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Abstract 

SHAW, OTTO J., Ph.D., August 2021, Curriculum and Instruction, Mathematics 

Education 

High School Mathematics Teachers’ Perspectives on Selecting, Planning, Setting Up, and 

Implementing Instructional Tasks With High Cognitive Demand 

Director of Dissertation: Gregory D. Foley 

In school mathematics, students’ opportunity to learn varies according to the 

nature of instruction. Mathematical tasks––that is, problems or activities for student 

engagement––are critical instructional tools that shape students’ mathematical thinking 

and reasoning. The cognitive demand of a task––the amount, types, and levels of thinking 

required to solve it––often changes as a teacher modifies the task during planning, setup, 

and implementation with students. Therefore, school mathematics teachers are 

instrumental in determining what and how much students learn through their selection 

and implementation of instructional tasks. 

This study explored the perspectives of 9 high school mathematics teachers on 

their selection, planning, setup, and implementation of mathematical tasks and identified 

the teachers’ reasons for instructional decisions at each of these four phases. Using a 

thematic analysis approach, the researcher interviewed teachers before and after 

observing the enactment of a high cognitive demand task. Interviews also focused on 

teachers’ perspectives of how their task unfolded and the cognitive demand associated 

with each phase of the task. The researcher and a co-observer analyzed each teacher’s 

instructional task as it was (a) selected from curricular source materials, (b) adjusted 
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during the teacher’s planning, (c) set up prior to student engagement, and (d) 

implemented with students, using the Instructional Quality Assessment rubrics (Boston, 

2012) at each phase.  

Interview data yielded 18 themes for teachers’ task use: 5 for task selection, 5 for 

task planning, 3 for task setup, and 5 for task implementation. When selecting tasks, 

teachers frequently considered their learning environment (face-to-face, remote, or 

hybrid), potential student engagement, real-world contexts, mathematical content, and 

previous success with the task. During planning, teachers were flexible, adjusted their 

plan based on the learning environment, attended to recommendations from professional 

development, established their goals for students, and anticipated difficulties the students 

might face. The setup phase of instruction typically included a brainstorming stage, a 

full-class discussion, and teachers’ communication of their expectations for student 

engagement. During task implementation, teachers encouraged productive struggle, asked 

questions, provided support, facilitated students’ engagement, and elicited evidence of 

students’ thinking and reasoning. 

The researcher and the co-observer analyzed and reached a consensus on the 

cognitive demand of each phase of the teachers’ tasks by examining documents and 

observing teachers’ instruction. Among the 8 teachers whose tasks were analyzed from 

selection to implementation, 1 teacher’s task increased in cognitive demand from 

selection to implementation, 3 teachers’ tasks maintained cognitive demand, and 4 

teachers’ tasks experienced a decline in cognitive demand. Interviews with teachers 

suggested that their perspectives about cognitive demand were sometimes inconsistent 
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with that of the researcher; 3 teachers explained that their task implementation 

maintained high cognitive demand in instances where the researcher and co-observer’s 

assessment suggested declines in cognitive demand.  

The present study suggests that the planning phase is influential in teachers’ task 

use and merits inclusion in the Stein et al. (2009) Mathematical Tasks Framework. 

Another promising finding is that, of the 8 tasks that were analyzed from selection to 

implementation, 5 were implemented at high cognitive levels. These teachers had been 

given curricular materials containing high cognitive demand tasks and were engaged in 

ongoing professional development to implement the materials effectively. This suggests 

teacher professional development coupled with cognitively demanding curricular 

materials as a factor that positively influences teachers’ use of instructional tasks, 

especially when the professional development focuses on the use of high cognitive 

demand tasks. Based on the findings of this study, future research should further explore 

teachers’ perspectives of mathematical tasks and cognitive demand because mismatches 

may occur between researchers’ and teachers’ analysis of the same task. In addition, the 

methods of the present study should be adapted for use at other grade levels, in other 

instructional circumstances, and with other content foci. 
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Chapter 1: Introduction 

Teaching influences student learning. In particular, differing types of instruction 

provide students with varying opportunities to learn (Boston & Wilhelm, 2017). 

Instruction focusing on lower-level cognitive processes, such as memorizing facts and 

performing routinized procedures, enhances students’ knowledge and skill in these areas. 

By contrast, instruction focusing on the higher-level cognitive processes of conceptual 

understanding and mathematical connections develops students’ ability to think and 

reason mathematically (Jackson et al., 2013; Stigler & Hiebert, 1999). Research has also 

shown that students’ engagement with mathematical tasks influences what and how much 

they learn (Ni et al., 2018; Stein et al., 2009).  

However, few studies have investigated high school mathematics teachers’ 

perspectives as they select, plan, set up, and implement instructional tasks with their 

students and reflect on these processes. The aim of this study was to explore how high 

school mathematics teachers use mathematical tasks in their instruction and how they 

reflect on their decision-making as they select a task from curricular materials, plan to 

implement the task, set up the task for student engagement, and implement the task with 

students. Moreover, I sought to identify high school mathematics teachers’ perspectives 

concerning the change in the nature of their tasks throughout this process. By exploring 

teachers’ perceptions, this study intended to enhance researchers’, teachers’, and teacher 

educators’ knowledge of using mathematical tasks to develop students’ mathematical 

thinking and reasoning. 
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Background 

Improving mathematics teaching and learning has been at the forefront of 

mathematics education research and reform in the United States for decades (National 

Council of Teachers of Mathematics [NCTM], 1989, 2000, 2014, 2018; Stein et al., 2009; 

Stigler & Hiebert, 1999). For example, emphasis on improving school mathematics 

teaching practices and students’ conceptual understanding increased after the Third 

International Mathematics and Science Study (TIMSS), a video study involving students 

in Grades 4, 8, and 12 among 41 countries (Stigler & Hiebert, 1999). The TIMSS study in 

the 1990s indicated that, at the time, U.S. students underperformed in mathematics 

compared to students in many other countries. It also showed that U.S. mathematics 

teachers spent the majority of class time focusing on computations and procedures rather 

than engaging their students in developing conceptual understanding. Stigler and Hiebert 

asserted that U.S. mathematics teachers participating in the TIMSS study frequently 

emphasized low-level thinking skills, such as memorization and procedural fluency 

without connections to underlying mathematical concepts. Mathematics instruction by 

such teachers typically included demonstrations of how to solve new problems followed 

by student practice, whereas teachers in higher-performing countries (e.g., Japan) 

assigned challenging problems and allowed students to develop their own solution 

pathways.  

According to Stigler and Hiebert (1999), “the fact that teaching is a cultural 

activity explains why teaching has been so resistant to change” (p. 12). Moreover, the 

National Council of Teachers of Mathematics (NCTM) suggests that improvements in 
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mathematics education have not made a substantial and lasting impact in the United 

States since the 1996 TIMSS study (NCTM, 2014). The 2007 TIMSS (renamed the 

Trends in International Mathematics and Science Study) results indicated that, though 

U.S. middle school students scored just above the international mean in mathematics, 

they were surpassed by students in Singapore, Korea, and Japan. Moreover, only 6% of 

U.S. students scored in the “advanced” category, whereas 40% of students in Korea and 

Singapore and 26% in Japan fell into the same category (Gonzales et al., 2008; Mullis et 

al., 2008).  

U.S. students participating in the Programme for International Student 

Assessment (PISA) in 2012 struggled with tasks involving real-world models and 

mathematical reasoning (Organisation for Economic Co-operation and Development 

[OECD], 2013). Moreover, the ACT 2013 Profile Report and the 2013 SAT Report on 

College and Career Readiness showed that only 44% of high school graduates were 

considered ready for college mathematics (ACT, 2013; College Board, 2013). The 

difficult work of mathematics teachers has only increased since the TIMSS study in the 

1990s, as they are faced with “supporting increasingly diverse groups of students to attain 

increasingly rigorous learning goals” (Cobb et al., 2018, p. 1).  

NCTM and other professional organizations have released numerous documents 

aiming to guide students, teachers, parents, and administrators toward a clearer 

understanding of the mathematical knowledge required of students and effective teaching 

practices that support it. In 1989, NCTM’s Curriculum and Evaluation Standards for 

School Mathematics presented four curriculum standards for Grades 9–14 relating to 
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mathematical practices: mathematics as problem solving, mathematics as communication, 

mathematics as reasoning, and mathematical connections. In 2000, NCTM released 

Principles and Standards for School Mathematics, emphasizing that the teaching 

standards should be addressed by focusing on mathematical problem solving and sense 

making rather than attending to the rote memorization of facts and procedures through 

extended periods of individual seatwork practicing routine tasks and direct instruction. 

Instead, NCTM advocates that Standards-based instruction (i.e., instruction tailored to 

the NCTM Principles and Standards for School Mathematics) should focus on the use of 

mathematical tasks––problems or activities that introduce new mathematical concepts, 

engage students, and challenge them to think deeply and work hard (Stein et al., 2009; 

NCTM, 2000). 

More recent NCTM documents have focused on inspiring teacher change and 

action; the statement of teaching and learning standards was no longer enough NCTM. 

According to Principles to Actions: Ensuring Mathematical Success for All, mathematics 

learning is an active process that requires teachers to challenge, support, and engage 

students through the implementation of mathematical tasks (NCTM, 2014). To provide 

students with opportunities to engage in high-level thinking, teachers should frequently 

select and implement tasks that promote mathematical reasoning and problem solving 

(NCTM, 2014). In 2018, NCTM published Catalyzing Change in High School 

Mathematics: Initiating Critical Conversations to identify and address challenges in high 

school mathematics. NCTM (2018) recommends that equitable mathematics teaching 

includes implementing tasks that allow students to develop positive mathematical 
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dispositions and mathematical identities, in addition to the use of tasks as described in the 

previous paragraphs.  

Throughout the past three decades, NCTM has emphasized the critical importance 

of instructional tasks and their influence on students’ mathematics learning and 

development. However, the use of tasks does not guarantee that students develop deep, 

conceptual understandings of mathematics; the teacher’s role is influential in determining 

the mathematics content to highlight, facilitating students’ work and discussions, and 

supporting students without taking over their mathematical thinking and work (NCTM, 

2000, 2014; Stein et al., 2009). Students’ mathematics learning is therefore influenced by 

the tasks in which they engage and the actions of teachers to support their engagement. 

Problem Statement 

In school mathematics, what students learn largely depends upon the tasks they 

are given and the work they do (Boston & Smith, 2011; Doyle, 1983, 1988). Tasks vary 

in the types of work and thinking required of students: “tasks that require different 

cognitive processes are likely to induce different kinds of learning” (Hiebert & Wearne, 

1993, p. 395). To support students in developing procedural fluency from conceptual 

understanding, research suggests that tasks emphasizing such skills should be at the heart 

of mathematics instruction (Jackson et al., 2013; Silver & Stein, 1996; Stein & Lane, 

1996). Such tasks require high levels of cognitive demand, that is, “the kind and level of 

thinking required of students in order to successfully engage with and solve the task” 

(Stein et al., 2009, p. 1). Mathematics instruction incorporating high cognitive demand 

tasks differs from typical U.S. mathematics instruction (Cobb et al., 2018; Stein et al., 
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2009), and teachers must possess sophisticated knowledge and skill as they respond to 

what students think, do, and say throughout their engagement with each task. However, 

empirical evidence suggests that the use of high cognitive demand tasks can enhance 

students’ conceptual understanding, problem-solving skills, and communication skills (Ni 

et al., 2018; Stein & Lane, 1996; Stigler & Hiebert, 2004), as well as their confidence and 

dispositions toward mathematics (Boaler & Staples, 2008; Ni et al., 2018; Silver & Stein, 

1996). 

 The complex nature of tasks with high cognitive demand presents teachers with 

numerous obstacles and barriers to successful implementation. Teachers do not always 

select tasks based on their cognitive demands (Boston & Smith, 2011; Remillard, 2005); 

in addition, instructional tasks are not always implemented at their highest potential 

(Boston & Smith, 2011; Stein et al., 1996). Researchers investigating mathematical tasks 

have typically focused on teachers’ task implementation, the influence of professional 

development (PD) to support teachers’ task implementation, and the relationship between 

task implementation and student learning. For example, Stein et al. (1996) found that the 

cognitive demand of a task that students engage with can differ from the cognitive 

demand of the same task as it appeared in source materials. Henningsen and Stein (1997) 

identified various factors that tend to influence such change, including classroom 

management problems and shifting focus to correct answers rather than mathematical 

understanding. However, more research is needed to investigate teachers’ perspectives 

and rationales as they engage their students in high-level tasks and reflect on their 

instruction. 
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Statement of the Research Questions 

The present study sought to explore the perspectives of high school mathematics 

teachers as they select, plan, set up, and implement high cognitive demand tasks. 

Teachers’ reasons for selecting, planning, setting up, and implementing tasks and their 

perspectives of cognitive demand were of particular interest. Therefore, the research 

questions guiding this study were the following:  

1. When attempting to use a high cognitive demand mathematical task, what actions 

do high school mathematics teachers take, and for what reasons, while 

a. selecting the task from written source materials? 

b. planning the task for use with their students? 

c. setting up the task immediately prior to student engagement? 

d. implementing the task as students engage with it? 

2. What reasons do high school mathematics teachers give to explain the change in 

the cognitive demand of a task across the four phases of selecting, planning, 

setting up, and implementing the task? 

3. What reasons do high school mathematics teachers give for assessing the 

cognitive demand of a task at each phase, and in particular, what reasons do they 

give when there is a mismatch between a teacher’s assessment of the cognitive 

demand of a task and the researchers’ assessment of that phase of the same task? 

By asking open-ended questions and probing deeper into high school mathematics 

teachers’ selection, planning, set up, and implementation of mathematical tasks, I aimed 

to uncovered various motivators for their actions and decision making at each stage. The 
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use of open-ended research questions allowed for an inductive approach that captured 

various factors such as teachers’ beliefs and motivation (Beswick, 2011; Collopy, 2003). 

 The first research question addressed each phase in the progression of a 

mathematical task. Described in Chapter 2, research by Stein and colleagues (Henningsen 

& Stein, 1997; Stein et al., 1996, 2009) suggests that mathematical tasks pass through 

three phases: (a) as they appear in written curricular materials, (b) as they are set up by 

teachers, and (c) as they are implemented by teachers and enacted by students in the 

classroom. I have identified and included a fourth task phase, tasks as they are designed 

by teachers in their lesson plans, because teachers may modify a task from how it 

appeared in source materials (Earnest & Amador, 2019). The tasks that they set up, in 

turn, may differ from what was planned. Moreover, Jackson et al. (2013) asserted that 

planning how to engage students when solving mathematical tasks is “central” (p. 655) to 

setting up tasks that maintain high cognitive demand. As I explain in Chapter 2, there are 

theoretical (Remillard, 2005) and empirical (James et al., 2016; Smith et al., 2008) bases 

for including a task planning phase, which was not included by Stein et al. (2009). 

The four aforementioned task phases are important to consider because the 

cognitive demand of a task may differ at each phase, depending on decisions made by the 

teacher and interactions between the teacher and students (Boston & Smith, 2011; 

Henningsen & Stein, 1997; Stein et al., 2009). The purpose of the first research question 

was to identify what high school mathematics teachers do when selecting, planning, 

setting up, and implementing instructional tasks and why they do these things. As I 

describe in Chapter 3, the research questions involve tasks that teachers perceive as high 
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cognitive demand for two reasons: First, high cognitive demand tasks provide students 

with greater opportunities to develop conceptual understanding and reasoning skills 

(Boston & Smith, 2011; Stein et al., 1996, 2009) and are therefore valuable to study. 

Second, I aimed to explore teachers’ perspectives of high cognitive demand tasks and 

what makes the cognitive demand high. 

The second research question focused on (a) the potential change in the cognitive 

demand of a task between the phases of selecting, planning, setting up, and 

implementing, and (b) the reasons that teachers gave explain such changes. This question 

addressed the underlying reasons that teachers associated with the maintenance of high 

cognitive demand tasks. Previous research suggests that the cognitive demand of a task 

can decline from one task phase to another. Moreover, high cognitive demand tasks are 

not always implemented to their highest potential (Boston & Smith, 2011; Cobb et al., 

2018; Henningsen & Stein, 1997). Considering these findings, the second research 

question explored high school mathematics teachers’ perspectives considering changes in 

cognitive demand from one task phase to the next. For example, one factor that tends to 

support high level task implementation in the literature is appropriate teacher scaffolding 

(Henningsen & Stein, 1997; Stein et al., 2009); additional research is needed illuminate 

teachers’ decisions about when to provide scaffolding and how much support to provide 

during task implementation. Examining the underlying reasons behind such decisions has 

provided further insights to support high school mathematics teachers’ implementation of 

high cognitive demand tasks. 
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The third research question explored how teachers’ analysis of a task compared to 

that of the researcher. Determining the cognitive demand of a task can be challenging 

because low-level tasks often possess surface-level features consistent with reform-

oriented tasks (Boston & Smith, 2011; Stein et al., 2009). For example, low-cognitive 

tasks involving the use of manipulatives, real-world contexts, or diagrams may appear to 

be high in cognitive demand; however, such tasks that imply the use of well-rehearsed 

procedures are considered to be low in cognitive demand by mathematics educators and 

researchers (e.g., Stein et al., 2009).  

As I explain in Chapter 3, I required research participants to select, plan, set up, 

and implement what they considered to be high cognitive demand tasks and had them 

analyze the tasks using the Stein et al. (2009) Task Analysis Guide (TAG), a tool 

designed for teachers to learn about and analyze instructional tasks. Instead, I used the 

Instructional Quality Assessment (IQA) toolkit (Boston, 2012), an instrument that was 

influenced by the TAG but requires training to implement as intended by its developers. 

In instances where a mismatch occurred (i.e., a teacher identified a task as in high 

cognitive demand using the TAG, but I identified it as low in cognitive demand using the 

IQA), I sought to determine potential reasons why such mismatched might have occurred. 

In Chapter 3, I explain that I did not directly probe teachers for additional information 

when mismatches occurred because I did not want to influence their analysis of their 

tasks. Instead, I considered ways in which our analyses of the task differed. 
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Research Purpose 

The goal of this study was to explore the perspectives of high school mathematics 

teachers’ as they engaged in selecting, planning, setting up, and implementing 

instructional tasks. As past studies have examined the use of mathematical tasks from a 

behavioral perspective (e.g., teacher actions that lower or maintain cognitive demands), 

this study delved deeper and investigated the underlying reasons influencing these 

decisions. This study illuminated how high school mathematics teachers conceptualize 

the process of selecting, planning, setting up, and implementing mathematical tasks. 

Additionally, I have identified various reasons that high school mathematics teachers 

attribute to the high cognitive demand of tasks and the potential changes in cognitive 

demand between task phases. 

The primary focus of this research was to investigate how high school 

mathematics teachers use mathematical tasks and what guided their decision-making. 

Specifically, I was interested in the use of high cognitive demand tasks because they can 

promote students’ conceptual understanding, problem-solving skills, and communication 

skills (Boston & Smith, 2011; Hiebert & Wearne, 1993; NCTM, 2018), aligning with the 

standards and recommendations of mathematics teaching reform efforts. Identifying the 

underlying reasons for teachers’ task use has provided evidence of effective teacher 

mindsets and rationales that may enhance the practice of high school mathematics 

teachers and lead to improvements in student learning.  

Henningsen and Stein (1997) and Stein et al. (1996), among others, have 

identified reasons for the potential change in the cognitive demand between setup and 
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implementation. These factors are shown in Table 1. For example, the selection of a 

mathematical task that builds on students’ prior knowledge is based on the teacher’s 

action of selecting such task. However, previous research has not explored teachers’ 

perceptions and the reasons underlying such actions. Research investigating why and how 

a task was selected has provided insights that can enhance mathematics teachers’ ability 

to analyze tasks based on their cognitive demand and select tasks accordingly. This study 

built on previous research by exploring some of the Henningsen and Stein (1997) factors 

from teachers’ perspectives and revealing the underlying reasons associated with such 

factors. 

 

Table 1 

Factors Influencing the Maintenance or Decline of Cognitive Demand 

Cognitive Demand Is Maintained Cognitive Demand Declines 

Tasks build on students’ prior knowledge Inappropriateness of the task 

Teacher scaffolding Classroom management problems 

Appropriate amount of time Too much or too little time 

High-level performance modeled Lack of accountability 

Teacher presses for explanations Challenges become nonproblems 

Teacher draws conceptual connections Focus shifts to correct answer 

Note. This table includes factors identified by Henningsen and Stein (1997) that influence 

changes between task selection and implementation.  
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Educational Significance 

Examining high school mathematics teachers’ actions and reasons for selecting, 

planning, setting up, and implementing tasks has several implications. The impetus for 

this research was to understand what makes high school mathematics teachers effective 

when selecting, planning, setting up, and implementing high cognitive demand tasks 

because such tasks can be beneficial for students’ conceptual understanding (Stein et al., 

2009; NCTM, 2014). Moreover, high cognitive demand tasks can enhance students’ 

mathematical understanding and skills consistent with reform efforts in mathematics 

education. For example, The National Research Council (NRC) defines mathematics 

proficiency as comprised of five elements: conceptual understanding, procedural fluency, 

strategic competence, adaptive reasoning, and productive disposition (NRC, 2001). To 

help students meet these goals, NCTM recommends the use of high-leverage teaching 

practices (Ball & Forzani, 2010), such as implementing tasks that promote reasoning and 

problem solving, facilitating meaningful mathematical discourse, and building fluency 

from conceptual understanding (NCTM, 2014). High cognitive demand tasks can help 

students reach these goals, when implemented using effective instructional practices 

(Boston & Smith, 2011; NCTM, 2014). 

The Common Core State Standards for Mathematics (CCSSM) include standards 

for mathematical practice that should be met by all high school students (National 

Governors Association Center for Best Practices and Council of Chief State School 

Officers [NGA & CCSSO], 2010). These standards include “make sense of problems and 

persevere in solving them,” “reason abstractly and quantitatively,” and “use appropriate 
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tools strategically” (pp. 6–7). The traditional approach of having students memorize facts 

and apply procedures mindlessly does not help students to meet these standards. 

However, mathematical tasks that are planned, set up, and implemented at high cognitive 

levels can help students develop mathematics proficiency and meet the CCSSM standards 

for mathematical practice (NCTM, 2014). Evidence of teachers’ perspectives, including 

the successes and challenges of high-level task implementation, contributes to efforts that 

support teachers in this work. Through this study, teachers were given opportunities to 

explain how they made instructional decisions, providing insights that have illuminated 

additional obstacles to high-level task implementation and methods of overcoming them. 

This study has benefited participating teachers by challenging them to think more 

deeply about their instruction and how it impacts student learning. By reflecting on the 

ways that they select, plan, set up, and implement mathematical tasks, research 

participants have enhanced their task analysis skills which will benefit their future 

practice. Interviews with research participants focusing on the underlying reasons that 

impact their instructional decisions have enhanced participants’ awareness of such 

reasons and decisions; increased awareness may lead these teachers to challenge their 

preexisting notions and reflect upon how these notions influence their task use. For 

example, beliefs about mathematics curriculum may guide teachers’ decisions concerning 

which tasks to select and how to modify them during their planning (Carson, 2011; 

Collopy, 2003; Philipp, 2007). Helping teachers to become more aware of these beliefs 

may evoke change that positively impacts how they analyze tasks. 
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This study has implications for mathematics teacher education. Evidence of 

teachers’ perspectives regarding mathematical tasks may help to guide mathematics 

teacher educators’ interactions with preservice teachers. Preservice mathematics teachers 

are likely to demonstrate some elements of similar perspectives, beliefs, attitudes, and 

rationales as the participants of this study; therefore, this study may serve to guide 

mathematics teacher educators as they instruct and guide their teacher candidates. This 

study may also guide future PD programs, especially those emphasizing the use of high 

cognitive demand tasks, by identifying ways to support teachers as they learn to use 

mathematical tasks in their instruction. Identifying teachers’ reasons for high-level task 

use at each task phase and reasons for change in cognitive demand will provide future PD 

programs and preservice teacher education programs with goals and strategies that 

support effective task use. Moreover, the present study may provide insights on the 

perspectives of high school mathematics teachers who choose to participate in task-based 

PD in the future. 

Finally, this study has addressed a gap in the literature concerning mathematics 

teachers’ use of instructional tasks. Tasks as they appear in curricular materials tend to 

differ from the tasks implemented by teachers (Boston & Smith, 2011; Stein et al., 1996, 

2007). Research has also identified various factors contributing to differences between 

tasks as set up and as implemented (Henningsen & Stein, 1997). However, less is known 

about what influences teachers’ decisions when selecting tasks, their rationales for 

modifying source tasks for their lesson plans, and their reasons for modifying tasks 

further when setting them up for students. Research investigating mathematics teachers’ 
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beliefs (e.g., Philipp, 2007) has suggested implications for mathematical tasks at each 

phase, but empirical evidence is lacking. The present study addressed this gap in the 

literature by identifying reasons that motivate the factors identified by Henningsen and 

Stein and reasons for teachers’ decision-making between the other task phases. 

Delimitations 

 The present study was delimited to the selection of high school mathematics 

teachers in the state of Ohio who have engaged in PD emphasizing the use of high 

cognitive demand tasks. Selecting teachers who have experience and training with the 

TAG allowed for the recruitment of participants who were more likely to select, plan, set 

up, and implement mathematical tasks at high cognitive levels. Such teachers were also 

more likely to be familiar with the constructs and language such as mathematical tasks 

and cognitive demand. Moreover, interviews investigating teachers’ perspectives 

captured meaningful and useful data because the teachers were already somewhat 

familiar with the Stein et al. (2009) Mathematical Tasks Framework (MTF) and TAG and 

the cognitive demands of tasks they used were initially high, as discussed in Chapter 4. 

 The purposeful sample for this study was taken from high school mathematics 

teachers in the state of Ohio for several reasons. As I describe in Chapter 3, recent PD 

programs in Ohio have focused on implementing instructional change at the high school 

level: two of such PD programs are for (a) the Ohio Mathematical Modeling and 

Reasoning (MMR) pilot course developed by the Ohio Department of Education (ODE) 

and (b) Advanced Teacher Capacity (ATC) programs hosted at Ohio University. The 

Ohio MMR course was pilot tested for its third year during the 2020–2021 academic 
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year, providing a source of research participants who had experienced relevant PD. 

Similarly, the two PD programs offered through ATC served high school mathematics 

teachers and incorporated the Stein et al. (2009) MTF and TAG as integral PD 

components. Teachers involved in the MMR and ATC programs were also located within 

a close proximity of Ohio University; therefore, some of them have developed 

professional relationships with Ohio University faculty and graduate students, which 

provided me further accessibility and rapport with those who were willing to engage in 

research. Though remote data collection procedures resulting from the COVID-19 

pandemic allowed for the recruitment of teachers outside Ohio, I kept within these 

delimitations for the aforementioned reasons. 

Limitations 

 This study was limited in the sense that, as qualitative research, results may not 

necessarily generalize to the entire population of high school mathematics teachers in 

Ohio (Glesne, 2016; Patton, 2015). Rather, this dissertation reports descriptive results 

pertaining specifically to the participating teachers involved. However, the themes 

emerging from the data may be transferrable to other contexts and situations (Lincoln & 

Guba, 1985; Merriam, 2009). Additionally, this study was limited to my own data 

collection and analysis abilities, as I was the instrument of this qualitative study 

(Merriam, 2009; Patton, 2015). The data for this study were collected and analyzed by 

myself, limited to my positionality and capabilities as a researcher, and furthermore, the 

analyses were conducted based on my own knowledge and abilities. However, an 

additional trained IQA rater observed instruction and coded tasks using the rubrics to 
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provide reliability and credibility to the results obtained from observations and analysis 

of student work (Boston, 2012; Glesne, 2016). 

 Another limitation resulted from the COVID-19 pandemic that swept the world in 

2020 and 2021. The disease COVID-19 severely impacted U.S. schools because of its 

potential to cause significant health issues and even death among individuals. To prevent 

the spread of the virus and keep students and school personnel safe, many Ohio districts 

transitioned from traditional face-to-face instruction to online learning formats; others 

elected to remain face-to-face with various procedures in place to protect individuals’ 

health (e.g., the use of face masks, social distancing, and barriers around desks), whereas 

some districts implemented hybrid formats (i.e., some students learned face-to-face, and 

others learned remotely). As I describe in Chapters 2 and 3, the data collection 

procedures for the present study were influenced by the COVID-19 pandemic because the 

data were gathered in the fall of 2020 and the spring of 2021. For example, all interviews 

and observations of teachers’ instruction were done remotely via Zoom to protect the 

health of research participants, students, and the researcher. Adjustments due to the 

COVID-19 pandemic introduced limitations to the study because I was unable to visit 

teachers’ classrooms and conduct interviews in person. However, I conducted the present 

study as rigorously and ethically as possible despite the unforeseen setbacks. 

Definitions of Key Terms 

Mathematical task refers to a problem or activity that is used to engage students 

during mathematics instruction (Boston & Smith, 2009; Stein et al., 1996). 
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Mathematical task as it appears in source materials may be a mathematical task 

that is written in a textbook, found online, or presented in another source (Stein et al., 

1996, 2009). This includes any printed or digital text, images, figures, and tables 

provided in the statement of the task. 

Mathematical task as planned refers to a mathematical task as it appears in 

teachers’ written lesson plans, including representation(s) of a task and any instructional 

notes included in the lesson plan. This also refers to the print or digital version of a task 

that a teacher modifies for their instruction in any way. Though Stein et al. (2009) do not 

include this task phase, I include teachers’ planning because teachers may modify tasks 

between this phase and the setup phase (Earnest & Amador, 2019). For example, a 

teacher may choose to provide more explicit directions based on how a task unfolded in a 

previous period. Such instructions might not have been included in the original lesson 

plan. 

Mathematical task as set up refers to a mathematical task as it is initially 

presented to students in class, including teacher directions given orally and in writing 

(Stein et al., 1996, 2009). Task setup may also include the distribution of materials and 

tools for student use and discussions of what is expected of them. The setup phase occurs 

immediately prior to implementation phase, during which students engage in solving the 

given task. Based on the work of Jackson and colleagues (2013), this phase of instruction 

also includes whole-class discussions that occur prior to student work time. Such 

discussions may attend to the contextual features or the mathematical relationships of a 

task that are necessary for students to engage with it effectively. 
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Mathematical task as implemented refers to a mathematical task as implemented 

by the teacher and enacted by students. This includes any verbal and written 

communication made by the teacher and students while solving the task and all work that 

is done to complete the task immediately following task setup (Stein et al., 1996, 2009). 

As described in Chapter 3, I conducted observations to obtain evidence of interactions 

between teachers and students and I collected student work samples to measure the 

quality of the work done by students. Tasks at this phase are enacted by both the students 

and the teacher (Boston & Smith, 2011; Stein et al., 2009), but I use the term 

implemented to emphasize the teacher’s actions, the focus of the present study. 

Cognitive demand is “the kind and level of thinking required of students in order 

to successfully engage with and solve a task” (Stein et al., 2009, p. 1). Cognitive demand 

can be measured using the Task Analysis Guide and has four levels: memorization, 

procedures without connections, procedures with connections, and doing mathematics 

(Stein et al., 2009), each of which is described in Chapter 2. Cognitive demand can also 

be measured using the Instructional Quality Assessment, including levels of 1–4 which 

closely map onto the four TAG levels (i.e., a score of 1 closely represents memorization, 

a score of 2 closely represents procedures without connections, and so on), though levels 

3 and 4 are both used to categorize procedures with connections and doing mathematics 

tasks; the factor that distinguishes a score of 3 from a score of 4 is the explicit prompt for 

evidence of students’ thinking and reasoning. A score of 0 in the IQA indicates 

nonmathematical activity, the lowest level that is not included in the TAG explicitly 
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(Boston, 2012). Further description of the IQA and each score level are provided in 

Chapters 2 and 3. 

High cognitive demand task (cognitively demanding task) is a mathematical task 

at any task phase which is as the level of procedures with connections or doing 

mathematics according to the Stein et al. (2009) TAG or a task at any phase with an IQA 

score of 3 or 4 (Boston, 2012). Such tasks require higher cognitive demand than tasks at 

the level of nonmathematical activity, memorization, and procedures without 

connections. 

Outline of the Study 

In this chapter, I introduced the research study, including the background, 

problem statement, research questions, research purpose, significance of the study, 

delimitations, limitations, and definition of key terms. Chapter 2 is a review of the 

literature, including research on mathematical tasks and cognitive demand, mathematics 

teacher beliefs, the influence of PD on teacher change, and the IQA. In Chapter 3, I 

discuss my research methods, including the research design, context of the study, the 

selection of research participants, and data collection and analysis procedures. In Chapter 

4, I report the findings of the study, including analysis of individual cases (teachers and 

their tasks) and an analysis of themes and trends across cases. In Chapter 5, I discuss 

these research findings, their relationship to the literature, and implications for further 

research.  
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Chapter 2: Literature Review 

This review of the literature is organized into three sections: (a) research 

involving mathematical tasks; (b) the influence of knowledge, beliefs, and professional 

development (PD) on how high school mathematics teachers select, plan, set up, and 

implement mathematical tasks; and (c) the development and use of the Instructional 

Quality Assessment (IQA) Classroom Observation Toolkit. Mathematical task research is 

divided into three subsections:  

 research on academic tasks and academic work, 

 research on mathematical tasks and cognitive demand, stemming from the work 

on academic tasks and academic work, and 

 empirical studies investigating the use of mathematical tasks. 

The section mathematics teachers’ knowledge, beliefs, PD, and teacher change is divided 

into four sections: 

 definitions of knowledge and beliefs, 

 mathematics teacher knowledge and beliefs and their impact on selecting, 

planning, setting up, and implementing mathematical tasks,  

 the development of a conceptual framework based on the previous subsections, 

and 

 a model for PD and teacher change that incorporates teacher knowledge and 

beliefs.  

The section describing the IQA consists of 

 a discussion of the theoretical frameworks underlying the IQA rubrics, 
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 a brief report on empirical studies using the IQA, including research testing 

validity and reliability, and 

 the Expanded IQA Task Setup Rubrics. 

Mathematical Tasks 

The following subsections include relevant literature pertaining to mathematical 

tasks, including the history of tasks as a theoretical construct and the development of the 

construct over time. Doyle’s (1983, 1988) synthesis of literature brought about the idea of 

academic tasks and academic work, leading to the development of Stein et al.’s (1996) 

definition of mathematical tasks and cognitive demand. Moreover, Doyle’s classification 

of academic tasks and the varying levels of cognitive demand required for students to 

solve tasks influenced the Task Analysis Guide (TAG) developed by Stein and 

colleagues. This section concludes with a description of empirical studies investigating 

teachers’ use of mathematical tasks, emphasizing the lack of research exploring 

mathematics teachers’ thought processes and rationales for the decisions they make when 

selecting, planning, setting up, and implementing mathematical tasks. 

Academic Tasks and Work 

The foundation for mathematical tasks research began with Doyle (1983, 1988), 

who aimed to investigate the “missing element” (Doyle, 1988, p. 168) in the study of 

academic work at the time. Though numerous researchers had studied the types and 

amount of work done by students in school (e.g., Borg, 1980; Johnson, 1980; Rosenshine, 

1980). Doyle (1983) argued that these studies provided “little sense of the inherent 

demands of that work” (p. 160), motivating the development of academic tasks as a 
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research construct. The term task highlights four aspects of students’ work: (a) the 

products students are to create, (b) the processes used to create the product, (c) the 

resources available to students as they create the product, and (d) the weight or 

significance of a task, meaning the weight assigned to assignments, quizzes, and tests in 

determining students’ grades (Doyle, 1988). For example, a product might be the answer 

to a mathematical question, the processes used might be the algorithms, formulas, and 

procedures used, and an available resource might be an example of a similar problem 

worked out by either the teacher or another student. Academic tasks are thusly defined as 

“the answers students are required to produce and the routes that can be used to obtain 

these answers” (Doyle, 1988, p. 161). Teachers influence tasks, and therefore student 

learning, by identifying and shaping the work students do in class (Doyle, 1983, 1988). 

 A task is a basic unit of curriculum. It serves to identify content and processes for 

student focus. Tasks are useful as a tool to analyze instruction because they define the 

work students do in class, influence their learning, and determine how they think about a 

subject and its meaning (Doyle, 1983, 1988). Academic tasks, however, require various 

cognitive processes to solve. Doyle defines four kinds of academic tasks based on the 

type and amount of student cognition required: 

1. memory tasks, requiring the direct recall of known information, 

2. procedural or routine tasks, requiring the application of a known or predictable 

algorithm to solve, 

3. comprehension or understanding tasks, in which students must apply known 

information or procedures to new contexts and situations, and 
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4. opinion tasks, requiring students to give their opinion for something. 

The cognitive processes required to solve the first three task types increases from one to 

the next, as procedural tasks apply what is already known (without necessarily 

understanding the underlying meaning) and comprehension tasks apply potentially 

familiar procedures to new contexts (typically requiring an understanding of the 

underlying meaning of the procedure and when it is applicable). “A procedural task is 

one that can be accomplished without understanding by simply knowing how to follow a 

series of computational steps. Understanding tasks, on the other hand, requires 

knowledge about why the computational steps work” (Doyle, 1988, p. 165).  

The nature of a task may also vary depending on its “level” (Doyle, 1988, p. 170): 

when announced by the teacher, when interpreted by students, and when reflected in the 

work done by the students and accepted by the teacher. Though curriculum guides tend to 

emphasize the use of higher cognitive processes involved in comprehension or 

understanding tasks, according to Doyle, low-cognitive tasks (memory and procedural 

tasks) are common in classrooms. Rather than analyzing and strategically implementing 

tasks with students, mathematics teachers typically “focus instruction on computational 

procedures and accuracy of calculations” (p. 171). Within this mode of instruction, 

students generally know which procedures or algorithms they must use to solve problems 

in advance (Doyle, 1988; Stigler & Hiebert, 1999).  

 Academic tasks do not exist in isolation; rather, they become increasingly 

complex when connected to the classroom setting, possibly explaining the common use 

of low cognitive tasks in mathematics instruction. From the perspective of teachers, 
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academic tasks are implemented in a classroom where organizing and facilitating 

students’ engagement requires effective classroom management skills and complex social 

interactions with students. Doyle (1983) cites evidence that the inability to organize and 

manage classroom environments can negatively influence academic work, and thusly, 

student achievement (Brophy, 1979; Good, 1979). For students, academic work is 

situated in the evaluative nature of school, introducing both ambiguity (the extent to 

which an answer to an academic task can be defined in advance) and risk (the strictness 

of evaluative criteria used by the teacher and the ability to meet these criteria) as 

“inherent features” of academic work (Doyle, 1983, p. 183). Ambiguity and risk vary 

from one academic task to the next and are not necessarily dependent on one another; that 

is, a considerably ambiguous task might not contain much risk and vice-versa. Doyle 

categorizes the four task types defined previously based on the ambiguity and risk 

associated with each: 

1. Memory I and Routine I tasks, low in both ambiguity and risk,  

2. Memory II and Routine II tasks, high in risk (larger tasks, requiring more work to 

be done than Memory I and Routine I) but low in ambiguity, 

3. Opinion tasks, low in risk but high in ambiguity, and 

4. Understanding tasks, high in both ambiguity and risk. 

Tasks with higher ambiguity and risk are more difficult to implement with 

students for various reasons. Doyle (1983) argued that students sometimes provide 

obstacles, inventing their own strategies to reduce ambiguity and risk. Students may 

minimalize their responses to academic tasks (Graves, 1975; Rosswork, 1977) and devise 
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strategies to put the required work onto others, sometimes hesitating to respond until 

another student or the teacher answers a question for them (MacKay, 1978; Mehan, 

1974). In mathematics classes, Doyle (1983) provided evidence that students resist shifts 

from routine and procedural tasks to understanding tasks by refusing to cooperate until 

they are explicitly told what to do (Davis & McKnight, 1976). When faced with these 

situations, it is not surprising that teachers shift from understanding and high-level 

cognitive processes toward memory and routine tasks, which “substantially” (Doyle, 

1983, p. 186) reduce the complexity of classroom management issues. “The type of tasks 

which cognitive psychology suggests will have the greatest long-term consequences for 

improving the quality of academic work are precisely those which are the most difficult 

to install in classrooms” (p. 186). Teachers face pressure to reduce the use of 

understanding tasks and focus on helping students get their work done, rather than 

focusing on the quality of the work (Doyle, 1983; 1988). 

 Doyle’s (1988) concept of academic work in mathematics class, a function of the 

academic tasks in which students engage, is divided into two categories: familiar work 

and novel work. Familiar work tends to incorporate memory and procedural tasks, 

whereas novel work, consisting of understanding tasks, requires students to synthesize 

relevant information and apply knowledge in unfamiliar contexts. Novel work entails that 

“students must make decisions about what to produce and how to produce it” (Doyle, 

1988, p. 173). Therefore, novel tasks contain a considerable amount of ambiguity and 

risk due to their unpredictability and high cognitive demands.  
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Doyle (1988) observed middle school mathematics classes that typically aimed 

for the large accomplishment of academic work using “routinized work patterns” (p. 

175), including explicit demonstrations of how to solve problems and extensive guided 

practice. Students were “seldom required to assemble information or processes in ways 

that had not been demonstrated to them in advance” (p. 175). Mathematics curriculum in 

these classrooms consisted of independent, unconnected skills emphasizing 

computational accuracy rather than conceptual understanding and problem solving 

(Doyle, 1988). Doyle’s work suggests that the consistent emphasis on familiar work and 

low cognitive tasks may not only be due to the difficulty implementing high level tasks, 

but also because standardized tests primarily consist of memory and procedural tasks; 

familiar work is seen as appropriate for handling complex classroom environments and 

preparing students for the work they must do to perform on standardized tests. 

Phases in the Life of a Mathematical Task 

Mathematical tasks, extending from Doyle’s (1983, 1988) notion of academic 

tasks, are problems or activities that are used to engage students during mathematics 

instruction and serve as influential factors that determine what and how much students 

learn (Boston & Smith, 2011; Stein et al., 1996, 2009). Mathematical tasks are dynamic 

in the sense that they progress through several stages before they are experienced by 

students. According to the Mathematical Tasks Framework (MTF) (Stein et al., 2009), 

tasks move through three phases: first, as they appear in curricular or instructional 

materials; second, as they are set up by teachers; and third, as they are implemented by 

students. The MTF depicts that student learning follows from the tasks that are 



47 
 
implemented by students; however, each of the task phases influence student learning in 

some way (Boston & Smith, 2011; Stein et al., 2009). 

Distinguishing between the three MTF task phases is necessary because 

mathematical tasks can potentially change between each phase (Ni et al., 2018; Stein et 

al., 2009). Stein et al. (1996) defined task setup as: 

the task that is announced by the teacher. It can be quite elaborate, including 

verbal directions, distribution of various materials and tools, and lengthy 

discussions of what is expected. Task set up can also be as short and simple as 

telling the students to begin work on a set of problems displayed on the 

blackboard. (p. 460)  

However, the task that a teacher sets up may not always be identical to the original task 

as it appeared in written source materials. For example, a teacher may choose to include, 

remove, or modify elements of a task based on past experiences and goals for teaching 

(Earnest & Amador, 2019; Grouws et al., 2013).  

Remillard (2005) asserted that “the curriculum enacted in the classroom can, at 

best, be represented by the curriculum planned by the teacher” (p. 238). The importance 

of teacher planning for mathematical task setup and implementation was made evident by 

Smith et al. (2008), who described a framework for developing lessons called the 

Thinking Through a Lesson Protocol (TTLP). The TTLP is a tool that helps teachers to 

anticipate students’ thinking and work during a lesson by posing questions for teachers to 

consider as they select and set up a task, support students’ exploration, and facilitate 

discussions (Smith et al., 2008). Through the Justification and Argumentation: Growing 
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Understanding of Algebraic Reasoning (JAGUAR) project, a team of researchers and 

middle school teachers found that using the TTLP helped teachers to both plan and 

implement mathematical tasks rigorously (James et al., 2016). By having teachers work 

through the mathematical tasks they anticipated implementing with their students and 

“doing the math” (p. 417) in advance, James et al. found that teachers were able to 

identify the potential of a task, the goals they had for students, the prior knowledge 

needed to work on the task, and possible solutions students might come up with. Though 

not identified by Stein and colleagues (2009) in the MTF, tasks as they are designed by 

teachers in their lesson plans is a critical task phase that stands between task selection 

and task setup.  

Task implementation has been defined as the “manner in which students actually 

work on the task” (Stein et al., 1996, p. 460). Just as teachers may modify tasks during 

planning, students might not necessarily work through a mathematical task in the way 

that it was set up for a variety of reasons (e.g., teachers might choose to simplify tasks 

because they feel the task is beyond their students’ mathematical understanding). Stein et 

al. (2007) examined the nature of task changes from a curricular standpoint, highlighting 

that research on teaching and curriculum shows substantial differences between tasks as 

they appear in source materials and tasks as implemented with students. The enacted 

curriculum (tasks as they unfold in the classroom) and the experienced curriculum (what 

is learned by students from engaging in the tasks) are influenced by interactions between 

teachers and students, teachers’ beliefs and knowledge, teachers’ professional identities, 
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and other factors, creating something that differs from the written task and the plans 

made by the teacher (Earnest & Amador, 2019; Stein et al., 2007).  

Figure 1 depicts four phases of a mathematics teacher’s task use, including three 

phases from the MTF plus a planning phase between task selection and task setup. Phase 

1: Selection, tasks as they are selected by teachers from source materials, is similar to the 

first phase in the MTF––it intends to capture tasks that appear in written curricular 

materials (e.g., textbooks or the internet). Phase 2: Planning, tasks as they are designed 

by teachers in their lesson plans, was described in the previous paragraphs and was not 

included in the MTF. In this phase, “lesson plans” refer not only to actual written plans 

but also to any modifications made by teachers to the task from the first phase, because 

not all teachers create and use written lesson plans.  

In Figure 1, Phases 3 and 4, tasks as they are set up by teachers in class and tasks 

as they are implemented by teachers with students, respectively, are comparable to the 

setup and implementation phases identified in the MTF. However, I designed Figure 1 to 

include language focusing on teachers’ actions (selecting, planning, setting up, and 

implementing tasks) because the purpose of the present study is to explore teachers’ 

perspectives and how they inform their actions. Consequently, I dropped student 

learning, which was included in the MTF. In Figure 1, the vertical line segment dividing 

the first two and the last two phases separates the teacher actions that occur prior to 

instruction from those that occur during instruction. This separation is also important for 

data collection procedures, discussed in Chapter 3. 
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Figure 1 

The Four Phases of Mathematics Teachers’ Task Use 

 

Note. This figure is based on the Mathematical Tasks Framework by Stein et al. (1996, 

2009) but emphasizes the actions of teachers at each task phase, omits the student-

learning phase, and adds a teacher-planning phase (Phase 2) not included in the MTF. 

 

The Cognitive Demand of a Mathematical Task 

Stein and colleagues (2009) emphasized that “students need opportunities on a 

regular basis to engage with tasks that lead to deeper, more generative understandings 

regarding the nature of mathematical processes, concepts, and relationships” (p. 5). Such 

tasks require high levels of cognitive demand, meaning that the tasks require complex 

thinking and reasoning from students to solve. Stein et al. (2009) defined four categories 

of mathematical tasks based on the cognitive demands required of students to complete 

them, as represented in the Task Analysis Guide (TAG): memorization, procedures 

without connections, procedures with connections, and doing mathematics: 
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1. Memorization tasks, similar to Doyle’s (1983) “memory tasks” (p. 162), are 

straight forward, requiring students to recall factual information.  

2. Procedures without connections tasks, analogous to Doyle’s “procedural or 

routine tasks” (p. 163), are algorithmic, but have no connections to underlying 

concepts or meaning.  

3. Procedures with connections tasks capture some of the essence of Doyle’s (1988) 

“comprehension or understanding tasks” (p. 163); these tasks differ from 

procedures without connections in that they require students to connect 

procedural fluency and conceptual understanding. 

4. By doing mathematics, the authors refer to tasks that engage students in exploring 

mathematical concepts, processes, and relationships (Stein et al., 2009).  

The cognitive demand of a mathematical task can be analyzed during each phase either as 

shown in the MTF or as shown in Figure 1. The cognitive demand can––and often does–– 

change from one phase to the next.  

Consider the following example of a mathematical task for students in Grades 6–

8, presented by Stein and Smith (1998): “What are the decimal and percent equivalents 

for the fractions 1/2 and 1/4?” (p. 269). According to Stein and Smith, an expected 

student response might be that 1/2 = 0.5 = 50% and 1/4 = 0.25 = 25%, making this a 

memorization task. Students are simply asked to state the required information without 

providing any pictorial or written explanation for their answer. For this task, either 

students already know the answer, or they do not. 
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However, consider another task addressing the same mathematical content from a 

different perspective:  

Shade 6 small squares in a 4 × 10 rectangle. Using the rectangle, explain how to 

determine each of the following: (a) the percent of area that is shaded, (b) the 

decimal part of the area that is shaded, and (c) the fractional part of the area 

shaded. (Stein & Smith, 1998, p. 269) 

Stein and Smith identify this as a doing mathematics task because students are not 

explicitly told which procedure(s) to use and are asked to explore the relationships 

between mathematical representations. Students are also held accountable for providing 

explanations for each of the three representations (percent, decimal, fraction) they are 

asked to identify, with relation to the shaded rectangle provided. Each of these 

mathematical tasks, at this point, can only be assessed from a written perspective; 

planning and implementation of these tasks may vary and require separate analysis. 

Maintaining the Cognitive Demand of a Task 

To engage their students in developing rich, conceptual understandings of 

mathematical concepts, mathematics teachers should begin by selecting cognitively 

demanding tasks to use during instruction. However, research shows that “teachers 

typically do not analyze tasks in terms of cognitive demands” (Boston & Smith, 2009, p. 

123). Rather, teachers tend to select tasks based on “surface-level features” (p. 123), such 

as whether a task is given as a word problem or whether a task involves graphing. 

Teachers often turn to their textbooks as a primary source of instructional tasks 

(Remillard, 2005) and select tasks that focus on specific skills, concepts, or standards 
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they wish to address (Boston & Smith, 2011). As shown in the MTF and in Figure 1, the 

selection of a cognitively demanding task is followed by additional obstacles: planning to 

engage students in the task, setting up the task, and implementing it with students while 

maintaining the mathematical and cognitive rigor. 

The way in which a mathematical task is presented by the teacher directly 

influences how students will engage with and complete the task, which, in turn, 

determines the nature of students’ opportunities to learn. For example, teacher 

questioning in both the setup of the task and during implementation is an essential 

component of instruction that determines whether cognitive demands are maintained (Ni 

et al., 2018; Stein et al., 2007). Challenges faced by teachers include difficulty with 

giving control and authority to students and knowing when to ask questions versus 

allowing students to struggle. It then becomes tempting to simplify the task by explicitly 

telling students which procedures or steps to use. However, doing so eliminates the need 

for students to work and think about how they should approach the task, and ultimately 

lowers the cognitive demand required to solve it (Boston & Smith, 2011; Stein et al., 

2009).  

The cognitive demand of a task can also lower when teachers fail to hold their 

students accountable for high quality work (Boston & Smith, 2011; Stein et al., 2009). 

When announcing a task, teachers can avoid this by clearly stating that students must 

explain their thinking and justify their work (either orally or in writing). Moreover, 

effective normative practices for engaging students in high-level tasks are scaffolding 

student thinking, modeling high-quality work and thinking, pressing for explanations and 
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justifications, and selecting tasks that build on students’ prior knowledge (Stein et al., 

2007). Teachers’ beliefs regarding their students’ mathematical ability can also 

negatively impact the enacted and experienced curriculum of mathematical tasks. 

According to Stein et al. (2007), 

Teachers tend to be concerned about the high level of independent thought, 

problem solving, and self-monitoring demanded of students by the tasks found in 

standards-based curricula, expect that students cannot manage these demands, and 

consequently restructure or adapt the lessons to make them less complex and 

more readily accessible to students. (p. 355)  

In doing so, teachers limit the opportunities for students to engage in high-level thinking, 

reasoning, problem solving, and communication skills afforded by high-quality curricular 

materials. 

Mathematical tasks that are designed as procedures with connections and doing 

mathematics have the potential to be implemented in less cognitively demanding ways 

depending on how the teacher sets up the task and how students engage in it (Boston & 

Smith, 2009, 2011; Stein et al., 2009). However, research shows that teacher training can 

be effective in encouraging teachers to select and maintain cognitively demanding tasks. 

For example, Boston and Smith (2011) found that teachers who participated in a task-

focused PD program “improved their ability to select and implement cognitively 

demanding tasks during the time frame of the professional development initiative and 

sustained this ability a year after their involvement in the project ended” (p. 974). 

Moreover, a study by Arbaugh and Brown (2005) showed that engaging teachers in PD 
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related to the (Stein et al., 2009) TAG encouraged teachers to think more deeply about 

the relationship between mathematical tasks and the work of their students in a 

nonthreatening way. Mathematics teachers who examine and reflect on their practice, 

considering the cognitive demand of the tasks they select and their implementation, can 

begin to improve their practice by getting their students to think at higher levels.  

Empirical Studies Investigating the Use of Mathematical Tasks 

In 1990, the University of Pittsburg initiated the QUASAR (Quantitative 

Understanding: Amplifying Student Achievement and Reasoning) Project, a 5-yr project 

investigating mathematics instructional programs for middle school students in 

economically disadvantaged areas (Silver & Stein, 1996; Stein et al., 1996). Stein and 

colleagues examined the consistency between mathematical tasks as set up and as 

implemented, with emphasis on solution strategies possible, mathematical representations 

possible (e.g., algebraic equations, graphs, numerical tables), explanation requirements, 

and the cognitive demand of the tasks.  

Throughout the study, half of teachers’ instructional tasks declined in cognitive 

demand during implementation (77 out of the 144 total tasks examined in the study). The 

greatest factor associated with the decline in cognitive demand was that challenges 

became nonproblems, that is, teachers simplified the work required of students. 

According to Stein et al. (1996), “in many instances, teachers appeared to find it difficult 

to stand by and watch students struggle, and they would step in prematurely to relieve 

them of their uncertainty and (sometimes) emotional distress at not being able to make 

headway” (p. 480). The maintenance of high-level cognitive demand was only 42% 
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(Stein et al., 1996). This demonstrates that teachers did not implement tasks at the same 

cognitive levels as they had been set up. 

Henningsen and Stein (1997) identified various factors that can attribute to the 

decline in cognitive demand from task setup to implementation. When examining the 

decline from doing mathematics to procedures without connections (high to low 

cognitive demand tasks, n = 8), this study showed that the greatest contributors were that 

challenges becoming nonproblems (100%), too much or too little time for students to 

work (75%), and focus shifting to correct answers (75%). Teachers implemented 22 of 

the tasks at the of doing mathematics; among the factors contributing to the 

implementation of such tasks at a high cognitive level, the three largest were that tasks 

built on students’ prior knowledge (82%), student spent an appropriate amount of time 

(77%), and sustained pressure for explanation and meaning by teachers (77%). 

Interestingly, the amount of time spent by students was the second largest contributor in 

both instances, and emphasis on either correct answers or on mathematical reasoning was 

the third largest contributor. These findings link the time students spend on a task and the 

expected responses of teachers (answers vs. explanations) to the decline or maintenance 

of cognitive demand.  

Since the conclusion of the QUASAR project, various researchers have 

investigated the role of PD in improving mathematics teachers’ knowledge of 

mathematical tasks and levels of cognitive demand. Arbaugh and Brown (2005) sought to 

engage high school mathematics teachers in “an initial examination of their teaching in a 

way that is non-threatening and, at the same time, effectively supports the teachers’ 
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development of pedagogical content knowledge” (p. 500). The researchers found that 

engaging high school mathematics teachers in PD that incorporates the levels of cognitive 

demand (as identified in the TAG) can support teachers in thinking critically about the 

tasks they give to students and the potential learning that follows. Additionally, 

participating teachers seemed to change the types of tasks they selected and implemented 

over the course of the 8-month study; however, no causal relationship could be made 

linking teachers’ task use to the influence of the PD due to the research design (Arbaugh 

& Brown, 2005).  

 Boston and Smith (2009) examined high school mathematics teachers 

participating in the Enhancing Secondary Mathematics Teacher Preparation (ESP) 

project. Their goal was “to improve the quality of field experiences for preservice 

mathematics teachers by ensuring that the classrooms of their mentor teachers provided a 

‘reinforcing culture’ of quality mathematics instruction” (Boston & Smith, 2009, p. 128). 

The ESP project was a series of PD sessions that provided teachers opportunities to 

engage in mathematical tasks and analyze them based on their cognitive demands. Boston 

and Smith collected data over a period of 5 days following the PD and found that the 

cognitive demand of the tasks that teachers selected and implemented increased from fall 

to winter, showing that high school mathematics teachers can improve the selection and 

implementation of mathematical tasks after participating in PD focused on the Stein and 

colleagues (2009) MTF and TAG. 

 In Nie et al.’s (2013) investigation of middle school mathematics teachers’ use of 

Standards-based and traditional textbooks, two of the primary research focuses were on 
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the use of instructional tasks and learning goals. The researchers conducted classroom 

observations and interviews from teachers of 7 schools implementing Connected 

Mathematics Program (CMP) textbooks and 7 comparable schools implementing non-

CMP texts.  

Rather than analyzing the cognitive demand of tasks using the Stein et al. (2009) 

TAG, Nie et al. (2013) used a different, yet similar, four-category system to rate the 

cognitive demands of a lesson’s learning goals. The system included two low-cognitive 

demand levels, remembering and practicing, and two high-cognitive demand levels, 

understanding and analyzing. Observers coded both the intended learning goals (what 

teachers hoped to achieve through the lessons) and implemented learning goals (the goals 

that observers noticed during each lesson) of each lesson. Comparative results showed 

that non-CMP teachers planned significantly fewer lessons with high-level learning goals 

and CMP lessons were implemented at high levels significantly more often than non-

CMP lessons. However, the percentage of high-level implemented CMP lessons was 

significantly fewer than the percentage of high-level planned CMP lessons (Nie et al., 

2013). These results support QUASAR research showing that the cognitive demands of 

tasks (or lessons) tends to decline during implementation, but also show that Standards-

based curricula may have greater potential for high-level implementation. 

 Nie et al. (2013) also explored teachers’ reasons for choosing instructional tasks 

by interviewing teachers after they implemented each lesson. Most teachers in the study 

gave one of two reasons: (a) either teachers followed the guidance of their textbooks or 

(b) teachers chose tasks to respond to their students’ learning needs. Remarkably, the 
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percentage of the former was significantly greater in CMP lessons and the percentage of 

the latter was significantly greater for non-CMP lessons (Nie et al., 2013). This result, 

according to Nie et al., was perhaps linked to the high-level planning and implementation 

of CMP lessons because the Standards-based curricula emphasized the development of 

concepts. Though Nie et al. have already investigated teachers’ reasons for selecting 

tasks, there is still need for the present study for several reasons. First, the majority of 

teachers in their study provided “brief responses consisting of a single sentence or a few 

phrases” (p. 705) when asked to explain their task selection, whereas the present study 

addressed this issue in much greater depth. Second, Nie et al. focused on task selection 

only, whereas I investigated teachers’ reasons for task selection, planning, setup, and 

implementation. Third, Nie et al. researched middle school teachers, who may have 

different perspectives than high school teachers, especially those currently involved in 

PD programs. 

 In another investigation of textbook curricula, Tran and Tarr (2018) analyzed 

statistics tasks in 3 mathematics textbook series for Grades 9–12: one traditional series, 

with probability and statistics in separate chapters or courses (following the Algebra 1, 

Geometry, Algebra II sequence); one integrated series, with probability and statistics 

contained within investigations in algebra and geometry; and one hybrid series, with 

probability and statistics content situated within related algebra and geometry lessons. 

Tran and Tarr coded 582 tasks within the 3 textbook series based on the Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) Report framework (Franklin 

et al., 2007), including the statistical investigation components (formulating questions, 
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collecting data, analyzing data, and interpreting results) and the statistical developmental 

levels (GAISE developmental levels of A, B, and C) of each. Tasks were also assigned a 

level of mathematical complexity (low, moderate, or high) based on the amount and type 

of work required by students to complete each task (similar to the TAG levels of 

cognitive demand––low complexity may be equivalent to memorization or procedures 

without connections, and so on). 

 Tran and Tarr (2018) found that none of the 582 tasks from the 3 textbook series 

required students to generate their own statistical questions. Almost every task involved 

collecting data, however, they did not include opportunities for students to plan data 

collection procedures to control and reduce variability. Rather, most tasks involved 

simple experiments or classroom censuses and were coded at low statistical levels (level 

A in the GAISE framework). Analyzing data tasks were scored at higher levels among the 

hybrid and integrated textbook series (i.e., more B and C scores than A scores), 

suggesting that the nontraditional texts advanced beyond low-level data collection and 

analysis. Most tasks in each textbook series were at level B for interpreting results. In 

terms of mathematical complexity, the distributions for the traditional and hybrid texts 

were nearly identical; however, the integrated text differed in that fewer tasks were coded 

as low complexity and more tasks were coded as high complexity. As a whole, the 

cognitive demands (measured in terms of mathematical complexity) of tasks in the 

integrated series were higher than those in the other two texts, suggesting that students 

have greater opportunities to develop statistical concepts and understanding through the 

integrated text (Tran & Tarr, 2018). 
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 A study by Ni et al. (2018) is unique from the others reported in this chapter; not 

only did the researchers investigate the cognitive demands of mathematical tasks and 

their connection to students’ cognitive outcomes (e.g., problem solving skills), but they 

also attempted to link them to students’ affective outcomes (e.g., interest in learning 

mathematics and mathematical dispositions). Ni and colleagues video-recorded 

classroom instruction in 30 Grade 5 classrooms in a single district in China and coded 

instructional tasks using an adapted version of the Stein et al. (2009) TAG. Though it is 

not made clear why in the article, it is surprising that the researchers chose to omit the 

doing mathematics level from the TAG and only include the first three levels of cognitive 

demand. Tasks were also coded based on the representations available (symbolic, figural, 

hands-on manipulative) and whether the task called for multiple solution methods.  

Using a hierarchical linear model, Ni et al. (2018) found that high cognitive 

demand tasks were associated with increased interest in learning and classroom 

participation and enhanced students’ views of learning mathematics through inquiry. 

Multiple representations also predicted students’ improvement in solving complex 

mathematics problems. These findings suggest that students’ mathematics affect 

benefited from the use of high cognitive demand tasks (Ni et al., 2018), contributing to 

the wealth of literature supporting the use of such tasks. However, neither high cognitive 

demand tasks nor tasks with multiple solution strategies were positively associated with 

cognitive learning outcomes in the study. Ni and colleagues claim that the lack of a 

positive relationship might have been due to the fact that students’ cognitive outcomes 

were measured using a scheme that was not based on the local curriculum. However, the 
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indication of student affective gains is a positive result that contributes to the list of 

reasons to support high cognitive demand task use. 

Two trends in the findings reported above are that (a) tasks tend to decline in 

cognitive demand during the implementation phase and that (b) PD can enhance teachers’ 

ability to critically analyze tasks and implement them at higher cognitive levels. The 

QUASAR (Silver & Stein, 1996; Stein et al., 1996) and ESP (Boston & Smith, 2009) 

projects yielded evidence to support the former, whereas Nie et al. (2013) also found that 

tasks from Standards-based curricula were more difficult to implement at high levels than 

tasks from alternative materials. Regarding the latter, studies by Arbaugh and Brown 

(2005) and Boston and Smith (2009) highlighted the importance of PD in shaping the 

ways that teachers think about and use instructional tasks. Inviting teachers to examine 

instructional tasks and consider the potential they offer students to learn mathematics can 

lead to enhanced task selection and implementation (Boston & Smith, 2009). 

Beliefs and Knowledge as Factors Influencing the Use of Mathematical Tasks 

Teacher education literature applies numerous definitions to knowledge and 

beliefs and develops the relationship between it and knowledge in various ways, though I 

consider knowledge and beliefs as two separate (but not mutually exclusive) entities. 

Many scholars have studied and identified connections between knowledge and beliefs, 

some writing that one influences the other (e.g., Lee et al., 2019), that one is a subset of 

the other (Philipp, 2007), or that they are “indistinguishable” (Beswick, 2011, p. 128). 

Regardless of the way in which knowledge and beliefs are defined or conceptualized, 

there is general agreement that both are influential in shaping teachers’ instructional 
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practices. It is in this way that the literature related to teacher knowledge and beliefs has 

implications for mathematics teachers’ selection, planning, and implementation of 

mathematical tasks. 

 My interpretation of beliefs aligns with that of Ambrose (2004), Beswick (2006), 

and Green (1971). Ambrose considered beliefs as having four components: (a) their 

origins, (b) their influence on how experiences are interpreted, (c) their individual 

connections forming belief systems, and (d) how they change. In this framework, beliefs 

originate from two sources: “emotion-packed experiences and cultural transmission” 

(Ambrose, 2004, p. 93). Emotional experiences shaping teachers’ beliefs about 

mathematics teaching and learning might occur during their K–12 schooling; for 

example, learning multiplication tables influences some preservice teachers to believe 

that they cannot learn mathematics (Ambrose, 2004). The way in which teaching is 

relatively similar within each culture (Stigler & Hiebert, 1999) and past experience might 

also influence preservice teachers’ beliefs that mathematics should be taught as the 

memorization of facts and application of routinized procedures. 

Ambrose (2004) explained that beliefs have a “filtering effect” (p. 94), an 

influence on a person’s interpretation of new experiences. This means that a person’s 

existing beliefs influence their perception of new experiences and how they might 

interact within these experiences. Ambrose gave an example of a colleague whose 

preservice teachers worked with kindergarten students: the experience was meant to show 

preservice teachers at the start of the semester the wealth of prior, informal knowledge 

the kindergarten students brought to school. However, the experience left the preservice 
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teachers astounded by how much the kindergarten teacher taught students in a single 

week. However, their beliefs that mathematics knowledge comes from formal schooling 

potentially influenced this reaction. The preservice teachers attributed the teaching to the 

impressive amount of knowledge developed by the kindergarten students at the end of the 

week rather than the knowledge they already possessed. The filtering effect described by 

Ambrose helps to explain the differences in teachers’ responses to teacher training 

(Ambrose, 2004) and the introduction of new mathematics curricula (Philipp, 2007); 

teachers’ preexisting beliefs about the teaching and learning of mathematics might hinder 

their ability to modify their beliefs through new experiences. 

Multiple authors agree that beliefs are interconnected to each other, forming belief 

systems (Rokeach, 1968) or clusters (Green, 1971). Ambrose drew from Green’s notion 

that, though individual beliefs are connected to form belief systems, these systems 

sometimes exist in isolation of each other; that is, two belief systems may lead to 

seemingly contradicting viewpoints. For example, a lack of creative experiences with 

mathematics may cause a disconnect between preservice teachers’ belief systems valuing 

creative learning and their belief systems concerning mathematics (Ambrose, 2004). The 

last of Ambrose’s components, changes in belief systems, occur when people (a) 

encounter emotionally powerful experiences, (b) immerse themselves in communities 

through the process of cultural transmission, (c) reflect on their beliefs and reveal those 

that might be hidden, (d) encounter experiences that work to connect isolated belief 

systems, and (e) when a belief reversal occurs. 
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Beswick (2006) also drew upon Green’s (1971) description of beliefs and belief 

systems, suggesting that beliefs are strengthened by their connections to other beliefs and 

that beliefs are formed on some basis and exist within a context. Beswick described two 

bases on which beliefs are held: evidence or non-evidence. A belief formed on the basis 

of evidence might be a belief supporting a particular pedagogical approach after students’ 

test scores increase. A belief formed on the basis of non-evidence might be a preservice 

teacher’s belief formed through interactions with his or her mentor teacher; in this case, 

the belief may be held because of emphasis from an authority figure. Beliefs formed on 

the basis of evidence are susceptible change with the introduction of evidence to support 

the change. However, beliefs formed on non-evidence are unlikely to be changed by new 

evidence. Context influences the relative centrality of beliefs and supports the notion of 

contradictory beliefs among unconnected belief systems; one of two unconnected systems 

may be more central than the other in a particular context. For example, a teacher might 

communicate a belief in teaching mathematics using manipulatives in exploratory ways 

during a PD workshop but might also strive to maintain control and limit students’ ability 

to explore in the context of the classroom (Beswick, 2006). 

Teachers’ Knowledge and Beliefs Influence Their Use of Tasks 

The following review of the literature pertaining to mathematics teachers’ 

knowledge and beliefs cites evidence that both influence teachers’ selection of tasks from 

source materials, task planning, task setup, and task implementation with students. These 

relationships are depicted in Figure 2. 
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Figure 2 

The Influence of Teacher Knowledge and Beliefs on Mathematics Teachers’ Task Use 

 

Note. Three components of Mathematics Teacher Knowledge, influence tasks as they are 

designed by teachers in their lesson plans (Phase 2) and tasks as they are set up by 

teachers in class (Phase 3), and tasks as they are implemented by teachers with students 

(Phase 4): Knowledge of Content and Students (KCS), Common Content Knowledge 

(CCK), and Specialized Content Knowledge (SCK). Knowledge of Content and Teaching 

(KCT) also influences tasks as they are implemented by teachers with students (Phase 4). 
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At the first phase (tasks selected by teachers from source materials), knowledge of 

curriculum (Hill, Blunk, et al., 2008) and beliefs about which curricular materials 

effectively help students learn mathematics (Carson, 2011; Collopy, 2003; Philipp, 2007) 

influenced the curricula and tasks selected by teachers. This phase also incorporates 

beliefs about what it means for students to learn and be successful in school mathematics 

(Collopy, 2003). At the second and third phases (tasks as planned and set up by teachers), 

Knowledge of Content and Students (KCS) supports teachers in anticipating how 

students will engage with tasks (Ball et al., 2008), whereas Common Content Knowledge 

(CCK) and Specialized Content Knowledge (SCK) influence teachers’ planning 

(Charalambous, 2010). Lee (2019) found evidence that the combination of teachers’ 

beliefs about students’ prior knowledge and beliefs about task potential shaped the ways 

in which teachers not only selected tasks but also the planning and setup that followed.  

A variety of knowledge influences tasks at the fourth phase (tasks as implemented 

in the classroom). Charalambous (2010) found evidence linking both CCK and KCS to 

the cognitive demands of enacted tasks, and Chapman’s construct of Mathematical Task 

Knowledge for Teaching (MTKT) includes elements CCK and KCS, specifically 

addressing teachers’ knowledge of tasks throughout the stages of the MTF. Beliefs 

regarding teaching as telling (Ambrose, 2004; Philipp, 2007; Romagnano, 1994), beliefs 

about how mathematics should be taught (Beswick, 2011; Philipp, 2007; Ross et al., 

2002), and beliefs about mathematics as a discipline (Beswick, 2011) influenced the 

instructional decisions made by teachers during instruction.  
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The knowledge and beliefs described in the previous paragraphs influence 

teachers’ selection, planning, and enactment of mathematical tasks. Therefore, each of 

these findings was incorporated into Figure 1 on page 50 to produce an adjusted version 

that captures relevant teacher knowledge and beliefs at each phase. Figure 2 depicts these 

influences on the stages of teachers’ task use with arrows to indicate which stage is 

affected by a knowledge type or belief. Knowledge and beliefs are also linked in the 

sense that knowledge is a stronger form of belief in what is thought to be true (Clement, 

1999; Philipp, 2007; Wilson & Cooney, 2002); this relationship is also depicted in Figure 

2. The following subsections describe the body of literature forming the basis for this 

framework. 

Mathematics Teacher Knowledge 

Mathematics teaching requires a broad scope of knowledge, including knowledge 

of mathematics content, pedagogy, and knowledge of students and their learning (Monk, 

1994; Ball et al., 2008). Before discussing implications of mathematics teacher 

knowledge on the MTF, it is necessary to describe Shulman’s (1986) Pedagogical 

Content Knowledge (PCK) and Ball et al.’s (2008) Mathematics Knowledge for Teaching 

(MKT). Theoretical arguments can be made for how PCK and MKT influence tasks at 

the four task phases. However, empirical results from various studies help to support 

these claims. 

Shulman and Pedagogical Content Knowledge. Knowledge of subject matter 

content alone is not sufficient for effective teaching; effective teachers draw on various 

forms of knowledge (Monk, 1994; Stein et al., 1996). Content knowledge, though not 
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encompassing the entire range of knowledge needed for teachers to successfully 

implement cognitively demanding tasks with students, does comprise of part of this 

knowledge base. In an examination of literature on teacher knowledge, Shulman (1986) 

writes that literature at that time did not answer questions about how teachers make 

pedagogical decisions and where that knowledge comes from. Though research on 

teaching and learning at the time addressed issues of student learning, it failed to address 

issues of teacher learning. 

