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ABSTRACT 

XINYING WU, Ph.D., August 2019, Mechanical and Systems Engineering 

Reliability Assessment of a Continuous-state Fuel Cell Stack System with Multiple 

Degrading Components 

Director of Dissertation: Tao Yuan 

This study is motivated by a degradation experiment conducted by an industrial 

collaborator on the long-term durability of a polymer electrolyte membrane fuel cell 

(PEMFC) stack. A PEMFC stack can be considered as a multi-component system 

composed of continuously degrading fuel cell components. The voltage degradation of 

the fuel cells causes the degradation of the stack system. The system degradation is 

assessed by using two system-level degradation measures: the overall stack output 

voltage and the minimum voltage of individual cells. This dissertation proposes a 

hierarchical Bayesian approach to predict the failure-time distribution of a stack which is 

randomly selected from its population and the remaining useful life (RUL) of a 

monitored PEMFC stack system by using the voltage degradation data collected from its 

fuel cell components. A two-term exponential function is adopted to describe the mean 

voltage degradation-paths of the fuel cell components and a hierarchical Bayesian 

degradation model is established to predict the stack system reliability. A Gibbs sampling 

algorithm is developed for the inference of the parameters in the hierarchical degradation 

model. Three alternative modeling approaches are explored and compared.  

This research will contribute to the degradation modeling and data analysis 

methods for continuous-state systems composed of continuous-state components. 
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CHAPTER 1: INTRODUCTION 

1.1 Objective and Motivation 

The objective of this dissertation is to develop a methodology to predict the 

reliability of continuous-state systems composed of continuous-state components. 

Traditional system reliability models have been largely based on binary-state or multi-

state assumptions which assume a system has a finite discrete set of possible states. The 

binary-state system reliability modeling and analysis have been used broadly and the 

binary-state models assume that a system and its components have two states: working or 

failed [1, 2]. Under the multi-state assumption, a system and its components may exhibit 

more than two states, such as partially working or partially failed. However, these 

discrete states assumptions may not be reasonable for some modern systems. For 

example, A PEMFC stack consists of multiple polymer electrolyte membrane fuel cells 

[3]. The continuous voltage degradations of the cells cause the performance degradation 

of the stack system. Therefore, the PEMFC stack system can be considered as a 

continuous-state system composed of continuous-state components. In recent research, 

degradation modeling and reliability prediction of a continuous-state system based on 

degradation testing data of its components have not been fully covered. Thus, a 

methodology of predicting the reliability of continuous-state systems composed of 

continuous-state components is highly recommended. 

An industrial collaborator conducted a long-term degradation test on a PEMFC 

stack. Each stack consists of 32 continuously degrading fuel cells. Under a constant 

power operation condition, voltage behaviors of all fuel cells in one stack were 
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simultaneously and continuously monitored. All 32 PEMFCs cells are connected in series 

as show in Figure 1 (see Bae et al. [3] for details on the degradation testing procedure and 

degradation data). This study attempts to propose a hierarchical Bayesian degradation 

modeling and data analysis method to analyze the system’s degradation by using the 

cells’ degradation data. Based on this hierarchical model, the failure-time distribution of a 

randomly selected stack and the remaining useful life (RUL) of a monitored PEMFC 

stack can be predicted. Hence, the background of system degradation analysis which is 

corresponding to this study is introduced first in this chapter. 

 

 
Figure 1. PEMFC system 

 

1.2 Background 

This section briefly introduces the backgrounds of reliability, system reliability 

models, degradation models, and Bayesian methods.          

1.2.1 Reliability 

Reliability is the probability that a system or a component will perform its 

function adequately for the intended period of time under the anticipated working 
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condition [4]. Let a continuous non-negative random variable T denote the failure-time of 

a unit, the reliability function 𝑅(𝑡), for 𝑡 ≥ 0, is defined as 𝑅(𝑡) = Pr(𝑇 ≥ 𝑡). Reliability 

evaluations methods can be categorized as failure-time based methods and degradation-

based methods. Traditionally, the reliability of a product is assessed by using the failure-

time based methods which need to collect failure-time data from reliability tests or field 

operations.  However, for many modern highly reliable products, it is very difficult to 

collect enough failure-time data within a reasonable test duration to evaluate the 

products’ reliabilities. Hence, degradation-based modeling and analysis methods that 

utilize degradation data to predict highly reliable products’ reliabilities have attracted 

increasing attentions in the reliability research and application communities. 

In degradation-based reliability models, a product is considered to have failed 

when its degradation level exceeds a failure threshold (usually this is called a “soft 

failure”). For example, a critical performance measure of a display device, such as a 

plasma display panel (PDP) or an organic light-emitting diode (OLED), is its luminosity 

(i.e., brightness), and a product is considered to have failed when its luminosity falls 

below 50% of its initial luminosity [5]. 

Except the above category, the reliability models can also be categorized into 

binary-state, multi-state, and continuous-state models as mentioned in Section 1.1. The 

binary-state models correspond to the failure-time based models. Both multi-state and 

continuous-state models are degradation-based models. The multi-state models assume a 

product can have a finite discrete set of degrading states; while the continuous-state 

models assume the state of a product can change continuously overtime. 
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1.2.2 System Reliability Models 

The reliability of a system consisting of multiple components can be evaluated via 

using either a black-box approach or a white-box approach [6]. The black-box approach 

considers a system as a single unit and evaluates the system reliability by using failure-

time data or degradation data collected at the system level.  On the other hand, the white-

box approach models and predicts the reliability of a system based on the structure of the 

system and the reliability data is obtained at the component level.          

This study focuses on the degradation modeling and analysis for multi-component 

systems. The majority of existing studies adopted the black-box approach, which views a 

system as a single unit, concentrating on the degradation testing and modeling for 

reliability prediction, and maintenance optimization at the system level. There have been 

some studies pursuing reliability prediction and maintenance optimization of systems 

with degrading components using the white-box approach. Those studies usually 

regarded the system as a binary-state system with continuous-state components. 

However, there have been very limited studies on continuous-state systems with 

continuous-state components by using the white-box approach. 

The white-box approach possesses the following two advantages over the black-

box approach. First, it may be easier to obtain sufficient reliability information and data 

from the constituting components than from the system. Second, when some complex 

systems have multiple performance measures, some of the measures are not directly 

measurable at the system level but are easier to obtain at the component level. For 

example, the PEMFC stack system has two degradation measures: one is the minimum 
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cell voltage as a safety measure which can only be monitored at the component level, and 

the other is the stack output voltage as a performance measure which is based on the 

degradation data of each cell. 

1.2.3 Degradation Models 

Under the continuous-state assumption, there are two classes of degradation 

models: general degradation-path models and stochastic processes. The general 

degradation-path models essentially are regression-based models, where the independent 

variable is the time and the dependent variable is the degradation measure. The mean 

regression functions describe the expected degradation-paths. The general degradation-

path models usually use the mean regression functions to define the failure-times or 

degradation measures. That is, a product is considered to fail when the mean regression 

function reaches the failure threshold. The noises in the observed degradation data are 

generally considered as measurement errors. On the other hand, stochastic processes-

based models describe the observed degradation data by using a stochastic process such 

as the Wiener process or the Gamma process, and the noises are an inherent part of the 

degradation process. 

When the degradation model is available, the failure-time distribution of a random 

product or the RUL of a monitored product can be obtained. A failure-time distribution is 

a cumulative distribution function which is used to describe the probability of failure by 

time t. A RUL is also a cumulative distribution which is used to present the probability of 

the remaining lifetime left on a system or a component at a particular time of operation. 
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Base on the failure-time or RUL predictions, other reliability-related decisions such as 

the warranty, system design, and maintenance can be made. 

1.2.4 Bayesian Methods 

Bayesian data analysis is a method of estimating parameters by assigning 

probabilities to possible parameters values. Let y denotes the observed value and 𝑝(𝑦/𝜽) 

is the conditional probability of y conditional on the unknown parameters 𝜽. Bayesian 

estimation method concludes parameters 𝜽 in terms of probability [7] as following: 

𝑝(𝜽/𝑦) ∝ 𝑝(𝜽)𝑝(𝑦/𝜽)                                                (1.1) 

where 𝑝(𝜽/𝑦) is the posterior distribution and 𝑝(𝜽) is called the prior distribution. In 

other words, the posterior distribution includes the information from the observed value y 

and the prior. Therefore, Bayesian method could be applied on limited dataset especially 

when the dataset does not contain sufficient information, prior is a key term to improve 

the estimation probability. 

Speaking of the prior distribution, conjugate prior is a priority choice in the 

Bayesian analysis due to its practical advantage [8]. A prior is said to be conjugate to the 

sampling density if the resulting posterior is a member of the same parametric family as 

the prior [9]. Hence, the computation procedure of deriving posterior has been greatly 

simplified by assigning conjugate priors especially when the conditional probability 

includes multiple parameters which will result in more complicated calculations. 

However, conjugate prior does not always exist in most cases. If any information or data 

from previous experiments or experts are available, an informative prior could be 

formulated. If there is no information about the parameters and no conjugate priors exist, 
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then a non-informative prior can be set which does not affect the model itself to complete 

the Bayesian model. 

In a Bayesian model, the parameter 𝜽 could be a parameters vector which 

includes multiple parameters. If a population has multiple independent observations of 

similar objects and each observation has multiple parameters, hierarchical Bayesian 

model could be applied to estimate parameters with multiple layers. Moreover, unit-to-

unit variability among the similar objects can also be modeled by a hierarchical Bayesian 

model. Gibbs sampler is a Markov chain Monte Carlo (MCMC)-based simulation 

algorithm to apply in many multidimensional problems [7]. The main idea of Gibbs 

sampler is that if a Bayesian model includes multiple parameters, 𝜽 = (𝜃1, … , 𝜃𝑑), each 

iteration of the Gibbs sampler cycles through the sub-vectors of 𝜽, drawing each subset 

conditional on the value of all the others. Gibbs sampler has been widely applicable to a 

broad class of Bayesian analysis.  

Another well-known parameter estimation method is the maximum likelihood 

estimation (MLE) which attempts to find the parameter values that maximize the 

likelihood function with given observations. However, the calculation may become 

complicated when the model is complicated, such as complex hierarchical models with 

multiple layers. MLE has ability to obtain unbiased estimators with minimum variance as 

the sample data carried enough information. 

