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Abstract

LIU, YIRAN, M.S., May 2020, Master of Science Degree in Computer Science

Consistent and Accurate Face Tracking and Recognition in Videos (69 pp.)

Director of Thesis: Jundong Liu

Automatically tracking and recognizing human faces in videos and live streams is

often a crucial component in many high-level applications such as security, visual

surveillance and human-computer interaction. Deep learning has recently revolutionized

artificial intelligence areas, including face recognition and detection. Most of the existing

video analysis solutions, however, rely on certain 2D convolutional neural network (CNN)

to process video clips upon a frame-to-frame basis. The temporal contextual information

between consecutive frames is often inadvertently overlooked, resulting in inconsistent

tracking outcomes, which also negatively affect the accuracy of human identification.

To provide a remedy, we propose a novel network framework that allows history

information be carried along video frames. More specifically, we take the single short

scale-invariant face detection (S3FD) as the baseline face detection network and combine

it with long short-term memory (LSTM) components to integrate temporal context.

Taking the images and detection results of previous frames as additional inputs, our S3FD

+ LSTM framework is well posed to produce more consistent and smoother face detection

results along time, which in return leads to more robust and acccurate face recognition in

videos and live streams.

We evaluated our face tracking and recognition model with both public (YouTube

Face) and self-made datasets. Experimental results demonstrate that our S3FD+LSTM

approach constantly produces smoother and more stable bounding boxes than S3FD alone.

Recognition accuracy is also improved over the baseline model, and our model

significantly outperforms the state-of-the-art face tracking solutions in the public domain.
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1 Introduction

Face recognition is a technique that allows computers to identify or verify a person

from single images or video frames. It has been widely used as a biometrics solution to

safeguard access control in various security systems. While the accuracy of face

recognition is generally lower than that of some other biometrics solutions such as

fingerprint or iris recognition systems, it has the inherent advantages of being convenient

to acquire and non-invasive in nature. Modern applications have emerged in recent years.

The demands of face recognition are growing sharply as it has been increasingly utilized

in video surveillance, human-computer interaction and video indexing, among others.

Within these new tasks, being able to track faces in real time often plays an important role.

1.1 Area Overview

Traditional solutions for face recognition commonly take a two-stage procedure.

Certain facial features are firstly extracted from each image, followed by a classification

procedure to assign the face with the most likely label. Popular feature extraction and

transformation algorithms include eigenfaces, linear discriminant analysis and the

fisherface algorithm, to name a few [22]. Over the classification procedure, face encodings

are somehow compared with those within a database and the label of the most similar

face(s) will be returned as the recognition result. Popular classification algorithms include

nearest neighbor, support vector machines (SVM) and neural networks. Hand-crafted

features have the inherent drawbacks of being sensitive to environment variations, such as

the change of lighting conditions, poses and facial expressions. As a result, traditional

face recognition and tracking systems often suffer from poor robustness in real-world

applications. Fig.1.1 shows several examples of the environment changes. These

challenges indicate the significance of optimizing methods for face tracking and

recognition.
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(a) (b) (c) (d) (e)

Figure 1.1: Examples of typical variations found in faces: (a) perfect front face. (b) facial

expression: exaggerated expressions may be difficult to transformed into the standard face.

(c) poses: this creates a problem when detecting the face in the input image. Most of the

existing algorithms are capable of tracking only the frontal posed faces. (d) movement blur:

the facial expression changes when there are variations in the illumination. (e) lighting:

conditions that are too dark or too light conditions make it difficult to extract features.

In the past 15 years or so, deep learning has revolutionized many artificial

intelligence (AI) areas, including computer vision (CV) and natural language processing

(NLP). In particular, convolutional neural networks (CNNs) have become dominant

solutions in image recognition, detection and segmentation, producing state-of-the-art

performance on numerous datasets.

The power of deep learning should be greatly attributed to its ability to automate the

feature engineering process: unlike traditional CV/NLP solutions, deep networks extract

discriminative features in an end-to-end fashion, directly from data, which can learn the

best features to represent the objects. Another benefits of deep learning methods is the

ability to incorporate a hierarchical structure, which contains both low-level and

high-level semantic features. Different data can be mapped onto matched stages through

multi-levels. This deeper architecture provides higher capacity to join related tasks

together. Thus, deep learning methods show significant advantages against traditional
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approaches in ensuring that face recognition systems function accurately and efficiently.

The state-of-the-art performance of face recognition has also been improved greatly,

mainly by DeepFace [21], FaceNet [19] and VGG Face [12].

For face tracking and recognition in videos, most existing solutions adopt a

frame-based face detection and recognition approach, processing video frames

independently using a certain 2D recognition network. Tracking of faces is achieved by

stacking or combining the 2D detection results in certain ways. The drawback of using 2D

face models to solve video tracking tasks is that the temporal contextual information

between consecutive frames is not considered and therefore cannot be fully recovered

through the combination step. This would lead to unstable face detection results over

real-time streaming. As a return, the accuracy of the face recognition over individual

frames tends to be negatively affected.

1.2 Thesis Contributions and Overview

The aforementioned limitations of the existing individual frame-based face tracking

and recognition solution make the major motivation for the work proposed in this thesis.

The goal of our work is to provide a remedy so that the temporal information lost in

frame-based face detection can be brought back to achieve a stable and smooth tracking

scheme. To this end, we take S3FD [30], a state-of-the-art face recognition solution, as the

basis network, and integrate it with a long short-term memory (LSTM) to carry the

temporal information along the procession of video clips as face tracking task.

Face tracking requires continuous and accurate predictions over a long period of

time. The LSTM cells can capture multiple objects directly at the same time and also store

historical visual semantics. After the system recognizes the person through the first few

frames, it will use historical bounding boxes to track the person instead of making

predictions that require substantial computations.
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The contributions of this thesis can be summarized as follows,

1. A S3FD + LSTM network is developed to carry out face tracking and recognition at

the same time. To the best of our knowledge, this work is the first attempt of such an

integration for face applications.

2. With temporal information carried on along consecutive frames, our system

achieves the design goal, which is to improve the robustness, stability and accuracy

for both face detection and recognition along video streams.

3. Experiments were conducted on both public and self-made datasets to demonstrate

the efficacy of our solution.

This rest of the thesis is organized as follows. The conceptual theories of this

approach are described in Chapter 2, which provides a foundation for understanding the

basic framework of the neural network. Chapter 3 introduces some works based on deep

learning methods in different fields including face detection, face recognition and tracking

with LSTM. In Chapter 4, a detailed, mechanistic explanation of the architecture and the

approach is given. In Chapter 4, I contrast the proposed method with the state-of-the-art

method on the YTF dataset, then present both quantitative and qualitative results to

demonstrate the effectiveness of our solution. The conclusion and proposals for future

work are summarized in Chapter 6.
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2 Technical Background

The workflow of a face recognition system is composed of four blocks (shown in

Figure 2.1): face detection, face alignment, face representation and face matching. In the

first phase, a face detector locates a face in the given image and generates a bounding box

corresponding to each of them. Second, an alignment process scales or crops face images

to fixed locations through a set of reference points. Third, the pixel values of a face image

are transformed into a compact feature vector in the face representation stage. The last

step is to match the faces by comparing the similarity scores in the database that can be

recognized as the same person [22].

Figure 2.1: The workflow of a face recognition system.

In this thesis, we applied CNN-LSTM model for face detection and tracking. The

following sections in this chapter will cover three parts: 1) briefly introducing the main

building blocks of CNNs and the VGG16 architecture, 2) explaining the details of the

SSD detector in order to illuminate the neural network architecture of the proposed

approach, and 3) describing the basic concepts of the LSTM network.