To address gaps in the literature of the day, Shulman (1986) suggested three types 

of content knowledge: subject matter content knowledge, pedagogical content knowledge 

(PCK), and curricular knowledge. Subject matter content knowledge (e.g., knowledge 

mathematics) does not simply refer to knowledge of facts and constructs. Teachers 

should possess comprehensive and rich knowledge of subject matter content and how it 

extends to various disciplines and applications. From a mathematical task standpoint, this 

implies that teachers should understand and be able to demonstrate the level of academic 

rigor expected of their students. They should understand the mathematical connections 

concerning the content they teach and be able to communicate mathematical ideas, 

concepts, and their connections to support students’ engagement with tasks. This is 

evidenced by Stein et al. (2007) in their review of curriculum research, describing a study 

in which elementary teachers did not enact mathematical tasks at high levels because they 

failed to appreciate the mathematical complexity underlying activities suggested in 

curricular materials. In such cases, teachers’ lack of subject matter content knowledge 
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can prevent tasks from being enacted in ways that challenge students to engage in higher 

order thinking. 

 Pedagogical content knowledge, PCK, is “the ways of representing and 

formulating the subject that make it comprehensible to others” (Shulman, 1986, p. 9). 

This also includes knowledge of how students learn particular concepts, the relevant prior 

knowledge students bring with them and how it relates to the content, and how to 

structure learning opportunities for students in ways that will make the content 

accessible. This is certainly related to research on mathematical tasks, indicating that 

prior experience and teachers’ questioning practices influence a task’s level of 

implementation (Henningsen & Stein, 1997; Stein et al., 2007). Pedagogical content 

knowledge varies from subject matter content knowledge in the sense that PCK contains 

information that is unexpected and even unnecessary for others within a subject to grasp 

(Shulman, 1986). For example, a high school mathematics teacher must know common 

student misconceptions in high school algebra and how to handle them appropriately. 

This type of knowledge is not needed in the work of a mathematics researcher studying 

algebraic topology. 

 Shulman’s (1986) construct of curricular knowledge is the knowledge of the 

instructional materials available to teach content and the knowledge of how to select the 

appropriate materials to accomplish various goals. Shulman dissected curricular 

knowledge into two parts: lateral curriculum knowledge, the knowledge of how grade-

level content relates to content in other subjects, and vertical curriculum knowledge, the 

knowledge of how grade-level subject matter content relates to what students already 
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know and how it relates to they will learn in the future. Curricular knowledge is relevant 

to the work of Stein et al. (1996) in task enactment in the sense that part of mathematics 

curriculum involves the tasks with which students engage. Mathematics teachers require 

the curricular knowledge to be able to assess the quality of an instructional task and 

determine whether a task is appropriate for their students. 

Mathematical Knowledge for Teaching. Hill, Ball, and Schillings (2008) 

described the construct Mathematical Knowledge for Teaching (MKT), an extension of 

Shulman’s (1978) PCK. The MKT framework includes PCK and divides it into three 

sections: 

 Knowledge of Content and Students (KCS), content knowledge and the 

“knowledge of how students think about, know, or learn this particular content” 

(p. 375), 

 Knowledge of Content and Teaching (KCT), knowledge of how to engage 

students in learning through teaching moves, and 

 Knowledge of curriculum, as defined previously by Shulman.  

The definition of KCS, according to Ball et al. (2008), is “knowledge that combines 

knowing about students and knowing about mathematics” (p. 401). This includes 

knowledge of students’ thinking, knowledge of what students will find difficult and 

confusing, and knowledge of students’ conceptions and misconceptions. Such knowledge 

guides the decisions and actions that teachers make regarding students, including which 

tasks to select and the anticipation of how students might interact with it. Knowledge in 

the KCS domain is at the intersection of mathematics content and students (Ball et al., 
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2008). Similarly, KCT “combines knowing about teaching and knowing about 

mathematics” (p. 401), representing the intersection of mathematics content and teaching. 

The domain KCT contains the knowledge that mathematics teachers use to inform 

pedagogical decisions, such as which mathematical representations to use when teaching 

a particular topic. Orchestrating effective mathematics discussions requires strong KCT, 

as teachers must decide which student responses to follow up on and which to return to 

later. Curricular knowledge, referred to as “knowledge of content and curriculum” (Ball 

et al., p. 403), retains a similar meaning to Shulman’s (1986); however, Ball and 

colleagues include it within PCK rather than as a separate form of knowledge. The way in 

which Ball et al. conceptualize PCK distinguishes between knowledge for teaching, 

knowledge for learning, and knowledge of content and the various intersections between 

them. 

The second part of the MKT framework, Subject Matter Knowledge, is comprised 

of three sections:  

 Common Content Knowledge (CCK), an interpretation of what Shulman meant 

by subject matter knowledge,  

 Specialized Content Knowledge (SCK), involving the content knowledge related 

to teaching tasks, and  

 knowledge at the mathematical horizon (Hill, Ball, & Schillings, 2008). 

Ball et al.’s (2008) notion of CCK follows Shulman (1986) in that CCK is the knowledge 

of how to use and apply mathematics in daily, real-world settings and knowledge of 

mathematical objects and constructs that might be used by mathematicians. Though CCK 
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refers specifically to knowledge of mathematics outside the realm of teaching, this 

knowledge is needed by teachers; they must understand both the procedures and concepts 

of the mathematics for themselves in order to teach this content to others effectively. 

Moreover, mathematics teachers must possess the knowledge necessary to identify 

students’ mathematical errors and the knowledge to support the correct use of 

mathematical language (Ball et al., 2008). Ball et al. defined SCK as “the mathematical 

knowledge and skill unique to teaching” (p. 400); this includes how to handle student 

errors and misconceptions and how to determine whether students’ nonstandard 

algorithms or approaches apply in a given context and whether such approaches apply 

more broadly. This type of knowledge is applied in the daily work of teaching and is 

unnecessary in other professions (Ball et al., 2008). The third domain of Subject Matter 

Knowledge, knowledge at the mathematical horizon, is the knowledge of how 

mathematics content is related to other content in the curriculum. This is similar to 

Shulman’s (1986) vertical curriculum knowledge; for example, this includes the 

knowledge of how first grade mathematics content related to what will be studied in third 

grade and informs teachers to make decisions that will support students’ future 

mathematics learning (Ball et al., 2008). 

Knowledge and Task Selection. The connection between curricular knowledge 

and teachers’ task selection is evident in a study by Hill, Blunk, et al. (2008), who 

investigated MKT and Mathematical Quality of Instruction (MQI), “a composite of 

several dimensions that characterize the rigor and richness of the mathematics of the 

lesson, including the presence or absence of mathematical errors, mathematical 
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explanation and justification, mathematical representation, and related observables” (p. 

431). Lauren, one of the mathematics teachers who demonstrated strong MKT and high 

MQI in the study, highlights her skill in task selection and sequencing that are 

affordances of her MKT. According to Hill, Blunk, et al., Lauren’s ability to select and 

sequence tasks is supported by her knowledge of mathematics teaching, benefitting her 

use of tasks as written in curricular materials and tasks as planned. Moreover, her strong 

MKT helped her to draw on a variety of curricular materials to piece together tasks that 

develop mathematical ideas in a coherent way. Within the MKT framework, it appears as 

if Lauren’s knowledge of curriculum (or curricular knowledge) supported her effective 

use of written tasks. This knowledge is evident in her selection of high cognitive demand 

curricular materials (e.g., tasks adapted from Investigations in Number, Data, and Space). 

Lauren’s teaching also benefited from her strong MKT, as her lessons included rich 

mathematics and language (Hill, Blunk, et al., 2008). In contrast, some teachers who 

scored lower on the MKT assessment did not select tasks from vetted, standards-based 

curricula. 

Knowledge, Task Planning, and Task Setup. There is evidence that teachers’ 

task planning, and consequently, task setup and implementation, is limited to the extent 

of their mathematics knowledge. That is, teachers are unlikely to plan or set up a task that 

explores mathematical knowledge beyond what they possess. Charalambous (2010) 

conducted research on the influence of mathematics teachers’ knowledge in selecting, 

planning, and implementing tasks, proposing that “there exists a relationship between 

teachers’ mathematical knowledge for teaching (MKT) and their decisions and actions 
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during the three phases of task unfolding” (p. 248). This premise is support theoretically 

in the sense that MKT includes knowledge related to lesson planning, determining the 

quality of tasks and modifying them for instruction, successfully teaching both concepts 

and procedures to students, and addressing the mathematical work and reasoning done by 

students (Charalambous, 2010). Empirical evidence for the linking of MKT to the MTF 

includes the work of Ball and colleagues (2008) and a study by Hill et al. (2005), 

providing evidence suggesting that teachers with high MKT supported students in greater 

learning gains than teachers with average MKT. 

Charalambous (2010) focused on case studies of two elementary teachers with 

differing MKT and included data from 18 lessons (9 for each teacher), analyzed from the 

perspective of the MTF and with the use of the TAG by Stein and colleagues (2009). 

Additionally, both teachers completed a written Learning Mathematics for Teaching 

(LMT) test, measuring CCK and SCK of numbers and operations, geometry, and algebra; 

the two teachers, Karen and Lisa, scored in the 93rd and 35th percentile, respectively 

(Charalambous, 2010). Teachers participated in task-based interviews, interviews during 

which they solved mathematical tasks, and post-lesson interviews to elicit information 

regarding teachers’ mathematics background, experiences, and beliefs. Charalambous 

(2010) reports that “Lisa set up most of the tasks (i.e., about 83%) at a low cognitive level 

by mainly asking students to recall and apply rules and algorithms” (pp. 257–258), 

implying that this finding translates between the phases of the MTF (i.e., teachers with 

lower MKT scores are less likely to select, plan, set up, and implement tasks at high 

cognitive levels). Charalambous connected these findings to the task-based interviews 
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taken by each teacher, highlighting the procedural approach Lisa took to solve 

mathematical problems as opposed to the conceptual, representational approach taken by 

Karen (e.g., Lisa translating problems into sequential statements such as “1/5 of 1/2,” 

using the word “of” as a trigger word meaning multiplication, a procedural technique not 

grounded in mathematical concepts, see p. 268). 

Knowledge and Task Implementation. Hill and Ball (2004) suggested that the 

nature of mathematics teachers’ knowledge might be more influential than how much 

knowledge they hold, that is, “whether teachers' knowledge is procedural or conceptual, 

whether it is connected to big ideas or isolated into small bits, or whether it is compressed 

or conceptually unpacked (Ball & Bass, 2000; Ball, Lubienski, & Mewborn, 2001; Ma, 

1999)” (p. 332). This speaks to the MTF in the sense that teachers with a limited, 

procedural knowledge of mathematics might find it difficult to implement tasks at high 

cognitive demand and teachers with strong conceptual understanding of the mathematics 

they teach may be more likely to support students in high-level task enactment. For 

example, Charalambous’ (2010) investigation of two elementary school mathematics 

teachers, Lisa and Karen, found that the nature of each teacher’s mathematical knowledge 

was similar to the ways in which they enacted tasks in each of their classrooms. When 

solving a problem that involved finding the fractional part of a fraction, Karen used a 

representational approach by drawing a rectangle and partitioning a fraction of it into 

equal parts. Lisa, however, called upon her knowledge that the word “of” meant 

multiplication and used a procedural approach to solve the problem. Moreover, 
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Charalambous found that Karen’s approach to reason through problems and Lisa’s 

procedural approach were evident in their teaching. 

Charalambous (2010) hypothesized that MKT supports teachers’ use of 

mathematical representations to enhance students’ understanding of the concepts 

underlying procedures. The knowledge that teachers possess appears to influence both the 

ways in which teachers solve mathematical problems but also the ways in which they 

interact with their students. Moreover, teachers’ MKT enhances their ability to not only 

provide explanations for mathematical concepts underlying procedures but also their 

ability to scaffold students’ development of such explanations. This is perhaps because 

teachers’ ability to communicate mathematically is based on their knowledge of 

mathematics, teaching, and the combination of the two. Reasonably, it is unlikely that 

students will develop deeper conceptual understandings of mathematical procedures than 

those understandings possessed by their teachers; however, some exceptions might arise 

when students do additional work and seek additional resources beyond their teachers’ 

instruction. Charalambous also provided evidence that MKT influences teachers’ ability 

to facilitate students’ sense making of mathematics through their responses to what 

students say and do in class. Therefore, there is evidence that strong MKT is apparent in 

the work of teachers who engage and support their students in the enactment of high 

cognitive demand tasks; the potential for student learning is not only based on the task 

itself at each phase of the MTF, but also on the knowledge of the teacher. 
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Chapman (2013) echoed the voices of Charalambous (2010) and others, providing 

further insights to the role of teachers’ knowledge in their instructional practices, 

specifically in the enactment of high cognitive demand tasks. Chapman writes that 

it is the teacher and students who give [tasks] life based on how they are 

interpreted and enacted in the classroom. The teacher is critical in shaping the 

lived task and directing students’ activities so that students have opportunities to 

engage meaningfully in mathematics through them. (p. 1)  

The ways in which a teacher interacts with his or her students, including interactions that 

shape the nature of a task (e.g., whether a task is open-ended) or change its level of 

cognitive demand, Chapman attributes to teachers’ content knowledge, knowledge of 

students, goals, teaching style, and beliefs. For example, interactions between teachers 

and students that influence task implementation are affected by teachers’ KCS (Ball et 

al., 2008). Deeper knowledge of how students interact with mathematics content helps 

mathematics teachers to make appropriate instructional moves that support students’ task 

engagement without lowering the cognitive demand. Additionally, teachers with stronger 

CCK can guide their students toward mathematically precise understanding throughout 

task engagement, linking Chapman’s ideas to the work of Ball et al. 

A construct that Chapman (2013) referred to as “mathematical-task knowledge for 

teaching” (p. 1) includes the knowledge required of teachers to select and modify tasks to 

promote conceptual understanding and enhance their potential to influence student 

learning. According to Chapman, the knowledge comprising of mathematical-task 

knowledge for teaching (hereafter referred to as MTKT) consists of six components: 
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1. knowledge of task characteristics that promote students’ mathematical reasoning 

and conceptual understanding, 

2. the ability to detect and create tasks that are mathematically rigorous and 

worthwhile for their students, 

3. knowledge of the TAG and levels of cognitive demand (Stein et al., 2009) and 

how those relate to the goals for the task, 

4. an understanding of students’ prior knowledge, experiences, and interests, 

5. an understanding of the relationship between selected, planned, and implemented 

tasks and their influence on students’ ability to learn mathematics, and 

6. knowledge of how to enact high cognitive demand tasks without taking over the 

work and thinking of students.  

Each point on Chapman’s list is arguably necessary to select, plan, and implement 

mathematical tasks at high cognitive levels.  

Each of the six components of MTKT influence the MTF at various stages. For 

example, components 1–2 are influential in task selection or creation; the knowledge of 

tasks that support students’ mathematical reasoning and understanding, for instance, may 

influence teachers to choose some tasks for implementation and others not. However, 

teachers may select tasks for a variety of reasons, including surface-level features such as 

whether a task involves graphing (Arbaugh & Brown, 2005; Stein et al., 1996). Though 

not the only factor, the aforementioned knowledge may help to distinguish teachers who 

select high cognitive demand tasks frequently from those who might not. Moreover, 

knowledge of goals for the task and students’ prior knowledge (components 3–4) may 
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help teachers in the task planning, each of which might inform teachers’ decisions when 

making task modifications. Teachers’ planning of tasks should aim to meet the goals for 

the task and goals for student learning, whereas an understanding of students’ prior 

knowledge should work to inform such goals and how the teacher will work to help 

students meet them. Component 5 encompasses all three task phases in but specifically 

focuses on how they work together to influence student learning, the outcome of 

implemented tasks in the MTF. As evidenced in the study by Henningsen and Stein 

(1997), teachers’ knowledge and ability to enact tasks without removing the thinking 

done by students is also crucial in task enactment (component 6 of MTKT proposed by 

Chapman). 

Mathematics Teacher Beliefs 

Just as mathematics teachers’ knowledge is influential to their practice, beliefs 

play a similar role in shaping the ways in which they interact with mathematics content, 

students, and tasks. For example, some preservice teachers spend the majority of their 

lives in the K–12 school setting and believe that this experience sufficiently prepares 

them for what to do and expect as teachers, experiencing the “optimistic bias” (Ambrose, 

2004) that their experience in school settings and with children alone will guide them to 

be successful teachers. The previous section of this literature review alone makes evident 

the plethora of knowledge required to teach for student understanding; some preservice 

teachers underestimate the importance of such knowledge or might be unaware of it 

entirely (Ambrose, 2004). Beliefs may potentially shape teachers’ decisions about what 

tasks to use (Collopy, 2003; Philipp, 2007), how tasks should be modified based on 
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students’ prior knowledge (Lee et al., 2019), and how tasks should be enacted with 

students (Philipp, 2007; Romagnano, 1994). Moreover, teachers’ beliefs about teaching 

and enacting mathematical tasks may also be related to their beliefs about mathematics as 

a discipline (Beswick, 2011). Like the section on mathematics teacher knowledge, the 

review of literature concerning beliefs is organized into three sections corresponding to 

the phases of the MTF: (a) task selection, (b) task planning, and (c) task enactment, each 

of which is described in the following paragraphs.  

Beliefs and Task Selection. Philipp’s (2007) review of literature on teachers’ 

beliefs included a study involving mathematics teachers’ beliefs and their inclinations 

toward mathematics curriculum, highlighting the impact of their beliefs on their selection 

and implementation of tasks. Collopy (2003) revealed the way in which teacher beliefs 

influence the first and third phases of the MTF (tasks as they appear in curricular 

materials and tasks as enacted in the classroom). Collopy’s study involved two 

elementary school teachers’ changes in beliefs through their first year implementing 

Investigations in Number, Data, and Space, a reform-oriented curriculum. Though the 

two teachers came from similar backgrounds and shared similar experiences, their 

identified beliefs and implementation of the new curriculum varied considerably due to 

their beliefs about effective curricula and beliefs about teaching and learning 

mathematics (Philipp, 2007). 

 The case of Ms. Clark in the Collopy (2003) study presented a teacher with the 

traditional belief that “computational speed and accuracy distinguished successful 

students from unsuccessful students, that her students needed to learn the rules of 
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mathematics, and that mathematics topics should be presented systematically from easier 

to harder” (Philipp, 2007, p. 288). She also held the belief that understanding meant “the 

memorization and correct execution of standard algorithms” (p. 288). These beliefs led 

her to modify the reform curriculum, which emphasized other skills and knowledge, by 

removing opportunities for students to actively problem-solve and discuss mathematics 

with others. Persistent frustration eventually led her to abandon the curriculum entirely; 

throughout her time with the text, she reportedly spent 2.8% of observed time teaching 

for conceptual understanding (Philipp, 2007). However, in the case of Ms. Ross, the 

adaptation of the new curriculum influenced a shift in pedagogy and instruction from 

mostly procedures to emphasis on conceptual understanding (Philipp, 2007). Collopy 

found that Ms. Ross believed in supporting students’ mathematics confidence and 

building on their prior knowledge; Ms. Ross implemented the new curriculum carefully 

and methodically, learning more about instruction and about mathematics throughout the 

process. These two cases provide evidence that teachers’ beliefs about mathematics and 

mathematics teaching influence their beliefs toward mathematical tasks as represented in 

curriculum materials, their decisions about which curricula should be implemented, and 

how effectively curricula are implemented (Philipp, 2007). 

Another example of beliefs’ influence on the selection of mathematical tasks is 

the case of Anna, a third example from the MKT and MQI study by Hill, Blunk, et al. 

(2008). Though Anna’s MKT was average, two factors negatively influenced the 

mathematical quality of her instruction: her beliefs about the importance of mathematics 

being fun and her persistent use supplemental mathematical activities rather than using 
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lessons from her textbook, which resulted in her students spending time engaged in 

nonmathematical activity (a cognitive demand level below memorization according to the 

TAG). Hill, Blunk, et al. postulate that her limited content knowledge might have 

influenced the lack of mathematical rigor in her lessons and her beliefs about 

mathematics being fun might have led to the selection of a task that focused on primarily 

nonmathematical activity. 

Along the same lines as Hill, Blunk, et al. (2008), Carson (2011) additionally 

acknowledged the apparent relationship that exists between beliefs and the selection of 

mathematical tasks. Carson studied high school mathematics teachers’ beliefs about 

Exploratory Learning Activities (ELAs): this study investigated 5 high school 

mathematics teachers’ changes in beliefs after participation in a one-day workshop on 

ELAs. Interviews with participants yielded data suggesting that they viewed ELAs as 

student-centered, having the potential to increase students’ understanding and 

engagement, and being able to provide active, hands-on experience; however, 

participants were unable to translate their ELA views into their practice (Carson, 2011). 

Carson attributed this to teachers’ “restrictive beliefs” (Carson, 2011, p. 149), beliefs that 

they could only enact ELAs occasionally in their practice and not as a dominant 

pedagogy. Restrictive beliefs also included teachers’ beliefs that ELAs were sophisticated 

activities that required more planning time than they had available (although Chapman 

argues that the ELAs were not the large projects that the teachers perceived them to be). 

Carson’s study suggests that teachers’ restrictive beliefs about the nature of ELAs 
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inhibited their ability to change their practice through the activities (tasks) that they 

selected. 

Beliefs, Task Planning, and Task Setup. Lee et al. (2019) investigated the 

influence of teachers’ beliefs of prior knowledge, their beliefs in task potential to enhance 

students’ knowledge, and their beliefs about how students’ prior knowledge and task 

potential influence their instructional practice. The study included data from 54 teachers 

participating in the first year of a 3-yr PD program focusing on Algebra I teachers’ 

knowledge and implementation of ideas from the Common Core State Standards for 

Mathematics (National Governors Association Center for Best Practice & Council of 

Chief State School Officers, 2010). Data included teachers’ engagement in solving tasks, 

lesson planning meetings, classroom observations, and a workshop during which teachers 

discussed a learning trajectory related to the lesson they taught (Lee et al., 2019). Based 

on teachers’ various beliefs about students’ prior knowledge and beliefs about task 

potential and combinations of the two, Lee et al. identified three belief patterns, each 

associated with differing teaching characteristics: (a) prior knowledge as a foundation to 

develop and tasks having the potential to create new knowledge, (b) prior knowledge as 

an entity and tasks with no potential for new knowledge, and (c) prior knowledge as a 

foundation to develop but constrained by the prior context and tasks with on potential for 

new knowledge. 

 The first of these belief patterns emerged through their use of students’ prior 

knowledge as a way to “open up something problematic for students” (Lee et al., 2019 p. 

142). Problematic, in this sense, meant that teachers tended to use students’ prior 
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knowledge as an entry point for a new problem situation. Such teachers planned the 

instructional use of tasks around what students already knew and enacted tasks to create 

new knowledge from it. The second pattern of beliefs, prior knowledge as an entity and 

no potential of a task for new knowledge, limited the planning and implementation of 

tasks; teachers with this belief pattern shaped their tasks around reviewing concepts that 

they already learned based on the belief that tasks could not develop new knowledge. For 

example, Mr. Devlon planned and implemented a task a way such that only focused on 

review of past knowledge; when a student expressed a new concept, Mr. Devlon did not 

raise the issue with the whole class to promote further knowledge development. Lee et al. 

concluded that the purpose of using the task was to find answers rather than allow 

students to develop new knowledge. The purpose of the task and its potential, beliefs of 

Mr. Devlon, appeared to influence task setup and implementation. The third belief 

pattern, prior knowledge as an entity and no potential of a task for new knowledge, 

incorporated a similar view of tasks as limited to promoting factual recall and limited 

teachers’ planning and implementation (Lee et al., 2019). 

Beliefs and Task Implementation. According to Beswick (2006), meaningful 

and lasting change can only occur when teachers’ belief systems align with the changes 

they are trying to make. Teachers must be convinced that the change they are trying to 

make is valuable and worthwhile. Teachers’ instructional practices are closely tied to 

their beliefs and are difficult to change without first changing their beliefs. Beswick 

(2006) examined the connections between a sample of 25 high school mathematics 

teachers’ beliefs and classroom environments, including data from surveys of both 
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teachers and students, teacher interviews, and classroom observations. One of the 

findings of this study was that, despite the various methods of implementation, teachers’ 

beliefs affected their classroom environments and instruction in ways that were 

noticeable to students. This result suggests that participating teachers’ beliefs were 

associated with the instructional decisions they made, influencing the enacted curriculum 

as identified by Stein and colleagues (2009) in the third task phase of the MTF (tasks at 

enacted). Beswick’s asserts that teachers’ beliefs influence their teaching, a statement that 

is “widely acknowledged” (p. 17) in the field. That is, teachers attempting to enact 

mathematical tasks with high cognitive demands are likely to be unsuccessful if their 

beliefs are consistent with what they are trying to implement. 

Ambrose (2004) attempted to understand and change the beliefs of preservice 

teachers at the onset of their study and training through direct experience working with 

children in elementary school while simultaneously taking their first mathematics-for-

teachers course. Ambrose included a review of literature pertaining to teachers’ beliefs, 

including the notion of a belief system, for example, the connected beliefs that students 

should have opportunities to be creative that is connected to beliefs about subject matter 

such as writing or the arts. Some teachers, though they hold such a belief system, may not 

feel the same way about mathematics because of how they experienced it as children 

(Ambrose, 2004). Moreover, “beliefs about mathematics teaching and learning are part of 

a larger system of beliefs that includes beliefs about teaching, generally” (p. 96). 

Additional preservice teachers’ beliefs about teaching identified by Ambrose are that 

teaching involves presenting content to be memorized (Richardson, 1996) and that 
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teaching is straightforward (Fieman-Nemser et al., 1988). Some believe that teaching is 

the simple transfer of information from teachers to students (Wideen et al., 1998). 

 Ambrose’s (2004) study included data from 15 preservice teachers involved in 

taking an experimental mathematics-for-teachers course coupled with their first 

mathematics course. Data obtained through surveys, interviews, written work, and 

observational field notes revealed that, throughout their time interacting with students and 

learning new mathematics, preservice teachers’ beliefs about teaching and learning 

changed; they began to see that teaching is more complicated than simply passing 

information on to their students (Ambrose, 2004). This general finding applied to the 

majority of the students involved in the study. The researcher attributed shifts in beliefs 

about the nature of teaching and learning, student discovery, and students’ use of multiple 

solution strategies to solve problems to the experiences preservice teachers had with 

children during their courses. Importantly, their experiences “helped them to realize that 

their understanding of mathematical concepts was essential to their success as teachers” 

(p. 114), suggesting that beliefs about the knowledge required for teaching are coupled 

with the knowledge for teaching itself. However, more than half of the preservice 

teachers involved in the study continued to cling to their beliefs about teaching as telling 

in practice despite what they had said during interviews, presenting of standard 

algorithms for the addition of fractions (Ambrose, 2004).  

Similarly, in an early effort to positively influence preservice teachers’ beliefs 

regarding teaching mathematics through the use of technology, Zelkowski (2009) 

designed and implemented an introductory mathematics education course and gauged its 
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influence on preservice teachers’ beliefs about teaching and technology. The premise for 

the course was that the majority of preservice teachers in the area would be placed into 

traditional teacher-centered classrooms, with procedural tasks and limited use of 

technology to support their adoption of ambitious teaching practices in this context. 

Zelkowski designed the introductory teaching with technology course to provide 

mathematically rigorous learning opportunities for preservice teachers and to support 

preservice teachers’ knowledge and application of the NCTM technology and equity 

principles. 

Three emerging findings appeared from preservice teachers’ experiences 

engaging in course activities: (a) some preservice teachers were challenged to reflect on 

their beliefs about mathematics teaching, realizing that mathematics can be engaging 

rather than simply procedure-oriented, (b) preservice teachers’ were led to reevaluate 

their mathematics schooling, revealing that their experiences lacked opportunities to 

develop deep mathematical understandings, and (c) preservice teachers’ beliefs about 

graphing calculators as purely computational, answer-getting, and graphing tools were 

changed to incorporate new, expanded beliefs (Zelkowski, 2009). Regarding the first 

finding, Zelkowski asserted that “the technology course begins the process of challenging 

and re-molding beliefs about teaching mathematics as involving mostly rote algorithmic 

skills and memorization” (pp. 78–79); moreover, these changes in beliefs are also 

influencing changes in practice: preservice teachers reportedly provided evidence that 

they are reassessing their beliefs about teaching mathematics. These preliminary findings 

suggest that mathematics teachers’ beliefs are influenced and can be changed through 
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experiences engaging in mathematical activity and learning (that is, beliefs are influenced 

by the enacted curriculum, the third task stage in the MTF). 

Another implication for teachers’ practice, and therefore, the enactment of 

mathematical tasks, was evident in a study by Beswick (2011) comparing teachers’ 

beliefs about mathematics as a discipline to their beliefs about teaching mathematics. 

Beswick investigated whether teachers held differing views of mathematics as a 

discipline and school mathematics and implications that it might have for teachers’ 

practice. The interest for investigating differences in such beliefs is that the typical work 

done by students in mathematics classrooms is strikingly different than the work of 

mathematicians; traditional mathematics classrooms consist of problems selected by 

teachers, solvable within minutes, and require little cognitive work, whereas 

mathematicians work with autonomy, spend a considerable amount of time solving a 

single problem, and often struggle while doing so (Beswick, 2011). Knoll et al. (2004) 

argued that school mathematics should strive to align more closely with mathematics as 

done by professionals by including activities such as searching for solution strategies, 

identifying examples and counterexamples, and the use of argumentation and proof (as 

cited in Beswick, 2011). Though this appears to be a general belief held by mathematics 

educators and professional mathematics organizations (e.g., NCTM), typical school 

mathematics instruction does not follow this approach (Stein et al., 1996; 2009). 

Beswick (2011) collected data pertaining to teachers’ beliefs using a survey 

containing items related to beliefs about mathematics and mathematics teaching and 

learning, semistructured interviews, and classroom observations. Sally, an experienced 
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mathematics teacher with a strong mathematics background, that she taught using a 

problem-solving approach based on her beliefs about school mathematics rather than her 

beliefs about mathematics as a discipline. Sally based her beliefs on advancements in the 

teaching profession that were made throughout her career (Beswick, 2011). Jennifer, a 

teacher whose beliefs about mathematics teaching and learning and beliefs about 

mathematics followed a Platonist view (that is, the view that mathematics is an 

unchanging set of knowledge that is yet to be discovered by students) was less successful 

in implementing a problem-solving approach than Sally. Beswick concluded that:  

rather than teachers’ beliefs about the nature of mathematics as a discipline 

necessarily influencing their teaching in theoretically consistent ways it appears 

that, where there is a difference, these beliefs interact with those they hold about 

school mathematics to influence their beliefs about teaching and learning. (p. 145) 

These beliefs, in turn, influence the ways in which teachers implement their instruction, 

as evidenced by Sally and Jennifer. 

Ross et al. (2002) also found evidence that the largest barrier preventing 

implementation of innovative teaching practices was teachers’ beliefs about mathematics 

teaching. This implies that PD initiatives focusing on the work of Stein and colleagues 

(2007) and the MTF are unlikely to inspire teachers to incorporate high level tasks unless 

the PD also addresses and works to change teachers’ beliefs as well. Raymond (1997) 

found that teachers’ beliefs about mathematics were more closely related to practice than 

beliefs about teaching and learning; Raymond identified a teacher, Joanna, whose self-

reported mathematics beliefs were traditional whereas her self-reported beliefs about 
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mathematics teaching and learning were nontraditional. Because her teaching practices 

were traditional in nature, including students sitting at their desks working quietly by 

themselves, teacher-directed instruction, and strict discipline she “seemed to view her 

mathematics-teaching practice in terms of what she wanted to do, or thought she should 

do, rather than what she accomplished” (p. 272).  

Philipp (2007) proposed that two obstacles to changing teachers’ beliefs are 

teachers’ caring and teachers’ belief that teaching is telling. Cooney (1999) recommended 

that preservice teachers should be supported to transform their notions of overly caring 

for students’ personal comfort levels toward caring for students’ intellectual needs. 

Cooney implied that sometimes, pushing students to work and think outside their comfort 

zone can be difficult for teachers, but doing so will result in enhancing students’ ability to 

think and analyze complex situations and concepts. Though caring for students is 

important, teachers do a disservice to their learning by neglecting to challenge them; this 

is the case of the mathematics teacher who only uses low level tasks because they believe 

that high level tasks are too difficult and challenging.  

Teachers’ beliefs have the potential to influence their instructional decisions, that 

is, the enacted curriculum according to the MTF. For example, Romagnano (1994) began 

by teaching without directly telling students what to do, allowing them to work on their 

own first to solve problems, whereas his collaborating teacher taught using a direct 

approach. Both faced difficulties as the teacher “removed much of the conceptual 

mathematics for the students” (Philipp, 2007, p. 280) whereas Romagnano’s strategy 

caused students to become frustrated and disengaged from classroom activities. 
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According to Philipp, “[Romagnano] concluded that the differences between his and the 

teacher’s views of mathematics, of how it is learned, and the role of the teacher in the 

process led to his facing the Ask Them or Tell Them dilemma” (p. 280) and the teacher 

did not. Here it is worth noting that teaching as telling is a common feature of low-level 

tasks, as such tasks require basic memorization and repetition of algorithms presented by 

the teacher without understanding the underlying mathematical concepts (Stein et al., 

2009). Therefore, the belief that teaching as telling may lead to low quality mathematics 

instruction and minimizes students’ opportunities to learn. 

Moreover, Philipp (2007) reviewed additional research linking teachers’ belief in 

teaching as telling and teachers’ efficacy, defined as “the extent to which the teacher 

believes he or she has the capacity to affect student performance” (Tschannen-Moran et 

al., 1998, p. 202, as cited in Philipp, 2007, p. 280). Smith (1996) wrote that teachers’ 

efficacy is challenged when reform movements advocate for teaching that contradicts 

their beliefs and puts their efficacy in jeopardy. According to Philipp,  

for most teachers, school mathematics is a fixed set of facts and procedures for 

determining answers, and the authority for school mathematics resides in the 

textbooks, with the teacher serving as the intermediary authority between 

textbooks and the students. For them, teaching requires telling, or providing clear, 

step-by-step demonstrations of these procedures, and students learn by listening to 

the teachers’ demonstrations and practicing these procedures. (p. 280). 

These beliefs about mathematics teaching and learning increase teachers’ efficacy in the 

sense that it sets an attainable limit to the content knowledge required to teach and sets a 
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low standard for teachers to attain. These beliefs assume that students’ knowledge is 

something that must be delivered to them by their teachers, hence student learning is 

something that can be directly attributed to teachers’ ability. This bold, yet clear picture 

of mathematics teaching given by Philipp and Smith challenges teachers to eradicate such 

beliefs and their associated practices for the betterment of student learning. 

Professional Development and Teacher Change 

In this section, I describe a strand of research that informs the present study by 

contributing two conceptual frameworks for professional development (PD) and teacher 

change. First, I discuss research on teacher PD that inspired the development of the 

frameworks and identified five features of effective PD programs. Next, I briefly describe 

each framework and its relevance to the present study. 

Features of Effective Professional Development 

 The expectations and standards for student learning in school mathematics have 

increased since the TIMSS study in the 1990s. To guide students toward the rigorous 

learning objectives established in the Common Core State Standards for Mathematics 

(NGA & CCSSO, 2010) and by the National Council of Teachers of Mathematics (e.g., 

NCTM 1989, 2000, 2014, 2018), mathematics teachers must continuously enhance their 

knowledge and skills for teaching. Moreover, “many teachers learned to teach using a 

model of teaching and learning that focuses heavily on memorizing facts, without also 

emphasizing deeper understanding of subject knowledge” (Garet et al., 2001, p. 916). 

Garet and colleagues imply that there is a divide between the way that teachers have 

learned to teach and the expectations for student learning; this is especially true in school 
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mathematics, where many teachers still emphasize low-cognitive processes and skills 

(Stein et al., 2009; Stigler & Hiebert, 1999). Therefore, PD is critical if school 

mathematics teachers are to enhance their knowledge and practice of teaching for higher 

standards (Desimone et al., 2002). 

Because of the potential for PD to enhance teachers’ content knowledge, beliefs, 

attitudes, and pedagogy, researchers have investigated both the effectiveness of PD and 

the components that make it effective. According to Desimone (2002), there is a 

consensus among researchers concerning the components of rigorous PD and that they 

include: (a) emphasis on content and how students learn, (b) opportunities for teachers to 

participate and learn actively, (c) opportunities for teachers to act and serve as leaders, (d) 

the length of PD programs (i.e., that they last for more than a single day or weekend), and 

(e) involvement from teachers who share common characteristics (i.e., that they are from

the same school or teach the same grade level and content). Research investigating the 

Eisenhower Professional Development Program, a national program providing various 

forms of PD for mathematics and science teachers, contributed to and extended these 

ideas by investigating how they influence teachers’ self-reported changes in knowledge 

and skills for teaching (Desimone et al., 2002; Garet et al., 2001). 

The aforementioned study of the Eisenhower Professional Development Program 

concentrated on two components of the PD: “structural features” and “core features” 

(Garet et al., 2001, p. 919). Structural features included (a) the type of each PD program 

(e.g., study groups vs. workshops or conferences), (b) the length of each PD program, and 

(c) whether the PD program included teachers from the same school, department, or
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grade level vs. teachers from many different schools. Core features included (a) the 

extent to which PD activities focused on mathematics or science content; (b) the degree 

to which PD activities emphasized active learning for participants; and (c) the extent to 

which PD activities aligned with teachers’ goals, state standards, and state assessments. 

To measure outcomes of the Eisenhower project, teachers completed Likert-type surveys 

to indicate self-reported increases in knowledge, skills, and changes in classroom practice 

(Desimone et al., 2002; Garet et al., 2001). 

 Garet et al. (2001) reported findings suggesting that duration of the PD and its 

attention to content, active learning, and connectedness to teachers’ daily practice 

enhanced teachers’ gains in both knowledge and skills. Moreover, the core features of the 

PD tended to make more influential differences than the type of activity (e.g., study 

groups vs. workshops or conferences). Finally, activities that support “coherence” (Garet 

et al., 2001, p. 920), such as those that are situated within teachers’ daily practice, aligned 

with other reform efforts, and encourage teacher collaboration, appeared to influence 

changes in teachers’ practice. Regarding the same study, Desimone et al. (2002) reported 

that PD focused specifically on the use of technology, higher order instruction (i.e., 

instruction addressing conceptual understanding), and alternative assessments (other than 

traditional tests and quizzes) enhanced teachers’ use of each in their classrooms. 

Desimone and colleagues concluded that, based on their findings, “change in teaching 

would occur if teachers experienced consistent, high-quality professional development. 

But we find that most teachers do not experience such activities” (p. 102).  
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These findings and the need to develop, research, and refine high-quality PD 

supporting teacher change led to the development of five revised “core features” 

(Desimone, 2011, p. 69). The following features expand on the three original core 

features defined by Desimone et al. (2002) and Garet et al. (2001): Content focus, active 

learning, coherence, duration, and collective participation. Three of the (Desimone, 2011) 

core features stem from the three core features identified previously; the other two, 

coherence and duration, were formerly called structural features and retain similar 

meanings. The type of PD program was the only feature that did not strongly influence 

teachers’ practice and therefore was dropped from the list. Desimone (2011) argued that 

the five core features are elements of effective PD that correlate with changes in teachers’ 

knowledge and practice. 

Frameworks for Professional Development and Teacher Change 

 In addition to establishing five core features of effective PD, Desimone (2009) 

acknowledged that another essential component is necessary to develop a conceptual 

framework for teacher PD, one that describes how PD impacts both teachers and 

students. In her review of empirical studies and conceptual frameworks on the subject, 

Desimone (2009) highlighted a model developed by Guskey (2002) that (a) informs the 

present study by linking teachers’ attitudes and beliefs to changes in classroom practices 

(b) informed the development of her own framework. In the following paragraphs, I first 

present the Guskey (2002) model for PD and teacher change and explain its relevance to 

the present study. Second, I describe the Desimone (2009) model that was inspired by 

Guskey’s and others and explain its relevance to the present study. 
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 Guskey’s (2002) model for PD and teacher change includes the following four 

components: (a) teacher PD, (b) change in teachers’ classroom practices, (c) change in 

student learning, and (d) change in teachers’ attitudes and beliefs. This model is linear, 

suggesting that teacher PD influences changes in teachers’ classroom practices, changes 

in teachers’ classroom practices influence changes in student learning, and changes in 

student learning influence change in teachers’ attitudes and beliefs. Guskey’s model 

differs from those that came before it because previous models supposed that changes in 

teachers’ beliefs led to changes in classroom practices; Guskey provided his alternative 

model because PD programs that seek to change teachers’ beliefs directly “seldom 

change attitudes significantly or elicit strong commitment from teachers” (p. 383). 

Instead, Guskey argued that teachers who experience successful implementation of new 

instructional practices and curricular materials are more likely to experience lasting 

changes in beliefs. Such teachers “believe it works because they have seen it work” 

(Guskey, 2002, p. 383).  

The Guskey (2002) framework is relevant to the present study because it aligns 

with Ambrose’s (2004) theory that beliefs may change based on people’s experiences; 

moreover, the framework acknowledges Green’s (2006) view that beliefs are founded on 

the basis of evidence (i.e., evidence of successful classroom implementation and student 

learning). More specifically, Guskey’s model for PD and teacher change suggests that 

teachers’ successful implementation of mathematical tasks may influence their beliefs 

and attitudes. According to Guskey (2002), “evidence of improvement of positive change 

in the learning outcomes of students generally precedes, and may be a pre-requisite to, 
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significant changes in the attitudes and beliefs of most teachers” (p. 384). Though 

Guskey’s framework applies to PD and not the use of tasks in general, the present study 

focuses on the perspectives of teachers who have been involved in task-focused PD. 

Therefore, there is reason to suspect that the relationship between such teachers’ task use 

and their beliefs is bidirectional; that is, teachers’ beliefs influence their use of tasks (as 

described previously in Chapter 2) and teachers’ use of tasks may influence their beliefs 

as well. 

Desimone’s (2009) conceptual framework integrates various frameworks for PD 

and teacher change. For example, it builds on Guskey’s (2002) framework but also 

includes aspects of the framework developed by Peressini et al. (2004) (reflexive 

interactions between teachers’ practice and beliefs). Desimone’s (2009) framework 

contains similar elements as that of Guskey, though they are presented in the following 

order: (a) PD, including the five core features as described in Desimone’s (2011) article; 

(b) enhanced teacher knowledge and skills and changes in teachers’ attitudes and beliefs; 

(c) changes in teachers’ instruction, and (d) enhanced student learning. Though this 

model is depicted as linear, it suggests that the relationship between each successive pair 

of elements is reflexive; that is, (a) influences (b) and (b) influences (a), and so on.  

This framework for PD and teacher change is relevant to the present study 

because it describes the interactive relationship between effective teacher PD and 

teachers’ knowledge and beliefs. Each of these elements has been previously described in 

this review of the literature and the Desimone (2009) model interconnects them. 

Moreover, the model portrays the interactive relationship between teacher knowledge and 
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beliefs and changes in teachers’ instruction; it suggests that teachers who have 

participated in task-focused PD (i.e., the MMR and ATC) may have experienced changes 

in the way that they use mathematical tasks, which in turn might inspire changes in their 

knowledge and beliefs; it also suggests that such teachers may have experienced changes 

in beliefs and knowledge through their involvement in PD, leading to changes in their 

instruction. In summary, the Desimone (2009) framework for PD and teacher change 

incorporates three components that are essential to the present study: (a) teacher PD, (b) 

teachers’ knowledge and beliefs, and (c) teachers’ use of tasks and potential changes in 

instructional practices. Moreover, the framework illustrates how these three components 

of the present study are interconnected and influence one another.  

The Instructional Quality Assessment Classroom Observation Tool 

The purpose of this section is to discuss the instrument that was used to analyze 

the lessons and mathematical tasks observed in the present study. Though the primary 

source of data used to answer the research questions was interviews with teachers, 

another goal of the study was to relate teachers’ responses to the use of high cognitive 

demand tasks. I used the IQA to analyze mathematical tasks and samples of student work.  

Various researchers have pilot tested this classroom observation tool to determine 

its validity and reliability (Boston & Wolf, 2006; Matsumura et al., 2006) and have used 

it to analyze the cognitive demands of mathematical tasks (Boston, 2012; Boston & 

Smith, 2009); these two features support the use of the IQA and made it an appropriate 

tool for use in the present study. Though the IQA is not the only classroom observation 

tool that can be used to assess the cognitive demands of instructional mathematics tasks 
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(e.g., Mathematical Quality of Instruction, Hill et al., 2008), the IQA is especially 

suitable because it tracks the progression of a mathematical task throughout a lesson, 

capturing the task as it appears in source materials, as it is modified in a teacher’s 

planning, as it is set up by the teacher, and as it is implemented by the teacher and their 

students. The IQA rubrics tell the “story” of how a task develops throughout a lesson: 

“whether students engaged in thinking, reasoning, and mathematically rich discussion, 

and what instructional moves supported or inhibited students’ engagement” (Boston & 

Candela, 2018, p. 431). The following section include a description the theoretical 

frameworks underlying the IQA and its validation and use in empirical studies. A detailed 

description of the instrument and its purpose for the present study is provided in Chapter 

3. 

Theoretical Frameworks 

According to Boston and Candela (2018), the IQA is meant to measure (a) 

ambitious instruction, including instructional practices that support students’ learning of 

mathematics with understanding; (b) the effectiveness of PD; (c) the implementation of 

new curricula, and (d) students’ opportunities to learn. To measure these attributes, the 

IQA incorporates elements of Resnick and Hall’s (1998) Principles of Learning, 

developed based on bodies of research in cognitive and social psychology (Boston & 

Wolf, 2006). The IQA is meant to address four of these principles that are “evident and 

observable” (Boston & Wolf, 2006, p. 5) in classrooms that support student learning: 

Academic Rigor, Accountable Talk, Clear Expectations, and Self-Management of 

Learning. Specifically, academic rigor and accountable talk are explicit in sections of the 
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IQA: accountable talk guided the development of rubrics for classroom discussions and 

academic rigor guided the development of rubrics for mathematical tasks (Boston & 

Candela, 2018). Each of these constructs is explained in the following paragraphs. 

According to Boston and Wolf (2006), academic rigor in mathematics involves 

providing students with opportunities to learn mathematics for understanding; that is, 

students should have regular opportunities to solve problems and explain their reasoning 

during their engagement with rich mathematics content. Research and theory on learning 

mathematics for understanding and the NCTM (1989, 2000) standards influenced the 

focus on mathematical tasks as a means of achieving academic rigor, incorporating the 

work of Doyle (1983), Stein et al. (1996), and Henningsen and Stein (1997). The IQA 

Academic Rigor rubrics therefore address task potential and task implementation, 

elements of the MTF, and include criteria for analyzing tasks based on their levels of 

cognitive demand, similar to the TAG. Much of this research was described earlier in this 

chapter, so it will not be described again; however, it is important to recognize the 

similarities between the language used in the MTF and TAG and the language used in the 

IQA rubrics.  

The IQA rubrics for task potential and task implementation contain examples and 

descriptions of task features to assist raters in scoring each item. For example, the lesson 

implementation section in Part 1 includes a checklist that is based on Henningsen and 

Stein’s (1997) factors contributing to the maintenance and decline of cognitive demands 

(Boston & Candela, 2018). Teacher questioning (Boaler & Staples, 2008) and student 

opportunities to engage in mathematical discourse during whole-class discussions (Stein 
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et al., 2009) are features of cognitively demanding tasks as implemented, and as such, 

these features are prevalent in the rubric for scoring the rigor of student discussions in the 

IQA.  

The developers designed a universal scale for the rubrics (0 = low, 4 = high) so 

that scores of 1 and 2 align with TIMSS categories of stating concepts and using 

procedures and the Stein et al. (1996) categories of memorization and procedures without 

connections, respectively. Similarly, scores of 3 and 4 align with the TIMSS category of 

making connections and the Stein et al. categories of procedures with connections and 

doing mathematics. However, both procedures with connections and doing mathematics 

tasks may be rated as either a 3 or a 4 using the IQA; the difference is that a score of 4 is 

reserved to task for which students are required to explain their thinking. By using the 

same rating scale for each rubric with similar descriptors for each score level, the IQA 

“enables the classroom observer or interpreter of the results to develop a strong 

qualitative idea of what each score level ‘looks like’ in an actual classroom situation” 

(Boston & Wolf, 2006, p. 11).  

A visual comparison between the Task Analysis Guide (TAG) and the 

Instructional Quality Assessment (IQA) is provided in Figure 3. In this figure, the four 

TAG classifications and the five IQA scores (whole numbers 0–4, with brief descriptions 

of each as explained in the rubrics) are depicted according to the level of cognitive 

demand associated with each. The high cognitive demand TAG categories (doing 

mathematics and procedures with connections) are separated from the low cognitive 

demand categories (procedures without connections, memorization, and 
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nonmathematical activity) with a dashed line segment; the same dashed segment 

separates the IQA scores associated with high cognitive demand tasks (scores of 3–4) 

from scores associated with low cognitive demand tasks (scores of 0–2). Another dashed 

line segment separates tasks with low cognitive demand (TAG classifications of 

memorization and procedures without connections and IQA scores of 1–2) from tasks 

that require no mathematical activity (i.e., tasks deserving IQA scores of 0). 

The IQA was meant to correspond closely to the TAG, indicated with arrows 

pointing from each of the TAG levels to their associated IQA scores in Figure 3. Tasks 

within the lower three TAG categories are assigned IQA scores of 0, 1, or 2, as depicted 

in Figure 3. However, a doing mathematics task may receive an IQA score of either 3 or 

4, depending on whether the task explicitly prompts for evidence of student reasoning 

(IQA score level 4) or not (IQA score level 3). Similarly, a procedures with connections 

task may be scored either way depending on whether explicit evidence of student 

reasoning is evident. This is depicted by two arrows directed from doing mathematics and 

two arrows from procedures with connections to the IQA scores of 3 and 4. 

Accountable talk differs from traditional mathematics discussions, which follow 

an initiate-response-evaluate (IRE) pattern (Mehan, 1979). The IRE pattern begins with 

an initiation of a question for students to answer, usually with a specific answer in mind 

(e.g., what is the next step in solving this equation?). This question provokes a response 

from students, typically voiced by one student who the teacher calls on after raising their 

hand. Finally, the teacher evaluates the given student response as either “correct” or 

“incorrect,” after which the lesson moves on. Accountable talk substitutes talk moves 
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(questions or prompts) in place of evaluation with the purpose of encouraging further 

student dialogue. 

 

Figure 3 

The Relationship Between the TAG and the IQA 

 

Note. There is no formal classification for tasks requiring no mathematical activity in the 

TAG. Stein and colleagues (2009) discuss such tasks, but do not include them in the 

TAG. This portion of the TAG section in Figure 3 is left blank intentionally.  
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Talk moves in the IQA are categorized as either Teachers’ Linking, Students’ 

Linking, Teachers’ Press, or Students’ Responses; according to Boston and Candela 

(2018), linking includes re-voicing of others’ ideas, connecting students’ work and ideas, 

and prompting students to extend others’ work and thinking. Linking moves “create 

opportunities for student-to-student discourse, position students as authors of ideas, and 

invite other students to respond, re-explain, counter, or build upon those ideas” (p. 430). 

Teachers’ Press moves include teachers’ prompting for explanations, whereas Students’ 

Response moves are the given answers to the respective press moves. The IQA form 

provides a scoring rubric for each talk move with scores ranging from 0 (e.g., no class 

discussion or class discussion was not related to mathematics) to 4 (e.g., the teacher 

consistently connects speakers’ contributions to each other and shows how ideas and 

positions shared during the discussion relate to each other). 

Validity, Reliability, and Empirical Studies 

The IQA was initially pilot tested in elementary schools in two similar-sized 

school districts in 2003 to determine its validity and reliability (Boston & Wolf, 2006). 

One district was involved in an ongoing reform effort, including PD focusing on the 

Resnick and Hall (1998) Principles of Learning whereas the other was not. The study 

included 6 trained graduate student raters who scored both lesson observations and 

student work samples. Prior research by Matsumura et al. (2002) and Clare and 

Aschbacher (2001) indicated that 4 work samples (2 high quality and 2 medium quality, 

according to each teacher) per lesson observation, rated by 2 raters each, would yield a 

generalizability coefficient high enough to use student work as a valid indicator of 
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classroom practice. Matsumura and colleagues analyzed inter-rater reliability by 

calculating the percent of exact agreement between raters’ independent scores resulting in 

only 50% agreement. However, 1-point agreement was excellent (95.2%). Both districts 

provided students with opportunities to engage in high-level tasks during mathematics 

instruction, however, results also indicated that the district involved in reform was 

significantly more effective in doing so than the other (Boston & Wolf, 2006). The study 

by Matsumura and colleagues replicated the findings of Henningsen and Stein (1997), 

among others, who have found that mathematical tasks tend to decline in cognitive 

demand during implementation. 

A second pilot study conducted during the 2004–2005 academic year in urban 

middle schools aimed to (a) improve inter-rater reliability through an enhancement of the 

training program with more experienced raters and (b) determine the number of 

observations and student work samples necessary to estimate individual teachers’ 

instructional practice (Matsumura et al., 2006). Each teacher (n = 13) participated in 2 

classroom observations and submitted 4 challenging student assignments and 4 samples 

of student work (2 high quality and 2 medium quality, according to each teacher as in the 

previous pilot study). Reliability measures indicated an improvement from the previous 

study, with overall exact scale-point agreement from observation rubrics in mathematics 

at 81.8%. The exact scale-point agreement for submitted assignments was 76.3%, still 

considered to be moderate. Moreover, calculation of Cronbach’s alpha to determine the 

consistency of rating scales yielded a value of 𝛼 = .92 (excellent reliability), with an 

acceptable score being .76 or above (Matsumura et al., 2006).  
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Matsumura and colleagues (2006) conducted generalizability and decision studies 

to determine the number of observations and assignments needed to reliably measure 

instructional quality at the teacher level, indicating that “as few as two observations 

yielded a stable estimate of quality, when teachers complied with the requirements of the 

data collection” (Matsumura et al., 2006, p. 17). Prior to each observation, teachers were 

instructed to teach lessons including a mathematical task to work on and a whole-class 

discussion, essential components analyzed by the IQA rubrics. However, 2 mathematics 

teachers’ lessons lacked these components, and their data were not included in the 

analyses. Matsumura and colleagues also found that collecting 4 student assignments 

yielded a stable estimate of instructional quality, and that reducing the number of raters 

from 3 to 2 did not affect the results significantly.  

Though the sample size was too small to apply multi-level models, the researchers 

used multiple linear regression to explore the relationship between teachers’ IQA ratings 

and student achievement, measured using the SAT-10; results indicated that, after 

controlling for students’ background and prior achievement, IQA observation ratings 

significantly predicted students’ scores on both the Total Math and Procedures subscales 

of the SAT-10 (standardized 𝛽 = .163, p < .001 and standardized 𝛽 = .322, p < .001, 

respectively). However, IQA scores for assignments only significantly predicted student 

achievement on the Procedures subscale (standardized 𝛽 = .130, p < .05), echoing the 

connection between the tasks assigned by teachers and the student thinking that resulted 

(Stigler & Hiebert, 1999, 2004). 
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Matsumura et al.’s (2006) findings suggested that the IQA yields valid and 

reliable scores for measuring instructional quality and students’ opportunity to learn for 

understanding. The reliability improved from the first pilot study after improvements to 

the rater-training program and using more experienced raters. However, the findings also 

revealed that few mathematics teachers implemented tasks that engaged students in 

exploring mathematical concepts and connecting them to procedures. Even when task 

potential was high, teachers implemented most tasks at low cognitive levels (Matsumura 

et al., 2006). Mean IQA scores on each rubric ranged from 1.08 to 2.65 across the 26 

observations, with the majority less than 2 (the mark separating high-level and low-level 

cognitive demand on each of the IQA rubrics). This suggests that teachers implemented 

few tasks at the level of procedures with connections and doing mathematics. 

Since its development and pilot testing, the IQA has been used to assess the 

instructional practices of mathematics teachers at the school and district levels, to identify 

differences in learning opportunities in large, urban school districts, to monitor teachers’ 

instructional changes after participating in PD, and to support administrators in observing 

mathematics classrooms (Boston et al., 2015). Discussed previously in the review of 

mathematical task research, Boston and Smith (2009) used the IQA to assess the 

effectiveness of PD focusing on the selection and implementation of cognitively 

demanding tasks. The results of their study indicated that participating teachers’ selection 

of cognitively demanding tasks increased significantly from one semester to the next and 

that the number of high-level tasks selected and implemented increased significantly over 

time. The results were not significantly different between experimental and control 



109 
 
groups during the first semester of the study. However, the second semester yielded 

significant differences for task regardless of the type of curriculum that teachers used 

(Boston et al., 2015; Boston & Smith, 2009).  

 In another study to investigate the effectiveness of PD and teachers’ change in 

instructional practices, Heyd-Metzuyanim et al. (2018) used the IQA to analyze the 

cognitive demand of instructional tasks and specifically focused on teachers’ accountable 

talk during whole-class discussions. This study involved 8 middle school teachers 

participating in a PD program focused around the 5 Practices for Orchestrating 

Productive Mathematics Discussions (Smith & Stein, 2018). Heyd-Metzuyanim and 

colleagues collected data in cycles, including a pre-lesson interview, a lesson recording, 

and a post-lesson interview, to capture potential changes in teachers’ practice after 

engaging in the PD. The experiences of two co-teachers who succeeded in reaching the 

highest level of task implementation on the IQA rubrics were described in the 2018 

report.  

Initially, the teachers seemed to rigidly imitate what they learned during the PD 

without fully understanding why they were doing so and how to do so effectively; for 

example, both teachers made accountable talk moves during a whole-class discussion but 

used them to clarify students’ procedures rather than to allow students to explain their 

mathematical thinking. However, interviews and observations 3 months after the PD 

revealed that both teachers were beginning to grasp ideas they had seen in the PD with 

greater understanding (Heyd-Metzuyanim et al., 2018). During the second pre-lesson 

interview, one of the teachers explained that she selected a particular task to meet 
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students’ learning needs rather than simply because the task had been used during the PD. 

Moreover, the teachers modified the task for their own classroom by creating their own 

video to introduce it while focusing on the intended mathematics content. The teachers 

were noticeably utilizing PD ideas in novel ways and adapting them to for use in their 

own classroom. During the first whole-class discussion, the co-teachers simply took a 

poll to see which of their students agreed or disagreed with an answer, whereas in the 

second lesson, they allowed one student to present his solution and facilitated a 

discussion to handle others’ disagreements. Though it took some time, and perhaps the 

ability for the two teachers to co-plan and co-teach lessons following the PD, the teachers 

were successful in improving the cognitive demand of their tasks and engaging students 

in rigorous mathematical discussions (Heyd-Metzuyanim et al., 2018).  

The IQA was also implemented in the Middle School Mathematics and the 

Institutional Setting of Teaching (MIST) project, a 4-year investigation of mathematics 

teaching and student achievement in 114 middle school classrooms within 4 urban 

districts (Boston & Wilhelm, 2017; Jackson et al., 2013). Boston and Wilhelm reported 

on the data from the first year of the project, whereas Jackson and colleagues’ article 

contains results from years 3–4. During the first year of the MIST project, the research 

goals were to investigate the rigor of instructional tasks, opportunities for students to 

engage in mathematical discussions, differences between the four districts involved in the 

study, and how the data compared to previous studies using classroom observations 

(Boston & Wilhelm, 2017).  
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Consistent with previous studies, the MIST team observed and coded 2 

(consecutive, when possible) mathematics lessons using the IQA rubrics for academic 

rigor and accountable talk. One of the key findings during the first year of the MIST 

project was that task potential “sets the ceiling” (Boston & Wilhelm, 2017, p. 852) for 

both task implementation and the student discussion that may follow. That is, IQA scores 

for task implementation and student discussions rarely exceeded scores for task potential. 

This result echoes the findings from both the TIMSS (Stigler & Hiebert, 1999) and 

QUASAR (Henningsen & Stein, 1997; Stein et al., 1996, 2009) studies, indicating that 

the cognitive demand of a task tends to decline from setup to implementation. Moreover, 

IQA task implementation scores were significantly lower than task potential scores in 

Year 1 of the MIST study (Boston & Wilhelm, 2017). Another interesting finding was 

that task implementation scores differed significantly across districts. The researchers 

suggested that the teachers’ experience, long-term use of Standards-based curricula, and 

involvement in PD may have contributed to such differences (Boston & Wilhelm, 2017). 

Data from Years 3 and 4 of the MIST study were analyzed to explore teachers’ 

task setup and the relationship between task setup and students’ opportunity to learn 

during whole-class discussions, including observations of 165 teachers’ instruction over 

2-day periods (Jackson et al., 2013). In addition to the original IQA rubrics, the 

researchers developed a set of accompanying rubrics to assess task setup, including 

rubrics for (a) contextual (real-world) features of task scenarios, (b) mathematical 

relationships evident in the task statement, (c) the maintenance of the cognitive demand 

of the task, (d) the cognitive demand of the task at the end of the setup as students begin 
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to work on the task, and (e) the percentage of students who participated in the setup 

discussion. Using both sets of rubrics to analyze classroom observations, Jackson and 

colleagues found that the level of attention to mathematical relationships in task setup 

was positively related to the quality of the whole-class discussions that followed, 

regardless of whether there was a contextual or real-world element to the task. The results 

also showed that discussions were of higher quality when students and teachers attended 

to contextual features and mathematical relationships during task setup and the cognitive 

demand of the task was maintained, though such conditions were rarely met. Similar to 

previous studies, the cognitive demand of tasks tended to decrease from setup to 

implementation, occurring in more than 60% of observed lessons (Jackson et al., 2013). 

Boston and Candela (2018) examined mathematics teachers’ instructional 

practices and highlighted ways in which the IQA can serve as a tool to enhance them. 

The authors observed and rated 3 lessons, 2 of which received low scores on the IQA 

(each item scored as either 1 or 2) and the third more closely resembling ambitious 

instruction (items scored between 2 and 4 with a mode of 3). A low-scoring geometry 

lesson was primarily teacher-directed, with few students providing short answers to 

questions and completing small tasks. The second low-scoring lesson involved the 

procedure for multiplying whole numbers by fractions; during this lesson, the teacher 

gave detailed instructions to show students how to complete each task, with little time 

spent on student discussions.  

The third, more ambitious lesson, engaged students in investigating multiplication 

problems where a factor was either doubled or halved. This lesson began with a class 
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discussion to activate students’ prior knowledge, followed by a task in which the teacher 

played the role of a facilitator by providing feedback and scaffolding to individuals and 

groups. The teacher of this lesson provided students with opportunities to make 

mathematical connections and generalizations, allowing them to engage in higher-level 

thinking about products and factors (Boston & Candela, 2018).  This study highlighted 

the ways in which mathematics teachers can use the IQA as a tool to identify and reflect 

on aspects of their own practice. 

The Expanded Instructional Quality Assessment and the Task Setup Rubrics 

 One outcome of the MIST project was the development of task setup rubrics to 

accompany the standard IQA rubrics; the additional rubrics are known as the Expanded 

Instructional Quality Assessment (EIQA) Task Setup Rubrics. Interest in task setup arose 

during the MIST study as researchers sought to identify ways that teachers supported all 

students to engage with mathematical tasks meaningfully. Task setup was of particular 

importance because it occurs just prior to task implementation in the MTF and influences 

which students are able to engage in solving a task and how they might go about solving 

it (Jackson et al., 2012, 2013). By watching and analyzing video recordings of middle-

grades mathematics instruction, Jackson and colleagues (2013) noticed that the work of 

both teachers and students during task implementation was determined by the way in 

which the task was set up. For example, “when students are not supported to understand 

key aspects of the task statement, teachers often spend the next phase of instruction 
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reintroducing the task to individuals or groups of students while others begin to solve the 

task” (p. 649). 

 Through a qualitative analysis of 40 video-recorded episodes of middle-grades 

mathematics teachers’ instruction collected during Year 1 of the MIST project, Jackson 

and colleagues (2013) identified four aspects of high cognitive demand task setup that 

tended to support students’ engagement: (a) important contextual features (i.e., real-world 

aspects) of the task scenario were discussed, (b) important mathematical relationships 

represented in the task were discussed, (c) a common language was developed to discuss 

both contextual features and mathematical relationships, and (d) the cognitive demand of 

the task was maintained throughout task setup. The contextual features of a task are 

critical because some students may be unfamiliar with the real-world context of a task if 

the context is outside their knowledge or experience. For example, consider a task that 

has students maximize the volume of a water trough for animals in a barn using a fixed 

amount of materials. Students who have never experienced animals on a farm may not 

have a mental picture of what a water trough looks like and may lack the prior knowledge 

to get started on the task without a teacher’s support (or the support of other students). To 

enhance students’ engagement with the task and maintain the cognitive demand, a teacher 

implementing this task may begin with a whole-class discussion or provide pictorial 

examples to access students’ background knowledge and experiences (Jackson et al., 

2012, 2013). 

 Similarly, discussing key mathematical relationships during task setup can 

support high-level task implementation (Jackson et al., 2012, 2013). Consider a task that 
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involves comparing various cellphone data plans where some plans charge a fixed cost 

each month and others cost various rates depending on the data usage each month. To 

determine which plan is the most cost-efficient, it is crucial for students to understand the 

differences between the payment options for each plan and how the monthly cost may 

increase with the data usage. This does not mean that the teacher simplifies the work of 

students or does the mathematical thinking and work for them; rather, it means that the 

teacher supports students in understanding the mathematical quantities and relationships 

in the task statement and poses questions to make sure that this understanding is shared 

by all students. 

The third aspect of high-level task setups identified by Jackson et al. (2013) was 

the development of a common language to describe key contextual features and 

mathematical relationships. This requires the teacher to illicit responses from multiple 

students and ask questions that prompt students to use relevant real-world and 

mathematical language (Jackson et al., 2013). Teachers must “build on student 

contributions and both support and press students to develop common language to 

describe key features of the task” (Jackson et al., 2012, p. 28). Developing a common 

language allows students to be able to communicate more effectively with each other and 

with the teacher.  

The fourth aspect of high-level task setups, maintaining the cognitive demand of 

the task, has been described in previous sections. However, it is worth reiterating that a 

high-level task setup is one in which the teacher does not do the mathematical work and 

thinking for the students and maintains the cognitive demand of the task (Stein et al., 
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2009). Maintaining the cognitive demand of the task means that the setup discussion of 

contextual features and mathematical relationships is student- rather than teacher-

dominated and the teacher allows students to explain how these aspects are evident in the 

task statement. 

The four aspects of high-level task setups described in the previous paragraphs 

provide the theoretical and empirical foundation for the EIQA Task Setup rubrics. The 

rubrics were meant to be compatible with the standard IQA and hence are measured on a 

similar 0–4 scale, closely aligning with the Stein et al. (2009) TAG. Rubric 1: Contextual 

Features (CF) measures the level at which students are supported in developing a shared 

understanding of the contextual, or real-world, features of a task (if a task has a real-

world, problem-solving scenario). Similarly, Rubric 2: Mathematical Relationships (MR) 

measures the level at which students are supported in developing a shared understanding 

of the mathematical relationships and ideas represented in a task.  

For either rubric, a score of NS indicates that there was no whole class discussion 

of the task prior to students’ engagement, whereas a score of N/A on each rubric indicates 

that the task does not have a problem-solving (real-world) scenario or is not mathematical 

in nature, respectively. Scores of 0 suggest that there was no attempt to discuss contextual 

features or mathematical relationships, and scores of 1, 2, 3, and 4 consistently increase 

in rigor from superficial student engagement to students consistently making connections 

between ideas. Both rubrics emphasize the teacher’s use of accountable talk moves, 

however, a subtle difference is that the MR rubric requires the presence of a strong 

accountable talk move on the part of the teacher or the students (Jackson et al., 2013). 
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 Jackson et al. (2013) used the EIQA rubrics to code 460 video-recorded teaching 

episodes from Years 3 and 4 of the MIST study. Of the 460 lessons, 58% (n = 267) 

involved a problem-solving scenario and warranted the use of both rubrics whereas the 

other 42% (n = 193) lessons did not, and therefore were not coded using the CF rubric. 

Using regression models, the researchers found a positive relationship between the 

quality of the attention to mathematical relationships and the quality of the concluding 

whole-class discussions at the end of a lesson. Even in lessons without a problem-solving 

scenario, a positive relationship existed between the quality of the task setup and the 

quality of the concluding whole-class discussion. However, in lessons with problem-

solving scenarios, teachers more frequently addressed mathematical relationships than 

contextual features and did so at higher levels. These results suggest that when teachers 

and students discuss the contextual features and mathematical relationships and maintain 

the cognitive demand during the setup of a task, the concluding whole-class discussions 

may be of higher quality (Jackson et al., 2013). Hence, the setup of a task is crucial in 

how the task is implemented and whether the cognitive demand is maintained. 

 I chose to use the two EIQA rubrics in addition to the standard IQA because they 

provided me with two aspects of task setup to analyze in further detail: teachers’ attention 

to contextual features and their attention to mathematical relationships. The addition of 

the two EIQA rubrics strengthened my analysis of tasks at the set-up phase and added 

depth to the study. An additional factor that led to the inclusion of the two rubrics was 

that the Ohio MMR course was designed to include tasks with real-world connections 

and applications; the course is meant to emphasize the use of mathematical models to 
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simulate real-world problem-solving scenarios. As such, many of the tasks that teachers 

used in this study could be analyzed using both rubrics. Analyzing the rigor of MMR 

teachers’ task setup in greater depth has implications for the MMR pilot course and 

similar PD incentives focusing on high-level task use. 

Chapter Summary 

 Mathematical task research expanded from the research of Doyle (1983, 1988), 

who developed academic tasks as a construct and categorized them according to the type 

and amount of work required by students to complete them. Stein and colleagues’ (1996) 

TAG expanded on Doyle’s research in mathematics education specifically by classifying 

tasks into four types based on their level of cognitive demand: memorization tasks, 

procedures without connections tasks, procedures with connections tasks, and doing 

mathematics tasks. Stein et al. (1996) additionally developed the MTF to follow the 

progression of a task from written source materials to implementation in the classroom.  

Research in mathematics education has provided evidence suggesting that 

cognitive and affective factors, such as mathematics teacher beliefs and knowledge, 

influence the selection, planning, and implementation of instructional tasks (e.g., 

Charalambous, 2010; Collopy, 2003; Hill, Blunk, et al., 2008; Philipp, 2007), providing 

motivation to explore such factors in further detail. Various components of MKT (Hill, 

Ball, & Schillings, 2008) and beliefs about tasks (Collopy, 2003; Philipp, 2007), beliefs 

about students (Philipp, 2007; Romagnano, 1994), and beliefs about mathematics 

teaching and learning (Beswick, 2011) have each manifested in teachers’ use of tasks at 

each phase. Finally, this chapter concluded with a description of the IQA, an instrument 
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that yields valid and reliable scores to measure the quality of instruction (Boston & Wolf, 

2006; Matsumura et al., 2006) and the cognitive demands of instructional tasks (Boston, 

2012; Boston & Smith, 2009).  
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Chapter 3: Methodology 

In this chapter, I present the research methods for the present study. I begin by 

describing and justifying the research design. Next, I provide background details by 

explaining the research context and participants from which I collected data. To set the 

stage for data sources and collection procedures, I include a brief summary of my IRB 

protocol and the IQA research instrument that I used to analyze mathematical tasks. After 

discussing data sources and the data collection procedures that I used, I describe the data 

coding and analysis processes employed. To conclude the chapter, I address issues that 

pertain to the study as a whole, including my positionality and credibility, transferability, 

and trustworthiness—constructs in qualitative research that are analogous to validity and 

reliability in quantitative research. 

Research Design 

Because the goal of the present study was to explore how high school 

mathematics teachers perceive and reflect on the use of mathematical tasks, I used 

primarily qualitative research methods to collect and analyze data (Rubin & Rubin, 

2012). The research questions address the perspectives of high school mathematics 

teachers, which cannot be deeply understood through quantitative measures. Qualitative 

methods captured depth of understanding rather than breadth (Rubin & Rubin, 2012), 

allowing for research participants to explain their thinking and rationales for selecting, 

planning, setting up, and implementing mathematical tasks. Qualitative methods are 

inductive and naturalistic in the sense that the researcher might not influence the 

phenomena that are studied (Patton, 2015); in the present study, high school mathematics 
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teachers’ use of mathematical tasks unfolded naturally without my interference, whereas 

my goal was to learn from what teachers did and thought throughout the process. Within 

qualitative methodology one of the primary methods is interviews; this method was used 

to collect data to address the research questions, supported by the collection and analysis 

of documents (mathematical tasks and samples of student work) and remote observations. 

Interviews 

According to Brinkman and Kvale (2015), an interview is a conversation with a 

purpose, a discussion between the researcher and participant(s) with the purpose of 

constructing and uncovering knowledge. Interviews are especially useful to study 

processes that are not externally visible (Rubin & Rubin, 2012), in this case, to study the 

motivating forces that drive high school mathematics teachers’ use of tasks at each of the 

four task phases. Through interviews, teachers were provided opportunities to explain 

why they selected particular tasks, why they modified them during their planning, how 

they set the tasks up for their students, and why they made particular instructional moves 

during task implementation. Interviews were necessary because the reasons for such 

actions could not be discerned through observations or documents alone. Additionally, 

qualitative interviews allowed for participants to express multiple views, including those 

that were not necessarily expressed in the literature (Brinkman & Kvale, 2015). 

