
Performance Characteristics of the Interplanetary Overlay Network

in 10 Gbps Networks

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

John D. Huff

April 2021

© 2021 John D. Huff. All Rights Reserved.

2

This thesis titled

Performance Characteristics of the Interplanetary Overlay Network

in 10 Gbps Networks

by

JOHN D. HUFF

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Shawn Ostermann

Associate Professor of Engineering and Technology

Mei Wei

Dean, Russ College of Engineering and Technology

3

Abstract
HUFF, JOHN D., M.S., April 2021, Computer Science

Performance Characteristics of the Interplanetary Overlay Network in 10 Gbps

Networks (90 pp.)

Director of Thesis: Shawn Ostermann

The Interplanetary Internet (IPN) is an architecture for standardized

communication between nodes located on or around different celestial bodies. The

key concept of the IPN is to use standard Internet protocols within local

high-bandwidth, low-latency networks and to interconnect these networks using an

“interplanetary backbone” comprised of satellites and ground stations

communicating using specialized protocols designed for use in low-bandwidth,

high-latency networks. This thesis focuses on the performance within local networks

constructed for use in an IPN setting. Delay Tolerant Networking (DTN) is a

protocol designed to solve the challenges of IPN. This thesis studies the

performance characteristics of the Interplanetary Overlay Network (ION), an

implementation of the DTN protocol. A hardware test bench was constructed using

two high-performance computers directly connected via a 10 Gbps link. A software

tool was devised to test the throughput over this link under various configurations

of ION. Through this testing, improvements to ION and configuration

recommendations were found to increase the performance of ION in 10 Gbps

networks. The main increases in performance were the result of locking the threads

of ION to the same CPU core and increasing the shared memory allocation to

convergence layer processes. Performance of ION was also studied on a test bench

utilizing an ARM A53 processor which uses the same ARMv8 architecture used in

the High Performance Spaceflight Computing architecture.

4

Acknowledgments
Thank you Dr. Shawn Ostermann for your guidance and support throughout

this process. Your insight and patience have been invaluable. I could not have asked

for a better advisor.

Thank you Mom and Dad for your unrelenting love and support. You kept me

going and this would not have been possible without you.

Thank you Cary Roberts Frith for always believing in me.

Thank you Mehmet Adalier for your continued guidance. Our many discussions

of ION surely improved this work and I look forward to many more to come.

Thank you Antara Teknik LLC and NASA for providing the hardware for our

test benches.

5

Table of Contents
Page

Abstract . 3

Acknowledgments . 4

List of Tables . 7

List of Figures . 8

List of Acronyms . 9

1 Introduction . 10
1.1 Motivation . 10
1.2 Approach . 11
1.3 Document Structure . 12

2 Background and Literature Review . 13
2.1 Delay Tolerant Networking . 13
2.2 Interplanetary Overlay Network . 18
2.3 High Performance Spaceflight Computing 19

3 Experiment Setup . 21
3.1 Hardware . 21

3.1.1 Operating System and Network Stack Considerations 23
3.2 Throughput Measurement Method 25
3.3 ION configuration . 26

4 Experiments, Results and Analysis . 28
4.1 Bundle Size . 29
4.2 TCPCLA Buffer Size . 36
4.3 Processor Affinity . 41

4.3.1 Multimodal Distributions . 47
4.4 CFDP . 49

4.4.1 Checksum . 50
4.4.2 CFDP Goodput . 51

5 Conclusions . 59
5.1 Review . 59
5.2 Future Work . 61

5.2.1 Multimodal Distributions . 61

6

5.2.2 Memory Management . 62

References . 65

Appendix: Hardware and Software Configurations 72
A.1 Hardware specifications . 72

A.1.1 Node A . 72
A.1.2 Node B . 73
A.1.3 Node C . 74
A.1.4 Node D . 75
A.1.5 Node E . 76

A.2 ION Configuration Files . 76
A.2.1 HP-2 Testbench . 77
A.2.2 LP-2 Testbench . 78
A.2.3 LP-3 Testbench . 80
A.2.4 LP-5 Testbench . 83

A.3 Linux Network Configuration . 89
A.4 CPU Affinity Control . 89
A.5 Software Changes . 89

A.5.1 TCPCLA Rate Limiting Bug Fix 89
A.5.2 TCPCLA Buffer Size . 90

7

List of Tables
Table Page

4.1 Experimental Design Factors . 29
4.2 Experimental Design Parameters . 29
4.3 SANA Checksum Identifiers Registry . 50

8

List of Figures
Figure Page

3.1 HP-Testbench network diagram (HP-2 configuration) 22
3.2 LP-Testbench configurations . 24

4.1 (HP-2) Bundle Size vs goodput for transfers from A to B and B to A . . 30
4.2 Example work rate equation graph . 33
4.3 (LP-2) Bundle Size vs goodput for transfers from A to C and C to A . . 34
4.4 (LP-3) Bundle Size vs goodput for transfers from A to B, routing through C 35
4.5 (HP-2) TCPCLA buffer size vs goodput for various bundle sizes, A→B . 37
4.6 (LP-2) TCPCLA buffer size vs goodput for various bundle sizes, A→C . 38
4.7 (HP-2) TCPCLA bundle size vs goodput for TCPCLA buffer size of 64

KiB and 512 KB, A→B and B→A . 40
4.8 (HP-2) Buffer Size Boundaries . 41
4.9 (HP-2) Single-core vs multi-core goodput. 44
4.10 (LP-2) Single-core vs multi-core goodput 46
4.11 (LP-3) Single-core vs multi-core goodput 47
4.12 (LP-5) Single-stream vs multi-stream goodput 48
4.13 (HP-2) CFDP vs BP . 53
4.14 (HP-2) CFDP goodput with various checksum algorithms (multi-core) . 54
4.15 (HP-2) CFDP goodput with various checksum algorithms (single-core) . 55
4.16 (HP-2) CFDP goodput, single-core vs multi-core 56
4.17 (LP-2) CFDP goodput with various checksum algorithms (multi-core) . . 57
4.18 (LP-2) CFDP goodput, single-core vs multi-core 58

9

List of Acronyms
BP Bundle Protocol
CCSDS The Consultative Committee for Space Data Systems
CFDP CCSDS File Delivery Protocol
CRC Cyclical Redundancy Check
DTN Delay Tolerant Networking
HPSC High Performance Spaceflight Computing
ION Interplanetary Overlay Network
IPN Interplanetary Internet
JPL Jet Propulsion Laboratory
JSON JavaScript Object Notation
LTP Licklider Transmission Protocol
NASA National Aeronautics and Space Administration
PSM Personal Space Management
SCPS-TP Space Communications Protocol — Transport Protocol
SDR Simple Data Recorder
TCP Transmission Control Protocol
TCPCLA TCP Convergence Layer Adapter
UDP User Datagram Protocol
ZCO Zero-Copy Objects

10

1 Introduction
With the increased interest in space exploration in both government and

commercial sectors, it is vital to develop internationally agreed upon standards for

data and communications systems. These standards allow for interoperability

among organizations and reduce the development and operating costs of missions.

Delay tolerant networking (DTN)[1] research has gained much interest and has been

set as a requirement for future missions and architectures such as the future Lunar

Communications Architecture [2]. DTN, as described in RFC 4838 [1], seeks to

address the issues of communicating in environments with long delays and

intermittent disruptions. Utilizing DTN, the Lunar Communications Architecture

will feature the Lunar space internet, an internetwork similar to the terrestrial

Internet which will embody the Lunar relay network, the Lunar surface network,

and the Earth network [2]. Having DTN as a requirement will simplify the process

of expanding our space networks, with the eventual goal of creating a general

purpose Interplanetary Internet.

The widespread adoption of DTN and its accompanying message protocol,

Bundle Protocol (BP)[3], has lead to the creation of many DTN implementations

[4]–[10]. This thesis will focus only on NASA’s Interplanetary Overlay Network

(ION), an implementation of DTN developed by the Jet Propulsion Laboratory

(JPL) [4]. ION was designed from the ground up for spaceflight, with many

measures taken to ensure reliability and security.

1.1 Motivation

The Laser Communications Relay Demonstration (LCRD) will showcase

NASA’s latest advancements in free-space optical (FSO) communication [11]. The

LCRD payload will be carried by the U.S. Department of Defense’s Space Test

11

Program Satellite 6 which is expected to launch some time in 2021. LCRD will have

a downlink bandwidth of 1.2 Gbps, nearly double the bandwidth of NASA’s

previous FSO demonstration, the Lunar Laser Communications Demonstration

(LLCD). LLCD demonstrated a downlink bandwidth of 622 Mbps from Lunar orbit

to three Earth ground stations [12]. As one of the experiments performed by LLCD,

DTN protocols were used to transfer files between the Earth ground stations and

the LLCD Lunar orbiter [13]. This experiment was a success, with DTN helping to

mitigate the disruptive effects of cloud coverage which can be detrimental to optical

communication. This result paves the way for future experiments using DTN for

high bandwidth space communication.

As high bandwidth space communications and high performance spaceflight

systems become common, the development of fast and efficient communication

software is vital. It is therefore of interest to study the performance characteristics

of the ION in real systems capable of 10 Gbps throughput. Through rigorous and

fine-grained benchmarking we are able to make conclusions about the aspects of

ION that most affect throughput. With this insight we are able to make changes to

the ION software and make more informed decisions concerning both software and

hardware configurations to yield optimal performance.

1.2 Approach

We first created a hardware testbench with two node, three node, and five node

configurations. We then created a benchmarking suite in order to automate the

process of running thousands of throughput tests. Our benchmarking tool reads a

test described in JSON format and performs throughput tests between nodes in the

testbench. The tool runs through the permutations of test configurations, ION node

configurations, and ION build configurations as described in the JSON formatted

12

test file. Running all the permutations described by a test often took the tool

several days. The high quality of data used to generate the figures in this thesis

reveal subtle performance aspects of the ION software.

1.3 Document Structure

Chapter 2 gives background information on Delay Tolerant Networking, Bundle

Protocol, and Interplanetary Overlay Network. Chapter 3 describes our

experimental setup. This includes descriptions of our hardware testbenches, the

ION configurations used, and the testing procedures. Chapter 4 shows the results

and analyses for experiments. Chapter 5 summarizes our results and discusses

possible improvements to ION.

13

2 Background and Literature Review
2.1 Delay Tolerant Networking

Delay Tolerant Networking (DTN) is an area of computer networking that

addresses issues related to networks prone to long delays and disrupted

communication between nodes [14]. With the development of standardized wireless

communication protocols in the 1970s, the study mobile ad hoc networks

(MANETs) became increasingly relevant. This is often viewed as a precursor to

DTN research, which rose with the need for more sophisticated space networking

solutions. DTN is especially important in space communication, where

interplanetary distances cause latencies measured in minutes rather than

milliseconds and end-to-end communication may be impossible due to celestial and

orbital mechanics. Standard terrestrial Internet protocols such as TCP/IP are not

designed for these types of networks, as delays and disruptions in terrestrial

networks are typically seen as anomalies rather than integral aspects of the network

[15]. Thus, DTN specific architectures and protocols are a necessity.

There are several examples of networking environments for which DTN

architectures are ideal, including the following:

• Deep Space Communications — Deep space communication links are

characterized by long delays, with round trip times often in the range of

minutes or hours rather than milliseconds. These links are also prone to

disruptions caused by orbits. A device on the surface of the far side of the

moon may not have an end-to-end connection with Earth, instead it may need

to use store-and-forward communication to first pass a message to a Lunar

satellite.

14

• DTN of Things [14] — The Internet of Things (IoT) is a recently popular

concept of creating an Internet-like network that connects objects. Typically,

IoT networks are assumed to have end-to-end connectively. DTN of Things is

the concept of networking objects using DTN to allow communication through

multi-hop store-and-forward methods. An early example of a DTN of Things

type of application was ZebraNet, which used a wireless sensor network and

DTN to track the movement of wildlife in Kenya [16].

Standard Internet protocols such as TCP/IP [17][18] are not suited for

delay/disruption prone networks. There are three main areas where terrestrial

protocols fail in these networks: speed, resource usage, and routing. TCP performs

poorly in environments characteristic of deep-space links [19][20][21]. In space

communications, links are prone to bit-errors even with forward error correction.

When TCP encounters a bit error in a packet, the entire packet is lost. Whenever

TCP encounters a packet loss, it incorrectly assumes the loss is due to congestion

rather than a bit error and reduces its congestion window. Handling packet loss due

to corruption as loss due to congestion results in unnecessary reduction in

bandwidth utilization [21].

There are a variety of reasons why standard Internet protocols perform poorly

in delay/disruption prone networks. For example, TCP uses a three-way handshake

to establish a connection. This wastes valuable time and lowers the overall

bandwidth, as no data is being sent during this period. To achieve reliable packet

delivery, TCP uses automated packet retransmission. Because TCP can only receive

data in transmission order, a retransmission request may stop transmission for an

entire round trip. Since TCP transmission is end-to-end, this could potentially

mean several minutes of wasted time. Over lossy deep-space links this would be

detrimental to bandwidth. TCP transmission being end-to-end also means that the

15

sender will use massive of amounts of memory storing packets while waiting for

acknowledgments.

Routing in disruption prone networks also proves to be a challenge for

terrestrial protocols such as the Border Gateway Protocol (BGP) [22]. In a network

with intermittent connectivity between nodes, there may be no instantaneous path

between a sender and receiver. However, delivery may still be possible. For

example, if a rover is on the surface of Mars facing away from Earth, it can still

send a packet to a station on Earth by first sending it to a satellite. Then the

satellite can store the packet until it orbits to the other side of Mars where it can

make a connection to Earth. Standard routing protocols cannot take these temporal

dependencies into account when making a route selection.

