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Abstract

ENGLISH, JACOB T., M.S., December 2020, Computer Science

A Defender-Aware Attacking Guidance Policy for the TAD Differential Game (65 pp.)

Director of Thesis: Jay P. Wilhelm

Deep reinforcement learning was used to train an agent within the framework of a

Markov Decision Process (MDP) to pursue a target, while avoiding a defender, for the

Target-Attacker-Defender (TAD) differential game of pursuit and evasion. The aim of this

work was to explore the games where the previous attacking guidance methods found in

literature failed to capture the Target. The reward function of the MDP presented by this

work allowed for an attacking agent to learn a policy that expanded the number of cases

where the target is captured beyond the former limit of success through the application of

the Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3). The strategy

developed using artificial intelligence expands the target capture guidance approach to

consider the long-term goal, rather than an instantaneous optimal heading. Initial Target

positions within a limited set were considered with fixed values for agent velocities and

Attacker and Defender initial positions to evaluate the Attacker’s learned behavior in

comparison with the optimal point capture guidance laws for target capture in the TAD

game.



4

Dedication

Dedicated to Dad, this work would not have been possible without your support.



5

Acknowledgments

I would like to thank my advisor, Dr. Wilhelm, for his guidance and enthusiasm in

the pursuit of my research. His mentorship in my graduate studies has allowed me to grow

in both my technical abilities and critical thinking. I would also like to thank Dr. Bunescu,

Dr. Liu, and Dr. Casbeer for serving on my committee. Travis, Jeremy, and Theo, your

humor, advice, and friendship made working in the lab a great experience. It was a

privilege to work in a research setting with students from another discipline.

To my roommates, Andrew, Nathan, and Abbey living with you is what made Athens

home for the past six years. I am thankful for having such a consistent group of friends to

share the adventures of college and graduate school with. Brie, I have always appreciated

being able to share my excitement in my work with you and your tolerance for my late

study and research schedule. Mom, Dad, Abby, and Bobby, your support of my education

and pride in my accomplishments has been a driving force behind the work that I have

done. It was wonderful being home in the last stages of working on this thesis.



6

Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Methods Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Phase I Objective: Formulate the Target-Attacker-Defender engagement as

a reinforcement learning problem and develop reward function. . . . . . . . 12
1.4 Phase II Objective: Tune TD3 hyperparameters and neural network structure. 12
1.5 Phase III Objective: Train the attacking agent further to yield the final

policy and compare with attacking point capture guidance law. . . . . . . . 13
1.6 Summary of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Phase I Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Phase II Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Phase III Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Literature Review Introduction . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Target-Attacker-Defender (TAD) Differential Game . . . . . . . . . . . . . 15
2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Literature Review Summary . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Introduction to Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Phase I: Target-Attacker-Defender Markov Decision Process . . . . . . . . 29

3.2.1 State and Action Spaces . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 State Transition Model . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Phase II: TD3 Tuning and Experimentation . . . . . . . . . . . . . . . . . 38
3.4 Phase III: Extended Training and Evaluation of Learned Policy . . . . . . . 39
3.5 Summary of Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 40



7

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Introduction to Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Phase III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



8

List of Tables

Table Page

3.1 Training Engagement Configurations . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Attacking Guidance Win Coverage . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Final Training Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



9

List of Figures

Figure Page

2.1 Plot of surface B for Attacker position (7, 0), Defender position (−7, 0), α = 0.55 18
2.2 Optimal Play in Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Optimal Play in Rc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Agent-Environment Interaction in a Markov Decision Process [1] . . . . . . . . 23
2.5 Learning Curves for the OpenAI Gym Continuous Control Tasks [2] . . . . . . 27
2.6 Gaussian Reward Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Example Shaping Reward Surface . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Terminal Win/Loss Reward Learned Behavior . . . . . . . . . . . . . . . . . . 34
3.3 Attacker-Target Shaping Reward Learned Behavior . . . . . . . . . . . . . . . 35
3.4 Training Dataset of T0 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Testing Dataset of T0 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Training Scores and Win Record for TInit = (−10.0, 10.0) . . . . . . . . . . . . 42
4.2 Learned Behavior for TInit = (−10.0, 10.0) . . . . . . . . . . . . . . . . . . . . 43
4.3 Discount Factor Experiments, γ ∈ [0.9000, 0.9900] . . . . . . . . . . . . . . . 44
4.4 Discount Factor Experiments, γ ∈ [0.9900, 0.9999] . . . . . . . . . . . . . . . 44
4.5 Exploration Noise Experiments, ε ∈ [0.10, 0.30] . . . . . . . . . . . . . . . . . 45
4.6 Neural Network Structure Experiments, Hidden Layer Depth . . . . . . . . . . 46
4.7 Neural Network Structure Experiments, Hidden Layer Width . . . . . . . . . . 46
4.8 Training Scores and Wins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Attacker Performance on T0 Training Cases . . . . . . . . . . . . . . . . . . . 48
4.10 Generalized Attacker Performance . . . . . . . . . . . . . . . . . . . . . . . . 49
4.11 Region of Capture T0 = (10.00, 5.55) . . . . . . . . . . . . . . . . . . . . . . . 50
4.12 Region of Escape T0 = (−3.33,−3.33) . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Region of Escape T0 = (2.30, 4.87) . . . . . . . . . . . . . . . . . . . . . . . . 51
4.14 Region of Escape T0 = (5.89,−7.94) . . . . . . . . . . . . . . . . . . . . . . . 52
4.15 Boundary Case T0 = (4.36, 3.84) . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.16 Near Head-On Case T0 = (−10.00, 1.79) . . . . . . . . . . . . . . . . . . . . . 54
4.17 Minimum Attacker-Defender Separation in Test Cases . . . . . . . . . . . . . 56
4.18 Minimum Attacker-Defender Separation in Test Cases (dAT < 0.6) . . . . . . . 57



10

1 Introduction

1.1 Motivation and Problem Statement

Multi-agent pursuit-evasion combat engagement scenarios present difficult problems

for the development of guidance methods in aerospace research [3, 4]. The

Target-Attacker-Defender (TAD) differential game is a problem of this type that has been

widely studied, involving a target agent, an attacking agent, and a defending agent [3–15].

The goal of the Attacker is to capture the Target, while the goal of the Target and Defender

is to ensure the Target’s survival of the game. Solutions to the TAD problem have been

developed for the game where the headings of the agents are unrestricted such that the

attacking agent can not make an effort to avoid the Defender to achieve its goal

[7, 8, 10, 16, 17]. Using optimal guidance laws for both the defending team and the

Attacker, a decision boundary that predicts the outcome of the engagement has been

defined given the initial conditions for each agent [7, 8, 16]. Optimal defense strategies

defined by numerical solutions for point capture in the TAD differential game have been

proven effective against both the optimal attacking methods and attacking guidance using

Pure Pursuit or Proportional Navigation [8, 10, 16, 17]. Introducing reinforcement

learning to a version of the TAD game where the Attacker is given the additional objective

of avoiding the Defender would resulted in a more successful target capture approach

which is not limited by the boundary defined by the optimal guidance laws for the

unconstrained problem.

Reinforcement learning has proven to be a powerful tool for exploring complex

problems through a data-driven approach, where an agent determines the optimal set of

actions to take in its environment through trial and error [1]. Recent developments in

machine learning, primarily artificial neural networks, have allowed for rapid

improvements in artificial intelligence with applications in reinforcement learning, image
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classification, object detection, natural language processing, and other complex tasks

[18–22]. Work incorporating artificial neural networks and reinforcement learning

algorithms, as seen in the Twin Delayed Deep Deterministic policy gradient algorithm

(TD3) [2], has enabled deep reinforcement learning techniques to be applied to control of

agents for complex, high-dimensional problems. Formulating the TAD engagement as a

reinforcement learning problem with a defender-aware attacking agent trained using the

TD3 algorithm may be used to provide a policy that exposes new challenges for the

defensive strategies.

