
Formalized Generalization Bounds for Perceptron-Like Algorithms

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Robin J. Kelby

August 2020

© 2020 Robin J. Kelby. All Rights Reserved.

2

This thesis titled

Formalized Generalization Bounds for Perceptron-Like Algorithms

by

ROBIN J. KELBY

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Gordon Stewart

Assistant Professor of Electrical Engineering and Computer Science

Mei Wei

Dean, Russ College of Engineering and Technology

3

Abstract

KELBY, ROBIN J., M.S., August 2020, Computer Science

Formalized Generalization Bounds for Perceptron-Like Algorithms (70 pp.)

Director of Thesis: Gordon Stewart

Machine learning algorithms are integrated into many aspects of daily life. However,

research into the correctness and security of these important algorithms has lagged behind

experimental results and improvements. My research seeks to add to our theretical

understanding of the Perceptron family of algorithms, which includes the Kernel

Perceptron, Budget Kernel Perceptron, and Description Kernel Perceptron algorithms.

In this thesis, I will describe three variants of the Kernel Perceptron algorithm and

provide both proof and performance results for verified implementations of these

algorithms written in the Coq Proof Assistant. This research employs generalization error,

which bounds how poorly a model may perform on unseen testing data, as a guarantee of

performance with proofs verified in Coq. These implementations are also extracted to the

functional language Haskell to evaluate their generalization error and performance results

on real and synthetic data sets.

4

Acknowledgments

In this opportunity to sit and think back on all those who have made this thesis

possible, I am incredibly grateful. Dr. Gordon Stewart has been a faithful advisor for my

research, and his insight and care has been instrumental in my success. His

encouragement in research was a major factor in my decision to pursue my Master’s

degree and I am thankful for his time and attention over the years.

I would also like to thank Dr. David Juedes, Dr. Razvan Bunescu, and Dr. Peter Jung

for serving on my committee. I am grateful for their input and analysis of my work and

how they have pushed me to do my best.

This thesis would not be possible without a research team that has given me support

and focus over the past two years. Nathan St. Amour, David Masters, and Tim Steinberger

have been fantastic lab partners and I am glad to have worked closely with them to

navigate academia together. Their input and willingness to listen have helped me through

many challenges.

Finally, I would like to thank my family for their support and love. Mom, Dad, Russ,

and Shannon, thanks for all the time I’ve spent talking about my research, even when I

didn’t do a good job explaining along the way.

5

Table of Contents

Page

Abstract . 3

Acknowledgments . 4

List of Tables . 7

List of Figures . 8

1 Introduction . 9

2 Background . 14
2.1 The Perceptron Algorithm . 14
2.2 The Kernel Perceptron . 16
2.3 Approaches to Machine Learning Verification 18
2.4 MLCert Framework . 19
2.5 Budget Kernel Perceptron Algorithms . 20
2.6 Description Kernel Perceptrons . 21
2.7 Chapter Summary . 22

3 Methods . 24
3.1 Structure of Perceptron Implementations in MLCert 24
3.2 Kernel Perceptron Coq Implementation 26
3.3 Budget Kernel Perceptron Coq Implementation 29
3.4 Description Kernel Perceptron Coq Implementation 32
3.5 Chapter Summary . 35

4 Proofs and Experimental Results . 36
4.1 Generalization Proofs . 36

4.1.1 Kernel Perceptron Generalization Proofs 37
4.1.2 Budget Kernel Perceptron Generalization Proofs 39
4.1.3 Description Kernel Perceptron Generalization Proofs 40

4.2 Haskell Extraction and Performance Experiments 41
4.2.1 Details of Haskell Extraction . 42
4.2.2 Synthetic Dataset Performance Results 44
4.2.3 Iris Dataset Performance Results 54
4.2.4 Sonar Mines vs. Rocks Dataset Performance Results 57
4.2.5 Discussion of Generalization Error and Timing Results 58

4.3 Chapter Summary . 63

6

5 Conclusions . 66

References . 68

7

List of Tables

Table Page

4.1 Average Synthetic Generalization Error and Confidence Intervals 46
4.2 Synthetic Generalization Bound Calculations 46
4.3 Synthetic Generalization Error and Confidence Intervals using Limited Budget

and Mistakes . 48
4.4 Synthetic Average Runtimes (Seconds) and Confidence Intervals 51
4.5 Python Budget Kernel Perceptron Runtimes and Confidence Intervals 53
4.6 Iris 50/50 Dataset Observed and Calculated Generalization Error 55
4.7 Iris 75/25 Dataset Observed and Calculated Generalization Error 59
4.8 Sonar 50/50 Dataset Observed and Calculated Generalization Error 59
4.9 Sonar 75/25 Dataset Observed and Calculated Generalization Error 64
4.10 Iris Average Runtimes (Seconds) and Confidence Intervals 64
4.11 Sonar Average Runtimes (Seconds) and Confidence Intervals 64
4.12 Synthetic Generalization Bound Calculations, 32-bit versus 8-bit Budget 65

8

List of Figures

Figure Page

2.1 Perceptron Pseudocode . 14
2.2 Perceptron Prediction Pseudocode . 15
2.3 Kernel Perceptron Prediction Pseudocode . 17
2.4 Kernel Perceptron Pseudocode . 18

3.1 Learner Module . 24
3.2 kernel predict function in KernelClassifier . 26
3.3 Kernel functions in KernelClassifier . 27
3.4 kernel update function in KernelPerceptron 28
3.5 Learner Definition in KernelPerceptron . 28
3.6 Support Vector Definitions in KernelClassifierBudget 29
3.7 kernel predict budget function in KernelClassifierBudget 30
3.8 budget update function in KernelPerceptronBudget 31
3.9 kernel update function in KernelPerceptronBudget 31
3.10 Learner Definition in KernelPerceptronBudget 32
3.11 Parameter Definition in KernelClassifierDes 32
3.12 kernel predict des function in KernelClassifierDes 33
3.13 des update function in KernelPerceptronDes 34
3.14 kernel update function in KernelPerceptronDes 34
3.15 Learner Definition in KernelPerceptronDes 35

4.1 Generalization Bound for a generic Learner 37
4.2 Generalization Bound for the Kernel Perceptron 38
4.3 Generalization Bound for the Budget Kernel Perceptron 40
4.4 Generalization Bound for the Description Kernel Perceptron 41
4.5 Synthetic Generalization Error . 46
4.6 Synthetic Generalization Error using Limited Budget and Mistakes 48
4.7 Kernel Perceptron Synthetic Timing . 50
4.8 Budget and Description Kernel Perceptron Synthetic Timing 50
4.9 Python and Haskell Budget Kernel Perceptron Synthetic Timing 55
4.10 Iris Data Set Timing . 56

9

1 Introduction

The field of machine learning research has advanced rapidly in the past decade.

Machine learning describes the class of computer programs that automatically learn from

experience, often employed for classification, recognition, and clustering tasks. One of the

classic problems in machine learning is digit recognition to classify handwritten numbers

automatically. Computers have historically struggled to interpret handwritten information

because handwriting can vary drastically between writers. While humans can be taught to

read as well as learn to read on their own, handwriting recognition can be challenging for

computers to accomplish. Several datasets have been created to provide a common source

of handwritten digit data so that the performance of different machine learning algorithms

can be directly compared. For example, the MNIST dataset [LBBH98] is one of the

primary datasets for computers to learn how to classify handwritten digits into the

numbers 0-9. This dataset allows researchers to compare the performance of multiple

models, trained and tested on the same data, but using different machine learning

algorithms. Some systems have achieved a near-perfect performance on the MNIST

dataset for the problem of handwritten digit classification, and this technology is valuable

for processing documents, such as ZIP codes on letters sent through the U.S. Postal

Service [MKB17].

Increasingly, machine learning has been heavily integrated into our daily lives. As

described by the authors of “Social media big data analytics”, social media companies

such as Facebook, Twitter, and YouTube learn from our digital data in order to serve

individuals with targeted information and often advertising [GHHA19]. Retailers track

customer purchases to learn about individuals’ habits and entice them with specific offers

and coupons. The pages we visit, profiles we create, and products we buy are used to

predict our future actions and monetize our attention. This kind of task would be almost

impossible for a human to complete, due to the vast amounts of data involved per person

10

or account. In addition to social media, retailers, and advertisers, machine learning

techniques are also being employed in critical systems, such as healthcare and

infrastructure, where failure can lead to the loss of time, money, and lives. Research to

evaluate the use and oversight of machine learning algorithms [Var16] has shown that

there are few existing safety principles and regulations for critical systems that rely on

machine learning components. Machine learning drives more than websites and

commerce; its algorithms are also responsible for the well-being and safety of people

around the world, and regulation has largely not caught up with machine learning

advances.

The details of machine learning differ from algorithm to algorithm, but for most

methods, machine learning algorithms learn models from training data to encode the

knowledge implicit in the training data. Models consist of learned parameters, which

represent different kinds of data depending on the encoding of the model, and

hyperparameters, a small number of variables directly specified by the programmer that

may control the speed of training or other high level details. Models tend to be complex,

and can require thousands or millions of learned parameters for high accuracy on a given

problem. Learned models are able to take a new piece of data as input and produce a result

or judgment from that data. For the recognition of handwritten digits, the input to the

model is the handwritten digit, and the output is the classification of that digit as a number

from 0-9.

The development of new machine learning algorithms or advances in training and

validation techniques tends to be experimentally driven in most applications. New or

finely tuned configurations for internal components can lead to increased accuracy and

efficiency or decreased training time compared to other algorithms for a specific problem

or dataset. Small refinements to algorithms and hyperparameters can have enormous

impacts on training time, model size, and performance on unseen testing data. Because of

11

the complexity of the models produced by many machine learning algorithms, many new

papers published in the field describe results found through experimentation, as opposed

to examining the underlying theory responsible for these advances. Additional research in

understanding the theory behind machine learning may help to understand why some

techniques are better suited for some problems than others, as well as potential avenues

for exploration.

Finding errors in machine learning algorithms or models can be very difficult. With

thousands or millions of parameters learned by the computer, not specified by the

programmer, algorithms can easily get stuck in small, local solutions instead of finding the

optimal solution. For example, gradient descent is the standard training method for neural

networks that minimizes the error in the network’s model over the training data. To

visualize the process of gradient descent, the algorithm seeks to find the lowest, or global,

minimum of a multi-dimensional hillside with many peaks and valleys. Through many

iterations, gradient descent travels downward along the gradient until a place is reached

where descent is no longer possible. If the algorithm cannot find a deeper valley, this

depth is returned as the overall solution. However, gradient descent can fail to find the

global solution when the hyperparameters are not tuned correctly by the programmer or

deeper valleys take too long to find, which can occur for nonconvex optimization

problems. Techniques have been developed to mitigate the limitations of gradient descent,

such as momentum, but the programmer usually has to experiment with multiple

techniques to achieve peak performance. Additionally, few machine learning algorithms

have theoretical properties that can be verified, such as a theorem that a learning algorithm

will always terminate or find the global solution. Research into verifying machine

learning to produce models with optimal behavior is limited due to these difficulties.