There have been several proposals to address these issues. The Consultative

Committee for Space Data Systems (CCSDS) developed the Space Communications

Protocol Specification (SCPS)—Transport Protocol (SCPS-TP), a modification of

TCP with extensions to meet the environmental requirements of deep-space

communication [20]. It has been shown that the pure rate control variation of

SCPS-TP achieves over three times the throughput of TCP in a high-loss,

cislunar-like environment [23]. The CCSCS also defines the CCSDS file delivery

protocol (CFDP) standard[24]. CFDP adds store-and-forward capability to

communication, allowing data to be relayed between spacecraft in disruption prone

networks. SCPS-TP and CFDP work well for the specific links over which they are

designed to operate, but are not ideal for use over every connection in an

Interplanetary Internet which should use a variety of protocols to achieve maximum

efficiency.

The Interplanetary Internet (IPN) is a proposed architecture for standardized

communication between nodes located on or around different celestial bodies.

16

Though the original IPN research project was aimed at designing a communication

network between Earth and Mars, the name “Interplanetary Internet” was coined

“to suggest a far-future integration of space and terrestrial communications

infrastructure to support the migration of human intelligence throughout the Solar

System” [25]. The concept of the IPN is to use standard Internet protocols within

local, high-bandwidth, low-latency networks and connect these networks to each

other using an “interplanetary backbone” comprised of satellites and ground

stations communicating using specialized protocols such as SCPS-TP and CFDP

[25]. The goal of the IPN project is to standardize interplanetary communication

protocols to facilitate widespread adoption. Vinton Cerf suggests that if all space

agencies adopt these protocols, then after the completion of a spacecraft’s mission it

can become repurposed as a node in this interplanetary backbone [26].

Delay/disruption tolerant networking (DTN) is one approach to IPN [27]. The

development of a standard DTN architecture began in 1998 when Vinton Cerf met

with the digital communications team at JPL in 1998 to propose the development of

an Interplanetary Internet after he raised the possibility of IPN in a speech in

Geneva the preceding year. Cerf secured funding from DARPA for a team at JPL

led by Adrian Hooke to develop the IPN architecture and DTN protocols [28][29]. A

standardized architecture for DTN was first defined in RFC 4838 in 2007 [1] and the

DTN messaging protocol called Bundle Protocol (BP) was defined in RFC 5050

shortly thereafter [3]. This standardization has led to the widespread use of DTN

and development of many implementations which include but are not limited to the

following list:

• Interplanetary Overlay Network (ION): NASA/JPL’s implementation

designed for spaceflight [4]

17

• IBR-DTN: An efficient implementation for embedded systems [5]

• DTN2: DTN reference implementation [6]

• DTN7: An open-Source disruption-tolerant networking implementation of

Bundle Protocol version 7 [7]

• Terra: A lightweight and modular DTN library [8]

• Postellation: an enhanced delay-tolerant network implementation with video

streaming and automated network attachment [9]

• µD3TN (formerly µPCN): A bundle protocol implementation for

microcontrollers [10]

DTN acts as an “Internet-independent middleware”. It uses an overlay protocol

called Bundle Protocol (BP)[3] to interface with applications while using the most

effective transport protocol when communicating between nodes. In the network

stack, BP sits between the application layer and a transport layer such TCP. BP is

designed to avoid the typical query/response communication between client and

server. Instead, BP bundles messages together, sending all required data that the

server may need at the same time. These bundled messages are referred to as

bundles, and are the basic units of communication between DTN nodes [27]. BP is

designed around the following principles:

• Regionality: BP uses the optimal transport protocol for a given region of

communication [27]. For example, nodes operating over Internet-like networks

use TCP while long range satellites may use LTP. This improves throughput,

routing efficiency, and congestion control.

18

• Terseness: BP bundles use a very small header compared to TCP packets[27].

This reduction in overhead is especially important for spaceflight

communication, as bandwidth is limited.

• Store and forward: BP uses store and forward communication rather than

end-to-end [27]. This means that when a bundle is sent from node A to C by

routing through node B, custody of that bundle is given to B and a copy of

the bundle is stored on B. A custody signal is sent back to A allowing it to

release that bundle from memory. This both reduces memory usage and

potentially increases bandwidth. In a end-to-end protocol, if a packet is

dropped between nodes A and C it has to be retransmitted all the way from

A. With store and forward, the packet only has to be retransmitted from B. If

the delays between nodes are long, this greatly increases bandwidth.

2.2 Interplanetary Overlay Network

Interplanetary Overlay Network is an implementation of the Bundle Protocol

that is designed from the ground up for spaceflight [4]. There are a few key elements

of ION that make it particularly suited for spaceflight:

• Pre-allocated memory for dynamic memory management — For safety

reasons, spaceflight software should not make calls to malloc() or free(). A

memory leak or incorrect usage of free() could be disastrous. To avoid this,

ION statically manages its own memory which it allocates on startup.

• Fault tolerance — ION is able to recover from a complete shutdown or a

shutdown of any one of its components. It does this using its Simple Data

Recorder (SDR). The SDR is a shared memory database/memory manager

that can use filesystem memory for persistence. It implements atomic

19

transactions (meaning that all actions in the transactions take place or none

of them do) which ensures that the database never enters an invalid state.

The SDR is the core component of ION that provides its reliability, but it

may also be preventing ION from reaching higher throughput. All of ION’s

threads share the same SDR, and only one thread can make a transaction at

once. This often causes ION to become effectively single-threaded.

• Lightweight — ION is written in C and has a fairly small codebase, making it

both fast and memory efficient.

• Contact Graph Routing — ION implements Contact Graph Routing, a

method of calculating the best route for a packet in a network with

intermittent connectivity. This is important for spaceflight because end-to-end

communication may not be possible due to obstructions from celestial objects.

2.3 High Performance Spaceflight Computing

High Performance Spaceflight Computing (HPSC) is a collaborative project for

developing next-generation spaceflight computing hardware [30]. The project is

managed by the Jet Propulsion Laboratory with collaborators including NASA’s

Goddard Space Flight Center (GSFC), NASA’s Johnson Space Center (JSC), and

the United States Air Force Research Laboratory (AFRL). The technology used in

spaceflight hardware generally lags behind state-of-the-art due to the rigorous

testing and safety standards required by missions. The proposed design of this new

architecture will enable several new possibilities for future missions previously

infeasible to limited processing power. In a 2003 study commissioned by the NASA

Game Changing Development Program, a series of workshops were held in order to

identify use cases of HPSC. Mission designers, scientists, and engineers from JPL,

GSFC, JSC, NASA Ames Research Center, and NASA Kennedy Space Center

20

identified nineteen generic applications of HPSC to be used through 2025 [31].

These applications included those for both human and robotic uses, categorized by

the Human Exploration Mission Operations Directorate (HEOMD) and the Science

Mission Directorate (SMD). A few examples of possible applications of HPSC

identified by this study include extreme terrain landing, telerobotic construction,

hyperspectral imaging, and telepresence.

21

3 Experiment Setup
3.1 Hardware

Tests were performed on two distinct testbeds: one to represent ideal conditions

and one to represent constrained conditions. While this thesis focuses mainly on

ION’s performance in ideal conditions, it is useful to explore ION’s performance on

less powerful hardware. Having a testbench with lower computing requirements also

allows for running tests in a network of five machines rather than directly between

two machines, as it was less feasible to obtain and connect many high performance

machines. In all test cases, only one ION node is being run on each machine. This is

done for two reasons. First, running multiple nodes on the same machine may

reduce the performance of those nodes due to reaching the limit of the computing

resources available. Second, throughput results between nodes running on the same

machine are not meaningful as one of the main factors affecting performance is the

time to read and write to the network interface. Even if the IP addresses used on

each node are assigned to separate interfaces on the same machine with an Ethernet

cable connecting the two interfaces, Linux will detect that the addresses are on the

same machine and bypass the physical network interface.

3.1.0.1 High Performance Testbench

The high performance testbench (HP-testbench) represents running ION in

ideal conditions. This testbench used two nodes running on separate physical

machines. These machines communicate with each other via 10 Gbps interfaces

directly connected to each other with an Ethernet cable. Figure 3.1 shows the

network diagram for the high-speed two node configuration (HP-2). Using the iPerf

[32] utility, the measured maximum goodput using both TCP and UDP is 9.41

Gbps. This is less than the rated 10 Gbps capability of the network interfaces

22

10 GbpsA B

Figure 3.1: HP-Testbench network diagram (HP-2 configuration)

Two high performance machines connected directly via a 10 Gbps link. Both
machines use a x540-AT2 Ethernet controller. The maximum goodput using
TCP as measured by iPerf is 9.41 Gbps.

because iPerf is measuring goodput rather than throughput. That is to say, it is

measuring the rate of useful data transfer, which does not include headers such as

the TCP, IP, and Ethernet Frame headers. For each Ethernet frame, 1518 bytes are

sent. 18 bytes are for the Ethernet frame header, 24 bytes are for the IP header, and

at least 20 bytes are used for the TCP header. This results in at most 1456 useful

bytes sent per 1518 bytes, giving a maximum of 95.9% bandwidth utilization, so a

measured bandwidth of 9.41 Gbps (94.1% bandwidth utilization) is not

unreasonable.

The purpose of the experiments on this testbench is to test the performance of

ION in ideal conditions. As such, the computing and network hardware were

selected to be capable of high performance. While this scenario is atypical from

what is considered a normal use case of ION, it is representative of a possible future

trunk in an Interplanetary Internet or any other large network using DTN.

Ideally the two computers in this testbench would be identical, and during the

development of the benchmarks that was the case. However, in our final testing the

two high performance machines were different, resulting in slightly asymmetrical

23

goodput 1 using ION depending on the transfer direction of the test. This gave the

benefit of observing the effect of more factors such as clock speed and cache size.

3.1.0.2 Low Performance Testbench

The low performance (LP-testbench) represents running ION in more realistic

conditions, specifically running one of the five nodes on a ESPRESSObin v7 which

uses a Marvell Armada 3700LP (88F3720) dual-core ARM Cortex A53 which has

the same ARMv8 architecture used in the HPSC chiplet architecture [33].

Depending on the configuration, the LP-testbench uses up to five ION nodes with

each node running on a separate machine (see appendix A.1 for hardware

specifications). The machines are on the same subnet and are connected on the

same 1 Gbps Ethernet switch, however the ION configurations are such that the

nodes must communicate though a multi-hop path, using the ARM machine as a

sort of router (See appendix A.2 for the “ipnadmin” utility “group” commands

defining the route table for each node). There are three configurations of this

testbench; Figure 3.2a shows the two node configuration (LP-2) network diagram,

Figure 3.2b shows the three node configuration (LP-3) network diagram, and Figure

3.2c shows the five node configuration (LP-5) network diagram.

3.1.1 Operating System and Network Stack Considerations

All machines used in our tests are running the CentOS 7 distribution of Linux.

For any operating system, there are several TCP/IP parameters that are known to

affect network throughput. These parameters include send and receive buffer sizes,

TCP window size, and Ethernet frame size. It has been shown that properly tuning

these parameters can lead to a significant increase in performance [34]. For our
1 Goodput is the rate of transfer of useful data, whereas throughput includes the transfer of both

data and headers. Throughput also includes additional overhead such retransmitted packets.

24

1 GbpsA C

(a) LP-2 configuration: Two node configuration, connecting an x86 machine and ARM
machine

1 Gbps 1 GbpsA C B

(b) LP-3 configuration: Three node linear configuration, using ARM machine as
center node.

1 Gbps 1 Gbps

1 Gbps 1 Gbps

A

C

B

D E

(c) LP-5 configuration: Five node configuration, using ARM machine as a sort of
router through which all other nodes must communicate.

Figure 3.2: LP-Testbench configurations

All machines are connected to each other over a single 1 Gbps Ethernet switch.

25

experiments we increased the max receive and send buffer size, enabled TCP

selective acknowledgments, and increased the maximum TCP window size by

enabling TCP window scaling. These settings are changed by editing the

/etc/sysctl.conf file in Linux. The values we used for these settings are shown in

appendix A.3. We did not use jumbo Ethernet frames, as the standard 1500 byte

frames are more commonly used. The effect of increasing the frame size could be

explored in future experiments.

As an additional step to reduce the number of factors affecting performance,

the nodes were run on ramdisks. Using the tmpfs utility, each node was run in a

filesystem running completely in ram, bypassing the need to read and write to the

physical storage device. In some cases, ION is limited by the read and write speed

of the storage device. For example, in our CFDP test, throughput is measured by

sending a 1 GB file. Storing this file in RAM eliminates the bottleneck of the read

speed of the disk.

3.2 Throughput Measurement Method

To measure the throughput of ION, we used a modified version of iPerf3[32]

called taraBPPerf 2. taraBPPerf works in the same manner as iPerf; A taraBPPerf

server is started on one machine and a taraBPPerf client on different machine

connects to that server. The client sends data to the server for a specified amount of

time or until a specified amount of data is sent, then the throughput is calculated.

