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ABSTRACT 

CARTER, KRISTINA A., Ph.D., May 2019, Experimental Psychology 

A Comparison of Variable Selection Methods for Modeling Human Judgment 

Director of Dissertation: Claudia González-Vallejo 

First introduced by Brunswik (1952), judgment analysis, the statistical modeling 

of human judgment, has greatly contributed to psychology’s understanding of human 

judgment. Judgment analysis has the potential to more broadly impact psychological and 

behavioral research yet complexities of its individual-level approach to modeling lead to 

challenges in its application. One way to increase the accessibility of judgment analysis 

would be to employ variable selection methods that decrease the predictor pool to allow 

for research designs that are representative, but do not require large numbers of 

observations from single individuals. The following research tests three modeling 

approaches: stepwise regression, all subsets method, and random forest method, to 

compare each methods approach to variable selection. Study One, which applied each of 

these methods to empirical judgment analysis data, indicated that the random forest 

method has lower goodness-of-fit than the all-subsets method, but greater generalizability 

than both the all subsets and stepwise regression methods. Study Two found that in two 

out of four cases, random forest was better than the all-subsets method and in three cases 

better than the stepwise regression approach in including relevant predictors in the final 

model. Study Three found that the random forest method was less susceptible to 

multicollinearity, more likely than either other method to exclude irrelevant predictors 

even when they were correlated with relevant ones. Overall the random forest approach 

shows great promise and its use may facilitate broader applications of judgment analysis.    
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CHAPTER 1: INTRODUCTION 

Understanding individuals’ judgment and decision-making processes, and the 

factors affecting them, has long been recognized as essential to predicting a broad set of 

phenomena such as risky decisions, financial investments, environmental sustainability, 

and market variability (Fischhoff, 2010; Koehler & Harvey, 2004; Kiker, Bridges, 

Varghese, Seager & Linkov, 2005). Researchers in judgment and decision-making have 

adopted several approaches to human judgment, some focused on documenting the 

characteristics of normative or ideal decision-making, others on explaining the 

mechanisms through which human judgment falls short of normative or rational decision-

making (Baron, 2004).  Judgment analysis is an approach to human judgment that 

conceives of judgment as an interaction between an organism and its environment and 

focuses on understanding both these aspects of judgment (Goldstein, 2004). In judgment 

analysis, a model for human judgment is extracted statistically by relating variation in an 

individual’s judgment with variation in the information accessible to the individual. That 

is, a statistical model is used to extract models that reflect how individuals used 

information in making judgments. The aim of the current work is to compare the use of 

different modeling techniques in the context of judgment analysis to provide 

recommendations to improve implementation and facilitate greater application of 

judgment analysis.  

Advantages to the judgment analysis approach include: avoiding biases associated 

with self-report and allowing for insight into a process that has been demonstrated to 

evade introspection (Hartwig & Bond, 2011; Nisbett & Wilson, 1977; Tomassetti, Dalal, 

& Kaplan, 2016). Judgment analysis has been used to provide insight into areas as 
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diverse as hiring practices, medical diagnosis, conflict resolution, meteorological 

forecast, and religious meaning (e.g., Graves & Karren, 1992; Hammond & Adelman, 

1976; Pargament, Sullivan, Balzer, Van Haitsma, & Raymark, 1995; Sorum et al., 2002; 

Stewart, Moninger, Grassia, Brady, & Merrem, 1989).  Although there are many 

advantages to the judgment analysis approach, extracting statistical models to represent 

individual’s judgment processes is not without its challenges. Factors that can complicate 

the extraction of a model that accurately represents an individual’s judgment include 

factors related to the context in which individuals make their decision. For instance, a 

judgment context that includes many, potentially correlated, pieces of information 

complicate the extraction of an accurate model. Additional factors that can make 

judgment analysis challenging includes the modeling method that is employed. Various 

methods for extracting individual judgment models have been investigated but most 

judgment researchers employ a multiple linear regression approach (Goldstein, 2004; 

Slovic & Lichtenstein, 1971). Linear models have been demonstrated to be helpful in 

modeling the judgment process in previous research, though there are indications that in 

many cases human judgment may follow a non-linear process (Gigerenzer, 1996; Kim, 

Yang, & Kim, 2008; Zelany, 1976). If or when the human judgment process is non-

linear, a linear model may be a poor representation of the underlying process, despite its 

capacity to extract a model (e.g., Gigerenzer, 1996; Kim, Yang, & Kim, 2008).   

The current research focused on examining variable selection methods using a 

judgment analysis framework. Three studies, using simulated and empirical data, applied 

three methods of variable selection to extract individual-level models of judgments of 

nutrition of packaged foods. The purpose of this research is to document both the 
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complexities in modeling empirical judgment data using variable selection techniques 

and to compare how these techniques shape statistical results and practical implications. 

This research is expected to contribute to judgment and decision-making research by 

evaluating the comparative advantages of applying different variable selection techniques 

in judgment analysis. By identifying effective variable selection methods, the current 

study can facilitate further applications of judgment analysis by enabling researchers to 

reduce large predictor pools, thus allowing for the examination of predictor-dense 

judgment tasks and reducing the number of necessary individual observations, which can 

often be constraining. This study’s findings also have implications for research beyond 

the specific area of judgment analysis by increasing our understanding of the comparative 

accuracy, efficiency, and interpretability of results from three variable selection methods: 

stepwise regression, all subsets variable selection, and random forest variable selection. 

Based on the findings the author recommends strategies for extending the application of 

judgment analysis in academic and applied research settings alike. 

Challenges of Statistical Modeling  

As judgment analysis relies closely on statistical modeling, challenges inherent in 

statistical modeling are critical to judgment analysis. Regardless of the realm of research, 

statistical modeling has two primary goals: predicting data and generalizing those 

predictions (James, Witten, Hastie, & Tibshirani, 2013; Yarkoni & Westfall, 2017). The 

first goal of predicting data is achieved by extracting a model that accounts for a 

proportion of variance in the variable of interest. Extracting such a model indicates the 

researcher has found a relationship between the phenomenon of interest and exogenous 

factors. Once a model is extracted that explains variation in the available data, the 
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researcher can determine whether the generated model satisfies the second goal of 

generalizing to new observations of the phenomenon. For instance, a nutritionist may be 

interested in determining how an individual uses the nutritional information to form a 

judgment regarding the nutritional quality of food choices. First, the researcher is 

interested in extracting the judgment model used by the consumer to determine whether 

and in which ways nutritional variables impact judgment. Determining a predictive model 

in this instance would involve determining how the variance in the nutritional 

information variables is related to the variance in an individual’s judgment. If a 

statistically significant proportion of the variance in an individual’s judgment can be 

predicted by the variance in nutritional information, then the researcher has succeeded in 

extracting a predictive model.  

Whether the extracted predictive model applies to future instances pertains to the 

second goal of modeling: how well this predictive model generalizes to new instances of 

judgment formation and expression. If the extracted model correctly represents the 

underlying relationship between the involved variables, it is anticipated that it will 

generalize to future instances of the variable of interest (Babyak, 2004; James et al., 

2013). For instance, if a model extracted from a consumer's judgments of 25 cereals 

shows a negative relationship between a consumer's judgment of quality and quantities of 

calories and sugars, one can expect that, if that model is accurate it will generalize to the 

judgments of the same consumer on new cereals. That is, among the new cereals, 

judgment quality should also be negatively related to quantities of calories and sugars.  

The ability of a model to generalize to future instances is an important aspect of 

modeling as it validates the model as useful in contexts where observations of the 
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phenomenon of interest are unavailable. Such a model provides means of greater 

knowledge and control over a phenomenon, offering opportunities for intervention.  

Take an example of forecasting recidivism. Barnes and Hyatt (2012) described the 

use of statistical modeling to classify criminal offenders according to their risk for future 

offenses. The researchers first used archival offense data to extract statistical models for 

criminal offense and then used these predictive models to estimate the number and 

severity of future crimes that offenders newly on probation might commit (Barnes & 

Hyatt, 2012). A test of the models’ cross-generalization to a new dataset indicated that, 

across risk levels, the models all had a classification accuracy of approximately 60%, 

compared to an average of 64% accuracy estimated within the data from which the model 

was extracted (Barnes & Hyatt, 2012). Notably, the models were far more accurate at 

predicting low-risk classification (accuracy ranged from 72.6%-74.6%) than in predicting 

high risk classification (accuracies ranged from 20.9%-22.3%). This statistical tool’s 

predicted outcomes are currently used by the Philadelphia’s Adult Probation and Parole 

Department to assign probationers to high, moderate, or low risk categories for probation-

supervision (Ritter, 2013). Probationer supervision is based on the risk level with 

probationers in higher risk categories given greater supervision than probationers in 

lower risk categories (Ritter, 2013).  

Model cross-generalization is also important for another, more implicit reason: 

high cross-generalization indicates that the understanding of the phenomenon extracted 

from the initial data is likely correct (Shmueli, 2010). That is, if a predictive model can 

cross-generalize, this indicates that the extracted model of the relationship between the 

variables of interest is a reasonable depiction of the underlying phenomenological 
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relationships rather than artifact of a specific dataset that provides no information about 

the broader world (Babyak, 2004; Shmueli, 2010). 

The dual predictive and cross-generalization purpose of statistical modeling 

requires achieving a balance in model-fitting (Brighton & Gigerenzer, 2015). The 

suitability of a model is often measured by how well the model fits the data used to 

derive the model, that is, the model’s goodness-of-fit. Goodness-of-fit (GOF) refers to the 

extent to which a model fits the particular sample of observed data from which the model 

was generated. GOF is a measure of the predictive value of the model. The discrepancy 

between the predictions of the model compared to the actual observed data are compared 

and measured in a variety of ways to provide an estimate of the model’s GOF (Pitt & 

Myung, 2002). The GOF is contrasted with the generalizability of the model, which is the 

extent to which a model fits all data samples generated by the same underlying 

phenomenon, as opposed to the one particular sample from which the model was 

generated.  

The GOF of a model can be improved by having a highly flexible model. A 

complex model is one that can fit many different data patterns; because a complex model 

can generate many distinct probability distributions by varying many parameters over 

their entire range, the more complex a model is the greater its flexibility. The higher a 

model’s flexibility, the more likely it will fit a particular dataset and yield a high GOF. 

However, high flexibility is negatively related to generalizability (James et al., 2013; Pitt 

& Myung, 2002). Given a dataset, a model can be made flexible enough that it captures 

every possible data point in the set. Such a complex model would have a high GOF, as 
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there would be no discrepancy between the predicted and observed outcome, but it would 

have very low generalizability (Pitt & Myung, 2002).  

Such a model, as described above, is sometimes described as “overfitting” the 

data. That is, in addition to fitting the overall trends in the dataset, the model fits slight 

variations from the overall trends that are due to random error (Pitt & Myung, 2002). An 

overfit model contains more parameters than can be justified given the data (James et al., 

2013). Furthermore, because an overfit model corresponds so directly to the specific data 

from which it was estimated, it would vary dramatically if it were estimated using a new 

dataset. An overfit model is overly sensitive to the idiosyncratic nature of the data from 

which it is derived, causing it to capture the noise present in the data when an alternative, 

simpler model is available. When applied to a new sample of data, an overfit model fails 

to accurately predict the new sample data; its high flexibility results in a failure to cross-

generalize to new data that contains different patterns of random error, therefore, not 

satisfying one of the major goals of statistical modeling. Ideally, a model should be both 

predictive by having a high GOF to the data sample from which it was generated, and 

robust such that it resists random error and variation and thus is able to generalize to new 

data samples (James et al., 2013).  

Given that determining a predictive model from an initial sample is the first step 

in statistical modeling, researchers often overemphasize the goal of finding a predictive 

model over the goal of finding a generalizable model (Pitt, Kim, & Myung, 2003; 

Yarkoni & Westfall, 2017). This is particularly true in behavioral research areas, such as 

psychology, where theoretical foundations are lacking or poorly established (Meehl, 

1967; Klein, 2014; Yarkoni & Westfall, 2017). As technology facilitates the collection of 
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enormous amounts of data, there is an even greater temptation to add all factors that 

might aid in creating a highly predictive model with the hope of forming a clear 

understanding of the data (Guyon & Elisseeff, 2003). Such complex models can explain a 

substantial proportion of the sample variance, but often fail to generalize to new data. 

Such a failure indicates that the resulting extracted model provides an explanation for the 

idiosyncrasies of the sample from which it was extracted, but not of the underlying 

phenomenon the researcher was attempting to explain. This tendency to overemphasize a 

high GOF, at the cost of making a model that is inextricably tied to the data from which it 

originated, results in models that appear to be valid but are overfit (Babyak, 2004; 

Brighton & Gigerenzer, 2015).  

 One means for guarding against overfitting is to ensure that an equal or 

comparable GOF, or predictive power, of the model cannot be obtained by a simpler 

model with fewer predictor variables (Hawkins, 2004). Between two statistical models 

that perform smiliarly, the simpler model (i.e., which has fewer predictors) is preferable. 

However, the choice of which predictors variables to include in a final model is not 

always clear cut. Ideally, variable selection—the process of choosing which predictors to 

include in a final model—is guided by theoretical reasons. Despite this, there are cases 

where there is no clear theoretical indication of which variables should be important to a 

model (Plonsky, Erev, Hazan, & Tenneholtz, 2017). Moreover, variable selection can be 

prohibitive in areas in which models are constructed on an individual basis, particularly 

in cases when the sample and predictor pools are large. In such areas, automated variable 

selection methods—which determine predictor selection based solely on statistical 
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grounds—can be helpful in reducing the predictor pool and helping researchers extract 

more appropriate models that have high GOF and generalizability.   

Judgment Analysis 

Judgment analysis, as previously introduced, in an application of statistical 

modeling in behavioral sciences that involves extracting a statistical model to explain the 

relationship between human judgment and information in the environment the judge may 

use. A typical approach to statistical modeling in behavioral research involves measuring 

groups of individuals and drawing averages from an aggregated sample. Within 

mainstream psychology this aggregating approach has been dubbed the nomothetic 

approach (Lamiell, 1998). Judgment analysis, also known as policy capturing, social 

judgment theory, and lens model analysis, applies statistical modeling to human 

judgment behavior on an individual level (Brehmer, 1988; Stewart, 1988). That is, using 

an idiographic approach1. Judgment analysis involves extracting models of judgment of 

each individual making judgments; that is, constructing statistical models that reflect the 

process of judgment formation for a single individual. Judgment analysis is not 

exclusively concerned with the individual though; many studies in judgment analysis also 

seek to derive generalizable information about human judgment on a population level 

(Goldstein, 2004). However, judgment analysis is always idiographic, beginning by 

applying modeling techniques to multiple judgments of a single individual and reserving 

                                                 

1 As Lamiell (1998) describes, the interpretation of nomothetic and idiographic as science by aggregate and 
individual respectively is not in keeping with Windelband’s 1894 (translated in Windelband, 1998) 
conception in coining the terms. Nonetheless, as the representation of this terminology has come to be 
represent this methodological contrast, this paper defines these terms in accordance with their mainstream 
misconception.    
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any across-person analyses to be conducted on the resulting individual outcomes 

(Hammond, McClelland & Mumpower, 1980). 

The conceptual foundation of judgment analysis is Brunswik’s (1952) 

probabilistic functionalism, which posits that the relationship between distal variables 

being judged, and the proximal cues (i.e., variables) used to judge them are, at best, 

probabilistic. Thus, in making any given judgment, humans cannot expect to find cues 

that are perfectly dependable. Rather, the relationship between those cues and the 

variable being judged should be described probabilistically and, therefore, the cognitive 

system employing the environmental cues should also be described statistically (e.g., 

Principle of Parallel Concepts, Hammond, Stewart, Brehmer, & Steinmann, 1975; 

Brehmer, 1988). The statistical relationship between a judgment and criterion variable 

described by probabilistic functionalism is graphically depicted by the lens model, shown 

in Figure 1.   

 

  

Figure 1. Lens model classic double-system design (Cooksey, 1996, p. 61). 
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Judgment analysis has multivariate and hierarchical extensions, but it typically 

involves multiple linear regression to model the relationship between a final judgment 

and the environmental variables, or cues, relevant to the judgment task or criterion 

(Cooksey, 1996). This relationship can be seen on the right side of Figure 1. Figure 1 also 

depicts the relationships between the environmental cues and the criterion which are also 

statistical. Indeed, two key advantages of the lens model is that it can be used to capture 

the environmental system as well as the cognitive system, and the same method is used to 

describe both systems (Brehmer, 1988). This allows for explanatory consistency, which is 

important because it allows for the comparison between an individual's judgment and that 

of a "gold standard" criterion, be it an objective measure or an expert's judgment (Dhami 

& Harries, 2001). When measures for both the individual and the criterion can be 

obtained, lens model can be further used to describe the relationship between the two. 

The relationship between human judgment and the criterion, called achievement, is a 

measure of the individual’s judgment accuracy (Stewart, Roebber, & Bosart, 1997). 

The conceptualization of the lens model gave rise to statistical indices to 

quantitatively describe the relationships between the various components of the lens 

model (Cooksey, 1996). The lens model equation (LME) decomposes the variance 

achievement—that is, the correlation between the subject’s judgment and the criterion—

into several components (Hammond, Hursch & Todd, 1964). With the lens model 

equation, statistical models of the relationships of the criterion (Ye) and the judgment 

(Y1) are first developed. 

Equation 1: 

 Ye =  MYe.X(X1, X2, … , Xn) +  EYe.X 
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 Y1 =  MY1.X(X1, X2, … , Xn) +  EY1.X 

In the above equation, Ye is a n x 1 vector of observations of the criterion whereas Y1 is 

an n x 1 vector of observations of person judgments, Xi are the cues (i = 1 to n) or 

variables in the environment being judged, MYe.X and MY1.X represent the weights that 

describe the relations between the cues and the criterion, as well as the cues and the 

judgment respectively, and the E’s represent the residuals of the models and are not 

linearly related to the weights.  

As seen in Equation 2, the partitioning of the judgment and the criterion is used to 

derive a two-component formulation (Stewart, 1976).  

Equation 2:  

 𝑟𝑌1𝑌𝑒
=  RY𝑒.X𝐺𝑅𝑌1.𝑋 + C√1 − 𝑅Y𝑒.X

2 √1 − 𝑅Y1.X
2  

 

2
Y.X

2
O.X.O.X R - 1 R - 1C +   R = XYYO RGr    

In Equation 2, RY𝑒.X, a measure of environmental predictability, is the correlation 

between Ye and MYe.X; G is a measure of the agreement between the criterion weights of 

the cues and the judgment weights of the cues, determined by the correlation between 

MYe.X and MY1.X; 𝑅Y1.X
2 , a measure of the consistency of the weighting of the cues by the 

judge, is the correlation between Y1 and MY1.X; C is a measure of the correlation between 

the variation of the target and the judge that is unaccounted for by the models, it is 

calculated as the correlation between EY1.X and EYe.X. If the weighted cues capture the 

shared systematic variance, then C should be near zero. That is, the errors of Y1 and Ye 
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should not be linearly related to each other if the weighted cues capture the systematic 

variation in Y1 and Ye. Significant C’s indicate that there is shared variance that is not 

accounted for by the cues, meaning there is systematic variation in Y1 and Ye that is not 

accounted for by the weighted cues. High values of C indicate the presence of effects not 

described by the judgment policies, however, low values of C do not indicate the absence 

of systematic variation in the residuals (Stewart, 1988). Rather, low C values indicate the 

absence of shared systematic variation between Y1 and Ye. Low C values could be low 

because both Y1 and Ye are error variation, or because one or both contain systematic 

nonlinear components which are uncorrelated (Stewart, 1988). 

Statistical Challenges in Judgment Analysis 

 Due to the widespread use of regression methods in applying judgment analysis, 

judgment analysis applications share the characteristics of aggregate research designs that 

rely on regression such as assumptions of linearity and underlying additivity, sensitivity 

to multicollinearity, and challenges in producing stable statistical estimates (James et al., 

2013; Karelaia & Hogarth, 2008). However, some of those characteristics are uniquely 

manifested due to the individual nature of the lens model (Karelaia & Hogarth, 2008). 

Judgment analysis faces unique challenges in two areas related to how model predictors 

affect the stability of statistical estimates: predictor inter-correlation and sample size, or 

number of observations.   

In many studies, the impact of predictor inter-correlation may be reduced by 

limiting the included variables based on theoretical grounds or the primary research 

interest. In judgment analysis, the inter-correlation of predictors is seen as a key 

characteristic of judgment formation. This is because in a real environment many cues 
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may be related to a single criterion in similar ways, allowing individuals multiple means 

of attaining the same accurate end, a characteristic termed vicarious functioning by 

Brunswik (Brunswik, 1952). That is, cue inter-correlation is a key aspect of judgment 

formation as it allows humans using different cues to arrive at the same conclusion 

(Brunswik, 1952). This vicarious functioning capacity depends upon both the ecological 

validity of the cues and the inter-correlation among them (Stewart, 2001). Vicarious 

functioning recognizes that humans may base the same judgments on various reasonable 

cues according to what is allowed by the environment rather than on certain, ideal cues. 

Importantly, judgment analysis is interested in observing, not controlling, the vicarious 

functioning present in human judgment behavior making the presence of inter-correlated 

cues a necessary feature of judgment analysis (Cooksey, 1996).  

Though the inter-correlation between cues is key to understanding judgment 

formation in real-world environments, it presents challenges in interpreting the 

relationship between cues and judgment. When cues are highly correlated, the linear 

regression measures helpful for understanding the relative importance of the different 

cues are subject to estimation errors. Furthermore, as the effects of one cue are 

inseparable from those that covary with it, high cue inter-correlation may make the 

meaning of the cue weights impossible to clearly interpret (Stewart, 1988). 

In judgment analysis, as in any statistical analysis, the number of observed cases 

must be large enough to produce stable statistical estimates. Judgment analysis has the 

added challenge of having enough cases that the judgment task is representative of the 

actual task environment, but not too many cases that a participant is unable to reasonably 

complete the task. Sampling for idiographic modeling involves multiple observations of a 



25 

single individual and diverse sampling of the environment of the judgment task. For 

instance, to enable the extraction of an idiographic model for the relationship between 

nutrient information and nutritional judgment, a single individual must judge multiple 

food products. This results in a burden, not solely on the researcher to obtain a large 

sample of judgments, but on the participants, whose individual judgments make up the 

sample. A complex judgment task that contains many cues may ultimately require too 

many observations for an individual to reasonably complete without debilitating fatigue 

(Cooksey, 1996). Although completing the task over multiple time points may be an 

option, such a design factor would increase the likelihood of attrition (Girden, 1992). 

Thus, obtaining a sufficiently large number of observations is necessary to enable the 

extraction of an accurate judgment model, but methods for increasing observations may 

result in observations that do not adequately reflect individual's judgments.    

The task environment under consideration is key in determining both the required 

number of cases per predictor and the cue inter-correlations among those cases. Although 

researchers may have some freedom as to the scope of relevant cues they wish to 

examine, these predictors are largely determined by the task environment itself. For 

instance, a judgment task involving packaged food products may include variables as 

diverse as the color of the product’s packaging and its shelf placement in a store. In 

addition, the nutrient use of a consumer may, in principle, include all nutrients listed on 

the package plus ingredients. Importantly, relevant cues in a representative environment 

are not freely determined and should reflect the actual judgment task (Gibson & Hobson, 

1983).  
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Implementing Variable Selection Methods in Judgment Analysis   

Adequate theoretical reasons for excluding potential predictors from a judgment 

analysis task are often lacking in judgment analysis, particularly when the task is novel or 

when little research has investigated it systematically. In lieu of theoretical reasons for 

reducing a predictor pool, variable selection methods within an analysis can be utilized. 

Thus, a common method for addressing an excess of predictors compared to observations 

is to reduce the predictors that are retained in a final statistical model of judgment based 

on some reasonable standard for inclusion. Such variable selection methods have been 

used in empirical applications of judgment analysis, but their use has not been 

systematically examined nor have different methods of variable selection been formally 

compared. Commonly, judgment analysis applications incorporate full regression models 

that contain all possible cues. There are two notable characteristics of judgment analysis 

applications that may explain why variable selection methods have been so far 

overlooked in formal and empirical development of the lens model: cue number and 

overall sample size. These characteristics are outlined in greater detail below.   

Cue Number 

A limited number of cues in lens model studies may be one reason that variable 

selection methods in this area has not been explored. In many studies, judgment analysis 

tasks include few predictor variables, which eliminates the need for variable selection 

methods. In a review of 249 individual studies across 86 articles, Karelaia and Hogarth 

(2008) reported 149 task environments (60%) as having two or three cues, and 99 as 

having more than three. Kaufmann, Reips, and Whittmann (2013) examination of lens 

model studies reported more specific cue number data. They found that out of 44 
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individual task environments for which the cue number was reported, 24 tasks had fewer 

than 10 cues, 18 had 10 or more cues but fewer than 25, and 2 had more than 25, one of 

which was a definite outlier with 64 cues. Given that many lens model applications have 

a small number of cues, many observations relative to predictors would not be difficult to 

obtain. That is, with few cues, sufficiently large numbers of observations can be obtained 

that modeling techniques will produce stable estimates. As this has traditionally been the 

case, variable selections methods to decrease the cue pool, though still useful, have not 

been necessary, which could explain the lack of research done in this area.  

Sample Size 

A second possible explanation for the lack of attention given to variable selection 

methods in judgment analysis is the number of individuals common to judgment analysis 

applications. Often, judgment analysis is used descriptively; the final goal is to describe 

and understand the judgment process of specific individuals (Karren & Barringer, 2002). 

In other cases, judgment analysis is used to reconcile the cue use of different individuals 

or groups of individuals, or to generate a transparent and reliable weighting system for a 

decision-maker (Goldstein, 2004; Hammond & Adelman, 1976). These objectives, 

coupled with the individual-level of analysis inherent in the lens model method, often 

results in sample sizes that can be individually examined.  

Judgment analysis studies with a small number of participants are common. 

Reported sample sizes in meta-analyses of judgment analysis studies indicate a typical 

sample size contains about 20 participants with the number of judgments per participant, 

unsurprisingly, varying according to the number of included cues. Karelaia and Hogarth 

(2008) found that on average, studies having two cues had 24 participants and 48 
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judgments; studies with three cues had 20 participants who completed 49 judgments; and 

studies with more than three cues had 18 participants who completed 73 judgments. In a 

2013 meta-analysis that reported sample size for 46 studies, 34 had fewer than 30 

participants, 10 of which had fewer than 10 participants (Kaufmann, Reips, & 

Whittmann, 2013). These sample sizes indicate that in many cases, judgment analysis 

applications have participant sample sizes small enough that extracted judgment models 

can be individually examined and described, reducing the usefulness of automated 

variable selection and ranking methods.   

 Neither of the abovementioned characteristics—that of a small predictor pool or a 

small number of individuals—is necessarily problematic, but both contribute to 

limitations in a more widespread application of judgment analysis. For instance, many 

task environments contain large numbers of cues that may be related to the judgment 

processes. Limiting the number of cues explored in judgment tasks is not surprising given 

the previously discussed challenges of designing judgment analysis studies that contain a 

sufficiently high judgment to cue ratio. Nonetheless, the Brunswikian method is uniquely 

invested in accurately describing the environment within which the judge operates 

(Brunswik, 1952; Gibson & Hobson, 1983; Hammond, 1954). Thus, the low number of 

predictors commonly employed points to a possible tendency for researchers to err on the 

side of practicality and thus give insufficient attention to the role of ecological 

representativeness. Additionally, tasks that contain many cues in the actual environment 

may be artificially limited or not explored at all.  

 Similarly, a tendency towards small samples of individuals in judgment analysis 

studies is unnecessarily limiting. Examining only a small sample of individuals using 
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judgment analysis may be perfectly appropriate if the objectives of the study are 

constrained to individual-level analysis; however, judgment analysis has the potential to 

be more broadly applied. Importantly, much of previous research using judgment analysis 

has focused on this individual level, thus the relatively small (i.e., N < 50) samples 

common among published studies are likely appropriate (Karren & Barringer, 2002). 

Nonetheless, the lens model’s utility at the individual level of analysis has for too long 

served as a constraint that has disproportionately restricted it to this level. In addition to 

its utility in modeling judgment for idiographic studies designed to examine variability at 

the individual level, judgment analysis can be taken a step further to examine idiographic 

models nomothetically. That is, judgment analysis should be applied more broadly in 

idiothetic designs—research that combines idiographic and nomothetic approaches.   

An example of an idiothetic approach employing judgment analysis can be found 

in Carter and González-Vallejo (2018). In that study, the researchers combined judgment 

analysis with an experimental design. A judgment analysis approach was used to extract 

judgment models for each individual participant. Modeling individual judgment was not 

the final goal; rather, characteristics of the extracted individual models were then 

statistically compared across experimental conditions in order to determine whether 

participant judgment varied as a function of information conditions. In that study, the 

nomothetic nature of the experimental condition comparisons was improved by the 

idiographic method used to understand the individuals’ judgment processes. For broader 

applications of judgment analysis such as this one, a larger sample of participants is 

necessary. Indeed, for their three-condition experimental design, Carter and González-

Vallejo (2018) needed 288 participants to detect a .25 effect size with 80% power. A 
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sample size of several hundred participants is exponentially larger than most judgment 

studies and yet this exemplifies a design element necessary to allow for the application of 

judgment analysis to research studies interested in accounting for between-person 

differences in judgment.  

Variable Selection 

  Variable selection methods are key in enabling judgment analysis to be more 

broadly applied in both idiographic and idiothetic designs. In idiographic approaches, 

even where between-participant statistical tests are not of interest, employing variable 

selection methods will allow researchers to apply judgment analysis to environments 

where cue number is high without rendering the number of judgment tasks implausibly 

high. Furthermore, the implementation of variable selection methods in judgment 

analysis will allow judgment analysis to be applied more broadly, including in idiothetic 

approaches where research goals involve submitting extracted models to further statistical 

tests.  

In considering the implementation of variable selection methods for improving 

model extraction and reducing the potential for overfitting models in judgment analysis, 

the first necessary distinction is between automatic and directive variable selection. 

Purely automatic variable selection is determined by a computational calculation that is 

conducted by software and includes no theoretical insight beyond the initial inclusion of 

cues. A purely directive approach relies entirely on the expertise of the researcher, is 

based on prior research, and involves a theoretical or practical conception of which 

variables are relevant or interesting. Previous research has argued that substantive 

expertise should be included in predictive modeling and that such modeling has suffered 
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due to excluding expert, research-informed knowledge (Plonsky, Erev, Hazan, & 

Tenneholtz, 2017). Although the interaction of expert and algorithmic modeling is an 

important topic, this study is focused on the comparative utility of purely automatic 

procedures. As the use of automatic procedures does not exclude expert input, a focus on 

automatic predictor selection has the potential to improve both purely automatic 

approaches, that are sometimes deemed necessary, and a combined directive-automatic 

approach that has been recommended as optimal (Plonsky, Erev, Hazan, & Tenneholtz, 

2017).  

 Automated methods for decreasing the predictor pool for tasks with many cues 

can enable judgment analysis to be used in areas that have not been previously examined 

with individual-level modeling or areas where examinations have artificially restricted 

the cue pool. These methods are particularly important when many initial cues are 

necessary to accurately represent the judgment environment. In many areas, sufficient 

observations may not be practical or even possible, making models vulnerable to 

overfitting. Automated variable selection methods will also facilitate the use of the 

judgment analysis designs with group-level objectives, allowing for the development of 

reduced individual-level models that can be compared across experimental conditions or 

in other broader applications.    

Stepwise Regression Variable Selection 

Judgment analysis is typically implemented using linear regression. For this 

reason, a natural beginning point in considering automated variable selection methods is 

stepwise linear regression. Linear regression applications of judgment analysis enjoy a 

simplicity and ubiquity that increase their reproducibility and replicability. Multiple 
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linear regression models use several predictors to predict a single criterion variable as 

shown in Equation 3:  

Equation 3: 

   + XX = Y 2211 +    

in this equation, Y is a n x 1 vector of observations of the criterion, X1 and X2 are 

predictor variables, β1 and β2 represent the weights that describe the relationship between 

the predictors and the criterion, and ε is the error associated with the model which is not 

linearly related to the weights. In a judgment analysis application, Y is a y x 1 vector of a 

single person's multiple judgments (y) of a y x 1 criterion vector.  

 In addition to the prevalence of linear regression in judgment analysis, multiple 

linear regression is also widely used to extract explanatory models across research 

domains including: business and consumer research, social and behavioral sciences, 

biological sciences, and medical research (Kutner, Nachtsheim, Neter, & Li, 2005). The 

prevalence of linear regression in academic instruction and its subsequent ubiquity in 

research has been linked to the easy availability and accessibility of tools for conducting 

linear regression. For example, Microsoft Suite’s Excel program provides user-friendly, 

point-and-click options for conducting linear regression analyses, enabling even the 

novice statistician to conduct such analyses without the need for expert training or 

complex software. Thus, a combination of the linear regression implementation of 

judgment analysis along with the use of the automated variable selection methods within 

linear regression would likely facilitate the ease of promoting a judgment analysis 

approach in a diverse number of research domains.   
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 Multiple linear regression can automatically select between variables in several 

ways. The most commonly utilized are step procedures due to their ability to minimize 

computational requirements when potential predictors are many. For simplicity's sake, 

this study refers to step procedures as forward selection, backward deletion, and stepwise 

procedures. All three of these selection procedures operate based on the sequence of 

regression models and altering predictors at each step. Whether predictors are added or 

removed from the model is determined by the extent to which their inclusion or exclusion 

impacts the sum of squares error (SSE). 

 One such step procedure, forward selection, selects the best model by sequentially 

adding predictors to a model. This procedure begins with no predictors in the model and 

performs a partial F test of the unique variation explained by each potential predictor. 

The partial F test can be seen in Equation 4 where: dfr and SSEr are the degrees of 

freedom and sum of square error, respectively, of the reduced model; dff and SSEf are the 

degrees of freedom and sum of square error, respectively, of the full model; and MSEf is 

the mean squared error of the full model.   

Equation 4: 

f

fr fr
fr 

MSE
)df -)/(dfSSE- (SSE = )df -F(df   

In a forward selection procedure, predictors are added into the model sequentially 

according to the unique variation they explain. After the first added predictor, each 

subsequent potential addition is tested in the presence of all previously added predictors. 

When no further potential predictors can explain unique variation above what the model 

predicts, the model is complete.    
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In contrast, the backward deletion procedure selects the best model by 

sequentially discarding predictors. This procedure begins with a full model containing all 

potential predictors and identifies the least predictive variable by performing a partial F 

test of the unique variation explained by the predictors while accounting for all variables 

in the model. The predictive variable with the largest p-value is compared to a 

predetermined threshold (e.g., p > .05) and if it surpasses that threshold, the predictor 

associated with it is removed from the model. After each elimination, the updated model 

is reconsidered, and the largest p value is again compared to the threshold until the final 

model contains only those predictors whose p values are within the desired threshold. The 

backwards deletion procedure has been argued to be preferable when the predictor pool is 

small and when a full model containing all predictor variables would provide a more 

complete understanding of the impact of predictors in the presence of all potential 

predictors (Kutner, Nachtsheim, Neter, & Li, 2005).   

Both forward selection and backward deletion procedures can be problematic due 

to their sensitivity to multicollinearity. Multicollinearity is an issue because predictor 

variables are usually highly associated with one another; therefore, the order in which 

they are included in the model may impact the degree to which they are recognized by the 

model as reducing overall SSE. In forward stepwise regression, a variable A that is highly 

correlated with variables B and C may be selected due to the large amount of variation it 

accounts for. Subsequently, the model may include variables B and C due to their unique 

explanatory power. As can be seen in Figure 2, the resulting model containing predictors 

A, B, and C will contain a non-significant predictor, namely A. Lastly, forward selection 

procedures cannot account for multicollinearity that occurs after the addition of variables 
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to the model, and therefore they risk a final model that includes non-significant 

predictors. The opposite problem of forward selection models occurs with backward 

elimination models because this procedure only allows for the elimination of predictor 

variables, hence, final models might not be the best possible model. For instance, a highly 

correlated variable A might be eliminated early on due to its lack of unique variance 

while subsequent eliminations might result in a final model that could be improved by the 

addition of variable A. 

 

 

Figure 2. A depiction of multicollinearity. An instance in which forward selection would 
result in a final model including a non-significant predictor.  

 

 A strategy for minimizing the effects of multicollinearity is using a bidirectional 

procedure that combines both backward and forward regression into a stepwise 

procedure. In the stepwise regression procedure, an initially empty model is added 

according to the results of a partial F-test of the unique variation explained by each 

predictor. As with forward selection, predictors following the first are determined 

according to a partial F test of their unique variation in the presence of all entered 

variables. Unlike the forward selection procedure, the stepwise procedure continues to a 

backwards step procedure once none of the remaining predictors are significant; that is, 

the backwards step begins with the forward step’s final model, eliminating non-
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significant predictors from the model. In the stepwise procedure, the model is considered 

final when no further predictors can be added or eliminated from the model.  

 The stepwise procedure method has advantages over forward selection and 

backward deletion methods as it reduces the impact of multicollinearity, decreasing the 

likelihood that high predictor correlations will unduly affect the final model. However, 

there are disadvantages to the stepwise approach. Stepwise procedures are not guaranteed 

to result in “best case” models; that is, model variance is high indicating that their 

predictive power for new data is low (Thompson, 1995). In fact, several good models 

may be available and regression selection methods may not always result in selection of 

the same model (e.g., Derksen & Keselman, 1992; Greenland, 1989; Whittingham, 

Stephens, Bradbury, & Freckleton, 2006). For example, in one study using 

epidemiological data, forward, backward, and stepwise methods were found to lack 

sufficient stability; the final models they selected were more likely to vary across 

multiple bootstrapped datasets than alternative variable selection methods (Morozova, 

Levina, Uusküla, & Heimer, 2015). Moreover, the methods were found to produce biased 

coefficient estimates, raising the prospect that in addition to having high variance, these 

relatively simple strategies are ill-equipped to produce even strong explanatory models 

for the datasets from which they are extracted (Morozova, Levina, Uusküla, & Heimer, 

2015).  

  The use of a stepwise regression approach to reducing predictor pools in 

judgment analysis has several benefits. Broadly, linear regression and the variable 

selection methods, such as stepwise regression associated with it, are well-known and 

used by many researchers across diverse research fields where increased application of 
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judgment analysis may be beneficial. In addition to being widely accessible and 

computationally simple, linear regression methods have traditionally been used for 

implementing judgment analysis; adding the use of stepwise regression for variable 

selection in this area would seem natural. 

 Despite these benefits, stepwise regression may not be optimal for selection 

variables in judgment analysis. Stepwise regression does allow researchers to develop 

explanatory models with fewer irrelevant predictors, thus reducing the risk for overfitting 

the model. However, previous research indicates that the resulting models may still have 

poor predictive performance; they may also be biased. Stepwise regression may not result 

in the best explanatory model. That is, the final model extracted by stepwise regression 

may not accurately represent the underlying data. Moreover, stepwise regression does not 

inform the researcher of the extent to which the selected predictors improve the model 

above other predictor, resulting in a lack of clarity on the comparative validity of the final 

model. 

All Possible Subsets Variable Selection 

 A long-recommended alternative to stepwise linear regression is the all possible 

subsets regression (e.g., Hocking, 1976). All-subsets regression examines all possible 

combinations of predictor variables and extracts the best model based on a comparison 

across all possible models. All-subsets regression is easily implemented in linear 

regression cases, thus its application to judgment analysis is not challenging on a 

theoretical level. However, even with current computing power, the all-subsets method 

can easily become computationally challenging. Therefore, although the all-subsets 

method may be helpful for developing an explanatory model and indeed increasing the 
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predictive power of the developed models, widespread implementation of this method is 

currently unlikely.   

 The predictor criticality approach proposed by Azen, Budescu, and Reiser (2001), 

addresses possible inconsistencies in traditional regression approaches by combining all-

subsets regression and bootstrapping procedures to compare all possible models. For 

simplicities sake, this approach is referred to throughout as the all-subsets method, but its 

implementation varies from a simple all-subsets regression approach. In the all-subsets 

method described by Azen et al. (2001), resampling with replacement is used to obtain a 

large number of samples from an original data set; the specific resampling method 

utilized is dependent on the type of regression model under consideration. If model 

predictors are variable (i.e. can take on any value within their distribution), which is 

generally the case in behavioral studies, case resampling is recommended (Azen et al., 

2001). In case resampling, a random sample of n observations is drawn, with 

replacement, from the original dataset of size n. Multiple replicate datasets are drawn in 

this way, generally 1,000 or 10,000 (e.g., Azen et al., 2001). In the context of judgment 

analysis, models are developed on the individual level, therefore, replicate datasets would 

be drawn from the group of observations derived from each individual.   

 Once the desirable number of samples have been drawn, all possible regression 

models are fit to all bootstrapped datasets. The number of possible regression models can 

be designated 2p – 1, where p is equal to the number of predictors under consideration. 

For each of the bootstrapped datasets, a single one of the total 2p – 1 models is selected as 

the best-fitting-model by some predetermined criterion; traditionally, that criterion is a 

GOF measure such as adjusted R2 (denoted 𝑅𝐴𝐷𝐽
2  hereafter), AIC, or Mallow’s Cp. In 
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principle, any criterion can be established as the determinant of the best model, but a 

measure that adjusts for the number of predictors in the model is necessary. Some 

possible candidates for criterion (e.g., the R2) can only increase as a function of additional 

predictors and are therefore inadequate representations of the value placed on model 

parsimony. 

 As an example of this all-subsets method, suppose there is a judgment analysis 

dataset of 50 observations per individual which the researcher is interested in modeling 

using four predictors (X1-4). From the initial 50-observation dataset, 1,000 datasets are 

bootstrapped. For each bootstrapped dataset, the following fourteen models would be fit: 

X1; X2; X3; X4; X1, X2; X1, X3; X1, X4; X2, X3; X2, X4; X3, X4; X1, X2, X3; X1, X2, X4; X2, X3, 

X4; X1, X2, X3, X4. Using one of the aforementioned GOF criterions, the models fit within 

each sample would be compared and the best-fitting model would be determined. 

Additionally, the frequency with which each model is the best-fitting model across all 

bootstrapped samples would be computed and the model which is most frequently the 

best-fitting model is selected as the final model. In a judgment analysis context this 

process would be repeated for every participant’s set of 50 observations.  

 Azen, Budescu, and Reiser (2001) proposed that this all-subsets method offers the 

further advantage of determining and ranking potential predictors according to a new 

dimension they call predictor criticality. They define predictor criticality as the 

probability that a potential predictor is included in the best subset model. Unlike the 

traditional linear regression selection methods previously discussed, the predictor 

criticality perspective does not assign importance ranks to predictors according to the 

unique variance they explain. Rather, criticality is assigned to predictor variables based 
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on whether they are highly predictive across multiple models. In traditional linear 

regression methods, the importance of a predictor would be determined by the size of its 

β-weight; in contrast, with the bootstrapping technique importance it is based upon the 

necessity of a predictor in enabling the identification of the best model. Thus, unlike 

traditional methods of determining variable importance, predictor criticality connects the 

ranking of predictor variables to the distribution of best-fitting models (Azen et al., 

2001).   

 There are key differences between interpretations of predictor criticality and 

variable importance measures such as β-weights. Azen et al. (2001) conducted 

simulations to examine the effect of multicollinearity on predictor criticality. In their first 

group of simulations, they examined the effect of varying correlations among six pairs of 

predictors while the pattern of correlations between the predictors and the criterion were 

kept constant. When the four predictors were highly related to each other (ρ = 0.75), their 

ranking in importance measured were varied. In contrast, their criticality measures were 

equally and maximally critical. This equal and maximal criticality ranking is 

understandable when the measurement of criticality is recalled. Criticality is measured by 

the probability that a given predictor is included in the best-fitting model. In the 

simulated case where the correlations among all predictors are high (ρ = 0.75), the full 

model with all predictors was identified as the best-fitting model in every case. 

Therefore, removing any of the predictors would result in misidentification of the best-

fitting model and thus all predictors are equally and maximally critical even though they 

are not equally correlated with the criterion (Azen et al., 2001).  
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 Azen et al. (2001) found that in the simulated case in which there is no correlation 

between predictors (no multicollinearity), the criticality of the predictors is directly 

related to their correlation with the criterion. This finding mirrored their results regarding 

variable importance measures β, partial correlations, and semi partial correlations, which 

correctly ranked predictors when there was no intercorrelations between them (ρ = 0). 

The researchers also found that a predictor’s correlation with the criterion and other 

predictors had an interactive effect on criticality. Specifically, a second set of simulations 

showed that an increase in the relationship between a predictor with no relationship with 

the criterion (ρ = 0) and a predictor with a moderately high relationship with the criterion 

(ρ = 0.6) resulted in an increase in the criticality of the non-related predictor (Azen et al., 

2001). This effect was also found for traditional measures of importance, although the 

interpretation of these measures would not be equivalent to that of criticality (Azen et al., 

2001).   