Guidance laws for variations of TAD have been developed for games involving a

Defender that is faster than the Attacker [23], a constrained-maneuverable Defender [24],

and a non-zero capture radius [25], but the case where the Attacker actively avoids the

Defender in pursuit of the Target has not yet been studied using artificial intelligence.

Deep reinforcement learning methods can be applied to explore this new version of the

game through training an attacking agent against the optimal point capture guidance laws

for the Target and Defender. The contribution of this work is the framing of the TAD

game within a Markov Decision Process (MDP) where the Attacker has the added

objective of avoiding the Defender in its pursuit of the Target. The reward function

presented incorporates these objectives, resulting in an attacking guidance policy that is

achieves wins within and outside of the optimal point capture guidance laws’ region of

capture when a reinforcement learning algorithm is applied. This thesis aims to show that

an attacking guidance method, with the ability to avoid the Defender in the TAD game, is

not limited by the previously defined outcome prediction barrier.
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1.2 Methods Overview

The TAD game was explored through the development of the defender-aware

guidance policy in three phases. The first phase involved formulating TAD as a

reinforcement learning problem with a reward function that enabled an attacking agent to

learn to win the game on a single case where previous guidance methods would fail. Phase

II investigated the agent’s performance in training on the full set of cases studied, where

different hyperparameter values and neural network structures were tested. In the final

phase, the agent was trained further using the configuration determined in the previous

phase and its performance was compared to the attacking point capture guidance law. The

following sections summarize the four phases.

1.3 Phase I Objective: Formulate the Target-Attacker-Defender engagement as a

reinforcement learning problem and develop reward function.

The state transition dynamics were established using the optimal point capture

guidance law for the defending team and simple motion dynamics in a Markov Decision

Process (MDP). Reward functions were examined for a single TAD game to enable the

agent in learning to capture the Target in the presence of the optimal point capture

defensive strategy.

1.4 Phase II Objective: Tune TD3 hyperparameters and neural network structure.

The attacking agent was trained on the set of the TAD engagements defined by a grid

of Target initial locations to tune hyperparemeters and neural netwoks of TD3.
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1.5 Phase III Objective: Train the attacking agent further to yield the final policy

and compare with attacking point capture guidance law.

The agent was trained against the defensive strategy with the best performing

configurations to develop the defender-aware policy. The learned behavior of the agent

was compared with the attacking point capture guidance law.

1.6 Summary of Objectives

The deliverable of this thesis was a defender-aware attacking guidance policy,

developed using deep reinforcement learning, that outperforms the optimal TAD attacking

strategy defined by point capture guidance law. This objective was achieved through the

completion of the tasks presented in the phases of this research:

1.6.1 Phase I Tasks

1. Construct a simulation environment with state transition dynamics defined by the

differential equations for simple motion and numerical solution for optimal defense

in the TAD game

2. Define a reward function and evaluate its success in motivating the attacking agent

to intercept the Target in a single engagement where the previous methods would

fail

1.6.2 Phase II Tasks

1. Train the agent on a set of games with different initial Target positions

2. Tune the learning algorithm’s discount parameter (γ) and exploration noise

parameter

3. Experiment with different neural network structures
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1.6.3 Phase III Tasks

1. Train the agent to provide the final defender-aware guidance policy

2. Compare the defender-aware guidance policy performance with the attacking point

capture strategy
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2 Literature Review

2.1 Literature Review Introduction

The TAD game is defined through literature. Game states are divided into two

categories depending on a decision surface, where the Target either escapes or is captured.

The point capture strategies used to determine optimal headings for the two cases are

discussed. Reinforcement learning is introduced with relevant work for the TAD problem.

The TD3 algorithm, which improved upon algorithms previously used in solving guidance

problems, is described. Continuous control tasks, such as the TAD problem, often require

shaped reward signals in guiding a learning agent to achieve its goal. Distance based

rewards can be shaped using the Gaussian function to create a gradient that leads the agent

to success.

2.2 Target-Attacker-Defender (TAD) Differential Game

Differential games, as defined by Isaacs [26], are restricted by a set of differential

equations. In TAD, the Attacker and Defender are agents of the same class and therefore

have equal velocities (VA = VD). The Target velocity (VT ) is slower than that of the

Attacker (VA), otherwise the Defender would not be necessary. By normalizing the

velocities using the Attacker velocity, the motion of each agent is defined by the following

set of differential equations:

ẋT = α cos φ, xT (0) = xT0

ẏT = α sin φ, yT (0) = yT0

ẋA = cos χ, xA(0) = xA0

ẏA = sin χ, yA(0) = yA0

ẋD = cosψ, xD(0) = xD0

ẏD = sinψ, yD(0) = yD0

(2.1)
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where φ, χ, and ψ are the headings for the Target, Attacker, and Defender respectively.

The variable α is the ratio between the Target velocity and Attacker velocity: α = VT
VA
< 1,

which is the scaled velocity of the Target. The model for simple motion in two dimensions

defined by Equation 2.1 is standard in studies of the TAD game [3, 8, 12, 15, 25, 27].

While the TAD game is an abstraction of a class of combat engagements likely to occur in

a three-dimensional space, analyzing the problem in two dimensions is sufficient as

altitude changes in aerial engagements would be relatively small [28]. The optimal point

capture guidance laws discussed in this work specifically explored the problem in

two-dimensional space.

The TAD engagement was introduced by Boyell [5], where the three-body kinematic

relationship between a moving target, an attacking weapon, and a counter-weapon was

studied. The closed-form numerical solution for determining the Defender’s heading was

presented for the case where the counter-weapon was deployed by the Target. Influence of

the velocities of the agents on the difficulty of the target defense were discussed. Through

analysis of the counter-weapon aimpoint and location of interception, the conditions

required for preventing the capture of the Target were defined [6].

Pure pursuit and proportional navigation guidance laws have traditionally been

applied as the guidance law for an attacker pursuing a moving target [3, 12, 13, 29, 30].

Pure pursuit guidance involves continuously directing the pursuer’s heading to the

instantaneous position of its target [29], while methods based on proportional navigation

account for the future position of the target through the interceptor-target line of sight

[30, 31]. The cooperative strategies developed for a defended target in the research that

followed Boyell’s work increased the Target’s chance of survival when being pursued by

an attacker. The traditional target capture guidance laws only consider the states of the

attacking agent and the target agent in the determination of the attacking agent’s heading.

Pure pursuit and proportional navigation are effective methods for target interception, but
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the cooperative defensive strategies were designed to counter the attacking behaviors of an

adversary that result from using those target capture approaches [8, 15, 16]. This resulted

in a need for target pursuit methods that would account for the presence of a defender.

Target capture strategies for games involving a defender lead to the definition of regions of

success and failure for the Attacker, dependent on the initial conditions of the game and

the guidance approaches implemented [8, 13, 16]. The optimal guidance laws for the TAD

game with unconstrained headings were presented by Pachter et al. in [15] for both the

cooperative defense and the attacking agent, which set the limit for success of the Attacker

assuming all agents implement their optimal strategy.

The TAD game has only two outcomes that depend on if an objective can be achieved

by one of the players. The objective of the Attacker is to pursue the Target and minimize

their separation. The Target and Defender form a team with the objective of preventing the

Target’s capture through maximizing the distance between the Target and Attacker, while

minimizing the distance between the Defender and Attacker at the time of interception.

The optimal approaches to precise point capture divide TAD configurations into two

regions based on the surface barrier B: the region of escape (Re) and the region of capture

(Rc). The surface B and resulting Re and Rc are shown in Figure 2.1 for the configuration:

A0 = (7, 0), D0 = (−7, 0), α = 0.55. Within this frame of the game, if the Target were

positioned to the right of the surface B in the same region as the Attacker, the Defender

would not be able to intercept an attacker playing with the optimal strategy. If the Target

were positioned to the left of the surface in the same region as the Defender, it would

survive the game when playing optimally.