Compared with MLE, Bayesian is more suitable for parameter estimation with 

limited data due to the advantage of assigning priors. When a degradation model includes 

multiple layers, hierarchical Bayesian method could model the unit-to-unit variability, 
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conjugate prior could simplify the computation procedure if it exists, and MCMC-based 

simulation algorithm could obtain reasonable solutions easier. 

1.3 Overview 

The rest of this dissertation is organized as follows. Section 2 provides a literature 

review on related studies. Sections 3 and 4 state the proposed methodology and the 

corresponding results, respectively. Section 5 outlines three compared methods with 

results. Finally, Section 6 concludes this study. 
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CHAPTER 2: LITERATURE REVIEW 

Degradation models include the general degradation-path models and stochastic 

processes. The relative literature review about these two categories are included in the 

following Section 2.1 and the Section 2.2. In addition, Bayesian degradation analysis and 

system degradation modeling approaches are applied in this study. Therefore, the Section 

2.3 and the Section 2.4 are the literature reviews about these two topics. 

2.1 General Degradation-Path Models 

This section reviews studies related to the general degradation-path models, 

which describe the degradation-path of systems or components by using regression 

methods. For the regression methods, the mean regression functions are usually used to 

describe the expected degradation-paths, and the deviations from the mean regression 

functions (i.e., statistical errors) in the observed degradation data are generally considered 

as measurement errors. There have been numerous studies related to general degradation-

path models. Nikulin et al. [10] presented a comprehensive overview of the advances in 

degradation modeling with application on reliability, survival analysis, and finance. 

Regression methods could be classified into two types: the linear regression method and 

the nonlinear regression method.  

2.1.1 Linear Degradation-Path Models 

One of the most popular general degradation-path models is the linear model 

mainly due to the easiness of the linear regression analysis. The linear regression analysis 

can be extended to build random-effect models and accelerated degradation models. In 

the random-effect models, some regression coefficients are assumed to be random from 
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unit to unit. In the accelerated degradation models, the degradation rate (i.e., the slope 

coefficient) is assumed to be dependent on the operation conditions. 

Here are some examples of studies applying the linear degradation models. Freitas 

et al. [11] applied a linear degradation-path model to predict train wheels’ failure-time 

distribution. Yu [12] proposed a linear degradation-path model with a Weibull-distributed 

degradation rate for analyzing an accelerated degradation test. Lu et al. [13] proposed a 

linear degradation-path model with random regression coefficients and applied it on 

semiconductors’ degradation data. Mohammed et al. [14] derived the time to failure 

distribution from a linear degradation model and applied the method on a real laser data 

set. Firoozeh and Mikhail [15] applied a linear regression model with considering 

multiple failure measures to predict the survival function. Bagdonavicius et al. [16] 

researched on degradation analysis about the failure-time data with partial renewals and 

multiple competing failure modes and a non-parametric method with combining a joint 

linear degradation model was used in their study. Peng and Tseng [17] analyzed the 

degradation-path by using a general linear degradation model with considering unit-to-

unit variation and the corresponding life time distribution and mean time to failure 

(MTTF) were derived from the degradation-path model. Dakhn et al. [18] applied 

parametric and semi-parametric estimation methods on a simple linear degradation model 

to predict the time to failure distribution and its percentile. 

2.1.2 Nonlinear Degradation-Path Models 

When the observed degradation data exhibits nonlinear patterns or no linear 

degradation-path models are applicable, nonlinear degradation-path models are needed. 
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There were some examples from real world [19] to show the necessity of incorporating a 

nonlinear structure into a degradation process model, such as the degradation of light-

emitting diodes (LEDs). The nonlinear model could capture a better understanding of the 

nature degradation patterns. Bae et al. [20] proposed a bi-exponential degradation-path 

model to describe the nonlinear brightness degradation phenomenon of PDPs. The same 

dataset was modeled and analyzed by using a change-point degradation-path model [5]. 

Both studies adopted the mixed-effect modeling method to account for the unit-to-unit 

variability and the maximum likelihood method was applied to fit the models. Bae et al. 

[21] later developed and compared these two models within the hierarchical Bayesian 

framework. Another example of nonlinear degradation-path models is the two-term 

exponential model which is applied to describe the capacity degradation of many 

different types of fuel cells or batteries (i.e., direct methanol fuel cells [22], lithium-ion 

batteries [23]). Bae and Kvam [24] proposed a degradation model with incorporating 

nonlinear random coefficients to capture the nonmonotonic degradation-path for highly 

reliable light displays. A nonlinear degradation model with consisting of dynamic 

covariates [25] was used to fit a degradation-path. Due to the computation challenge by 

involving of nonlinear function, random effects, and shape-restricted splines, simulation 

method was adopted to estimate the parameters. 

2.2 Stochastic Process Degradation Models 

The second class of degradation models are the stochastic processes, such as 

Wiener process and Gamma process. 
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2.2.1 Wiener Process 

Wiener process is a continuous-time stochastic process which is also called 

Brownian motion (BM) [26]. Wiener process is usually applied to describe degradation 

phenomena caused by wear, corrosion, and crack growth.  

The Wiener process with a linear drift is the most widely used stochastic process 

degradation model [26]. This section first introduces the Wiener process with a linear 

drift as a degradation model, then reviews some recent studies on nonlinear Wiener 

process degradation models. 

2.2.1.1 Wiener Process with a Linear Drift 

Let X(t) denotes the state of a unit at time t (i.e., the degradation measure at time 

t), the Wiener process with a linear drift assumes that X(t) is modeled by 

𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡)                                                      (2.1) 

where μ is the drift and σ is the diffusion coefficient. The Wiener process is characterized 

by the independent normal increments [26], that is 

∆𝑋(𝑡)~𝑁(𝜇∆𝑡, 𝜎2∆𝑡)                                                     (2.2) 

where 

∆𝑋(𝑡) = 𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡)                                               (2.3) 

and ∆𝑋(𝑡) is independent of 𝑋(𝑡). The normality assumption makes the Wiener process 

be a suitable model for nonmonotonic degradation-paths.          

In Chapter 1, soft failure is mentioned which means a product is considered to 

have failed when its degradation level exceeds a failure threshold. In a stochastic process 

degradation model, the degradation may hit the threshold many times due to the noise 
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which is included in the model. Failure-time is defined when the process first crosses the 

failure threshold, called the first-hitting-time (FHT). It is well-known that the FHT 

distribution of the Wiener process crossing a threshold w obeys an inverse Gaussian 

distribution [26]: 

𝑓𝑇(𝑡) =
𝑤

√2𝜋𝑡3𝜎2
𝑒𝑥𝑝 (−

(𝑤−𝜇𝑡)2

2𝜎2𝑡
)                                         (2.4) 

Due to the availability of the closed-form FHT distribution, the Wiener process 

with a linear drift has been widely used in degradation modeling.  

The Wiener process with a linear drift is applicable to the degradation data with 

linear patterns. A Wiener process with a linear drift is widely adopted on deriving FHT 

distribution by applying the inverse Gaussian distribution. Liu al et. [27] applied the 

Wiener process in both linear and nonlinear accelerated degradation testing analyses and 

compared the Wiener process with the general linear path degradation model. The 

simulation results showed that the reliable lifetime results could be obtained from both 

linear and nonlinear Wiener process models. Ye et al. [28] compared the Wiener process 

with a positive linear drift in an existing inference procedure and proposed a mixed 

effects model of measurement errors to improve its estimation efficiency. The proposed 

model was applied on the magnetic head wear problems and the light intensity 

degradation problems. The Wiener process with a linear drift was also adopted in the 

study of Tang et al. [29] in a mis-specification model to estimate the RUL. The related 

case study concluded that the mis-specification could cause premature maintenances and 

increase the maintenance costs. Son et al. [30] applied the Wiener process model in the 
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principal component analysis to model the components deterioration and estimate the 

RUL. 

2.2.1.2 Wiener Process with Linearized Drift 

When the degradation pattern is nonlinear, one may apply a transformation 

method to linearize the degradation data so that the linear Weiner process can be applied. 

However, deriving the life time distribution by using the FHT of a standard BM crossing 

a threshold cannot be applied directly in a Wiener process with a nonlinear drift. Some 

researchers used some transformation methods to convert the nonlinear drift to a standard 

BM. For example, Whitmore [31] discussed degradation modeling by applying Wiener 

diffusion with a time scale transformation and predicted the potential life of long-term 

equipment. Log-transformation method was employed by Gebraeel et al. [32] in a Wiener 

process to linearize the drift. Time scale transformation was also adopted by Doksum and 

Hoyland [33], Whitmore and Schenkelberg [34] to fit degradation data. Wiener process 

was applied by Wang et al. [19] with a nonlinear drift coefficient which was closer to the 

real degradation data and a time-space transformation was used to convert the proposed 

model into a standard BM. Then the concept of the FHT was borrowed to derive the 

closed-form of the RUL. A Wiener process with a nonlinear drift coefficient and a 

constant threshold was transformed by Si et al. [35] to a Wiener process with a linear 

drift and a variable threshold. The FHT of the proposed model was obtained by a time-

space transformation based on a mild assumption. And the results indicated that the 

accuracy of the RUL estimation was improved significantly. 
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2.2.1.3 Wiener Process with a Nonlinear Drift 

However, more and more systems’ degradation characteristics cannot be captured 

by Wiener processes with a linear drift. To solve this problem, Wiener process with a 

nonlinear drift was explored by lots of researchers. Wang et al. [36] proposed an adaptive 

method of residual life (RL) estimation by applying a generalized Wiener degradation 

process with considering various uncertainty situations, such as the nonlinearity, and the 

proposed method of RL estimation could be used for future decision making and its 

validity was demonstrated in the case of concerning fatigue cracks. Tang al et. [37] 

considered measurement errors and applied Wiener process with nonlinear drift on real 

time RUL prediction to improve the accuracy of the model. Tang et al. [38] also 

introduced nonlinear Wiener process in an accelerated degradation process with random 

effects. Wiener process [39] was adopted in a nonlinear age and state-dependent 

degradation model to derive the RUL and the concept of the FHT was borrowed. An 

example was presented in his study to illustrate the applicability of the Wiener process 

model. 