One way to increase our knowledge in the theory of machine learning is to verify the

correctness of machine learning algorithms through mathematical, machine-checked

12

proofs. Formal verification often employs proof assistants, such as Coq, which allow for

the integration of proofs with software specifications and implementations. Mathematical

proofs in Coq are guaranteed to be as valid as the proof assistant itself and the correctness

of the specifications and theorems proved. Proofs are implemented as portable programs,

which allows for others to verify proofs independently. Because proofs and

implementations are written in the same environment, the proofs directly correspond to

the implementation verified. The Coq environment also provides libraries containing both

implementations of data structures and proofs to aid in the development of verified

systems.

Researchers have used the Coq proof assistant to verify many different software

systems and prove correctness properties. The CompCert compiler for the C language

[Ler09] is the first realistic verified compiler, proving that the behavior of a C program

compiled with CompCert will not be changed in the transformation of compilation.

Verified compilers ensure that the executable program produced by the compiler does not

contain errors produced in compilation. For safety-critical applications, one might argue

that executables created by a verified compiler are more secure than executables created

by unverified compilers. Another verified system written in Coq is Verdi [WWP+15], a

framework for specifying and implementing distributed systems with tolerance for node

faults. In a network of computers, connections can be dropped, packets lost or sent out of

order, and nodes can fail or restart. Verdi allows the programmer to specify the fault

conditions their distributed system should be resilient against, and the Verdi system itself

mechanizes much of the proof process and code extraction for deployment in real-world

networks. Distributed system software written with Verdi has been verified to handle faults

and errors that may occur. Finally, the CertiKOS project [GSC+16] has developed several

microkernels with security properties and proofs of correctness, including mC2, a verified

concurrent microkernel. Operating systems allocate memory and computer resources and

13

must defend against malicious processes. Coq has been used to specify and verify a

diverse range of algorithms, data structures, and applications beyond these three projects.

In this thesis, I will describe my additions to the verification framework MLCert

[MLC]. MLCert provides software tools and libraries in the Coq proof assistant for

verified machine learning in Coq, such as generic definitions and proofs for machine

learning algorithms, example algorithms such as the Perceptron, and extensions for the

implementation and training of neural networks. Building on the Perceptron

implementation and existing proofs in MLCert, I present a verified implementation of the

Kernel Perceptron algorithm, as well as two variants on the Kernel Perceptron algorithm:

a Budget Kernel Perceptron and a Description Kernel Perceptron. Background

information for this thesis is provided in Chapter 2, with an introduction to the Perceptron

and Kernel Perceptron algorithms, a more extended discussion of the challenges and

tactics of machine learning verification, and motivation for the Budget Kernel Perceptron

and Description Kernel Perceptron algorithms. Chapter 3 describes the methodology for

implementing these algorithms in Coq. The proofs for these implementations and their

performance results are detailed in Chapter 4. Finally, future work and conclusions are

discussed in Chapter 5.

14

2 Background

This chapter aims to provide necessary background information in order to

understand the remainder of this thesis. Sections 2.1 and 2.2 describe the Perceptron

algorithm and its descendant, the Kernel Perceptron algorithm. Next, the challenges and

methods of formal verification of machine learning are discussed in sections 2.3 and 2.4.

Finally, modifications of the Kernel Perceptron algorithm, such as Budget Kernel

Perceptrons in section 2.5 and Description Kernel Perceptrons in section 2.6, are detailed

as improvements for the Kernel Perceptron.

2.1 The Perceptron Algorithm

The Perceptron algorithm was initially published in 1957 by Frank Rosenblatt.

Highly influential in the early growth and development of the field of artificial

intelligence, the Perceptron [Ros57] provided one of the first methods for computers to

iteratively learn to classify data into discrete categories. In order to classify n-dimensional

data, the Perceptron learns a weight vector with n parameters as well as a bias term. Both

the weight vector and bias consist of positive integers greater than or equal to zero which

encode a linear hyperplane separating two or more categories in n-dimensional space.

Figure 2.1: Perceptron Pseudocode

Definition Perceptron (w:Params) (epochs:nat) (training set:list (Label * Data)) :=

for i in epochs:

for j in size(training set):

(example, true label) = training set[j]

predict = Predict(example, w)

if predict != true label:

w = w + training set[j].

15

The most basic Perceptron algorithm has the following steps, as shown by the

pseudocode in Figure 2.1. For this algorithm, we require as input the weight vector paired

with its bias, the number of epochs, and the training set. Before training begins, each

parameter in the weight vector w and the bias is initialized to zero. The training set is

formatted to contain training examples paired with labels, where the label is either 0 or 1.

The Perceptron algorithm consists of two nested loops. The outer loop uses the number of

epochs to control the number of iterations over the entire training set. The inner loop

executes for every training example in the training set and has two main steps: prediction

and update. First, the n-dimensional data inside the training example and the weight

vector are used to calculate the Perceptron’s predicted label for this example, without

using the training example’s true label. The calculation for Perceptron prediction shown in

pseudocode in Figure 2.2 takes as input the weight vector and a single training example to

produce a predicted label for the given example.

Figure 2.2: Perceptron Prediction Pseudocode

Definition Predict (example:Data) (w:Params) :=

(bias, weight) = w

bias + dot product(weight, example).

The true label and the calculated predicted label are then compared. If both labels are

the same, the Perceptron correctly classified this training example. However, if the

predicted label is different, the misclassified training example is added to the weight

vector. This update step shifts the hyperplane in n-dimensional space to improve the

Perceptron’s classification with each mistake. The Perceptron is able to find a linear

hyperplane to separate two classes of data because its model represents the hyperplane in

n-dimensional space with each value in the weight vector corresponding to the coefficient

16

for each dimension. Every update of the model shifts the hyperplane away from training

examples that were misclassified, and over time, the number of mistakes decreases.

The Perceptron algorithm is powerful despite its simplicity. However, there are

limitations to the Perceptron’s classification. As outlined by Minsky and Papert [MP69],

the Perceptron cannot classify data that is not linearly separable with 100% accuracy, such

as points classified by the exclusive-OR function, a binary operator that returns TRUE

when its two inputs are the opposite of each other. Despite the simplicity of exclusive-OR,

the Perceptron cannot produce a linear hyperplane such that all the points classified by

exclusive-OR as TRUE are also classified by the Perceptron as TRUE, and all the points

classified by exclusive-OR as FALSE are also classified by the Perceptron as FALSE. The

Perceptron can achieve at best 75% accuracy for the exclusive-OR function. Minksy and

Papert’s work led to a decline in Perceptron and neural network research due to these

limitations.

While the Perceptron is usually limited to classification of linearly separable data, the

Perceptron Convergence Theorem states that the Perceptron is guaranteed to converge to a

solution on linearly separable data. This property of the Perceptron algorithm was first

proven on paper by Papert in 1961 [Pap61] and Block in 1962 [Blo62]. However, this

proof was not verified by machine until 2017 through the work of Murphy, Gray, and

Stewart [MGS17] in the Coq proof assistant.

2.2 The Kernel Perceptron

The Kernel Perceptron improved on the Perceptron algorithm with the introduction

of the kernel trick by Aizerman, Braverman, and Rozoner [ABR64]. Using kernel

functions, the classification of the Perceptron can be expanded to include non-linearly

separable data. There are four main modifications for the Kernel Perceptron: prediction,

kernel functions, parameter space, and weight vector update. Prediction for the Kernel

17

Perceptron uses kernel functions to produce non-linear hyperplanes instead of linear

hyperplanes. Because of kernalization, the prediction function changes so that in addition

to the weight vector w and the current training example, the training set and training labels

are required as well. The bias term is no longer necessary.

Figure 2.3: Kernel Perceptron Prediction Pseudocode

Definition KernelPredict (example:Data) (w:KernelParams)

(training set:list (Label * Data) (K:Kernel) :=

for i in size(training set):

(label, data) = training set[i]

sum += w[i] * label * K(example, data)

return sum.

In the pseudocode KernelPredict function shown in Figure 2.3, K represents an

arbitrary kernel function. Kernel functions form a class of functions that take two

examples as input and produce a single value. By using non-linear kernel functions, the

Kernel Perceptron can classify data that is not linearly separable. For example, the Kernel

Perceptron can classify the exclusive-OR function with 100% accuracy using a quadratic

kernel. By using kernel functions in prediction, the parameters used by the Kernel

Perceptron have different cardinality compared to the parameters of the Perceptron. The

Kernel Perceptron requires one parameter per training example for its classification,

regardless of the dimensionality of the data. Therefore, the size of the weight vector is

dependent on the size of the training set.

Finally, the weight vector update for the Kernel Perceptron is somewhat different

from that of the Perceptron. When a training example is misclassified by the Kernel

18

Perceptron, its parameter is incremented and the rest of the weight vector is unchanged.

The full Kernel Perceptron algorithm is shown in Figure 2.4.

Figure 2.4: Kernel Perceptron Pseudocode

Definition KernelPerceptron (w:KernelParams) (epochs:nat)

(training set:list (Label * Data)) (K:Kernel) :=

for i in epochs:

for j in size(training set):

(example, true label) = training set[j]

predict = KernelPredict(example, w, training set, K)

if predict != true label:

let (training set, weights) = w in

weights[j] += 1.

The Kernel Perceptron improves upon the Perceptron, but the Kernel Perceptron has

its own limitations. The size of the parameter space for the Kernel Perceptron limits its

usefulness in applications where memory is at a premium, as the size of the weight vector

is dependent on the number of training examples, not the dimensionality of the training

data. Also, the Kernel Perceptron, due to the use of kernel functions, is not guaranteed to

converge to a solution or terminate, unlike the Perceptron algorithm. This means that the

Perceptron Convergence Theorem cannot be used to prove the correctness of an

implementation of the Kernel Perceptron.

2.3 Approaches to Machine Learning Verification

Verifying machine learning algorithms is a difficult problem in software engineering.

Machine learning algorithms can produce thousands or millions of parameters in their

19

models, which interact to classify data. The learning process for machine learning models

can be tedious for humans to trace, and the model parameters generated during training

are often not human-interpretable for manual verification of correctness. The authors of

[BF16] describe how machine learning researchers do not agree on a standard definition

of what human interpretability is or how models should be able to be interpreted by

humans. Interpretability varies between algorithms and tends to be more difficult for

neural algorithms, including the Perceptron family of algorithms. Some formal

verification in the field of machine learning has been performed, as shown by [TD05], but

many algorithms have not been verified correct. Even for implementations with paper

proofs of correctness, few have been proven correct by machine.

2.4 MLCert Framework

To facilitate the verification of machine learning algorithms, Bagnall and Stewart

developed MLCert [BS19], an open-source tool built in the Coq proof assistant. MLCert

employs generalization error to prove correctness for machine learning algorithms.

Generalization error, as described by Levin, Tishby, and Solla [LTS90], is an important

indicator for the robustness of a machine learning model; algorithms that produce models

with low generalization error can generalize from the training examples used in training to

correctly classify unseen examples from the same domain of data in testing. Models with

high generalization error tend to overfit to the training set, such as models that simply

memorize the entire training set. When such models are presented with unseen examples

in testing that are different from the training set, the model will have poor performance.