2.1 Convolutional Neural Network (CNN)

Convolutional neural networks in deep learning have been proven greatly effective in

many areas, especially in computer vision. A CNN is an imitation of the visual cortex in

the brain, that entails comprehensive layers of both simple and complex cells. CNNs

combine input data with a kernel to output the feature map. The kernels in convolutional
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layers are learned by parameters to effectively characterize the essential features for the

task (see Figure 2.2). The application of CNNs in face recognition entails direct input of

an image into the network, followed by assigning the weights and biases that are learned

by the model in order to present the differences from each other. CNNs use a loss function,

such as SVM and SoftMax on the fully connected layer to output the class scores. Overall,

the attainment of a CNN status involves convolution, pooling, and fully connected layers.

Figure 2.2: Image Classification Pipeline in a CNN.

Convolutional layers are core building blocks of a CNN architecture. They use the

learnable filters or kernels, which consist of width, height, and the number of channels to

extract discriminative features from an input image. As the filter keeps moving to the

right, each filter convolves across the input volume with a certain stride value. The entries

of the filter and the input at any position are computed by dot products over the whole

image. After traversing the entire image, a 2-dimensional activation map will be produced

which presents the results at each spatial position. The main purpose of this convolution

operation is to allow the network to learn high-level features such as edges, some gradient

orientation, and the blotch of colors. These activation maps display the depth dimension

and generate the output volume of the image.
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One of the most common methods applied to reduce the spatial size of the blocks is

the application of a pooling between convolutional layers. The pooling can be described

as the process of nonlinear down-sampling. This is designed to decrease the number of

parameters and computations when processing the data, and also to control overfitting. On

every depth slice of the input features, the pooling layer operates separately and resizes it

spatially. When employing pooling process, there exists different forms of nonlinear, such

as average pooling, max pooling and L2 -norm pooling. Among them all, max pooling

and average pooling are the most common techniques.

Max pooling (Figure 2.3) outputs the maximum value from the portion of the image

filtered by the Kernel while average pooling outputs the average of all the values from the

portion of the image filtered by the kernel. Normally, a pooling layer with filters of a 2x2

matrix implemented with a stride of 2 is used to down-sample every portion along both

width and height. Max pooling would require applying a maximum matrix over 4 × 4.

This operation discards the noisy activations and achieves a reduction in dimensionality.

In this respect, max pooling is more effective than average pooling, because average

pooling simply performs dimensionality reduction [4].

Figure 2.3: The example of max pooling and average pooling.
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All activations in the fully connected layer are full-connected by neurons in order to

learn non-linear combinations of features. Their activations can be calculated by a matrix

multiplication followed by a bias offset.

Some famous CNN architectures exist, such as VGG16 (shown in Figure 2.4)

proposed by[20], which indicates a great benefit in building comprehensive algorithms.

The input of the first convolutional layer is of fixed size, a 224 × 224RGB image. It

contains 13 convolutional layers with 3 × 3 filters and 3 fully connected layers. The

convolutional layers are divided into 5 groups, and a max-pooling layer takes a 2 × 2

matrix window with stride 2 is implemented in each group. In the first group, the number

of filters of the convolutional layer group begins from 64 and then increases by a factor of

2 after each max-pooling layer, until it reaches 512 [27]. The building of convolutional

layers is usually followed by three fully connected layers. and a soft-max layer.

Figure 2.4: VGG16 architecture.

Generally, face recognition in deep learning methods apply one single CNN, such as

Deep Face and FaceNet. Since more and more researchers have used various strategies

aimed at improving the performance of face recognition, they were likely to extend the
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usage of CNN. Most common approaches include: (1) learning various discriminative

features, (2) fusing different types of deep face features, (3) proposing efficient loss

functions. For more than one CNNs face recognition model, there are mainly two different

of strategies: extract features of different regions of the faces and extract features from

different aspects on the faces. In addition to those traditional CNN frameworks, some

researchers came up with novel CNNs by creating different layouts of CNNs, modifying

kernel activations, or implementing weakly-supervised or unsupervised learning methods

[4].

2.2 Long Short-Term Memory Neural Network (LSTM)

Sequence prediction problems are considered one of the hardest to solve. Traditional

neural networks have the shortcoming that they cannot classify what is happening at every

point, however Recurrent Neural Networks (RNNs) apply previous activities in order to

inform the later ones. The innovation of Long Short-Term Memory neural network

(LSTM), a special type of RNN, is now has the ability to learn long-term dependencies. It

is considered to be the most effective solution to deal with sequential data.

RNNs have shown significant promise in many applications that need history

information such as video-based object detection. RNNs are responsible for adopting

successive information, which is used to determine the future state guided by prior

computations. They also have memory with the capacity to store the information about

what is happening now. The RNN network in Figure 2.5 contains a cycle that feeds the

network activations from a previous time step as inputs xt to be passed through to

influence predictions ht at the current time step [18].
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Figure 2.5: An unrolled Recurrent Neural Networks.

RNNs can be considered as several duplicated networks that each pass the

information forward; and the activations stored in the states of the network can hold the

long-term temporal information. When it decides, it takes both the current input into

consideration and what has learned from the previous inputs. A common RNN only has a

short-term memory and, when learning a long data sequence, the gradients carry

information from the RNN parameter and update. The gradients become smaller while the

information keeps being passed forward, the parameters show up insignificant and this

means the learning is inefficient. By contrast, an LSTM can be considered to have a

long-term memory. It enables RNNs to remember their inputs for a long time that can

solve the vanishing gradients problem.

An LSTM contains three gates: input gate, forget gate and output gate. The main

innovation of LSTMs (shown in Figure 2.6) is that the memory accumulates as state

information. A series of self-parameterized controlling gates activated by accumulation of

new information access, write, and clear the cell. In the process, the previous status is

forgotten when the forgot gate is active. Meanwhile, the output gate controls the

propagation of the updated cell to the final state. The LSTM architecture involves memory

cells in the storage and output of information, which facilitates an improved overview of

long-range temporal relations. Hence, the technique enables the informing of the current

frame present in a video inclusive of the forecast for the upcoming frame.



22

Figure 2.6: The LSTM Memory Cell.

The details of LSTM network workflow are explained step by step as follows. The

first step (Figure 2.7a) is to regulate what values can be added to the cell state, and the

forget gate layer makes this decision by a sigmoid function. The input passes from the

previous cell or the output of the previous cell through xt and the hidden state ht−1 at this

time step. Then the given inputs are multiplied by the weight matrices and add a bias. The

sigmoid function outputs a vector into the cell state Ct−1with each number between 0 and

1. In this regard, 1 indicates completely kept information while a 0 means the forget

information.

(a) (b)

Figure 2.7: (a)The First Step of the LSTM architecture. (b)The Second Step of the LSTM

architecture.
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The second step (Figure 2.7b) represents the decision making regarding the storage

of new information in the cell state. This process consists of two parts. First, the input

gate makes the decision and updates the value. Second, a vector creates new candidate

values C̃t, that use a tanh layer to add all possible values to the state.

The third step (Figure 2.8a) is capable of updating the old cell state Ct−1 into the new

cell state Ct . Since the old cell state already made the decision about what to do, the new

cell state should do it immediately. Next, in order to carry out the decision of forgetting

previous steps, the old state is multiplied by it then added to C̃tto update each state value.

(a) (b)

Figure 2.8: (a)The Third Step of the LSTM architecture. (b)The Final Step of the LSTM

architecture.

The last step (Figure 2.8b) is to choose useful information from the current cell state

and decide what to output via the output gate. the tanh function is applied to the cell state

to create a vector, and also create a filter with the values of ht−1 and xt to control the output

values from the vector. Second, multiply the values from this filter to the vector by the

sigmoid gate, which decide what parts of the cell state are going to output.