In our tests, the throughput was measured by sending data for 10 seconds, and

averaging the throughput over the last 5 seconds of that period. This avoids any

decrease in average throughput due to TCP slow start and instead measures the
2 taraBPPerf is an internal tool I developed while working for my current employer, Antara

Teknik LLC. Antara Teknik is currently evaluating the potential of making taraBPPerf open source.
Similar goodput results can be achieved by using the “bpdriver” and “bpcounter” utilities in the
ION codebase.

26

average throughput once steady state is reached. After 5 seconds the congestion

window is filled and the send receives zero-window packets from the receiver at a

constant rate. In this case, 5 seconds is plenty of time to reach steady state as the

bandwidth-delay product between the two nodes is very low because they are either

directly connected via a Ethernet cable or directly connected to the same Ethernet

switch.

3.3 ION configuration

All tests were performed using the same baseline ION configurations with only

the variables being tested for being modified for each test as described. This

baseline is meant to maximize performance and control for factors outside of those

being specifically tested. The full baseline configurations are given in appendix A.2

and follow these guidelines:

• All nodes use the TCP convergence layer adapter. The most common

convergence layer adapters for ION are TCP, UDP, and LTP (Licklider

Transmission Protocol). The TCPCLA was chosen as it introduces the least

overhead.

• All threads for all ION processes are run on the same core. Section 4.3

discusses how this increases performance and produces more consistent

throughput results. Without this option it would be up to the operating

system’s scheduler to determine where to place the threads, leading to

significant variability in each test even with all other variables being the same.

Note that this setting is not reflected in the configurations shown in appendix

A.2 as it is not a standard ION option. Rather, the taskset utility is used to

set the CPU affinity of the ION processes on launch.

27

• Heapmax is set to a value larger than the bundle size. Heapmax is a variable

in ION which defines how many bytes of a bundle can be stored in the SDR

heap. If a bundle is larger than heapmax, heapmax bytes of the bundle are

stored in the SDR and the rest of the bundle is stored as a file in the

operating system.

• TCP convergence layer buffer size is set to a value larger than the bundle size.

This buffer is used when copying a bundle to the network interface, so setting

it larger than the bundle size allows the bundle to be copied to the network

interface with a single system call.

28

4 Experiments, Results and Analysis
The results of a particular goodput test can vary significantly run to run. In

order to maintain the statistical significance of our results we repeated each test 20

times. The data in the graphs in this section show the averages of those tests.

Additionally (unless otherwise noted), we ran our tests with ION locked to a single

core. This gives much more consistent results as the CPU cores the threads run on

have a large impact on goodput, and leaving the threads unlocked gives the

operating system’s scheduler authority over CPU assignment. In section 4.1,

TCPCLA buffer size is left to its default of 64 KiB3. In all other sections (unless

otherwise noted), a TCPCLA buffer size of 512 KB is used.

In each graph, all data are plotted as both a scatter plot and a line representing

the mean. Additionally, the grey area behind each line represents a 95% confidence

interval calculated using a t-distribution. It should be noted that in some cases this

type of t-distribution analysis may not be completely appropriate as the data is not

normally distributed. However, showing the confidence interval still does give some

visual indication of how the data is distributed and is therefore included in the

graphs.

Our experiments cover a wide range of factors. Each line in our graphs

represents the result of changing only one of these factors. The factors we tested

include are shown in Table 4.1. Note that we did not test all permutations of these

factors. Refer to the caption of each graph for a description of the factors being

tested. The parameters of our experiments are shown Table 4.2. These are factors

that are kept constant throughout all of our experiments.

3 In this work, we use both “KB” and “KiB” as units. We use KB as meaning 1000 bytes and
KiB as meaning 1024 bytes.

29

Table 4.1: Experimental Design Factors

Factor Values
Node configurations HP-2, LP-2, LP-3, LP-5
Bundle size (number of bytes in each bundle payload) 1 KB – 2000 KB
TCPCLA buffer size 64 KiB – 512 KB
All ION threads locked to same core (CPU Affinity) True, False
Number of data streams 1, 2
Transfer method BP, CFDP over BP
Segment size (when using CFDP) 1 KB – 64 KB
Checksum algorithm (when using CFDP) Null, Modular, CRC32,

CRC32 (unoptimized),
CRC32-slice-16

Table 4.2: Experimental Design Parameters

Parameter Value
ION Version 3.7
Convergence Layer Adapter TCPCLA
Heapmax 2100 KB
taraBPPerf test time 10 seconds
CFDP test file size 1 GB

4.1 Bundle Size

In many studies of DTN implementations, it is common to test the effect of

bundle size on goodput [35][36]. In networks with high bit-error rate, large bundles

cause more retransmissions and therefore lower throughput (Lent). However, in

networks with low or no bit errors, large bundles tend to increase performance due

to lower per-bundle overhead.

To test the effect of bundle size on ION’s performance, the goodput between

nodes A and B was measured using several bundle sizes. Figure 4.1 shows the

results of this experiment for the HP-2 configuration. In this case, the tests were

conducted using Node A as the sender and Node B as the receiver, and then the

30

tests were repeated using Node B as the sender and Node A as the receiver. This

was done to demonstrate the effect of computing hardware on goodput. On both

machines, ION is run with all processes and threads on a single core (section 4.3

analyzes the effect of thread affinity). The results show greater goodput is achieved

using Node B as the receiver. The ability of the receiving node to process incoming

packets is the limiting factor of goodput, as the receiving node is consistently

sending zero window advertisements, meaning that the receive buffer is full and the

sender is sending bundles faster than the receiver can process them.

0 200 400 600 800 1,000 1,200 1,400 1,600
0

2

4

6

8

10

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) Bundle Size vs Goodput

A to B
B to A

95% Confidence Interval

Figure 4.1: (HP-2) Bundle Size vs goodput for transfers from A to B and B to
A

Goodput increases with bundle size with diminishing returns. The goodput
reaches the maximum throughput of 9.4 Gbps when transferring from node A
to node B. However, the transfer of B to A does not not saturate the line. This
is likely due to Machine A having a smaller cache.

31

It was unexpected that using node B as the receiver resulted in higher goodput

when running nodes on a single CPU. Machine A has a significantly higher core

clock speed than Machine B (3.50 Ghz and 2.60 Ghz respectively), and a higher

RAM clock speed (3200 Mhz abd 2133 Mhz respectively). However, Machine B has

a larger L3 cache than Machine A (30720 KB and 8192 KB). As bundles are

received, the data contained in the bundles replaces the cached memory pertaining

to the state of IONs processes. With a larger cache this displacement happens less

often, meaning fewer cache misses and therefore greater goodput.

The lines in Figure 4.1 appear jagged, sharply dropping every time the bundle

size passes a multiple of 65536 bytes (64 KiB). This is due the TCP convergence

layer using a buffer of size 64 KiB to read bundle data from the socket. Every time

the bundle size passes a multiple of 64 KiB bytes, the convergence layer has to read

into this buffer an extra time. This effect is discussed in section 4.2, but generally a

larger TCPCLA buffer size results in greater throughput, especially at large bundle

sizes.

Figure 4.3 shows similar results in the LP-2 testbench. Transferring from Node

C to Node A is faster because Machine A has more computing power, and transfers

are bottlenecked by the receiver when both machines are the same. In this case, the

bottleneck is coming from the sender, Node C, because we know that Node A is

capable of receiving much faster than what was measured in this test. Figure 4.4

shows results for a three node transfer in the LP-3 testbench. This is much slower

than the LP-2 and HP-2 testbench because the Node C has to both send and receive.

There are a variety of factors that are responsible for goodput increasing as

bundle size increases, all of which are based on the fact that larger bundle sizes

mean fewer bundles sent for the same goodput. With fewer bundles there is less

computing overhead which results in greater goodput. For each bundle, there is a

32

constant time overhead and linear time overhead. An example of a constant time

overhead is locking a semaphore, which takes the same amount of time for any

bundle size. An example of a linear time overhead is the time it takes to copy the

bundle data into the network interface, which scales approximately linearly with

bundle size. Any process that introduces both a constant time overhead and linear

time overhead will result in a graph with the type of curve seen in our results. The

work rate achieved by this type of process is calculated by the equation:

R(w) =
w

Oc +Ol · w
(4.1)

where Oc is the constant time overhead in seconds per load, Ol is the linear

time overhead in seconds per work, and w is the work per load (such as bundle

size). Without the constant time overhead the rate would always be the same, and

without the linear time overhead the rate would scale linearly with the work per

load. With both types of overhead, a curve with asymptotic behavior is produced.

Figure 4.2 shows this curve plotted with Oc of 2 and Ol of 1.

Sending fewer bundles requires less interaction with SDR. When a bundle is

created, it is stored in the SDR as a zero-copy object. Because the SDR has to

manage a preallocated area of memory, storing an object can be costly depending

on the internal memory allocation algorithm used. For large objects, the SDR uses

sequential fit allocation. This algorithm has linear allocation and deallocation time

complexity, so for a large number of objects it becomes inefficient. However, in these

tests the bundles are only stored for a short period of time, so the number of objects

is fairly small. Additionally, any transaction with the SDR, whether it be reading or

writing, requires the entire SDR to be locked. This is a major hindrance when

running ION threads across multiple cores as it introduces a large source of thread

33

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Work per load

W
o
rk

p
er

se
co
n
d

Work rate equation for Oc = 2, Ol = 1

Figure 4.2: Example work rate equation graph

Graphing the work rate equation with Oc = 2 and Ol = 1. This is a simple
model of how bundle size affects goodput. With only a constant time overhead
per bundle, goodput would increase linearly with bundle size. With only a linear
time overhead per byte sent, the goodput would be constant. Including both
of these factors produces a graph which increases in an asymptotic manner.
Reducing the constant time overhead would reduce the bundle size to approach
the asymptote, and reducing the linear time overhead would increase the
asymptote (maximum possible goodput for any sized bundle).

contention. For the tests shown in this section, this is not a factor as the threads are

all being run on the same core. Regardless, the process of locking and unlocking is

costly as it requires interacting with the kernel.

34

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(LP-2) Bundle Size vs Goodput

A to C
C to A

95% Confidence Interval

Figure 4.3: (LP-2) Bundle Size vs goodput for transfers from A to C and C to
A

Goodput increases with bundle size in the LP-2 testbench. As expected,
transfers from C to A are faster than A to C because on the same hardware,
receiving a bundle takes longer than sending a bundle. Because we know A is
able to receive much faster than the maximum of 716 Mbps C to A transfer
shown in this graph, the bottleneck in this case is how fast Node C can send
data.

35

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Bundle Size (KB)

G
o
o
d
p
u
t
(G

b
p
s)

(LP-3) Bundle Size vs Goodput, Transfer A→C→B

Figure 4.4: (LP-3) Bundle Size vs goodput for transfers from A to B, routing
through C

This graph shows the results from a multi-hop test, transferring from Node A
to Node C and then to Node B, where Node C is the ARMv8 machine. As
expected, this testbench had the slowest goodput with a maximum of 337 Mbps
at a bundle size of 2000 KB.

36

4.2 TCPCLA Buffer Size

A major factor affecting ION’s performance is the size of the buffers used in the

TCP convergence layer adapter. These buffers are used to read bundles to and from

the TCP socket. As the buffer increases in size, the number of system calls

decreases. This decreases the time needed to read bundles from the socket and

therefore increases goodput. Figure 4.5 shows the effect of buffer size on goodput at

several bundle sizes using the HP-testbench, each line representing a different

bundle size. Goodput increases as the buffer size is increased, especially when using

large bundle sizes. Figure 4.6 shows similar results in the LP-2 testbench.

In both HP-2 and LP-2, goodput stopped increasing once the TCPCLA buffer

size reached somewhere between 500 KB and 1000 KB. Figure 4.7a and Figure 4.7b

show goodput vs bundle size for a buffer size of 512 KB compared to the default

buffer size of 64 KiB. With bundle sizes above 64 KiB, there was a significant

increase in goodput using a buffer size of 512 KB.

In modern operating systems, data is pushed to the outbound queue (SendQ)

using a system call [37]. This system call typically takes data passed in a buffer and

copies it to the SendQ. Similarly, a system call is made to copy data from the

inbound queue (RecvQ) into a buffer. The size of the queues and the size of the

buffers determine the amount of data that can be copied at one time. It is much

more efficient (requires fewer system calls) to copy a single buffer of size n to or

from a queue than it is to copy n buffers of size 1. Goodput increases with buffer

size until the buffer becomes larger than the queue. In this case, the system reads

enough data from the buffer to fill the SendQ and waits for the data to be cleared

from the queue before reading more data from the buffer. This process of waiting

and reading has almost identical cost to making multiple system calls as a multiple

context switches occurs during each read cycle [37].

37

0 100 200 300 400 500
0

2

4

6

8

10

TCPCLA Buffer Size (KB)

G
o
o
d

p
u
t

(G
b

p
s)

(HP-2) TCPCLA Buffer Size vs Goodput at Various Bundle Sizes

Bundle Size
2000 KB
1500 KB
1000 KB
512 KB
256 KB
128 KB
64 KiB

95% Confidence Interval

Figure 4.5: (HP-2) TCPCLA buffer size vs goodput for various bundle sizes,
A→B

Increasing the TCPCLA buffer increases goodput for all of the seven bundle
sizes tested when transferring from Node A to Node B. Once the buffer size is
larger than the bundle size, there should no longer be any gain in performance
for increasing the buffer size further, as the number of socket reads required has
already been reduced to a single call. However, there is an anomalous bump for
the 64 KiB, 128 KB and 256 KB bundles at a buffer size of about 450 KB. In
order to choose a new default value for the TCPCLA buffer size, the minimum
buffer size at which there is no longer an increase in goodput for any bundle size
is selected. This graph shows that goodput only increases slightly after about
300 KB.