Qualitative interviews consist of main questions, probes, and follow-up questions 

(Rubin & Rubin, 2012), each of which I used for the present study. Main questions were 

designed to answer the research questions (e.g., why did you choose to use this task with 

your students?), whereas probes pressed interviewees to provide further examples and 
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details (e.g., how does this task address math concepts?) and follow-up questions asked 

participants to elaborate on ideas in more depth (e.g., could you explain what you mean 

by…?). The main questions that I constructed for interviews were based on my 

knowledge and experience with mathematical tasks and based on the literature (Rubin & 

Rubin, 2012); for example, I categorized questions into four groups, each pertaining to a 

single task phase. Of the three types of interviews, I chose to use semistructured 

interviews (Glesne, 2016; Merriam, 2009) in the present study because semistructured 

interviews provided structure through a predetermined set of questions but also allowed 

me to ask follow-up questions as needed. Neither structured nor unstructured interviews 

would have offered the same balance of support and flexibility. Tentative pre- and post-

observation interview questions are presented in Appendices C and D, respectively. 

Documents 

 Interviews with high school mathematics teachers were situated within the context 

of the mathematical tasks they selected, planned, set up, and implemented. Moreover, one 

of the goals of the present study was to explore such teachers’ abilities to analyze tasks 

and how they reflected on the potential changes between the four task phases. Therefore, 

I collected and analyzed mathematical tasks at each of the four task phases, documents 

that enhanced interviews by providing additional insights and potential interview 

questions (Patton, 2015). For example, access to the mathematical task used by each 

teacher allowed me to develop additional interview questions pertaining to the 

mathematics content and the cognitive demand of each task. For example, I was able to 

ask questions such as “What might you do if students struggle to identify a reasonable 
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pair of independent and dependent variables?” By collecting the same task at each of the 

four task phases, I was able to ask questions to investigate why teachers made particular 

modifications to the task from one phase to the next and how the changes influenced the 

cognitive demand of the task, such as, “Can you tell me about the changes you made to 

number 2 [on the handout]?” and “What led you to make this change?” Mathematical 

task documents provided a window into teachers’ perspectives and experiences (Patton, 

2015) as they engaged their students and reflected on their instruction. 

Observations 

 Mathematical tasks as they appear in source materials and in teachers’ lesson 

plans served as documents that could be collected and analyzed in digital form. During 

observations of teachers’ mathematics instruction, I wrote detailed field notes to describe 

what I observed, what I wondered about it, and questions that I planned to ask later 

during interviews (Glesne, 2016; Patton, 2015). For example, I made written notes 

indicating when task setup ended and when task implementation began to guide my 

subsequent IQA analyses. Both observations and field notes focused on the mathematical 

tasks that were set up and implemented and on the evidence needed to analyze their 

cognitive demands using the IQA rubrics. I documented evidence of students’ thinking 

and reasoning by recording instances when they explained their mathematical thinking 

verbally. I specifically documented talk-moves made between teachers and students 

because these statements are emphasized in the rubrics. 
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Data Sources and Collection Procedures 

 To answer the research questions, I collected 3 types of qualitative data: 

interviews, observations, and documents (Glesne, 2016; Patton, 2015; Rubin & Rubin, 

2012). Interviews served as the main source of data to answer the research questions, 

focusing on high school mathematics teachers’ perspectives to determine (a) reasons that 

they attributed to the selection, planning, set up, and implementation of instructional 

tasks, (b) reasons that they attributed to changes in task cognitive demands between 

phases, and (c) reasons that they attributed to the high cognitive demand of tasks that 

were identified as low cognitive demand according to the IQA. I observed and analyzed 

instruction to determine the cognitive demand of implemented tasks and used 

observational field notes to develop follow-up interview questions. I collected and 

analyzed mathematical tasks to determine their cognitive demand at each of the four task 

phases (selected, planned, set up, and implemented) and to provide context for interviews 

with teachers. I also collected student work samples to augment the analysis of 

observations and to determine the cognitive demand of implemented tasks.  

Figure 4 provides a pictorial outline of the data collection procedures described in 

the previous paragraphs. This progression of data collection procedures occurred once for 

each teacher. The following paragraphs include a description of the data collection 

process that took place with each participant in chronological order. 
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Figure 4 

Stages in the Data Collection Process 

 

Note. Data collection follows the progression of a single mathematical task through the 

four task phases: as selected, as planned, as set up, and as implemented. A single task was 

collected from each participating teacher, serving as the focus of observation and both 

interviews. Two observations were conducted to assess the full implementation of a task 

across two class meetings. Each process depicted in Figure 4 occurred once for each 

teacher, except that a debrief was not possible in every instance. 
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Mathematical Tasks Selected from Source Materials and as Planned  

The purpose of the present study was to follow the progression of mathematical 

tasks from source materials to implementation and learn about teachers’ perspectives as 

they go through and reflect on the process. After sending emails to potential research 

participants and obtaining their consent to conduct research, I scheduled 2 consecutive 

observations with each. Consecutive, in this context, refers to consecutive days of 

instruction with the same group of students. Instances where teachers met with their 

students every other day (e.g., Monday and Wednesday block scheduling) were 

considered as consecutive observation days even though instruction did not occur on 

consecutive days of the week.  

I required teachers to implement what they considered to be a high cognitive 

demand task during the observations. Prior to each pair of observations, I asked teachers 

to submit a mathematical task from the lessons that they believed was a high cognitive 

demand task, yielding a total of 9 tasks to be analyzed. Such tasks were considered by 

teachers to be the main task for each observed lesson, either the task consuming the 

largest amount of class time or the task designated by teachers as the main instructional 

task for the lesson (Boston & Smith, 2009). I limited data collection and analysis to 1 task 

per teacher, even in instances where a second task was implemented over the 2 

observations, so that I could concentrate on the progression of the single task during 

interviews. I anticipated, and later confirmed, that a 1-hr interview was not enough time 

to discuss the selection and planning of multiple tasks in depth; similarly, 1 hour was not 

enough time to discuss the setup and implementation of more than a single task. 
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I collected each main task as it appeared in source materials and as it appeared in 

teachers’ lesson plans so that I could analyze tasks at both the selected and planned 

phases. Tasks from source materials were located in curricular materials, such as 

textbooks, found using the internet, or created by the teachers; I accepted main tasks in 

any of these forms. I also requested the full lesson plans for each observed lesson to 

support my analysis of tasks at the planned phase. The task that each teacher selected and 

the adjustments they made when planning are described in Chapter 4. 

Pre-Observation Interviews 

After collecting evidence of selected and planned tasks, I scheduled a pre-

observation interview which took place prior to the observation days (for a total of 9 pre-

observation interviews, 1 for each teacher) focusing on the tasks selected from source 

materials and included in teachers’ lesson plans. All interviews were conducted remotely, 

using Zoom software for digital communication to avoid the health risks of meeting face-

to-face due to the COVID-19 pandemic. Remote interviews were each scheduled for 1 hr 

at times convenient with research participants.  

Prior to conducting the interviews, I developed an interview protocol (Glesne, 

2016; Patton, 2015) for pre- and post-observation interviews consisting of possible 

questions that I planned to ask each participant, shown in Appendices C and D, 

respectively. Introductory questions asked participants to explain why they selected a 

task, why they made changes to a task when planning, and why they made instructional 

decisions when setting up and implementing the task with students. Follow-up questions 
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delved deeper and probed to identify the underlying reasons why such decisions were 

made. 

During these one-on-one interviews, I asked teachers to explain the thought 

processes and rationales for their decision-making when they selected and planned each 

main task. For example, I asked questions such as, “Why did you choose to use this task 

with your students,” with the follow-up question, “How does this task address student 

engagement?” to determine how tasks met teachers’ goals for student engagement. I also 

had teachers categorize each main task using the TAG (e.g., as memorization, procedures 

without connections, procedures with connections, or doing mathematics); after teachers 

rated the tasks that they selected from source materials and the tasks as planned, I asked 

interview questions to illicit justifications for each rating and explanations for changes (or 

lack thereof) in the cognitive demand between them. 

After interviewing each participant and transcribing the interview into text, I sent 

the interview transcript to the participant to verify its accuracy. By conducting such a 

member check, I ensured that the interview data truly captured my participants’ 

perspectives (Glesne, 2016; Merriam, 2009). This process was done for both pre- and 

post-observation interviews, though it was done separately because each type of 

interview typically occurred on a different day. 

Mathematical Tasks as Set Up and as Implemented 

I then observed the setup and implementation of each task with another trained 

IQA rater, another graduate student in mathematics education at Ohio University. All 

observations were done remotely, using software such as Zoom or Google Classroom, to 
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avoid face-to-face contact with teachers and students during the COVID-19 pandemic. 

Rather than video- or audio-recording each lesson, both observers took written field notes 

as they observed instruction remotely to emulate the methods of previous studies using 

the IQA (e.g., Boston & Wilhelm, 2017; Jackson et al., 2013). Observations served to 

capture evidence of the setup and implementation of each main task. Recall that task 

setup was defined as the task that was initially presented to students in class, including 

directions given orally and in writing (Stein et al., 1996; 2009). Therefore, both IQA 

raters included all directions given to students in their observational field notes and 

collected digital copies of each main task as presented to students (for a total of 9 set up 

tasks, 1 for each teacher).  

Both IQA raters transcribed lessons in detail in their observational field notes 

(Glesne, 2016; Patton, 2015) with specific attention to the nature of mathematical tasks as 

they unfolded and the interactions between students and teachers; as the observations 

were done remotely, this included documenting what could be seen and heard via 

webcams. Throughout the data collection process, both observers did their best to 

accommodate for teachers’ and students’ needs and to limit interference with their regular 

classroom procedures. Participating teachers taught in a variety of face-to-face, remote, 

and hybrid environments, each following the guidelines and policies designated by their 

respective school district. Some face-to-face classroom setups resembled life before 

COVID-19, with the exception of masks, social distancing, and additional sanitation 

materials. Some classes met remotely via Google Classroom or Zoom, where teachers 
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used breakout rooms to put students into groups and facilitate online student 

collaboration. 

Regardless of the teaching and learning situation, collecting data during the 

COVID-19 pandemic was not ideal, though it did provide additional data that might not 

have been obtained otherwise. In some instances, student-to-student communication was 

difficult, if not impossible, to hear and transcribe based on where students were seated 

and where the webcam was placed in the room. Fortunately, many teachers revoiced their 

students’ contributions during whole-class discussions and some teachers used multiple 

devices to help capture audio and video data (e.g., using cellphones to capture student 

talk or the use of two webcams to view the classroom from various angles). Under 

normal circumstances, both researchers would have been able to walk around each 

classroom and observe students as they worked and communicated among themselves. 

This is a limitation to the present study, however, analyzing student work samples using 

the IQA provided data to determine the level of students’ thinking and reasoning in 

addition to what was obtainable through remote observations.  

Both raters used the IQA to assist in recording lesson details and as a guideline 

for written notes, including accountable talk moves (Boston, 2012) made by the teacher 

and students. In accordance with the IQA, both raters also recorded questions asked by 

the teacher and students, including question types such as probing and exploring 

mathematical meanings and relationships. Linking moves, teachers’ asking moves, and 

students’ providing moves (Boston, 2012) served as an additional focus for written 

descriptions during lesson observations. Immediately following each observation, I 
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debriefed with each participating teacher one-on-one if possible and asked them to 

explain how they felt that their tasks unfolded and why. Most teachers were able to 

debrief briefly after each lesson, but some were unable to because they needed time to 

prepare for the following class. Debriefs served as short post-observation interviews with 

teachers immediately following task implementation so that I could ask questions and 

take notes of teachers’ responses with the lessons still fresh in their minds. For each 

observed lesson, I created a timeline of lesson activities (Boston, 2006) and scored task 

setup and implementation with the help of my co-investigator. The data analysis 

procedures are described in a later part of this chapter. 

After observing the implementation of each main task, I requested that teachers 

submit student work samples from each task to support my analysis. Research 

participants submitted at least 6 samples of student work, if possible (Boston, 2012; 

Matsumura et al., 2006). Each submitted digital copies of students’ work meeting the 

following criteria, whenever possible: 2 samples displaying strong student work, 2 

samples displaying average student work, and 2 samples of the teacher’s choice. The 

decision to collect samples this way was based on previous research suggesting that at 

least 4 samples (2 high quality, 2 medium quality) are required to represent valid 

indicators of classroom practice using the IQA (Boston & Wolf, 2006; Matsumura et al., 

2006).  

Two teachers chose to submit all copies of student work (more than 6 samples 

each); in these instances, I determined the 6 student work samples to be analyzed 

according to the criteria discussed previously. As I explain in the Data Coding and 
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Analysis section of this chapter, I then used IQA Rubric AR2: Implementation of the 

Task to rate observations and student work samples with my co-investigator, yielding 

IQA scores for (a) task implementation and (b) students’ work. To keep students’ names 

confidential, participating teachers concealed or removed their names before submitting 

copies of their work. A full synopsis of the collected student work is reported in Chapter 

4. 

Post-Observation Interviews 

Finally, I conducted a remote, one-on-one post-observation interview with each 

teacher following the observations to discuss the setup and implementation of each main 

task (for a total of 9 post-observation interviews). Due to teachers’ busy schedules, I was 

unable to conduct these interviews immediately following task implementation, hence the 

need for short debriefs following each lesson. However, I attempted to schedule post-

observation interviews as promptly as possible so that research participants could recall 

each lesson more clearly. During post-observation interviews, I invited participants to 

explain how their tasks progressed and to explain their instructional decisions based on 

the field notes I took while observing. For example, I asked questions such as, “Can you 

recall an instance where student(s) struggled with this task?” and followed up with, “How 

did you respond in this instance?” to explore what motivated teachers’ actions when 

responding to student difficulties. Additionally, teachers rated task setup and 

implementation using the TAG and provided reasoning for changes (or lack thereof) in 

the cognitive demands of tasks from planning to setup and from setup to implementation.  
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Though I used the IQA to analyze instructional tasks, I had teachers use the TAG 

because of their prior experience with it in PD and because they were more familiar with 

its use and purpose than the IQA. It is unlikely that any of the research participants were 

familiar with the IQA and would have required additional training to implement the IQA 

rubrics effectively. Moreover, the IQA instrument was also meant to be used by 

observers rather than the teacher who taught the lesson (Boston, 2012; Jackson et al., 

2013). However, the TAG adequately served as a tool that research participants could use 

to measure the cognitive demands of tasks at each phase.  

During both pre- and post-observation interviews, participating teachers had the 

potential to identify a task as high in cognitive demand (i.e., procedures with connections 

and doing mathematics) using the TAG whereas I might have identified it as low 

cognitive demand using the IQA (i.e., scores of 0–2). However, I chose not to reveal IQA 

scores nor my analyses of instructional tasks so that I did not influence teachers’ task 

analysis and their own explanations. I wanted the interview data to be authentic and 

uninfluenced by my own perspectives. A second type of mismatch could have occurred, 

where a teacher identifies a task as low in cognitive demand whereas I identify it as high 

cognitive demand; however, no such cases occurred in the present study. Because I did 

not reveal the IQA scores for teachers’ tasks, I instead compared teachers’ analysis of 

their tasks to my own to determine potential reasons for each mismatch that happened. A 

description of the three mismatches in task analysis is presented in Chapter 4 and 

discussed further in Chapter 5. 
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The Instructional Quality Assessment Research Instrument 

The IQA is a classroom observation form that is filled out by classroom observers 

during and immediately following a lesson. Detailed field notes are to be taken during the 

lesson itself and attached to the form, serving as evidence to support the ratings (scores) 

given using the IQA rubrics. The instrument is divided into three parts:  

1. Documents needed during the observation, 

2. The IQA mathematics rubrics, and 

3. The scoring sheet.  

Part 1 provides guidelines for what to look for when observing the enacted lesson, 

including accountable talk and academic rigor, two theoretical constructs that were 

discussed in Chapter 2. The Accountable Talk Function Reference List includes “talk 

moves” (Boston & Candela, 2018, p. 430), verbal actions which either provide 

accountability to the learning community (e.g., keeping students together to follow 

complex thinking) or provide accountability to knowledge and rigorous thinking (e.g., 

asking students to explain their reasoning). Part 1 also includes a lesson implementation 

checklist that helps the observer to determine whether the lesson provided students with 

opportunities to engage in high-level thinking and reasoning, specifically addressing the 

quality of the class discussion following implementation of a mathematical task and the 

types of questions asked throughout (e.g., probing questions, questions exploring 

mathematical relationships, and so on).  

Part 2 of the IQA contains five rubrics for academic rigor and five rubrics for 

accountable talk that were described in Chapter 2. Each IQA rater observes instruction, 
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takes detailed field notes, and scores each item on the rubric based on what was observed.  

Discussed in more detail in the Data Coding and Analysis section, both IQA raters scored 

tasks from source materials, task planning, and task setup using Instructional Quality 

Assessment Academic Rigor Rubric 1: Potential of the Task (IQA Rubric AR1) and 

scored task implementation using Instructional Quality Assessment Academic Rigor 

Rubric 2: Implementation of the Task (IQA Rubric AR2).  

Part 3 is the scoring sheet for which 2 raters provide their scores to each rubric. 

Scores are given as single whole numbers between 0 and 4, inclusive, with higher scores 

indicating stronger evidence of ambitions mathematics instruction (Boston, 2012).  The 

IQA requires completion by 2 trained raters for each lesson to maintain validity and 

reliability of the rubrics (Boston & Wolf, 2006; Matsumura et al., 2006). Researchers 

utilizing the IQA in previous studies have required raters to reach 80% exact agreement 

prior to coding data as an additional reliability measure (Boston & Wilhelm, 2017; 

Wilhelm & Kim, 2015), though I implemented the rubrics with a co-observer by reaching 

a consensus through discussion. The full IQA rater form for lesson observations is 

included in Appendix A. I also used two EIQA rubrics, Contextual Features (Rubric 1), 

referred to as CF, and Mathematical Relationships (Rubric 2), referred to as MR; these 

rubrics were meant to analyze elements of whole-class discussions that occur during task 

setup. Both setup rubrics are presented in Appendix B. 

Context and Research Participants 

I purposefully selected research participants meeting the following criteria: first, 

they were high school mathematics teachers in the state of Ohio. As discussed in Chapter 
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1, I planned to select teachers from Ohio to make data collection manageable, though this 

was no longer necessary due to the use of only remote data collection procedures. I 

decided to keep this criterion for selection because I wanted to explore the perspectives of 

high school mathematics teachers involved in ATC programs and the Ohio MMR pilot 

course. Second, research participants must have engaged in task-focused PD including 

the Stein et al. (2009) MTF and TAG; this was so that I could recruit teachers who were 

more familiar with mathematical task terminology (e.g., words such as tasks and 

cognitive demand), providing a shared understanding of vocabulary for interviews.  

Third, I required that each teacher planned to use what they considered to be a 

high cognitive demand task that I could observe and collect student work samples from. 

The focus of the present study was to investigate high school mathematics teachers’ 

perceptions regarding high cognitive demand tasks; however, the tasks used by teachers 

did not always align with high cognitive demand tasks according to the IQA rubrics (i.e., 

scores of 3–4). In such instances, I asked interview questions to illicit teachers’ 

justifications for why they believed that the cognitive demand of the tasks was high to 

delve deeper into their perspectives. 

 Purposeful selection of research participants meeting the three criteria served to 

provide information rich cases to study in depth (Patton, 2015). Qualitative research 

tends to consider a small number of such cases but determining sample size can be 

difficult. Ideally, qualitative researchers continue to recruit new research participants 

until data saturation is met. Guest et al. (2006) define data saturation as “the point at 

which no new information or themes are observed in the data” (p. 59). Through their 
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coding and analysis of interview data, Guest et al. found that data saturation was reached 

after 12 interviews and that additional interviews rarely produced new codes. Therefore, I 

aimed to recruit 12 high school mathematics teachers to each participate in a pre-

observation and a post-observation interview, using Guest et al.’s number as a guideline.  

Though I sent an initial email message to more than 50 teachers and received 

letters of support from 12 principals, my sample includes only 9 teachers. One teacher 

withdrew prior to data collection for health reasons and one teacher’s district abruptly 

changed to asynchronous, remote instruction, making classroom observations impossible. 

With a letter of support from this teacher’s principal, I sent an email to the teacher asking 

if he would still like to participate in the interviews but received no response after 

sending several follow-up messages. The third teacher for whom I received a principal’s 

letter of support agreed to participate in the study via email, but after many weeks of 

follow-up emails, failed to respond and schedule observation dates. I chose to continue 

with data collection and analysis with a sample of 9 teachers because the data provided 

enough information to sufficiently answer the research questions. However, I remained 

flexible and was willing to recruit additional teachers if I had found it necessary. 

To recruit research participants who had engaged in PD including the Stein et al. 

(2009) MTF and TAG, I contacted (a) pilot teachers of the Ohio Mathematical Modeling 

and Reasoning (MMR) course during the 2010–2021 academic year and (b) past 

participants of Advanced Teacher Capacity (ATC) PD programs hosted at Ohio 

University. Among the teachers I contacted, I prioritized those whose principals or 

superintendents gave their consent to conduct research and those who responded to my 
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invitation promptly. This convenience sample may have introduced potential bias to the 

present study (Patton, 2015; Glesne, 2016), as high school mathematics teachers in other 

locations and those who did not participate, but were eligible to do so, may hold different 

perspectives concerning mathematical tasks. The following subsections include brief 

descriptions of the Ohio MMR pilot course and the ATC PD programs and justification 

for the inclusion of each in the present study. 

The Ohio Mathematical Modeling and Reasoning Pilot Course 

The Ohio Mathematical Modeling and Reasoning (MMR) course is a student-

centered high school mathematics course designed to serve as an alternative to 

Precalculus for seniors who do not intend to pursue STEM pathways. The course is 

organized around nine themes: Problem Solving, Number and Quantity, Functions–Part 1 

(linear functions), Functions–Part 2 (quadratic, exponential, and power functions), 

Geometry, Statistics, Probability, Applications of Number and Quantity and Statistics, 

and a Wrap Up theme at the end of the course. One purpose of the Ohio MMR course is 

to serve as a transition course that prepares high school seniors for remediation-free 

college mathematics. The course is intended to be taught rigorously using effective 

teaching practices identified by mathematics education research and professional 

organizations, emphasizing the eight effective teaching practices identified by NCTM 

(2014) and the eight Standards for Mathematical Practice established in the Common 

Core State Standards for Mathematics (NGA & CCSSO, 2010). The theme-based content 
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and heavily student-centered pedagogy of the Ohio MMR course is new and challenging 

for most pilot teachers.  

The state of Ohio is engaged in ongoing development of instructional materials 

and PD for this innovative new MMR course. A team of college faculty and high school 

teachers have worked with Ohio Department of Education (ODE) mathematics 

coordinator A. Cannelongo and ODE consultant S. Miller to develop course materials and 

to design PD for teachers piloting the course. The MMR teachers are provided with the 

curricular scope, sequence, and activities that they are expected to use with their students, 

and the PD helps them to learn about what they will teach and effective ways to teach it. 

The in-depth and ongoing PD for Ohio MMR pilot teachers includes face-to-face 

meetings, online webinars, and individualized meetings with peer mentors and higher 

education faculty.  

The 2020–2021 academic year, the year of data collection for the present study, 

was the third year of pilot-testing for the MMR course. In 2018–2019, 3 teachers pre-

piloted the course. In 2019–2020, 25 additional teachers piloted the course and 25 more 

piloted the course in 2020–2021. Each year, the MMR teachers provided feedback on the 

curricular materials for the course and the materials were revised accordingly. The MMR 

teachers were provided with PD consisting of a summer workshop and follow-up sessions 

throughout each school year. There were no formal PD sessions in 2018–2019 because 

the pre-pilot consisted of only three teachers. A 4-day summer workshop occurred in 

2019–2020, with a 1-day in-person meeting in January and weekly Zoom meetings in 

March and April. The 2020–2021 summer meeting was conducted online via Zoom, with 
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follow-up meetings beginning weekly in August. The weekly online meetings shifted to 

semi-monthly in October and then again to monthly in February. The PD for the MMR 

course has developed alongside the course materials since the first pilot year. The 

continuous, ongoing PD has helped the 2020–2021 MMR teachers to teach using the 

course materials and pedagogy more effectively. Some of these teachers have taught the 

course and engaged in the PD more than once, reinforcing what they have learned even 

more. 

The MMR pilot teachers have engaged in studying the TAG and MTF as part of 

their PD workshops through the analysis of written tasks and vignette studies of task 

implementation. For example, the pilot teachers who attended the summer PD in 2019 

and 2020 were instructed to analyze a variety of written instructional tasks using the 

TAG. Additionally, they were asked to read vignettes of mathematics teaching and 

identify ways in which teachers used mathematical tasks and student discourse to support 

student learning. The TAG was introduced as a tool that teachers could use to analyze 

and reflect on their own instructional practices; this experience positioned the MMR 

2020–2021 pilot teachers as ideal research participants for the present study because of 

the knowledge and experience with the TAG and the MTF that they had developed. Such 

teachers possessed the potential to select, plan, set up, and implement high cognitive 

demand tasks and were more familiar with mathematical task terminology than some 

other high school mathematics teachers in Ohio might have been. Some of the 2020–2021 

MMR teachers have taught the pilot course more than once; as such, they have engaged 

in learning about the MTF and the TAG several times. 
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Advanced Teacher Capacity 

The ATC program provided PD in mathematics and statistics to high school 

mathematics teachers from 2007–2018. Two PD programs were enclosed under the ATC 

umbrella: Mathematical Modeling and Spatial Reasoning (Modspar) and Quantifying 

Uncertainty and Analyzing Numerical Trends (QUANT), which are described briefly in 

the following paragraphs. 

Mathematical Modeling and Spatial Reasoning. Modspar was a yearlong ATC 

PD program for high school mathematics teachers that consisted of two components: 

Modeling with Algebra and Modeling with Geometry. Both programs incorporated the 

use of technology to investigate and solve genuine real-world problems, providing 

participating teachers with opportunities to set up, engage in, and implement rich 

mathematical tasks with their students. A central component of Modspar required 

participants to plan engaging modeling lessons during the summer institutes, teach those 

lessons during the fall, and report on how they implemented such lessons during the 

follow-up meetings (Patton College of Education [PCOE], 2019). 

As with the Ohio MMR PD, the Modspar program included training and 

instruction using the TAG and MTF (Stein et al., 2009). Modspar participants read 

sections of the Stein and colleagues (2009) book and analyzed, planed, and engaged in 

mathematical tasks individually and collaboratively throughout the summer institutes. 

Participants were also supported in developing high quality mathematics lessons 

containing high cognitive demand tasks throughout the yearlong workshops (PCOE, 

2019). This training and experience with selecting, planning, setting up, and 
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implementing tasks at high cognitive levels positioned past Modspar participants as ideal 

research participants for the present study. The Modspar teachers had not only read about 

the TAG and MTF theoretically but had also applied it to their own instructional practice. 

Quantifying Uncertainty and Analyzing Numerical Trends. QUANT was a 

yearlong ATC PD for high school mathematics teachers, also hosted at Ohio University, 

focusing on statistics and statistical knowledge for teaching. One of the goals of QUANT 

was to engage teachers in learning about cognitively demanding mathematical and 

statistical tasks so that teachers could use such tasks on their own following the PD 

(Foley et al., 2010). QUANT engaged teachers in reading and using statistics-based 

adaptations of the Stein and colleagues (2009) TAG and MTF and the Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) Report framework (Franklin 

et al., 2007), a system of (a) formulating questions, (b) collecting data, (c) analyzing data, 

and (d) interpreting results. Daily activities encouraged QUANT teachers to incorporate 

the GAISE framework, cognitively demanding statistics tasks, and the integrated use of 

technology into their instruction. 

I also selected QUANT teachers as potential research participants because of the 

central use of the Stein et al. (2009) TAG and MTF during their PD. Although both are 

intended for mathematical tasks, they are also applicable for use in statistics (Foley et al., 

2010). Though former QUANT teachers were recruited to participate in the present study, 

none of the 9 participating teachers had been involved in QUANT exclusively (i.e., they 

were involved in teaching the Ohio MMR pilot course as well). 



143 
 
Data Coding and Analysis 

Throughout the present study, I collected and analyzed the following data for each 

research participant: 1mathematical task, 2 interviews (1 pre-observation and 1 post-

observation interview), at least 2 observations (additional lessons were observed for tasks 

lasting more than 2 days, if possible), and up to 6 samples of student work, depending on 

how many samples were provided by each teacher. For example, some teachers had 

fewer than 6 students in their MMR classes or had students submit a single document as a 

group of 3–4 students. This yielded a total of 9 tasks, 18 interviews, 21 observations, and 

36 samples of student work.  Data collection and analysis were a continuous, ongoing 

process (Glesne, 2016; Patton, 2015) as I received and analyzed new data. To best 

accommodate for teachers’ busy schedules, I did not keep all of them at the same stage of 

the research at the same time; for example, one teacher’s post observation interview was 

scheduled during the same week as another’s pre-observation interview and observations. 

However, data were analyzed as soon as they were collected so that my findings could 

enhance subsequent observations and interviews (Glesne, 2016; Patton, 2015). 

Table 2 provides an overview of the data analysis procedures, including how each 

type of data was analyzed and the order in which analysis occurred with each teacher’s 

data (vertically from the top of the table to the bottom). The analysis procedures listed in 

Table 2 occurred once for each research participant, as each submitted 1 main task. First, 

I analyzed each main task as it appeared in source materials and as it appeared in 

teachers’ lesson plans using Instructional Quality Assessment Academic Rigor Rubric 1: 

Potential of the Task (IQA Rubric AR1). After transcribing pre-observation interviews, I 
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analyzed them using inductive coding and thematic analysis (Glesne, 2016; Patton, 2015; 

Privitera & Ahlgrim-Delzell, 2019), an approach that allowed me to identify and organize 

themes within the data.  

 

Table 2 

Data Sources and Analysis Methods 

Data Source Analysis Method 

Tasks as they appear in source materials IQA Rubric AR1 

Tasks designed by teachers in their 

lesson plans 

IQA Rubric AR1 

Pre-observation interviews Inductive coding and thematic analysis 

Tasks set up by teachers in class IQA Rubric AR1, EIQA Setup Rubrics 1–2 

Tasks implemented by teachers with 

students (classroom observation and 

student work samples) 

IQA Rubric AR2 

Post-observation interviews Inductive coding and thematic analysis 

Note. Data were analyzed in the order they were collected, shown in descending order 

from top to bottom. Data analysis followed the progression of a single mathematical task 

through the four task phases: selected from source materials, as planned, as set up, and as 

implemented. The processes depicted in Table 2 occurred once for each teacher.  
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Evidence of task implementation included the combination of observations and 

student work samples, each of which was scored individually using the IQA. After 

observing instruction and collecting student work samples, I analyzed task setup using 

IQA Rubric AR1 and EIQA Setup Rubrics 1–2 (CF and MR). Task implementation 

comprised of two elements: observations and student work samples, each of which I 

analyzed using Instructional Quality Assessment Academic Rigor Rubric 2: 

Implementation of the Task (IQA Rubric AR2). Post-observation interviews were 

analyzed using the same approaches as the pre-observation interviews. The following 

paragraphs provide explanations for how each data source was analyzed in detail, 

beginning with interviews because these were the primary data that I used to answer the 

research questions. 

Pre- and Post-Observation Interviews 

I used a thematic analysis (Glesne, 2016; Patton, 2015; Privitera & Ahlgrim-

Delzell, 2019) approach to coding and analyzing interview data to answer the three 

research questions. I used an inductive process (Merriam, 2009; Privitera & Ahlgrim-

Delzell, 2019) to generate codes and themes because I wanted to keep my analysis 

focused on the data rather than preconceived notions. Two example interview codes that 

describe teachers’ task selection were “time” and “relevant math content,” referring to 

teachers’ tendencies to select tasks based on the amount of time they would take to 

complete or based on the mathematics content that was addressed.  

Coding occurred throughout the data collection process; that is, I analyzed 

interview data as they were gathered and continued to modify my coding scheme as I 
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collected additional interview data (Merriam, 2009). As I coded interview data, I looked 

for ways in which codes could be grouped together to form themes. Themes are groups of 

codes that share common characteristics (Privitera & Ahlgrim-Delzell, 2019), 

abstractions that are derived from qualitative data (Merriam, 2009). Creation of themes 

began as an inductive process, followed by a deductive process of assessing themes as 

new interview data were analyzed. Both the coding of interview data and establishment 

of themes focused on answering the research questions (Patton, 2015) as I continuously 

sought ways in which the data might answer them. I developed an initial coding scheme 

by thoroughly reading, coding, and recoding several interview transcripts and later 

applied this coding scheme to additional transcripts to determine its effectiveness. I 

revised the coding scheme and repeated this cycle until no additional codes emerged.  

After developing the initial set of codes, I engaged in a second cycle of code work 

by using codes to create a framework of themes or “relational categories” (Glesne, 2016, 

p. 200). This stage of thematic analysis required me to reflect on what I had learned and 

make new connections and insights (Glesne, 2016). This process resulted in the 

development of themes, words or phrases that describe codes (Privitera & Ahlgrim-

Delzell, 2019). After identifying themes that emerged within single cases (i.e., single 

teachers), I used cross-case thematic analysis, the process of “identifying patterns across 

cases and assigning them a name to describe a pattern” (p. 743), to compare codes and 

themes across multiple teachers. 

I stored and managed interview data using NVivo, a software package that allows 

users to transcribe, read, and code interview data. As I coded interview transcripts, I kept 
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a running list of major codes and sub-codes, including descriptions of each, in a digital 

codebook (Glesne, 2016; Patton, 2015) using Microsoft Excel. This enabled me keep to 

the original meaning for each code and determine whether codes could be combined, 

split, modified, or removed (Glesne, 2016).  

Mathematical Tasks Across the Four Task Phases  

To determine the cognitive demands of tasks as they appeared in source materials, 

as planned, as set up, and as implemented, I collaborated with another trained graduate 

student at Ohio University to use the IQA instrument. Both analysts applied IQA Rubric 

AR1: Potential of the Task to analyze the cognitive demand of submitted tasks as they 

appeared in source materials, as they appeared in teachers’ plans, and as they were set up 

for students during lesson observations. When analyzing tasks as they appeared in source 

materials, both analysts assigned a numerical IQA score (0, 1, 2, 3, or 4) to the digital 

version of the source tasks submitted by participating teachers, reaching a consensus for 

each task through dialogue if we initially disagreed. This score, referred to henceforth as 

a Phase 1: Selection IQA score, was given for each teacher’s task as it appeared in source 

materials. Phase 1: Selection indicates the first phase in the four-phase task model 

provided in Figure 1 on page 50, tasks as they appear in source materials, whereas IQA in 

the score name indicates that the selected task was scored by the researchers using the 

Instructional Quality Assessment (as opposed to being scored by participating teachers 

using the Task Analysis Guide). 

To analyze tasks as planned, both analysts assigned a similar score to each task as 

it appeared in teachers’ lesson plans, again reaching a consensus for each score after 
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discussion. Not all the participating teachers wrote official lesson plans, but this phase 

also included modifications that teachers made to their tasks (if any) when planning their 

instruction. These scores are referred to as Phase 2: Planning IQA scores, signifying task 

scores for the second phase of Figure 1, tasks as planned by teachers. Both analysts also 

used IQA Rubric AR1 to assign unanimous scores for task setup; such scores are referred 

to as Phase 3: Setup IQA scores. Analysts assigned Phase 1: Selection, Phase 2: Planning, 

and Phase 3: Setup scores according to the level of thinking required of students to 

provide a “complete and thorough response that satisfies the stated demands of the task” 

(Boston & Wilhelm, 2017, p. 841), determined and agreed upon by both trained IQA 

raters during the analysis. ‘ 

Task setup received two additional scores, a Setup 1: CF score and a Setup 2: MR 

score, representing scores using EIQA Setup Rubric 1: CF and EIQA Setup Rubric 2: 

MR, respectively (these rubrics were described in Chapter 2). Consistent with the 

standard IQA, scores ranged from 0–4 and aligned closely to the Task Analysis Guide. 

The Phase 3: Setup IQA score for each task describes the cognitive demand of the task 

itself during the setup phase; that is, this score is meant to reflect whether the cognitive 

demand of the task from the previous phase is maintained, declines, or inclines. However, 

the two EIQA scores address particular components of whole-class discussions that occur 

as part of task setup (if such discussions happen). Therefore, the two EIQA scores capture 

a subset of the instruction captured by the Phase 3: Setup IQA score for each task. 

Recall that task implementation was defined in the present study as the verbal and 

written communication made between the teacher and students while solving the task and 
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the work that is done to complete the task (Stein et al., 1996, 2009). Therefore, evidence 

of task implementation included the observational field notes and student work samples 

pertaining to each task. Triangulation between observational data and student work 

samples provided a thorough analysis of tasks as they unfolded during instruction 

because the strengths of one approach supported the weaknesses of the other; the 

observations provided evidence of what students said and did during instruction whereas 

the student work provided evidence of students’ thinking and the work they actually 

accomplished (Boston, 2012; Glesne, 2016). Both of these data sources were analyzed 

using IQA Rubric AR2, Implementation of the Task. As with Rubric AR1, scores of 

either 0, 1, 2, 3, or 4 were assigned to each observation and set of student work pertaining 

to a single task.  

Task implementation scores should be “holistic, reflecting the highest level of 

engagement of the majority of students during individual or small-group work on the 

task” (Boston & Wilhelm, 2017, p. 841); therefore, I first assigned a single, holistic 

Implementation: Student Work score based on the majority of the student work samples 

pertaining to each task. I also assigned a Phase 4: Implementation IQA score to each set 

of observations related to a single task. That is, I analyzed each teacher’s observations 

holistically and provided a single IQA score based on the mathematical work and 

thinking that the majority of students were doing for most of the class time. I chose not to 

combine Implementation: Student Work scores and Phase 4: Implementation scores by 

averaging them because each score represents a qualitative category with unique 

qualitative attributes; each score categorizes a different type of data, one pertaining to 
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documents and the other pertaining to observations. As such, combining scores did not 

seem logical. In summary, each task was assigned 7 IQA scores: 1 for Phase 1: Selection, 

1 for Phase 2: Planning, 3 for Phase 3: Setup (2 of which are EIQA scores), and 2 for 

Phase 4: Implementation (1 for observations, 1 for student work). 

The third research question concerns mismatches in task analysis between the 

researchers and participating teachers. A mismatch, for the purpose of the present study, 

occurs when the researchers and a teacher disagree on the level of cognitive demand of a 

task at any of the four task phases. However, the IQA and TAG are not identical in terms 

of the level of cognitive demand evident in each classification; though IQA scores of 1 

and 2 align with the TAG categories of memorization and procedures without 

connections tasks, an IQA score of 3 may be assigned for procedures with connections 

tasks and doing mathematics tasks. Similarly, the IQA score of 4 may be assigned for 

both types of tasks if they provide explicit opportunities for students to provide evidence 

of their mathematical thinking and reasoning.  

Because of the slight differences in the structuring of the IQA and the TAG, a 

mismatch is therefore defined as an instance where the researchers and a teacher disagree 

on whether the cognitive demand of a task is high at a specific task phase; according to 

the TAG, memorization and procedures without connections tasks are low in cognitive 

demand, whereas procedures with connections and doing mathematics tasks are high in 

cognitive demand. This suggests that IQA scores of 1–2 categorize low cognitive demand 

tasks and scores of 3–4 categorize high cognitive demand tasks. Mismatches in task 

analysis are then evident if either (a) the researchers provide an IQA score of 1 or 2 for a 
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task phase and a teacher classifies the same phase as procedures with connections or 

doing mathematics or (b) the researchers provide an IQA score of 3 or 4 for a task phase 

and a teacher classifies the same phase as either memorization or procedures without 

connections. Tasks that are scored as 0 using the IQA are analogous to nonmathematical 

activity tasks according to the TAG and are both considered to be low in cognitive 

demand as well. 

Researcher as Instrument and Positionality 

“Reflexivity” (Merriam, 2009, p. 219), otherwise known as positionality, refers to 

reflecting on subjectivities and how they influence the researcher’s position and the 

research itself, a critical reflection of the self as researcher. Because the researcher is the 

instrument of qualitative research (Brinkman & Kvale, 2015), credibility and is 

established by developing integrity as a researcher (Patton, 2015) and explicitly 

describing how a researcher’s beliefs and values influence the study (Merriam, 2009). As 

the researcher in this study, I acknowledge that my experiences as a student and as a 

teacher of mathematics influence my research interest in mathematical tasks and my 

pedagogical beliefs about cognitive demand. My high school and undergraduate courses 

in mathematics had been primarily taught through lecture, with emphasis on the ability to 

execute mathematical procedures fluently. Though I was able to make sense of concepts 

on my own, I did not understand why other students had difficulty with this approach. As 

an undergraduate student in mathematics education and as a graduate teaching assistant, I 

taught the same way I was taught. Even at the master’s level, all my mathematics courses 

were taught by lecture, further enforcing the notion that lecturing and attention only to 
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procedural fluency (with little to no emphasis on conceptual understanding) were the 

ways of teaching mathematics. Teaching as telling (Philipp, 2007; Romagnano, 1994) 

was the norm for me. 

It was not until my coursework as a doctoral student in mathematics education 

and my experience with cognitively demanding tasks that my beliefs about mathematics 

teaching changed. Through my reading of the literature involving mathematical tasks, 

engagement in PD with mathematics teachers using the TAG and MTF, and involvement 

at state and national conferences for mathematics teachers, I have developed the strong 

belief that students should be creators and doers of mathematics, whereas teachers should 

serve as facilitators who teach for both procedural fluency and conceptual understanding 

through the regular use of high cognitive demand tasks. I mention my educational 

background and beliefs because they influence how I perceived and analyzed 

mathematics instruction and mathematical tasks during this research. My personal 

experience in high school mathematics classrooms and reading of the literature influence 

my perception that high school mathematics instruction across the state of Ohio and the 

United States was frequently taught through lecture and focused primarily on the 

memorization of facts and the correct execution of routine procedures (Stigler & Hiebert, 

1999; Stein et al., 2009).  

Reflexivity as a researcher requires me to reflect on my beliefs and preconceived 

notions throughout this research process. Rather than assuming that my participants held 

beliefs evident in the literature or beliefs that may be typical, I have grounded my 

analysis on what my participants convey to me through interviews, as reported in Chapter 



153 
 
4. The purpose of this study was not to determine whether the perspectives held by 

research participants were similar to those evident in the literature, nor was the purpose to 

assess such perspectives. Rather, the aim of this study was to learn from my participants 

and to develop a deeper understanding of how their perspectives influence their decisions 

when selecting, planning, setting up, and implementing mathematical tasks. The nature of 

the present study was exploratory, as opposed to evaluative, and my role as the researcher 

was to illicit and report what my participants communicated. However, my beliefs and 

values motivated this research and contributed to my desire to learn more about the 

complex interactions between mathematics teachers and the tasks they use during their 

instruction. 

Qualitative researchers not only introduce their own biases and preconceptions, 

but also benefit research through their expertise, knowledge, and experience. 

Interviewing, in particular, is a skill that can be learned and developed over time by 

reading qualitative research reports and texts, conducting qualitative research, and 

practice (Glesne, 2016; Patton, 2015). Patton (2015) asserts that qualitative researchers 

are connoisseurs, stating that “the researcher as connoisseur or expert uses qualitative 

methods to study a program or organization but does so from a particular perspective, 

drawing heavily on his or her own judgments” (p. 210). My teaching and research 

experience, mathematics knowledge, and specifically, my work involving mathematical 

tasks, has equipped me with the qualitative research skills necessary to conduct the 

present study. I have taught mathematics at the middle school, high school, and 

postsecondary levels, attended and co-led teacher PD, given conference presentations on 
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mathematical tasks and facilitated teachers’ analyses using the TAG, and conducted 

qualitative interview research throughout my career as a mathematics educator. My work 

with high school mathematics teachers through task-focused conference presentations has 

enhanced my ability to analyze mathematical tasks and communicate effectively with 

teachers regarding such topics.  

Credibility, Transferability, and Trustworthiness 

Though validity and reliability are terms that are generally applied to quantitative 

research, some authors of qualitative research methods texts advocate for their use as 

well. According to Merriam (2009), “internal validity deals with the question of how 

research findings match reality. How congruent are the findings with reality? Do the 

findings capture what is really there?” (p. 213). However, the notion of “reality” varies 

with qualitative research; Merriam writes that “one of the assumptions underlying 

qualitative research is that reality is holistic, multidimensional, and ever-changing” (p. 

213). Credibility, “the correspondence between research and the real world” (Wolcott, 

2005, p. 160), is often the term employed by qualitative researchers instead. Both terms 

communicate the necessary connection between the research and what is actually being 

studied, however, credibility acknowledges that a single “valid” result does not 

necessarily exist. Qualitative researchers instead seek the “truths” (Rubin & Rubin, 2012, 

p. 10) based on the lived realities of their research participants. Merriam (2009) offers the 

following methods to enhance the credibility of a study: triangulation, member checks, 

adequate engagement in data collection, reflexivity, negative case analysis, and peer 
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review, each of which is discussed in the following paragraphs. This subsection 

concludes by addressing transferability and trustworthiness. 

Triangulation is the use of multiple methods and multiple data sources to enhance 

the credibility of qualitative research (Glesne, 2016; Merriam, 2009; Patton, 2015). The 

present study incorporated the use of multiple methods of data collection to support data 

analysis through the collection of classroom artifacts (student work samples), 

observations, and teacher interviews. Each data collection method provided checks to the 

others and provided a nuanced understanding of each mathematical task as it unfolds 

during instruction. I compared interviews to written field notes during observations, 

providing clarification of the events that I observed and further insights into teachers’ 

task selection, planning, and setup. In this way, each has served to deepen the 

interpretation and understanding of the others (Glesne, 2016).  

Triangulation between data collection methods and data sources also enhances 

credibility by using the strengths of one data source to compensate for the weaknesses of 

the others (Patton, 2015). For example, observations of instruction cannot possibly 

capture teachers’ mental processes and rationales; however, I have gained this 

understanding through post-observation interviews and by connecting teachers’ responses 

to what I had observed. Student work samples alone did not capture the cognitive 

demands of tasks as implemented but were combined with observational data to provide a 

thorough analysis of the work that students produced in solving each task (Boston, 2012). 

Member checks, or “respondent validation” (Merriam, 2009, p. 217) supports 

credibility in qualitative research by verifying the accuracy of the researcher’s 
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interpretation. This strategy helps to confirm whether the data collected and analyzed 

represent participants’ truths and realities. Member checks involve sharing interview 

transcripts or even preliminary analyses back to research participants and asking them to 

verify that what has been described by the researcher is accurate (Glesne, 2016; Merriam, 

2009). Sharing interview transcripts and observational field notes can also enhance the 

trustworthiness and rigor of a study (Glesne, 2016). Throughout the present study, I 

conducted member checks of interview transcripts with each of my research participants 

to ensure that the transcripts accurately reflected teachers’ thoughts, decisions, and 

actions. After transcribing each interview, I shared it with the appropriate teacher and 

asked them to verify the accuracy of what was transcribed. 

Negative or discrepant case analysis (Glesne, 2016) is the purposeful search for 

“data that might disconfirm or challenge your expectations or emerging findings” 

(Merriam, 2009, p. 219). This technique establishes credibility by seeking to eliminate 

the possibility of alternative explanations (Patton, 2015) to “increase confidence in the 

original, principal explanation you generated” (Merriam, 2009, p. 219). By eliminating 

other possibilities, qualitative researchers can thereby support their analyses and 

explanations related to the phenomena of interest. I have done this in this study by asking 

questions to participating teachers during post-observation interviews. After observing 

the implementation of a mathematical task in the classroom, I likely had my own 

interpretation(s) for how the task unfolded and why; however, I was able to eliminate 

some possibilities by asking interviewees for their interpretation, seeking further 

clarification for what I might have missed. I explored alternative explanations for task 
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implementation by thoroughly examining student work and interview transcripts, 

searching for answers to questions that I still had after observing. 

The last of Merriam’s (2009) suggestions for enhancing credibility is the use of 

peer review or peer examination. This involves obtaining external input (Glesne, 2016) 

and asking others whether research findings are plausible within a given data set 

(Merriam, 2009). As a graduate student working to complete a dissertation, I am 

fortunate to have been able to present updates on data collection and analysis to the 

faculty on my dissertation committee. I was provided feedback from various 

perspectives, including that from the fellow graduate student who observed and analyze 

instruction using the IQA for reliability purposes; throughout the data collection and 

analysis process, I consulted with this trained rater to evaluate the accuracy of my 

analyses and the plausibility of the findings that emerged. 

Unlike credibility, or internal validity, external validity requires that the findings 

of a study be applicable to other situations (Merriam, 2009). However, qualitative 

research enhances the understanding of small samples (Patton, 2015) and does not 

necessarily attempt to generalize results from a sample to a larger population. Most 

qualitative research relies on purposeful, rather than random, sampling. Some believe that 

is better to consider “transferability” (Lincoln & Guba, 1985, as cited in Merriam, 2009, 

p. 224), the idea that consumers of qualitative research should be left to determine 

whether the research findings can be applied to other situations. However, it is the 

qualitative researcher’s responsibility to provide enough data to make transferability 

possible (Lincoln & Guba, 1985, as cited in Merriam, 2009). This has been achieved 
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through the “thick, rich description” (Glesne, 2016, p. 153) that is the essence of 

qualitative research and transparency in reporting research decisions, processes, and 

analyses.  

Transferability is also enhanced through the use of an audit trail, a method 

introduced by Lincoln and Guba (1985) that describes how data were collected, how 

themes were derived, and how decisions were made throughout the research (Merriam, 

2009). Throughout data collection, analysis, and interpretation, I kept a research journal 

in which I explained my decision-making, reflections, and questions and while collecting 

and analyzing data. I have been transparent in all my activities, procedures, and decisions 

as I recorded all this information in my research journal and presented it in this 

dissertation. 

Glesne (2016) suggests that qualitative research addresses trustworthiness rather 

than validity and cite Lincoln and Guba’s (1985) use of credibility, transferability, 

dependability, and confirmability as constructs to assess trustworthiness. “These 

constructs parallel ones used in quantitative research (internal validity, external validity, 

reliability, and generalizability) but employ different strategies for different ends” 

(Glesne, 2016, p. 152). Trustworthiness in this study has been developed through my 

professional connections to some of the potential research participants prior to 

conducting the research.  

Trustworthiness has also been established through communication and 

collaboration with research participants throughout the study. I was flexible with 

teachers’ schedules when setting up observations and interviews and I conveyed the 
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message that this study serves to enhance high school mathematics teachers’ ability to 

teach cognitively demanding tasks and reflect on their instruction. Moreover, Merriam 

(2009) asserts that trustworthiness in qualitative research involves conducting the 

research in a trustworthy and ethical way. I have conducted an ethical study by adhering 

to the IRB requirements to conduct research and the IRB protocol I have created; for 

example, the names and identifies of participating teachers and their students have 

remained anonymous through the use of pseudonyms and removal of names on student 

work samples. I also reminded each participant that their involvement in this research 

study was voluntary and that they could withdraw from the study at any time without 

penalty. 

Chapter Summary 

 The present study is situated within the context of teacher professional 

development, including the Ohio MMR pilot course and two ATC PD programs, 

QUANT and Modspar. Through the selection of participants from such contexts, I aimed 

to recruit participants who had experienced the MTF and TAG in PD and were familiar 

with the terminology related to QUASAR research. Qualitative interviews served as the 

primary source of data to answer the research questions, providing evidence teachers’ 

perspectives regarding the use of tasks at each phase and factors that they attributed to 

changes in cognitive demand between each phase. Interview data were augmented 

through the collection and analysis of mathematical tasks at each phase, student work 

samples, and observations, which were analyzed using the IQA and EIQA rubrics. 
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Finally, I conducted both a rigorous and ethical study by establishing credibility, 

transferability, and trustworthiness. 
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Chapter 4: Findings 

In this chapter, I present the findings from the analysis of interviews, remote 

classroom observations, and mathematical tasks across the four phases of selecting, 

planning, setting up, and implementing. The first section describing the individual cases 

includes 9 parts, one for each participating teacher. The findings for each teacher include:  

 the IQA analysis of the teacher’s task across the four task phases, 

 the teacher’s analysis of the task at each of the four phases using the TAG, and 

 the teacher’s reasons for selecting, planning, setting up, and implementing tasks, 

including both general reasons and those that pertain to their chosen task for the 

present study. 

Next, I present the findings from the thematic analysis across cases. This begins with a 

description of the 18 themes identified through the coding of interview data. The 18 

themes are sorted by task phase, with 5 themes for task selection, 5 for planning, 3 for 

setup, and 5 for implementation. After discussing the themes derived from interviews, I 

describe the cross-case analysis of mathematical tasks, which is divided into three parts: 

(a) trends in IQA scores across task phases, (b) trends in teachers’ TAG classifications 

across task phases, and (c) mismatches between IQA scores and TAG classifications. 

The Individual Cases 

In the following sections, I describe the 9 participating teachers and the 

instructional tasks they chose for me to observe. I begin with a description of each 

teacher’s background, including their teaching experience and role in the MMR pilot 

course and ATC programs. To provide context for each teacher’s interview responses, I 
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present the teacher’s chosen task and explain the changes that were made to the task 

during planning, setup, and implementation. Next, I present the IQA analysis of a 

teacher’s task at each phase, followed by the teacher’s analysis using the TAG. I then 

explain each teacher’s reasons for (a) selecting tasks from source materials, (b) planning 

and adjusting their tasks accordingly, (c) setting up tasks for student engagement, and (d) 

implementing tasks with their students. Finally, I provide reasons that each teacher 

attributes to the cognitive demand of each task and reasons that they attribute to the 

change in cognitive demand across the four task phases.  

A pseudonym is used for each teacher and direct quotes from teachers are set in 

quotation marks. Throughout the following descriptions of teachers’ tasks, I often refer to 

Contexts and Themes, terms that are used to categorize the MMR curriculum. An MMR 

Context refers to a set of tasks or activities centered around a given real-world context 

(e.g., ramps) and is relatable to a chapter in a typical mathematics textbook. Analogously, 

a Theme in MMR refers to a strand of mathematics content, comparable to a typical unit 

(e.g., Number and Quantity). Themes consist of approximately 5 Contexts, and each 

Context is typically meant to span several 45-min lessons. 

 Tables 3 and 4 provide a synopsis for the following sections of Chapter 4, 

displaying the IQA and TAG scores for each teacher’s task, respectively. As described in 

Chapter 3, my co-observer and I assigned the following scores for each teacher’s task: (a) 

an IQA score for each of the four phases of teachers’ task use (Phase 1: Selection–4 

scores), (b) expanded IQA (EIQA) scores for the discussion of contextual features (Setup 
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1: CF) and mathematical relationships (Setup 2: MR) evident in task setup, and (c) an 

IQA score for each set of student work (Implementation: Student Work). 

 

Table 3 

Instructional Quality Assessment Scores for Teachers’ Tasks 

Teacher Phase 1 Phase 2 Phase 3 
Setup 1: 

CF 
Setup 2: 

MR 
Phase 4 

Student 
Work 

Adam 4 4 NR NR NR 2 NR 

Beth 3 3 3 NS NS 3 2 

Cathy 3 3 3 3 2 2 3 

Debbie 4 4 4 3 3 4 4 

Ethan 4 4 4 NR 2 3 NR 

Fred 4 4 4 2 2 4 3 

Gwen 3 3 4 3 3 2 2 

Henry 3 3 3 NA NS 4 3 

Isabel 4 4 NR NR NR NR NR 

Note. Phase 1, 2, 3, and 4 scores refer to task selection, planning, setup, and 

implementation, respectively. “Implementation: Student Work” is condensed to “Student 

Work” in the last column so that the table fits within the margins of the page. 
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Table 4 

Task Analysis Guide Classifications for Teachers’ Tasks 

Teacher Phase 1 Phase 2 Phase 3 Phase 4 

Adam DM PwC PwC PwC 

Beth DM DM DM DM 

Cathy DM DM DM DM 

Debbie PwC PwC DM PwC 

Ethan PwC PwC DM PwC 

Fred PwC PwC PwC PwC 

Gwen PwC PwC PwC PwC 

Henry DM DM DM DM 

Isabel PwC DM DM DM 

Note. Phase 1, 2, 3, and 4 scores refer to task selection, planning, setup, and 

implementation, respectively. The TAG classifications presented in Table 4 were 

designated by the research participants rather than the researcher. Each teacher classified 

their own task based on the level of cognitive demand that they perceived their task to 

possess. The TAG classifications in the following tables were also assigned in this way. 

 

In Tables 3 and 4, classifications of “NR” (no rating) were assigned for IQA task 

phases that could not be scored because either (a) they were not observed, (b) were 
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qualitatively unique and not sensible to score using the IQA rubrics, or (c) in the case of 

students’ work, lacked the minimum 4 samples of student work to score reliably. The 

rating “NC” which represents “no classification” was assigned for Setup 1: CF, Setup 2: 

MR, and Implementation: Student Work when assessed by teachers using the TAG 

because the TAG applies specifically to task Phases 1–4. Additionally, scores of “NS” 

and “NA” (in place of N/A) were used as intended by the EIQA rubrics, presented in 

Appendix B. The TAG classifications of procedures with connections and doing 

mathematics are abbreviated as “PwC” and “DM,” respectively, to condense the width of 

Table 4. These labels and abbreviations are used throughout the remainder of this 

chapter. 

Adam 

Adam has taught school mathematics for 14 years, all of which have been at the 

same high school. The 2020–2021 academic year was his first year teaching the MMR 

course. Between two sections of the course, Adam has a total of 25 students. All of them 

are seniors who chose not to take precalculus, statistics, or the “college math class,” 

offered at their school which is “really just a review of Algebra 1 and Algebra 2 which all 

of them [Adam’s students] already had.” Due to the COVID-19 pandemic, Adam’s 

district had him teaching from home through Zoom with “about 90%” of his students 

connecting online from his classroom and the remaining students connecting remotely 

from home. More of his students were previously learning remotely, but some “found 

that they needed to transition back to face-to-face” because they were “not doing so 

good” and did not “feel like they were being held accountable… for doing work outside 
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of class.” My co-investigator and I observed Adam teach a section of 9 students on 

consecutive days via Zoom. The IQA and TAG classifications for Adam’s task are 

presented in Table 5 to provide context for the following two sections. 

 

Table 5 

IQA Scores and TAG Classifications for Adam’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 4 DM No 

Phase 2: Planning 4 PwC No 

Phase 3: Setup NR PwC No 

Setup 1: CF NR NS No 

Setup 2: MR NR NS No 

Phase 4: Implementation 2 DM Yes 

Implementation: Student Work NR NS No 

 

Recall that a mismatch in task analysis refers to a difference in the classification 

of a task by the researchers using the IQA and the teacher using the TAG at any one of 

the four task phases. Specifically, a mismatch occurs when a task that is classified as 

high-level (scores of 3–4 on the IQA or procedures with connections and doing 

mathematics in the TAG) by one party is classified as low-level (scores of 1–2 on the 

IQA or memorization and procedures without connections) by the other. As I discussed in 
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Chapters 2 and 3, IQA scores of 3 and 4 do not directly correspond to the TAG categories 

of procedures with connections and doing mathematics; that is, an IQA score of 3 may be 

suitable for a procedures with connections or a doing mathematics task. Because the 

defining characteristic between IQA scores of 3 and 4 is explicit evidence of students’ 

thinking and reasoning, mismatches are defined as differences between low cognitive 

demand tasks and high cognitive demand tasks. 

Analysis of Adam’s Task. The task that Adam chose for the observations was 

titled “Remodeling Our Classroom,” a task that was provided to MMR teachers in the 

course materials. The context for the task is that students are to submit a proposal to 

redesign their classroom space, including carpet, a new coat of paint, and a gas fireplace. 

Some parameters are provided in the task statement, such as the cost of paint, carpet, the 

gas line, and the gas fireplace. However, students are given the freedom to incorporate 

additional elements of their choice. The task consists of three parts: (a) making an initial 

estimate for the total cost of project materials, (b) submitting and presenting a budget for 

approval, and (c) creating a diagram of the remodeled classroom to accompany the 

budget proposal. Students are also provided with specifications for how the gas line 

should run through the classroom and are expected to use 2 coats of paint, assuming that 

1 gal of paint covers 500 square feet. 

The Phase 1: Selection IQA score for this task as it appears in curricular materials 

is a 4 because it has the potential to engage students in exploring mathematical 

relationships and encourages the use of complex, non-algorithmic thinking. Though 

students are required to include the cost of paint, carpet, the gas line, and the gas 
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fireplace, they are not told how to find these costs for the given room they are working 

with. The task is open-ended and invites students to develop their own solution pathways 

using their prior knowledge of surface area and dimensional analysis. There is not a 

previously worked-out example for how to do the calculations or what calculations 

should be made in the process. Moreover, the task explicitly calls for evidence of 

students’ thinking and reasoning in their proposals through the following statement: “Be 

sure to thoroughly document and explain your work. Use pictures, formulas, units, tables, 

etc. to make the cost calculations as easy for others to understand as possible.” The task 

also states that students should be prepared to present their proposals to the school board 

or administration for approval, adding a verbal requirement for evidence of students’ 

thinking and reasoning. 

Because Adam did not make any changes to the task when planning, the Phase 2: 

Planning IQA score for this task is also a 4. Adam did not modify the task in any way and 

used the same handout that was provided with the MMR materials.  

After consulting with an IQA expert, I have chosen not to score Adam’s task 

setup (Phase 3: Setup) because the setup of the task occurred on a day that I did not 

observe. During the 2 days that I observed I only saw the implementation of the task, 

which lasted both days. Instead of assigning a numerical IQA score, I have assigned the 

code NR (no rating given) for the Phase 3: Setup IQA score and for Setup 1: CF and 

Setup 2: MR (NS, representing no score, is reserved for different circumstances within 

the EIQA rubrics). However, I asked Adam interview questions to develop an 
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understanding of his perspective of the task as set up; a synopsis of the task at set up is 

provided in the following paragraphs. 

To help introduce the task and the handout, Adam provided his students with the 

task rubric, provided with the MMR course materials, and communicated his 

expectations for students as they worked in groups. He then shared a video on “how to do 

scale drawings” to guide students’ work on that part of the task. After watching the video, 

Adam led his students in a discussion of what they noticed and what they wondered, a 

practice that is emphasized in the MMR course as an avenue to engage students in 

mathematical discourse. Next followed an estimation activity where students individually 

predicted one surface area that they knew would be too high for the classroom walls, one 

that they knew would be too low, and one “educated guess in the middle.”  

The students then split into groups and measured the dimensions of the classroom. 

Adam noted how some students’ estimations were “so far all over the place” whereas 

others’ were “within a hundred… square feet of what the classroom actually was.” After 

a brief discussion of students’ findings, Adam spent some time discussing some of the 

real-world aspects of the task: he acknowledged that both a fireplace and carpet were 

unrealistic to include in a classroom, but that students would apply what they learned 

through the task later in life if they needed to install a fireplace or carpet in their homes, 

for example. The class also discussed the dropped ceiling in the classroom because of 

how it would interfere with the gas line that students would design as part of the task. 

According to Adam, the discussion helped his students to visualize where the piping for 

the fireplace would go. 
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 Then, Adam and his students determined the length of the gas line together as a 

class. Using his iPad, Adam drew a three-dimensional sketch of the classroom indicating 

where the gas line would go based on the specifications given in the task handout. 

However, he did not provide his students with the measurements, they had to get up out 

of their seats and measure the pipeline themselves. Adam drew a series of segments to 

indicate where the gas line would be positioned in the room and asked students to provide 

the dimensions of the piping until they had determined its entire length. Finally, Adam 

gave students “free rein” to do their calculations, identify other items they wanted to 

include, and develop their proposals. In doing so, he verbally set the expectation that 

students were to justify their work with evidence. He said,  

If they [students] want to remove a chalkboard off the wall, okay, remove the 

chalkboard off the wall… but you better make sure that you can go somewhere 

and find the labor and the cost that’s going to represent to do that. 

Adam made it clear that students were required to provide documentation for the costs 

involved in their proposals and that they needed to include all the calculations they made. 

 For the purpose of this study, task implementation includes evidence from (a) 

observations of teachers’ instruction and (b) evidence of students’ written work on a task. 

Each element is assigned a separate score, labeled as Phase 4: Implementation IQA and 

Implementation: Student Work scores, respectively. For Adam, the former was assigned a 

score of 2 because there was little ambiguity about what was expected of students 

mathematically and there was little evidence of students’ work and thinking processes 

throughout the 2 lessons. Students worked in groups (one group of 4 students and another 
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group of 5) to perform their calculations for the cost of paint, carpet, and the gas line, but 

students did not explicitly make connections to mathematical concepts underlying the 

procedures they used. They divided the work of the task into parts with each student 

completing their own section and focused primarily on numerical calculations. Some 

aspects of the task were decided by students without prompting and direction from the 

teacher, but they were not mathematical in nature. For example, one group decided that 

they would need to purchase a toolkit because it would include all the tools that they 

might need to remove the chalkboards from the walls themselves. They decided that they 

would paint under, rather than around, the chalkboards to simplify the calculations for the 

amount of paint they would need. 

 Rather than directly showing students what calculations to make and how to do 

them correctly, Adam acted as a facilitator as he moved periodically from one online 

breakout room to the other. He monitored students as they worked on their written 

proposals and rarely stopped to intervene with a question or comment. Because students’ 

work was not visible from our perspectives as Adam, my co-observer, and I observed 

through the Zoom meeting, Adam periodically asked what students were working on.  

One example of a typical conversation is the following: Adam asked one group 

how they figured out the total cost for the paint to cover the classroom walls. When one 

student answered that she was working on that part, Adam asked her how she figured out 

the total cost for the paint; she replied that she multiplied the height of the classroom by 

its width and then multiplied that number by 4. In response, Adam asked what she was 

going to do about obstacles in the classroom, such as the chalkboards and the door, and 
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attempted to direct her toward subtracting their surface area from the total. However, the 

group decided to manually remove the chalkboards and paint behind them. Adam had no 

problem with this choice, if the group included the associated costs in their proposal. He 

then allowed them to continue on with their work without asking the group to explain 

their mathematical reasoning. 

 Adam facilitated groupwork in this way throughout the majority of the t class 

meetings, remaining predominantly silent and occasionally inquiring about students’ 

plans and progress. Some students discussed what additional items they would include in 

the proposal, if any, and asked one another to check over their calculations. At the 

beginning of class on the second day, Adam reiterated his expectations for the scale 

drawing component of the task and provided rough sketches of two- and three-

dimensional layouts of the classroom to help students visualize what he was looking for. 

Due to scheduling conflicts with other teachers, my co-observer and I did not observe 

students’ presentations that were set for the following week. 

 To assign an Implementation: Student Work score for a task, a minimum of 4 

samples of student work is necessary according to the literature and the recommendation 

of the IQA expert whom I consulted throughout the present study. The 9 students in 

Adam’s MMR class completed the task in groups, resulting in only 2 samples of work. 

Without a minimum of 4 samples, the Implementation: Student Work score assigned for 

Adam’s task is NR. However, a qualitative analysis of the 2 samples shows that each 

group engaged in a different level of mathematical work and thinking. One group’s work, 

Sample A, includes a two-dimensional (digital) layout of the classroom that is clearly 
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labeled with a door, chalkboards, desks, and other objects. However, the costs of carpet 

and paint are given without calculations and without any written justification. 

Measurements lack units and several two-dimensional quantities are given with one-

dimensional units (e.g., the surface area of the door is given in feet rather than square 

feet). In general, Sample A lacked evidence of students’ thinking and required some 

interpretation to understand. 

 Sample B, though lacking a scale-drawing of the classroom (perhaps the group 

had not finished that part yet), included more sophisticated mathematical work and 

reasoning to justify it. For example, the calculations for the surface area of the 

chalkboards, door, and walls were presented clearly with appropriate units and correct 

conversions from one unit to another. This group provided the total surface area of the 

room (864 square feet) and indicated that they needed to cover 679.74 square feet with 

paint, the result of subtracting the surface area of the chalkboards, the door, and the 

lockers lining one of the walls (120 square feet, 29.7 square feet, and 34.56 square feet, 

respectively) from the total. Sample B included reasoning for students’ calculations to 

support the amount of paint needed to cover the walls, though they forgot to double the 

amount of paint for the second coat in their calculations. The students in this group 

provided a brief written explanation to summarize their work and included 

documentation of the additional items they would include in their proposal. 

Adam’s Analysis of the Task. When asked to classify the MMR-provided 

version of the “Remodeling Our Classroom” task, Adam stated that it was a at the level 

of doing mathematics. He specifically pointed out that the task requires “a lot of self-
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monitoring” and “self-regulations” as students must determine what to include in their 

proposals, where and how to find the information, and how to present the appropriate 

reasoning and documentation to support their choices. The mathematics to determine the 

amount of the paint on the walls, according to Adam, was not as straight-forward as 

multiplying the length of a wall by its height and then multiplying by 4; students needed 

to subtract out the surface area of chalkboards, cabinets, and other objects in the room but 

also for additional items they might include in their proposals, such as posters, which 

may vary from group to group. Students also must “analyze the task and accurately 

examine the task constraints” throughout the task. Adam provided the example that 

students cannot simply order desks without making the appropriate measurements to 

determine whether they will fit in the classroom space as they are arranged. 

 Adam did not make adjustments to the original version of the task and its 

cognitive demand remained the same in Phase 2: Planning. After setting up the task, 

Adam expressed that the cognitive demand made a “transition from doing mathematics… 

to a higher… procedures with connections task,” communicating a misconception that 

procedures with connections was at a higher level than doing mathematics. I chose not to 

explain the ordering of the TAG levels of cognitive demand because I did not want to 

influence his response. Adam explained that his students would execute the procedures of 

researching, gathering data, and representing data using spreadsheets. According to 

Adam, having students use spreadsheets would also support connections to data because 

the spreadsheet formulas would reflect associated item costs and quantities. Subtracting 

out the surface area of the chalkboards, bookshelves, and lockers in the classroom would 
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force students to connect ideas about surface area together. Adam reflected that, in 

general, the cognitive demand of a task “always increases” from its representation in 

source materials because “in the beginning, it’s just a handout with instructions on it.” As 

students begin to engage with a task, their increased work and thinking drives the 

cognitive demand upward in his view. 

 Adam claimed that the implementation of his task was still “at the high level in 

terms of making connections.” After working on the task for several days, Adam was 

pleased with the connections he felt that his students were making in terms of 

representing their data in various ways (scale drawings, spreadsheet formulas, numerical 

costs), calculating and reflecting on the reasonability of unit conversions, and making 

real-world connections (e.g., the reality that including a fireplace and carpet would not 

make sense in a school classroom). A key feature of task implementation that set it “out 

of the lower-level categories and definitely a higher-level” was that Adam did not 

manipulate the direction that students took when solving the task and allowed them to 

make their own decisions. Adam attributes the continued high cognitive demand of task 

implementation to the conversations that students had with each other as they worked 

collaboratively toward completing the task and critiquing their own and each other’s 

work. Though working independently and dividing up the work of the task, students 

organized and connected the different pieces when preparing their proposals.  

Phase 1: Task Selection. The time it takes students to complete a task is Adam’s 

first consideration when selecting tasks to use for his classes. “Right now, the number 

one thing is time. How much time is it going to take to do it?” In a typical year, the MMR 
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course would be more tightly structured, and teachers would be required to progress from 

one task (or Context, using MMR language) to the next, following the general pacing 

guide provided with the course materials. However, due to the COVID-19 pandemic, the 

MMR teachers were given the “freedom to pick through the lessons” and choose which 

tasks they wanted to use; in a typical year, the Ohio Department of Education (ODE) 

would have conducted research pertaining to the course and required MMR teachers to 

follow the scope and sequence of the course strictly. Because the COVID-19 pandemic 

limited the ability to collect data and conduct research, MMR teachers were allowed such 

freedom to pick and choose lessons. According to Adam, “At the pace that I was at, I 

would still be in Theme 0 (the first MMR Theme for the course) and I would be weeks 

behind because it was typically set up to last 3 weeks… we were already in school almost 

6 weeks.” Adam’s adjusted teaching schedule for MMR was 4 days per week for 51 

minutes, 1 day short of the typical 5-day school week. Therefore, time dictated what 

Adam felt he was able to do and how long he had to spend on a given task. 