Instead of trying to verify the model directly, MLCert verifies the generalization bounds

for machine learning implementations built in its framework. Bounds on the

generalization error indicate that an algorithm has bounds on mistakes made during

testing, and the size of the parameter space contributes heavily, when apply typical

20

statistical guarantees, to the tightness of the generalization bounds. Verified generalization

bounds guarantee worst-case expected performance for a model. Previous work in the

MLCert framework [BS19] has resulted in an implementation of the Perceptron algorithm

with proofs to verify its generalization bounds. However, to the best of our knowledge, no

one has implemented the Kernel Perceptron in Coq or formally proven its correctness and

generalization bounds using machine-checked proofs.

The parameter space for the Kernel Perceptron is dependent on the number of

training examples. This means that, as compared to the Perceptron algorithm, the Kernel

Perceptron has very loose generalization bounds due to the increased size of the parameter

space. The tightness of the generalization bounds matters because tighter bounds provide

a stronger guarantee for performance, regardless of whether the algorithm has converged

to a solution. To tighten the generalization bounds of the Kernel Perceptron, one approach

is to limit the number of parameters.

2.5 Budget Kernel Perceptron Algorithms

Budget Kernel Perceptrons are a family of algorithms which modify the Kernel

Perceptron to limit the size of the parameters for the model while minimizing the impact

on the accuracy of the model. Budget Kernel Perceptrons are often employed in areas

where computer memory or resources are at a premium, and their modifications are

customized for the requirements of their field. One strategy for Budget Kernel Perceptrons

is to keep a set number of training examples for classification called support vectors, with

specific rules for updating this set over time to maintain its size as the classification

boundary changes. For the base Kernel Perceptron algorithm described in Section 2.2,

every training example is a support vector. An example of a budget update rule is

described in the article “Tracking the best hyperplane with a simple budget Perceptron”,

where the authors describe an update procedure where one support vector is selected at

21

random for each replacement [CCBG07]. Another update rule is to always select the

oldest support vector for replacement, as this support vector may no longer be necessary

for correct classification.

Other strategies minimize the impact of removed support vectors through more

creative means. Dekel, Shalev-Shwartz, and Singer present the Forgetron, where each

support vector is “forgotten” over time by decreasing its impact on the model, which

means that there is always an oldest support vector to be removed with the least influence

on the model [DSSS07]. Another set of strategies include the Projectron and Projectron++

algorithms described by [OKC09], which store both a support set and a projection onto

the support set to reduce the overall size of the model. Both these methods balance model

size with increased classification error compared to the base Kernel Perceptron.

Of these three studies, none discuss or provide proofs of their Budget Kernel

Perceptron’s generalization bounds. The nature and function of Budget Kernel

Perceptrons complements our research in proving generalization error for machine

learning algorithms. Reducing the number of support vectors to a size sufficiently smaller

than the training set slows the growth of the parameter space as the size of the training set

increases. By implementing a Budget Kernel Perceptron, the bounds on the size of the

parameter space can improve the bounds on generalization error compared to the base

Kernel Perceptron algorithm.

2.6 Description Kernel Perceptrons

In contrast to Budget Kernel Perceptrons, another method of encoding the Kernel

Perceptron parameters involves description-length bounds. During training, the Kernel

Perceptron will make some number of mistakes, bounded by some value L. Using L, the

number of support vectors can be capped at less than or equal to the number of mistakes.

This method requires a record of every misclassification made during training. Only

22

training examples that were misclassified are included in the set of support vectors and

used to calculate the hyperplane.

One approach for a Description Kernel Perceptron is described by Cramer, Kandola,

and Singer [CKS03] in their paper, “Online Classification on a Budget.” In their approach,

when a misclassification is made, there are two phases: insertion and deletion. When a

new example is misclassified, this example is inserted into the support set. The algorithm

then examines the entire support set and searches for any redundant support vectors that

are no longer necessary by examining the distance of each support vector from the

decision hyperplane. Examples that are never misclassified are never added to the support

set. This approach blends the Budget and Description Kernel Perceptron, as the authors

prove on paper that the size of their support set is dependent on the margin for

misclassification and distance from the hyperplane, which bounds both the number of

mistakes and the overall size of the support set.

The generalization error for a Kernel Perceptron using description-length bounds is

dependent on the number of misclassifications, which provides a bound on the size of the

parameter space. Cramer, Kandola, and Singer designed their algorithm with

generalization error in mind and provide the generalization error of their algorithm on

experimental data sets [CKS03]. The generalization bounds for a Description Kernel

Perceptron improve on the bounds for the base Kernel Perceptron as long as the number of

mistakes is significantly less than the number of training examples.

2.7 Chapter Summary

This chapter provides the background of this thesis, discussing the Perceptron and

Kernel Perceptron algorithms, as well as variants of the Kernel Perceptron algorithm with

improved generalization bounds. Chapter 3 will next describe my extensions to the

MLCert framework to implement three Kernel Perceptron algorithms: the base Kernel

23

Perceptron algorithm, a Budget Kernel Perceptron, and a Description Kernel Perceptron,

with generalization proofs for each implementation written in Coq.

24

3 Methods

In this chapter, I will describe my methods for implementing the Kernel Perceptron,

Budget Kernel Perceptron, and Description Kernel Perceptron in the MLCert framework.

First, Section 3.1 describes the pipeline in MLCert for building the specifications of

machine learning algorithms. Next, Sections 3.2, 3.3, and 3.4 outline the Coq sections for

each implementation, which consist of a prediction section and an section for the entire

algorithm. The Coq sections for the proofs of these implementations and their extraction

to Haskell follow in Chapter 4.

3.1 Structure of Perceptron Implementations in MLCert

The MLCert framework provides data structures and proofs that can be instantiated

with the specifics of a machine learning algorithm, as well as extraction directives which

facilitate the process of extracting Coq code to Haskell for execution. MLCert requires

four sections in Coq for the complete implementation of a machine learning algorithm.

Before discussing the four required sections, I will first give the structure and type

signature MLCert uses to encode a machine learning algorithm. This module is located in

the file “learners.v”:

Figure 3.1: Learner Module

Module Learner.

Record t (X Y Hypers Params : Type) :=

mk { predict : Hypers→ Params→ X→ Y;

update : Hypers→ X*Y→ Params→ Params }.

End Learner.

25

The Learner module defines the general form of parameters and functions for

machine learning algorithms. Four types are listed in the definition of Learner.t. X, Y,

Hypers, and Params correspond to the types of training data, training labels,

hyperparameters, and parameters, respectively. These four types are used to define the

type signatures for the required predict and update functions. A prediction function

requires Hypers, Params, and a training example to return the predicted label of type Y.

The update function requires Hypers, an example paired with its label, and Params to

return updated Params. This Learner module will later be instantiated with specific types

and functions to implement the Perceptron family of algorithms.

The format of Learner.t is not universal for all machine learning algorithms. For

example, unsupervised learning algorithms do not use training labels, as with the k-means

clustering algorithm. Because the predict function is meant to return a predicted label as

classification, unsupervised algorithms would not be able to be implemented using

Learner.t. However, Learner.t is sufficient for implementing the Perceptron family of

algorithms because Perceptrons are supervised, using labeled training data, and their

prediction and update functions can be written using the specified type signature.

When implementing a machine learning algorithm, there are four required sections in

Coq which organize and define its methods and data structures. The first required Coq

section implements the prediction function according to the type signature of the predict

function in Learner.t. The second section defines the update function for the machine

learning algorithm, as well as instantiating Learner.t with the specific types, prediction,

and update functions for the algorithm. This second section and its Learner.t instantiation

are directly used by the third and fourth sections. Generalization proofs in the third

section prove the cardinality of the Params used by the algorithm as well as the

generalization bounds for the entire algorithm. Finally, the fourth Coq section defines how

the algorithm should be extracted, a process which translates the algorithm in Coq to the

26

functional language Haskell for experimental results. The rest of this chapter describes the

first two Coq sections for each implementation.

3.2 Kernel Perceptron Coq Implementation

The Kernel Perceptron implementation in MLCert is located in the file

“kernelperceptron.v”. Section KernelClassifier contains the predict function for the Kernel

Perceptron. The definition of kernel predict is shown in Figure 3.2:

Figure 3.2: kernel predict function in KernelClassifier

Definition kernel predict (K : float32 arr n→ float32 arr n→ float32)

(w : KernelParams) (x : Ak) : Bk :=

let T := w.1 in

foldable foldM

(λ xi yi r⇒

let: ((i, xi), yi) := xi yi in

let: (j, xj) := x in

let: wi := f32 get i w.2 in

r + (float32 of bool yi) * wi * (K xi xj))

0 T > 0.

The kernel predict function takes three inputs: a kernel function K, the current

Kernel Perceptron parameters w, and an example x of type Ak. The type Ak representing

training data is defined in KernelClassifier as an index paired with an array of 32 bit

floating point values of size n. The type of labels Bk is defined as Boolean. In the

kernel predict function, the kernel function can be specified as one of several kernel

27

functions. KernelClassifier contains two kernel functions corresponding to the linear and

quadratic kernels, as shown in Figure 3.3.

Figure 3.3: Kernel functions in KernelClassifier

Definition linear kernel {n} (x y : float32 arr n) : float32 :=

f32 dot x y.

Definition quadratic kernel (x y : float32 arr n) : float32 :=

(f32 dot x y)2.

The KernelParams for the Kernel Perceptron are defined as the training set paired

with a float32 array of size m, where m is the number of training examples. In the basic

Kernel Perceptron, every training example in the training set is a support vector. The

float32 array in KernelParams is used for the kernel predict calculation of the training

example x’s label, as each float32 value corresponds to a support vector. The

kernel predict function folds over the support vectors in KernelParams so that for each

support vector, the result of the kernel function applied to the support vector and x is

multiplied with the float32 value for the support vector and the label for the support

vector. The result of this calculation is compared with zero to return the predicted Boolean

label for x.

The Coq section KernelPerceptron completes the Kernel Perceptron implementation,

containing the kernel update function and instantiating Learner.t with the Kernel

Perceptron parameters and functions. The kernel update function is defined in Figure 3.4.

Using the kernel predict function and kernel function K, kernel update compares the

predicted label to the actual label. If the predicted label is correct, the parameters p are

returned without change. However, if the predicted label is incorrect, the float32 array is

updated so that the float32 value for that training example is incremented by one.

28

Figure 3.4: kernel update function in KernelPerceptron

Definition kernel update

(K : float32 arr n→ float32 arr n→ float32)

(h:Hypers) (example label:A*B) (p:Params) : Params :=

let: ((i, example), label) := example label in

let: predicted label := kernel predict K p (i, example) in

if Bool.eqb predicted label label then p

else (p.1, f32 upd i (f32 get i p.2 + 1) p.2).

With kernel update implemented, Learner.t can be instantiated with the necessary

types and functions. As the Kernel Perceptron does not use hyperparameters in its

algorithm, the type Hypers is defined as the empty unit record. The Kernel Perceptron

Learner can be defined as follows in Figure 3.5. The variable K is the generic type of the

kernel function, and F provides a proof that the support vectors are a Foldable type,

compatible with the parameter definitions in the Kernel Perceptron functions. This

Learner definition is used in the other two Kernel Perceptron sections which will be

discussed in Sections 4.1.1 and 4.2.1.

Figure 3.5: Learner Definition in KernelPerceptron

Definition Learner : Learner.t A B Hypers Params :=

Learner.mk

(λ ⇒ @kernel predict n m support vectors F K)

(kernel update K).

