Φ(∙) indicates the relationship between the states of the 

components and the state of the system itself, varying according to different rules decided 

by the property of the components and the configuration of the system. It also means that 

the continuous state of the system stems from the states of different parts of the system 

through the structure function. Note that the degradation path of a component may be 

affected by the redundancy design because adding active redundancy can reduce the load 

of each cell and slow the degradation of the cell. Examples of structure functions include 

𝑠𝑢𝑚(), 𝑚𝑖𝑛(), 𝑚𝑎𝑥(), etc. For example, when modeling and analyzing the voltage 

degradation of a fuel cell stack system consisting of multiple fuel cells in a serial 
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configuration, Yuan et al. [13] defined two system-level degradation measures: one is the 

sum of voltages of all components and the other is the minimum voltage among all 

components. Those two system-level degradation measures are related to the components' 

degradation measures via the 𝑠𝑢𝑚() and 𝑚𝑖𝑛() structure functions, respectively. In 

addition, some empirical techniques, e.g., regression, may be used to find approximations 

for complex structure functions [112]. 

Then, the lifetime distribution of the system is described by using structure 

function based on the distribution of an individual component. The system cumulative 

density function for the degradation process is defined as, 

 
𝐹𝑠(𝑡) = 𝑃𝑟(𝜎𝑤𝑠 ≤ 𝑡) = 𝑃𝑟(𝑌𝑠(𝑡) ≥ 𝑤𝑠) 

= 𝑃𝑟 (Φ(𝑌11(𝑡), 𝑌12(𝑡), … , 𝑌𝑖𝑗(𝑡), … , 𝑌𝑛𝑚(𝑡)) ≥ 𝑤𝑠) ,   𝑡 ≥ 0 
(3) 

And the probability density function of the degraded system is  

 𝑓𝑠(𝑡) =
𝜕𝐹𝑠(𝑡)

𝜕𝑡
=
𝜕 𝑃𝑟 (Φ(𝑦11(𝑡), 𝑦12(𝑡), … , 𝑦𝑖𝑗(𝑡), … , 𝑦𝑛𝑚(𝑡)) ≥ 𝑤𝑠)

𝜕𝑡
 (4) 

3.3 Redundancy Optimization Model  

First of all, this dissertation builds a redundancy optimization model. Minimizing 

the entire cost of redundant components for a parallel-series continuous-state system is 

the main objective of this model with the requirement of the reliability of the system. In 

this section, the model itself and GA used to solve the problem are described in detail. 

3.3.1 Model Construction 

Starting from a given base design consisting of 𝑛 ×𝑚 components, the 

optimization model for parallel-series continuous-state systems is formulated to 
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determine the cost-optimal redundancy design, satisfying some system reliability and 

design constraints. 

The system cost 𝐶s(𝑿) is analyzed in two parts, the intrinsic cost 𝑐𝑟 of the 

redundant components related to production and the installation cost 𝐶𝑎𝑐𝑡 associated with 

technical actions applied to the installation of components. The technical actions include 

the installation process of series and the installation process of parallel. 𝑐𝑝 is the cost that 

redundant components organized in the parallel system, and 𝑐𝑠 is used to represent the 

expenses that the subsystem in series with the original system. Hence, we can get the 

expression for cost as below, 

 

𝐶s = 𝐶𝑐𝑜𝑚 + 𝐶𝑎𝑐𝑡 

𝐶𝑐𝑜𝑚 = 𝑐c𝑚𝑛 +  𝑐𝑟((𝑚 + ∆𝑚)(𝑛 + ∆𝑛) −𝑚𝑛) 

𝐶𝑎𝑐𝑡 = 𝑐𝑝(𝑚 + ∆𝑚)∆𝑛 + 𝑐𝑃(𝑛 − 1)∆𝑚 + 𝑐𝑠∆𝑚 

(5) 

where 𝑐𝑐 is the unit cost of components in the original system, 𝑐𝑟 is the unit cost of 

redundant components in the new system, 𝑐𝑝 is the unit cost of components installed in 

parallel, 𝑐𝑠 is the unit cost of the subsystem installed in series with the other subsystems. 

Based on the above description and discussion, the optimization model for the parallel-

series continuous-state system can be defined as below, 

 

min     𝐶s(𝑿) 

                      s. t.  𝑅𝑠(𝑡𝑚; 𝑿) ≥ 𝑅𝑟𝑒𝑞(𝑡𝑚) 

         𝐃(𝑿) ≤ 𝒅 

(6) 

where 𝑡𝑚 is the mission time and  𝑅𝑟𝑒𝑞(𝑡𝑚) is the system reliability requirement at 𝑡𝑚. 

𝑅𝑠(𝑡𝑚; 𝑿)=1-𝐹(𝑡𝑚; 𝑿) =1-𝐹𝑠(𝑿; 𝑡) is the reliability function of the system. 𝐃(𝑿) ≤ 𝒅 

represents a set of possible design constraints. For example, there may be an up limit on 
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the total number of components assembled in the system or a size/weight limit. The 

design variable vector 𝑿 in this parallel-series system, which includes the redundant 

number of components in each subsystem and the number of redundant subsystems, is 

described as 𝑿 = (∆𝑛, ∆𝑚) where ∆𝑛 and ∆𝑚 are nonnegative integers. GA is 

implemented to solve this nonlinear integer programming model.  

3.3.2 Genetic Algorithm 

Apart from the GA described in this section, many other algorithms can be used 

in this study. For example, particle swarm optimization (PSO) can also be used to solve 

the optimization problem. However, GA algorithm is sufficient to solve the optimization 

problem described in this study with different kinds of systems, especially for the 

illustration problem in section 4. And it has great advantages in solving integer problems. 

Hence, GA has a detailed explanation in this section.  

The basic idea of GA is to produce offspring of the next generation by cross-

genes of parents which have the best fitness. Due to the limitations of searching 

algorithms, the solution computed by GA may be a locally optimal solution if the initial 

parameters are unreasonable. Hence, this study compares the GA solutions with the 

results computed by the enumeration method to determine the parameters in this problem.  

The GA starts with an initial randomly generated population of solutions. A 

fitness score that is used to evaluate the chromosome is computed for each solution and a 

set of solutions are selected as parents to produce a new generation of solutions 

(offspring) via the crossover and mutation operators. And then repeat this procedure for a 
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given number of generations. The top solutions in the last generation are examined to 

find the best solution(s). Detailed implementation of GA is described below. 

The population which is formed with a set of individuals is a subset of solutions 

to the proposed problem in the current generation. Also known as chromosomes, 

individuals are strings combined with several genes. Binary encoding, which translates 

the non-negative integer decision variables (∆𝑛, ∆𝑚)  into binary values, i.e. 0s and 1s, is 

used in this study. The initial population can be populated with completely random 

solutions or using a heuristic function. In this dissertation, the initial population of 𝑛𝑝𝑜𝑝 

solutions are randomly generated in the search space.  

The fitness function is used to evaluate each solution and is defined as, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(∆𝑛, ∆𝑚) = − [𝐶s(𝑿; 𝑡) + 𝑚𝑎𝑥 (0,  𝑅𝑟𝑒𝑞(𝑡𝑚) − 𝑅𝑠(𝑡𝑚; 𝑿)) ∙ ℳ] 

where the second term is a penalty term when a solution does not satisfy the reliability 

constraint and ℳ = 107 is a big number. According to the fitness scores of all solutions, 

the chromosomes are selected as parents of the next generation for reproduction. If the 

solution exceeds the constraints, the fitness score for this solution will decrease which 

means it has a smaller chance to be selected. 