 Adam’s remote teaching environment also influences his selection of tasks, 

specifically for the MMR course. When selecting a task, he wonders, “Are the kids going 

to be engaged? Will they make connections? And so, I… go in a little apprehensive, 

thinking, will this work?” Adam acknowledged that his students might have engaged 

with instructional tasks differently based on whether they were learning remotely or face-

to-face. “I have kids… in class [MMR] that join virtually and those that are in my 

classroom at the same time… can I make this fit for both groups?” As several 

participating teachers suggested throughout this study, some tasks might not be suitable 
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for students who attend school virtually or for those in hybrid environments where 

students are split between face-to-face and remote groups. Though Adam taught remotely 

from home, most of his students attended class at school unless they were quarantined; 

therefore, the “Remodeling Our Classroom” task was suitable for Adam’s students. 

 Feedback from other teachers piloting the MMR course helps Adam to determine 

which tasks to use and which to avoid. Throughout the 2020–2021 academic year, the 

cohort of MMR pilot teachers met biweekly to discuss the lessons they taught and to 

share their experiences. These meetings supported teachers, such as Adam, for whom the 

course and pedagogy felt like “uncharted waters.” Adam listens to what his colleagues 

report as they share “lessons that are successful and what lessons they avoid” and takes 

mental notes about the tasks he think might be effective. Adam tends to choose tasks that 

have been successful with other teachers and those that he “heard nothing but good things 

about.” Teachers who were “ahead” of Adam provided insights into which tasks 

“worked” and which “didn’t work at all,” informing his own decisions about whether to 

use a particular task. 

The “Remodeling Our Classroom” task emphasizes mathematics content that 

Adam feels is important for students to learn and apply. Specifically, the task involves the 

use of surface area and unit conversions but addresses these ideas within a real-world, 

problem-solving scenario. Adam stated that he would use this task not only in MMR, but 

in other classes as well because the mathematics content knowledge is used by students in 

a way that is relevant and meaningful for their lives. Such tasks help students to answer 

the “When am I ever going to use this again?” question that Adam “frequently” hears 
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when teaching other mathematics courses. He believes that, though his students may 

never remodel a classroom, they might apply what they have learned when remodeling a 

bedroom or a kitchen. According to Adam, his students “tend to be at ease when they are 

learning this” compared to when the mathematics is not relevant or applicable to them. 

The “Remodeling Our Classroom” task and other MMR tasks allow students to “think 

about and apply it [what they have learned] to their own life.” 

Phase 2: Task Planning. The MMR course materials include detailed lesson 

plans to accompany each Context, including the amount of time it should take to 

complete (in terms of 45-minute class periods), the goals and objectives for students and 

teachers, and instructional procedures to assist teachers with the recommended pedagogy. 

Adam finds the lesson plans for the course to be “really helpful” and chose not to deviate 

from them with the “Remodeling Our Classroom” task. As I described previously, Adam 

did not modify the task handout or instructions in any way, though spontaneous 

conversations occurred in class during task setup. Adam also emphasized his use of the 

supporting materials provided for the MMR pilot teachers: 

If they [the Ohio Department of Education (ODE)] suggest any kind of things that 

I should focus on before the lesson, any videos that they think I should watch to 

kind of help me strengthen the lesson or certain things that I need to do on certain 

days, I need to make sure that I'm doing those. 

Adam attempts to follow the prescribed pedagogy for the MMR course and considers 

what his role as the teacher should be. When planning his instruction, he said, “I go 

through the instructional procedures and see what is required of me and what is 
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something that I should leave in the hands of the students.” Prior to launching a given 

task, Adam consults the lesson plan for the task and makes sure to be clear about what his 

“role” is and what the “role” of the students is. However, he noted that “some lessons are 

more detailed than others,” meaning that some of the MMR lesson plans provide detailed, 

step-by-step instructional procedures whereas others offer more general guidelines (e.g., 

“implement your launch plan,” a phrase that addresses the setup of a task but does not 

specify what the setup should look like). 

 The 2020–2021 academic year presented unprecedented challenges for teachers 

implementing remote and hybrid instruction. Facilitating students’ engagement with the 

“Remodeling Our Classroom” task required Adam to anticipate challenges involving 

technology and classroom materials that he might not have considered under typical 

circumstances. Some issues, such as students’ internet connections both inside and 

outside of school, could not be helped. With his task, Adam pondered how to engage his 

remote students in measuring the dimensions of his classroom without being physically 

present. “This assignment has to deal with something that is in the room… that they [his 

students] are not physically in. So how can I help them see the classroom… so that they 

can actually really be engaged in it?” To overcome this obstacle, Adam had his remote 

students collect the same measurements as the students in the classroom but had them do 

so using their own living areas (e.g., living rooms, dining rooms, bedrooms, etc.). For 

students learning from the classroom, Adam also anticipated what materials they would 

need to engage with the task. “I have to make sure, do I have the supplies I need?” For 
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the “Remodeling Our Classroom” task, this meant having long enough tape measurers for 

his students to be able to measure the walls of the classroom efficiently.  

Phase 3: Task Setup. Adam sets up MMR tasks by identifying relevant 

parameters or simplifying assumptions before allowing his students to work in groups. 

He provides direct instruction “rarely, if at all” in the MMR class, maintaining the 

instructional practices suggested in the lesson plans despite typically giving “very 

detailed… instructions going from Point A to Point B in [his] traditional classes.” As 

described previously, Adam did not begin the “Remodeling Our Classroom” task by 

telling students how they should do the necessary calculations nor what to include in their 

proposals. Rather, he communicated the constraints and reminded students that “They 

have to paint the room. They have to put carpet down. They have to install a gas line and 

put in a fireplace.” He also helped students to make a simplifying assumption about the 

walls of the room so that they could determine the amount of paint. Realistically, the 

lower level of brick lining his classroom required a “special product” to paint, but Adam 

allowed students to use the same paint for the entire surface area of the walls. From there, 

students had the freedom to engage with the task in their own way and arrive at their own 

conclusions. Adam described that “The process with this is to just give them [students] 

the bare bones… and the instructions and let them drive the lesson.”  

Moreover, an important element of Adam’s task setup included the “What do you 

notice? What do you wonder?” routine that was emphasized throughout the MMR PD 

and prescribed in the MMR lesson plans. To start the “Remodeling Our Classroom” task, 

the students were provided an opportunity to “observe the room, notice what they noticed 
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about the room,” and ask questions that “sparked because of that they noticed.” Adam 

described this as a general pattern to his lessons: “So what do you notice? Here’s the 

problem and then what questions do you have that spring forth from this noticing?” 

Adam then followed the next part of the lesson plan and had students estimate the surface 

area of the classroom as described previously. This stage of the task setup is also 

important to Adam because it “helped students to get familiar with taking measurements” 

prior to the data collection piece of the task. 

 According to Adam, it is important for students to understand how the work they 

do in class is relevant to their lives, even if some aspects of a task might be unrealistic. 

“No, we won’t have a fireplace in a classroom, but we’re inserting that little ripple in 

order to get them [students] to think about other things that will apply to their lives.” 

Adam also felt that the discussion of the dropped ceiling in his classroom was 

“necessary” even though it was not called for in the lesson plan because it helped his 

students to “visualize” where the piping would go. This discussion was also important to 

Adam because his students probably had not thought about it before; it helped students to 

learn something new that was non-mathematical in addition to the mathematics that they 

learned. 

 Before allowing students to work on the task in their groups, Adam assisted the 

class by providing a rough sketch of the classroom and a digital illustration of where the 

pipeline would go using his iPad. Adam assisted his students in this way because “It’s 

hard for them [the students] to conceptualize it” otherwise. This might also have helped 

students who were learning remotely and unable to physically see the classroom layout. 
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This part of the task setup differed from the rest, where Adam offered less direct support. 

However, as stated previously, the students were left to determine the measurements for 

the pipeline and make the appropriate unit conversions on their own. 

 Adam dedicated a portion of the task setup to communicating his expectations for 

students throughout their engagement with the task. This involved “giving them [the 

students] the rubric and going through it in detail, letting them know exactly, these are 

the markers, and this is what is expected of them.” Adam set the expectation that his 

students must provide evidence for the cost of materials in their proposals; they could not 

simply provide a quantity without proper justification (e.g., numerical calculations or a 

cost found online). The same was true for a previous task that Adam used: “everything 

had to be detailed. They [the students] had to use a spreadsheet, had to show formulas, 

had to show… all of their logic and reasoning.” According to Adam, setting these 

expectations for students from the beginning allows students to engage with tasks more 

readily and contributes to the work they produce as a result. 

Phase 4: Task Implementation. Adam facilitated his students’ engagement with 

the “Remodeling Our Classroom” task by observing them as they worked collaboratively 

in groups. He wanted to encourage productive struggle and allow his students to think 

and reason through tasks on their own. 

I am starting to see the benefits of letting them [the students] struggle. They 

[ODE] call this productive struggle, letting them struggle through the problems 

because you know what it does to the brain, it causes it to grow when they make 

mistakes. 
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Adam feels that, by allowing his students to engage in tasks without showing them 

exactly what to do, they enhance their own problem-solving and reasoning capabilities 

even if they made mistakes along the way. To prevent himself from limiting students’ 

opportunities to think for themselves, Adam sometimes mutes his microphone and simply 

observes what students do and say so that he is not the one talking. According to Adam, 

“as long as they [the students] are making some connections, I don’t tend to say anything. 

I tend to just let them stumble upon and find things.” 

 Part of Adam’s role in supporting student engagement involves holding students 

accountable for participating in groupwork and discussions. To keep students engaged, 

Adam sets expectations for what students are required to do as they work through each 

task and reinforces his expectations during his lessons. “No one can just sit back and just 

not participate,” Adam said during the interviews. “Everyone must be talking. Everyone 

must be either stating what they noticed, posing questions… there’s roles that they need 

to fulfil.” Participating and working actively in class are criteria on the rubric for the 

“Remodeling Our Classroom” assignment, but Adam also made instructional moves to 

keep students accountable for active engagement. I witnessed this during the first 

observation day when Adam joined a breakout group that was working on their written 

proposal. He noticed that one of the students in the group was not talking and asked, 

“what is your role [in the group]?” When the student answered that he was responsible 

for working on the gas line, Adam reminded him that the class determined most of that 

information together and encouraged him to find other ways to help his classmates by 

asking them what else he could do. 
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 Adam reiterated at the start of each class meeting that his students were required 

to provide documentation for additional items outside the general requirements and 

explicate their work in their written proposals. During the interviews, Adam 

communicated that this was something he does in all his classes and for all his tasks. He 

wants to see evidence of students’ mathematical work and thinking because it is 

“beneficial” to him as their teacher; he can identify students’ mechanical errors himself 

(e.g., errors in calculations, incorrect algebraic operations, and so on); however, he is 

more concerned about students’ processes: how they proceeded from one idea to the next 

“logically and conceptually” because these are things that he cannot directly observe 

from students’ work. 

 Though students could explore and determine what they wanted to include in their 

remodeled classroom, Adam felt obligated to provide support and suggestions 

occasionally. For example, when one group was unsure of how to proceed with the paint 

for the walls, Adam referred them back to the task handout and had them reread it to 

clarify what they misunderstood. As I discussed previously, Adam also provided a three-

dimensional sketch of what he expected for the scale drawing because they still possessed 

“gaps” in understanding what he was looking for. He realized that, after being asked 

several questions and noticing that both groups had yet to create a scale drawing, he 

needed to intervene and provide additional support. When I asked about these 

interventions, Adam replied that it was something that he did not have a solid outline for 

in advance. But if he notices that a group is struggling, he expected that others are 

struggling as well. This causes him to reiterate the expectations for a task and point 
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students back to the rubrics. He says, “go back to the documents, go back to the handout 

that I gave you. Make sure you’re answering all the questions. Go back to the rubric… 

see if you are achieving those different things.” 

 Alternatively, there were occasions where Adam asked questions instead of 

providing support or clarification. I noticed several teacher questions throughout the 

observations, including: “How did you figure that out?” and “What questions do you 

have?” This practice aligns with Adam’s goal of encouraging productive struggle; rather 

than “jumping in and saving” his students by providing answers, he instead is “jumping 

in and saying directing questions,” not giving them a complete explanation but pressing 

them to think further. Adam also asked questions to guide students down a particular path 

and sometimes repeated what students said in the form of a question to get them to 

reconsider or evaluate their statements (e.g., “so what are you telling me then, you’re 

painting over that?”). Adam questions students to help them progress through the task 

and to clarify what they are saying and doing, even revoicing their own contributions as 

questions to prompt them to reevaluate their thinking. 

 Adam typically has students debrief and reflect on the tasks they complete 

through a whole-class discussion when they are finished. However, I did not observe this 

part of task implementation due to scheduling conflicts. During this segment of 

instruction, Adam asks students to reflect on questions such as, “What did you get from 

this assignment?” and “What are some things that you now know that you didn’t know?” 

For the “Remodeling Our Classroom” task, he also wanted his students to discuss some 

of the selections they made that were not provided on the task handout because some are 
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not realistic in a school classroom setting (e.g., a beanbag chair would likely not be 

permitted because it may be a fire hazard). For Adam, it is also important that students 

reflect on the real-world aspects of the tasks they complete. Whole class debriefs are also 

beneficial, according to Adam, because student sharing may cause others to “become 

familiar with something that they weren’t familiar with before.” 

Beth 

 Beth is an award-winning high school mathematics teacher with 30 years of 

teaching experience. She has a master’s degree in secondary education in addition to a 

bachelor’s degree, and the 2020–2021 academic year was not her first year teaching 

MMR. The 25 students in Beth’s observed section of MMR are all “college-bound” 

seniors and the majority completed Algebra 2 the previous year, though several others 

had taken precalculus and had chosen to enroll in MMR rather than continuing to 

calculus. Because of the COVID-19 pandemic, Beth taught remotely using Google Meet 

and her two MMR groups met every other day for 50 minutes. My co-observer and I 

attended one MMR section for 2 consecutive class meetings to observe the same set of 

students on both days. The IQA and TAG classifications for Beth’s task are presented in 

Table 6 to provide context for the following two sections. 
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Table 6 

IQA Scores and TAG Classifications for Beth’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 3 DM No 

Phase 2: Planning 3 DM No 

Phase 3: Setup 3 DM No 

Setup 1: CF NS NC No 

Setup 2: MR NS NC No 

Phase 4: Implementation 3 PwC No 

Implementation: Student Work 2 NC No 

 

Analysis of Beth’s Task. The task that Beth selected for observation is titled 

“Discovering Slope,” a student handout from the first MMR Context in a Theme focused 

on functions. The “Discovering Slope” handout reviews the concept of slope through six 

stations, encouraging students to use and apply slope in a variety of real-world and 

abstract mathematical situations. Throughout the following paragraphs, the six stations 

are referred to as a single task because they address the same mathematical idea (slope) 

and the use of this idea is made clear to students in the name of the handout. Therefore, 

students engage in this task understanding that they should apply their knowledge of 

slope to solve the problems included in all six stations. The stations provide a 

combination of routine problems that are typical in high school algebra and geometry 



188 

classes (e.g., finding the slope of a line passing through two given points) and problems 

involving real-world contexts that might be atypical (e.g., determining the position of a 

ramp relative to a house that meets the Americans with Disabilities Act [ADA] 

guidelines).  

With a multitude of problems that students must solve, it is expected that the task 

addresses various levels of cognitive demand; for example, one problem requires students 

to determine the slope of a line passing through the points (4, 3) and (3, 1) in the xy-

plane. This process is decomposed for students into three parts: (a) determining the 

change in y, or the “rise,” (b) determining the change in change in x, or the “run,” and (c) 

calculating the slope, which is assumed to be done by dividing (a) by (b). If considered in 

isolation, this is a procedures without connections problem that would rate as a 2 on the 

IQA because there is little ambiguity about what needs to be done and how to do it. 

Moreover, the problem does not require students to make connections to the concepts 

underlying the procedures being used.  

However, another station engages students in an exploration that focuses on 

generalizing the graphical appearance (or “direction”) of the graph of a line based on its 

slope. This station encourages students to manipulate sliders and investigate the graphical 

appearance of lines with negative slope, positive slope, a slope of 0, and undefined slope. 

This station, taken in isolation, would rate as a 3 on the IQA for task potential because 

the task asks students to identify and describe patterns through an exploration of multiple 

representations (numerical and graphical). Similarly, other problems or stations would 

independently rate as either 2 or 3; therefore, the Phase 1: Selection IQA score for this 
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task in its entirety is a 3 based on the highest potential for students to think and reason 

mathematically throughout their engagement. Though two stations call for explanations, 

they simply require students to explain the procedures they use or to explain which of a 

given set of procedures is correct. Therefore, both IQA raters determined that the task 

does not warrant an IQA score of 4 for Phase 1: Selection. 

Beth did not make substantial changes to the “Discovering Slope” task when 

planning for her instruction. She only made minor adjustments to the handout and the 

stations to make them suitable for remote learning. For example, Beth created a digital 

slideshow presentation using Pear Deck, software that allows students to view, write, and 

draw on individual or group slides. This helped Beth to “see exactly what they [her 

students] are doing in real time” as they worked in groups to complete the task. Beth also 

made changes to one station because her students could not see and measure a real-life 

example of a ramp as they normally would have if they were learning face-to-face. 

Instead, Beth provided an image of a ramp with its dimensions labeled so that students 

could still perform the same numerical calculations required by the task. Because the 

mathematical content and expectations for the task remained the same in this phase, the 

Phase 2: Planning IQA score for the task is also a 3.  

The task was set up with minimal directions given from the teacher and no 

preliminary whole-class discussion. After spending approximately 15 minutes working 

on a warmup number-talk that was unrelated mathematically to slope, Beth told her 

students to begin working and sent them into their Google Meet breakout rooms (groups 

of 3–4 students each). The cognitive demand of the task remained unchanged throughout 
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this brief setup and, therefore, the Phase 3: Setup IQA score is still a 3. The Setup 1: CF 

and Setup 2: MR scores associated with the task are NS, indicating that there was no 

whole-class discussion of the task prior to students starting the task. 

My co-observer and I noted students’ engagement with the task by joining their 

breakout rooms and moving from room to room to develop a sense of how the entire class 

progressed (simulating what we would do if we walked around in a face-to-face 

classroom setting to the best of our ability). Most students spent a significant amount of 

class time engaged in problem-solving throughout the various stations but did not 

frequently communicate their thinking and reasoning about mathematical ideas. Students 

executed procedures, such as calculating slope using the “rise over run” approach and 

graphing points and lines. I observed two instances where a student explained how they 

solved a problem, once to the teacher and once to other students who did not understand 

what to do, though such instances did not occur frequently.  

Overall, the cognitive demand of the task was maintained at an IQA level of 3. 

The students made connections between the procedure of calculating slope and both 

numerical and graphical representations. For example, consider a line of slope 3/2 

containing the points (5, 9) and (3, a) in the xy-plane, where a is a real number. One 

group, realizing that a slope of 3/2 indicates a “rise” of 3 and a “run” of 2, noticed that 

the change in x from 5 to 3 was the opposite of the “run.” Therefore, they performed the 

opposite operation of the “rise” to determine that the value of a was 6 (the result of 

subtracting the “rise” from the y-coordinate 9). Other groups solved this problem by 

graphing the point (5, 9) and working “backwards” with the slope of 3/2, realizing that 
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another point on the line was “down” 3 units and “to the left” 2 units because the slope 

3/2 indicates a “rise” of 3 and a “run” of 2. This led to the discovery of the point (3, 6) 

and the conclusion that a = 6. Though the solutions used similar reasoning, the first was a 

numerical approach and the second was graphical. Moreover, the students determined 

these solution strategies on their own, applying their knowledge of “rise over run” in 

slightly different ways. Beth did not lower the cognitive demand of the task by telling 

students what to do and how to do it; instead, she asked questions to illicit and guide 

students’ thinking. For instance, she asked questions such as, “How might you use your 

strategy to find the slope?” and “Is 12 realistic? Does it make sense?” to prompt students 

to think deeper rather than simply providing direct guidance and answers. 

Though observations of students’ engagement with the task suggest that the 

cognitive demand was maintained during implementation, evidence of students’ written 

work on the task indicates that the cognitive demand may have decreased in some regard. 

Beth provided six samples of students’ work pertaining to the task, taken from what they 

drew, graphed, and wrote on their Pear Deck slides. Of the 6 samples, 2 indicated high-

quality work, 2 indicated average quality, and 2 were selected as “interesting” samples 

that stood out from the others in the class according to Beth (e.g., one student graphed a 

single point instead of graphing the three segments representing the side view of a ramp 

in one station). Most of such samples included only numerical answers with limited 

evidence of students’ thinking and reasoning aside from the calculations that were made 

to get there. Moreover, students’ work on some stations indicates that they still held 

various misconceptions; for example, one student suggested that the slope formula 𝑚 =
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௫భି௫మ
 would yield an incorrect result if the order of the coordinates were switched, that is, 

the formula 𝑚 =
௬మି௬భ

௫మି௫భ
 was incorrect. Most students wrote only “rise over run” as 

justification for written solutions and several instances of student misconceptions were 

evident. Therefore, the Implementation: Student Work score for this task was rated as a 2. 

Beth’s Analysis of the Task. Beth classified the original, MMR version of the 

task as “in-between” doing mathematics and procedures with connections using the TAG. 

Though, when pressed to choose between one of the two, she leaned toward doing 

mathematics. Beth noted that the mathematics in the task was not complex, however, the 

way in which students were expected to progress through the various stations on their 

own contributed to the high cognitive demand. Referencing the TAG, Beth argued that 

the task would involve some level of anxiety for students because they would be 

unfamiliar with determining the length of an ADA-acceptable ramp, for example. 

Students could not refer to a predetermined procedure to solve the problems given several 

of the stations. Beth voiced that some aspects of the task were “more routine,” perhaps 

typical of what students had seen in the past, such as determining the slope of a line 

containing two given points. However, she also emphasized that students would not be 

able to follow procedures mindlessly; the various stations required students to adapt their 

knowledge of slope and apply it in different ways for each station. 

With minimal changes to the task, aside from the adaptations made to fit an online 

learning environment, Beth also considered the Phase 2: Planning adaptation of the task 

at the level of doing mathematics. She pointed out, however, that removing the 

measurement aspect of the first station may have made the task “a little bit less… 
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demanding cognitively because they [her students] didn’t have to measure.” To maintain 

this aspect of the task, Beth gave her students a homework assignment prior to our first 

observation: to measure a ramp where they lived and calculate its slope. Beth felt that 

students would maintain the level of doing mathematics if they did the measuring part of 

the task at home despite being unable to do it in class. Because the setup of the task was 

so brief, including only Beth’s instructions for students to get in groups and begin 

working on the task, she also considered this phase as doing mathematics. 

 Beth felt that the task potentially lowered to procedures with connections during 

the first day of implementation. Though students began to achieve some of the standards 

for doing mathematics during the second day, Beth explained that her students were still 

mostly in the procedures with connections level. After the first day of students’ work on 

the task, Beth thought that her students’ responses to questions on the Pear Deck slides 

were “superficial,” meaning that their responses were vague and general, lacking specific 

reasoning to support them. To potentially enhance the quality of work that students 

submitted, Beth provided feedback at the start of the second day of class and encouraged 

students to improve their written work from the previous day. She explained that her 

students’ work was “superficial” (i.e., generic responses that lacked depth) and that they 

needed to “explain their work better.” 

During the second day, the students met Beth’s expectations for working 

collaboratively in groups, engaging in productive struggle as she frequently questioned 

them, and developing an understanding of slope as a rate of change. They engaged in 

“complex and nonalgorithmic thinking, but it took them a little bit of time to get there.” 
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In one instance, Beth provided direct guidance and walked one group step-by-step 

through the procedure for graphing points in the xy-plane. In doing so, she felt that she 

“might have… lowered it [the cognitive demand of the task] slightly for the group.” 

However, she also thought that she might have raised the cognitive demand for another 

group who finished most of the stations on the first day because she asked them to go 

back and find another way to solve the problems and explain the work that they did in 

writing.  

Beth communicated that, overall, her students engaged with the task between the 

procedures with connections and doing mathematics levels but inclined slightly more 

toward procedures with connections. She explained, “I heard great conversations… in 

that upper level,” referring to the higher-level categories in the TAG, “but I don’t know 

that they have written that way.” Even after providing feedback and reinforcing her 

expectations for written responses, Beth felt that her students might not have written 

thorough explanations for how they solved each problem. 

Phase 1: Task Selection. Beth’s primary focus is student engagement and 

collaboration. When teaching face-to-face, she preferred to choose activities that allow 

her students to get up out of their seats and move around the classroom. Her 30 years of 

teaching has led her to the realization that students do not learn mathematics by “sitting 

and copying things down and doing an example,” rather, she believes that “Students learn 

by doing.” Beth used the “Discovering Slope” task during the 2019–2020 academic year 

and appreciated how the stations allowed students to move around the room, something 

that she missed during the 2020–2021 year. However, the pandemic has not prevented 
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Beth from focusing on student collaboration as one of her goals for students. She feels 

that the various slope stations are “relevant” and “thought-provoking” for students and 

allows them to be “more interactive” than they typically are during online instruction. 

During our interviews, Beth recalled her early teaching years when she taught slope 

through direct instruction: “I can remember just getting to the board and saying, here's the 

slope formula, plug the points in and here's your slope.” Her current stance is that she 

would rather present the content in ways that encourage students to “investigate… and 

see what slope really is.” By using the stations, Beth wants her students to be able to 

explore slope for themselves rather than teaching as telling. 

 Another reason for using the Discovering Slope task was that Beth wants her 

students to be able to connect slope to a real-world context. She has asked her students 

what slope was in the past, and they typically recite the equation of a line in slope-

intercept form, y = mx + b, and “rise over run,” but she wants them to be able to answer 

questions such as “What does this mean?” Beth wants her students to see inclined 

objects, such as hills and stairs, in real-life and think about the slope associated with each. 

Connecting mathematics with the real world, according to Beth, helps students to 

remember and understand mathematical concepts more effectively. “They just remember 

it better because it’s something that they can think about outside the classroom… I think 

one reason that our kids struggle so much… with math is they don’t see anything outside 

the math classroom.” Beth said that, specifically, connecting the concept of slope with 

real-world applications helps students to think about rates of change in context. Though 

the “Discovering Slope” stations include some abstract, purely mathematical problems, 
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the real-world aspects with ramps relate to the other MMR contexts in the Theme 

focusing on functions. 

 Beth’s goal was for students to explore the concept of slope throughout their 

engagement with the task. The same week that I interviewed her, she met with the ODE 

writing team and they had discussed removing the slope stations from the MMR course. 

Beth was “pretty adamant” that the task was important for students because many of them 

still struggle with slope in precalculus and even in calculus. Beth and I heard students in 

her MMR class state that they were “really bad” with slope, further emphasizing the 

importance of the task and the content it addressed. Moreover, Beth feels that the task 

“lays the groundwork for linear functions,” which are addressed through numerous tasks 

in the MMR course. By spending more time with slope, Beth thinks that her students will 

be more prepared to engage with tasks involving linear functions because of the 

mathematical connections between the two.  

 Beth decided to change the order of two MMR tasks: the MMR lesson plan for 

the “Ramps” Context includes three tasks, given in this order: (a) “Ramp It Up” (taught 

by Isabel and explained in another section), (b) “Discovering Slope”, and (c) an activity 

in which students design their own ramp. However, Beth chose to rearrange the order of 

the first two tasks so that her students could do the “Discovering Slope” stations first. 

This decision was made simply because Beth found it easier to transition “Discovering 

Slope” into an online activity using Pear Deck and it fit better for her plans that week. 

Like Aaron, Beth also communicated that “There’s only a few lessons from each theme 
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that I can do strictly online easily.” The “Discovering Slope” task fit the criteria and 

therefore was selected as a task that Beth would use.  

Phase 2: Task Planning. Most of Beth’s planning involved transitioning the 

stations into something that students could do online rather than face-to-face. “Normally, 

when we are in person, I don’t have to do much at all to alter it [the task]… but online, I 

did have to turn it into something they could do online.” For this purpose, Beth used Pear 

Deck because the software fit her needs as well as those of her students. Pear Deck is a 

software that allows students to view and edit presentation slides, created by a teacher, 

collaboratively. Teachers can view students’ work live and provide feedback as they 

progress from one problem or task to another. Beth appreciates the ability to observe and 

monitor students’ work using the technology: “With Pear Deck, I can see exactly what 

they [her students] are doing in real time.” Because Beth’s students were not required to 

turn on their webcams when attending class online, she felt assured knowing that they 

were participating and engaging by what she could see using the software. “Pear Deck is 

the only way that I can tell what’s going on… that’s the only way I know they are with 

me or not… I could not do online instruction without it.” Pear Deck also allowed Beth to 

provide her students with drawing tools and digital graph paper on additional slides that 

they could use to help them work through the stations. “There’s a couple of the activities 

that ask them [the students] to draw graphs, and it [Pear Deck] is the only way that I can 

get the kids to draw a graph that I can see electronically.” In general, planning remote 

instruction requires Beth to be “much more deliberate” than she had been before. Each 
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task forces her to consider the technology that might be most appropriate based on what 

the task requires of her students. 

 Planning around her students’ interaction and engagement with the task required 

Beth to anticipate (a) how her students would work collaboratively and (b) how they 

would respond to various parts of the task. In terms of groupwork, Beth indicated that 

“some groups… are better than others online.” Because one of her goals for the course is 

for students to participate collaboratively, Beth monitors their interactions with each 

other and noticed that some students do not communicate well with each other. 

Anticipating students’ interactions and organizing groups accordingly is an aspect of 

planning that might not appear to influence the use of a task. However, taking preemptive 

action to promote students’ teamwork and collaboration can support students’ 

engagement with a task and the quality of mathematical thinking and work they achieve. 

Beth’s strategy of anticipating student responses informed her planning because it helped 

her to determine appropriate questioning strategies in advance. To help students visualize 

a slope of 3/2 as a change in y over a change in x, as opposed to thinking of it as 1.5, Beth 

predicted that she would ask students questions such as, “What does a slope of 3/2 

mean?” Asking questions such as this, she thought, might help guide students toward 

thinking about a slope of 3/2 as a “rise over run.” 

Phase 3: Task Setup. The setup of this task was minimal from Beth as she 

simply indicated for her students to enter their breakout rooms and begin working on the 

task. However, Beth posted her expectations on her Pear Deck slides for students to read 

as they did so. Her expectations included that all students were to actively participate 
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vocally using their microphones and that each group worked together on the same 

problem at the same time so that no individual students moved ahead of their group 

members. These expectations help Beth to set the tone for how her students should 

engage in a task, but she also reflected that, “There were some things I could have done 

to be more specific about the directions” to ensure that students were able to locate their 

materials and get started on the task more efficiently on the first day. During my first 

observation with Beth and her students, I also noticed that many students needed a 

reminder of what they should be doing and where to find the online materials. 

“Wednesday, I wasn’t really happy with how it [the task] started,” Beth explained. “I 

think I wasted fifteen minutes getting everybody where they were supposed to be with the 

right material, on the right work, and everything.” She indicated that, in the future, she 

would include this information on her Pear Deck slides to help students get started with 

their work for the day and make the setup phase of future tasks more efficient. 

Phase 4: Task Implementation. This is not the first time that Beth has taught the 

MMR pilot course and implemented the “Discovering Slope” task. With each 

implementation, she has reportedly allowed her students to engage with the task more and 

provided less direct support. “The first year, I tended to… help them more,” Beth 

explained. She took the same approach this year, supporting students’ mathematical 

thinking and reasoning by questioning and providing suggestions to guide students 

without taking away from the work of the task. In one instance where a group had 

miscalculated the slope of a ramp, Beth asked questions to help them see their mistake on 

their own. The students had erroneously divided 29/348 and claimed that the result was 
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12, to which Beth wrote 
ଶଽ

ଷସ଼
=

ଵଶ

ଵ
 on a whiteboard and asked, “Is this what you mean?” 

This led one of the students to state that 29/348 should result in a number less than one 

and then realize her mistake. Beth asked questions such as this because she “wanted to 

get students to 1/12 on their own” rather than telling them what the result should be.  

Beth felt that some students were “too stuck on the formula” for calculating slope, 

leading them to have trouble with the first station because it gave the dimensions of a 

ramp rather than coordinate points. The cause for some students’ difficulty, according to 

Beth, was that they could not identify the numbers y1, y2, x1, and x2 to “plug in” to the 

formula 𝑚 =
௬భି௬మ

௫భି௫మ
 because only two numerical dimensions were given. To help students 

determine the slope of the ramp, Beth asked, “What is another way of saying slope?” The 

students were able to recite the formula back to her, but that made Beth realize “that they 

weren’t clear on what the meaning of slope was… that’s why I kept trying to get them to 

go back to the rise over run, to try to get them to start there,” she explained. Beth asked 

her students to think about other ways of describing slope because she wanted them to 

understand it as more than a formula and a procedure. She also suggested that multiple 

groups try to “draw a picture” to help them visualize what was being represented in the 

task and think about slope graphically. 

When Beth identified a common student misconception, she began to check 

students’ work frequently to diagnose whether this mistake occurred in other groups so 

that they were not making the same mistakes. She noticed during the second day of class 

that some of her students consistently plotted (x, y) with the coordinates reversed, 

graphing the x-value as the vertical coordinate and the y-value as the horizontal. Beth 
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described, “Once I saw one group had graphed the point backwards, I started… actively 

checking for that,” correcting students if they had it wrong. Afterward, Beth wondered if 

her students understood that the first coordinate in any (x, y) pair corresponds to a value 

along the x-axis and the second coordinate corresponds to a value along the y-axis; it 

seemed to her as if her students only “memorized the process” of moving in a direction 

from the origin (i.e., up, down, left, or right) and did not associate the numerical 

coordinates with the axes.  

 As stated previously, one of Beth’s goals for students was for them to be able to 

explain their thinking and reasoning in words. Correct answers were not enough. To 

support students in developing this skill, Beth comments on their work frequently and 

allows them to resubmit assignments after incorporating her feedback. This practice was 

evident at the beginning of the second observation when Beth asked her students to 

improve some of their “superficial” responses. For example, she wanted students to 

provide more elaborate reasoning for their answers than, “because we graphed it.” 

Instead, she sought a reason for how her students found their answer using a graph.  

Beth encouraged students who had completed the stations early to go back and try 

to solve the problems using different approaches. Even for a specific student who Beth 

knew could do the calculations mentally, she asked him to “write out” how he found the 

answers. Beth’s stresses providing written justification is because it forces students to 

“think about how they can explain it [their ideas] using the right vocabulary that someone 

else could understand.” It also “makes it more in depth than what they [students] are used 

to doing.” However, Beth explained that it has become more difficult to get students to 
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communicate their thinking when teaching remotely: “In person, when they try to 

explain, I think they have rich discussions. It’s not happening as much online as I would 

like.” One of the challenges for Beth during the 2020–2021 academic year has been to 

foster student discussions and explanations in the same manner as she had before when 

her students met face-to-face. 

Cathy 

 Cathy is in her 26th year of teaching, all at the same high school. She has earned a 

Bachelor of Arts in mathematics, a Bachelor of Science in secondary education, and a 

Master of Education in secondary education with coursework toward a PhD as well. The 

2020–2021 academic year was Cathy’s first year teaching the MMR course and she also 

attended the ATC Modspar professional development program hosted at Ohio University 

for one summer. There are 28 students enrolled in her MMR course, 10 in one section 

and 18 in the other (the observed section); 2 are juniors and the rest are seniors. My co-

investigator and I observed her group of 18 students for 3 days because Cathy suggested 

that it would allow us to observe the entire implementation of a task and there were no 

scheduling conflicts preventing us from doing so. Cathy teaches face-to-face, though 

some students learn remotely because they were quarantined to prevent the spread of the 

COVID-19. Remote observations with Cathy were conducted via webcam the same way 

in which remote students accessed the course from home. The IQA and TAG 

classifications for Cathy’s task are presented in Table 7 to provide a summary of the 

following sections. 
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Table 7 

IQA Scores and TAG Classifications for Cathy’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 3 DM No 

Phase 2: Planning 3 DM No 

Phase 3: Setup 3 DM No 

Setup 1: CF 3 NC No 

Setup 2: MR 2 NC No 

Phase 4: Implementation 2 DM Yes 

Implementation: Student Work 3 NC No 

 

Analysis of Cathy’s Task. The task that Cathy used for this study, titled 

“StarburstsTM Grab,” was provided for MMR teachers with the course materials. The task 

is meant to engage students in learning about linear regression as they design an 

experiment to predict how many StarburstTM candies they can take from out of a bowl 

with a single grab. According to the MMR lesson plan, students are expected to 

determine and measure the variables of interest, collect data by performing numerous 

grabs, and use linear regression to develop a prediction model for the situation. Students 

are meant to represent data in a spreadsheet and explore the possible correlation between 

the size of a person’s hand and the number of StarburstsTM that they can grab.  
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The “StarburstsTM Grab” task scored as 3 for Phase 1: Selection because the task 

involves nonalgorithmic thinking and students are not provided a predictable, well-

rehearsed approach to complete it. For example, students must determine how they will 

measure and collect data for hand size on their own. Moreover, students are not given a 

method to determine whether their linear models are accurate predictors for the number 

of candies a person can grab. Students are also expected to identify patterns and form 

generalizations using the data they collect and analyze. Students work with and interpret 

data in various forms throughout the task, including numerical data, graphs, and algebraic 

equations. However, the task does not explicitly prompt for evidence of students’ 

reasoning and understanding; the questions on the handout do not encourage students to 

explain how they interpret their data and how they make their conclusions. For example, 

the question, “Does there seem to be a correlation based on the evidence you see here?” 

asks only if students can identify the presence of a correlation, not to explain how they 

know a correlation is present or the reasoning behind their decision. 

The task scored a 3 on the IQA for Phase 2: Planning for the same reasons as 

described earlier. Cathy decided to have students complete the task individually to avoid 

unsafe contact among students, but otherwise the wording on the task handout was 

generally unchanged. Some statements had the collaborative elements removed, and other 

changes involved minor rewording and splitting larger sections of text into multiple, 

smaller ones. The handout was also enhanced in some ways; for example, the statement, 

“As a class, decide which variable you want to use. List those below,” was changed to 

“Describe the variables we chose as a class and how we will measure them,” suggesting 
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that Cathy’s version of the task required more depth in terms of students’ written work in 

some respects. However, the questions that students were required to answer still did not 

explicitly prompt students to explain their reasoning or justify their answers. Cathy 

created three slides to help facilitate her students’ engagement throughout the task, one 

for each day, but the slides only included broad instructional procedures and did not 

lower the cognitive demand of the task. Such instructions included prompts for students 

to post their “notices and wonderings” online, a request for a volunteer do make the first 

candy grab for the whole class to observe, and directions for students to answer a specific 

question on their handouts. 

Phase 3: Setup, task setup, scored a 3 on the IQA rubric for task potential as well; 

a preliminary whole-class discussion occurred prior to students’ work on the task, but the 

cognitive demand of the task did not decline. Task setup began with students making two 

predictions, (a) the dimensions for a StarburstTM candy and (b) how many StarburstTM 

candies a student could grab out of the large bowl positioned in the front of the 

classroom. Students provided several estimations for the dimensions of a single candy: 

one said that the square face was 1-in by 1-in and each candy was half an inch thick; 

another thought that the square face had an area of 1.5 cm2 and was 1 cm thick. The 

students also offered several predictions for how many candies they could grab out of a 

bowl, ranging from as few as 11 to as many as 35. 

After discussing their answers as a class, Cathy had her students post what they 

noticed and what they wondered about the bowl of candy on an online social-networking 

site called MeWe. Students’ observations included that the bowl was almost half full, that 
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there were four colors of wrappers, and that there were “lots” of candies in the bowl. 

Examples of what they wondered include how many candies were in the bowl, how many 

candies it would take to fill the bowl, and whether the number of candies in the bowl 

affects how many can be grabbed with a single grab. Cathy elicited what students knew 

about the real-world context of the task: they discussed the technique used to grab the 

StarburstTM candies (using either a “scoop” or “claw” method), how hand size varies 

among people, and how the activity reminded them of games that they had seen where 

the objective was to guess the correct number of candies in a jar. Multiple students 

participated throughout these discussions, but ideas were typically expressed in isolation 

and not connected to each other; therefore, the Setup 1: CF score for task setup was 

designated as a 3. 

 As a class, Cathy and the students also discussed potential variables of interest 

and how they planned to measure them. Some examples that students suggested were the 

tightness of the person’s grip, their hand size, and the number of candies in the bowl. 

They also determined whether the potential variables could be measured, as well as the 

parameters that could change and those that would remain constant. Cathy asked what her 

students thought about each potential variable as they progressed through the list they had 

generated as a class; for example, she asked what students meant by the “grab technique” 

(scoop or claw method) and whether it was something that would remain constant 

throughout the experiment. The use of accountable talk moves was infrequent at best, but 

students actively participated in the discussion, warranting a Setup 2: MR score of 2. 
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 The setup of the task occurred during the first observation, whereas the 

implementation of the task took place during the second and third days. Students spent 

the second day individually collecting data as Cathy monitored their progress from a safe 

distance. The students entered their data into individual spreadsheets and Cathy combined 

them all into a class spreadsheet for further analysis. The teacher made several 

suggestions throughout the process, indicating that students should measure the size of 

their hands to the nearest quarter inch and that they should enter only numerical values 

into their spreadsheet and type the units in the column headings. The third day involved 

having students use technology to calculate a linear regression equation for the class data 

and using it to predict how many candies Cathy would grab based on her hand 

measurements. Both Cathy and a guest teacher took measurements and performed three 

grabs from the large bowl.  

The analysis that followed, however, was done mostly by the teacher with limited 

student interaction. For example, Cathy told students to “Plug my measurement into the 

formula, see what you get,” after which she concluded “I don’t think it [our model] is the 

best model.” Her directions to students consisted only of procedures to execute and 

students did not verbally communicate their understanding about linear regression and 

making predictions. It was Cathy, rather than her students, who stated that the thumb-to-

pinky measurement appeared to be a weak predictor for the number of candies that were 

grabbed. Because students simply performed calculations using their regression equations 

and did not connect the results back to the real-world context, the data, or other 

representations, the Phase 4: Implementation IQA score for this task is 2.  
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 Cathy submitted 14 samples of students’ work on the “StarburstsTM Grab” task, 

and I selected 6 to be analyzed using the IQA: 2 were selected as examples of high-

quality work because their writing demonstrated an understanding of how their linear 

model related the size of a person’s hand to the number of candies they could grab. One 

student wrote that “If your hand size is between 7–9 inches then you’re likely going to 

grab between 20–30 starbursts,” suggesting that they understood how to interpret the 

model and its associated graph to make predictions. The 2 samples of average student 

work contained numerical calculations but only limited written explanations; typical of 

many students in the class, the students answered some questions on the handout with 

only “yes” or “no” responses. The remaining 2 samples were unique because the students 

contradicted themselves in their own responses; for example, one student noticed that 

“bigger hands grab more candy” but also wrote that none of the variables measuring the 

size of a hand could be used to predict the number of StarburstTM candies that were 

grabbed.  

Overall, the six samples demonstrated that students engaged in some level of 

problem-solving as they described the variables they explored, generated linear 

regression models, and interpreted the meaning of their results. Across the student work 

samples, students identified a pattern that the number of candies increased with hand size; 

however, they failed to provide strong written explanations for how they came to this 

conclusion. The students used numerical, graphical, and algebraic representations but did 

not communicate explicit connections between them in their writing. Therefore, the 

Implementation: Student Work score for this set of samples is 3. 
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Cathy’s Analysis of the Task. Cathy classified the original MMR-version of the 

StarburstsTM Grab task at the level of doing mathematics in the TAG. She explained that 

the task requires students to engage in complex, nonalgorithmic thinking as they 

determine their own variables and ways of measuring them. The use of spreadsheets, 

according to Cathy, involves some algorithmic thinking but does not lower the task to 

procedures with connections. She stated that the task requires students to explore and to 

understand the nature of mathematical concepts, demands self-monitoring of one’s own 

cognitive processes, and requires students to access relevant knowledge and make use of 

it; however, she did not provide further explanation as to why she thought so during our 

1-hr timeframe. However, she explained that students must analyze the task and actively 

examine task constraints because they could choose how they want to measure hand size 

and determine which measurement yields the most accurate predictions. 

 The task at the planned phase was still at the level of doing mathematics in 

Cathy’s mind. She stated, “I don’t think I took away any of the thinking… any of their 

need to create or apply… in the changes I made.” She acknowledged changing the 

activity from group to individual work, but that the class would decide the variables to 

measure together. Cathy felt that these changes did not lower the cognitive demand of the 

task because they did not change the mathematical work that her students would do. 

 Cathy expressed that the cognitive demand of the task may have lowered slightly 

in the setup phase but stayed at the level of doing mathematics. Though students engaged 

in complex, nonalgorithmic thinking by selecting and measuring their own variables, 

Cathy thought that she might have directed her third period class more than she wanted to 
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because she wanted to be able to combine her second and third period data together. In 

terms of analyzing the task and examining task constraints, she reflected, “I might have 

taken a little of that away in that discussion where we decided with which variables we 

would control, and which ones were constant… I think I guided that discussion more than 

I might have.” Cathy felt that she needed to guide this segment of instruction because she 

did not have the time to allow students to make these conclusions on their own. 

 Task implementation fell between doing mathematics and procedures with 

connections, Cathy considered. Students were still using nonalgorithmic thinking by 

“thinking out of the box,” using their own thinking rather than limiting themselves to 

using a particular formula or strategy. Cathy also indicated that she did not instruct 

students on how to determine whether a regression equation was a “good predictor,” but 

students were able to make sense of it on their own. Though students were expected to 

write about this on their handouts, it was Cathy who voiced that the model was not a 

“good predictor” in class. She summarized her view of the lessons in the following 

statement: 

I think they got an idea of what it means to look at a situation and analyze it and 

do the math, I really do… This isn't the old fashioned, ‘I'm going to give you 

every step of the way to go.’ 

However, she also noticed some aspects of students’ engagement suggesting that the 

cognitive demand of the task declined. For example, she felt that she and her students 

could have done more to explore and understand the nature of mathematical relationships 

because they did not debrief via a whole-class discussion after completing the task. The 
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MMR materials “didn’t give [her] a good enough post discussion” but she considered 

spending additional time to debrief as a class on another day. She also stated that “based 

on their responses, I don’t think they [the students] stretched themselves as much as I 

would have liked… they might still be more at a procedures with connections level as far 

as their thinking.” Cathy concluded that, despite there not being “much struggle left” in 

her students’ engagement with the task, she “kept more of the bullets” in the TAG than 

she “lost,” leading to the result that her students were still at the doing mathematics level. 

Phase 1: Task Selection. Student engagement is Cathy’s primary focus when 

selecting tasks to use with her students. Engagement has been her focus from her first 

year teaching, as she was influenced by teacher mentors and others involved in OCTM. 

She learned the phrase “never say anything a kid can say” by reading an article published 

in NCTM’s Mathematics Teacher journal and tries to select tasks that engage students in 

developing meaning through exploration. The MMR course has provided Cathy with 

access to a wealth of materials centered on active student engagement and she has 

enjoyed every day teaching it. Cathy explained, 

This has been an entire year where every single lesson is my favorite, lessons that 

occur a couple of times a quarter, maybe, in other courses. So once or twice a 

quarter, if I'm lucky, I manage to squeeze in something that I really love. It's 

really cool that students are really engaged and that I think it's amazing. 

The MMR course has allowed Cathy to use engaging, explorative tasks more frequently 

than with other courses because the materials were provided to her; she has not needed to 

find or adapt the materials herself. She explained that she does this for other courses, but 
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“the problem is the time it takes to take something and convert it.” It takes her sometimes 

several hours to adapt a task from source materials into a form that she wants, and then it 

may take several years of refinement after each successive implementation for the task to 

reach its final form. Cathy is “thankful” for the MMR course because the materials are 

provided and much of this work is already done for her. 

 The MMR course has also enabled Cathy to use tasks she would not have 

considered before due to the instructional materials required. She would have “never” 

chosen the “StarburstTM Grab” task prior to teaching the MMR course because she would 

have been required to spend her own money on materials. Material-intensive tasks make 

Cathy hesitate because she feels she cannot afford to purchase new materials for each 

one. However, she has been able to use material-intensive tasks because her district offers 

financial support while she pilots the MMR course. The district purchased the candy she 

needed for the observed lessons along with a class set of Barbie dolls for “Barbie 

Bungie,” an MMR task that engages students in developing the optimal bungee cord 

made of rubber bands. Though both were tasks that Cathy was interested in, they would 

likely have not been used if she had not been provided the resources to make them 

possible. The MMR course has encouraged Cathy to be “willing to go out on a limb and 

try these things that are material-intensive” that she might not have done otherwise. 

 The mathematical content and processes addressed by the “StarburstsTM Grab” 

task are also desirable features that Cathy highlighted. She appreciates that many MMR 

tasks allow students to gather, represent, and interpret data using spreadsheets and 

regression models. According to Cathy, such tasks help students to see how these 
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processes are both useful and applicable in the real world and in purely mathematical 

contexts. Engaging in data collection, management, and analysis in a task is helpful, but 

through numerous tasks helps students to realize that these are skills that they can really 

use in other contexts. Specifically, the use of spreadsheets is something that Cathy has 

encouraged for many years. “We really need to teach kids how to use spreadsheets,” she 

said. “If any department in the building is responsible for spreadsheets, that would be the 

math department. I’ve said that for years. We’ve never done anything about it, but I’ve 

always thought that.” Through “StarburstsTM Grab” and many other tasks in the MMR 

course, Cathy believes that students are learning spreadsheet skills that will be useful to 

them in the future.   

Phase 2: Task Planning. The MMR tasks are meant to be completed by students 

in groups. However, Cathy modified the task so that students would complete it 

individually to avoid unnecessary health risks due to COVID-19. Having students work 

individually meant that they would not need to share materials and resources and would 

ensure that students remained socially distant. Aside from potentially requiring other 

students’ help to measure their hand size, Cathy thought that the task could be completed 

individually and students would still do the same mathematics. Another added benefit of 

an individual task was that students who were “fatigued” from group work could get a 

break from it. Cathy stated that “kids who tend to pick up the slack all the time” might 

benefit in this way. Designing the task for individual work required Cathy to remove a 

question from the MMR handout. The question involved analyzing students’ group data, 

which would not make sense if students collected data on their own.  
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 Cathy also modified the task to accommodate students learning remotely. Remote 

students were not able to participate in collecting data by grabbing candy from the bowls 

in the classroom. Instead, Cathy assigned them some problems to solve and allowed them 

to use the combined class data once they were gathered. The three problems for remote 

students involved finding the dimensions of a StarburstTM candy and rearranging various 

numbers of them into rectangular prisms to calculate the volume of. The modified 

problems are not directly related to the linear regression task, but Cathy felt that it was 

difficult to make remote data collection “meaningful.” She contemplated the notion of 

asking students to grab candy from bowls they had at home, but this raises various issues. 

Cathy identified that the sizes of candy and bowls may be vastly different from those in 

class and would not contribute to the class data set. Even if they could, the students 

would not have enough data to calculate a reasonable linear regression. Though this 

option was suggested by other MMR teachers in one of their meetings, Cathy chose to 

assign other problems and allow her remote learners to use the full-class data instead. 

“Everybody now has the class data, and everybody does the mathematics,” she said. 

 Generally, Cathy tries to plan around the original intent of the MMR course 

developers when using the course materials. Aside from making the discussed changes to 

make a task suitable during the year of the pandemic, she looks to what the MMR 

materials suggest and tries to “stay true to them, whatever they [ODE] want the lesson to 

look like.” The MMR teachers would normally be somewhat limited in what they could 

do when modifying the instructional materials for the course. However, the 2020–2021 

academic year was different because the COVID-19 pandemic radically altered the way 
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that many teachers teach and the way that many students learn. No data were collected in 

the fall of 2020 for the MMR course, but Cathy tried to be “as true to the materials” as 

she could be regardless. 

 Cathy modified the presentation slides she developed to accompany the task 

handout between each lesson. These changes were made as she reflected on students’ 

work on the task each day, including reminders to the students and reminders for herself. 

For example, one reminder Cathy added on her slides for Day 2 was a reminder for the 

class to talk about precision. During our interviews, she explained that her second period 

MMR class had decided to measure hand size to the nearest quarter inch; however, this 

discussion did not occur naturally during her third period class (the class I observed). 

Cathy included the reminder on her slides so that her third period class would have that 

discussion and determine the level of precision they would use when collecting data. 

Cathy also included the constraints that the class agreed on when collecting data (e.g., 

“Grab with the intent to get as many as you can”) because she felt that students would 

forget them the following day. This form of planning stemmed from Cathy’s reflection on 

the previous day’s class and anticipation of what she would need to do to prepare her 

students for the following day. 

After implementing the task, Cathy reflected that one thing she should have 

changed was to reword the “yes or no questions,” questions on the handout that did not 

ask students to provide explanations and evidence of their reasoning. Astounded, she 

asked, “Can you believe that this handout had ‘yes’ or ‘no’ questions? I even had that 

conversation with you about how I never give them [students] ‘yes’ or ‘no’ questions.” 
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She noticed that, after reading through students’ written responses, many students simply 

wrote “yes” or “no” in response to questions such as, “Does there seem to be a 

correlation based on the evidence you see here?” Cathy noticed that the wording of the 

question did not prompt students to provide reasoning for their answer and acknowledged 

that she did not blame the students; they answered the questions as they were written. 

After realizing this, Cathy made changes to the document so that the questions would 

require stronger written responses from students for the following year.  

Phase 3: Task Setup. The setup of the task began with the “What do you notice? 

What do you wonder?” routine that is typical of MMR tasks. For this specific task, Cathy 

had her students post online what they noticed and wondered about the large bowl of 

StarburstsTM that she positioned at the front of the classroom. The decision to do this was, 

in part, motivated by the instructional procedures emphasized in the MMR materials and 

Cathy’s desire to “stay true” to them. However, she has also practiced a similar technique 

prior to teaching the MMR course in the form of “stand and talks,” where she has 

students rise out of their seats and share ideas with other classmates in pairs. “It gets them 

[her students] thinking, they’re engaged,” Cathy stated during our interviews. Due to the 

health risks associated with COVID-19 during the 2020–2021 school year, Cathy 

facilitated this portion of instruction using MeWe, as I described previously, because it 

provided a safe way for students to communicate their thoughts and questions about the 

StarburstsTM online.  

 Prior to collecting data, Cathy also led her class in a discussion of the potential 

variables of interest her students had identified through their noticing and wondering and 
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how they might measure them. The class also discussed which parameters would remain 

constant throughout the experiment (e.g., using the “claw method” for every grab). Cathy 

felt that these were discussions that “we don’t have often enough in math class” because 

typically these decisions are made for students in advance. Cathy explained that 

traditional “word problems” provide students with the assumptions and the data, 

prohibiting such conversations from happening as often as they should. As I mentioned 

earlier, however, Cathy appeared to dominate this segment of instruction rather than 

allowing her students to do the decision-making. Interestingly, she made the same 

reflection during her post-observation interview: “Since we hadn’t talked about it much, I 

did guide that one a little more than I would if I had… if I wasn’t worried about whether 

we’d have enough time.” Cathy later repeated that “I think I guided that discussion more 

than I might have… I was worried I wouldn’t have time.” 

 Cathy frequently sets up tasks by having students make predictions or 

estimations; this is true for MMR tasks but also tasks that she creates or modifies herself. 

For the “StarburstsTM Grab” task, Cathy did this by posing two problems for students to 

consider as they entered the classroom on the first observation day: the first was to 

“Estimate the dimensions of a StarburstTM candy” and the second was “How many 

StarburstTM candies do you think you could grab out of a large bowl full?” Cathy asked 

these questions to keep her students busy so she could take attendance as they entered the 

classroom, but also to get them thinking about the task they would complete over the next 

3 days.  
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Phase 4: Task Implementation. Cathy felt that the wording of the questions on 

the StarburstTM task handout influenced students’ implementation of the task. She wants 

her students to be able to explain their work and reasoning, highlighting that “describing 

their work” and “putting it into words… is a great skill to have.” However, Cathy 

reflected that many students simply provided 1-word answers of “yes” or “no” on the 

handout because that was all that was asked of them. She shared several examples during 

our post-observation interview, reading students’ responses aloud: “Could any of these 

variables be used to make predictions? Yes… They answered the question. I can't argue 

with you, you answered the question.” Cathy was surprised that she allowed those 

questions to remain on the handout but did not blame students for how they responded. 

She planned to bring this up with students the following week, saying “That’s on me. I 

asked a ‘yes, no’ question.” However, she also planned to ask students, “Let’s think about 

it a little more… What would you have said if I asked this? Let’s think about a better way 

to answer that question.” Cathy believed that her students did not provide rigorous 

responses in some instances because the questions themselves were not rigorous; 

however, she also felt that she could enhance the outcome of the task by improving her 

questioning and following up with students. 

As I described previously, Cathy did not conclude the implementation of the 

StarburstsTM Grab task with a full-class discussion or debrief. During her post-

observation interview, Cathy explained that the rationale for this decision was primarily 

based on her experience with remote and hybrid learning. She confessed that she 

struggled “standing in front of the room and asking questions” because “you get one or 
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two people that might talk, and with half of them [her students] at home, and now in 

some classes more than half of them at home, it’s just not engaging.” In fact, more than 

half of Cathy’s MMR students attended class remotely during the 3 days of the 

“StarburstTM Grab” task (though many were in the class that I did not observe). Though 

Cathy wore a headset and microphone so that she could communicate with her remote 

learners and reminded them that they could unmute themselves and speak, she has 

experienced difficulty getting them to talk during class. Cathy thinks that this is in part 

because they are “not comfortable” speaking up when learning remotely. She described 

that she has the same difficulty when leading and attending remote conferences and 

professional development. These experiences have led her to the conclusion that “Full-

class discussion just doesn’t work” in the online learning environment because “if grown 

adults are intimidated to unmute and talk, how in the world can we expect teenagers to 

feel comfortable doing that?” 

 Remote and hybrid instruction provide additional challenges that Cathy considers 

when implementing tasks. Holding students accountable for actively engaging in class is 

one such challenge that she struggles with. Cathy sometimes provides comments when 

students are asked to type written responses online by saying “Hey, why aren’t you 

typing anything there? What do you think?” However, monitoring remote students’ 

engagement while she is occupied with her face-to-face students is more difficult. Some 

students, Cathy explained, attend class remotely but position their webcams so that their 

faces cannot be seen (I noticed this during my observations). Others, according to Cathy, 

make themselves visibly present but “mute me and aren't paying attention to class.” She 
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tries to hold students responsible by threatening to mark them absent if she notices this 

behavior, but she does not have the time to constantly verify whether her remote students 

are engaged in class activities. Task implementation, Cathy reflected, can be a struggle 

when her students are not in the classroom with her. 

Debbie 

Debbie’s education includes a bachelor’s degree in mathematics and in chemistry, 

a master’s degree in physical chemistry, a Master of Education with her teaching license, 

and a master’s degree in educational leadership. She has taught mathematics and science 

for more than 20 years, and the past 3 years have been at her current school. The 2020–

2021 academic year was Debbie’s second year teaching MMR. There are 16 students 

taking the MMR course at Debbie’s school, 7 in one section and 9 in another. Debbie 

teaches the whole group of 16 remotely on Mondays for 30 min, one section face-to-face 

on Tuesday and Thursday for 41 min, and the other group face-to-face on Wednesday 

and Friday for 41 min.  

My co-observer and I joined the Wednesday-Friday class of 9 students remotely 

via Zoom; a laptop equipped with a webcam was positioned on one side of the classroom 

so that we could see and hear as much of each lesson as possible. We chose to observe 

this group because there were more students, and they were “more interactive” than the 

Tuesday-Thursday group according to Debbie. One student was absent on both 

Wednesday and Friday, a different student each day, resulting in a total of 8 students 

observed during each class meeting. The IQA and TAG classifications for Debbie’s task 

are presented in Table 8 to provide context for the next two sections. 
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Table 8 

IQA Scores and TAG Classifications for Debbie’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 4 PwC No 

Phase 2: Planning 4 PwC No 

Phase 3: Setup 4 DM No 

Setup 1: CF 3 NC No 

Setup 2: MR 3 NC No 

Phase 4: Implementation 4 PwC No 

Implementation: Student Work 4 NC No 

Analysis of Debbie’s Task. Debbie, Ethan, and Fred selected the same task to use 

for the purpose of this study, the first part of a 2-part MMR Context titled “Follow the 

Bouncing Ball.” The associated student handout for the first part of the Context is meant 

to guide students through an exploration of the relationship between the height at which 

various balls are dropped and their returning bounce height. Throughout the task, students 

explore this relationship by identifying independent and dependent variables, predicting 

what type of functional relationship they might have, performing an experiment to collect 

data, and interpreting the results. The data are expected to demonstrate the linear 

relationship between rebound height and drop height, and therefore, students also 

interpret correlation coefficients and use their model to predict rebound heights from 
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various drop heights. An interesting feature of the task is that, though students are 

initially asked to identify their own variables for the first two on the handout, the next 

question directs them to use drop height and rebound height as their two variables 

throughout the remainder of the task. This seems counterproductive and limits the ability 

for students to explore, though it also helps teachers to focus on aspects that will yield 

relatively linear data. 

 I scored the student handout for this task as a 4 for Phase 1: Selection using the 

IQA. The task explicitly prompts students to make mathematical connections by 

identifying independent and dependent variables that might have a functional 

relationship. Throughout their engagement with the task, students also make conjectures 

by sketching a graph to illustrate such a functional relationship. Students are expected to 

make mathematical connections between various representations, including numerical 

data, models (algebraic functions), and their associated graphs. Students are asked to 

make these connections through language such as the following: “Based on your scatter 

plot what functional model do you think will best represent the relationship between the 

two variables you are experimenting with?” Students identify patterns among their data 

through questions such as, “Does there appear to be a pattern to the data?” This task 

warrants an IQA score of 4, rather than 3, because students are prompted to explain their 

reasoning and to show their work numerous times on the handout. 

 Debbie generally left the task unchanged in her planning and made only minor 

formatting changes to the task handout, such as splitting large paragraphs into smaller 

portions and adjusting the syntax of the written text. She also broke larger questions into 
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smaller ones so that the total number of questions was greater in her version, but the 

expected outcomes from students remained the same. The only influential change to the 

task handout was the inclusion of a step requiring students to organize their thoughts 

prior to collecting data. The added section prompts students to provide a hypothesis for 

what will happen to the rebound height throughout the experiment and has students 

complete a data table. This section also prompts students to identify aspects of the 

experiment that would remain constant “to ensure consistency.” However, the 

mathematical nature of the task remains the same with these changes to the task handout, 

as the language for each question is nearly identical to the original MMR version. 

Therefore, the Phase 2: Planning IQA score for the task is also 4. 

 Phase 3: Setup, task setup, remained at IQA level 4 because Debbie’s students did 

the mathematical thinking, reasoning, and communicating during the initial discussions 

prior to task implementation. The whole-class discussion that occurred included both the 

contextual features and the mathematical relationships involved in the task: the first part 

focused on the 1965 Super Ball television commercial that Debbie played for her students 

in class. She asked the students if they had something like the Super Ball and if any of the 

students had seen one before. Some of them had seen something similar, though not 

exactly the same thing, and others were curious and researched them using their laptops. 

Debbie and her students made connections between ideas that helped to support students’ 

understanding of the real-world context (albeit inconsistently), resulting in Setup 1: CF 

score of 3.  
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The discussion of mathematical relationships focused on identifying measurable 

features of a ball that might influence its bounce and determining which could be 

appropriate dependent and independent variables. For example, students suggested that 

the drop height, the size of the ball, and the material that the ball was made from may 

influence the ball’s bounce. The students provided their own ideas throughout this 

portion of instruction and the use of accountable talk moves was consistent, yielding a 

Setup 2: MR score of 3. One example of Teacher Press, for instance, occurred after 

Debbie asked her class why it was important for some aspects of the experiment to 

remain constant throughout each trial. One student responded that this would yield 

accurate measurements, to which Debbie followed up with “Why?” This press forced the 

student to consider how consistency in measurement and data collection affect the results 

of an experiment. 

 The observed implementation of the task, Phase 4: Implementation, also received 

an IQA score of 4. After students worked in groups to collect data, Debbie facilitated 

their engagement by (a) asking them to first talk to each other about how they would 

answer each question on the handout, then (b) instructing students to write their 

individual responses, and (c) bringing the class back together to discuss what they had 

written; this process occurred in cycles. Throughout task implementation, Debbie 

explicitly prompted students to provide evidence of their thinking and reasoning. For 

example, she asked the class to explain if there was a pattern in the scatterplot of the class 

data and why it might have occurred. The students successfully identified the linear trend 

and communicated that greater drop heights yielded greater rebound heights. They 
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noticed the “same ratio” between each group of data points and the “organized scatter” of 

the data, explaining that there was a relatively constant change between x and y values. 

Moreover, students explained that the relationship appeared to be linear because they 

could draw a line through most of the data points. The 5 samples of student work that 

Debbie provided were consistent in that students provided written responses to reflect the 

ideas they had developed during class. Students’ written explanations on their handouts 

were generally consistent with the high level of thinking and reasoning evident during the 

observations, yielding an Implementation: Student Work score of 4. 

Debbie’s Analysis of the Task. Debbie classified the original, MMR-version of 

the “Follow the Bouncing Ball” task as a procedures with connections task because it 

allows students to make connections between numerical data for the bouncing of a ball 

and the mathematical model that is generated through the use of technology. She believes 

that to be a doing mathematics task, “everything has to come from the student,” meaning 

that students are in full control of the direction of the task: the mathematical question that 

is addressed, the variables of interest, the data collection procedures, and so on. “At this 

stage, they’re still kind of following directions,” limiting many of the MMR tasks to 

procedures with connections, though Debbie felt that some tasks contained elements 

within the doing mathematics category. She also stated that memorization and procedures 

without connections tasks are more akin to the “traditional or made-up word problems” 

that are common in school mathematics instruction, differentiating them from most of the 

MMR tasks.  
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 The way that Debbie planned the task was also at the level of procedures with 

connections in her mind. She felt that the task had the potential to rise to the level of 

doing mathematics but that her students “need a little bit more experience” before they 

could direct the task on their own. If the task were used later in the year, for example, 

Debbie explained that her students might not need the same level of guidance and she 

could structure the task less by removing some of the directions from the handout. She 

said that, for example, she could have students determine the dependent variable to move 

the task toward doing mathematics rather than directing students to choose rebound 

height as the handout does. The original MMR version and her own adapted version of 

the task are definitively at the level of procedures with connections to Debbie because 

she is “asking all the questions” and “leading them [her students] to ask a specific 

question.” However, Debbie also noted that the MMR tasks provide less guidance from 

one theme to the next throughout the year and move toward doing mathematics as a 

potential goal for students to reach by the end of the year. 

 The only phase of the task that Debbie designated as doing mathematics was the 

setup phase: as I described previously, she felt that tasks as this level were entirely 

student-led and teacher-facilitated. Debbie explained that the setup phase was different 

because “even though I wanted them [her students] to go a particular direction, I think it 

was coming from them.” The students did this by identifying variables of interest and 

determining if and how they might be measured. Students were also asked to consider the 

functional relationship between the variables that they had recognized. According to 

Debbie, her students considered the relationship between drop height and rebound height 
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and analyzed task constraints by using the materials available to determine how they 

would measure the variables. Students “did what a scientist or mathematician would do in 

terms of coming up with: What’s the question? What are the variables? How are you 

going to test that?” 

 By working through the handout and focusing on teacher-generated questions 

such as, “What is the relationship between drop height and rebound height?” Debbie felt 

that the implementation of the task was at the level of procedures with connections. She 

was pleased with how her students identified the presence of a linear relationship 

between the two variables on their own and made the connection that dropping a ball 

from a greater height led to a greater rebound height. Debbie acknowledged that there 

were some procedures that she showed them how to do in a “step-by-step” way, such as 

“setting up the data table.” However, she acknowledged that her students made 

connections between numerical data and graphical representations. She also noticed 

students making these connections through their dialogue in class: for example, she noted 

how one student recognized that the regression equation they calculated using technology 

was linear by the y = mx + b format of the output. She also mentioned that elements of all 

four TAG levels of cognitive demand may have been evident in the task in some form. 

For example, plotting points graphically and using software to calculate a regression 

equation were procedures that Debbie identified, suggesting that the task might include 

elements of procedures with and procedures without connections. 

Phase 1: Task Selection. Debbie tends to select tasks that are “hands-on” and 

provide students with opportunities to explore “something that they can touch in some 
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way.” These tasks typically prompt students to describe patterns as a whole group, 

followed by “some form of an experiment where they [her students] can get some sort of 

an equation,” followed by a full-class discussion where students combine their thinking 

together and formalize their results. She does this for both mathematics and science 

classes, though she explained that it is sometimes difficult to do with various 

mathematics topics, such as polynomial functions. “Exploring first” has been Debbie’s 

motivation in both mathematics and science in the past, but the MMR course has 

encouraged more frequent use of such tasks in her other mathematics courses. She 

explained, 

With my math classes, I’m noticing that a lot of the stuff I do with MMR is 

bleeding over into what I had been doing before and that my other classes are 

becoming more exploratory than what I’d done before. 

Some of Debbie’s tasks are more structured, prompting students to “follow the 

directions.” She does this to support students who are “timid about trying to do some 

things for themselves.” But many tasks, such as “Follow the Bouncing Ball,” Debbie 

selects so that students will be challenged to “support their reasoning, especially with 

data.”  

 Emphasis on collecting and analyzing data is an aspect of Debbie’s mathematics 

teaching that may stem from her role as a science teacher. She incorporates as many 

opportunities for students to work with data as she can because she feels that students 

“don’t have a lot of skills” working with data by the time they reach her classes. Debbie 

explained that her students tend to be “naïve sometimes in their thinking when it comes 
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to data,” though working with data is a skill that is important to “all students, not just the 

students who are planning to major in a math or STEM career.” For example, she wants 

her students to learn how to make informed decisions about data and to be able to 

“describe it [data] critically.” To help her students develop those skills, Debbie frequently 

has them “explore” and “describe” data through the tasks she selects. She waits to “put 

math equations in” until her students have been able to explore some phenomena “to see 

what is happening.” Doing so, according to Debbie, helps her students to make sense of 

the mathematics and connect mathematical representations (e.g., equations and graphs) 

back to the original data. “They [her students] need to understand what’s happening or 

the math doesn’t really make sense.” Specifically, Debbie feels that the “Follow the 

Bouncing Ball” task provides data that are “strikingly linear” and helps students to 

clearly visualize a linear relationship between the dependent and independent variables. 

 Identifying patterns and working with data are important to Debbie, and she has 

been engaging her students in such activities before she began teaching MMR. In fact, 

she has been doing this “from day one” of her teaching career. However, she now finds 

herself “tying it more to a task for a real situation, beyond exploring patterns.” Teaching 

MMR has provided Debbie with frequent opportunities to engage students in working 

with data to solve genuine, real-world problems because the course has been designed for 

her to be able to do so. Debbie explained that in some mathematics courses, such as 

Algebra 2, it is more difficult for her to connect concepts to real-world applications. 

Teaching the MMR course has given her some “good ideas” to use in her Algebra 2 class, 

she said. According to Debbie, using such tasks is beneficial for students because they 
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learn skills that are useful later in their lives. For example, being able to describe and 

interpret data are skills that help students to determine the validity of others’ arguments. 

Phase 2: Task Planning. Though Debbie chose not to make significant changes 

to the original MMR version of the task, one concern was being “careful about telling 

them [her students] too much.” She felt as though the original task, along with other 

handouts, provided more guidance for students and teachers than was necessary. 

“Sometimes, the handout does a little bit too much thinking for them [the students],” 

Debbie explained. There were several instances where the “Follow the Bouncing Ball” 

handout provided written text that Debbie felt she could get her students to come up with 

through discussion: for example, she explained that she could likely get her students to 

determine a definition for “rebound height” (the maximum height that a ball reaches after 

being dropped and bouncing off the ground) and that her students did not need the 

definition provided for them on the task handout. She said, 

Sometimes I think there’s a danger of, you do all the thinking for the student and 

then they don't have the opportunity to struggle with it a little on their own. So, I 

mean, that's a skill that we're really trying to build. 

Debbie also disliked how the first two problems on the task handout prompt students to 

think about potential independent and dependent variables, but then the task directs them 

toward using rebound height as one of them (ideally, the dependent variable, with drop 

height as the independent variable). However, it is worth noting that Debbie did not 

modify these aspects of the task. 
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 Thinking ahead to the setup and implementation of the task, Debbie anticipated 

how her students would engage with the task and the instructional moves she might make 

as she planned her instruction. Part of this involved considering how her students would 

collect data: “the more that they are involved in designing the experiment… the more 

successful they will be,” she explained. Throughout her years of teaching, she has noticed 

that her students are more successful if they are provided sufficient opportunities to talk 

and write about what they will do to design and carry out an experiment themselves. 

Debbie also thought that her students might struggle to understand the concept of linear 

regression; she explained that, after using technology to generate a formula based on their 

data, her students would need “some practice” and more experience to understand what 

the formula represented. To support her students’ understanding, Debbie considered 

having her students refer back to the “StarburstsTM Grab” task that they had already done. 