29

3.3 Budget Kernel Perceptron Coq Implementation

The Budget Kernel Perceptron is also located in the file “kernelperceptron.v” in

MLCert. The predict function is located in the section KernelClassifierBudget, and

modifies the Kernel Perceptron predict function so that a budget on the size of the set of

support vectors can be enforced. In KernelClassifierBudget, the variable sv is the size of

the support set. As opposed to the KernelParams which contain the entire training set and

a float32 array, the parameters for the Budget Kernel Perceptron are built as an

axiomatized vector of size sv containing support vectors paired with a float32 value for

that support vector. Axiomatized vectors are defined with extraction to Haskell lists in

mind. The definition of the type of support vectors and the type of the support set are

given in Figure 3.6.

Figure 3.6: Support Vector Definitions in KernelClassifierBudget

Definition bsupport vector: Type := Akb * Bkb.

Definition bsupport vectors: Type := AxVec sv (float32 * (bsupport vector)).

The predict function for the Budget Kernel Perceptron shown in Figure 3.7 is very

similar to Kernel Perceptron prediction, with the main difference being the size of the

support set. Again, the kernel function K used in prediction can be specified as any kernel

function with the correct type signature. Like kernel predict, kernel predict budget folds

over the support set with the same calculation as in kernel predict. However, the type of

the training data, Akb, is different for the Budget Kernel Perceptron. Akb is defined as a

float32 array of size n, which is the dimensionality of the data, and does not need an index

for each example for Budget classification.

30

Figure 3.7: kernel predict budget function in KernelClassifierBudget

Definition kernel predict budget

(w: bsupport vectors)

(x: Akb) : Bkb :=

foldable foldM

(λ wi xi r⇒

let: (wi, (xi, yi)) := wi xi in

r + (float32 of bool yi) * wi * (K xi x))

0 w > 0.

The Budget Kernel Perceptron implementation is located in the module

KernelPerceptronBudget, and this module contains several functions necessary for the

budget update rule to maintain the size of the support set. The update rule for the Budget

Kernel Perceptron is more complex than the Kernel Perceptron. If the current example has

been misclassified, we first need to determine if this example is already a support vector.

If the example is a support vector, then the float32 value associated with this support

vector should be incremented by one. However, if this example is not a support vector,

then we need to add this example to the support set and remove a support vector. As

discussed in Section 2.5, there are several methods for selecting the support vector to be

removed. In our implementation, we choose the oldest support vector with respect to

when it was added to the support set, as removing this support vector will likely have the

least impact on the decision hyperplane. When a new example is added to the support set,

it is added on to the front of the vector, while the support vector at the end of the vector is

removed. This replacement procedure ensures that the oldest support vector is always

stored at the end of the vector for safe removal. The logic for the kernel budget update rule

31

is defined in the function budget update shown in Figure 3.8. In the update for the Budget

Kernel Perceptron called kernel update shown in Figure 3.9, the update rule used is the

generic function U so that the budget update rule can be changed.

Figure 3.8: budget update function in KernelPerceptronBudget

Definition budget update (p: Params) (yj: A*B): Params :=

if existing p yj then upd weights p yj.1

else add new p yj.

Figure 3.9: kernel update function in KernelPerceptronBudget

Definition kernel update

(K : float32 arr n→ float32 arr n→ float32)

(h:Hypers) (example label:A*B) (p:Params) : Params :=

let: (example, label) := example label in

let: predicted label := kernel predict budget K p example in

if Bool.eqb predicted label label then p

else (U p example label).

Finally, Learner.t can be instantiated using kernel predict budget and kernel update.

No hyperparameters are used for the Budget Kernel Perceptron, again implemented as the

empty record. K and F are defined in the same way as the Kernel Perceptron to specify

the type of the kernel function and provide a proof that the support vectors are Foldable.

Figure 3.10 shows the Budget Kernel Perceptron’s Learner definition that is used in the

proof and extraction sections of 4.1.2 and 4.2.1, respectively.

32

Figure 3.10: Learner Definition in KernelPerceptronBudget

Definition Learner : Learner.t A B Hypers Params :=

Learner.mk

(λ ⇒ @kernel predict budget n (S sv) K F)

(kernel update K).

3.4 Description Kernel Perceptron Coq Implementation

The Description Kernel Perceptron is the final implementation located in

“kernelperceptron.v”. Many of its functions and definitions modify the Budget Kernel

Perceptron, as both implementations use a fixed number of support vectors less than the

number of training examples. The first major change for the Description Kernel

Perceptron is the definition of its parameters. Figure 3.11 lists the definitions necessary to

create dparams, the Description parameters. The definition of support vectors is the same

as for the Budget Kernel Perceptron, relying on Akd and Bkd, which define the type of

training examples and labels, respectively. However, the set of support vectors,

dsupport vectors, is simply an axiomatized vector containing des support vectors, where

des is the maximum number of misclassifications. The parameters for the Description

Kernel Perceptron are the set of support vectors paired with a float32 value, which keeps

track of the number of misclassifications.

Figure 3.11: Parameter Definition in KernelClassifierDes

Definition dsupport vector: Type := Akd * Bkd.

Definition dsupport vectors: Type := AxVec des dsupport vector.

Definition dparams: Type := float32 * dsupport vectors.

33

Prediction for the Description Kernel Perceptron is also very similar to the Budget

Kernel Perceptron, but the calculation is simpler. The kernel predict des function is

shown in Figure 3.12. There are no float32 values paired with individual support vectors

in dparams, as each support vector has the same weight. The reason for this will be shown

in the kernel update des function. Once the float32 value is separated from the set of

support vectors, the calculation over the support vectors is the same as the Budget Kernel

Perceptron.

Figure 3.12: kernel predict des function in KernelClassifierDes

Definition kernel predict des

(aw: dparams)

(x: Akd) : Bkd :=

let (a, w) := aw in

foldable foldM

(λ wi xi r⇒

let: (xi, yi) := wi xi in

r + (float32 of bool yi) * (K xi x))

0 w > 0.

The update procedure for the Description Kernel Perceptron is likewise simplified

from the Budget Kernel Perceptron. The Description Kernel Perceptron can make a

maximum of des mistakes. When a misclassification occurs, the float32 value in dparams

is compared to a hyperparameter alpha, which is set to the maximum number of

misclassifications. If the Description Kernel Perceptron has already made the maximum

number of mistakes, then the parameters are not updated for the rest of training. However,

if the float32 value is not equal to alpha, then the des update function runs using the

34

current parameters and the misclassified example. As described in Figure 3.13, the

des update function increments the float32 value by one to update the number of

misclassifications. The misclassified example is added onto the front of the support set,

and a zero example is removed. The parameters are initialized with des zero vectors, and

as misclassfications occur, these zero vectors are replaced. For this update procedure, if an

example is misclassified multiple times, multiple copies of the support vector will be

added to the support set, increasing its influence on the hyperplane without using a float32

value per support vector. The full Description Kernel Perceptron is in 3.14.

Figure 3.13: des update function in KernelPerceptronDes

Definition des update (ap: Params) (yj: A*B): Params :=

let (a, p) := ap in

((f32 add f32 1 a), (AxVec cons yj) (AxVec init p)).

Figure 3.14: kernel update function in KernelPerceptronDes

Definition kernel update

(K : float32 arr n→ float32 arr n→ float32)

(h:Hypers) (example label:A*B) (ap:Params) : Params :=

let: (example, label) := example label in

let: (a, p) := ap in

let: predicted label := kernel predict des K ap example in

if Bool.eqb predicted label label then ap

else if f32 eq a (alpha h) then ap

else des update ap example label.

35

Using these definitions, a Learner instantiation can be created, as shown in Figure

3.15.

Figure 3.15: Learner Definition in KernelPerceptronDes

Definition Learner : Learner.t A B Hypers Params :=

Learner.mk

(λ ⇒ @kernel predict des n (S des) K F’)

(@kernel update K).

3.5 Chapter Summary

This chapter describes the implementation of the Kernel Perceptron, Budget Kernel

Perceptron, and Description Kernel Perceptron in Coq. The Learner.t definitions for each

of the algorithms ensure that these implementations are correctly formatted for the rest of

the MLCert framework. Using the definitions in this chapter, Chapter 4 will discuss proofs

and Haskell extraction.

36

4 Proofs and Experimental Results

The results of my research include proofs and experimental performance for the

implementations described in Chapter 3. This chapter consists of two sections, one for

generalization proofs and the other describing extraction and performance. Generalization

proofs for the three Kernel Perceptron variants can be found in subsections 4.1.1, 4.1.2,

and 4.1.3. The experiments run on the Kernel Perceptron variants were designed with

three main questions in mind, including the difference between experimental and

empirical generalization error, the generalization error and runtimes of the

implementations on both real and synthetic datasets, and the difference in runtime

between the Haskell implementations and unverified implementations in Python, the

language most commonly used for machine learning research and applications. The

extraction directives from Coq to Haskell for the three implementations are detailed in

subsection 4.2.1. Subsections 4.2.2, 4.2.3, 4.2.4 describe the testing methodology for three

datasets that were used to evaluate the experimental generalization error and analyze the

runtime of training and testing each implementation. Finally, in subsection 4.2.5, the

trends and results seen across datasets and implementations are outlined. The conclusions

and future work for this research follow in Chapter 5.

4.1 Generalization Proofs

In the MLCert framework, much of the proof burden has been automated. For a new

Learner representing a machine learning algorithm, there are two new lemmas that need to

be proven. The first lemma proves the cardinality of the parameters used by the algorithm,

which corresponds to the size of the parameter space. The second lemma applies the first

in order to prove a generalization bound for the Learner as a whole. An example of the

second lemma for a generic Learner is shown in Figure 4.1.

37

Figure 4.1: Generalization Bound for a generic Learner

Lemma Learner bound eps (eps gt0 : 0 < eps) init :

@main A B Params Hypers Learner

hypers m m gt0 epochs d eps init (λ ⇒ 1) ≤

#|Params| * exp (−2%R * epsˆ2 * mR m).

The definition of main which is used in Figure 4.1 can be found in the file

“learners.v”. Once main has been instantiated with the specifics of the Learner, such as its

particular Params and Hypers, there are proofs in “learners.v” such as the lemma

main bound which provide the machinery necessary to prove this inequality over the real

numbers. As described by Bagnall and Stewart [BS19], MLCert uses Hoeffding’s

inequality, a type of Chernoff bound, to prove the generalization bound for a Learner.

Most of the variables found in the Learner bound proof can be found in the Learner.t

instantiation, but eps is not part of the implementation. The value eps is the difference

between expected accuracy and empirical accuracy, which is usually a value between zero

and one. The specific value of eps is chosen to ensure that the resulting bound is

nontrivial, as a bound greater than one is no longer useful for bounding generalization

error. In the following subsections, the lemmas proving the generalization bounds for the

Kernel Perceptron, Budget Kernel Perceptron, and Description Kernel Perceptron will be

discussed.