With regard to dealing with highly sequential problems, LSTM has made the greatest

improvement. The mechanism of LSTMs allows a dynamically changing over the input
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sequences instead of a still image with a fixed-size window. The memory cells stored the

temporal information, are self- connected and added to multiplicative unites called gates

to decide the destination of the information. The output gate prevents or enables a signal

to update the state of the memory cell, whereas the forget gate fosters or discourages the

forgetting of the previous state depending on the current and future needs. This avoids the

problem that continuous input data streams are not separated into subsequences [18]. The

architecture mentioned above is the basic model that we can revise into a new architecture

designed to solve our sequential problems. In Chapter 3, I will propose a novel LSTM

model, which provides better performance in video-based object detection.

2.3 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) is an effective algorithm in object detection,

which allows both object localization and classification are completed in a single forward

convolutional network (shown in Figure 2.9). This technique can be considered as

bounding box regression and achieve high accuracy as other approaches. Compared to

two-stage methods that need two shots including producing region proposals and

detecting the object of each proposal, SSD only needs to take one single shot that regress

multiple objects within the image. Due to solving the problem of eliminate bounding box

proposals, SSD showed significant improvements in speed[9]. The SSD method is also

widely recognized as an anchor-based approach. The anchor exists as a collection of

boxes which are usually overlapped on an image at specific locations as well as spatial

scales inclusive of aspect ratios (termed as ground truth images). Generally, the CNN

network reduces the size of the feature map as the depth goes deeper. The shallow layers

contain smaller receptive fields while the deep layers contain the larger.
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Figure 2.9: The framework of SSD that allows both object localization and classification

are completed in a single forward convolutional network [9].

Based on these techniques, SSD constructed multi-scale feature maps for detecting

different kinds of objects. In each feature layer, the convolutional layers for predicting

detections is different. Generally, in a network the feature maps from different levels are

known to have different receptive field sizes. However, the techniques of default boxes

(shown in Figure 2.10) in the SSD framework is designed for feature maps corresponding

to specific scales of objects and the receptive fields is not necessarily needed. SSD

provides a different set of predictions by combining predictions for all default boxes with

different scales and aspect ratios among all locations of many feature maps.

Figure 2.10: Multiple bounding boxes for localization (loc) and confidence (conf) [9].

In details, features are extracted across all the convolutional layers and extra

convolutional feature layers which locate at the end of base network. The SSD provides a
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set of bounding boxes corresponding with each feature map cell. When the layers go

deeper, the size of feature maps decrease progressively and make prediction according to

their scales. In the added feature layers, the measuring dimensions are m × n, and also

compose of p channels, such as 8 × 8 or 4 × 4 in the Figure 2.10. For each location, it

produces k bounding boxes. An output value is produced in all location; For each

bounding box, SSD needs to calculate c class scores and 4 offsets relative to the default

bounding box shape. Thus, the output values of (c+4)kmn for a m × n feature map,

acquired following the offset of the bounding box are eventually measured in terms of the

position of the default box which are relative to locations indicated on the feature map [9].

The SSD detector is set up on a pre-trained VGG16 model and connects to a

feed-forward convolution neural network. Due to the utility of multiple layers, the SSD

detector allows a proper accuracy on objects at different scales rather than that each deeper

layers extract bigger objects in YOLO model. Then SSD modified the architecture with

adding some conv layers which can improve the detection of bigger objects. Thus, the

model produced the feature maps of sizes 19 × 19, 10 × 10, 5 × 5, 3 × 3, 1 × 1 and 38 × 38,

produced by VGG’s conv4 3 (shown in Figure 2.11), which are used to predict bounding

boxes. The conv4 3 is majorly responsible for detecting the smallest objects at the same

time the conv11 2 is responsible for detecting the biggest objects.

Figure 2.11: The network architecture of SSD [9].
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The improvements of SSD model include applying different convolutional filters and

multi-scale feature maps for better detection. With these modifications, SSD can achieve

high accuracy even using challenging input at the same time the detection speed becomes

faster.
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3 Review of RelatedWork

Face recognition and tracking procedures have made great progress in the past few

years, with the help of deep learning methods. However, more attention has been paid on

image-based face recognition rather than video-based face recognition. An analysis of

video-based face recognition requires the review of multiple techniques. Thus, the related

work will be separated into three categories: face detection, face recognition, and tracking

with LSTM.

3.1 Face Detection

Typically, the traditional methods can be represented as feature descriptors that rely

on hand-crafted shallow features. In the early research into face recognition [22], there

was a focus on feature-based methods that extract useful features instead of computing

geometry of faces. The different feature-based methods use various techniques for face

representation, such as edges or landmarks. Basically, locate the object first, convert the

image size to a feature descriptor and then identify images by comparing the similarity

between the images’ nodes. For example, the HOG descriptor counts the gradient

orientation in the localized image to generate hog features (shown in Figure 3.1). In detail,

the image is divided into blocks (a common size is 16 × 16 pixels) with blocks being

separated by small regions, named cells (e.g. 8 × 8 pixels). Then gamma or color

normalization is implemented for local responses in cases of illumination or lightening

concerns for the image. Next, the HOG calculates a histogram of gradient directions or

edge orientations for each cell. According to these results, each cell is divided with

weighted gradient into the corresponding bins. Then, the groups of cells are combined

into a block to pave the way for normalization of histograms. Finally, the group of the

block are normalized and a histogram is produced to represent the image [1].
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Figure 3.1: Using the HOG method to generate the hog face.

It is difficult to implement one feature descriptor to conduct various kinds of objects

when using HOG to extract features. Only low-level features are taken into count, which

limit the detection accuracy. In the region selection, a large amounts of candidate

windows and redundant windows result in expensive and time-consuming computation.

Therefore, having a more precise and detailed object detection method is crucial. The

recent advancements in deep learning have been tremendous in improving processing of

large sets of data and is recommendable. It employs a more useful hierarchical

architecture and not only localizes objects with high accuracy but also has the ability to

train a high-volume model on a small quantity of annotated data. Particularly, Regions

with Convolutional Neural Network (R-CNN) features has been particularly successful in

object detection and has led to unprecedented accuracies in image localization, detection,

and segmentation [15].

Figure 3.2: The main idea of the R-CNN model [2].
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The R-CNN model (shown in Figure 3.2) is an initial architecture that uses

CNN-based object detection. It generates a set of region proposals through a selective

search method, which are category-independent. To begin with, the model extracts a

fixed-length feature vector, 227 × 227 pixels in size, from each warped region to obtain a

total of 2,000 regions. Since the CNN network has the limitation that it can only be fed in

fixed-size inputs, R-CNN resizes those regions into a uniform size. These region

proposals are warped into a bounding box and forwarded into a CNN network, which

produces a 4096-dimensional feature vector as results. The results are input into a Support

Vector Machine (SVM) classifier to to classify the existence of the object within the

proposals. Lastly, a linear regression model is trained to predict offset values to ground

truth boxes in order to make up slightly wrong proposals. The R-CNN model solved the

localization problem as the regression problem, which involved applying a high-capacity

CNN on bottom-up region proposals that also localized and segmented objects. However,

it still took too much time to train CNN to generate 2000 proposals for each image with

different sizes and produced more computation in extra pixels during the selective search

algorithm, which leads to a low detection speed [2].

Normally, a CNN starts with convolutional layers, which operate through a

sliding-window and output feature maps. The following are fully connected layers. The

size of input images for prevalent CNNs are typically fixed, because cropping or warping

in images may reduce the recognition accuracy or increase information loss. Actually,

there is no need for a fixed image input size when the fully connected layers show up in a

deeper stage of the network. Spatial Pyramid Pooling in Deep Convolutional Network

(SPP-net) is designed to remove the constraint of fixed input image size.