 The all-subsets method for extracting a model has several advantages over 

stepwise regression. First, the reliability of the final explanatory model in the all-subsets 

method is greater. This technique compares all possible models over resampling thus the 

best-fitting model selected is one that has been shown to be the best fitting across 

multiple samples. Secondly, the predictor criticality measure provides a clearer standard 

for comparing predictors. Azen et al. (2001) note that most measures of variable 

importance are dependent on the choice of a particular model. In these methods, as in that 

of stepwise regression, a model is chosen based upon some overall GOF measure and 

predictor importance is determined according to the proportion of the overall GOF (e.g., 

R2) a predictor accounts for when that GOF is partitioned across all variables. Predictor 
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criticality, unlike these traditional measures of predictor importance, is not model-

dependent (Azen et al., 2001). That is, because predictor criticality relies on an all subsets 

approach, all possible models are considered. Thus, criticalities can be computed for all 

predictors rather than only those that are included in the final “best model” (Azen et al., 

2001). By being expressed in terms of the conditional probability distribution of best-

fitting models, predictor criticality provides intuitive clarity on the need to include a 

given predictor. That is, the predictor criticality provides the probability that the model 

would be misspecified if a predictor was not included in the model. As this probability 

can be calculated for all predictors, not only the subset of predictors that are included in 

the final model, the comparison of all available predictors is facilitated (Azen et al., 

2001).     

 In addition to these important benefits, the conceptualization of the all-subsets 

method is easily related to linear regression, therefore increasing its accessibility to 

researchers in a wide variety of fields. Like the stepwise regression method, all subsets 

could be applied to the current prevalent use of linear regression in judgment analysis 

improving judgment analysis' applicability to new areas and designs without adding 

challenges to its conceptualization.   

  The primary deterrent to implementing the all-subsets method in judgment 

analysis is the computational cost of applying it. The all-subsets method is 

computationally daunting in any circumstance when the number of potential predictors is 

high, but individual level modeling poses an even higher level of computational cost. In 

judgment analysis, a model is extracted for each individual participant from the multiple 

judgments they formed of the environment and the predictors associated with their 
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judgment task. Even for judgment analysis studies in which the number of participants is 

very small (e.g., 3 participants as in Dougherty, Ebert, Callender, 1986), the all-subsets 

method would have to fit 2p – 1 models across many bootstrapped samples for each 

participant. When more than a few predictors are evaluated, the computational cost of 

fitting 2p – 1 across even one set of 50 bootstrapped samples may become prohibitive; the 

cost of doing so multiple times, as is necessary for judgment analysis, is even more 

computationally costly (Johnson & LeBreton 2004; Strobl, Malley, & Tutz, 2009). 

 Despite the computational deterrent to implementing the all-subsets method in 

judgment analysis, previous researchers have used it in this context. González-Vallejo, 

Lavins, and Carter (2016) examined the nutritional judgments of 196 individuals using an 

all-subsets method. Each individual had evaluated either 40 cereals or 40 snacks and a set 

of 12 nutrients were selected to be included in the models predicting their judgments. For 

each participant, the researchers generated a set of 10,000 bootstrapped samples and all 

models were compared using 𝑅𝐴𝐷𝐽
2  in order to derive the best model for each individual's 

judgment process.  

 González-Vallejo et al.'s (2016) study provides a case example for the application 

of the all-subsets method to judgment analysis; however, the extent to which the all-

subsets method is computationally feasible and statistically advantageous for 

implementation in judgment analysis has not been documented. Of particular interest, is 

whether the all-subsets method will be more reliable in the context of extracting 

judgment models than the less computationally demanding stepwise approach. Moreover, 

an investigation is needed to determine whether the statistical advantages of the all-

subsets method, that previous researchers have documented, are sufficiently impactful in 
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the judgment analysis context to warrant recommendation of this method over the more 

broadly accessible stepwise method.  

Random Forest Variable Selection 

 An additional method for implementing variable selection that could be applied to 

judgment analysis is a random forest variable selection method. There are indications that 

random forest variable selection may be a more reliable and practical method than the 

stepwise and all-subsets methods respectively. Sandri and Zuccolotto (2006) used 

simulation tests and empirical data to compare the random forest variable selection to 

stepwise procedure in classification modeling. Their research found that the random 

forest method identified a smaller number of relevant predictors than the logistic stepwise 

procedure, allowing for a more parsimonious model with similar predictive performance. 

Moreover, unlike the all-subsets method, the random forest method does not fit all 

possible models on bootstrapped samples. Rather, random forest fits a tree model to 

bootstrapped samples only once and estimations are found by averaging over the many 

trees across the bootstrapped samples. Random forests then determine the most relevant 

variables by ranking predictor variables according to how much their inclusion decreases 

mean squared error (MSE). Although the all-subsets method of selecting variables is 

more intuitively clear, random forests' variable selection is less computationally costly 

(Strobl, Malley, & Tutz, 2009).  

Random Forest Process Description 

Random forests are developed by constructing and aggregating decision trees 

across multiple bootstrapped samples (Breiman, 2001). As with the all-subsets method, 

random forests begin by using sampling with replacement to draw multiple samples from 
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a single original sample. In random forest, however, decision trees are constructed for 

each sample. Constructing an initial regression tree—a decision tree for a real-valued 

number rather than a classification—begins with splitting the data at multiple points. The 

size of the regression tree is determined by the required minimum number of 

observations for each node. A large regression tree will have a low minimum number and 

will have the advantage of having low bias but the disadvantage of overfitting the data.   

 The problem of overfitting regression is best addressed by developing regression 

trees across multiple bootstrapped datasets and then aggregating the resulting trees over 

the repeated samples (for recommended number of trees, see Oshiro, Perez, & 

Baranauskas, 2012). This bootstrap aggregation method—called bagging—reduces the 

variance of the final estimated values by averaging across the low bias, high variance 

trees. Although individual trees have high variance, aggregating values across ensembles 

of trees allows for an impressive reduction in estimate variance, thereby increasing the 

predictive accuracy of the model (Breiman, 2001).   

In usual bagging methods, a regression tree is grown by determining split points 

based on which point, out of all predictor variables, will most greatly minimize the sum 

of squared error (Breiman, 1996). Random forest bagging methods determine a split point 

by considering a random sample (without replacement) of predictors from the full set of 

predictors. The number of predictors randomly sampled for consideration as split 

candidates is predetermined by setting m predictors. Thus, traditional bagging procedures 

are random forest procedures in which m is equal to the number of predictors. Once a 

random subset of predictor variables has been selected, the random forest method follows 

the procedure of selecting a split point according to which predictor will allow for a split 
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point that will most minimize the sum of squared error within the region. The split value 

resulting from this process is a node in the subsequent regression tree. This process is 

then repeated for each subsequent split until the tree is grown. Function 1 describes the 

first step in this recursive process.  

Function 1: 

∑ (𝑦𝑖 − 𝑦)2 + 
y𝑖:x𝑖>𝑏

∑ (𝑦𝑖 − 𝑦)2 
y𝑖:x𝑖≤𝑏

 

In the above equation, 𝑦𝑖  is defined as a real-valued case of a criterion y that is a function 

of xi, real-valued predictor variables 1-k, and some error. Some specific predictor i and a 

value b of that xi predictor are chosen such that for all cases of y, in each region of xi, the 

sum of the squared difference of yi and mean y is minimized.  

For an example of this random forest regression tree method, assume that m has 

been set to three. Then, for three randomly selected predictor variables X1-3, the entirety of 

data space, designated A is split into A1 and A2 based upon which variable X1-3 and 

associated value b will minimize error within the initial region A (see Figure 3). 

Subsequent split points are determined in the same fashion, beginning by taking a fresh 

random sample of m predictors, and selecting a predictor variable and value which 

minimize the error in the subset region being considered (e.g., in Figure 3, region A2). 

The number of splits allowed is determined by a preset parameter setting the minimum 

required observations within a final region as a result of splitting. In addition to allowing 

for a stopping point for recursive splitting, such an a priori determination ensures that 

outlier data points will not fully determine split points.  
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Figure 3. Random forest splitting process. Subset regions A1 and A2 are determined by 
selecting split points on xi = bi such that error within both regions is minimized. A value 
of x2 that minimizes error in further subset regions A2-1 and A2-2 is selected as the 
subsequent split.  

 

 The key factor in random forest regression tress is the determination of number m 

of variables less than the total number of predictors (p). By selecting an ideal initial split 

point out of a randomly selected sample of candidate variables, the random forest method 

reduces the correlation among trees. For example, consider a participant in a judgment 

analysis task who is evaluating the nutritional quality of multiple food products. Calories, 

a nutritional variable that is positively related to many of the other nutrients in a food, 

may be highly related to the participant's nutritional rating. If a traditional bagging 

approach were used, calories would be included in most or all the trees developed for this 

participant. As a result, the bagged trees would be quite similar and their predictions 

highly correlated resulting in a loss of variance reduction despite bagging. By introducing 

an element of randomness in the selection of the variables to be considered, the resulting 

trees are less correlated, and their averages have less variance and are therefore more 

reliable.  
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 Following the construction of the many regression trees that make up the "random 

forest," a validation technique called permutation importance is used to provide a 

comparative measure of “predictor importance” for the predictor variables. A by-product 

of bagging is that any given bootstrap training set does not use all observations available 

in the original dataset. In fact, previous testing has demonstrated that approximately a 

third of observations in the original dataset do not appear in a given bootstrapped dataset 

(Breiman, 2001). Permutation importance relies on these observations, called "out-of-

bag" (OOB) cases, to assess the relative importance of predictor variables (Breiman, 

2001). To determine variable importance, the value of a particular predictor, X1, is 

permuted in every tree. That is, rather than reflecting the value dictated by the model, 

every occurrence of X1 is assigned a randomly selected value from the possible values for 

X1 and the resulting tree is used with the OOB cases. Subsequently, the MSE is computed 

for every tree and the difference between the permuted trees' MSE values and the non-

permuted trees' MSE values is taken and these differences are then averaged across all 

trees to determine the importance of predictor X1. This process is repeated for all 

remaining predictor variables X2-k. The average difference between the MSE error for the 

actual prediction and the MSE for the permuted prediction (referred to hereafter as 

∆𝑀𝑆𝐸𝑂𝑂𝐵) is the variable importance ranking for each predictor, which can then be 

compared to determine relative importance. This method presumes that permuting 

important predictor variables will have a greater impact on the MSE than permuting 

unimportant variables (Genuer, Poggi, & Tuleau-Malot, 2015). 

 In random forest, the OOB cases are also used to compute a “percent variance 

explained” metric that is a measure of cross-generalization rather than goodness-of-fit. 
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This measure (denoted 𝑅𝑂𝑂𝐵
2  hereafter) is derived from the MSEOOB, which is the 

aggregated sum of squared differences between the actual judgment values and the 

judgment values predicted for the OOB cases that were not included in the bootstrapped 

samples used to extract the model. Percent variance explained is defined as 

Equation 5: 

𝑅𝑂𝑂𝐵
2 =  1 −

𝑀𝑆𝐸𝑂𝑂𝐵

𝜎̂𝑦
2

 

where 𝜎̂𝑦
2 is computed with n rather than n – 1 as the divisor (Liaw & Wiener, 2002). 

Because 𝑅𝑂𝑂𝐵
2  is a proxy for a cross-generalization measure it does not have direct linear 

regression or all subsets counterpart.  

 A goodness-of-fit metric analogous to that of an 𝑅𝐴𝐷𝐽
2  can be computed for 

random forest using the following equation.  

Equation 6:  

𝑅𝐴𝑑𝑗.𝑅𝐹
2 = 1 − 

𝑆𝑆𝐸
𝑛 − 𝑝 − 1

𝑆𝑆𝑇
𝑛 − 1

 

SSE is the sum of squared error, determined by the sum of the squared differences 

between actual observed values and the predicted values averaged across all regression 

trees (James et al., 2013). The number of observations is denoted by n; the number of 

predictors included in the model is represented by p. SST is the total sum of squares, 

determined by the sum of the squared differences between the observed values and the 

overall mean of the observed values. 

 The random forest method includes the selection of several a priori 

determinations, or hyperparameters that can impact the analysis. The first of these 
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hyperparameters is the number of trees which should be included in the ensemble of 

trees; second, the number of predictors that are randomly selected to be considered at 

each spilt; third, node size, or the minimum number of observations in a terminal node. 

Lastly, when reducing model predictors is of interest, some variable importance threshold 

is necessary to determine which variables from the full model are included in the final 

model.  

Previous research, on the number of trees to include in a random forest, has 

indicated that fewer bootstrapped samples are necessary when the outcome variable is 

numerical (i.e., for regression forests) compared to when there are many classes (i.e., for 

classification forests) (Breiman, 1996). A 2018 empirical study that conducted random 

forest analysis on 193 classification datasets and 113 regression datasets confirmed this 

numeric-class distinction (Probst & Boulesteix, 2018). Theoretical results by Probst and 

Boulesteix indicated that increasing the number of trees is—in most cases, and in all 

regression forest cases—monotonically related to decreased average out-of-bag error 

rates. However, both theoretical and empirical indicated that the greatest improvement in 

performance is attained by the earlier increases in tree number. For regression, Probst and 

Boulesteix (2018) found that increasing the number of trees from 11 trees to 2000 trees 

resulted in a 0.1249 improvement in the OOB R2. However, 0.121 of that improvement 

was attained by using 250 trees, with the increase from 250 to 2000 trees improving the 

cross-generalization of the model by 0.0039 OOB R2.  

The findings of Probst and Boulesteix (2018) concur with those of earlier 

researchers examining how many trees are sufficient before improvements in model fit 

and cross-generalization become negligible. Oshiro et al. (2012) compared the 
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performance of random forest classification among 29 datasets using 12, exponentially 

increasing tree size conditions. For each tree size condition, Oshiro et al. used the average 

Area Under the Curve (AUC) between the true positive rate and false positive rate over 

ten repetitions of a ten-fold cross-validation of the classification random forest for each 

dataset as a measure of performance. They examined the effect of the number of trees on 

the average AUC across all datasets and concluded that adding more trees passed a 

certain threshold (in their cases, 128 trees) resulted in minimal gains in AUC 

performance.    

The number of predictors randomly considered at each split (denoted m) is 

another random forest hyperparameter that can be “tuned” to increase the cross-

generalizability of the model (Genuer, Poggi, & Tuleau-Malot, 2010). Lower values of m 

lead to individual trees that are less correlated, yielding greater forest stability and thus 

greater cross-generalizability (Breiman, 2001; Grömping, 2009). Breiman (2001) 

recommended 𝑚 =  √𝑝 for classification forests but noted that the negative relationship 

between m and cross-generalizability was weaker in regression forests. Based on these 

findings, the default m for regression forests is p/3 (Grömping, 2009; Liaw & Wiener, 

2002). Previous studies have indicated that these default values generally provide optimal 

decreases in cross-generalization error (e.g., Díaz-Uriarte & De Andres, 2006; Grömping, 

2009; Li, Tran, & Siwabessy, 2016), although, increasing m can lead to increases in 

performance when there are many predictors and a high proportion of irrelevant 

predictors (Díaz-Uriarte & De Andres, 2006).    

The minimum number of observations allowed in a terminal node determines the 

depth to which a tree is grown. A lower node size allows for more splits to be performed 
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and thus a “deeper” tree than is allowed by a larger node size (Strobl, Malley, & Tutz, 

2009). The default node sizes in implementing random forest are 1 for classification and 

5 for regression (Liaw & Wiener, 2002). In general, growing large trees is seen as 

imperative to the random forest approach (e.g., Breiman, 2000; Lin & Jeon, 2006). This 

is particularly true when the ratio of observations to predictors is small, however, in cases 

when the ratio of observations to predictors is large, larger minimum node sizes, and thus 

growing smaller trees, have been shown to be optimal (Lin & Jeon, 2006).  

Grömping (2009) found that although regression forest variable importance 

rankings were not dependent on m, the combination of large minimum node sizes and 

small m impacted variable importance. Simulation results showed that when minimum 

node sizes were large, a small m resulted in a substantial decrease in importance 

allocation to the predictor with the largest coefficient in favor of weaker predictors. 

Notably, this was the case even when those predictors were uncorrelated. Variable 

importance for predictors that had no real effect on the criterion did not increase 

(Grömping, 2009).   

Variable Selection Using Random Forest 

Substantial attention has been given to the development of methods for selecting 

variables with random forest. Most approaches utilize the variable importance measures 

that rank predictors according to their impact on OOB error, but the methods in which 

these measures are used vary widely (Hapfelmeier & Ulm, 2013). Hapfelmeier and Ulm 

(2013) classify recent approaches to variable selection as “performance-based” and “test-

based.” Methods belonging to the former utilize recursive refitting and select the 

predictor set that results in the lowest OOB model error (e.g., Díaz-Uriarte & De Andres, 
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2006; Ben Ishak, 2016; Genuer et al. 2010). The latter methods involve the use of 

significance tests for individual predictors and rely on p-values thresholds (e.g., < 0.05) 

to determine which predictors are selected (e.g., Altmann, Tolosi, Sander, & Lengauer, 

2010; Breiman & Cutler, 2008). Test-based approaches are problematic as the power of 

this approach has been demonstrated to depend on the size of the ensemble included in 

the random forest rather than the number of observations (Strobl & Zeileis, 2008). As a 

result, it is unclear what hypothesis is actually being tested by test-based approaches and 

their conclusions regarding predictor importance are likely inappropriate (Hapfelmeier & 

Ulm, 2013; Strobl & Zeileis, 2008).  

These approaches to variable selection vary in complexity and sophistication but 

all operate on determining thresholds for elimination or selection. Liaw and Wiener 

(2002), in their early demonstration of random forest for regression and classification, 

exclude predictors simply based on their relative variable importance ranking, keeping 

only predictors that are high in variable importance. Díaz-Uriarte & De Andres (2006) 

recommend iteratively eliminating the 20% of predictors with the smallest variable 

importance and building a new forest with the remaining variables, selecting a final set of 

predictors according to the variables that minimize the OOB error rate over multiple 

forests. In the following study, a performance-based variable selection method proposed 

by Genuer et al. (2010) and developed in the VSURF R package (Genuer, Poggi, & 

Tuleau-Malot, 2018) is used.  

Genuer et al.’s (2010) variable selection strategy has two main advantages. First, 

its thresholds are derived from the data, rather than relying on arbitrary parameters (e.g., 

proportion or number to remove) data-driven thresholds. Second, it distinguishes between 
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two different researcher goals, interpretation of the data or prediction of new data 

(Genuer et al. 2010). According to their strategy, researchers interested in interpretation 

will prioritize finding all predictor variables highly related to the criterion, even if the 

final selection includes variables that are redundant (Genuer et al., 2015). In contrast, a 

researcher interested solely in predicting the criterion variable would be more interested 

in finding the smallest number of variables sufficient to allow for good prediction of the 

criterion (Genuer et al., 2015). Genuer et al.’s method uses a multi-step process to select 

variables depending on the objective of interest. First, the multiple forests of trees are 

generated to determine variable importance. Variables are ranked according to their 

variable importance and their averaged variable importance values; additionally, 

corresponding standard deviations are used to estimate a threshold value. This threshold 

value is computed according to the minimum prediction value given by a random forest 

model, where the variable importance values are used to predict the variable importance 

standard deviations (Genuer et al., 2015). Only variables with an average variable 

importance higher than this threshold are retained.  

In the second step, all possible random forest models with the selected variables 

are estimated in multiple forests of trees and the models OOB error rate is used to select 

the final model. Specifically, the method selects the smallest model that has an average 

OOB error rate less than the sum of the smallest OOB error and its standard deviation. 

The inclusion of the error’s standard deviation allows the selection to account for the 

stability of the model (i.e., models with a low average OOB error but a wide range of 

OOB error values are less likely to be selected). For researchers interested solely in 

developing a model to predict new criterion, a third step begins with the variables 
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retained for interpretation to construct an ascending sequence of multiple random forest 

models using a stepwise method that adds and removes variables according to their 

impact on OOB error (Genuer et al., 2015).  

 The random forest variable selection method has an advantage over stepwise 

regression methods due to the variance reduction technique built into it by bagging. 

Unlike the all-subsets method, the random forest's computational complexity is not 

exponentially increasing. In fact, it can be held relatively stable despite increases in 

predictor variables. Random forest's reduction in variance and its reduced computational 

complexity make it advantageous for implementation in judgment analysis over stepwise 

and all-subsets methods, respectively. 

 Despite the statistical and computational advantages to a random forest variable 

selection method, its implementation in judgment analysis is not without challenges. The 

greater complexity of the random forest technique both computationally and in terms of 

interpretation have contributed to it being less prevalent in behavioral research. Notably, 

because the random forest method involves the aggregation of tree models that partition 

the data space in a non-additive fashion, interpretation of the predictors’ directional 

impact is much less clear-cut than it is in an additive, linear approach that relies on 

directional coefficient estimates (James et al., 2013; Strobl, Malley, & Tutz, 2009). 

However, the computational complexity of implementing random forest models has been 

reduced due to the increasing accessibility and prevalence of more powerful and flexible 

statistical tools within the field of psychology. Thus, there is an opportunity for judgment 

analysis researchers to adopt variable selection methods with this technique.  
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As was noted in an earlier section, the use of a linear regression model is not 

required by judgment analysis and indeed at least one previous empirical study used 

decision trees for judgment analysis showing them to outperform the traditional linear 

approach. Lafond, Vallières, Vachon, St-Louis, and Tremblay (2015) had 60 participants 

use five cues in a naval air-defense judgment task to classify over 300 radar contacts as 

hostile, uncertain, or non-hostile. The researchers generated two models for the judgment 

process of individual participant, a logistic linear regression and a decision tree model 

and found that across all participants, that decision trees had higher goodness-of-fit and 

higher cross-validation accuracy than logistic regressions (Lafond et al., 2015). The 

average goodness-of-fit across participants for decision tress and logistic regressions 

were 96% and 89.10% respectively, while the cross-validation accuracy of each method 

was 95.28% and 88.47% respectively (Lafond et al., 2015). Notably, the decision tree 

models generated in this task were not bagged nor did they use random subsets of 

predictors, both of which help improve the predictive accuracy of decision trees in the 

random forest approach. Other researchers have also noted that decision trees are likely a 

more accurate model of the human judgment process than a linear weighting process 

(e.g., Dhami & Harries, 2001; James et al., 2013). The overwhelming use of regression 

modeling in judgment analysis applications is largely due to convenience. 

 The question of whether a decision tree approach improves the validity of an 

extracted model is an empirical question. Additionally, the impact of any improvement, 

in accuracy or efficiency, should be documented in order to facilitate researcher decision-

making. It is possible that an all-subsets method results in substantially different 

outcomes than a random forest approach. If this is the case, then researchers should be 
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urged to consider the more computational costly technique if they are to develop reliable 

models. Conversely, if the accuracy of the random forest method is better or equivalent to 

that of the all-subsets method, the reduced computational cost of the former will make its 

use advantageous. Similarly, if the random forest method offers significant improvement 

in accuracy over a stepwise regression method than adoption of this method should be 

recommended. If, however, comparisons indicate that stepwise regression performs 

comparably well, the computationally inexpensive and widespread prevalence of 

stepwise regression would make its implementation preferable.  

Summary 

Judgment analysis could be more broadly applied in behavioral research if 

variable selection methods could be implemented to reduce overfitting under conditions 

in which many possible predictors might be included in the model. Automated methods 

for decreasing the predictor pool can enable judgment analysis to be used in areas that 

have not been previously examined with individual-level modeling and facilitate its 

application in designs with group-level objectives. 

 By using variable selection methods in judgment analysis researchers can improve 

the parsimony of explanatory models of human judgment. Developing more 

parsimonious models of the judgment process has two advantages. First, an emphasis on 

determining the importance of factors related to a judgment task will increase the clarity 

of explanatory models, providing a better understanding of the judgment process. Second, 

by reducing the number of predictor variables, the likelihood of overfitting explanatory 

models will be decreased, thus facilitating the development of models that can predict 

future data as well as explain the data from which they are extracted.  
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 The three variable selection methods discussed in this introduction have been 

previously demonstrated to have different advantages and disadvantages. Stepwise 

regression variable selection is computationally inexpensive and enjoys established 

prevalence in behavioral research. However, previous research has indicated that 

stepwise regression variable selection can lead to biased and high-variance estimates, 

reducing its potential for interpretable models and accurate prediction. All subsets 

variable selection provides intuitive interpretations of a best final model and allows for 

clear comparisons of predictor usefulness. Nonetheless, the clarity allowed for by the 

comprehensiveness of all subsets comes at a computational cost that may be too high, 

particularly for designs with many predictors and many subjects, which would most 

greatly benefit from variable selection methods. Random forest variable selection does 

not involve the same computational cost as all subsets and involves bias and variance 

reduction techniques that may prove advantageous over stepwise regression. Despite this, 

the random forest method is more computationally challenging than a stepwise regression 

approach and involves a decision tree approach—which is currently uncommon in 

judgment analysis. Random forest variable selection also lacks the theoretical clarity 

present in the all-subsets method and is comparably novel and less well-understood.  

Current Research 

 The current research will use three variable selection methods in applying the lens 

model to investigate the utility of variable selection methods and compare three specific 

methods: stepwise regression, all possible subsets, and random forest. In keeping with the 

Brunswikian approach, these methods are contrasted in describing the judgment 

environment used to different degrees in previous work by González-Vallejo et al. (2016) 
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and Carter and González-Vallejo (2018). Subsequently, across three studies, the 

researcher contrasts the accuracy and efficiency of the traditional variable selection 

method of stepwise regression, the comprehensive all-subsets method, and the more 

novel random forest method. In the first study, the results of these methods are compared 

using empirical data, the judgments of 298 individuals from the archival data from Carter 

and González-Vallejo’s (2018) study. In the second study, the methods are compared 

using simulated data that were based on a nutritional judgment task of the archival data 

examined in the first study. In a final study, data with different correlational structures are 

simulated in order to investigate the effect of collinearity on the three methods’ selection 

and ranking performance.   

Not only do these studies describe the results of the respective variable selection 

methods, they also seek to document the differences in approach and process each 

method requires. This provides future researchers, particularly those interested in human 

judgment and decision-making, with a concrete picture of the relative costs and benefits 

of diversifying the methodologies they employ.   
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CHAPTER 2: DESCRIBING THE TASK ENVIRONMENT 

A key aspect of Brunswik’s (1952) approach, and that of the judgment analysis 

method derived from it, is a focus on understanding the judgment environment. Brunswik 

argued that the entire study of judgment is that of the relationship between a judge and 

the environment; an examination of the judge alone is insufficient to derive an 

appropriate understanding of the judgment process (Brunswik, 1952). The characteristics 

of the environment, or the judgment task that a judge undertakes, are important for two 

primary reasons. First, the characteristics of the judgment task can help or hinder a judge, 

impacting both the subjective ease of judgment and its objective accuracy (Stewart et al., 

1997). Second, the characteristics of the judgment task describe the context in which the 

judgment process was learned; the judgment task itself can be crucial in determining the 

cognitive approach adopted by the judge so understanding the task is fundamental to 

understanding the judgment process (Hammond et al., 1987; Stewart et al., 1997).   

A classic study exemplifying the necessity of understanding the task environment 

is that Stewart et al.’s (1997) examination of human forecasting. In that study, Stewart et 

al. compared human forecasting of two weather conditions, temperature and 

precipitation. Analysis of the two judgment tasks found differences in the two tasks 

number of cues, cue redundancy, linearity, and predictability, leading the researchers to 

predict that accuracy, agreement, and consistency of the forecasters’ judgments would be 

lower for precipitation than for temperature. Results from the study found that this was 

the case. Temperature forecasts were more accurate than precipitation forecasts and 

agreement among the forecasts was lower for precipitation with indirect evidence 

suggesting that reliability was also lower than in the temperature task (Stewart et al., 



61 

1997). In contrast, in a study of human judgment in another task environment—

forecasting hail—the forecasting accuracy, agreement, and consistency of forecaster 

judgment was lower than in the temperature and precipitation tasks (Stewart et al., 1989). 

Analysis of the hail task environment indicates that a good statistical model for this task 

is difficult to derive, indicating that the task itself has low predictability. A high level of 

unpredictability in the task environment limits the accuracy of human judgment, 

increasing the likelihood that judgment performance in that task environment will be low 

(Stewart 1990, Stewart et al. 1997).  

Original Judgment Task  

In the original study by Carter and González-Vallejo (2018), participants were 

presented with 74 cereals and asked to judge their nutritional quality on a scale from 1-

100. The products used in the study were actual cereals available in the market and in this 

way were representative of the actual judgment task of judging cereals. Cereal images 

were shown in three different display conditions (see Appendix for an example), but in 

all cases, an image of the front of the cereal box was provided along with the cereal’s 

Nutrition Facts Panel (NFP), and ingredient list. The authors used the NuVal® score 

(referred to as NuVal hereafter) as an expert criterion of nutritional quality (Carter & 

González-Vallejo, 2018). NuVal, a nutrition scoring system developed by medical and 

nutritional experts, summarizes the overall nutrition of a food on a scale from 1 to 100 

with higher scores indicating higher nutritional quality (NuVal LLC, 2015). Further 

discussion of this system as a nutritional criterion can be found in Carter & González-

Vallejo’s (2018) study, as well as previous studies utilizing NuVal (González-Vallejo & 

Lavins, 2015; González-Vallejo, Lavins, & Carter 2016).   
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Statistical Analysis of the Environment 

 To draw conclusions about the environment, the three methods of analysis— 

stepwise linear regression, all subsets, and random forest—were each applied to 

examining the environment. As the expert criterion used for the environment was the 

NuVal score, the statistical analysis of the environment is based on modeling the 

relationship between the nutrient predictors in the environment and the NuVal. The 

cereals’ NFP labels contained nutrient information for 16 nutrients.2 calories, sodium, 

sugars, dietary fiber, as well as calories from fat, total fat, saturated fat, polyunsaturated 

fat, monounsaturated fat, potassium, insoluble fiber, soluble fiber, total carbohydrates, 

other carbohydrates, protein, and number of vitamins and minerals. Prior to the analysis, 

the predictor pool was reduced to include only nutrients known to be included in the 

NuVal algorithm. These included twelve nutrient values: calories, total fat, saturated fat, 

polyunsaturated fat, monounsaturated fat, sodium, potassium, total carbohydrates, dietary 

fiber, sugar, protein, and a subset number of vitamins and minerals.3 Additionally, due to 

an error in survey design, a single cereal was dropped from the analysis, resulting in a 

total of 73 unique cereals.  

 Statistics describing the correlations between NuVal and the nutrients, as well as 

the inter-correlations of the nutrients for the 73 cereals and the variables’ central 

tendencies are shown in Table 1. As can be seen from Table 1, many of the nutrients are 

                                                 

2 Two other nutrient variables, trans fat and cholesterol, were also included on the labels and their values 
are coded in the database of cereals but as they had constant values (= 0) across all cerals they were 
excluded from the initial predictor set and had no impact on subsequent analyses. 
 
3 NuVal’s algorithm includes a subset of vitamins and minerals compared to those that appear on the 
cereal’s NFP. The vitamins and minerals included in NuVal include: folate (used interchagably on the NFP 
with folic acid), vitamin A, vitamin C, vitamin D, vitamin E, vitamin B12, vitamin B6, calcium, zinc, 
magnesium, and iron.   
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related to each other. Out of the sixteen nutrients included in the NFP, ten had significant 

correlations with at least half of the total nutrients. Calories was the most inter-correlated 

predictor; it was significantly correlated (at the p < .05 level) with twelve other nutrients. 

Sodium was the least intercorrelated, significantly correlating (at the p < .05 level) with 

only three other nutrients.  

When only the twelve nutrients variables included in the NuVal are considered, 

intercorrelations among the predictors remained high. Calorie value is positively related 

to the four nutrient variables excluded by the NuVal, calories from fat, insoluble fiber, 

soluble fiber, and other carbohydrates, so excluding these variables brings the number of 

nutrients that calories is significantly related to down to eight. Potassium and protein are 

also each significantly related to eight nutrients. In all, seven of the twelve nutrient 

variables included in the NuVal were significantly correlated (at the p < .05 level) with at 

least half of the twelve total nutrients.  
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Table 1  
 
Environment Descriptives: Pearson Correlations and Descriptive Statistics of NuVal and Cereal Nutrient Variables (N = 73) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 NuVal  .                  
2 Calories  .07                  
3 Calories (Fat)  .12 .46*                 
4 Total Fat (g)  .14 .44*  .95*                
5 Saturated Fat (g)  .02 .14  .53*  .53*               
6 Polyunsaturated Fat (g)  .31* .42*  .76*  .80*  .40*              
7 Monounsaturated Fat (g) -.02 .43*  .80*  .80*  .36*  .58*             
8 Sodium (mg) -.54* .03 -.11 -.15 -.10 -.20 -.06            
9 Potassium (mg)  .30* .72*  .34*  .34*  .02  .46*  .24* -.08           
10 Total Carbs (g)  .05 .93*  .19  .18 -.02  .18  .20  .00  .68*          
11 Dietary Fiber (g)  .38* .53*  .26*  .27*  .01  .28*  .13 -.23  .68*  .59*         
12 Soluble Fiber (g)  .13 .24*  .28*  .26*  .01  .23  .30* -.22  .38*  .23*  .57*        
13 Insoluble Fiber (g)  .27* .36*  .05  .06 -.04  .18 -.06 -.40*  .51*  .47*  .67*  .42*       
14 Sugar (g) -.45* .52*  .21  .19  .07  .11  .20   .27*  .33*  .53*  .15  .05  .02      
15 Other Carbs (g) -.15 .27*  .21  .26*  .06  .19  .46*   .20  .06  .20 -.06 -.08 -.13  .04     
16 Protein (g)  .32* .65*  .32*  .33* -.01  .44*  .24* -.11  .74*  .56*  .68*  .51*  .54*  .10 -.04    
17 Vitamins & Minerals (#) -.19 .12  .05  .06 -.06 -.02  .18  .36*  .01  .08 -.22 -.24* -.28*  .24*  .47* -.18   
18 NuVal Vitamins & Minerals (#) -.22 .01  .05  .06 -.02 -.02  .16  .39* -.06 -.03 -.26* -.25* -.34*  .24*  .42* -.24*  .97* . 
                   
Mean 29 145 15 1.62 0.13 0.45 0.41 139 118 31 3.65 0.40 1.11 8.89 7.05 3.52 9.34 6.26 
Median 26 120 10 1.00 0.00 0.00 0.00 140 85 26 3.00 0.00 0.00 9.00 0.00 2.00 11.0 7.00 
S.D. 16 44 11 1.28 0.30 0.68 0.67 73.5 90.5 9.55 2.82 0.96 2.44 4.11 10.1 2.35 4.70 3.00 
*Correlation is significant at the p < 0.05 level (2-tailed). 
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The intercorrelations between nutrient variables complicates the extraction of a 

reduced model for a criterion variable. As was outlined in the introduction, high 

intercorrelations pose challenges to statistical tests and can result in models that are 

impossible to correctly interpret (e.g., Stewart, 1988). Nonetheless, for judgment 

analysis, an examination of the environment mandates a representative design, one that 

involves including relevant predictors even if those predictors redundantly relate to the 

environment (Brunswik, 1952; Cooksey, 1996). The current study is interested in 

comparing the performance of modeling methods in a task environment that accurately 

represents a real-world judgment environment, that is, that includes human interaction 

with cue redundancy. Thus, despite the inter-correlations amongst the twelve nutrients 

known to be related to NuVal, no reduction of this predictor pool was made prior to the 

application of the three analytic methods. The three analysis methods—stepwise 

regression, all-subsets method, and random forest—and their respective results are 

described below. 

Stepwise Linear Regression 

 Stepwise linear regression was utilized to extract a reduced model of the 

environment of cereal products. The full initial model contained the twelve nutrient 

variables known to be included in NuVal as earlier stated: calories, total fat, saturated fat, 

polyunsaturated fat, monounsaturated fat, sodium, potassium, dietary fiber, sugars, total 

carbohydrates, protein, and the number of NuVal vitamins and minerals listed on the 

NFP. The stepwise process resulted in a reduced model containing three variables: sugars 

(β = -.50, p < .001), potassium (β = .44, p = .01), and sodium (β = -.37, p < .001). This 
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three-variable model significantly predicted the expert nutritional measure NuVal, F(3, 

69) = 28.83, p < .001, with 𝑅𝐴𝐷𝐽
2  = 0.537.      

All-Subsets Method 

 The environment was also analyzed using the all-subsets method and the predictor 

criticality analysis developed by Azen et al. (2001). The original sample of 73 cereals 

along with their NuVal score ratings and the nutrient predictors (p) associated with them 

were bootstrapped (resampled with replacement) to generate 100,000 samples of size 73. 

For each sample, 2p -1 subset regression models—all possible models but the null 

model— were fitted. A ‘best-fit’ model for each sample was determined according to the 

model with the highest adjusted r-squared value. Subsequently, the model with the 

highest frequency of being the ‘best-fit’ across the entire distribution of 100,000 samples 

was selected as the overall best-fitting model. In modeling the environment, a reduced 

model including eleven predictors had the highest probability of being the best fit across 

the 100,000 bootstrapped samples. This eleven-predictor model had the highest fit 

amongst all models for 3,757 of the bootstrapped samples (3.76%). The model included 

all predictors but saturated fat, resulting in a final model that included the following 

variables: calories, dietary fiber, monounsaturated fat, polyunsaturated fat, potassium, 

protein, sodium, sugars, total fat, total carbohydrates, and number of NuVal-included 

vitamins and minerals. Adjusted R2 values for this best-fitting model ranged from .380 to 

.910 (M = 0.691, MDN = 0.695, SD = 0.075).  

The criticality of the predictors was determined based on the probability of a 

given predictors inclusion in the distribution of best fit model. Unlike traditional 

measures of variable importance that can generate rankings only for variables included in 
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a final model (such as stepwise regression’s beta weights), predictor criticality analysis 

ranks all possible variables (Azen et al. 2001). Thus, predictor criticalities (C) are 

generated for all variables, not only those included in the model determined to be the best 

fit. Among the eleven predictors included in the final best-fitting model, criticalities 

ranged from .307 to .995: sodium (C = .995), sugars (C = .990), dietary fiber (C = .915), 

calories (C = .849), number of NuVal included vitamins and minerals (C = .773), total 

carbohydrates (C = .737), monounsaturated fat (C= .709), potassium (C = .645), protein 

(C = .611), polyunsaturated fat (C = .588), and total fat (C = .580). The one predictor that 

was not included in the final, best-fitting model was also the predictor with the lowest 

predictor criticality, saturated fat (C = .307).  

Random Forest Method 

The random forest method also began with the initial inclusion of all nutrient 

predictors. The variable selection method used in this study was the approach of the 

VSURF package developed by Genuer et al. (2015) and previously discussed in the 

Random Forest section. In accordance with Genuer et al. (2015) and Behnamian et al.’s 

(2017) research indicating that a higher number of trees to a certain point improves the 

stability of the variable importance estimates and ranking, the default VSURF ensemble 

number of 2000 trees per forest was used. That is, for each forest in the variable selection 

process of the environment analysis, NuVal scores were resampled with replacement to 

generate 2000 bootstrapped datasets of 73 scores each. The number of predictors that 

would be randomly selected to be considered at each split was set at four in accordance 

with the VSURF default of selecting number of predictors (p) according to rounding 

down p/3, where p is the total number of predictors included in the model. To determine 
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the minimum threshold for maintaining variables, the VSURF default of 50 forests were 

generated, and the default of 25 forests for the interpretation step was used.  

Because random forest is an aggregated tree process in which predictors can be 

used repeatedly in recursive splitting, random forests have no equivalent to the clear 

directional coefficients that are estimated in linear regression (Strobl, Malley & Tutz, 

2009). Instead, the primary result of interest is the extent to which each predictor variable 

contributes to the model’s predictive capacity. In modeling NuVal Scores, the 

thresholding step eliminated two variables, saturated fats (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  −0.101) and 

monounsaturated fats (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  0.170), from the initial pool of 12 nutrient variable. 

The 10 predictors selected by the thresholding step included sugars (∆𝑀𝑆𝐸𝑂𝑂𝐵 =

107.47), sodium (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  70.78), dietary fiber (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  23.60), total 

carbohydrates (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  22.74), potassium (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  16.77), calories 

(∆𝑀𝑆𝐸𝑂𝑂𝐵 =  8.36), protein (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  7.48), number of NuVal-included vitamins 

and minerals (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  4.46), total fat (∆𝑀𝑆𝐸𝑂𝑂𝐵 =  3.00), and polyunsaturated fats 

(∆𝑀𝑆𝐸𝑂𝑂𝐵 = 1.44). Percent reduction in MSE refers to the predictor’s ranked mean 

importance in the across the thresholding forests. That is, the MSE values above describe 

the percent increase in MSEOOB when a given predictor is permuted.  

At the interpretation step the predictor set was further reduced, resulting in a 

model that included the three nutrient variables with the highest variable importance 

values: sugar, sodium, and dietary fiber. Using the 𝑅𝐴𝑑𝑗.𝑅𝐹
2  measure found in Equation 6, 

this three-predictor random forest model was found to have an 𝑅𝐴𝑑𝑗.𝑅𝐹
2  of .879.  
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Method Comparisons 

The three methods had clear differences in size. The all-subsets method yielded 

the largest final model, one that excluded only a single nutrient, saturated fats. Both the 

stepwise and random forest methods resulted in models with three nutrients. The stepwise 

regression method’s final model included sugars, sodium, and potassium. The random 

forest method’s final model included sugars, dietary fiber, and sodium. As can be seen in 

Table 1, dietary fiber has no relationship with sugars (r = .15, p > .05) or sodium (r = -

.23, p > .05). In contrast, potassium is significantly related to sugars (r = .33, p < .05), but 

not to sodium (r = -.08, p > .05). Sugar and sodium have a positive relationship (r = .27, p 

< .05).  

Table 2 depicts the variable importance results for the three methods as well as 

the results of a regression model containing all nutrient variables. A comparison of the 

findings depicted in Table 2 shows that a stepwise regression method results in the 

selection of variables other than those deemed significant in a full regression model. A 

full regression model containing all 12 nutrients indicates that calories, dietary fiber, 

sodium, and sugars are statistically significant (at the p < .05 level) in predicting NuVal. 

Using the size of the standardized coefficients to rank the importance of the variables 

would indicate that calories (β = 1.309, p < .05) is the most important variable, followed, 

in descending order, by total carbohydrates (β = -1.091, p > .05), sugars (β = -0.494, p < 

.05), dietary fiber (β = 0.438, p < .05), sodium (β = -0.436, p < .05),  monounsaturated fat 

(β = -0.277, p > .05), total fat (β = -0.208, p > .05), potassium (β = 0.191, p > .05), 

polyunsaturated fat (β = 0.186, p > .05), number of NuVal-included vitamins and 
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minerals (β = 0.135, p > .05), saturated fat (β = -0.066, p > .05), and protein (β = -0.270, 

p > .05).  

The stepwise regression method resulted in a final model that included three 

nutrient variables: sugars, potassium, and sodium. Here, standardized coefficients 

indicated that sugars (β = -0.499, p < .05) was the most important variable, followed by 

potassium (β = 0.436, p < .05) and sodium (β = -0.369, p < .05).  

 

Table 2  

Predicting NuVal from NFP Nutrients (N=73). Values in bold indicate predictors’ 
inclusion in the final model.   

*p ≤ 0.05, two-tailed. aBeta value > 1 indicative of high multicollinearity. bMean and 
standard deviation of adj. R2 across 3,757 all subsets bootstrapped samples in which this 
model was found to be the best fitting. 

 

The all-subsets method predictor criticality method included eleven of the twelve 

nutrients in its final best-fitting model, excluding only saturated fats. Predictor criticality 

 Full Model 
Regression  

Stepwise 
Method 

All-subsets 
method  

Random 
Forest Method 

 β β C ∆𝑀𝑆𝐸𝑂𝑂𝐵 
Caloriesa  1.309*  --  0.849     8.365 
Total Fat (g) -0.208  --   0.580     2.999 
Saturated Fat (g) -0.066  --  0.307    -0.101 
Monounsaturated Fat (g) -0.277  --  0.709     0.170 
Polyunsaturated Fat (g)  0.186  --  0.588     1.440 
Dietary Fiber (g)  0.438*  --  0.915   23.600 
Potassium  0.191*   0.436*  0.645   16.767 
Protein -0.270  --  0.611     7.480 
Sodium (mg)  -0.436*  -0.369*  0.995   70.785 
Sugars (g) -0.494*  -0.499*  0.990 107.473 
Total Carbohydrates (g)a -1.091  --  0.737   22.739 
NuVal Vitamins & Minerals (#)  0.135  --  0.773     4.457 
      

 
𝑅𝐴𝐷𝐽

2   .571 .537 M = .691  
(SD = .075)b 

.879 
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rankings of the nutrients’ importance in predicting NuVal varied from the importance 

implied by the full model regression and the selections of the stepwise regression 

approach. The highest ranked predictors by the all-subsets method were sodium (C = 

0.995), sugars (C = 0.990), and dietary fiber (C = 0.915), followed by calories (C = 

0.849). High rankings of these variables were congruent with the nutrients that were 

statistically significant in the full regression model. Although in the full regression model 

potassium was statistically significant, it was ranked eighth in terms of both criticality 

and beta weight size.  