2.2.2 Gamma and Other Processes 

Besides the Wiener process, some other popular stochastic models like Gaussian 

process, gammas process which are applied widely in degradation analysis.  

Inverse Gaussian process was used by many researchers for degradation analysis. 

Peng et al. [40] applied a simple inverse Gaussian process model and three inverse 

Gaussian process models with considering random effects on the degradation analysis 

and applied their models on the GaAs Lasers data. In 2015, Pan et al. [41] estimated the 
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RUL via applying an inverse Gaussian degradation model. It mentioned that the RUL 

prediction was critical on setting the product maintenance in advance and maximizing the 

utilization. Wang and Xu [42] integrated the subject-to-subject heterogeneity and 

covariate information in a class of inverse Gaussian process models for degradation 

analysis. A set of laser data was used to apply those models and the corresponding 

failure-time distributions were derived. Peng et al. [43] extended the general degradation 

process model with constant degradation rates to parametric inverse Gaussian process 

models with three types of degradation rates: constant, monotonic, and S-shaped 

degradation rates. The degradation data of a heavy-duty machine tool’s spindly system 

with observed time-varying degradation rates was used to test their proposed method. Pan 

et al. [44] applied expectation maximization algorithm to estimate the parameters of an 

inverse Gaussian model which was used to analyze the degradation of a deteriorating 

system with considering the random effects.  

Another popular stochastic process is gamma process. A gamma process has 

independent gamma distributed increments which are non-negative. Geometric motion 

gamma process with an accelerated testing variable was applied by Park et al. [45] for 

degradation analysis. Lawless et al. [46] used the random effects in a gamma process to 

model the degradation data with considering various rates over time. Gamma process was 

adopted by Pan et al. [47] with applying two different performance measures in a 

degradation analysis problem. The combination of a gamma process and a Poisson 

process was used in the research of Noortwijk et al. [48] for reliability analysis with 

considering the random variability which was modeled via a generalized Pareto 
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distribution. Wang et al. [49] investigated Gamma processes with time transformation 

and random effects considered to predict the life time of an individual and the 

corresponding population. The accelerated degradation data of carbon-film resistors was 

adopted in their study to illustrate the applicableness of their proposed method. Sun et al. 

[50] combined the Arrhenius model which is a popular traditional accelerated model and 

the Gamma stochastic process on the reliability analysis of the accelerated aging of 

rubber O-rings. A comparison was included in their study to state the advantages of the 

improved method. Mahmoodian and Alani [51] adopted a gamma process to model the 

monotonic behavior of the ageing and the deteriorating processes of concrete sewer pipes 

and the failure probability function of the pipes caused by the corrosion process was 

derived from the model. 

2.3 Bayesian Degradation Analysis 

A proper degradation model can be used for deriving failure-time distribution, 

RUL of a system. Some corresponding studies of Bayesian degradation analysis are 

reviewed here. Bae et al. [52] conducted a research by applying Bayesian degradation 

analysis for considering competing risks and RUL prediction of two-term degradation. Ji 

and Yuan [53] proposed a hierarchical Bayesian degradation model for analyzing 

heterogeneous degradation data. They applied a Gaussian mixture model for accounting 

the variability of different units. Gibbs sampling was applied for estimating the 

parameters and a failure-time distribution was developed by using the hierarchical 

Bayesian degradation model for future prediction. Lee et al. [54] applied Bayesian 

degradation analysis in a bivariate Wiener process with using the censoring marker value 
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at the failure-time to predict its failure-time distribution. Metropolis-Hasting Gibbs 

sampling was adopted for estimating parameters. Another study [14] applied Bayesian 

degradation approach in a linear mixed model with considering grouped and non-grouped 

failure data to estimate the parameters of the failure-time distribution. The results showed 

the Bayesian approach with non-grouped data is better than the Bayesian approach with 

grouped data. Bayesian method [55] was applied in nonlinear degradation models by 

using the information from Accelerated Destructive Degradation Tests (AADTs) to 

estimate the precision of a failure-time distribution. A numerical example was presented 

to investigate the effects of the prior distribution and the sample size on test results. Peng 

et al. [40] applied Bayesian analysis and three IG process models with random effects for 

degradation analysis and the GaAs Lasers data was used to prove its effectiveness. Pan et 

al. [44] applied Bayesian method by using fresh degradation data to update the latest 

RUL estimations and make the estimations able to be real-time based. 

2.4 System Degradation Modeling Approaches 

As an alternative of traditional reliability modeling and prediction methods based 

on failure-time data, degradation analysis has attracted an increasing attention in recent 

years [10, 13, 56]. This section focuses on the system degradation modeling and analysis 

with consisting of multiple continuous-state components.  

There are two general approaches applied into continuous-state system reliability 

analysis: black-box approach and white-box approach [6]. The biggest part of the existing 

degradation modeling methods is based on the black-box approach. Black-box approach 

[6] focus on reliability analysis on system level which assumes the system is a unit and 
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concentrating on the degradation testing and modeling for reliability prediction and 

resulting maintenance optimization at the system level. For example, Wang and Pham 

[57] developed a s-dependent competing risk model for systems subject to multiple 

degradation processes and random shocks. Liao et al. [58] studied continuously 

degrading systems based on a conditional maintenance model with a realistic 

maintenance limit policy. Wang and Coit [59] investigated multiple degradation 

measures on system degradation modeling with prediction of the system reliability. Gao 

et al. [60] developed reliability models for degradation-shock dependence systems. The 

Micro-Electro-Mechanical systems were used as examples in that study. Zhao et al. [61] 

optimized the warranty cost for mechanical systems under imperfect repairs using 

experimental degradation data of the systems. Those studies assumed that the system is a 

single unit with two states of functioning: working or failed. 

On the other hand, while white-box approach [6] models and predicts the 

reliability of a system based on the system structure and the information obtained at the 

component level. Based on this requirement, researchers always consider the inner 

structure of the system and study the reliability or degradation patterns about all of the 

components. There have been several studies pursuing reliability prediction and 

maintenance optimization of systems with degrading components using the white-box 

approach. Those studies usually regarded the system as a binary-state system. For 

example, Peng et al. [62] investigated importance measures for the systems with 

independent or dependent degrading components, assuming the systems to be binary-

state systems. Zhao et al. [63] proposed a reliability modeling and data analysis method 
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for load-sharing systems with identical degrading components. The degradation of a 

component was modeled by the Wiener process, but the system is assumed to be binary. 

Sun et al. [64] adopted the white-box approach to obtain optimal inspection and 

replacement policies for systems with multiple degrading components, where the systems 

are assumed to be binary. Nezakati et al. [65] considered the reliability analysis of a 

binary-state k-out-of-n:F system whose components are degrading according to a linear 

degradation model. Normally, it’s easier to collect reliability data and other information 

of each individual component than the whole system. Such as connection information 

between two or more components, performing reliability tests on different components, 

abundant reliability information of components, and dependent or independent 

relationship among two or more components. Thus, this approach is legitimate when the 

system structure is complex. 

There have been very limited studies on the degradation modeling of continuous-

state systems with continuous-state components. Yang and Xue [66], Brunelle and Kapur 

[67], and Gamiz et al. [68] extended the binary-state reliability analysis to continuous-

state reliability analysis. The system state is related to its components' states was defined 

via a deterministic structure function as 𝑌(𝑡) = 𝜑(𝑋1(𝑡), 𝑋2(𝑡),⋯ , 𝑋𝑚(𝑡) where 

𝑌(𝑡)and 𝑋𝑖(𝑡) are the state of a system and the state of the ith component at time t, 

respectively, and the number of components in the system is m. Here, 𝜑(∙) denotes the 

structure function from 𝑋𝑖(𝑡) to 𝑌(𝑡). The structure functions may be extremely 

complicated for complex systems. Brunelle and Kapur [67] and Gamiz et al. [68] 

proposed some empirical methods to obtain the approximations of the structure functions. 
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 In addition, Han and Lee [69] considered the health monitoring for a photovoltaic 

system, which is another example of the continuous-state system composed of 

continuous-state components. The degradation of solar cell modules caused the 

degradation of the photovoltaic system. However, that study focused on a testing method 

that will effectively detect the most degraded component in a system, without considering 

the degradation modeling and analysis. Sun et al. [70] studied the lifetime prediction for 

an integrated LED lamp, whose performance degrades as the results of the degradation of 

its two key components: an LED light source and a driver. Therefore, the integrated LED 

lamp is also an example of continuous-state systems with continuous-state components. 

That study, however, focused on a physics-of-failure based electronic-thermal simulation 

methodology for the system lifetime prediction.  

Some recent studies have attempted to model and analyze degradation data of 

various types of fuel cells. Guida et al. [71] developed a random-effects models for 

degradation analysis of solid oxide fuel cells. The analysis was performed at the cell level 

to predict the cell reliability. The stack reliability was not considered in that study. On the 

other hand, Jouin et al. [72] modeled the power degradation of proton exchange 

membrane fuel cell stacks using stack-level measurement data. Our study, therefore, 

differs from those studies in that we attempt to using the cell-level degradation data to 

predict the stack-level reliability. 

In summary, there is no study in degradation analysis about continuous-state 

system with continuous degradation components by using white-box approach. This 

research attempts to model continuous-state system’s degradation and predict the failure-
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time and RUL based on one of the aforementioned degradation measures. The 

degradation data collected from each individual cell of the monitored PEMFC stack is 

used to test the proposed model, mainly under the hierarchical Bayesian framework. 
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CHAPTER 3: PROPOSED METHODOLOGY 

PEMFCs have attracted broad attentions as one of the most promising clean 

energy sources and the leading technology for stationary and larger vessel applications 

due to their high-power density, fast startup, and low pollutant emission at the point of 

use [3]. 

An industrial collaborator conducted long-term degradation tests for planar 

PEMFC stacks. Each stack consisted of 32 PEMFCs cells connected with series as shown 

in Figure 1 in Chapter 1. Under a constant power operation condition [3], the voltage 

behaviors of all cells in a stack are simultaneously and continuously monitored. Figure 2 

depicts typical voltage degradation curves of each cell in a stack. The degradation of cell 

voltages causes the voltage degradation of the entire stack. 