 As I described in the previous sections, some of Debbie’s changes to the task 

handout involved minor changes to the formatting of the handout. Specifically, some of 

these adjustments included the materials and the technology that students would use to 

access the task. In a traditional classroom setting (prior to the COVID-19 pandemic), 

Debbie would typically have students write what they noticed and wondered about the 

real-world situation by writing on sticky-notes that they could post on the whiteboard. 

Instead, she had her students do something similar via Padlet, technology that allows 

users to post comments in response to a question or prompt. According to Debbie, Padlet 

benefits students who “might be a little timid at speaking up out loud” and allows 

students to organize and rearrange their thoughts, something that they would have done 
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with sticky-notes in a typical setting. Another technological change that Debbie made 

was the use of Data Classroom software, rather than graphing calculators or Excel; Data 

Classroom allows students to enter and analyze data but does so in a more “intuitive” 

way, allowing Debbie to focus her instruction more on the mathematics and less on 

teaching students how to use the technology. 

Unlike the other teachers who used “Follow the Bouncing Ball” for the purpose of 

this study, Ethan and Fred, Debbie planned not to use Part 2 of the task that was 

described in the MMR lesson plan. Part 2 engages students in an exploration of how the 

rebound height of a ball decreases exponentially with each successive bounce, an 

extension of Part 1 where they consider only the first bounce over various drop heights. 

Though Ethan and Fred mentioned using Part 2 after Part 1 was finished, Debbie 

explained that it “deviates from the original goals… and seems to go off in another 

direction.” Because her goal was for students to develop an understanding of linear 

relationships, she felt that Part 2 “went in another direction and was not adding anything 

new.” According to Debbie, it shows students that “not all regressions have to be linear,” 

which could be interesting for students to learn, but was something that could be done 

later in the course if time allowed. At the present time, however, her goal was that her 

students expand their knowledge and understanding of linear relationships rather than 

shifting their focus to other functional models. 

Phase 3: Task Setup. Debbie typically sets up tasks through discussions similar 

to the “What do you notice? What do you wonder?” routine that is emphasized with the 

MMR course. She especially includes such explorations “towards the beginning of a 
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unit,” but it also “depends on where they [her students] are in the development of a 

concept.” The exploratory nature of tasks at the start of a unit allows students to engage 

with the content more broadly before narrowing the focus to specific concepts later. 

Debbie began task setup by having her students watch the 1965 Super Ball television 

commercial, as I described in previous sections; though this was suggested on the MMR 

lesson plan for the task, Debbie also thought that it helped to increase students’ interest 

and engagement with the task. “They were really interested in that… more than I 

expected!” she exclaimed, recalling how her students began researching the current price 

of a Super Ball, whether they were still produced, and what their cost was in 1965. 

Showing the video helped students to relate to what they were about to explore but also 

brought forth stronger ideas later during the lesson, Debbie explained. “I think that little 

video first helped to get them thinking, because I think if I hadn't had something else 

there first, they might have sat there for a while on that first question on the Padlet.” She 

said that watching the video “caught their [students’] interest” but also helped them to 

think of things they might not have thought of before. 

Debbie used Padlet so that her students could post, comment on, and organize 

their thoughts as she typically would have prior to the COVID-19 pandemic. During this 

phase of instruction, Debbie felt that her students were “going in a lot of directions,” 

which she encouraged, but also wanted someone to mention the drop height and rebound 

height of a ball as variables that could be measured. To guide her students’ thinking in 

this direction without telling them directly, Debbie picked up an elastic ball and started 

bouncing it, asking students what they observed. It was something that she had not 
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anticipated doing, but thought, “surely they [her students] see what I’m doing.” She 

reflected, “that helped, I think, in leading them to what I wanted them to do with this 

activity.” She made the decision in the moment because “a lot of the kids tend to be 

visual” and she felt that they needed to see the bouncing of the ball to go in the direction 

that she wanted them to go. 

 During the discussion of dependent and independent variables, Debbie made 

several instructional moves to help her students distinguish one from another and 

recognize whether a variable is dependent or independent. She described how “Those are 

usually words that they [students] have heard before, but I’m not sure exactly how it’s 

been used and what they’ve seen,” suggesting that some students struggle with 

identifying dependent and independent variables. Debbie reflected that her students did 

not seem to have too many difficulties, but that was why she repeated the question, “Is it 

influencing the bounce, or it is the bounce?” To help her students identify independent 

variables, she asked the question, “What is the thing that you’re changing on purpose?” to 

help students identify that independent variables are often manipulated by the researcher. 

Debbie wanted her students to recognize that these ideas were important, so she wrote the 

following on the board as they discussed potential variables of interest: “independent 

variable: what you change,” and “dependent variable: response.”   

Phase 4: Task Implementation. Debbie frequently lets her students explore 

mathematics and science because she wants them to develop their own understanding; to 

“see what is happening” on their own. Indeed, this is what Debbie did during the 2 

observations of her MMR class. She offered autonomy in how her students could collect 
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data and left them to determine their own meaning for which ball was the “best bouncer” 

without directly telling how to make such a decision. However, she reflected that there 

were opportunities with the MMR class where she limited the amount of exploration that 

her students did for two reasons: (a) as I described earlier, she felt that her students still 

“needed more experience” before they would be ready to direct themselves entirely and 

reach the level of doing mathematics, and (b) she focused on the question that was 

emphasized in the MMR materials, guiding her students toward investigating the 

relationship between drop height and rebound height. Though Debbie acknowledged 

other ideas that her students may have been more interested in, she wanted them to go in 

the direction suggested by the lesson plan for the time being. However, she is working 

toward getting her students exploring fully at the doing mathematics level as the year 

progresses. 

Debbie frequently questioned her students throughout the observed lessons. For 

example, she asked them to explain how their scatterplots provided evidence of the linear 

relationship they identified. In addition, Debbie typically answered students’ questions 

with her own questions. She does so because if she answers a question directly, she feels 

that students will “stop looking at other alternatives” and their thinking process ends with 

her response. Instead, she wants her students to keep thinking and try to come up with an 

answer on their own. “In terms of it [the mathematics] sticking, I think it sticks better if 

you’ve explored that as much as you can yourself,” Debbie explained, recognizing that 

students will retain the mathematics content if they have done more of the thinking 

themselves. In our second interview, Debbie recalled an instance where a student had 
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nearly identified the linear pattern in his data. She wanted to provide the name for the 

type of function, but instead asked the question, “What do you call that?” so that her 

students would reach the conclusion on their own. After several attempts to explain the 

pattern, additional prompting, and some wait time, another student eventually used the 

term “linear” to describe the relationship. In general, Debbie attempts to respond with 

questions when a student’s initial question addresses an idea that she is “really wanting 

them to understand.” 

Ethan 

Ethan has a bachelor’s degree in mathematics, a master’s degree in educational 

technology, and a principal’s license in addition to his teaching license. The 2020–2021 

academic year was his 20th year teaching high school mathematics, all at the same 

school, and his second year teaching the MMR course. Remotely from home, Ethan 

teaches a group of 10 students, meeting over Zoom 3 days a week: 35 minutes on 

Mondays and 60 minutes on Tuesdays and Thursdays. My co-observer and I viewed the 

implementation of Ethan’s task remotely by joining his Zoom sessions the same way that 

his students do. We chose to observe on a Tuesday and a Thursday to make the most of 

our observations, though one student was absent both days. The IQA and TAG 

classifications for Ethan’s task are presented in Table 9 to provide a summary of the 

following two sections. 
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Table 9 

IQA Scores and TAG Classifications for Ethan’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 4 PwC No 

Phase 2: Planning 4 PwC No 

Phase 3: Setup 4 DM No 

Setup 1: CF NR NC No 

Setup 2: MR 2 NC No 

Phase 4: Implementation 3 PwC No 

Implementation: Student Work NR NC No 

 

Analysis of Ethan’s Task. Ethan’s task was identical to Debbie’s at Phase 1: 

Selection and received an IQA score of 4 for the reasons described previously. Like other 

teachers, Ethan chose not to modify the “Follow the Bouncing Ball” task aside from 

reworking the student handout into a series of PowerPoint slides. The written language of 

the handout remained identical as Ethan simply copied and pasted appropriate text onto 

each slide and left space for students to type their responses. One minor adjustment was 

the inclusion of a table for students to record their data. Each row was labeled with units, 

indicating that students should record their measurements in centimeters. The inclusion of 

this table lowers the cognitive demand of the task in some regard, but not enough to 

warrant a decline from an IQA score of 4 to a score of 3 for planning in Phase 2: 
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Planning. The remainder of the task is identical in terms of the level of work and thinking 

required of students, including the prompts on the original handout for students to explain 

their reasoning in writing. 

 Debbie, Ethan, and Fred set up and implemented the task with some similarities 

and some differences, despite using the same original task with limited changes for 

planning. Unfortunately, my co-observer and I were unaware that Ethan’s class had 

already discussed the real-world aspects of the task until after we had observed his 

instruction on the first day. However, Ethan explained afterward that he and his students 

watched the 1965 Super Ball video and discussed real-world aspects of the task during 

their Monday class that week. Therefore, Setup 1: CF was assigned a score of NR 

because this initial discussion was not observed. However, Ethan led his students in a 

discussion of the mathematical relationships relevant to the task during the first 

observation, including potential variables of interest and how they might be measured.  

Though the students identified drop height readily, Ethan had to press them 

repeatedly to recognize rebound height as the other variable to measure. After each 

student suggested an alternative idea, he asked “What else can we measure?”, eventually 

suggesting “how far it bounces back up” himself. After identifying the two variables, 

Ethan questioned his students until they arrived at the conclusion that drop height was the 

independent variable and rebound height was the dependent. Setup 2: MR was assigned a 

rating of 2 in this instance because, though students provided some ideas and contributed 

to the discussion, the presence of accountable talk-moves was not consistent enough to 

warrant a score of 3 (two instances were observed during the 25-min discussion). Phase 
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3: Setup in its entirety scored as 4; though Ethan suggested one of the variables to include 

in the preliminary discussion, it was already provided for students on the MMR task 

handout and the discussion did not reduce the expectations for students when working 

through the task handout. 

The observed implementation of the task declined to a score of 3 on the IQA 

because Ethan removed some of the challenge and did the thinking for his students 

several times throughout the implementation of the task: for example, he guided students’ 

work when graphing their predictions for drop height and rebound height. He did so by 

sharing his screen, drawing and labeling the xy-plane with the two variables of interest, 

and asking students what an associated rebound height would be for a given drop height. 

In essence, he overstructured the task by providing the procedures that students should do 

rather than allowing them to work through these issues on their own. Ethan also had 

difficulty obtaining answers from some of his students when he asked them to answer a 

question or to explain what they had done; the dominance of 2–3 students’ verbal 

responses made it unclear whether the entire class could explain their mathematical 

thinking and reasoning to the same extent. However, the score of 3 is warranted because 

students were able to identify the linear relationship between the drop height and rebound 

height of the various balls that were shown in the MMR data collection videos for the 

task. After Ethan’s questioning about the linear equations associated with each type of 

ball students used (e.g., golf ball, ping pong ball, and racquetball), they were also able to 

identify the slope as an indication of the best bouncer. However, there was no conclusive 

explanation for why a greater slope led to a more efficient bouncer. 
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 Because Ethan’s students worked in two groups to complete the task and 

submitted only one assignment per group, I cannot reliably assign an IQA score for 

Implementation: Student Work in this instance. Therefore, I assigned the code “NR” for 

this category. However, the sample of work from each group is remarkably different; the 

mathematical work and writing is stronger for one group than the other (as was the case 

with Adam, whose students also submitted work together in two groups). Both samples 

provide numerical data and calculations to answer the prompts on the handout, but the 

written explanations are more sophisticated for one sample than the other. For instance, 

when asked to explain what functional model will best represent the relationship between 

the two variables, one group wrote that a linear model would be best because “The dots 

on our scatter plot are aligned in a way that a line can be drawn almost completely 

straight through them,” recognizing that their data fit a relatively linear pattern. The other 

group’s explanation, however, focuses on how to correctly input the regression equation 

into Desmos so that it produces the desired output; this response is not mathematically 

conceptual in nature. 

Ethan’s Analysis of the Task. Ethan’s TAG classifications for the Bouncing Ball 

task aligns with Debbie’s and, interestingly, for similar reasons. Ethan also classified the 

task as procedures with connections at each phase except for setup, which he rated as 

doing mathematics. He felt that procedures with connections was appropriate for Phases 

1–2 because students are required to execute procedures (i.e., collecting and graphing 

data, calculating a regression equation, and so on), but they are expected to come to their 

own conclusions without the teacher providing a worked-out example. “Even in the way 
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the worksheet’s made up, it’s like, check with your teacher here and they’re not telling 

you to, you know, tell them the right answer,” Ethan explained. Along the same lines as 

Debbie, he felt that doing mathematics tasks were more open-ended and student-led, 

though his understanding of such tasks seems to be less complete and sophisticated than 

hers:  

When we have talked about the differences in these tasks with the math modeling 

group and the professional development, I feel like the doing math is more just 

kind of saying, ‘Hey, here's this problem: go!’ Like, not having a worksheet. 

Like Debbie, Ethan similarly considers that doing mathematics tasks begin with a 

problem situation that the students must explore for themselves. However, the presence 

of a worksheet does not necessarily suggest that a task is not at the doing mathematics 

level. Such tasks are also more complex than simply setting students free to explore. 

Without substantial modifications made to the task, Ethan felt that the task was 

still at the level of procedures with connections at Phase 2: Planning. He noted that 

students were expected to collect data and represent it in multiple ways, including 

graphically and using equations. He also reiterated that he was suggesting pathways for 

students to follow throughout the task without telling them exactly what to do and how to 

do it.  

Ethan explained, however, that the setup of the task was at the level of doing 

mathematics because, “It was very open-ended,” and students explored their own ideas 

freely. He stated that, “The beginning of any good math task is sitting there, saying, okay, 

what do I know, what do I want to know, and how am I going to figure it out?” Asking 
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students what they noticed and what they wondered and having them identify potential 

variables of interest reached this level of cognitive demand for Ethan. However, he then 

felt that moving through the handout and guiding students through the process of 

thinking, “What’s your x variable? What’s your y variable? Plot this data…”  and so on 

forced students to focus on procedures rather than allowing them to determine the 

direction that the task would take. Ethan wanted to deviate from the handout and let his 

students explore, but felt confined because he was responsible for achieving specific 

goals: 

I almost wanted to change it up a little bit, and I'm like, no… this is what they 

[ODE] came up with, I'm going to stick with it. And so, I feel like as it went 

along, it started losing some of that integrity of being a rich mathematical task, 

but I also feel like it was almost necessary so that it would push them to get to that 

point, otherwise they wouldn't have gotten there. 

Though it lowered the cognitive demand back to procedures with connections for 

implementation, the structuring of the task was necessary to Ethan because he might not 

have been able to help students achieve the goals for the task otherwise. However, he also 

considered that he might have been able to do so in a face-to-face setting because of his 

ability to move from group to group, provide specific comments and feedback, and better 

facilitate each group’s engagement. 

Phase 1: Task Selection. Ethan explained that the 2020–2021 academic year 

brought new challenges and introduced new concerns when selecting tasks for 

instruction. His district shifted from hybrid instruction to entirely remote instruction after 
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the first 3 weeks of the school year, which led Ethan to especially consider tasks that 

would “translate well to remote learning” and also those that might be interesting for 

students. He chose not to use the “Barbie Bungee” and “StarburstsTM Grab” tasks, though 

he thought they were “great activities,” because they were not readily suitable for an 

online learning environment and required the use of hands-on manipulatives. Ethan 

reflected that his 20 years of teaching have helped him determine “things that are going 

to work” and things that will not, but remote teaching was an additional challenge that 

required adjustment. Because he taught the MMR course in the previous year, he had 

some expectation for which tasks were more easily adaptable and which were not. Ethan 

recalled the “Follow the Bouncing Ball” task from before, saying “I remember this task 

from last year. This can translate with the videos, and away we go.” He could not take a 

Super Ball to each student’s home, but another MMR teacher had already created videos 

of various bouncing balls that would assist students with remote data collection. 

 Ethan also described the importance of tasks that connected mathematics to the 

real world. Fortunately for him, the MMR course was specifically developed with a focus 

on mathematical modeling and real-world connections. Ethan explained, 

I feel like a lot of these students that are in my class haven't seen how math affects 

their daily lives… whether it be in middle school, just the rote algorithms of doing 

addition, subtraction… Some of these things, they just don't see the importance of 

whatsoever. And I think, when they can see that connection, it encourages them to 

do that much more, and to do that much better. 
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To Ethan, connecting mathematics to the real world and his students’ lives helps motivate 

them to be interested in what they are learning and helps them to be more successful in 

what they do. He reflected on how he had recently engaged his students with the “Ramp 

It Up” task (King, 2015) and how for some of his students, the task “hit home” because 

they either lived with a family member who used a wheelchair or were familiar with 

someone else who did. “Setting up a wheelchair ramp is pretty real-world for them,” he 

said, and connecting the idea of a ramp to its slope and the associated ADA specifications 

was meaningful to them. Ethan thought that he and his students had engaging 

conversations about the ADA specifications for the slope of a ramp and why they were 

necessary to aide in the use of a wheelchair. 

 Teaching the MMR course has influenced Ethan to apply a more “task-focused” 

approach to his AP Statistics and Precalculus classes. He is now using activities from 

Stats Medic (https://www.statsmedic.com/) and Calc Medic (https://www.calc-

medic.com/), which, according to Ethan, encourage the idea of “experience first and 

formalize later” and a “learn by doing” approach. Ethan explained how the use of these 

two resources has helped him to translate “hands-on learning” and group projects into his 

other courses. Teaching MMR encourages him to use mathematical tasks more frequently 

in his other courses, particularly those emphasizing active, student engagement. Ethan 

had an “eye-opening moment” teaching MMR when he noticed changes in students who 

had previously disliked mathematics and not experienced much success with it in the 

past. After witnessing students experience success with MMR and realizing, “That’s 

doing math,” Ethan has shifted toward the use of tasks that promote active engagement. 
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Phase 2: Task Planning. Ethan described himself as “not the ideal planner” in 

terms of his regular lesson-planning process. Planning for the long-term is difficult for 

him because of how drastically plans can change after a single day of instruction. 

Therefore, Ethan makes a general outline for how he anticipates a task or lesson will go 

but then flexibly adapts based on what happens in class each day. His need to be flexible 

was even greater during the 2020–2021 academic year because of the everchanging 

influence of the COVID-19 pandemic. Prior to each lesson, Ethan considers what he 

needs to do to get students started, typically by reviewing what they had done in the 

previous class session. Continuing a task or lesson over multiple days has been difficult 

because his students do not meet every weekday as they would when learning face-to-

face. “Sometimes it’s been 24 hours, sometimes it’s been 48 hours… and sometimes, it’s 

been 2 weeks,” he said, after describing how winter power outages and shortened school 

weeks had resulted in nearly 2 weeks between classes before our first interview.  

Ethan also adjusts his plans when students are struggling, or if many students are 

absent:  

I'm a big fan of slowing down when kids are struggling, and so I have this 

planned out for what I think it's going to look like tomorrow, but if we don't get 

through it all, then I'm going to pick up where I left off. 

He would rather take the additional time to work through a task if it means that his 

students might better understand what they are doing and why, rather than rushing from 

one topic to the next. Additionally, Ethan adapts his planning when students are absent; 

with only 10 students in his MMR class and a focus on group work, he must anticipate 
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challenges such as, “What am I going to do with the three kids that weren’t there on 

Monday?” This requires him to rearrange his groups in a meaningful way in advance so 

that those who missed class can successfully engage with the next day’s lesson. 

 For the MMR course, Ethan consults the associated lesson plan for each Context 

with specific attention to the objectives that are provided. Though he recalled many of the 

tasks from the previous school year, he made sure to note any changes that ODE made to 

the tasks for the 2020–2021 year. Because the course is still under development and pilot 

testing, the materials may potentially change from one year to the next. Ethan explained, 

“I try and recall what we did last year and see if there’s any changes… they [ODE] have 

made a lot of improvements and changes for some of these [tasks].” For example, the 

team at ODE incorporates teacher feedback each year of the pilot, including 

recommendations, clarifications, and corrections to support teachers’ use of the materials.  

After considering the goals for students provided in the MMR course materials, 

Ethan made additional adjustments to the “Follow the Bouncing Ball” task based on his 

own objectives for students. For instance, he chose to provide a data table for students to 

complete with their drop heights and rebound heights. Rather than having students focus 

on technological aspects of the task using Excel spreadsheets, he wanted to emphasize the 

mathematics of the task as much as possible in his limited time with students. “I think 

that they would struggle more with the technology than with the math,” he said, though 

he added, “Not that I'm trying to make it easy on them, because I think there's something 

to be said for letting them… figure out, how does equation editor work? Can you make it 
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look nice?” But he expressed that these skills might not be necessary for all students to 

learn, whereas the mathematics of the task was of greater importance.  

 Much of Ethan’s planning for the “Follow the Bouncing Ball” task resulted from 

the adjustment to remote teaching. As I described earlier, much of his work involved 

recreating the task handout as a Google Slides presentation so his students could read, 

type, and graph on it with their group members. Ethan was cautious of including 

excessive text on a single slide and also wanted to avoid the activity devolving into “just 

straight procedures” by simply listing directions for students to follow. In fact, Ethan 

expressed his desire to use the Desmos Activity Builder instead to transform the handout 

into an “interactive, group project” that would allow students to plot data and graph 

equations while simultaneously working through the prompts on the original handout. 

However, he confessed that he was not yet skilled enough with the technology to do so in 

a realistic amount of time. Reflecting on the task, Ethan credited the summer MMR PD 

for familiarizing him with the use of technology such as Google Slides and Google 

Jamboard that enabled him to engage his students in an online setting. Though he wished 

that he could have done it another way, he still felt that the MMR PD helped him to do 

what he might have struggled to do before in his planning.  

Phase 3: Task Setup. Ethan thought that the remote teaching environment 

prohibited students from fully exploring the real-world context of the task. “By being 

remote, it does really hinder some of that anticipation and the ability to really kind of 

bring it to the kids,” he explained. Ethan showed his students the 1965 Super Ball 

commercial but acknowledged that his students reacted differently in the remote 
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environment than they had in the previous year, face-to-face. Previously, his students 

were excited to watch the commercial and were more engaged in it because it was a 

nonroutine classroom procedure: something for them to be excited about because it was 

different. Watching the commercial remotely from a computer was, according to Ethan, 

less engaging because “they're just kind of worn out at this point of watching stuff on 

their screen.” Ethan also suspected that some of his remote students might not have been 

attentively watching the video in the first place. He reflected that these differing 

responses to the launch of the task may have led to differences in students’ preliminary 

discussion and engagement. Being able to see and touch various bouncy balls in class 

during the previous year also evoked student ideas that they did not discuss remotely, 

including their color and texture.   

 Similarly, Ethan felt that his students’ discussion of mathematical relationships 

during task setup progressed unlike it might have in a traditional, face-to-face classroom 

setting. As with Debbie and Fred, Ethan attempted to guide his students toward 

identifying and exploring the relationship between the drop height and rebound height of 

a bouncing ball. He thought that his students might have more readily discovered these as 

interesting, measurable variables to collect data about if they had been in a face-to-face 

setting. “We eventually got there. I don't know if we would have gotten there faster in 

person or if it would have been easier to guide them in person, but I would say that was 

kind of a challenge,” Ethan reflected. If he and his students were in a typical classroom 

setting and they had real, bouncing balls to experiment with, he would have used these 

materials to his advantage in a similar way that Debbie had done. “If we were in class, I'd 
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be bouncing the ball, I'd be throwing the ball, I'd be dropping the ball… I'd have a meter 

stick conveniently placed up against the chalkboard.” Ethan felt that this aspect of task 

setup might have been more efficient, and his students might have noticed different 

things if he was able to make instructional moves that he could not make as easily in an 

online learning environment. 

 Ethan wanted his students to explore during the setup phase of the task. Though 

his goal was for students to collect data and investigate the relationship between drop 

height and rebound height, he wanted to guide them toward these ideas without directly 

telling them what to do. He summarized his thoughts as follows: 

Trying to figure out the best way to get them back to that point without just telling 

them the answer, I think that's one of the best things that good teachers do well. 

And sometimes the lack of patience or the frustration level just gets to a point 

where you're like, ‘it’s drop height and rebound height…’ But I think allowing 

them to mess around with it and to try some of their own things out is the best 

way to do it if you're in person. 

However, Ethan felt confined in his remote teaching environment and thought that he 

could have allowed for greater exploration if he and his students were in class face-to-

face. Some of this, he attributed to the time that he lost with his students: Ethan explained 

that, if he had “the full amount of time,” he would have let his students explore other 

ways to measure how bouncy a ball was, such as how long it stays in the air before 

coming to a stop. But his remote teaching schedule allotted only 155 min per week with 

his MMR class, whereas he might have had at least 225 min if they met for 45 min or 
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more each day for 5 days. This noticeable difference in time with students led Ethan to 

limit his students’ freedom to explore so that they could reach the end goal in time. 

Phase 4: Task Implementation. As I have described in previous sections, Ethan 

engaged his students in some form of productive struggle throughout the task. He did not 

immediately tell students which approach to take but allowed them to direct themselves 

in some respects. Though it can be a “struggle,” especially when students are reluctant to 

respond, it is something that Ethan finds valuable for their learning. His thought process 

when implementing a task is consistently, “How do I get them there without telling them 

the answer?” This is different than how he learned mathematics. He did not do activities 

as a high school student, and his teachers told him exactly what to do and how to do it. 

However, he feels that the pedagogy of the MMR course is a “a different way of learning, 

a different thought process… what we’re doing now is better.” However, he said that the 

MMR pedagogy can be difficult for teachers (such as himself) who learned mathematics 

from a more traditional approach. Even after 20 years of teaching, Ethan reflected that it 

is challenging to get students to develop their own mathematical understanding. 

 Ethan frequently prompts his students for evidence of their thinking; though 

strong explanations were not evident from many of his students over the 2 days, Ethan 

consistently asked them to make their thinking visible. This is a practice that he has 

developed over the past several years but does not recall what started it. “It's great to hear 

somebody explain their answer,” he explained, because it encourages students to talk 

through how they solved a problem, and it also benefits other students who listen in. 

Ethan believes that asking for student explanations helps him to become a better teacher 
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because it alerts him to students’ thinking and possible misconceptions that he might not 

have anticipated. “It really kind of gives me a little bit more insight into how to get them 

to the right place, too,” he stated. Ethan acknowledged that questioning students and 

pressing for explanations typically requires more class time, however, it is worth the 

investment. During task implementation, he asked one student to explain her thinking 

when attempting to determine which ball was the best bouncer. Though she initially 

misinterpreted the graphs of students’ data, the conversation helped Ethan to understand 

her thinking guide her toward a clearer understanding of what the graphs represented. 

 Ethan expressed difficulty in getting his students to communicate and participate 

in whole-class conversations. “I don't think it was necessarily the math that was the 

trouble with this… I think it was the participation. Just trying to get the kids to participate 

appropriately and answer the questions that were being asked,” he reflected. Part of the 

issue, he thought, was again that he and his students did not meet face-to-face in class 

every day. He felt a weaker relationship between himself and his students because they 

did not physically see each other 5 days a week as they typically would. Especially when 

students do not have webcams active, he cannot see them and loses some ability to build 

stronger rapport with them: “I think by not having the cameras on I think that loses some 

of the interaction piece. And I definitely miss that because I think this would be a good 

group.”  

Another factor that Ethan considered was that he had hardly seen his students 

over the past 2 weeks due to electrical power outages in the area, combined with already 

shortened school weeks. However, he did not think that being observed interfered with 
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his students’ active participation. In any case, Ethan felt compelled to hold his students 

accountable by reminding them of their participation grade in the class and frequently 

calling on those who were reluctant to speak. At one point during the implementation of 

the task, Ethan told his students, “Come on guys, I need something,” expressing the need 

for them to contribute to the discussion he was attempting to have. Ethan explained later 

that he does not intend to put students his students “on the spot,” but at the same time he 

expects them to participate and engage with the task at hand. On the other hand, Ethan 

noted that several students did quite well explaining their thinking. He highlighted the 

explanations contributed by several of his students throughout the second interview, 

describing how they contributed to the high cognitive demand of the task. 

Fred 

 Fred has earned a bachelor’s degree in music, a master’s degree in education and 

in educational technology, and has taken some coursework toward a PhD in mathematics 

education. He has taught for more than 25 years in total, with 11 at the school where he 

currently teaches high school mathematics. Fred was actively involved in ATC programs 

at Ohio University and has taught the MMR course more than once. He teaches 2 sections 

of MMR, face-to-face 5 days per week for 43 minutes each day. His MMR students are 

all high school seniors except for a single junior. My co-observer and I attended one 

section of the course remotely via Zoom for 4 class periods; task setup occurred during 

the first day and the final whole-class discussion concluded on the fourth day, with 2 days 

of student data collection and exploration in-between. We chose to observe all 4 days 

because we wished to observe the concluding whole-class discussion and had no 
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scheduling conflicts preventing us from doing so. The IQA and TAG classifications for 

Fred’s task are presented in Table 10 to provide context for the following two sections. 

 

Table 10 

IQA Scores and TAG Classifications for Fred’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 4 PwC No 

Phase 2: Planning 4 PwC No 

Phase 3: Setup 4 PwC No 

Setup 1: CF 2 NC No 

Setup 2: MR 2 NC No 

Phase 4: Implementation 4 PwC No 

Implementation: Student Work 3 NC No 

 

Analysis of Fred’s Task. Fred used the same “Follow the Bouncing Ball” task 

that both Debbie and Ethan did, and I have already explained that this task received a 

Phase 1: Selection IQA score of 4. Like other teachers in this study, Fred made few 

changes to the task when planning aside from reformatting the handout. For example, he 

included directions for students to watch videos that he had created, demonstrating how 

to use Excel to calculate a regression equation for a given data set. However, the 

mathematical content and processes required by students to complete the task remained 
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mostly unchanged. Unlike the other teachers using the same task, Fred added an 

additional question to the handout after our first interview because it was a question that 

he had planned to ask in the concluding whole-class discussion anyway: “What does the 

slope of your best-fit line mean in the context of this data?” As I explain later, Fred felt 

that the inclusion of this question would raise the cognitive demand of the task, though he 

still categorized the task as procedures with connections before and after the addition. 

Fred’s task setup was similar to both Debbie’s and Ethan’s because he also 

facilitated a whole-class discussion prior to student work time. Similarly, Fred’s students 

brainstormed attributes of a ball and bouncing a ball that could be observed and 

measured. Some ideas that they discussed were not mathematical in nature, such as the 

texture and color of the ball. However, most of the discussion focused on variables of 

interest and the possible functional relationship between them. Fred elicited ideas from 

students in both cases as he wrote notes on the board to summarize what they had said. 

Some examples of variables include the shape, size, and texture of the ball (e.g., if it is 

smooth or has dimples like a golf ball). The conversation focused on the meaning of a 

functional relationship: for instance, Fred asked “What are we talking about?” when 

using the term “functional relationship,” to which students responded that they were 

interested in x and y variables.  

The discussions that occurred during the setup of the task scored as a 2 on both 

the Setup 1: CF and Setup 2: MR rubrics, but for different reasons. For the CF rubric, the 

teacher and students must connect ideas about the problem-solving scenario together to 

warrant a score of 3, which did not happen because students expressed ideas in isolation 
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from one to the next (e.g., Fred asked one student for an idea and then move directly to 

the next student without linking their ideas together). The MR rubric emphasizes the use 

of accountable talk moves, which did not occur consistently enough to warrant a score of 

3. Overall, the Phase 3: Setup IQA score for this task remained at level 4 because the 

cognitive demand of the task did not decline from Phase 2: Planning as a result of the 

aforementioned discussions; Fred solicited ideas from students prior to engaging with the 

task but did not provide further instruction that would simplify the work and thinking 

necessary to complete it. 

 During the implementation of the task, Fred walking around the classroom, 

monitoring and facilitating students’ engagement as they recorded data from instructional 

videos and worked to answer the questions on the handout. Though Fred intended for 

students to work individually to avoid close contact (a safety precaution during the 

COVID-19 pandemic), the students opted to collaborate with each other in small groups 

from a safe distance. Fred allowed students to work in groups but requested that each 

student submit their own assignment when they were finished.  

As stated previously, Days 2 and 3 of the task involved student data collection 

and work to complete the task handout; unfortunately, the remote observations necessary 

for the present study made it difficult to observe and analyze student-to-student and 

teacher-to-student interactions that might have been observable if we had been present in 

the room; however, the concluding whole-class discussion on Day 4 spoke to the 

mathematical rigor of the task throughout the 4 days. To answer the question, “What does 

the slope of your best-fit line mean in the context of this data?” students provided 
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conclusive statements such as, “For every 10 cm on the drop height, the rebound height 

increases by 6 cm.” This was an interpretation of the slope 0.6 in the regression model y 

= 0.6x + 5. This required some scaffolding from the teacher, who asked questions to help 

his students reconsider 0.6 as 6/10, a change in y (the rebound height) divided by a 

change in x (the drop height). However, students frequently provided such evidence of 

their thinking and reasoning, resulting in a Phase 4: Implementation IQA score of 4. 

 Fred submitted 12 samples of student work associated with the “Follow the 

Bouncing Ball” task and I chose 6 to analyze using the IQA rubrics based on the criteria 

outlined in Chapter 3. The Implementation: Student Work score assigned to the collection 

of six samples is 3 because, holistically, the samples provide evidence that students made 

conjectures (predictions about how the drop height influences the rebound height), 

identified patterns in their data (e.g., increases in drop height led to increases in rebound 

height), and used multiple representations (numerical data, graphs, and algebraic 

equations). For example, one student made this connection clear by writing: “Every time 

the original [bounce] height increases by 10 cm the rebound height increases 6 cm.” 

Students were also able to successfully calculate a rebound height based on a given drop 

height and even work backwards to calculate an initial drop height from a given rebound 

height using their linear regression equations. However, the samples of student work 

generally lacked solid explanations that warrant a score of 4 on the IQA rubrics. 

Fred’s Analysis of the Task. Fred classified the original, MMR-version of the 

task as a procedures with connections task, emphasizing that the task requires students to 

collect data, record it in a spreadsheet, and analyze it after having technology calculate a 
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regression equation. He cited the statement, “Although general procedures may be 

followed… they cannot be followed mindlessly” in the TAG, suggesting that students 

must think about and understand what they are doing throughout their engagement with 

the task rather than simply doing what they have been told to do by the teacher. Fred also 

quoted that the task “requires some degree of cognitive effort” for a similar reason: his 

students would have to think and reason their way through the task because it was not 

identical to something they had seen or done before. 

 When asked about the planning phase of the task, Fred addressed some of the 

technical changes he had made, such as rewording questions and directions to 

accommodate for video data collection (instead of actually bouncing various balls) and 

the use of Excel spreadsheets (the original task suggests that students will use a graphing 

calculator instead). Fred reflected that these modifications changed the “delivery method” 

but not necessarily the mathematics involved in the task. Through our conversation, he 

explained that he planned to ask students the question, “What does the slope mean in this 

context?” even though it was not explicitly written in the task handout, something that he 

“often along the way” asks when implementing this task. In fact, Fred decided to make 

this change to the task handout after discussing it during the first interview. He said, “If I 

ask that question, then I think that they [the students] are doing mathematics” to some 

degree. However, it was not enough to raise the cognitive demand of the task entirely out 

of the procedures with connections category: “I think it still stays in the… procedures 

with connections,” he concluded. 
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 Fred categorized the task as procedures with connections in Phase 3: Setup as 

well. He stated, “I don’t think it dropped down to ever being procedures without 

connections” because students did more than simply “regurgitating a process” without 

understanding what they were doing and why. Fred attributed some of the high cognitive 

demand to the suggestions that students gave during their preliminary discussions, 

including aspects that would influence the bounce and those that would not. However, he 

also thought that his students’ ability to determine independent and dependent variables 

was still “rudimentary” after their work with the task. Fred reflected that he “guided them 

to the fact that bounce height was the independent variable” and wondered if they would 

be able to identify independent and dependent variables if asked to do so on another task. 

He used the word “rudimentary” because he thought that his students might not have 

strong reasoning for labeling each variable as either independent or dependent, and that 

they might just assign them randomly. 

 Phase 4: Implementation, implementation, was also at the level of procedures 

with connections in Fred’s view. Though he needed to press students frequently to obtain 

the responses he was looking for, he also stated that “they know what the procedure is: 

it’s taking the values and plugging them into the equation they have found.” Fred 

explained one example where a student asked, “Which variable does this go in for?” To 

support the student without telling him what to do, Fred asked “What are the meanings of 

your variables in your equation?” to get the student to think about what each variable 

represents in the real-world context. In terms of the cognitive demand of the task and the 
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TAG, Fred explained that “It’s still… procedures with connections because it’s connected 

to the data which they collected.”  

A more traditional word problem where the equation was provided for students 

and they simply calculated rebound heights for various drop heights, according to Fred, 

would be the procedures without connections version of what he had his students do with 

the task. If the instructions for the task were, “Use this equation to answer the following 

questions… then it would be, I think, procedures without connections,” he said. Lastly, 

Fred concluded that “giving it [a task] a context” does not necessarily mean that students 

are making connections. What set the Bouncing Balls task at the level of procedures with 

connections was “work that they [the students] have done to determine the equation on 

their own or with the help of technology.” Fred explained that students made connections 

by applying the equations that they had determined after conducting the experiment and 

collecting data. 

Phase 1: Task Selection. Like Debbie and Ethan, this was not the first time Fred 

has used the “Follow the Bouncing Ball” task. But Fred has implemented a similar 

version of this task numerous times even before his involvement with the MMR course. 

He explained that the original idea for the task stemmed from a journal article in 

NCTM’s Mathematics Teacher “a long time ago,” though he did not recall the specific 

article title or publication year. Thus, Fred was very confident and “comfortable” 

selecting and adjusting this task for the 2020–2021 academic year because of his vast 

experience and familiarity with it. He had taught using his own, modified version of the 

original NCTM task for many years, now using the MMR version of the task since his 



260 
 
involvement with the pilot course. The inclusion of the 1965 original Super Ball 

commercial was an aspect of the task that was included by ODE to “perhaps drive a 

question” and peak students’ interest. However, other aspects of the task were quite 

similar to the version Fred had been using prior to MMR. Fred has “a lot of experience 

doing it [the task]” and acknowledged that he perhaps had more flexibility with using and 

adapting it than some of the other MMR teachers might. 

Fred chooses tasks that engage his students through exploration. This is not only 

true for his MMR course, which is inherently built around active, student-centered 

pedagogy, but also in more traditional high school mathematics courses such as Algebra 

2 and Precalculus. Fred sometimes lectures in these courses, but also incorporates tasks 

that engage students in developing deep mathematical understanding. For example, when 

teaching his Algebra 2 students about parabolas, Fred had them launch objects in the 

classroom and plot points along their trajectories. Then, he and his students graphed the 

points and determined quadratic equations for each using Desmos, allowing them to 

discuss similarities and differences based on the launch angle and the data for each 

object. In Precalculus, Fred’s students explored algebraic and graphical representations 

for various rational functions, again using Desmos. By prompting students to describe 

what they noticed about the equations and their associated graphs, Fred supported his 

students in making connections to what they had learned about polynomial functions and 

extending their prior knowledge appropriately in a new context. Fred describes himself as 

“not your traditional Honors Algebra 2 instructor, and even Precalculus” because he 

incorporates numerous investigative activities rather than lecturing only. 
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To Fred, the mathematics of the “Follow the Bouncing Ball” task is important for 

students to learn. He wants his students to learn more about linear functions, as is the goal 

of the task; however, he stressed that the task was beneficial because of its potential to 

get students thinking, “What does this mean?” Through their engagement with the task, 

Fred hoped that his students would make connections that they might not have made in 

their previous mathematics courses. “These are seniors who have taken all the courses 

that may not have had connections to other math they take,” he said. They had already 

learned about slopes, y-intercepts, and how to write the equation of a line, given two 

points. Fred’s focus for the task was not on “symbolic manipulation,” but instead for 

students to develop deeper understanding and make new connections to the mathematics 

they had already learned. 

Phase 2: Task Planning. Fred’s planning for the task included anticipating how 

he thought the lessons might go and considering the instructional decisions he might 

make throughout. He initially planned for his students to work individually to encourage 

safe social-distancing amidst the COVID-19 pandemic. He also thought about aspects of 

the task that might “need some discussion for small groups and perhaps the whole class,” 

such as the meaning of a “functional relationship,” because one of his goals for students 

was to develop a strong understanding for how drop height and rebound height (among 

other variables) are related. Fred anticipated where he thought his students might 

struggle: one such instance, he thought, was when students reached the questions on the 

handout focusing on correlation coefficients. Because his students were less familiar with 

this concept, Fred acknowledged that he would likely do “some type of full-class 
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instruction on that.” Students’ use of technology was another concern; Fred had created 

several instructional videos explaining how to enter data and perform linear regression 

using Excel spreadsheets, for example. “I have to think about where I'm going to give this 

instructional material,” Fred pondered aloud. This was an adaptation that he made for the 

task that was not in the original MMR handout, so he needed to consider where it would 

fit in the activity and how he would support students in using the technology efficiently. 

 Unlike Debbie and Ethan, Fred made it clear that one of his goals for the task was 

for all his students to become “well-versed” in the use of spreadsheets. Fred appreciates 

the value of Excel as a tool to record data, create mathematical formulas, and generate 

models (such as best-fit lines) to represent data. Therefore, he was willing to spend some 

extra time teaching his students how to use spreadsheets, especially with this task, 

because it was one of their first major uses of this technology for the year. He had tried to 

use spreadsheets occasionally during their first quarter, when all his students attended 

class remotely, but explained how “it wasn’t working out” yet.  

Another of Fred’s goals for the task was motivating students to think about the 

meaning of the linear models they found and how they related back to the real-world 

context. During our pre-observation interview, he explained that he planned to ask 

students “What does your slope mean in this context?” Somewhat to his surprise, he then 

noticed that this question was not posed on the MMR handout for the task. As such, he 

revised the handout a second time and included this question explicitly so that his 

students would be prompted to make the desired connection. Similarly, Fred added a 



263 
 
question prompting students to interpret the y-intercept for their models so that they 

might recognize what it meant to have an unrealistic, nonzero value. 

 As I mentioned in the previous paragraphs, Fred created several instructional 

videos to assist his students with various aspects of the task. He created one set of videos 

to simplify data collection so that students could do so safely during the COVID-19 

pandemic. These videos depicted the drops and bounces of various types of balls in slow-

motion, the same videos that Ethan described using for the task. In a typical school year, 

Fred might have taken his students outside of their classroom and into a nearby hallway 

to collect and record data by hand. Instead, he modified the printed text on the task 

handout to reflect the new remote data collection procedures. Fred created another set of 

videos instructing students on how to use Excel spreadsheets, as I described previously. 

He chose to use videos to reduce the amount of time he spent directing the whole class, 

therefore increasing the amount of time that students could work on their own. Both 

changes also benefited the few of Fred’s students who elected to continue with remote 

instruction because they could watch the videos on their own time at their own pace from 

home. 

Phase 3: Task Setup. Fred focused primarily on task implementation during his 

post-observation interview. However, he commented on students’ preliminary discussion 

of variables that might influence the bounce of a ball and how they might be related. “I 

think it [the discussion] went pretty well,” he stated, explaining how students’ ideas were 

“right on” in terms of what would affect the bounce and what would not. For example, 

his students suggested that the shape (e.g., perfectly spherical or covered with dimples 
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like a golf ball) and the texture (the material composure) were features of a ball that 

might affect the bounce, whereas the color and the smell of a ball were unlikely to have a 

significant impact. After their discussion about independent and dependent variables, 

Fred felt that his students’ ability to determine one from the other was still 

“rudimentary.” He said that they “need more work with how that works out,” suggesting 

that they might need more experience to help improve their knowledge. To support his 

students in developing this understanding in the future, Fred explained that “The biggest 

thing is to ask them, in some regards, what do they have control of?” Though he 

acknowledged that “It sort of doesn’t matter how you label the axes” in a graph of 

dependent versus independent variable, he wanted his students to understand that the 

former is typically set along the vertical axis and the latter along the horizontal.  

Phase 4: Task Implementation. Rather than immediately guiding students 

toward the use of drop height and rebound height as the independent and dependent 

variables, Fred initially allowed them to consider any variables of their choice to explore. 

“I wasn’t trying to steer them towards any particular way at that point,” he explained. He 

wanted to maintain the open-ended nature of the task until the third problem on the task 

handout, indicating for students to consider rebound height specifically. In past years, he 

has even allowed students to consider various independent variables, such as the time it 

takes a ball to reach the ground. This required more time to implement the task than Fred 

felt that he had available in the present year, so he chose to limit students’ ability to 

explore more so than he had done in previous years. Despite the apparent pressure for 

time, he also allowed his students to make and correct some of their own mistakes 
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throughout the implementation of the task. For example, some students had visually 

identified an incorrect y-intercept for their graphs because of how Excel had 

automatically formatted the axes. Fred “saw that… and didn’t say anything” because he 

wanted them to correct themselves after noticing a different y-axis in the regression 

equation that Excel calculated for them. 

 During the final whole-class discussion, Fred provided more support and 

guidance to assist his students in making connections. One instance occurred when the 

class discussed their linear regression models and what the y-intercept of their equations 

meant in the real-world context. Based on their data, many students found that their y-

intercepts were nonzero, meaning that a ball would bounce (or fall through the floor) 

even when the initial drop height was 0 cm, which was unrealistic. Fred’s students “were 

just really looking puzzled” when he first asked the question, and some responded that 

the y-intercept was “where it crosses the y-axis.”  

Though he wanted his students to provide a real-world description, he used what 

they “gave” him and sketched the xy-plane on the board and graphed one of his students’ 

equations as an example. “I drew the axes,” Fred elaborated, “because I wanted to… 

focus their attention on what the equation was saying, then try what that meant.” This led 

one student to state that the y-intercept was “where the graph starts,” prompting Fred to 

ask, “What do you mean by ‘starts?’ What is the drop height there?” By asking the 

question about the drop height at the y-intercept, his students were able to identify that 

the drop height was 0 cm and that the ball “didn’t drop from anywhere.” Fred describes 
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this as “just-in-time help,” providing assistance in the form of a statement or question that 

might prompt his students to come up with the next idea. 

 Fred frequently questioned his students throughout their engagement with the 

task. Some of his verbal questions were planned, such as what the y-intercept meant in 

terms of the real-world context. Others, he formulated and asked in the moment to extend 

students’ thinking further: one such example was when he and his students were 

discussing what the slope of their regression equations meant in the real-world context. A 

follow-up question that Fred spontaneously asked was, “Can you have a slope of 10?” He 

asked this question to help his students realize that a slope of 10 meant a change in 

rebound height of 10 cm for every 1 cm change in drop height, which is impossible 

because of gravity.  

Another form of questioning that Fred uses is to ask a question when students 

provide a correct response. He elaborated on this move, saying,  

I often do that… especially if they give a correct answer. I actually ask them, 

“Are you sure?” I’m trying to deliberately break the mold. Teachers have usually 

asked “Are you sure?” when the student’s got it wrong… and sometimes they'll 

change their mind, I think because their experience tells them that it must be 

wrong.  

Fred asked this type of question during the first observation when a student voiced how 

the color of a ball would not affect its bounce. By questioning students, even after 

providing a correct or logical response, Fred prompts his students to “second guess just 

coming up with a ‘yes’ or ‘no.’” He wants them to realize that that they are not 
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necessarily wrong simply because he asks them a question; sometimes he just asks to 

keep them thinking or so that they might think deeper. 

Gwen 

 Gwen holds a bachelor’s degree in human development and family studies and a 

master’s degree in education with a teaching license. She has been teaching for 8 years, 

all at the same school. The 2020–2021 was her second year teaching the MMR course; 

she has a single section of only 4 students. Gwen has taught all four of these students 

before and they have typically “struggled” learning mathematics, though they are also 

“familiar” with her teaching style and expectations. Gwen taught face-to-face 3 days each 

week: Mondays for 25 minutes and Wednesdays and Fridays for 75 minutes each. Both 

observers attended Gwen’s MMR class remotely using Zoom and observed one pair of 

consecutive Wednesday-Friday meetings to optimize the amount of time we would have 

with the class. The IQA and TAG classifications for Gwen’s task are presented in Table 

11 to provide context for the following two sections. 

Analysis of Gwen’s Task. Gwen’s task was provided with the MMR course 

materials but originated as an NCTM journal article titled “Ramp It Up” (King, 2015). 

The brief article introduces the idea of slope in the context of ramps, with special 

attention to the specifications designated by the ADA. Afterward, King poses seven 

problems related to lengths, heights, and slopes of ramps that teachers can share with 

their students to solve. Within the sequence of tasks in the MMR course, this task is 

intended for students to solve immediately prior to the “Discovering Slope” task that 

Beth used. The Phase 1: Selection IQA score for the task is 3 because students engage in 
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problem-solving and are not provided with a direct algorithm for solving each of the 

problems. Students also may use multiple strategies and representations, including 

numerical representations (e.g., the ratio 1:12 referring to a ramp with a length that is 12 

times its height) and pictorial representations of ramps as drawings or diagrams. 

However, the task does not explicitly prompt students to provide evidence of their 

thinking and reasoning. The Phase 2: Planning IQA score for the task is also 3 because 

Gwen made no modifications to the task aside from excluding two problems on the 

handout; the remaining problems still warrant an IQA score of 3. 

  

Table 11 

IQA Scores and TAG Classifications for Gwen’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 3 PwC No 

Phase 2: Planning 3 PwC No 

Phase 3: Setup 4 PwC No 

Setup 1: CF 3 NC No 

Setup 2: MR 3 NC No 

Phase 4: Implementation 2 PwC Yes 

Implementation: Student Work 2 NC No 
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Task setup occurred as suggested in the MMR lesson plan: Gwen began by taking 

her students to the location of a ramp in their school building, where she engaged her 

students by asking the questions, “What do you notice?” and “What do you wonder?” 

about the ramp itself. Then a short debrief occurred, during which students shared what 

they had noticed and wondered about the ramp, leading to a conversation about the 

incline of the ramp, its “steepness,” and ways that it could be measured. Afterward, 

students collected various measurement data and then returned to their classroom. Gwen 

led another discussion on ramps, asking questions such as “Where have you seen ramps 

before?” and “What makes a good ramp?” Students provided brief responses after Gwen 

prompted them to talk to a classmate, such as the ramp’s location and its width to allow 

more than one student up or down at a time. Finally, the students took turns reading the 

narrative of the “Ramp It Up” (King, 2015) article before Gwen allowed them to work in 

pairs and complete the problems on the handout.  

Setup 1: CF scored a 3 because Gwen and her students occasionally linked ideas 

together (e.g., connecting shared experiences involving ramps in the auditorium and in 

other school locations) and the students participated actively in the discussion. Setup 2: 

MR also scored a 3 because of the consistent use of accountable talk moves when 

discussing students’ measurements for the ramp and the diagrams they drew to illustrate 

their measurements. For example, when it was evident that students measured the 

“length” of the ramp two different ways (one using the horizontal length across the floor 

and the other using the oblique distance from the beginning to the end of the ramp), 

Gwen asked her students to identify “Which is a better representation of length?” The 
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students suggested that the oblique length way better and she pressed further by asking 

them to explain why they felt this representation was better, though they did not clearly 

provide mathematical reasoning for their choice. The use of accountable talk moves was 

consistent throughout the setup of the task but lacked a single “strong” move to warrant a 

score of 4.  

The overall Phase 3: Setup score for task setup raised to a 4, however, because 

Gwen explicitly set the expectation for students to “verbalize” how they approached each 

problem, communicating her desire for students to provide evidence of their thinking and 

reasoning verbally. Setting this expectation for students’ engagement with the task 

enhanced the rigor of the task above what was communicated in print on the task 

handout. 

Task implementation, however, failed to meet the same rigor as was evident in 

task setup. In fact, I scored Phase 4: Implementation as a 2 on the IQA, below even the 

original score of 3 in Phases 1–2. The students appeared to be lost and confused when 

initially examining the 5 problems on the handout, and they required persistent 

intervention from Gwen throughout the observed lessons. As a starting point, she 

suggested that her students draw diagrams to illustrate the given information and to 

determine what information was needed to solve each problem. Students also required 

additional prompting to understand the meaning of ratios such as 1:12, 1:16, and 1:20 that 

were discussed in the task handout.  

After guiding students toward the process of using similar triangles to identify the 

missing side lengths for various ramps, the focus of the task shifted to solving equations 
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such as 1/16 = 15/x and the meaning for doing so seemed to be lost in the procedures. 

Gwen frequently prompted her students to explain their thinking, but they provided 

responses indicating only the procedures they used to solve their equations. For example, 

Gwen asked one pair of students to explain how they determined that the length of a 15 in 

high ramp with a rise-run ratio of 1:16 was 240 in. The students simply referred back to 

their equation 1/16 = 15/x, where x = 240, using the procedure of “cross-multiplying and 

dividing” as their justification. Not only did the students fail to explain how they set up 

such equation and how they solved it, but the answer of 240 in describes the horizontal 

length of the ramp, not its oblique length (the intent of the question). This 

misinterpretation was not discussed and the actual answer to the problem was not sought. 

The Implementation: Student Work score for the 4 samples of student work 

similarly scored a 2 because students’ written work displayed only their diagrams and the 

calculations they made to find missing side lengths. Students documented some of what 

they noticed and wondered about the ramp they observed in their school, but their 

responses lacked substance; for instance, one student simply wrote that she noticed the 

ramp was “going downhill” and did not provide details or explain any mathematical ideas 

in depth.  

Gwen’s Analysis of the Task. Gwen categorized the “Ramp It Up” (King, 2015) 

task as procedures with connections holistically but identified aspects that were either at 

the level of procedures without connections or doing mathematics. According to Gwen, 

the cognitive demand of the task “averaged” around the procedures with connections 

level for this reason. For example, some of the problems require only straight-forward 
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calculations for the slope of a ramp given its “rise” and its “run.” However, other 

problems require sophisticated thinking on the part of the student according to Gwen. She 

indicated that several bullet points in the TAG fit the task, including that the task suggests 

pathways to follow with connections to conceptual ideas and that the task requires some 

degree of cognitive effort, but general procedures cannot be followed mindlessly (in the 

procedures with connections domain). However, the task also requires students to access 

relevant prior knowledge about slope and requires students to actively examine task 

constraints (in the doing mathematics domain). 

 Phase 3: Setup, according to Gwen, remained at the level of procedures with 

connections. Initially, she expressed that her intention was to maintain the cognitive 

demand of the task. Rather than speaking in terms of the thinking and reasoning that the 

students did, she initially explained her perspective of the cognitive demand of the task in 

terms of how she intended for the preliminary discussion of task to unfold:   

I think I was trying to maintain it [the cognitive demand], perhaps with the 

students it maybe went up a little bit because they didn't quite understand. But I 

think that I maintained it. I'd be curious to know what you think. But I definitely 

think I maintained it, that was my intention. 

Contrary to the intention of the TAG, Gwen expressed that the cognitive demand of the 

task “went up a little bit” because students failed to understand what they were doing at 

times, rather than declining in this instance. It seems she does not understand that the 

teacher’s responses to students’ difficulty and the way in which students engage with the 

task influence its cognitive demand. Gwen also explained that the setup of the task 
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required “some degree of cognitive effort” because she “wasn’t just handholding them 

[her students] and giving them information.” Indeed, she pressed her students to 

contribute and provide their own ideas to the preliminary discussion. 

 Though Gwen identified student difficulties and shortcomings throughout task 

implementation, she still categorized implementation as doing mathematics “with the 

push” from her. She attempted to help her students visualize the task in various ways by 

suggesting that they draw pictures and diagrams, which students “really struggled with.” 

According to Gwen, her students were “trying to regurgitate information” that they had 

recently learned in their Chemistry class for how to calculate slope by using algorithms 

rather than attempting to conceptualize what they were doing and why. Moreover, Gwen 

acknowledged that her students “didn’t know or understand why” they could set up and 

solve a proportion involving similar triangles; they simply applied a previously learned 

algorithm in a familiar situation. Gwen attributed students’ lack of understanding when 

applying procedures to their prior instruction with another teacher:  

Their junior high math teacher… dealing with similar triangles, taught them 

proportions, taught them to cross multiply and divide. Even though both the 

Algebra 1 teacher and myself tried to unteach that, somehow it still stuck in there. 

So, it's just ingrained in them from hearing it over and over…they follow these 

learned habits and learned sayings. 

She even stated that her students were “kind of alluding to the connection between 

similar triangles and proportions… but didn’t really have the connection.” However, she 

concluded that her students still maintained the level of procedures with connections 
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because the task required “some degree of cognitive effort. Even though it may not have 

been through work of their own… I was pushing them to get to that point.” 

Phase 1: Task Selection. Gwen taught using mathematical tasks and activities 

frequently even before she became involved with the MMR course. She “rarely” provides 

direct instruction in her Algebra 2 and Precalculus courses and feels that the pedagogy for 

the MMR course closely aligns with what she had been doing already. Through her 

experience as a paraprofessional and then as a starting teacher, she has witnessed many 

students fail to learn and succeed through lecturing and other teacher-centered 

approaches. Her experience has also taught her that students learn more through 

engagement and effective teacher questioning. Specifically, she emphasizes the use of 

“low floor, high ceiling” tasks that are “approachable by all students” by providing 

“multiple entry points.” Such tasks, according to Gwen, “engage all students, not just the 

ones who ‘get it’ already.” She selects such tasks because she wants to engage students 

with limited background knowledge, those who might not have experienced success with 

mathematics in the past. “Not all students have high mathematical self-efficacy, or the 

background knowledge to approach certain classroom activities, tasks, or lessons,” Gwen 

explained. “For those students especially, tasks should make them feel comfortable 

enough to start.” By selecting tasks that are both accessible and engaging to her students, 

can then scaffold and guide them to the “high ceiling” of deep mathematical 

understanding.  

 The “Ramp It Up” task was both engaging and accessible, according to Gwen. 

Another desirable aspect of the task was that it “connects math content to a real-world 
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problem,” encouraging students to explore slope in the context of ramps. The task “pulls 

students in from the beginning, making connections to something that they see on a daily 

basis,” Gwen explained. She selects many tasks with real-world components to address 

the frequent student question, “Where will I use this?” Though her students may never 

need to calculate slope in the future, being able to “approach real-world problems and 

think critically through them” is a valuable skill that students can learn through the 

“Ramp It Up” (King, 2015) task. Gwen explained that her students’ definition of “doing 

math” was “plug and chug,” meaning that they viewed mathematics as simply 

regurgitating algorithms and performing routine calculations. By relating mathematics to 

the real world, Gwen hopes to also shift their beliefs about mathematics and help them 

realize how important mathematics is in daily life. 

 Gwen generally selects tasks that are “connected to [mathematics] standards, 

either past, present, or future.” She did not specify which standards the task addressed 

specifically, but she communicated that the content aligned with her goals for students 

and what she wanted them to learn. Gwen would use “Ramp It Up” (King, 2015) in other 

courses than MMR because it “forces students to analyze and not simply regurgitate 

information.” She did not want to simply demonstrate the formula and procedures for 

calculating slope; she wanted her students to have to think through the process and make 

sense of information that was given to them. The task provides students with problems to 

solve but does not specify the approach that students must take; in this sense, it “tells 

them what to do, but doesn’t tell them what to do,” according to Gwen. She also 



276 

appreciates that the task provides students with opportunities to explore multiple 

representations, including scale models, formulas, and numerical measurements. 

Phase 2: Task Planning. Gwen plans her instruction with a focus on the 

objectives and goals that she has for her students but allows for some flexibility as well. 

She typically plans an entire unit in advance, “roughly 2–4 weeks, depending on the 

course or the content studied.” From there, she chooses tasks and activities that she thinks 

will help her students to meet the goals for the unit. However, she also is willing to adjust 

her plans “on a daily basis” depending on how her students interact on a given day. With 

this flexibility, she always keeps her “end goal and outcomes” in mind. With the “Ramp 

It Up” (King, 2015) task, Gwen’s goal for students was the following: “Can they interpret 

slope and use right triangles to solve problems?” Moreover, her intention is “to train her 

students how to think, not just how to plug numbers into a formula or equation.” With 

these goals in mind, Gwen chose not to significantly modify the task handout but decided 

to eliminate the first page of the “Discovering Slope” student handout (recall that this was 

the task used by Beth). According to Gwen, the first page “implies that direct instruction 

will occur” and would rather her students ask questions about the information on that 

page rather than providing it immediately herself.  

Planning the implementation of the “Ramp It Up” task encouraged Gwen to 

consider her students’ prior knowledge and anticipate both how they would engage with 

the task and how she might respond. She acknowledged that her students had recently 

studied slope in their Chemistry class but felt that their instruction was likely limited to 

routinized procedures. Therefore, she anticipated that their prior knowledge of slope 
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would lack connections and deep understanding, leading to some amount of difficulty 

with the task. Gwen explained that her students were not accustomed to “pushing their 

thinking,” leading them to struggle “interpreting the questions” and identifying “how it 

[slope] applies to this task.” Moreover, she expected that they would have “little to no 

recollection of the Pythagorean Theorem or similar triangles.” Though she appeared to 

have low expectations in terms of her students’ prior knowledge, she felt that she could 

help her students be successful with the task through “continued repeated questioning.” 

Gwen felt confident in her ability to provide the necessary scaffolding to support their 

engagement and high-level thinking throughout their work on the task. 

Phase 3: Task Setup. Gwen intentionally engaged her students in a discussion of 

ramps during task setup. “I think it’s important to know internally what the students 

know… before you dive into something like that,” she explained. She did not expect 

them to all be familiar with the real-world context prior to their work on the task. 

However, Gwen reflected that her students did not fully appreciate or connect with the 

real-world application of ramps as she hoped they would. “I honestly don't think they 

fully still understand the real-world connection, at least to a level that I would hope that 

they would at this point. But it at least got their gears turning.” Gwen recalled students’ 

responses in their preliminary conversation, such as how the ramp they examined was 

“smooth,” “had rails,” and that ramps should be “wide enough for multiple people to go 

down” at a time. However, her students did not provide the “genuine, deep responses” 

that Gwen sought. She was given the impression that the real-world connection to ramps 

was not interesting and relevant to this group of students: “My understanding is none of 
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the four girls have an actual connection to ramps. They don’t have family members who 

need to use [them], houses that have to have a ramp.” This, according to Gwen, led her 

students to disengage with the task to some extent in both setup and implementation. 

 As Gwen presented her students with the task handout and had them take turns 

reading the accompanying passage, I noticed that they did not understand the meaning of 

ratios such as 1:12, 1:16, and 1:20. As one student read over the text “1:20,” for example, 

she hesitated and said the phrase, “one-twenty” rather than using language to indicate an 

understanding of 1:20 as a proportion, such as “one-to-twenty” or “one is to twenty.” 

During implementation, I also noticed that Gwen spent some time helping each of the 

two groups interpret what these representations for ratios meant. Therefore, I asked her 

what she thought might have happened if she had led her students in a discussion of these 

relationships prior to their engagement with the task to help develop a common 

understanding before they started. Gwen explained that the implementation “would have 

been worse” because her students might have “shut off” and not thought about it on their 

own. Doing so, according to Gwen, also would have established a standard that she was 

going to provide all the necessary information for her students, which she wanted to 

avoid. “I’m sure you saw it, they shut down when they don’t immediately understand it [a 

task] because they are very used to being given a procedure or algorithm and just 

repeating,” she answered. Alternatively, taking the time to help students develop their 

own understanding for ratios written as a:b might have supported them to be more 

productive during implementation. 
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The distinguishing feature of Gwen’s task setup that led to an IQA score of 4 (an 

increase from the Phase 3: Setup score of 3) was that she provided the verbal expectation 

for her students to make their work and thinking visible. She specifically prompted her 

students, “Verbalize how you approach each problem” before she instructed them to start 

working in their pairs. By doing so, she introduced an element to the instructions for the 

task that was not evident in the handout. Gwen typically sets this expectation for her 

MMR students because it enhances her understanding of their thinking processes. “I can’t 

fully grasp what they’re thinking just by looking at what they have on paper… it’s more 

than being able to reproduce something, you have to be able to explain what’s going on 

as well.” However, Gwen recognized this as something that her students have generally 

“struggled” with. Despite this being her expectation for students in task setup, the 

implementation of the task failed to meet this standard.  

Phase 4: Task Implementation. Gwen tries to promote productive struggle 

through the use of engaging tasks and avoids direct instruction. She described how, 

especially early in the year, she found it important to “set the tone” for the MMR course 

by reminding her students that they would not learn through direct instruction. Instead, 

Gwen’s goal for her MMR students was to learn how to learn and do mathematics in a 

new way. During the implementation of the “Ramp It Up” (King, 2015) task, Gwen was 

“disappointed” that two of her students (one out of each pair) “took over” most of the 

thinking and the other pair seemed to shut down. According to Gwen, several other 

factors worked against her students: she noticed that one of them appeared very lost, but 

“wouldn’t verbalize that she didn’t understand,” perhaps because my co-observer and I 
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were watching her from Zoom. Her students had also played an important volleyball 

game the night before, leading them to be exhausted and less “chatty” than they typically 

were in class.  

In addition, Gwen thought that her students might have been afraid to make 

mistakes publicly in front of each other; though they were all friends, they might have 

been “hesitant to share information and be wrong” in front of each other and in front of 

us as observers. Throughout various interactions with her students, Gwen gathered that 

they had negative experiences with mathematics in the past, including “teachers who 

have… alluded to the fact that they’re slower than their class.” This may have resulted 

from either being put into “lower” groups based on their performance or receiving low 

grades in other mathematics courses. Gwen explained that these negative experiences 

may have influenced her students’ reluctance to communicate their misunderstandings, 

even though she has emphasized that it is “completely okay” to make mistakes in her 

class. 

Gwen asked her students many questions during the observed lessons to 

understand their thinking and to help guide them from one idea to the next. “It just goes 

back to forcing them to think,” she elaborated. “I don’t want to be the one that gives them 

all the information.” Instead, she asked scaffolding questions so that her students would 

come up with the mathematical ideas on their own. As her students engaged with the 

task, Gwen listened for things that would prompt her to ask a specific question. “I’m 

constantly trying to listen for what they [the students] understand.” Despite their limited 

success with the task, Gwen expressed some positivity in how her students responded to 
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her questioning. “They didn’t completely shut down, so that’s positive… I think this is 

the first task they’ve had where they had no idea where to start. So, I guess in that regard, 

they responded really well,” though she also thought that the quieter students could have 

done more to communicate their thinking. Gwen stated that she would not change this 

aspect of her instruction because she wants her students to become more comfortable 

with being questioned explaining their thinking verbally. 

In addition to questioning her students persistently, Gwen provided additional 

support in the form of suggestions. One instance of this involved her response to 

students’ initial frustration getting started with the task. Specifically, her students did not 

understand the meaning of the ratios 1:12, 1:16, and 1:20 when reading them on the task 

handout and therefore did not visualize what they represented. To assist her students, 

Gwen asked one of them to draw 3 right triangles (representing the side-view of three 

ramps) on the smart board and to label their side lengths based on each ratio. Her students 

successfully labeled each with a height of 1 unit and horizontal lengths of 12, 16, and 20, 

allowing them to better understand how the three ratios might be comparable to each 

other. This led back to the question of, “Which is the shortest ramp?” and enabled 

Gwen’s students to progress further through the task. During our second interview, she 

later explained that she “had to intervene” at this point because her students would 

“completely get lost” otherwise. 

Henry 

Henry has a bachelor’s degree and a master’s degree in education and has 

completed some graduate-level mathematics coursework. He has taught high school 
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mathematics for 34 years with 21 at his current school. The 2020–2021 academic year 

was not Henry’s first year teaching MMR. Henry teaches 2 sections of MMR that meet 

both face-to-face and remotely, though he is in the classroom every day; one group meets 

face-to-face on Mondays and Tuesdays and remotely on Thursdays and Fridays and the 

other group does the opposite. Both groups meet remotely on Wednesdays and each class 

meeting lasts 51 min in either setting. My co-observer and I viewed Henry’s face-to-face 

instruction with students via Google Meet remotely on consecutive Thursday-Friday 

sessions. Though 6 students meet face-to-face on those days, only 5 attended in person on 

Thursday and 4 attended in person on Friday. The IQA and TAG classifications for 

Henry’s task are presented in Table 12 to provide context for the following sections. 

Table 12 

IQA Scores and TAG Classifications for Henry’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 3 DM No 

Phase 2: Planning 3 DM No 

Phase 3: Setup 3 DM No 

Setup 1: CF NA NC No 

Setup 2: MR NS NC No 

Phase 4: Implementation 4 DM No 

Implementation: Student Work 3 NC No 
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Analysis of Henry’s Task. The task that Henry engaged his students with during 

the majority of the observed lessons was meant to be assigned as homework according to 

the MMR lesson plans. Instead, Henry implemented the task in class with his students. 

The task is one of many teacher resources provided by Desmos, titled “Point Collector: 

Lines” (Desmos, 2021). Like other “Point Collector” activities, the purpose is for 

students to “collect” coordinate points in the xy-plane by typing an appropriate inequality 

that contains such points in the solution set. For example, the point (0, 0) can by 

“collected” by typing the inequality 2x + y > –3 because the origin is contained in the 

associated solution set. Throughout the activity, students progress from one slide to the 

next by typing or editing existing inequalities to collect as many highlighted coordinate 

points as possible. Collecting a blue-highlighted point grants a point, whereas collecting a 

red-highlighted point subtracts a point from a user’s score; the goal is to obtain the 

optimal high score for each problem. The following paragraphs describe the portion of 

the Desmos activity that students engage in during the two observed lessons (some parts 

were assigned for homework afterward and not discussed during the two lessons). 

 The Phase 1: Selection IQA score for the Desmos task is a 3. Though the task 

does not explicitly prompt for the evidence of students’ reasoning and understanding to 

warrant a score of 4, it engages students in problem-solving and requires the use of 

multiple representations. The task is completely open-ended and direct instructions for 

how to earn the maximum number of points for each problem are not provided. Students 

must use their knowledge of linear equations and inequalities flexibly, especially if they 

do not immediately identify an inequality that will earn the most points on their first 



284 
 
attempt. Moreover, there may be infinitely many correct solutions for each problem, 

allowing students to earn the maximum number of points using a variety of solutions and 

solution strategies. Throughout their engagement with the task, students can explore how 

and why particular linear inequalities work to solve each problem (and why others do 

not). 

Henry made no changes to the task when planning, resulting in an IQA score of 3 

for Phase 2: Planning also. He used the same link to the task that is provided in-text, 

directing students to use the Desmos version of the task. Task setup, Phase 3: Setup, was 

also scored as 3 because Henry had his students begin working on the task without a 

preliminary discussion. In terms of the EIQA rubrics, the Setup 1: CF score is NA 

because the task does not involve a problem-solving (i.e., a real-world) component. Setup 

2: MR was scored as NS because there was no whole class discussion of the task prior to 

student work on it. 

 Though the task itself received an IQA score of 3, task implementation scored a 4 

because Henry elicited evidence of students’ thinking and reasoning throughout their 

engagement. The general pattern for the lessons was that Henry (a) provided some 

individual student work time for a problem, (b) brought the class together to discuss that 

problem, and then (c) directed students to begin working on the next problem. Through 

his questioning during the whole-class conversations, Henry prompted students to make 

connections between algebraic and graphical representations for each inequality and to 

communicate these connections verbally. For example, when one student said that the 

statements y > x and x < y meant “the same thing,” Henry echoed this idea back to the 
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class and asked, “How can using the graph justify it?” Students responded that the 

associated graphs contained “the same shaded parts” and noticed that the inequality sign 

opened toward the same variable in either case.  

Henry additionally challenged students to determine whether their solutions were 

optimal, earning the highest possible score for each problem. After asking students what 

inequalities they used and projecting them on the smart board, he asked them questions 

such as, “Can you beat that?” and “Why can’t you do better?” These questions prompted 

students to explain why they could not obtain higher scores after collecting all the blue 

points and minimizing the number of red points. Henry developed an additional question 

to expand students’ thinking between the first and second lesson: he wrote the points (0, 

2), (3, 2), and (0, 4) on the smart board and asked his students to identify a set of 

inequalities that would contain (shade over) all three points with the smallest area 

possible. Though students ran out of time to explore this question in great depth, they 

managed to conclude that the region with the smallest area would be the triangle with the 

above three points as vertices. Overall, teacher questioning and student explanations 

characterized the two lessons, resulting in an incline from an IQA score of 3 for task 

potential to a score of 4 for implementation. 