The three nutrient variables included in the random forest’s final model were also 

partially congruent with the nutrients stastically significant in the regression model. 

Sugars (∆𝑀𝑆𝐸𝑂𝑂𝐵 = 107.473) was ranked the highest, followed by sodium (∆𝑀𝑆𝐸𝑂𝑂𝐵 = 

70.785) and dietary fiber (∆𝑀𝑆𝐸𝑂𝑂𝐵 = 23.600). Potassium, which was statistically 

significant in the full and stepwise regression models, was ranked fifth by the random 

forest metric (∆𝑀𝑆𝐸𝑂𝑂𝐵 = 16.767).  

For both the all-subsets method and the random forest method, the inclusion of 

final variables was consistent with their metric for variable importance. This is not 

surprising given that in both these methods the process of variable selection and 

importance ranking are related. However, the results in Table 2 do provide insight into 

how the all subsets predictor criticality and the random forest variable importance 

measures vary from the beta weights in stepwise regression. Unlike the two other 

methods, the beta weights size in the full model are not necessarily indicative of their 

significance in a first model or their inclusion in a final stepwise model.  
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Several other conclusions can be drawn from comparing the results of the three 

methods. First, the size of the all subsets final model is dramatically larger than the other 

two methods. Despite the use of a random forest selection procedure that aims to retain 

all relevant predictors (i.e., it results in a final model that includes more nutrients than 

would a procedure purely concerned with prediction), the random forest final model 

includes only three nutrients. This final model size is congruent with that of the stepwise 

procedure, which also included three predictors. This indicates that given the current task 

environment, the stepwise regression and random forest methods may result in more 

succinct judgment models than the all-subsets method.  

 A second line of comparison is the goodness-of-fit of each method. Compared to 

the stepwise regression method, the all subsets average adjusted r-squared (𝑅𝐴𝐷𝐽
2  ̅̅ ̅̅ ̅̅ ̅ = .691) 

was higher than that of the stepwise regression method (𝑅𝐴𝐷𝐽
2  = .537) indicating that the 

inclusion of additional variables in the model improved the fit of the model in predicting 

NuVal even after a penalization for added variables. The three-variable random forest 

model (𝑅𝐴𝐷𝐽
2  = .879), however, had a higher fit than either of the alternative methods. 

These results indicate that in the given task environment, the random forest method may 

result in the most parsimonious models compared to the all subsets and stepwise 

methods.      

 Descriptive Analysis of the Environment 

The importance of understanding the task environment is highlighted by cognitive 

continuum theory (CCT). In contrast to the traditional dichotomization of intuitive and 

analytic thinking, CCT proposes that both cognitive processes and task conditions lie on a 

continuum from intuition to analysis (Hammond et al., 1987). Hammond et al. 
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distinguished intuition and analysis according to the degree of cognitive control, rate of 

data processing, conscious awareness, organizing principle, errors, and confidence level 

involved in judgment. In CCT, intuition is described as a cognitive process that is low in 

cognitive control and occurs at a rapid rate of data processing. Intuition is posited to be 

associated with little conscious awareness and its organizing principle is proposed to be 

that of weighting averages with normally distributed errors. The intuitive process leaves 

judges with high confidence in their answers, but low confidence in the method with 

which their answers were attained (Hammond et al., 1987). In contrast, CCT describes 

the analytic process as high in cognitive control, with a slow rate of data processing, and 

with high conscious awareness of the cognitive process. The organizing principle of the 

analysis process is task specific and errors in the process tend to be few but, when they do 

occur, they are large. The analytic process leaves judges with low confidence in their 

answers, but high confidence in the method they employed to reach them (Hammond et 

al., 1987). Importantly, CCT proposes that quasi-rationality lies between analytic and 

intuitive cognition and includes properties from both types of cognition (Hammond et al., 

1987).  

The properties of a task greatly impact an individual’s decision-making 

(Hammond et al., 1987). Hammond et al. outline specific task characteristics that induce 

intuitive or analytic cognitive processes with a mix of both characteristics inducing a 

quasi-rational process between the two. The task characteristics outlined by the authors 

include: the number of cues, their measurement, distribution, the redundancy among 

cues, the decomposition of the task, the degree of certainty in the task, the relation 

between the cues and the criterion, the weighing of cues in the environmental model, the 
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availability of an organizing principle, the display of cues, and the time period of the task 

(Hammond et al., 1987). The following states of those characteristics are likely to induce 

intuition: a large number of cues (> 5); perceptual measurement of cues; continuous, 

highly variable distribution of cues; high redundancy among cues; low decomposition of 

the task; low certainty in the task; a linear relation between cues and criterion; equal 

weighting of cues in an environmental model of the judgment task; lack of availability of 

an organizing principle; simultaneous display of cues; and a brief time period for the task. 

In contrast, the following task characteristic conditions are likely to induce analytic 

judgment: a small number of cues (< 5); objectively and reliably measured cues; cues 

with an unknown distribution or cues that are dichotomous and judgment values that are 

discrete; low redundancy among cues; high decomposition of the judgment task; high 

certainty in the judgment task; a nonlinear relationship between the cues and the 

criterion; unequal weighting of cues in the environmental model of the judgment task; an 

available organizing principle; cues that are displayed sequentially; and a long time 

period for the task (Hammond et al., 1987).    

The task characteristics that induce intuitive and analytic thinking can be further 

distinguished by the extent to which knowledge about them is available to the judge 

(Hammond et al., 1987). Surface characteristics refer to properties of the task that are 

overtly present in the display of the task variables to the judge. Depth characteristics refer 

to the underlying relationships among the variables within the task that are not obvious to 

the judge. A task’s surface and depth characteristics may be congruent with each other, or 

they may conflict. Examples of surface-depth congruence and conflict are provided in the 

later description of the current study’s task characteristics.     
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Hammond et al. (1987) developed the concept of a task continuum to parallel that 

of a cognitive continuum. Specifically, the authors proposed eight task properties and 

provided insight on the measurement of these properties to compare tasks. Below we 

apply the Hammond et al. (1987) approach to the nutritional judgment task of this study 

to systematically describe the judgment environment.  

The first subindex of the Task Continuum Index (TCI) developed by Hammond et 

al. (1987) is the number of cues presented in the task. Here, the distinction between 

surface and depth conditions becomes helpful. On the surface, many possible cues are 

available to the judge; the ingredients present or lacking in the cereal, the nutritional 

values in the entire cereal or per serving, the name of the product, or even colors or other 

details of the product image. The depth condition, in contrast, includes only the general 

information relevant to the criterion of nutritional quality. As the NuVal criterion relies 

on nutrient information to calculate a products nutritional score, the values of 16 nutrient 

variables included on the Nutrition Facts Panel were considered by the researchers as the 

relevant cues. 

The second subindex of the TCI is the redundancy among cues. On the surface, 

information about cue redundancy can be acquired through examination of the Nutrition 

Fact Panel or may be available to participants through personal knowledge. For instance, 

on the Nutrition Fact Panel, total fat is subdivided into different categories of fat. These 

different categories of fat are to some degree redundant with that of total fat. A 

knowledgeable consumer might also be aware that a food’s caloric density is supplied 

entirely by its carbohydrates, fats, and protein, and thus there is some redundancy among 

these three cues and a product’s calories cue. Nonetheless, the depth condition of cue 
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redundancy, the average extent to which cue redundancy exists among the cues is not 

accessible to participants. Cue redundancy is measured by the mean intercorrelation 

among all relevant cues. For the cereals used in the study, cue intercorrelations ranged 

from -0.40 to 0.95 with a median of 0.22.  

The third subindex is the reliability of cue measurement which is measured by the 

mean intercorrelation among the cue judgments of several experts. As the expert standard 

used in this study was algorithmically derived rather than elicited from multiple experts, 

mean intercorrelation among cue judgments could not be obtained.  

The degree of task decomposition, the fourth subindex, is a qualitative measure of 

the extent to which the presentation of the task decomposes, and thus facilitates, the task 

for the subject. On a surface level, the judgment task in the experimental task was greatly 

decomposed, as cereals were presented one at a time with all their relevant information 

included. High decomposition of the task is associated with analysis-inducing states. 

However, the display of cues for each cereal were simultaneous, rather than sequential. 

Hammond et al. (1987) suggest that simultaneous cues are likely to induce intuition. Ease 

of use of cue display may also have varied according to experimental condition. As 

Carter and Gonzalez-Vallejo’s (2018) original conditions included three display 

conditions, two of which highlighted particular nutrient values, it is possible the task 

appeared more decomposed in the highlighted conditions. Indeed, the expectation that 

judgment would be impacted by this nutrient highlighting was a key hypothesis (Carter & 

González-Vallejo, 2018). This hypothesis was not confirmed, but it is possible the 

highlighted label resulted in perceived procedural ease without influencing judgment 

accuracy.  



77 

The fifth subindex is the availability of an organizing principle to the judge. On 

the surface, no organizing principle was available to this study’s judges. Participants were 

instructed to answer the questions as best as they could to represent their opinions and, 

besides being told to use the information available, no guidance was given as to how to 

rate products. At a depth level, an organizing principle of nutritional quality was likely 

unavailable. Although individuals may adopt personal organizing principles to facilitate 

their dietary choices, a single, objectively accurate organizing principle for determining 

nutritional quality of food products is unlikely to be accessible to participants. A 2017 

survey conducted by the International Food Information Council Foundation (IFICF) 

found that 78% of a 1,002 sample of Americans reported encountering conflicting 

information on what to eat with 56% of those participants reporting that this conflicting 

information made them doubt their food choices (IFICF, 2017). Previous research 

corroborates these findings, indicating that even consumers who are interested in healthy 

eating are likely to acquire nutrition information from various sources, including many 

unreliable ones (Cornish & Moraes, 2015). Cornish and Moraes’ (2015) interview-based 

exploration also found that nutritional literacy not only required informational 

knowledge, but also the capacity to accurately interpret that knowledge. As food products 

often amalgamate glorified and vilified nutrients, determining the nutritional quality of 

any one product involves judgments that are far more complex than simply understanding 

the health impact of individual nutrients (Guthrie, Derby, & Levy, 1999).   

The final three subindices of the TCI are informed by the statistical analysis of the 

environment previously described. As the comparison of analytic methods in extracting 
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models is a key aspect of the current study, all three methods employed in statistically 

modeling the environment are used in describing its complexity.  

The sixth subindex is the degree of nonlinearity in the optimal organizing 

principle. Although the task itself cannot be classified as one in which an organizing 

principle is accessible or even available, the criterion selected for the study provides a 

measure of the optimal organizing principle for rating nutritional judgment. Degree of 

nonlinearity in the optimal organizing principle is measured by the difference between 

the R2 of the appropriate nonlinear model and the R2 of the best fit linear model of the 

environment (Hammond, et al. 1987).  

The algorithm for determining NuVal is known to be nonlinear, but it is not 

publicly available. However, presumably the correct model of the cue nutrients in 

predicting NuVal would have an R2 of one (i.e., it is deterministic). Thus, the degree of 

nonlinearity in the optimal organizing principle can be estimated by subtraction of one 

minus the r-square of known models. Due to the examination of reduced models, the 

𝑅𝐴𝐷𝐽
2  can be used to estimate the nonlinearity of the model. The full model 𝑅𝐴𝐷𝐽

2  of .571, 

indicates a nonlinearity of .429; the stepwise model 𝑅𝐴𝐷𝐽
2  of .537 results in a nonlinearity 

equal to .463. As a range of 𝑅𝐴𝐷𝐽
2  values are provided for the all subsets approach, the 

mean 𝑅𝐴𝐷𝐽
2  of .691 is reported in Table 2 and was used in calculating an estimated non-

linearity of .309. Additional insight into the possible non-linearity of the NuVal algorithm 

is indicated by the fit of the random forest method—a non-linear approach—compared to 

the highest 𝑅𝐴𝐷𝐽
2  of a linear procedure. As shown in Table 2, the random forest method 

resulted in a model with an  𝑅𝐴𝐷𝐽
2  of .879, a higher fit than that of the all-subsets method 

(𝑅𝐴𝐷𝐽
2  ̅̅ ̅̅ ̅̅ ̅of .691).  
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The extent to which the cues are weighted equally in the optimal organizing 

principle is measured using the standard deviation of the beta weights from the linear 

environment models shown in Table 2. This seventh subindex was determined according 

to the linear weights of the nutrient variables in modeling NuVal. That is, the standard 

deviation of beta weights can be calculated for the linear methods as these methods 

estimate coefficient weights for each nutrient. The standard deviation of weights cannot 

be calculated for the random forest method as this method is non-linear and does not 

generate predictor coefficients as linear methods do. For the full model method, the 

standard deviation for the 12 beta-weights shown in Table 2 was SD = .587. Given only 

three nutrients were included in the stepwise model, the standard deviation of beta 

weights (SD = .506) was calculated using the three coefficients for those included 

nutrients. For the all-subsets method, beta weights were determined according to the 

mean beta weights for each nutrient across the 3,757 models for which the eleven-

variable model shown in Table 2 was found to be the best-fitting model. From these 

averaged weights4, a beta-weights standard deviation of .695 was calculated.    

The eighth and final subindex in determining the TCI is the degree of certainty in 

the task system. This subindex is measured by the R2 of the environmental model. 

Assumedly, the included nutrients in the correct model for NuVal score would result in 

an R2 of one, but, as previously noted, the algorithm for determining the NuVal is 

unknown. However, as the NuVal model is known to be nonlinear the goodness-of-fit of 

                                                 

4 The mean beta-weights calculated across the 3,757 models for which the final best-fitting, eleven-model 
variable model was found to be the best-fit were as follows: calories (𝛽̅ = 1.44), total fat (𝛽̅ = -0.428), 
monounsaturated fat (𝛽̅ = -0.206), polyunsaturated fat (𝛽̅ = 0.286), dietary fiber (𝛽̅ = 0.484), potassium (𝛽̅ 
=0.279), protein  (𝛽̅ = -0.340), sodium  (𝛽̅ = -0.454), sugars  (𝛽̅ =-0.496), total carbohydrates  (𝛽̅ = -1.25), 
number of NuVal vitamins and minerals  (𝛽̅ = 0.175).  
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the random forest, a non-linear model, may provide greater insight into the degree of 

certainty in the environment. The 𝑅𝐴𝑑𝑗.𝑅𝐹
2  for the random forest reduced model, used as a 

goodness-of-fit metric for the random forest was .879, indicating a high degree of 

certainty in the task environment.  

Several key conclusions can be drawn from the analysis of the environment. First, 

the number of cues in this task, at both surface and depth levels, is large and would be 

expected to induce an intuitive cognitive approach (Hammond et al. 1987). Redundancy 

among cues is high, indicating that this redundancy would lead the task to be more 

intuitive than analytic. The task, though decomposed across cereals, presented cues 

simultaneously rather than sequentially, increasing the likelihood of an intuitive process 

being induced. According to CCT, the lack of an available organizing principle would 

increase the likelihood of an intuitive cognitive process. The nonlinearity of the optimal 

organizing principle, the inequality of weights in the environment, and the high certainty 

in the task environment, in contrast, would increase the likelihood of an analytic 

cognitive process.  

Conclusions from Examining the Task Environment  

 Several conclusions can be drawn from the statistical and descriptive analyses of 

the environment. The statistical analysis of the environment found that the environment 

of this nutritional judgment task is one in which predictors’ inter-correlations are plentiful 

and often high. In this environment, the random forest method was found to extract a 

better-fitting model than the two linear methods. It was previously known that the NuVal 

is non-linear, but this finding confirms that a tree-based decision model is a better 

representation of the NuVal algorithm than a linear model. The descriptive analysis of the 
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environment indicates that the nutritional judgment task is unlikely to elicit a fully 

intuitive or fully analytic cognitive approach. Rather, like most tasks, it lies on the 

continuum between intuition and analysis and likely elicits a quasi-rational cognitive 

process that includes elements of both intuition and rationality (Hammond, 1980).  

Given this analysis of the environment the following studies examining the 

nutritional task environment were expected to inform several questions relevant to 

judgment analysis. First, these studies should clarify the comparative performance of the 

stepwise, all subsets, and random forest methods for a high-redundancy environment in 

which the optimal organizing principal is unknown and nonlinear. Second, these studies’ 

results have implications for understanding the underlying judgment process of quasi-

rational cognition. Namely, whether a linear model such as the stepwise and all-subsets 

methods provides a better description of quasi-rational human judgment than a non-linear 

process, specifically a decision tree model.  
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CHAPTER 3: STUDY ONE 

The first study used archival, empirical data in order to compare the performance 

of the three modeling techniques: stepwise regression, the all subsets method, and the 

random forest method. As described in the previous section, the nutritional task 

environment studied in Carter and González-Vallejo (2018) was one that contained high 

cue intercorrelation and was expected to elicit a cognitive approach that was neither fully 

intuitive nor fully analytic. This study was designed to explore key differences in the 

modeling techniques used to analyze participant judgment.  

First, modeling results were expected to vary across participants with the random 

forest method, on average, resulting in more predictive models (as measured by 𝑅𝐴𝐷𝐽
2 ) 

and more generalizable models (measured by 𝑅𝐶𝑉
2 ) than the stepwise regression and all-

subsets methods. The all subsets technique was expected to have better predictive and 

generalizable performance than the stepwise regression approach. Second, methods were 

expected to vary in terms of the number of predictors that were included in their final 

models. Across individuals, random forest methods were expected to have the smallest 

models on average; the all-subsets method was expected to result in best-fit models that 

are smaller on average than stepwise regression models.   

Methods  

Participants 

Data collected for a research study conducted in 2016 supplied the empirical data 

for this study. In the original study (Carter & González-Vallejo, 2018), 298 participants 

of at least 18 years of age who were recruited through the psychology participant pool at 

Ohio University and received course credit for their participation completed the study’s 
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judgment task. Of the 297 participants from whom demographic data was collected, the 

majority were female (56.9%), white (88.2%), and in their first year of college (64.3%). 

Participants’ ages ranged from 18 to 25 (M = 19, SD = 1.23) years. Carter and González-

Vallejo (2018) used data only from those participants who completed the entire study in 

their analysis. The current study uses data from 298 participants, including an additional 

participant who did not complete the study in its entirety but completed the judgment task 

portion of the study. Among the 298 participants, 206 (69%) did so online, while 92 

(31%) did so in the lab. Both versions of the study were identical and administered via 

Qualtrics. 

Design 

On beginning the study, participants were randomly assigned to one of the three 

experimental conditions. In every condition, after being presented with information on 

the study and consenting to participate, participants were presented with a cereal name, 

an image of the front of the cereal box, along with the cereal’s Nutrition Fact Panel 

(NFP), and list of ingredients. Depending on the experimental condition, the cereal 

display showed the FOP1, or FOP2, or only the NFP. Figure 4 depicts an example of the 

stimuli seen by participants in the FOP1 condition (see Appendix A for an example of all 

three conditions). Participants in each of the three conditions were presented with 74 

cereals, and after viewing each cereal they were asked several questions regarding the 

product. Following this, participants in each condition completed health behavior, 

nutrition knowledge, numeracy, and demographic measures.  



84 

 

Figure 4. Example of FOP1. An image of a cereal box is accompanied by its ingredients, 
NFP label, and a FOP label with highly relevant nutrients.  

 

Measures5 

Nutrition Rating Cereal Questions 

For each cereal, participants responded to a set of nine questions regarding their 

opinion of the health value and nutritional quality of the product, their familiarity with 

and consumption of the product, and the likelihood they would purchase it. Questions 

were answered on a scale from 1-100, except for three questions: the question requesting 

frequency of consumption (free response), factors impacting purchase (free response), 

and the question asking participants whether they would add the item to a shopping cart 

                                                 

5 Additional measures were taken and are described at length in Carter and González-Vallejo (2018). These 
are omitted from the current document as they are not relevant to the current study’s design.  
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(yes/no). Of particular interest are the judgment variables assessed with the following 

questions: “How healthy is this cereal?” and “How nutritious is this cereal?” which 

participants were asked to rate on a scale of 1 (not healthy/nutritious at all) to 100 

(extremely healthy/nutritious). Across participants, responses to these questions for each 

item were highly correlated, (r’s ranging from .714 to .932). An average of the 

participants’ responses to questions concerning the health and nutrition value of each 

individual cereal was used as the “judgment” variable.   

Analysis and Results 

To compare the efficiency and results of the three variable selection methods, 

each of the three analyses, stepwise regression, all subsets method, and random forest 

method were first used to extract a judgment model for each participant. Prior to the 

analyses, a group of 40 judgments were randomly sampled from each participant; these 

judgments were used to extract judgment models for each participant using the nutrients 

from the NFP. As outlined in the environment section, a total of 16 predictor variables 

are available for inclusion in the participants’ judgment models. Once the method 

employed generated a model of judgment, that model was used to predict judgments in 

each of the respective participants remaining cases (33 in the majority of, but not all, 

cases) which had not been used to generate the models. That is, the extracted models 

were cross-validated to determine their generalizability to new data. The squared 

correlation of the predicted and observed judgment values (the cross-validated R2, 

hereafter denoted 𝑅𝐶𝑉
2 ) was computed for each participants’ judgments and used as a 

measure of model generalizability. All analyses were conducted using statistical packages 

in R and all code utilized for the analyses is reported in Appendix B.  
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Stepwise Regression Variable Selection 

 In the first analysis, stepwise linear regression was applied to extract reduced 

models for each of the participants’ judgments. For each of the 298 participants, stepwise 

regression was used to generate a linear model relating the 40 randomly selected 

nutritional judgment ratings to the nutrient information from the NFP. Once a stepwise 

regression had generated a model for each participant, that model was used to predict the 

cases that had not been used for model generation.  

 Stepwise regression successfully extracted linear models for 98.66% (N = 294) of 

participants. For the 294 participants for whom models were successfully extracted, 287 

of the models were statistically significant at the p < .05 level. Thus, stepwise regression 

extracted statistically significant linear models for 96.31% of the 298 participants. 

Among participant for whom models were generated, 𝑅𝐴𝐷𝐽
2  values ranged from 0.03 to 

0.86 (M = 0.43, Mdn = 0.43). Among the same 294 participants, values of 𝑅𝐶𝑉
2  ranged 

from 0.00 to 0.79 (M = 0.18, Mdn = 0.14). The number of predictors included in stepwise 

models ranged from 1 to 10, with a mean number of predictors of 4.55 (Mdn = 4).  

All Subsets Variable Selection 

 As with the stepwise regression analysis, the 40 nutritional ratings randomly 

selected from each participants’ set of judgments previously were used in the all-subsets 

method. For each participant, 100,000 bootstrapped datasets were generated from their 

randomly selected set of 40 observations. That is, in keeping with the idiographic 

approach of judgment analysis, bootstrapped datasets of size 40 were drawn for each 

individual participant and all possible models were subsequently fit to each of the 

bootstrapped samples. Once all possible models were fit, the goodness-of-fit criterion, 
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𝑅𝐴𝐷𝐽
2 , was used to determine the best-fit model for each of the 100,000 datasets. The 

probability distribution of the best-fit model was used to determine the final best model 

for each participant; the model with the highest probability of being chosen as the best-fit 

model was chosen as the final judgment model. Lastly, the predictor variables’ criticality 

was also determined according to the probability that it was included in a best-fitting 

model. Predictor criticality will be used as the all subset method’s measure of the relative 

impact of predictor variables. 

 Once a model had been estimated for each of the participants, that model was 

used to predict participants’ judgments in the cases that had not been randomly selected 

for model generation. Predictor weights were determined according to mean coefficient 

values across the total number of bootstrapped datasets that had generated the best-fit 

model. For example, for a participant whose best-fit model had the highest 𝑅𝐴𝐷𝐽
2  in 500 of 

the 100,000 bootstrapped datasets, the coefficient of calories in the model predicting their 

judgments for the remaining cases would be the mean of the calories estimate over the 

500 bootstrapped datasets.       

The all-subsets methods successfully extracted a linear model for all participants 

(N = 298). The all-subsets method provides performance results for all bootstrapped 

samples in which the final model was the best-fit model. Thus, the final model has 

multiple 𝑅𝐴𝐷𝐽
2  values. To summarize these values, a mean 𝑅𝐴𝐷𝐽

2  value was computed for 

each participant. These means ranged in value from 0.14 to 0.97, with a grand mean 𝑅𝐴𝐷𝐽
2  

of 0.85 (Mdn = 0.87).  

Values of 𝑅𝐶𝑉
2  for the all subsets models ranged from 0.00 to 0.61 (M = 0.12, Mdn 

= 0.08). The number of predictors included in best all-subsets models ranged from 3 to 
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16. Unexpectedly, the vast majority of final all-subsets models were not reduced from the 

original set of 16 variables. The mean number of predictors included in final all-subsets 

models was 15.47 (Mdn = 16), with 269 (90.27%) of the participants having best-fitting 

models that included the entire initial set of 16 variables.  

Random Forest Variable Selection 

As with the previous analyses, the 40 nutritional ratings randomly selected from 

each participants’ set of judgments were used to develop random forest models of each 

participant’s judgment. The random forest variable selection method developed by 

Genuer et al. (2015) was used to develop reduced models for each participant. The 

default parameters outlined in Genuer et al.’s (2018) VSURF package and described at 

length in Genuer et al. (2015) were used throughout the analysis. That is, for each 

participant's forest in the variable selection process of the analysis, judgment ratings were 

resampled with replacement to generate 2000 bootstrapped datasets of 40 judgments 

each; five predictors were randomly selected for consideration at each split; 50 forests 

were used to determine the minimum threshold for maintaining predictors and 25 forests 

were used at the interpretative step. Once an interpretive model had been generated for 

each of the participants, each participant’s respective model was used to predict their 

judgments in the excluded cases.  

Random forest successfully extracted tree models for all participants (N = 298). 

The goodness-of-fit measure 𝑅𝐴𝑑𝑗.𝑅𝐹
2  was used as a comparable measure to the 𝑅𝐴𝐷𝐽

2  

measures employed by the stepwise regression and all-subsets methods. Across random 

forest models, 𝑅𝐴𝑑𝑗.𝑅𝐹
2  values ranged from 0.04 to 0.93 (M = 0.70, Mdn = 0.73). Values of 

𝑅𝐶𝑉
2  for the random forest models ranged from 0.00 to 0.87 (M = 0.22, Mdn = 0.19). The 
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number of predictors included in random-forest models ranged from 1 to 10 with a mean 

number of predictors of 3.58 (Mdn = 3). 

Method Comparisons 

 Differences in methods across participants can be seen by an examination of the 

central tendencies of the three methods. Across participants, methods differed in their 

model GOF and generalizability, as well as in the number and make-up of model 

predictors. Averages in model fit, model generalizability, and number of predictors for all 

participants for whom models could be extracted, are depicted in Table 3.  

 

Table 3 

Average Model Characteristics across Participants 

aAs all subsets results provide a distribution of goodness of fits, 𝑅𝐴𝐷𝐽
2  values provided are summary 

statistics of aggregated adjusted R2 values across best-fitting bootstrapped samples.  
bAs described in text, 𝑅𝐴𝐷𝐽

2  values for random forest models were computed using the 𝑅𝐴𝑑𝑗.𝑅𝐹
2  measure 

defined in Equation 6.  

 
 Stepwise 

Regression 
(N = 294) 

All  
Subsetsa 

(N = 298) 

Random  
Forestb 

(N = 298) 

𝑅𝐴𝐷𝐽
2  

Range  0.03 – 0.86 0.14 – 0.97 0.04 – 0.93 

Mean (SD) 0.43 (0.18) 0.85 (0.08) 0.70 (0.13) 

Median 0.43 0.87 0.73 

Quartiles 1 & 3 0.30, 0.56 0.83, 0.90 0.65, 0.79 

𝑅𝐶𝑉
2  

Range  0.00 – 0.79 0.00 – 0.61 0.00 – 0.87 

Mean (SD) 0.18 (0.15) 0.12 (0.12) 0.22 (0.18) 

Median 0.14 0.08 0.19 

Quartiles 1 & 3 0.04, 0.28 0.02, 0.20 0.06, 0.36 

Predictors  

Included 

Range  1 – 10 3 – 16 1 – 10  

Mean (SD) 4.55 (2.08) 15.47 (1.78) 3.58 (1.79) 

Median 4 16 3 

Quartiles 1 & 3 3, 6 3, 16 2, 5 
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Table 3 includes all participants for whom models could be extracted. However, 

average cross-validity and number of predictors vary when considering only a subset of 

participants for whom adjusted r-squared values were 0.45 or higher. In that case, the 

mean and median cross-validity values for the all subsets method (N = 297) remain the 

same as in all cases, as does median predictor inclusion. For 285 participants with 

random forest models with adjusted r-squared values equal to or greater than 0.45, cross-

validity ranges from 0.00 to 0.87 with M = 0.23 (SD = 0.18) and Mdn = 0.20. Median 

predictor inclusion for the subset of random forest models remains at 3. Among 139 

participants with stepwise regression models that have an adjusted r-square value equal to 

or greater than 0.45, cross-validity values range from 0.00 to 0.79, M = 0.23 (SD = 0.16) 

and Mdn = 0.21. The median predictor inclusion for the stepwise method when only 

those models with adjusted r-squared equal to or higher than 0.45 are considered is 6.  

Considering only a subset of models that have an adjusted r-squared equal or 

above a value of 0.70 decreases the number of participant models substantially. The 

central tendencies in cross-validity for participants that had all-subsets models’ adjusted 

r-squared values equal or higher than 0.70 (N = 283) were M = 0.12 (SD = 0.12) and Mdn 

= 0.08. Among the participants with random forest models that had an adjusted r-squared 

equal to or higher than 0.70 (N = 177), cross-validity was higher on average—M = 0.29 

(SD = 0.18) and Mdn = 0.30—than when all participants were considered. Median 

predictor inclusion for this subset of models was 4. Cross-validity values were also higher 

among participants with stepwise models that had an adjusted r-squared equal to or 

higher than 0.70. Although this group was very small (N = 24), cross-validity values 

were, on average, higher than those of either other method, M = 0.33 (SD = 0.17) and 
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Mdn = 0.33. Median predictor inclusion (Mdn = 6.5) was also higher for this subset of 

participants. These differences indicate that for higher adjusted r-squared values, the 

stepwise regression models have greater or approximately equal cross-validity to those of 

the random forest method, however, stepwise regression is less likely to produce good-

fitting models.  

In addition to differences in model size, methods also varied in the degree to 

which predictors were included in individual models. Table 4 shows the proportion of 

participant judgment models in which each nutrient predictor was included. The most 

unexpected finding highlighted by Table 4 is the extent to which the final all subsets 

models include all predictor variables. Inclusion variation for the all-subsets method 

contrasts sharply with the two other methods which are far more varied in their inclusion 

rates. Despite this, in none of the methods is a predictor selected in 100% of the models. 

This is not unexpected and is perhaps even comforting, given that these summaries reflect 

individual judgment models that would, presumably, vary according to individual.  
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Table 4 

Study One Descriptive Results: Proportion of Models Including Nutrient Predictors 

 

The primary question of this investigation is the level of concurrence of the final 

models extracted by these three modeling approaches. As models are extracted on an 

individual-level, this question refers to the concurrency of models on the individual level, 

that is, the extent to which a model extracted for a single participant by the stepwise 

regression method matches the model extracted for the same participant by the all-subsets 

method and the extent to which both aforementioned models match the model extracted 

for the same participant by the random forest approach.  The descriptive analysis outlined 

 
Stepwise 

Regression 
(N = 294) 

All  
Subsets 

(N = 298) 

Random  
Forest 

(N = 298) 
Calories 53 (18%) 291 (98%)      55 (18%) 

Calories from Fat 46 (16%) 292 (98%) 36 (12%) 

Total Fat (g) 44 (15%) 287 (96%) 17 (6%) 

Saturated Fat (g) 58 (20%) 286 (96%) 11 (4%) 

Monounsaturated Fat (g) 67 (23%) 289 (97%) 13 (4%) 

Polyunsaturated Fat (g) 57 (19%) 287 (96%) 16 (5%) 

Dietary Fiber (g) 98 (33%) 286 (96%) 90 (30%) 

Soluble Fiber (g) 68 (23%) 284 (95%) 25 (8%) 

Insoluble Fiber (g) 105 (36%) 293 (98%) 22 (7%) 

Potassium  104 (35%) 289 (97%) 149 (50%) 

Protein 113 (38%) 284 (95%) 178 (60%) 

Sodium (mg) 83 (28%) 286 (96%) 72 (24%) 

Sugars (g) 169 (57%) 289 (97%) 173 (58%) 

Total Carbohydrates (g) 49 (17%) 292 (98%) 77 (26%) 

Other Carbohydrates (g) 62 (21%) 281 (94%) 24 (8%) 

Vitamins & Minerals (#) 161 (55%) 294 (99%) 109 (37%) 
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above does not directly address this primary question, but it does indicate that the three 

modeling methods do not result in equivalent outcomes.  

To investigate differences in model fit and generalizability, a multivariate mixed 

model was conducted using a Bayesian approach. A Bayesian approach was utilized as 

the dependent variables, 𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2  were beta distributed, which is not accounted for 

by traditional generalized linear mixed models (Bonat, Ribeiro Jr, & Shimakura, 2015). A 

Bayesian approach to multilevel models can model beta-distributed variables and, in 

addition, Bayesian analysis has the advantage of being appropriate to the data structure 

without relying on approximation assumptions made by traditional null hypothesis testing 

approaches (such as homogeneity of variances and normally distributed errors) (Bonat, 

Ribeiro Jr, & Shimakura, 2015; Kruschke, 2015). 

For each model, four chains of 30,000 iterations were simulated, of which the first 

2,000 were discarded as burn-in. No thinning was applied. The convergence of the 

models was assessed by calculating the multivariate potential scale reduction factor and 

by assessing trace and density plots (Brooks & Gelman, 1998; Kruschke, 2015). Posterior 

distributions were summarized using the mean and a 95% highest posterior density 

interval (HPDI). Highest posterior density intervals (HPDI) are reported rather than 

confidence intervals (CI) as HPDI are more appropriate for posterior distributions as they 

account for asymmetrical distributions (Kruschke, 2015). When a posterior distribution is 

asymmetric, a 95% CI does not include the 95% most likely parameter values whereas a 

95% HPDI does. Given a symmetric and single-peaked posterior distribution, the 95% CI 

and 95% HPDI are identical (Kruschke, 2015). All models were implemented using the 

brms package (version 2.50) for R, which builds on Stan to perform Markov Chain 
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Monte Carlo Simulations using an adaptive Hamiltonian Monte Carlo (HMC) sampler 

known as the no u-turn sampler (NUTS) (Bürkner, 2018). The NUTS enables more 

efficient HMC sampling than other methods by using a recursive algorithm that 

automatically stops once it starts to retrace its steps, eliminating the need to input a 

number of steps parameter (see Hoffman & Gelman, 2014 for greater detail). Weakly 

informative priors were applied for all models.6  

Multivariate multilevel models were implemented independently for fixed and 

random effect parameters and increasingly complex models were fit and tested. At level-

two were 298 participants, at level-one were 890 models. The level-1 excluded missing 

stepwise regression models (i.e., missing 𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2  values, N = 4). For simplicity, 

results for each criterion variable are summarized in individual tables (see Tables 5 and 

6). Multilevel models were compared using the Watanabe-Akaike Information Criterion 

(WAIC), a Bayesian approach to model comparison which uses the log pointwise 

posterior predictive density and adjusts for overfitting by adding a correction for the 

effective number of parameters in the model (Watanabe, 2010; Gelman, Hwang, & 

Vehtari, 2013). Lower values of WAIC imply higher predictive accuracy.  

Intercept models for each of the criterions of interest were modeled separately in 

order to determine the variance components for each predicted variable (see Model 0 in 

Tables 5 and 6). For the GOF measure, 𝑅𝐴𝐷𝐽
2 , approximately 1% of the overall variance 

could be attributed to participant, however, a large proportion of variance in 𝑅𝐶𝑉
2  could be 

                                                 

6 By default, brms uses weakly informative priors in order to minimize their influence on the results 
(Bürkner, 2018). Based on the recommendations by Gelman, Jakulin, Pittau, & Su (2008) intercept 
parameters in the logistic mixed-model analysis are by default given a half student-t prior with 3 degrees of 
freedom, a mean of 0, and a scale parameter of 10 (Bürkner, 2018). The Beta distribution inverse variance 
parameter phi is given a gamma prior with both alpha and beta parameter values equal to 0.01.  
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attributed to participant (ICC = 86%). Model 1 was a multivariate model including both 

criterion variables in the model. Intercept and variance components for Model 1 are 

included in the tables for completeness and ease of comparison to later variance terms. 

Model 2 added the modeling method used to determine whether method used 

impacted GOF and generalizability (𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2  respectively). Modeling method 

significantly improved prediction of model GOF and generalizability (Model 1 WAIC: -

2406.9, Model 2 WAIC -3857.7). As expected, models generated by the stepwise method 

had smaller 𝑅𝐴𝐷𝐽
2  than models generated by the random forest method (𝑏̅ = -1.23, 95% 

HPDI = -1.30, -1.16). However, unexpectedly, the all-subsets method’s models were 

associated with greater 𝑅𝐴𝐷𝐽
2  values than the random forest method’s models (𝑏̅ = 0.92, 

95% HPDI = 0.84, 1.00). The all-subsets method’s models also had greater  𝑅𝐴𝐷𝐽
2  than the 

stepwise regression method’s models (𝑏̅ = 2.15, 95% HPDI = 2.07, 2.23).  

In predicting model generalizability (𝑅𝐶𝑉
2 ), method effect was again partially 

consistent with hypothesized outcomes. Consistent with expectations, both stepwise 

regression (𝑏̅ = -0.31, HPDI = -0.42, -0.19) and the all-subsets methods (𝑏̅ = -0.77, 

HPDI = -0.89, -0.65) were associated with lower 𝑅𝐶𝑉
2  values than the random forest 

method. Contrary to expectations, the all-subsets method was associated with lower 𝑅𝐶𝑉
2  

than stepwise regression (𝑏̅ = -0.47, HPDI = -0.59, -0.34).  

Model 3 added the experimental condition that each participant had been 

randomly assigned to in the original study conducted by Carter and Gonzalez-Vallejo 

(2018) to test whether experimental condition would affect model GOF and 

generalizability across participants. A WAIC model comparison of model two [WAIC = -

3856.7] and model three [WAIC = -3855.5] indicated that including participant condition 



96 

in the model did not improve model fit in predicting 𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2 . As can be seen in 

Tables 5 and 6, 95% HPDIs for the condition coefficients all include zero. Experimental 

condition was dropped from subsequent models.    

Model 4 added the random slopes for the level-1 method predictor. Model 4 

[WAIC = -5986.9] was found to improve upon the previous highest model (Model 2, 

WAIC = -3856.7], indicating that there is between-person variability that explains the 

relationship between modeling method and the dependent variables 𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2 . That 

is, the effect of method on 𝑅𝐴𝐷𝐽
2  and 𝑅𝐶𝑉

2 , is, to some degree, dependent on participant.  
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Table 5 

Summary of Fit Multilevel Analysis: Fixed and Random Effect Estimates and Highest Posterior Density Intervals (HPDI) for Predicting Goodness of Fit (𝑅𝐴𝐷𝐽
2 )  

aResidual variance is measured as the inverse of Beta distribution parameter phi.  

 

 

 

 Fixed Effects 
Parameter Model 0 Model 1 Model 2 Model 3 Model 4 

 Posterior 
Mean 95% HPDI Posterior 

Mean 95% HPDI Posterior 
Mean 95% HPDI Posterior 

Mean 95% HPDI Posterior 
Mean 95% HPDI 

Intercept 0.62 [0.56, 0.68] 0.63 [0.56, 0.69]       
Level 1 (Model)           
   Stepwise vs. Random Forest     -1.23 [-1.30, -1.16] -1.23 [-1.30, -1.16] -1.30 [-1.38, -1.21] 
   All Subsets vs. Random Forest     0.92 [0.84, 1.00] 0.92 [0.84, 1.00] 0.96 [0.88, 1.03] 
   All Subsets vs. Stepwise     2.15 [2.07, 2.23] 2.15 [2.07, 2.23] 2.25 [2.17, 2.33] 
Level 2 (Participant)           
   NFP-Only vs. FOP1       -0.08 [-0.25, 0.09]   
   FOP2 vs. FOP1        -0.03 [-0.19, 0.13]   
   NFP-Only vs. FOP2       -0.05 [-0.22, 0.12]   
 Random Effects 
Residual variancea 0.26 [0.24, 0.28] 0.23 [0.21, 0.26] 0.04 [0.04, 0.05] 0.04 [0.04, 0.05] 0.00 [0.00, 0.01]  
Intercept variance  0.00 [0.00, 0.01] 0.07  [0.04, 0.12]       
Random Slope Stepwise vs. RF         0.50 [0.41, 0.60] 
Random Slope AS vs. RF         0.38 [0.32, 0.46] 
Random Slope AS vs. Stepwise         0.44 [0.37, 0.53] 
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Table 6 

Summary of Cross-Validity Multilevel Analysis: Fixed and Random Effect Estimates and Highest Posterior Density Intervals (HPDI) for Predicting Generalizability (𝑅𝐶𝑉
2 )  

aResidual variance is measured as the inverse of Beta distribution parameter phi. 

 

 Fixed Effects 
Parameter Model 0 Model 1 Model 2 Model 3 Model 4 

 Posterior 
Mean 95% HPDI Posterior 

Mean 95% HPDI Posterior 
Mean 95% HPDI Posterior 

Mean 95% HPDI Posterior 
Mean 95% HPDI 

Intercept -1.81 [-1.92, -1.69] -1.81 [-1.93, -1.69]       
Level 1 (Model)           
   Stepwise vs. Random Forest     -0.31 [-0.42, -0.19] -0.31 [-0.42, -0.19] -0.31 [-0.43, -0.19] 
   All Subsets vs. Random Forest     -0.77 [-0.89, -0.65] -0.77 [-0.90, -0.65]  -0.76 [-0.89, -0.63] 
   All Subsets vs. Stepwise     -0.47 [-0.59, -0.34] -0.47 [-0.59, -0.34] -0.45 [-0.58, -0.32] 
Level 2 (Participant)           
   NFP-Only vs. FOP1       -0.02 [-0.31, 0.28]   
   FOP2 vs. FOP1        -0.10 [-0.38, 0.19]   
   NFP-Only vs. FOP2        0.08 [-0.21, 0.38]   
 Random Effects 
Residual variancea 0.11 [0.10, 0.13] 0.11 [0.10, 0.13] 0.08 [0.07, 0.10] 0.08 [0.07, 0.10] 0.08 [0.07, 0.09] 
Intercept variance  0.72 [0.57, 0.91] 0.74 [0.59, 0.92]       
Random Slope Stepwise vs. RF         0.01 [0.00, 0.06] 
Random Slope AS vs. RF         0.07 [0.00, 0.26] 
Random Slope AS vs. Stepwise         0.08 [0.00, 0.24] 
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Discussion 

 The results of Study One indicate that there are differences between the three 

modeling methods. The three methods varied in the extent to which they included 

predictors in the final models with the all-subsets method including more predictors, on 

average, than the stepwise and random forest methods. Mixed model results indicated 

that there were significant differences in the three models’ performance. On average, the 

all-subsets method had the highest goodness-of-fit (𝑅𝐴𝐷𝐽
2̅̅ ̅̅ ̅̅  = 0.85), followed by the random 

forest method (𝑅𝐴𝐷𝐽
2̅̅ ̅̅ ̅̅  = 0.70). Stepwise regression (𝑅𝐴𝐷𝐽

2̅̅ ̅̅ ̅̅  = 0.43) had the lowest average 

goodness-of-fit for the three methods. The mixed model analysis also found significant 

differences in the cross-validity of the three methods. Among the three methods, random 

forest had the highest average cross-validity (𝑅𝐶𝑉
2̅̅ ̅̅ ̅ = 0.22), followed by stepwise 

regression (𝑅𝐶𝑉
2̅̅ ̅̅ ̅ = 0.18). The all subsets models, on average, had the lowest cross-validity 

of the three methods (𝑅𝐶𝑉
2̅̅ ̅̅ ̅ = 0.12).  

 A limitation of this study was the strategy employed for cross-validation. Having 

only a single group for training and testing results can result in the cross-validity having a 

high variance depending on how the data is split. Additionally, the use of this method 

resulted in a training dataset with only 40 observations from which to estimate a model. 