Parent selection is a process that selects the fittest chromosome from the 

population and the selected parents will pass their genes to the next generation. 

Chromosomes with higher fitness scores have more success to be selected. This study 

implements the tournament selection method [88]. This method randomly selects 𝑘𝑠𝑒𝑙 

chromosomes from the population and then choose the one with the highest fitness 

among the 𝑘𝑠𝑒𝑙 selected chromosomes. This procedure is repeated 𝑛𝑝𝑜𝑝 times. Crossover 
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is then applied to generate offspring from the 𝑛𝑝𝑜𝑝 parents. The one-point crossover 

method is used in this study. A crossover point is randomly picked and the parts of two 

parents after the crossover point are swapped to generated two new offspring. The 

mutation operator is applied to increase the diversity of the offspring. Each gene of a 

chromosome has a low mutation probability 𝑝𝑚𝑢𝑡 to be mutated. The algorithm is 

terminated after 𝑛𝑔𝑒𝑛 generations. The unique solutions in the last generation are ranked 

according to their fitness scores in order to find the optimal solution(s). 

3.4 Age-Based Replacement Model 

 Once the system configuration is determined, maintenance strategies are applied 

to the system with a deterministic configuration shown in Figure 7. Since the CBM 

models have a high requirement on the sensors which is costly, this dissertation focuses 

on TBM models. The components in the system are assumed to be “as good as new” after 

any maintenance actions, which is the so-called replacement. The age-based replacement 

model has been widely used in the industrial field. For example, the engine drive chain 

on old Volvos is supposed to be replaced every 80,000 km. The oil and oil filters are 

generally replaced every 3 months. The reliability of the components in a plane has a 

great impact on passengers’ life. It is necessary to implement a regular component 

replacement. Both preventive maintenance and corrective maintenance as maintenance 

strategies are introduced to the age-based maintenance model in this study. And it is 

decided by whichever occurs first. The preventive replacement is carried out at regular 

intervals 𝑇 which is a planned downtime from the last replacement time with a cost 𝐶𝑝𝑚. 

The corrective replacement actions are taken when the system fails which means the 
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degradation level reaches the prespecified threshold 𝑤. The unplanned downtime caused 

by item failures, internal or external events may lead to additional cost 𝐶𝑑. Hence, the 

cost of corrective replacement is defined as 𝐶𝑐𝑚 = 𝐶𝑝𝑚 + 𝐶𝑑. The only design variable of 

this maintenance model is the regular preventive replacement time interval 𝑇. And the 

additional cost 𝐶𝑑 may have a great impact on the optimal solutions. 

 

Figure 7  

Schematic Evolution of an Age-Based Replacement System 

 

 

The analysis of system cost is a generally used measure to evaluate the 

maintenance policy. In this study, the objective function of this model is to minimize the 

lifecycle cost rate which includes two parts, system design cost, and maintenance cost. 

The system design cost 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 is the total cost of the system redundancy design cost 

defined in Eq. (5) because all the components in the system are replaced by new 

components. And the cost is a constant number since the system configuration has been 

determined in the redundancy optimization model.  
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The maintenance part is the long-run expected cost, which can be obtained by the 

renewal reward theory [144], of maintenance actions between two replacements. It 

represents the maintenance cost per unit time. The expected long-run unit cost is defined 

as 

𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

Based on this equation, the expected long-run cost per unit time in this 

dissertation is defined as  

 𝐶∞(𝑇) = lim
𝑇→∞

𝐸[𝐶(𝑇)]

𝑇
=
𝐸[𝐶(𝑇)]

𝐸[𝑇]
 (7) 

where 𝐶(𝑇) is the accumulated maintenance cost at time 𝑇. Then, the long-run unit cost 

can be changed into a ratio of the expected maintenance cost in a maintenance interval to 

the expected length of the maintenance interval. And the expected maintenance cost 

𝐸[𝐶(𝑇)] is expressed as, 

𝐸[𝐶(𝑇)] = 𝐶𝑐𝑚𝐹𝑠(𝑇) + 𝐶𝑝𝑚(1 − 𝐹𝑠(𝑇)) 

where (1 − 𝐹𝑠(𝑇)) is the probability of a PM in a replacement interval and 𝐹𝑠(𝑇) defined 

in Eq. (3) is the probability that a CM that implemented in a replacement interval. Either 

a PM is implemented in a regular maintenance interval, or a CM will be done. And the 

expected length of the maintenance interval is integral to the reliability function 

according to renewal reward theory [144]. 

𝐸[𝑇] = ∫ (1 − 𝐹𝑠(𝑡))
𝑇

0

𝑑𝑡 

Assuming the system has a limited lifetime 𝑙. In order to add the system design 

cost to the expected long-run unit cost function, the system design cost should have the 
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same unit used with the expected long-run maintenance cost. Hence, the system design 

cost is divided into 𝑙 equal parts which are described as the system design cost per unit 

time.  Then, the analytical formula of cost minimization objective function is described as, 

 𝐶s(𝑇) = 𝐶∞(𝑇) + (
𝐴
𝑃⁄ , 𝐼, 𝑙) ∗ 𝐶𝑑𝑒𝑠𝑖𝑔𝑛,     𝑇 > 0 (8) 

where (𝐴 𝑃⁄ , 𝐼, 𝑙) =
𝐼(1+𝐼)𝑙

((1+𝐼)𝑙−1)
 is the capital recovery factor which divides the system 

design cost into 𝑙 − 𝑝𝑒𝑟𝑖𝑜𝑑 equivalent parts. 𝐼 represents the interest rate per period and 𝑙 

is the expected lifetime of a system in the number of periods. Then, both two parts are the 

costs per unit time. The capital recovery factor is a ratio used to obtain the present value, 

which represents the equivalent periodical cost, of a set of future costs. It has been widely 

used in the economic engineering area. The optimization variable 𝑇 is restricted to 

minimize the lifecycle cost rate 𝐶∞(𝑇) given in Eq. (7).  

In the CBM models, each of the components in the system should be equipped 

with a monitoring sensor to obtain its real-time status, and the monitoring sensors are 

required to be sensitive at any time. Hence, the condition-based maintenance model has a 

high requirement of monitoring sensors which may be costly. Then, this dissertation 

focuses on age-based maintenance. In the battery pack system which is discussed as an 

application in chapter 4, mixed cells with different degradation levels in a system may 

cause accelerated degradation to individual cells [143]. Hence, the whole system is 

considered to be replaced which is an age-based replacement policy in this dissertation to 

avoid the increased degradation rate.  
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3.5 Joint Design Model of Redundancy and Maintenance Optimization  

 Previous research focuses on the redundancy design and maintenance design 

respectively. In this section, a joint optimization model of redundancy design and 

maintenance design is proposed for parallel-series continuous-state systems. The aim of 

this joint model is to minimize the lifecycle cost rate of the system and the reliability 

requirement should be satisfied simultaneously. Following this goal, the joint model is to 

minimize the expected lifecycle cost rate during the system operational time with the 

constraint of reliability or other design constraints. 