 The Implementation: Student Work score for Henry’s task is 3 for the same 

reasoning as in Phases 1–3. Though students were consistently prompted for explanations 

and verbally provided evidence of their thinking and reasoning, the online task itself did 

not provide students with opportunities to explain their work in writing. Henry 

downloaded and saved PDF copies of students’ responses to each problem, including 
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only their final answers without written evidence of the thinking behind them. Each 

sample includes a graph of the points that students were to collect, the graphical 

representation of the inequality that a student typed as their final answer, and the solution 

set shaded on the graph. The student work also includes the algebraic representation for 

the inequalities that each student typed as their final answers (e.g., y > –4x). I replicated 

the graphical output for one student’s work using Desmos, which is depicted in Figure 5. 

Henry’s Analysis of the Task. Because there were no changes for Phases 2–3 of 

the Desmos task, this section includes only Henry’s analyses for Phases 1 and 4. His 

TAG classifications for the task at Phases 2 and 3 were identical to that in Phase 1: 

Selection and did not merit considerable discussion. Henry considered that the potential 

of the task (Phases 1–3) was at the level of doing mathematics primarily because the task 

was “open-ended,” and students would be “exploring” throughout it. He explained that 

students would be “looking at trying to collect as many points as possible, and they have 

to do that mathematics by determining inequalities that will give them their best region.” 

Students could not necessarily look at a problem and identify a correct solution to obtain 

the maximum number of points immediately; they would need to “try some things” to 

develop and test their conjectures. Students could also make mathematical connections, 

according to Henry, as they wrote algebraic inequalities and related them to the graphs 

that were generated by the Desmos graphing software. 
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Figure 5 

Exemplar of Student Work for Henry’s Graphing Task 

 

Note. This representative sample of student work is a graph of the inequality y > –4x in 

the xy-plane. The points (1, 1), (1, 3), (3, 1), …, shown in blue, are ones that the students 

were expected to “collect” to earn points. The points (–1, 1), (–1, 3), (–3, 1), …, shown in 

red, earned negative points and were not to be “collected.” This is a recreation of one of 

Henry’s students’ work, earning a maximum possible score for this problem. 

 

Implementation remained at the level of doing mathematics for Henry because 

students did “a pretty good job explaining things.” He was satisfied with how they 
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worked to solve the problems on the Desmos activity but also with their verbal 

explanations. For example, when one student suggested to use the inequality y > –4x and 

another suggested to use y > −
ଶ

.ହ
x to solve one of the problems, Henry asked whose was 

“better?” In response, one student explained that they were both the “same” inequality, 

comparing the slopes –4/1 and –2/.5 and realizing that the first was just “twice as much 

work to do” as the other (i.e., the numerator and denominator of the first are twice the 

numerator and denominator of the second). I noticed how Henry praised his students’ use 

of mathematical terminology throughout the two lessons when they used terminology 

such as “intersected” to describe how two linear inequalities crossed graphically. Henry 

was also pleased with the algebraic inequalities that students had come up with: 

They [the students] were really doing a good job of getting a lot of the blue dots… 

Three of them, especially, they were typing in an inequality, and usually their first 

inequality… accomplished pretty much what they needed to do as far as getting as 

many of the blue dots, getting the best score as possible… and it wasn't just a 

guess and check thing. 

Henry acknowledged that his students were able to use their knowledge of lines to 

determine initial inequalities that would collect many of the blue points. Then, they 

simply adjusted their algebraic formulas as necessary to optimize their scores. 

Phase 1: Task Selection. One of Henry’s criterion for task selection is that the 

mathematics content “covers something that applies to the class,” meaning that it 

addresses content that is relevant to what students are expected to learn. However, tasks 

must also encourage “some higher order thinking.” Henry wants students to “know some 
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material,” but “it’s more important that when they leave [my class], they’re able to think 

and process problems through problem solving.” He would rather spend more time 

engaging students in tasks that encourage mathematical sensemaking because if he can 

teach them how to think, then they can reason through problems they might not have seen 

before. Henry explained, 

If I can get them to think and work through problems, even if there's a few things 

I don't get to cover, at the end of the year, they'll be able to process through them 

and be able to figure out things on their own. 

Engaging his students in tasks that focus on mathematical sensemaking is critical to his 

role as a mathematics teacher. To Henry, the “Point Collector: Lines” (Desmos, 2021) 

task is beneficial for students’ learning because it allows them to expand their knowledge 

in a non-algorithmic way. Rather than simply memorizing an algorithm for graphing 

linear equations and inequalities, his students were challenged to make connections 

between algebraic and graphical representations in Desmos which would “help them 

remember things better.” 

Henry prefers active student engagement rather than demonstrating and lecturing 

to his students. “The less talking I do, the better,” he explained, a philosophy that applies 

to MMR and his other classes. More so in MMR, but also in his other classes, Henry has 

his students engage in activities that are “a little non-routine,” avoiding the monotonous 

classroom procedure of taking notes and working on practice problems every day. For 

example, he engaged his MMR students in a Desmos activity to introduce linear 

inequalities on the remote learning day that week. The task was open-ended and 
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encouraged students to explore the Desmos graphing calculator as they graphed various 

linear inequalities and answered questions such as the following: “Why is it [the 

software] shading half of the plane?” and “What is the meaning behind it?” Moreover, 

Henry did not provide any clues or suggestions as to how to answer each question. “I 

want you [the students] to think about that,” he asserted. Similarly, he chose to engage his 

students in the “Point Collector: Lines” (Desmos, 2021) task so that they could explore 

and make mathematical connections on their own. 

 Henry admitted that he is not as “task-oriented” when teaching classes other than 

MMR. “Part of that is, well, a lot of that’s on me,” he confessed, explaining that he might 

feel even more “pressed for time” addressing the required course content if he did so. 

Henry thought that if he was “willing to sit down and do a whole lot more thinking,” he 

might be able to adopt the use of more mathematical tasks in these courses, especially in 

Precalculus and Calculus. The College Algebra course he taught through a local 

community college was “a little more dry” for the same reason: he is pressured to 

progress through the content of the course and does not have the flexibility he does with 

MMR. However, Henry aims to maintain the pedagogical approach he uses for MMR in 

his other courses. “For me, a good class is, I ask a question and just let the students have 

at it. And then they can ask questions, but they know 90% of the time I answer their 

question with another question.” Though his other courses incorporate fewer tasks, Henry 

avoids presenting his students with algorithms for them to regurgitate using different 

numbers. This is something that he has done throughout his entire teaching career. 
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Phase 2: Task Planning. When planning his lessons, Henry attends specifically 

to questioning. He anticipates two types of questions prior to instruction: (a) questions 

that he should ask “to get the students thinking” and (b) questions that his students might 

ask and how he can respond. For instance, he expected that his students might have 

difficulty conceptualizing and graphing linear equations because “they haven’t done that 

for a while.” Henry considered graphing an equation such as x = 5, explaining how he 

might ask a struggling student to plot various points where the value of x is 5. He would 

then ask, “Do you see a connection?” hoping that the student would realize that the set of 

points forms a vertical line. Henry thought that he might have preemptively addressed 

some of these issues by having his students complete the warm-up exercise on the remote 

learning day that week (the other Desmos task described in the previous section).  

 In anticipating how he might respond to students’ questions, Henry planned to 

help students make connections to what they had learned before. He sequenced the two 

MMR tasks (the warm-up Desmos activity and the “Point Collector: Lines” [Desmos, 

2021] task) in a way that his students might be able to make connections from one to the 

next. Hoping that his students had encountered a similar situation on the remote learning 

day, he found it likely that he would ask, “Does this have any connection with what you 

did yesterday?” However, he recognized a potential flaw with his plan, explaining that 

“Some of these kids are hit or miss whether they do the work on the remote day that 

day…some of them always manage to forget.” Henry thought that it might also be helpful 

to refer his students back to what they had done in Algebra 1 and Algebra 2 if they 

struggled with lines and linear inequalities. He also hoped that his students might recall 
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their work on previous tasks in the MMR course, such as “Follow the Bouncing Ball” and 

“Bungee Barbie,” which focused on linear functions. 

 Henry adapted his plans for the task in several ways during the observed lessons. 

He initially assigned the “Point Collector: Lines” (Desmos, 2021) task as homework, 

aligning with the MMR lesson plan for the Context. However, Henry realized that most 

of his students had not attempted it yet and decided that it would be beneficial for them to 

work on it in instead. He had also planned for his students to work on the task in small 

groups, but with only four students in class learning face-to-face each day, he decided to 

implement the task as one large group. Henry made this change so that he could “get a 

better feel” for his students’ understanding and he could ensure that every student 

provided their input and thinking. “I had a feeling that would work better as far as getting 

everybody involved,” he said. 

Another adaptation, as I described previously, was the inclusion of the problem 

that engaged students in determining the minimum area between the points (0, 2), (3, 2), 

and (0, 4); this was a problem that Henry thought of the night before the second lesson 

and was not provided in the MMR materials. Henry felt that these spontaneous 

adaptations delayed the pace of his instruction but were worth the investment. “If I have 

to go that extra day, I'm going to go that extra day… had I not gone back over some of 

that stuff, then what was the point of doing it anyhow?” It was worth spending more time 

and helping students develop deeper understanding of the mathematics. As a mathematics 

teacher, “you’ve just got to be flexible,” Henry concluded. 
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Phase 3: Task Setup. Recall that there was no setup phase for Henry’s task, as he 

simply directed his students toward what they should start working on and did not launch 

the task with a whole-class discussion. Therefore, his second interview focused entirely 

on the implementation phase of instruction.  

Phase 4: Task Implementation. During task implementation, Henry focuses on 

promoting productive struggle and setting the expectation that making mistakes is a part 

of the learning process. He is focused on “trying to get them [his students] to try things,” 

even if they are not correct on their first attempt. In our second interview, Henry 

elaborated on his interactions with one of his students who was hesitant to work on the 

Desmos activity. Initially, the student stared blankly at his laptop screen without 

attempting to enter an inequality for a certain problem. “I think he was pretty anxious he 

would do something and do it wrong,” Henry explained, leading him to ask, “What are 

you going to do? What’s going to happen if you put in something that doesn’t work?” By 

doing so, he encouraged the student that he could always try something else and attempt 

to improve his thinking each time. Henry reflected that many of his MMR students likely 

felt the same way because they had not been successful with mathematics in the past. He 

said that “a lot of these [MMR] students end up liking math a whole lot better than they 

did before” because the course provides a space where they can feel “comfortable” 

making mistakes. 

 Henry questioned his students frequently throughout the implementation of the 

task. For example, he asked questions to elicit students’ reasoning, such as, “Why did you 

put y first?” and “Why do you think so?” Henry asks numerous questions in his teaching 
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for two key reasons: (a) as an assessment of what a particular student knows and their 

level of understanding, and (b) so that other students learn from each other’s ideas. 

Addressing the first reason, Henry asked his students how they could use the graph 

provided by Desmos to justify that the statements y > x and x < y were equivalent; he said 

that he thought of and asked this question because he wanted to gauge his students’ 

understanding of what they were doing and what each of the inequalities represents. He 

felt that many students, not just those in his MMR class, failed to understand that the 

graphical representation of an equation or inequality represents its associated solution set. 

Regarding the second reason, Henry would rather have his students explain ideas to each 

other than simply memorize what he tells them to do. He acknowledged that his students 

could explain the same things that he could, but other students might learn more from 

each other because their explanations may be in “terms that probably make more sense to 

them.” Henry believes that students learn and retain more information when it comes 

from another student. 

 Asking frequent questions prompted Henry’s students to provide evidence of their 

mathematical thinking and reasoning, ultimately raising the cognitive demand of the task 

from a 3 to a 4 on the IQA rubrics. Henry reflected that, “Having them explain makes 

them think more… and then it makes them have some deeper thinking about what they’re 

doing,” realizing that students think deeper and more analytically about their work when 

explaining it to others. He also acknowledged that students do not fully understand 

mathematics conceptually unless they can explain it logically and clearly, recalling the 

familiar student phrase, “I know what to do, I just can’t tell you what to do.” To Henry, 
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students are not “cognitively… there yet” if they are unable to describe how they solve 

problems and cannot explain how they know they are correct. Henry held his students 

accountable for providing such evidence of their thinking and reasoning as they engaged 

with the Desmos task; he questioned one student, who “was waiting to see what 

somebody else said” on a particular problem, pressing him to explain his thinking and 

develop his own solution. “That wasn’t the whole point of the activity… to see what 

somebody did and then mimic it,” Henry point out afterward. 

Isabel 

 Isabel has a bachelor’s degree in mathematics with a teaching license and has 

taken graduate-level coursework in mathematics as well. She has been with her current 

school for 3 years and has taught for 6 years in total. Isabel is the only one of the 9 

participating teachers who does not teach MMR. However, she attended the Modspar 

ATC program at Ohio University more than once and therefore met the selection criteria 

described in Chapter 3. Her teaching position is unique because her students learn at their 

own pace; Isabel’s students work individually or in groups, when possible, as they access 

and complete assignments on Google Classroom. They progress from one lesson to the 

next upon completion, working through a checklist of tasks and assignments until they 

reach a test or quiz, after which they move on to the next topic. Isabel’s role as the 

teacher is to facilitate students’ self-engagement, direct and support them as they move 

from one subject to the next, and provide feedback and assessments as they advance. 

 Though her teaching environment differs significantly from other teachers 

participating in this study, I chose to include Isabel because of the qualitative interview 
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data she could provide to answer the research questions. Through dialogue with Isabel, 

we identified one of her Algebra 1 classes to observe because some of her students were 

ready to begin a task that she selected and adapted from the internet. As I describe in the 

following paragraphs, observing her class was not ideal because not all students work on 

the same task at the same time. Moreover, there were limited interactions between Isabel 

and her students because of their unique arrangement. However, interviews with Isabel 

contributed data to answer the research questions of this study and observations provided 

additional interview questions that I had not planned in advance. My co-observer and I 

joined her Algebra 1 class remotely via Zoom. The following paragraphs describe the 

task that Isabel modified for two of her Algebra 1 students to complete during the 

observed lessons. I have also provided the IQA and TAG classifications for Isabel’s task 

in Table 13 to provide a synopsis for the following sections. 

Analysis of Isabel’s Task. Isabel’s task is unique because it did not originate 

from the MMR course materials. Instead, it is a task that she found online and modified 

for use in her own classroom. The task, titled “Fitting a Line to Data - Earnings and 

Educational Attainment” (United States Census Bureau, 2021) engages students in 

analyzing data pertaining to an individual’s educational attainment (years of education 

and degrees earned) and their median annual income. Throughout the task, students are 

expected to identify patterns and describe data, create a scatterplot, create a line of best fit 

by inspection, and find the equation of the line and use it to answer questions about the 

real-world situation. The Phase 1: Selection IQA score for the task is 4 for several 

reasons: (a) the task involves making explicit connections between numerical, graphical, 
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and algebraic representations as students analyze data, graph them, and determine an 

appropriate line of best fit; (b) the task requires students to identify patterns within the 

data and to develop generalizations based on those patterns; and (c) the task explicitly 

prompts for evidence of students’ reasoning and understanding in various ways, such as: 

“Turn to your classmates and compare your lines and equations. Do some of your 

classmates’ lines better fit the data? Explain” (United States Census Bureau, 2021, p. 11). 

 

Table 13 

IQA Scores and TAG Classifications for Isabel’s Task 

Score Level IQA Score TAG Classification Mismatch 

Phase 1: Selection 4 PwC No 

Phase 2: Planning 4 DM No 

Phase 3: Setup NR DM No 

Setup 1: CF NR NC No 

Setup 2: MR NR NC No 

Phase 4: Implementation NR DM No 

Implementation: Student Work NR NC No 

 

The Phase 2: Planning version of the task included formatting changes and 

adjustments to the work that students were required to do. One influential modification to 

the task was having students use Desmos to create a scatterplot and linear regression 
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model rather than plotting data and drawing a best fit line by hand. Isabel also added 

questions focusing on independent and dependent variables and on correlation. She 

removed the prompt, “Turn to your classmates and compare your lines and equations. Do 

some of your classmates’ lines to better fit the data? Explain” (United States Census 

Bureau, 2021, p. 11), 

 because her students worked independently on the task. She replaced it with the 

following: 

Based on the equations, someone with a Bachelor’s degree makes more money 

than someone who only graduated high school. Does that mean that everyone 

with a Bachelor’s degree will make more than everyone with only a high school 

degree? Explain using complete sentences. 

Isabel enhanced the requirements for students to explain their thinking in writing by 

adding phrases such as, “Explain using complete sentences,” “Show your work,” and 

“How do you know?” In summary, the Phase 2: Planning IQA score remained a 4 

because the mathematics content of the task remained similar, and students were still 

expected to provide evidence of their thinking and reasoning in writing; perhaps even 

more so. 

Phase 3: Setup, task setup, was not scored using the IQA and assigned “NR” due 

to Isabel’s unique teaching situation. Only two students worked on the task and did so at 

their own pace during the observed lessons; this setup was unique because not all the 

students were included at once. Therefore, assigning an IQA score was not reasonable 

because the setup of the task differed significantly from the others. Additionally, the 
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setup of the task for each student occurred only briefly as Isabel provided each student 

with the handouts, explained her expectations for what they would submit to her, and 

reminded them to check in with her regularly so she could monitor their progress. These 

explanations lasted for only several minutes prior to each student’s individual 

engagement with the task. 

 Similarly, the observed implementation of the task was not scored using the IQA 

and was coded as “NR.” Because only two students engaged with the task during the 

lessons rather than the whole class, assigning a score similar to other teachers’ tasks was 

inappropriate. Throughout the observed lessons, Isabel monitored her students’ progress 

as they individually completed instructional tasks and assessments at their own pace. 

Most of her interactions with students consisted of asking questions such as, “Solving for 

x, what did you do?” and providing direct support (e.g., explaining what the term 

“outlier” means and providing an example of a cluster of data).  

In one instance, Isabel helped a student to interpret the y-intercept of her 

regression model by asking a series of questions. In this instance, the y-intercept 

indicated that a person with 0 years of education would earn a nonzero income; 

nonsensical, but the purpose of the problem was for students to recognize this. Initially, 

the student misinterpreted the context and assumed that high school students had 0 years 

of education. In response, Isabel said “You have approximately 8 years of education. 

Who has 0?” to get the student to rethink her response. After concluding that a small 

child has 0 years of education, Isabel followed up by asking the next question on the 

handout verbally: “Is it useful to know what their income would be?” The student 
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responded, “No,” prompting Isabel to confirm that the student was correct. Then, Isabel 

asked her to explain her thinking in writing. This exchange in dialogue was typical of 

Isabel’s interactions with students on a variety of tasks. 

 Because I only received one sample of student work from Isabel, I cannot reliably 

assign an IQA score for Implementation: Student Work. The sample indicates a moderate 

level of understanding on behalf of the student; they correctly identified the independent 

variable as “education” and the dependent variable as the “income,” but could have been 

more specific about how “education” and “income” were defined. For example, “income” 

could have been written as “median household income, annually.” Moreover, the student 

noticed the “strong positive trend” in the data, indicating that an increase in education is 

associated with an increase in income, but did not explain this connection in detail. Their 

interpretation of the slope lacked substance, but the student made the connection that a 

negative y-intercept means “You lose money if you have no education.” When prompted 

to write about what the student learned, she commented, “I learned that Desmos does all 

the work,” among other general statements. The student’s numerical calculations are 

correct, but it seems that they might be lacking a complete understanding of the concepts 

underlying the technology she used and how the real-world situation related to the 

mathematics. 

Isabel’s Analysis of the Task. Isabel classified the original version of the task as 

procedures with connections. She referred to some of the procedures that students were 

expected to do, such as “plotting their coordinate points and when they’re using their 

ruler to then draw their line, that’s all procedure stuff.” Isabel also noted that the task 
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suggests pathways for students to follow from one problem to the next and requires some 

degree of cognitive effort: students “have to think back to, ‘how do I find slope,’ 

especially because that’s two points on their line, not necessarily two data points.” 

However, the task was not at the level of doing mathematics according to Isabel because 

students are “connecting what they would have learned for line of best fit… but not 

necessarily doing the analyzing” that would be required at the highest TAG level. 

 Initially, Isabel stated that her modified version of the task remained at the 

procedures with connections level but contained more elements of doing mathematics 

than the original. She thought that her version of the task required more analysis and 

interpretation than the original and required “much more self-monitoring and self-

regulating.” Isabel later explained that her task was “close to 50-50” between procedures 

with connections and doing mathematics because it provides a specific pathway for 

students to follow (e.g., running linear regression and using a formula) but also prompts 

them to interpret slope and the y-intercept in terms of the real-world context. The more 

that Isabel explained, the more she felt that the task was at the level of doing 

mathematics; this was, in her mind, because students would have to access relevant, prior 

knowledge about linear functions and apply it to a unique situation. 

 Because the setup of the task was minimal, Isabel also noted that the cognitive 

demand of the task did not change from doing mathematics. She said, “I guess I do point 

out that this ties in regression, but I don’t necessarily say, go back and look at your last 

set of notes and look at all of that stuff.” In her typical instructions to students, she only 

explains how this task is “more of an activity,” different from other lessons that students 
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complete online. She instructs students to check in with her periodically so that she can 

determine whether they are on the right track but does not think that this lowers the 

cognitive demand of the task. 

 Isabel attributed the doing mathematics nature of task implementation to the work 

and written responses that students provided on their task handouts. One of the students I 

observed completing the task had an IEP and required “a couple of things accommodated 

for” because of the amount of reading and writing involved in the task, Isabel explained. 

However, she also said, “I don’t think she had any issues. She had me check over stuff 

and I don’t recall anything being wrong. Or maybe one thing wrong as opposed to maybe 

a couple of things in the first section.” At one point during the lessons, the second student 

working on the task struggled using her linear regression to predict the income for 

someone with only a high school diploma. Instead of assisting the student directly, Isabel 

had her talk to the other student who had already completed that part of the task, and the 

two students discussed the problem together. Isabel felt that these interactions helped to 

maintain the cognitive demand of the task because her students succeeded in solving the 

problem without her direct intervention. 

Phase 1: Task Selection. Isabel’s selection of tasks is somewhat limited because 

of her unique teaching situation. As I described earlier, her school is formatted so that 

students learn at their own pace individually by progressing through materials in Google 

Classroom. Isabel has some flexibility in how she uses and adapts these materials, if she 

follows her school’s curriculum map: “It doesn't tell us when we're supposed to teach 

stuff and it doesn't tell us what exactly to teach,” she explained, but many of the materials 
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were provided to her when she started teaching at her school and she continues to use 

them. The Google Classroom materials for Algebra 1 appear to be typical of the 

traditional Algebra 1 course, focusing on purely abstract, mathematical concepts. For 

example, the resources that she shared and discussed with me during our first interview 

addressed the equations and graphs of lines.  

 The “Fitting a Line to Data - Earnings and Educational Attainment” (United 

States Census Bureau, 2021) task was one of several “enrichment activities” that Isabel 

had her students complete. She tries to use such an activity each unit, though she was 

unable to use some of them because of safety precautions involving the COVID-19 

pandemic. Isabel used a different real-world activity involving a restaurant’s production 

of guacamole to strengthen students’ understanding of linear regression in the previous 

year; it was “still a good connecting lesson,” Isabel thought, but “the students… didn’t 

really care” about the real-world aspect of the task; this year, she sought an activity 

addressing similar mathematics content with a more relatable, interesting real-world 

connection. She felt that the “Fitting a Line to Data - Earnings and Educational 

Attainment” (United States Census Bureau, 2021) task was more interesting for her 

students because they all receive an education “to some extent,” though some might 

choose to pursue higher education and others might not. “What's better about this one,” 

Isabel reflected, “is that it's actually something that they [students] care about. It’s 

relevant.” After witnessing several students complete the task, she confirmed that she 

favored the change from last year’s task and would continue to use the newer task in the 

future. 
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 Because of her unique teaching situation, I also inquired about some of the tasks 

that Isabel had used when teaching under more typical circumstances at a previous 

school. She explained that the Modspar PD at Ohio University had been influential in her 

use of mathematical modeling tasks when she had the ability to engage all her students at 

once. Such tasks involved the open-ended exploration of real-world situations: 

previously, Isabel had her Geometry students explore the amount of pizza they could buy 

from various companies if each of them brought in a fixed amount of money. She felt that 

the use of modeling activities from Modspar was “beneficial” for her students because “it 

was something that they seemed to enjoy.” Moreover, her students were able to 

experience “a different way of learning and a different way of showing what they’ve 

learned.” Isabel also appreciated how the open-ended nature of modeling tasks allowed 

her students to explore in various directions and helped them to gain confidence in 

developing and sharing their own ideas. If she changed back to a teaching format that 

enabled her to use more of these tasks in the future, she “would definitely” do so as she 

was able to. 

Phase 2: Task Planning. As I described previously, Isabel made several changes 

to the “Fitting a Line to Data - Earnings and Educational Attainment” (United States 

Census Bureau, 2021) task. She chose to have her students perform linear regression 

using Desmos rather than sketching best-fit lines by hand. Isabel made this adjustment 

because she thought it would be difficult for her students to draw the line without her 

direct supervision to be sure that it was indeed “the best” line possible; having a less-

optimal line would influence students’ engagement with the remainder of the task, so 
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Isabel decided to incorporate Desmos instead. However, she emphasized that her students 

would still be responsible for the mathematical interpretation of their regression lines, 

such as determining the slope, y-intercept, and the correlation coefficient. Isabel included 

follow-up questions for her students to interpret this information in terms of the real-

world context because it was absent from what she found online: “It [the task] asked 

about… what the y-intercept is and what it means, but it didn’t really ask about the slope 

or the correlation coefficient,” she explained. She also thought that it was important for 

her students to be able to use their regression equations to predict an annual income using 

a given amount of educational attainment; therefore, she composed additional questions 

to address this concept. 

Phase 3: Task Setup. The setup of Isabel’s task was unlike the 8 MMR teachers’ 

because she provided individual instructions to each student as they prepared to work on 

it. Instead of a whole-class discussion, Isabel briefly explained her expectations for 

students’ engagement with the task. This was their first activity for the year, so they 

would be “unfamiliar” with the setup. As she gave each student the task handout, Isabel 

explained that she wanted all their answers to be correct before submitting it. “Because of 

that, they should make sure to check in with me pretty regularly, have me check their 

work,” she elaborated. She indicated which questions were “right or wrong type of 

questions,” those with a specific, correct answer, and which were “opinion questions,” 

those that involved written sentences and could be interpreted in various ways. Isabel 

instructed her students to check in with her throughout their work on the task because 

many questions repeated, except with different data, and some questions were based on 
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students’ responses to those prior; in both cases, she wanted her students to stay on the 

right track and not have to redo much of their work based on a single incorrect response. 

Phase 4: Task Implementation. Isabel’s primary role when implementing a task 

is to facilitate students’ engagement. The nature of her interactions with students varies 

from day to day, but typically involves walking around the classroom and observing how 

her students progress from one assignment to the next. Most instructional material is 

provided in Google Classroom in the form of videos, created by Isabel or the other 

Algebra 1 teacher, though she sometimes provides one-on-one instruction when it cannot 

be done through video (e.g., when she plans to ask specific questions and wants to hear 

her students’ responses). When students watch instructional videos and work on practice 

problems, Isabel spends more time observing; however, she becomes more active when 

her students ask questions about the problems they are working on. Isabel assesses 

students through short quizzes when they reach specific milestones, which she grades in 

class so that she can provide instant feedback.  

 One of the most frequent instructional moves that Isabel made during the 

observed lessons was providing support to struggling students. Some support was more 

direct, as she would either walk a student through a problem step-by-step or offer 

mathematical information that would help a student progress further. For example, Isabel 

told one student (not working on the task described in this section) that the procedure to 

find x-intercepts was to “set y equal to 0 and then solve for x.” She provided a similar 

algorithm for identifying a y-intercept in response to the student’s question. Other support 

was less straightforward: when the second student working on the “Fitting a Line to Data 
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- Earnings and Educational Attainment” (United States Census Bureau, 2021) task asked 

a question, Isabel instructed her to talk to the first student, who had spent more time 

working on the task. The amount of support she offers varies based on (a) the student she 

is working with and (b) the lesson that the student is working on. Isabel tries to avoid 

“giving them [her students] too much,” but sometimes finds it necessary if a student is 

unable to find success after less-direct intervention. “Based on their math ability,” Isabel 

is likely to respond differently to two students who ask the same question. Some lessons 

that introduce new topics “need that little bit more guidance” compared to others that 

might connect to ideas that students have already learned. 

 Isabel also asked numerous questions to her students throughout the observed 

lessons, such as “Solving for x, what do you do?” and “Where did you get 6 and 6 from?” 

Such questions gauge her students’ understanding and help Isabel determine what they 

are thinking in a specific instance. One question that she asked a student working on the 

“Fitting a Line to Data - Earnings and Educational Attainment” (United States Census 

Bureau, 2021) task was for the student to interpret the meaning of the linear regression 

model she found using technology. Isabel asked, “Does that mean that a person with a 

bachelor’s degree will always make more money than someone with only a high school 

diploma?” The student’s initial response was, “Yes,” but Isabel questioned her further to 

help her realize that this was not always the case. In general, Isabel asks follow-up 

questions when appropriate because they “make them [her students] think,” whereas 

direct responses simply provide answers and encourage students to move on without 
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thinking further. “I try to give them [students] more of those leading-type questions when 

possible, to help keep it more on them thinking than on me thinking,” she explained. 

Cross-Case Analysis 

 In the following sections, I describe the 18 emerging themes that arose from the 

analysis of teachers’ interviews. The themes are organized into four groups as follows: 

(a) 5 pertain to the selecting of tasks from source materials, (b) 5 pertain to planning 

around the use of tasks, (c) 3 pertain to setting up tasks for student engagement, and (d) 5 

pertain to implementing tasks with students. The following themes are based on teachers’ 

responses about the general use of instructional tasks and the use of the specific tasks that 

were observed as a part of the present study. 

The Emergent Themes for Task Selection 

 The emergent themes for task selection are presented and described in Table 14. 

These themes answer the first part of research question 1, referring to teachers’ task 

selection and reasons for doing so: (a) teachers consider face-to-face, remote, and hybrid 

learning formats; (b) teachers promote active student engagement; (c) teachers address 

important mathematics content, skills, and processes; (d) teachers make connections to 

real-world contexts; and (e) teachers consider past success. The following paragraphs 

include a synopsis of how various teachers exemplified each theme. 
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Table 14 

The Emergent Themes for Task Selection 

Theme Description 

Teachers consider face-to-
face, remote, and hybrid 
learning formats. 

 Selected tasks are suitable for remote and 
hybrid instruction. 

 Selected tasks can be implemented safely in 
face-to-face settings. 

Teachers promote active 
student engagement. 

 Selected tasks are open-ended and encourage 
exploration. 

 Selected tasks involve group work and 
collaboration. 

Teachers address important 
mathematics content, skills, 
and processes. 

 Selected tasks address content that teachers find 
important for students to learn. 

 Selected tasks emphasize problem-solving and 
critical thinking. 

Teachers make connections 
to real-world contexts. 

 Selected tasks include authentic real-world 
scenarios. 

 Selected tasks exceed the level of traditional 
word problems. 

Teachers consider past 
success. 

 Selected tasks have been successful in previous 
years. 

 Selected tasks have been successful with other 
teachers. 

 

Teachers Consider Face-to-Face, Remote, and Hybrid Learning Formats. As 

shown in Table 15, Adam, Beth, Debbie, and Ethan explained that their hybrid and 

remote teaching environments influenced their selection of tasks. When selecting a task, 

Adam wonders whether his students will be engaged and make connections. He 
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acknowledged that his students might access instructional tasks differently based on 

whether they are learning remotely or face-to-face. “I have kids… in class [MMR] that 

join virtually and those that are in my classroom at the same time… can I make this fit for 

both groups?” Similarly, Debbie reflected that some tasks might not be suitable for 

students who attend school virtually or for those in hybrid environments where students 

are split into face-to-face and remote groups. She explained that teaching the MMR 

course in a fully remote setting would be more difficult than teaching it in a hybrid or 

entirely face-to-face setting. 

 

Table 15 

Teachers Consider Face-to-Face, Remote, and Hybrid Learning Formats 

Teacher Supporting Interview Quotation 

Adam Is it [the task] something that can meet the hybrid standard that 
we're at right now? Because I have kids in this class age that join 
virtually and those that are in my classroom at the same time. So, 
time, and can I make this fit for both groups? 

Beth There's only a few lessons from each theme that I can do strictly 
online easily. So that [the task] was definitely one of the ones that I 
could do online easily. 

Debbie Having this MMR class to be here hybrid right now has helped to 
facilitate some of these activities where, if we were fully virtual, it 
would be hard. 

Ethan I'm looking for things that might translate well to remote learning, 
especially because we've been remote… all but for 3 weeks. 
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Beth chose to use the “Discovering Slope” task because her students could engage 

with it online and did not need to be with her in the classroom face-to-face. Aside from 

one station involving a physical ramp, the remainder of the stations provided the 

necessary information for students to engage with them readily. Ethan specifically chose 

tasks that could “translate well,” or be easily adapted to, remote learning after his district 

shifted from hybrid learning to fully remote instruction. Though his task required 

students to collect data by bouncing elastic balls, another MMR teacher had already 

recorded videos that students could watch to take measurements instead. Ethan 

considered himself fortunate to be provided with some materials that had already been 

adapted by other MMR teachers for remote and hybrid learning. 

Teachers Promote Active Student Engagement. Table 16 shows that the 8 

participants teaching the MMR course emphasized active student engagement as a 

motivator for selecting tasks to use with their students. Beth, Cathy, Henry, and Gwen 

specifically stated that they preferred engaging students using mathematical tasks as 

opposed to lecturing. For example, Beth desires “interactive and hands-on” lessons 

because she wants students to be “interested online rather than being lectured to.” 

Similarly, Cathy, Debbie, Ethan, and Fred chose “hands-on” tasks to engage their 

students in seeing, feeling, and experiencing the mathematics for themselves. Debbie, 

who is also a science teacher, uses “a lot of hands-on stuff, especially at the beginning. 

So, it’s exploration that they [students] can touch in some way… something where they 

can do some form of an experiment,” as she does when teaching science. Ethan tries to 
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incorporate more “hands-on” learning, group projects, and tasks in his other mathematics 

classes in addition to MMR. 

 

Table 16 

Teachers Promote Active Student Engagement 

Teacher Supporting Interview Quotation 

Adam We're project based where we're constantly doing activities and 
talking through and doing fun things. 

Beth We designed lessons that were very interactive and hands on. So, 
because we want them [students] to be interested online instead of 
just being lectured to. 

Cathy It's always been about engagement… If I can limit the amount time 
that I'm standing in the room yammering, putting kids to sleep, that 
would be lovely. 

Debbie I do a lot of hands-on stuff, especially at the beginning. So, it's 
exploration with something that they can touch in some way. 

Ethan I've tried to incorporate more hands-on learning and more group 
projects and more of this like, task idea, into my other classes. 

Fred I do a lot of investigation. 

Gwen If appropriate, tasks and activities should engage all students, not 
just the ones who “get it” already.  

Henry The less talking I do, the better, I always feel. 

Isabel I feel like it [modeling activities] makes it much more fun and 
enjoyable for the class period, as opposed to just sitting and 
learning and doing notes and doing a practice worksheet and taking 
a quiz and all of this. 
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The 8 MMR teachers chose tasks encouraging student exploration throughout the 

year. Beth, Cathy, and Gwen select tasks that intentionally “scaffold” students from one 

question or idea to the next. For these teachers, such tasks should be somewhat self-

guided for students and allow them to progress independently or in groups by providing 

guidance but not “spelling it out,” according to Beth. In Gwen’s words, the task “tells 

them [students] what to do but doesn’t tell them what to do.” The task “tells them what to 

do” by offering instructions and directions but “doesn’t tell them what to do” in terms of 

the specific mathematical processes and procedures they should use to solve a given 

problem or produce an expected result. This is evident in the tasks these three teachers 

chose for the purpose of this study: for example, Cathy’s “StarburstsTM Grab” task guides 

students through an exploration relating hand size to the number of candies that can be 

grabbed by prompting students to consider relevant variables, to decide how they might 

be related, to collect data to provide evidence of this relationship, and to draw 

conclusions from the results. However, the task does not specify which variables to 

choose, how to measure them, or what type of model will best describe the potential 

relationship (though the placement of the task in the curricular materials suggests that a 

linear relationship is expected). 

 Several teachers mentioned that the ideal task is accessible in addition to being 

engaging. Gwen prefers to use tasks that she thinks engage all students, not just the ones 

who “get it,” believing that such tasks should be “approachable” even for students with 

low mathematical self-efficacy and those with limited background knowledge. “For those 

students especially, tasks should make them feel comfortable enough to start.” Gwen 
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called such tasks “low-floor, high ceiling” tasks, meaning that they allow for “multiple 

entry points” and are accessible for students but also contain rich mathematics. Beth’s 

description included tasks that allow students to brainstorm and “get their feet wet with 

the material” initially as a means of being accessible to many students. She selects tasks 

that ideally provide “some place that the kids could start,” aligning with Gwen’s notion 

of “low-floor, high ceiling” tasks. 

Teachers Address Important Mathematics Content, Skills, and Processes. 

The 9 participating teachers highlighted aspects of their selected tasks that they felt were 

important for students to learn. Supporting evidence for this theme is displayed in Table 

17. For some of them, the mathematics content was important. The three teachers who 

used the “Follow the Bouncing Ball” task, Debbie, Ethan, and Fred, desired for their 

students to understand the meaning of a functional relationship relating a dependent 

variable and its associated independent variable. Adam, Ethan, Henry, and Gwen 

explained that they might use each of their tasks in other courses, such as Algebra 2, 

because the mathematics content was relevant. 

More so than the mathematics content, the teachers addressed mathematical skills 

and processes that are important for their students to learn through the tasks they chose. 

Cathy prioritized supporting students’ ability to make predictions, whereas Gwen and 

Henry aimed to enhance students’ ability to think critically about mathematical situations 

and solve problems. Debbie felt the strongest about the use of data to inform students’ 

decision-making. Cathy and Fred stressed the importance of learning to use Excel 

spreadsheets, but Debbie and Ethan explained that the time to learn technology-specific 
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skills may interfere with the mathematics. Instead, they made adaptations so that their 

students might still learn to work with data using more intuitive technology. 

 

Table 17 

Teachers Address Important Mathematics Content, Skills, and Processes 

Teacher Supporting Interview Quotation 

Adam It’s [the task is] dealing with converting measurements as well… I would 
use this in any of the really, Algebra 1-type classes. 

Beth It's important that they [the students] understand what slope really is. 

Cathy Another thing I always like to try to build into activities I make myself, 
that aren't always there in textbook activities, is predict first. 

Debbie I want to make sure that they [the students] are being challenged into 
thinking, “how can they support their reasoning, especially with data?” I 
think we overlook that in math a lot. 

Ethan It's a good task to get kids to kind of get the idea of this functional 
relationship. 

Fred I don't need them to do symbolic manipulation. The mathematics that I 
need them to do is to think about “What does this mean?” 

Gwen It’s [the task is] realistic. They [students] may not need to calculate slope 
in the future, but they will need to be able to approach real-world problems 
and think critically through them. 

Henry I want them [the students] to know some material. But I think it's more 
important that when they leave, they're able to think and process problems 
through problem solving. 

Isabel In this one [the education and income task] they [the students] actually had 
to run a regression… the last one [the avocado task] had just been like 
approximate using their line of best fit. 
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Teachers Make Connections to Real-World Contexts. Of the 9 participating 

teachers, 8 chose tasks that allowed students to connect mathematics to authentic, real-

world contexts. The only teacher whose task had no real-world component was Henry, 

though he discussed the topic during our interviews. Conversely, Fred did not voice his 

thoughts about real-world applications despite choosing such a task, as shown in Table 

18. Adam, Beth, Ethan, Gwen, and Isabel explained how the tasks they selected were 

relevant to students’ lives. By having her students visualize slope in different ways, Beth 

hoped that her students would recognize and think about it when they encounter stairs, 

hills, and other real-life objects in the world around them. “A lot of these students that are 

in my class haven’t seen how math affects their daily lives,” Ethan speculated, hoping 

that his students might realize the relevance of mathematics through various MMR tasks.  

Cathy, Gwen, Henry, and Isabel suggested that using tasks with meaningful real-

world applications enhances students’ engagement and involvement. Isabel replaced a 

linear regression activity with the “Fitting a Line to Data - Earnings and Educational 

Attainment” (United States Census Bureau, 2021) task because the former involved 

restaurants and avocados, far less pertinent to students than their future education, 

careers, and financial statuses. Adam recognized that many of his students may someday 

be involved in buying or renovating houses and that some of the real-world knowledge 

that they discovered through the task might be beneficial for them later in life. 
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Table 18 

Teachers Make Connections to Real-World Contexts 

Teacher Supporting Interview Quotation 

Adam I have not yet heard the question, and I get it frequently, “When am 
I going to ever use this [math] again?” It has been taken completely 
out of the equation [in MMR]. 

Beth One reason that our kids struggle so much, especially in Algebra 2, 
with math, is they don't see anything outside the math classroom. 
And I'm not sure a lot of math teachers do, either. 

Cathy It's not just mindless numbers, it's actual stuff… so it keeps their 
[students’] interests. 

Debbie I've always done that [student exploration] from year 1. But I think 
even more so now, where I’m tying it more to a task for a real 
situation beyond just exploring patterns. 

Ethan I feel like a lot of these students that are in my [MMR] class haven't 
seen how math affects their daily lives… They just don't see the 
importance of it whatsoever. And I think when they can see that 
connection, it encourages them to do that much more, and to do that 
much better. 

Gwen The ramps task connects math content to a real-world problem. 

Henry The more we can do where it’s not just something abstract. Where 
they're [students are] actually touching something or seeing 
something real-world or a little more real-world, the more they're 
into it, the more they're involved, and the more they think. 

Isabel What's better about this one [task] is that it's actually something that 
they [students] care about. It’s relevant. 
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Teachers Consider Past Success. As shown in Table 19, 6 of the teachers 

consider the past success that either they have experienced with a task, or, in Adam’s 

case, the success that other MMR teachers report in their regular meetings. Beth, Debbie, 

and Ethan expressed that each of their tasks were successful in the previous school year 

for various reasons. Though Debbie was absent for a surgery and the “Follow the 

Bouncing Ball” task was implemented by a substitute teacher in 2019–2020, she learned 

afterward that her students “loved” the task and enjoyed it. Both Debbie and Ethan chose 

to reuse the task for the 2020–2021 academic year because the data collection procedures 

were simple and the linear relationship among the data was clear. According to Debbie, 

such data helps students to develop knowledge about linear relationships that might not 

be as evident with “roughly linear” data where the relationship appears to be “forced.” 

Beth and Fred have used each of their respective tasks more than once in the past with 

success, making the use of each task a natural choice, especially considering the 

additional challenges imposed by the COVID-19 pandemic. The use of familiar tasks 

allows teachers to concentrate on other aspects of their instruction aside from content and 

pedagogy. 

 Unlike the other teachers, Adam expressed careful consideration of tasks that 

have been successful with other MMR teachers during the school year. With each teacher 

at a different pace, it should be expected that some teachers progressed more quickly than 

others through the MMR course. This was likely amplified by the fact that the MMR 

teachers were allowed more flexibility when choosing which tasks they would use due to 

the restrictions of the COVID-19 pandemic, leading some to advance through the 
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materials more quickly based on which tasks they kept and which they skipped. At each 

of their regularly scheduled meetings with ODE, Adam took note of tasks that had been 

successful with other teachers and which had not, influencing his decisions when 

selecting tasks for his own classroom. Adam may not be the only MMR teacher who does 

this; naturally, teachers may be more inclined to select tasks that have been successful 

with others than those that have not. 

 

Table 19 

Teachers Consider Past Success 

Teacher Supporting Interview Quotation 

Adam We talk about lessons that are successful, what lessons they [MMR 
teachers] avoided. And then I sit back, and I make assessments: 
“Okay, should I even try this?” 

Beth This is the third time I've done it [“Discovering Slope”] and it 
works beautifully. 

Debbie I love this one [“Follow the Bouncing Ball”]. Last year when I did 
it, they [the students] loved this one. 

Ethan I think back to what worked well last year and what didn't… I 
remember, this activity was a really good activity. 

Fred I have a lot of experience doing it [“Follow the Bouncing Ball”. So, 
I facilitated it over the years and developed it, I think a lot, over the 
years. 

Gwen I had to modify it [“Ramp It Up”] quite a bit last year. But having 
experience with most of last year’s tasks, I am now reflecting on 
last year’s ahead of implementation with the current class. 
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Summary of Phase 1: Task Selection Findings. Within the task selection phase, 

Phase 1, the MMR teachers selected tasks that fit the design and goals of the course. The 

themes involving active student engagement, mathematics content, skills, and processes, 

and connections to real-world contexts are evidence of this: as a course in mathematical 

modeling, the inclusion of tasks with genuine and interesting real-world contexts is an 

integral part of the course. Similarly, the PD for MMR teachers focused on student-

centered pedagogy, including the use of group work, collaboration, and problem-solving 

with open-ended tasks. Though the scope and sequence of the MMR course activities had 

been prescribed by the Ohio Department of Education (ODE), the MMR teachers were 

allowed more flexibility in choosing which tasks they would select for instructional use 

and which they would not because of the COVID-19 pandemic. Unlike a typical year, in 

which the teachers would be expected to implement all the tasks, these 8 MMR teachers 

selected tasks that they thought might work best in their specific environment (e.g., face-

to-face, remote, or hybrid). The teachers also used their knowledge and prior experience 

with the course to determine which tasks might be effective in their COVID-19 

environments and which might be more difficult to implement, given the unprecedented 

teaching environments they were put in. Those teachers who were new to teaching MMR 

considered the expertise of others who had already tested some of the activities in their 

own classrooms. 

The Emergent Themes for Task Planning 

The emergent themes for task planning are presented and described in Table 20. 

These themes answer the second part of research question 1, referring to teachers’ task 
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planning and reasons for doing so: (a) teachers are flexible; (b) teachers consider goals 

and objectives; (c) teachers are faithful to the provided MMR lesson plans; (d) teachers 

anticipate challenges and student responses; and (e) teachers adjust for face-to-face, 

remote, and hybrid learning formats. The following paragraphs include a synopsis of how 

various teachers exemplified each theme. 

 

Table 20 

The Emergent Themes for Task Planning 

Theme Description 

Teachers are flexible.  Teachers adapt their plans daily. 

 Teachers allow students to drive the length of 
tasks. 

Teachers consider goals and 
objectives. 

 Teachers modify tasks based on learning 
goals. 

 Teachers anticipate how they will help 
students meet their goals. 
 

Teachers are faithful to the 
provided MMR lesson plans. 

 Teachers follow MMR lesson plans closely. 

 Some teachers deviated from lesson plans 
more than others.  

Teachers anticipate challenges 
and student responses. 

 Teachers predicted difficulties with 
mathematics content. 

 Teachers considered how they might respond 
and question their students. 

Teachers adjust for face-to-
face, remote, and hybrid 
learning formats. 

 Teachers converted handouts into 
collaborative slideshows. 

 Teachers provided safe data collection 
procedures in face-to-face settings. 
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Teachers Are Flexible. As shown in Table 21, 7 of the teachers expressed 

flexibility when planning their instruction. Adam, Cathy, Debbie, Ethan, and Gwen 

modify their plans daily, depending on how a task unfolds on a given day. Though Gwen 

plans her lessons for the “big picture,” including an entire unit at a time, she adjusts her 

plans according to how her students progress each day. Ethan, on the other hand, has 

been “burned one too many times” with planning too far in advance, inspiring him to plan 

smaller sections at a time and adapt as necessary. Debbie provided a specific example: 

she considered using Part 2 of “Follow the Bouncing Ball” if her students “flew through” 

Part 1 and they had extra time. Similarly, Cathy considered having her students collect 

data on Day 1 of the “StarburstsTM Grab” task if they finished their preliminary 

discussions early. 

Ethan and Henry commented specifically on flexibility with struggling students, 

each confident that slowing down and taking the time to support them was worth it. Ethan 

will not move on from one task to another if his students have not completed it; he would 

rather exceed the number of days he planned for the completion of a task so that his 

students are not forced to move on without sufficient understanding. Similarly, Henry 

will “go that extra day” because he sees no point in rushing through a task if his students 

develop only a surface-level understanding. 
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Table 21 

Teachers Are Flexible 

Teacher Supporting Interview Quotation 

Adam We're at a point to where we've done it [remote teaching] so many 
weeks now… You just go with the flow. 

Cathy If they [the students] finish early, I can always have them start 
gathering data. 

Debbie If they [the students] just really fly through this, which I don't think 
they will, but if they do, then I might do some modified version of 
the second part. 

Ethan I'm a big fan of slowing down when kids are struggling, and so I 
have this planned out for what I think it's going to look like 
tomorrow, but if we don't get through it all, then I'm going to pick 
up where I left off on Monday. 

Fred I guess since I've done this activity a lot, I feel real comfortable 
varying it a little bit. 

Gwen I modify my plans on a daily basis, but always keep my end goals 
and outcomes in mind. 

Henry If I have to go that extra day, I'm going to go that extra day 
because, had I not gone back over some of that stuff, then what was 
the point of doing it anyhow?... You just got to be flexible. 

 

Teachers Consider Goals and Objectives. Beth was the only teacher who did 

not mention a goal or objective that she either (a) considered generally when planning or 

(b) made a specific adjustment to a task to address, as shown in Table 22. Adam, Gwen, 

and Isabel communicated their general attention to standards and objectives when 

planning: Adam referred to the MMR lesson plans, which include the CCSSM Standards 
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for Mathematical Practice (NGA & CCSSO, 2010) that are addressed for each Context. 

The lesson plans also include objectives established by ODE. Gwen’s reference to 

“standards and objectives” was ambiguous and she did not specify which standards she 

referred to, though it is possible that she was also attentive to those provided in the MMR 

lesson plans. Isabel’s use of the word “standards” is different, but also unclear; however, 

she may have been referring to Ohio’s Learning Standards for Mathematics because these 

standards are relevant to high school Algebra 1. 

Debbie, Ethan, Fred, Gwen, Henry, and Isabel modified each of their tasks to 

better address their own goals and objectives for their students. For Debbie and Ethan, 

this involved the use of technology, as each expressed that the focus on the mathematics 

may be lost if technology became the focus of the task. Debbie chose to use Data 

Classroom rather than Excel because it was more intuitive, whereas Ethan provided data 

tables for his students so that they could spend more time focused on the mathematics 

than on how they should present their data. Gwen removed the first page from the 

“Discovering Slope” handout (not the task I observed, but still important to mention) 

because she wanted her students to ask for information rather than providing it herself. 

Fred and Isabel added questions to each of their task handouts, prompting students to 

interpret the meaning of the slopes and y-intercepts in their regression models. Similarly, 

Henry created and posed an additional problem that was not originally part of his task to 

verify that his students possessed an understanding of the mathematics involved. Cathy, 

on the other hand, realized after the implementation of the “StarburstsTM Grab” task that 

she meant to revise the “yes or no” questions on the MMR handout. 
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Table 22 

Teachers Consider Goals and Objectives 

Teacher Supporting Interview Quotation 

Adam I pull up… the lesson plan, and I see it's pretty detailed in terms of 
the goals and objectives that the lesson is intending to achieve. 

Cathy We’re in a technological world. Are we wasting our time making 
them find the equation anyway? I mean, are they going to have a 
computer that can make the equation for them? 

Debbie There's a Part 2 that I think kind of deviates from the original goals 
of what are described there [in the MMR lesson plan]. And it seems 
to go off in another direction. 

Ethan I know that they [ODE] wanted to really stress the spreadsheets and 
like, the Excel stuff, and I'm like, “We could do it, but that's going 
to take another day or two of just talking technology as opposed to 
getting at the math behind it.” 

Fred I do want everybody to sort of become well versed in the 
spreadsheet use… I really would like everyone to do a spreadsheet. 

Gwen I have a general understanding of what will be covered, what tasks 
and materials I will use throughout the unit, and what standards and 
objectives the students will be expected to master. 

Henry I was like, “Well, how can I extend this even beyond what they're 
doing and also make sure they're showing me that they really 
understand how to get the equations for the lines?” So, I came up 
with that problem. 

Isabel Describing or interpreting the slope, intercept, and the correlation 
coefficient, I just thought that was useful because that's something 
that is in our standards that we talk about multiple times… So that 
was something I felt was important that needed to be added that 
wasn't in the original [task]. 
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Teachers Are Faithful to the Provided MMR Lesson Plans. Though some 

teachers communicated a greater dependence than others, 6 of the 8 MMR teachers 

referenced the lesson plans provided by ODE to some degree. A sample quote for each is 

listed in Table 23. Of the 6 teachers, the 2 teaching MMR for the first time (Adam and 

Cathy) conveyed the greatest reliance and fidelity to the provided lesson plans. Adam 

explained, “I have to go through that [the MMR lesson plan] and see what’s required of 

me and what’s something that I should leave in the hands of the students,” using the 

MMR lesson plans to influence his role as the teacher and the role of his students. 

Cathy’s statement, “I try to stay true to it [the lesson plan], whatever they [ODE] want the 

lesson to look like” indicates her desire to implement each lesson in the way that ODE 

expects it to be implemented. She also attributed the lack of a “good enough post-

discussion” in the MMR lesson plan as one of the reasons that she did not conclude the 

task with a whole-class discussion, suggesting even an overreliance on the materials. 

Beth, Debbie, Ethan, and Fred, teachers with more experience teaching the MMR 

course, made mention of the provided lesson plans but did not reveal the same level of 

reliance as Adam and Cathy. Alternatively, Debbie and Fred indicated some level of 

comfort in deviating from the prescribed MMR instructional procedures. Debbie felt that 

some of the prompts on the “Follow the Bouncing Ball” handout were unnecessary and 

that she could lead her students toward these ideas through discussion; for example, she 

explained that her students “don’t need all those words there” defining and telling them to 

use rebound height as one of the variables they would measure. However, she recognized 

that such suggestions were meant to “help with the implementation, so the task does what 
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it’s supposed to do.” Likewise, Fred’s years of experience have made him “comfortable” 

adjusting the “Follow the Bouncing Ball” task in ways that other MMR teachers might 

not be, though he also noted that ODE was “shooting for consistency” with the tasks 

because they would typically have collected data on the course implementation if not for 

the COVID-19 pandemic. 

 

Table 23 

Teachers Are Faithful to the Provided MMR Lesson Plans 

Teacher Supporting Interview Quotation 

Adam If they [the MMR lesson plans] suggest any kind of things that I 
should focus on before the lesson, any videos that they think I 
should watch to kind of help me strengthen the lesson or certain 
things that I need to do on certain days, I need to make sure that I'm 
doing those. 

Beth It wasn't much to plan; I feel like I hardly planned it at all. But they 
[ODE] really did a lot of the background work. 

Cathy With MMR, it has been a matter of pulling up the PDF of the lesson 
plan and looking at what they [ODE] suggest and I try to stay true 
to it, whatever they want the lesson to look like. 

Debbie I think that I can get them [the students] to identify rebound height 
through discussion, but they don't need all those words there. 

Ethan I look at the lesson plan and I look at the different objectives and 
what the tasks are doing. And I try and recall what we did last year 
and see if there's any changes. 

Fred I was going to rewrite that part [Part 2 of “Follow the Bouncing 
Ball”]. I don't know if the state [ODE] really wants me to do that. 
They're shooting for consistency. 
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Teachers Anticipate Challenges and Student Responses. The 8 MMR teachers 

anticipated various challenges as they planned their instruction, shown in Table 24. Beth, 

Debbie, Fred, and Gwen expected that their students might struggle with the mathematics 

content to some degree: Beth’s concern was with interpreting decimal fractions (e.g., 1.5) 

as a “rise over run” when thinking about slope; Debbie thought that her students would 

need support to develop an understanding of what their linear regression models 

represented how they could be used to make predictions; Fred considered spending 

additional time discussing the meaning of a functional relationship; and Gwen anticipated 

difficulty recalling the Pythagorean Theorem and prior knowledge of similar triangles. 

Several teachers anticipated potential student responses and how they might react: Beth, 

Ethan, and Isabel were confident in their ability to ask questions that might help lead 

students toward solving problems on their own. Adam, Beth, and Ethan specifically 

voiced their concern with maintaining student engagement in remote settings: Adam’s 

worry was helping his remote students visualize his classroom space, whereas Beth and 

Ethan foresaw issues with maintaining students’ interest and engagement when learning 

online. 
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Table 24 

Teachers Anticipate Challenges and Student Responses 

Teacher Supporting Interview Quotation 

Adam This assignment has to deal with something that's in the classroom 
that they're not physically in. So how can I help them see the 
classroom and apply it to their parts so that they can actually really 
be engaged in it? 

Beth They [students] will think of three halves, for example, as 1.5 
instead of the “rise over run.” Well, for that one I would just say, 
“What does a slope of three halves mean?” 

Cathy I were the students, other than measuring the size of your hand… 
what could possibly be relevant?... I'm not sure that they'll come up 
with more than one way to measure it. 

Debbie Where they [the students] will struggle is just, “What does this 
regression mean? I'm clicking a button and this equation is 
appearing. What is this?” I think it’s just going to take some 
practice in understanding what that's really representing. 

Ethan Now that we're getting into more “mathy” stuff, stuff that they're 
struggling with, a little bit more stuff that's harder to do in an online 
environment, it's tough to keep them [the students] engaged and 
excited about what they're doing. 

Fred I anticipate having to discuss what it means, a functional 
relationship, that whole notion… I'm using sort of high vocabulary, 
but I want to make sure that I say it's if I do something, something 
else happens. 

Gwen They [the students] will probably have little-to-no recollection of 
Pythagorean Theorem or similar triangles. 

Henry I think about what questions I want to ask to get the students 
thinking…but I also think about what questions I expect from the 
students and how I'm going to reply to those questions. 
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Teachers Adjust for Face-to-Face, Remote, and Hybrid Learning Formats. 

As shown in Table 25, 6 of the 9 teachers discussed their adjustments and considerations 

for teaching in various learning environments (e.g., face-to-face, remote, and hybrid 

formats). The 2020–2021 year challenged teachers to establish safe learning conditions 

for students learning face-to-face with the spread of COVID-19, including the use of face 

masks, social distancing, and enhanced sanitation of school supplies and materials. 

Teachers also faced the numerous adjustments to online learning and balancing between 

groups of face-to-face and remote learners. These unprecedented obstacles required 

teachers to plan their instruction and their use of tasks accordingly to promote student 

learning.  

Of the hybrid teachers, Cathy, Debbie, and Fred discussed ways in which they 

modified their tasks to make them safe for face-to-face learning. Cathy and Debbie took 

precautions with data collection involving StarburstTM candies and bouncing balls to 

prevent germs from spreading. Fred used instructional videos so that his students could 

watch balls bouncing in slow motion and record measurements. These three teachers 

planned for their students to work individually, rather than in groups as suggested in the 

MMR lesson plans so that their students would be less likely to spread germs. Debbie 

used Padlet as an alternative to sticky notes for her students to gather and organize their 

thoughts.  

Adam, Beth, Cathy, and Ethan adjusted their tasks to be suitable for remote 

learning: Beth and Ethan adapted the MMR handouts for each of their tasks using 

technology such as Pear Deck and Google Slides. Both technologies allow teachers to 
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view student work in real-time so they teachers can facilitate and provide feedback when 

appropriate. Adam discussed his desire to make the necessary tools and resources 

available to his online students, whereas Cathy explained her difficulty with making data 

collection “meaningful” because her online students would not be able to grab candy 

from the bowls that were used in class, so she designed an additional handout with 

questions for them to explore. 

 

Table 25 

Teachers Adjust for Face-to-Face, Remote, and Hybrid Learning Formats 

Teacher Supporting Interview Quotation 

Adam Is this something that they [the students] literally can't do without the 
supplies? So, I need to make sure that I could make it available for the 
students that are at home. 

Beth With Peardeck, I can see exactly what they [the students] are doing in real 
time. 

Cathy The one thing I don't like about this one [task]… I really just can't make the 
data gathering piece for the kids at home meaningful. 

Debbie Part of the rationale for that [Padlet] was the old-fashioned way [pre-
COVID] might be just making a list on the board and or maybe just taking 
post-its, but they [the students] can't grab the posts and reorganize them 
because they can't share stuff. 

Ethan How could I take something that is supposed to be hands-on and make it into 
a virtual task? That's been my biggest challenge this year. 

Fred They [ODE] have actually been asking for ways people have been changing 
it [the task] to help it be virtual and also be safe with COVID and all those 
things… that it's social distancing for COVID and also making it accessible 
for online people. 
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Summary of Phase 2: Task Planning Findings. The MMR teachers planned 

their instruction according to the lesson plans that they had been provided by ODE, 

including the recommended instructional practices and pedagogy (i.e., having students 

brainstorm ideas, facilitating whole-class discussions, and asking questions rather than 

providing information). However, teachers with more experience with the MMR course 

or with a particular task tended to adapt and modify their tasks more so than others. Much 

of teachers’ planning involved anticipating how a task might play out in the classroom 

and what instructional moves to make to support students’ learning. The fall of 2020 

presented teachers with new obstacles to overcome because of the COVID-19 pandemic, 

as many teachers had to find ways to implement their tasks safely in face-to-face settings 

and in remote settings. As they might in a typical setting, they also considered how their 

students might respond to a task and how they could answer students’ questions or 

provide support to those who might struggle. Throughout the process, teachers were 

flexible and allowed their students to guide the length and direction of a task to some 

degree. 

The Emergent Themes for Task Setup 

The emergent themes for task setup are presented and described in Table 26. 

These themes answer the third part of research question 1, referring to teachers’ task 

setup and reasons for doing so: (a) teachers ask, “What do you notice?” and “What do 

you wonder?” (b) teachers facilitate whole-class discussions before student work time; 

and (c) teachers communicate their expectations. These themes are discussed in the 

following paragraphs. 
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Table 26 

The Emergent Themes for Task Setup 

Theme Description 

Teachers ask, “What do you 
notice?” and “What do you 
wonder?” 

 Students made observations and posed 
questions about real-world scenarios. 

 Students brainstormed ideas. 

Teachers facilitate whole-class 
discussions before student work 
time. 

 Teachers led discussions involving real-
world scenarios. 

 Students identified independent and 
dependent variables to explore. 

Teachers communicate their 
expectations. 

 Teachers communicated classroom norms 
and expected behaviors. 

 Teachers set the tone for students’ 
engagement with tasks. 

 

Teachers Ask, “What Do You Notice?” and “What Do You Wonder?” Of the 

8 MMR teachers, 6 of their tasks incorporated some aspect of the “What do you notice? 

What do you wonder?” routine, though not all of them used this exact language. Those 

who did not, however, included a similar brainstorming phase within task setup. Shown 

in Table 27, 5 of these teachers discussed this aspect of task setup during their interviews; 

Fred used the same task as Debbie and Ethan and included a brainstorming intro but did 

not provide a supporting interview quotation to document here. 
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Table 27 

Teachers Ask, “What do you Notice?” and “What do you Wonder?” 

Teacher Supporting Interview Quotation 

Adam When we came back, I'm like, “So did you watch the video? Let's 
go through it, what questions do you have? What did you notice? 
What did you wonder?” 

Cathy I like that we start with the “What do you notice? What do you 
wonder?” quite a lot. I’ve been using that for the last couple of 
years. 

Debbie Towards of beginning of a unit, I kind of like that to be more of an 
exploration stage and I like the “notice and wonder” type of thing. 

Ethan Jamboard works pretty well… They [the students] were really 
good… at putting posts up and saying, “What do you notice? What 
do you wonder?” 

Gwen The task starts with making observations, what they [the students] 
notice and wonder about a ramp, and making decisions on what 
they can do with that information. 

 

Debbie, Ethan, and Fred introduced their task with a video of the 1965 Super Ball 

commercial. Rather than using a video, Cathy’s students made conjectures about a bowl 

of candy that she presented at the front of the classroom whereas Gwen took her students 

to the location of a ramp in their school building. Adam’s students discussed what they 

noticed and what they wondered about their physical classroom environment, though it 

was not observed by the researchers. In each case, the video or object served as a means 

of generating student discussion focusing on the context of each task. Such discussions 
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transitioned into conversations about relevant independent and dependent variables that 

might be explored in each task, extending from and including students’ ideas. 

Beth, Henry, and Isabel did not include a preliminary brainstorming session. 

Though Beth and Henry are familiar with the “What do you notice? What do you 

wonder?” routine through their experience teaching MMR, both teachers set their 

students to work on their respective tasks without conducting a full-class discussion. 

Neither explained their reasoning for this decision, but perhaps it was because the MMR 

lesson plans did not call for such discussions before each task, or because neither task 

centered around a real-world context. Alternatively, the lesson plans for the other tasks 

included a brainstorming segment and each task involved a real-world project or 

experiment. 

 Teachers Facilitate Whole-Class Discussions Before Student Work Time. The 

8 MMR teachers regularly facilitate whole-class discussions before allowing their 

students to engage with tasks independently or in groups. Table 28 provides interview 

quotations for each of the 6 teachers whose observed tasks involved an initial whole-class 

discussion. Though Beth and Henry’s observed tasks did not include a preliminary 

discussion, both teachers explained how this was a common practice; Beth’s tasks 

“always have a discussion point,” she said.  
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Table 28 

Teachers Facilitate Whole-Class Discussions Before Student Work Time 

Teacher Supporting Interview Quotation 

Adam We talked about surface area and how to find it for a rectangle. I 
had them [the students] guess and do like a high, low type of thing: 
what's the absolute low that this can be? What's the absolute high? 
And then put your educated guess in the middle. 

Cathy I liked having the ability, even though I guided it more than I 
should have, to go back then through their list and say this one we'll 
control. This one is going to be constant. 

Debbie It helps to have that little video clip first with the Super Ball. They 
[the students] were really interested in that. 

Ethan They [the students] did do a good job of going through the “What 
do you notice? What do you wonder?” And eventually we rounded 
it out towards, “What attributes can you measure, and which ones 
do we think…” so like guiding them back to, “Let's talk about drop 
height versus rebound height.” 

Fred I thought that at first, the discussion went pretty well. I thought 
what they [the students] were suggesting as, what would affect the 
bounce and what would not affect the bounce, were right on. 

Gwen Researcher: did you plan to ask those questions about ramps? 

Gwen: I did, because I think it's important to know internally what 
the students know or where their preconceptions are before you 
dive into something like that. 

 

The 6 teachers included in Table 28 led discussions focusing on (a) mathematics 

content, (b) variables of interest to explore, and (c) the real-world components of the 

tasks. Regarding mathematics content, Adam’s class “talked about surface area and how 
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to find it for a rectangle,” whereas Beth opened a discussion by asking her students what 

they remembered about slope. Cathy, Debbie, Ethan, and Fred’s tasks involved collecting 

data; therefore, their initial discussions focused on determining appropriate variables and 

how they could be measured. In terms of nonmathematical discussions, Adam and his 

students discussed the dropped ceiling in their classroom, whereas other classes focused 

on 1965 Super Balls and ramps in real life. 

 Teachers Communicate Their Expectations. The four teachers displayed in 

Table 29 communicated their expectations for students before they engaged with the 

tasks. Though Beth’s task did not have a pronounced setup phase, she frequently provides 

the expectation for her students to communicate their answers verbally, similar to the 

expectation that Gwen set for her students during task setup. In addition, Beth regularly 

requires that all her students participate actively with their group members and 

collaborate. Adam required his students to thoroughly document the evidence that they 

incorporated into their group presentations, including calculations, diagrams, and costs 

associated with various aspects of their remodeled classrooms. He placed particular 

emphasis on the task rubric that was provided with the MMR materials, referencing 

students back to it when they had questions and needed additional clarification. Because 

Isabel’s task differed from what her students were accustomed to, she briefly explained 

her desire for correct answers and for her students to check in with her regularly 

throughout their engagement with the task. 
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Table 29 

Teachers Communicate Their Expectations 

Teacher Supporting Interview Quotation 

Adam Day 1 is always about introducing the handout… Giving them the 
rubric and going through the rubric in detail, letting them know 
exactly, “These are the markers, and this is what's expected of you.” 

Beth On the Google slides, I had just reminders, my expectations… the 
expectations that all students are participating… Everybody’s 
speaking, everybody's working, they're on the same problem at the 
same time. 

Gwen Researcher: You said for the students to verbalize how they 
approached each problem as they were working. Is that one of your 
expectations for them? 

Gwen: Yes. I can't fully grasp what they're thinking by just looking 
at what they have on the paper. They need to be able to, using that 
word verbalize, not just to read what they have but to… fully show 
and represent that they understand it. 

Isabel I explained to them [the students] how it's just an activity… I'm 
expecting them, though, to do the activity correctly. There are right 
and wrong answers, and I don't let them turn it in with wrong 
answers. 

 

Summary of Phase 3: Task Setup Findings. The MMR teachers in particular set 

up their tasks according to the lesson plans provided by ODE. They included the 

suggested brainstorming segments and facilitated whole-class discussions about both the 

real-world contexts and the mathematics involved with each task, specifically focusing on 

determining variables that students might explore. Many of the teachers set expectations 
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for their students’ engagement with the tasks, such as expectations for group work and 

collaboration and for written and verbal reasoning.  

The Emergent Themes for Task Implementation 

The emergent themes for task implementation are presented and described in 

Table 30. These themes answer the last part of research question 1, referring to teachers’ 

task implementation and reasons for doing so: (a) teachers encourage productive struggle, 

(b) teachers elicit evidence of students’ thinking and reasoning, (c) teachers monitor and 

facilitate student engagement, (d) teachers ask questions, and (e) teachers provide 

instructional support. The following paragraphs describe how the teachers demonstrate 

each theme. 

 Teachers Encourage Productive Struggle. As shown in Table 31, the teachers 

in the present study expressed their belief in productive struggle, that is, challenging their 

students solve mathematical problems without providing direct guidance and worked-out 

examples during instruction. Debbie acknowledged the “danger” of “doing all the 

thinking for the student,” recognizing that students learn more mathematics when they 

think for themselves. Adam and Beth noticed shifts in their instructional practices that 

they attributed to teaching the MMR course, realizing that they allowed their students 

more time to think on their own without intervening. Ethan and Gwen recognized that 

their tasks suggested pathways for students to follow but did not do the mathematical 

thinking and interpretation for them. Ethan facilitated his students’ engagement as they 

collected data and determined linear regression models but asked questions and prompted 

his students to make sense of the models they generated. Henry’s students directed the 
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mathematical discussions that took place in class as they solved graphing problems using 

Desmos, explaining their work and demonstrating it on the smartboard as he asked 

questions to guide their thinking. 

 

Table 30 

The Emergent Themes for Task Implementation 

Theme Description 

Teachers encourage 
productive struggle. 

 Teachers do not provide step-by-step 
procedures or direct guidance. 

 Teachers encourage students that mistakes are 
part of learning. 

Teachers elicit evidence of 
students’ thinking and 
reasoning. 

 Teachers require students to explain their 
answers verbally or in writing. 

 Teachers require documentation and evidence 
from data. 

Teachers monitor and 
facilitate student engagement. 

 Teachers listen to students’ conversations and 
provide comments. 

 Teachers intervene when appropriate. 

Teachers ask questions.  Teachers ask questions to direct students’ 
thinking. 

 Teachers ask questions to shift the thinking 
process back to the students. 

Teachers provide instructional 
support. 

 Teachers help students visualize aspects of 
their tasks. 

 Teachers prompt students to reevaluate their 
thinking. 
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Table 31 

Teachers Encourage Productive Struggle 

Teacher Supporting Interview Quotation 

Adam I'm finding myself not jumping in and saving them [the students] like I 
typically used to do… I want them to think something through and then 
give me an answer. 

Beth I liked that they [the students] were willing to do some productive 
struggle… They were really tolerant of me just asking them more questions 
and they didn’t give up. 

Cathy I would like them [the students] to struggle with that [measuring and 
collecting data] a little bit, not give it away too much. That's the hardest 
thing, is to not give away too much. Let them struggle. 

Debbie I think there's a danger of, you do all the thinking for the student and then 
they don't have the opportunity to struggle with it a little on their own… 
that’s a skill that we're really trying to build. 

Ethan Trying to figure out the best way to get them [the students] back to that 
point without just telling them the answer, I think that's one of the best 
things that good teachers do well. 

Fred I didn't teach them [the students] "how to do it" right before I gave it [the 
task] to them. I was giving them “just in time” help and asking them what 
they've done with it. 

Gwen It's important for me just to reiterate that they [the students] are not going to 
be learning through direct instruction. And to me, I think with this task, that 
was a really big goal. 

Henry I think it helps where they [the students] can make mistakes. And that's part 
of the whole process for this class, I think, is getting them comfortable to 
make mistakes. 

Isabel I keep trying to keep that [decline in cognitive demand] from happening… 
and not giving them [the students] too much. 
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An aspect of productive struggle is acknowledging that mistakes are part of the 

learning process. Adam, Ethan, and Henry embraced this philosophy, providing learning 

environments where mistakes were acceptable. They encouraged their students to try and 

praised them for their contributions. “I want them [the students] to be able to take a risk,” 

Adam explained. Similarly, Ethan acknowledged that “Failure doesn’t mean the end of 

the world, it just means you have to try again.” Henry encouraged one of his students 

who was hesitant to type an expression into Desmos that there was no penalty for 

incorrect attempts, that he could always “just erase it and try something else” if his first 

try was unsuccessful. “They can make mistakes, and that’s part of the whole process for 

this class [MMR],” Henry concluded. 