 

 
Figure 2. Observed voltage degradation-paths of 32 fuel cells in a tested PEMFC stack 

system [3] 
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A degradation-path function that has been employed to describe the capacity 

degradation of many different types of fuel cells or batteries (i.e., direct methanol fuel 

cells [22], lithium-ion batteries [23]) is the two-term exponential function. Based on this 

model, this study uses the two-term exponential degradation model on the data set of 

PEMFCs. Section 3.1 lists all assumptions of the following models. Section 3.2 

introduces the two-term exponential degradation model for an individual cell. Section 3.3 

gives a detail of the hierarchical Bayesian modeling approach for PEMFCs system based 

on the model in the Section 3.2., the failure-time distribution of a randomly selected stack 

and the RUL of the monitored stack are derived in the Section 3.4 based on the 

hierarchical Bayesian model of Section 3.3. Gibbs sampling is used to perform the 

Bayesian computation. 

3.1 Assumptions 

The proposed methodology is based on the following assumptions: 

(1) The m fuel cells that are connected in a PEMFC stack degrade independently. 

(2) The m fuel cells in a randomly selected stack form a random sample from the 

population of cells. 

(3) The stack-to-stack (i.e., system-to-system) variation in degradation is caused by the 

cell-to-cell variation in voltage degradation. This assumption is imposed due to the 

availability of data for only one tested stack. 

(4) A stack is considered to have failed if its output voltage falls below a failure threshold 

or at least k cells in the stack have voltages below a safety threshold. The values of the 

two thresholds are given in priori. 
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3.2 Individual Cell Degradation Model 

This section presents a two-term exponential model for describing the 

degradation-path of an individual fuel cell. The two-term exponential model is given by 

𝑦𝑗 = 𝑔(𝑡𝑗; 𝜷) + 𝜀𝑗 

                                                  = 𝛽1 ∗ exp(𝛽2 ∗ 𝑡𝑗) + 𝛽3 ∗ exp(𝛽4 ∗ 𝑡𝑗) + 𝜀𝑗              (3.1) 

for j = 1, 2, …, n, where n is the number of the cells in a stack. 𝑔(𝑡𝑗; 𝜷) denotes the 

expected degradation-path with a set of parameters 𝜷 = (𝛽1, 𝛽2, 𝛽3, 𝛽4), 𝛽1 < 0, 𝛽2 >

0, 𝛽3 > 0, 𝛽4 < 0. 𝜀𝑗 are the random errors which are usually assumed to be independent 

and identically distributed (iid) random variables [73] with a mean zero and a variance 

which is denoted by 𝜎2, i.e., 𝜀𝑗~𝑁(0, 𝜎
2). 𝑦𝑖 is the degradation measure, 𝑡𝑗 is the time 

and 𝑡𝑗 > 0.  

Based on the model (3.1), a three-stage hierarchical Bayesian model of the 

degradation-paths of multiple cells in a stack is presented in the next section. 

3.3 Hierarchical Bayesian Modeling Approach for PEMFCs System 

Based on the general Bayesian degradation-path model proposed in Section 3.2, 

this section presents a three-stage hierarchical Bayesian model for the degradation-paths 

of multiple cells in a stack. The first stage models the degradation-paths of individual 

cells. We assume that the observed degradation-path of each cell in the stack is described 

by a general degradation-path model given by 

                                                  𝑦𝑖,𝑗 = 𝑔(𝑡𝑖,𝑗; 𝜷𝒊) +𝜀𝑖,𝑗                                                (3.2) 

where i =1, …, m, m is the total number of the cells in a PEMFCs system. j = 1, …, 𝑛𝑖, 𝑛𝑖 

is the total number of the measurements of the ith cell. Thus, 𝑦𝑖,𝑗 is the jth observation of 
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the ith cell and 𝑡𝑖,𝑗 denotes the measure time of the response 𝑦𝑖,𝑗. The nonlinear function 

𝑔(𝑡𝑖,𝑗; 𝜷𝒊) denotes the expected degradation-path of the ith cell and the deviation terms 

𝜀𝑖,𝑗 are the random errors of the cell i which are usually assumed to be independent and 

identically distributed (iid) random variables, i.e., 𝜀𝑖𝑗~𝑁(0, 𝜎𝑖
2). 

As shown in Figure 2, the observed cell degradation-paths exhibit a nonlinear 

pattern, showing a slower degradation phase followed by a more rapid degradation phase. 

Similar two-phase degradation patterns have been observed for other types of fuel cells 

and batteries [22, 23]. A degradation-path function that has been frequently employed to 

describe capacity degradation of many different types of fuel cells or batteries (i.e., direct 

methanol fuel cells [22] lithium-ion batteries [23]) is the two-term exponential (or called 

bi-exponential) function given by 

                  𝑔(𝑡𝑖,𝑗; 𝜷𝒊) = 𝛽𝑖1 ∗ exp(𝛽𝑖2 ∗ 𝑡𝑖,𝑗) + 𝛽𝑖3 ∗ exp(𝛽𝑖4 ∗ 𝑡𝑖,𝑗)                      (3.3) 

for 𝜷𝒊 = (𝛽𝑖1, 𝛽𝑖2, 𝛽𝑖3, 𝛽𝑖4). He et al. [23] adopted the two-term exponential function to 

analyze the capacity degradation of lithium-ion batteries. The capacity degradation of a 

lithium-ion battery is closely related to the increase of its internal impedance and the sum 

of exponential functions has been used to model the internal impedance increase. Models 

based on the sum of exponential functions hence are potential for describing the capacity 

degradation. Bae et al. [22] derived the bi-exponential capacity degradation model for 

direct methanol fuel cells based on the second-order kinetics, considering two 

heterogeneous compounds existing in membrane electrode assemblies. Thus, this study 

adopts this two-term exponential function to model the actual degradation-path of a fuel 

cell due to its connection to the degradation mechanisms and good fit to the data. In 
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addition, more than two terms exponential function may be needed to be considered if the 

current two-term exponential function could not fit the degradation pattern adequately. 

An alternative function to describe the two-phase nonlinear degradation patterns is the 

change-point regression analysis, which will be discussed in Chapter 5 as an alternative 

model. 

The second stage accounts for the cell-to-cell variation in the stack. The 

degradation-path parameter vectors 𝜷𝒊 are assumed to form a random sample from a 

common multivariate distribution whose probability density function is denoted by 

𝑓(𝜷|𝜽), where 𝜽 denotes the parameter vector of the multivariate distribution. The 

multivariate normal distribution has been commonly adopted to describe the unit-to-unit 

variation in the literature of random-effect models and hierarchical Bayesian models. We 

choose a truncated multivariate normal distribution as the second stage model, namely 

                                         𝜷~𝑀𝑉𝑁4(𝝁, Σ)𝐼{𝛽1<0,𝛽2>0,𝛽3>0,𝛽4<0}                                  (3.4) 

for  𝜽 = (𝝁, Σ), where 𝜇 is the mean vector, and Σ is the variance-covariance matrix. 

Herein 𝑀𝑉𝑁4 represents the multivariate normal distribution for the 4-dimensional 

random vector𝜷, and 𝐼 denotes the indicator function. The distribution is restricted to the 

region  𝐼{𝛽1<0,𝛽2>0,𝛽3>0,𝛽4<0} in order to yield the observed shape of the degradation 

curves. 

The last but not least important stage is setting prior distributions to the 

parameters µ, ∑, and 𝜎2 to complete the model. Due to our lack of prior knowledges, 

non-informative priors are employed. We also need to take the computational 

convenience into account when choosing the prior distributions. For the variance 
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parameter 𝜎2, we choose the conjugate Gamma prior distribution with shape parameter𝑎 

and scale parameter 𝑏 (i.e., 𝐺(𝑎, 𝑏)) for the precision parameter 𝜎−2 (i.e., the inverse of 

variance), where the Gamma probability density function has the form of 
𝑏𝑎

Γ(𝑎)
𝑥𝑎−1𝑒−𝑏𝑥, 

where Γ(𝑎) denotes the Gamma function. This is equivalent to assume the conjugate 

inverse-Gamma prior for the variance parameter 𝜎2. In Bayesian statistics, the conjugate 

prior of the mean vector µ is another multivariate normal distribution, 𝑀𝑉𝑁𝑣(C, V), with 

the mean vector C and the variance-covariance matrix V.C and V are called hyper-

parameters as they are the parameters of the prior distribution for parameter µ. Here v = 4 

is the length of the vector 𝛽. 𝑀𝑉𝑁𝑣(0𝑣, 10
6I𝑣) is chosen as a non-informative prior, 

where 0𝑣 and I𝑣 are the zero vector of length v and the (𝑣 × 𝑣) identity matrix, 

respectively. The conjugate prior of the covariance matrix ∑ is an inverse-Wishart (IW) 

distribution [74]. The probability density function of the IW distribution is: 

𝑓(∑|𝜌, 𝑺) = [2𝜌𝜈 2⁄ 𝜋𝑣(𝑣−1) 4⁄ ∏ 𝛤 (
𝜌+1−𝑖

2
)𝑣

𝑖=1 ]
−1

×

|𝑺|𝜌 2⁄ |∑|−(𝑣+𝜌+1) 2⁄ 𝑒𝑥𝑝 [−
1

2
𝑡𝑟(𝑺𝜮−1)]             (3.5) 

where ∑ is a (𝑣 × 𝑣) symmetric positive-definite random matrix, 𝜌 is the degree of the 

freedom, and S is a (𝑣 × 𝑣) symmetric positive-definite scale matrix. Based on this 

function, it’s hard to set a prior distribution directly to the matrix ∑. Lots of studies 

decomposed the variance-covariance matrix into variance and correlation components as 

[62] ∑ = 𝚫𝐐𝚫, where 𝚫 = 𝑑𝑖𝑎𝑔(𝛿1, … , 𝛿𝜈) is the diagonal matrix with ith element 𝛿𝑖 >

0, 𝑸 is a (𝑣 × 𝑣) symmetric positive-definite matrix. Next, we assume an independent 

gamma prior 𝑔(𝑎𝛿 , 𝑏𝛿) for 𝛿𝑖, for i =1, …, 𝜈, and an inverse-Wishart prior IW (𝜌, 𝑆) for 
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the matrix 𝑸. Herein 𝜌 is the degrees of freedom for the inverse-Wishart distribution, S is 

a (𝑣 × 𝑣) symmetric positive-definite matrix, 𝑎𝛿 and 𝑏𝛿 are the shape and scale 

parameters of the gamma prior, respectively. Assuming 𝐺(1, 0.0001) and IW (v + 1,𝐈𝑣) 

for the corresponding parameters results in a non-informative prior for the variance-

covariance matrix ∑. Note that prior distributions are subjective and should actually 

reflect one's prior knowledge on the unknown model parameters. Therefore, different 

analysts may assume and employ different prior distributions. The non-informative 

prior distributions discussed in this paragraph can adequately represent the situation 

where we do not have any prior knowledge on the model parameters. 