4.1.1 Kernel Perceptron Generalization Proofs

The bound for the Kernel Perceptron relies on the size of the parameter space. As

proven in the lemma K card Params in the section KernelPerceptronGeneralization, the

cardinality of the parameters for the Kernel Perceptron is shown in Equation 4.1. This

38

power of two is calculated by unfolding the definition of Params, which consists of the

training set and a float array of size m. As all values are floating point numbers stored in

32 bits, the cardinality of a single floating point number is 232. Therefore, as the

dimensions of the training set are equal to m training examples multiplied by n

dimensions, the cardinality of the training set is equal to 2m∗n∗32. The cardinality of a float

array of size m is 2m∗32.

#|Params| = 2(m∗n∗32+m∗32) (4.1)

Kcard Params is central to the proof of the generalization bounds of the Kernel

Perceptron in the lemma KPerceptron bound, which is defined in Figure 4.2. The

generalization bound for the Kernel Perceptron is very loose, as growth in the size of the

training set causes exponential growth in the generalization error. This limits the

usefulness of the Kernel Perceptron’s generalization bound, as a loose generalization

bound provides few guarantees of performance or correctness. However, the Kernel

Perceptron bound serves as a baseline for the generalization bounds of the Budget Kernel

Perceptron and the Description Kernel Perceptron.

Figure 4.2: Generalization Bound for the Kernel Perceptron

Lemma Kperceptron bound eps (eps gt0 : 0 < eps) init :

@main A B Params KernelPerceptron.Hypers

(@KernelPerceptron.Learner n m KPsupport vectors H K)

hypers m m gt0 epochs d eps init (λ ⇒ 1) ≤

2ˆ(m*n*32 + m*32) * exp (−2%R * epsˆ2 * mR m).

39

4.1.2 Budget Kernel Perceptron Generalization Proofs

The Budget Kernel Perceptron has a similar bound on the cardinality of the

parameter space. However, the parameter space for the Budget Kernel Perceptron is not

dependent on m, the size of the training set, whatsoever. Instead, the parameter space

relies on the size of the support set. In code and proofs, the size of the support set is listed

as (S sv), which is equivalent to sv + 1. The successor of sv is used so that the budget

update procedure is always possible regardless of the value of sv, as there will be at least

one support vector able to be replaced.

Like the Kernel Perceptron, the Budget Kernel Perceptron stores the support set and a

float array. The float array is of size (S sv), so its cardinality is 232∗(S sv). The support set

stores (S sv) training examples, which consist of one float value for each of the n

dimensions of the data, plus a Boolean value for the label of the support vector. Therefore,

the cardinality of each training example in the support set is 21+n∗32. The full cardinality of

the Budget Kernel Perceptron Params is given in Equation 4.2. The lemma proving this

bound is found in the section KernelPerceptronGeneralizationBudget, named

Kcard Params Budget.

#|Params| = 2((32∗(S sv)+((1+n∗32)∗(S sv)))) (4.2)

Figure 4.3 shows the lemma for the generalization bound of the Budget Kernel

Perceptron, which uses Kcard Params Budget in its proof. The INR term before the

cardinality of the parameter set is an injection from the encoding of natural numbers to the

real numbers as part of the proof of this bound. Comparing the bound of the Budget

Kernel Perceptron to the Kernel Perceptron, the overall structure of the two bounds is

similar when the number of training examples is the same. However, because the support

40

set can be significantly smaller than the number of training examples, the Budget Kernel

Perceptron’s bound grows much less slowly than that of the base Kernel Perceptron.

Figure 4.3: Generalization Bound for the Budget Kernel Perceptron

Lemma Kperceptron bound budget eps (eps gt0 : 0 < eps) init :

@main A B Params KernelPerceptronBudget.Hypers

(@KernelPerceptronBudget.Learner n sv F K U)

hypers m m gt0 epochs d eps init (λ ⇒ 1) ≤

INR 2ˆ((32*(S sv) + ((1 + n * 32)*(S sv)))) * exp (−2%R * epsˆ2 * mR m).

4.1.3 Description Kernel Perceptron Generalization Proofs

The generalization bound for the Description Kernel Perceptron is similar to that of

the Budget Kernel Perceptron. First, we must define the cardinality of the parameter space

used by the Description Kernel Perceptron. The parameters store a single float32 value

paired with (S des) support vectors. The successor of des is used as the size of the support

set, so that support vector replacement is always possible. Like with the Budget Kernel

Perceptron, the cardinality of each support vector in the support set is 21+n∗32, which stores

a single Boolean label as well as n float32 values. However, because there is not a float

value for every support vector, only the cardinality of a single float32 must be added to the

cardinality of the entire support set. The cardinality of the Description parameters is

shown in Equation 4.3.

#|Params| = 2((32+((1+n∗32)∗(S des)))) (4.3)

Figure 4.4 shows the generalization bound of the Description Kernel Perceptron in

the lemma Kperceptron bound Des. This bound is similar to the bound of the Budget

41

Kernel Perceptron, but is tighter because there is only one float32 value instead of a

float32 value per support vector. This small difference means that if the budget is the same

as the number of mistakes for a specific dataset, the Description Kernel Perceptron will

have a lower bound.

Figure 4.4: Generalization Bound for the Description Kernel Perceptron

Lemma Kperceptron bound Des eps (eps gt0 : 0 < eps) init :

@main A B Params KernelPerceptronDes.Hypers

(@KernelPerceptronDes.Learner n des F K)

hypers m m gt0 epochs d eps init (λ ⇒ 1) ≤

INR 2 ˆ (32 + (1 + n * 32) * (S des)) * exp (−2%R * epsˆ2 * mR m).

4.2 Haskell Extraction and Performance Experiments

In order for the Coq implementations to be run, these implementations must be

extracted to Haskell. The file “extraction hs.v” contains extraction directives for Haskell

so that some Coq functions and data structures are extracted properly. The last Coq

module for each implementation uses the extractible main definition, found in

“learners.v”, to also provide the necessary machinery that Learner.t relies on. The

extracted Coq code is written to two sets of Haskell files located in the directory

hs/KernelPerceptron/ in MLCert.

The extracted Haskell code for a machine learning algorithm does not contain code to

initialize the system with training and testing data or functions to display accuracy and

generalization error results to the user. Unverified Haskell drivers have been written for

these implementations, which include the extracted Haskell code as a module. The

42

Haskell drivers for the Kernel Perceptron implementations can also be found in the

hs/KernelPerceptron/ directory.

4.2.1 Details of Haskell Extraction

The extraction directives for the Kernel Perceptron can be found in the section

KPerceptronExtraction in the file “kernelperceptron.v”. This section extracts the Kernel

Perceptron to the Haskell file “KPerceptron.hs”, a Haskell module that can be included by

a Haskell driver program. This file is extracted to the two locations in MLCert where

Haskell driver programs reside: hs/KernelPerceptron/ and

hs/KernelPerceptron/timing drivers/. The Budget Kernel Perceptron and Description

Kernel Perceptron each have their own extraction directives to extract

“KPerceptronBudget.hs” and “KPerceptronDes.hs” to these same locations.

There are four different kinds of Haskell driver programs for a variety of different

purposes. All driver programs report the training accuracy, test accuracy, and

generalization error for the dataset run by that driver. Several also print the model

produced by training. The drivers are differentiated by their file names, which identify the

purpose of the drivers.

“KPerceptronXOR.hs” tests that the Kernel Perceptron using a quadratic kernel can

classify the XOR function with 100% accuracy. The linear kernel cannot be used because

the XOR function is not linearly separable. The four samples for this function are

specified in the driver, along with the quadratic kernel for the prediction function. When

run, this driver demonstrates that the Kernel Perceptron behaves as expected with the

quadratic kernel and is able to classify data that is not linearly separable. This is the only

driver that uses nonlinear data and a nonlinear kernel function for prediction.

Each implementation has a driver that generates a new linearly separable dataset

using a random number generator to test that the implementation can execute. These

43

drivers have Test in their file names and first randomly generating n floating point values

between negative one and one to determine a linear hyperplane. Training and testing

examples are generated by this method and classified using the hyperplane, creating a

synthetic dataset that is linearly separable by construction. These synthetic datasets test

that the implementations have been set up correctly and can classify linear data. However,

because the datasets are generated differently for each run of the program, these drivers

cannot be used to compare implementations.

To compare the accuracy of an implementation on a specific dataset, each

implementation has a driver which reads a dataset from files and performs training and

testing. These drivers have RunFile in their file names. The drivers require that the input

dataset be stored in two files, one containing the training set and the other containing the

test set. The dataset files must also be formatted with one example per line and values

separated by commas. The first value of the line must be a positive unique integer, which

is used by the Kernel Perceptron to differentiate between the training examples for

updates. The last value must be either True or False, corresponding to the label for the

example. As long as the dataset files are formatted correctly, the driver will train and test

on this dataset and report the accuracy and generalization error for this dataset. Only one

dataset is run by this driver.

Finally, to time the execution of training and testing on a dataset, drivers with FileIO

in their name read in one or more datasets. The FileIO drivers run training and testing five

times and report the time in seconds. Each implementation has a FileIO driver which can

run multiple datasets with varying dimensions. The drivers do not time reading the dataset

files and use the same data format as the RunFile drivers.

In the following subsections, I will detail my testing methodology on three datasets,

two real datasets downloaded from the UCI Machine Learning Repository [DG17] and a

synthetic dataset created from randomly generated linear hyperplanes. The Iris Data Set

44

[Fis36] and Sonar Mines vs. Rocks Data Set [SG88] were formatted to be more easily

read into the driver programs. Each of the following subsections describes the dataset

under test, the experimental setup and drivers used, the calculated generalization error,

and the timing results for training and testing.

4.2.2 Synthetic Dataset Performance Results

A synthetic dataset was created specifically to test the performance of the Kernel

Perceptron and its variants. There are 20 independent trials in this dataset with training

and testing sets based on randomly generated data separated by a randomly oriented linear

hyperplane. Each trial contains 1000 training examples and 1000 test examples, each with

three dimensions. These datasets were created by recording and formatting the output of

20 runs of “KPerceptronTest.hs”.

Because the Kernel Perceptron variants are all deterministic, the generalization error

results were found using the RunFile driver for each implementation. All implementations

ran for five epochs. The Budget Kernel Perceptron limited the size of the support set to

100 examples, 10% of the training set, and the Description Kernel Perceptron was

similarly limited to 100 mistakes.

The generalization error of the three implementations is graphed in Figure 4.5. The

Kernel Perceptron and Budget Kernel Perceptron have the same training and testing error

for all 20 synthetic trials, while the Description Kernel Perceptron tends to have slightly

worse training and testing accuracy and increased generalization error on some trials. The

greatest observed generalization error is 1.4% for the Description Kernel Perceptron in

Trial 8.

Table 4.1 provides statistics across the synthetic trials for average training and testing

accuracy and generalization error, along with the 95% confidence interval for each

implementation. Because the Kernel Perceptron and Budget Kernel Perceptron had the

45

same performance across all trials, their averages and confidence interval are the same.

The Description Kernel Perceptron’s averages reflect its tendency to have lower accuracy

and increased generalization error, and its confidence interval is larger than the other two

implementations. For many of these trials, the Description Kernel Perceptron would

require several more mistakes to have the same performance as the Kernel Perceptron and

Budget Kernel Perceptron.

Using the generalization bounds as proven in Section 4.1, the number of training

examples, dimensionality of the data, and size of the support set can be input to determine

if the observed generalization error compares to the calculated bound. Table 4.2 shows the

generalization bound for the two extreme values of eps, which are greater than zero and

less than or equal to one. Unfortunately, for both of these values, all the implementations

have vacuous bounds far greater than one. With the settings used in the above

experiments, the calculated generalization bounds are unable to be compared to the

observed generalization error.