The resulting 40 observations to 16 predictors ratio potentially penalized the performance 

of the stepwise regression method more heavily to compared to the all subets and random 

forest methods which utilize bootstrapping.  

The results of Study One indicate that the stepwise regression method had worse 

performance than at least one of the other two methods in both goodness-of-fit and 

generalizability. The random forest method performed better than the all-subsets method 
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in terms of generalizability but had worse goodness-of-fit. A possible explanation for the 

contrasting goodness-of-fit and cross-validation results is that the all-subsets method is 

overfitting the models. A further indication that this may be the case is the high number 

of predictors that were included, on average, by the all-subsets method (Mdn = 16) 

compared to the stepwise (Mdn = 4) and random forest (Mdn = 3) methods.  

An additional conclusion that can be drawn from Study One is that judgment in 

the task environment is better described by a tree model than a linear one. Despite the 

improved goodness-of-fit of the all-subsets method, the low generalizability of that 

method, combined with the overall low performance of the stepwise method, suggests 

that a non-linear tree modeling approach may be a more optimal method for predicting 

judgment in quasirational task environments such as this one. Although the goodness-of-

fit of the random forest method was lower than that of the all-subsets method, it was still 

relatively high while also having high cross-validity, indicating that the random forest 

approach provided a better balance between goodness-of-fit and generalizability.  
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CHAPTER 4: STUDY TWO 

 Study One examined the difference in the goodness-of-fit and generalizablity of 

the stepwise regression, all subsets method, and random forest method. Findings 

indicated that the all-subsets method has the best goodness-of-fit among the three 

methods, but the lowest generalizability, with the random forest method having the 

highest generalizability and relatively high goodness-of fit. However, although cross-

validation indicates the performance of a given model in explaining new cases, it does 

not provide definitive confirmation that the model is selecting the actual information that 

was used in generating the original judgments.  

 To compare the capacity of the three modeling methods to correctly extract the 

correct model used to generate judgments, a simulation study was designed in which a 

known model was used to generate ratings for the cereals in Carter and González-Vallejo 

(2018). In this study, the goal is to examine the model’s performance in accurately 

extracting models that reflect a simulated judgment policy in a judgment environment 

that contains high collinearity. As was previously discussed, many real-world judgment 

environments include cues that contain a high level of redundancy. Thus, the results of 

this study will provide important indications of the comparative ability of the three 

methods to determine the environmental cues that are relevant to judgment despite the 

presence of highly correlated cues.     

Methods 

 In the second study, nutritional judgment policies were simulated based on one of 

the hypotheses of Carter and González-Vallejo (2018) regarding the use of highlighted 

information. In that study, the researchers hypothesized that a label known as a nutrient-
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specific front-of-package (FOP) label would make consumers more likely to use nutrients 

highlighted in the label to form nutritional judgments. The researchers found empirically 

that this was not the case (Carter & González-Vallejo, 2018). In the current study, a 

judgment policy following the initial hypothesis was simulated and judgment ratings 

were generated from this known policy. Thus, the study could also provide an indication 

of the sensitivity of the policy capturing methods to the diagnosis of the hypothesis. 

 Two judgment policies, consistent with the original hypothesis, but varied in 

coefficient strength, were simulated. Both were based upon a nutritionally relevant FOP 

label (FOP1 in the original study) that contained Calories, Sodium, Sugar, and Dietary 

Fiber. Figure 5 shows the relevant front-of-package label used in the original study. The 

nutrients for this labeling condition were determined according to findings from previous 

research, American dietary guidelines, and according to the statistical relationship 

between 74 cereals in the study and the nutrients they contained. See Carter and 

González-Vallejo (2018) for a full description of the development of these labels.  

 

 

Figure 5. Front-of-package label. Used as the basis for simulated judgment policies. 

 

Data 

 Simulation allows for data to reflect an idealized participant who could yield 

thousands of observations rather than a limited number. However, this study was 
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concerned with the implementation of variable selection methods to circumstances that 

are less than ideal. Specifically, this study was concerned with judgment tasks where 

sufficient observations of a judgment are impractical or impossible because they rely on a 

single participant’s capacity for making multiple judgments or reflect an environment in 

which the number of possible tasks is limited. Therefore, to reflect the characteristics of 

the empirical design described above, 73 judgments were simulated (Carter & González-

Vallejo, 2018).  

Judgment ratings of 73 different, predetermined, breakfast cereals were generated 

based on the simulated judgment policies. Two judgment policies based nutritional 

judgments of the 73 cereals on the FOP1 label nutrients (Calories, Sodium, Sugar, and 

Fiber). These judgment policies were simulated with an emphasis on equal weighting 

rather than optimal weights, following recommendations regarding the utility of sign 

coefficient weights (Dawes, 1979; Dawes & Corrigan, 1974). The weight size was a 

variable condition across the two policies. For both policies, the nutrient variables 

calories, sodium, sugar, and fiber were used to generate nutritional judgment ratings. As 

was the case for the empirical data, the 73 nutritional ratings (Y) were bounded at 1 and 

100. The intercept was set at 50, the median possible rating value for the gold standard 

nutritional ratings. Coefficients for the model were set as follows: positive coefficients 

for calories and fiber, and negative coefficients for sugar and sodium. Each policy varied 

coefficient size. For the first coefficient condition, absolute coefficient sizes were .01 and 

for the second they were .25.   

Errors were normally distributed with mean of zero and standard deviation that 

was derived using empirical estimation. An initial standard deviation of the errors of 15 
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was estimated based upon an overall average of the adjusted average squared residuals of 

individual linear models extracted in Carter and González-Vallejo (2018). That is, 

standard deviation of the errors was the average square root of the variances determined 

by the following equation. 

Equation 7: 

𝜎2 =
1

𝑛 − 2
∑ 𝑒𝑖

2

𝑛

𝑖=1

 

Where sigma squared is the ratio of the sum of the squared distance between the 

predicted and actual value (e2) for each judgment (1-n) over the total number of 

judgments minus two. However, for the simulation study, this standard deviation of 15 

was used only as an initial baseline. For the standard deviation of the errors a value less 

than half of the initial 15 estimate (i.e., 7) was used in order to ensure that overall error in 

the model would be representative of an environment in which judgment error was 

relatively low. 

 The resulting policies used to determine the 73 ratings were as follows:  

Equation 8: 

Y1 = (.01 × Calories) − (.01 × Sodium) − (.01 × Sugars) + (.01 × Dietary Fiber) +   ε  

Y2 =  (.25 × Calories) − (.25 × Sodium) − (.25 × Sugars) + (.25 × Dietary Fiber) +   ε 

 where the error term ε is normally distributed with a mean of zero and a standard 

deviation of seven. No other nutrients were included in generating the simulated ratings. 

As nutritional rankings from the original study were bounded at 1 and 100, similar 

bounds were instituted for the simulated data by rounding any values smaller than one to 

one and rounding any values larger than 100 to 100.  
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Following the simulation of 73 ratings for each of the two judgment policies, 

these ratings were bootstrapped in order to generate 150 resamples of each judgment 

policy. That is, for each of the two judgment policies, |𝑏| = .01 and |𝑏| = .25, a total of 

150 samples of 73 ratings each were drawn using resampling with replacement from the 

original 73 ratings generated using simulation. These 300 datasets of 73 observations 

generated from known judgment policies were used to compare to the three modeling 

methods. 

Analysis and Results 

 To compare the three variable selection methods, each of the three analyses, 

stepwise regression, the all-subsets method, and random forest were used to extract the 

judgment policy from the simulated data. Unlike the previous study, in this case all 73 

judgments for both policies were modeled using the nutrients from the NFP, with no 

cross-generalization. As the data were simulated based on known policies, this study was 

primarily interested in the ability of the different techniques to capture the predictors 

included in the correct model. That is, although only four predictors (calories, sodium, 

sugars, and dietary fiber) were included in generating the simulated ratings, all 16 

nutrient predictors (calories, sodium, sugars, dietary fiber, as well as calories from fat, 

total fat, saturated fat, polyunsaturated fat, monounsaturated fat, potassium, insoluble 

fiber, soluble fiber, total carbohydrates, other carbohydrates, protein, and number of 

vitamins and minerals) were used in extracting models for the ratings. This approach was 

used to compare differences in the performance of the models in including the relevant 

nutrients and excluding nutrients that were not present in the generating policy. Analyses 
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for Study Two were conducted using statistical packages in R. All code utilized for the 

analyses is reported in Appendix B.  

Stepwise Regression Variable Selection 

 In the first analysis, stepwise linear regression was applied to extract reduced 

models for each of the policies. For each of the two policies’ 150 data sets, a linear model 

relating the 73 nutritional judgment ratings to the nutrient information from the NFP was 

developed using stepwise regression to generate models that contained a reduced number 

of predictors from the original set of 16. 

Stepwise regression successfully extracted linear models for 99.67% (N = 299) of 

the 300 bootstrapped judgment sets. The one judgment set for which stepwise regression 

could not extract models was from the simulated policy with absolute coefficient values 

of .01. For the 299 judgment sets for which models were successfully extracted, 295 of 

the models were statistically significant at the p < .05 level. Thus, stepwise regression 

extracted statistically significant linear models for 98.33% of the 300 bootstrapped 

judgment sets. All four judgment sets for which models were not significant were 

bootstrapped from the low (|𝑏| = .01) weight condition. The number of predictors 

included in final stepwise models ranged from 1 to 13 with a mean of 4.83 (Mdn = 4).  

Among the 299 judgment sets for which stepwise models were generated, 168 

(56.19%) models included calories in the final predictor set; 209 (69.90%) included 

sodium; 74 (24.75%) included sugar; and 82 (27.42%) included dietary fiber. Twenty-

five models included all four nutrient variables, along with other variables; none of the 

stepwise models included the key four nutrients alone. Of the twenty-five models that 
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included all four nutrient variables, a single model was from the low (|𝑏| = .01) weight 

condition and the remaining twenty-four were from the high (|𝑏| = .25) weight condition.  

All Subsets Variable Selection 

 Prior to executing the all-subsets method, 100,000 bootstrapped datasets were 

generated from each of the 150 judgments sets of each simulated policy. In keeping with 

the idiographic approach of judgment analysis, a set of 100,000 bootstrapped datasets 

was drawn for each set of 73 ratings and all possible models was subsequently fit to each 

of the bootstrapped samples. Once all possible models were fit, the goodness-of-fit 

criterion, adjusted R2 was used to determine the best-fit model for each of the 100,000 

datasets. Subsequently, the probability distribution of the best-fit model was used to 

determine the final best model for each participant. That is, the final judgment model for 

each participant was chosen according to which model had the highest probability of 

being chosen as the best-fit model. Lastly, the predictor variables’ criticality was 

determined according to the probability that it was included in a best-fitting model.  

The all-subsets method successfully extracted a linear model for all data sets (N = 

300). The number of predictors included in best-fitting all-subsets’ models ranged from 3 

to 16. The mean number of predictors included in final all-subsets’ models was 10.81 

(Mdn = 11). Among the 300 judgment sets for which models were generated, 263 

(87.67%) models included calories in the best-fitting model, 251 (83.67%) included 

sodium, 182 (60.67%) included sugar, and 210 (70.00%) included dietary fiber. Of the 

300 models, 120 models included all four nutrient variables, along with other variables; 

none of the best-fitting models included the key four nutrient variables alone. Of the 120 
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models that included all four nutrient variables, 50 were from the low (|𝑏| = .01) weight 

condition and the remaining 70 were from the high (|𝑏| = .25) weight condition.  

Random Forest Variable Selection 

As in the previous study, the random forest variable selection method used the 

VSURF approach (Genuer et al., 2015). Following the VSURF default, for each forest in 

the variable selection process of the analysis, each simulated judge was resampled with 

replacement to generated 2000 bootstrapped datasets of 73 scores each. Default numbers 

were also used for the predictors randomly selected for consideration at each split (p = 5), 

forests for determining the minimum threshold (threshold forests = 50) and forests for the 

interpretative step (interpret forests = 25).  

The random forest method successfully extracted tree models for all of the 

bootstrapped judgment sets (N = 300). The number of predictors included in final random 

forest models ranged from 2 to 15 with a mean of 7.49 (Mdn = 7). Among the 300 

judgment sets for which forest models were generated, 119 (39.67%) models included 

calories in the final predictor set, 289 (96.33%) included sodium, 141 (47.00%) included 

sugar, and 249 (83%) included dietary fiber. Fifty-eight models included all four nutrient 

variables, along with other variables; none of the random forest final models included the 

four nutrient variables alone. Of the 58 models that included all four nutrient variables, 

16 models were from the low (|𝑏| = .01) weight condition and the remaining 42 were 

from the high (|𝑏| = .25) weight condition.  

Method Comparisons 

Of initial interest is which of the three methods extracted models that most closely 

reflect the actual judgment policies that generated the simulated judgment ratings. An 
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examination of the proportion of predictor inclusion indicates some differences between 

the methods. In both weight conditions, the all-subsets method included the key variables 

in over 50% of models. For the random forest method, the same was true for sodium and 

dietary fiber, but not for calories and sugars. In contrast, the stepwise regression method 

included two predictors, calories and sodium, in more than 50% of models in the high 

weight condition (|𝑏| = .25) but not in the low weight condition. The stepwise regression 

method included calories in 56% of the 299 models: calories was included in 19% of 

models in the low weight condition (|𝑏| = .01), and 99% of models in the high weight 

condition (|𝑏| = 25). Sodium was included in 69.90% of the stepwise regression models; 

in the low weight condition (|𝑏| = .01), sodium was included in 40% of the stepwise 

models and in the high weight condition (|𝑏| = 25) it was included in 100% of the 

stepwise models.  Table 7 shows the percentage of final models in each method and 

weight condition that included the nutrient predictors. 
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Table 7 

Study Two Descriptive Results: Proportion of Final Models Including Nutrient Predictors 

 
Stepwise  

Regression 
(N = 299) 

All  
Subsets 

(N = 300) 

Random  
Forest 

(N = 300) 

 

|𝑏| = .01 

(N = 149) 

|𝑏| = .25 

(N = 150) 

|𝑏| = .01 

(N = 150) 

|𝑏| = .25 

(N = 150) 

|𝑏| = .01 

(N = 150) 

|𝑏| = .25 

(N = 150) 

Calories* 19 (13%) 149 (99%) 121 (81%) 142 (95%)  24 (16%)     95 (63%) 

Calories from Fat  17 (11%) 27 (18%) 104 (69%) 105 (70%) 50 (33%) 51 (34%) 

Total Fat (g) 17 (11%) 24 (16%) 79 (53%) 88 (59%) 37 (25%) 80 (53%) 

Saturated Fat (g) 73 (49%) 62 (41%) 99 (66%) 97 (65%) 7 (5%) 0 (0%) 

Monounsaturated Fat (g) 30 (20%) 28 (19%) 100 (67%) 90 (60%) 9 (6%) 33 (22%) 

Polyunsaturated Fat (g) 32 (21%) 35 (23%) 77 (51%) 82 (55%) 30 (20%) 28 (19%) 

Dietary Fiber* (g) 26 (17%) 56 (37%) 106 (71%) 104 (69%) 127 (85%) 122 (81%) 

Soluble Fiber (g) 43 (29%) 46 (31%) 107 (71%) 106 (71%) 5 (3%) 37 (25%) 

Insoluble Fiber (g) 50 (34%) 46 (31%) 105 (70%) 97 (65%) 67 (45%) 115 (77%) 

Potassium  12 (8%) 16 (11%) 84 (56%) 73 (49%) 117 (78%) 133 (89%) 

Protein 35 (23%) 40 (27%) 117 (78%) 116 (77%) 53 (35%) 112 (75%) 

Sodium* (mg) 59 (40%) 150 (100%) 101 (67%) 150 (100%) 139 (93%) 150 (100%) 

Sugars* (g) 20 (13%) 54 (36%) 84 (56%) 98 (65%) 95 (63%) 46 (31%) 

Total Carbohydrates (g) 18 (12%) 29 (19%) 117 (78%) 101 (67%) 58 (39%) 92 (61%) 

Other Carbohydrates (g) 61 (41%) 59 (39%) 113 (75%) 105 (70%) 97 (65%) 17 (11%) 

Vitamins & Minerals (#) 56 (38%) 56 (37%) 83 (55%) 93 (62%) 118 (79%) 104 (69%) 
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Table 8 

Methods’ Mean Relative Importance Values and Standard Errors 

 

 Stepwise 𝛽̅𝑖 
(N = 299) 

All Subsets 𝑃𝐶̅̅̅̅
𝑖  

(N = 300) 
Random Forest ∆𝑀𝑆𝐸𝑂𝑂𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 

(N = 300) 
Simulated b-value |𝑏| = .01 

(N = 149) 

|𝑏| = .25 

(N = 150) 

|𝑏| = .01 

(N = 150) 

|𝑏| = .25 

(N = 150) 

|𝑏| = .01 

(N = 150) 

|𝑏| = .25 

(N = 150) 

Calories*  0.92 (0.25)  0.59 (0.03) 0.75 (0.01) 0.92 (0.01) 4.3 (0.16) 46.8 (1.67) 

Calories from Fat  0.03 (0.17)  0.06 (0.07) 0.67 (0.01) 0.66 (0.01) 5.17 (0.22) 25.3 (0.86) 

Total Fat (g)  0.14 (0.18) -0.11 (0.06) 0.60 (0.01) 0.60 (0.01) 4.72 (0.21) 29.6 (0.92) 

Saturated Fat (g)  0.24 (0.01)  0.07 (0.01) 0.62 (0.01) 0.63 (0.01) 1.43 (0.12) 2.78 (0.20) 

Monounsaturated Fat (g) -0.23 (0.07) -0.11 (0.03) 0.64 (0.01) 0.62 (0.01) 2.42 (0.12) 15.9 (0.59) 

Polyunsaturated Fat (g)  0.23 (0.05)  0.07 (0.02) 0.59 (0.01) 0.58 (0.01) 3.23 (0.16) 17.4 (0.67) 

Dietary Fiber* (g)  0.08 (0.09)  0.13 (0.02) 0.65 (0.01) 0.68 (0.01) 9.23 (0.38) 78.8 (2.85) 

Soluble Fiber (g)  0.26 (0.03)  0.06 (0.01) 0.66 (0.01) 0.65 (0.01) 1.97 (0.11) 22.8 (1.42) 

Insoluble Fiber (g)  0.38 (0.03)  0.13 (0.01) 0.72 (0.01) 0.69 (0.01) 7.04 (0.46) 85.6 (3.69) 

Potassium  -0.08 (0.12) -0.08 (0.03) 0.57 (0.01) 0.56 (0.01) 7.85 (0.25) 89.2 (3.61) 

Protein -0.27 (0.06) -0.14 (0.02) 0.72 (0.01) 0.74 (0.01) 5.09 (0.26) 61.6 (2.87) 

Sodium* (mg) -0.24 (0.02) -0.78 (0.01) 0.62 (0.01) 1.00 (0.00) 11.8 (0.37) 284 (6.07) 

Sugars* (g)  0.01 (0.06) -0.09 (0.01) 0.57 (0.01) 0.61 (0.01) 7.04 (0.27) 22.3 (0.72) 

Total Carbohydrates (g) -0.37 (0.27) -0.49 (0.08) 0.70 (0.01) 0.68 (0.01) 5.61 (0.19) 43.0 (1.39) 

Other Carbohydrates (g) -0.34 (0.02) -0.09 (0.01) 0.72 (0.01) 0.70 (0.02) 8.86 (0.45) 15.9 (0.66) 

Vitamins & Minerals (#) -0.20 (0.02) -0.10 (0.01) 0.60 (0.01) 0.61 (0.01) 9.47 (0.31) 42.5 (1.35) 
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Table 8 shows each method’s mean importance measure and associated standard 

error for each predictor in each weight condition. The accuracy of the ranking order of 

the stepwise and all-subsets methods were most impacted by weight condition. In the low 

weight condition, only one of the relevant nutrients (calories) was within the five 

predictors with the largest average beta-weights generated by the stepwise method. In the 

high weight condition, three of the relevant nutrients, calories, sodium, and dietary fiber, 

were in that group. For the all-subsets method, the low weight condition criticalities 

included only calories among the top five most critical predictors. In the high weight 

condition, sodium, calories, and dietary fiber placed among the top five most critical 

predictors on average. For both methods, in the high weight condition, dietary fiber held 

the fifth highest ranking.  

The random forest method’s ranking of the relevant nutrients seemed less 

impacted by weight condition. Although the value of the average rankings for all 

predictors were much larger in the high weight condition than in the low weight 

condition, in both weight conditions two of the relevant nutrients, sodium and dietary 

fiber, were ranked amongst the top five most important variables. This indicates that in 

the low-weight condition random forest’s ranking metric was more accurate than the 

stepwise and all-subsets metrics, but in the high weight condition it was less accurate.  

To investigate differences in inclusion of the four key variables across method 

and coefficient weight, a multivariate logistic mixed model was conducted using a 

Bayesian approach. All models were implemented using the brms package (version 2.50) 

for R, which builds on Stan to perform Markov Chain Monte Carlo Simulations using an 
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adaptive Hamiltonian Monte Carlo (HMC) sampler known as the no u-turn sampler 

(NUTS) and weakly informative priors were applied for all models (Bürkner, 2018)7.  

For each of the initial models, 4 chains of 30,000 iterations were simulated, of which the 

first 2,000 were discarded as burn-in. No thinning was applied. The convergence of the 

models was assessed by calculating the multivariate potential scale reduction factor and 

by assessing trace and density plots (Brooks & Gelman, 1998; Kruschke, 2015). Posterior 

distributions were summarized using the mean and a 95% highest posterior density 

interval (HPDI).  

Multivariate multilevel models were implemented independently for fixed 

parameters and increasingly complex models were fit and tested. The current analysis did 

not include random effects models as previous research has indicated that both frequentist 

and Bayesian methods have difficulty accurately estimating random effects for logistic 

models at samples sizes similar to those in this study (Li, Lingsma, Steyerberg & 

Lesaffre, 2011). At level-two were 300 participants, at level-one were 899 models. Level-

one excluded a single missing stepwise regression model (N = 1). For simplicity, results 

for the four criterion variables are summarized across two tables (see Tables 9 and 10). 

Multilevel models were compared using the WAIC with lower values of WAIC implying 

higher predictive accuracy.  

                                                 

7 By default, brms uses weakly informative priors in order to minimize their influence on the results 
(Bürkner, 2018). Based on the recommendations by Gelman, Jakulin, Pittau, & Su (2008) parameters in the 
logistic mixed-model analysis are by default given a half student-t prior with 3 degrees of freedom and a 
scale parameter of 10 (Bürkner, 2018). In addition, results of the Bayesian analysis in this study were 
compared to those of a frequentist approach of four individual logistic regression analyses conducted using 
the generalized linear mixed-effect modeling function glmer available through the lme4 package (Bates, 
Martin, Bolker & Walker, 2015). Estimates from the two results were within rounding error of each other 
and the conclusions from both methods were exactly the same.  
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Intercept models for each of the criterions of interest were initially modeled 

separately in order to determine the variance components for each predicted variable. The 

extent to which variance in the inclusion rates could be attributed to the individual 

resampled dataset varied for the four nutrients. Only a very small proportion of the 

variance in sugar (ICC = 3%) and dietary fiber (ICC = 1%) could be attributed to 

simulated individual but a substantial proportion of the variance in calories (ICC = 22%) 

and sodium (ICC = 41%) could be attributed to the dataset, therefore a multivariate 

mixed model was decided upon as the best method of analysis.  

Model 1 was a multivariate model including all four predicted variables in the 

model. Intercept components for this model are included in the tables for completeness. 

Model 2 added the modeling method used to determine whether modeling method 

impacted inclusion of the four variables of interest in the final models. Modeling method 

significantly improved the overall prediction of predictor inclusion (Model 1 WAIC: 

4261.5, SE = 49.4, Model 2 WAIC 3500.2, SE = 61.5). Because the outcome of interest 

(inclusion of the relevant nutrients) is common in the overall population (i.e., > 10%), the 

adjusted odds ratios derived from logistic regression do not provide a good 

approximation of the difference in the methods’ likelihood of including the relevant 

nutrients (Zhang & Yu, 1998). For this reason, the relative risk and HPDI values reported 

below are adjusted risk ratios (RRC) derived using a simple correction formula 

recommended by Zhang and Yu (1998).8 

                                                 

8 This formula developed by Zhang and Yu (1998) is: 𝑅𝑅𝐶 =
𝑂𝑅

(1− 𝑃0)+(𝑃0 ×𝑂𝑅)
  where the OR is the adjusted 

odds ratio obtained from logistic regression and 𝑃0 is the incidence or the outcome of interest in the 
nonexposed or comparison group.  
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From Model 2, conclusions regarding the impact of method on predictor inclusion 

are not consistent for all four nutrient predictors. The all-subsets method’s final models 

were more likely to include calories than those of the random forest method (RRC = 2.44, 

95% HPDI = 2.37, 2.48) or the stepwise method (RRC = 1.69, 95% HPDI = 1.63, 1.73). 

The stepwise method also had higher odds of including calories than the random forest 

method (RRC = 1.70, 95% HPDI = 1.43, 1.93). The all-subsets method’s final models 

were also more likely to include sugar than the random forest’s final models (RRC = 1.31, 

95% HPDI = 1.13, 1.47) and the stepwise method’s final models (RRC = 2.58, 95% HPDI 

= 2.20, 2.92). The random forest method was more likely to generate models that 

included sugar than was the stepwise regression method (RRC = 1.99, 95% HPDI = 1.62, 

2.36).  

For sodium and dietary fiber, random forest performance was better than that of 

the other methods. The random forest method’s final models were 1.42 times as likely to 

include sodium than the stepwise method’s final models (RRC = 1.42, 95% HPDI =1.40, 

1.43).  The all-subsets method was also more likely to include sodium than the stepwise 

method (RRC = 1.31, 95% HPDI = 1.22, 1.36) but less likely to include sodium than the 

random forest method (RRC = 0.69, 95% HPDI = 0.45, 0.86). Similarly, the all-subsets 

method was more likely than the stepwise method (RRC = 2.79, 95% HPDI = 2.48, 3.05) 

to include dietary fiber in its final models, but less likely to include dietary fiber than the 

random forest method (RRC = 0.81, 95% HPDI = 0.69, 0.92). The random forest method 

was also more likely to include dietary fiber in its final models than the stepwise method 

(RRC = 3.23, 95% HPDI = 3.00, 3.38).  
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Model 3 added weight condition to test whether differences in the coefficient 

weight of each simulated model would affect predictor inclusion. A WAIC model 

comparison of model two (WAIC 3500.2, SE = 61.5) and model three (WAIC = 3306.3, 

SE = 62.7) indicated that including weight condition improved model fit. Further 

examination of the odds ratios in each model, as shown in Tables 9-10 indicated that 

weight condition impacted some nutrient predictors but not others. As can be seen in 

Table 10, 95% HPDIs for the weight condition’s risk ratios in predicting inclusion of 

sugar (RRC = 0.99, 95% HPDI = 0.81, 1.18) and dietary fiber (RRC = 1.14, 95% HPDI = 

0.97, 1.29) include one, indicating that for these predictors there is no difference between 

the two weight conditions when controlling for modeling method. However, for calories 

and sodium, the coefficient condition did have an impact on the probability of inclusion. 

Final models from the high weight condition (|𝑏| = .25) were more likely to include 

calories (RRC = 2.62, 95% HPDI = 2.53, 2.67) than final models in the low weight 

condition. As is shown in Table 7, in the high weight condition all final models, 

regardless of modeling method, included sodium. Mixed model results indicated that high 

weight condition models were 1.5 times as likely to include sodium (RRC = 1.50, 95% 

HPDI = 1.50, 1.50) than final models in the low weight condition (|𝑏| = .01).  

Model 4 added the interaction between method and weight condition to determine 

whether the effect of weight condition varied according to the method used. A 

comparison of model three (WAIC = 3306.3, SE = 62.7) and model four (WAIC = 

3150.30, SE = 61.80) indicated that including the interaction between method and weight 

condition improved the model’s predictiveness of predictor inclusion so interactions were 

maintained in the final model. Results from Model 4 (included in the Tables below) 
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indicated that there was an interactive effect of method and weight condition on predictor 

inclusion for some predictors but not for others. For calorie inclusion, the odds estimate 

for the interaction between weight condition and difference between the all susbests and 

random forest methods the Bayesian 95% HPDI included one. This indicates that that 

there was no interactive effect of weight condition on the comparative likelihood that the 

all-subsets and random forest method would include calories. For sodium inclusion, the 

95% HPDI for all estimates of the interaction between weight condition and the 

difference between methods also included one, indicating there was no differential impact 

of weight condition on the odds that all subsets, stepwise, or random forest models would 

include sodium.  

There was an interaction between coefficient strength and comparative impact of 

the all subsets and stepwise inclusion of calories. In the low weight condition, the all-

subsets method was more likely to include calories (RRC = 1.76, 95% HPDI = 1.73, 1.77), 

but among models in the high weight condition, there was no difference between the two 

methods inclusion of calories (RRC = 0.13, 95% HPDI = 0.00, 1.19). There was an impact 

of weight condition on the difference in likelihood of calorie inclusion for the stepwise 

method compared to the random forest method. Specifically, the likelihood that a final 

model would include calories was no different for the random forest method than the 

stepwise method when the calorie coefficient was low (when |𝑏| = .01: RRC = 0.81, 95% 

HPDI = 0.48, 1.24), but the likelihood of inclusion was higher for the stepwise method 

than the random forest method when the calorie coefficient was high (|𝑏| = .25: RRC = 

2.51, 95% HPDI = 2.24, 2.52).  
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A pattern similar to that of calories was found for the methods’ inclusion of sugar. 

There was no difference between the all-subsets method and the random forest method’s 

inclusion of sugar in the low weight condition (RRC = 0.81, 95% HPDI = 0.58, 1.07), but 

in the high weight condition the all-subsets method was more likely to include sugar than 

the random forest method (RRC = 1.77, 95% HPDI = 1.26, 2.01). The stepwise method 

was less likely to include sugar in final models than the random forest method in the low 

weight condition (RRC = 0.11, 95% HPDI = 0.06, 0.20) but in the high weight condition 

the difference between the two methods was reversed, although the HPDI indicated there 

was no difference between the two methods (RRC = 1.15, 95% HPDI = 0.45, 1.79). 

Similarly, the difference between the likelihood of the all subsets and stepwise methods 

inclusion of sugar decreased as a function of weight condition. In both weight conditions 

the all-subsets method had a greater likelihood of sugar inclusion, but that increased 

likelihood was larger in the low weight condition (RRC = 3.19, 95% HPDI = 2.70, 3.55) 

than in the high weight condition (RRC = 2.35, 95% HPDI = 1.01, 3.46).  

Weight condition also impacted the comparative performance of the stepwise 

method and the two other methods in their inclusion of dietary fiber. The all-subsets 

method was more likely to include dietary fiber in a final model than the stepwise method 

in both weight conditions but the difference in likelihood was greater in the low weight 

condition (RRC = 3.19, 95% HPDI = 2.87, 3.39) than in the high weight condition (RRC = 

2.39, 95% HPDI = 1.14, 3.26). Similarly, the random forest method was more likely than 

the stepwise method to include dietary fiber in both weight conditions but the difference 

in likelihood was greater in the low weight condition (RRC = 3.46, 95% HPDI = 3.27, 

3.56) than in the high weight condition (RRC = 2.95, 95% HPDI = 1.64, 3.48). Weight 
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condition had no interactive effect on the comparative performance of the all-subsets 

method and random forest methods in including dietary fiber (i.e., the random forest 

models were more likely than the all subsets models to include dietary fiber in both 

weight conditions). 
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Table 9 

Summary of Calories and Sodium Multilevel Analysis: Fixed Effect Estimates and Highest Posterior Density Intervals (HPDI) for Predicting Calorie & Sodium 
Inclusion 

a In a logistic model including an interaction term, the adjusted risk ratios for the reference group (i.e., weight = .01) are the Level 1 (Model) values. 
bEstimate of interactive effect of method and weight condition HPDI includes 0 (i.e., interactive effect not statistically significant).  
 

 Fixed Effects 
Parameter Model 1 Model 2 Model 3 Model 4 

Calories Inclusion Posterior 
Prob Mean 

Probability 
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC  
 95% HPDI 

Posterior 
RRC Mean 

RRC  
95% HPDI 

Intercept (Probability)  0.65 [0.60, 0.69]       
Level 1 (Model)         
   Stepwise vs. Random Forest    1.70 [1.43, 1.93] 1.77 [1.50, 2.00] 0.81 [0.48, 1.24] 
   All Subsets vs. Random Forest   2.44 [2.37, 2.48] 2.45 [2.39, 2.48] 2.45 [2.36, 2.49] 
   All Subsets vs. Stepwise   1.69 [1.63, 1.73] 1.69 [1.63, 1.73] 1.76 [1.73, 1.77] 
Level 2 (Data Set)         
   High Weight vs. Low Weight     2.62 [2.53, 2.67] 2.48 [2.25, 2.62] 
Level 1 & 2 Interaction (Weight = .25)a         
   Stepwise vs. Random Forest        2.51 [2.24, 2.52] 
   All Subsets vs. Random Forest       2.31b [1.60, 2.47] 
   All Subsets vs. Stepwise       0.13 [0.00, 1.29] 
         
Sodium Inclusion 
 

Posterior 
Prob Mean 

Probability 
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC  
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Intercept (Probability)  0.92 [0.88, 0.95]       
Level 1 (Model)         
   Stepwise vs. Random Forest    0.30 [0.13, 0.55] 0.39  [0.19, 0.63] 0.40 [0.19, 0.63] 
   All Subsets vs. Random Forest   0.69 [0.45, 0.86] 0.76 [0.57, 0.90] 0.77 [0.57, 0.90] 
   All Subsets vs. Stepwise   1.31 [1.22, 1.36] 1.31 [1.22, 1.36] 1.31 [1.22, 1.36] 
Level 2 (Data Set)         
   High Weight vs. Low Weight     1.50 [1.50, 1.50] 1.50 [1.49, 1.49] 
Level 1 & 2 Interaction (Weight = .25)a         
   Stepwise vs. Random Forest       1.04b [0.00, 1.04] 

   All Subsets vs. Random Forest       1.04b [0.00, 1.04] 
   All Subsets vs. Stepwise       1.43b [0.00, 1.43] 
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Table 10 

Summary of Sugar and Dietary Fiber Multilevel Analysis: Fixed Effect Estimates and Highest Posterior Density Intervals (HPDI) for Predicting Sugar & Dietary 
Fiber Inclusion 

a In a logistic model including an interaction term, the adjusted risk ratios for the reference group (i.e., weight = .01) are the Level 1 (Model) values. 
bEstimate of interactive effect of method and weight condition HPDI includes 0 (i.e., interactive effect not statistically significant).  

 Fixed Effects 
Parameter Model 1 Model 2 Model 3 Model 4 

Sugar Inclusion Posterior 
Prob Mean 

Probability 
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC  
95% HPDI 

Intercept (Probability) 0.44 [0.40, 0.47]       
Level 1 (Model)         
   Stepwise vs. Random Forest   0.49 [0.37, 0.65] 0.48 [0.36, 0.64] 0.11 [0.06, 0.20] 
   All Subsets vs. Random Forest   1.31 [1.13, 1.47] 1.32 [1.15, 1.49] 0.81 [0.58, 1.07] 
   All Subsets vs. Stepwise   2.58 [2.20, 2.92] 2.63 [2.25, 2.96] 3.19 [2.70, 3.55] 
Level 2 (Data Set)         
   High Weight vs. Low Weight     0.99 [0.81, 1.18] 0.31 [0.18, 0.50] 
Level 1 & 2 Interaction (Weight = .25)a         
   Stepwise vs. Random Forest        1.15 [0.45, 1.79] 
   All Subsets vs. Random Forest       1.77 [1.26, 2.01] 
   All Subsets vs. Stepwise       2.35 [1.01, 3.46] 
         
Dietary Fiber Inclusion 
 

Posterior 
Prob Mean 

Probability 
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC   
95% HPDI 

Posterior 
RRC Mean 

RRC  
95% HPDI 

Intercept (Probability) 0.60 [0.57, 0.64]       
Level 1 (Model)         
   Stepwise vs. Random Forest   0.23 [0.15, 0.34] 0.22 [0.15, 0.33] 0.11 [0.05, 0.21] 
   All Subsets vs. Random Forest   0.81 [0.69, 0.92] 0.81 [0.69, 0.91] 0.78 [0.60, 0.93] 
   All Subsets vs. Stepwise   2.79 [2.48, 3.05] 2.82 [2.50, 3.07] 3.19 [2.87, 3.39] 
Level 2 (Data Set)         
  High Weight vs. Low Weight     1.14 [0.97, 1.29] 0.89 [0.60, 1.18] 
Level 1 & 2 Interaction (Weight = .25)a         
   Stepwise vs. Random Forest        0.37 [0.09, 0.83] 
   All Subsets vs. Random Forest       0.83b [0.41, 1.09] 
   All Subsets vs. Stepwise       2.39 [1.14, 3.26] 
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Discussion 

 Results of Study Two confirm that the three modeling methods differ in their 

ability to accurately extract the correct model given a task environment with high 

redundancy. The first important result to note is that none of the three methods extracted 

a model that retained only the four nutrients included in generating the criterion ratings. 

This result is important as it indicates that all of the methods are susceptible to the impact 

of multicollinearity and that judgment analysts should be wary in their interpretations of 

variable importance measures when the task environment has high collinearity. A second 

result of Study Two is the comparative performance of the models in extracting models 

that at least included all four relevant nutrients. The stepwise method extracted the fewest 

such models, 25 out of a total of 299 extracted models. Out of 300 total models, the 

random forest method extracted 58 models that included the four nutrients used in the 

generating process. The all-subsets method extracted 120 such models.  

Across three methods, the likelihood of extracting a model with all four relevant 

nutrients was impacted by the weight condition of the original generation process. In the 

low weight condition, the stepwise method only extracted a single model with all four 

relevant nutrients. Fewer than half (n = 16) of the random forest models with all four 

nutrients were extracted in the low weight condition. The impact of condition was less 

stark on the all-subsets method, but there was still a notable difference. That is, 50 of the 

all subsets that included the four relevant nutrients were from the low weight condition, 

70 were from the high weight condition.  

 The proportion of final models that included the relevant predictors varied 

according to the modeling method, but the impact of method was not consistent across 



123 

the predictors. The all-subsets method performed best in overall inclusion of calories and 

sugar; whereas, the random forest method outperformed the other methods in overall 

inclusion of sodium and dietary fiber. Compared to the other methods, the performance 

of the random forest method in including calories was particularly low under the high 

weight condition. Under the low weight condition, the random forest’s calorie inclusion 

rate (16%) was comparable to that of stepwise regression (13%) but under the high 

weight condition the random forest method included calories in far fewer final models 

(63%) than both the stepwise (99%) and all subsets (95%) methods. The random forest 

methods’ inclusion of sugar follows a similar pattern. In the low weight condition, the 

random forest inclusion of sugar in final models (63%) is higher than that of the stepwise 

(13%), and all-subsets methods (56%). In contrast, in the high weight condition, the 

random forest’s sugar inclusion rate (31%) dropped lower than the inclusion rate for the 

stepwise (36%) and all subsets (65%) methods. 

 The random forest method’s performance in capturing the importance of sodium 

and dietary fiber was better across weight condition, but its performance in the low 

weight condition was what distinguished it from the other methods. Random forest’s 

inclusion of sodium (93%) and dietary fiber (85%) in the low weight condition was much 

higher than that of the stepwise method rates of 40% and 17% respectively. The all-

subsets method inclusion of sodium (67%) and dietary fiber (71%) in the low weight 

condition was lower than that of the random forest method, but not as low at that of the 

stepwise method. In the high weight condition, inclusion rates for dietary fiber slightly 

decreased for the random forest (81%) and the all-subsets method (69%) though 

increasing for the stepwise method (37%). Sodium inclusion in the high weight condition 
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was maximized for all three methods, with 100% of all methods’ final models including 

sodium.  

The impact of coefficient weight on nutrient inclusion was most consistently seen 

for the stepwise regression method. The stepwise method’s inclusion rates were 

consistently better in the high weight condition, indicating that the strength of 

relationship between the predictors and criterion is a key factor for the performance of 

stepwise regression. In contrast, the impact of weight on the inclusion of relevant 

predictors in the all subsets’ final models was not as great. For random forest, the 

relationship between weight and predictor inclusion was at times in the opposite of the 

expected direction. 

 The results of Study Two highlight two potentially important factors in the 

comparison of these three models. The first is the possible differential impact of 

multicollinearity on the three methods. In the task environment, calorie count was 

significantly related to two other nutrients used in the generation process, sugars (r = .52, 

p < .05) and dietary fiber (r = .53, p < .05). Sugars was also related to calories and 

sodium (r = .27, p < .05) in the generative process. In contrast, the two nutrients for 

which the random forest method had better performance are each related to only one 

other nutrient in the generative process; dietary fiber was not significantly related to 

sodium (r = -.23, p > .05) or sugar (r = .15, p > .05) and sodium was not related to 

calories (r = .03, p > .05). In generating the judgment ratings, calories and dietary fiber 

were positively related to judgment rating and sodium and sugars were negatively related 

to judgment rating. These findings suggest the possibility that the random forest method 
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might perform best under conditions when multicollinearity is low but falter when 

multicollinearity is high.  

 An additional possibility is that the all-subsets method’s higher performance in 

extracting models that include calories and sugars and indeed, high (greater than 50%) 

inclusion of the four relevant nutrients in general is not due to resilience against 

multicollinearity. Rather, it is possible that (as was indicated in Study One) the all-

subsets method has higher inclusion of the relevant predictors because it has higher 

inclusion of nutrients in general. Indeed, the results of the current analysis are consistent 

with this hypothesis. As can be seen in Table 2, all twelve of the nutrients that were not 

including in the generating process were included in 50% or more of the all subsets’ final 

models. In contrast, the random forest method included only five of the twelve irrelevant 

nutrients in 50% or more of the final models. The stepwise method’s inclusion rates for 

the irrelevant nutrients were all under 50%. Although the generalizability of the methods 

was not specifically examined in this study, the models containing many more predictors 

than the four relevant ones would likely have reduced performance in generalizing to new 

data generated by the same simulation process.   

 Lastly, it is worth recalling that the generative process of the judgment 

observations in this case was a linear model. With this is mind, the performance of the 

random forest method compared to the stepwise and all-subsets method becomes more 

comprehendible and, perhaps, compelling. That is, even though the generative process for 

the observed data was linear, the random forest method still performed better than the 

two linear models in including two out of the four variables.  
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CHAPTER 5: STUDY THREE 

 Study Two indicated that there are differences in the extent to which the three 

methods perform in including the correct variables in their final models. Additionally, the 

second study indicated that the extent of these differences in method were dependent on 

the strength of the relationship between the predictors and the criterion variable. 

Differences in the performance of the three methods suggested that the methods may be 

differentially impacted by inter-correlations between the relevant predictors and other 

predictors in the environment, but that this may also be due to high predictor inclusion by 

some methods compared to others. To provide a more systematic examination of the 

effect of multicollinearity on the importance measures provided by the stepwise 

regression, all subsets, and random forest modeling methods, a subsequent simulation 

study was conducted.  

This study used the approach outlined by Azen et al. (2001), including the 

correlational structures used in that study. In addition to using these correlational 

structures to examine the all-subsets method, as was done in Azen et al., this study 

compares the all-subsets method’s results to those of stepwise regression and the random 

forest method. The main goal of Study Three is to replicate the findings of Azen et al. 

regarding the all-subsets method and to add an examination of the two additional 

modeling methods in order to clarify the performance of these methods. Specifically, the 

following study should clarify the findings of Study Two and provide a more direct 

indication of which of the three methods should be preferred under conditions of 

multicollinearity.  
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Method 

As outlined in Azen et al. (2001), several correlational patterns between 

predictors and the criterion were specified. Subsequently, a multivariate normal dataset 

was generated for each of the specified correlation patterns. Then, each method of 

interest, stepwise regression, all subsets, and random forest, were used to model each 

generated dataset. Consistent with the Azen et al. (2001) simulations, for the all-subsets 

methods, each randomly generated dataset was bootstrapped 500 times. Lastly, as in the 

Azen et al. (2001) simulation approach, the generation of multivariate normal datasets 

and modeling of each dataset was repeated 40 times to eliminate possible bias and 

provide a distribution of variable importance measures provided by each modeling 

method. The code for this process, as well as for the three analytic methods described 

below, are included in Appendix B.   

Data 

 To examine the effect of multicollinearity on the variable importance measures of 

the three methods, two groups of simulations were conducted. Following Azen et al. 