B is defined as the following set [8]:

B = {(xA, xT , yT ) | xA > 0, xT > 0, x2
A +

y2
T

1 − α2 −
x2

T

α2 = 0} (2.2)
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Figure 2.1: Plot of surface B for Attacker position (7, 0), Defender position (−7, 0),

α = 0.55

The surface B and the optimal strategies use a reduced state space for the game, where the

agent coordinates are transformed such that yA = 0, yD = 0, and xD = −xA. Under optimal

play, an interception point is calculated that serves as the aimpoint for the agents, defining

a direct path. Deviation from the optimal path by any of the agents will result in

suboptimal behaviors and may possibly change the predicted outcome of the engagement.

The barrier is dependent on the positions of the Attacker and Defender, and the Target’s

velocity ratio α.

Games in which the Target initializes in the region of escape are played using the

solution to the Active Target Defense Differential Game [15], where the Defender

succeeds in intercepting the Attacker and the Target survives. The region of escape

includes the set of initial game configurations that belong to:

Re = {(xA, xT , yT ) | xA ≥ 0, xT ≥ 0, x2
A +

y2
T

1 − α2 −
x2

T

α2 > 0} ∪ {(xA, xT , yT ) | xA ≥ 0, xT ≤ 0}

(2.3)
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The following quadratic equation (2.4), has two real solutions, y1 and y2, where

y1 ≤ yT ≤ y2.

(1 − α2)y4 − 2(1 − α2)yT y3 + [(1 − α2)y2
T + x2

A − α
2x2

T ]y2 − 2x2
AyT y + x2

Ay2
T = 0 (2.4)

Solving for the angles in 2.5 yields the optimal headings for each agent:

cos φ∗ = ±
xT√

x2
T + (yT − y)2

, sin φ∗ = ±
yT − y√

x2
T + (yT − y)2

f or xT , 0

cos χ∗ = −
xA√

x2
A + y2

, sin χ∗ =
y√

x2
A + y2

cosψ∗ =
xA√

x2
A + y2

, sinψ∗ =
y√

x2
A + y2

(2.5)

If xT ≤ 0, y = y1. When xT > 0, y = y2. The optimal heading for the Target, φ∗, is solved

for using Equation 2.6 if xT = 0.

φ∗ =

√
x2

T + (1 − α2)y2
T

αyT
+ π/2 (2.6)

Optimal play in Re for T0 = (2.30, 4.87), A0 = (7.0, 0.0), D0 = (−7.0, 0.0), α = 0.55 is

shown in Figure 2.2.
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Figure 2.2: Optimal Play in Re

The TAD capture Game of Degree [8] is played when the Target initial position is in

the region of capture, where the Attacker is able to capture the Target. The TAD

engagements that initialize within the region of capture belong to the set:

Rc = {(xA, xT , yT ) | xA > 0, xT > 0, x2
A +

y2
T

1 − α2 −
x2

T

α2 < 0} (2.7)

In the TAD capture Game of Degree, the heading of each agent is determined by

calculating an aimpoint that is the location where the Target is reach by the Attacker. The

aimpoint for a game in Rc is calculated as a point on an Apollonius circle defined by a

center point (xc, yc) and a radius l. The values for the center and radius are computed using

Equations 2.8 and 2.9, respectively.

xc =
1

1 − α2 xT −
α2

1 − α2 xA,

yc =
1

1 − α2 yT

(2.8)

l = (
α

1 − α2 )(
√

(xA − xT )2 + (yA − yT )2) (2.9)
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The optimal Attacker-Target interception point on the circle can be calculated as

I∗ = (l cos θ∗ + xc, l sin θ∗ + yc) (2.10)

The parameter θ∗ in Equation 2.10 is defined by

θ∗ = arccos Re(v∗) (2.11)

where v∗ is the solution to Equation 2.12 that minimizes Equation 2.13.

[xcyc +
i
2

(x2
c − x2

A − y2
c)]v4 + l(yc + ixc)v3

+ l(yc − ixc)v + xcyc −
i
2

(x2
c − x2

A − y2
c) = 0 (2.12)

M(v) =
√

(l cos v + xc + xA)2 + (l sin v + yc)2

−
√

(l cos v + xc − xA)2 + (l sin v + yc)2 (2.13)

Using this strategy, the Defender is as close as possible to the Attacker when the Target is

captured, allowing the Defender to have the highest potential of intercepting the Attacker

when a suboptimal attacking guidance method is being used. Optimal play in Rc for

T0 = (10.0, 5.55), A0 = (4.5, 0.0), D0 = (−4.5, 0.0), α = 0.35 is shown in Figure 2.3.
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Figure 2.3: Optimal Play in Rc

2.3 Reinforcement Learning

The closed form solutions to the Active Target Defense Differential Game and TAD

capture Game of Degree focus on selecting an optimal instantaneous heading, but a

method that guides the Attacker by evaluating a game state’s potential for future success

would be able to take advantage of the Defender’s limitations and capture the Target in

both regions defined by the optimal unconstrained methods. Reinforcement learning, an

area of study within artificial intelligence in which an agent learns to perform a task

through repeated interaction with its environment [1], is suitable for developing such a

guidance method. As the agent takes actions within the environment, the environment

dictates how the state changes and provides a reward signal for the agent to give a

measurement of how well it is performing. The reinforcement learning agent develops a

policy as it explores the environment, which is a function that maps states to actions, in

order to maximize the total reward that it can receive. In the beginning of learning a policy,

the agent will take randomized actions to build up its knowledge of the environment.
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MDPs are used to represent problems in the reinforcement learning framework [32]. In an

MDP, S is the set of possible states the environment can be in and the set A is the action

space available to the agent. The state transition dynamics are defined by a function that

determines the next state s′ that is reached with the reward signal r, given the environment

is in state s and the agent takes action a. The optimal policy for an MDP can be derived

through dynamic programming techniques to satisfy the Bellman optimality equations [1].

The agent-environment interaction in an MDP is shown in Figure 2.4.

Figure 2.4: Agent-Environment Interaction in a Markov Decision Process [1]

Research has been conducted in evaluating the application of deep reinforcement

learning to the development of guidance methods for target pursuit and the TAD

differential game. Q-learning was applied to a multi-agent pursuit-evasion game with

discrete state and action spaces [33]. A defending agent’s guidance policy was learned in

[27] for the TAD game in the presence of an attacker using Proportional Navigation.

Proximal Policy Optimization (PPO) was used to learn a guidance policy for missile target

interception with line of site angle measurements [34]. Policies for guidance of all three

agents were learned for the TAD differential game using the Deep Deterministic Policy

Gradient algorithm (DDPG) [35]. The cooperative defending policy and attacking policy

were trained in alternating batches to match the optimal behaviors of agents following the
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guidance laws defined in [3] and [10], respectively. These previous applications of

reinforcement learning to games of pursuit and evasion did not involve training an attacker

to avoid a defender in capturing its target, and the research where the optimal point

capture solutions to the TAD differential game were considered only sought to match their

performance.

Q-learning is an off-policy temporal difference control algorithm that uses dynamic

programming to directly approximate how good an action is to take in a given state [36].

The Q action-value function is used to act as the policy, where the optimal action is

selected based on the maximum Q value for an input state:

π(s) = argmax
a

Q(s, a) (2.14)

The Q function is updated using Equation 2.15 after the agent takes actions and receives

feedback from the environment. In the update equation, η is the update rate that

determines how large individual updates are to the action-value estimates. The discount

factor γ is used to regulate how much estimates of future states should be factored into the

current state’s evaluation.

Q′(s, a) = Q(s, a) + η[r + γmax
a′

Q(s′, a′) − Q(s, a)] (2.15)

The success of deep learning was leveraged to develop high performance

reinforcement learning models by Mnih et al. [18], where deep convolutional artificial

neural networks were combined with Q-learning to form deep Q-networks (DQNs).