Worse still is the fact that the Kernel Perceptron always produces vacuous bounds.

Because all training examples are support vectors, the smallest possible training set is a

single example. The smallest possible dimensionality of data is one dimensional.

Therefore, the generalization bound for the smallest possible dataset of a single

one-dimensional training example stored as a float32 value is shown in Equation 4.4. This

bound is calculated to be 1.84467E+19 for eps = 0.001 and 2.49650E+18 for eps = 1. The

bound becomes even more vacuous as the dimensionality of the data and number of

examples increases. Because of this, the Kernel Perceptron cannot be used to compare

calculated generalization error to generalization error observed in experiments.

2(m∗n∗32+m∗32) ∗ e−2∗eps2∗m = 2(1∗1∗32+1∗32) ∗ e−2∗eps2∗1 = 264 ∗ e−2eps2
(4.4)

46

Figure 4.5: Synthetic Generalization Error

Table 4.1: Average Synthetic Generalization Error and Confidence Intervals

KP Budget KP Description KP

Average Training Accuracy 98.61% 98.61% 96.915%

Average Testing Accuracy 98.58% 98.58% 96.87%

Average Generalization Error 0.39% 0.39% 0.565%

95% Confidence Interval 0.001435352 0.001435352 0.001539834

Table 4.2: Synthetic Generalization Bound Calculations

KP Budget KP Description KP

Training Examples 1000 1000 1000

Dimensionality 3 3 3

Support Vectors 1000 100 100

eps = 0.001 6.89567E+38531 1.93230E+3883 4.19807E+2929

eps = 1 1.78025E+37663 4.98862E+3014 1.08381E+2061

47

To determine if the Budget Kernel Perceptron and Description Kernel Perceptron

produce nonvacuous bounds, different support set sizes and values of eps were input into

their generalization bounds. With the settings listed in Table 4.3, nonvacuous bounds were

found for both variants. The synthetic dataset was used to evaluate the effect of a limited

budget for the Budget Kernel Perceptron and a limited number of mistakes for the

Description Kernel Perceptron. Both implementations have a generalization bound of

about 9% for a three-dimensional dataset containing one thousand training examples and

two support vectors or mistakes for Budget and Description, respectively. To produce

these values, eps must be set to 0.301 for the Budget Kernel Perceptron and 0.282 for the

Description Kernel Perceptron. The generalization error produced by these

implementations with limited budget and mistakes is graphed in Figure 4.6. Overall, the

training and testing accuracy for both implementations is far lower than the accuracy

produced with larger support sets, but the difference between training and testing accuracy

remains small. The greatest observed generalization error observed for the Budget Kernel

Perceptron is 5.7% and for the Description Kernel Perceptron is 4.8%, well below the 9%

calculated bound, which validates the theoretical bound proven in Coq for these

implementations.

The runtimes of the three implmentations were also evaluated to compare training

and testing performance. The runtime for each trial was tested five times to determine

average training and testing. Figure 4.7 shows the synthetic timing results for the Kernel

Perceptron. All runtimes were around 200 seconds, with little variation between trials.

The averages for each trial and their 95% confidence intervals are listed in Table 4.4.

The Budget Kernel Perceptron and Description Kernel Perceptron execute much

faster than the Kernel Perceptron because their models are significantly smaller. Figure

4.8 shows the synthetic timing results for these two implementaitons. The Budget Kernel

Perceptron took around 0.35 seconds to train and test, while the Description Kernel

48

Figure 4.6: Synthetic Generalization Error using Limited Budget and Mistakes

Table 4.3: Synthetic Generalization Error and Confidence Intervals using Limited Budget
and Mistakes

Budget KP Description KP

Training Examples 1000 1000

Dimensionality 3 3

Support Vectors 2 2

eps 0.301 0.282

Calculated Bound 9.35% 9.10%

Greatest Observed Generalization Error 5.7% 4.8%

Average Training Accuracy 76.89% 78.625%

Average Testing Accuracy 76.6% 78.11%

Average Generalization Error 1.79% 1.805%

95% Confidence Interval 0.005794861 0.007007097

49

Perceptron took around 0.29 seconds. The Description Kernel Perceptron has the smallest

model of the three implementations, causing it to have the fastest runtime. Table 4.4

shows the averages and confidence intervals for each trial.

The confidence intervals for the Kernel Perceptron trials are much larger than the

Budget and Description Kernel Perceptron trials because the runtimes for the Kernel

Perceptron vary by seconds, as opposed to hundredths of seconds for the Budget and

Description Kernel Perceptrons. These runtimes show that it is possible for the Budget

and Description Kernel Perceptrons to have the same or similar accuracy as the Kernel

Perceptron while training and testing in a shorter amount of time.

The timing analysis of the Kernel Perceptron variants on the same datasets

demonstrates how the runtimes for training and testing compare against implementations

in the same language. However, because Haskell is not commonly used for machine

learning tasks, the previous timing results do not indicate how the Haskell

implementations compare against implementations in another language. Python is

currently one of the languages of choice for machine learning research and applications

because of libraries such as Numpy and Scipy that optimize scientific computing and

machine learning algorithms. To compare the performance of Haskell to Python, the

Budget Kernel Perceptron was chosen to be implemented in Python because it tends to

have higher accuracy than the Description Kernel Perceptron with less required resources

than the Kernel Perceptron.

Two unverified Python scripts were written to be run on synthetic data. The first

script, “BudgetPython.py”, is close to a direct translation of the Haskell implementation

into Python without modifications to improve performance in Python. This script will be

referred to as the naive Python implementation. Many of the function and variable names

were kept the same and the overall data structures and steps are the same. However,

several changes were necessary. For example, the Haskell implementation uses 32-bit

50

Figure 4.7: Kernel Perceptron Synthetic Timing

Figure 4.8: Budget and Description Kernel Perceptron Synthetic Timing

51

Table 4.4: Synthetic Average Runtimes (Seconds) and Confidence Intervals

Trial KP 95% CI Budget KP 95% CI Description KP 95% CI

1 199.943 3.17258 0.3498 0.05499 0.2946 0.05606

2 202.025 2.44561 0.3436 0.05116 0.2938 0.05499

3 202.145 2.78125 0.345 0.05245 0.2932 0.05529

4 200.901 2.62953 0.3456 0.05263 0.294 0.05441

5 202.012 2.97056 0.3468 0.05351 0.2946 0.05557

6 201.786 2.46189 0.3504 0.05567 0.2944 0.05666

7 199.996 2.66681 0.3484 0.05175 0.2934 0.05422

8 201.455 3.07707 0.3532 0.05527 0.295 0.05440

9 201.362 2.92524 0.3482 0.05479 0.2936 0.05558

10 202.546 2.92950 0.3502 0.05332 0.2938 0.05452

11 200.051 2.58570 0.3502 0.05332 0.2942 0.05432

12 200.609 3.10256 0.3486 0.05215 0.294 0.05537

13 200.479 3.28990 0.3492 0.05331 0.2948 0.05647

14 203.655 3.41870 0.3444 0.05226 0.2934 0.05323

15 202.866 4.18980 0.3462 0.05384 0.294 0.05489

16 201.827 3.75820 0.358 0.05232 0.295 0.05587

17 200.627 3.80374 0.3492 0.05333 0.2942 0.05528

18 202.409 3.09442 0.3492 0.05381 0.2938 0.05450

19 201.203 2.51938 0.3476 0.05410 0.2938 0.05646

20 201.605 2.93406 0.3498 0.05351 0.295 0.05442

52

floating point values, but the naive Python implementation uses the built-in float type,

which is 64-bit. Instead of recursion or folds, the naive Python implementation uses for

loops to iterate through the parameters or the training and testing sets. Finally, the Python

scripts do not use global variables, which are used in the Haskell driver files to specify the

size and shape of the training set, so that multiple shapes and sizes of data sets can be run

by the same functions. These changes simplify the Budget Kernel Perceptron

implementation while not changing many of the underlying functions and data structures.

The second script, “BudgetPythonNumpy.py”, improves on the naive Python

implementation by using Numpy data structures and functions. Several types were

modified to be more compatible with Numpy, such as the type of parameters. Instead of a

list of tuples, where each tuple contains the float32 value, data, and label for a support

vector, the Numpy Python implementation uses a tuple containing three Numpy arrays, so

that the float32 values, data, and labels are in separate arrays. This change to the structure

of the parameters makes vectorization much easier and facilitated the use of Numpy

functions for computation. The Numpy Python and naive Python implementations

produce the same results for accuracy and generalization error, but through calculations

with different structures.

For both scripts, the timing procedure in Python was the same as in Haskell. For each

trial of the synthetic dataset, the file input to read and format the dataset was not timed, but

training and testing were timed five times to average the results. For each trial, the training

and testing accuracy was compared to the Haskell implementation to ensure that all three

Budget Kernel Perceptron implementations produced the same generalization error.

Figure 4.9 and Table 4.5 display the results of timing the Python implementations on

the same datasets as the Budget Haskell implementation. The Haskell implementation was

faster than both of the Python implementations training on the same synthetic datasets.

The Numpy Python implementation was faster than the naive Python due to vectorization

53

Table 4.5: Python Budget Kernel Perceptron Runtimes and Confidence Intervals

Trial Budget 95% CI Naive 95% CI Numpy 95% CI

Haskell Python Python

1 0.3498 0.05499 0.82 0.00139 0.4266 0.00380

2 0.3436 0.05116 0.8216 0.00220 0.4024 0.00078

3 0.345 0.05245 0.819 0.00107 0.4088 0.00073

4 0.3456 0.05263 0.8198 0.00169 0.4208 0.00073

5 0.3468 0.05351 0.8216 0.00274 0.4236 0.00048

6 0.3504 0.05567 0.822 0.00107 0.4218 0.00073

7 0.3484 0.05175 0.8206 0.00118 0.4218 0.00114

8 0.3532 0.05527 0.8248 0.00209 0.4192 0.00243

9 0.3482 0.05479 0.82 0.00107 0.4146 0.00078

10 0.3502 0.05332 0.8232 0.00157 0.4184 0.00048

11 0.3502 0.05332 0.822 0.00196 0.421 0.00062

12 0.3486 0.05215 0.8206 0.00147 0.4188 0.00114

13 0.3492 0.05331 0.8232 0.00293 0.4326 0.00048

14 0.3444 0.05226 0.819 0.00164 0.396 0.00206

15 0.3462 0.05384 0.8234 0.00202 0.4136 0.00078

16 0.358 0.05232 0.8236 0.00237 0.4104 0.00048

17 0.3492 0.05333 0.8208 0.00073 0.4204 0.00133

18 0.3492 0.05381 0.82 0.00164 0.424 0.00062

19 0.3476 0.05410 0.818 0.00186 0.4226 0.00048

20 0.3498 0.05351 0.819 0.00186 0.4222 0.00073

54

and Numpy functions, although the Numpy Python implementation was more variable in

times across trials than the naive Python implementation. The Python implementations

validate that our Haskell implementations are not only comparable to the runtimes of

Python implementations, but are slightly faster.