(2001), the first set of simulated correlational structures (simulation A) kept the criterion-

predictor relationship constant across structures and varied the predictor correlations—

the multicollinearity. The A set of simulations included four correlational structures, each 

with four predictor variables. In all four sets, the correlations between predictors and the 

criterion variable were 0.1, 0.3, 0.5, and 0.7. Simulated multicollinearity across sets 

began at 0.75 (in A1) and was decreased in each set by .25 so in the final set (A1) all 

inter-predictor correlations were equal to 0. Table 11 shows each of the A group 

correlational structures as well as correlation measures of each structure’s population (50 
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observations across 40 replications). Correlation measures include the squared correlation 

of a linear regression of the full model, standardized regression coefficients for each 

predictor, as well as the squared partial and semi-partial correlations for each predictor.  

 Again, in line with Azen et al. (2001)’s simulations, a second group of 

simulations were conducted to examine how systematic variation in the intercorrelation 

of predictors affects the importance ranking of the various measures. As in Azen et al. 

(2001), the second set of simulated correlational structures (simulation B) kept the 

criterion-predictor relationship constant across structures, but inter-predictor correlations 

were varied across predictors. The B set of simulations included five correlational 

structures, each with three predictor variables. In all five sets, only a single predictor (X1) 

was correlated with the criterion variable (ρ = 0.6), the other two predictors (X2 and X3) 

had no correlation with the criterion (ρ’s = 0.0). The correlation between the criterion-

related predictor and the two unrelated predictors was varied in each set. In the first set 

(B1), the two predictors (X2 and X3) were unrelated to X1 (ρ’s = 0.0). In the second set 

(B2), X2 remained uncorrelated to X1 (ρ = 0.0), but X3 was positively correlated with X1 

(ρ = √0.2). The third set (B3) correlated X1 with both X2 (ρ = √0.1) and X3 (ρ = √0.1). 

The fourth (B4) and fifth (B5) set mirrored the second and third sets respectively: B4 

maintained a zero correlation between X1 and X2, but increased the correlation between 

X1 and X3 (ρ = √0.4); in the fifth set both X2 and X3 had a √0.2 correlation with X1. 

Table 12 shows each of the group B correlational structures as well as correlation 

measures of each structure’s population (50 observations across 40 replications). 

Correlation measures include the squared correlation of a linear regression of the full 
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model, standardized regression coefficients for each predictor, as well as the squared 

partial and semi-partial correlations for each predictor.  
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Table 11 
 
A1 – A4: Importance Measures in the Population  

Population Correlation Matrix Importance Measures (Population) 
Simulation  Y X1 X2 X3 X4 R2 of full model ρ2(Y, Xi) Βi Partial ρ2 Semi-partial ρ2 

A1 Y 1     0.9970     
 X1 0.1 1     0.01 -1.0909 0.9919 0.3714 
 X2 0.3 0.75 1    0.09 -0.2766 0.8877 0.0241 
 X3 0.5 0.75 0.75 1   0.23 0.5240 0.9661 0.0868 
 X4 0.7 0.75 0.75 0.75 1  0.50 1.3411 0.9949 0.5937 
            

A2 Y 1     0.6664     
 X1 0.1 1     0.01 -0.4653 0.2927 0.1380 
 X2 0.3 0.5 1    0.07 -0.0602 0.0072 0.0024 
 X3 0.5 0.5 0.5 1   0.23 0.3681 0.2083 0.0878 
 X4 0.7 0.5 0.5 0.5 1  0.48 0.7779 0.5370 0.3869 
            

A3 Y 1     0.6548     
 X1 0.1 1     0.00 -0.1760 0.0752 0.0281 
 X2 0.3 0.25 1    0.10 0.0911 0.0205 0.0072 
 X3 0.5 0.25 0.25 1   0.23 0.3738 0.2615 0.1222 
 X4 0.7 0.25 0.25 0.25 1  0.50 0.6261 0.5015 0.3473 
            

A4 Y 1     0.8376     
 X1 0.1 1     0.01 0.1113 0.0708 0.0124 
 X2 0.3 0.0 1    0.09 0.2954 0.3491 0.0871 
 X3 0.5 0.0 0.0 1   0.28 0.5044 0.6096 0.2537 
 X4 0.7 0.0 0.0 0.0 1  0.50 0.6823 0.7411 0.4651 
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Table 12 
 
 B1 – B5: Importance Measures in the Population 

Population Correlation Matrix Importance Measures (Population) 
Simulation  Y X1 X2 X3 R2 of full model ρ2(Y, Xi) Βi Partial ρ2 Semi-partial ρ2 

B1 Y 1    0.3589     
 X1 0.6 1    0.36  0.5960 0.3559 0.3543 
 X2 0.0 0.0 1   0.00 -0.0001 0.0000 0.0000 
 X3 0.0 0.0 0.0 1  0.00 -0.0377 0.0022 0.0014 
           

B2 Y 1    0.4391     
 X1 0.6 1    0.35  0.7474 0.4390 0.4390 
 X2 0.0 0.0 1   0.00 -0.0073 0.0000 0.0000 
 X3 0.0 √0.2 0.0 1  0.00 -0.3433 0.1414 0.0924 
           

B3 Y 1    0.4311     
 X1 0.6 1    0.34 0.7401 0.4310 0.4309 
 X2 0.0 √0.1 1   0.00 -0.2443 0.0833 0.0517 
 X3 0.0 √0.1 0.0 1  0.00 -0.2307 0.0769 0.0474 
           

B4 Y 1    0.5902     
 X1 0.6 1    0.35 1.0038 0.5899 0.5895 
 X2 0.0 0.0 1   0.00 -0.0110 0.0003 0.0001 
 X3 0.0 √0.4 0.0 1  0.00 -0.6369 0.3667 0.2373 
           

B5 Y 1    0.6135     
 X1 0.6 1    0.34 1.0284 0.6132 0.6129 
 X2 0.0 √0.2 1    0.00 -0.4768 0.3061 0.1705 
 X3 0.0 √0.2 0.0 1  0.00 -0.4798 0.3020 0.1673 
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Analysis and Results 

 In the first group of simulations, the question of interest was how different levels 

of multicollinearity impacted each variable selection method’s capability to determine the 

importance of each predictor. Accordingly, stepwise regression, all subsets, and random 

forest were used to model the relationship between the predictors and criterion for each of 

the 40 replicate datasets. Modeling strategies for each method were like those taken in the 

previous studies.  

 In the first analysis, stepwise linear regression was applied to extract reduced 

models for each of the policies. For each of the 40 replications in group A’s four sets, 

stepwise regression was used to develop a linear model relating the 50 observations to the 

predictor variables using the 4 predictors as the original predictor pool. The analytic 

strategy for the 40 replications in each of group B’s five sets was the same, except that 

the original predictor pool consisted of only three predictors.  

 To conduct the all-subsets method, the strategy employed by Azen et al. (2001) in 

their simulations was followed. Namely, for simulation sets in both group A and B, 500 

bootstrapped datasets were drawn for each of the 40 datasets of 50 observations, and all 

possible models were subsequently fit to each of the bootstrapped samples. Once all 

possible models were fit, adjusted R2 values were used to determine the best fit model for 

each of the 500 datasets with the model with the highest probability of being chosen as 

the best-fit model selected as the final model. The predictor variables’ criticality was 

determined according to the probability that it was included in a best-fitting model.  

For the random forest method, the VSURF approach was again used for variable 

selection (Genuer et al., 2015). Following the VSURF default, for each forest in the 
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variable selection process of the analysis, each of the 40 simulated observation sets of 50 

observations was resampled with replacement to generated 2000 bootstrapped datasets of 

50 scores each. Default numbers were used to determine the number of predictors 

randomly selected for consideration at each split (p = 1), forests for determining the 

minimum threshold (threshold forests = 50) and forests for the interpretative step 

(interpret forests = 25). This method was applied to each of the 40 replications for each 

set of simulated correlational structures in both group A and group B.  

As in Azen et al. (2001), mean variable importance measures and standard errors 

across 40 replications are reported (see Tables 13 and 15). Tables 14 and 16 show the 

proportion of replications in each correlation structure that included each predictor 

variable. In Azen et al. (2001), the authors note how the A group of simulations highlight 

how criticality responds to high multicollinearity by including all predictors. Azen et al. 

(2001) explain that removing any of the predictors would result in a misspecified final 

model when inter-predictor correlations are high.  

Azen et al. (2001) compared three different methods for choosing best-fitting-

models. One was adjusted r-squared as was used in this study, but Azen et al. also used 

Akaike’s (1973) information criterion (AIC) and Mallow’s Cp (Mallows, 1973). Results 

from Azen et al.’s A group of simulations indicate some differences between the three 

methods. When multicollinearity is at its highest (ρ = 0.75 in A1), all methods give all 

predictors a maximum predictor criticality equal to one. In the other collinearity 

conditions, there are small differences (in the second and third decimal place) between 

the predictor criticalities given by using the adjusted r-squared and Mallow’s Cp but the 

AIC gives predictor criticalities that are smaller than either (i.e., differences at times in 
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the first decimal place’s value). This is particularly true for predictors that are given 

lower values.   

There are differences between final models found to be the best-fitting in Azen et 

al. (2001) and in the current study. In Azen et al. the overall best-fitting model for all 

groups but A2 was one that included all four predictors. In A2 the overall best-fitting 

model was one that included predictors X1, X3, and X4. In the current study, the overall 

best-fitting model for A1 and A2 included all four predictors. The overall best-fitting 

model for the A3 group included predictors X1, X3, and X4 and the best-fititng model for 

the A4 group included predictors X2, X3, and X4.   

Differences in the overall best-fitting model are related to differences in the 

adjusted r-squared predictor criticalities in Azen et al. (2001) and those of the current 

study. Namely, in the current study predictor criticality values for X1-X3 are lower in the 

Azen et al. A2 simluation set (C = 0.978, C = 0.450, and C = 0.967 respectively) 

compared to the current study’s A2 simulation set (X1: C = 0.997, X2: C = 0.860, and 

X3: C = 0.996). Azen et al.’s adjusted r-squared criticality values for X1-X3 in the A3 

simulation set are C = 0.729, C = 0.644, and C = 0.981 respectively. In the current study 

criticality values for X1-X3 in A3 are C = 0.927, C = 0.397, and C = 0.988 respectively. 

In the A4 set, both this study and that of Azen et al. resulted in a criticality value of 1 for 

both X3 and X4. However, in the current study X1 had a value of C = 0.400 and X2 had a 

value of 1 and in Azen et al.’s study the adjusted r-squared predictor criticality for X1 

was C = 0.730 and for X2 it was C = 0.994.  

Desipte differences in values, rankings for the predictor criticalities in this study 

were consistent with those of Azen et al. (2001) and both results lead to the same 
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conclusions regarding the impact of collinearity. That is, despite some predictors being 

much more highly correlated with the criterion than others, when the intercorrelation 

between predictors is high (ρ = 0.75 as in A1), the all subsets predictor criticality measure 

indicates that all predictors are maximally critical (i.e., equal to one; see Table 13). 

Across all correlational structures, the all-subsets method, as in Azen et al. (2001), highly 

ranked the two predictors most highly correlated with Y (X1 and X2). However, the 

criticalities of the two predictors that were not as highly correlated (X3 and X4) had 

greater variation across correlational structures. Notably, the order of the criticalities of 

these two variables were at times reversed. For instance, in A2, X1 (ρ = 0.1) had a mean 

predictor criticality value of 0.927, but X2 (ρ = 0.3) had a mean predictor criticality of 

0.397, essentially being given a lower importance ranking than X1 despite having a 

stronger relationship with the criterion. This order reversal was also seen, though less 

starkly, in A2, where even the X3 (ρ = 0.5) ranking was misaligned with the simulated 

relationships.  

The stepwise and random forest results differed from the all subsets results in the 

highest inter-predictor correlation group. In the two simulation groups with highest 

multicollinearity (A1 and A2), stepwise regression’s beta values for all but the most 

highly related predictor (X4) did not match the ranking they were simulated to have. The 

most highly related predictor (X4, ρ = 0.7) had the largest mean beta value (𝛽̅ = 1.51) but 

the next largest mean beta value was that of X1 (𝛽̅ = -1.17), which had the lowest 

correlation with Y (ρ = 0.1). Similarly, in all but the group with no multicollinearity (A4), 

stepwise regression rankings, particularly between X1 and X2 were reversed.  
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In the random forest method, variable importance rankings for X1 and X2 were 

reversed in all but the group with no multicollinearity (A4). However, the impact of 

multicollinearity on the random forest rankings across correlational structures was 

substantively different from its impact on stepwise regression and the all-subsets method. 

When multicollinearity is high (in the ρ = .75 and the ρ = 0.5 groups), stepwise regression 

and all subsets include all variables in the final model. As can be seen in Table 14, this is 

the case over all 40 replications. In contrast, in the highest multicollinearity group (ρ = 

.75) the random forest method excludes the variable that it ranks as lowest (X2). In the 

A2 (ρ = .5) and A3 (ρ = .25) groups, the random forest method includes only the two 

predictors that are most related to the criterion. For the stepwise regression and all-

subsets methods, it is only in the A3 group that the pattern of inclusion mirrors that of the 

random forest in the A1 group; that is, X2 is excluded from the final model but X1 is 

maintained. In the A4 group, where multicollinearity was simulated at 0, all three of the 

methods yield final models in which the lowest relating predictor, X1, is the only 

excluded predictor. 
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Table 13 

 Simulations A1 – A4 Importance Measure Results: Importance Measures and their Standard Errors Over 40 Replications 

 Mean Importance Measure (Standard Error)  
n = 50, R = 40 

Simulation  ρ(Xi, Xj) Predictor ρ(Y, Xi)    Stepwise 𝛽̅𝑖
 All Subsets 𝐶𝑖̅ Random Forest ∆𝑀𝑆𝐸𝑂𝑂𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 

A1 0.75 X1 (0.1)  -1.1661 (0.000) 1.0000 (0.000) 0.0922 (0.000) 
  X2 (0.3) -0.3196 (0.000) 1.0000 (0.000) 0.0894 (0.000) 
  X3 (0.5) 0.5754 (0.000) 1.0000 (0.000) 0.2998 (0.000) 
  X4 (0.7) 1.5130 (0.000) 1.0000 (0.000) 0.5831 (0.000) 
      
A2 0.5 X1 (0.1)  -0.4830 (0.000) 0.9967 (0.000) 0.0303 (0.000) 
  X2 (0.3) -0.2222 (0.000) 0.8598 (0.002) 0.0167 (0.000) 
  X3 (0.5) 0.4307 (0.000) 0.9959 (0.000) 0.2593 (0.000) 
  X4 (0.7) 0.9057 (0.000) 1.0000 (0.000) 0.3279 (0.000) 
      
A3 0.25 X1 (0.1)  -0.2026 (0.000) 0.9266 (0.002) 0.0045 (0.000) 
  X2 (0.3) -- 0.3971 (0.004) -0.0055 (0.000) 
  X3 (0.5) 0.2987 (0.000) 0.9882 (0.001) 0.0481 (0.000) 
  X4 (0.7) 0.8065 (0.000) 1.0000 (0.000) 0.5296 (0.000) 
      
A4 0.0 X1 (0.1)  -- 0.4002 (0.004) -0.0313 (0.000) 
  X2 (0.3) 0.3751 (0.000) 1.0000 (0.000) 0.0880 (0.000) 
  X3 (0.5) 0.5019 (0.000) 1.0000 (0.000) 0.1211 (0.000) 
  X4 (0.7) 0.6604 (0.000) 1.0000 (0.000) 0.2809 (0.000) 
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Table 14 

A1 – A4 Inclusion Results: Proportion of Final Models that Included Predictors 

 

 The goal of the second set of simulations was to clarify how multicollinearity 

between predictors affects the importance ranking of variables that are not related to the 

criterion. That is, whether the ranking of a predictor that is not related to the criterion is 

impacted by that predictor being correlated with a predictor that is related to the criterion. 

The five correlational structures in set B have only one predictor (X1) that is correlated 

Simulation 
ρ(Xi, Xj) 

Predictor 
ρ(Y, Xi)   

Stepwise 
Regression 

(R = 40) 

All  
Subsets 
(R = 40) 

Random  
Forest 

(R = 40) 
A1 (0.75) X1 (0.1)  40 (100%) 40 (100%) 40 (100%) 

 X2 (0.3) 40 (100%) 40 (100%) 0 (0%) 

 X3 (0.5) 40 (100%) 40 (100%) 40 (100%) 

 X4 (0.7) 40 (100%) 40 (100%) 40 (100%) 

     

A2 (0.5) X1 (0.1)  40 (100%) 40 (100%) 0 (0%) 

 X2 (0.3) 40 (100%) 40 (100%) 0 (0%) 

 X3 (0.5) 40 (100%) 40 (100%) 40 (100%) 

 X4 (0.7) 40 (100%) 40 (100%) 40 (100%) 

     

A3 (0.25) X1 (0.1)  40 (100%) 40 (100%) 0 (0%) 

 X2 (0.3) 0 (0%) 0 (0%) 0 (0%) 

 X3 (0.5) 40 (100%) 40 (100%) 40 (100%) 

 X4 (0.7) 40 (100%) 40 (100%) 40 (100%) 

     

A4 (0.0) X1 (0.1)  0 (0%) 0 (0%) 0 (0%) 

 X2 (0.3) 40 (100%) 40 (100%) 40 (100%) 

 X3 (0.5) 40 (100%) 40 (100%) 40 (100%) 

 X4 (0.7) 40 (100%) 40 (100%) 40 (100%) 
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with Y (ρ = .6). The correlation of X1 with two predictors (X2 and X3) that are not 

correlated with Y (ρ = 0) is varied across the B sets in order to investigate how this inter-

predictor correlation impacts the three variable selection methods.  

Results from Azen et al. (2001)’s comparisons of the three different methods for 

choosing best-fitting-models in simulation set B were largely similar to those of 

simulation set A. Overall there are small differences between the criticalities given by 

each approach with AIC yielding lower criticality values compared to adjusted r-squared 

and Mallow’s Cp. In both Azen et al. results using adjusted r-squared and in the current 

study, final best-fitting models for all simulations sets included all three predictors expect 

for B4, which included only X1 and X3.  

As in simulation set A, the predictor criticality values given by adjusted r-squared 

in the Azen et al. study varied somewhat from those in the current study. In both Azen et 

al. and the current study, X1 was given a maximal criticality of 1 in all simulation sets 

but for the other predictors values in this study were different from those in Azen et al. In 

the B1 simulation set, the Azen et al. adjusted r-squared predictor criticalities for X2 and 

X3 (C =0.512 and C = 0.496 respecitively) were lower than those of the current study 

(X2: C = 0.8841 and X3: C = 0.8164). Following a similar pattern, the Azen et al. X2 and 

X3 values in B2 (C = 0.498 and C = 0.909 respectively) were smaller than those in the 

current study (C = 0.558 and C = 0.971 respectively). In B3, Azen et al. criticality values 

for X2 and X3 were 0.749 and 0.824 respectively while those in the current study were 

0.966 and 0.660 respectively. Among the Azen et al. X2 and X3 values in B4 (C = 0.461 

and C = 1 respectively) and B5 (C = 0.982 and C = 0.985), some differed from those in 

the current study. The current study’s predictor criticality values for X2 in B4 (C = 0.382) 
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and B5 (C = 0.889) were smaller than in Azen et. al. The current study’s predictor 

criticality for X3 (C = 1) was the same as that of Azen et al. in B4, but larger than that of 

Azen et al. in B5 (C = 1).  

 In Azen et al. (2001), simulation results indicated that increases in the correlation 

between the predictors and X1 resulted in higher criticality measures. As can be seen in 

Table 15, despite the predictor criticality differences outline above, results in this study 

reflect those in Azen et al. The differences in predictor criticality are likely due to random 

sampling. The overall pattern found for the all-subsets method follows that reported by 

Azen et al. (2001); in general, the higher the relationship between the predictor and X1, 

the higher the predictors importance ranking.  

 Stepwise regression rankings, measured again by beta-values, reflect those of the 

all-subsets method. The X1 predictor consistently has a high beta value, but the beta 

values of X1 and X2 increase in the simulations where their relationship with X1 is 

higher. As in the all subsets’ results, there is a discrepancy between the ranking of X3 in 

B1 and B3, with X3 in B1 having a higher ranking than it does in B3. Similarly, X2 is 

ranked slightly higher in B1 (where both X2 and X3 are unrelated to X1) than in B5, 

where both X2 and X3 are related to X1 (both ρ’s = √0.2).  

 Random forest variable importance rankings showed greater resiliency to 

multicollinearity than the two other methods. As with the all subsets and stepwise 

regression methods, X1 had the highest variable importance across all simulation sets. 

However, X2 was ranked very low (∆𝑀𝑆𝐸𝑂𝑂𝐵
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖 < 0) in four of the five sets, including in 

B3 and B5 where it was correlated with X1. Similar to the other two methods, random 

forest gave X2 a higher ranking in the B1 set, where no multicollinearity was simulated, 
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than any other set. The random forest method’s rankings of X3 also seemed to improve 

upon those of stepwise regression and the all-subsets method. Again, the ∆𝑀𝑆𝐸𝑂𝑂𝐵
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖 

measure for X3 was higher in the B1 correlation structure, where no correlation with X1 

existed than in B2 and B3, where X3 was correlated with X1. However, the X3 predictor 

was given a very low ranking (∆𝑀𝑆𝐸𝑂𝑂𝐵
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖 < 0) in three of the five sets, including B2 and 

B3. Rankings for X3 were highest in the B5 condition, where both X2 and X3 were 

related to X1 (both ρ’s = √0.2) and in B4, where X3 alone was related to X1 (ρ = √0.4).  

Overall, results from the B set of simulations indicated that all methods are more 

likely to exclude unrelated predictors when they are the only predictors that are unrelated 

to relevant predictors in the model. That is, when one of the irrelevant predictors is 

related to the relevant predictor, it has a suppressor effect on irrelevant variance in the 

relevant predictor. This results in an improvement of the model fit and a higher partial 

correlation between that irrelevant predictor and the criterion. That irrelevant predictor is 

then more likely to be retained in the final model while the other unrelated predictor is 

excluded. When this was the case in the simulation (in sets B2 and B4), stepwise 

regression method excluded the unrelated predictor (X2) entirely; in these same sets the 

all-subsets method ranked X2 its lowest. The random forest method is the exception to 

this pattern, in general its relative rankings of the unrelated predictors were lower than 

either of the other two methods.  

As with the first set of simulations, the advantage of the random methods 

approach is highlighted by examining the inclusion of predictors in the models for 

simulation set B (shown in Table 16). Consistent with simulation set A, there was no 

variation across the 40 replications; predictors were either included or excluded across all 
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40 replications. In the stepwise regression method, final models in the B1, B3, and B5 

simulations included all three predictors. Final models in the B2 and B4 simulations, 

excluded X2 but kept X3 (which was correlated with X1 in those simulations). The all-

subsets method excluded an unrelated predictor in only one of the simulation sets, in B4 

(where X3 had the highest relationship with X1 and X2 was unrelated to X1), the X2 

predictor was not included in the final models. This finding is consistent with Azen et 

al.’s (2001) finding that, when using adjusted R2 to determine predictor criticality, the full 

model with all three predictors was found to be the best-fitting model in all simulation 

sets except for B4, when a model with only X1 and X3 was found to be the best fitting. 

The random forest method’s final models exclude X2 in all simulation sets except for B1, 

in which they exclude X3. Random forest final models exclude both X2 and X3 in the B2 

and B3 conditions.   
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Table 15  

Simulations B1 – B5 Importance Measure Results: Mean Importance Measures and their Standard Errors Over 40 Replications 

  Mean Importance Measure (Standard Error)  
n = 50, R = 40 

Simulation  ρ(X1, X2) ρ(X1, X3) Predictor ρ(Y, Xi) Stepwise 𝛽̅𝑖
 All Subsets 𝐶𝑖̅ Random Forest ∆𝑀𝑆𝐸𝑂𝑂𝐵

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 

B1 0 0 X1 (0.6)  0.5942 (0.000) 1.0000 (0.000) 0.3142 (0.000) 
   X2 (0.0) -0.2419 (0.000) 0.8841 (0.003) 0.1810 (0.000) 
   X3 (0.0) -0.1877 (0.000) 0.8164 (0.003) -0.0230 (0.000) 
       
B2 0 √0.2 X1 (0.6)  0.8049 (0.000) 1.0000 (0.000) 0.4324 (0.000) 
   X2 (0.0) -- 0.5575 (0.004) -0.0485 (0.000) 
   X3 (0.0) -0.3371 (0.000) 0.9706 (0.001) -0.0431 (0.000) 
       
B3 √0.1 √0.1 X1 (0.6)  0.8067 (0.000) 1.0000 (0.000) 0.4058 (0.000) 
   X2 (0.0) -0.3820 (0.000) 0.9655 (0.001) -0.0004 (0.000) 
   X3 (0.0) -0.1640 (0.000) 0.6599 (0.003) -0.0405 (0.000) 
       
B4 0 √0.4 X1 (0.6)  1.0848 (0.000) 1.0000 (0.000) 0.6486 (0.000) 
   X2 (0.0) -- 0.3819 (0.004) -0.0489 (0.000) 
   X3 (0.0) -0.6322 (0.000) 0.9999 (0.000) 0.0808 (0.000) 
       
B5 √0.2 √0.2 X1 (0.6)  0.8588 (0.000) 1.0000 (0.000) 0.4154 (0.000)  
   X2 (0.0) -0.2283 (0.000) 0.8889 (0.002) -0.0587 (0.000) 
   X3 (0.0) -0.6220 (0.000) 0.9999 (0.000) 0.1393 (0.000) 
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Table 16 

B1 – B5 Inclusion Results: Proportion of Final Models that Included Predictors 

Simulation 
ρ(X1, Xi) 

Predictors 
ρ(Y, Xi) 

Stepwise 
Regression 

(R = 40) 

All  
Subsets 
(R = 40) 

Random  
Forest 

(R = 40) 
B1 X1 (0.6)  40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X2) = 0 X2 (0.0) 40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X3) = 0  X3 (0.0) 40 (100%) 40 (100%) 0 (0%) 

     

B2 X1 (0.6)  40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X2) = 0  X2 (0.0) 0 (0%) 40 (100%) 0 (0%) 

ρ(X1, X3) = √0.2 X3 (0.0) 40 (100%) 40 (100%) 0 (0%) 

     

B3 X1 (0.6)  40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X2) = √0.1 X2 (0.0) 40 (100%) 40 (100%) 0 (0%) 

ρ(X1, X3) = √0.1  X3 (0.0) 40 (100%) 40 (100%) 0 (0%) 

     

B4 X1 (0.6)  40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X2) = 0 X2 (0.0) 0 (0%) 0 (0%) 0 (0%) 

ρ(X1, X3) = √0.4  X3 (0.0) 40 (100%) 40 (100%) 40 (100%) 

     

B5 X1 (0.6)  40 (100%) 40 (100%) 40 (100%) 

ρ(X1, X2) = √0.2 X2 (0.0) 40 (100%) 40 (100%) 0 (0%) 

ρ(X1, X3) = √0.2  X3 (0.0) 40 (100%) 40 (100%) 40 (100%) 
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Discussion 

 Results from Study Three further clarify the results of Study Two and offer some 

further insight on the performance of the three modeling methods. The first set of 

analyses in Study Three indicated that for all three methods, high multicollinearity leads 

to misidentification of the relative importance of predictors, particularly those with 

smaller relationships with the criterion variable. In the case of high multicollinearity (ρ = 

.75), the all-subsets method ranked all predictors as equally and maximally critical. In 

contrast, the stepwise method provided different rankings for each predictor, but their 

order did not match their simulated rankings; the lowest related predictor had, on 

average, the second largest beta-value. The random forest method too, differentially 

ranked each predictor but confused the ranking of the two predictors with the smallest 

relationship to the criterion. In the next multicollinearity condition (ρ = .5), disorder 

amongst the predictor rankings was evident for all methods. The stepwise and all-subsets 

methods provided similarly sized rankings for the smallest related predictor and the 

second largest predictor, with a lower ranking for the second to smallest predictor. The 

random forest method mistook the order of the two predictors that were least related to 

the criterion, but correctly identified the two predictors most related to the criterion in 

their correct order. The pattern for the next collinearity condition (ρ = .25) was largely 

similar, with the second least related predictor being given the lowest ranking.  

 When no multicollinearity was included in the model, differences in the 

performance of the three methods in providing relative rankings are again apparent. The 

stepwise and random forest methods here provide rankings that correctly order the 

predictors according to their impact on the criterion variables. In contrast, the all-subsets 
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method gave the lowest ranking to the predictor least related to the criterion but ranked 

the other three predictors as equally critical.  

The results of this first set of analyses indicates that random forest is the preferred 

variable selection method for reducing predictor pools and interpreting predictor impact. 

In cases of extreme multicollinearity, the all-subsets method resorts to rating all 

predictors equally and maximally critical, giving the researcher the impression that all 

predictors are equally important when in fact their relationship with the criterion is not 

equal. In such a setting the final model that the judgment researcher would be left with 

would include all the predictors; however, the varying relationship between each 

predictor with the criterion would not be interpretable. Under conditions of median to 

high multicollinearity, the stepwise method would result in a final model that included all 

predictors but misidentified the rankings of predictors with a lower relationship to the 

criterion, leading the researcher to incorrectly estimate the relative impact of some 

predictors. Such misidentification of predictor rankings also occurs with the all-subsets 

method in cases of less extreme multicollinearity.  

The random forest method rankings for the two least related predictors were 

unordered, but in all except the most extreme condition of multicollinearity, the final 

model extracted by this method was consistent with the actual predictor-criterion 

relationship order. In the most extreme case, the predictor with the second smallest 

relationship with the criterion was excluded from the model. In the two other cases of 

multicollinearity, however, the two final models resulted in the two predictors with the 

smallest relationships to the criterion being excluded, and correctly ranked the two 

predictors that were maintained in the model. In contrast, the stepwise and all-subsets 
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method in the ρ = .25 collinearity condition resulted in a final model similar to the model 

produced by the random forest when multicollinearity was at its highest (ρ = .75).  

The goal of the researcher and the correlational structure of the task environment 

may also determine which variable selection method is preferred. If the researcher would 

prefer that model retain all predictors in cases when multicollinearity is high, then the 

stepwise or all-subsets method, which retain all predictors in that case, would be 

preferable to the random forest method, which retains a predictor that is less relevant than 

one that is excluded. However, the stepwise and all-subsets methods behave in the same 

way under conditions when multicollinearity is much lower, while under those conditions 

the random forest method results in smaller models with more accurate interpretations of 

the relative impact of the predictors.   

 The second set of analyses provides an even clearer endorsement of the 

comparative advantage of the random forest method. Here, under all five collinearity 

conditions, the random forest excluded at least one of the irrelevant variables. In one 

condition it correctly excluded both. Stepwise regression excluded one irrelevant variable 

under two collinearity conditions and the all-subsets method also excluded one irrelevant 

variable, but only under one collinearity condition.  

The random forest method’s variable importance measure also had interpretive 

advantages over the all subsets’ predictor criticality and stepwise’s beta-weights. 

Although all variable importance methods incorrectly ranked the two irrelevant predictors 

as having different levels of importance in predicting the criterion variable, the random 

forest metric’s rankings for these irrelevant predictors were much lower, when compared 

to the relevant predictors ranking, than those supplied by the stepwise and all-subsets 
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method. Indeed, in this interpretative aspect, as well as in the final model composition, 

the all-subsets method performed worse than the stepwise method as well as the random 

forest method. This was due to the all subsets predictor criticality rankings for the 

irrelevant predictors being relatively high in several of the collinearity conditions. All 

three methods correctly ranked the single relevant predictor as the most important in 

every collinearity condition. However, in several conditions the difference in ranking of 

the relevant and irrelevant predictors is practically insignificant. For instance, in all five 

of the collinearity conditions the relevant predictor had the maximum criticality ranking 

of 1.00, but in four of the collinearity conditions, an irrelevant predictor was given a 

value above 0.95, and, in two cases, that value is 0.9999 which would likely lead a 

researcher to interpret the irrelevant predictor as just as important as the relevant one.   

The results of Study Three further indicate that the random forest method may 

provide a valuable alternative strategy to modeling human judgment. The random forest 

method’s results more accurately reflected the relative importance of predictors compared 

to the stepwise and all-subsets methods, and it resulted in models that were more likely to 

exclude irrelevant predictors. The results of this study also help to clarify the results of 

Study Two, indicating that a key difference between the all subsets and random forest 

methods is that the former is more likely to retain predictors in a final model and the 

latter is more likely to exclude predictors. This feature of these two methods should be 

attended to by judgment researchers in their application of these models to ensure that 

modeling choice is consistent with researchers’ task environment, task data, and overall 

research goals.     
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CHAPTER 6: GENERAL DISCUSSION  

 Judgment research has benefitted from the development and application of 

judgment analysis. The usefulness of judgment analysis to the field of psychology has 

been demonstrated by hundreds of studies across the last six decades. The emphases of 

judgment analysis—its focus on the importance of the task environment, representative 

design, vicarious functioning, and the individual as the unit of analysis—are the 

foundation of the judgment analysis approach but also complicate its application.  

 This study’s introduction outlines the ways in which each of the foundational 

principles contribute to a more representative, constructive approach to human judgment, 

but may also impede its widespread implementation. When theoretical guidance on 

reducing a potential predictor pool is lacking, the use of automatic variable selection 

methods can facilitate a more widespread application of judgment analysis. Rapid, 

automated, reduction of full models, when appropriate, could promote researchers’ use of 

more task environments that better represent the judgment task. Furthermore, such 

methods could enable researchers to apply judgment analysis to judgment research even 

when large numbers of individual judgments are not viable or possible.  

 The current research has implications for variable selection methods employed by 

judgment researchers. In the first study, a comparison of goodness-of-fit and cross-

validation measures across methods found that these measures are not necessarily 

congruent. In that study, final judgment models generated by the all-subsets method had, 

on average, higher goodness-of-fit than final judgment models from both the stepwise 

regression and random forest methods. However, final judgment models from the all-

subsets method did not cross-validate as well as the two other methods; both stepwise 
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regression and random forest final models had higher cross-validity, on average, than the 

all-subsets method. The random forest method was found to result in the highest degree 

of cross-validity, on average, despite being second to the all-subsets method in average 

goodness-of-fit. This finding, along with differences in the average sizes of the three 

methods final models, indicated the possibility that the all-subsets method was overfitting 

the data; maximizing goodness-of-fit at the cost of generalizability.   

The incongruence in goodness-of-fit and generalizability maximization found by 

Study One was further illuminated by Study Two. In Study Two, models’ inclusion of 

preset relevant variables was impacted both by the modeling method used and the weight 

of the predictor in simulated judgment rankings. Here again, as in Study One, differences 

in average model size indicated over-fitting by the all-subsets method in comparison to 

the other two methods. In the question of whether a methods’ final model included the 

correct variables, the all-subsets method outperformed stepwise regression in including 

calories, sodium, sugars, and dietary fiber, and the random forest method in including 

calories and sugars. The random forest method had greater likelihood than the all-subsets 

method of including two of the four relevant variables, and greater likelihood than 

stepwise regression in including three of the four relevant variables.  

The effect of weight in Study Two was not consistent across predictors. In two of 

the four cases, the higher simulated coefficient values were associated with greater 

likelihood that predictors would be included in the final models after controlling for 

method, but this was not the case for sugar and dietary fiber. In examining inclusion 

proportions, sugar frequency in model inclusion is in the expected direction for stepwise 

regression and all subsets models, but in the reverse for random forest models (i.e., higher 
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frequency for the low coefficient weight condition). Frequency of dietary fiber inclusion 

is greater in the high weight condition for stepwise regression models, but reversed for 

the all subsets and random forest method models (see Table 7).  

 The third and final study added insight into possible causes behind findings in the 

first two studies and provided some generalizable take-aways for future researchers. This 

study found that all three methods were susceptible to rank order reversals when 

multicollinearity between predictors was high. Nonetheless, the random forest method 

was more likely to exclude predictors, even under conditions of high multicollinearity. 

Notably, this study did not include a comparison of the impact of random forest’s 

hyperparameters on variable selection importance. The values for m, trees, and forest 

hyperparameters used in this study were based on previous research finding these values 

to improve variable selection. Smaller values for m than p/3 could lead to lower 

probability of the correct predictors being included in the final model and smaller tree 

numbers could lead to higher variance in variable importance estimates (Genuer et al., 

2010).  

 The current studies provide a comparison of three variable selection methods, 

implemented from a judgment analysis perspective. This study has sought to provide 

practical guidance for judgment researchers in applying automatic variable selection 

methods to allow for the wider application of the judgment analysis approach. Based on 

the results of these studies, the random forest methodology is recommended for further 

implementation in judgment analysis research, particularly in high-predictor 

environments when predictor reduction is desirable or necessary due to a high predictor 

to observation ratio. The current studies indicate that the random forest method yields 
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higher average cross-validity than the stepwise or all-subsets methods. Furthermore, its 

implementation given current technological tools is easy to accomplish and its 

computational complexity unlikely to be daunting to judgment researchers accustomed to 

the more traditional regression approach particularly when compared to the all-subsets 

method. The all-subsets analyses conducted in this study, when modeling and cross-

validating 298 datasets of approximately 40 observations (in Study One) and modeling 

300 datasets of size 73 (in Study Two) took approximately 5 days each. In contrast, the 

random forest analyses of the same datasets took approximately 20 minutes.  

 Even disregarding the added convenience of the computational simplicity of the 

random forest, Study Three indicated that the random forest method has generalizable 

advantages over the two alternatives examined. Namely, the random forest is less 

susceptible to multicollinearity than the all subsets and stepwise regression approaches, 

and it was more likely to disregard irrelevant predictors even when those predictors are 

related to other, relevant predictors. Yet, Study Three also indicated that the random 

forest is not impervious to variable selection errors due to multicollinearity. Results from 

the A group of correlational structures indicated that ranking confusion (particularly 

among variables that are weakly related to the criterion) is likely among all methods 

when multicollinearity is high. This is an indication that researchers—whichever 

modelling method they use and regardless of whether or not they employ a variable 

selection method—should be cautious in drawing strong conclusions from relative 

importance measures when multicollinearity is high. 

 The current body of work is not without limitations. As with any methodological 

study, the findings of this study will not necessarily apply to data that systematically 
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varies from the archival and simulated datasets used here. Despite this, the fact that all 

three studies had similar implications increases the researcher’s confidence in the 

generalizability of these findings beyond the current work. Additionally, the use of an 

archival dataset from an actual judgment task in which predictors include high levels of 

multicollinearity increases this study’s applicability to judgment analysis. By 

demonstrating the comparative performance of these three methods with actual judgment 

analysis data, this study provides insight into the performance judgment analysts might 

expect from these methods for tasks whose characteristics on the TCI are similar to those 

described here.  

 Finally, it should be noted that alternative variable selection methods, unexamined 

by the current work, may offer advantages beyond those documented among the methods 

tested here. A least absolute shrinkage and selection operator (LASSO) approach to 

variable selection tends to aggressively exclude predictors that are correlated with already 

selected predictors (Lu & Petkova, 2014). This is advantageous if many predictors in a 

highly-correlated task environment are expected to be irrelevant to judgment but whether 

or not this is the case may not be known. Other methods, such elastic net may be 

preferred to LASSO if there are many correlated predictors that are expected to be 

utilized by individuals in a judgment task (Lu & Petkova, 2014). Alternately, a Bayesian 

approach to variable selection can capture and integrate the uncertainty across fitted 

models. Unlike the variable selection method approaches used in the current studies, a 

Bayesian averaging approach integrates the uncertainty of a predictor’s inclusion in a 

final model, allowing this uncertainty to weight importance of that predictor. Such a 

strategy allows for a more representative approach in prediction as it incorporates a 
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greater proportion of information from the available data (i.e., the uncertainty in predictor 

inclusion) rather than reducing that information to a dichotomous determination of a 

single accepted model that disregards all other possible models.  

The current study did not examine a Bayesian approach to variable selection; 

however, given its integration of model uncertainty it seems particularly suited to the 

Brunswikian focus on probabilistic modeling. Although judgment analysis researchers 

have been far more consistent in their incorporation of probabilistic models than 

researchers in other programs of judgment research, the application of Bayesian analysis 

to model selection in judgment analysis has not been investigated. Future research should 

include the implementation of this approach to judgment analysis and provide a 

comparison to the more traditional, final-model approaches described here as well as 

other approaches (e.g., LASSO and elastic net).  

Despite this study’s limitations, it demonstrates that a random forest modeling 

approach to judgment analysis may provide variable selection advantages over the 

traditional linear regression approach. Not only can the inclusion of the random forest’s 

variable selection methods that expand the applicability of judgment analysis, the random 

forest also provides a conception of the judgment process as a decision tree rather than a 

linear model. As was discussed in the introduction, judgment analysis is not restricted to 

a single modeling approach. Ineed, although the standard lens model equation statistics 

are conceptualized from a linear perspective these can be derived from a random forest as 

well. For instance, when incorporating variable selection using random forest, an adjusted 

r-squared value as referenced in Equation 6 can be used in place of the traditional r-

squared value as a measure of the judge’s consistency. The predicted values given by a 
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criterion random forest model and individual random forest model can be correlated in 

order to determine G—the agreement between the criterion and judgment models. In a 

random forest context, the error between the predicted values and actual values for both 

the criterion and individual random forest models can be correlated in order to provide a 

measure for C. In a random forest context C would still be a measure of the systematic 

variation that is shared by both the judgment and criterion that is not captured by the 

model. However, because the random forest model is non-linear, a C value calculated 

from two random forest models can no longer be interpreted as nonlinear variation shared 

by the criterion and judgment. Nonetheless, C would still be an indicator of shared 

systematic variation that was not accounted for by the random forest model, either due to 

relevant cues that are unaccounted for or failures in the modeling approach.     

In summary, the current research indicates that applying random forest modeling 

to judgment analysis would be a fruitful union. Random forest’s variable selection allows 

researchers to explore more representative judgment task environments even in cases 

where there is insufficient theory to reduce task predictors a priori. Future research 

comparing random forest’s approach to variable selection to that of other methods, as 

well as explorations of the environments under linear models or decision-tree models 

better capture the judgment process would further aid judgment researchers’ decision-

making.        
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APPENDIX A 

Food Evaluation Instructions and Example: 

In this part of the study we want you to evaluate some common packaged foods. For each 
food item you will see a screen with a picture that shows its front packaging information. 
You will also have its Nutrition Facts Panel and the list of its ingredients. This 
information should be helpful as you evaluate the foods with regards to their nutrition. 
Please view each item and then answer the questions that follow as best as you can so 
that they represent your opinions.  
In addition to evaluating each food item, we will ask you to hypothetically purchase the 
item by placing it in a shopping cart if you think it is desirable (a yes/no answer). For this 
part, assume cost is not an obstacle to possessing the item. However, also consider that 
you wouldn't want to add something to your cart that you wouldn't consume.  
 
Condition One    
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Condition Two 

  
 
 
 
Condition Three 
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APPENDIX B 

Environment Analysis R Code 

Stepwise Regression Analysis  

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("purr") 
#install.packages("leaps") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
 
CerealLevel <- read_excel("~/Ohio University/Carter.FOP Study.Cereal Level Dataset 
Abbreviated.xlsx") 
 
NuValdfVar <- c("V1", "Cereal", "NuValScore", "RecordID", "NumberID", "Condition", 
"Setting", "UPC", "CerealNumber", "Calories", "Total_Fatg", "Saturated_Fatg", 
"Poly_Fatg", "Mono_Fatg", "Sodiummg", "Potassiummg", "TotalCarbsg", 
"DietaryFiberg", "Sugars_g", "Proteing", "VitsMinerals_NuVal") 
 
NuValComplete <- SingleList[complete.cases(SingleList[, NuValdfVar]), NuValdfVar] 
 
rm(list = ls()[!ls()%in%c("NuValComplete")]) 
 
###################STEPWISE ANALYSIS################################# 
set.seed(711) 
  datalist <- as.data.frame(NuValComplete) 
  full_model <- lm(NuValScore ~ Calories + Total_Fatg + Saturated_Fatg + 
                          Poly_Fatg + Mono_Fatg + Sodiummg + Potassiummg +  
                          DietaryFiberg + Sugars_g +  
                          TotalCarbsg + Proteing + VitsMinerals_NuVal,  
                          data = datalist) 
   
  null_model <- lm(NuValScore ~ 1, data = datalist) 
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  stepwise <- step(null_model, scope = list(upper = full_model)) 
   
  scale_full_model <- lm(scale(NuValScore) ~ scale(Calories) + scale(Total_Fatg) +  
                                scale(Saturated_Fatg) +  scale(Poly_Fatg) + scale(Mono_Fatg) +  
                                scale(Sodiummg) + scale(Potassiummg) + scale(DietaryFiberg) +  
                                scale(Sugars_g) + scale(TotalCarbsg) + scale(Proteing) +  
                                scale(VitsMinerals_NuVal),  
                              data = datalist) 
   
  scale_null_model <- lm(scale(NuValScore) ~ 1, data = datalist) 
   
  scale_stepwise <- step(scale_null_model, scope = list(upper = scale_full_model)) 
   
  summaries <- summary(stepwise) 
   
  require(broom)     
  df_coefficients <- tidy(stepwise) 
  df_betas <- tidy(scale_stepwise) 
  df_fstat <- bind_rows(summaries[["fstatistic"]]) 
   
############################################################ 
### Model Statistics ### 
   
#Adjusted R^2# 
NuValmodel_stats <- as.data.frame(rbind(summaries[9])) 
NuValmodel <- map_df(NuValmodel_stats, ~as.data.frame(.x), .id="NumberID") 
NuValmodel$NumberID <- 'NuVal' 
 
#R^2 included in person judgments in order to maintain individuals for whom  
#stepwise models could not be created in dataset, not needed here.  
 