An SPP layer is added on top of the last convolutional layer. SPP divides input

images into sub-images, then extracts local features in each sub-image. Through pooling

in the spatial bins, SPP extracts spatial information, whose size is proportional to the input
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image. SPP can control the number of bins, which is different with the sliding window

methods. SPP is highly efficient because it only extracts the feature maps once from the

entire image. Then, the model needs to guarantee the feature maps have the same size to

feed into the fully connected convolutional layers by implementing SPP [5]. In SPP-net

(shown in Figure 3.3), the output of feature maps at the last convolutional layer is divided

into a number of spatial bins with sizes that are proportional to the image size. Bins are

generated at different levels of granularity. In each spatial bin, each filter is applied using

max-pooling. Given this structure, the SPP method has been shown to be more robust than

R-CNN method [5].

Figure 3.3: A network structure with a spatial pyramid pooling layer [5].

SPP-net has made progress in efficiency, yet still has the same multi-stage pipeline as

R-CNN, including (1) use a CNN module to get features; (2) obtain category scores by

classification; and (3) regress the bounding boxes. In this way, the training process will be

complicated and inefficient. With a novel end-to-end training progress involving a

multi-task loss on classification and bounding box regression, the Fast R-CNN made

several innovations. Fast R-CNN model generally has two steps (see Figure 3.4). First, the
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fully convolutional networks and max pooling layers are fed with images and object

proposals, generate the feature maps for each proposal, with each region of interest (ROI)

pooled into a fixed-size feature map. Second, for each ROI, two vectors, classification

probabilities and per-class bounding boxes are generated by mapping the feature map

using different fully connected layers. CNN, soft-max and bounding box regression are

trained together. Fast R-CNN combines ROI pooling and a single layer of SPP-net for

multi-task training, and therefore is faster due to avoiding managing a pipeline of

sequentially training [5].

Figure 3.4: Fast R-CNN architecture [5].

It is evident from the above approaches that we need to be generated the region

proposals first to learn where the location of candidates and then the final location among

those proposals can be calculated. This detection process still needs to be improved

through a more reliable way to obtain the proposals. Faster R-CNN (shown in Figure

3.5a) implemented a new way, end-to-end way to generate detection proposals.

Faster R-CNN is designed to have two modules, one is to propose regions by a deep

fully convolutional network and the other is to apply proposed regions as a detector. The

model is built on the top of the architecture of Fast R-CNN, but it replaces selective search

algorithm with a Region Proposal Network (RPN). That is, few additional convolutional
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layers are added. The regress region bound and objectness scores leads nearly cost-free

region proposals at each location on a regular grid [17].

(a) (b)

Figure 3.5: (a) Faster R-CNN network architecture. (b) Region Proposal Network

architecture [17].

The creators of Faster R-CNN proposed a novel technique of anchor boxes that plays

an important role in RPNs (shown in Figure 3.5b). Given extracted feature maps, a sliding

window is applied on them for each location. Each location adopts 9 anchor boxes for

generating the region proposals with different aspect ratios. Thus, RPN is intended to

predict region proposals using anchors, of which the scales and aspect ratios varies

greatly. The corresponding regions and bounding boxes will pass to the next detection

network for classification the object class. The detection network implements ROI

pooling, which is similar to Fast R-CNN (shown in Figure 3.4) and operates SoftMax

class and bounding box regression through CNN and FC branches.

To sum up, two-stage methods dealing with region proposal and detection separately

still have speed and training limitations. Newly developed single-stage methods solve the

problems of speed and training associated with two-stage methods. However, the
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one-stage frameworks, as a regression problem, could directly map image pixels into

bounding boxes and category probability. To predict these for those boxes without

proposals, simultaneous single convolutional network is a simple module. These models,

You Only Look Once (YOLO) and SSD are able to maintain high average precision and

real time speeds.

In the basic idea of YOLO (see Figure 3.6) , the confidences for multiple categories

and bounding boxes are predicted through the feature maps. YOLO trains on full images

to a single neural network in order to get context information, which further optimizes

detection performance. The input image is first divided into a square with size S, made up

of smaller cells, centered in which the object is predicted. Then we also get the predicted

B bounding boxes and their corresponding confidence scores. The confidence scores

indicate that how much confidence the box contains an object for the model and also how

accurate it is for the predictions. If no object shows up in the cell, the confidence score

will be zero. To get the best result, the confidence score should be equal to the intersection

over union (IOU) between the predicted box and the ground truth [16]. Detection is

regarded as regression problem in YOLO, makes it faster than other detectors. Compared

to two-stage techniques, YOLO contains the full image so that it can clearly encode the

contextual information in one neural network.

Figure 3.6: Key steps in the YOLO model [16].
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[9] presented a method named SSD, combing the main components of Faster R-CNN

and YOLO. In SSD, a set of default boxes are generated from bounding boxes, over

different aspect ratios and scales in the feature map. To deal with different sizes of objects

in the deep network, predictions from multiple feature maps are combined with various

resolutions. In this regard, SSD is highly reliable for object detection in real time. Our

approach mainly used a single-shot concept and will explain the details in Chapter 4.

3.2 Face Recognition

With the success of development of deep learning methods, Facebook [21] proposed

a face recognition model, DeepFace, which led to an impressive accuracy of 97.35% on

the LFW. DeepFace coupled a 3D alignment model, in which the convolutional layers are

applied for feature extraction and performed classification with the SoftMax. The training

dataset for DeepFace is composed of approximately 4 million examples of faces taken

from more than 4,000 people. Although DeepFace performed well with still images in the

wild, it encountered difficulties in video face recognition.

There are two key issues: one is building a proper representation of the video face by

integrating the information across different frames together, and the other is handling

video frames with unconstrained conditions, including: severe blur, pose variations, and

occlusions [26]. Video-based face recognition can be mainly summarized into flow-based,

aggregation-based, and frame-based methods.

Flow-based methods used manifolds techniques. That is, input is modeled as a

manifold, and the methods compute both the similarity and distance between each pair of

videos, in terms of the distance between manifolds [14].

Recent aggregation methods aim to aggregate all the video frames into a compact and

discriminative face vector representation. [26] proposed a novel Neural Aggregation

Network (NAN) that predicted a quality score for each feature vector through a deep CNN
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model and fused the vectors with the assigned scores together. [3] created a

component-wise aggregation model that aggregated each component individually and

obtained a quality prediction.

Frame-based methods indicate that implementing a face detector to extract face

features to be employed for the next recognition process is beneficial. Using this method,

[11] proposed a trunk network architecture named HaarNet that learned a holistic face

representation, as well as local and asymmetrical features, in order to derive a

discriminative embedding of the facial ROI.

[13] [28] [7] presented a concept, key frame extraction that split video frames into

key frames and non-key frames for different tasks. [6] considered video-based face

recognition as an association problem, such that faces needed to associate across the video

sequence before proceeding to the recognition process. Thus, they presented a method

using additional body information to guide the data association within the same videos.

Even when tracking targets by identification of face details was difficult due to low-quality

frames or small scales, this system was still reliable for face recognition. [6] introduced a

real-time video face recognition framework on visual tracking that both improved the

accuracy and increased the recognition speed. This model divided image frames into

groups, in which the first frame was indexed while from the second to Nth frames were set

to be non-referenced. When the reference frame detected a face, the tracking method used

a Kernelized Correlation Filter method to track the non-reference frames. Between the

neighbor groups, the system used a dual matching method for the position and identity, to

find a connection to face information.

3.3 Tracking with LSTM

Due to appearance variation, low-level features are ineffective in face tracking tasks.

Thus, [29] pretrained a CNN with an improved triplet loss function so that it showed the
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semantic distance between face images with TV series data after training. [8] developed a

prior-less framework for the dataset that randomly clustered the faces and created a

co-occurrence track model. It can recursively track and depict a graph for extracting

clusters and uses a Gaussian Process model to refine the results. [23] implemented a

particle-filter-based recursive algorithm with Bayesian estimation, which normally

handles nonlinear or non-Gaussian estimation problems. The key is the posterior

probability density function of targets, with estimating and dynamically updating the state

values. Additionally, [29] made the tracking task more robust based on multiple clues,

such as color features, edge features and motion features, instead of the single clue. [4]

also used a filtering method that stabilized a face model to estimate the face information in

order to improve the smoothness of the tracking process.