4.2.3 Iris Dataset Performance Results

The Iris Dataset [Fis36] contains 150 examples of four-dimensional data which

represents 50 members each of three Iris species: Iris Setosa, Iris Versicolour, and Iris

Virginica. Iris Setsosa is linearly separable from Iris Versicolour and Iris Virginica when

Iris Versicolour and Iris are combined into a single class. This dataset is not divided into a

training set and a testing set, which is required for determing generalization error as the

difference between training and testing accuracy. To divide this dataset into a training set

and a testing set, a random number generator was used to place each example either into

the training set or the testing set. Two splits were used for this division, one with roughly

50% training examples (77) and 50% testing examples (73), and another with roughly 75%

training examples (113) and 25% testing examples (37). These ratios were chosen to see if

an increased number of training examples also increases the training and testing accuracy.

Once each training example was divided into separate training and testing files, each

file was further formatted to replace the original labels of the dataset with Boolean values.

Iris-setsosa was replaced with True, and both Iris-versicolour and Iris-virginica were

replaced with False. A unique integer identifier was also added to the front of each

example to conform to the specifications for file IO. With these preprocessing steps, the

Iris data could be run by the Kernel Perceptron variants.

The generalization error results for the two Iris datasets were found using the RunFile

driver for each implementation. All implementations ran for five epochs. The Budget

Kernel Perceptron limited the size of the support set to 10% of the training set, and the

55

Figure 4.9: Python and Haskell Budget Kernel Perceptron Synthetic Timing

Table 4.6: Iris 50/50 Dataset Observed and Calculated Generalization Error

Kernel Perceptron Budget KP Description KP

Training Examples 77 77 77

Testing Examples 73 73 73

Dimensionality 4 4 4

Support Vectors 77 7 7

Training Accuracy 100% 100% 100%

Testing Accuracy 100% 100% 100%

Generalization Error 0% 0% 0%

eps = 0.001 3.08674E+3036 6.76113E+271 1.07711E+214

eps = 1 4.05710E+2969 8.88660E+204 1.41572E+147

56

Description Kernel Perceptron was similarly limited to 10% of the size of the training set

for the number of mistakes.

The results for the 50/50 split of the Iris dataset are shown in Table 4.6. All

implementations had perfect training and testing accuracy, with zero generalization error.

However, all of the implementations had vacuous bounds for this dataset, as no setting of

eps produced a bound less than one. The results for the Iris 75/25 split are shown in Table

4.7. All implementations again had perfect training and testing accuracy, with no

generalization error, and no implementation had nonvacuous bounds.

The timing results for the Iris datasets are shown in Figure 4.10. As with the

synthetic dataset, the Kernel Perceptron took significantly longer to train and test than the

Budget and Description Kernel Perceptrons, with the Description Kernel Perceptron

slightly faster to train and test than the Budget Kernel Perceptron. Table 4.10 presents

average runtimes and confidence intervals for the Iris datasets.

Figure 4.10: Iris Data Set Timing

57

4.2.4 Sonar Mines vs. Rocks Dataset Performance Results

The Sonar Mines vs. Rocks Dataset contains 208 examples of 60-dimensional data,

representing sonar pings of either underwater explosive mines or roughly cylindrical

rocks. This dataset is linearly separable. Like the Iris dataset, the Sonar dataset is not

divided into a training set and testing set. Using the same method as the Iris dataset, two

Sonar datasets were created with a roughly 50/50 split training and testing (116/92) and a

roughly 75/25 split (157/51). The Sonar datasets were further preprocessed by adding a

unique integer identifier to the front of each example and changing the labels from M to

True and R to False.

The values for each example in the original Sonar dataset are decimals ranging from

zero to one. The authors of [MGS17] stated that on the full Sonar dataset, their Perceptron

took over 275,000 epochs to converge to a solution. Due to limitations on my machine

used for performance experiments, it was not realistic to run my implementations for more

than 10,000 epochs. Because of this limitation, the Sonar dataset was normalized from

values from zero to one to values between negative one and one to center the examples

closer to the zero vector used at the start of training. The normalized data files were used

for the generalization error and timing experiments described below.

Again, the generalization error results were found using the RunFile driver for each

implementation. All implementations ran for 10,000 epochs. The Budget Kernel

Perceptron was limited to 10% of the training set and the Description Kernel Perceptron to

10% of the training set as the number of mistakes.

The results for the 50/50 split of the Sonar dataset are shown in Table 4.8 and for the

75/25 split are in Table 4.9. Only the Kernel Perceptron had results with higher than about

50% accuracy for both Sonar Datasets. The results for the Budget Kernel Perceptron and

Description Kernel Perceptron were disappointing due to the fact that the Sonar datasets

violate their underlying assumptions. To produce a model with high accuracy, thousands

58

of misclassifications must be made to incrementally move the hyperplane. Because the

dataset contains a maximum of just 208 examples, variants that rely on making a number

of mistakes significantly smaller than the number of training examples are bound to have

poor performance. The accuracies of the Budget and Description Kernel Perceptron only

increase when the number of misclassifications or support vectors is set to the minimum

necessary, which means that such a setting will have much worse generalization error

compared to the Kernel Perceptron. The Sonar datasets also do not produce nonvacuous

bounds due to the size of the training set and the dimensionality of the data.

The timing results for the Sonar Datasets are given in Table 4.11. These results were

found by running 10,000 epochs for each implementation, and the confidence intervals for

each implementation are also listed.

4.2.5 Discussion of Generalization Error and Timing Results

There are several alternatives to the generalization bound formulation used in the

MLCert framework. Mohri and Rostamizadeh [MR13] give the following formulation for

their bound, expressed in Equation 4.5. For this bound, the authors posit that there are T

labeled training examples used to train an on-line algorithm such as the Perceptron, and

that these training examples are drawn i.i.d. from the distribution D. L represents the loss

function used by the algorithm. The authors record the sequence of hypotheses generated

by the algorithm as h1, ..., hT . Therefore, the bound aims to minimize the expected error of

the algorithm by finding ĥ. The δ variable is similar to eps in MLCert’s generalization

bound. The mathematics behind this bound are based on the average accuracy of each

hypothesis in the seqence to find the expected accuracy.

E(x,y)∼D[L(yĥ(x))] ≤
1
T

T∑
i=1

L(yihi(xi)) + 6

√
1
T

log
2(T + 1)

δ
(4.5)

59

Table 4.7: Iris 75/25 Dataset Observed and Calculated Generalization Error

Kernel Perceptron Budget KP Description KP

Training Examples 113 113 113

Testing Examples 37 37 37

Dimensionality 4 4 4

Support Vectors 113 11 11

Training Accuracy 100% 100% 100%

Testing Accuracy 100% 100% 100%

Generalization Error 0% 0% 0%

eps = 0.001 4.19009E+5442 1.33053E+533 6.22910E+436

eps = 1 2.96325E+2969 9.40956E+434 4.40525E+338

Table 4.8: Sonar 50/50 Dataset Observed and Calculated Generalization Error

Kernel Perceptron Budget KP Description KP

Training Examples 116 116 116

Testing Examples 92 92 92

Dimensionality 60 60 60

Support Vectors 116 11 11

Epochs 10,000 10,000 10,000

Training Accuracy 100% 55.17% 55.17%

Testing Accuracy 69.57% 51.09% 51.09%

Generalization Error 30.43% 4.08% 4.08%

eps = 0.001 6.66619E+68162 1.06487E+6467 4.98537E+6370

eps = 1 Would not compute 1.86671E+6366 8.73934E+6269

60

Mohri and Rostamizadeh do not directly give generalization bounds for the Kernel

Perceptron, but they do list modifications that can be made to their theorems that account

for kernelization. However, this bound requires the storage of the entire sequence of

hypotheses through testing. As our system only stores the most recent hypothesis, the

MLCert bound cannot look into past hypotheses. Unfortunately, our generalization

bounds cannot directly be compared to Mohri and Rostamizadeh’s because of this method

of formulation.

Cesa-Bianchi, Conconi, and Gentile [CBCG04] formalized a generalization bound

also based on the sequence of hypothesis created during training. In the authors’ bound,

where they use risk in place of generalization, the number of training examples is n such

that Zn represents the entire set of training examples. K represents the kernel function

used, and the dual kernel, different from the kernel defined in our research as well as by

Mohri and Rostamizadeh, is provided in Equation 4.6. M is defined in Equation 4.7 as the

set of all misclassifications, and t represents the index of a single misclassification. f is

the norm of the kernel space. This bound uses hinge-loss instead of the usual zero-one

loss function for the Kernel Perceptron, and γ defines the margin for the hinge-loss

function. The full bound is shown in Equation 4.8.

m∑
i=1

m∑
j=1

αiα jK(xi, x j) ≥ 0 (4.6)

M = 1 ≤ t ≤ n : Ht−1(Xt) , Yt (4.7)

risk(Ĥ) ≤ inf
f∈HK :‖ f ‖≤1

inf
γ>0

Dγ,n(f ,Zn) +
1
γn

√∑
t∈M

K(Xt, Xt)

 + 6

√
1
n

ln
2(n + 1)

δ
(4.8)

As with the bound by Mohri and Rostamizadeh, Cesa-Bianchi, Conconi, and Gentile

define their bound in terms of minimizing Ĥ from the full set of hypotheses found during

61

training. Again, our generalization bound cannot be directly compared to the above bound

because we do not store past hypotheses. Additionally, as our implementations do not use

the dual kernel, the kernelization and kernel space described in this paper do not directly

correlate to our kernel and parameter spaces.

These bounds do, however, show that generalization is an important performance

metric, although the exact formulation may vary even for the same or similar algorithms.

Our generalization bound calculations are simpler to calculate and rely on fewer variables.

Some trends between datasets and implementations are shown in the generalization

and timing analyses. Many of the generalization bounds calculated in this thesis are

vacuous. Nonvacuous bounds rely on a very small support set compared to the full

training set. Unfortunately, the computer I have had to use for my research is not powerful

enough to run experiments with a larger training set size to examine more nonvacuous

bounds due to its age and computational capabilities. Vacuous bounds provide no real

guarantee for performance, even though the theorems for the generalization bounds have

been proved in Coq. Future work to examine the nonvacuous bounds of the Budget and

Description Kernel Perceptrons could determine guidelines for the dimensions and size of

datasets that will provide nonvacuous bounds.

MLCert uses 32-bit floating point values to represent data, matching precision in

Haskell. Although the use of fewer bits would lower the accuracy of the model, 8-bit or

16-bit floating point representations would have tighter generalization because the

cardinality of the parameters would significantly decrease. With an 8-bit floating point

representation, the Kernel Perceptron’s generalization bound is shown in Equation 4.9 and

the Budget Kernel Perceptron’s bound follows in Equation 4.10.