DQNs use neural networks to approximate the Q action-value function, which are well

suited for complex tasks with high dimensional state and action spaces. Algorithms for

continuous control in reinforcement learning combine DQNs with actor-critic methods

and deterministic policy gradients to allow actors to learn policies for problems with

real-valued state and action parameters. Actor-critic methods decouple the learning of

state-values and the policy, allowing for continuous action spaces, in addition to exhibiting
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desirable convergence properties [37, 38]. In deterministic policy gradient algorithms, the

policy is parameterized by a vector of weights ρ:

πρ(s) = ρ>s (2.16)

that is updated using the following gradient step:

5ρ J(ρ) =
1
N

∑
5aQ(s, a)|a=πρ(s) 5ρ πρ(s) (2.17)

where ρ is adjusted using stochastic gradient ascent [2, 39, 40]. Parameterizing for

updates using stochastic gradient ascent allows the optimal policy function to be

approximated as more data about the problem is accumulated through training, to

maximize the reward the agent can receive. The Deep Deterministic Policy Gradient

algorithm (DDPG) [40] applied the function approximation advantages of neural networks

in both its policy parameterization and the action-value function resulting in a robust

algorithm that is well suited for problems with continuous action spaces.

The Twin Delayed Deep Deterministic policy gradient algorithm (TD3) [2] is an

actor-critic policy gradient algorithm for learning continuous control problems that made

improvements to DDPG. TD3, shown in Algorithm 1, employs three methods for

improved learning over DDPG: clipped double Q-learning, delayed policy updates, and

target policy smoothing. Clipped double Q-learning reduces overestimation bias that is

introduced to the Q action-value function [41], an issue that occurs when noisy value

estimates accumulate errors through the inclusion of poor estimates over a number of

updates [42]. Delaying policy updates to the actor network with the parameter d reduces

variance in the learning process by giving more accurate value estimates for TD3 to use in

changing the agent’s policy. The target policy is smoothed with the addition of random

noise, sampled from a distribution N , to prevent overfitting the value estimate. Reducing

overestimation bias, delaying policy updates, and policy smoothing all improve the

learning process in determining a stable policy function for the given MDP. Exploration of
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a given MDP is achieved in TD3 by adding noise (ε) to the policy’s selected action.

Batches of game sequences (s, a, r, s′) from sampling the environment are stored in a

replay buffer B, that is observed for updating the critic and target neural networks. The

authors of TD3 evaluated its performance on a number of tasks from the MuJoCo physics

suite in OpenAI Gym (Figure 2.5), where it outperformed DDPG, PPO, and other state of

the art continuous control algorithms [2].

Algorithm 1 TD3
Initialize critic networks Qθ1 ,Qθ2 , and actor network πρ with random parameters θ1, θ2, πφ
Initialize target networks θ′1 ← θ1, θ′2 ← θ2, ρ′ ← ρ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πρ(s) + ε, ε ∼ N(0, σ)
Observe reward r and new state s′
Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πρ′(s′) + ε, ε ∼ clip(N(0, σ̃),−c, c)
y← r + γmini=1,2Qθ′i

(s′, ã)
Update critics θi ← argminθi

N−1∑(y − Qθi(s, a))2

if t mod d then
Update ρ by the deterministic policy gradient:
5ρJ(ρ) = N−1∑5aQθ1(s, a)|a=πρ(s) 5ρ πρ(s)
Update target networks:
θ′i ← τθi + (1 − τ)θ′i
ρ′ ← τρ + (1 − τ)ρ′

end if
end for
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Figure 2.5: Learning Curves for the OpenAI Gym Continuous Control Tasks [2]

In reinforcement learning, the reward function directly impacts the policy that is

learned by the agent. Because the agent looks to maximize its total reward from

interacting with the environment, it is important to define a reward function that

encourages behavior that leads to accomplishing the desired end goal. For complex tasks,

binary terminal rewards are often insufficient for providing feedback to the learning agent.

Reward shaping addresses this delayed reinforcement problem through providing

additional rewards for the agent when it takes actions that approximate the proper behavior

[43, 44]. The authors of [45] suggest using a shaping reward inspired by the Gaussian

function to act as a progress estimator for goal-directed tasks such as the TAD game:

rGaussian(s) = βe−
d(s,sg)2

2σ2 (2.18)

The Gaussian function creates an adjustable reward gradient surrounding the goal state sg,

with the scalar β used to tune the intensity of the reward and σ that determines the size of

its area of influence. The reward gradient encourages the agent to move to states closer to

the goal, as states farther from the goal provide rewards normalized to zero.The Gaussian
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reward area is shown in Figure 2.6 for β = 1.0 and σ = 6.0 with the goal state located at

the origin.

Figure 2.6: Gaussian Reward Area

2.4 Literature Review Summary

Conventional methods for attacking guidance in the TAD game focus on determining

instantaneous optimal headings and restrict success to the region of capture determined by

the surface barrier B. Reinforcement learning allows agents to learn behaviors that lead to

achieving a long-term goal through exploration of a problem space in an MDP. Using TD3

and reward shaping methods, policies can be learned for continuous tasks like the TAD

differential game.
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3 Methodology

3.1 Introduction to Methodology

Reinforcement learning was used to learn a policy that guides an attacking agent to

capture a target in Rc and Re (where guidance methods from literature have been shown to

fail), for the differential game with a turn-rate constrained Target, Attacker, and Defender.

The MDP representing the TAD game was constructed using the differential equations for

simple motion and point capture guidance laws of the Active Target Defense Differential

Game and TAD capture Game of Degree. Reward functions for the game were presented

and compared in Phase I. After a reward function was determined that resulted in the

desired Attacker behavior, the discount factor and exploration noise were tuned with the

neural network structure for TD3 in training batches on the set of Target initializations in

Phase II. The learned policy was evaluated in Phase III, where it was compared with the

attacking guidance method from literature.

3.2 Phase I: Target-Attacker-Defender Markov Decision Process

The objective of Phase I was to frame the TAD game as an MDP to allow for a

reinforcement learning algorithm to be applied in the development of a guidance policy

for the Attacker. The state and action spaces were defined to represent the TAD

environment. The cooperative defensive strategies and differential equations of motion

dictated the transition of one state to the next. Gaussian functions were used in a shaped

reward function to learn a successful policy for the Attacker.

3.2.1 State and Action Spaces

The state space for the TAD MDP consists of nine parameters: the coordinates and

heading of the Target (xT , yT , φ), Attacker (xA, yA, χ), and Defender (xD, yD, ψ), where the
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full state of the environment is represented by the vector s:

s = (xT , yT , φ, xA, yA, χ, xD, yD, ψ) (3.1)

which belongs to the state space S :

S = {s | s ∈ R9, 0 ≤ φ, χ, ψ < 2π} (3.2)

The action space of the learning agent is a single real-valued parameter that defines the

change of heading in radians:

a = ∆χ (3.3)

3.2.2 State Transition Model

Each agent in the TAD MDP transition to their next state with the discrete time

interval ∆t and equations of simple motion (2.1) such that their next positions are

calculated as:
x′T = xT + α∆t cos φ, y′T = yT + α∆t sin φ

x′A = xA + ∆t cos χ, y′A = yA + ∆t sin χ

x′D = xD + ∆t cosψ, y′D = yD + ∆t sinψ

(3.4)

The maximum heading change of the agents is restricted by a minimum turn radius,

dMinTurn, as in [24]. Using the minimum turn radius, the maximum change in headings for

the Attacker and Defender are bounded by

∆χMax = ∆ψMax =
1.0

dMinTurn
(3.5)

The maximum change in heading for the Target is bounded by the Attacker-Target

velocity ratio and the minimum turn radius as follows

∆φMax =
α

dMinTurn
(3.6)

The headings of the Target and Defender, φ and ψ respectively, are determined by the

optimal point capture solutions from [8] with Equations 2.4 - 2.6 being used when the
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Target is in Re and Equations 2.8 - 2.13 when the Target is in Rc. The Attacker’s heading,

χ, is adjusted by the action selected by the agent following the policy. In the TAD MDP, a

state is considered terminal where either the distance between the Attacker and Target or

the Attacker and Defender is less than the capture radius, dCapture. More formally, the

terminal states belong to the following set, Γ:

Γ = {s | (
√

(xA − xT )2 + (yA − yT )2 < dCapture) or (
√

(xA − xD)2 + (yA − yD)2 < dCapture)}

(3.7)

The terminal set Γ is the union of the sets of states in which the Attacker wins (ΓWin) and

loses (ΓLoss):

ΓWin = {s |
√

(xA − xT )2 + (yA − yT )2 < dCapture}

ΓLoss = {s |
√

(xA − xD)2 + (yA − yD)2 < dCapture} − ΓWin

Γ = ΓWin

⋃
ΓLoss

(3.8)

3.2.3 Reward Function

Using a terminal win signal and the reward shaping ideas from [45], the reward

function for the TAD MDP is

r(s) =


10 if s ∈ ΓWin

rshaping(s) otherwise
(3.9)

In order to encourage the attacking agent to learn to pursue the Target and avoid the

Defender, Gaussian functions were used to reward decreasing the distance between the

Attacker and Target, and to penalize the Attacker for being too close to the Defender.