 Since the maintenance policy in this study is the age-based replacement, the cost 

of each preventive replacement is the cost of redundancy design which is the construction 

of the parallel-series system defined in Eq. (5). The design cost 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 is varied based on 

the variation of the system configuration during the searching of solutions. And the 

corrective replacement cost is the summation of the preventive replacement and an 

additional unpredictable cost 𝐶𝑑 which is caused by system failure. 𝐶𝑑, as an unexpected 

cost, maybe a large value since the unpredictable failure has a great impact on both safety 

and cost. Hence, the unit maintenance costs are given by, 

𝐶𝑝𝑚 = 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 = 𝐶s = 𝐶𝑐𝑜𝑚 + 𝐶𝑎𝑐𝑡 

𝐶𝑐𝑚 = 𝐶𝑝𝑚 + 𝐶𝑑 = 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 + 𝐶𝑑 

Then the cost rate minimization model is summarized as, 

min𝐶s(𝑇) 

s. t.  𝑅𝑠(𝑡𝑚; 𝑿) ≥ 𝑅𝑟𝑒𝑞(𝑡𝑚) 

𝐃(𝑿) ≤ 𝒅 
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where 𝐶s(𝑇) is defined in Eq. (8). 𝑅𝑠(𝑡𝑚; 𝑿)=1-𝐹(𝑡𝑚; 𝑿) =1-𝐹𝑠(𝑿; 𝑡) is the reliability 

function of the system. 𝐹𝑠(𝑿; 𝑡) is defined in Eq. (3). The design variable vector 𝑿 in this 

minimization model, includes the redundant number of components in the subsystem, the 

number of redundant subsystems, and the preventive replacement interval, can be shown 

as 𝑿 = (∆𝑛, ∆𝑚, 𝑇) where ∆𝑛, ∆𝑚 and 𝑇 are nonnegative integers.  

Since the continuous-state systems have not been well studied for reliability 

problems, this dissertation firstly proposed a redundancy optimization model and an age-

based replacement model for parallel-series continuous-state systems, respectively. The 

objective of the redundancy optimization model is to minimize the system design cost 

satisfy the reliability requirements. And this dissertation considers the design cost 

includes the cost of components themselves and the cost of technical actions for 

connection. Then, an age-based replacement model is formulated for a determined 

configuration which is decided by the redundancy optimization model. The objective is to 

minimize the lifecycle cost rate. It includes two parts, the expected long-run maintenance 

cost and the design cost which is evenly distributed per unit time. Furthermore, this 

dissertation introduced a joint model of redundancy and maintenance for parallel-series 

continuous-state systems. The joint model determines the optimal system design and the 

optimal maintenance interval simultaneously.  
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Chapter 4: A Case Study on the Battery Pack System 

According to the redundancy optimization model, maintenance design model, and 

the joint design model proposed in chapter 3, this chapter presents the models and results 

applied to the battery pack system in EVs. Section 4.1 defines the performance of the 

battery pack system. Section 4.2, 4.3, and 4.4 build the redundancy optimization model, 

age-based replacement model, and joint design model, respectively, then analyze and 

compare the results from different models. 

4.1 Overview of the Battery Pack System Performance 

This section uses the battery pack system for EVs as an example to illustrate the 

proposed methodology. This study assumes that all cells in a pack are independent, the 

initial degradation levels of all cells are zero, and the cells degrade consistently. Mixing 

cells with different degradation levels may introduce interactions among the cells and 

accelerate the degradation processes. Gong et al.[143] conducted an experimental study 

on the cell inconsistency problem for parallel-connected lithium-ion battery cells for EVs. 

Cells with different degradation levels were connected in parallel. Experimental results 

and analysis indicated that cell inconsistency may severely reduce the reliability of a 

battery pack.  

4.1.1 Performance of the Battery 

The state-of-health (SOH) of the cells defined as a variable in EVs shows the 

general health condition of a single cell. It is evaluated by the percentage of maximum 

releasable capacity of an aged battery relative to the maximum capacity of a new battery. 

The SOH can be expressed as [145], 



66 

 

SOH = 
𝑄𝑚𝑎𝑥(aged)

𝑄𝑚𝑎𝑥(new)
× 100% 

𝑄𝑚𝑎𝑥(aged) = 𝑄𝑚𝑎𝑥(new) − 𝑄𝑚𝑎𝑥(fade) 

where 𝑄𝑚𝑎𝑥(aged) is the current maximal releasable capacity of an aged battery that has 

operated period, while 𝑄𝑚𝑎𝑥(new) represents the maximum amount of a newly used 

battery with initial capacity. 𝑄𝑚𝑎𝑥(fade) is the faded capacity of the aged battery as a 

result of the cycle number, temperature, and discharge rate. Based on the relationship 

among 𝑄𝑚𝑎𝑥(aged) , 𝑄𝑚𝑎𝑥(new), and 𝑄𝑚𝑎𝑥(fade), the SOH is defined as  

SOH =
𝑄𝑚𝑎𝑥(new) − 𝑄𝑚𝑎𝑥(fade)

𝑄𝑚𝑎𝑥(new)
× 100% = (1 −

𝑄𝑚𝑎𝑥(fade)

𝑄𝑚𝑎𝑥(new)
) × 100% 

Hence, the performance of the batteries is reflected by the degradation of the cells 

which can be defined as, 

𝑌(𝑡) = 1 − SOH =
𝑄𝑚𝑎𝑥(fade)

𝑄𝑚𝑎𝑥(new)
× 100% 

Under the extended cycling number, Ramadass et al. [146] summarized that the 

main factors responsible for the capacity fade of lithium-ion batteries can be separated 

into three parts to analyze. The first part deals with the loss related to the consistent 

growth of resistance at both the positive electrode and the negative electrode. Part two 

indicates that the loss of lithiation at both two electrodes has an impact on the capacity 

fade. The last part said that the loss of active material Li+ is responsible for the capacity 

fade. According to the analysis in [146], 𝑄𝑚𝑎𝑥(fade) of Sony 18650 cells is determined 

by three parameters: the rate capability, secondary active material and, primary active 

material losses. The expression of 𝑄𝑚𝑎𝑥(fade) can be shown as, 

𝑄𝑚𝑎𝑥(fade) = 𝑄𝑙𝑜𝑠𝑡(𝑖) + 𝑄I + 𝑄II 
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where 𝑄𝑙𝑜𝑠𝑡(𝑖) is the loss of discharge capacity, which is related to its discharging rate, 𝑖. 