2(m∗n∗32+m∗32) ∗ e−2∗eps2∗m (4.9)

62

2(8∗(S sv)+(1+n∗8)∗(S sv)) ∗ e−2∗eps2∗m (4.10)

Even with an 8-bit floating point representation, the Kernel Perceptron’s

generalization bound is still vacuous for all datasets. Equation 4.11 shows the calculation

for the Kernel Perceptron’s generalization bound on the smallest possible dataset of a

single, one-dimensional example. With the two extreme values of eps of 0.001 and 1, the

Kernel Perceptron’s bounds are 65,535.9 and 8,869.3, respectively. A comparison of the

generalization bounds of the Budget Kernel Perceptron with 32-bit and 8-bit precision are

detailed in Table 4.12. The Budget Kernel Perceptron has nonvacuous bounds on the

synthetic dataset as long as the training set is much larger than the support set, as shown

by the limited budget experiments. However, the use of 8-bit precision would allow for a

larger budget of support vectors with a nonvacuous bound. For example, with eight

support vectors and eps set to 0.304, the 8-bit Budget calculated generalization bound is

15.86%. In the limited budget experiments, the support set must be limited to two 32-bit

support vectors to calculate nonvacuous bounds.

2(m∗n∗8+m∗8) ∗ e−2∗eps2∗m = 2(1∗1∗8+1∗8) ∗ e−2∗eps2∗1 = 216 ∗ e−2eps2
(4.11)

The results of the timing analysis, especially for the synthetic datasets, shows that the

Budget and Description Kernel Perceptrons are significantly faster to run when the size of

the budget or number of mistakes are a fraction of the full size of the dataset. Storing

fewer nonessential support vectors saves computation time and resources compared to the

Kernel Perceptron.

Timing results with the Budget Python implementations also demonstrate that the

Haskell implementations have slightly faster run times than Python implementations, even

the Python implementation which was optimized using Numpy functions and data

63

structures. While Haskell is not often used for machine learning, it has been demonstrated

to be viable for running machine learning algorithms.

The Sonar dataset highlights that the Budget and Description Kernel Perceptrons rely

on the either a small number of necessary support vectors or a small number of mistakes

compared to the size of the training set. In cases where neither of these assumptions is

true, the Budget and Description Kernel Perceptrons will have worse accuracy compared

to the Kernel Perceptron. The Kernel Perceptron works best for datasets with a high

number of necessary support vectors of many mistakes compared to the size of the

training set. Because of this, the Budget and Description Kernel Perceptrons are not

always improvements on the performance of the Kernel Perceptron.

Finally, the Iris dataset validates that the Kernel Perceptron variants can perform well

on a real-world dataset. Because few misclassifications are necessary to produce a

hyperplane with perfect accuracy, all variants of the Kernel Perceptron had high

performance on the Iris dataset. Overall, these results show that the variants of the Kernel

Perceptron can perform well on real and synthetic data.

4.3 Chapter Summary

These results from the implementations of the Kernel Perceptron, Budget Kernel

Perceptron, and Description Kernel Perceptron demonstrate that the generalization error

for the Kernel Perceptron can be improved through limiting the size of the support set or

placing a limit on the number of mistakes made during training. The conclusions drawn

from these results are described in Chapter 5, along with a discussion of future work to be

done in the field of machine learning verification.

64

Table 4.9: Sonar 75/25 Dataset Observed and Calculated Generalization Error

Kernel Perceptron Budget KP Description KP

Training Examples 157 157 157

Testing Examples 51 51 51

Dimensionality 60 60 60

Support Vectors 157 15 15

Epochs 10,000 10,000 10,000

Training Accuracy 84.08% 54.14% 54.78%

Testing Accuracy 82.35% 50.98% 50.98%

Generalization Error 1.73% 3.16% 3.8%

eps = 0.001 7.18546E+92254 4.71614E+8818 6.48856E+8683

eps = 1 Would not compute 2.01955E+8682 2.77855E+8547

Table 4.10: Iris Average Runtimes (Seconds) and Confidence Intervals

Trial KP 95% CI Budget KP 95% CI Description KP 95% CI

Iris 50/50 0.0872 0.00342 0.005 0.00392 0.0042 0.00431

Iris 75/25 0.2208 0.00563 0.0076 0.00462 0.0068 0.00501

Table 4.11: Sonar Average Runtimes (Seconds) and Confidence Intervals

Trial KP 95%CI Budget KP 95%CI Description KP 95%CI

Sonar 50/50 1045.839 1.49470 79.0278 2.06799 66.1688 1.28507

Sonar 75/25 2121.471 6.43889 138.6656 4.08308 121.6616 3.08207

65

Table 4.12: Synthetic Generalization Bound Calculations, 32-bit versus 8-bit Budget

Budget KP

Training Examples 1000

Dimensionality 3

Support Vectors 100

Precision 32-bit 8-bit

eps = 0.001 1.93230E+3883 2.50102E+993

eps = 1 4.98862E+3014 6.45687E+124

66

5 Conclusions

The previous chapters of this thesis outline the methodology and results of verifying

the Kernel Perceptron family of algorithms in the MLCert framework. The main

contributions of this work include Coq implementations of the Kernel Perceptron, Budget

Kernel Perceptron, and Description Kernel Perceptron with proofs in Coq of their

generalization error. The accuracy, generalization error, and runtime of the Coq

implementations were tested through extraction into Haskell. The Haskell Budget Kernel

Perceptron’s timing was also compared to two Python versions to demonstrate the

efficiency of the Haskell implementations against implementations in a language used by

most machine learning researchers.

However, there are limitations to the Kernel Perceptron implementations. Because

the calculation of generalization error relies on the cardinality of the parameter space and

its relationship to the size of the training set, the Kernel Perceptron will always produce

vacuous bounds, regardless of the dimensionality of the data. Therefore, the

generalization proof in Coq for the Kernel Perceptron does not guarantee its

generalization performance. In contrast, the Budget Kernel Perceptron and Description

Kernel Perceptron can produce nonvacuous bounds, as long as the size of the support set

is sufficiently smaller than the number of training examples. Experimental tests of the

Budget and Description Kernel Perceptrons with limited numbers of support vectors or

mistakes, respectively, had much lower accuracy, but their generalization error was lower

than the calculated generalization bound. Unfortunately, I was unable to test larger

datasets due to limitations on my machine or determine if both high accuracy and low

generalization could be achieved on larger datasets.

Future work for this research in MLCert could involve the implementation of

additional machine learning algorithms to evaluate their generalization error. There are

other variants of the Perceptron algorithm that could be investigated. Modifications to the

67

Budget and Description Kernel Perceptrons may impact or improve the generalization

error of these algorithms. For the Budget Kernel Perceptron, the parameter update

procedure could be improved to remove the support vector with the least impact on the

hyperplane, which may not be the oldest support vector. The Description Kernel

Perceptron could be improved by changes to the MLCert framework itself. The current

implementation will run for the specified number of epochs, even if the maximum number

of mistakes is reached in the first epoch. Modifying some of the MLCert functions could

make it possible to stop training early, improving the timing of the Description Kernel

Perceptron. Fortunately, MLCert can be customized in a variety of ways to make future

exploration of machine learning algorithms possible.

68

References

[ABR64] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical
foundations of the potential function method in pattern recognition learning.
Automation and Remote Control, 25:821–837, 1964.

[BF16] Adrien Bibal and Benoit Frénay. Interpretability of machine learning models
and representations: an introduction. In ESANN’16 Proceedings, Bruges,
2016.

[Blo62] Hans-Dieter Block. The perceptron: a model for brain functioning. Reviews
of Modern Physics, 34(1):123, 1962.

[BS19] Alexander Bagnall and Gordon Stewart. Certifying the true error: machine
learning in coq with verified generalization guarantees. In Proceedings of
AAAI’19, pages 2662–2669, Hawaii, 2019.

[CBCG04] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the
generalization ability of on-line learning algorithms. IEEE Transactions on
Information Theory, 50(9):2050–2057, 2004.

[CCBG07] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Tracking the
best hyperplane with a simple budget perceptron. Machine Learning,
69(23):143–167, 2007.

[CKS03] Koby Crammer, Jaz Kandola, and Yoram Singer. Online classification on a
budget. In Advances in Neural Information Processing Systems 16.
Proceedings of NIPS 2003, 2003.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml

[DSSS07] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: a
kernel-based perceptron on a budget. SIAM Journal on Computing,
37(5):1342–1372, 2007.

[Fis36] R. A. Fisher. Iris data set, 1936. URL:
https://archive.ics.uci.edu/ml/datasets/iris

[GHHA19] Norjihan A. Ghani, Suraya Hamid, Ibrahim A. T. Hashem, and Ejaz Ahmed.
Social media big data analytics. Computers in Human Behavior,
101:417–428, 2019.

[GSC+16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjoberg, and David Costanzo. Certikos: an extensible architecture
for building certified concurrent os kernels. In OSDI’16, pages 653–669,
Savannah, Georgia, 2016.

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/iris

69

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. In Proceedings of
the IEEE, volume 86(11), pages 2278–2324, 1998.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 2009.

[LTS90] Esther Levin, Naftali Tishby, and S. A. Solla. A statistical approach to
learning and generalization in layered neural networks. In Proceedings of the
IEEE, volume 78, pages 1568–1574, 1990.

[MGS17] Charlie Murphy, Patrick Gray, and Gordon Stewart. Verified perceptron
convergence theorem. In MAPL’17, Barcelona, 2017.

[MKB17] Mohssen Mohammed, Muhammad Badruddin Khan, and Eihab
Bashier Mohammed Bashier. Machine Learning: Algorithms and
Applications. CRC Press, 2017.

[MLC] Mlcert: Certified machine learning. URL: https://github.com/OUPL/MLCert

[MP69] Marvin Minsky and Seymour Papert. Perceptrons: an Introduction to
Computational Geometry. M.I.T. Press, 1969.

[MR13] Mehryar Mohri and Afshin Rostamizadeh. Perceptron mistake bounds.
arXiv, 2013.

[OKC09] Francesco Orabona, Joseph Keshet, and Barbara Caputo. Bounded
kernel-based online learning. Journal of Machine Learning Research,
10(11):2643–2666, 2009.

[Pap61] Seymour Papert. Some mathematical models of learning. In Proceedings of
the Fourth London Symposium on Information Theory, 1961.

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton.
Report: Cornell Aeronautical Laboratory, 58(460), 1957.

[SG88] Terry Sejnowski and R. Paul Gorman. Connectionist bench (sonar, mines vs.
rocks) data set, 1988. URL: https://archive.ics.uci.edu/ml/datasets/
Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29

[TD05] Brian. J. Taylor and Marjorie A. Darrah. Rule extraction as a formal method
for the verification and validation of neural networks. In Proceedings of IEEE
International Joint Conference on Neural Networks 2005, pages 2915–2920,
Montreal, 2005.

[Var16] Kush R. Varshney. Engineering safety in machine learning. In 2016
Information Theory and Applications Workshop, La Jolla, California, 2016.

https://github.com/OUPL/MLCert
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29

70

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for
implementing and formally verifying distributed systems. In PLDI’15, pages
357–368, Portland, Oregon, 2015.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	The Perceptron Algorithm
	The Kernel Perceptron
	Approaches to Machine Learning Verification
	MLCert Framework
	Budget Kernel Perceptron Algorithms
	Description Kernel Perceptrons
	Chapter Summary

	Methods
	Structure of Perceptron Implementations in MLCert
	Kernel Perceptron Coq Implementation
	Budget Kernel Perceptron Coq Implementation
	Description Kernel Perceptron Coq Implementation
	Chapter Summary

	Proofs and Experimental Results
	Generalization Proofs
	Haskell Extraction and Performance Experiments
	Chapter Summary

	Conclusions
	References