Tracking-by-detection mechanisms are increasingly effective because deep learning

features enhance the performance and robustness comparing with low-level hand-crafted

features. Therefore, [10] developed a novel visual tracking approach based on RNNs,

which combine the neural network learning and analysis into the spatial and temporal

domain. The traditional RNN focused on binary classification over local regions.

However, in this work, the researchers regressed coordinates or heatmaps directly despite

adopting sub-region classifiers on a modular neural network. Through using LSTM to

generate location history, this tracking system could also learn high-level features through

CNN networks with high accuracy and low computation cost.

[25] proposed a new association LSTM framework for video object detection. In

contrast with traditional LSTM, the new framework regressed object locations and

categories. At the same time, generated association features to encode detected objects.

As representations of detected objects, these association features capture both spatial and

temporal information due to the LSTM filtering of CNN features. Further, a close

representation means that two detections are associated with the same object. The
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association concept improved the information flow across video-based detection. Thus,

high-quality association features could be generated through the LSTM structure, which

led to a impressive detection performance.
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4 S 3FD based Face Tracking and Recognition

In this chapter, we will introduce the proposed S 3FD-LSTM networks for face

tracking and recognition. Motivated by the achievement of regression-based object

detectors, we extended the S 3FD method, which can extract features from each face

image, including small faces, into the spatial-temporal domain by using LSTM neural

networks in the YTF video dataset. We explored the feasibility of combining face tracking

and recognition, and constructing a novel system of neural networks to improve the

consistency of frame-based detection and ensure high accuracy of the face recognition

system.

We begin by introducing the S 3FD-LSTM framework of the proposed method. Then,

we present how the S 3FD works as an appropriate detector, with the details of using the

LSTM neural network for sequence processing presented. The implementation details will

be described last.

4.1 The Overall Framework

The overall framework of face recognition and tracking procedures is shown in

Figure 4.1. This framework can be separated into two parts: the progress of face detection

and tracking, and the progress of face recognition. In the former phase, S 3FD was used to

collect abundant visual features, and inferred the initial location. Besides, LSTM is

responsible for sequence processing in the next stage. Taking the raw video frames as

input, this model generates the coordinates representing a bounding box, which locates the

tracked faces in each frame.

Then, the face images with bounding boxes are used in the face recognition process.

Metric learning learned the face images and mapped into the Euclidean space. The

Euclidean distance was implemented to identify whether the given face images are similar.

The goal of the following triplet loss is to train these Euclidean distances. After this



40

procedure, we used a SVM classifier to determine which face belongs to whom. The

output shows the personal ID of the given face images.

Figure 4.1: The overall framework of the proposed method.

4.2 Tracking-by-Detection Method S 3FD-LSTM

As discussed in Chapter 2, the anchor-based method as SSD is a robust detector when

generating the bounding boxes within various scales and aspect ratios of the images.

However, the performance of this detector drops increasingly when dealing with the small

objects. Additionally, the SSD method is used to detect different classes of images beyond

faces, and thus unnecessary tasks also hinder performance. Besides, the face scale is

continuous, which is much different from the discrete anchor scale. This leads to a low

recall rate for small and large faces that fail to match the anchors within their assigned

scales. S 3FD solved this problem to detect different scales of faces with improved

accuracy.

S 3FD designs square anchors of the specific scales for every six detection layers.

There are two kinds of receptive fields. First, the theoretical receptive field (TRF) is the

region that can influence the value of the convolutions. Second, the effective receptive
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field (ERF) contains only a portion of the area that can apply effective influence on the

outcomes. To match the ERF, the anchor size need to be dramatically smaller than TRF.

Thus, to define the stride size of a detection layer, an equal-proportion interval principle

was created. This principle specifies that different scales of anchors must be equal density

on the whole image, ensuring faces in various scales can be matched by the same number

of anchors properly. Through these two strategies, the S 3FD can effectively detect faces

on a range of differing scales, especially small faces [30].

In order to eliminate the limitation of image-based face recognition in deep learning

methods, we proposed a new framework that combines LSTM into S 3FD. LSTM has the

ability of sequence processing and can regress the visual features into the next predicted

feature. The goal of this task is to learn comprehensive hierarchical features with enriched

semantics in the videos to improve the consistency of detection and accurately detect

small faces, difficult faces, occluded faces, or strangely-angled faces.

In the architecture (shown in Figure 4.1), the S 3FD detector, which trained on the

VGG-16 network, is applied to extract features in the frames. On the top of the base

convolutional layers, S 3FD[30] regresses features into region predictions. The input

image size of this networks is fixed to 640 × 640. Each bounding box has 4 location

parameters (x, y, w, h) and a confidence score C. The predictions are represented as a

location-score vector of dimension (c + 4) and descriptor vector of dimension (S × S ).

The frame vector generated from S 3FD will be fed into the LSTM architecture.

The LSTM can efficiently obtain more information from neighboring frames in the

video than the traditional methods. If a face cannot be detected in the current frame, we

can utilize temporal coherence to recover the missing face in history frames. If a face is

mistakenly-labeled, the semantic labels across the neighboring frames can correct the

results.
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As shown in Figure 4.2, our work is built on a modification architecture of the LSTM

network. There are two streams of data fed into the LSTM network: the feature vectors

from S 3FDmodel and the detection information Bt,i from the fully connected layers[10].

It is important that the hidden state of the LSTM network encodes information about not

only where to locate a face in the frame but also what to detect. From the output hidden

state, the scores of regressions and the locations of targets are obtained at each time-step.

And, the current input of the networks and its hidden state in previous time t-1 decide the

hidden state.

Figure 4.2: The architecture of LSTM tracking in time step t.

Therefore, the network extracts a feature vector Xt at each time-step t. One of the

input data to the LSTM are Xt and Bt,i , the other is the output states from the last

time-step S t−1. For training, the Mean Squared Error (MSE) is used in the objective

module as follow [10] :

LMS E =
1
n

n∑
i=1

(
Btarget − Bprediction

)2
(4.1)
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where n is the number of training samples in a batch, ypred is the prediction of the

model, and ytarget is the target value. In this study, LSTM has two tasks. Firstly, it learns

from the sequence processing to restrict the location prediction. Also, when the high-level

features are imported into LSTM, the location inference assists feature regression into the

bounding boxes of a particular location.

4.3 Face Recognition

Triplet loss [19] is used to set up a face recognition back-end. The face embedding

model is critical to the system because it greatly affects the accuracy of recognition. The

extracted features are trained by a triplet loss formula to achieve a compact 128-D

embedding, aimed at obtaining the similarities and differences between the face images.

Metric learning transforms the face image into a compact Euclidean space with the goal of

calculating distance with positive and negative comparisons. Once the model has been

trained, a positive outcome decreases the distance whereas a negative one increases it.

Figure 4.3: Triplet Loss and learning.

The mechanism of triplet loss (shown in Figure 4.3) is to close an anchor with a

similar identity positive and further from different identities negatives. It embeds an image

x into a d -dimensional Euclidean space and constrain this embedding to stay on the d

-dimensional hypersphere, i.e. ‖ f (x)‖2 = 1 [19]. Therefore, It is guaranteed that an image
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xa
i (anchor) of a specific person is much closer to all positive images xp

i of the same

person, and maximize the distance to a negative image xn
i with a different individual leads

to the representation of the face image. Once the model is trained, the embedding can be

created and fed into the model.

Thus we want,
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where α is a margin to limit the distance between positive and negative pairs. T

contains the set of all possible triplets in the training set.

The loss that is being minimized is then L =
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In order to compare two images, the embeddings for both images are created by

feeding them through the model separately. Then, the model finds the shortest distance for

similar faces and longest distance for different faces. The final step is building an SVM

classifier is trained to find the person who has the closest measurements to the test image

in the database with the peoples IDs.