𝑄I and 𝑄II represent the capacity loss due to primary and secondary active material, 

respectively. Under very low discharge rate, the semi-empirical capacity fading model 

constructed by Ramadass et al. [146] shows that 𝑄I and 𝑄II result from the state-of-charge 

(SOC) of the limiting electrode. The changing rate of SOC of electrode material is 

defined as  

𝑑SOC𝑙𝑜𝑠𝑡
𝑑𝑁

= 𝑘1𝑁 + 𝑘2 

which is related to the temperature and the charge/discharge cycle number. The 

parameter 𝑘1 is responsible for the accelerated loss of capacity under unfavorable 

conditions such as high temperature, while 𝑘2 accounts for the capacity loss under normal 

conditions of the charge/discharge cycles. And the loss in the SOC was calculated by 

SOC𝑙𝑜𝑠𝑡 =
𝑄𝑙𝑜𝑠𝑡(𝑇, 𝑁)

𝑄𝑚𝑎𝑥(new)
 

where 𝑄𝑙𝑜𝑠𝑡(𝑇, 𝑁) is influenced by the temperature and the number of charge/discharge 

cycles. Hence, the capacity loss due to primary and secondary active material can be 

shown as  

𝑄𝑙𝑜𝑠𝑡(𝑇, 𝑁) = 𝑄I + 𝑄II = SOC𝑙𝑜𝑠𝑡 × 𝑄𝑚𝑎𝑥(new) =
1

2
𝑘1𝑁

2 + 𝑘2𝑁 

For higher discharge rates, the discharge rate should be considered into the loss of 

capacity which is responsible for rate capability losses. As shown in [145], the discharge 

capacity loss is a liner with discharge rate, 

𝑄𝑙𝑜𝑠𝑡(𝑖) = 𝑘3𝑖 

𝑖 =
𝐼

𝑄𝑚𝑎𝑥(new)
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where 𝑖 represents the discharging rate, 𝐼 is the individual discharging current and 𝑘3 is a 

parameter that changed based on the cycle numbers.  

This study defines the degradation measure of individual cells as 𝑌(𝑁) = 1 −

SOH so that the degradation measure 𝑌(𝑁) increases with 𝑁. To model 𝑌(𝑁) by the 

Gamma process with the scale parameter 𝛽 and shape function 𝛼(𝑁), we assume 

 𝐸[𝑌(𝑁)] = 𝛽 ∙ 𝛼(𝑁) = (
1

2
𝑘1𝑁

2 + 𝑘2𝑁) +
𝑘3

𝑄𝑚𝑎𝑥(new)
𝑖 (9) 

and then 

𝛼(𝑁) =
1

𝛽
(
1

2
𝑘1𝑁

2 + 𝑘2𝑁 +
𝑘3

𝑄𝑚𝑎𝑥(new)
𝑖) 

Because 𝑉𝐴𝑅[𝑌(𝑁)] = 𝛽2 ∙ 𝛼(𝑁) = 𝛽 ∙ 𝐸[𝑌(𝑁)], increasing 𝛽 will increases the 

variance of 𝑌(𝑁). 

4.1.2 Performance of the Battery Pack System 

Liu et al. [145] constructed a capacity fade system model by using UGF technique 

based on parallel-series MSS to find the optimal number of redundant cells. And the 

batteries in the system are assumed to be independent and identical. This paper extends 

the MSS of the battery pack system to CSS and introduces Gamma process in the 

parallel-series system. 

Next, the system-level degradation measure 𝑌s(𝑁) is derived. For the subsystem 

with multiple cells connected in parallel, the battery management system (BMS) 

generally does not monitor the SOH of single cells due to it does not measure the cell 

current, instead, BMS tracks the subsystem SOH by an equivalent single value for the 

whole subsystem, e.g., the average SOH [147]. For multiple subsystems connected in 
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series, the system performance is determined by the worst subsystem [143]. Therefore, 

the degradation measure of the parallel-series battery pack can be formulated as 

 𝑌s(𝑁|𝛥𝑛, 𝛥𝑚) = max
𝑘=1,…,𝑚+𝛥𝑚

{
1

𝑛 + 𝛥𝑛
∑ 𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚)

𝑛+𝛥𝑛

𝑗=1

} (10) 

Herein the cell degradation 𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚) is modeled by the Gamma process with the 

scale parameter 𝛽 𝑎𝑛𝑑 shape parameter function 𝛼(𝑁|𝛥𝑛, 𝛥𝑚) =
𝐸[𝑌s(𝑁|𝛥𝑛,𝛥𝑚)]

𝛽
, where 

𝐸[𝑌s(𝑁|𝛥𝑛, 𝛥𝑚)] is given by Eq. (9). 

Generally, the battery pack should be replaced when the capacity is degraded to 

80% of the initial capacity. It means that the reliability constraint of the system is 𝑤𝑠  =

 0.20 [148]. Then the system reliability function is defined as 

 

   𝑅𝑠(𝑁|𝛥𝑛, 𝛥𝑚) = 𝑃𝑟(𝑌s(𝑁|𝛥𝑛, 𝛥𝑚) ≤ 𝑤𝑠) 

= ∏ 𝑃𝑟(
1

𝑛 + 𝛥𝑛
∑ 𝑌𝑗𝑘(𝑁)

𝑛+𝛥𝑛

𝑗=1

≤ 𝑤𝑠)

𝑚+𝛥𝑚

𝑘=1

 

= ∏ 𝑃𝑟(∑ 𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚)

𝑛+𝛥𝑛

𝑗=1

≤ (𝑛 + 𝛥𝑛)𝑤𝑠)

𝑚+𝛥𝑚

𝑘=1

 

= (1 −
𝛤 [(𝑛 + 𝛥𝑛)𝛼(𝑁|𝛥𝑛, 𝛥𝑚),  

(𝑛 + 𝛥𝑛)𝑤𝑠
𝛽

]

𝛤[(𝑛 + 𝛥𝑛)𝛼(𝑁|𝛥𝑛, 𝛥𝑚)]
)

𝑚+𝛥𝑚

 

(11) 

Note that if 𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚), for 𝑗 = 1,… , 𝑛 + 𝛥𝑛, follow the  

𝑖𝑖𝑑 𝐺𝑎𝑚𝑚𝑎(𝛼(𝑁|𝛥𝑛, 𝛥𝑚), 𝛽) distribution, ∑ 𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚)
𝑛+𝛥𝑛
𝑗=1  is a 𝐺𝑎𝑚𝑚𝑎((𝑛 +

𝛥𝑛)𝛼(𝑁|𝛥𝑛, 𝛥𝑚), 𝛽) random variable. 

Liu et al. [145] and Xia et al. [148]assumed a different structure function of the 

form  
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 𝑌s
′(𝑁|𝛥𝑛, 𝛥𝑚) = max

𝑘=1,…,𝑚+𝛥𝑚
{ min
𝑗=1,…,𝑛+𝛥𝑛

𝑌𝑗𝑘(𝑁|𝛥𝑛, 𝛥𝑚)} (12) 

that is, the performance of a subsystem with cells connected in parallel is determined by 

the best cell in the subsystem. Under this assumption, the reliability function of the 

battery 

pack system becomes 

𝑅𝑠
′(𝑁|𝛥𝑛, 𝛥𝑚) =

(

 1 − (
𝛤 [𝛼(𝑁|𝛥𝑛, 𝛥𝑚),  

𝑤𝑠
𝛽
]

𝛤[𝛼(𝑁|𝛥𝑛, 𝛥𝑚)]
)

𝑛+𝛥𝑛

)

 

𝑚+𝛥𝑚

 

Under the same configuration, 𝑅𝑠
′(𝑁|𝛥𝑛, 𝛥𝑚) is expected to be higher than 

 𝑅𝑠(𝑁|𝛥𝑛, 𝛥𝑚).  