#F-Statistics# 
NuValfstats <- bind_rows(df_fstat) 
NuValfstats$fstat <- NuValfstats$value 
NuValfstats$model_var <- NuValfstats$numdf 
NuValfstatVar <- c("fstat", "numdf", "dendf", "model_var") 
fstatistics <- NuValfstats[complete.cases(NuValfstats[, NuValfstatVar]), NuValfstatVar] 
 
#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_model <- merge(NuValmodel, fstatistics) 
stepwise_model <- as.data.frame(stepwise_model) 
 
#Computing p-values, assigning binary significance values# 
stepwise_model$pvalue<- pf(stepwise_model$fstat, stepwise_model$numdf, 
stepwise_model$dendf, lower.tail = FALSE)  
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stepwise_model$modelsig <- ifelse(stepwise_model$pvalue < .05, 1, 0) 
################################################################ 
 
#Creating dataframe for unstandardized coefficient estimates#  
coefficients <- bind_rows(df_coefficients) 
 
#Creating mergeable dataframe for standardized coefficient estimates# 
betas_mid <- bind_rows(df_betas) 
betas_mid$term2 <- gsub("scale\\(", "", betas_mid$term) 
betas_mid$term3 <- gsub("g[)]", "g", betas_mid$term2) 
betas_mid$term <- gsub("s[)]", "s", betas_mid$term3) 
 
betas_mid$beta <- betas_mid$estimate 
betaVar <- c("term", "beta") 
betas <- betas_mid[complete.cases(betas_mid[, betaVar]), betaVar] 
betas$beta_value <- ifelse(betas$term == '(Intercept)', NA, betas$beta) 
 
#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_coeff <- merge(coefficients, betas, by = c('term')) 
 
########Assigning Meta Values:####################################### 
 
#Significance values# 
stepwise_coeff$coeffsig <- ifelse(stepwise_coeff$p.value < .05, 1, 0) 
 
#Positive/negative betas# 
stepwise_coeff$coeffdirection <- ifelse(stepwise_coeff$beta > 0, 'positive', 'negative') 
 
#Ranking values# 
  coeff_data <- as.data.frame(stepwise_coeff) 
  coeff_data$rank <- rank(-abs(coeff_data$beta_value), na.last = FALSE, ties.method = 
"average") 
  coeff_data$adjrank <- coeff_data$rank - 1 
  final_stepwise_coeff <- bind_rows(coeff_data) 
 
#################################################################### 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(final_stepwise_coeff, file = 
"C:/Users/Kristina/Documents/NuVal_Onlyfinal_stepwise_coeff.csv") 
write.csv(stepwise_model, file = 
"C:/Users/Kristina/Documents/NuVal_Onlyfinal_stepwise_model.csv") 
 
 

All Subsets Analysis  
#install.packages("tidyverse") 
#install.packages("broom") 
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#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
#library(purrr) 
#library(dplyr) 
library(leaps) 
 
CerealLevel <- read_excel("~/Ohio University/Carter.FOP Study.Cereal Level Dataset 
Abbreviated.xlsx") 
 
SingleList <- (subset(CerealLevel, NumberID == 1)) 
 
NuValdfVar <- c("V1", "Cereal", "NuValScore", "RecordID", "NumberID", "Condition", 
"Setting", "UPC", "CerealNumber", "Calories", "Total_Fatg",                 
"Saturated_Fatg", "Poly_Fatg", "Mono_Fatg", "Sodiummg", "Potassiummg", 
"TotalCarbsg", "DietaryFiberg", "Sugars_g", "Proteing", "VitsMinerals_NuVal") 
 
NuValComplete <- SingleList[complete.cases(SingleList[, NuValdfVar]), NuValdfVar] 
 
rm(list = ls()[!ls()%in%c("NuValComplete")]) 
 
datalist <- list() 
resamples <- list() 
judgment_set <- list() 
leaps <- list() 
summary <- list() 
maxadjr2 <- list() 
variables1 <- list() 
variables2 <- list() 
variables3 <- list() 
coefficients1 <- list() 
coefficients2 <- list() 
bestmodel <- list() 
judge_bestmodels <- list() 
count <- list() 
 
bestfit <- list() 
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only_bestmodels <- list() 
 
modelsonly1 <- list() 
modelsonly2 <- list() 
modelsonly3 <- list() 
modelsonly4 <- list() 
freqmodel <- list() 
variable_importance <- list() 
num <- list() 
 
#####ENVIRONMENT ALL SUBSETS ANALYSIS########################### 
start <- 1    #number judge to begin at   
judges <- 1   #number of judges to include  
bootset <- 100000  #number of datasets to bootstrap 
######################################################################## 
 
#RUN BELOW AS SINGLE BLOCK:  
t1 <- Sys.time()  
set.seed(711) 
for(k in start:judges){  
  num[[k]] <- k 
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(NuValComplete, NumberID == k)) 
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(datalist[[k]], 74, replace = T)) 
  for(j in 1:bootset){  
    t3 <- Sys.time() 
    judgment_set[[j]] <- resamples[[k]][[j]] 
    leaps[[j]] <-  
      regsubsets(scale(NuValScore) ~ scale(Calories) + scale(Total_Fatg) + 
scale(Saturated_Fatg) +  scale(Poly_Fatg) + scale(Mono_Fatg) + scale(Sodiummg) + 
scale(Potassiummg) +  scale(DietaryFiberg) + scale(Sugars_g) +  
                   scale(TotalCarbsg) + scale(Proteing) + scale(VitsMinerals_NuVal),  
                 data = judgment_set[[j]], 
                 nbest = 1,       # 1 best model for each number of predictors 
                 nvmax = NULL,    # NULL for no limit on number of variables 
                 force.in = NULL, force.out = NULL, 
                 method = "exhaustive") 
    summary[[j]] <- summary(leaps[[j]]) 
    maxadjr2[[j]] <- which.max(summary[[j]]$adjr2) 
    variables1[[j]] <- map_df(summary[[j]]$which[maxadjr2[[j]],], ~as.data.frame(.x), 
.id="term") 
    variables1[[j]]$included <- variables1[[j]]$.x 
    variables2[[j]] <- variables1[[j]][-c(2)] 
    variables3[[j]] <- as.data.frame(subset(variables2[[j]])) 
    variables3[[j]]$adj.r.squared <- summary[[j]]$adjr2[maxadjr2[[j]]] 
    variables3[[j]]$inclusion <- ifelse(variables3[[j]]$included == TRUE, 1, 0) 
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    variables3[[j]]$modelcode <- paste0(variables3[[j]]$inclusion, collapse = "") 
    coefficients1[[j]] <- map_df(coef(leaps[[j]],maxadjr2[[j]],vcov=FALSE), 
~as.data.frame(.x), .id="term") 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$`coef(leaps[[j]], maxadjr2[[j]], vcov = 
FALSE)` 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$.x 
    coefficients2[[j]] <- coefficients1[[j]][-c(2)] 
     
    bestmodel[[j]] <- merge(variables3[[j]], coefficients2[[j]], by = "term") 
    modelsonly1[[j]] <- bestmodel[[j]][!duplicated(bestmodel[[j]]$modelcode),] 
     
    print(bootstrapset <- Sys.time()-t3) 
     
  } 
  modelsonly2[[k]] <- map_df(modelsonly1, ~as.data.frame(.x), .id="bootset1") 
  modelsonly3[[k]] <- count(modelsonly2[[k]], modelcode) 
  freqmodel[[k]] <- which.max(modelsonly3[[k]]$n) 
  modelsonly3[[k]]$bestfit <- modelsonly3[[k]]$modelcode[freqmodel[[k]]] 
  modelsonly4 <- map_df(modelsonly3, ~as.data.frame(.x), .id="NumberID") 
   
   
  judge_bestmodels[[k]] <- map_df(bestmodel, ~as.data.frame(.x), .id="bootset") 
  bestfit[[k]] <- merge(judge_bestmodels[[k]], modelsonly3[[k]], by = "modelcode") 
  bestfit[[k]]$bestmodel <- ifelse(bestfit[[k]]$modelcode == bestfit[[k]]$bestfit, TRUE, 
FALSE) 
  only_bestmodels[[k]] <- subset(bestfit[[k]], bestmodel == TRUE) 
  variable_importance[[k]] <- count(judge_bestmodels[[k]], term) 
  variable_importance[[k]]$frequency <- variable_importance[[k]]$n 
  variable_importance[[k]]$probability <- (variable_importance[[k]]$frequency)/(bootset) 
  print(judgeanalysis <- Sys.time()-t2) 
   
  complete_bootsets <- map_df(bestfit, ~as.data.frame(.x), .id="NumberID") 
  NuValcomplete_bootsets <- complete_bootsets[ 
    with(complete_bootsets, order(NumberID, bootset, term)), 
    ] 
   
  final_bestmodels <- map_df(only_bestmodels, ~as.data.frame(.x), .id="NumberID") 
  NuValfinal_bestmodels <- as.data.frame(final_bestmodels[ 
    with(final_bestmodels, order(NumberID, bootset, term)), 
    ]) 
   
   
  NuValpredictor_importance <- map_df(variable_importance, ~as.data.frame(.x), 
.id="NumberID") 
   
} 
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print(totalanalysis <- (Sys.time()-t1)) 
 
############################################################## 
##SAVING RESULTS Personal PC: PC1## 
write.csv(NuValpredictor_importance, file = "C:/Users/Kristina/Documents/NuVal_Only 
WITH BETA NuValpredictor_importance.csv") 
write.csv(NuValfinal_bestmodels, file = "C:/Users/Kristina/Documents/NuVal_Only 
WITH BETA NuValfinal_bestmodels.csv") 
write.csv(NuValcomplete_bootsets, file = "C:/Users/Kristina/Documents/NuVal_Only 
WITH BETA NuValcomplete_bootsets.csv") 
 
best_models <- list() 
bootset_model <- list() 
All_Subsets_Model <- list() 
term_model <- list() 
weights <- list() 
for(k in start:judges){  
  t2 <- Sys.time() 
  best_models[[k]] <- as.data.frame(subset(NuValfinal_bestmodels, NumberID == k)) 
  bootset_model[[k]] <- as.data.frame(subset(best_models[[k]], bootset == min(bootset))) 
   
  All_Subsets_Model[[k]] <- 
bootset_model[[k]][!duplicated(bootset_model[[k]]$NumberID),] 
   
  All_Subsets_Model[[k]]$model_var <- sum(bootset_model[[k]]$inclusion) - 1  
   
  All_Subsets_Model[[k]]$mean_adjR2 <- mean(best_models[[k]]$adj.r.squared) 
   
  term_model[[k]] <- split(best_models[[k]], best_models[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  All_Subsets_Model[[k]]$intercept_mean <- sum(ifelse(weights[[k]]$Predictor == 
'(Intercept)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$cal_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Calories)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$tfat_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Total_Fatg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$sfat_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Saturated_Fatg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$pfat_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Poly_Fatg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$mfat_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Mono_Fatg)', weights[[k]]$Mean, 0)) 
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  All_Subsets_Model[[k]]$sod_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Sodiummg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$potas_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Potassiummg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$dfiber_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(DietaryFiberg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$sugar_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Sugars_g)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$tcarb_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(TotalCarbsg)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$protein_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(Proteing)', weights[[k]]$Mean, 0)) 
  All_Subsets_Model[[k]]$vitmin_nuval_mean <- sum(ifelse(weights[[k]]$Predictor == 
'scale(VitsMinerals_NuVal)', weights[[k]]$Mean, 0)) 
   
} 
 
All_Subsets_Predictors_Included <- map_df(All_Subsets_Model, ~as.data.frame(.x), 
.id="NumberID") 
 
predictors <- c("NumberID", "model_var", "mean_adjR2", "intercept_mean", 
"cal_mean", "tfat_mean", "sfat_mean", "pfat_mean", "mfat_mean", "sod_mean", 
"potas_mean", "dfiber_mean", "sugar_mean", "tcarb_mean", "protein_mean", 
"vitmin_nuval_mean") 
 
NuVal_All_Subsets_Model <- 
All_Subsets_Predictors_Included[complete.cases(All_Subsets_Predictors_Included[, 
predictors]), predictors] 
 
write.csv(NuVal_All_Subsets_Model, file = "C:/Users/Kristina/Documents/NuVal_Only 
WITH BETA NuValAll_Subsets_Model.csv") 

Random Forest Analysis 

#install.packages("VSURF") 
#install.packages("randomForest") 
#install.packages("party") 
#install.packages("readxl") 
#install.packages("purrr") 
#install.packages("data.table") 
#install.packages("dplyr") 
 
rm(list = ls()) 
 
library(VSURF) 
library(randomForest) 
library(party) 
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library(readxl) 
library(purrr) 
library(data.table) 
library(dplyr) 
 
CerealLevel <- read_excel("~/Ohio University/Carter.FOP Study.Cereal Level Dataset 
Abbreviated.xlsx") 
 
SingleList <- (subset(CerealLevel, NumberID == 1)) 
NuValdfVar <- c("V1", "Cereal", "NuValScore", "RecordID", "NumberID", "Condition", 
"Setting", "UPC", "CerealNumber", "Calories", "Total_Fatg", "Saturated_Fatg", 
"Poly_Fatg", "Mono_Fatg", "Sodiummg", "Potassiummg", "TotalCarbsg", 
"DietaryFiberg", "Sugars_g", "Proteing", "VitsMinerals_NuVal") 
 
NuValComplete <- SingleList[complete.cases(SingleList[, NuValdfVar]), NuValdfVar] 
 
rm(list = ls()[!ls()%in%c("NuValComplete")]) 
 
datalist <- list() 
sample <- list() 
model_sample <- list() 
validate_sample <- list() 
VSURF.output <- list() 
predictor_num <- list() 
n <- list() 
actual <- list() 
predicted <- list() 
R2 <- list() 
adjR2 <- list() 
predictors <- list() 
thres_predictors <- list() 
var_imp <- list() 
 
correlate <- list() 
R2_predict <- list() 
MSE_predict <- list() 
PRESS_predict <- list() 
 
 
############RANDOM FOREST ENVIRONMENT ANALYSIS################# 
start <- 1 
judges <- 1 
############################################ 
 
############RUN BELOW AS SINGLE BLOCK########################### 
set.seed(711) 
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t1 <- Sys.time()  
for(k in start:judges){  
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(NuValComplete, NumberID == k)) 
   
  VSURF.output[[k]] <- VSURF(datalist[[k]][,10:21], datalist[[k]]$NuValScore, ntree = 
2000,  
                             mtry = max(floor(ncol(datalist[[k]][,10:21])/3), 1), 
                             nfor.thres = 50, nmin = 1, nfor.interp = 25, nsd = 1) 
   
   
  n[[k]] <- nrow(datalist[[k]]) #will need to change this to reflect actual number of 
judgments among participants 
  predictor_num[[k]] <- nrow(as.data.frame(VSURF.output[[k]]$varselect.interp)) 
   
  datalist[[k]]$actual <- datalist[[k]]$NuValScore 
  datalist[[k]]$predicted <- predict(VSURF.output[[k]], datalist[[k]], step = c("interp")) 
  R2[[k]] <- 1 - (sum((datalist[[k]]$actual-
datalist[[k]]$predicted)^2)/sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2)) 
  adjR2[[k]]  <- 1-((sum((datalist[[k]]$actual-datalist[[k]]$predicted)^2))/(n[[k]]-
predictor_num[[k]]-1))/((sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2))/n[[k]]-
1) 
   
  predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.interp) 
   
  predictors[[k]]$predictor_num <- predictors[[k]]$`VSURF.output[[k]]$varselect.interp` 
   
  predictors[[k]]$term <- colnames(datalist[[k]])[9+predictors[[k]]$predictor_num] 
  predictors[[k]] <- subset(predictors[[k]], select = -1) 
  predictors[[k]]$rank <- row.names(predictors[[k]]) 
   
  included_predictors <- map_df(predictors, ~as.data.frame(.x), .id="NumberID") 
   
  thres_predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.thres) 
  thres_predictors[[k]]$predictor_num <- 
thres_predictors[[k]]$`VSURF.output[[k]]$varselect.thres` 
  thres_predictors[[k]]$term <- 
colnames(datalist[[k]])[9+thres_predictors[[k]]$predictor_num] 
  thres_predictors[[k]] <- select(thres_predictors[[k]], -1)   
  thres_predictors[[k]]$var_importance <- VSURF.output[[k]]$imp.varselect.thres 
  thres_predictors[[k]]$rank <- row.names(thres_predictors[[k]]) 
  threshold_step <- map_df(thres_predictors, ~as.data.frame(.x), .id="NumberID") 
   
  var_imp[[k]] <- as.data.frame(VSURF.output[[k]]$imp.mean.dec.ind) 
  var_imp[[k]]$predictor_num <- var_imp[[k]]$`VSURF.output[[k]]$imp.mean.dec.ind` 
  var_imp[[k]]$term <- colnames(datalist[[k]])[9+var_imp[[k]]$predictor_num] 
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  var_imp[[k]] <- select(var_imp[[k]], -1)   
  var_imp[[k]]$var_importance <- VSURF.output[[k]]$imp.mean.dec 
  var_imp[[k]]$rank <- row.names(var_imp[[k]]) 
 
  var_importance <- map_df(var_imp, ~as.data.frame(.x), .id="NumberID") 
   
  print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(included_predictors, file = "C:/Users/Kristina/Documents/NuVal_Only 
Random Forest Final Predictors.csv") 
write.csv(threshold_step, file = "C:/Users/Kristina/Documents/NuVal_Only Random 
Forest Threshold Predictors.csv") 
write.csv(var_importance, file = "C:/Users/Kristina/Documents/NuVal_Only Analysis 
Random Forest Variable Importance.csv") 
 
############################################### 
#Model Statistics# 
R2_model <- map_df(R2, ~as.data.frame(.x), .id = "NumberID") 
R2_model$R2_model <- R2_model$.x 
R2_model <- select(R2_model, -2) 
 
adjR2_model <- map_df(adjR2, ~as.data.frame(.x), .id = "NumberID") 
adjR2_model$adjrR2 <- adjR2_model$.x 
adjR2_model <- select(adjR2_model, -2) 
 
### Merging Model Stats ### 
R_model_stats <- merge(R2_model, adjR2_model, by = c('NumberID'), all.x = TRUE) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(R_model_stats, file = "C:/Users/Kristina/Documents/NuVal_Only Random 
Forest Model Stats.csv") 
 

Study One Analyses R Code 

Splitting Observed Data into Modeling and Validating Sub-Samples  

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
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rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(data.table) 
 
#Data from Personal PC: PC1 
CerealLevel <- read_excel("~/Ohio University/Carter.FOP Study.Cereal Level Dataset 
Abbreviated.xlsx") 
 
dfVar <- c("V1", "Cereal", "Judgment", "RecordID", "NumberID", "Condition", 
"Setting", "UPC", "CerealNumber", "Calories", "Calories_Fat", "Total_Fatg",  
"Saturated_Fatg", "Trans_Fatg", "Poly_Fatg", "Mono_Fatg", "Cholesterolmg", 
"Sodiummg", "Potassiummg", "TotalCarbsg", "DietaryFiberg", "Soluble_Fiberg", 
"Insoluble_Fiberg", "Sugars_g", "Other_Carbsg", "Proteing", "VitsMinerals") 
 
CLComplete <- CerealLevel[complete.cases(CerealLevel[, dfVar]), dfVar] 
CLComplete <- as.data.frame(CLComplete[with(CLComplete, order(NumberID, 
Judgment)),]) 
 
rm(list = ls()[!ls()%in%c("CLComplete")]) 
 
datalist <- list() 
sample <- list() 
model_sample <- list() 
validate_sample <- list() 
 
t1 <- Sys.time()  
set.seed(71118) 
for(k in 1:298){ 
  #set.seed(711) 
  datalist[[k]] <- as.data.frame(subset(CLComplete, NumberID == k)) 
  datalist[[k]] 
  sample[[k]] <- sample.int(n = nrow(datalist[[k]]), size = floor(40), replace = F) 
  model_sample[[k]] <- datalist[[k]][sample[[k]], ] 
  validate_sample[[k]] <- datalist[[k]][-sample[[k]], ] 
 
  model_samples <- map_df(model_sample, ~as.data.frame(.x), .id="NumberID") 
  model_samples <- as.data.frame(model_samples[ 
    with(model_samples, order(NumberID, Cereal)), 
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    ]) 
   
  validate_samples <- map_df(validate_sample, ~as.data.frame(.x), .id="NumberID") 
  validate_samples <- as.data.frame(validate_samples[ 
    with(validate_samples, order(NumberID, Cereal)), 
    ]) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
write.csv(model_samples, file = "C:/Users/Kristina/Documents/CV Model Samples.csv") 
write.csv(validate_samples, file = "C:/Users/Kristina/Documents/CV Validate 
Samples.csv") 
 

Stepwise Regression Analysis 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("lm.beta") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(lm.beta) 
 
 
ModelSample<- read.csv(file="C:/Users/Kristina/Documents/CV Model Samples.csv", 
header=TRUE, sep=",") 
ModelSample <- as.data.frame(ModelSample[with(ModelSample, order(NumberID, 
Judgment)),]) 
 
ValidateSample<- read.csv(file="C:/Users/Kristina/Documents/CV Validate 
Samples.csv", header=TRUE, sep=",") 
ValidateSample <- as.data.frame(ValidateSample[with(ValidateSample, 
order(NumberID, Judgment)),]) 
 
full_model <- list() 
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null_model <- list() 
stepwise <- list() 
summaries <- list() 
list_names <- list() 
df_coefficients <- list() 
df_betas <- list() 
df_fstat <- list() 
scale_full_model <- list() 
scale_null_model <- list() 
scale_stepwise <- list() 
sample <- list() 
model_sample <- list() 
validate_sample <- list() 
predict <- list() 
correlate <- list() 
R2_predict <- list() 
MSE_predict <- list() 
PRESS_predict <- list() 
 
 
#########CROSS VALIDATED STEPWISE ANALYSIS################ 
start <- 1 
judges <- 298  #number of judges to include  
 
##### RUN BELOW TILL BREAK AS SINGLE BLOCK####################### 
set.seed(101518) 
t1 <- Sys.time()  
for(i in start:judges){ 
 t2 <- Sys.time() 
  index <- start - 1  
 
  model_sample[[i]] <- as.data.frame(subset(ModelSample, NumberID == i)) 
  validate_sample[[i]] <- as.data.frame(subset(ValidateSample, NumberID == i)) 
   
  full_model[[i]] <- lm(Judgment ~ Calories + Calories_Fat + Total_Fatg + 
Saturated_Fatg + Poly_Fatg + Mono_Fatg + Sodiummg + Potassiummg +  
DietaryFiberg + Soluble_Fiberg + Insoluble_Fiberg + Sugars_g +  
TotalCarbsg + Other_Carbsg + Proteing + VitsMinerals,  
                          data = model_sample[[i]]) 
   
  null_model[[i]] <- lm(Judgment ~ 1, data = model_sample[[i]]) 
   
  stepwise[[i]] <- step(null_model[[i]], scope = list(upper = full_model[[i]])) 
   
scale_full_model[[i]] <- lm(scale(Judgment) ~ scale(Calories) + scale(Calories_Fat) + 
scale(Total_Fatg) + scale(Saturated_Fatg) +  scale(Poly_Fatg) + scale(Mono_Fatg) +  
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scale(Sodiummg) + scale(Potassiummg) + scale(DietaryFiberg) + scale(Soluble_Fiberg) 
+ scale(Insoluble_Fiberg) + scale(Sugars_g) + scale(TotalCarbsg) + scale(Other_Carbsg) 
+ scale(Proteing) + scale(VitsMinerals),  
                                data = model_sample[[i]]) 
   
scale_null_model[[i]] <- lm(scale(Judgment) ~ 1, data = model_sample[[i]]) 
   
scale_stepwise[[i]] <- step(scale_null_model[[i]], scope = list(upper = 
scale_full_model[[i]])) 
   
  summaries[[i]] <- summary(stepwise[[i]]) 
  list_names[[i]] <- paste0("ID_", unique(model_sample[[i]]$NumberID)) 
   
  require(broom)     
  df_coefficients[[i]] <- tidy(stepwise[[i]]) 
  df_betas[[i]] <- tidy(scale_stepwise[[i]]) 
  df_fstat[[i]] <- as.data.frame((summaries[[i]][["r.squared"]])) 
  colnames(df_fstat[[i]]) <- "r.squared" 
  df_fstat[[i]]$value <- ifelse(is_empty(summaries[[i]]$fstatistic[[1]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[1]]) 
  df_fstat[[i]]$numdf <- ifelse(is_empty(summaries[[i]]$fstatistic[[2]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[2]]) 
  df_fstat[[i]]$dendf <- ifelse(is_empty(summaries[[i]]$fstatistic[[3]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[3]]) 
   
   
  validate_sample[[i]]$predict <- predict(stepwise[[i]], validate_sample[[i]], se.fit = 
FALSE, 
                          scale = NULL, df = Inf, 
                          interval = c("none", "confidence", "prediction"), 
                          level = 0.95, type = c("response", "terms"),  
                          terms = NULL, na.action = na.pass,  
                          pred.var = res.var/weights, weights = 1) 
   
  correlate[[i]] <- cor(x = validate_sample[[i]]$Judgment,  
                        y = validate_sample[[i]]$predict, method="pearson") 
   
  R2_predict[[i]] <- (correlate[[i]]^2) 
   
  MSE_predict[[i]] <- ((sum((validate_sample[[i]]$Judgment - 
validate_sample[[i]]$predict)^2))/ 
                        (nrow(validate_sample[[i]]))) 
   
  PRESS_predict[[i]]<- (sum((validate_sample[[i]]$Judgment - 
validate_sample[[i]]$predict)^2)) 
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  test_sample <- map_df(validate_sample, ~as.data.frame(.x), .id="NumberID") 
  test_sample$NumberID <- as.numeric(test_sample$NumberID) + index  
   
 print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(test_sample, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-", 
judges, " CV Final Stepwise Validate Sample.csv", sep = "")) 
 
######################################################################## 
 
### Cross-Validated R #### 
Rpredict <- map_df(correlate, ~as.data.frame(.x), .id="NumberID") 
Rpredict$R_test<- Rpredict$.x 
Rpredict <- select(Rpredict, -2) 
 
### Cross-Validated R2 ### 
R2predict <- map_df(R2_predict, ~as.data.frame(.x), .id="NumberID") 
R2predict$R2_test<- R2predict$.x 
R2predict <- select(R2predict, -2) 
 
### Cross-Validated MSE ### 
MSEpredict <- map_df(MSE_predict, ~as.data.frame(.x), .id="NumberID") 
MSEpredict$MSE_test<- MSEpredict$.x 
MSEpredict <- select(MSEpredict, -2) 
 
### Cross-Validated PRESS ### 
PRESSpredict <- map_df(PRESS_predict, ~as.data.frame(.x), .id="NumberID") 
PRESSpredict$PRESS_test<- PRESSpredict$.x 
PRESSpredict <- select(PRESSpredict, -2) 
 
### Merging Cross-Validated Stats ### 
R_test_stats <- merge(Rpredict, R2predict, by = c('NumberID'), all.x = TRUE) 
Error_test_stats <- merge(MSEpredict, PRESSpredict, by = c('NumberID'), all.x = 
TRUE) 
cv_stats <- merge(R_test_stats, Error_test_stats, by = c('NumberID'), all.x = TRUE) 
 
### Adjusted R^2 ### 
model_stats <- rbind(lapply(summaries, `[`, 9)) 
model <- map_df(model_stats, ~as.data.frame(.x), .id="NumberID") 
 
### F-Statistics ### 
fstats <- bind_rows(df_fstat, .id = 'NumberID') 
fstats$fstat <- fstats$value 
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fstatVar <- c("NumberID", "fstat", "numdf", "dendf") 
fstatistics <- fstats[complete.cases(fstats[, fstatVar]), fstatVar] 
 
### Merging extracted model stats together ### 
extracted_stats <- merge(model, fstatistics, by = c('NumberID'), all.x = TRUE) 
 
### Merging extracted and test model stats ### 
stepwise_model <- merge(cv_stats, extracted_stats, by = c('NumberID'), all.x = TRUE) 
 
### Computing p-values, assigning binary significance values ### 
stepwise_model$pvalue<- pf(stepwise_model$fstat, stepwise_model$numdf, 
stepwise_model$dendf, lower.tail = FALSE)  
stepwise_model$modelsig <- ifelse(stepwise_model$pvalue < .05, 1, 0) 
 
 
stepwise_model$NumberID <- as.numeric(stepwise_model$NumberID) + index 
 
################################################################ 
### Creating dataframe for unstandardized coefficient estimates ### 
coefficients <- bind_rows(df_coefficients, .id = 'NumberID') 
 
### Creating mergeable dataframe for standardized coefficient estimates ### 
betas_mid <- bind_rows(df_betas, .id = 'NumberID') 
betas_mid$term2 <- gsub("scale\\(", "", betas_mid$term) 
betas_mid$term3 <- gsub("g[)]", "g", betas_mid$term2) 
betas_mid$term4 <- gsub("s[)]", "s", betas_mid$term3) 
betas_mid$term5 <- gsub("t[)]", "t", betas_mid$term4) 
betas_mid$term <- gsub("[(]Intercept", "(Intercept)", betas_mid$term5) 
 
betas_mid$beta <- betas_mid$estimate 
betaVar <- c("NumberID", "term", "beta") 
betas <- betas_mid[complete.cases(betas_mid[, betaVar]), betaVar] 
betas$beta_value <- ifelse(betas$term == '(Intercept)', NA, betas$beta) 
 
### Merging standardized coefficient estimates with larger coefficient dataframe ### 
stepwise_coeff <- merge(coefficients, betas, by = c('NumberID', 'term')) 
 
### Assigning meta values ### 
#Significance values# 
stepwise_coeff$coeffsig <- ifelse(stepwise_coeff$p.value < .05, 1, 0) 
#Positive/negative betas 
stepwise_coeff$coeffdirection <- ifelse(stepwise_coeff$beta > 0, 'positive', 'negative') 
stepwise_coeff$NumberID <- as.numeric(stepwise_coeff$NumberID) + index 
 
#Ranking values# 
coeff_data <- list() 
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for(i in start:judges){ 
  coeff_data[[i]] <- as.data.frame(subset(stepwise_coeff, NumberID == i)) 
  coeff_data[[i]]$rank <- rank(-abs(coeff_data[[i]]$beta_value), na.last = FALSE, 
ties.method = "average") 
  coeff_data[[i]]$adjrank <- coeff_data[[i]]$rank - 1 
  final_stepwise_coeff <- bind_rows(coeff_data) 
} 
 
final_model <- as.data.frame(subset(final_stepwise_coeff)) 
predictors <- c("NumberID", "term") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
predictorlist <- list() 
for(i in start:judges){  
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, NumberID == i)) 
  predictorlist[[i]]$Count <- (nrow(predictorlist[[i]]))-1 
} 
 
final_model_predictors <- map_df(predictorlist, ~as.data.frame(.x), .id="NumberID") 
 
#Adding Predictor Count to File# 
final_model <- as.data.frame(subset(final_stepwise_coeff)) 
predictors <- c("NumberID", "term") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
stepmodel <- list() 
predictorlist <- list() 
for(i in 1:judges){  
  stepmodel[[i]] <- as.data.frame(subset(stepwise_model, NumberID == i)) 
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, NumberID == i)) 
  predictorlist[[i]]$Count <- (nrow(predictorlist[[i]]))-1 
  stepmodel[[i]]$model_var <- (nrow(predictorlist[[i]]))-1 
} 
 
stepwise_model <- map_df(stepmodel, ~as.data.frame(.x), .id="NumberID") 
final_model_predictors <- map_df(predictorlist, ~as.data.frame(.x), .id="NumberID") 
 
#################################################################### 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(final_stepwise_coeff, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-
", judges, " CV Final Stepwise Coefficients.csv", sep = "")) 
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write.csv(final_model_predictors, file = paste0("C:/Users/Kristina/Documents/IDs", start, 
"-", judges, " CV Final Stepwise Model Predictors.csv", sep = "")) 
write.csv(stepwise_model, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-", 
judges, " CV Final Stepwise Model.csv", sep = "")) 
 

All Subsets Analysis 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(data.table) 
 
 
#Data from Personal PC: PC1 
CerealLevel <- read_excel("~/Ohio University/Carter.FOP Study.Cereal Level Dataset 
Abbreviated.xlsx") 
 
ModelSample<- read.csv(file="C:/Users/Kristina/Documents/Model Samples2.csv", 
header=TRUE, sep=",") 
ModelSample <- as.data.frame(ModelSample[with(ModelSample, order(NumberID, 
Judgment)),]) 
 
ValidateSample<- read.csv(file="C:/Users/Kristina/Documents/Validate Samples.csv", 
header=TRUE, sep=",") 
ValidateSample <- as.data.frame(ValidateSample[with(ValidateSample, 
order(NumberID, Judgment)),]) 
 
################ALL SUBSETS ANALYSIS FUNCTION###################### 
all_subsets <- function(last, group, end, bootset){  
   
  rm(list = ls()[!ls()%in%c("CLComplete", "all_subsets", "tfunc", "last", "group", "end", 
"bootset")]) 
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  t1 <- Sys.time() 
   
  sample <- list() 
  model_sample <- list() 
  validate_sample <- list() 
   
  resamples <- list() 
  judgment_set <- list() 
  leaps <- list() 
  summary <- list() 
  maxadjr2 <- list() 
  variables1 <- list() 
  variables2 <- list() 
  variables3 <- list() 
  coefficients1 <- list() 
  coefficients2 <- list() 
  bestmodel <- list() 
  judge_bestmodels <- list() 
  count <- list() 
   
  bestfit <- list() 
  only_bestmodels <- list() 
   
  modelsonly1 <- list() 
  modelsonly2 <- list() 
  modelsonly3 <- list() 
  modelsonly4 <- list() 
  freqmodel <- list() 
  variable_importance <- list() 
   
start <- ifelse((1 + last <= end), (1 + last), end) 
judges <- ifelse((last + group <= end), (last + group), end) 
 
#set.seed(711) 
for(k in start:judges){ 
  #set.seed(711) 
  index <- start - 1  
  t2 <- Sys.time() 
  #datalist[[k]] <- as.data.frame(subset(CLComplete, NumberID == k)) 
   
  model_sample[[k]] <- as.data.frame(subset(ModelSample, NumberID == k)) 
  validate_sample[[k]] <- as.data.frame(subset(ValidateSample, NumberID == k)) 
   
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(model_sample[[k]], 40, replace 
= T)) 



190 
 

   
  for(j in 1:bootset){  
    #set.seed(711) 
    t3 <- Sys.time() 
    judgment_set[[j]] <- resamples[[k]][[j]] 
    leaps[[j]] <-  
      regsubsets(Judgment ~ Calories + Calories_Fat + Total_Fatg + Saturated_Fatg + 
                   Poly_Fatg + Mono_Fatg + Sodiummg + Potassiummg +  
                   DietaryFiberg + Soluble_Fiberg + Insoluble_Fiberg + Sugars_g +  
                   TotalCarbsg + Other_Carbsg + Proteing + VitsMinerals,  
                 data = judgment_set[[j]], 
                 nbest = 1,       # 1 best model for each number of predictors 
                 nvmax = NULL,    # NULL for no limit on number of variables 
                 force.in = NULL, force.out = NULL, 
                 method = "exhaustive")  
    summary[[j]] <- summary(leaps[[j]]) 
    maxadjr2[[j]] <- which.max(summary[[j]]$adjr2) 
    variables1[[j]] <- map_df(summary[[j]]$which[maxadjr2[[j]],], ~as.data.frame(.x), 
.id="term") 
    variables1[[j]]$included <- variables1[[j]]$.x 
    variables2[[j]] <- variables1[[j]][-c(2)] 
    variables3[[j]] <- as.data.frame(subset(variables2[[j]])) 
    variables3[[j]]$adj.r.squared <- summary[[j]]$adjr2[maxadjr2[[j]]] 
    variables3[[j]]$inclusion <- ifelse(variables3[[j]]$included == TRUE, 1, 0) 
    variables3[[j]]$modelcode <- paste0(variables3[[j]]$inclusion, collapse = "") 
    coefficients1[[j]] <- map_df(coef(leaps[[j]],maxadjr2[[j]],vcov=FALSE), 
~as.data.frame(.x), .id="term") 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$`coef(leaps[[j]], maxadjr2[[j]], vcov = 
FALSE)` 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$.x 
    coefficients2[[j]] <- coefficients1[[j]][-c(2)] 
     
    bestmodel[[j]] <- merge(variables3[[j]], coefficients2[[j]], by = "term") 
    modelsonly1[[j]] <- bestmodel[[j]][!duplicated(bestmodel[[j]]$modelcode),] 
     
    print(bootstrapset <- Sys.time()-t3) 
     
  } 
   
  modelsonly2[[k]] <- map_df(modelsonly1, ~as.data.frame(.x), .id="bootset1") 
  modelsonly3[[k]] <- count(modelsonly2[[k]], modelcode) 
  freqmodel[[k]] <- which.max(modelsonly3[[k]]$n) 
  modelsonly3[[k]]$bestfit <- modelsonly3[[k]]$modelcode[freqmodel[[k]]] 
  modelsonly4 <- map_df(modelsonly3, ~as.data.frame(.x), .id="NumberID") 
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  judge_bestmodels[[k]] <- map_df(bestmodel, ~as.data.frame(.x), .id="bootset") 
  bestfit[[k]] <- merge(judge_bestmodels[[k]], modelsonly3[[k]], by = "modelcode") 
  bestfit[[k]]$bestmodel <- ifelse(bestfit[[k]]$modelcode == bestfit[[k]]$bestfit, TRUE, 
FALSE) 
  only_bestmodels[[k]] <- subset(bestfit[[k]], bestmodel == TRUE) 
  variable_importance[[k]] <- count(judge_bestmodels[[k]], term) 
  variable_importance[[k]]$frequency <- variable_importance[[k]]$n 
  variable_importance[[k]]$probability <- (variable_importance[[k]]$frequency)/(bootset) 
  print(judgeanalysis <- Sys.time()-t2) 
   
  #Commented code here can enable complete boosets files to be saved 
  #complete_bootsets <- map_df(bestfit, ~as.data.frame(.x), .id="NumberID") 
  #complete_bootsets <- complete_bootsets[ 
   # with(complete_bootsets, order(NumberID, bootset, term)), 
    #] 
  #complete_bootsets$NumberID <- as.numeric(complete_bootsets$NumberID) + index 
   
  final_bestmodels <- map_df(only_bestmodels, ~as.data.frame(.x), .id="NumberID") 
  final_bestmodels <- as.data.frame(final_bestmodels[ 
    with(final_bestmodels, order(NumberID, bootset, term)), 
    ]) 
  final_bestmodels$NumberID <- as.numeric(final_bestmodels$NumberID) + index 
   
    predictor_importance <- map_df(variable_importance, ~as.data.frame(.x), 
.id="NumberID") 
  predictor_importance$NumberID <- as.numeric(predictor_importance$NumberID) + 
index 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
 
###SAVE RELEVANT FILES  
##SAVING ON PERSONAL PC: PC1###. 
write.csv(final_bestmodels, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-", 
judges, " All Subsets final_bootsets.csv", sep = "")) 
write.csv(predictor_importance, file = paste0("C:/Users/Kristina/Documents/IDs", start, 
"-", judges, " All Subsets predictor_importance.csv", sep = "")) 
 
modelVar <- c("NumberID", "term", "estimate") 
 
model_estimates <- final_bestmodels[complete.cases(final_bestmodels[, modelVar]), 
modelVar] 
 
person_model <- list() 
term_model <- list() 
weights <- list() 
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intercept <- list() 
cal_b <- list() 
calf_b <- list() 
tfat_b <- list() 
sfat_b <- list() 
pfat_b <- list() 
mfat_b <- list() 
sod_b <- list() 
potas_b <- list() 
dfiber_b <- list() 
sfiber_b <- list() 
ifiber_b <- list()  
sugar_b <- list() 
tcarb_b <- list() 
ocarb_b <- list() 
protein_b <- list() 
vitmin_b <- list() 
 
correlate <- list() 
R2_predict <- list() 
MSE_predict <- list() 
PRESS_predict <- list() 
cross_validation <- list() 
 
 
t1a <- Sys.time()  
for(k in start:judges){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, NumberID == k)) 
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  intercept[[k]] <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', weights[[k]]$Mean, 
0)) 
  cal_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Calories', weights[[k]]$Mean, 0)) 
  calf_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', weights[[k]]$Mean, 
0)) 
  tfat_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', weights[[k]]$Mean, 0)) 
  sfat_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 
weights[[k]]$Mean, 0)) 
  pfat_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', weights[[k]]$Mean, 0)) 
  mfat_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', weights[[k]]$Mean, 
0)) 
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  sod_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', weights[[k]]$Mean, 0)) 
  potas_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 
weights[[k]]$Mean, 0)) 
  dfiber_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 
weights[[k]]$Mean, 0)) 
  sfiber_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  ifiber_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  sugar_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', weights[[k]]$Mean, 
0)) 
  tcarb_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', weights[[k]]$Mean, 
0)) 
  ocarb_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 
weights[[k]]$Mean, 0)) 
  protein_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', weights[[k]]$Mean, 
0)) 
  vitmin_b[[k]] <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 
weights[[k]]$Mean, 0)) 
   
   validate_sample[[k]]$predict <- intercept[[k]] + 
cal_b[[k]]*validate_sample[[k]]$Calories +  
    calf_b[[k]]*validate_sample[[k]]$Calories_Fat + 
tfat_b[[k]]*validate_sample[[k]]$Total_Fatg +  
    sfat_b[[k]]*validate_sample[[k]]$Saturated_Fatg + 
pfat_b[[k]]*validate_sample[[k]]$Poly_Fatg +  
    mfat_b[[k]]*validate_sample[[k]]$Mono_Fatg + 
sod_b[[k]]*validate_sample[[k]]$Sodiummg +  
    potas_b[[k]]*validate_sample[[k]]$Potassiummg + 
dfiber_b[[k]]*validate_sample[[k]]$DietaryFiberg +  
    sfiber_b[[k]]*validate_sample[[k]]$Soluble_Fiberg + 
ifiber_b[[k]]*validate_sample[[k]]$Insoluble_Fiberg +  
    sugar_b[[k]]*validate_sample[[k]]$Sugars_g + 
tcarb_b[[k]]*validate_sample[[k]]$TotalCarbsg + 
    ocarb_b[[k]]*validate_sample[[k]]$Other_Carbsg + 
protein_b[[k]]*validate_sample[[k]]$Proteing +  
    vitmin_b[[k]]*validate_sample[[k]]$VitsMinerals 
   
  correlate[[k]] <- cor(x = validate_sample[[k]]$Judgment, 
                        y = validate_sample[[k]]$predict, method = "pearson") 
   
  R2_predict[[k]] <- (correlate[[k]]^2) 
   
  MSE_predict[[k]] <- ((sum((validate_sample[[k]]$Judgment - 
validate_sample[[k]]$predict)^2))/ 
                         (nrow(validate_sample[[k]])))  
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  PRESS_predict[[k]] <- (sum(validate_sample[[k]]$Judgment - 
validate_sample[[k]]$predict)^2) 
   
  cross_validation <- map_df(validate_sample, ~as.data.frame(.x), .id="NumberID") 
  cross_validation$NumberID <- as.numeric(cross_validation$NumberID) + index 
 } 
 
######################################################################## 
 
### Cross-Validated R ### 
Rpredict <- map_df(correlate, ~as.data.frame(.x), .id = "NumberID") 
Rpredict$R_test <- Rpredict$.x 
Rpredict <- select(Rpredict, -2) 
 
### Cross-Validated R2 ### 
R2predict <- map_df(R2_predict, ~as.data.frame(.x), .id = "NumberID") 
R2predict$R2_test <- R2predict$.x 
R2predict <- select(R2predict, -2) 
 