4.4 The Network Architecture

The architecture of S 3FD is based on VGG16 network, which is shown in Figure 4.4.

In the base convolutional layers, the layers of VGG16 from conv1 1 to pool 5 layers as

well as a few extra layers, are maintained. In order to subsampling the parameters, fc6 and

fc7 were changed to convolutional layers behind the VGG16 base network. For the

detection convolutional layers, conv3 3, conv4 3, conv5 3, conv fc7, conv6 2, and

conv7 2[30] were chosen to make predictions along with different scales of anchors. Due

to the capacity of layers conv3 3, conv4 3 and conv5 3 [30]to contain differing feature

scales , S 3FD adopts L2 normalization to rescale their norms. S 3FD then learns the scale
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in the back propagation process. Each detection layer exists behind a p × 3 × 3 × q

convolutional layer, where p is the channel number of the input and q represents the

output. Lastly, a softmax loss is used in order to classify and a smooth L1 loss is used to

complete the regression mission [30].

Figure 4.4: The Network architecture of our modified S 3FD.

This network contributes to the detection network through improving the capability

of face scales and installing more reasonable anchors. To further develop the detection

network, the range of associated layers, the anchor size setting reference effective field,

and the anchor interval of different prediction layers using equal proportions was

increased. In this method (Table 4.1 presents the design), the stride of each prediction

layer is set from 4 to 128 for a total of six prediction layers, which ensures that small faces

have enough feature information when they are detected in the shallow layer. The size of

the anchor is set to 16-512, according to the principle of effective perception field and an

equal proportion interval of each prediction layer. Thus, the former guarantees that the

anchor size of each prediction layer matches the size of the effective perception field,

while the latter guarantees that the anchor density of different prediction layers is similar

to the input image [30].



46

Table 4.1: The distribution of six detection layers including stride size, anchor scale and

RF) [30].

Detection Layer conv3 3 conv4 3 conv5 3 conv fc7 conv6 2 conv7 2

stride 4 8 16 32 64 128

anchor 16 32 64 128 256 512

RF 48 108 228 340 460 724

4.5 Implementation Details

4.5.1 Data Augmentation

The raw data in the YTF video dataset [24] contains different numbers of people in

each video. To make them available for training, eight people’s videos are selected that

require each person to have more than three videos, and less background information. The

model uses the original input image. In the scaling process, however, the video frames

may not be large enough to cover the bounding box, and these pixels need to be patched.

The same data augmentation strategies as S 3FD were used, including random flip,

color distortion, etc. The original images were randomly cropped, and randomly selected

a image from five square patches. One of these square patches was the largest, while the

other four is ranged between [0.3, 1]. If there existed overlapped part of the face bounding

box, the center of bounding box in the sampled patch would be kept. After cropping,

resized the selected square patch to 640 × 640 and horizontally flipped the image with a

probability of 0.5.

4.5.2 Anchor Assign Strategy

In the training phrase, it is critical to identify what face bounding box matches to

which anchors by the value of IoU. According to the general anchor matching strategy, the
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first step is to guarantee that each face gets the best anchor matches with jaccard overlap.

Second, it is necessary to match anchors to those faces with an IoU higher than a set

threshold 0.5. However, this strategy leads to low recall rate when small or large faces are

unable to be matched to enough anchors, which is shown in Figure 4.5. The blue curve

drops sharply when detecting the smaller or larger faces. Zhang et al. (2017) introduced a

new strategy to improve the number of positive sample anchors with these two steps in

order to improve face recall.

Figure 4.5: Different scales of face are matched to anchors, which are compared between

the general anchor matching strategy and the new matching strategy [30].

The first step is to follow the general anchor matching approach, but to change the

jaccard overlap threshold to 0.35. This helps enlarge the average number (N) of matched

anchors. The second step is aimed at handling unmatched anchors. First, the system

selects anchors whose IoU is higher than 0.1, and it chooses the highest N as matched

anchors of this face after sorting them where N represents the average number in the first

step. The red curve in Figure 4.6 demonstrates that the proposed strategy highly improved

the number of smaller or larger faces matched.
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The new system takes the background label into consideration, which can also solve

the unmatched problem. The statistical results show that, when using the SSD network to

detect faces, over 99.8% of the anchors are considered as negative anchors. This

significant imbalance is mainly due to the small faces.

Figure 4.6: An illustration of the max-out background label [30].

For example, a 640 × 640 image can produce anchors with different sizes. Obviously,

small anchors account for a large proportion, and the accuracy of this part is very low,

which is also the main source of false position. Because the conv3 3 layer [30] with the

largest number of small targets generate these anchors. At this point, the max-out

background label is applied in the conv3 3 layer. They selected the maximum scores as

the background label among Nm scores which is showed in Figure 3.4. Therefore, the

max-out operation adds the optimal solutions to the S 3FD model, which dramatically

reduces the problem of false positive rate.

This process adopted the same anchor design as S 3FD to six detection layers. The

scales of anchors were decided by the ERF, which made the size of the anchors much

larger than the strides in each layer. Therefore, the area of anchors was set from 162 to
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5122, and the aspect ratio was set as 1 and 1.5 rectangle due to the fact that most of frontal

faces are approximately square. In details, if the highest IoU was larger than 0.5, anchors

were assigned to a ground-truth box. If the highest IoU was less than 0.4, anchors were

assigned to the background. Unassigned anchors were ignored during training.

4.5.3 Loss Function

The proposed network was trained by a multitask loss function which consists of a

classification loss lc and a regression loss lr as described in the formula below [30]:

l
({

c j, r j

})
=

λ

Ncls

∑
j

lc

(
c j, c∗j

)
+

1
Nreg

∑
j

c∗jlr

(
r j, r∗j

)
(4.4)

where j is the index of the anchor and r j is the ground truth of the anchor box. c j is

the probability to be predicted while anchor j is a face. The ground truth label c∗j ∈ 0, 1,

that is, if c∗j is 1, meaning that the jaccard overlap between the j anchor box and the

ground truth box exceeds a threshold t, the anchor is positive, otherwise c∗j is 0. The vector

ri describes the predicted bounding box, and the vector r∗j represents the ground truth box

location and size for the face. The classification loss lc is softmax loss between faces and

background. The regression loss lr is defined as a smooth-1 loss. The denominator Ncls

denotes the total number of positive and negative anchors. The regression loss is

norlmalized only for the positive sample. The parameter λ is used to balance the two loss

terms since Ncls and Nreg are different from each other.

4.5.4 Hard Negative Mining Strategy

After the anchor matching procedure, most of the anchors are classified as negatives.

The goal of hard negative mining strategy[9] is to repeatedly select false positives that are

incorrectly classified by the detector during training. The ratio of negative to positive

anchors can reach to 3 : 1. For speed up optimization training, the samples were first

sorted by loss values, then the top samples were selected. With hard negative mining, set
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above background label Nm = 3, and λ = 4 to balance between positive and negative

samples.

4.5.5 Training

The experimental platform of this work involved a 6-core, 3.4GHz Intel (R) Core

i7-5820K with a 64G memory AMD 2950X CPU, and an RTX TITAN GPU. The

algorithms were implemented based on the pytorch.

For training the model, stochastic gradient descent (SGD) with a momentum of 0.9

and weight decay of 5e-4 was applied as the optimizer. Then use the back-propagation to

compute a gradient with a learning rate of 0.001 for several iterations. Once the loss

gradually stop descending, the algorithm reduces the learning rate by one tenth to stabilize

the parameters. To avoid over-fitting, a L2 norm was used to penalize the parameters with

a weight decay of 0.01. The triplet-loss of the FaceNet that are fine-tuned during training

process has effect on the convergence of a network. This means that input satisfying the

embedding constraint does not induce learning. This setback discourages the use of

random sampling, which may entail extensive data that does not speed up the training of

an algorithm. After training, the inference time with GPU is 0.14s per frame.