Increasing these buffer sizes has a larger impact when copying a large amount

of data at a time. In ION’s case, the maximum amount of data copied at once is

determined by the size of the bundle. Therefore, the best performance is achieved

when sending and receiving large bundles (>1 MB). It is also important to have the

38

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

TCPCLA Buffer Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)
(LP-2) TCPCLA Buffer Size vs Goodput at Various Bundle Sizes

Bundle Size
2000 KB
1500 KB
1000 KB
512 KB
256 KB
128 KB
64 KiB

95% Confidence Interval

Figure 4.6: (LP-2) TCPCLA buffer size vs goodput for various bundle sizes,
A→C

The TCPCLA buffer size test was repeated on the LP-2 testbench. These results
show goodput when transferring from A to C. Unlike the results from the HP-2
testbench, the goodput for large bundle sizes does not saturate the line, and
instead an asymptotic increase in goodput is displayed as TCPCLA buffer size
is increased. At a buffer size of 500 KB the asymptotic increase is low, but there
is still slightly more goodput to be gained than what is shown in this graph

size of the bundles be the same size as the buffers or a multiple of the size of the

buffers. If the bundle is larger than the buffer size, the bundle will be copied to the

buffer and sent to the queue in multiple chunks, requiring multiple system calls. If

the bundle size is larger than the buffer size and not a multiple of the queue size,

the last chunk to be copied to the buffer will be smaller than the previous chunks

39

0 200 400 600 800 1,000 1,200 1,400 1,600
0

2

4

6

8

10

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) Increased Buffer Size, Transferring from A to B

TCPCLA Buffer Size
512 KB
64 KiB

95% Confidence Interval

(a) (HP-2) TCPCLA bundle size vs goodput for TCPCLA buffer size of 64 KiB and
512 KB, A→B

Increasing the TCPCLA buffer size from 64 KiB to 512 KB increases goodput. These
results shows transfers from Node A to Node B. In this case, there wasn’t much
goodput to be gained as the 10 Gbps line was saturated at bundle sizes larger than
1 MB. For discussion on the bimodal distribution of the 64 KiB results see section
4.3.1.

Figure continued on next page

(which are the same size as the buffer). If this final chunk is significantly smaller,

performance is decreased. For example, if the bundle size is S + 1 where S is the

size of the buffer, the process of copying it to the socket would be as follows:

1. Copy a bundle chunk of size S to the buffer.

2. Make a system call to write S bytes of the buffer to the socket.

3. Copy a bundle chunk of size 1 to the buffer.

4. Make a system call to write 1 byte of the buffer to the socket.

Writing this bundle takes two system calls rather than one, while only copying

an extra byte compared to if the bundle were size S. While the system call for

40

0 200 400 600 800 1,000 1,200 1,400 1,600
0

2

4

6

8

10

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) Increased Buffer Size, Transferring from B to A

TCPCLA Buffer Size
512 KB
64 KiB

95% Confidence Interval

(b) (HP-2) TCPCLA bundle size vs goodput for TCPCLA buffer size of 64 KiB and
512 KB, B→A

Increasing the TCPCLA buffer size from 64 KiB to 512 KB increases goodput
significantly. These results shows transfers from Node B to Node A. In this case,
using a buffer size of 64 KiB did not saturate the 10 Gbps line. After increasing the
TCPCLA buffer size to 512 KB, the 10 Gbps line was saturated with bundles of size
400 KB and above.

Figure 4.7: (HP-2) TCPCLA bundle size vs goodput for TCPCLA buffer size
of 64 KiB and 512 KB, A→B and B→A

Increasing the TCPCLA buffer size from 64 KiB to 512 KB increases goodput,
especially when transferring from node B to node A. The blue line shows the
goodput when using a 64 KiB buffer and clearly displays a sawtooth behavior.
Goodput drops slightly every time the bundle sizes crosses a multiple of the
buffer size. This is because once the bundle size increases past a multiple of the
buffer size, and additional call to the socket read function is required. These
additional calls are accumulated as bundle sizes increases, which is what causes
the overall slowdown.

41

0 100 200 300 400 500 600
0

2

4

6

8

10

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) Buffer Size Boundaries

TCPCLA Buffer Size
128 KB
64 KiB

95% Confidence Interval

Figure 4.8: (HP-2) Buffer Size Boundaries

Goodput drops every time the bundle size overflows the buffer size. Passing a
buffer size boundary causes an extra socket read/write system call to be made
and thus adds extra overhead, leading to a slight decrease in Goodput.

copying the single byte takes less time than copying the S size chunk to the socket,

the fixed overhead for making the extra system call adds a significant amount of

processing time and therefore lowers goodput. Figure 4.8 demonstrates the drop in

performance at these buffer size boundaries.

4.3 Processor Affinity

The fundamental principle of ION’s architecture design is distributed

processing. Rather than running a single complex daemon, ION is broken up into

many smaller components running concurrently. These components run tasks that

are chained together to execute the full ION pipeline. As outlined in the Design and

Operation manual included with the ION software package [38], a few of the

benefits of this design choice are the following:

42

• Maintaining a codebase of logically coherent, small components is more

manageable. Resolving conflicts across the codebase is easier, especially

considering the multi-organization development environment of the ION

project. Additionally, the relative simplicity of the components reduces the

introduction of defects.

• Individual components of an ION node can be shut down or introduced during

runtime. This allows the complexity and scale of a node to be changed

without the need of restarting the node with a new configuration.

• Clear interfaces between components simplifies flow control and reduces the

risk of excessive resource consumption.

ION was primarily designed for computers used in spaceflight. These typically

use lower power processors with a single core, meaning that the concurrency of

ION’s components is only logical; tasks are never executed at the same time. It is

reasonable to assume that running ION on a multi-core processor would improve

performance; tasks could truly run concurrently and therefore the pipeline would

process data faster. However, that is not always the case.

When the processes for ION components are launched, the operating system

uses a scheduler to control which CPU to run the threads for each process on. Since

ION runs many threads due to its distributed processing design, it is almost certain

that the threads will run on different CPUs. Schedulers can also change what CPU

a thread is being run on during runtime. By manually setting the processor affinity

for a thread, a thread is guaranteed to run on a specific CPU or set of CPUs.

To test the effect of CPU affinity, we ran goodput tests with ION’s threads

being locked to the same core (single-core) and compared the results to when the

threads are not locked to any core (multi-core). Appendix A.4 describes how the

43

“taskset” command is used to launch ION nodes in single-core mode. Figure 4.9

shows the results of these tests for the HP-2 testbench. Transfers from A to B were

tested as well as transfers from B to A. In both single-core and multi-core tests,

transfers from A to B had higher goodput, similar to the results seen in Figure 4.1.

For most bundle sizes, single-core performance is significantly higher than multi-core

performance. This is because ION is often effectively single-threaded due to only a

single thread being able to access the shared database at a time. Therefore, locking

the threads to a single core has minimal performance loss due to reduced

concurrency, and instead gets a performance boost due to less cache-misses. When

the threads are run on the same core, keeping the cache coherent is faster because

less data needs to be copied to the L3 cache.

In transfers from Node B to Node A, single-core performance was significantly

higher for most bundle sizes. However, using bundle sizes above 1700KB had higher

goodput while running on multiple cores. It seems that the benefit of lower cache

misses when using single-core become less relevant at larger bundle sizes when

receiving on machines with smaller L3 caches. In a similar vein, receiving on the

ARMv8 machines performs better on multi-core as seen in Figure 4.10. The ARMv8

machine similarly does not have as robust of a cache as Machine B.

To store and pass data between components, ION uses a shared object database

called Simple Data Recorder (SDR) which runs in shared memory. This gives access

to the same data to every thread of every process in an ION node. Reading and

writing to shared memory has little performance cost while using a single thread.

However, accessing the same data in shared memory on multiple threads could have

a performance cost due to memory caching. A CPU cache holds data in memory

which is most likely to be used by a CPU next. High performance CPUs typically

have multiple levels of caching referred to as L1, L2, L3, etc. The L1 cache is the

44

0 500 1,000 1,500 2,000
0

2

4

6

8

10

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) CPU Affinity, A→B vs B→A

A→B single-core
A→B multi-core
B→A single-core
B→A multi-core

95% Confidence Interval

Figure 4.9: (HP-2) Single-core vs multi-core goodput.

Here, the goodput achieved while locking each ION node’s processes and threads
to a single core is compared to when not setting the affinity of its processes or
threads. For most bundles sizes in both the A→B and B→A direction, locking
to a single core resulted in a higher goodput. This is because ION often runs
effectively serialized due to only one thread being able to access the SDR shared
database at a time, so locking to a single core has minimal performance hit due
to reducing concurrency, and instead benefits from the locking because cache-
misses are reduced. If all threads run on the same CPU core, keeping the cache
coherent is faster because less data needs to be copied to the L3 cache. Above
bundle sizes of 1700KB, multi-core average goodput becomes higher for transfers
from B to A compared to single-core goodput. However, it does not surpass the
upper mode of the bimodal distribution displayed by the single-core results.
This indicates that single-core has the potential to be faster on average for large
bundle sizes if the cause of this bimodal distribution was understood. For more
discussion on the bimodal distribution see section 4.3.1.

fastest to access, and stores data to be used by a particular processing core of a

CPU. The L2 cache stores data to be used by a particular CPU. And finally, the L3

45

cache stores data to be used across multiple CPUs [39]. By accessing the same data

in the SDR on threads running on separate CPUs, data must be written to lower

levels of cache which is much slower than accessing that data on the L1 cache.

To handle objects containing large amounts of data, such as bundles, ION uses

zero copy objects (ZCO). ZCOs are essentially pointers to data in the SDR. ZCOs

reduce the effect of this caching issue, but do not eliminate it. Bundle data are still

processed by several components in the pipeline and thus cache synchronization is

still needed.

Compounding the issue of cache synchronization in the method of shared

memory access in the SDR. Accessing data in the SDR must take place within

critical sections called ”transactions” which serve two purposes:

• Safety: mutual exclusion is used to prevent race condtions and deadlock.

• Atomicity: When performing a sequence of database updates, either all of the

updates are applied or none of them are, ensuring database integrity.

This mechanism results in only a single thread having access to data in the SDR at

any moment. Considering that some of these transactions take a significant amount

of time, and the frequency with which all threads require access to the SDR, an ION

node becomes effectively single-threaded. The transaction mechanism also decreases

performance due to the high cost of the context switches caused by the mutual

exclusion mechanism.

Figure 4.10 shows goodput results in single-core compared to multi-core in the

LP-2 testbench. Unlike in the HP-2 results, multi-core had significantly higher

goodput. One explanation for this is that because it has less compute power, Node

C is being bottlenecked by a different part of ION which can be executed in parallel,

therefore giving a benefit to using multi-core.

46

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(LP-2) CPU Affinity, A → C vs C → A

C → A, multi-core
C → A, single-core
A → C, multi-core
A → C, single-core

95% Confidence Interval

Figure 4.10: (LP-2) Single-core vs multi-core goodput

In the low performance testbench, locking ION’s threads to a single core resulted
in significantly lower goodput. The goodput while using a bundle size of 2000
KB in the A→C direction was reduced from 733 Mbps to 499 Mbps after locking
the threads to a single core. This is different than the results from the HP-2
testbench where goodput is typically increased after locking to a single core.
This demonstrates that the effect of thread affinity is dependent on hardware,
although the exact cause of such a large difference is unclear. It may be the
case that transfers in the LP-2 testbench are being bottlenecked by a different
part of the software which is better able to utilize concurrency.

Figure 4.11 shows similar results for a three node transfer in LP-3, and Figure

4.12 shows results for parallel transfers in the LP-5 testbench. As expected, these

tests benefit from multi-core as there are more threads that can be executed in

parallel.

47

0 200 400 600 800 1,000 1,200 1,400 1,600
0

0.2

0.4

0.6

0.8

1

Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(LP-3) CPU Affinity for 3 node transfer, A→C→B

multi-core
single-core

95% Confidence Interval

Figure 4.11: (LP-3) Single-core vs multi-core goodput

This graph shows goodput results for transfers from A to B, routing through C,
where C is a ESPRESSObin ARM machine. Similar to the results from the LP-
2 testbench, goodput in LP-3 is significantly lower when locking ION threads to
a single core. When using multiple cores, LP-3 reaches its maximum goodput
with a much lower bundle size than LP-2, about 300 KB compared to 600KB.

4.3.1 Multimodal Distributions

In many of our experiments, the results are indicative of a multimodal

distribution. That is, the distribution does not center around one peak, but instead

has multiple peaks that the results tend to be near. For example, in Figure 4.7b the

“64 KiB” line shows two distinct modes that the goodput results tend to be close to.

In the case of multi-core results, a multimodal distribution makes sense as there is

some probability that the scheduler will run the threads on favorable cores and

therefore the goodput will jump significantly higher. However, as evidenced by

48

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Bundle Size (KB)

G
o
o
d
p
u
t
(G

b
p
s)

(LP-5) 5 Node Multi-Stream Goodput

single-stream multi-core
multi-stream multi-core
single-stream single-core
multi-stream single-core

Figure 4.12: (LP-5) Single-stream vs multi-stream goodput

Goodput results from the 5 node testbench. In this case, single-stream refers
to one transfer from A to B, routing though C. Multi-stream refers to two
simulataneous transfers: A to B,routing through C, and D to E routing through
C. Similar to the results from the 3 node test in Figure 4.11, there is a clear
benefit from running ION on multiple cores for a multi-hop transfer. In this
graph we also see that using a single-stream is faster, as using multiple streams
introduces more context switching and thread contention when accessing the
SDR.