Differences between the Attacker’s heading and the angle between the Attacker and Target

positions (δ) were penalized to smooth the Attacker’s path trajectory. The Attacker was

prevented from learning to accumulate rewards far from the Target by subtracting a fixed

value (ι) from the shaping reward function. Combining the reward and penalties gives the
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full shaping reward:

rshaping(s) = βAT e
−

(
√

(xA−xT )2+(yA−yT )2)2

2σ2
AT − (βADe

−
(
√

(xA−xD)2+(yA−yD)2)2

2σ2
AD + κδ + ι) (3.10)

which simplifies to

rshaping(s) = βAT e
−

(xA−xT )2+(yA−yT )2

2σ2
AT − (βADe

−
(xA−xD)2+(yA−yD)2

2σ2
AD + κδ + ι) (3.11)

The variables βAT , σAT , βAD, σAD, and κ are scalar hyperparameters used to ensure that

maximizing the return from the reward function leads to a winning guidance strategy. The

shaping reward surface created by Equation 3.11 for an example configuration is shown in

Figure 3.1. The surface shows the reward signal the Attacker would receive in a given

state on the x-y plane when the Target is located at (2.30, 4.87) the Attacker is located at

(−7.0, 0.0). The Attacker’s heading offset from the Target (δ) is assumed to be zero for

this example with the following hyperparameter values: βAT = 1.0, σAT = 10, βAD = 0.9,

σAD = 2.0, ι = 0.3. The shaping reward defined in Equations 3.9 and 3.11 was developed

for the game TInit = (−10.0, 10.0) through comparisons to the policies determined by

using a terminal win/loss reward and a shaped Attacker-Target distance reward.
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Figure 3.1: Example Shaping Reward Surface

The terminal win/loss reward provides positive feedback for ending the game in a

winning state, negative feedback for ending the game in a losing state, and no signal

otherwise:

r(s) =



1 if s ∈ ΓWin

−1 if s ∈ ΓLoss

0 otherwise

(3.12)

Without positive feedback from a successful game, the Attacker only received the penalty

for its losses which resulted in a policy that caused the Attacker to prolong the game in

avoiding the Defender. The learned retreating behavior is shown in Figure 3.2, where the

game reached the terminal number of time steps.
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Figure 3.2: Terminal Win/Loss Reward Learned Behavior

The shaped gaussian reward function using only the Attacker-Target separation:

r(s) = βAT e
−

(xA−xT )2+(yA−yT )2

2σ2
AT (3.13)

provided better results, but still did not lead to a winning policy. Using the learned policy,

the attacking agent was able to avoid the Defender inititally, but could not reach the

Target. The game where this policy was used is shown in Figure 3.3.
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Figure 3.3: Attacker-Target Shaping Reward Learned Behavior

3.2.4 Implementation Details

TD3 was used to train an attacking agent in the TAD MDP environment for the

configurations shown in Table 3.1, which were chosen to be consistent with engagement

examples found in literature. Given an infinite amount of sampling of the environment in

training, reinforcement learning techniques will converge to an optimal policy that

satisfies the Bellman optimality equations. In practice, guaranteeing such sampling of the

state space is a complex issue [46]. The Attacker was trained on 100 representative games

within the problem space defined, where the initial position of the target was varied using

a 10 × 10 grid of equally spaced points such that xT0 ∈ [−10, 10], yT0 ∈ [−10, 10] (Figure

3.4). The initial position of the Attacker was (7.0, 0.0) and the initial position of the

Defender was (−7.0, 0.0) for each of the engagements. Training was performed with fixed

relations of the Attacker to Defender with the Target initial condition changing to isolate
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the problem and allow for fixed relation scaling. Setting the Attacker and Defender at a

fixed unit distance with the target being variable allows for any scenario to be applied.

The velocity ratio, capture radius, minimum turn radius, and time interval remained

unchanged at 0.55, 0.2, 2.0, and 0.1 respectively in this study. These constant parameters

were chosen arbitrarily to define a limited problem space for this research; changing any

of the values would lead to a different positioning of the escape/capture surface B, and

different agent behavior from the learned policy. The starting headings of each agent in

the games played were determined by the solutions to the Active Target Defense

Differential Game or the TAD capture Game of Degree as appropriate, ensuring that the

optimal defensive strategy was initially attainable by the Target and Defender.

Table 3.1: Training Engagement Configurations

Variable Description Value

T0 Target Initial Position xT , yT ∈ [−10, 10]

A0 Attacker Initial Position (7.0, 0.0)

D0 Defender Initial Position (−7.0, 0.0)

α Target/Attacker Velocity Ratio 0.55

dCapture Capture Radius 0.2

dMinTurn Minimum Turn Radius 2.0

∆t Time Interval 0.1
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Figure 3.4: Training Dataset of T0 Cases

At each time step, the control output of the defensive team and the Attacker were

calculated and the next state of the game was directed by Equation 3.4 until a terminal

state was reached. The input to the TD3 algorithm during training is the full state vector

with the resulting reward from the action selected by the policy. When testing the learned

policy, the state vector is the only input needed to determine the Attacker’s heading

change control output.

The simulation environment for the TAD MDP was implemented in Python, and the

optimal point capture solutions were computed with the NumPy roots solver. PyTorch was

used to create the actor and critic neural networks of the TD3 algorithm. Each hidden

layer within the neural networks used the ReLU activation function:

f (x) =


0 for x ≤ 0

x otherwise
(3.14)

which limits the output of the neurons to a positive range when a positive input signal is

received [47]. The activation function for the output layer of the actor network was the
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hyperbolic tangent function:

g(x) =
ex − e−x

ex + e−x (3.15)

The hyperbolic tangent function has an output range of [−1, 1], which allowed for the

output value to be used as the agent’s action by multiplying it with the Attacker’s

maximum turn rate value.

3.3 Phase II: TD3 Tuning and Experimentation

The objective of Phase II was to determine hyperparameter values and and artificial

neural network structure for TD3 that would lead to a successful policy on the games

studied. The TD3 algorithm has a number of hyperparameters that can be tuned that

change assist the agent in the learning process. In this phase, two hyperparameters were

examined: the discount factor (γ) and the exploration noise (ε). The discount factor is a

measurement of how much the estimated return of future states should be included in the

update for the current state-action pair in the value function. In training with TD3, an

agent selects random actions to develop the Q action-value function that is used as the

policy. The random actions are chosen by adding noise sampled from a normal

distribution. It is important that sufficient exploration occurs in training for an optimal

policy to be derived. The hyperparameters of both the reward function and the learning

algorithm were manually tuned to achieve the desired pursuit and avoidance behaviors of

the Attacker by observing the learned policy for cases at the limit of the problem space

and overall coverage of the training set.

The Q action-value function from which the policy is derived is developed and

represented by artificial neural networks in the TD3 algorithm. The input and output

layers of each neural network is determined by the size of the input and action spaces. The

layers of nodes within the networks, also known as the hidden layers, abstract the input for

nonlinear function approximation. The hidden layer configuration initially used was from
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the original implementation of the algorithm and deeper/wider networks were

experimented with in this phase.