The time complexity of the overall network architecture is O (
∑D

l=1 M2
l · K

2
l ·Cl−1 ·Cl),

where D denotes the deep of convolutional layers. l describes which layer is. Cl indicates

that in the the number of output channels out of the lth convolutional layer, which means

the number of kernels of this layer.
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5 Experiments and Results

In this chapter, we firstly introduce the video dataset conducted in the experiment and

the metrics of the evaluation. Secondly, the performances are evaluated based on two

categories: 1) the proposed tracking-by-detection task compared with the S3FD detector

and 2) the video-quality performance compared with a state-of-the-art face recognition

system. These two parts analyze the statistic results of the proposed method and provide a

detailed explanation of the results to evaluate the merit of our approach.

5.1 Evaluation Metrics and Dataset

Face detection metrics are considered as an important measure to assess how well a

model performs in a task and also for comparing with the benchmark. The method

proposed here is measured using various statistics, including the precision, recall, mAP

(mean average precision) and ROC (Receiver Operating Characteristic) curve etc.

5.1.1 Basic Definitions

Different classes of objects may appear in each simple image. For face detection,

there are two tasks that need to be considered: 1) determining whether a face exists in the

image (classification) and 2) determining the location of the face (regression). The ground

truth data are always applied for evaluation metrics of the algorithms. The ground truth

includes the face images and the true bounding boxes of each face in the given image.

However, it is important to consider the confidence score, which is the probability that a

bounding box contains an object (face) by a classifier. Because the model would return

large amounts of predictions (many with a low confidence score due to the risk of

misclassification), the procedure only accepts predictions above a certain confidence score

(threshold) into consideration 1.
1 https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-

a07fe6962cf3
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Using the results of the detector, the IoU (Intersection over Union) is always used for

evaluating the correctness of a given bounding box. It is a ratio that calculate the area of

the intersection and the union between the predicted bounding boxes and the ground truth

boxes (see Figure 5.1). In details, the intersection area is the overlapping of two boxes at

the same time the union area is the total region spanned 2.

Figure 5.1: How to calculate the IoU

Once the criteria of the confidence score and IoU are understood, we can classify the

predictions into True Positives (TP), False Positives (FP), False Negatives (FN), and True

Negatives (TN) 3.

A True Positive (TP) can be obtained in a detection when the model correctly

predicted bounding boxes, which means that match the ground truth. Or the predicted

bounding box has an IoU with ground truth higher than a threshold ( usually set to 0.5).

Otherwise, the prediction is considered as a False Positive (FP).

A False Negative (FN) will occur when a detection is supposed to detect an object or

detect a ground-truth is lower than the threshold. However, when a detection is not

2 https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-
a07fe6962cf3

3 https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-
detection/
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supposed to detect an object that lower than the threshold, the situation can be considered

as a True Negative (TN).

Accuracy is the percentage of the sum of correctly predicted samples relative to all

the predictions. Evaluating the model only uses the accuracy results is incomplete,

because the results can not cover the performance of a classifier in the increasing number

of incorrect classifications. Therefore, it is critical to understand the concept of precision

and recall.

Precision is the matching probability of the predicted bounding relative to the ground

truth boxes, which shows the results of correctly detected objects. It can be calculated as

follows:

Precision =
T P

T P + FP
(5.1)

Recall measures the probability of the objects that were correctly detected among

ground truth objects, which is the number of true positives relative to the sum of true

positives and false negatives as follows:

Recall =
T P

T P + FN
(5.2)

High precision means that most of the detected objects match the ground truth.

Similarly, high recall score implies that most ground truth were detected. High recall value

but low precision shows that most detections are incorrect among all detected ground truth

objects. On the other hand, low recall value but high precision indicates that although all

predicted boxes are correct, most ground truth not have been detected. Therefore, we can

get different precision and recall scores by setting the different threshold.
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5.1.2 mAP Metric

The mAP metric can also be described as precision-recall curve. It presents the

tradeoff among the loss of precision with the increasing recall score. The first step is to

calculate the AP score in VOC 2007 4. It is defined as the average precision at 11 sets of

equally spaced recall scores which is ranked from the high to low, recall

r = [0, 0.1, 0.2, , 1.0]. Thus,

AP =
1

11

∑
r∈(0,0.1,...,1)

Pinterp(r) (5.3)

The precision

Pinterp(r) = max
r̃:r̃≥r

p(r) (5.4)

Finally, mAP is the average AP over all the object categories.

5.1.3 ROC and AUC Metrics

The Receiver Operating Characteristic (ROC) curve has become a standard technique

to evaluate detection performances. In the face detection task, an ROC analysis is an

appropriate measurement to resolve the binary problem in video surveillance applications

by computing the true positive rate tpr and the false negative rate fpr. The ROC space is

defined as the False Positive Rate (FNR) along the x-axis and the True Positive Rate

(TPR) along the y-axis. The ROC curve usually measures the classification performances

from the validation dataset. Perfect classification can be found in the top left corner of the

curve while classification performance decreases as it progresses to the bottom right of the

curve 5.
4 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit doc.html
5 https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
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The area under the ROC Curve (AUC) is also a popular measurement to evaluate

detection tasks. It can be measured by the probability of the correct classification

decisions as to the area of TPR and FPR. The higher the AUC score is, the more

probability the classifier is to randomly select positive examples relative to a positive class.

5.1.4 Evaluation Dataset

The tracking-by-detection method was evaluating using the YouTube Face (YTF)

Dataset 6. This is the benchmarking video-based face dataset that is collected for the

problem of face recognition under unconstrained environment. YTF involves 3,425 videos

of 1,595 people from YTF that has an average of 2.15 videos per subject (see Table 5.1).

Video clip lengths vary from 48 to 6,070 frames, while the average clip length of a video

is 181.3 frames.

Table 5.1: YouTube Face dataset summary which contains the number of videos available

per subject 6.

# video 1 2 3 4 5 6

# people 591 471 307 167 51 8

There are many challenging videos in the YTF due to motion blur and low resolution.

In order to evaluate the proposed method fairly against another, the standard evaluation

protocol of YTF database was applied. We arranged the experiments into two categories

to verify the performance improvements on a face recognition mission: 1) the Theoretical

performance evaluation category using the benchmark dataset and 2) the practice

performance evaluation.

6 https://www.cs.tau.ac.il/ wolf/ytfaces/
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5.2 Theoretical Performance Evaluation with the YTF Dataset

5.2.1 The Consistency of Detection

(a) Performance on several videos (b) Performance on a typical video

Figure 5.2: The smoothness of bounding box movements in tracking-by-detection task

compared with the S3FD detector. (a) shows the movements on several videos. (b) presents

the movements of one of a typical video.

To prove the consistency of our detection and tracking process, we depicted the shift

of detection results in two methods. In Figure 5.2, the yellow lines present the bounding

box movements by S3FD-LSTM while the blue lines show the performance of S3FD. It is

obvious that the detection process under the S3FD-LSTM method changed smoother than

S3FD alone, which obtain consistent improvements. The consistency of detection in video

frames is defined as follows:

σ =
1

n − 1

n−1∑
i=1

Di (5.5)

Di =

√
(x0 − xi+1)2 + (y0 − yi+1)2 (5.6)

where (xi, yi) are the coordinates of the center point of the bounding box location in

the i-th frame, n is the total quantity of frames of the videos, and (x0, y0) is the position of
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the center point of the bounding box in the first frame. The change Di of the Euclidean

Distance between the center point of the detected face and the preset center point is

calculated to reflect the shift of these movements. The average value σ of Di is used to

evaluate the detection error, which reflects the average shift degree of the detection results

of the algorithm.

5.2.2 Quantitative Results

(a) mAP (b) ROC Curve

Figure 5.3: Performance evaluation on YTF dataset compared with the S3FD detector. (a)

is mAP performance. (b) is ROC curve and AUC value.