4.1.3 Computational Method 

The power from the number of complete charge/discharge cycles of the battery 

pack for well-functioning EVs is a constant 𝑃 no matter how many cells in the battery 

pack. The power supplied by 1 cycle of charge/discharge will increase as the number of 

cells in the system rise. Hence, the cycle number of the system will change with the 

addition of redundant cells. Assuming the cycle number of the system without 

redundancies is 𝑁. In order to satisfy the same power 𝑃, the new cycle number of the new 

system will decrease, becomes [145] 

𝑁𝑛𝑒𝑤 =
𝑚𝑛𝑁

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛)
 

To supply the same power 𝑃, if (𝑚 + ∆𝑚)(𝑛 + ∆𝑛) − 𝑚𝑛 redundant cells are 

assigned on the new battery pack, the discharging rate are recalculated as [145], 
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𝑖 =
𝑚𝑛𝐼

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛)
 

where 𝐼 is the individual discharging current in the original system with 𝑚 × 𝑛 cells. 

Hence, the mean degradation path of individual cells in the battery pack system with 

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛) − 𝑚𝑛 redundant cells becomes 

 

𝐸[𝑌(𝑁|𝛥𝑛, 𝛥𝑚)] = {
1

2
𝑘1 (

𝑚𝑛𝑁

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛)
)
2

+ 𝑘2
𝑚𝑛𝑁

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛)
} 

+
𝑘3

𝑄𝑚𝑎𝑥(new)
×

𝑚𝑛𝐼

(𝑚 + ∆𝑚)(𝑛 + ∆𝑛)
 

(13) 

As shown in Eq. (13), adding active redundant cells decreases the power output of 

individual cells and hence slows down the cell degradation as this degradation is 

proportional to the using conditions [149]. 

4.2 Redundancy Optimization Model for the Battery Pack System 

Based on the optimization model constructed in Eq. (5), this study tries to find the 

optimal number of redundant cells to minimize the total cost of the system to satisfy the 

reliability requirements of the battery pack. Sony 18650 with a capacity of 1.75Ah is 

studied in this dissertation [145]. The objective considered here is the total cost of battery 

cells in the system, which is proportional to the total number of cells in the system. Then, 

the optimization model defined in section 3 is formulated as follow: 

 

min 𝐶s(∆𝑛, ∆𝑚) = 𝑐𝑐(𝑚 + ∆𝑚)(𝑛 + ∆𝑛) 

  s. t.  𝑅𝑠(𝑡𝑚|∆𝑛, ∆𝑚)=(1 −
𝛤[(𝑛+𝛥𝑛)𝛼(𝑁|𝛥𝑛,𝛥𝑚), 

(𝑛+𝛥𝑛)𝑤𝑠
𝛽

]

𝛤[(𝑛+𝛥𝑛)𝛼(𝑁|𝛥𝑛,𝛥𝑚)]
)

𝑚+𝛥𝑚

 ≥ 𝑅𝑟𝑒𝑞(𝑡𝑚)    
(14) 

where 𝑐𝑐 is the unit cost of the cells, which is assumed to be $5 in the numerical studies. 

In this dissertation, we only consider the cost of components. Note that other cost 
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components may be added to the cost objective function, e.g., costs for connecting cells 

to form modules and packs as we described in section 3. 

For illustrative, assuming that the base design is (𝑛 ×𝑚) = (2 × 5). This study 

investigated respectively the battery pack functioning at 25℃ charge/discharge 𝑡𝑚 = 800 

cycles and 50℃ charge/discharge 𝑡𝑚 = 500 cycles that are sensitive to cell redundancy 

to find the relationship among reliability, number of redundancies, configuration, and the 

cost of cells. Values of the parameters in the semi-empirical cell degradation model at 

different temperatures are listed in Table 5, and Table 6 summarizes the parameters used 

in GA with details in section 3.3.2. And this study assumes the user demand for reliability 

is no less than  𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.99 or  𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.9999. The discharge rate for both 

conditions is 1C. 

 

Table 5  

Values of Parameters at Different Temperatures [145], [147], [150] 

Cycling temperature (℃) 𝑘1 (cycle
-2

) 𝑘2 (cycle
-1

) 
𝑘3 (A-1) 

𝑎 (A-1) 𝑏 (A-1cycle−1) 

25 8.5 × 10−8 2.5 × 10−4 0 9 × 10−5 

50 1.6 × 10−6 2.9 × 10−4 2.77 × 10−2 8.1 × 10−5 
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Table 6  

Parameters Used in GA 

Population size 𝑛𝑝𝑜𝑝 500 

Number of generations 𝑛𝑔𝑒𝑛 500 

Tournament size 𝑘𝑠𝑒𝑙  3 

Mutation probability 𝑝𝑚𝑢𝑡 0.001 

Constraint penalty ℳ 107 

 

 

Table 7 lists the optimal solutions found by GA, assuming charge/discharge 𝑡𝑚 =

800 cycles at 25℃ and 𝑡𝑚 = 500 cycles at 50℃, respectively. The scale parameter 𝛽 

used in the numerical study ranges from 0.01 to 0.03. Since the number of batteries 

assumed in this example is small, an exhaustive search method is used to verify the 

optimal solutions found by GA. The GA and exhaustive search produce identical 

solutions for all 𝛽 and 𝑅𝑟𝑒𝑞(𝑡𝑚) combinations at different temperatures. Table 8 and 

Table 9, for example, enumerate a set of possible solutions to identify the optimal 

solution(s) when 𝛽 = 0.01. The optimal solutions for  𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.99 and 0.9999 are 

marked with * and **, respectively. When 𝛽 = 0.01, the cost-optimal solution that 

satisfies the 0.99 system reliability requirement is (∆𝑛, ∆𝑚) = (2, 0), that is, adding two 

parallel cells to each subsystem. The total number of cells is (𝑛 + ∆𝑛)(𝑚 + ∆𝑚) = (2 +

2)(5 + 0) = 20, corresponding to a total cost of 100. If the system reliability 

requirement increases to 0.9999, two optimal solutions (∆𝑛, ∆𝑚) = (1, 3) and (2, 1) 

with a total cost 120, which is obviously higher than lower reliability requirement, are 
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found. Both solutions use 24 cells to form the battery pack, with the 3 × 8 and 4 × 6  

configurations, respectively. When we compare the two optimal solutions, the system 

reliability of the (2, 1) design is higher than that of the (1, 3) design. Hence, one may 

prefer adding redundant cells in parallel than in serial. 

 

Table 7  

Optimal Redundancy Allocation when 𝑡𝑚 = 800 Cycles at 25℃ and 𝑡𝑚 = 500 Cycles at 

50℃ 

Temperature 

(℃) 
𝛽 

 𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.99  𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.9999 

∆𝑛∗ ∆𝑚∗ 𝐶s
∗ 𝑅𝑠

∗(800) ∆𝑛∗ ∆𝑚∗ 𝐶s
∗ 𝑅𝑠

∗(800) 

25 

0.01 2 0 100 0.99937 
1 3 

120 
0.99994 

2 1 1.00000 

0.02 
1 3 

120 
0.99217 

3 0 125 0.99992 
2 1 0.99885 

0.03 3 0 125 0.99825 4 0 150 0.99998 

50 

0.01 2 1 120 0.99994 
2 1 

120 
0.99994 

1 3 0.99912 

0.02 2 1 120 0.99288 3 1 150 1.00000 

0.03 2 2 140 0.99518 3 2 175 0.99997 
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Table 8  

Enumeration of (∆𝑛 × ∆𝑚) when 𝛽 = 0.01 and 𝑡𝑚 = 800 Cycles at 25℃  

 