 Though many of the teachers challenged their students to grapple with 

mathematical concepts and ideas, not all their students were productive in doing so. 

Evidence from IQA scores shows that Adam, Cathy, and Gwen’s students did not engage 

students in high-level mathematical thinking and reasoning. Moreover, Cathy and Gwen 

seemed to notice this to some degree; Gwen acknowledged her students’ difficulty 

getting started, struggling to the point of being unproductive: “The two [students] that 

understand more from the beginning go. The other two just kind of stared… and kind of 

ignored me. They completely shut down.” Cathy felt that her students lacked the need to 

struggle with her task: “I don’t think they [the students] had enough to struggle, really… I 

don’t think there was much struggle left.” She attributed this, in part, to having a “good 

group” of students who had become familiar with the process of defining variables, 

collecting data, and interpreting the results. 
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 Teachers Elicit Evidence of Students’ Thinking and Reasoning. The 8 MMR 

teachers communicated a desire for their students to explain their thinking and reasoning 

and made instructional moves encouraging them to do so, as shown in Table 32. Teachers 

such as Beth, Gwen, and Henry emphasized their desire for students to communicate 

their thinking and their work verbally, whereas Debbie’s focus was on the use of data as 

evidence and Adam required documentation in the form of equations, costs, and even 

websites referenced. Beth explained that, for students, communicating their reasoning 

verbally is “much more difficult than just showing somebody” and “makes it 

[mathematics] more in depth than what they [the students] are used to doing.” Likewise, 

Henry feels that his students “aren’t there yet, if they can’t explain it.” Debbie provides 

as many opportunities as possible for her students to explain trends using data because 

“they don’t have a lot of skills in those areas” when they reach her class. 

  Adam expects students in all his classes to “show their work” because it helps 

him to evaluate their level of understanding. “If it [written work] shows me a pattern or a 

level of how you’re processing a question, that’s beneficial to me as your educator,” he 

explained. Similarly, Ethan expressed that student explanations help him to “understand 

why students answer the way they do,” which then guides his own thinking and future 

instruction. Ethan and Henry also believe that students can enhance each other’s 

mathematical understanding when they make their thinking visible to the whole class. To 

Ethan, it helps other students to realize what their classmate are thinking. For Henry, 

students come to the realization, “Oh, I hadn’t thought about that,” and become aware of 

ideas that might also “trigger” something in their own minds. 
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Table 32 

Teachers Elicit Evidence of Students’ Thinking and Reasoning 

Teacher Supporting Interview Quotation 

Adam Everything had to be detailed. You had to use a spreadsheet, had to 
show formulas. You had to show all of your logic and reasoning 
and you had to show data, pictures. 

Beth I'm trying to get them to explain it [students’ work] in words 
now…They have to think about how they can explain it using the 
right vocabulary that someone else could understand… It definitely 
makes it more in depth than what they're used to doing. 

Cathy I think it's describing their [students’] work that that is the biggest 
challenge for most of them still… it's a great skill to have. So, I'm 
glad we're pushing it with them. 

Debbie I'm kind of a stickler about this number 14, where it says use 
evidence from class data… they [the students] need to tell me 
specific things that they see from the data. 

Ethan I always felt like it's great to hear somebody explain their answer or 
say what their answer is. 

Fred Someone said, “It’s where the graph starts…” So, what do you 
mean by “starts” there? That’s what I was trying to get at. 

Gwen I can't fully grasp what they [students] are thinking by just looking 
at what they have on the paper… It's more about being able to 
reproduce something. You have to be able to explain what's going 
on as well. 

Henry I think having them explain makes them think more about it 
[mathematics] and then it makes them have some deeper thinking 
about what they're doing. 
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Adam stands out from the other teachers in terms of the evidence he expects his 

students to provide. With the “Remodeling Our Classroom” task, he prompted his 

students to provide evidence for their mathematical work, such as the calculations and 

conversions they used to determine the cost of paint to cover the classroom walls, when 

assigning the task (i.e., during task setup). During implementation, however, he placed 

significant emphasis on nonmathematical evidence, including accurate documentation for 

objects that students included in their remodeled classrooms (e.g., screenshots from the 

internet) and labor costs for removing chalkboards from the walls. His students were also 

expected to document the online resources and websites that they used to develop their 

proposals. Though Adam set the expectation for his students to provide mathematical 

evidence of their thinking and reasoning in their budget proposals, he did not follow 

through as his students worked in groups. Instead, he remained silent and rarely 

questioned his students as they worked. 

 Teachers Monitor and Facilitate Students’ Engagement. As shown in Table 

33, several of the teachers described their endeavor to monitor and facilitate their 

students’ engagement with the tasks. Adam, Beth, Ethan, and Henry expressed a similar 

pattern of closely observing their students’ group conversations and listening for 

instances where they struggled with a particular idea. Adam, Ethan, and Henry generally 

follow the same approach, allowing their students to progress on their own or in groups 

unless they see or hear something that causes them to pause; at this point, they either ask 

a question, provide a suggestion, or bring the whole class together to discuss the issue.  
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Table 33 

Teachers Monitor and Facilitate Students’ Engagement 

Teacher Supporting Interview Quotation 

Adam A lot of times I'm just simply observing. Sitting back, listening to 
the conversation and listening to what they're coming up with and 
possibly answering questions. 

Beth Once I saw that one group had graphed the point backwards, I 
started actively checking for that. 

Cathy They [the students] brainstormed some of the things that might 
impact the grabs. And then I just was flipping through their 
documents and writing down what they wrote… I get to see 
everybody's and they're all accountable. 

Ethan I'm going to bounce from group to group, and if they're all moving 
in the right direction, I’ll keep them going. 

Gwen I serve as a facilitator in all my classes, not just MMR. 

Henry I'll walk around and watch the kids and… if I see a pair that's really 
struggling, then we'll come back as a class and have other people 
bounce ideas around. 

 

For example, Beth noticed that some of her students were graphing ordered pairs 

(x, y) “backwards,” as if y was the horizontal axis and x was the vertical axis. After she 

detected and addressed this misconception, she began checking for this issue as she 

relocated from one breakout room to the next. Cathy described how she would typically 

walk around the classroom and observe students’ work and listen to their conversations 

but could not this year because of the COVID-19 pandemic. Ethan teaches remotely but 
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explained that his ability to facilitate groupwork is enhanced when he can listen to 

multiple groups from across the classroom and move to where he is needed. Without 

being in all the breakout rooms at once, it is more difficult for him to determine where 

students’ conversations are at any given point in time.  

Gwen was the only teacher to explain the practice of taking notes during class, 

recording her reflective observations as her students worked on problems in groups or 

individually. Gwen explained that taking notes was especially “useful” when she wants 

her students to present or share their work. “Student A might be at this point and Student 

B might be here; and you want to scaffold the order in which they’re sharing… not just 

whoever wants to share.” She believes that the order in which students share their work 

matters and that it is important for not only “the smart kid” to share. However, she did 

not express the particular ways in which she structures whole-class debriefs during the 

limited timeframe of the interviews. 

 Teachers Ask Questions. The 9 teachers asked a plethora of questions to their 

students and did so for various reasons, as depicted in Table 34. Three such reasons are 

common among many of the teachers: the first is to scaffold or guide students’ thinking 

from one idea to the next. Henry anticipated that if his students struggled with graphing 

appropriate inequalities, he might ask questions such as, “Does this have any connections 

with what you did yesterday?” to direct students back to what they had done previously 

and make connections between the two. Fred asked his students which variables they 

“have control of” to help them determine between independent and dependent variables, 

hoping that they would realize the distinction between the two types.  
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Table 34 

Teachers Ask Questions 

Teacher Supporting Interview Quotation 

Adam I'm constantly thinking, “Okay, I know this question is going to come. 
What question can I immediately get back to them [the students] to get 
them to try to think about it? 

Beth There were a couple of groups that said, “I'm bad at slope. Can you help 
us?” And I said, “Okay, well, what do you remember?” 

Cathy I want student engagement; and that's the way you get student 
engagement, is you ask a question. 

Debbie If it's something I’m really wanting them [the students] to try to 
understand, I try to respond with a question if I can, just because the 
thinking stops if I just answer. 

Ethan It's always like, how do I get them [the students] there without telling 
them the answer. Asking them leading questions to try and get them to 
take baby steps, to then take that big leap forward. 

Fred Often in my teaching, even if they [the students]––especially if they––
give a correct answer, I actually ask them, are they sure? I'm trying to 
deliberately break the mold. Teachers have usually asked, “are you sure?” 
when the student’s got it wrong. 

Gwen As exhausting as it is to ask question after question, I don't think I would 
change that aspect of it [task implementation]. I don't want to be the one 
that gives them all of the information. 

Henry A good class is, I ask a question and just let the students have at it. And 
they can ask questions, but they know 90 percent of the time I answer 
their question with another question. I try to avoid giving answers. 

Isabel A question makes them [the students] think, whereas a response just 
makes me give them an answer and they, whether they understand it or 
not, “okay, let's move on, because now I have the answer.” 
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The second reason for teachers’ questions is to maintain the thinking process with 

the students rather than shifting it to themselves: “I don’t want to be the one that gives 

them all of the information,” Gwen stated. Debbie and Isabel shared a similar viewpoint 

that the thinking stops after they answer a question, whereas students continue thinking if 

they ask a question instead. Third, some of the teachers ask questions to assess students’ 

understanding: when asked for his reasoning, Henry replied, “I do it [questioning] to 

assess the student.” During our second interview, Ethan recalled asking a student, “What 

do you mean?” so that he could verify how the student determined the rebound height of 

a ball using their linear model. 

 Teachers Provide Instructional Support. The teachers provided instructional 

support for a variety of reasons, as shown in Table 35. To guide her students toward 

exploring drop height and rebound height, Debbie picked up one of the balls she had 

brought to class and started bouncing it so that her students would come up with the 

desired outcome on their own. In their follow-up discussion of their linear models, Fred 

purposefully rewrote the decimal 0.6 as 6/10 so that his students would recognize it as a 

rate of change, a change in y (rebound height) divided by a change in x (drop height). 

Beth encouraged students to “draw a picture” when they struggled to make progress with 

the “Discovering Slope” task. Gwen did the same when her students had difficulty 

visualizing what the proportions 1:12, 1:16, and 1:20 represented in the “Ramp It Up” 

(King, 2015) task. 
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Table 35 

Teachers Provide Instructional Support 

Teacher Supporting Interview Quotation 

Adam If I hear someone just trying to take the low road to something… 
I'll unmute my mic and say, “okay, so let's think about what you 
just said.” It's like a hint, and all of a sudden, they're like… “maybe 
there's something more that I need to do for this.” 

Beth That group definitely wanted to use the formula. The problem is 
they don’t have two points and they didn't really recognize that. 
That's why I kept trying to get them to go back to the “rise over 
run.” 

Debbie I could see that they [the students] were going all these different 
directions. I thought, “they need a visual…” When they saw that 
[the ball bouncing], it seemed like it helped them. 

Ethan I just repeated what he was saying… “So, you're putting this in for 
x, which is the drop height.” And he goes, "Oh, no." So then, he 
switched it back and he was like, “No, because that's the rebound 
height.” 

Fred They [the students] say “rise over run,” but then they see this 
decimal [0.6]. And so, me writing it as 6/10, I think was important 
to connect that this is still a slope. 

Gwen They [the students] didn't really understand what the ADA 
specifications were referring to, what they meant… So, at that point 
I had to intervene, otherwise, they would just keep going and just 
completely get lost. 

Isabel The first time, whenever they [the students] get anything wrong, I 
just put a little star next to it and say, “these are the things that are 
wrong. You need to go back and try and fix them…” A lot of times, 
that’s enough to then get them to fix things. 
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Summary of Phase 4: Task Implementation Findings. The MMR PD appears 

to have also influenced the teachers’ task implementation, as many of the themes relate to 

the pedagogical strategies encouraged in the training. Though the teachers provided 

instructional support in various ways, they typically did not remove the challenge for 

students by providing students with exact procedures and approaches to solve the tasks 

(except in instances where the cognitive demand of the task declined). Instead, they 

prompted students to attempt problem-solving strategies such as drawing pictures or 

diagrams and frequently asked questions to guide students’ thinking. Specifically, 

teachers such as Ethan and Adam explained their desire to support productive struggle 

and encourage students that making mistakes is part of the learning process in MMR. 

Monitoring and facilitating students’ engagement with the tasks, as well as eliciting 

evidence of students’ thinking and reasoning, are aspects of teaching the MMR tasks that 

were emphasized in the PD but also contributed to the high-level cognitive demand of 

many of the tasks. 

Task Analysis Across Cases 

This section is divided into three parts: (a) trends in IQA scores across task 

phases, (b) trends in teachers’ TAG classifications across task phases, and (c) mismatches 

between IQA scores and TAG classifications. The first part of this section concerns IQA 

scores so that comparisons can be made between these and teachers’ self-reported TAG 

classifications. The second part addresses the second research question, focusing on 

teachers’ perceived changes in the cognitive demand of their tasks and reasons for such 

change. The third part of this section focuses on mismatches between IQA and TAG 
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analyses, addressing the third research question. Isabel’s data are excluded in portions of 

this section because of the lack of Phase 3: Setup and Phase 4: Implementation data. 

Similarly, the following sections include comparisons among Phases 1–4 only; Setup 1: 

MR, Setup 2: CF, and Implementation: Student Work scores are not included in cross-

case analysis because of gaps in available data.  

Trends in IQA Scores Across Task Phases  

The 8 MMR teachers’ tasks (not including Isabel, who did not teach MMR) 

changed dynamically throughout the four phases of selecting, planning, setting up, and 

implementing. As shown in Table 3 on page 162, 3 teachers’ tasks maintained their level 

of cognitive demand from Phase 1: Selection to Phase 4: Implementation: Fred and 

Debbie, whose tasks scored a 4 on the IQA rubrics across the four phases, and Beth, 

whose task scored a 3 consistently. Four teachers’ tasks declined in cognitive demand 

from Phase 1: Selection to Phase 4: Implementation: these teachers are Adam (decline 

from 4 to 2), Ethan (decline from 4 to 3), Gwen (decline from 3 to 2), and Cathy (decline 

from 3 to 2). Henry’s task surprisingly increased in cognitive demand from IQA scores of 

3 in Phases 1–3 to a score of 4 in Phase 4: Implementation. A visual representation 

summarizing this information is provided in Figure 6. 

 In Figure 6, the Phase 1: Selection–4 IQA scores are represented as vertical bars, 

one for each task phase. The same four colors are used to signify each teacher’s task at 

each of the four task phases: blue represents Phase 1: Selection, green represents Phase 2: 

Planning, yellow represents Phase 3: Setup, and orange represents Phase 4: 

Implementation. The vertical axis represents IQA scores, whole numbers 0–4, and each 
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participating teacher is displayed along the horizontal axis. The horizontal dotted line 

segment indicates the separation between tasks that are considered high in cognitive 

demand (i.e., IQA scores of 3–4) and those that are considered low in cognitive demand 

(i.e., IQA scores of 0–2). Using this representation, readers can track the progression of 

each teacher’s task from Phase 1: Selection to Phase 4: Implementation. For example, 

Cathy’s task scored a 3 for Phases 1–3 but scored a 2 for Phase 4: Implementation. As 

shown in Table 3 on page 162, Adam’s task was not scored for Phase 3: Setup, and 

neither was Isabel’s for Phases 3–4. 

In the following paragraphs, I elaborate on 5 trends based on the initial Phase 1: 

Selection IQA scores and final Phase 4: Implementation scores of the teachers’ tasks:  

 the two tasks that initially scored a 4 on the IQA and maintained cognitive 

demand (Debbie and Fred’s), 

 the two tasks that initially scored a 4 on the IQA but declined in cognitive demand 

(Adam and Ethan’s),  

 the task that initially scored a 3 on the IQA and maintained cognitive demand 

(Beth’s), 

 the two tasks that initially scored a 3 on the IQA and declined in cognitive 

demand (Cathy and Gwen’s), and  

 the task that initially scored a 3 on the IQA but inclined in cognitive demand 

(Henry’s).  
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Then, I discuss another common trend, that all the MMR teachers’ tasks were high in 

cognitive demand and maintained identical IQA scores from Phase 1: Selection to Phase 

2: Planning. 

 

Figure 6 

IQA Scores Across the Phases of the Teachers’ Tasks 

 

Note. The dashed horizontal segment separates high cognitive demand tasks (IQA scores 

of 3–4) from low cognitive demand tasks (IQA scores of 1–2). 

 

The Tasks That Maintained an IQA Score of 4. Debbie and Fred used the same 

“Follow the Bouncing Ball” task provided in the MMR course materials. Therefore, the 
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Phase 1: Selection IQA scores for both teachers’ tasks were identical. Similarly, both 

teachers made relatively few changes to the task, resulting in identical scores of 4 for 

Phase 2: Planning. Debbie and Fred’s modifications were minor at this phase, but 

different, despite earning identical IQA scores: Unlike Fred, Debbie adjusted the format 

of the MMR task handout by separating large paragraphs into smaller groups of 

sentences. Each teacher added a unique component to the task handout, as described 

previously: Debbie included a table to help students organize the data for their 

experiment, whereas Fred provided specific instructions for students to watch videos. 

Moreover, each teacher’s choice of technology for the task was different. Fred’s students 

used Excel spreadsheets, but Debbie chose to use a more user-friendly software that 

required less instruction and guidance. Recall also that Fred added the question “What 

does the slope of your best-fit line mean in the context of this data?” to the task handout. 

Though each teacher’s planning for the task was different, neither resulted in a decline in 

cognitive demand from an IQA score of 4 because their adaptations did not negatively 

impact the mathematical work and thinking expected of students. 

 Although Debbie and Fred’s setups were unique, they contained similar elements 

that resulted in maintaining the high cognitive demand of the task. Both teachers engaged 

their students in exploring potential variables of interest, including drop height and 

rebound height. During this common segment of instruction, Debbie and Fred elicited 

students’ ideas instead of providing information themselves. Moreover, both teachers led 

discussions of potential independent and dependent variables, focusing on the meaning of 

each type of variable and how the former influences the latter. Students in both classes 
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successfully identified that the drop height of a ball influences its rebound height, 

suggesting that the former is the independent variable, and the latter is the dependent 

variable.  

Task implementation in both instances included student work time, followed by a 

whole-class discussion in which students voiced their findings and the conclusions they 

had drawn. Both Debbie and Fred asked questions prompting students to explain the 

linear relationship among their data, resulting in IQA scores of 4 because students indeed 

provided such evidence of their thinking and reasoning. Though Fred had to press his 

students more so than Debbie to get them to interpret the linear trend in their data, his 

students reached the conclusion that, “For every 10 cm on the drop height, the rebound 

height increases by 6 cm.” This statement that was not expressed the same way in 

Debbie’s class, but her students still identified and explained the linear pattern in their 

data. Both teachers’ tasks scored 4 on the IQA for implementation, but the precise 

language used by students and the amount of prompting done by the teacher was slightly 

different in each case. 

The Tasks That Declined From an IQA Score of 4. Recall that Ethan’s task 

was the same as both Debbie’s and Fred’s and therefore scored a 4 on the IQA for Phase 

1: Selection.  Unlike Debbie and Fred, however, Ethan’s district required him to teach 

remotely at the time of the observations; this led him to adapt the format of the handout 

from a Word or PDF document into a series of Google Slides that his students could 

manipulate in their online learning groups. Though he changed the format of the handout, 

the prompts for students and the mathematical work required of them remained relatively 
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unchanged, resulting in a similar IQA score of 4 for Phase 2: Planning. This suggests that 

the same Phase 1: Selection task may yield identical IQA scores for Phase 2: Planning, 

despite differences in teachers’ type of learning environment (face-to-face, remote, or 

hybrid). However, it is certainly feasible that, for example, Ethan may have lowered the 

cognitive demand of the task in Phase 2: Planning, and possible that the cognitive 

demand lowered because of adaptations that he made for his remote learning 

environment. However, this was not the case in the present study. 

The Phase 3: Setup score for Ethan’s task remained a 4, like Debbie and Fred. 

Though Ethan himself suggested that his students should use rebound height as one of the 

variables to explore, this was already provided for students on the original MMR handout 

for the task. Therefore, the IQA score did not lower from a 4 to a 3. The remainder of the 

task setup progressed in a similar fashion to both Debbie’s and Fred’s, including the two 

components: (a) a discussion of the real-world context, including the 1965 Super Ball 

television commercial; and (b) a discussion of the variables of interest and the 

relationship between dependent and independent variables. The setup phase of instruction 

in Ethan’s remote environment progressed in a similar way to the two that occurred in 

face-to-face learning environments, though some differences occurred. 

The implementation of Ethan’s task differed more so from Debbie and Fred’s and 

scored a 3 on the IQA for several crucial reasons: one was that Ethan provided more 

structure and guided some aspects of the task that Debbie and Fred facilitated, but let 

their students do on their own. For example, Ethan shared his screen with his students 

and led them through the process of creating a prediction graph for the relationship 
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between the drop height and rebound height, as described earlier in the chapter. He 

created the graph, labeled the x- and y-axes, and provided several x-values (drop heights, 

in cm) for students to use, simply asking them to predict what the associated y-values 

(rebound heights, in cm) might be. Alternatively, Debbie and Fred’s students thought 

through this process on their own, supported by their teachers as they walked around their 

classrooms and monitored students’ progress.  

Another noticeable difference was in the rigor of students’ responses to Ethan’s 

questions and the connections they made between the graphs of their data and the real-

world context. Though Ethan questioned and pressed his students for evidence of their 

thinking to the same degree as Fred, Ethan’s students did not provide the level of 

responses that Fred’s students provided. Though it is not clear why, perhaps Ethan’s 

students were either unwilling or unable to provide such responses. Debbie and Fred’s 

students explained that the positive slopes in the graphs of their data represented 

increases in rebound height, corresponding to increases in drop height. Ethan’s students 

noticed the positive slope and, with his support, attributed the greatest slope to the “best 

bouncer,” but did not directly connect the slope back to the data and the real-world 

situation. 

Though Adam’s task was different than the other three described in the previous 

paragraphs, it contained similar elements that resulted in IQA scores of 4 for Phases 1–2. 

His implementation of the task, however, differed from Debbie and Fred’s even more so 

than Ethan’s, resulting in an IQA score of 2. One of the key differences was that Adam’s 

students engaged in some form of problem-solving, but it was not necessarily 
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mathematical in nature; many of the decisions Adam’s students made involved real-world 

aspects, such as whether to remove objects from the walls or what additional objects to 

include in the remodeled classroom. Most of their mathematical work related to the 

procedures they used to calculate the cost of the project, including unit conversions and 

calculations of surface area. A second crucial difference was that Adam allowed his 

students to divide the work of the task among themselves so that each student in a group 

worked on a different piece. This might have been the reason for limited dialogue and 

communication between students during the observed lessons. 

Third, Adam rarely elicited evidence of students’ thinking and reasoning during 

task implementation, especially when compared to Debbie, Ethan, and Fred; these three 

teachers consistently questioned their students and asked them to contribute to in-class 

discussions. Adam explained that he frequently tended to listen in to his students’ 

conversations without saying anything if he thought that they were making connections 

on their own. There were instances where he could have asked a strong question to help 

make his students’ thinking visible and even extend their thinking; for example, Adam 

asked one student whether she planned to remove objects from the walls or leave them in 

place and adjust her calculations accordingly. Though the student stated that she planned 

to remove the objects from the walls, Adam could have asked her to explain her process 

for calculating the surface area of the classroom and how she knew that her approach was 

reasonable.  

Finally, Adam guided his students through the process of determining the length 

of the pipeline in the classroom and provided examples demonstrating his expectations 



360 
 
for the scale drawing that each group was expected to complete. In doing so, Adam 

provided more support beyond what Ethan did, removing a greater amount of the 

mathematical thinking required from his students to complete the task. These actions 

contributed to the decline in cognitive demand from an IQA score of 4 in Phase 2: 

Planning to a score of 2 in Phase 4: Implementation. 

The Task That Maintained an IQA Score of 3. Of the 4 teachers whose tasks 

scored a 3 on the IQA for Phases 1–2, Beth was the only one whose task maintained its 

cognitive demand across the four phases. Like many of the other teachers involved in the 

present study, Beth made minimal adjustments to the Phase 1: Selection version of the 

“Discovering Slope” task, resulting in an identical Phase 2: Planning score of 3.  Though 

Beth reformatted the handout into a Pear Deck presentation to use with her remote 

students, the content of the task remained nearly identical. The lack of a pronounced 

setup phase of instruction contributed to the maintenance of cognitive demand in Phase 3: 

Setup, as there were few opportunities for the cognitive demand to change in such a short 

span of time. Finally, the cognitive demand of the task was maintained during 

implementation, resulting in an IQA score of 3 for Phase 4: Implementation as well; 

though a couple students provided verbal explanations that might score as 4 on the IQA, 

most students’ work and communication aligned with the criteria for a score of 3. They 

engaged in problem-solving, executed mathematical procedures, and made some 

connections between various concepts and mathematical representations. 

The Tasks That Declined From an IQA Score of 3. Beth, Cathy and Gwen 

made few changes to the tasks they chose for the present study, resulting in identical 
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scores of 3 for Phase 2: Planning. Despite this, the three task setups were unique. Beth 

did not engage her students in a whole-class discussion, but Cathy and Gwen did. 

Moreover, Cathy’s task scored a 3 for Phase 3: Setup whereas Gwen’s task scored a 4. 

Both teachers engaged their students in discussions of the real-world context and 

mathematical relationships involved with their respective tasks. The primary difference 

between how Cathy and Gwen set up their tasks was that Gwen asked her students to 

verbalize how they approached each problem as they worked in their groups. By doing 

so, Gwen enhanced the cognitive demand of the task by adding a component that was not 

written on the handout; this instructional move resulted in an increase from an IQA score 

of 3 to a score of 4. 

Both Cathy and Gwen’s tasks scored a 2 for Phase 4: Implementation despite the 

high-level task potential in Phase 3: Setup. In both instances, the students failed to exhibit 

evidence of high-level thinking and reasoning and the task focused on procedures without 

mathematical connections. Both teachers provided support for their students, such as 

suggestions for how to collect and record data and how to visualize a problem they were 

solving. These instructional moves did not necessarily influence the decline in cognitive 

demand; instead, the reason for the decline of each task was different.  

Cathy lowered the cognitive demand of the “StarburstsTM Grab” task by asking 

only procedural questions to her students, such as to evaluate a function at specific 

values. None of the questions she asked prompted students to make mathematical 

connections and provide evidence of their understanding, limiting the rigor of the task to 

the level of procedures without connections. Moreover, she eliminated the need for 
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students to make such connections by making them herself: for example, she was the one 

to conclude that the linear model the class generated was not a strong fit to the data. 

Unlike Cathy, Gwen attempted to promote high-level thinking by asking questions and 

suggesting that students draw diagrams to help them visualize the mathematics they were 

doing. However, her students leaned on the procedural approach of solving proportional 

equations (e.g., 1/16 = 15/x) and their explanations were limited to descriptions of the 

procedures they used. Both Cathy and Gwen’s tasks scored a 2 on the IQA for Phase 4: 

Implementation, but the reason for the decline in cognitive demand was different in each 

case. Cathy’s facilitation contributed most to the decline of her task, whereas Gwen’s 

task declined in cognitive demand because of the approaches that her students took to 

complete it. 

The Task That Inclined From an IQA Score of 3. Henry’s was the only of the 

MMR tasks with a higher Phase 4: Implementation IQA score than Phase 1: Selection, 

indicating that it was the only task that was implemented at a higher level of cognitive 

demand than its original potential. Phases 1–3 of Henry’s task were similar to other 

teachers in some regard: like Beth, Cathy, and Gwen, the Phase 1: Selection version of 

the task did not explicitly prompt students to provide evidence of their thinking and 

reasoning, yielding an IQA score of 3. Henry made no changes to the task prior to his 

instruction and did not engage his students in a preliminary discussion, comparable to 

Beth. However, Henry frequently asked his students to explain and present their solutions 

to the rest of the class; their explanations led to an increase in cognitive demand for Phase 
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4: Implementation. Like Gwen, he introduced an element to his task that was not present 

in the previous phases, though Gwen’s addition occurred in Phase 3: Setup. 

Identical, High IQA Scores Among Phases 1 and 2. As shown in Figure 6 on 

page 353, each of the 8 MMR teachers’ tasks received the same IQA score for Phases 1 

and 2. That is, none of their tasks changed in cognitive demand significantly enough to 

warrant a change in IQA score between Phases 1 and 2. In fact, 6 of the 8 tasks were 

scored identically in Phase 3: Setup as well, with only Gwen’s task increasing from a 

score of 3 to 4 and Adam’s task without a Phase 3: Setup score because of missing data. 

The Phase 1: Selection and 2 IQA scores for all the MMR tasks were either 3 or 4, 

indicating that the cognitive demand was high for every task in those phases.  

These two results could be related to each other: perhaps one reason that the 

MMR teachers did not significantly modify the mathematical aspects of their tasks in 

Phase 2: Planning was because the cognitive demand was already high. Many of the 

teachers desired to maintain the original intent of the MMR materials, whether it be 

because of the research done by ODE or for other reasons. Though ODE did not collect 

data during the 2020–2021 academic year due to the COVID-19 pandemic, some teachers 

still voiced this reason for maintaining the fidelity of the course materials. Cathy 

explained her intent to “stay true” to the MMR course materials, “whatever they [ODE] 

want the lesson to look like.” Fred and Gwen mentioned a similar intent, though they 

both acknowledged that ODE was not collecting data during the 2020–2021 academic 

year. 
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Trends in Teachers’ TAG Classifications Across Task Phases  

Teachers’ self-reported TAG classifications changed less dynamically than the 

IQA scores identified by the researcher. As shown in Table 4 on page 163, 5 teachers 

provided the same TAG classification for their tasks across the four task phases: Cathy, 

Henry, and Beth categorized their tasks as doing mathematics for all four phases, whereas 

Fred and Gwen labeled theirs as procedures with connections consistently. Both Debbie 

and Ethan categorized their tasks as procedures with connections in Phases 1, 2, and 4, 

but felt that their tasks inclined to doing mathematics in Phase 3: Setup. Adam classified 

his task as doing mathematics at Phase 1: Selection but thought that it “increased” to 

procedures with connections from Phase 2: Planning onward. A visual representation 

summarizing this information is provided in Figure 7. 

Like in Figure 6, the Phase 1: Selection–4 TAG classifications are represented as 

vertical bars, one for each task phase. The same four colors are used to signify each 

teacher’s task at each of the four task phases: blue represents Phase 1: Selection, green 

represents Phase 2: Planning, yellow represents Phase 3: Setup, and orange represents 

Phase 4: Implementation. The vertical axis represents the four TAG classifications 

memorization (Mem), procedures without connections (PwoC), procedures with 

connections (PwC), and doing mathematics (DM), and each participating teacher is 

displayed along the horizontal axis. The horizontal dotted line segment indicates the 

separation between tasks that are considered high in cognitive demand (i.e., procedures 

with connections and doing mathematics) and those that are considered low in cognitive 

demand (memorization and procedures without connections). Using this representation, 
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readers can track the progression of each teacher’s task from Phase 1: Selection to Phase 

4: Implementation. 

 

Figure 7 

Teachers’ TAG Classifications Across the Phases of Their Tasks 

 

Note. The dashed horizontal segment separates high cognitive demand tasks (TAG 

classifications of procedures with connections [PwC] and doing mathematics [DM]) from 

low cognitive demand tasks (TAG classifications of memorization [Mem] and procedures 

without connections [PwoC]). 

 

In the following paragraphs, I discuss three trends in teachers’ TAG 

classifications across the four task phases: (a) tasks that both inclined and declined in 
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cognitive demand between phases, (b) tasks that strictly inclined in cognitive demand 

between phases, and (c) tasks that maintained cognitive demand between phases. 

Tasks That Both Inclined and Declined in Cognitive Demand. As shown in 

Figure 6, Debbie and Ethan had both classified the “Follow the Bouncing Ball” task as a 

procedures with connections task in Phases 1–2. However, both teachers argued that the 

cognitive demand of the task increased to the level of doing mathematics in Phase 3: 

Setup, and then declined back to procedures with connections in Phase 4: 

Implementation. Debbie and Ethan identified similar changes in cognitive demand 

between Phases 2–3 and between Phases 3–4. Surprisingly, their reasoning for these 

changes was nearly identical as well. Recall Debbie’s conclusion that “The more that you 

[the teacher] take out of it [a task], then the more the student has to come up with on their 

own, including the question. Then, you get more into the doing mathematics.” She felt 

that the setup of the task inclined in cognitive demand because she allowed her students 

to investigate the relationship that they might explore and the potential variables that they 

could use and measure. However, guiding students toward the use of drop height and 

rebound height during implementation lowered the cognitive demand back to procedures 

with connections in Phase 4: Implementation. 

Ethan’s setup and implementation of the task followed a similar pattern, perhaps 

because both teachers followed the recommended instructional procedures in the MMR 

lesson plan. Ethan explained that Phase 3: Setup aligned more so with doing mathematics 

because his students led the discussion of what they noticed and what they wondered 

about the task. Moreover, he engaged his students in thinking, “What do I know, what do 
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I want to know, and how am I going to figure this out?” However, Ethan felt that the 

implementation of the task declined back into procedures with connections because his 

students simply followed the prompts on the task handout rather than exploring some of 

the ideas they generated on their own. In summary, both teachers thought that task setup 

aligned with doing mathematics because the task was more open-ended and student-led, 

whereas the implementation was at the level of procedure with connections because the 

students were directed toward a particular path instead of freely exploring their own 

ideas. 

 Tasks That Strictly Inclined in Cognitive Demand. Two teachers explained 

that their tasks inclined in cognitive demand in ways that changed their TAG 

classifications. Adam classified the “Remodeling Our Classroom” task at the level of 

doing mathematics for Phase 1: Selection, and his misunderstanding of the levels of 

cognitive demand influenced his reasoning that the task transitioned into the “higher” 

level of procedures with connections from Phase 2: Planning onward. On the other hand, 

Isabel provided sound reasoning for how the “Fitting a Line to Data - Earnings and 

Educational Attainment” (United States Census Bureau, 2021) task inclined from 

procedures with connections in Phase 1: Selection to doing mathematics in Phase 2: 

Planning.  

Though both teachers conceptualized that their tasks increased in cognitive 

demand, this highlights a contrast based on their level of understanding of the TAG. Not 

only did Adam communicate a misunderstanding in the ranked order of procedures with 

connections and doing mathematics, but he also explained that “it [the cognitive demand 
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of a task] always increases, because in the beginning, it [the task] is just a handout with 

instructions on it.” He seems to understand cognitive demand as something that 

accumulates from one task phase to the next, increasing as students engage with the task: 

“All of these lessons grow from the initial standpoint… initially, they [the students] had 

to look over a handout and watch a video. That was it.” Adam further explained that the 

cognitive demand increased as he and his students discussed the questions they had about 

the video, what they noticed, and what they wondered. Adam’s analysis of the task shows 

a misconception about cognitive demand, as the cognitive demand of a task may decline 

from one phase to the next and does not accumulate from the first phase to the last. 

 Isabel’s reasoning for her task’s change in cognitive demand from Phase 1: 

Selection to Phase 2: Planning was grounded in evidence from the original task handout 

and the changes she made to it. Moreover, she referenced the TAG and pointed out 

specific criteria to justify the cognitive demand of the task at each phase. Though she felt 

that both versions of the task contained some elements of procedures with connections 

and doing mathematics, she classified Phase 1: Selection as the former and Phase 2: 

Planning as the latter. She acknowledged the focus on the procedures for graphing, 

writing equations, and creating lines of best fit in the original task, as well as the 

connections between tables, graphs, and equations. However, her adjustments to the task 

required students to access relevant knowledge and make appropriate use of it as they 

interpreted the real-world meaning of the y-intercepts and slope they found using linear 

regression. There was still a suggested pathway for students to follow, but the inclusion 

of various interpretation questions required students to analyze the task in ways that the 
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original handout did not require. Though they both thought that their tasks inclined in 

cognitive demand, the cases of Adam and Isabel provide differing levels of understanding 

of the TAG and cognitive demand. 

 Tasks That Maintained Cognitive Demand. The remaining teachers classified 

each of their tasks at the same level of cognitive demand throughout the four task phases, 

as shown in Figure 6 on page 353. This suggests that these teachers did not identify any 

changes in the cognitive demand of their tasks from Phase 1: Selection to Phase 4: 

Implementation. However, Beth, Fred, and Gwen reported changes to each of their tasks 

that influenced their cognitive demand without justifying a change in TAG 

classifications.  

Recall that Beth’s students initially provided “superficial” written responses that 

she was not pleased with, so she provided feedback on the second day of instruction for 

them to revise and enhance the quality of their written work. Beth felt that her students’ 

implementation fell into the procedures with connections realm somewhat during the first 

day, based on how their responses contained only numerical answers “without 

connections to what they were doing” outside of a particular problem. After providing 

feedback and listening to the group discussions that occurred during the second day, Beth 

thought that her students’ implementation of the task rose back into the doing 

mathematics area and met the potential of the task in Phases 1–3. Though she classified 

the task as doing mathematics in all four phases, she recognized changes in cognitive 

demand within a single phase, Phase 4: Implementation. 
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 Fred and Gwen’s cases are different than Beth’s, but more relatable to each other. 

Both teachers addressed changes to their respective tasks in Phase 2: Planning that 

increased the cognitive demand, but not quite enough to elevate their tasks from 

procedures with connections to doing mathematics. Fred revised his modified version of 

the task again after our first interview, adding questions that encouraged students to 

interpret the slope and y-intercept of their linear models. Adding these questions, 

according to Fred, would “drive up” the cognitive demand of the task; however, the task 

still remained “on the edge” of doing mathematics and in the procedures with 

connections level because the task connects a context to students’ prior knowledge of 

slope and linear equations. Instead of adding to a task, Gwen made a subtraction from the 

“Discovering Slope” task; though it was not the task I observed her teach, Gwen 

described this change to the task as part of her planning for the Ramps Context. She had 

considered including the first page of the “Discovering Slope” handout but decided 

against it because “it implies that there will be direct instruction.” Gwen wanted her 

students to ask questions rather than reviewing the concept of slope prior to their 

engagement in the “Ramp It Up” (King, 2015) task; removing this first page increased 

the cognitive demand of the task according to Gwen, but not enough to justify a change 

in TAG classification. 

Mismatches: Comparisons Between IQA Scores and TAG Classifications 

 A mismatch in task analysis occurred when the researchers and a teacher reach 

opposing conclusions for whether the cognitive demand of a task is high at one of the 

four task phases. High cognitive demand tasks, according to the IQA rubrics, are those 
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that score a 3 or 4. Similarly, tasks that are classified as procedures with connections and 

doing mathematics using the TAG are also considered to have high cognitive demand. 

Otherwise, a task is considered to have low cognitive demand. As shown in Tables 5, 7, 

and 11 on pages 165, 202, and 267, three mismatches occurred: Adam’s task, Cathy’s 

task, and Gwen’s task at Phase 4: Implementation scored 2 on the IQA, whereas these 

teachers classified their tasks as procedures with connections, doing mathematics, and 

procedures with connections, respectively. This information is summarized in Table 36. 

 

Table 36 

Mismatches in Task Analysis 

Teacher Score Level IQA Score TAG Classification 

Adam Phase 4 2 PwC 

Cathy Phase 4 2 DM 

Gwen Phase 4 2 PwC 

 

 The three mismatches occurred in Phase 4: Implementation, indicating a 

difference in the analysis of how each task unfolded with students. As I described in the 

analysis of each teacher’s task implementation, I assigned scores of 2 on the IQA 

primarily because students’ engagement focused on procedural aspects of each task. 

Adam’s students calculated the surface area of their classroom, made necessary unit 

conversions to determine the amount of paint they would need to cover the walls, and 
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determined the cost of paint and other materials they would need for the project. 

However, they divided the work of the task among themselves (with Adam’s instruction 

to do so) and rarely communicated any evidence of conceptual reasoning and 

understanding. Cathy’s students collected data, ran a linear regression to determine a line 

of best-fit, and used their models to predict the number of candies that could be grabbed 

given the size of one’s hand. But it was Cathy who voiced some of the conclusions that 

were to be drawn based on their findings, rather than the students themselves. Finally, 

Gwen’s students routinized the work of their task by removing the real-world context and 

using the procedures they had learned in Chemistry to set up and solve proportional 

equations. The focus of the task shifted from problem-solving and making connections to 

simply finding answers. 

 Of the three teachers, Cathy and Gwen seemed to notice some decline in the 

cognitive demand of task implementation; however, they did not adjust their TAG 

classifications to reflect what they had observed. Of the two, Gwen was even more 

aware, explaining that her students had learned how solve problems involving similar 

triangles in Chemistry beforehand. Through her students’ conversations, she identified 

that their Chemistry teacher had “taught them proportions; taught them to cross multiply 

and divide.” Gwen felt that the procedure was “ingrained in them [the students] from 

hearing it over and over.” She explained her attempt at getting students to visualize what 

was given in each problem and how to think through it, but they leaned on what they had 

recently done in Chemistry instead. Gwen acknowledged that her students likely did not 

understand the procedures they used and why they were using them. “They [the students] 
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were kind of alluding to the connection between similar triangles and proportions… but 

they didn’t really have the connection,” she concluded. 

 Cathy similarly acknowledged some level of decline in cognitive demand during 

task implementation. For example, she thought that her students needed to improve at 

self-monitoring and self-regulating their own cognitive processes because some students 

left parts of their handout blank without asking questions and seeking help. Cathy also 

explained that “Based on their [her students’] responses, I don’t think they stretched 

themselves as much as I would have liked,” communicating an awareness that her 

students could have done more thinking and reasoning with the task. As she considered 

whether her students had been required to put forth considerable cognitive effort, Cathy 

concluded, “I’m not sure that this [the task] stretched them much.  

Moreover, Cathy said that her students “could have done more” to explore and 

understand the nature of mathematical concepts, processes, and relationships. She felt 

that they did not experience much productive struggle throughout their engagement with 

the task because they simply took measurements, collected data, and generated a model 

using technology. Cathy attributed this partially to her “benefitting from a good group of 

kids, and they didn’t need to struggle.” Indeed, it appeared as though her students did not 

struggle with the task, but it was because Cathy did the analysis and interpretation of 

students’ linear models. For example, she stated that the combined class model was “not 

a good fit” based on students’ data. The students did not discuss the mathematical model 

and only used it to “plug in” values that the teacher told them to make predictions. 

Though less specific than Gwen, Cathy similarly attributed students’ thinking to their 
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previous mathematics learning experiences: “They [the students] have just been through 

12 years of math education that is rather procedural,” encouraging students to think, 

“Which thing that someone told me to do before, should I do now?” rather than thinking 

about problems conceptually. 

 Despite acknowledging a potential decline in cognitive demand, Gwen and Cathy 

maintained the ratings they had assigned for their tasks in Phase 3: Setup. Neither teacher 

lowered their classification of the task to procedures without connections, resulting in a 

mismatch in task analysis. Gwen maintained her Phase 3: Setup rating of procedures with 

connections because she felt that her attempts to “push” her students in that direction 

were enough to maintain the cognitive demand of the task. “Even though it may not have 

been through work of their own, I was pushing them to get to that point,” she explained, 

justifying her TAG classification for Phase 4: Implementation. Gwen explained that her 

students were “alluding to the connection between similar triangles and proportions,” but 

then recanted, saying, “but they didn’t really have the connection… so I guess that 

doesn’t quite count for that specific scenario.” Though Cathy’s final classification for 

Phase 4: Implementation was doing mathematics, she felt that her students were 

“somewhere between the two” levels of doing mathematics and procedures with 

connections and “jumped back and forth” among them. At one point, she stated that “they 

[the students] might still be more at the procedures with connections level as far as their 

thinking.” However, she concluded, “I think that I kept more of the bullets than I lost,” 

regarding the criteria listed for doing mathematics in the TAG. 
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 Unlike Cathy and Gwen, Adam did not express any potential decline in cognitive 

demand with the implementation of his task. On the contrary, he only expressed 

positivity in response to his students’ work during the two lessons. To Adam, his students 

were making connections by “finding different ways to represent data” and recognizing 

that some aspects of the task were not realistic. Adam acknowledged that the student-

centered nature of the task and “allowing them to drive the vehicle” contributed to its 

high cognitive demand; however, the decisions that students made regarding the task 

were nonmathematical, such as what objects to include in their remodeled classroom. The 

decisions that they made did not concern various problem-solving strategies or 

mathematical processes to use. Adam also attributed the high cognitive demand of the 

task to students’ collaboration with each other:  

They [students] are bringing others in their group into the task to say, “Okay, now 

help me deal with this. Get a deeper understanding of what I'm trying to do to 

make sure that it's correct.” … Again, it's that sense of community, and they're 

making that connection. 

This might occur frequently in Adam’s class, but was not something that I observed as 

the students worked on their own sections of the task. On one or two occasions, I heard 

one student ask another to check their work, but this did not occur frequently; the 

students were mostly silent at work individually. Moreover, making connections to each 

other’s work in this way does not contribute to making mathematical connections 

between concepts and representations, as is intended in the TAG. 
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 Among the mismatches in task analysis, an interesting pattern is that 2 of the 3 

teachers had not taught the MMR course before. Of the 8 MMR teachers involved in the 

present study, only Adam and Cathy were first-year pilot teachers. Gwen, on the other 

hand, was a second-year pilot teacher and had taught MMR before. Though this pattern 

might be a coincidence, it suggests that the teachers most unfamiliar with the MMR 

course and the associated PD might have had more difficulty maintaining the high 

cognitive demand of their tasks. However, it also suggests that teachers with more 

experience teaching MMR might be more likely to maintain the cognitive demand of 

their tasks; of the 6 second- and third-year MMR teachers, only Gwen’s task declined in 

cognitive demand during task implementation. Multiple experiences with the MMR 

course and PD might have influenced this trend, though more research is needed to draw 

such a conclusion. With the vast amount of material that the first-year MMR teachers 

were exposed to (i.e., new curricular materials, mathematics content, and pedagogical 

approaches), in addition to challenges teachers faced during the COVID-19 pandemic, it 

is unsurprising that their tasks declined in cognitive demand more so than second- and 

third-year MMR teachers’ tasks. 

Chapter Summary 

 I discussed the research findings in this chapter, including conclusions derived 

from the analysis of interviews, observations, and mathematical tasks. I presented the 9 

individual cases for each participating teacher, including (a) the analysis of each teacher’s 

task across the four task phases using the IQA, (b) teachers’ analysis of the task at each 

phase using the TAG, and (c) teachers’ reasons for selecting, planning, setting up, and 
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implementing tasks. The findings across teachers showed that, though they each provided 

their own views of task selection, planning, setup, and implementation, there were some 

commonalities especially among the 8 MMR teachers. They selected MMR tasks for use 

in their classrooms and attended to the lesson plans provided by ODE and typically 

included instructional elements and practices emphasized in the PD for the course (e.g., 

brainstorming sessions with students, collaborative group work, and student discussions). 

In response to changes in the instructional environment due to the COVID-19 pandemic, 

the teachers modified tasks to accommodate those changes. The cognitive demand of 

tasks tended to stay high, except in three cases where the teachers provided too much 

guidance and the focus shifted to executing procedures to find answers.  
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Chapter 5: Discussion, Recommendations, and Conclusion 

This chapter contains four main sections plus a summary and conclusion. In the 

first main section, I restate the research questions and discuss how the data address these 

questions. The next section includes theoretical and practical implications for the fields of 

mathematics education and teacher education. In the third and fourth sections, I provide 

recommendations for future practice and future research. 

Answers to the Research Questions 

Three research questions guided the present study. The first question focused on 

how high school mathematics teachers selected, planned, set up, and implemented 

instructional tasks and teachers’ reasons for their actions across these four phases. The 

second question addressed teachers’ perspectives on how the cognitive demand of their 

tasks changed across the four task phases. The third question pertained to teachers’ 

analysis of cognitive demand of a task and the mismatches between the researcher and 

co-observer’s analysis and the teacher’s analysis of each task. The three research 

questions follow:  

1. When attempting to use a high cognitive demand mathematical task, what actions 

do high school mathematics teachers take, and for what reasons, while 

a. selecting the task from written source materials? 

b. planning the task for use with their students? 

c. setting up the task immediately prior to student engagement? 

d. implementing the task as students engage with it? 
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2. What reasons do high school mathematics teachers give to explain the change in 

the cognitive demand of a task across the four phases of selecting, planning, 

setting up, and implementing the task? 

3. What reasons do high school mathematics teachers give for assessing the 

cognitive demand of a task at each phase, and in particular, what reasons do they 

give when there is a mismatch between a teacher’s assessment of the cognitive 

demand of a task and the researchers’ assessment of that phase of the same task? 

In the following paragraphs, I explain the answers to these three research questions 

especially concerning the themes and trends identified in Chapter 4. 

Selecting Tasks 

 The 18 themes that were presented and discussed in Chapter 4 answer the first 

research question. The factors teachers cited as affecting their selection of tasks were (a) 

considering face-to-face, remote, and hybrid learning formats; (b) promoting active 

student engagement; (c) addressing important mathematics content, skills, and processes; 

(d) connecting to real-world contexts; and (e) considering past success.  

Unsurprisingly, the participating teachers chose tasks that were suitable or 

adaptable for remote instruction when given the freedom to choose which MMR tasks 

they would use. Those that involved extensive, hands-on data collection procedures were 

avoided by some teachers because their students could not experience the task to the full 

potential as they might in a typical face-to-face setting. The tasks that were chosen 

promoted active student engagement through explorations and opportunities for student 

discussion, aspects of the tasks that the teachers highlighted. Tasks such as “Follow the 
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Bouncing Ball” and “StarburstsTM Grab” were used to develop students’ understanding of 

linear functions, but more importantly, the participating teachers emphasized that such 

tasks encouraged students to problem-solve, think critically, and analyze mathematical 

relationships. Additionally, the tasks were selected to help students connect mathematics 

to their daily lives. The MMR teachers’ selection of tasks appears to be aligned with the 

purpose and goals of the course and associated PD; however, the teachers also relied on 

the use of tasks that had been successful in the past, confident that they would be 

successful again. 

Planning Tasks  

The factors teachers cited as affecting their planning for using tasks with students 

were (a) flexibility; (b) accomplishing goals and objectives; (c) desire to maintain fidelity 

to the provided MMR lesson plans; (d) anticipating challenges and student responses; and 

(e) adjusting tasks for face-to-face, remote, and hybrid learning formats.  

The participating teachers were flexible in their planning, understanding that the 

length or duration of a task is determined by the students; this is especially the case when 

tasks are open ended, and the students have some autonomy in determining what aspects 

to explore. Tasks were specifically modified so that students would achieve certain 

learning goals, such as proficiency with spreadsheets or how to interpret coefficients in a 

linear model. As might be expected, the MMR teachers expressed a desire to follow the 

lesson plans that were provided in their PD program closely. Those teaching MMR for 

the first time especially maintained the desired flow of the lessons and made sure to 

incorporate the recommended instructional procedures and materials. Some teachers, like 
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Fred, were more willing to adapt due to their familiarity with the tasks, though also 

acknowledging that ODE desired consistency when conducting research on the MMR 

course. 

 The tasks challenged teachers to anticipate difficulties and student responses of 

various types. Teachers anticipated students’ engagement with a task, especially in 

remote and hybrid learning environments because these were unfamiliar territory for the 

teachers. Even those teaching face-to-face were compelled to consider how they might 

set up and implement tasks safely, minimizing health and safety risks during the COVID-

19 pandemic. Furthermore, the open-ended nature of the tasks required teachers to 

consider how students might respond and how they might follow-up on students’ 

responses. The more student-centered a task is, the more opportunities for it to diverge 

from a single, predetermined pathway; because many of the tasks encouraged students to 

explore and consider problem-solving situations, the MMR teachers had to anticipate 

how their students would interact. The teachers also considered how they might support 

their students in understanding the mathematics; several teachers explained that their 

MMR students had typically experienced limited success with mathematics in the past. 

Setting Up Tasks 

 The factors teachers cited as affecting their task setup were (a) asking, “What do 

you notice?” and “What do you wonder?”; (b) facilitating whole-class discussions before 

student work time; and (c) teachers communicating their expectations.  

The inclusion of a brainstorming stage and a preliminary discussion are features 

of MMR tasks that are typically included in the lesson plans developed by ODE. In the 
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PD for the course, the MMR teachers were encouraged to adopt these instructional 

strategies as ways for their students to engage in mathematical thinking and problem-

solving. The three tasks that did not include preliminary discussions, namely Beth’s, 

Henry’s, and Isabel’s, differed from the others because they did not require students to 

investigate a real-world situation and collect data. The remaining 5 teachers sought to 

access students’ relevant prior knowledge about the real-world situations and the 

mathematics of their tasks as a starting point for task implementation. Many teachers 

aimed to set a standard for students’ engagement with the tasks and the work that their 

students produced. By communicating their expectations at the beginning, teachers hoped 

that their students would engage more deeply and produce higher quality work than they 

might have otherwise. 

Implementing Tasks  

 The factors teachers cited as affecting their task implementation were (a) 

encouraging productive struggle, (b) eliciting evidence of students’ thinking and 

reasoning, (c) monitoring and facilitating student engagement, (d) asking questions, and 

(e) providing instructional support.  

Productive struggle is a concept that was introduced to teachers during the MMR 

PD and was one of many pedagogical approaches that was endorsed; not all the 

participating MMR teachers used the specific term “productive struggle,” but many of 

them spoke positively about challenging their students to think critically, make mistakes, 

and learn from them. I cannot claim that the MMR PD directly influenced these teachers 

to feel this way, but this provides evidence that the PD might have had an impact on 
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teachers’ beliefs about productive struggle. Similarly, the MMR teachers emphasized a 

desire for their students to communicate their thinking and reasoning; this was another 

focus of the PD. Other factors may be responsible for teachers’ attitudes, but this is still a 

promising outcome.  

 The participating teachers highlighted three instructional processes, leading to the 

development of themes for facilitating students’ engagement, asking questions, and 

providing support. When facilitating students’ engagement with the tasks, teachers 

actively listened to student-to-student conversations for evidence that they might be 

struggling with a particular concept or idea. Doing so is essential with high cognitive 

demand tasks because the cognitive demand may decline if students fail to make 

mathematical connections and develop conceptual understanding (Stein et al., 2009). This 

was the case with Adam, who rarely checked in with his students except to ask them what 

they were working on and verify that they were making progress. Adam missed 

opportunities to ask his students conceptual questions about the procedures they were 

using by remaining silent. This shows that there is a fine line between saying too much 

and saying too little; the former might limit students’ opportunity to think, whereas the 

latter might result in missed opportunities to expand on students’ thinking. 

 The teachers frequently asked questions to scaffold and assess students’ thinking, 

maintaining the emphasis on student thinking rather than taking over the thinking for 

themselves. Effective teacher questioning was indeed one of the instructional practices 

that helped to maintain high cognitive demand for many teachers’ tasks. For Henry’s 

task, it even resulted in an increase in cognitive demand because his questions elicited 
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evidence of students’ thinking and reasoning beyond the scope of the original task. In 

addition, the participating teachers identified reasons for providing instructional support 

and typically did so in ways that did not lower the cognitive demand of their tasks. Their 

assistance frequently allowed students to visualize or conceptualize ideas in another way 

without taking over their thinking. Even Gwen, whose task declined in cognitive demand 

because the focus shifted to correct answers, instructed her students to create visual 

diagrams to help them picture the differences between ramps with various slopes. The 

cognitive demand of the task declined, but for other reasons. 

Change in Cognitive Demand Between Task Phases 

 In general, the participating teachers provided reasonable justification for their 

analysis of the cognitive demand of their tasks in Phases 1–2, Task Selection and Task 

Planning. They understood, from the onset, that the tasks they used were in the higher-

level categories of procedures with connections and doing mathematics. They referred to 

the TAG when prompted to do so and cited specific parts of a task that aligned with the 

given criteria in the guide. Debbie’s understanding of doing mathematics, for example, 

was exceptional; she acknowledged that students do mathematics when they determine 

what questions to ask, how they will answer their questions, and what variables are 

relevant to explore. Fred pointed out that tasks with real-world contexts are not 

necessarily high in cognitive demand, identifying a “superficial feature” (Stein et al., 

2009, p. 7) that some teachers erroneously associate with high cognitive demand.  

Fred and Isabel acknowledged a common increase in cognitive demand from 

Phase 1: Selection to Phase 2: Planning by adding prompts for their students to interpret 
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the real-world meaning of the coefficients in their linear models. However, Fred did not 

feel that this change was enough to increase the cognitive demand from procedures with 

connections to doing mathematics, but Isabel did. Gwen categorized the “Ramp It Up” 

task as procedures with connections at the first two phases, and she recognized that 

removing the first page of the “Discovering Slope” handout would increase the cognitive 

demand of the task because the first page provided students with solution pathways and 

algorithms upfront.  

Adam, on the other hand, differed from the other teachers significantly; it appears 

that he perceives procedures with connections at a level above doing mathematics, as he 

said his task would be “higher” in cognitive demand at the latter stage. Moreover, he 

stated that cognitive demand “always increases,” which is false because cognitive 

demand may decrease or be maintained between any two task phases. Adam’s 

perspective was unique in this study but may be characteristic of other teachers who 

misinterpret the TAG and the levels of cognitive demand. The remaining teachers made 

few changes to their tasks between Phases 1 and 2, Task Selection and Task Planning, 

aside from reformatting their tasks to accommodate remote instruction when they felt it 

necessary. 

Similarly, few teachers reported changes in cognitive demand between task 

Phases 2 and 3, Task Planning and Task Setup. Adam, Beth, Cathy, Fred, Gwen, Henry, 

and Isabel classified their tasks at the same level of cognitive demand in Phase 3: Setup 

as they had in Phase 2: Planning, though not all these teachers’ tasks truly maintained the 

same level of rigor. Indeed, Beth, Henry, and Isabel’s tasks maintained cognitive demand 
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during task setup because the setup phase consisted only of providing materials to 

students and setting them free to work. Despite the fact that Cathy and Fred initiated 

whole-class discussions prior to student work time, the cognitive demand of each of their 

tasks did not increase.  

Adam and Gwen’s tasks changed in ways that they did not acknowledge using the 

TAG; Adam’s task was not scored for Phase 3: Setup because it was not observed, but he 

described how he walked his students through the process of determining the length of 

the piping that would go inside his remodeled classroom based on the task handout. This 

instruction likely lowered the cognitive demand of the task, as students no longer needed 

to determine the spatial positioning of the pipeline on their own.  Alternatively, Gwen 

prompted her students to “verbalize” their approach to solving problems when she passed 

out the task handout, a move that enhanced the cognitive demand of the task because 

explanations were not explicitly called for on the handout. This shows that there were 

instances where teachers failed to either notice or acknowledge changes in cognitive 

demand between Phases 2 and 3, Task Planning and Task Setup. This is perhaps because 

classifying the cognitive demand of a task during instruction with students in Phases 3 

and 4, Task Setup and Task Implementation, is more challenging than identifying the 

potential of a task in Phases 1 and 2. Tasks become more complex as they inspire 

interactions between teachers and students, making it more difficult to determine their 

level of cognitive demand using the TAG accurately. 

Only 2 participants addressed changes in cognitive demand between Phases 2–3, 

Task Planning and Task Setup: Debbie and Ethan. Both teachers used the same task and 
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identified a similar reason for change in cognitive demand: Each stated that the cognitive 

demand increased from procedures with connections in task planning to doing 

mathematics in task setup because the discussions in the setup phase allowed their 

students to determine what variables to explore, how they might measure them, and how 

they might use this information to complete the task. However, these are features of the 

“Follow the Bouncing Ball” task that were also evident in Phases 1 and 2, Task Selection 

and Task Planning. In fact, the task handout itself (Phase 1) prompted students to do what 

Debbie and Ethan had them do during task setup (Phase 3). Therefore, the cognitive 

demand was already at the level of doing mathematics in Phases 1–2, and the cognitive 

demand did not change during task setup. The cognitive demand might have changed 

through the specific interactions between each teacher and their students, but simply 

having them brainstorm variables of interest did not introduce a change to the cognitive 

demand of the task. So, not only did some teachers fail to acknowledge changes in 

cognitive demand from Phase 2: Planning to Phase 3: Setup, but some even saw changes 

when they did not necessarily exist. 

Concerning the transition between Phase 3: Setup to Phase 4: Implementation, 

both Debbie and Ethan reported that their tasks were implemented at the level of 

procedures with connections. Debbie’s reasoning focused on the connections that her 

students made between the various mathematical representations of graphs, equations, 

and numerical data, though she did not specifically comment on how her students’ 

implementation of the task failed to satisfy the requirements for doing mathematics. 

Ethan, on the other hand, felt that the task had the potential to reach the level of doing 
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mathematics during implementation, but felt that his students were not yet at that level. 

His reasoning was that he did not have “the time and the ability” to guide students toward 

what the MMR lesson plans called for, especially because his students were not able to 

do some of the other linear modeling tasks such as “StarburstsTM Grab” and “Bungee 

Barbie.” Ethan implied that the restrictions with remote learning limited the capability for 

his task to reach its full potential.  

Though Beth did not classify her task at different levels of cognitive demand 

between Phases 3–4, Task Setup and Task Implementation, she noted that the cognitive 

demand of her task fluctuated within Phase 4: her students’ written responses were 

“superficial” in her eyes and lacked detailed reasoning after the first day, so she provided 

oral feedback at the start of the second day asking them to revise and explain their work 

in more detail. After the second day, Beth felt that her students had gone back and revised 

their work to her satisfaction, resulting in the classification of doing mathematics for 

Phase 4 overall.  

Among the participants, 6 teachers reported identical TAG classifications from 

the former task phase to the latter. Of these teachers, Adam, Cathy, and Gwen’s tasks 

declined in cognitive demand and are discussed in the following part of this section. 

Fred’s task maintained its cognitive demand according to the IQA rubrics, whereas 

Isabel’s task was only implemented by two students at their own pace and could not be 

analyzed using the IQA. Henry did not acknowledge the increase in the cognitive demand 

of his task from Phase 3 to Phase 4; he classified the task as doing mathematics across all 

four phases, though his students were pressed for and provided explanations that were not 
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explicitly called for by the task. Henry might not have noticed this difference between 

task phases, but it is also worth mentioning that the TAG is not as explicit as the IQA at 

addressing evidence of students’ thinking and reasoning. The IQA clearly cites this as a 

distinction between a score of 3 and a score of 4, whereas the TAG uses different criteria 

entirely, possibly explaining why my co-observer and I noticed this increase in cognitive 

demand. 

Mismatches in Task Analysis 

 A mismatch in task analysis occurred when either the researchers or a teacher 

identified a task as high in cognitive demand (i.e., scores of 3 and 4 in the IQA or 

procedures with connections and doing mathematics in the TAG) and the other identified 

a task as low in cognitive demand (i.e., scores of 0, 1, and 2 in the IQA or memorization 

and procedures without connections in the TAG). Three mismatches in task analysis 

occurred, each during task implementation: (a) Adam classified his task as doing 

mathematics, (b) Cathy classified her task as doing mathematics, and (c) Gwen classified 

her task as procedures with connections, whereas all three tasks scored a 2 on the IQA.  

As discussed in the previous paragraphs, the participating teachers acknowledged 

fewer changes in cognitive demand among Phases 3 and 4, Task Setup and Task 

Implementation, than they did among Phases 1 and 2, Task Selection and Task Planning. 

This could be because the third and fourth task phases are greater in complexity than the 

first and second. Therefore, it is not entirely surprising that the only mismatches occurred 

in the implementation phase. This could also be explained by the fact that the teachers 

made few substantial changes to their tasks when planning and the teachers who included 
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a distinct setup phase were guided by the MMR handouts and lesson plans provided by 

ODE.  

Of the 3 teachers whose tasks scored a 2 on the IQA for Phase 4: Implementation, 

Adam’s reasoning for classifying his task as high in cognitive demand differed from 

Cathy and Gwen’s. One distinguishing characteristic of Adam’s reasoning was that he 

misunderstood the TAG levels of cognitive demand––essentially reversing the ranking of 

procedures with connections and doing mathematics. Moreover, his reasoning for why 

the implementation of the task was at the procedures with connections level addressed 

real-world connections that his students made rather than the mathematical connections 

they made. One such example was students’ realization that some aspects of the task 

were not practical in real-life, like the inclusion of a fireplace and carpet in a school 

classroom. Adam also expressed with enthusiasm that his students were building a sense 

of community and collaboration with various aspects of the task, helping and supporting 

each other when they struggled and keeping each other on task. Though these are positive 

outcomes when engaging students with a task, they do not influence the cognitive 

demand of a task unless they address mathematical understanding and sensemaking; 

based on these data, Adam’s conception of cognitive demand appears to be still 

developing, especially concerning task implementation. 

 Unlike Adam, both Cathy and Gwen acknowledged some degree of decline in the 

cognitive demand of their tasks between Phases 3 and 4, Task Setup and Task 

Implementation. However, neither lowered the TAG classifications from what they 

provided in Phase 3 to Phase 4. Gwen explained that her students did not verbalize their 
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thinking and did not make connections to the level of her expectations, relying on the 

procedures they had learned in Chemistry for working with similar triangles without 

understanding how and why they made sense mathematically. She concluded that her 

students were at the level of procedures with connections, “though it may not have been 

through work of their own” as she had to “push them that point.” The reason for the 

mismatch, in Gwen’s case, seems to be that she classified the task based on the level of 

thinking that she attempted to have her students reach, not necessarily their actual level 

of understanding. Gwen seemed to have a stronger understanding of how her students 

engaged with the task than Cathy, though she did not change her TAG classification to 

match it. She acknowledged gaps in her students’ understanding but might also have been 

unwilling to admit that the task had declined into the low cognitive demand space. 

 Cathy might also have been unwilling to acknowledge a decline in cognitive 

demand. This is because, like Gwen, she communicated dissatisfaction with her students’ 

engagement with the task. Cathy expressed that her students could have “done more” to 

understand the nature of mathematical concepts, processes, and relationships, and that 

there was “not much struggle left” during implementation. Though she referenced 

specific criteria for doing mathematics in the TAG that she felt were lacking, she 

concluded that she “kept more of the bullets than she lost,” resulting in the same level of 

cognitive demand as in Phase 3: Setup. The reason for the mismatch with Cathy appears 

to stem from this apparent contradiction, though I cannot make a claim as to the reason 

for it. Perhaps she felt that her students’ implementation of the task satisfied the TAG 
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criteria for doing mathematics enough to warrant the classification, despite lacking in 

some respects. 

 Teachers’ experience with the MMR course and the associated PD might have 

contributed to the mismatches in task analysis that occurred. As I mentioned in Chapter 4, 

Adam and Cathy taught the MMR course for the first time during the 2020–2021 

academic year, whereas Gwen had taught the course once before during the 2019–2020 

school year. Of these 3 teachers with mismatches, Adam and Cathy were less familiar 

with the curricular materials, mathematics content, and pedagogical approaches of the 

MMR course than the other 5 MMR teachers. Moreover, they might have also been less 

familiar with the MTF and the TAG than teachers who had experienced the MMR PD 

prior to the 2020–2021 academic year. Therefore, it is not surprising that Adam and 

Cathy’s tasks declined in cognitive demand and their analyses did not match with the 

researcher and co-observer’s. The case of Gwen provides evidence that more experienced 

MMR teachers might still have trouble maintaining the cognitive demand of their tasks 

and disagree with researchers’ task analysis. However, it seems that more experienced 

MMR teachers are more likely to maintain high cognitive demand and analyze tasks 

more accurately. 

Theoretical and Practical Implications 

This section presents a discussion of how the findings of this dissertation research 

have the potential to influence the fields of mathematics education and teacher education. 

First, I discuss the Stein and colleagues (2009) MTF and the expanded four-phase model 

of the phases in the life of a task that I developed to guide the present study. Then, I 
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explain how teachers’ task use in the present study relates to the findings of previous 

empirical studies on teachers’ use of tasks. Next, I address teachers’ focus on active 

student engagement, followed by a section concerning the relationship between the IQA 

and TAG––the two rubrics that were used to analyze the cognitive demand of 

instructional tasks. 

The Phases in the Life of a Mathematical Task 

 The QUASAR research of the 1990s led to the development of the MTF, a 

framework that describes how tasks progress from their appearance in instructional 

materials to how they are set up by teachers and enacted by students (Stein et al., 1996, 

2009). Each phase of selecting, setting up, and implementing a task is influential in 

determining what students learn from the task. I hypothesized that a planning phase 

might also be influential because teachers do not always set up and implement tasks as 

they appear in curricular materials; they sometimes add to, remove from, or revise 

aspects of a task as they prepare for teaching the task (Earnest & Amador, 2019; Grouws 

et al., 2013). Although Smith and colleagues (2008) claimed that teacher planning affects 

how teachers set up tasks prior to student engagement, there had been no empirical 

evidence to date to support this claim. This led to the development of the four-phase task 

progression depicted in Figure 1 on page 50. 

  Of the 9 participating teachers, only Isabel chose to adjust her original task in 

ways that changed its IQA score for Task Potential. In particular, Isabel modified the task 

to change it from a score of 3 for Phase 1: Selection to a score of 4 for Phase 2: Planning. 

Although the remaining 8 teachers, all of whom were teaching the MMR course, adapted 
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tasks to make them suitable for remote instruction or safe to implement in face-to-face 

settings during the COVID-19 pandemic, their tasks retained identical IQA scores 

between the selection and planning phases. It is possible, perhaps even likely, that the 8 

MMR teachers felt compelled to remain true to the tasks as written in the state of Ohio 

instructional materials because they were participating in a statewide pilot of these 

materials. Under other circumstances, they might have made greater adjustments during 

the planning phase that would have affected the rating of the cognitive demand of the 

task. The IQA scores for teachers’ tasks in selection and planning might have changed 

more dramatically if I had recruited more teachers outside the MMR program. 

Nevertheless, the findings of this study suggest that the planning phase is influential in 

the progression of a task because of (a) the many ways that teachers adjusted their tasks 

and planned around the COVID-19 pandemic and (b) the careful consideration that 

teachers took when anticipating task setup and implementation.  

 An unexpected outcome of the present study was the degree of attention that 

teachers made to adjust to the pandemic when planning for instruction. This 

unprecedented situation presented teachers with numerous challenges that they 

endeavored to overcome, such as finding ways to engage students in collecting real-world 

data in remote learning environments and collecting data safely in face-to-face settings. 

The context of the MMR course highlighted teachers’ efforts to plan for meaningful 

mathematical work and discussions in remote settings, whereas the teachers using lecture 

or other teacher-centered pedagogies might have transitioned to COVID with fewer 
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adjustments to their tasks. Providing online lectures and lecture notes, for example, is 

simpler than engaging students actively in online learning settings. 

The inclusion of a planning phase in the four-phase model also illuminated 

aspects of teachers’ task use that were not identified in the other three phases: for 

example, many of the participating teachers explained their anticipation of students’ 

responses and challenges when planning their instruction. To prepare for how they might 

set up and implement the task with students, teachers such as Henry considered what 

questions their students might ask and ways that they might respond to support students’ 

engagement and understanding. When planning her instruction, Gwen highlighted 

mathematical concepts and ideas that she felt that her students would struggle with as 

they engaged with the task. Anticipating these potential student difficulties might have 

influenced her interactions with students when they struggled in class. 

The findings of the present study also highlight the importance of teacher 

reflection after attempting to use a high cognitive demand task. Through pre- and post-

observation interviews, participating teachers reflected on their task use in ways that they 

might not have otherwise been able to. Many teachers had only several minutes to debrief 

between one class period and the next, and the practical work of teaching typically 

provides limited time for teachers to deeply consider their past instruction. Even in the 

pre- and post-observation interviews, participating teachers took a practical approach to 

reflecting on their practice. They provided evidence of their reasoning when asked about 

task selection, but discussions about planning, setting up, and implementing tasks focused 

primarily on teachers’ actions rather than the underlying reasons for such actions.  
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Post-observation interviews, in particular, which involved task setup and 

implementation, centered around teachers’ experiences and decision-making in the 

moment rather than connections to theory (i.e., the MTF & the TAG). Student learning is 

the final stage in the Stein et al. (2009) MTF, but I suggest also that teacher reflection is 

an essential component that should follow the implementation of a task. To move the 

field of mathematics teacher education forward in the use of high cognitive demand tasks, 

it is crucial that teachers reflect on their task use from both practical and theoretical 

lenses. For teachers to do so effectively, they must be provided with the time and 

resources to reflect deeply on their instruction in meaningful ways. 