Figure 4.7b, some single-core experiments also show multimodal distributions.

There are a few possible explanations for this:

• During some periods of data collection, the core that ION is being locked to is

also being heavily used by some other process. This is unlikely to be the

actual cause as for any given ION instance, the goodput results remain in the

same mode. That is, the goodput results for a given ION instance are

consistently high or consistently low. If there was some process running

49

periodically and slowing ION down, we would expect this to happen fairly

randomly within the same instance of an ION node.

• A memory alignment issue within the PSM or SDR could be causing a

slowdown. Message buffer alignment is known to have a significant impact on

networking performance [40]. When allocating large buffers, the PSM and

SDR do account for memory alignment. However, for smaller allocations

memory alignment is ignored. Because the PSM and SDR are used by many

processes, all the allocation and free calls will not always be in the same order

for every instance of an ION node using the same configuration. It is therefore

possible that after startup, the PSM or SDR could end up in a state where

small memory allocations are improperly aligned and therefore cause lower

goodput.

In this thesis, we did not perform an in-depth exploration of this multimodal

behavior. This topic is left as future work.

4.4 CFDP

The CCSDS File Delivery Protocol (CFDP) is a file transfer protocol designed

for use in space. As spacecraft storage mediums moved from tape recorders to mass

storage with random access capabilities, the filesystem paradigm became

commonplace for storing and retrieving data. Given the unique requirements for

spaceflight operations, the creation of CFDP became necessary in order to facilitate

the transfer of files with consideration of the following constraints and

environmental factors of spaceflight as outlined in CCSDS Blue Book for CFDP [24]:

• Limited computation and memory capacity of spacecraft

50

• Communication links characterized by high noise, low bandwidth, asymmetry,

disruption, and long delay

• Possible requirement for early access of data regardless of its quality

CFDP relies on the services of underlying Link-layer protocols. In this case, it

is relying on ION/BP which sits between CFDP and the Link-layer in the network

stack. ION implements an experimental CFDP module and provides a simple utility

called bpcp which uses that module to transfer files.

4.4.1 Checksum

In order to assure integrity, every file sent by CFDP is accompanied by a 32-bit

checksum. The checksum is computed using the applicable checksum algorithm,

which can be any of the first 16 algorithms defined in the Space Assigned Numbers

Authority (SANA) Checksum Identifiers registry [41]. This registry contains 4

implemented checksum algorithms, the null checksum, and 11 slots reserved for

future use by CFDP. The type of checksum used is conveyed to the receiver as part

of an initial metadata message, with Table 4.3 defining which checksum is to be

used.

Table 4.3: SANA Checksum Identifiers Registry

ID Checksum Type
0 Modular Checksum
1 Proximity-1 CRC-32
2 CRC-32C
3 CRC-32
4-14 Reserved
15 Null Checksum

51

The Null checksum indicates that no checksum should be used. In our testing

we use the results from using the Null checksum as an upper bound for the

performance of CFDP. The modular checksum is a simple summation checksum in

which the data is divided into 4 byte words and computing the 232 modular addition

of those words. This type of checksum is not as reliable as the result is independent

from the ordering of the words due to the commutative property of addition. In

earlier versions of ION this was the default checksum algorithm, but now CRC-32 is

used as the default.

The CRC-32 checksums are 32 bit cyclical redundancy checks. CRC-32

calculates a checksum 4 bytes at a time, returning the remainder of a polynomial

division of those bytes. This remainder is then used in the CRC-32 calculation of

the next 4 bytes, and so on. CRC-32 is position dependent; CRC-32 will detect data

that is received in the incorrect order, and is therefore more reliable than the

modular checksum. The polynomial used in the calculation affects the error

detection ability of CRC-32. The polynomials used in standard Internet protocols

achieve a Hamming distance of HD=4 for maximum-length Ethernet messages,

whereas Koopman [42] performed an exhaustive search for good polynomials and

showed that HD=6 is possible for messages of nearly 16K bits, and HD=4 is

possible for messages up to 114K bits. CRC-32 is fast to compute and provides

reasonable assurance of data integrity. However, it does not protect against

intentional modification of data, in which case digital signatures or message

authentication codes must be used to verify the data has not been tampered with.

4.4.2 CFDP Goodput

The goodput achieved while using CFDP over BP is significantly lower than

only using BP. This is caused by extra processing overhead involved in reading the

52

file into the SDR, creating the CFDP segment bundles, and managing the CFDP

event queue. CFDP uses the same shared memory SDR as BP, so using CFDP

introduces more thread contention and context switching. Figure 4.13 shows

goodput results on the HP-2 testbench of CFDP over BP compared to just using

BP. Note that CFDP bundles will be larger than BP bundles while transmitting the

same amount of data due to the CFDP header, but this is negligable at larger

bundle sizes. This graph shows that BP is about twice as fast than CFDP, with a

maximum of 1.3 Gbps achieved through CFDP. This graph only shows bundle sizes

up to 64 KB, as that is the maximum segment size allowed by the CFDP protocol.

Bundle sizes larger than 64 KB will be even faster than the maximum goodput of

CFDP. This graph also shows that while BP performs better while locked to a single

core, CFDP actually benefits from running its threads on multiple cores. The most

expensive threads are the thread that reads the file data into a buffer and creates

the CFDP header and the thread that communicates between CFDP and BP. These

two threads have less thread contention than the most expensive threads used by

BP and therefore benefit from multiple cores.

The type of checksum algorithm used by CFDP has a significant effect on

goodput. Figure 4.14 shows the goodput on the HP-2 testbench of the checksum

algorithms implemented in ION. In this figure, ”CRC32” is a slightly modified

implementation of the CRC32 implemented by the version of ION we tested on,

where as ”CRC32 (unoptimized)” is the unmodified CRC32 implementation found

in ION 3.7. In more recent versions of ION the CRC32 implementation is optimized

in a similar fashion. We also added a CRC32-Slice-16 aglorithm which computes the

same checksum as CRC32 more efficiently by having a larger lookup table and

processing 16 bytes at a time rather than 4. It is an improvement by Bulat

Ziganshin on the slice-by-8 algorithm [43]. The CRC32-Slice-16 is almost as fast as

53

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

CFDP Segment Size/Bundle Size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) CFDP Goodput vs BP Goodput

BP single-core
BP multi-core

CFDP single-core (Null Checksum)

CFDP multi-core (Null Checksum)

95% Confidence Interval

Figure 4.13: (HP-2) CFDP vs BP

We compared goodput while running CFDP over BP to just using BP on the HP-
2 testbench. The Null checksum was used in order to compare BP against the
maximum possible CFDP goodput. CFDP introduces a significant amount of
overhead, with a maximum goodput of 1.32 Gbps at 64 KB segments compared
to BP’s maximum goodput of 2.06 Gbps at 64 KB bundles. As seen in section
4.3, BP often performs better when running on single-core. However, CFDP
has higher goodput when running on multi-core. This indicates that the CFDP
and BP processes run concurrently for a significant portion of the time.

not computing a checksum, showing that is possible to almost eliminate the

bottleneck caused by checksum in CFDP. Figure 4.15 shows the results from the

same tests while locking ION to a single core. Locking to a single core results in

lower goodput and less variability in goodput between the checksum algorithms.

Figure 4.16 compares single-core and multi-core results for CRC-Slice-16 and

CRC32 (unoptimized). At a segment size of about 30 KB the CRC32 unoptimized

running on a single core becomes slightly faster than the CRC32 unoptimized on

54

multi-core as the CRC computation begins to bottleneck the system and therefore

the single threaded performance begins to become more important for goodput.

When using CRC32-Slice-16, our results show goodput is always greater when using

multiple cores.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

CFDP segment size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) CFDP Goodput vs Segment Size (Multi-core)

Null Checksum
CRC32-Slice-16
Modular Checksum
CRC32

CRC32 (unoptimized)

95% Confidence Interval

Figure 4.14: (HP-2) CFDP goodput with various checksum algorithms (multi-
core)

Comparison between checksum algorithms while running ION on multi-core
on the HP-2 testbench. The unoptimized CRC32 found in ION 3.7 performs
the worst, with a maximum goodput of 765 Mbps at 64 KB segments. The
CRC32-Slice-16 algorithm that we implemented in ION achieves nearly the
same goodput as when not calculating a checksum (Null Checksum), with a
maximum goodput of 1.26 Gbps at 64 KB segments.

We performed the same checksum throughput tests on the LP-2 testbench.

Figure 4.17 compares using different checksum algorithms when locked to a

single-core. There is no difference in goodput when using each algorithm. Figure

55

0 10 20 30 40 50 60 70
0

0.5

1

1.5

CFDP segment size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) CFDP Goodput vs Segment Size (Single-core)

Null Checksum
CRC32-Slice-16
Modular Checksum
CRC32

CRC32 (unoptimized)

95% Confidence Interval

Figure 4.15: (HP-2) CFDP goodput with various checksum algorithms (single-
core)

This graph compares checksum algorithms while running ION on single-core on
the HP-2 testbench. There is less difference in goodput between the checksum
algorithms than when using multi-core.

4.18 compares results from LP-2 one multi-core vs single-core. There is a small but

significant increase in goodput when using multi-core.

56

0 10 20 30 40 50 60 70
0

0.5

1

1.5

CFDP segment size (KB)

G
o
o
d

p
u

t
(G

b
p

s)

(HP-2) CFDP Goodput, Multi-core vs Single-core

CRC32-Slice-16 (multi-core)

CRC32-Slice-16 (single-core)

CRC32 unoptimized (multi-core)

CRC32 unoptimized (single-core)

95% Confidence Interval

Figure 4.16: (HP-2) CFDP goodput, single-core vs multi-core

Single-core vs multi-core performance for unoptimized CRC32 and CRC32-Slice-
16 on the HP-2 testbench. In both single-core and multi-core tests, CRC32-Slice-
16 achieves significantly higher goodput than unoptimized CRC32. For CRC32-
Slice-16, higher goodput was achieved while running on mult-core, whereas
single-core performance was better when using unoptimized CRC32. This is
because when calculating the CRC, ION is running effectively as a serial process.
Running on a single-core is better when the process is serial because there are
fewer cache misses. If ION stays in a serial state for a longer amount of time due
to a slower CRC32 algorithm, there is more benefit in running on a single-core.

57

0 10 20 30 40 50 60 70
0

5

10

15

CFDP segment size (KB)

G
o
o
d

p
u

t
(M

b
p

s)

(LP-2) CFDP Goodput vs Segment Size, Single-core

Null Checksum
CRC32-Slice-16
Modular Checksum
CRC32

CRC32 (unoptimized)

95% Confidence Interval

Figure 4.17: (LP-2) CFDP goodput with various checksum algorithms (multi-
core)

On the LP-2 low performance testbench, the checksum algorithm used does
not have a significant effect on goodput. The maximum goodput achieved at
64 KB segment sizes is about 11 Mbps in all cases. This is nearly 100 times
slower than CFDP goodput on the HP-2 testbench. Clearly, CFDP introduces
overhead that adversely affects nodes running on low performance hardware.

58

0 10 20 30 40 50 60 70
0

5

10

15

CFDP segment size (KB)

G
o
o
d

p
u

t
(M

b
p

s)

(LP-2) CFDP Goodput, Multi-core vs Single-core

CRC32-Slice-16 (multi-core)

CRC32-Slice-16 (single-core)

CRC32 unoptimized (multi-core)

CRC32 unoptimized (single-core)

95% Confidence Interval

Figure 4.18: (LP-2) CFDP goodput, single-core vs multi-core

Single-core vs multi-core performance for unoptimized CRC32 and CRC32-Slice-
16 on the LP-2 testbench. Similar to Figure 4.17, the checksum algorithm
used makes no difference in goodput. Running on multi-core gives 11% greater
throughput than on single-core at 64 KB segment sizes.

59

5 Conclusions
5.1 Review

In this work, we have demonstrated that it is possible to saturate a 10 Gbps

connection between two ION nodes using the TCP convergence layer adapter.

Without any modification to ION, 9.4 Gbps at a bundle size of 1MB was achieved

on the high performance testbench when running the receiving node on a machine

with a large CPU cache. On the low performance testbench using an A53 ARM

machine, a maximum of 716 Mbps was achieved without any modification to ION.

There are several easily adjustable factors that affect goodput. The simplest

method to increase goodput is to increase bundle size. This decreases the negative

impact of the constant time overhead that is needed for each bundle. In a network

with high bit-error-rate, more analysis is needed to determine the optimal bundle

size as large bundle sizes will cause excessive retransmission.

Another method to increase goodput is to increase the convergence layer buffer

size. This is a buffer used when copying data to or from the network interface.

Increasing the size of this buffer decreases the linear time overhead (overhead that

scales with bundle size). However, if the buffer size is larger than the bundle size,

there is no benefit to increasing its size.

Thread affinity also has a significant impact on goodput. When transferring

directly between two ION nodes, locking all the threads in every ION process to a

single CPU core increases goodput in most cases we tested. Because ION processes

use the same shared memory store, running ION across multiple cores creates

overhead from maintaining cache coherency and suffers from thread contention as

only one thread can access the shared memory store at once. However, transfers

using CFDP benefit from running ION across multiple cores, as well as multi-hop

60

transfers where there is at least one node that is both receiving and sending bundles

at the same time. In these cases, there is enough processing that can be done in

parallel to overcome the drawbacks of using multiple cores.