 ∆𝑚 

 0 1 2 3 4 5 

∆𝑛 

0 
𝐶s = 50 60 70 80 90 100 

𝑅𝑠(𝑡𝑚) = 0.00000 0.00001 0.02899 0.40341 0.81533 0.95699 

1 
75 90 105 120** 135 150 

0.38360 0.95579 0.99842 0.99994 1.00000 1.00000 

2 
100* 120** 140 160 180 200 

0.99937 1.00000 1.00000 1.00000 1.00000 1.00000 

3 
125 150 175 200 225 250 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

4 
150 180 210 240 270 300 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

5 
175 210 245 280 315 350 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

 

Table 9 

Enumeration of (∆𝑛 × ∆𝑚) when 𝛽 = 0.01 and 𝑡𝑚 = 500 Cycles at 50℃ 

  ∆𝑚 

  0 1 2 3 4 5 

∆𝑛 

0 
50 60 70 80 90 100 

0.00000 0.00000 0.00000 0.00374 0.22492 0.71469 

1 
75 90 105 120* 135 150 

0.00044 0.50036 0.97207 0.99912 0.99997 1.00000 

2 
100 120** 140 160 180 200 

0.97387 0.99994 1.00000 1.00000 1.00000 1.00000 

3 
125 150 175 200 225 250 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

4 
150 180 210 240 270 300 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

5 
175 210 245 280 315 350 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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As shown in Table 7, the optimal number of redundant components increases, 

which means the system reliability decreases, when the 𝛽 value increases from 0.01 to 

0.03. To explain this trend, we examine the effect of 𝛽 on the component reliability.  

Table 10 and Figure 8 show the component reliability at 𝑡𝑚 = 800 cycles for various 

(∆𝑛, ∆𝑚) configurations. With the (0,0) or (0,1) redundancy design, the cell reliability 

improves as the 𝛽 value increases from 0.01 to 0.05. The dependence of the cell reliability 

on 𝛽 under the (0,2) configuration does not show a monotonic trend. The cell reliability 

decreases at first and then increases as the value of 𝛽 decreases.  However, the system 

reliability cannot satisfy the system reliability requirement with the first three 

configurations. On the other hand, the component reliability decreases as 𝛽 increases for 

any (∆𝑛, ∆𝑚) when the number of redundant cells is at least 5, and hence more redundant 

cells are needed when 𝛽 increases from 0.01 to 0.05. In addition, it can been seen from 

Table 10 and Figure 8, adding redundant cells improves the reliability of individual cells 

for a given 𝛽 value due to the load reduction on individual cells. 

 

Table 10  

Cell Reliability at 800 Cycles for Different 𝛽 Values and (∆𝑛 × ∆𝑚) Configurations 

(∆𝑛 × ∆𝑚) (0,0) (0,1) (0,2) (1,0) (0,3) (0,4) (1,1) (2,0) 

# of redundancy cells 0 2 4 5 6 8 8 10 

𝑅𝑐(800) 

𝛽 = 0.01 0.0226 0.2409 0.5880 0.7235 0.8207 0.9281 0.9281 0.9712 

𝛽 = 0.02 0.0852 0.3217 0.5835 0.6826 0.7601 0.8631 0.8631 0.9202 

𝛽 = 0.03 0.1394 0.3724 0.5855 0.6677 0.7337 0.8273 0.8273 0.8852 

𝛽 = 0.05 0.2170 0.4249 0.5931 0.6578 0.7111 0.7907 0.7907 0.8444 
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Figure 8  

The Effect of 𝛽 on the Cell Reliability at 25℃  

 

 

The structure function used to describe the relationship between system 

performance and system performance has multiple definitions. Liu et al [145] assumed 

that the performance of a parallel subsystem is determined by the best cell in the 

subsystem and used the structure function given by Eq. (12). Table 11 compares the 

optimal solutions assuming the two different structure functions given by Eq. (10) and 

Eq. (12), respectively. For a given 𝛽 value, the structure function given by Eq. (12) yields 

an optimal solution with less redundant components than that of the structure function 

given by Eq. (10) because 𝑅𝑠(𝑁|𝛥𝑛, 𝛥𝑚) derived from the structure function Eq. (12) is 

higher than 𝑅𝑠
′(𝑁|𝛥𝑛, 𝛥𝑚) under a given system configuration. 
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Table 11  

Comparison of Optimal Solutions Assuming Two Different Structure Functions 

 𝑅𝑟𝑒𝑞(𝑡𝑚) 𝛽 
𝑌s in Eq. (20) 𝑌s

′ in Eq. (22) 

∆𝑛∗ ∆𝑚∗ 𝐶s
∗ ∆𝑛∗ ∆𝑚∗ 𝐶s

∗ 

0.99 

0.01 2 0 100 1 1 90 

0.02 
1 3 

120 2 0 100 
2 1 

0.03 3 0 125 2 0 100 

0.05 
3 1 

150 2 0 100 
4 0 

0.9999 

0.01 
1 3 

120 2 0 100 
2 1 

0.02 3 0 125 2 1 120 

0.03 4 0 150 2 1 120 

0.05 5 0 175 3 0 125 

 

 

4.3 Age-Based Replacement Model for Battery Pack System 

 Following the configuration decided by the redundancy design in the last 

subsection, the maintenance design is carried out on the battery pack system to prolong 

the life of EVs and ensure the safety of drivers and passengers. Regular maintenance and 

repair are very important in the use of a car. A battery pack system is an important part to 

support the driving energy for electric vehicles. And since the difficulty in the battery 

pack system repair, the maintenance strategy generally used for the battery pack system is 

the replacement. Hence, this subsection focuses on the construction of an age-based 

replacement model for battery pack systems in EVs. The system reliability function has 

already been defined in Eq. (11). The age-based replacement model is given in Eq. (8). 

The decision variable in this model only includes the maintenance interval which is the 
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number of charge/discharge cycles between two maintenance. Finally, the optimization 

model is summarized as, 

𝐶s(𝑇) = 𝐶∞(𝑇) + (
𝐴
𝑃⁄ , 𝐼, 𝑙) ∗ 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 

=
𝐶𝑐𝑚𝐹𝑠(𝑇) + 𝐶𝑝𝑚(1 − 𝐹𝑠(𝑇))

∫ (1 − 𝐹𝑠(𝑡))
𝑇

0
𝑑𝑡

+
𝐼(1 + 𝐼)𝑙

((1 + 𝐼)𝑙 − 1)
∗ 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 

𝐶𝑝𝑚 = 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑐𝑐 ∗ (𝑚 + ∆𝑚)(𝑛 + ∆𝑛) 

𝐶𝑐𝑚 = 𝐶𝑝𝑚 + 𝐶𝑑 

The average upper bound for most EV batteries to replace is 10 years. The 

batteries generally fully charge/discharge 200 cycles per year. Hence, this dissertation 

assumes that the total lifetime of the battery pack system is 𝑙 = 200 × 10 =

2000 𝑐𝑦𝑐𝑙𝑒𝑠. Assuming the interest rate is 1% 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 which means the interest rate 

𝐼 = 1%/200 = 5 × 10−5 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒, a 2 × 5 battery pack system is studied at 25℃.  

Figure 9 presents the optimal maintenance time interval 𝑇∗ = 887 with cost 𝐶𝑠
∗ =

0.1968 of the age-based replacement model when 𝛽 = 0.01 and 𝐶𝑑 = 500 at 25℃. The 

lifecycle system cost rate decreases first and then increases as the cycle number increases. 