3.4 Phase III: Extended Training and Evaluation of Learned Policy

The objective of Phase III was to further train the attacking agent using the

configuration determined by Phase II and provide an evaluation of the learned policy. The

hyperparameter values and network structure for TD3 determined in the previous phase

were used to train the Attacker on the same training dataset of Target initial positions. The

agent was trained for an extended period of time to result in the maximum win coverage

of the problem space. The learned policy’s generalization was evaluated on a 100 × 100

grid of Target initializations within the problem space (Figure 3.5). Resulting Attacker

behaviors were observed and compared with the attacking point capture guidance laws.

Figure 3.5: Testing Dataset of T0 Cases
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3.5 Summary of Methodology

The TAD model and reward function were developed to allow for a reinforcement

learning agent to derive a policy for target capture using the TD3 algorithm and relevant

equations were presented. The discount factor and exploration noise hyperparameters of

the learning algorithm were selected for experimentation to aid in the learning process.

The hidden layer configurations for the artificial neural networks within TD3 were also

chosen for experimentation. After determining the final attacking guidance policy, it was

compared with the point capture guidance strategies to evaluate the Attacker’s

performance on a set of games larger than the selected training cases.
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4 Results

4.1 Introduction to Results

The MDP was developed and implemented with a distance and heading based

shaping reward function in Phase I. The reward function was validated through training the

attacking agent on a single case within Re at the bounds of the studied cases. In Phase II, a

successful configuration for TD3 was determined to train the Attacker on the full problem

space. The Attacker was further trained to produce the final policy using the configuration

from the previous phase in Phase III. The learned policy was compared with the point

capture attacking guidance laws and an evaluation of the policy’s success was presented.

4.2 Phase I

In Phase I, the TAD MDP was developed. The state transition model and reward

function are demonstrated to enable the attacking agent to reach the target for a game

initialized within Re. Training was completed on a CUDA-enabled computer with a

GeForce GTX 1050 Ti GPU, an Intel Core i7 CPU, and 32 GB of RAM, which took a

total of 40 minutes for a single engagement with TInit = (−10.0, 10.0). The reward returns

and win record in training is shown in Figure 4.1.
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Figure 4.1: Training Scores and Win Record for TInit = (−10.0, 10.0)

The Attacker developed a strategy for the TAD game in which it was able to take

advantage of the turn rate constraints of the Defender. As the Defender pursues the

Attacker, the Attacker baits it into committing to a trajectory. The Attacker then changes

course to cause the Defender’s optimal interception heading to change in a way that is

unachievable due to the restrictions in the version of the game studied. The engagement

with TInit = (−10.0, 10.0) involved two instances of the Defender being baited for the

Attacker to capture the Target because of the initial distance to the Target and the indirect

Attacker path. Each time the Defender is avoided by the Attacker, the game transitions

from Re into Rc causing the optimal defensive strategy to change. This learned behavior of

the Attacker from the single case training is shown in Figure 4.2.
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Figure 4.2: Learned Behavior for TInit = (−10.0, 10.0)

4.3 Phase II

The second phase of this thesis involved experiments with hyperparameters and

artificial neural network structures for the reinforcement learning algorithm, TD3, in

training the Attacking agent on a set of 100 training cases in the problem space. The

training scores of each configuration were compared after training for 3 ∗ 103 episodes

with the results smoothed by a trailing 300 game average.

The discount factor, γ, was tested with values between 0.9000 and 0.9900. The

setting γ = 0.9900 was found to result in the highest score in training (Figure 4.3).
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Figure 4.3: Discount Factor Experiments, γ ∈ [0.9000, 0.9900]

Because the best performing discount factor was at the limit of the values tested,

another bach of values were compared for γ ∈ [0.9900, 0.9999]. The discount factor

determined from the preceding comparison was consistent in outperforming the other

values. The second batch of discount factor training is shown in Figure 4.4.

Figure 4.4: Discount Factor Experiments, γ ∈ [0.9900, 0.9999]

Values between 0.10 and 0.30 were tested for the exploration noise parameter. It was

found that an exploration noise of 0.20 produced the highest scoring policy over the
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training period. The training scores resulting from the exploration noise values tested are

displayed in Figure 4.5.

Figure 4.5: Exploration Noise Experiments, ε ∈ [0.10, 0.30]

The original network architectures used in the TD3 implementation had two

256-node hidden layers. The first round of experiments for the network structure tested

the depth of the hidden layers, where depths of 2, 3, 4, and 5 layers were examined. The

results of training with these configurations is shown in Figure 4.6, where the networks

with 4-deep, 256-node hidden layers gained the most return in training.
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Figure 4.6: Neural Network Structure Experiments, Hidden Layer Depth

Following the hidden layer depth experiment, hidden layers with more nodes were

tested. While the slopes of the return in training began to decline for the configurations

256 × 256 × 256 × 256 and 256 × 1024 × 1024 × 256, the hidden layer structure

256 × 512 × 512 × 256 continued to collect higher rewards, as shown in Figure 4.7.

Figure 4.7: Neural Network Structure Experiments, Hidden Layer Width

The experiments in this phase resulted in the configurations for TD3 that were to be

used in training the Attacker to learn the final policy.
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4.4 Phase III

Training in Phase III was completed in a total of five hours. After training for 1.5e+4

episodes on the 100 initializations for the Target’s position, the Attacker learned to beat

the defending team in 97% of the cases trained on. The learning agent increased its win

rate up to episode 2.5e+3 where the rate became consistent. The trailing 100-game

average appears to converge around 1e+4 episodes. The Attacker’s score in each game is

shown in Figure 4.8 with the running total of wins throughout the training process.

Training the Attacker for a larger number of episodes reduced its overall coverage of the

Target initial positions. The resulting win/loss coverage for the Attacker on the training

cases is shown in Figure 4.9.

Figure 4.8: Training Scores and Wins
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Figure 4.9: Attacker Performance on T0 Training Cases

The Attacker had similar success when tested on a larger set of games with 1e+3

different Target initial positions to evaluate the guidance policy’s generalized

performance. The higher resolution of test cases is sufficient for evaluating the learned

policy as the initial Target positions are uniformly spaced by the capture radius, dCapture.

The Attacker intercepted the Target in 88.54% of the tested configurations in Figure 4.10.
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Figure 4.10: Generalized Attacker Performance

The Attacker’s learned guidance policy was sufficient for leading to the interception

of the Target in engagements within the region of capture, consistent with the performance

of the point capture attacking guidance law. The resulting path of the Attacker under the

defender-aware guidance policy (a) is presented with the separation of the agents over

time (b) for one of these cases in Figure 4.11.
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(a) Learned Behavior (b) Agent separation

Figure 4.11: Region of Capture T0 = (10.00, 5.55)

In the games starting in the region of escape, defined by the optimal point capture

solution, where the trained Attacker succeeded in capturing the Target, the learned policy

leveraged the turn-rate limitations of the Defender by forcing it to commit to a heading in

pursuit and then causing a change to the optimal defensive strategy output that the

Defender is incapable of achieving. This behavior allows the Attacker to avoid the

Defender and go on to capture the Target, whereas the point capture attacking guidance

law caused the Attacker to be intercepted before reaching the Target. The learned strategy

for cases in Re can be observed in Figures 4.12, 4.13, and 4.14, where the games played by

the defender-aware policy are shown. The behavior of the Attacker in the cases shown is

representative of the engagements studied.
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(a) Learned Behavior (b) Agent separation

Figure 4.12: Region of Escape T0 = (−3.33,−3.33)

(a) Learned Behavior (b) Agent separation

Figure 4.13: Region of Escape T0 = (2.30, 4.87)
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(a) Learned Behavior (b) Agent separation

Figure 4.14: Region of Escape T0 = (5.89,−7.94)

It is apparent that the Target initializations near the boundary were difficult for the

Attacker to learn to win as those are the cases where all three agents will converge to a

state in which they are in close proximity. The Attacker’s difficulty in capturing the Target

due to small errors when the agents converge is shown in Figure 4.15, where the policy

failed on a boundary game due to a suboptimal pursuit path.
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(a) Learned Behavior (b) Agent separation

Figure 4.15: Boundary Case T0 = (4.36, 3.84)

The simulation environment checked for a violation of the capture radius between

(dCapture) the Attacker and the Target before the Defender for the terminal game state.