Given the observed cell degradation data in a stack 𝑦 ≡ {(𝑦𝑖𝑗, 𝑡𝑖𝑗): 𝑖 = 1, 2, … ,𝑚,

𝑗 = 1,2, … , 𝑛𝑖}, the joint posterior distribution of all model parameters can be derived 

according to the Bayes' theorem as 

𝑓(𝜷1,…,𝜷𝑚, 𝝁, 𝑸, 𝛿1, … , 𝛿𝜈 , 𝜎
2│𝑑) 

          ∝ 𝑓(𝒅│𝜷1,…,𝜷𝑚, 𝝁, 𝑸, 𝛿1, … , 𝛿𝜈 , 𝜎
2)𝑓(𝜷1,…,𝜷𝑚)𝑓(𝝁)𝑓(𝑸)𝑓(𝛿1, … , 𝛿𝜈)𝑓(𝜎

2) 

∝∏
1

𝜎𝑛𝑖

𝑚

𝑖=1

𝑒𝑥𝑝 [−
(𝒚𝑖 − 𝑿𝑖(𝛾𝑖)𝜗𝑖)′(𝒚𝑖 − 𝑿𝑖(𝛾𝑖)𝜗𝑖)

2𝜎2
] 𝐼{𝛽1𝑖<0,𝛽2𝑖>0,𝛽3𝑖>0,𝛽4𝑖<0} 

× [𝑃 (𝝁,∑ )]
−𝑚

|𝜟|−𝑚 2⁄ |𝑸|−𝑚 2⁄ |𝜟|−𝑚 2⁄  

× 𝑒𝑥𝑝 [−
∑ (𝜽𝑖 − 𝝁)′𝜟−1𝑸−1𝜟−1(𝜽𝑖 − 𝝁)𝑚
𝑖=1

2
] 

  × 𝑒𝑥𝑝 [−
(𝝁−𝝁𝜇)′𝜮𝜇

−1(𝝁−𝝁𝜇)

2
] × |𝑸|−(𝜈+𝜌+1) 2⁄ × 𝑒𝑥𝑝 [−

1

2
𝑡𝑟(𝑺𝑸−1)] 

             × ∏ 𝛿𝑖
𝑎𝛿−1 𝑒𝑥𝑝( − 𝑏𝛿𝛿𝑖) × (𝜎2)−(𝑎𝜎+1) 𝑒𝑥𝑝( −

𝑏𝜎

𝜎2
)𝜈

𝑖=1 ,                                    (3.6) 
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where 𝜙(∙) denotes the probability density function of the standard normal distribution. 

From the joint posterior distribution, the marginal posterior distribution 𝑓(𝜽|𝒚), 𝑓(𝜎2|𝒚), 

and 𝑓(𝜷𝒊|𝒚), for i = 1, 2, …, m, can be obtained. However, these marginal posterior 

distributions may have no closed-form expressions due to the model complexity. MCMC 

simulation-based algorithms, especially, the Gibbs sampling method [7, 73, 75] can be 

adopted to effectively obtain random samples from the marginal posterior distributions. 

Then, the posterior inference on the model parameters and any functions of the model 

parameters can be formulated by using the sample statistics. The WinBUGS software 

package [76, 77] is employed to perform the posterior simulation and computation in this 

work. All details of estimating the parameters and the corresponding steps are shown in 

Appendix A. 

As mentioned in Chapter 2, MLE can handle this nonlinear case but it is difficult 

and complex in computation. However, some other potential algorithms could be 

compared and discussed except the MCMC simulation-based algorithm. A comparison of 

the most popular parametric estimation methods with discussing their advantages and 

weaknesses was concluded by Pinhero and Bates [78], such as the linear mixed-effects 

approximation and the Gaussian quadrature appropriation. Thus, their study could be 

used as one of the references for exploring other potential algorithms in the future. 

3.4 Deviation of the RUL and the Failure-Time Distribution 

The hierarchical Bayesian two-term exponential model is proposed in Section 3.3, 

this section will discuss the failure-time distribution of a fuel cell stack that is randomly 

selected from its population and the RUL of the monitored fuel cell stack based on the 
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proposed degradation models. R(t) denotes the reliability of no failure before time t, thus, 

F(t)= 1-R(t) denotes the failure-time distribution. RUL is the remaining useful life time 

left on a system or a component at a particular time of operation. 

A PEMFC stack is composed of m fuel cells. The stack system degrades as the 

stack components degrade over time. Therefore, the system is regarded as rather a 

continuous-state system than a binary-state system in this study. The system is considered 

to fail if one or a few degradation measures are below a predefined failure threshold. 

Here, we consider two degradation measures for the fuel cell stack system. The first 

degradation measure is the overall stack output voltage, and the second degradation 

measure is the minimum voltage of individual cells. 

A system performance is evaluated through the stack output voltage. Due to the 

serial configuration of the m cells in the stack, the stack output voltage is simply the sum 

of the output voltages of individual cells. Thus, the degradation of individual cell 

voltages results in the degradation of stack output voltage. With respect to the first 

degradation measure based on individual degradation-paths, the stack output voltage is 

given by 

                                𝜂𝑠,1(𝑡; 𝜷1, 𝜷2, … , 𝜷𝑚) = ∑ 𝑔(𝑡; 𝜷𝑖)
𝑚
𝑖=1                                       (3.7) 

Hereafter, the subscript s denotes the system-level degradation measures. The failure-

time of the system based on the stack output voltage, denoted by 𝑇𝑠,1, is defined as the 

time when the degradation-path reaches or exceeds the critical threshold level 𝜂𝑓,1, i.e., 

                          𝑇𝑠,1 = inf{𝑡 > 0; 𝜂𝑠,1(𝑡; 𝜷1, 𝜷2, … , 𝜷𝑚) ≤ 𝜂𝑓,1}                               (3.8) 
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The minimum cell voltage is employed as a safety measure. Whenever k-out-of-m 

individual cells' voltages drop below a safety threshold, the stack must be emergently 

shut down to prevent critical damages to the stack system [3]. As actual degradation-

paths for the second degradation measure, the kth minimum cell voltage is defined as 

                   𝜂𝑠,2(𝑡; 𝜷1, 𝜷2, … , 𝜷𝑚) = 𝑚𝑖𝑛𝑘{𝑔(𝑡; 𝜷1), 𝑔(𝑡; 𝜷2),… , 𝑔(𝑡; 𝜷𝑚)}             (3.9) 

where 𝑚𝑖𝑛𝑘{} denotes the kth minimum of a set. The second degradation measure 

actually corresponds to a k-out-of-m:F system. The failure-time based on the minimum 

cell voltage for individual cells, denoted by 𝑇𝑠,2, is defined as 

                        𝑇𝑠,2 = inf{𝑡 > 0; 𝜂𝑠,2(𝑡; 𝜷1, 𝜷2, … , 𝜷𝑚) ≤ 𝜂𝑓,2}                               (3.10) 

That is, for the failure-times of the components of a k-out-of-m:F system, 𝑇1,…, 

𝑇𝑚, denote the corresponding order statistics by 𝑇1,𝑚 < ⋯ < 𝑇𝑚,𝑚, then the failure-time of 

the k-out-of-m:F system is given by 𝑇𝑘,𝑚. 

Based on the two measurements above, the failure-time distribution and the RUL 

are discussed in the following two subsections.  

3.4.1 Failure-Time Distribution of a Random Stack 

Because only one stack was tested in the experiment owing to high testing cost 

and the restriction of testing equipment, we made the assumption that stack-to-stack 

variation is mainly due to the cell-to-cell variation. Let a continuous random variable 𝑇𝑠 

denotes the time-to-failure of a randomly selected stack. A stack is considered to have 

failed if one of the two degradation measures falls below the corresponding threshold 

first such that  𝑇𝑠 ≡ 𝑚𝑖𝑛{𝑇𝑠,1, 𝑇𝑠,2}. Using the hierarchical Bayesian degradation model 
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presented in Section 3.3 and conditioning on a given 𝜽 vector, the failure probability at a 

mission time t of a random stack is defined as   

 𝐹𝑠(𝑡|𝜽) = 𝑃𝑟(𝑇𝑠 < 𝑡|𝜽) 

                                       = ∫…∫Pr[{ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,1 ∪ ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) ≤

𝜂𝑓,2}]∏ 𝑓(𝛽𝑖 𝜽)𝑑𝜷1…𝑑𝜷𝑚⁄𝑚
𝑖=1                                       (3.11)       

The 𝜽 vector is a random vector whose posterior distribution is denoted by 𝑓(𝜽|𝒚). We 

can derive the posterior distribution of the failure-time distribution 𝐹𝑆(𝑡),i.e., 𝑓(𝐹𝑠(𝑡|𝒚)), 

via the transformation of random variables. Because of the complexity of the model, 

𝑓(𝐹𝑠(𝑡|𝒚))does not have a closed-form expression. An MCMC simulation-based 

algorithm is employed to estimate the posterior distribution of the failure-time 

distribution 𝑓(𝐹𝑠(𝑡|𝒚))in this study. The algorithm is briefly outlined below: 

Step 1: Simulate N 𝜽 vectors from the marginal posterior distribution 𝑓(𝜽|𝒚). 

This can be accomplished using the Gibbs sampling algorithm. 

Step 2: For each 𝜽 vector obtained in Step 1, simulate L random stacks. A random 

stack is obtained by simulating m random cells whose degradation-path parameter vectors 

(i.e.,𝜷1, 𝜷2… ,𝜷𝑚) are randomly drawn from 𝑓(𝜷|𝜽). Basically, a random stack is 

generated by randomly simulating m cells from the population of cells. Then calculate the 

failure fraction of the simulated random stacks that have failed by time t according to the 

two threshold values. 