### Cross-Validated MSE ### 
MSEpredict <- map_df(MSE_predict, ~as.data.frame(.x), .id = "NumberID") 
MSEpredict$MSE_test <- MSEpredict$.x 
MSEpredict <- select(MSEpredict, -2) 
 
### Cross-Validated PRESS ### 
PRESSpredict <- map_df(PRESS_predict, ~as.data.frame(.x), .id="NumberID") 
PRESSpredict$PRESS_test<- PRESSpredict$.x 
PRESSpredict <- select(PRESSpredict, -2) 
 
### Merging Cross-Validated Stats ### 
R_test_stats <- merge(Rpredict, R2predict, by = c('NumberID'), all.x = TRUE) 
Error_test_stats <- merge(MSEpredict, PRESSpredict, by = c('NumberID'), all.x = 
TRUE) 
all_subsets_model <- merge(R_test_stats, Error_test_stats, by = c('NumberID'), all.x = 
TRUE) 
all_subsets_model$NumberID <- as.numeric(all_subsets_model$NumberID) + index 
 
 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(cross_validation, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-", 
judges, " All Subsets Cross Validation.csv", sep = "")) 
write.csv(all_subsets_model, file = paste0("C:/Users/Kristina/Documents/IDs", start, "-", 
judges, " All Subsets Model Outcomes.csv", sep = "")) 
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print(cross_validated <- (Sys.time()-t1a)) 
 
} 
 
###########RUN ALL SUBSETS ANALYSIS FUNCTION###################### 
set.seed(1015) 
last <- seq.int(0, 300, by = 10)#by should be same size as group,indicates how many 
participants to increase by at next cycle  
 
for(a in last){ 
tfunc <- Sys.time()  
all_subsets(last=a, group = 10, end = 298, bootset = 100000) 
print(totalanalysis <- (Sys.time()-tfunc)) 
} 
######################################################################## 
 

Random Forest Analysis  

#install.packages("VSURF") 
#install.packages("randomForest") 
#install.packages("party") 
#install.packages("readxl") 
#install.packages("purrr") 
#install.packages("data.table") 
#install.packages("dplyr") 
 
rm(list = ls()) 
 
library(VSURF) 
library(randomForest) 
library(party) 
library(readxl) 
library(purrr) 
library(data.table) 
library(dplyr) 
 
ModelSample<- read.csv(file="C:/Users/Kristina/Documents/CV Model Samples.csv", 
header=TRUE, sep=",") 
ModelSample <- as.data.frame(ModelSample[with(ModelSample, order(NumberID, 
Judgment)),]) 
 
ValidateSample<- read.csv(file="C:/Users/Kristina/Documents/CV Validate 
Samples.csv", header=TRUE, sep=",") 
ValidateSample <- as.data.frame(ValidateSample[with(ValidateSample, 
order(NumberID, Judgment)),]) 
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ModelSample <- subset(ModelSample, select=-c(Trans_Fatg,Cholesterolmg)) 
####################################### 
sample <- list() 
model_sample <- list() 
validate_sample <- list() 
VSURF.output <- list() 
predictor_num <- list() 
n <- list() 
actual <- list() 
predicted <- list() 
R2 <- list() 
adjR2 <- list() 
predictors <- list() 
correlate <- list() 
R2_predict <- list() 
MSE_predict <- list() 
PRESS_predict <- list() 
 
#############CROSS VALIDATED RANDOM FOREST ANALYSIS############ 
start <- 1   
judges <- 298 
############################################## 
 
 
############RUN BELOW AS SINGLE BLOCK########################### 
set.seed(101518) 
t1 <- Sys.time()  
for(k in start:judges){  
  t2 <- Sys.time() 
   
  model_sample[[k]] <- as.data.frame(subset(ModelSample, NumberID == k)) 
  validate_sample[[k]] <- as.data.frame(subset(ValidateSample, NumberID == k)) 
   
  VSURF.output[[k]] <- VSURF(model_sample[[k]][,12:27], 
model_sample[[k]]$Judgment, ntree = 2000,  
                        mtry = max(floor(ncol(model_sample[[k]][,12:27])/3), 1), 
                        nfor.thres = 50, nmin = 1, nfor.interp = 25, nsd = 1) 
 
  validate_sample[[k]]$predict <- predict(VSURF.output[[k]], validate_sample[[k]], step 
= c("interp")) 
   
  n[[k]] <- nrow(model_sample[[k]])  
  predictor_num[[k]] <- nrow(as.data.frame(VSURF.output[[k]]$varselect.interp)) 
   
  model_sample[[k]]$actual <- model_sample[[k]]$Judgment 
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  model_sample[[k]]$predicted <- predict(VSURF.output[[k]], model_sample[[k]], step = 
c("interp")) 
  R2[[k]] <- 1 - (sum((model_sample[[k]]$actual-
model_sample[[k]]$predicted)^2)/sum((model_sample[[k]]$actual-
mean(model_sample[[k]]$actual))^2)) 
  adjR2[[k]]  <- 1-((sum((model_sample[[k]]$actual-
model_sample[[k]]$predicted)^2))/(n[[k]]-predictor_num[[k]]-
1))/((sum((model_sample[[k]]$actual-mean(model_sample[[k]]$actual))^2))/n[[k]]-1) 
   
  predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.interp) 
    
  predictors[[k]]$predictor_num <- predictors[[k]]$`VSURF.output[[k]]$varselect.interp` 
 
  predictors[[k]]$term <- 
colnames(model_sample[[k]])[11+predictors[[k]]$predictor_num] 
  predictors[[k]] <- subset(predictors[[k]], select = -1) 
   
  predictors[[k]]$rank <- row.names(predictors[[k]]) 
  predictors[[k]]$count <- nrow(predictors[[k]]) 
   
  included_predictors <- map_df(predictors, ~as.data.frame(.x), .id="NumberID") 
     
  correlate[[k]] <- cor(x = validate_sample[[k]]$Judgment, 
                        y = validate_sample[[k]]$predict, method = "pearson") 
   
  R2_predict[[k]] <- (correlate[[k]]^2) 
   
  MSE_predict[[k]] <- ((sum((validate_sample[[k]]$Judgment - 
validate_sample[[k]]$predict)^2))/ 
                         (nrow(validate_sample[[k]])))  
   
  PRESS_predict[[k]] <- (sum(validate_sample[[k]]$Judgment - 
validate_sample[[k]]$predict)^2) 
   
  cross_validation <- map_df(validate_sample, ~as.data.frame(.x), .id="NumberID") 
   
  print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(included_predictors, file = "C:/Users/Kristina/Documents/Random Forest Final 
Predictors.csv") 
write.csv(cross_validation, file = "C:/Users/Kristina/Documents/Random Forest Validate 
Sample.csv") 
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############################################### 
### Model Statistics ### 
R2_model <- map_df(R2, ~as.data.frame(.x), .id = "NumberID") 
R2_model$R2_model <- R2_model$.x 
R2_model <- select(R2_model, -2) 
 
adjR2_model <- map_df(adjR2, ~as.data.frame(.x), .id = "NumberID") 
adjR2_model$adjrR2 <- adjR2_model$.x 
adjR2_model <- select(adjR2_model, -2) 
 
################################################ 
### Cross-Validated R ### 
Rpredict <- map_df(correlate, ~as.data.frame(.x), .id = "NumberID") 
Rpredict$R_test <- Rpredict$.x 
Rpredict <- select(Rpredict, -2) 
 
### Cross-Validated R2 ### 
R2predict <- map_df(R2_predict, ~as.data.frame(.x), .id = "NumberID") 
R2predict$R2_test <- R2predict$.x 
R2predict <- select(R2predict, -2) 
 
### Cross-Validated MSE ### 
MSEpredict <- map_df(MSE_predict, ~as.data.frame(.x), .id = "NumberID") 
MSEpredict$MSE_test <- MSEpredict$.x 
MSEpredict <- select(MSEpredict, -2) 
 
### Cross-Validated PRESS ### 
PRESSpredict <- map_df(PRESS_predict, ~as.data.frame(.x), .id="NumberID") 
PRESSpredict$PRESS_test<- PRESSpredict$.x 
PRESSpredict <- select(PRESSpredict, -2) 
 
### Merging Model Stats & Merging Cross-Validated Stats ### 
forest_model <- list(R2_model, adjR2_model, Rpredict, R2predict, MSEpredict, 
PRESSpredict) %>%  
  reduce(left_join, by = "NumberID") 
 
#Adding Variable Count to File# 
final_model <- as.data.frame(subset(included_predictors)) 
predictors <- c("NumberID", "term", "rank") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
predictorlist <- list() 
statslist <- list() 
for(i in start:judges){  
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  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, NumberID == i)) 
  statslist[[i]] <- as.data.frame(subset(forest_model, NumberID == i)) 
   
  statslist[[i]]$model_var <- nrow(predictorlist[[i]])#CHANGES MADE HERE  
} 
 
forest_model <- map_df(statslist, ~as.data.frame(.x), .id="NumberID") 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(forest_model, file = "C:/Users/Kristina/Documents/Random Forest Model 
Stats.csv") 
 

Multilevel Model Bayesian Analysis 

####################################################### 
#PLEASE NOTE: TO RUN brms YOU WILL NEED A C++ COMPILER; THE Rtools 
PROGRAM COMES WITH A C++ COMPILER  
#AND IS AVAILABLE AT https://cran.r-project.org/bin/windows/Rtools/ 
#Rtools NEEDS TO BE INSTALLED ACCORDING TO SPECIFICATIONS 
OUTLINED HERE: https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-
Windows 
#OTHERWISE THE FOLLOWING CODE WILL NOT WORK  
 
#AFTER INSTALLING Rtools, CODE FOR FINALIZING STAN INSTALLATION 
install.packages("pkgbuild") 
pkgbuild::has_build_tools(debug = TRUE) 
fx <- inline::cxxfunction( signature(x = "integer", y = "numeric" ) , ' 
                           return ScalarReal( INTEGER(x)[0] * REAL(y)[0] ) ; 
                           ' ) 
fx( 2L, 5 ) # should be 10 
#If this returns anything other than 10, then go back to the previous section and install 
Rtools correctly. 
 
dotR <- file.path(Sys.getenv("HOME"), ".R") 
if (!file.exists(dotR))  
  dir.create(dotR) 
M <- file.path(dotR, "Makevars") 
if (!file.exists(M))  
  file.create(M) 
cat("\nCXX14FLAGS=-O3 -Wno-unused-variable -Wno-unused-function", 
    "CXX14 = $(BINPREF)g++ -m$(WIN) -std=c++1y", 
    "CXX11FLAGS=-O3 -Wno-unused-variable -Wno-unused-function", 
    file = M, sep = "\n", append = TRUE) 
 
remove.packages("rstan") 
if (file.exists(".RData")) file.remove(".RData") 
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install.packages("rstan", repos = "https://cloud.r-project.org/", dependencies = TRUE) 
 
###################################################### 
#install.packages("brms") 
 
###############PREPPING DATA FILE, IF YOU HAVE UNPREPPED DATA 
FILES, USE THIS#################### 
#Loading Condition Data PC1 
VS_RF <- read.csv(file="C:/Users/Kristina/Documents/Random Forest Validate 
Sample.csv", header=TRUE, sep=",") 
dfVar <- c("NumberID", "Condition", "Setting") 
Conditions <- (VS_RF[, dfVar]) 
Conditions = subset(Conditions, !duplicated(NumberID)) 
 
#Loading Data Files PC 1 
Stepwise<- read.csv(file="C:/Users/Kristina/Documents/IDs1-298 CV Final Stepwise 
Model.csv", header=TRUE, sep=",") 
All_Subsets<- read.csv(file="C:/Users/Kristina/Documents/All IDs All Subsets Model 
Outcomes.csv", header=TRUE, sep=",") 
Random_Forest<- read.csv(file="C:/Users/Kristina/Documents/Results Data Updated 
11.30.2018/Random Forest Model Stats.csv", header=TRUE, sep=",") 
 
Stepwise$Step_Method <- 1 
Stepwise$AS_Method <- 0 
Stepwise$RF_Method <- 0 
Stepwise$Method1 <- "3Stepwise" 
Stepwise$Method2 <- "1Stepwise" 
 
All_Subsets$Step_Method <- 0 
All_Subsets$AS_Method <- 1 
All_Subsets$RF_Method <- 0 
All_Subsets$Method1 <- "2All_Subsets" 
All_Subsets$Method2 <- "2All_Subsets" 
 
Random_Forest$Step_Method <- 0 
Random_Forest$AS_Method <- 0 
Random_Forest$RF_Method <- 1 
Random_Forest$Method1 <- "1Random_Forest" 
Random_Forest$Method2 <- "3Random_Forest" 
 
Stepwise$adjR2_model <- Stepwise$adj.r.squared 
Random_Forest$adjR2_model <- Random_Forest$adjrR2 
All_Subsets$adjR2_model <- All_Subsets$mean_adjR2 
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dfVar <- c("NumberID", "Method1", "Method2", 
"Step_Method","AS_Method","RF_Method", "adjR2_model", "R_test", "R2_test", 
"MSE_test", "PRESS_test", "model_var") 
 
Stepwise1 <- (Stepwise[, dfVar]) 
All_Subsets1 <- (All_Subsets[, dfVar]) 
Random_Forest1 <- (Random_Forest[, dfVar]) 
 
All_Models <- rbind(Stepwise1, All_Subsets1, Random_Forest1) 
All_Models <- merge(All_Models, Conditions, by = "NumberID") 
 
All_Models$NFP_Only <- ifelse(All_Models$Condition == 1, 1, 0) 
All_Models$FOP1 <- ifelse(All_Models$Condition == 2, 1, 0) 
All_Models$FOP2 <- ifelse(All_Models$Condition == 3, 1, 0) 
 
All_Models$Condition1a <- ifelse(All_Models$Condition == 1, "2NFP_Only", 
                                 ifelse(All_Models$Condition == 2, "1FOP1",  
                                        "3FOP2")) 
 
All_Models$Condition1b <- ifelse(All_Models$Condition == 1, "2NFP_Only", 
                                 ifelse(All_Models$Condition == 2, "3FOP1",  
                                        "1FOP2")) 
 
rm(list=(ls()[ls()!="All_Models"])) 
 
write.csv(All_Models, file = "C:/Users/Kristina/Documents/Merged Methods Model 
Outcomes.csv") 
 
All_Models1 <- All_Models[complete.cases(All_Models),] 
 
############################################################# 
######IF YOU HAVE ALL MODELS FILE, LOAD FILE HERE############ 
#All_Models <- read.csv(file="C:/Users/Kristina/Documents/Merged Methods Model 
Outcomes.csv", header=TRUE, sep=",") 
 
#All_Models1 <- All_Models[complete.cases(All_Models),] 
############################################################# 
library(rstan) 
library(brms) 
##################################################### 
rstan_options(auto_write = TRUE) 
options(mc.cores = parallel::detectCores()) 
 
 
set.seed(1121) 
### Intercept Only ADJR2 Model: Model0a ###  
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t1 <- Sys.time() 
fit1a <- brm(adjR2_model ~ (1|NumberID), 
            data = All_Models, 
            family = Beta(), 
            iter = 30000, 
            warmup = 2000, 
            chains = 4, 
            cores = 4, 
            save_all_pars = TRUE,  
            control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1 <- (Sys.time()-t1)) 
 
saveRDS(fit1a, file = "C:/Users/Kristina/Documents/fit1a.rds") 
 
 
### Intercept Only CVR2 Model: Model0b ###  
t1 <- Sys.time() 
fit1b <- brm(R2_test ~ (1|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1 <- (Sys.time()-t1)) 
 
saveRDS(fit1b, file = "C:/Users/Kristi/Documents/fit1b.rds") 
 
 
### Intercept Only Model: Model1 ###  
t1 <- Sys.time() 
fit1 <- brm(cbind(adjR2_model, R2_test) ~ (1|p|NumberID), 
            data = All_Models, 
            family = Beta(), 
            iter = 30000, 
            warmup = 2000, 
            chains = 4, 
            cores = 4, 
            save_all_pars = TRUE,  
            control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1 <- (Sys.time()-t1)) 
 
saveRDS(fit1, file = "C:/Users/Kristina/Documents/fit1.rds") 
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rm("fit1") 
 
### Model 2 Fixed Effects: Level-1 Predictors ###  
### Random Forest Reference Group: 
t2a <- Sys.time() 
fit2a <- brm(cbind(adjR2_model, R2_test) ~ Method1 + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit2a <- (Sys.time()-t2a)) 
 
saveRDS(fit2a, file = "C:/Users/Kristina/Documents/fit2a.rds") 
 
rm("fit2a") 
 
### Stepwise Reference Group: 
t2b <- Sys.time() 
fit2b <- brm(cbind(adjR2_model, R2_test) ~ Method2 + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit2b <- (Sys.time()-t2b)) 
 
saveRDS(fit2b, file = "C:/Users/Kristina/Documents/fit2b.rds") 
 
rm("fit2b") 
 
### Model 3 Fixed Effects: Level-2 Predictors ### 
### Fixed Effects: Level-2 Predictors (FOP1 Reference) ###  
#Random Forest Reference  
t3a <- Sys.time() 
fit3a <- brm(cbind(adjR2_model, R2_test) ~ Method1 + Condition1a + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
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             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3a <- (Sys.time()-t3a)) 
 
 
saveRDS(fit3a, file = "C:/Users/Kristina/Documents/fit3a.rds") 
 
rm("fit3a") 
 
### Fixed Effects: Level-2 Predictors (FOP2 Reference) ###  
#Random Forest Reference  
t3b <- Sys.time() 
fit3b <- brm(cbind(adjR2_model, R2_test) ~ Method1 + Condition1b + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3b <- (Sys.time()-t3b)) 
 
saveRDS(fit3b, file = "C:/Users/Kristina/Documents/fit3b.rds") 
 
rm("fit3b") 
 
### Fixed Effects: Level-2 Predictors (FOP1 Reference) ###  
#Stepwise Reference 
t3c <- Sys.time() 
fit3c <- brm(cbind(adjR2_model, R2_test) ~ Method2 + Condition1a + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3c <- (Sys.time()-t3c)) 
 
saveRDS(fit3c, file = "C:/Users/Kristina/Documents/fit3c.rds") 
 
rm("fit3c") 
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### Fixed Effects: Level-2 Predictors (FOP2 Reference) ###  
#Stepwise Reference 
t3d <- Sys.time() 
fit3d <- brm(cbind(adjR2_model, R2_test) ~ Method2 + Condition1b + (1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3d <- (Sys.time()-t3d)) 
 
saveRDS(fit3d, file = "C:/Users/Kristina/Documents/fit3d.rds") 
 
rm("fit3d") 
 
 
### Model 4 Random Effects: ###  
### Random Forest Reference Group: 
t4a <- Sys.time() 
fit4a <- brm(cbind(adjR2_model, R2_test) ~ Method1 + (1 + Method1|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit4a <- (Sys.time()-t4a)) 
 
saveRDS(fit4a, file = "C:/Users/Kristina/Documents/ fit6a.rds") 
 
rm("fit4a") 
 
### Stepwise Reference Group: 
t4b <- Sys.time() 
fit4b <- brm(cbind(adjR2_model, R2_test) ~ Method2 + (1 + Method2|p|NumberID), 
             data = All_Models, 
             family = Beta(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
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             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit4b <- (Sys.time()-t6b)) 
 
saveRDS(fit4b, file = "C:/Users/Kristina/Documents/fit6b.rds") 
 
rm("fit4b") 
 

Study Two Analyses R Code 

Simulating Judgment Data 

#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
 
SIMData <- read_excel("~/Ohio University/Dissertation 9.19.17/R Code/Dissertation 
Simulated Data/Carter.FOP Study.Cereal Level Simulation.xlsx") 
 
 
######JUDGMENT POLICY 1 VALUES############################ 
datalist1 <- as.data.frame(subset(SIMData, NumberID == 1)) 
 
x1a <- datalist1$Calories 
x2a <- datalist1$Sodiummg 
x3a <- datalist1$Sugars_g 
x4a <- datalist1$DietaryFiberg 
 
b0a <- 50 
b1a <- .01 
b2a <- -.01 
b3a <- -.01 
b4a <- .01 
sigma <- 7 
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set.seed(628) 
epsa <- rnorm(73, 0, sigma) 
 
datalist1$Judgment <- b0a + b1a*x1a  + b2a*x2a  + b3a*x3a + b4a*x4a + epsa 
 
min(datalist1$Judgment) 
max(datalist1$Judgment) 
datalist1$Judgment 
 
datalist1$Judgment_trunc <- ifelse(datalist1$Judgment > 100, 100, 
ifelse(datalist1$Judgment < 1, 1, datalist1$Judgment)) 
                         
min(datalist1$Judgment_trunc) 
max(datalist1$Judgment_trunc) 
mean(datalist1$Judgment_trunc) 
median(datalist1$Judgment_trunc) 
 
#################JUDGMENT POLICY 2 VALUES######################### 
datalist2 <- as.data.frame(subset(SIMData, NumberID == 2)) 
 
x1b <- datalist2$Calories 
x2b <- datalist2$Sodiummg 
x3b <- datalist2$Sugars_g 
x4b <- datalist2$DietaryFiberg 
 
b0b <- 50 
b1b <- .25 
b2b <- -.25 
b3b <- -.25 
b4b <- .25 
sigma <- 7 
 
set.seed(628) 
epsb <- rnorm(73, 0, sigma) 
 
datalist2$Judgment <- b0b + b1b*x1b  + b2b*x2b  + b3b*x3b + b4b*x4b + epsb 
 
min(datalist2$Judgment) 
max(datalist2$Judgment) 
 
datalist2$Judgment 
datalist2$Judgment_trunc <- ifelse(datalist2$Judgment > 100, 100, 
ifelse(datalist2$Judgment < 1, 1, datalist2$Judgment)) 
 
datalist2$Judgment_trunc            
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min(datalist2$Judgment_trunc) 
max(datalist2$Judgment_trunc) 
mean(datalist2$Judgment_trunc) 
median(datalist2$Judgment_trunc) 
 
NEWSIMData <- bind_rows(datalist1, datalist2) 
 
write.csv(NEWSIMData, file = "C:/Users/Kristina/Documents/NEWSIMData.csv") 
 
#NEWSIMData$Judgment_trun 
model1s <- lm(scale(Judgment_trunc) ~ scale(Calories) + scale(Sodiummg) + 
scale(Sugars_g)  
            + scale(DietaryFiberg), data = datalist1) 
 
 
model2s <- lm(scale(Judgment_trunc) ~ scale(Calories) + scale(Sodiummg) + 
scale(Sugars_g)  
              + scale(DietaryFiberg), data = datalist2) 
 
model1 <- lm(Judgment_trunc ~ Calories + Sodiummg + Sugars_g + DietaryFiberg, data 
= datalist1) 
model1 
model2 <- lm(Judgment_trunc ~ Calories + Sodiummg + Sugars_g + DietaryFiberg, data 
= datalist2) 
model2 
 
summary(model1) 
summary(model2) 
x1b <- datalist2$Calories 
x2b <- datalist2$Sodiummg 
x3b <- datalist2$Sugars_g 
x4b <- datalist2$DietaryFiberg 
 
###############RESAMPLING SIMULATED DATA########################## 
NewSIMData <- read.csv(file="C:/Users/Kristina/Documents/NewSIMData.csv", 
header=TRUE, sep=",") 
 
NewSIMData$Beta.Condition <- NewSIMData$NumberID 
NewSIMData$bWeight <- ifelse(NewSIMData$Beta.Condition == 1, .01, .25) 
 
datalist <- list() 
resamples <- list() 
set <- list() 
generated <- list() 
start <- 1 
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total <- 2 
bootset <- 150 
 
set.seed(1117) 
t1 <- Sys.time() 
for(k in start:total){ 
  datalist[[k]] <- as.data.frame(subset(NewSIMData, Beta.Condition == k)) 
   
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(datalist[[k]], 73, replace = T)) 
   
  for(j in 1:bootset){  
    set[[j]] <- resamples[[k]][[j]] 
     
  } 
  generated[[k]] <- map_df(set, ~as.data.frame(.x), .id="bootset") 
} 
(tresample <- (Sys.time()-t1)) 
 
 
SIMresampled <- map_df(generated, ~as.data.frame(.x), .id="test") 
SIMresampled$UniqueID <- ifelse(SIMresampled$Beta.Condition == 1, 
as.numeric(SIMresampled$bootset), as.numeric(SIMresampled$bootset) + bootset) 
 
write.csv(SIMresampled, file = "C:/Users/Kristina/Documents/SIM Sampling 
Distribution Data.csv") 

Stepwise Regression Analysis 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("lm.beta") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(lm.beta) 
library(data.table) 
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SampDist <- read.csv(file="C:/Users/Kristina/Documents/SIM Sampling Distribution 
Data.csv", header=TRUE, sep=",") 
 
dfVar <- c("bootset", "bWeight", "Judgment_trunc", "RecordID", "UniqueID", 
"Beta.Condition", "UPC", "CerealNumber", "Calories", "Calories_Fat", "Total_Fatg",  
"Saturated_Fatg", "Trans_Fatg", "Poly_Fatg", "Mono_Fatg", "Cholesterolmg", 
"Sodiummg", "Potassiummg", "TotalCarbsg", "DietaryFiberg", "Soluble_Fiberg", 
"Insoluble_Fiberg", "Sugars_g", "Other_Carbsg", "Proteing", "VitsMinerals") 
 
SDComplete <- SampDist[complete.cases(SampDist[, dfVar]), dfVar] 
SDComplete <- as.data.frame(SDComplete[with(SDComplete, order(UniqueID, 
Judgment_trunc)),]) 
 
rm(list = ls()[!ls()%in%c("SDComplete")]) 
 
count<-length(unique(SDComplete$UniqueID)) 
datalist <- list() 
full_model <- list() 
null_model <- list() 
stepwise <- list() 
summaries <- list() 
list_names <- list() 
df_coefficients <- list() 
df_betas <- list() 
df_fstat <- list() 
scale_full_model <- list() 
scale_null_model <- list() 
scale_stepwise <- list() 
 
 
####SIMULATED DATA STEPWISE ANALYSIS############## 
set.seed(115) 
t1 <- Sys.time() 
for(i in 1:count){ 
  datalist[[i]] <- as.data.frame(subset(SDComplete, UniqueID == i)) 
   
  full_model[[i]] <- lm(Judgment_trunc ~ Calories + Calories_Fat + Total_Fatg + 
Saturated_Fatg + 
                          Poly_Fatg + Mono_Fatg + Sodiummg + Potassiummg +  
                          DietaryFiberg + Soluble_Fiberg + Insoluble_Fiberg + Sugars_g +  
                          TotalCarbsg + Other_Carbsg + Proteing + VitsMinerals,  
                        data = datalist[[i]]) 
   
  null_model[[i]] <- lm(Judgment_trunc ~ 1, data = datalist[[i]]) 
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  stepwise[[i]] <- step(null_model[[i]], scope = list(upper = full_model[[i]])) 
   
  scale_full_model[[i]] <- lm(scale(Judgment_trunc) ~ scale(Calories) + 
scale(Calories_Fat) + scale(Total_Fatg) +  
                                scale(Saturated_Fatg) +  scale(Poly_Fatg) + scale(Mono_Fatg) +  
                                scale(Sodiummg) + scale(Potassiummg) + scale(DietaryFiberg) +  
                                scale(Soluble_Fiberg) + scale(Insoluble_Fiberg) + scale(Sugars_g) +  
                                scale(TotalCarbsg) + scale(Other_Carbsg) + scale(Proteing) +  
                                scale(VitsMinerals),  
                              data = datalist[[i]]) 
   
  scale_null_model[[i]] <- lm(scale(Judgment_trunc) ~ 1, data = datalist[[i]]) 
   
  scale_stepwise[[i]] <- step(scale_null_model[[i]], scope = list(upper = 
scale_full_model[[i]])) 
   
  summaries[[i]] <- summary(stepwise[[i]]) 
  list_names[[i]] <- paste0("ID_", unique(datalist[[i]]$NumberID)) 
   
  require(broom)     
  df_coefficients[[i]] <- tidy(stepwise[[i]]) 
  df_betas[[i]] <- tidy(scale_stepwise[[i]]) 
  df_fstat[[i]] <- as.data.frame((summaries[[i]][["r.squared"]])) 
  colnames(df_fstat[[i]]) <- "r.squared" 
  df_fstat[[i]]$value <- ifelse(is_empty(summaries[[i]]$fstatistic[[1]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[1]]) 
  df_fstat[[i]]$numdf <- ifelse(is_empty(summaries[[i]]$fstatistic[[2]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[2]]) 
  df_fstat[[i]]$dendf <- ifelse(is_empty(summaries[[i]]$fstatistic[[3]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[3]]) 
   
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
#############Model Statistics########################### 
#Adjusted R^2# 
model_stats <- rbind(lapply(summaries, `[`, 9)) 
model <- map_df(model_stats, ~as.data.frame(.x), .id="UniqueID") 
 
#F-Statistics# 
fstats <- bind_rows(df_fstat, .id = 'UniqueID') 
fstats$fstat <- fstats$value 
fstatVar <- c("UniqueID", "fstat", "numdf", "dendf") 
fstatistics <- fstats[complete.cases(fstats[, fstatVar]), fstatVar] 
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#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_model <- merge(model, fstatistics, by = c('UniqueID'), all.x = TRUE) 
 
 
#Computing p-values, assigning binary significance values 
stepwise_model$pvalue<- pf(stepwise_model$fstat, stepwise_model$numdf, 
stepwise_model$dendf, lower.tail = FALSE)  
stepwise_model$modelsig <- ifelse(stepwise_model$pvalue < .05, 1, 0) 
 
################################################################ 
################################################################ 
#Creating dataframe for unstandardized coefficient estimates#  
coefficients <- bind_rows(df_coefficients, .id = 'UniqueID') 
 
#Creating mergeable dataframe for standardized coefficient estimates# 
betas_mid <- bind_rows(df_betas, .id = 'UniqueID') 
betas_mid$term2 <- gsub("scale\\(", "", betas_mid$term) 
betas_mid$term3 <- gsub("g[)]", "g", betas_mid$term2) 
betas_mid$term4 <- gsub("s[)]", "s", betas_mid$term3) 
betas_mid$term5 <- gsub("t[)]", "t", betas_mid$term4) 
betas_mid$term <- gsub("[(]Intercept", "(Intercept)", betas_mid$term5) 
betas_mid$beta <- betas_mid$estimate 
betaVar <- c("UniqueID", "term", "beta") 
betas <- betas_mid[complete.cases(betas_mid[, betaVar]), betaVar] 
betas$beta_value <- ifelse(betas$term == '(Intercept)', NA, betas$beta) 
 
 
#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_coeff <- merge(coefficients, betas, by = c('UniqueID', 'term')) 
 
######Assigning Meta Values################  
#Significance values# 
stepwise_coeff$coeffsig <- ifelse(stepwise_coeff$p.value < .05, 1, 0) 
#Positive/negative betas# 
stepwise_coeff$coeffdirection <- ifelse(stepwise_coeff$beta > 0, 'positive', 'negative') 
 
#Ranking values# 
coeff_data <- list() 
for(i in 1:count){ 
  coeff_data[[i]] <- as.data.frame(subset(stepwise_coeff, UniqueID == i)) 
  coeff_data[[i]]$rank <- rank(-abs(coeff_data[[i]]$beta_value), na.last = FALSE, 
ties.method = "average") 
  coeff_data[[i]]$adjrank <- coeff_data[[i]]$rank - 1 
  final_stepwise_coeff <- bind_rows(coeff_data) 
} 
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#Adding Predictor Count to File# 
final_model <- as.data.frame(subset(final_stepwise_coeff)) 
predictors <- c("UniqueID", "term") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
 
stepmodel <- list() 
predictorlist <- list() 
for(i in 1:count){  
  stepmodel[[i]] <- as.data.frame(subset(stepwise_model, UniqueID == i)) 
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, UniqueID == i)) 
  predictorlist[[i]]$Count <- (nrow(predictorlist[[i]]))-1 
  stepmodel[[i]]$model_var <- (nrow(predictorlist[[i]]))-1 
} 
 
stepwise_model <- map_df(stepmodel, ~as.data.frame(.x), .id="UniqueID") 
final_model_predictors <- map_df(predictorlist, ~as.data.frame(.x), .id="UniqueID") 
 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "estimate") 
 
model_estimates <- final_stepwise_coeff[complete.cases(final_stepwise_coeff[, 
modelVar]), modelVar] 
 
person_model <- list() 
term_model <- list() 
step_model <- list() 
weights <- list() 
 
for(k in 1:count){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
  step_model[[k]] <- as.data.frame(subset(stepwise_model, UniqueID == k)) 
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  step_model[[k]]$intercept <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 1, 0)) 
  step_model[[k]]$cal <- sum(ifelse(weights[[k]]$Predictor == 'Calories', 1, 0)) 
  step_model[[k]]$calf <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', 1, 0)) 
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  step_model[[k]]$tfat <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', 1, 0)) 
  step_model[[k]]$sfat <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 1, 0)) 
  step_model[[k]]$pfat <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', 1, 0)) 
  step_model[[k]]$mfat <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', 1, 0)) 
  step_model[[k]]$sod <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', 1, 0)) 
  step_model[[k]]$potas <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 1, 0)) 
  step_model[[k]]$dfiber <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 1, 0)) 
  step_model[[k]]$sfiber <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 1, 0)) 
  step_model[[k]]$ifiber <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 1, 
0)) 
  step_model[[k]]$sugar <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', 1, 0)) 
  step_model[[k]]$tcarb <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', 1, 0)) 
  step_model[[k]]$ocarb <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 1, 0)) 
  step_model[[k]]$protein <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', 1, 0)) 
  step_model[[k]]$vitmin <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 1, 0)) 
   
   
  step_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$cal_b <- sum(ifelse(weights[[k]]$Predictor == 'Calories', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$calf_b <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$tfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$sfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$pfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$mfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$sod_b <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$potas_b <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$dfiber_b <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$sfiber_b <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$ifiber_b <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$sugar_b <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$tcarb_b <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', 
weights[[k]]$Mean, 0)) 



215 
 

  step_model[[k]]$ocarb_b <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$protein_b <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$vitmin_b <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 
weights[[k]]$Mean, 0)) 
   
} 
 
stepwise_model <- map_df(step_model, ~as.data.frame(.x), .id="UniqueID") 
 
Conditions <- subset(SDComplete, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "Beta.Condition", "bWeight") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
final_stepwise_coeff <- merge(condition, final_stepwise_coeff, by = c('UniqueID'), all.x 
= TRUE) 
 
##SAVING ON PERSONAL PC: PC1### 
write.csv(final_stepwise_coeff, file = 
"C:/Users/Kristina/Documents/SIMfinal_stepwise_coeff.csv") 
write.csv(stepwise_model, file = 
"C:/Users/Kristina/Documents/SIMfinal_stepwise_model.csv") 
write.csv(final_model_predictors, file = 
"C:/Users/Kristina/Documents/SIMfinal_model_predictors.csv") 
 
 

All Subsets Analysis 
#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(data.table) 
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#Data from Personal PC: PC1 
SampDist <- read.csv(file="C:/Users/Kristina/Documents/SIM Sampling Distribution 
Data.csv", header=TRUE, sep=",") 
 
dfVar <- c("bootset", "bWeight", "Judgment_trunc", "RecordID", "UniqueID", 
"Beta.Condition", "Product", "UPC", "CerealNumber", "Calories", "Calories_Fat", 
"Total_Fatg", "Saturated_Fatg", "Trans_Fatg", "Poly_Fatg", "Mono_Fatg", 
"Cholesterolmg", "Sodiummg", "Potassiummg", "TotalCarbsg", "DietaryFiberg", 
"Soluble_Fiberg", "Insoluble_Fiberg", "Sugars_g", "Other_Carbsg", "Proteing", 
"VitsMinerals") 
 
SDComplete <- SampDist[complete.cases(SampDist[, dfVar]), dfVar] 
SDComplete <- as.data.frame(SDComplete[with(SDComplete, order(UniqueID, 
Judgment_trunc)),]) 
 
rm(list = ls()[!ls()%in%c("SDComplete")]) 
 
 
#####################ALL SUBSETS ANALYSIS FUNCTION################# 
all_subsets <- function(last, group, end, bootset){  
     
  rm(list = ls()[!ls()%in%c("SDComplete", "all_subsets", "tfunc", "last", "group", "end", 
"bootset")]) 
   
  t1 <- Sys.time() 
   
  datalist <- list() 
   sample <- list() 
  resamples <- list() 
  judgment_set <- list() 
  leaps <- list() 
  summary <- list() 
  maxadjr2 <- list() 
  variables1 <- list() 
  variables2 <- list() 
  variables3 <- list() 
  coefficients1 <- list() 
  coefficients2 <- list() 
  bestmodel <- list() 
  judge_bestmodels <- list() 
  count <- list() 
  bestfit <- list() 
  only_bestmodels <- list() 
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  modelsonly1 <- list() 
  modelsonly2 <- list() 
  modelsonly3 <- list() 
  modelsonly4 <- list() 
  freqmodel <- list() 
  variable_importance <- list() 
   
start <- ifelse((1 + last <= end), (1 + last), end) 
judges <- ifelse((last + group <= end), (last + group), end) 
 
for(k in start:judges){ 
  index <- start - 1  
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(SDComplete, UniqueID == k)) 
   
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(datalist[[k]], 73, replace = T)) 
   
  for(j in 1:bootset){  
    t3 <- Sys.time() 
    judgment_set[[j]] <- resamples[[k]][[j]] 
    leaps[[j]] <-  
      regsubsets(Judgment_trunc ~ Calories + Calories_Fat + Total_Fatg + Saturated_Fatg 
+ Poly_Fatg + Mono_Fatg + Sodiummg + Potassiummg + DietaryFiberg + 
Soluble_Fiberg + Insoluble_Fiberg + Sugars_g + TotalCarbsg + Other_Carbsg + Proteing 
+ VitsMinerals, data = judgment_set[[j]], 
                 nbest = 1,       # 1 best model for each number of predictors 
                 nvmax = NULL,    # NULL for no limit on number of variables 
                 force.in = NULL, force.out = NULL, 
                 method = "exhaustive")  
    summary[[j]] <- summary(leaps[[j]]) 
    maxadjr2[[j]] <- which.max(summary[[j]]$adjr2) 
    variables1[[j]] <- map_df(summary[[j]]$which[maxadjr2[[j]],], ~as.data.frame(.x), 
.id="term") 
    variables1[[j]]$included <- variables1[[j]]$.x 
    variables2[[j]] <- variables1[[j]][-c(2)] 
    variables3[[j]] <- as.data.frame(subset(variables2[[j]])) 
    variables3[[j]]$adj.r.squared <- summary[[j]]$adjr2[maxadjr2[[j]]] 
    variables3[[j]]$inclusion <- ifelse(variables3[[j]]$included == TRUE, 1, 0) 
    variables3[[j]]$modelcode <- paste0(variables3[[j]]$inclusion, collapse = "") 
    coefficients1[[j]] <- map_df(coef(leaps[[j]],maxadjr2[[j]],vcov=FALSE), 
~as.data.frame(.x), .id="term") 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$`coef(leaps[[j]], maxadjr2[[j]], vcov = 
FALSE)` 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$.x 
    coefficients2[[j]] <- coefficients1[[j]][-c(2)] 
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    bestmodel[[j]] <- merge(variables3[[j]], coefficients2[[j]], by = "term") 
    modelsonly1[[j]] <- bestmodel[[j]][!duplicated(bestmodel[[j]]$modelcode),] 
     
    print(bootstrapset <- Sys.time()-t3) 
     
  } 
   
  modelsonly2[[k]] <- map_df(modelsonly1, ~as.data.frame(.x), .id="bootset1") 
  modelsonly3[[k]] <- count(modelsonly2[[k]], modelcode) 
  freqmodel[[k]] <- which.max(modelsonly3[[k]]$n) 
  modelsonly3[[k]]$bestfit <- modelsonly3[[k]]$modelcode[freqmodel[[k]]] 
  modelsonly4 <- map_df(modelsonly3, ~as.data.frame(.x), .id="UniqueID") 
     
  judge_bestmodels[[k]] <- map_df(bestmodel, ~as.data.frame(.x), .id="bootset") 
  bestfit[[k]] <- merge(judge_bestmodels[[k]], modelsonly3[[k]], by = "modelcode") 
  bestfit[[k]]$bestmodel <- ifelse(bestfit[[k]]$modelcode == bestfit[[k]]$bestfit, TRUE, 
FALSE) 
  only_bestmodels[[k]] <- subset(bestfit[[k]], bestmodel == TRUE) 
  variable_importance[[k]] <- count(judge_bestmodels[[k]], term) 
  variable_importance[[k]]$frequency <- variable_importance[[k]]$n 
  variable_importance[[k]]$probability <- (variable_importance[[k]]$frequency)/(bootset) 
  print(judgeanalysis <- Sys.time()-t2) 
   
  #complete_bootsets <- map_df(bestfit, ~as.data.frame(.x), .id="UniqueID") 
  #complete_bootsets <- complete_bootsets[ 
   # with(complete_bootsets, order(UniqueID, bootset, term)), 
    #] 
  #complete_bootsets$UniqueID <- as.numeric(complete_bootsets$UniqueID) + index 
   
  SIMfinal_bestmodels <- map_df(only_bestmodels, ~as.data.frame(.x), .id="UniqueID") 
  SIMfinal_bestmodels <- as.data.frame(SIMfinal_bestmodels[ 
    with(SIMfinal_bestmodels, order(UniqueID, bootset, term)), 
    ]) 
  SIMfinal_bestmodels$UniqueID <- as.numeric(SIMfinal_bestmodels$UniqueID) + 
index 
     
  SIMpredictor_importance <- map_df(variable_importance, ~as.data.frame(.x), 
.id="UniqueID") 
  SIMpredictor_importance$UniqueID <- 
as.numeric(SIMpredictor_importance$UniqueID) + index 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
###SAVE RELEVANT FILES  
#write.csv(SIMfinal_bestmodels, file = paste0("C:/Users/Kristina/Documents/Study One 
Analysis/IDs", start, "-", judges, " All Subsets SIMfinal_bootsets.csv", sep = "")) 
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#write.csv(SIMpredictor_importance, file = paste0("C:/Users/Kristina/Documents/Study 
One Analysis/IDs", start, "-", judges, " All Subsets SIMpredictor_importance.csv", sep = 
"")) 
 
best_models <- list() 
bootset_model <- list() 
AS_model <- list() 
criticality <- list() 
VI_model <- list() 
VI <- list() 
term_model <- list() 
weights <- list() 
 
t1a <- Sys.time()  
for(k in start:judges){  
  t2 <- Sys.time() 
  best_models[[k]] <- as.data.frame(subset(SIMfinal_bestmodels, UniqueID == k)) 
  bootset_model[[k]] <- as.data.frame(subset(best_models[[k]], bootset == min(bootset))) 
   
  criticality[[k]] <- as.data.frame(subset(SIMpredictor_importance, UniqueID == k)) 
   
  AS_model[[k]] <- bootset_model[[k]][!duplicated(bootset_model[[k]]$UniqueID),] 
   
  AS_model[[k]]$model_var <- sum(bootset_model[[k]]$inclusion) - 1  
   
  AS_model[[k]]$mean_adjR2 <- mean(best_models[[k]]$adj.r.squared) 
   
  term_model[[k]] <-  split(best_models[[k]], best_models[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
   
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
   
  VI_model[[k]] <- split(criticality[[k]], criticality[[k]]$term) 
  VI[[k]] <- as.data.frame(sapply(VI_model[[k]], function(x) mean(x$probability))) 
   
  setDT(VI[[k]], keep.rownames = TRUE)[] 
  setnames(VI[[k]], 1, "term") 
  setnames(VI[[k]], 2, "Mean") 
   
  AS_model[[k]]$intercept <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 1, 0)) 
  AS_model[[k]]$cal <- sum(ifelse(weights[[k]]$Predictor == 'Calories', 1, 0)) 
  AS_model[[k]]$calf <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', 1, 0)) 
  AS_model[[k]]$tfat <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', 1, 0)) 
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  AS_model[[k]]$sfat <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 1, 0)) 
  AS_model[[k]]$pfat <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', 1, 0)) 
  AS_model[[k]]$mfat <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', 1, 0)) 
  AS_model[[k]]$sod <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', 1, 0)) 
  AS_model[[k]]$potas <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 1, 0)) 
  AS_model[[k]]$dfiber <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 1, 0)) 
  AS_model[[k]]$sfiber <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 1, 0)) 
  AS_model[[k]]$ifiber <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 1, 0)) 
  AS_model[[k]]$sugar <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', 1, 0)) 
  AS_model[[k]]$tcarb <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', 1, 0)) 
  AS_model[[k]]$ocarb <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 1, 0)) 
  AS_model[[k]]$protein <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', 1, 0)) 
  AS_model[[k]]$vitmin <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 1, 0)) 
 