Researchers performing DTN benchmarks may refer to the following list of

methods used to maximize ION’s goodput:

• Adjust kernel networking settings of the machines ION is being tested on.

This is especially important when using 10 Gbps networking interfaces as the

default settings in most standard releases of Linux are geared toward 1 Gbps

interfaces. In particular, increase the default size of TCP socket read and

write buffers, enable TCP window scaling, and increase the maximum backlog

of packets.

• When using TCPCLA in ION 3.7, use a transmission rate of 0 when defining

the contact plans in the ionadmin utility. There is a defect in TCPCLA which

causes the incorrect rate limiting to be applied on the receiving node. Setting

the contact transmission rate to 0 will prevent rate limiting from being

applied, but if rate limiting is still desired it is recommended that ION be

rebuilt after making the changes outlined in appendix A.5.1. As a result of

our work this defect was reported and patched for the ION 4.0.2 release.

• Use the heapmax option in the bpadmin utility. This sets the maximum

allowed number of bytes per bundle to be stored within the SDR. If a bundle

is larger than heapmax, then the remaining bytes are stored in the filesystem.

If the SDR is configured to run in memory, setting heapmax to the maximum

expected bundle size will keep bundles purely in memory which increases

goodput significantly.

61

• Increase the size of the buffer used to copy to and from the socket. In

TCPCLA, STCPCLA, the define constants that sets these values are

TCPCL_BUFSZ and STCPCL_BUFSZ . Setting these buffers to be at least as large

as the bundle being copied means that only one system call is required for

writing to or reading from the socket. In our testing, we found that setting

these to at least 512KB or 1 MB was optimal. Appendix 4.2 has information

on how to set this value prior to building ION.

To make setting these changes easier, we added a build configuration option to

ION called --enable-high-speed. Using this flag changes the TCPCLA and

STCPCLA buffer sizes to 512 KB, sets the default heapmax value to 512 KB, adds

the slice-by-16 CRC32 checksum algorithm, and sets the default checksum

algorithm for CFDP to slice-by-16 CRC32. This option will be included in the next

release of ION which is expected to launch at the end of May, 2021.

5.2 Future Work

5.2.1 Multimodal Distributions

As discussed in section 4.3.1, many of our single-core goodput results showed

multimodal distributions. Further experimentation is needed to fully understand

the cause of this. Figure 4.8 shows a clear bimodal distribution when using a buffer

size of 64 KB, but not when using a buffer size of 128 KB. One future experiment to

run is to find the buffer size at which this bimodal distribution behavior stops.

Additionally, the experiments in this work could be repeated while carefully

tracking the processes running on the system to confirm the ION processes are

staying locked to the same core and there is not a rogue process occasionally

consuming a significant number of CPU cycles on the same core as ION.

62

5.2.2 Memory Management

A potential method to address the issue of cache thrashing and thread

contention is to redesign the memory management system in ION, including the

SDR and by extension the PSM. Because flight software prohibits the use of

dynamic memory allocation, the PSM is used to allocate memory from fixed blocks

of memory created on startup. These blocks of memory may either be private or

shared memory. PSM is used for inter-thread communication using shared linked

lists, and is also used as the foundation of the SDR which provides inter-process

communication.

Similar to the SDR, PSM is not designed with concurrent access in mind;

whenever an allocation or free occurs, the entire partition is locked via semaphores.

There are many examples of sophisticated allocation systems that could be more

suitable. The slab allocator, first introduced in Solaris by Jeff Bonwick [44], is now

commonly used in Linux and can have per-cache locking which would allow for

concurrent allocations if used carefully. A better system, also building off of the slab

allocator, is Jemalloc which is used in BSD. Jemalloc was designed specifically for

concurrency. Jemalloc creates four arenas per CPU from which to allocate. Each

thread gets assigned to one of its four possible arenas (which are determined by

whichever CPU the thread is running on) in a round-robin fashion. When an

allocation occurs, only the assigned arena of the calling thread is locked. This

greatly reduces the probability of thread contention.

It is not clear whether changing the memory allocation method will result in

greater throughput as memory allocation in ION is fairly fast, which might make up

for the possibility of thread contention depending on how often ION allocates and

frees memory. However, it is almost certain that the locking of the SDR results in a

high amount of thread contention. This is a much more complicated problem to

63

solve as the SDR must follow the ACID properties of databases which are the

following:

• Atomicity: each transaction, although composed of several operations, is

treated as a single unit which either completely fails or completely succeeds.

This prevents partial updates which could corrupt the database.

• Consistency: a transaction can only transform the database from a valid

state to another valid state. This also prevents corruption.

• Isolation: concurrent transactions result in transforming the database to the

same state as if the transactions took place sequentially. The SDR currently

solves this problem by only allowing one transaction to take place at a time.

• Durability: when a transaction is completed the database will retain its state

even in the case of an unexpected shutdown. The SDR implements this by

allowing the user to specify that the SDR should use a memory mapped file.

In order to implement the isolation property, ION locks the entire SDR during

a transaction. This ensures that transactions do not interfere with each other, but

causes a large amount of thread contention which is likely the largest factor

affecting the performance of ION. There are many methods to guarantee isolation

while allowing concurrency, but most are vastly more complex than simply locking

the entire SDR.

A simple method that allows some amount of concurrency is two-phase locking

(2PL) [45]. This method uses two types of locks: read-locks and write-locks.

Write-locking the SDR blocks other threads from reading or writing to it.

Read-locking the SDR only blocks other threads from writing to it, allowing

multiple threads to read from the SDR at the same time. This does allow for

64

limited concurrent access to the SDR (multiple reads only). However, Because 2PL

requires locks to be acquired prior to a transaction for all objects being accessed,

there will still be a large amount thread contention. This is because the entire SDR

has to be treated as a single object. When performing a complex transaction such

as a sdr_free() or sdr_alloc(), it is not known ahead of time which part of the

SDR is going to be accessed, therefore a lock must be acquired for the entire SDR.

We propose an extension of 2PL called sectioned-2PL. Taking inspiration from

allocators such as Jemalloc, the SDR would be broken into multiple arenas. Each

arena would manage its own memory, and each component and possibly each data

flow in ION would be given its own arena. This level of granularity would be simple

to manage while having the benefit of a thread only needing to lock the specific

arena(s) it is going to perform a transaction in. This would allow for enough

concurrency to likely see a marked improvement in overall performance.

65

References

[1] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and

H. Weiss, “Delay-tolerant networking architecture,” Network Working Group,

Internet Requests for Comments 4838, Apr. 2007.

[2] “The future lunar communications architecture,” Interagency Operations

Advisory Group Interagency Operations Advisory Group, Oct. 10, 2019.

[Online]. Available:

https://www.ioag.org/Public%20Documents/Forms/DispForm.aspx?ID=145

(visited on 03/09/2021).

[3] K. Scott and S. Burleigh, “Bundle protocol specification,” Network Working

Group, Internet Requests for Comments 5050, Nov. 2007.

[4] S. Burleigh, “Interplanetary overlay network: An implementation of the DTN

bundle protocol,” in 2007 4th IEEE Consumer Communications and

Networking Conference, ISSN: 2331-9860, Jan. 2007, pp. 222–226. doi:

10.1109/CCNC.2007.51.

[5] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: An efficient

implementation for embedded systems,” in Proceedings of the third ACM

workshop on Challenged networks, ser. CHANTS ’08, New York, NY, USA:

Association for Computing Machinery, Sep. 15, 2008, pp. 117–120, isbn:

978-1-60558-186-6. doi: 10.1145/1409985.1410008. [Online]. Available:

https://doi.org/10.1145/1409985.1410008 (visited on 03/10/2021).

[6] “DTN2: DTN reference implementation,” Delay Tolerant Networking Research

Group, Aug. 2006.

https://www.ioag.org/Public%20Documents/Forms/DispForm.aspx?ID=145
https://doi.org/10.1109/CCNC.2007.51
https://doi.org/10.1145/1409985.1410008
https://doi.org/10.1145/1409985.1410008

66

[7] A. Penning, L. Baumgärtner, J. Höchst, A. Sterz, M. Mezini, and

B. Freisleben, “DTN7: An open-source disruption-tolerant networking

implementation of bundle protocol 7,” presented at the International

Conference on Ad-Hoc Networks and Wireless (AdHoc-Now 2019), Springer,

2019, pp. 196–209.

[8] RightMesh/terra, original-date: 2018-10-30T07:24:40Z, Nov. 23, 2020. [Online].

Available: https://github.com/RightMesh/Terra (visited on 03/10/2021).

[9] M. Blanchet, “Postellation: An enhanced delay-tolerant network (DTN)

implementation with video streaming and automated network attachment,” in

SpaceOps 2012 Conference, American Institute of Aeronautics and

Astronautics, 2012. doi: 10.2514/6.2012-1279621. [Online]. Available:

https://arc.aiaa.org/doi/abs/10.2514/6.2012-1279621 (visited on 08/14/2020).

[10] M. Feldmann and F. Walter, “µPCN — a bundle protocol implementation for

microcontrollers,” in 2015 International Conference on Wireless

Communications Signal Processing (WCSP), Oct. 2015, pp. 1–5. doi:

10.1109/WCSP.2015.7341252.

[11] L. Mohon. (Jul. 14, 2015). Laser communications relay demonstration

(LCRD), NASA, [Online]. Available:

http://www.nasa.gov/mission_pages/tdm/lcrd/index.html (visited on

04/01/2021).

[12] M. Wallace. (Mar. 27, 2018). LLCD: 2013-2014, NASA, [Online]. Available:

http://www.nasa.gov/directorates/heo/scan/opticalcommunications/llcd

(visited on 04/09/2021).

[13] T. Mai. (Apr. 24, 2015). Disruption tolerant networking experiments with

optical comm, NASA, [Online]. Available: http://www.nasa.gov/directorates/

https://github.com/RightMesh/Terra
https://doi.org/10.2514/6.2012-1279621
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1279621
https://doi.org/10.1109/WCSP.2015.7341252
http://www.nasa.gov/mission_pages/tdm/lcrd/index.html
http://www.nasa.gov/directorates/heo/scan/opticalcommunications/llcd
http://www.nasa.gov/directorates/heo/scan/news_DTN_Experiments_with_Optical_Communications.html

67

heo/scan/news_DTN_Experiments_with_Optical_Communications.html

(visited on 04/09/2021).

[14] A. Silva, Delay and Disruption Tolerant Networks: Interplanetary and

Earth-Bound – Architecture, Protocols, and Applications. Sep. 4, 2018, isbn:

978-1-315-27115-6. doi: 10.1201/9781315271156.

[15] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-varying

graphs and dynamic networks,” in In Proc. 10th Int. Conf. on Ad Hoc

Networks and Wireless (ADHOC-NOW, 2011, pp. 346–359.

[16] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,

“Energy-efficient computing for wildlife tracking: Design tradeoffs and early

experiences with ZebraNet,” in Proceedings of the 10th international

conference on Architectural support for programming languages and operating

systems, ser. ASPLOS X, New York, NY, USA: Association for Computing

Machinery, Oct. 1, 2002, pp. 96–107, isbn: 978-1-58113-574-9. doi:

10.1145/605397.605408. [Online]. Available:

https://doi.org/10.1145/605397.605408 (visited on 03/15/2021).

[17] “Transmission control protocol,” Network Working Group, Internet Requests

for Comments 793, Sep. 1981.

[18] “Internet protocol,” Network Working Group, Internet Requests for

Comments 791, Sep. 1981.

[19] O. Akan, H. Fang, and I. Akyildiz, “Performance of TCP protocols in deep

space communication networks,” IEEE Communications Letters, vol. 6,

no. 11, pp. 478–480, Nov. 2002, Conference Name: IEEE Communications

Letters, issn: 1558-2558. doi: 10.1109/LCOMM.2002.805549.

http://www.nasa.gov/directorates/heo/scan/news_DTN_Experiments_with_Optical_Communications.html
http://www.nasa.gov/directorates/heo/scan/news_DTN_Experiments_with_Optical_Communications.html
https://doi.org/10.1201/9781315271156
https://doi.org/10.1145/605397.605408
https://doi.org/10.1145/605397.605408
https://doi.org/10.1109/LCOMM.2002.805549

68

[20] R. C. Durst, G. J. Miller, and E. J. Travis, “TCP extensions for space

communications,” Wireless Networks, vol. 3, no. 5, pp. 389–403, Oct. 1, 1997,

issn: 1572-8196. doi: 10.1023/A:1019190124953. [Online]. Available:

https://doi.org/10.1023/A:1019190124953 (visited on 08/14/2020).

[21] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP

performance over wireless networks,” in Proceedings of the 1st annual

international conference on Mobile computing and networking, ser. MobiCom

’95, New York, NY, USA: Association for Computing Machinery, Dec. 1, 1995,

pp. 2–11, isbn: 978-0-89791-814-5. doi: 10.1145/215530.215544. [Online].

Available: https://doi.org/10.1145/215530.215544 (visited on 08/14/2020).

[22] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”

Network Working Group, Internet Requests for Comments 4271, Jan. 2006.

[23] R. Wang, N. C. Aryasomayajula, A. Ayyagari, and Q. Zhang, “An

experimental performance evaluation of SCPS-TP over cislunar

communications links,” in 2007 IEEE Wireless Communications and

Networking Conference, ISSN: 1558-2612, Mar. 2007, pp. 2603–2607. doi:

10.1109/WCNC.2007.484.