Finally, the cost rate becomes horizontal gradually. In beginning, the increasing cycle 

number means the reduction times of PM, and the cost is decreasing accordingly. But the 

probability of CM occurrence is increasing as the PM time interval increases. Then the 

system cost will increase as the cycle number increases after a specific cycle number. The 

optimal solutions are the trade-off that we want to find between these two problems.  
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Figure 9  

Optimization of the Age-Based Maintenance Model when 𝛽 = 0.01  and  

𝐶𝑑 = 500 at 25℃ 

 

    

Then this dissertation considers the effect of the value of 𝛽. The optimal solutions 

under the different values of 𝛽 are shown in Table 12. For example, when 𝛽 = 0.01 and 

𝐶𝑑 = 5, the optimal design is (∆𝑛, ∆𝑚) = (2, 0) and the optimal maintenance interval is 

𝑇∗ = 1179 with cost 𝐶𝑠
∗ = 0.1742. The optimal designs are obtained from the 

redundancy optimization model shown in Table 7. Then the optimal maintenance interval 

is found based on the specific configuration. What can be clearly seen is that the lifecycle 

system cost rate increases as 𝛽 increase. Since the mean value of battery performance is a 

constant value in this model, the variance among the batteries in the battery pack system 

increases as 𝛽 increases. As mentioned in [143], the degradation of batteries performance 

is accelerated for the system which is composed of several batteries with different 
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degradation levels. The capacity of batteries degraded faster for the batteries with higher 

variance. Hence, the system reliability decreases as 𝛽 increases which leads to the 

lifecycle system cost rate increases. And as the additional cost 𝐶𝑑 increases, the 𝐶𝑐𝑚 

increases, and then the lifecycle system cost rate also increases. 

 

Table 12 

Optimal Solutions for Different Additional Cost Values 𝐶𝑑 and Different 𝛽 Values at 25

℃ with 𝑡𝑚 = 800 Cycles 

𝛽 𝐶𝑑 
 𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.99  𝑅𝑟𝑒𝑞(𝑡𝑚) = 0.9999 

∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠
∗ ∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠

∗ 

0.01 

5 2 0 1179 0.1742 2 1 1446 0.1884 

50 2 0 995 0.1853 2 1 1220 0.1988 

500 2 0 887 0.1968 2 1 1089 0.2100 

0.02 

5 2 1 1513 0.1938 3 0 1603 0.1937 

50 2 1 1147 0.2095 3 0 1247 0.2074 

500 2 1 955 0.2298 3 0 1062 0.2240 

0.03 

5 3 0 1691 0.1971 4 0 2000 0.2129 

50 3 0 1208 0.2141 4 0 1523 0.2272 

500 3 0 977 0.2379 4 0 1259 0.2468 

0.05 

5 4 0 2000 0.2177 5 0 2000 0.2359 

50 4 0 1477 0.2361 5 0 1795 0.2498 

500 4 0 1125 0.2673 5 0 1400 0.2761 

  

 

Table 13 shows the optimal maintenance interval for a maintenance model 

without redundant cells added to the system. It also means there is no reliability 

constraint when charge/discharge 𝑡𝑚 = 800 cycles. When 𝐶𝑑 = 5  and 𝛽 = 0.01, the 
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optimal cost in Table 12 is 𝐶𝑠
∗ = 0.1742 with  𝑅𝑟𝑒𝑞(800) = 0.99. While the optimal cost 

in Table 13 is 𝐶𝑠
∗ = 0.1576 without reliability constraint at 𝑡𝑚 = 800 cycles. Although it 

is lower than the optimal cost in Table 12, we should note that the system reliability is not 

guaranteed when charge/discharge 𝑡𝑚 = 800 cycles. The system without redundant cells 

is more likely to fail before 800 cycles and the drivers and passengers’ lives are 

threatened by the accidents. Hence, the additional cost 𝐶𝑑  caused by unpredictable 

accidents may be very high.  Then if the additional cost 𝐶𝑑  increases to 500, the optimal 

cost in Table 13 is higher than the optimal cost in Table 12. Hence, people generally 

prefer the system with redundant cells and reliability constraints at 𝑡𝑚 = 800 cycles in 

Table 12 with the consideration of safety. 

 

Table 13  

Optimal Maintenance Time Interval for Different Additional Cost Values 𝐶𝑑 and 

Different 𝛽 Values at 25℃ without Redundant Cells 

𝛽 0.01 0.02 0.03 0.05 

𝐶𝑑 5 50 500 5 50 500 5 50 500 5 50 500 

𝑇∗ 492 388 326 516 351 264 554 332 225 652 315 181 

𝐶𝑠
∗ 0.1576 0.1796 0.2042 0.167 0.2036 0.2544 0.1742 0.2234 0.3054 0.1858 0.2561 0.4143 

 

4.4 Joint Model of Redundancy and Maintenance Design for Battery Pack System 

This section focuses on the construction of a joint model of redundancy and 

maintenance design for battery pack systems in EVs. The objective function of this model 

is to minimize the lifecycle system cost rate as described in Eq. (8). With the 

consideration of business, this study builds three kinds of models with different reliability 
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constraints. In other words, the manufacturers have three choices to pick. Each one of 

them has its advantages and disadvantages.  

1) No constraint on reliability at any time. 

2) The system reliability no less than the requirement 𝑅𝑟𝑒𝑞 when 𝑡 = 𝑡𝑚 which is a 

pre-specified warranty, that is 

s. t.     𝑅𝑠(𝑡𝑚|𝛥𝑛, 𝛥𝑚) ≥  𝑅𝑟𝑒𝑞. 

3) The system reliability no less than the requirement 𝑅𝑟𝑒𝑞 when 𝑡 = 𝑇 which is the 

maintenance interval, that is 

s. t.      𝑅𝑠(𝑇|𝛥𝑛, 𝛥𝑚) ≥  𝑅𝑟𝑒𝑞. 

Table 14 shows the optimal solutions with different design methods. Table 15 

shows the optimal solutions with different additional costs. Table 16 shows the optimal 

solutions with different 𝛽 values. According to the optimal solutions of joint design 

model shown in Table 14, Table 15, and Table 16, the lifecycle system cost rate in the 

first condition which is a system without reliability constraint is lower than the other two 

systems. The reason is that the system reliability is not guaranteed at any time during the 

lifetime of the system. The system has a high probability to be failed before the warranty. 

Hence, the security of this kind of design is the lowest of the three designs. The system 

with reliability constraint 𝑅(800) ≥ 𝑅𝑟𝑒𝑞  and the system with reliability constraint 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 have higher system reliability requirement, and therefore have higher cost. 

Hence, manufactures can choose each one of them based on their own consideration. If 

one prefers lower cost, the model with no constraint is a better choice, while if one 

prefers more reliable products, the other two models have a greater chance to be selected. 
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And the system cost for the other two systems are decided by unit cost, 𝛽 and 𝑅𝑟𝑒𝑞. The 

joint model with the third constraint has the highest cost when 𝑅𝑟𝑒𝑞 = 0.9999 which has 

the stringent reliability requirements. And it also produces the most reliable product 

among these three models. Then people can choose the system with a lower cost at 

specific values of parameters in the model. 