Step 3: The failure fractions obtained in Step 2 for all N simulated 𝜽 vectors form 

a random sample from the posterior distribution f (𝐹𝑠(𝑡|𝒚)).Then, posterior inference on 

𝐹𝑠(𝑡)can be obtained using the sample statistics. Especially, this dissertation uses sample 
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medians as point estimates, and formulated interval estimated using the 2.5th and 97.5th 

sample percentiles. 

One may derive the stack failure-time distribution via only one of the two 

degradation measures. Conditioning on a given 𝜽 vector, the failure-time distribution 

based on the stack output voltage measure only is defined as 

 𝐹𝑠,1(𝑡|𝜽) = ∫…∫[Pr(ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,1)) 

× ∏ 𝑓(𝛽𝑖 𝜽)𝑑𝜷1…𝑑𝜷𝑚⁄𝑚
𝑖=1                                        (3.12)       

Similarly, the failure-time distribution based on the minimum cell voltage measure only 

is given by 

𝐹𝑠,2(𝑡|𝜽) = ∫…∫[Pr(ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,2)) 

× ∏ 𝑓(𝛽𝑖 𝜽)𝑑𝜷1…𝑑𝜷𝑚⁄𝑚
𝑖=1                                             (3.13) 

Because the two degradation measures ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚)  and ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚)  are 

defined based on the same set of cell degradation-path, the two degradation measures may 

be dependent. However, if the two degradation measures are assumed to be independent, 

then 

Pr({ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,1} ∪ {ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,2}) 

                 = 1 − Pr({ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,1} ∩ {ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,2}) 

                = 1 − Pr({ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,1} × {ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,2}),      (3.14) 

where the first equality is based on the DeMorgan's Laws in probability and the second 

equality is the result of the independence assumption. Under the independence assumption 

the stack failure-time distribution would, then, be predicted by 
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𝐹𝑠
𝑖𝑛𝑑(𝑡|𝜽) = ∫…∫[1 − Pr(ℎ𝑠,1(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,1) × Pr(ℎ𝑠,2(𝑡; 𝜷1, … , 𝜷𝑚) > 𝜂𝑓,2) 

× ∏ 𝑓(𝛽𝑖 𝜽)]𝑑𝜷1…𝑑𝜷𝑚⁄𝑚
𝑖=1 .                                                                          (3.15)  

By comparing the 𝐹𝑠(𝑡)  and 𝐹𝑠
𝑖𝑛𝑑(𝑡) , we may empirically evaluate the independence 

between the two degradation measures. 

3.4.2 RUL of the Monitored Stack 

Given a time 𝑡𝑐 which denotes the monitored stack is already worked for a time 𝑡𝑐 

and the current observed cells’ degradations 𝒅𝑐 ≡ (𝑦𝑖𝑗, 𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛𝑖), then 

the remaining time can be predicted until the system failed. Let 𝑡𝑅 denotes the RUL of 

the monitored system at time 𝑡𝑐, 𝜷𝑖(i =1, …, m) is the parameter set of the ith cell of the 

stack. Then the RUL of the monitored stack is defined as: 

𝑡𝑅 ≡ 𝑚𝑖𝑛(𝑡𝑅,1, 𝑡𝑅,2)                                                   (3.16) 

where 𝑡𝑅,𝑖 = inf{𝑡 ≥ 0; 𝜂𝑠,𝑖(𝑡𝑐 + 𝑡𝑖; 𝜷1, … , 𝜷𝑚) ≤ 𝜂𝑓,𝑖} , 𝑖 = 1, 2. For the computation, an 

MCMC simulation-based algorithm is employed to estimate the posterior median of the 

RUL. Suppose that 𝜇, Σ, and 𝜎2 are already simulated from the Section 3.3. Then 

generate many estimating values of 𝜷 from the function (3.6) which is extended from the 

research [51]. Suppose the number of the simulated 𝜷 is L, then for each set of 𝛽𝑙, 

compute the related degradation value of each cell. Finally, apply the function (3.16) to 

predict the posterior median of the RUL. 
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CHAPTER 4: RESULTS 

In the Chapter 3, the hierarchical Bayesian degradation model was presented, and 

the failure-time and RUL were discussed. The MCMC-based simulation algorithm was 

adopted to estimate the parameters of the models. The corresponding results are 

presented in this chapter. The Section 4.1 states all parameters initial settings for the 

MCMC simulation algorithm and the results of the hierarchical degradation model. The 

estimated results of the failure-time distribution and RUL are concluded in Section 4.2 

with discussions. 

 4.1 Hierarchical Degradation Modeling 

In the degradation analysis for the PEMFC stack system, we first fitted the 

hierarchical Bayesian degradation model presented in Section 3.3. For the function (3.6), 

set a non-informative initial for 𝝁 = (0, 0, 0, 0)’. 𝚺 = 𝚫𝐐𝚫, where 𝚫 = 𝑑𝑖𝑎𝑔(𝛿1, … , 𝛿𝜈) is 

the diagonal matrix with 𝛿𝑖 > 0, and Q has the IW prior with degree of freedom 𝜌 = 𝜈 +

1 and a 𝑣 × 𝑣 symmetric positive-definite scale matrix S. Thus, 𝚫 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1), 

𝛿𝑖~𝑔(1,0.0001),  Q ~ IW(4, 𝐼4), and 𝜌 =5. For the error terms in the formulas (3.2) and 

(3.6), assume the precision parameter  𝜎−2 have gamma prior with parameters 𝑎and 𝑏, 

i.e., 𝜎−2~𝐺(𝑎, 𝑏). To reflect the non-informative of the prior, set 𝑎= 1 and 𝑏= 0.001 

which result in a very flat shape of the distribution. Gibbs sampling is applied for the 

computation in WinBUGs. Thus, more than two terms exponential degradation-path 

function does not need to be discussed here.  
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Table A summarizes the parameters’ posterior medians for 32 individual cells of 

the Bayesian two-term exponential degradation model. For example, Figure 3 plots the 

posterior median of the predicted actual degradation-path for fuel cell #1. From this 

figure, we could see that the two-term exponential degradation-path function provides a 

reasonable fit to the observed cell voltage degradation. Thus, more than two terms 

exponential degradation-path function does not need to be discussed here.  
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Table A  Posterior medians of the parameters in the two-term exponential degradation-

path function 

Cell #, i 𝛽𝑖1(×10−5) 𝛽𝑖2 𝛽𝑖3 𝛽𝑖4(×10−2) 

1 -1.18 2.945 0.7129 -3.691 

2 -1.41 2.835 0.709 -3.643 

3 -1.21 2.852 0.7086 -3.85 

4 -1.27 2.852 0.7083 -3.645 

5 -6.46 3.061 0.7062 -3.904 

6 -1.28 2.828 0.7083 -3.919 

7 -1.34 2.797 0.7085 -3.559 

8 -1.39 2.749 0.7068 -4.054 

9 -1.31 2.796 0.706 -3.681 

10 -1.36 2.758 0.7135 -3.348 

11 -1.67 2.661 0.7057 -3.923 

12 -1.46 2.667 0.7054 -3.895 

13 -1.59 2.666 0.7038 -4.062 

14 -1.77 2.565 0.7053 -3.985 

15 -1.64 2.651 0.7111 -3.747 

16 -1.42 2.712 0.7064 -3.699 

17 -1.94 2.331 0.71 -3.647 

18 -2.24 2.204 0.7066 -3.677 

19 -1.51 2.486 0.7081 -3.543 

20 -1.65 2.564 0.7044 -4.198 

21 -1.91 2.309 0.7102 -3.759 

22 -1.45 2.659 0.7096 -3.734 

23 -1.38 2.642 0.7107 -3.664 

24 -1.28 2.747 0.7071 -3.853 

25 -1.26 2.733 0.7074 -3.718 

26 -9.96 2.813 0.7078 -3.563 

27 -1.12 2.784 0.7047 -3.876 

28 -9.89 2.902 0.7075 -3.132 

29 -1.36 2.544 0.7068 -3.23 

30 -1.51 3.586 0.706 -2.659 

31 -8.92 3.083 0.7152 -1.933 

32 -2.07 3.55 0.721 -2.092 
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Figure 3. Posterior median fit to the degradation-path for fuel cell #1 

 

4.2 Failure-Time Distribution and RUL 

In the Section 3.4, the failure-time distribution of a fuel cell stack that is randomly 

selected from its population and the RUL of the monitored fuel cell stack are discussed. 

Based on the parameters’ estimations from Section 4.1, Gibbs sampling is used for 

computing the degradation data in this part. From above discussion, two types of 

performance measures are used for deriving the failure-time distributions 𝐹𝑠(𝑡), 𝐹𝑠
𝑖𝑛𝑑(𝑡),  

and the RUL.  

4.2.1 Failure-Time Distribution 

In this section, we assume that a PEMFC stack is considered to have failed if its 

actual output voltage is below 20 V or at least k cells in the stack drop below a safety 

threshold of 0.6 V, which one comes first. In Section 3.4, two failure-time distributions 
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(3.11) and (3.15) are derived: the failure time distribution 𝐹𝑠(𝑡) is obtained from the 

hierarchical Bayesian degradation model directly, and the other one 𝐹𝑠
𝑖𝑛𝑑(𝑡) which is 

derived based on the independence assumption of the two degradation measurements.  

Figure 4 plots the posterior medians of the failure time distribution based on the 

performance measure 𝐹𝑠,1(𝑡), and the failure-time distribution based on the safety 

measure 𝐹𝑠,2(𝑡) for k = 1, 2, 3. Two degradation measures overlap and the two failure 

modes compete together to determine the overall failure-time distribution of a random 

stack. As k increases, the failure mode due to the first performance degradation 𝐹𝑠,1(𝑡) 

becomes more dominating. 

 

 
Figure 4. Posterior median estimation of 𝐹𝑠,1(𝑡), and 𝐹𝑠,2(𝑡) for k = 1, 2, 3 

 

Figure 5 and Figure 6 show the posterior medians of 𝐹𝑠,1(𝑡), 𝐹𝑠,2(𝑡), 𝐹𝑠(𝑡), and 

𝐹𝑠
𝑖𝑛𝑑(𝑡) for k = 1 and 2, respectively. Note that there is no significant difference between 
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𝐹𝑠(𝑡) and 𝐹𝑠
𝑖𝑛𝑑(𝑡), implying that the two degradation measures may be independent. 