The precision-recall curves and mAP values are shown in Figure 5.3 (a). The

proposed model outperformed the S3FD method by a few margins on the YTF dataset. It

achieved the best average precision 86.2% in the same experimenal settings. When recall

score was higher (above 0.8), the proposed approach obtained higher precision. This

means the proposed method matches more ground truth boxes and makes more correct

predictions under challenging environments. Although the improvement is not obvious

because the S3FD method has already been a famous face detector, the proposed approach

still shows the effectiveness in this task.
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From Figure 5.3(b) the ROC curve shows that the S3FD with LSTM method

performs better. Specifically, for the global metric AUC, the proposed approach achieved

a higher value. For the TPR at 1% and 10% FPR, the proposed approach also performed

slightly better. Furthermore, as can be observed from the trend of the curves, the

advantage of the prosed approach becomes more obvious after the 5% FPR. With respect

to incorrect face recognition results, it is evident that many of these incorrectly identified

face images occurred in environments with dull illumination, whereas the correctly

detected face images are all with good lighting conditions.

(a) (b)

Figure 5.4: (a) Quality performances in video clips. The red bounding boxes are the ground

truth. The green bounding boxes are our proposed method. The blue bounding boxes are

the S3FD method. (b) The smallest face can be detected.

Figure 5.4(a) shows the detection results by two different methods. Compared with

the ground truth boxes, the proposed approach detected and tracked the faces are closer to

the ground truth. Due to the motion of faces in these videos, there exists some possibility

that the detectors failed to circle the correct faces. When the S3FD detected the target and

fed them in the LSTM unit with spatial constraints, the proposed method had more

confidence dealing with strangely-posed faces. Figure 5.4(b) presents the smallest size of

face that our detector can detect is 30 × 25.
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Table 5.2: Theoretical performance on two methods.

Eavluation Mterics mAP AUC

S3FD 85.7 86.4

S3FD-LSTM 86.2 86.6

In this study, we have successfully combined face recognition and tracking using

deep learning methods. Our proposed method extends the deep neural network learning

and analysis by implementing an LSTM network that has the ability of interpreting and

regressing the visual features.

5.3 Practical Performance Compared with the State-of-the-Art Model

To evaluate the practical performance, we compared our work with the Ageitgey′s

method, which is a popular application on the website. Ageitgey applied a traditional

method, called the HOG algorithm, to complete the face detection task and output a

generic HOG face. They then used 128 measurements from the FaceNet model to measure

features. Lastly, they compared the closest measurements with the dataset to find which

person was a perfect match. They selected this model because it is a simple for everyone

to construct a face recognition system by everyone on their own computer, especially by

adopting the deep learning method. However, the disadvantages are also obvious from the

output results. The misclassification problem frequently appears, leading to low accuracy

and a clumky detection process.

We randomly took 30 videos of no more than fifteen seconds in length that contained

more than one person moving or staying still. Since these videos were taken in the daily

life, there′s no ground truth for person′s IDs. Therefore, these video datasets require

labeling a person′s ID by capturing images of their faces in bounding box locations from
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the video (one picture for each person) and saving the image in the dataset along with the

name to display. We applied three evaluation criteria, including accuracy, video

performance and different strange angles detected.

5.3.1 Accuracy

The definition of accuracy used in the video dataset contained two parts: (1) overall

accuracy, which is the number of correctly-labeled frames among the total frames in the

video and (2) detection accuracy, which is the number of frames that detect faces among

the total frames in the video. For both metrics, if there was one mistaken labeling or

missing labeled, I assumed it was a wrong label. That is, unless all the people in the video

could be accurately detected and recognized, this frame was considered incorrect. All the

test videos were randomly selected from the website and contained more than one person

and not-still image.

The comparisons of accuracy for both methods are shown in Table 5.3. In the

proposed model, considerable improvement was achieved in the face detection. Unless

people showed only the side of their face to the camera, the system could successfully

detect their faces. The overall accuracy was also increased to 90% compared with the

state-of-art method under the video dataset, mainly because the proposed approach

captures more faces, such as strangely-angled faces, across the videos to match with the

dataset.
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Table 5.3: The comparison of overall accuracy and detection accuracy between state-of art

method and our approach.

Video 1 Video 2 Video 3

State-of-

Art method

Our

approach

State-of-Art

method

Our

approach

State-of-

Art method

Our

approach

Overall

Accuracy
71.43 93.63 65.08 91.79 79.59 89.07

Detection

Accuracy
74.90 94.02 65.08 99.81 79.59 98.98

5.3.2 Qualitative Results

The qualitive results presented in Fig5.5 show that the proposed method successfully

recognizes faces under different challenging environments. In results (a), (c) and (e), the

state-of-art method showed obvious errors such as mislabeled and incorrectly labeled

faces in those frames due to movements or motion blur. However, in results (b), (d) and

(f), our proposed method accurately detected the faces and correctly recognized the

person. In this case, it is significantly proved that the S3FD detector was capable of

detecting different sizes of faces, especially small faces. When the detection is flawed due

to motion blur, LSTM tracking remained stable with spatial-temporal history, which

provided more visual features and improved the overall accuracy of face recognition.

Besides, with the tracking-by-detection method, the bounding box generation were also

more stable and smoother.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.5: Qualitative results of face recognition for three videos. (a)(c)(e) are the results

for state-of-art method. (b)(d)(f) are the results for our proposed method.
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5.3.3 Strangely-posed Face Detection

The qualitative result in Figure 5.6 shows the comparison of different strangely-posed

face recognition by two methods. Apparently, the proposed method had the ability to

detect more different angles of faces than the state-of-art method and accurately matched

them with the persons name. Even when people look at other sides (a,b,f), open their

mouths (c,d) or change to small faces (e), the proposed approach obtained the correct

result. This means when people showing different facial expressions or gestures S3FD in a

real application, the proposed approach can not only improve the face recognition

accuracy but also adjust the bounding box to be more consistent.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Different strange poses in three videos detected by both methods. In each

comparison under the same frame, left side is the state-of-art method, and on the right is

our proposed method.

In conclusion, the S3FD is a robust model for face detection, but lacks temporal

information to deal with the challenging environment. The S3FD with LSTM model not

only improved the overall accuracy but also achieved significant performance

improvement on face detection compared with the state-of-the-art face recognition

method. With the ability of exploring temporal features as well as the possible locations, it

can detect more strange face poses in the videos for the system to recognize. Also, the

output video shows stable and smooth performance in different kinds of conditions.
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6 Conclusion and FutureWork

Face recognition has received widespread attention and has been implemented in

different fields in the past few years. Although many researches have developed valuable

approaches, the challenges of video-based methods exist in real-world have not been

carefully solved. Compared to image-based detection, which can have difficulty in dealing

with unconstrained backgrounds that can lead it to accidentally extract incomplete and

sparse features, video-based object detection can achieve better performance. The

temporal coherence information in video provides richer visual information than a still

image, which can allow sharp improvements in the accuracy of object detection.

In the present research, a novel S3FD-LSTM framework for combining face

recognition and face tracking to advance video face recognition was successfully

developed. The critical consideration in the tracking problem is a sequential

decision-making process and encoding highly relevant information for future decisions

according to historical semantics. The proposed approach extends the DNN learning and

analysis into both spatial and temporal domain. The new LSTM is not only capable of

high-level visual features which can process large amounts of video data, but also highly

improve the consistency of detection. The experimental results and performance in an

unconstrained YTF dataset revealed that this proposed approach achieves better accuracy

and consistent detection process regardless of face size or how widely the angles of the

faces change compared with state-of-the-art methods.

In future research, it is critical to improve the running time of this framework in

accomplishing real-time face recognition. Future efforts will focus on compressing the

network architecture in order to achieve higher speed in tracking faces under challenging

dynamics during real-time performance.
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