[24] “CCSDS file delivery protocol (CFDP),” The Consultative Committee for

Space Data Systems, Recommendation for Space Data System Standards

CCSDS 727.0-B-5, Jul. 2020, p. 151.

[25] S. Burleigh, V. Cerf, R. Durst, K. Fall, A. Hooke, K. Scott, and H. Weiss,

“The interplanetary internet: A communications infrastructure for mars

exploration,” Acta Astronautica, The New Face of Space Selected Proceedings

of the 53rd International Astronautical Federation Congress, vol. 53, no. 4,

pp. 365–373, Aug. 1, 2003, issn: 0094-5765. doi:

https://doi.org/10.1023/A:1019190124953
https://doi.org/10.1023/A:1019190124953
https://doi.org/10.1145/215530.215544
https://doi.org/10.1145/215530.215544
https://doi.org/10.1109/WCNC.2007.484

69

10.1016/S0094-5765(03)00154-1. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0094576503001541 (visited

on 08/14/2020).

[26] V. Cerf, Interplanetary internet, TEDxMidAtlantic, Dec. 2011.

[27] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and

H. Weiss, “Delay-tolerant networking: An approach to interplanetary

internet,” IEEE Communications Magazine, vol. 41, no. 6, pp. 128–136, Jun.

2003, Conference Name: IEEE Communications Magazine, issn: 1558-1896.

doi: 10.1109/MCOM.2003.1204759.

[28] I. Tzinis. (May 13, 2020). History of DTN, NASA, [Online]. Available:

http://www.nasa.gov/directorates/heo/scan/engineering/technology/

disruption_tolerant_networking_history (visited on 03/11/2021).

[29] V. Cerf, E-mail, Mar. 11, 2021.

[30] R. Doyle, R. Some, W. Powell, G. Mounce, M. Goforth, S. Horan, and

M. Lowry, “High performance spaceflight computing (HPSC) next–generation

space processor (NGSP) a joint investment of NASA and AFRL,” in the

Workshop on Spacecraft Flight Software, 2013.

[31] R. Some, R. Doyle, L. Bergman, W. Whitaker, W. Powell, M. Johnson,

M. Goforth, and M. Lowry, “Human and robotic space mission use cases for

high-performance spaceflight computing,” Aug. 19, 2013, Accepted:

2014-03-11T22:53:23Z Publisher: Pasadena, CA : Jet Propulsion Laboratory,

National Aeronautics and Space Administration, 2013. [Online]. Available:

https://trs.jpl.nasa.gov/handle/2014/44422 (visited on 10/09/2020).

[32] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, iPerf3, 2014.

[Online]. Available: https://iperf.fr/.

https://doi.org/10.1016/S0094-5765(03)00154-1
http://www.sciencedirect.com/science/article/pii/S0094576503001541
https://doi.org/10.1109/MCOM.2003.1204759
http://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_history
http://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_history
https://trs.jpl.nasa.gov/handle/2014/44422
https://iperf.fr/

70

[33] W. A. Powell, “High-performance spaceflight computing (HPSC) project

overview,” Radiation Hardened Electronics Technology (RHET) Conference,

Nov. 2018.

[34] B. H. Leitao, “Tuning 10gb network cards on linux,” in Proceedings of the

2009 Linux Symposium, 2009.

[35] W.-B. Pöttner, J. Morgenroth, S. Schildt, and L. Wolf, “Performance

comparison of DTN bundle protocol implementations,” in Proceedings of the

6th ACM workshop on Challenged networks, ser. CHANTS ’11, New York,

NY, USA: Association for Computing Machinery, Sep. 23, 2011, pp. 61–64,

isbn: 978-1-4503-0870-0. doi: 10.1145/2030652.2030670. [Online]. Available:

https://doi.org/10.1145/2030652.2030670 (visited on 08/21/2020).

[36] E. Oliver and H. Falaki, “Performance evaluation and analysis of delay

tolerant networking,” in Proceedings of the 1st international workshop on

System evaluation for mobile platforms, ser. MobiEval ’07, New York, NY,

USA: Association for Computing Machinery, Jun. 11, 2007, pp. 1–6, isbn:

978-1-59593-762-9. doi: 10.1145/1247721.1247722. [Online]. Available:

https://doi.org/10.1145/1247721.1247722 (visited on 08/21/2020).

[37] M. J. Donahoo and K. L. Calvert, TCP/IP sockets in C: practical guide for

programmers, 2nd ed, ser. The Morgan Kaufmann practical guides series.

Amsterdam ; Boston: Morgan Kaufmann, 2009, 196 pp., OCLC:

ocn305146730, isbn: 978-0-12-374540-8.

[38] Interplanetary Overlay Network (ION) Design and Operation. Documentation

included in ION 4.0 distribution, Nov. 29, 2020.

[39] R. v. d. Pas, Memory Hierarchy in Cache-Based Systems. 2002.

https://doi.org/10.1145/2030652.2030670
https://doi.org/10.1145/2030652.2030670
https://doi.org/10.1145/1247721.1247722
https://doi.org/10.1145/1247721.1247722

71

[40] L. Arber and S. Pakin, “The impact of message-buffer alignment on

communication performance,” Parallel Processing Letters, vol. 15, no. 1,

pp. 49–65, Mar. 1, 2005, Publisher: World Scientific Publishing Co., issn:

0129-6264. doi: 10.1142/S0129626405002052. [Online]. Available:

https://www.worldscientific.com/doi/abs/10.1142/S0129626405002052

(visited on 04/09/2021).

[41] (Jun. 2020). Space assigned numbers authority (SANA), [Online]. Available:

https://sanaregistry.org/r/checksum_identifiers/ (visited on 03/15/2021).

[42] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”

Proceedings International Conference on Dependable Systems and Networks,

2002. doi: 10.1109/DSN.2002.1028931.

[43] S. Brumme. (Feb. 2015). Fast CRC32, [Online]. Available:

https://create.stephan-brumme.com/crc32/ (visited on 03/15/2021).

[44] J. Bonwick and S. Microsystems, “The slab allocator: An object-caching

kernel memory allocator,” in In USENIX Summer, 1994, pp. 87–98.

[45] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and

recovery in database systems. USA: Addison-Wesley Longman Publishing Co.,

Inc., 1986, isbn: 978-0-201-10715-9.

https://doi.org/10.1142/S0129626405002052
https://www.worldscientific.com/doi/abs/10.1142/S0129626405002052
https://sanaregistry.org/r/checksum_identifiers/
https://doi.org/10.1109/DSN.2002.1028931
https://create.stephan-brumme.com/crc32/

72

Appendix: Hardware and Software Configurations
A.1 Hardware specifications

A.1.1 Node A

Node A

Architecture x86-64

CPU Model Intel® Xeon® CPU E3-1246 v3 @ 3.50GHz

Threads per core 2

Cores per socket 4

Sockets 1

CPU max MHz 3900

L1d cache 32KB

L1i cache 32KB

L2 cache 256KB

l3 cache 8192KB

Memory DDR3 16 GiB @ 3200Mhz

Network Interface Ethernet Controller 10-Gigabit X540-AT2

73

A.1.2 Node B

Node B

Architecture x86-64

CPU Model Intel® Xeon® CPU E5-2690 v3 @ 2.60GHz

Threads per core 1

Cores per socket 12

Sockets 2

CPU max MHz 2600

L1d cache 32KB

L1i cache 32KB

L2 cache 256KB

L3 cache 30720KB

Memory DDR4 64 GiB @ 2133Mhz

Network Interface Ethernet Controller 10-Gigabit X540-AT2

74

A.1.3 Node C

Node C

Architecture aarch64

CPU Model Marvell Armada 3700LP (88F3720) dual-core ARM

Cortex A53 processor @ 1GHz

Threads per core 1

Cores per socket 2

Sockets 1

CPU max MHz 1000

L1d cache 32KB

L1i cache 32KB

L2 cache 256KB

L3 cache None

Memory DDR4 1 GiB

Network Interface 1-Gigabit Ethernet

75

A.1.4 Node D

Node-D

Architecture x86-64

CPU Model Intel® Xeon® CPU E3-2224G @ 3.50GHz

Threads per core 1

Cores per socket 4

Sockets 1

CPU max MHz 4700

L1d cache 32KB

L1i cache 32KB

L2 cache 256KB

l3 cache 8192KB

Memory DDR4 8 GiB @ 2666Mhz

Network Interface Ethernet Connection (7) I219-LM 1-Gigabit

76

A.1.5 Node E

Node-E

Architecture x86-64

CPU Model Intel® Xeon® CPU E3-1230 v3 @ 3.30GHz

Threads per core 1

Cores per socket 4

Sockets 1

CPU max MHz 3300

L1d cache 32KB

L1i cache 32KB

L2 cache 256KB

l3 cache 8192KB

Memory DDR3 8 GiB @ 1600Mhz

Network Interface Broadcom Inc. NetXtreme BCM5720 Gigabit Ethernet

A.2 ION Configuration Files

All nodes have identical ionconfig files, shown below:

config.ionconfig

1 wmKey 0
2 sdrName ion
3 wmSize 10000000
4 configFlags 1
5 heapWords 10000000

All nodes have identical ionstart scripts, shown below:

ionstart.sh

1 ionadmin config.ionrc
2 sleep 1
3 bpadmin config.bprc
4 sleep 1
5 ipnadmin config.ipnrc
6 sleep 1

77

7 ## uncomment to enable CFDP
8 # cfdpadmin config.cfdprc
9 # sleep 1

A.2.1 HP-2 Testbench

A.2.1.1 Node A, HP-2 testbench

config.ionrc (Node A, HP-2)

1 1 1 config.ionconfig
2 s
3 a contact +0 +100000000 1 2 2147483647 1
4 a contact +0 +100000000 2 1 2147483647 1
5 a range +0 +100000000 1 2 1
6 a range +0 +100000000 2 1 1

config.bprc (Node A, HP-2)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:1.1 q
4 a endpoint ipn:1.2 q
5 a endpoint ipn:1.3 q
6 a endpoint ipn:1.64 q
7 a endpoint ipn:1.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.101.101:4556 'tcpcli'

10 a outduct tcp 192.168.101.102:4556 ''
11 m heapmax 2100000
12 s

config.ipnrc (Node A, HP-2)

1 a plan 2 tcp/192.168.101.102:4556
2 a group 1 1 2

config.cfdprc (Node A, HP-2)

1 1
2 a entity 2 bp ipn:2.0 1 0 0
3 m segsize 64000
4 s 'bputa'

78

A.2.1.2 Node B, HP-2 testbench

config.ionrc (Node B, HP-2)

1 1 2 config.ionconfig
2 s
3 a contact +0 +100000000 1 2 2147483647 1
4 a contact +0 +100000000 2 1 2147483647 1
5 a range +0 +100000000 1 2 1
6 a range +0 +100000000 2 1 1

config.bprc (Node B, HP-2)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:2.1 q
4 a endpoint ipn:2.2 q
5 a endpoint ipn:2.3 q
6 a endpoint ipn:2.64 q
7 a endpoint ipn:2.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.101.102:4556 'tcpcli'

10 m heapmax 2100000
11 s

config.ipnrc (Node B, HP-2)

1 a group 2 2 1

config.cfdprc (Node B, HP-2)

1 1
2 a entity 1 bp ipn:1.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.2 LP-2 Testbench

A.2.2.1 Node A, LP-2 testbench

config.ionrc (Node A, LP-2)

1 1 1 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1

79

4 a contact +0 +100000000 1 3 2147483647 1
5 a range +0 +100000000 3 1 1
6 a range +0 +100000000 1 3 1

config.bprc (Node A, LP-2)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:1.1 q
4 a endpoint ipn:1.2 q
5 a endpoint ipn:1.3 q
6 a endpoint ipn:1.64 q
7 a endpoint ipn:1.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.40:4556 'tcpcli'

10 m heapmax 2100000
11 s

config.ipnrc (Node A, LP-2)

1 a group 1 1 3

config.cfdprc (Node A, LP-2)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.2.2 Node C, LP-2 testbench

config.ionrc (Node C, LP-2)

1 1 3 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1
4 a contact +0 +100000000 1 3 2147483647 1
5 a range +0 +100000000 3 1 1
6 a range +0 +100000000 1 3 1

config.bprc (Node C, LP-2)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:3.1 q

80

4 a endpoint ipn:3.2 q
5 a endpoint ipn:3.3 q
6 a endpoint ipn:3.64 q
7 a endpoint ipn:3.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.101.104:4556 'tcpcli'

10 a outduct tcp 192.168.100.40:4556 ''
11 m heapmax 2100000
12 s

config.ipnrc (Node C, LP-2)

1 a plan 1 tcp/192.168.100.40:4556
2 a group 3 3 1

config.cfdprc (Node C, LP-2)

1 1
2 a entity 1 bp ipn:1.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.3 LP-3 Testbench

A.2.3.1 Node A, LP-3 testbench

config.ionrc (Node A, LP-3)

1 1 1 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1
4 a contact +0 +100000000 1 3 2147483647 1
5 a contact +0 +100000000 2 3 2147483647 1
6 a contact +0 +100000000 3 2 2147483647 1
7 a range +0 +100000000 3 1 1
8 a range +0 +100000000 1 3 1
9 a range +0 +100000000 2 3 1