However, we are not able to prove the independence between the two degradation 

measures, and the above statement on the independence is obtained empirically by 

comparing the results from Equations (3.11) and (3.15). Moreover, by comparing the 

posterior medians of 𝐹𝑠(𝑡) for k = 1 in the Figure 5 and k = 2 in the 

Figure 6, the safety degradation measure plays a more important role for 

determining the overall stack failure at the earlier phase of the operation. As operation 

time increases, the performance degradation measure becomes more dominating. 

 

 
Figure 5. Posterior medians of 𝐹𝑠,1(𝑡), 𝐹𝑠,2(𝑡),  𝐹𝑠(𝑡), and 𝐹𝑠

𝑖𝑛𝑑(𝑡) (k = 1) 
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Figure 6. Posterior medians of 𝐹𝑠,1(𝑡), 𝐹𝑠,2(𝑡),  𝐹𝑠(𝑡), and 𝐹𝑠

𝑖𝑛𝑑(𝑡) (k = 2) 

 

For current stack under study, we also obtain the posterior estimates of its failure-

time summarized in Table B. The failure-time, 𝑇𝑠of the stack is determined by the 

performance measure, that is, 𝑇𝑠 ≡ 𝑚𝑖𝑛(𝑇𝑠,1, 𝑇𝑠,2) = 𝑇𝑠,1, where 𝑇𝑠,1 is the posterior 

estimate failure-time based on the performance measure, and 𝑇𝑠,2 is the posterior estimate 

failure-time based on the safety measure. 
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Table B  Posterior estimates medians and 95% Bayesian intervals (in parentheses) of the 

failure-time (hours) for the stack under study 

k  𝑇𝑠 𝑇𝑠,1  𝑇𝑠,2  

k=1 
2654.2 

 (2650.8, 2657.8) 

2654.2 

(2650.8, 2657.8) 

2780.9 

(2764.4, 2794.9) 

k=2 
2654.2 

 (2650.8, 2657.8) 

2788.4 

 (2775.2, 2800.8) 

k=3 
2654.2 

 (2650.8, 2657.8) 

2793.9 

 (2781.8, 2806.1) 

 

4.2.2 RUL 

In this section, two sets of thresholds are used to estimate the posterior RUL 

based on the Equation (3.16). Under the first set of the thresholds, given 𝑡𝑐 = 2730 hours, 

𝜂𝑓,1= 20 V, and 𝜂𝑓,2 = 0.6 V, Table C shows the posterior estimates of the RUL of the 

current stack with k = 1, 2, 3. We could see that the current stack already failed under the 

performance measure with the threshold 20 V. However, the cell’s degradation based on 

the safety measure still can be tested due to the specialty of soft failure.  
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Table C  Posterior estimates medians and 95% Bayesian intervals with thresholds 20 V 

and 0.6 V  

k  𝑇𝑅 𝑇𝑅,1  𝑇𝑅,2  

k=1 0 

0 

50.9 

(34.4, 64.9) 

k=2 0 
58.4 

 (45.2, 70.8) 

k=3 0 
63.9 

 (51.8, 76.1) 

 

For the second set of thresholds, given 𝑡𝑐 = 2730 hours, 𝜂𝑓,1= 17.5 V, and 𝜂𝑓,2 = 

0.5 V. Table D shows the posterior estimates of the RUL of the current stack with k = 1, 

2, 3. 

 

Table D  Posterior estimates medians and 95% Bayesian intervals with thresholds 17.5 V 

and 0.5 V 

k  𝑇𝑅 𝑇𝑅,1  𝑇𝑅,2  

k=1 
428.3 

 (388.5, 457.7) 

447.0 

(426.9, 466.7) 

428.5 

(388.5, 464.4) 

k=2 
443.0 

 (411.4, 464.4) 

448.4 

 (411.5, 482.0) 

k=3 
446.3 

 (424.0, 466.3) 

462.5 

 (428.0, 494.1) 

 

From above results, we could conclude that the values of thresholds are critical 

for predicting the RUL of the monitored stack. When the thresholds 𝜂𝑓,1= 20 V and 
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𝜂𝑓,2 = 0.6 V, the RUL of the stack is determined by the overall stack voltage. While the 

set of the thresholds 𝜂𝑓,1= 17.2 V and 𝜂𝑓,2 = 0.5V are used to define the fuel stack failure, 

the performance measure becomes more dominating for estimating the RUL as k 

increases. 

In summary, above results illustrate that the proposed two-term exponential 

degradation-path model is reasonable to describe the degradation-path of the fuel cell 

stack. And the corresponding derived failure-time distribution and RUL are acceptable. 

The failure time distributions estimations noted that the two degradation measures may 

be independent but there is no physical evidence to prove that. For the safety measure, we 

use at least k cells voltages below the threshold to define the failure and the value of k 

impact the predication results. Moreover, the thresholds values are critical to determine 

the fuel cell stack failure and different thresholds sets could lead totally different 

estimation results. In the following chapter, three alternative methods are adopted to this 

data set for comparison.  
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CHAPTER 5: COMPARISON METHODS 

The results presented in the previous chapter indicated that the proposed two-term 

exponential degradation-path model is reasonable to analyze the fuel cell stack data set. 

The remaining research tasks focus on exploring and comparing alternative methods with 

corresponding results. 

5.1 Degradation Analysis with Only Considering Safety Measurement 

Bae et al. [3] considered the safety measure only in their previous study, then 

applied an approximate degradation analysis to find out the stack reliability. Their 

approach took the following four steps: first, they fitted the 32 cells degradation-paths 

using some nonparametric smoothing method. Second, they extrapolated the smoothed 

degradation curves to the failure threshold 𝜂𝑓,2 = 0.6𝑉 to obtain the failure-times for 32 

fuel cells. Third, they fitted a parametric distribution to the failure-times obtained in the 

previous step by assuming that they form a random sample of cell failure-times. Finally, 

the stack failure-time distribution corresponds to the distribution of the kth order statistics 

was concluded. Following their approach, we performed the following analysis as an 

alternative and made a comparison with the proposed approach. By considering the 

minimum cell voltage measure only, the stack is actually a k-out-of-m:F binary-state 

system. Using the hierarchical Bayesian model for cell degradation, we can derive the 

failure-time distribution of a randomly selected cell, 𝐹𝑐(𝑡) (the subscript c denotes the 

cell). Let 𝑇𝑐 denote the failure-time of a randomly selected cell. Conditioning on a given 

𝜽 vector, the failure-time distribution at a mission time t for a randomly selected cell is 

given by 
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                                        𝐹𝑐(𝑡|𝜽) = 𝑃𝑟(𝑇𝑐 ≤ 𝑡|𝜽) 

                                                         = ∫𝑃𝑟[ℎ(𝑡; 𝜷) ≤ 𝜂𝑓,2] × 𝑓(𝛽|𝜽)𝑑𝜷                      (5.1) 

Because 𝜽 is a random vector whose posterior distribution is denoted by 𝑓(𝜽|𝒚) 

we can derive the posterior density for the cell failure-time distribution  𝐹𝑐(𝑡), i.e., 

𝑓(𝐹𝑐(𝑡)|𝒚), via the transformation of random variables. Again, MCMC simulation 

algorithm was implemented to simulate a random sample from 𝑓(𝐹𝑐(𝑡)|𝒚) in order to 

perform the posterior inference on 𝐹𝑐(𝑡). According to the theory of order statistics, the 

failure-time distribution for a randomly selected stack is given by 

                                 𝐹𝑠,2
𝑐 (𝑡) = 1 − ∑ (𝑚

𝑗
)𝐹𝑐𝑡

𝑗[1 − 𝐹𝑐(𝑡)]
𝑚−𝑗𝑘−1

𝑗=0                                     (5.2) 

Here, the subscript ‘2’ indicates that the failure-time distribution for the stack considers 

the minimum cell voltage measure only. The superscript ‘c’ implies that this distribution 

is obtained by using the “cell-level” approach instead of the “stack-level” approach in 

Equation (3.13). 

Figure 7 compares the posterior medians of the stack failure-time distribution 

produced by the stack-level approach discussed in Section 3.4.1 and the cell-level 

approach discussed in this section with assuming k = 1, 2, 3. Interestingly, the two 

approaches produced almost identical prediction results for the stack failure-time 

distribution. It implies that the stack failure-time distribution considering only the 

minimum cell voltage measure can be analyzed under either the assumption of the 

continuous-state system or that of the binary-state system. However, the alternative cell-

level approach has a limitation to predict the stack reliability based on the stack output 

voltage measure. 
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Figure 7. Posterior medians of the failure-time distributions for a randomly selected stack 

using two different approaches by considering the minimum cell voltage measure only 

 

5.2 Failure-Time Prediction by Using the Stack Output 

Another alternative method to predict the stack reliability through the stack output 

voltage measure is to sum the measured values of cell voltage at each inspection points to 

derive the stack output voltage degradation curve. Figure 8 presents the two-term 

exponential fit to the stack output voltage degradation data. Because only one stack was 

tested in this experiment, we have a limitation in predicting the failure-time distribution 

of a randomly selected stack by capturing the stack-to-stack variation. However, we are 

expected to use the two-term exponential to fit the stack output voltage degradation to 

predict the RUL of the tested stack, which will deserve future research. 
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Figure 8. The stack output voltage degradation curve obtained by summing individual 

degradation levels of cell voltage and the fitted two-term exponential degradation-path 

function 

 

5.3 Hierarchical Bayesian Analysis with Change-point General Degradation-Path model 

The predicted stack failure-time distribution may be sensitive to the degradation 

model employed because the extrapolation from the fitting to degradation data is 

involved in its prediction. For the purpose of comparison, we employed another 

degradation model in the analysis, that is, the change-point general degradation-path 

model which is given by 

                           ℎ(𝑡𝑖𝑗; 𝜶𝑖) = {
𝛼𝑖1 + 𝛼𝑖2(𝑡𝑖𝑗 − 𝛾𝑖), 𝑡𝑖𝑗 ≤ 𝛾𝑖,

𝛼𝑖1 + 𝛼𝑖3(𝑡𝑖𝑗 − 𝛾𝑖), 𝑡𝑖𝑗 > 𝛾𝑖,
                                       (5.3) 

for 𝜶𝒊 ≡ (𝛼𝑖1,𝛼𝑖2, 𝛼𝑖3, 𝛾𝑖). The change-point model consists of two pieces of linear 

functions to describe the actual nonlinear degradation-path. Herein 𝛾𝑖 is the change-point 

separating the two linear pieces, 𝛼𝑖1 is the actual degradation measure at the change-point 
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𝛾𝑖, 𝛼𝑖2 and 𝛼𝑖3 are the slopes before and after the change-point, respectively. The change-

point model (5.3) explicitly expresses a continuity at the change-point. There have been 

the other forms of change-point models with or without the continuity constraints [73, 79, 

80]. The change point models have been previously applied to model multi-phase 

degradation phenomena observed on some light displays such as vacuum fluorescent 

displays (VFDs), plasma display panels (PDPs), and organic light-emitting diodes 

(OLEDs) [5, 51, 81]. 