Engagements where the convergence can be observed that resulted in a loss for the

Attacker were due to the terminal states within ΓLoss. The learned policy also had a lower

rate of success for games with initial Target states that caused the Attacker and Defender

to approach each other in a near head-on trajectory. In the cases where the near head-on

trajectories occurred, the point capture defence was able to match the turns made by the

Attacker leading to the Target’s survival. The mirroring behavior of the Defender for an

example near head-on Attacker loss is shown in Figure 4.16.
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(a) Learned Behavior (b) Agent separation

Figure 4.16: Near Head-On Case T0 = (−10.00, 1.79)

The optimal point capture attacking guidance law is compared to the defender-aware

guidance policy that resulted through training an agent with TD3 in Table 4.1. The learned

policy was able to win a large portion of the Rc cases that the point capture solution was

designed for in both the training grid (96.15%) and high-resolution grid (93.62%), but did

not achieve complete coverage as discussed above. For the Re cases, the learned policy

showed significant improvement over the point capture guidance, as any win in this region

is beyond the previous method’s capabilities. The defender-aware attacking guidance

policy had a win coverage of 97.29% on the training cases and 86.95% on the

high-resolution grid. The number of wins in Re within the Target initialization bounds

gives the learned policy 97% and 88.54% coverage overall of the training and

high-resolution cases. Due to the size of Rc versus Re in the problem space, the point

capture guidance law had wins in only 26% (26/100) of the training games and

23.70% (2370/10000) of the larger set evaluated.
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Table 4.1: Attacking Guidance Win Coverage

Training Cases Testing Cases

Rc Re Total Rc Re Total

Point Capture Guidance Law 100% 0% 26% 100% 0% 23.70%

Defender-Aware Policy 96.15% 97.29% 97% 93.62% 86.95% 88.54%

The minimum distance between the Attacker and Defender in each of the test games

provides a different view of performance beyond just a successful target capture. Two

areas stand out that reflect the existing optimal guidance boundaries. The known target

capture region is first, showing a large distance separation compared to the known

Defender inception area. Because games with T0 positions that are close together cause

comparable agent behaviors, the minimum Attacker-Defender separation shown in Figure

4.17 is partitioned into ten value ranges to group similar engagements. The data collected

shows that the escape/capture surface B is still present in the turn rate constrained version

of the TAD game, where it can be viewed as the limit after which avoiding the Defender is

required in the Attacker’s pursuit of the Target. An anomaly, located at (6.0, 0.0), exists in

the known target capture area due to training attempting to maximize the accumulated

reward signal though the learned policy. The Target was ultimately captured in those

cases, but the Attacker learned to prolong the games allowing the Defender to decrease its

distance to the Attacker. The second region of interest consisted of cases where the

minimum distance between the Attacker and Defender was below 0.6. Separating from

the known Target capture region, this gives a clearer picture of how successful the learned

policy was in avoiding the Defender by selecting all cases beyond the surface B in Re

(Figure 4.18). Games that ended in a win for the Attacker close to games that resulted in a

loss generally were engagements where the Attacker’s avoidance behavior caused it to
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come in close proximity to the Defender, while areas of the T0 space that had a high

density of Attacker wins contained cases where the Attacker-Defender separation was

consistently higher. These two regions were separated graphically such that the Defender

to Attacker minimum distance can be visualized on separate scales providing a more

in-depth view beyond a threshold distance that determined a win or loss.

Figure 4.17: Minimum Attacker-Defender Separation in Test Cases
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Figure 4.18: Minimum Attacker-Defender Separation in Test Cases (dAT < 0.6)

4.5 Summary of Results

The reward function was validated within the developed TAD MDP on a single game

belonging to Re to show that the Attacker could learn a strategy that would allow it to win

in a case where the other target pursuit approaches would fail. Hyperparameters were

tested and an artificial neural network structure was determined for best performance

within the set of Target initial positions. The final policy was produced through further

training with the configuration selected. Attacker behaviors from point capture guidance

laws were compared with the learned strategy and the Attacker’s success in avoiding the

Defender was examined.
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5 Conclusions

The MDP developed provides a framework in which an attacking agent can learn to

capture a defended target in the TAD differential game with turn rate constraints. Cases in

which the traditional attacking guidance methods fail to result in the Target’s capture were

explored with the learned attacking behavior, where the attacking agent sought to

maximize its accumulated reward. The set of engagements tested showed that an attacking

guidance method with the capability of avoiding the defender is not limited by the

previously defined decision barrier. Artificial intelligence was used to expand the

approach to attacking guidance, where actions were selected that did not align with the

optimal instantaneous heading in order to reach the Target. The defender-aware guidance

policy was shown to have a sizable leap in win coverage when compared with the point

capture attacking guidance law, increasing the percentage of wins from 26% to 88%

within the problem space studied.

Further research into the constrained TAD game could include a range of velocity

ratio values and initial positions for the Attacker and Defender in efforts to provide a more

generalized attacking guidance policy. Given the guaranteed performance of the optimal

solution for target capture in Rc, a fusion of point capture guidance law with the

reinforcement learning based guidance policy, that is conditional to the state of the game,

would result in a highly effective attacker in TAD scenarios. It is also possible that deep

reinforcement learning could provide a method for developing a more robust defensive

guidance strategy if the defending team were trained against the defender-aware policy in

addition to more conventional attacking guidance laws, in a training approach similar to

the method used in [35].



59

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[2] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error
in actor-critic methods,” arXiv:1802.09477 [cs, stat], 2018. [Online]. Available:
http://arxiv.org/abs/1802.09477

[3] E. Garcia, D. W. Casbeer, K. Pham, and M. Pachter, “Cooperative aircraft defense
from an attacking missile,” in 53rd IEEE Conference on Decision and Control.
IEEE, 2014, pp. 2926–2931. [Online]. Available:
http://ieeexplore.ieee.org/document/7039839/

[4] Y. Ho, A. Bryson, and S. Baron, “Differential games and optimal pursuit-evasion
strategies,” IEEE Transactions on Automatic Control, vol. 10, no. 4, pp. 385–389,
October 1965.

[5] R. L. Boyell, “Defending a moving target against missile or torpedo attack,” IEEE
Transactions on Aerospace and Electronic Systems, no. 4, pp. 522–526, 1976.

[6] R. L. Boyell, “Counterweapon aiming for defense of a moving target,” IEEE
Transactions on Aerospace and Electronic Systems, no. 3, pp. 402–408, 1980.

[7] D. W. Casbeer, E. Garcia, Z. E. Fuchs, and M. Pachter, “Cooperative target defense
differential game with a constrained-maneuverable defender,” in 2015 54th IEEE
Conference on Decision and Control (CDC). IEEE, 2015, pp. 1713–1718.
[Online]. Available: http://ieeexplore.ieee.org/document/7402457/

[8] E. Garcia, D. W. Casbeer, and M. Pachter, “Pursuit in the presence of a defender,”
Dynamic Games and Applications, vol. 9, no. 3, pp. 652–670, 2019. [Online].
Available: http://link.springer.com/10.1007/s13235-018-0271-9

[9] I. E. Weintraub, R. G. Cobb, W. Baker, and M. Pachter, “Direct methods comparison
for the active target defense scenario,” in AIAA Scitech 2020 Forum. American
Institute of Aeronautics and Astronautics, 2020. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2020-0612

[10] M. Pachter, E. Garcia, and D. W. Casbeer, “Active target defense differential game,”
in 2014 52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2014, pp. 46–53. [Online]. Available:
http://ieeexplore.ieee.org/document/7028434/

[11] V. Shaferman and T. Shima, “Cooperative multiple-model adaptive guidance for an
aircraft defending missile,” Journal of Guidance, Control, and Dynamics, vol. 33,
no. 6, pp. 1801–1813, 2010. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.49515

http://arxiv.org/abs/1802.09477
http://ieeexplore.ieee.org/document/7039839/
http://ieeexplore.ieee.org/document/7402457/
http://link.springer.com/10.1007/s13235-018-0271-9
https://arc.aiaa.org/doi/10.2514/6.2020-0612
http://ieeexplore.ieee.org/document/7028434/
https://arc.aiaa.org/doi/10.2514/1.49515