Maintaining the Cognitive Demand of a Task 

 The QUASAR studies also highlighted that the cognitive demand of a task tends 

to decline from its appearance in source materials to implementation with students (Stein 

et al., 1996; Henningsen & Stein, 1997). Since this seminal QUASAR work, numerous 

studies have had similar findings (e.g., Boston & Smith, 2009; Jackson et al., 2013; Ni et 

al., 2018). In the present study, 4 of the MMR teachers employed tasks in such a way that 

a decline occurred in the cognitive demand from Phase 1: Selection to Phase 4: 

Implementation; whereas, 3 teachers maintained the cognitive level of their tasks, and 1 

inclined the level of the task.  

It is encouraging that half of the MMR teachers were able to maintain or increase 

the cognitive demand of the tasks across their lifespans. Nonetheless, like past research, a 

decline in cognitive demand was also common. Stein and colleagues (1996) found not 

only that a decline in cognitive demand was common but even that challenges became 
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nonproblems, in other words, that the teachers dramatically reduced the amount of work 

and thinking required of students across the lifespan of a task. By contrast, even though 

many of the MMR teachers described their desire for students to engage in productive 

struggle, some had a drop in cognitive demand but not in such a dramatic fashion as 

found by Stein and colleagues. For example, a cognitive-level drop occurred when Adam 

supplied students with the placement of the gas furnace in their remodeled classroom and 

provided example scale drawings for students to refer to.  

Focus shifting to correct answers was another of the common reasons for 

cognitive demand to decline in previous studies (Henningsen & Stein, 1997). This 

occurred for Cathy, who directed students’ attention to “plugging” numerical values into 

their linear models and “seeing what they get” without discussing the meaning behind 

what they were doing and interpreting their results. In Gwen’s case, her students shifted 

the focus of the task toward using procedures they had learned in Chemistry without 

understanding how and why they were using them. 

 Among the factors associated with a maintenance in cognitive demand identified 

by Henningsen and Stein (1997), teachers in the present study (a) selected tasks that built 

on students’ prior knowledge, (b) provided scaffolding, (c) pressed students for 

explanations and meaning, and (d) drew conceptual connections. These practices 

occurred throughout the setup and implementation of tasks that maintained cognitive 

demand. For instance, the tasks focusing on linear equations built on what students had 

learned about linear functions both in previous MMR tasks and in Algebra 1. 

Participating teachers also provided instructional support without doing the work and 
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thinking for students by prompting them to create visual diagrams. Many of the teachers 

frequently questioned their students and pressed for explanations, even to the point of 

enhancing the cognitive demand of the task in the case of Henry. Fred and Isabel, among 

others, drew conceptual connections by prompting students to interpret the meaning of 

their linear models and the numerical coefficients within them.  

Though the teachers involved in the present study typically reinforced the 

findings of Henningsen and Stein (1997), it is worth mentioning that they also introduced 

factors influencing a change in the nature of high-level tasks. Namely, Henry and Gwen 

prompted students to explain their thinking and reasoning verbally when their written 

tasks did not do so, resulting in increases in IQA scores from 3 to 4 in both instances, 

though Gwen’s increase was in the setup phase and Henry’s was in implementation. 

Gwen set the expectation for her students to “verbalize their approach” to solving each 

problem, but her students failed to do so during implementation and the cognitive 

demand of the task declined as a result. 

A promising finding is that 5 of 8 MMR teachers involved in the present study 

implemented their tasks at high cognitive levels, whereas only three tasks experienced a 

decline into procedures without connections. This is encouraging because of how 

difficult it can be to maintain the cognitive demand of a task in practice. In addition, all 

the tasks were high in cognitive demand at the selection and planning phases. These 

findings contrast those of the 1996 TIMSS study and provide some evidence that the 

incentives of NCTM and others are taking hold in specific contexts. Specifically, in 

situations where high school mathematics teachers are involved in task-focused 
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professional development and provided with high-quality curricular materials, there is 

strong potential for them to successfully implement tasks at high levels. The findings of 

the present study do not necessarily generalize across similar contexts. However, it 

appears that the MMR and ATC PD programs fostered environments where high-level 

task implementation is possible. Similar PD programs may also provide such promise, 

though additional research is necessary to explore such programs. 

Focusing on Active Student Engagement 

 A consistent finding among the themes for teachers’ task selection, planning, 

setup, and implementation was a focus on student engagement with a task. In the present 

study, the participating teachers identified active student engagement as a motivating 

factor for selecting their tasks. When planning, the teachers established learning goals for 

their students and anticipated how their students might interact with the mathematics and 

with each other. During task setup, the teachers engaged their students in relevant 

preliminary discussions and set expectations for students’ subsequent work on a task. 

Finally, during implementation, the teachers took action to monitor and facilitate 

students’ engagement as it occurred. The focus on student engagement at each of the four 

task phases suggests that teachers were concerned with student engagement throughout 

their use of tasks. Before, during, and even after their instruction, the teachers attended to 

how their students’ potential and actual engagement and how such engagement 

contributed to their students’ mathematical learning. 

 Teachers’ focus on active student engagement is critical because student 

engagement influences the cognitive demand of a task during task setup and task 
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implementation. According to Henningsen and Stein (1997), students learn to “do 

mathematics” when they “engage actively in rich, worthwhile mathematical activity” (p. 

524). Moreover, NCTM (2014) advocates for active, student-centered instructional 

practices because these approaches can enhance students’ ability to solve problems and to 

reason mathematically. Active student engagement alone is not enough to maintain the 

high cognitive demand of a task (Stein et al., 2009); however, it is one of the essential 

ingredients that can promote high-level student thinking and reasoning. 

 A key feature of the MMR course is its student-centered nature. By design, rather 

than lecturing, MMR teachers are expected to pose rich modeling problems and support 

students’ engagement by encouraging productive struggle and challenging students to 

identify their own solution pathways. In keeping with this design, the present study 

found, for the most part, that the MMR teachers were effective at implementing the 

course, and the PD was effective at preparing teachers to do so. Though the participating 

teachers’ understanding of cognitive demand was still developing in some ways, they 

consistently planned for and taught engaging lessons, during which students explored 

real-world situations and developed their own problem-solving strategies. Even in cases 

where the cognitive demand of a task declined during implementation, the students were 

still engaged in some form of work and thinking (e.g., collecting data and generating 

mathematical models using technology). In other cases, student engagement contributed 

to the high cognitive demand of tasks that were set up and implemented. In general, the 

ways in which teachers engaged their students aligned with the goals of the MMR course. 
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Research Using the Instructional Quality Assessment and the Task Analysis Guide 

 The present study incorporated the IQA (Boston, 2012) and the TAG (Stein et al., 

2009), two rubrics for analyzing the cognitive demand of a task. These are not the only 

two tools that can be used to determine the rigor of mathematics instruction and the 

potential for student learning, but they were chosen because of their clear focus on 

instructional tasks and cognitive demand. Moreover, the IQA rubrics were designed to 

closely align with the TAG and measure similar attributes of a task. As the researcher, I 

worked with another trained observer to use the IQA rubrics because they were designed 

for use by two observing researchers who would then reach a consensus on the rating of 

the cognitive demand of a task. I had research participants use the TAG because they 

were trained to use to use it during PD but were not trained to use the IQA. 

 As depicted in Figure 3 on page 104, the TAG and the IQA are comparable at 

their three lowest levels: nonmathematical activity according to the TAG warrants an 

IQA score of 0, memorization tasks in the TAG score a 1 on the IQA, and procedures 

without connections tasks in the TAG score a 2 on the IQA. That is, low cognitive 

demand tasks are analyzed in essentially the same way by either the TAG or the IQA. 

However, the categories for high cognitive demand tasks do not translate as directly 

between the two rubrics: both procedures with connections and doing mathematics tasks 

have the potential to score either 3 or 4 on the IQA. The difference between IQA scores 

of 3 and 4 is explicit evidence of students’ mathematical thinking and reasoning, whereas 

the difference between procedures with connections and doing mathematics tasks is 
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altogether different in the TAG. The IQA also focuses on the use of accountable talk 

moves, especially in the Expanded IQA Task Setup Rubrics, whereas the TAG does not.  

By comparing teachers’ analysis of tasks using the TAG with the researcher’s 

using the IQA, the present study has highlighted the nuances between the TAG and the 

IQA regarding high cognitive demand tasks. In some instances, it might be more logical 

for the researcher to use the TAG alongside teachers, and in other cases, both parties 

might be trained to use the IQA rubrics. Candela, for example, has conducted PD studies 

in which teachers have learned about the IQA and have used it to analyze and reflect on 

their own instructional practices (e.g., Candela, 2016; Candela & Boston, 2019). Such 

studies have explored the use of the IQA as a “professional learning tool” (Candela & 

Boston, 2019, p. 530) to support mathematics teachers’ growth in selecting and 

implementing high level tasks. Though it may still be worthwhile to use and compare 

both the TAG and the IQA in the same study, researchers must be intentional when 

determining which to use and when to use it. 

Recommendations for Future Practice 

Based on the findings of present study, I have identified three recommendations 

for future practice. The first is that the use of high-quality curricular materials contributed 

to teachers’ ability to set up and implement tasks maintaining high cognitive demand; 

therefore, the present study highlights the importance of providing teachers with such 

materials for other high school mathematics courses in addition to MMR. The second 

recommendation suggests ways in which teachers can maintain the cognitive demand of 

tasks based on the findings of the present study. The third recommendation focuses on 
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teacher professional development, particularly PD incorporating the Stein et al. (2009) 

MTF and TAG. 

Curricular Materials 

Trends in teachers’ task use and in IQA scores highlight the importance of 

rigorous curricular materials in school mathematics. One of the trends that was identified 

using the IQA was that teachers’ tasks consistently scored 3 and 4 for Phases 1 and 2. 

This finding suggests that the tasks were all high in cognitive demand for both phases. 

Though additional research is needed to determine whether all the MMR tasks are high in 

cognitive demand, the sample of tasks in the present study suggest that many others 

might be. Stein and colleagues (2009) conjectured that selecting cognitively demanding 

tasks “appears to be a necessary condition” (p. 5) for engaging students in high-level 

thinking and reasoning; evidence from the present study shows that, for teachers involved 

in PD focusing on the cognitive demand of mathematical tasks, those who select high 

cognitive demand tasks are likely to implement the tasks in such ways, though 3 of the 8 

MMR teachers failed to do so for various reasons. However, the use of rigorous 

curricular materials surely influenced the success of the remaining 5 teachers. 

Another trend was that most of the teachers made few significant changes to their 

tasks when planning, aside from those that might make them more suitable for remote 

learning and safer for face-to-face instruction during the COVID-19 pandemic. There is 

not enough evidence in the interview data to support the following claim, but I suspect 

that the participating MMR teachers chose not to make substantial changes to other 

aspects of their tasks because they were strong tasks to begin with. Some of the teachers 
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indicated their stance that the MMR materials were “effective” and that they would use 

them to teach similar content in other courses. Teachers who are provided with such 

materials can spend more of their planning time focused on pedagogy and anticipating 

how they might support and enhance student learning, rather than spending time 

searching for and adapting materials to fit their needs. 

 The inclusion of lesson plans with the MMR tasks may also have supported 

teachers’ task setup and implementation in the present study. The MMR teachers 

attended to the lesson plans for their tasks and included the state-recommended 

instructional protocols when they taught, including the use of videos and related whole-

class discussions. Teachers set up the tasks in ways that were suggested by the MMR 

lesson plans and practiced instructional strategies that were recommended during task 

implementation. The provided lesson plans may have supported high-level task setup and 

implementation and benefited both teachers and their students. Therefore, the availability 

of rigorous instructional materials cannot be overstated; high school mathematics in the 

United States would significantly benefit if such materials were made widely available 

for not only MMR but more standard courses such as Algebra, Geometry, and 

Precalculus.  

Maintaining Cognitive Demand in Practice 

 The present study resonates with previous research, providing further evidence 

that selecting a high cognitive demand task does not necessarily guarantee high-level 

implementation. The present study also highlights the significance of the implementation 

phase, the task phase where decline in cognitive demand is most common. To support 
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students’ conceptual understanding and mathematical sensemaking, more teachers should 

be provided with opportunities to discover and explore (a) the Stein et al. (2009) MTF, 

(b) the TAG, (c) and the four-phase framework that I presented in Figure 1 on page 50. 

These tools are essential if teachers are to understand the complexity of mathematical 

tasks and their influence on student learning. Teachers can learn about these ideas in PD, 

at mathematics education conferences such as those sponsored by the NCTM, its 

affiliates, and other similar organizations in the United States and abroad, and through 

teacher education programs at colleges and universities. By doing so, mathematics 

teachers can begin to develop mindsets focused on cognitive demand that enhance their 

use of tasks across the four phases. 

 The setup and implementation phases are less predictable because of potential 

student interaction and require attention so that the cognitive demand of a task does not 

decline. Teachers who support their students in preliminary discussions of the real-world 

features and mathematical relationships necessary to engage with a task can enhance 

student learning and productivity (Jackson et al., 2012, 2013); however, teachers must 

also be conscientious to avoid doing the work of the task for their students and thus 

reducing the cognitive demand. Evidence from the present study suggests that 

mathematics teachers can help their students visualize aspects of a task in other ways by 

asking them to think of alternative ways to represent the situation being investigated. 

Therefore, without lowering the cognitive demand, teachers can suggest alternative 

representations for students and still let the students do the work on their own.  
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Alternatively, teachers may maintain and even enhance the cognitive demand of a 

task by pressing students to explain their thinking and reasoning. Tasks that require such 

evidence of students’ understanding are crucial, but the teacher can further promote this 

by establishing classroom environments where students are required to provide 

explanations regularly. The cases of Gwen and Henry provide evidence that it is possible 

to promote such an environment despite the use of tasks that do not require explicit 

evidence of students’ thinking and reasoning. Enhancing the rigor of a task is a skill that 

may not often be addressed in teacher education programs and teacher PD; therefore, the 

present study highlights the need to support mathematics teachers in this area. Teachers 

who are not provided with high-quality instructional materials may find it necessary to 

modify tasks so that they can engage their students in high-level thinking and reasoning 

frequently and consistently. As in the case of Gwen, however, setting the expectation for 

high-level thinking and reasoning is not enough. Enhancing the quality of a task is a 

beneficial skill for teachers to learn, but they must also learn to hold students accountable 

for providing mathematical evidence and justification with their responses. 

 Though some of the teachers in the present study communicated their frustration 

with remote teaching and learning, high cognitive demand tasks may also thrive in such 

spaces. Teachers who maintained high cognitive demand with their tasks used technology 

appropriately to engage their students, to monitor and facilitate their work, and to 

promote discussions between student groups and among the whole class. The use of 

technology such as Pear Deck and Nearpod, a similar alternative, allows teachers to 

observe students’ work in real-time. This enables teachers to provide nearly instantaneous 
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feedback and formative assessment aimed at enhancing student learning. A crucial 

element of remote instruction that is conducive to maintaining high cognitive demand is 

that students frequently interact with each other and with the mathematics; though it can 

be challenging to get students to talk in online environments for various reasons, teachers 

must provide opportunities for them to do so because it allows them to share and build on 

each other’s insights. 

Professional Development 

 The MMR PD provided teachers with an enormous amount of information: The 

teachers learned about mathematical tasks, cognitive demand, and how to analyze both 

the potential (Phase 1: Selection) and the implementation (Phase 4: Implementation) of a 

task using the TAG. In addition, they were introduced to new curricular content and 

instructional materials as well as innovative pedagogical strategies. And in the case of the 

2020–2021 school year, all of this was done amidst the unprecedented challenges 

presented by the COVID-19 pandemic. Therefore, it is understandable that that the TAG 

was not the teachers’ first and foremost priority, nor might it have been for the MMR PD 

leaders. Fortunately, the MMR PD not only included 3 days of summer workshops but 

also regular follow-up meetings throughout the ensuing school year. However, in non-

COVID years, the summer PD has been 4 days in length and has been face to face. 

The MMR PD and similar PD programs should include the MTF, the TAG, the 

IQA, and a study of cognitive demand and the PD leaders should be sure to allocate 

sufficient time for teachers to engage deeply and meaningfully in (a) working through 

mathematical tasks; (b) studying the MTF, the TAG, the IQA, and the associated levels 
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of cognitive demand; and (c) analyzing instructional tasks using these tools. Moreover, 

PD coupled with instructional materials containing high cognitive demand tasks enhance 

teachers’ ability to integrate such tasks into their regular teaching practices, and the PD 

support helps teachers to maintain high cognitive demand throughout the task’s lifespan. 

 The MMR PD provided teachers with high-quality curricular materials in addition 

to what they learned about mathematical tasks. These materials surely influenced the 

number of tasks that scored 3 and 4 on the IQA across the four task phases. Though the 

teachers involved in the present study provided generally strong analyses of tasks in 

Phases 1–2, assessing the cognitive demands of tasks in Phases 3–4 was more 

challenging, especially for first-year MMR teachers. Moreover, the teachers were not 

accustomed to analyzing the cognitive demands of tasks using four separate task phases; 

therefore, future task-focused PD should provide specific attention to (a) the cognitive 

demand of a task at each of the four task phases and (b) potential changes to a task 

between each phase and how such changes influence the cognitive demand of the task. 

Teachers need opportunities to analyze the cognitive demand of tasks at each phase but 

should also have a chance to select, plan, set up, and implement their own tasks, with 

opportunities to reflect on and discuss the changing cognitive demand with other 

teachers. Such PD will not be successful in a single setting over the course of a day or a 

weekend; for teachers to be able to thoroughly reflect on their practice with each other, a 

PD program should include several follow-up sessions throughout the course of a 

semester or year. 
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 Desimone (2002, 2011) argued that five features influence the effectiveness of PD 

and inspire changes in teachers’ knowledge and practice. The first feature, emphasis on 

content and how students learn, is one of the features of the MMR PD. The MMR PD 

focuses primarily on the content of the MMR course and the use of student-centered 

pedagogical approaches. The second of Desimone’s features of effective PD is 

opportunities for teachers to participate and learn actively; in both the 2019 and 2020 

summer MMR workshops, PD leaders engaged teachers in working through some of the 

MMR tasks so that they could learn by doing as their students should. The third feature, 

opportunities for teachers to act and serve as leaders, occurred as MMR teachers provided 

feedback on the course and served on curriculum development and PD committees.  

The MMR PD was ongoing, providing teachers with continuous learning 

opportunities through regular follow-up meetings during each school year; Desimone’s 

fourth feature is the length of PD programs, asserting that one-day and weekend-long 

programs are less effective at promoting long-term teacher growth than programs that 

span a semester or year. Finally, the fifth feature is collective participation from teachers 

who share common characteristics. This was achieved by the MMR PD through the 

recruitment of high school mathematics teachers teaching the same course, MMR, and 

the development of a statewide learning community that met regularly to discuss lessons 

and share resources with each other. In summary, the MMR PD possessed many high-

quality features. The findings of the present study further suggest that the MMR PD has 

positively influenced teachers’ practice through their use of instructional tasks. Future PD 

programs should strive to adopt these evidence-based approaches. 
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Recommendations for Future Research 

The following recommendations for future research serve to extend the present 

study and address its limitations. As the researcher, I have reflected on my methods and 

can provide recommendations that may yield more rich data and address the limitations 

of the study. Because this study was only a short-term glimpse into teachers’ 

perspectives, longitudinal studies are necessary to explore changes in teachers’ 

perspectives over time. In addition, this study was delimited to the context of two task-

focused PD programs in Ohio; research exploring additional PD programs and teachers’ 

typical practice (outside the context of PD) is necessary to determine how the findings 

differ in different contexts. Finally, more research should explore teachers’ understanding 

of the Stein et al. (2009) levels of cognitive demand and the four task phases to enhance 

teacher preparation and training programs. 

Enhancing Similar, Future Studies 

 As I reflect on the present study, I realize that the research design and methods 

were limited to my capability as a researcher (Glesne, 2016; Patton, 2015). As my 

interviews with teachers progressed from task selection to planning, setup, and 

implementation, the dialogue tended to focus more on the actions of teachers than on the 

reasons for such actions. To enhance the potential for gathering rich data, researchers 

conducting similar studies might enhance their methods in two ways: first, time 

constraints might have restricted my ability to delve deeper into teachers’ rationales than 

I had hoped. Discussing, in depth, two phases of teachers’ task use and the cognitive 

demand of a task at both phases might be more than can be accomplished within a single 
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hour. Second, my inexperience as a researcher might have limited my ability to probe and 

converse with teachers during our interviews. Therefore, in similar, future studies, I 

recommend allocating more time for each of the four task phases and developing deeper 

probing questions so that teachers might be pressed to explain their reasoning in greater 

detail. These two suggestions can enhance the richness of the data obtained in future 

studies and lead to additional research findings. 

Longitudinal Studies 

 One of the limitations of the present study is the timeframe for which it was set. 

Two observations of a teacher’s practice, with one interview before and one afterward, 

provides only a snapshot of each participant’s task use. Therefore, future research of a 

similar nature should explore teachers’ perspectives and use of mathematical tasks prior 

to, during, and following the conclusion of a PD program. Longitudinal studies would 

extend beyond a single snapshot and provide insights regarding the way that PD may 

influence teachers’ perspectives and, hopefully, enhance the ways that they use 

instructional tasks in their teaching. Previous research has focused on the latter but has 

not included the former, nor has it addressed the way in which teachers’ changing 

perspectives influence their changing task use. The Ohio MMR pilot course serves as a 

facilitator through which long-term studies may continue and extend the work of this 

dissertation. 

Differing Contexts 

 The present study is delimited to the context of two PD programs facilitated 

within the state of Ohio. Moreover, the qualitative nature of the research does not lend 
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itself to be generalizable to teachers in other contexts. Additional research is necessary to 

explore mathematics teachers’ perspectives and their use of tasks in various contexts, 

including (a) teachers in similar PD programs in different parts of the world, (b) teachers 

in Ohio involved in similar PD programs, and (c) teachers in Grades PreK–8 and teachers 

of courses other than MMR. Conducting similar studies in these differing contexts may 

provide insights that were not obtained through the present study. In addition, such 

studies might support the findings of the present study and further contribute to the body 

of literature on mathematical tasks. Because mathematics teaching is cultural (Stigler & 

Hiebert, 1999), conducting research similar to the present study in another country (e.g., 

Germany or Japan) would likely introduce new variables based on the interactions 

between teachers and students. Teachers who collaborate frequently and purposefully 

through lesson studies, such as those in countries like Japan, might reflect on their 

instruction in ways that teachers in the United States did not in the present study. 

 Additional research is also needed with teachers who are not currently involved in 

PD and those who are not teaching pilot courses. One of the potential reasons that the 

MMR teachers made few substantial changes to their tasks when planning is because the 

materials were provided as a part of the PD for the pilot course. Some teachers 

acknowledged the quality of the course materials whereas others acknowledged ODE’s 

desire for “consistency” when implementing the lessons because of their research. I 

suspect that teachers who are neither involved with PD nor teaching a pilot course may 

select tasks from a variety of sources (though textbooks may be a predominant resource) 

and may adapt them in more substantial ways than those participating in the present 
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study. The single non-MMR teacher, Isabel, provides a single instance of a teacher who 

found and adapted a task from the internet. 

 One of the delimitations of the present study was that I required teachers to use 

what they considered to be a high cognitive demand task. What might have resulted if the 

same teachers were not given such a requirement? Some of the teachers might have 

selected a low cognitive demand task, which would certainly have led to other findings 

and conclusions. What if the teachers had been required to select a low cognitive demand 

task and then modify it to be a high-level task? These types of open questions require 

additional research to explore. 

The present study was also conducted amidst the COVID-19 pandemic, requiring 

numerous adaptations that influenced data collection. All the data for the present study 

were collected online, whereas research in a typical setting would have been done face-

to-face; future research in a more conventional setting may yield additional findings. 

Conducting the present study in a typical face-to-face setting might have led to different 

findings because teachers’ use of tasks and interactions with students might have been 

different. 

Teachers’ Understanding of Cognitive Demand 

The present study found evidence indicating that high school mathematics 

teachers perceive cognitive demand in various ways and at differing levels of 

understanding, despite their participation in the same PD program. Some of the 

participating teachers in this study had engaged in the MMR PD, ATC PD, and possibly 

others involving the TAG numerous times; such teachers are expected to have developed 
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a deeper knowledge of how to analyze tasks based on their cognitive demands. However, 

those with similar levels of experience with the TAG conceptualized cognitive demand in 

different ways. Therefore, further research is needed to explore the ways in which 

teachers develop understanding of cognitive demand as a theoretical construct and how 

mathematical tasks are analyzed using the TAG. Researchers such as Arbaugh and 

Brown (2005) and Boston and Smith (2009) have investigated the influence of PD in 

improving high school mathematics teachers’ understanding of tasks and the TAG but 

have not done so according to the four task phases of selecting, planning, setting up, and 

implementing. Additional research is necessary to address teachers’ growth as they learn 

to analyze tasks at all four phases. Future studies of this nature will enhance the 

effectiveness of future PD programs and may enhance preservice teacher education 

programs as well. 

Future research could also explore teachers’ analysis of tasks with similar features 

but different levels of cognitive demand. One study of interest might require high school 

mathematics teachers to compare two tasks with similar superficial features (e.g., 

including a real-world context or involving graphing), one with high cognitive demand 

and one with low cognitive demand. Teachers’ analysis of the tasks and their perspectives 

of how the tasks compare might yield further insights related to those of the present 

study. Similarly, researchers might also present teachers with low cognitive demand tasks 

and prompt them to modify the tasks in ways that enhance their cognitive demand. Such a 

study could explore the reasons why teachers make the modifications that they do and 

how the teachers think that the changes will enhance the cognitive demand of the task. 
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Summary and Conclusion 

 The purpose of this study was to explore high school mathematics teachers’ 

perspectives as they progressed through the phases of selecting, planning, setting up, and 

implementing high cognitive demand tasks. Past research has explored teachers’ task use 

using quantitative approaches, indicating that the cognitive demand of a task tends to 

decline from the first phase to the last. However, few studies had focused on teachers’ 

perspectives, and none had incorporated a four-phase model for the progression of a task. 

Therefore, research investigating teachers’ perspectives regarding mathematical tasks and 

cognitive demand is crucial to advance the field of mathematics teacher education and to 

support high school mathematics teachers as they endeavor in this challenging work. 

 By conducting interviews, observing classroom instruction, and analyzing 

instructional tasks and student work, I have gathered evidence to describe 9 high school 

mathematics teachers’ use of instructional tasks. In addition, I have discovered their 

perspectives concerning how they select, plan, set up, and implement such tasks in their 

teaching and how they conceptualize the cognitive demand of a task from one phase to 

the next. The cross-case thematic analysis of teachers’ interviews led to the establishment 

of 18 themes split among the four task phases: generally, the teachers selected tasks that 

were suitable for their respective learning environments (e.g., face-to-face, remote, or 

hybrid), encouraged students to engage actively, addressed important content and skills, 

and included genuine real-world contexts. Participating teachers were flexible with their 

planning but attended to goals and objectives specified by ODE in the MMR lesson plans 

and their own goals for student learning. They also anticipated ways in which their 
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students might engage and struggle with their tasks and adjusted tasks according to their 

teaching environments. 

 Most of the participating teachers included some form of preliminary discussion 

prior to students’ engagement with the task, though some had their students begin 

working on their tasks right away. The teachers typically set expectations for students’ 

engagement and, when relevant, had their students brainstorm by asking questions such 

as “What do you notice?” and “What do you wonder?” When implementing the tasks, 

teachers encouraged productive struggle as they facilitated and monitored their progress. 

However, they intervened when appropriate by asking questions, providing support, and 

eliciting evidence of students’ thinking and reasoning throughout the process. 

 The analysis of teachers’ tasks using the IQA showed that some teachers set up 

and implemented their tasks in ways that maintained high-level cognitive demands. 

However, other tasks declined in cognitive demand either because (a) students did not 

explain their mathematical thinking and reasoning or (b) the emphasis of the task shifted 

toward routinized procedures and finding answers. Despite previous research findings 

suggesting that increases in cognitive demand are rare, teachers in the present study 

increased the cognitive demand of tasks by setting the expectation that students should 

explain their thinking and by pressing for explanations. In both instances, student 

explanations were not called for by the original task. Mismatches between researchers’ 

and teachers’ analysis of task cognitive demands occurred only in task implementation; 

such instances occurred when (a) teachers acknowledged some decline in cognitive 

demand but did not adjust their TAG classifications and when (b) a teacher 
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communicated a lack of understanding of the levels of cognitive demand and focused on 

nonmathematical evidence of students’ thinking and reasoning. 

 The findings of this study suggest that the PD and associated resources provided 

to the MMR teachers substantially influenced their use of mathematical tasks. This is not 

only evident in the tasks they selected, but also in the teachers’ attention to the goals and 

lesson plans developed by ODE. Moreover, the participating MMR teachers set up and 

implemented tasks as suggested in the ODE lesson plans, including instructional 

segments (e.g., brainstorming and data-gathering segments) and recommended 

pedagogical strategies (e.g., asking questions and eliciting evidence of students’ 

thinking). The effectiveness of the MMR PD seems to have influenced the high-level task 

potential that was evident across the teachers participating in the present study; that is, 

the PD and resources provided by ODE enabled the teachers to select tasks with high 

cognitive demand and maintain the cognitive demand into the planning phase.  

 Task setup across the 8 MMR teachers was generally consistent with the 

recommendations provided in the ODE lesson plans. All the MMR tasks maintained their 

potential to engage students in cognitively demanding work and thinking. Though 5 of 

the 8 MMR tasks were implemented at high cognitive levels, 3 declined into the low 

cognitive domain of procedures without connections. Moreover, the teachers who 

implemented these three tasks failed to notice the decline into lower cognitive activity. 

This suggests that the MMR PD and similar PD programs should emphasize task 

implementation and teacher strategies to maintain high-level cognitive demand. In 

addition, PD programs should educate participants about the four phases of selecting, 
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planning, setting up, and implementing tasks and the various ways that cognitive demand 

may change from one phase to the next. Enhancing teachers’ understanding of cognitive 

demand and the complex nature of mathematical tasks will result in an increase in the 

rigor of tasks that their students engage with; therefore, doing so will enhance student 

learning and understanding in school mathematics. 
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Appendix A: The Instructional Quality Assessment Rubrics 

Included with permission from Melissa Boston 

 

 
 
 
 

 
 

IQA Mathematics Lesson Observation Rubrics 
 
 

Melissa Boston ©2012, 2017. Copyright 2012, 2017 
 
 

Use restricted by author. Contact Melissa Boston, 
bostonm@duq.edu, 412-396-6109, prior to use for information on 

rater training and permission to use.  
 
 

IQA Mathematics Rubrics for Student Work (or Assignment) 
Collections available as well. 

  

Instructional Quality Assessment in Mathematics 
Classroom Observation Toolkit 
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RUBRIC AR1: Potential of the Task 

4 

The task has the potential to engage students in exploring and understanding the nature of 
mathematical concepts, procedures, and/or relationships, such as: 
 Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a 

predictable, well-rehearsed approach or pathway explicitly suggested by the task, task 
instructions, or a worked-out example); OR  

 Procedures with connections: applying a broad general procedure that remains closely 
connected to mathematical concepts. 

 
The task must explicitly prompt for evidence of students’ reasoning and understanding. For 
example, the task MAY require students to:   
 solve a genuine, challenging problem for which students’ reasoning is evident in their work on 

the task; 
 develop an explanation for why formulas or procedures work;  
 identify patterns and form and justify generalizations based on these patterns; 
 make conjectures and support conclusions with mathematical evidence; 
 make explicit connections between representations, strategies, or mathematical concepts and 

procedures. 
 follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or 

relationship. 

3 

The task has the potential to engage students in complex thinking or in creating meaning 
for mathematical concepts, procedures, and/or relationships. However, the task does not 
warrant a “4” because the task does not explicitly prompt for evidence of students’ 
reasoning and understanding. For example, students may be asked to: 
 engage in problem-solving, but the problem does not require much cognitive challenge (e.g., 

a problem that is easy to solve). 
 explore why formulas or procedures work, but not provide an explanation. 
 identify patterns, but are not pressed to explain generalizations or provide  justification; 
 to make conjectures, but are not asked to provide mathematical evidence or explanations to 

support conclusions. 
 use multiple strategies or representations, but the task does not explicitly prompt students to 

develop connections between them. 
 follow a prescribed procedure to make sense of a mathematical concept, process, or 

relationship, but not to explain or illustrate the underlying mathematical ideas or 
relationships.  

2 

The potential of the task is limited to engaging students in using a procedure that is either 
specifically called for or its use is evident based on prior instruction, experience, or 
placement of the task.  
 There is little ambiguity about what needs to be done and how to do it.  
 The task does not require students to make connections to the concepts or meaning underlying 

the procedure being used.  
 Focus of the task appears to be on producing correct answers rather than developing 

mathematical understanding (e.g., applying a specific problem solving strategy, 
practicing a computational algorithm). 

 

IQA Mathematics Rubrics: Academic Rigor 
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OR There is evidence that the mathematical content of the task is at least 2 grade-levels below the 
grade of the students in the class. 

1 

The potential of the task is limited to engaging students in memorizing or reproducing facts, 
rules, formulae, or definitions. The task does not require students to make connections to the 
concepts or meaning that underlie the facts, rules, formulae, or definitions being memorized 
or reproduced. 

0  The task or lesson activity requires no mathematical activity. 

 

RUBRIC AR2: Implementation of the Task 

4 

Students engaged in exploring and understanding the nature of mathematical concepts, 
procedures, and/or relationships, such as: 
 Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a 

predictable, well-rehearsed approach or pathway explicitly suggested by the task, task 
instructions, or a worked-out example); OR  

 Procedures with connections: applying a broad general procedure that remains closely 
connected to mathematical concepts. 

 
There is explicit evidence of students’ reasoning and understanding.  
For example, students may have:   
 solved a genuine, challenging problem for which students’ reasoning is evident in their work 

on the task; 
 developed an explanation for why formulas or procedures work;  
 identified patterns, formed and justified generalizations based on these patterns; 
 made conjectures and supported conclusions with mathematical evidence; 
 made explicit connections between representations, strategies, or mathematical concepts and 

procedures. 
 followed a prescribed procedure in order to explain/illustrate a mathematical concept, process, 

or relationship. 

3 

Students engaged in complex thinking or in creating meaning for mathematical concepts, 
procedures, and/or relationships. However, the implementation does not warrant a “4” 
because there are no explicit explanations or written work to indicate students’ reasoning 
and understanding. Students may have: 
 engaged in problem-solving, but the problem did not require much cognitive challenge 

(e.g., the problem was easy to solve) or students’ reasoning is not evident in their work on 
the task. 

 explored why formulas or procedures work, but did not provide explanations. 
 identified patterns but did not form or justify generalizations. 
 made conjectures but did not provide mathematical evidence or explanations to support 

conclusions 
 used multiple strategies or representations but connections between different 

strategies/representations were not explicitly evident; 
 followed a prescribed procedure to make sense of a mathematical concept, process, or 

relationship, but did not to explain or illustrate the underlying mathematical ideas or 
relationships. 
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2 

Students engaged in using a procedure that was either specifically called for or its use was 
evident based on prior instruction, experience, or placement of the task.  
 There was little ambiguity about what needed to be done and how to do it.  
 Students did not make connections to the concepts or meaning underlying the procedure 

being used.  
 Implementation focused on producing correct answers rather than developing mathematical 

understanding (e.g., applying a specific problem solving strategy, practicing a computational 
algorithm). 

 
OR There is evidence that the mathematical content of the task is at least 2 grade-levels below 

the grade of the students in the class. 

1 
Students engage in memorizing or reproducing facts, rules, formulae, or definitions. 
Students do not make connections to the concepts or meaning that underlie the facts, rules, 
formulae, or definitions being memorized or reproduced. 

  0 The students did not engage in mathematical activity. 
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RUBRIC AR3: Student Discussion Following Task 

4 

Students present their mathematical work and thinking for solving a task and/or engage in a 
discussion (teacher-guided or student-led) of the important mathematical ideas in the task. 
During this discussion: 
 students provide complete and thorough explanations of their strategy, idea, or procedure. 
 students make connections to the underlying mathematical ideas (e.g., “I divided because 

we needed equal groups”). 
 students provide reasoning and justification for their mathematical work and thinking. 
OR 
 students present and/or discuss more than one strategy or representation for solving the 

task, and a) provide explanations, comparisons, etc., of why/how the different 
strategies/representations were used to solve the task, and/or b) make explicit connections 
between strategies or representations; 

 there is thorough presentation and discussion across strategies or representations 

3 

Students present their mathematical work and thinking for solving a task and/or engage in a 
discussion (teacher-guided or student-led) of the important mathematical ideas in the task. 
During this discussion: 
 students attempt to provide explanations of why their strategy, idea, or procedure is valid 

and/or students begin to make connections. The justifications, explanations and connections 
are conceptually-based (and on the right track), but are not complete and thorough (e.g., 
student responses often require extended press from the teacher, are incomplete, lack 
precision, or fall short of making explicit connections).   

OR 
 students present and/or discuss more than one strategy or representation for solving the 

task, and provide explanations of how the individual strategies/representations were used to 
solve the task but do not make connections between different strategies or representations.  

 there are thorough presentation and/or discussion of individual strategies or 
representations, but there is not discussion, comparison, connections, etc., across 
strategies/representations. 

2 

Students show/describe/discuss procedural work for solving the task. During this discussion: 
 connections are not made with mathematical concepts and the discussion focuses solely on 

procedures (e.g., the steps for a multiplication problem, finding an average, or solving an 
equation; what they did first, second, etc.), OR 

 students make presentations of their work, and questioning or prompting from the teacher is 
for procedural explanations only, OR 

 students show/discuss only one strategy/representation for solving the task, OR 
 students present their work with no questioning or prompting from the teacher (to the 

presenters or to the class) to explain the mathematical work, make connections, etc. 
[Presentations with no discussion.] 

1 

 Students provide brief or one-word answers, fill in blanks, or IRE pattern (e.g., T: What is 
the answer to Question 5? S: 4.5 T: Correct!), OR 

 Students’ responses are vague, unclear, or contain several misconceptions regarding the 
overall concept or procedure. [Student responses are incorrect or do not make sense 
mathematically.] 
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0 
There was no mathematical discussion of the task: a) no discussion occurred following students’ 
work on the task; or b) teacher’s questions and/or student’s responses are non-mathematical. 

 
 

  

Rubric AR-Q:  Rigor of Teacher’s Questions 
 

4 
The teacher consistently asks academically relevant questions that provide opportunities for 
students to elaborate and explain their mathematical work and thinking (probing, generating 
discussion), identify and describe the important mathematical ideas in the lesson, or make 
connections between ideas, representations, or strategies (exploring mathematical meanings 
and relationships). 
 

 
3 

At least 3 times during the lesson, the teacher asks academically relevant questions that 
provide opportunities for students to elaborate and explain their mathematical work and 
thinking (probing, generating discussion), identify and describe the important mathematical 
ideas in the lesson, or make connections between ideas, representations, or strategies 
(exploring mathematical meanings and relationships). 
 

 
 

2 

There are one or more superficial, trivial, or formulaic efforts to ask academically 
relevant questions probing, generating discussion, exploring mathematical meanings and 
relationships)  (i.e., every student is asked the same question or set of questions) or to ask 
students to explain their reasoning; 
OR  
Only one (1) effort is made to ask an academically relevant question (e.g., one instance of a 
strong question, or the same strong question is asked multiple times) 
 

1 
The teacher asks procedural or factual questions that elicit mathematical facts or procedure or 
require brief, single word responses.  
 

 
0 

 

The teacher did not ask questions during the lesson, or the teacher’s questions were not 
relevant to the mathematics in the lesson. 

N/A 
 
Reason: 
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Rubric AR-X:  Mathematical Residue 
4 The discussion following students’ work on the task surfaces the important 

mathematical ideas, concepts, or connections embedded in the task and serves to 
extend or solidify students’ understanding of the main mathematical 
goals/ideas/concepts of the lesson. The discussion leaves behind important 
mathematical residue.  
 

3 During the discussion following students’ work on the task, the important 
mathematical ideas, concepts, or connections begin to surface, are wrestled with 
by students, but are not pursued in depth or have not materialized/solidified by 
the close of the lesson. The lesson is beginning to amount to something 
mathematically but the mathematics is only partially developed; perhaps due to 
time or student readiness. 
 

2 During the discussion following students’ work on the task, the important 
mathematical ideas, concepts, or connections in the task are explained or made 
explicit by the teacher primarily (i.e., the teacher is telling students what 
connections should have been made; students take notes or provide brief answers 
but do not make meaningful mathematical contributions to the discussion, 
students make superficial contributions that are taken over by the teacher).  
 
The discussion is mathematical, but does not address the concepts, ideas, or 
connections embedded in the task (random or not consistent with the 
mathematical goal) OR the discussion is about mathematics that is not 
relevant/important for the group of students. 
 

1 Important mathematical ideas do not surface during the discussion following 
students’ work on the task. The discussion is mathematical, but there is no 
apparent mathematical goal; the discussion does not focus on developing (or 
building up) students’ understanding of the important mathematical ideas.  
 

0 There was no discussion following the task.  
OR  
The discussion was about non-mathematical aspects of the task and did not leave 
behind mathematical residue. 
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IQA Mathematics Rubrics: Accountable Talk 
 
Consider talk from the whole-group discussion only. 

 
I. How effectively did the lesson-talk build Accountability to the Learning 
Community? 
 

 Participation in the Learning Community 

Was there widespread participation in teacher-facilitated discussion? 
  
Rubric 1:  Participation 

 
4 

 
Over 75% of the students participated throughout the discussion. 
 

 
3 

 
50-75% of the students participated in the discussion. 
 

 
2 

 
25-50% of the students participated in the discussion. 
 

 
1 

 
Less than 25% of the students participated in the discussion. 
 

 
0 
 

 
None of the students participated in the discussion. 

N/A Reason: 

 
 
 
_______ Number of students in class 
 
 
_______ Number of students who participated 
 
 
 
 
 
 
 
 



444 
 
 
Teacher’s Linking Contributions: Does the teacher support students in connecting 
ideas and positions to build coherence in the discussion? 
  

Rubric AT2: Teacher’s Linking                          

4 

The teacher consistently (at least 3 times) explicitly connects (or provides opportunities for 
students to connect) speakers’ contributions to each other and describes (or provides 
opportunities for students to describe) how ideas/positions shared during the discussion 
relate to each other. 

3 
At least twice during the lesson, the teacher explicitly connects (or provides opportunities 
for students to connect) speakers’ contributions to each other and describes (or provides 
opportunities for students to describe) how ideas/positions relate to each other. 

2 

At one or more points during the discussion, the teacher links speakers’ contributions to 
each other, but does not show how ideas/positions relate to each other (weak links -- e.g., 
local coherence; implicit building on ideas; noting that ideas/strategies are different but not 
describing how). 
OR teacher revoices or recaps only, but does not describe how ideas/positions relate to 
each other  
OR only one strong effort is made to connect speakers’ contributions to each other (1 
strong link). 

1 Teacher does not make any effort to link or revoice speakers’ contributions.  

0 No class discussion OR Class discussion was not related to mathematics. 

N/A Reason:  

 
 
Students’ Linking Contributions: Do student’s contributions link to and build on each 
other?  
 

Rubric AT3:  Students’ Linking 

4 
The students consistently explicitly connect their contributions to each other and describe 
how ideas/positions shared during the discussion relate to each other.  (e.g. I agree with Jay 
because…”) 

3 
At least twice during the lesson, students explicitly connect their contributions to each other 
and describe ideas/positions shared during the discussion relate to each other.  (e.g. I agree 
with Jay because…”) 

2 

At one or more points during the discussion, the students link students’ contributions to 
each other, but do not describe how ideas/positions relate to each other. (e.g., e.g., local 
coherence; implicit building on ideas; “I disagree with Ana.”) 
OR students make only one strong effort to connect their contributions with each other. 
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1 Students do not make any effort to link or revoice students’ contributions.  

0 No class discussion OR Class discussion was not related to mathematics. 

N/A Reason: 

 
 
II. How effectively did the lesson-talk build Accountability to Knowledge and 
Rigorous Thinking?  
  
Asking: Were students pressed to support their contributions with evidence and/or reasoning? 
 
Rubric AT4:  Teachers’ Press 

 
4 
 

The teacher consistently (almost always) asks students to provide evidence for their 
contributions (i.e., press for conceptual explanations) or to explain their reasoning. (There are 
few, if any instances of missed press, where the teacher needed to press and did not.) 
 

 
3 
 

Once or twice during the lesson the teacher asks students to provide evidence for their 
contributions (i.e., press for conceptual explanations) or to explain their reasoning. (The 
teacher sometimes presses for explanations, but there are instances of missed press.) 
 

 
2 

Most of the press is for computational or procedural explanations or memorized knowledge 
 
OR There are one or more superficial, trivial efforts, or formulaic efforts to ask students to 
provide evidence for their contributions or to explain their reasoning (i.e., asking everyone, 
“How did you get that?”). 
 

1 

 
There are no efforts to ask students to provide evidence for their contributions AND 
there are no efforts to ask students to explain their thinking. 
 

 
0 

 

 
Class discussion was not related to mathematics  OR No class discussion 
 

N/A 
Reason:  
 

 
Providing:  Did students support their contributions with evidence and/or reasoning? (This 
evidence must be appropriate to the content area—i.e., evidence from the text; citing an example, 
referring to prior classroom experience.) 
 

Rubric AT5:  Students’ Providing 
 

4 
Students consistently provide evidence for their claims, OR students explain their thinking 
using reasoning in ways appropriate to the discipline (i.e. conceptual explanations). 
 

 
3 

Once or twice during the lesson students provide evidence for their claims, OR students 
explain their thinking, using reasoning in ways appropriate to the discipline (i.e. conceptual 
explanations). 
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2 

Students provide explanations that are computational, procedural or memorized knowledge,  
OR What little evidence or reasoning students provide is inaccurate, incomplete, or vague. 
 

1 
 
Speakers do not back up their claims, OR do not explain the reasoning behind their claims. 
 

 
0 

 

 
Class discussion was not related to mathematics OR No class discussion 
 

N/A 
Reason:  
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Appendix B: The Task as Set Up Rubrics 

Included with the permission of Kara Jackson 

Task as Set Up Rubrics 
 
I.  How effectively did the task-as-set-up phase of instruction* establish a shared 
understanding of the contextual features of the problem-solving scenario and what is to be 
mathematized such that the students are able to begin solving the task? 
*Includes prior to introduction of the task and/or in the context of introducing the task 
 
Contextual Features (Rubric 1):  Establishing familiarity with the contextual features of the 
problem-solving scenario:  To what extent were students supported to develop a shared 
understanding of the contextual features of the problem-solving scenario?  
 

CONTEXTUAL FEATURES (RUBRIC 1): ESTABLISHING FAMILIARITY WITH THE CONTEXTUAL 
FEATURES OF THE PROBLEM-SOLVING SCENARIO 
4 Teacher elicits what students know about the problem-solving scenario. The teacher 

and/or students consistently make connections between ideas that are likely to 
support the establishment of a shared understanding of the contextual features of the 
problem-solving scenario (e.g., through accountable talk moves like marking, 
revoicing, linking, pressing; connecting to shared experiences; establishing a 
representation that students refer to).   More than one student actively participates in 
this segment of instruction.  Students respond in ways that demonstrate knowledge or 
understanding of the contextual features of the problem-solving scenario.  
 
The teacher and/or students must consistently make connections between ideas 
(that could include the establishment of a representation) that support and/or build 
toward a shared understanding of the contextual features of the scenario. 
 
The difference between a 3 and a 4 is that the teacher and/or students consistently 
connect ideas that build toward a shared understanding of the contextual features of 
the problem-solving scenario.  

3 Teacher elicits what students know about the problem-solving scenario.  The teacher 
and/or students inconsistently make connections between ideas that are likely to 
support the establishment of a shared understanding of the contextual features of the 
problem-solving scenario (e.g., through accountable talk moves like marking, 
revoicing, linking, pressing; connecting to shared experiences; establishing a 
representation that students refer to). More than one student actively participates in 

The Task as Set Up rubrics are designed to accompany the Instructional Quality 
Assessment (IQA) middle-grades mathematics rubrics.  To use the set-up rubrics, 
please contact Kara Jackson at karajack@uw.edu.  To use the IQA rubrics, please 
contact Melissa Boston at bostonm@duq.edu.   
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this segment of instruction. Students respond in ways that demonstrate knowledge or 
understanding of the contextual features of the problem-solving scenario.  
 
The teacher and/or students inconsistently make connections between ideas (that 
could include the establishment of a representation) that support and/or build 
toward a shared understanding of the contextual features of the scenario. 
 
The difference between a 2 and a 3 is that the teacher and/or students connect ideas 
together (albeit inconsistently) to build toward a shared understanding of the 
contextual features of the problem-solving scenario. 

2 Teacher elicits what students know about the problem-solving scenario but the 
teacher and/or students do not connect ideas together in a way that would support 
students in establishing a shared understanding of the contextual features of the 
problem-solving scenario. (I.e., the teacher surfaces some initial ideas about the 
contextual features of the problem-solving scenario, but the ideas do not build to a 
greater or shared understanding of the contextual features. For example, the teacher 
may ask the same question to a number of students to gather information, “What is 
your favorite_____?” but does not support a shared understanding of the particular 
idea.) 

 
The difference between a 1 and a 2 is that students must actively participate in the 
discussion to warrant a 2. 

1 Teacher makes at least a brief mention of the problem-solving scenario that is central 
to completion of the task. The teacher is the only person providing information about 
the contextual features of the problem-solving scenario. The teacher may ask 
questions that require yes/no responses.  Students do not actively participate in this 
chunk of instruction. 
 
Examples: 

 Superficial attempt (Does anyone have a cell phone? Show a picture of a cell 
phone.)  

0 There is no attempt to discuss the contextual features of the problem-solving scenario. 
N/A The task as provided does not have a problem-solving scenario (e.g., it is a set of naked 

number problems). 
NS (No score). There is no whole class discussion of the task prior to students starting the 

task (e.g., teacher hands out the task and tells the students to start the task; teacher 
hands out the task and has students discuss it in groups prior to working on the task, 
but there is no whole class discussion prior to students starting the task). *Only assign 
NS for Contextual Features if the task has a problem-solving scenario and there is no 
whole class discussion of the task prior to students starting the task. 
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MATHEMATICAL RELATIONSHIPS (Rubric 2):  Developing understandings of key mathematical 
relationships as they are represented in the task:  To what extent have students been given 
opportunities to develop understandings of key mathematical relationships (e.g., key 
mathematical ideas, relationships and/or quantities) as represented in the task?  
 

MATHEMATICAL RELATIONSHIPS (RUBRIC 2): DEVELOPING UNDERSTANDINGS OF WHAT IS TO 
BE MATHEMATIZED IN THE TASK  
4 Teacher elicits the ideas students have developed and the teacher supports students 

in establishing a shared understanding of key mathematical ideas, relationships, 
and/or quantities (e.g., through marking, revoicing, linking, pressing) as represented in 
the task.  Students actively participate in this segment of instruction. Students respond 
in ways that demonstrate understanding of how key mathematical ideas, 
relationships, and/or quantities are represented in the task. The students’ responses 
connect to and build on each other. 
 
In addition to what qualifies as a 3, the teacher and/or students must make at least 
one strong accountable talk move (e.g., teacher and/or student identifies 
connections between ideas and how the ideas are related, teacher presses on 
student’s understandings of the mathematical ideas).  
 
The difference between a 3 and a 4 is the presence of one strong accountable talk 
move on the part of the teacher or students. 

3 Teacher elicits information about the ideas students have developed. The teacher 
and/or students consistently use accountable talk moves (other than, or in addition 
to, repeating students’ contributions) to support students in establishing a shared 
understanding of how key mathematical ideas, relationships, and/or quantities are 
represented in the task. Alternatively, the students (with or without the involvement 
of the teacher) jointly establish a representation that supports a shared 
understanding of relevant mathematical relationships.  Students actively participate 
in this segment of instruction. Students respond in ways that demonstrate 
understanding of how key mathematical ideas, relationships, and/or quantities are 
represented in the task. 
 
The teacher and or/students consistently use accountable talk moves (other than, or 
in addition to, repeating students’ contributions). 
 
OR  
 
More than one student is involved in the establishment of a representation that 
supports a shared understanding of mathematical relationships relevant to what is 
to be mathematized. Student talk must be aimed at developing a conceptual 
understanding of relevant mathematical ideas. (*More than one student must be 
involved in conceptual talk related to the representation.)   
 
The difference between a 2 and a 3 is that the teacher and/or students consistently use 
accountable talk moves (other than, or in addition to, repeating students’ 
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contributions) or students are involved in the joint establishment of a representation 
to develop a shared understanding of the mathematical relationships.  

2 Teacher elicits information about the ideas students have developed but the students 
(with or without the involvement of the teacher) do not jointly establish a 
representation nor are there consistent accountable talk moves that would support 
students in establishing a shared understanding of how key mathematical ideas, 
relationships, and/or quantities are represented in the task.  
 
At best, there is inconsistent use of accountable talk moves (or consistent repeating 
of students’ contributions). 
 
The difference between a 1 and a 2 is that students must actively participate in the 
discussion to warrant a 2. 

1 Teacher makes at least a brief attempt to provide or suggest how key mathematical 
ideas, relationships, and/or quantities are represented in the task.  The teacher is the 
only person suggesting or providing ideas regarding how mathematical ideas, 
relationships, and/or quantities are represented in the task. The teacher may ask 
questions that require brief or one-word answers. Students do not actively participate 
in this chunk of instruction. At most, students provide yes/no responses or nod heads.   

0 There is no attempt to discuss key mathematical ideas, relationships, and/or 
quantities.  

N/A The task is not mathematical in nature. 
NS (No score). There is no whole class discussion of the task prior to students starting the 

task (e.g., teacher hands out the task and tells the students to start the task; teacher 
hands out the task and has students discuss it in groups prior to working on the task, 
but there is no whole class discussion prior to students starting the task).  
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Appendix C: Pre-Observation Interview Protocol 

Teacher Information 

Teacher’s name: 

Teacher’s education and degrees earned: 

Teachers’ years of experience (and at this school): 

Teacher’s course load: 

Teacher’s role in MMR course (how many years piloting?): 

Lesson Information 

Lesson title: 

Course name: 

Grade level(s): 

Main task title: 

Lesson content addressed: 

Task Selected from Source Materials: 

 What things do you look for when selecting tasks or activities to use with your 

students?  

 Why are these things important to you? 

 How often do you use tasks with your students? What other teaching 

approaches do you use? How do you determine which to use and when? 

 What led you to choose to use this task with your students? *Would you use it 

even if it was not a required part of the MMR course materials? 

 How does this task help students accomplish their learning goals? 



452 
 

 How does this task address course or unit objectives? 

 Why do you believe that the math content (or other content) of this task is 

important for students to learn? 

 How does this task address math concepts? (how successful do you think 

it will be?) 

 How does this task address student engagement? (how successful do you 

think it will be?) 

 What features make this task desirable for you? What task features are 

undesirable? 

 Where was this task taken or adapted from?  

 Where did you first learn of this resource?  

 How long have you been using this resource?  

 Why do you continue to use it?  

 How comfortable are you with using or adapting it? 

 How often do you use this resource?  

 Do you think this resource is effective? Why or why not? 

 If you created the task yourself, what was your motivation for doing so? 

How did you determine what to include and not include? Did you borrow 

some ideas from other resources? Explain. 

 What math representations (e.g., graphs, numbers, equations) are possible to use 

with this task? Which might you emphasize (or not emphasize)? Why? 
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 Classify this version of the task using the Task Analysis Guide and explain why 

your rating is appropriate. 

 If Memorization: what information needs to be memorized to succeed on 

this task? 

 If Procedures without Connections: what procedure(s) are involved in 

this task? What other procedures could be used? 

 If Procedures with Connections: what procedure(s) are involved in this 

task? What other procedures could be used? How are the procedures 

connected to mathematical concepts or relationships? 

 If Doing Mathematics: how does this task exceed the level of procedures 

with connections? (e.g, how does it involve complex, nonalgorithmic 

thinking?) 

 

Task Planning  

 Can you tell me about how you plan for class every day? 

 What makes you plan this way? 

 How far in advance do you plan your lessons? 

 How has your planning changed as you have gained teaching experience? 

 Can you tell me about your students who will be doing this task? 

 How do you think they will do with it? Why do you think so? 

 How have you modified the original task for use in your own classroom?    

 What changes did you make during your lesson planning?  
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 Why did you make these changes? 

 How would your proposed changes to the task influence the potential for 

student learning?  

 What else might they learn?  

 Why do you think so? 

 How else might these changes influence students’ engagement 

with the task?  

 Have you taught this content before?  

 If so, have you done it with the same (or a similar) lesson plan? Describe 

what is different (or similar) about this task compared to what you have 

done in the past with similar content. 

 If you modified the lesson plan from before, how and why? 

 How comfortable are you teaching this content? This activity or task? 

 What objectives would you have for students who worked on this task?  

 How would you know that students have met these objectives? 

 Why are these objectives important? 

 What are your expectations for student work when solving this task? How 

do you plan on making these expectations clear to students? 

 What difficulties or problems would you anticipate students might have when 

working on this task?  

 Why do you think these difficulties or problems might occur? 

 How might you handle them? Why would you handle them this way? 
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 How might your students’ prior knowledge help them to succeed in solving this 

task?  

 What new information might students need to complete the task? 

 How do you plan on setting this task up for your students?  

 For example, what additional instructions might you give them? What 

tools and resources will you make available (or not available)? Why? 

 Will you have students work in small groups? Individuals? Pairs? Why? 

 What background information will you provide to students?  

 What questions will you ask? 

 What math representations (e.g., graphs, numbers, equations) will you 

make available for students? What representations will you emphasize (or 

not emphasize)? Why? 

 Classify this version of the task using the Task Analysis Guide and explain why 

your rating is appropriate. 

 If Memorization: what information needs to be memorized to succeed on 

this task? 

 If Procedures without Connections: what procedure(s) are involved in 

this task? What other procedures could be used? 

 If Procedures with Connections: what procedure(s) are involved in this 

task? What other procedures could be used? How are the procedures 

connected to mathematical concepts or relationships? 
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 If Doing Mathematics: how does this task exceed the level of procedures 

with connections? (e.g, how does it involve complex, nonalgorithmic 

thinking?) 

 How does this classification compare with your classification for the 

original task?  

 Why do you think your rating for this task is the same or different than it 

was before? Explain. 
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Appendix D: Post-Observation Interview Protocol 

Teacher Information 

Teacher’s name: 

Teacher’s education and degrees earned: 

Teachers’ years of experience (and at this school): 

Teacher’s course load: 

Teacher’s role in MMR course (how many years piloting?) 

Lesson Information 

Lesson title: 

Course name: 

Grade level(s): 

Main task title: 

Lesson content addressed: 

Task Setup: 

 Can you tell me about how you set this task up for your students? 

 Did you set the task up in the same way that you had planned to? How was 

the setup task the same or different than you had planned it to be? Why do 

you think so? 

 How was the setup of this task similar or different than other tasks you 

have launched? Do you typically give the same amount of instruction or 

guidance? Why or why not? 

 How did your students respond to the setup of the task? 
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 What were some of the questions they asked? Why do you think they 

asked those questions? 

 Did students engage with the task readily? Did they require additional 

clarification or support? Why do you think so? 

 Did students have access to the same tools and resources as you anticipated they 

would? Why or why not? 

 What questions did you ask students when setting up the task? 

 How did students respond? 

 Did you anticipate them to respond in this way? What did you do when 

students said or did something unexpected? 

 What math representations did you make available for students (e.g., graphs, 

numbers, equations)? What representations did you emphasize? Why? 

 Classify this version of the task using the Task Analysis Guide and explain why 

your rating is appropriate. 

 If Memorization: what information needs to be memorized to succeed on 

this task? 

 If Procedures without Connections: what procedure(s) are involved in 

this task? What other procedures could be used? 

 If Procedures with Connections: what procedure(s) are involved in this 

task? What other procedures could be used? How are the procedures 

connected to mathematical concepts or relationships? 
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 If Doing Mathematics: how does this task exceed the level of procedures 

with connections? (e.g, how does it involve complex, nonalgorithmic 

thinking?) 

 How does this classification compare with the task as planned?  

 Why do you think your rating for this task is the same or different than it 

was before? Explain. 

Task Implementation: 

 Walk me through how this task played out in the classroom. 

 How did students’ engagement with the task compare with what you had 

anticipated? How prepared were you to interact with students during the 

lesson? 

 How did students’ engagement with the task compare to their engagement 

with other similar tasks you have used before? What was the same or 

different? Why do you think so? 

 Did students meet your learning goals and objectives for the task? How do 

you know? 

 How successful were students at identifying and understanding the math 

concepts embedded in the task? How do you know? 

 Describe the student work and thinking that resulted from their 

engagement with the task. Did their work and thinking meet your 

expectations? What did they do well? What could they have done better? 

Why do you think so? 
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 Did students make use of the tools and resources you made available to 

them? How effective were they at using such resources? Were there any 

resources that they did not use? Why do you think they chose some 

resources over others? 

 Did anything about the lesson or task stand out to you? Why or how? 

 Explain why you had students work in groups (or individually) and how 

successful you feel they were with their work. 

 Did students cooperate and engage with each other productively? What 

did you do to support their teamwork and engagement? How helpful was 

it? 

 Can you recall an instance where a student(s) struggled with the task? Describe it. 

 How did you respond in this instance?  

 Why did you respond in this way? 

 Were the student(s) able to overcome the obstacle? How do you know? 

 How well do you think you supported productive struggle with the task? 

What evidence of productive struggle was evident during the lesson? 

 What challenges did you face when implementing this lesson? 

 Why do you think you faced these challenges? 

 How did you address them? 

 If you facilitated a whole-class discussion, how effective do you think it was? 

 Why do you think so? 

 How did you determine which student(s) should present and when?  
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 What contributions did you make to the discussion and how did you know 

when to step in (or step out)? 

 What math representations were used by you or the students (e.g., graphs, 

numbers, equations)?  

 Why do you think those were used?  

 Were there representations you expected students to use but were 

not used? 

 Classify this version of the task using the Task Analysis Guide and explain why 

your rating is appropriate. 

 If Memorization: what information needs to be memorized to succeed on 

this task? 

 If Procedures without Connections: what procedure(s) are involved in 

this task? What other procedures could be used? 

 If Procedures with Connections: what procedure(s) are involved in this 

task? What other procedures could be used? How are the procedures 

connected to mathematical concepts or relationships? 

 If Doing Mathematics: how does this task exceed the level of procedures 

with connections? (e.g, how does it involve complex, nonalgorithmic 

thinking?) 

 How does this classification compare with the task as it was set up? 

 Why do you think your rating for this task is the same or different than it 

was before? Explain. 
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 What do you believe makes a task, activity, or lesson that you have taught 

“successful?” 

 How do you know that your students are learning and making sense of the math 

throughout a lesson or task? 

 After the lesson or task is finished? 

 In the case of this particular task? 

 If you were to implement this task again, what things would you change? 

 Why would you change these things? 

 How do you think these changes would help to maintain or enhance the 

cognitive demand of the task? 
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Appendix E: Ohio University Research Consent Form 

Title of Research: 

High School Mathematics Teachers’ Perspectives on Selecting, Planning, Setting Up, 

and Implementing High Cognitive Demand Instructional Tasks 

 

Researchers: Otto Shaw (Primary Investigator), Harman P. Aryal (Co-Investigator), and 

Gregory D. Foley (Adviser) 

 

IRB number: 20-E-248 

 

You are being asked by an Ohio University researcher to participate in research. For you 

to be able to decide whether you want to participate in this project, you should understand 

what the project is about, as well as the possible risks and benefits, in order to make an 

informed decision. This process is known as informed consent. This form describes the 

purpose, procedures, possible benefits, and risks of the research project. It also explains 

how your personal information will be used and protected. Once you have read this form 

and your questions about the study are answered, you will be asked to participate in this 

study. You should receive a copy of this document to take with you. 

 

Summary of the Study 

The primary investigator (PI) aims to study high school mathematics teachers’ 

perspectives as they select, plan, set up, and implement high cognitive demand 
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instructional tasks (e.g., problems or activities that support high-level student thinking). 

The PI also seeks to learn how such teachers reflect on their instructional decisions 

throughout the process. The PI will interview participating teachers, during which you 

can explain how and why you made instructional decisions as you selected and planned 

tasks to use with your students. Your teaching will also be observed on two consecutive 

days by the PI and the co-investigator (co-I) and they will ask you to submit 6–12 

samples of student work from the observed lessons. Finally, the PI will interview you 

again after observing your instruction to explore how you set up and implemented the 

tasks. 

 

Explanation of the Study 

 This study is being done to investigate high school mathematics teachers’ 

perspectives as they use instructional tasks, with the purpose of providing insights that 

might support teacher professional development and teacher education programs. Your 

responses to interview questions and use of instructional tasks may also help to assist 

other teachers who use instructional tasks with their students. If you agree to participate, 

you will be asked to do two interviews, each lasting no longer than 1 hr, focusing on your 

instructional decisions as you select, plan, set up, and implement instructional tasks. You 

will also be asked to allow the PI and co-I to observe you teach on two consecutive days 

and collect student work samples from each lesson observed. You should not participate 

in this study if you are not a licensed high school mathematics teacher in the state of Ohio 

or if you are not teaching high school mathematics in the state of Ohio at this time. All 
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contact and data collection procedures will occur remotely to minimize health risks due 

to COVID-19. 

 

Risks and Discomforts 

No risks or discomforts are anticipated. 

 

Benefits 

You may not benefit personally by participating in this study. However, you will be 

encouraged to reflect on your instructional decisions and may benefit from insights you 

obtain through self-reflection. This study might offer ways to support teacher 

professional development workshops, teacher preparation programs, and other 

mathematics teachers attempting to use high-level instructional tasks. 

 

Confidentiality and Records 

Your study information will be kept confidential by the assignment of pseudonyms in any 

written report based on this research. Your interview transcript(s) will be shared with you 

to verify transcription accuracy and as an invitation for you to add to, remove from, or 

modify them and ensure that they accurately reflect your thoughts and opinions. Names 

and identifiers will be removed from all student work collected and analyzed as part of 

this study. This will be done either by research participants prior to sending the samples 

to the PI or the PI will remove them immediately when he receives them. 
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Interviews will be audio-recorded––or video recorded if done by computer––and 

transcribed into text so that the PI can refer back to them as needed. Teaching 

observations will be recorded through written field notes and will not be audio or visually 

recorded. Recordings will be stored on the laptop and flash-drive of the PI and will not be 

accessible to anyone else. All audio, video, and digital files containing interview data and 

student work will be destroyed in May, 2022. 

  

 Additionally, although every effort will be made to keep your study-related 

information confidential, there may be circumstances where this information must be 

shared with: 

Federal agencies, for example the Office of Human Research Protections, whose 

responsibility is to protect human subjects in research; 

Representatives of Ohio University (OU), including the Institutional Review Board, a 

committee that oversees the research at OU. 

 

Compensation 

No compensation will be provided. 

 

Future Use Statement 

Data without identifiers may be used for future research studies or distributed to another 

investigator for future research studies without additional informed consent from you or 

your legally authorized representative. 
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Contact Information 

  If you have any questions regarding this study, please contact the 

investigators or adviser: 

 

Primary Investigator Co-Investigator Adviser 

Otto Shaw Harman P. Aryal Dr. Gregory D. Foley 

os005910@ohio.edu ha333416@ohio.edu foleyg@ohio.edu 

740.583.4703 740.707.4097 740.593.4430 

 

 If you have any questions regarding your rights as a research participant, please 

contact Dr. Chris Hayhow, Director of Research Compliance, Ohio University, (740)593-

0664 or hayhow@ohio.edu. 

 

By agreeing to participate in this study, you are agreeing that: 

you have read this consent form (or it has been read to you) and have been given the 

opportunity to ask questions and have them answered; 

you have been informed of potential risks and they have been explained to your 

satisfaction; 

you understand Ohio University has no funds set aside for any injuries you might receive 

as a result of participating in this study; 

you are 18 years of age or older; 
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your participation in this research is completely voluntary; 

you may leave the study at any time; if you decide to stop participating in the study, there 

will be no penalty to you and you will not lose any benefits to which you are otherwise 

entitled. 

 

Version Date: 08/13/2020 
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Appendix F: Email Text Requesting Letter of Support from Principals 

Dear (principal’s name) and (teacher’s name), 

I hope that the school year is off to a good start.  

I am an Ohio University student researcher conducting research entitled “High School 
Mathematics Teachers’ Perspectives on Selecting, Planning, Setting Up, and 
Implementing High Cognitive Demand Instructional Tasks” (IRB no. 20-E-248) and wish 
to invite (teacher’s name) to participate in the study.  

Their participation would require two 1-hour interviews and would require me to observe 
their teaching on two consecutive days (all done remotely). I would also collect one or 
two problems or activities that they use with their students during those two days and 
some samples of student work that go with them. All names and identifiers will be 
removed from artifacts that I collect to preserve teacher and student anonymity. 
Additionally, all research and data collection procedures will occur remotely to 
avoid health risks due to COVID-19. Would you please discuss with (teacher’s name) 
if they might be interested in participating in this study? 

Ohio University requires that all research must first be accepted through their 
Institutional Review Board (IRB); doing so requires a letter of support from a principal or 
higher before doing research involving teachers and students. If (teacher’s name) might 
be interested and you are willing, this letter would need to specifically include a letter 
written on letterhead of your school or district, which–– 

 Is dated, 
 Has your written signature,  
 Clearly states your title as principal, and 
 Includes a statement of your agreement allowing me to conduct research within 

your high school. 
You may use the attached document as a template or may draft another letter meeting the 
above criteria. 

If I receive your approval and the associated letter, I will send a similar email message to 
(teacher’s name) asking for their consent to participate in this study. Thank you for your 
consideration. I look forward to hearing back from you. 

Best, 

Otto Shaw 

Primary Investigator 
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Appendix G: Template Letter of Support to Conduct Research 

To the Ohio University Institutional Review Board (IRB): 

 

I am familiar with Otto Shaw’s research project entitled “High School Mathematics 
Teachers’ Perspectives on Selecting, Planning, Setting Up, and Implementing High 
Cognitive Demand Instructional Tasks”.  I understand teachers’ involvement to be 
interviewed and observed teaching and I understand that students will be observed, and 
some samples of their in-class work will be collected. I understand that, because this is 
educational research, parental consent will not be required when observing students in 
class and collecting samples of their work, as per the Ohio University IRB guidelines. 

 

I understand that this research will be carried out following sound ethical principles and 
that participant involvement in this research study is strictly voluntary and provides 
confidentiality of research data, as described in the protocol. 

 

Therefore, as a representative of [agency/institution name], I agree that Otto Shaw’s 
research project may be conducted at our agency/institution.  

 

Sincerely, 

 

[name and title of agency/institutional authority] 

[signature] 

[date] 
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Appendix H: Email Text Requesting Participation in Research (Ohio MMR) 

Dear …, 

I hope that the school year is off to a good start.  

I am an Ohio University student researcher conducting research entitled “High School 
Mathematics Teachers’ Perspectives on Selecting, Planning, Setting Up, and 
Implementing High Cognitive Demand Instructional Tasks” and wish to know if you 
might be interested in participating in the study (IRB no. 20-E-248). I wish to learn from 
the perspectives of teachers who are involved in the Ohio Mathematics Modeling and 
Reasoning (Ohio MMR) pilot course this year and how you are using mathematical tasks 
in your instruction. 

Your participation would require two 1-hour interviews and would require me to observe 
you teach the Ohio MMR course on two consecutive days. I would also collect one or 
two tasks that you use with your students during the two observation days and some 
samples of student work that go with them. All research and data collection 
procedures will be done remotely to prevent health risks due to COVID-19. 

Please let me know if you would like to be involved in this research officially and we can 
discuss your participation in more depth. Please see the attached Research Consent Form 
and let me know if you have any questions or concerns. Thank you for your 
consideration. I look forward to hearing back from you. 

 

Best, 

Otto Shaw 

Primary Investigator 
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Appendix I: Email Text Requesting Participation in Research (ATC) 

Dear …, 

I hope that the school year is off to a good start. 

I am an Ohio University student researcher conducting research entitled “High School 
Mathematics Teachers’ Perspectives on Selecting, Planning, Setting Up, and 
Implementing High Cognitive Demand Instructional Tasks” and wish to know if you 
might be interested in participating in the study (IRB no. 20-E-248). I would like to learn 
from the perspectives of teachers who had been involved in Advanced Teacher Capacity 
(ATC) programs at Ohio University, namely, Modspar, QUANT, or both. In particular, I 
would like to learn about how you are using mathematical tasks in your instruction. 

Your participation would require two 1-hour interviews and would require me to observe 
your teaching on two consecutive days. I would also collect one or two tasks that you use 
with your students during the two observation days and some samples of student work 
that go with them. All research and data collection procedures will be done remotely 
to prevent health risks due to COVID-19. 

Please let me know if you would like to be involved in this research and we can discuss 
your participation in more depth. Thank you for your consideration. I look forward to 
hearing back from you. 

Best, 

Otto Shaw 

Primary Investigator 
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