A three-stage hierarchical Bayesian degradation model was constructed, of which 

the first-stage model describes the cell voltage degradation using the change-point 

general degradation-path model (5.3). The second-stage model assumes that all the 𝜶𝒊 

vectors in a stack form a random sample from the truncated multivariate normal 

distribution with a mean vector 𝜇𝛼 and a variance-covariance matrix Σ𝛼 restricted to the 

region 𝛼 ∈ 𝒜 ≡ {𝛼1 > 0, 𝛼2 < 0, 𝛼3 < 0, 𝛾 ∈ (0, 𝜏)}, where 𝜏 is the test duration. We 

assume that there is one change-point within the test duration (0, 𝜏). Finally, the third-

stage model assigns the inverse-gamma, multivariate normal, and scaled inverse-Wishart 

priors to 𝜎2, 𝜇𝛼, and Σ𝛼 respectively. Parameters of the prior distributions are selected 

according to Section 3.3 so that non-informative priors are employed. Failure-time 

distributions are estimated according to Section 3.4.1 with ℎ(𝑡; 𝛽) replaced by the 

change-point regression (5.3).  

The related mean squares from two degradation modeling are defined by 

                                       𝑀𝑆𝑖 =
1

𝑛𝑖
∑ (𝑦𝑖𝑗 − ℎ�̃�(𝑡𝑖𝑗))

2,
𝑛𝑖
𝑗=1                                                      (5.4) 
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where ℎ�̃�(𝑡) is the posterior medians of the actual degradation-path predicted by each 

model 𝑖 = 1, 2, ∙∙∙, 32. 

 Table E provides the mean squares from the two degradation modeling fits. The 

averaged mean squares over the 32 fuel cells are also reported at the last row of the Table 

E. For example, Figure 9 plots the posterior medians of the actual degradation-paths 

predicted by the two different degradation models for the fuel stack cell #1. Note that 

these two models provide very closets to the observed degradation data with almost 

identical averaged mean squares. However, the two models have substantial difference in 

extrapolation beyond the test duration, resulting in significant difference in reliability 

predictions. Figure 10 compares the posterior medians of 𝐹𝑠(𝑡) predicted using the two 

degradation models assuming k = 1 in k-out-of-m:F system. The two-term exponential 

degradation model yields lower reliability predictions than the change-point degradation 

model. In extrapolating beyond the test duration, the two-term exponential degradation 

model has a more rapid drop in voltage than the change-point degradation model, which 

is clearly shown in Figure 9.  
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Table E  Mean squares of the two-term exponential model and the change-point 

regression model fitted to the cell degradation data 

Cell Two-term exponential model 

(×10−4) 

Change-point regression model 

(×10−4) 

1 6.691  6.690 

2 8.031  8.038 

3 9.097  9.094 

4  8.219 8.220  

5  10.42  10.41 

6  9.663  9.663 

7  7.426  7.426 

8  11.14  11.13 

9  9.371  9.374 

10  4.105  4.101 

11  10.85  10.85 

12  10.51  10.51 

13  12.83  12.83 

14  11.07  11.08 

15  6.855  6.855 

16  8.977  8.977 

17  6.011  6.011 

18  7.648  7.651 

19  6.430  6.424 

20  12.90  12.90 

21  6.395  6.405 

22  7.269  7.273 

23  6.207  6.228 

24  9.565  9.561 

25  8.338  8.337 

26  7.201  7.199 

27  10.82  10.82 

28  5.571  5.575 

29  5.556  5.558 

30  3.861  3.866 

31  0.475  0.472 

32  0.153  0.150 

Average  7.802  7.803 
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Figure 9.  Comparison between the two degradation modeling fits_Posterior medians of 

two degradation models fitted to the degradation data of fuel stack cell #1 

 

 
Figure 10. Comparison between the two degradation modeling fits_Posterior medians of 

the stack failure-time distribution 𝐹𝑠(𝑡) when k = 1 
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Based on our current knowledge and data, we might prefer the two-term 

exponential function due to the following two reasons. Firstly, the two-term exponential 

function has some close connections to the degradation mechanisms of different types of 

batteries and fuel cells. Secondly, the change-point regression analysis assumes an abrupt 

change of the actual degradation-path at the change point, which may not be reasonable 

in reality; while the two-term exponential function produces a smooth transition between 

the two phases. 
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CHAPTER 6: CONCLUSION 

This dissertation developed a hierarchical Bayesian modeling and reliability data 

analysis method to predict the reliability of a PEMFC stack based on the voltage 

degradation data collected from its individual fuel stack cells. The fuel cell voltage 

degradation curve has the nonlinear pattern which is reasonably described by the two-

term exponential model. The PEMFCs system has two degradation measures caused by 

the continuous degradation of the fuel stack cells. One is the stack output voltage which 

could not be measured directly from the system level, the other one is the minimum cell 

voltage and it is assessed at its component level. Soft failure is used to define the 

performance failure and the safety failure due to the continuous degradation model is 

used. Three possible alternative approaches were discussed with an in-depth comparison. 

This paper will contribute to the modeling and white-box reliability data analysis 

methods for continuous-state systems composed of continuous-state components. 

In the current study, we assumed that the cells in a stack are independent and the 

stack-to-stack variation is completely caused by the cell-to-cell variation due to only one 

tested stack is monitored. When more experimental investigations are performed with 

more data available, we are expected to check those important assumptions. The failure-

time distribution (3.11) derived from the Hierarchical Bayesian model and the failure-

time distribution (3.15) based on the independence assumption of the two measures were 

compared to check if the independence exists between the two measure. The results 

showed that the two types of the failure-time distributions are very close but the 

independence could not be proved. Moreover, more physical failure analysis will be 
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performed to explore the degradation mechanisms so that we can fundamentally identify 

the exact degradation mechanisms of fuel cells. 

In addition, Stochastic process is reviewed in Chapter 2 which is very popular on 

degradation analysis. Compared with the general degradation-path model which uses the 

mean regression function to fit the degradation data, the difference is that noise is 

included in the Stochastic process model and the corresponding degradation model may 

hit the threshold more than one time. The challenge by using the stochastic process is 

how to fit the nonlinear degradation pattern adequately. Thus, apply Stochastic process to 

model the degradation-path of the fuel stack is expected to be considered as one of the 

future research directions.  

Besides that, the methodology proposed in this research is based on a real 

degradation test. Thus, it could be extended to use for future study about optimal system 

design or system maintenance.  
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APPENDIX 

1. Sample 𝝑𝑖 = (𝛼𝑖, 𝛽1𝑖, 𝛽2𝑖)′ from the conditional posterior distribution 

𝑓(𝝑𝑖|𝜎
2, 𝛾𝑖, 𝝁, 𝚺, 𝐝), i=1, 2, …, m. 

2. Sample 𝛾𝑖 from the conditional posterior distribution 𝑓(𝛾𝑖|𝜎
2, 𝝊𝑖 , 𝝁, 𝚺, 𝐝), i=1, 2, 

…, m. 

3. Sample 𝜎2 from the conditional posterior distribution 

 (𝜎2|𝜃1, … , 𝜃𝑚, 𝐝) ~𝐼𝑔 (𝑎𝜎 + ∑
𝑛𝑖

2

𝑚
𝑖=1 , 𝑏𝜎 + ∑

(𝑦𝑖−𝑋𝑖(𝛾𝑖)𝜗𝑖)′(𝑦𝑖−𝑋𝑖(𝛾𝑖)𝜗𝑖

2

𝑚
𝑖=1 ). 

4. Sample 𝝁 from the conditional posterior distribution  

(𝝁|𝜃1, … , 𝜃𝑚, 𝚺, 𝐝) ∝ [𝑃(𝜇, ∑)]−𝑚 𝑒𝑥𝑝 [−
∑ (𝜃𝑖−𝜇)′∑

−1(𝜃𝑖−𝜇)+(𝜇−𝜇𝜇)′∑𝜇
−1(𝜇−𝜇𝜇)

𝑚
𝑖=1

2
]. 

5. Sample 𝐐 from the conditional posterior distribution: 

𝑓(𝐐|𝜽1
∗ , … , 𝜽𝑚

∗ , 𝝁, 𝛿1, … , 𝛿𝜗 , 𝐝)~𝐼𝑊(𝜌 +𝑚, 𝑆 + 𝛥−1(∑ (𝜃𝑖
∗ − 𝜇)(𝜃𝑖

∗ −𝑚
𝑖=1

𝜇)′)𝛥−1). 

6. Sample 𝛿𝑖 from the conditional posterior distribution: 

𝑓(𝛿𝑖|𝜽1
∗ , … , 𝜽𝑚

∗ , 𝝁, {𝛿𝑗; 𝑗 ≠ 𝑖}, 𝐝) ∝ 𝛿𝑖
−𝑚+𝑎𝛿−1 𝑒𝑥𝑝 [−(𝑏𝛿𝛿𝑖 +

𝛬𝑖𝑗[𝑄
−1]𝑖𝑖

2𝛿𝑖
2 +

1

𝛿𝑖
∑ [𝑄−1]𝑖𝑗 𝛬𝑖𝑗 𝛿𝑗⁄𝑖≠𝑗 )]. 
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