60

[12] E. Garcia, D. W. Casbeer, and M. Pachter, “Active target defense using first order
missile models,” Automatica, vol. 78, pp. 139–143, 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0005109816305404

[13] A. Ratnoo and T. Shima, “Guidance strategies against defended aerial targets,”
Journal of Guidance, Control, and Dynamics, vol. 35, no. 4, pp. 1059–1068, 2012.
[Online]. Available: https://arc.aiaa.org/doi/10.2514/1.56924

[14] T. Shima, “Optimal cooperative pursuit and evasion strategies against a homing
missile,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 2, pp. 414–425,
2011. [Online]. Available: https://arc.aiaa.org/doi/10.2514/1.51765

[15] M. Pachter, E. Garcia, and D. W. Casbeer, “Toward a solution of the active target
defense differential game,” Dynamic Games and Applications, vol. 9, no. 1, pp.
165–216, 2019. [Online]. Available:
http://link.springer.com/10.1007/s13235-018-0250-1

[16] E. Garcia, D. W. Casbeer, and M. Pachter, “Optimal target capture strategies in the
target-attacker-defender differential game,” in 2018 Annual American Control
Conference (ACC), June 2018, pp. 68–73.

[17] E. Garcia, D. W. Casbeer, and M. Pachter, “Cooperative strategies for optimal
aircraft defense from an attacking missile,” Journal of Guidance, Control, and
Dynamics, vol. 38, no. 8, pp. 1510–1520, 2015. [Online]. Available:
https://doi.org/10.2514/1.G001083

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015. [Online]. Available:
http://www.nature.com/articles/nature14236

[19] Y. Bengio, Learning Deep Architectures for AI, ser. Essence of knowledge, The.
Now Publishers, 2009. [Online]. Available:
https://books.google.com/books?id=cq5ewg7FniMC

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available:
http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[21] M. J. Shafiee, B. Chywl, F. Li, and A. Wong, “Fast yolo: A fast you only look once
system for real-time embedded object detection in video,” 2017.

https://linkinghub.elsevier.com/retrieve/pii/S0005109816305404
https://arc.aiaa.org/doi/10.2514/1.56924
https://arc.aiaa.org/doi/10.2514/1.51765
http://link.springer.com/10.1007/s13235-018-0250-1
https://doi.org/10.2514/1.G001083
http://www.nature.com/articles/nature14236
https://books.google.com/books?id=cq5ewg7FniMC
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


61

[22] J. Eisenstein, Introduction to Natural Language Processing, ser. Adaptive
Computation and Machine Learning series. MIT Press, 2019. [Online]. Available:
https://books.google.com/books?id=72yuDwAAQBAJ

[23] E. Garcia, D. W. Casbeer, and M. Pachter, “Active target defence differential game:
fast defender case,” IET Control Theory & Applications, vol. 11, no. 17, pp.
2985–2993, 2017.

[24] D. W. Casbeer, E. Garcia, Z. E. Fuchs, and M. Pachter, “Cooperative target defense
differential game with a constrained-maneuverable defender,” in 2015 54th IEEE
Conference on Decision and Control (CDC). IEEE, 2015, pp. 1713–1718.

[25] E. Garcia, D. W. Casbeer, Z. E. Fuchs, and M. Pachter, “Aircraft defense differential
game with non-zero capture radius,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
14 200–14 205, 2017.

[26] R. Isaacs, Differential games: a mathematical theory with applications to warfare
and pursuit, control and optimization. Courier Corporation, 1999.

[27] M. Lau, M. J. Steffens, and D. N. Mavris, “Closed-loop control in active target
defense using machine learning,” in AIAA Scitech 2019 Forum. American Institute
of Aeronautics and Astronautics, 2019. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2019-0143

[28] N. A. Shneydor, Missile guidance and pursuit: kinematics, dynamics and control.
Elsevier, 1998.

[29] L. L. Scharf, W. P. Harthill, and P. H. Moose, “A comparison of expected flight times
for intercept and pure pursuit missiles,” IEEE Transactions on Aerospace and
Electronic Systems, no. 4, pp. 672–673, 1969.

[30] M. Guelman, “The closed-form solution of true proportional navigation,” IEEE
Transactions on Aerospace and Electronic Systems, no. 4, pp. 472–482, 1976.

[31] G. M. Siouris, “Tactical missile guidance laws,” Missile Guidance and Control
Systems, pp. 155–267, 2004.

[32] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s
College, Cambridge, 1989.

[33] A. T. Bilgin and E. Kadioglu-Urtis, “An approach to multi-agent pursuit evasion
games using reinforcement learning,” in 2015 International Conference on Advanced
Robotics (ICAR). IEEE, 2015, pp. 164–169.

[34] B. Gaudet, R. Furfaro, and R. Linares, “Reinforcement learning for angle-only
intercept guidance of maneuvering targets,” arXiv:1906.02113 [cs], 2019. [Online].
Available: http://arxiv.org/abs/1906.02113

https://books.google.com/books?id=72yuDwAAQBAJ
https://arc.aiaa.org/doi/10.2514/6.2019-0143
http://arxiv.org/abs/1906.02113


62

[35] J. K. Price, O. J. Pinon-Fischer, and D. N. Mavris, “Definition of optimal agent
behaviors using reinforcement learning,” in AIAA Scitech 2019 Forum. American
Institute of Aeronautics and Astronautics, 2019. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2019-2200

[36] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.
279–292, 1992.

[37] I. H. Witten, “An adaptive optimal controller for discrete-time markov
environments,” Information and Control, vol. 34, no. 4, pp. 286–295, 1977. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0019995877903540

[38] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM journal on
Control and Optimization, vol. 42, no. 4, pp. 1143–1166, 2003.

[39] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” p. 9, 2014.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv:1509.02971 [cs, stat], 2019. [Online]. Available:
http://arxiv.org/abs/1509.02971

[41] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” arXiv:1509.06461 [cs], 2015. [Online]. Available:
http://arxiv.org/abs/1509.06461

[42] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proceedings of the 1993 Connectionist Models Summer
School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[43] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML, vol. 99, 1999,
pp. 278–287.

[44] J. Randlov and P. Alstrøm, “Learning to drive a bicycle using reinforcement learning
and shaping,” Proceedings of the 15th International Conference on Machine
Learning, pp. 463–471, 01 1998.

[45] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Reward function and initial values:
Better choices for accelerated goal-directed reinforcement learning,” in Artificial
Neural Networks – ICANN 2006, S. D. Kollias, A. Stafylopatis, W. Duch, and
E. Oja, Eds. Springer Berlin Heidelberg, 2006, vol. 4131, pp. 840–849. [Online].
Available: http://link.springer.com/10.1007/11840817 87

[46] S. M. Kakade et al., “On the sample complexity of reinforcement learning,” Ph.D.
dissertation, University of London London, England, 2003.

https://arc.aiaa.org/doi/10.2514/6.2019-2200
https://linkinghub.elsevier.com/retrieve/pii/S0019995877903540
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.06461
http://link.springer.com/10.1007/11840817_87


63

[47] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807–814.



64

Appendix

Final Hyperparameter Values and Network Structure for Training

Table A.1: Final Training Configurations

Reward Function

βAT 20.6 ∗ 10−2

σAT 20.0

βAD 15.0 ∗ 10−2

σAD 0.2

κ 3.7 ∗ 10−2

ι 13.6 ∗ 10−2

TD3

Discount Factor, γ 0.99

Target Update Rate, τ 5 ∗ 10−3

Exploration Noise 0.2

Batch Size 256

Policy Update Frequency 2

Actor Network Structure 9 × 256 × 512 × 512 × 256 × 1

Actor Learning Rate 3 ∗ 10−4

Critic Network Structure 10 × 256 × 512 × 512 × 256 × 1

Critic Learning Rate 3 ∗ 10−4
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