10 a range +0 +100000000 3 2 1

config.bprc (Node A, LP-3)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:1.1 q
4 a endpoint ipn:1.2 q
5 a endpoint ipn:1.3 q

81

6 a endpoint ipn:1.64 q
7 a endpoint ipn:1.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.40:4556 'tcpcli'

10 m heapmax 2100000
11 s

config.ipnrc (Node A, LP-3)

1 a group 1 1 3
2 a group 2 2 3

config.cfdprc (Node A, LP-3)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.3.2 Node B, LP-3 testbench

config.ionrc (Node B, LP-3)

1 1 2 config.ionconfig
2 s
3 a contact +0 +100000000 2 3 2147483647 1
4 a contact +0 +100000000 3 2 2147483647 1
5 a contact +0 +100000000 3 1 2147483647 1
6 a contact +0 +100000000 1 3 2147483647 1
7 a range +0 +100000000 2 3 1
8 a range +0 +100000000 3 2 1
9 a range +0 +100000000 3 1 1

10 a range +0 +100000000 1 3 1

config.bprc (Node B, LP-3)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:2.1 q
4 a endpoint ipn:2.2 q
5 a endpoint ipn:2.3 q
6 a endpoint ipn:2.64 q
7 a endpoint ipn:2.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.130:4556 'tcpcli'

10 a outduct tcp 192.168.100.119:4557 ''

82

11 m heapmax 2100000
12 s

config.ipnrc (Node B, LP-3)

1 a plan 3 tcp/192.168.100.119:4557
2 a group 1 1 3
3 a group 2 2 3

config.cfdprc (Node B, LP-3)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.3.3 Node C, LP-3 testbench

config.ionrc (Node C, LP-3)

1 1 3 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1
4 a contact +0 +100000000 1 3 2147483647 1
5 a contact +0 +100000000 2 3 2147483647 1
6 a contact +0 +100000000 3 2 2147483647 1
7 a range +0 +100000000 3 1 1
8 a range +0 +100000000 1 3 1
9 a range +0 +100000000 2 3 1

10 a range +0 +100000000 3 2 1

config.bprc (Node C, LP-3)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:3.1 q
4 a endpoint ipn:3.2 q
5 a endpoint ipn:3.3 q
6 a endpoint ipn:3.64 q
7 a endpoint ipn:3.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.119:4556 'tcpcli'

10 a induct tcp 192.168.100.119:4557 'tcpcli'
11 a outduct tcp 192.168.100.40:4556 ''
12 m heapmax 2100000
13 s

83

config.ipnrc (Node C, LP-3)

1 a plan 1 tcp/192.168.100.40:4556
2 a group 3 3 1

config.cfdprc (Node C, LP-3)

1 1
2 a entity 1 bp ipn:1.0 1 0 0
3 a entity 2 bp ipn:2.0 1 0 0
4 m segsize 64000
5 s 'bputa'

A.2.4 LP-5 Testbench

A.2.4.1 Node A, LP-5 testbench

config.ionrc (Node A, LP-5)

1 1 1 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1
4 a contact +0 +100000000 1 3 2147483647 1
5 a contact +0 +100000000 2 3 2147483647 1
6 a contact +0 +100000000 3 2 2147483647 1
7 a contact +0 +100000000 3 4 2147483647 1
8 a contact +0 +100000000 4 3 2147483647 1
9 a contact +0 +100000000 5 3 2147483647 1

10 a contact +0 +100000000 3 5 2147483647 1
11 a range +0 +100000000 3 1 1
12 a range +0 +100000000 1 3 1
13 a range +0 +100000000 2 3 1
14 a range +0 +100000000 3 2 1
15 a range +0 +100000000 3 4 1
16 a range +0 +100000000 4 3 1
17 a range +0 +100000000 5 3 1
18 a range +0 +100000000 3 5 1

config.bprc (Node A, LP-5)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:1.1 q
4 a endpoint ipn:1.2 q
5 a endpoint ipn:1.3 q
6 a endpoint ipn:1.64 q
7 a endpoint ipn:1.65 q

84

8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.40:4556 'tcpcli'

10 m heapmax 2100000
11 s

config.ipnrc (Node A, LP-5)

1 a group 1 1 3
2 a group 2 2 3
3 a group 4 4 3
4 a group 5 5 3

config.cfdprc (Node A, LP-5)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.4.2 Node B, LP-5 testbench

config.ionrc (Node B, LP-5)

1 1 2 config.ionconfig
2 s
3 a contact +0 +100000000 2 3 2147483647 1
4 a contact +0 +100000000 3 2 2147483647 1
5 a contact +0 +100000000 3 1 2147483647 1
6 a contact +0 +100000000 1 3 2147483647 1
7 a contact +0 +100000000 3 4 2147483647 1
8 a contact +0 +100000000 4 3 2147483647 1
9 a contact +0 +100000000 5 3 2147483647 1

10 a contact +0 +100000000 3 5 2147483647 1
11 a range +0 +100000000 2 3 1
12 a range +0 +100000000 3 2 1
13 a range +0 +100000000 3 1 1
14 a range +0 +100000000 1 3 1
15 a range +0 +100000000 3 4 1
16 a range +0 +100000000 4 3 1
17 a range +0 +100000000 5 3 1
18 a range +0 +100000000 3 5 1

config.bprc (Node B, LP-5)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'

85

3 a endpoint ipn:2.1 q
4 a endpoint ipn:2.2 q
5 a endpoint ipn:2.3 q
6 a endpoint ipn:2.64 q
7 a endpoint ipn:2.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.130:4556 'tcpcli'

10 a outduct tcp 192.168.100.119:4557 ''
11 m heapmax 2100000
12 s

config.ipnrc (Node B, LP-5)

1 a group 1 1 3
2 a group 2 2 3
3 a group 4 4 3
4 a group 5 5 3

config.cfdprc (Node B, LP-5)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.4.3 Node C, LP-5 testbench

config.ionrc (Node C, LP-5)

1 1 3 config.ionconfig
2 s
3 a contact +0 +100000000 3 1 2147483647 1
4 a contact +0 +100000000 1 3 2147483647 1
5 a contact +0 +100000000 2 3 2147483647 1
6 a contact +0 +100000000 3 2 2147483647 1
7 a contact +0 +100000000 3 4 2147483647 1
8 a contact +0 +100000000 4 3 2147483647 1
9 a contact +0 +100000000 5 3 2147483647 1

10 a contact +0 +100000000 3 5 2147483647 1
11 a range +0 +100000000 3 1 1
12 a range +0 +100000000 1 3 1
13 a range +0 +100000000 2 3 1
14 a range +0 +100000000 3 2 1
15 a range +0 +100000000 3 4 1
16 a range +0 +100000000 4 3 1
17 a range +0 +100000000 5 3 1
18 a range +0 +100000000 3 5 1

86

config.bprc (Node C, LP-5)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:3.1 q
4 a endpoint ipn:3.2 q
5 a endpoint ipn:3.3 q
6 a endpoint ipn:3.64 q
7 a endpoint ipn:3.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.119:4556 'tcpcli'

10 a induct tcp 192.168.100.119:4557 'tcpcli'
11 a induct tcp 192.168.100.119:4558 'tcpcli'
12 a induct tcp 192.168.100.119:4559 'tcpcli'
13 a outduct tcp 192.168.100.40:4556 ''
14 a outduct tcp 192.168.100.120:4556 ''
15 m heapmax 2100000
16 s

config.ipnrc (Node C, LP-5)

1 a plan 1 tcp/192.168.100.40:4556
2 a plan 4 tcp/192.168.100.120:4556
3 a group 3 3 1

config.cfdprc (Node C, LP-5)

1 1
2 a entity 1 bp ipn:1.0 1 0 0
3 a entity 2 bp ipn:2.0 1 0 0
4 a entity 4 bp ipn:4.0 1 0 0
5 a entity 5 bp ipn:5.0 1 0 0
6 m segsize 64000
7 s 'bputa'

A.2.4.4 Node D, LP-5 testbench

config.ionrc (Node D, LP-5)

1 1 4 config.ionconfig
2 s
3 a contact +0 +100000000 3 4 2147483647 1
4 a contact +0 +100000000 4 3 2147483647 1
5 a contact +0 +100000000 3 1 2147483647 1
6 a contact +0 +100000000 1 3 2147483647 1
7 a contact +0 +100000000 2 3 2147483647 1
8 a contact +0 +100000000 3 2 2147483647 1

87

9 a contact +0 +100000000 5 3 2147483647 1
10 a contact +0 +100000000 3 5 2147483647 1
11 a range +0 +100000000 3 4 1
12 a range +0 +100000000 4 3 1
13 a range +0 +100000000 3 1 1
14 a range +0 +100000000 1 3 1
15 a range +0 +100000000 2 3 1
16 a range +0 +100000000 3 2 1
17 a range +0 +100000000 5 3 1
18 a range +0 +100000000 3 5 1

config.bprc (Node D, LP-5)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:4.1 q
4 a endpoint ipn:4.2 q
5 a endpoint ipn:4.3 q
6 a endpoint ipn:4.64 q
7 a endpoint ipn:4.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.120:4556 'tcpcli'

10 m heapmax 2100000
11 s

config.ipnrc (Node D, LP-5)

1 a group 1 1 3
2 a group 2 2 3
3 a group 4 4 3
4 a group 5 5 3

config.cfdprc (Node D, LP-5)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

A.2.4.5 Node E, LP-5 testbench

config.ionrc (Node E, LP-5)

1 1 5 config.ionconfig
2 s
3 a contact +0 +100000000 5 3 2147483647 1

88

4 a contact +0 +100000000 3 5 2147483647 1
5 a contact +0 +100000000 3 1 2147483647 1
6 a contact +0 +100000000 1 3 2147483647 1
7 a contact +0 +100000000 2 3 2147483647 1
8 a contact +0 +100000000 3 2 2147483647 1
9 a contact +0 +100000000 3 4 2147483647 1

10 a contact +0 +100000000 4 3 2147483647 1
11 a range +0 +100000000 5 3 1
12 a range +0 +100000000 3 5 1
13 a range +0 +100000000 3 1 1
14 a range +0 +100000000 1 3 1
15 a range +0 +100000000 2 3 1
16 a range +0 +100000000 3 2 1
17 a range +0 +100000000 3 4 1
18 a range +0 +100000000 4 3 1

config.bprc (Node E, LP-5)

1 1
2 a scheme ipn 'ipnfw' 'ipnadminep'
3 a endpoint ipn:5.1 q
4 a endpoint ipn:5.2 q
5 a endpoint ipn:5.3 q
6 a endpoint ipn:5.64 q
7 a endpoint ipn:5.65 q
8 a protocol tcp 1400 100 -1
9 a induct tcp 192.168.100.121:4556 'tcpcli'

10 a outduct tcp 192.168.100.119:4559 ''
11 m heapmax 2100000
12 s

config.ipnrc (Node E, LP-5)

1 a plan 3 tcp/192.168.100.119:4559
2 a group 1 1 3
3 a group 2 2 3
4 a group 4 4 3
5 a group 5 5 3

config.cfdprc (Node E, LP-5)

1 1
2 a entity 3 bp ipn:3.0 1 0 0
3 m segsize 64000
4 s 'bputa'

89

A.3 Linux Network Configuration

/etc/sysctl.conf

1 net.core.wmem_max=12582912
2 net.core.rmem_max=12582912
3 net.ipv4.tcp_rmem= 10240 87380 12582912
4 net.ipv4.tcp_wmem= 10240 87380 12582912
5 net.ipv4.tcp_window_scaling = 1
6 net.ipv4.tcp_timestamps = 1
7 net.ipv4.tcp_sack = 1
8 net.core.netdev_max_backlog = 5000

A.4 CPU Affinity Control

The “taskset” command is used to launch nodes in single-core mode. By using

the taskset command to run the ionstart.sh script, all processes launched by the

script and the threads of those processes are locked to running on the provided list

of CPUs. In this case, the list of CPUs only contains one element, CPU # 0. The

command used for launch ION in single-core mode is shown below:

taskset -c 0 bash ./ionstart.sh

A.5 Software Changes

A.5.1 TCPCLA Rate Limiting Bug Fix

To fix the rate limiting bug in TCPCLA, comment out the following lines in

bp/tcp/tcpcli.c (bpv6/tcp/tcpcli.c or bpv7/tcp/tcpcli.c if using ION-3.7.1

or above)

1587 receptionRate = rtp->session->neighbor->receptionRate;
1588 if (receptionRate > 0)
1589 {
1590 snoozeInterval = ((float) dataLength / (float) receptionRate)
1591 * 1000000.0;
1592 microsnooze((int) snoozeInterval);
1593 }

90

A.5.2 TCPCLA Buffer Size

To set the TCPCLA buffer size, change the value on line 15 of

bp/tcp/tcpcli.c (bpv6/tcp/tcpcli.c or bpv7/tcp/tcpcli.c if using ION-3.7.1

or above)

15 #define TCPCL_BUFSZ (64 * 1024)

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Approach
	Document Structure

	Background and Literature Review
	Delay Tolerant Networking
	Interplanetary Overlay Network
	High Performance Spaceflight Computing

	Experiment Setup
	Hardware
	Throughput Measurement Method
	ION configuration

	Experiments, Results and Analysis
	Bundle Size
	TCPCLA Buffer Size
	Processor Affinity
	CFDP

	Conclusions
	Review
	Future Work

	References
	Appendix: Hardware and Software Configurations
	Hardware specifications
	ION Configuration Files
	Linux Network Configuration
	CPU Affinity Control
	Software Changes