Since the redundancy design in the separate design system has a constraint on 

reliability at 800 cycles, it is reasonable to compare the minimal costs in the separate 

design system with the joint design model with 𝑅(800) ≥ 𝑅𝑟𝑒𝑞. As shown in Table 14,  

the system cost of a separate design system is 𝐶𝑠
∗ = 0.1913 when 𝑅𝑟𝑒𝑞 = 0.9999, while 

the cost of a joint design system when 𝑅(800) ≥ 𝑅𝑟𝑒𝑞 is 𝐶𝑠
∗ = 0.1901. Then this study 

concludes that the joint design of redundancy and maintenance is more effective than the 

separate design to reduce the system cost.  

 

Table 14  

Optimal Solutions under Different Designs when 𝛽 = 0.01  and 𝐶𝑑 = 100 at 25℃ 

Design models 
𝑅𝑟𝑒𝑞 = 0.99 𝑅𝑟𝑒𝑞 = 0.9999 

∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠
∗ ∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠

∗ 

Separate design 2 0 958 0.1797 2 1 1175 0.1913 

Joint 

design 

No constraint 1 0 654 0.1742 1 0 654 0.1742 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 2 0 958 0.1797 3 0 1272 0.1901 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 1 0 603 0.1786 2 0 748 0.2037 

 

Then this study considers the systems with different additional cost values 𝐶𝑑 and 

different 𝛽 values shown in Table 15 and Table 16, respectively. The system prefers more 
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redundant cells or more frequent PM when  𝐶𝑑 increases which means 𝐶𝑐𝑚 increases. 

Because the system tries to avoid using CM if the CM is very expensive. And it has the 

same trend when 𝛽 increases from 0.01 to 0.05 due to the component reliability 

decreases as 𝛽 increases which is proved in Table 10 and Figure 8. And one can also 

compare the results in Table 16 with the system without redundant cells shown in Table 

13. The cost of a maintenance system with redundant cells has a lower cost than a 

maintenance system without redundant cells. Hence, both the separate design model and 

the joint design model have better solutions than the maintenance system without 

redundant cells. Adding redundant cells is an effective way to minimize system cost. 

 

Table 15  

Optimal Solutions for Different Additional Cost Values 𝐶𝑑 in Corrective Maintenance 

and Different Reliability Constraints when 𝛽 = 0.01 at 25℃ 

𝐶𝑑 Reliability 
constraints 

𝑅𝑟𝑒𝑞 = 0.99 𝑅𝑟𝑒𝑞 = 0.9999 

∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠
∗ ∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠

∗ 

5 

No constraint 0 0 492 0.1530 0 0 492 0.1530 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 2 0 1179 0.1651 2 1 1446 0.1774 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 1 0 603 0.1771 2 0 748 0.2037 

50 

No constraint 1 0 683 0.1696 1 0 683 0.1696 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 2 0 995 0.1762 3 0 1315 0.1873 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 1 0 603 0.1778 2 0 748 0.2038 

500 

No constraint 1 0 597 0.1850 1 0 597 0.1850 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 2 0 887 0.1877 3 0 1189 0.1967 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 1 0 597 0.1850 2 0 748 0.2038 
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Table 16  

Optimal Solutions for Different 𝛽 Values and Different Reliability Constraints when 𝐶𝑑 =

500 at 25℃ 

𝛽 Reliability 
constraints 

𝑅𝑟𝑒𝑞 = 0.99 𝑅𝑟𝑒𝑞 = 0.9999 

∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠
∗ ∆𝑛∗ ∆𝑚∗ 𝑇∗ 𝐶𝑠

∗ 

0.01 

No constraint 1 0 597 0.1918 1 0 597 0.1918 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 2 0 887 0.1968 3 0 1189 0.2080 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 1 0 597 0.1918 2 0 748 0.2129 

0.02 

No constraint 2 0 778 0.2171 1 0 778 0.2171 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 3 0 1062 0.2240 3 0 1062 0.2240 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 2 0 758 0.2177 3 0 810 0.2533 

0.03 

No constraint 2 0 706 0.2355 2 0 706 0.2355 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 3 0 977 0.2379 4 0 1259 0.2468 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 2 0 660 0.2382 4 0 890 0.2873 

0.05 

No constraint 3 0 860 0.2636 3 0 860 0.2636 

𝑅(800) ≥ 𝑅𝑟𝑒𝑞 4 0 1125 0.2673 5 0 1400 0.2761 

𝑅(𝑇∗) ≥ 𝑅𝑟𝑒𝑞 3 0 749 0.2726 5 0 845 0.3456 

 

 

In this joint design model, there are three constraints given to select in this 

dissertation. And the joint design model is more effective than the separate design model 

to reduce the system cost rate. Then this dissertation provides some business 

recommendations for manufactures. If the manufacture prefers minimal cost to reliable 

products, the first constraint is more suitable. But the product may fail before the 

warranty. If the manufacture has a higher requirement on the system reliability, the last 

two constraints may be more attractive.   
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Chapter 5: Conclusion 

During the usage of machines in the industrial field, it seems reasonable that the 

degradation of machines is continuous in the actual application as time elapses. Based on 

the study of multi-state systems, this study constructs optimization models regarding the 

parallel-series continuous-state systems based on the concept of structure function. The 

relationship between the performances of the components and the system is expressed by 

the structure function.  

The main contributions of this dissertation are the construction of three models. 

The models built in this study include: 

1) A nonlinear integer programming model was formulated to find the cost-

optimal redundancy design for CSS considering a mission reliability constraint. 

Both the enumeration method and GA are used to solve the optimization model. 

2) An age-based maintenance model is introduced in this study to find the optimal 

maintenance interval with a minimal period cost rate for CSS. 

3) A joint design of redundancy and maintenance model considering different 

kinds of reliability constraints is formulated to find the optimal redundancy 

design and optimal maintenance interval for CSS simultaneously. 

Another contribution is that the battery pack systems in EVs which is a typical 

parallel-series continuous-state system are analyzed in this study. To calculate the 

optimal solutions of parallel-series continuous system, GA and enumeration method are 

adopted in the optimization models. In the battery pack system of EVs, the following 

conclusions are summarized: 
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1) According to the result of the redundancy optimization model, the reliability of 

the battery pack system could be improved with the addition of redundant cells. 

2) Adding redundant cells in parallel connections is better than series connections 

to improve system reliability. 

3) There are three kinds of systems with different reliability constraints built for 

the battery pack system. Each one has its own characteristics. The manufactures 

can choose each one of them with their own consideration. 

4) The joint design of redundancy and maintenance is more effective than the 

separate design to reduce the system cost. 

5) Both the scale parameter value 𝛽 and the additional cost 𝐶𝑑 have a great impact 

on the optimal solutions. 

For further study, more realistic assumptions can be added in this study. The 

following aspects are possible future research directions: 

1) The current study assumed that components are functionally identical in a 

system. A possible future extension will consider systems with non-identical 

components. The continuous-state reliability-redundancy allocation problem, 

which is a combination of component selection and redundancy allocation, will 

be explored.  

2) The system with multiple failure modes is a more realistic assumption for 

maintenance models. It is necessary to add shocks which subject to Poisson 

process in both the maintenance model and the joint design model. And it is 

possible to assume that the failure modes are not independent.  
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3) Not only the TBM model, but this study can also consider the construction of 

CBM models for the maintenance design model and the joint design model. 
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