   
  AS_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$cal_b <- sum(ifelse(weights[[k]]$Predictor == 'Calories', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$calf_b <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$tfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$sfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$pfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$mfat_b <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$sod_b <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$potas_b <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$dfiber_b <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$sfiber_b <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$ifiber_b <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$sugar_b <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$tcarb_b <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$ocarb_b <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 
weights[[k]]$Mean, 0)) 
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  AS_model[[k]]$protein_b <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$vitmin_b <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 
weights[[k]]$Mean, 0)) 
   
  AS_model[[k]]$intercept_PC <- sum(ifelse(VI[[k]]$term == '(Intercept)', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$cal_PC <- sum(ifelse(VI[[k]]$term == 'Calories', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$calf_PC <- sum(ifelse(VI[[k]]$term == 'Calories_Fat', VI[[k]]$Mean, 
0)) 
  AS_model[[k]]$tfat_PC <- sum(ifelse(VI[[k]]$term == 'Total_Fatg', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$sfat_PC <- sum(ifelse(VI[[k]]$term == 'Saturated_Fatg', VI[[k]]$Mean, 
0)) 
  AS_model[[k]]$pfat_PC <- sum(ifelse(VI[[k]]$term == 'Poly_Fatg', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$mfat_PC <- sum(ifelse(VI[[k]]$term == 'Mono_Fatg', VI[[k]]$Mean, 
0)) 
  AS_model[[k]]$sod_PC <- sum(ifelse(VI[[k]]$term == 'Sodiummg', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$potas_PC <- sum(ifelse(VI[[k]]$term == 'Potassiummg', VI[[k]]$Mean, 
0)) 
  AS_model[[k]]$dfiber_PC <- sum(ifelse(VI[[k]]$term == 'DietaryFiberg', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$sfiber_PC <- sum(ifelse(VI[[k]]$term == 'Soluble_Fiberg', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$ifiber_PC <- sum(ifelse(VI[[k]]$term == 'Insoluble_Fiberg', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$sugar_PC <- sum(ifelse(VI[[k]]$term == 'Sugars_g', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$tcarb_PC <- sum(ifelse(VI[[k]]$term == 'TotalCarbsg', VI[[k]]$Mean, 
0)) 
  AS_model[[k]]$ocarb_PC <- sum(ifelse(VI[[k]]$term == 'Other_Carbsg', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$protein_PC <- sum(ifelse(VI[[k]]$term == 'Proteing', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$vitmin_PC <- sum(ifelse(VI[[k]]$term == 'VitsMinerals', 
VI[[k]]$Mean, 0)) 
}   
 
all_subsets_model <- map_df(AS_model, ~as.data.frame(.x), .id="UniqueID") 
 
##SAVING ON PERSONAL PC: ###. 
#write.csv(all_subsets_model, file = paste0("C:/Users/Kristina/Documents/Study One 
Analysis/IDs", start, "-", judges, " All Subsets SIM Model Outcomes.csv", sep = "")) 
 
print(cross_validated <- (Sys.time()-t1)) 
 
} 
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######################################################################## 
#############RUN ALL SUBSETS ANALYSIS FUNCTION#################### 
set.seed(1015) 
set <- seq.int(0, 300, by = 5)#by should be same size as group,indicates how many 
participants to increase by at next cycle  
for(a in set){ 
tfunc <- Sys.time()  
all_subsets(last=a, group = 5, end = 300, bootset = 100000) 
print(totalanalysis <- (Sys.time()-tfunc)) 
} 
######################################################################## 
 
 

Random Forest Analysis  

#install.packages("VSURF") 
#install.packages("randomForest") 
#install.packages("party") 
#install.packages("readxl") 
#install.packages("purrr") 
#install.packages("data.table") 
#install.packages("dplyr") 
 
rm(list = ls()) 
 
library(VSURF) 
library(randomForest) 
library(party) 
library(readxl) 
library(purrr) 
library(data.table) 
library(dplyr) 
 
#Data from Personal PC:  
SampDist <- read.csv(file="C:/Users/Kristina/Documents/Dissertation Simulated 
Data/SIM Sampling Distribution Data.csv", header=TRUE, sep=",") 
 
dfVar <- c("bootset", "bWeight", "Judgment_trunc", "RecordID", "UniqueID", 
"Beta.Condition", "Product", "UPC", "CerealNumber", "Calories", "Calories_Fat", 
"Total_Fatg", "Saturated_Fatg", "Trans_Fatg", "Poly_Fatg", "Mono_Fatg", 
"Cholesterolmg", "Sodiummg", "Potassiummg", "TotalCarbsg", "DietaryFiberg", 
"Soluble_Fiberg", "Insoluble_Fiberg", "Sugars_g", "Other_Carbsg", "Proteing", 
"VitsMinerals") 
 
SDComplete <- SampDist[complete.cases(SampDist[, dfVar]), dfVar] 
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SDComplete <- as.data.frame(SDComplete[with(SDComplete, order(UniqueID, 
Judgment_trunc)),]) 
 
rm(list = ls()[!ls()%in%c("SDComplete")]) 
 
SDComplete <- subset(SDComplete, select=-c(Trans_Fatg,Cholesterolmg)) 
 
####################################### 
datalist <- list() 
sample <- list() 
model_sample <- list() 
validate_sample <- list() 
VSURF.output <- list() 
predictor_num <- list() 
n <- list() 
actual <- list() 
predicted <- list() 
R2 <- list() 
adjR2 <- list() 
predictors <- list() 
thres_predictors <- list() 
var_imp <- list() 
correlate <- list() 
R2_predict <- list() 
MSE_predict <- list() 
PRESS_predict <- list() 
 
 
################SIMULATED DATA RANDOM FOREST ANALYSIS########## 
start <- 1 
judges <- 300 
######################################################################## 
 
 
############RUN BELOW AS SINGLE BLOCK########################### 
set.seed(115) 
t1 <- Sys.time()  
for(k in start:judges){  
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(SDComplete, UniqueID == k)) 
   
  VSURF.output[[k]] <- VSURF(datalist[[k]][,10:25], datalist[[k]]$Judgment_trunc, ntree 
= 2000,  
                        mtry = max(floor(ncol(datalist[[k]][,10:25])/3), 1), 
                        nfor.thres = 50, nmin = 1, nfor.interp = 25, nsd = 1) 
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  n[[k]] <- nrow(datalist[[k]])  
  predictor_num[[k]] <- nrow(as.data.frame(VSURF.output[[k]]$varselect.interp)) 
   
  datalist[[k]]$actual <- datalist[[k]]$Judgment_trunc 
  datalist[[k]]$predicted <- predict(VSURF.output[[k]], datalist[[k]], step = c("interp")) 
  R2[[k]] <- 1 - (sum((datalist[[k]]$actual-
datalist[[k]]$predicted)^2)/sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2)) 
  adjR2[[k]]  <- 1-((sum((datalist[[k]]$actual-datalist[[k]]$predicted)^2))/(n[[k]]-
predictor_num[[k]]-1))/((sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2))/n[[k]]-
1) 
   
  predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.interp) 
  predictors[[k]]$predictor_num <- predictors[[k]]$`VSURF.output[[k]]$varselect.interp` 
  predictors[[k]]$term <- colnames(datalist[[k]])[9+predictors[[k]]$predictor_num] 
  predictors[[k]] <- subset(predictors[[k]], select = -1) 
  predictors[[k]]$rank <- row.names(predictors[[k]]) 
  included_predictors <- map_df(predictors, ~as.data.frame(.x), .id="UniqueID") 
   
  thres_predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.thres) 
  thres_predictors[[k]]$predictor_num <- 
thres_predictors[[k]]$`VSURF.output[[k]]$varselect.thres` 
  thres_predictors[[k]]$term <- 
colnames(datalist[[k]])[9+thres_predictors[[k]]$predictor_num] 
  thres_predictors[[k]] <- select(thres_predictors[[k]], -1)   
  thres_predictors[[k]]$var_importance <- VSURF.output[[k]]$imp.varselect.thres 
  thres_predictors[[k]]$rank <- row.names(thres_predictors[[k]]) 
   
  threshold_step <- map_df(thres_predictors, ~as.data.frame(.x), .id="UniqueID") 
   
  var_imp[[k]] <- as.data.frame(VSURF.output[[k]]$imp.mean.dec.ind) 
  var_imp[[k]]$predictor_num <- var_imp[[k]]$`VSURF.output[[k]]$imp.mean.dec.ind` 
  var_imp[[k]]$term <- colnames(datalist[[k]])[9+var_imp[[k]]$predictor_num] 
  var_imp[[k]] <- select(var_imp[[k]], -1)   
  var_imp[[k]]$var_importance <- VSURF.output[[k]]$imp.mean.dec 
  var_imp[[k]]$rank <- row.names(var_imp[[k]]) 
   
  var_importance <- map_df(var_imp, ~as.data.frame(.x), .id="UniqueID") 
   
  print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
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##SAVING RELEVANT DATA FILES:### 
write.csv(included_predictors, file = "C:/Users/Kristina/Documents/SIMULATED 
DATA Random Forest Final Predictors.csv") 
write.csv(threshold_step, file = "C:/Users/Kristina/Documents/SIMULATED DATA 
Random Forest Threshold Predictors.csv") 
write.csv(var_importance, file = "C:/Users/Kristina/Documents/SIMULATED DATA 
Random Forest Variable Importance.csv") 
 
########################################### 
### Model Statistics ### 
 
R2_model <- map_df(R2, ~as.data.frame(.x), .id = "UniqueID") 
R2_model$R2_model <- R2_model$.x 
R2_model <- select(R2_model, -2) 
 
adjR2_model <- map_df(adjR2, ~as.data.frame(.x), .id = "UniqueID") 
adjR2_model$adjrR2 <- adjR2_model$.x 
adjR2_model <- select(adjR2_model, -2) 
 
### Merging Model Stats ### 
R_model_stats <- merge(R2_model, adjR2_model, by = c('UniqueID'), all.x = TRUE) 
 
#Adding Variable Count to File# 
final_model <- as.data.frame(subset(included_predictors)) 
predictors <- c("UniqueID", "term", "rank") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
predictorlist <- list() 
statslist <- list() 
for(i in start:judges){  
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, UniqueID == i)) 
  statslist[[i]] <- as.data.frame(subset(R_model_stats, UniqueID == i)) 
   
  statslist[[i]]$model_var <- nrow(predictorlist[[i]]) 
} 
 
R_model_stats <- map_df(statslist, ~as.data.frame(.x), .id="UniqueID") 
 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "var_importance", "rank") 
 
model_estimates <- var_importance[complete.cases(var_importance[, modelVar]), 
modelVar] 
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person_model <- list() 
term_model <- list() 
forest_model <- list() 
final_model <- list() 
weights <- list() 
 
for(k in 1:judges){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
 
  forest_model[[k]] <- as.data.frame(subset(R_model_stats, UniqueID == k)) 
   
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) 
mean(x$var_importance))) 
  final_model[[k]] <- as.data.frame(subset(final_model_predictors, UniqueID == k)) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  forest_model[[k]]$intercept <- sum(ifelse(final_model[[k]]$term == '(Intercept)', 1, 0)) 
  forest_model[[k]]$cal <- sum(ifelse(final_model[[k]]$term == 'Calories', 1, 0)) 
  forest_model[[k]]$calf <- sum(ifelse(final_model[[k]]$term == 'Calories_Fat', 1, 0)) 
  forest_model[[k]]$tfat <- sum(ifelse(final_model[[k]]$term == 'Total_Fatg', 1, 0)) 
  forest_model[[k]]$sfat <- sum(ifelse(final_model[[k]]$term == 'Saturated_Fatg', 1, 0)) 
  forest_model[[k]]$pfat <- sum(ifelse(final_model[[k]]$term == 'Poly_Fatg', 1, 0)) 
  forest_model[[k]]$mfat <- sum(ifelse(final_model[[k]]$term == 'Mono_Fatg', 1, 0)) 
  forest_model[[k]]$sod <- sum(ifelse(final_model[[k]]$term == 'Sodiummg', 1, 0)) 
  forest_model[[k]]$potas <- sum(ifelse(final_model[[k]]$term == 'Potassiummg', 1, 0)) 
  forest_model[[k]]$dfiber <- sum(ifelse(final_model[[k]]$term == 'DietaryFiberg', 1, 0)) 
  forest_model[[k]]$sfiber <- sum(ifelse(final_model[[k]]$term == 'Soluble_Fiberg', 1, 
0)) 
  forest_model[[k]]$ifiber <- sum(ifelse(final_model[[k]]$term == 'Insoluble_Fiberg', 1, 
0)) 
  forest_model[[k]]$sugar <- sum(ifelse(final_model[[k]]$term == 'Sugars_g', 1, 0)) 
  forest_model[[k]]$tcarb <- sum(ifelse(final_model[[k]]$term == 'TotalCarbsg', 1, 0)) 
  forest_model[[k]]$ocarb <- sum(ifelse(final_model[[k]]$term == 'Other_Carbsg', 1, 0)) 
  forest_model[[k]]$protein <- sum(ifelse(final_model[[k]]$term == 'Proteing', 1, 0)) 
  forest_model[[k]]$vitmin <- sum(ifelse(final_model[[k]]$term == 'VitsMinerals', 1, 0)) 
   
  forest_model[[k]]$intercept_VI <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$cal_VI <- sum(ifelse(weights[[k]]$Predictor == 'Calories', 
weights[[k]]$Mean, 0)) 
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  forest_model[[k]]$calf_VI <- sum(ifelse(weights[[k]]$Predictor == 'Calories_Fat', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$tfat_VI <- sum(ifelse(weights[[k]]$Predictor == 'Total_Fatg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$sfat_VI <- sum(ifelse(weights[[k]]$Predictor == 'Saturated_Fatg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$pfat_VI <- sum(ifelse(weights[[k]]$Predictor == 'Poly_Fatg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$mfat_VI <- sum(ifelse(weights[[k]]$Predictor == 'Mono_Fatg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$sod_VI <- sum(ifelse(weights[[k]]$Predictor == 'Sodiummg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$potas_VI <- sum(ifelse(weights[[k]]$Predictor == 'Potassiummg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$dfiber_VI <- sum(ifelse(weights[[k]]$Predictor == 'DietaryFiberg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$sfiber_VI <- sum(ifelse(weights[[k]]$Predictor == 'Soluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$ifiber_VI <- sum(ifelse(weights[[k]]$Predictor == 'Insoluble_Fiberg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$sugar_VI <- sum(ifelse(weights[[k]]$Predictor == 'Sugars_g', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$tcarb_VI <- sum(ifelse(weights[[k]]$Predictor == 'TotalCarbsg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$ocarb_VI <- sum(ifelse(weights[[k]]$Predictor == 'Other_Carbsg', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$protein_VI <- sum(ifelse(weights[[k]]$Predictor == 'Proteing', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$vitmin_VI <- sum(ifelse(weights[[k]]$Predictor == 'VitsMinerals', 
weights[[k]]$Mean, 0)) 
   
} 
 
R_model_stats <- map_df(forest_model, ~as.data.frame(.x), .id="UniqueID") 
 
Conditions <- subset(SDComplete, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "Beta.Condition", "bWeight") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
R_model_stats <- subset(R_model_stats, select=-c(UniqueID, UniqueID.1)) 
R_model_stats <- merge(condition, R_model_stats, by = c('UniqueID'), all.x = TRUE) 
 
R_model_stats 
 
##SAVING RELEVANT DATA FILES:### 
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write.csv(R_model_stats, file = "C:/Users/Kristina/Documents/SIMULATED DATA 
Random Forest Model Stats.csv") 
 

Multilevel Model Bayesian Analysis 

####################################################### 
#PLEASE NOTE: TO RUN brms YOU WILL NEED A C++ COMPILER; THE Rtools 
PROGRAM COMES WITH A C++ COMPILER  
#AND IS AVAILABLE AT https://cran.r-project.org/bin/windows/Rtools/ 
#Rtools NEEDS TO BE INSTALLED ACCORDING TO SPECIFICATIONS 
OUTLINED HERE: https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-
Windows 
#OTHERWISE THE FOLLOWING CODE WILL NOT WORK  
 
#AFTER INSTALLING Rtools, CODE FOR FINALIZING STAN INSTALLATION 
install.packages("pkgbuild") 
pkgbuild::has_build_tools(debug = TRUE) 
fx <- inline::cxxfunction( signature(x = "integer", y = "numeric" ) , ' 
                           return ScalarReal( INTEGER(x)[0] * REAL(y)[0] ) ; 
                           ' ) 
fx( 2L, 5 ) # should be 10 
#If this returns anything other than 10, then go back to the previous section and install 
Rtools correctly. 
 
dotR <- file.path(Sys.getenv("HOME"), ".R") 
if (!file.exists(dotR))  
  dir.create(dotR) 
M <- file.path(dotR, "Makevars") 
if (!file.exists(M))  
  file.create(M) 
cat("\nCXX14FLAGS=-O3 -Wno-unused-variable -Wno-unused-function", 
    "CXX14 = $(BINPREF)g++ -m$(WIN) -std=c++1y", 
    "CXX11FLAGS=-O3 -Wno-unused-variable -Wno-unused-function", 
    file = M, sep = "\n", append = TRUE) 
 
remove.packages("rstan") 
if (file.exists(".RData")) file.remove(".RData") 
install.packages("rstan", repos = "https://cloud.r-project.org/", dependencies = TRUE) 
 
###################################################### 
###############PREPPING DATA FILE, IF YOU HAVE UNPREPPED DATA 
FILES, USE THIS################ 
#Loading Condition Data 
Sim <- read.csv(file="C:/Users/Kristina/Documents/SIM Sampling Distribution 
Data.csv", header=TRUE, sep=",") 
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dfVar <- c("UniqueID", "RecordID", "Beta.Condition") 
Conditions <- (Sim[, dfVar]) 
Conditions = subset(Conditions, !duplicated(UniqueID)) 
 
#Loading Data Files  
SIM_Stepwise<- 
read.csv(file="C:/Users/Kristina/Documents/SIMfinal_stepwise_model.csv", 
header=TRUE, sep=",") 
SIM_All_Subsets<- read.csv(file="C:/Users/Kristina/Documents/All IDs All Subsets 
SIM Model Outcomes.csv", header=TRUE, sep=",") 
SIM_Random_Forest<- read.csv(file="C:/Users/Kristina/Documents/SIMULATED 
DATA Random Forest Model Stats.csv", header=TRUE, sep=",") 
 
SIM_Stepwise$Step_Method <- 1 
SIM_Stepwise$AS_Method <- 0 
SIM_Stepwise$RF_Method <- 0 
SIM_Stepwise$Method1 <- "3Stepwise" 
SIM_Stepwise$Method2 <- "1Stepwise" 
 
SIM_All_Subsets$Step_Method <- 0 
SIM_All_Subsets$AS_Method <- 1 
SIM_All_Subsets$RF_Method <- 0 
SIM_All_Subsets$Method1 <- "2All_Subsets" 
SIM_All_Subsets$Method2 <- "2All_Subsets" 
 
SIM_Random_Forest$Step_Method <- 0 
SIM_Random_Forest$AS_Method <- 0 
SIM_Random_Forest$RF_Method <- 1 
SIM_Random_Forest$Method1 <- "1Random_Forest" 
SIM_Random_Forest$Method2 <- "3Random_Forest" 
 
SIM_Stepwise$adjR2_model <- SIM_Stepwise$adj.r.squared 
SIM_Random_Forest$adjR2_model <- SIM_Random_Forest$adjrR2 
SIM_All_Subsets$adjR2_model <- SIM_All_Subsets$mean_adjR2 
 
dfVar <- c("UniqueID", "Method1", "Method2", 
"Step_Method","AS_Method","RF_Method", "model_var", "cal", "calf", "tfat", "sfat", 
"pfat", "mfat", "sod", "potas", "dfiber", "sfiber", "ifiber", "sugar", "tcarb", "ocarb", 
"protein", "vitmin") 
 
SIM_Stepwise1 <- (SIM_Stepwise[, dfVar]) 
SIM_All_Subsets1 <- (SIM_All_Subsets[, dfVar]) 
SIM_Random_Forest1 <- (SIM_Random_Forest[, dfVar]) 
 
SIM_All_Models <- rbind(SIM_Stepwise1, SIM_All_Subsets1, SIM_Random_Forest1) 
SIM_All_Models <- merge(SIM_All_Models, Conditions, by = "UniqueID") 
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SIM_All_Models$Beta.Condition1a <- ifelse(SIM_All_Models$Beta.Condition == 1, 
"1SIM1","2SIM2") 
SIM_All_Models$Beta.Condition1a 
SIM_All_Models$Method1 
 
rm(list=(ls()[ls()!="SIM_All_Models"])) 
 
write.csv(SIM_All_Models, file = "C:/Users/Kristina/Documents/SIM Merged Methods 
Model Outcomes.csv") 
 
SIM_All_Models1 <- SIM_All_Models[complete.cases(SIM_All_Models),] 
 
############################################################# 
######IF YOU HAVE ALL MODELS FILE, LOAD FILE HERE############ 
SIM_All_Models <- read.csv(file="C:/Users/Kristina/Documents/SIM Merged Methods 
Model Outcomes.csv", header=TRUE, sep=",") 
 
#SIM_All_Models1 <- SIM_All_Models[complete.cases(SIM_All_Models),] 
############################################################# 
rm(list=(ls()[ls()!="SIM_All_Models"])) 
 
############################################################# 
library(rstan) 
library(brms) 
library(dplyr) 
 
rstan_options(auto_write = TRUE) 
options(mc.cores = parallel::detectCores()) 
##################################################### 
set.seed(1206) 
 
cor.test(SIM_All_Models$cal, SIM_All_Models$sod) 
cor.test(SIM_All_Models$cal, SIM_All_Models$sugar) 
cor.test(SIM_All_Models$cal, SIM_All_Models$dfiber) 
cor.test(SIM_All_Models$sod, SIM_All_Models$sugar) 
cor.test(SIM_All_Models$sod, SIM_All_Models$dfiber) 
cor.test(SIM_All_Models$sugar, SIM_All_Models$dfiber) 
 
 
### Intercept Only Model: Model1 ###  
t1a <- Sys.time() 
SIMfit1a <- brm(cal ~ (1|UniqueID), 
               data = SIM_All_Models, 
               family = bernoulli(), 
               iter = 30000, 
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               warmup = 2000, 
               chains = 4, 
               cores = 4, 
               save_all_pars = TRUE,  
               control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1a <- (Sys.time()-t1a)) 
 
saveRDS(SIMfit1a, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit1a.rds") 
 
rm("SIMfit1a") 
 
t1b <- Sys.time() 
SIMfit1b <- brm(sod ~ (1|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1b <- (Sys.time()-t1b)) 
 
saveRDS(SIMfit1b, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit1b.rds") 
 
rm("SIMfit1b") 
 
t1c <- Sys.time() 
SIMfit1c <- brm(sugar ~ (1|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1c <- (Sys.time()-t1c)) 
 
saveRDS(SIMfit1c, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit1c.rds") 
 
rm("SIMfit1c") 
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t1d <- Sys.time() 
SIMfit1d <- brm(dfiber ~ (1|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1d <- (Sys.time()-t1d)) 
 
saveRDS(SIMfit1d, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit1d.rds") 
 
rm("SIMfit1d") 
 
 
### Intercept Only Model: Model1 ###  
t1 <- Sys.time() 
SIMfit1 <- brm(cbind(cal, sod, sugar, dfiber) ~ (1|p|UniqueID), 
               data = SIM_All_Models, 
               family = bernoulli(), 
               iter = 30000, 
               warmup = 2000, 
               chains = 4, 
               cores = 4, 
               save_all_pars = TRUE,  
               control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit1 <- (Sys.time()-t1)) 
 
saveRDS(SIMfit1, file = "C:/Users/Kristina/Documents/SIM Overall Analysis/SIM Stan 
Multivariate Version 1/SIM fit1.rds") 
 
rm("SIMfit1") 
 
 
### Model 2 Fixed Effects: Level-1 Predictors ###  
### Random Forest Reference Group: 
t2a <- Sys.time() 
SIMfit2a <- brm(cbind(cal, sod, sugar, dfiber) ~ Method1 + (1|p|UniqueID), 
             data = SIM_All_Models, 
             family = bernoulli(), 
             iter = 30000, 
             warmup = 2000, 



233 
 

             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit2a <- (Sys.time()-t2a)) 
 
saveRDS(SIMfit2a, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit2a.rds") 
 
rm("SIMfit2a") 
 
### Stepwise Reference Group: 
t2b <- Sys.time() 
SIMfit2b <- brm(cbind(cal, sod, sugar, dfiber) ~ Method2 + (1|p|UniqueID), 
             data = SIM_All_Models, 
             family = bernoulli(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit2b <- (Sys.time()-t2b)) 
 
saveRDS(SIMfit2b, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIM fit2b.rds") 
 
rm("SIMfit2b") 
 
 
### Model 3 Fixed Effects: Level-2 Predictors ### 
### Fixed Effects: Level-2 Predictors (b = .01 Reference) ###  
#Random Forest Reference  
t3a <- Sys.time() 
SIMfit3a <- brm(cbind(cal, sod, sugar, dfiber) ~ Method1 + Beta.Condition1a + 
(1|p|UniqueID), 
             data = SIM_All_Models, 
             family = bernoulli(), 
             iter = 30000, 
             warmup = 2000, 
             chains = 4, 
             cores = 4, 
             save_all_pars = TRUE,  
             control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3a <- (Sys.time()-t3a)) 
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saveRDS(SIMfit3a, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIMfit3a.rds") 
 
rm("SIMfit3a") 
 
 
### Fixed Effects: Level-2 Predictors (b = .01 Reference) ###  
#Stepwise Reference 
t3b<- Sys.time() 
SIMfit3b <- brm(cbind(cal, sod, sugar, dfiber) ~ Method2 + Beta.Condition1a + 
(1|p|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 15)) 
(tfit3b <- (Sys.time()-t3b)) 
 
saveRDS(SIMfit3b, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIMfit3b.rds") 
 
rm("SIMfit3b") 
 
set.seed(252019) 
 
### Model 4 Fixed-Effect Interaction: (b = .01 Reference) ###  
#Random Forest Reference  
t4a <- Sys.time() 
SIMfit4a <- brm(cbind(cal, sod, sugar, dfiber) ~ Method1 + Beta.Condition1a + 
Method1*Beta.Condition1a + (1|p|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 16)) 
(tfit4a <- (Sys.time()-t4a)) 
 
#PC1 
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saveRDS(SIMfit5a, file = "C:/Users/Kristina/Documents/SIM Stan Multivariate Version 
1/SIMfit5a.rds") 
 
rm("SIMfit4a") 
 
 
set.seed(272019) 
 
### Model 4 Fixed-Effect Interaction: (b = .01 Reference) ###  
#Stepwise Reference 
t4b<- Sys.time() 
SIMfit4b <- brm(cbind(cal, sod, sugar, dfiber) ~ Method2 + Beta.Condition1a + 
Method2*Beta.Condition1a + (1|p|UniqueID), 
                data = SIM_All_Models, 
                family = bernoulli(), 
                iter = 30000, 
                warmup = 2000, 
                chains = 4, 
                cores = 4, 
                save_all_pars = TRUE,  
                control = list(adapt_delta = .99, max_treedepth = 16)) 
(tfit4b <- (Sys.time()-t4b)) 
 
saveRDS(SIMfit5b, file = "C:/Users/Kristina/Documents/Ohio University/Dissertation 
9.19.17/R Code/Study One Analysis/SIM Overall Analysis/SIM Stan Multivariate 
Version 1/SIMfit5b.rds") 
 
rm("SIMfit4b") 
 
 

Study Three Analyses R Code 

Simulating Data for Correlation Structure A 

rm(list = ls()) 
library(lattice) 
library(car) 
 
nobs = 50 
 
#####SET SEED ONLY ONCE INITIALLY########### 
set.seed(2911) 
################################# 
 
#######CREATE CORRELATION MATRICES############# 
#Simulation Matrix A 
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A1 = matrix(c(1, 0.1, 0.3, 0.5, 0.7, 
              0.1, 1, 0.75, 0.75, 0.75, 
              0.3, 0.75, 1, 0.75, 0.75, 
              0.5, 0.75, 0.75, 1, 0.75, 
              0.7, 0.75, 0.75, 0.75, 1), nrow=5, ncol=5) 
 
A2 = matrix(c(1, 0.1, 0.3, 0.5, 0.7, 
              0.1, 1, 0.5, 0.5, 0.5, 
              0.3, 0.5, 1, 0.5, 0.5, 
              0.5, 0.5, 0.5, 1, 0.5, 
              0.7, 0.5, 0.5, 0.5, 1), nrow=5, ncol=5) 
 
A3 = matrix(c(1, 0.1, 0.3, 0.5, 0.7, 
              0.1, 1, 0.25, 0.25, 0.25, 
              0.3, 0.25, 1, 0.25, 0.25, 
              0.5, 0.25, 0.25, 1, 0.25, 
              0.7, 0.25, 0.25, 0.25, 1), nrow=5, ncol=5) 
 
A4 = matrix(c(1, 0.1, 0.3, 0.5, 0.7, 
              0.1, 1, 0.0, 0.0, 0.0, 
              0.3, 0.0, 1, 0.0, 0.0, 
              0.5, 0.0, 0.0, 1, 0.0, 
              0.7, 0.0, 0.0, 0.0, 1), nrow=5, ncol=5) 
 
####################################################### 
#####Rerun Below Until Break for 40 Replications, Renaming and Saving Between Each 
Run################ 
 
# Cholesky decomposition 
 
#Correlational Structure A1 
LA1 = chol(A1) 
nvars = dim(LA1)[1] 
t(LA1) 
t(LA1) %*% LA1 
 
rA1 = t(LA1) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rA1 = t(rA1) 
 
A1data = as.data.frame(rA1) 
names(A1data) = c('Y', 'X1', 'X2', 'X3', 'X4') 
A1data$rStructure <- "A1data" 
A1data$UniqueID <- 1  
 
#Correlational Structure A2 
LA2 = chol(A2) 
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nvars = dim(LA2)[1] 
t(LA2) 
t(LA2) %*% LA2 
 
rA2 = t(LA2) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rA2 = t(rA2) 
 
A2data = as.data.frame(rA2) 
names(A2data) = c('Y', 'X1', 'X2', 'X3', 'X4') 
A2data$rStructure <- "A2data" 
A2data$UniqueID <- 2 
 
#Correlational Structure A3 
LA3 = chol(A3) 
nvars = dim(LA3)[1] 
t(LA3) 
t(LA3) %*% LA3 
 
rA3 = t(LA3) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rA3 = t(rA3) 
 
A3data = as.data.frame(rA3) 
names(A3data) = c('Y', 'X1', 'X2', 'X3', 'X4') 
A3data$rStructure <- "A3data" 
A3data$UniqueID <- 3  
 
#Correlational Structure A4 
LA4 = chol(A4) 
nvars = dim(LA4)[1] 
t(LA4) 
t(LA4) %*% LA4 
 
rA4 = t(LA4) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rA4 = t(rA4) 
 
A4data = as.data.frame(rA4) 
names(A4data) = c('Y', 'X1', 'X2', 'X3', 'X4') 
A4data$rStructure <- "A4data" 
A4data$UniqueID <- 4 
 
############################################ 
cor(A1data[1:5]) 
cor(A2data[1:5]) 
cor(A3data[1:5]) 
cor(A4data[1:5]) 
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###################################################################### 
####UPDATE NAMES FOR EACH REPLICATION HERE AND SAVE BEFORE 
RERUNNING############## 
 
ACorrSim1 <- rbind(A1data, A2data, A3data, A4data) 
 
write.csv(ACorrSim1, file = "C:/Users/Kristina/Documents/ACorrSim40.csv") 
 

Simulating Data for Correlation Structure B 

rm(list = ls()) 
library(lattice) 
library(car) 
 
#####SET SEED ONLY ONCE INITIALLY########### 
set.seed(121) 
################################### 
 
#######CREATE CORRELATION MATRICES############# 
#####Rerun Below Until Break for 40 Replications, Renaming and Saving Between Each 
Run################  
#Simulation Matrix B 
B1 = matrix(c(1, 0.6, 0.0, 0.0, 
              0.6, 1, 0.0, 0.0,  
              0.0, 0.0, 1, 0.0, 
              0.0, 0.0, 0.0, 1), nrow=4, ncol=4) 
 
#Correlational Structure B1 
nobs <- 50 
LB1 = chol(B1) 
nvars = dim(LB1)[1] 
t(LB1) 
t(LB1) %*% LB1 
 
rB1 = t(LB1) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rB1 = t(rB1) 
 
B1data = as.data.frame(rB1) 
names(B1data) = c('Y', 'X1', 'X2', 'X3') 
B1data$rStructure <- "B1data" 
B1data$UniqueID <- 1  
 
 
B2 = matrix(c(1, 0.6, 0.0, 0.0, 
              0.6, 1, 0.0, ((0.2)^(1/2)),  
              0.0, 0.0, 1, 0.0, 
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              0.0, ((0.2)^(1/2)), 0.0, 1), nrow=4, ncol=4) 
 
#Correlational Structure B2 
 
LB2 = chol(B2) 
nvars = dim(LB2)[1] 
nobs = 50 
t(LB2) 
t(LB2) %*% LB2 
 
rB2 = t(LB2) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rB2 = t(rB2) 
 
B2data = as.data.frame(rB2) 
names(B2data) = c('Y', 'X1', 'X2', 'X3') 
 
B2data$rStructure <- "B2data" 
B2data$UniqueID <- 2  
 
 
B3 = matrix(c(1, 0.6, 0.0, 0.0, 
              0.6, 1, ((0.1)^(1/2)), ((0.1)^(1/2)),  
              0.0, ((0.1)^(1/2)), 1, 0.0, 
              0.0, ((0.1)^(1/2)), 0.0, 1), nrow=4, ncol=4) 
 
#Correlational Structure B3 
nobs <- 50 
LB3 = chol(B3) 
nvars = dim(LB3)[1] 
t(LB3) 
t(LB3) %*% LB3 
 
rB3 = t(LB3) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rB3 = t(rB3) 
 
B3data = as.data.frame(rB3) 
names(B3data) = c('Y', 'X1', 'X2', 'X3') 
 
B3data$rStructure <- "B3data" 
B3data$UniqueID <- 3  
 
B4 = matrix(c(1, 0.6, 0.0, 0.0, 
              0.6, 1, 0.0, ((0.4)^(1/2)),  
              0.0, 0.0, 1, 0.0, 
              0.0, ((0.4)^(1/2)), 0.0, 1), nrow=4, ncol=4) 
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#Correlational Structure B4 
nobs <- 50 
LB4 = chol(B4) 
nvars = dim(LB4)[1] 
t(LB4) 
t(LB4) %*% LB4 
 
rB4 = t(LB4) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rB4 = t(rB4) 
 
B4data = as.data.frame(rB4) 
names(B4data) = c('Y', 'X1', 'X2', 'X3') 
 
B4data$rStructure <- "B4data" 
B4data$UniqueID <- 4 
 
B5 = matrix(c(1, 0.6, 0.0, 0.0, 
              0.6, 1, ((0.2)^(1/2)), ((0.2)^(1/2)),  
              0.0, ((0.2)^(1/2)), 1, 0.0, 
              0.0, ((0.2)^(1/2)), 0.0, 1), nrow=4, ncol=4) 
 
#Correlational Structure B5 
nobs <- 50 
LB5 = chol(B5) 
nvars = dim(LB5)[1] 
t(LB5) 
t(LB5) %*% LB5 
 
rB5 = t(LB5) %*% matrix(rnorm(nvars*nobs), nrow=nvars, ncol=nobs) 
rB5 = t(rB5) 
 
B5data = as.data.frame(rB5) 
names(B5data) = c('Y', 'X1', 'X2', 'X3') 
 
B5data$rStructure <- "B5data" 
B5data$UniqueID <- 5 
 
 
####################################################### 
cor(B1data[1:4]) 
cor(B2data[1:4]) 
cor(B3data[1:4]) 
cor(B4data[1:4]) 
cor(B5data[1:4]) 
###################################################################### 
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####UPDATE NAMES FOR EACH REPLICATION HERE AND SAVE BEFORE 
RERUNNING ABOVE################ 
BCorrSim1 <- rbind(B1data, B2data, B3data, B4data, B5data) 
BCorrSim1 
 
write.csv(BCorrSim1, file = "C:/Users/Kristina/Documents/BCorrSim40.csv") 
 

Stepwise Regression Analysis Data Structure A 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("lm.beta") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(lm.beta) 
library(data.table) 
 
 
#Data from Personal PC: PC1 
ACorrSim1 <- 
read.csv(file="C:/Users/Kristina/Documents/CorrSimData/ACorrSim1.csv", 
header=TRUE, sep=",") 
ACorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim2.csv", 
header=TRUE, sep=",") 
ACorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim3.csv", 
header=TRUE, sep=",") 
ACorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim4.csv", 
header=TRUE, sep=",") 
ACorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim5.csv", 
header=TRUE, sep=",") 
ACorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim6.csv", 
header=TRUE, sep=",") 
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ACorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim7.csv", 
header=TRUE, sep=",") 
ACorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim8.csv", 
header=TRUE, sep=",") 
ACorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim9.csv", 
header=TRUE, sep=",") 
ACorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim10.csv", 
header=TRUE, sep=",") 
 
ACorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim11.csv", 
header=TRUE, sep=",") 
ACorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim12.csv", 
header=TRUE, sep=",") 
ACorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim13.csv", 
header=TRUE, sep=",") 
ACorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim14.csv", 
header=TRUE, sep=",") 
ACorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim15.csv", 
header=TRUE, sep=",") 
ACorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim16.csv", 
header=TRUE, sep=",") 
ACorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim17.csv", 
header=TRUE, sep=",") 
ACorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim18.csv", 
header=TRUE, sep=",") 
ACorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim19.csv", 
header=TRUE, sep=",") 
ACorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim20.csv", 
header=TRUE, sep=",") 
 
ACorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim21.csv", 
header=TRUE, sep=",") 
ACorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim22.csv", 
header=TRUE, sep=",") 
ACorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim23.csv", 
header=TRUE, sep=",") 
ACorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim24.csv", 
header=TRUE, sep=",") 
ACorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim25.csv", 
header=TRUE, sep=",") 
ACorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim26.csv", 
header=TRUE, sep=",") 
ACorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim27.csv", 
header=TRUE, sep=",") 
ACorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim28.csv", 
header=TRUE, sep=",") 
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ACorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim29.csv", 
header=TRUE, sep=",") 
ACorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim30.csv", 
header=TRUE, sep=",") 
 
ACorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim31.csv", 
header=TRUE, sep=",") 
ACorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim32.csv", 
header=TRUE, sep=",") 
ACorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim33.csv", 
header=TRUE, sep=",") 
ACorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim34.csv", 
header=TRUE, sep=",") 
ACorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim35.csv", 
header=TRUE, sep=",") 
ACorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim36.csv", 
header=TRUE, sep=",") 
ACorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim37.csv", 
header=TRUE, sep=",") 
ACorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim38.csv", 
header=TRUE, sep=",") 
ACorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim39.csv", 
header=TRUE, sep=",") 
ACorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim40.csv", 
header=TRUE, sep=",") 
 
####SIMULATED DATA STEPWISE ANALYSIS############## 
step_analysis <- function(data, CorrSIMGroup){ 
   
    datagroup <- CorrSIMGroup 
    count<-length(unique(data$UniqueID)) 
 
  datalist <- list() 
  full_model <- list() 
  null_model <- list() 
  stepwise <- list() 
  summaries <- list() 
  list_names <- list() 
  df_coefficients <- list() 
  df_betas <- list() 
  df_fstat <- list() 
  scale_full_model <- list() 
  scale_null_model <- list() 
  scale_stepwise <- list() 
   
t1 <- Sys.time() 
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for(i in 1:count){ 
  datalist[[i]] <- as.data.frame(subset(data, UniqueID == i)) 
   
  full_model[[i]] <- lm(Y ~ X1 + X2 + X3 + X4,  
                        data = datalist[[i]]) 
   
  null_model[[i]] <- lm(Y ~ 1, data = datalist[[i]]) 
   
  stepwise[[i]] <- step(null_model[[i]], scope = list(upper = full_model[[i]])) 
   
  scale_full_model[[i]] <- lm(scale(Y) ~ scale(X1) + scale(X2) + scale(X3) + scale(X4),   
                              data = datalist[[i]]) 
   
  scale_null_model[[i]] <- lm(scale(Y) ~ 1, data = datalist[[i]]) 
   
  scale_stepwise[[i]] <- step(scale_null_model[[i]], scope = list(upper = 
scale_full_model[[i]])) 
   
  summaries[[i]] <- summary(stepwise[[i]]) 
   
  require(broom)     
  df_coefficients[[i]] <- tidy(stepwise[[i]]) 
  df_betas[[i]] <- tidy(scale_stepwise[[i]]) 
  df_fstat[[i]] <- as.data.frame((summaries[[i]][["r.squared"]])) 
  colnames(df_fstat[[i]]) <- "r.squared" 
  df_fstat[[i]]$value <- ifelse(is_empty(summaries[[i]]$fstatistic[[1]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[1]]) 
  df_fstat[[i]]$numdf <- ifelse(is_empty(summaries[[i]]$fstatistic[[2]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[2]]) 
  df_fstat[[i]]$dendf <- ifelse(is_empty(summaries[[i]]$fstatistic[[3]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[3]]) 
   
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
df_coefficients[[1]] 
#############Model Statistics########################### 
#Adjusted R^2# 
model_stats <- rbind(lapply(summaries, `[`, 9)) 
model <- map_df(model_stats, ~as.data.frame(.x), .id="UniqueID") 
 
#F-Statistics# 
fstats <- bind_rows(df_fstat, .id = 'UniqueID') 
fstats$fstat <- fstats$value 
fstatVar <- c("UniqueID", "fstat", "numdf", "dendf") 
fstatistics <- fstats[complete.cases(fstats[, fstatVar]), fstatVar] 
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#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_model <- merge(model, fstatistics, by = c('UniqueID'), all.x = TRUE) 
 
 
#Computing p-values, assigning binary significance values 
stepwise_model$pvalue<- pf(stepwise_model$fstat, stepwise_model$numdf, 
stepwise_model$dendf, lower.tail = FALSE)  
stepwise_model$modelsig <- ifelse(stepwise_model$pvalue < .05, 1, 0) 
 
################################################################ 
#Creating dataframe for unstandardized coefficient estimates#  
coefficients <- bind_rows(df_coefficients, .id = 'UniqueID') 
 
#Creating mergeable dataframe for standardized coefficient estimates# 
betas_mid <- bind_rows(df_betas, .id = 'UniqueID') 
betas_mid 
betas_mid$term2 <- gsub("scale\\(", "", betas_mid$term) 
betas_mid$term3 <- gsub("[)]", "", betas_mid$term2) 
betas_mid$term <- gsub("[(]Intercept", "(Intercept)", betas_mid$term3) 
 
betas_mid$beta <- betas_mid$estimate 
 
betaVar <- c("UniqueID", "term", "beta") 
betas <- betas_mid[complete.cases(betas_mid[, betaVar]), betaVar] 
betas$beta_value <- ifelse(betas$term == '(Intercept)', NA, betas$beta) 
 
#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_coeff <- merge(coefficients, betas, by = c('UniqueID', 'term')) 
 
######Assigning Meta Values################  
#Significance values# 
stepwise_coeff$coeffsig <- ifelse(stepwise_coeff$p.value < .05, 1, 0) 
#Positive/negative betas# 
stepwise_coeff$coeffdirection <- ifelse(stepwise_coeff$beta > 0, 'positive', 'negative') 
 
#Ranking values# 
coeff_data <- list() 
for(i in 1:count){ 
  coeff_data[[i]] <- as.data.frame(subset(stepwise_coeff, UniqueID == i)) 
  coeff_data[[i]]$rank <- rank(-abs(coeff_data[[i]]$beta_value), na.last = FALSE, 
ties.method = "average") 
  coeff_data[[i]]$adjrank <- coeff_data[[i]]$rank - 1 
  final_stepwise_coeff <- bind_rows(coeff_data) 
} 
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#Adding Predictor Count to File# 
final_model <- as.data.frame(subset(final_stepwise_coeff)) 
predictors <- c("UniqueID", "term") 
 
CORSIMfinal_model_predictors <- final_model[complete.cases(final_model[, 
predictors]), predictors] 
 
stepmodel <- list() 
predictorlist <- list() 
for(i in 1:count){  
  stepmodel[[i]] <- as.data.frame(subset(stepwise_model, UniqueID == i)) 
  predictorlist[[i]] <- as.data.frame(subset(CORSIMfinal_model_predictors, UniqueID == 
i)) 
  predictorlist[[i]]$Count <- (nrow(predictorlist[[i]]))-1 
  stepmodel[[i]]$model_var <- (nrow(predictorlist[[i]]))-1 
} 
 
stepwise_model <- map_df(stepmodel, ~as.data.frame(.x), .id="UniqueID") 
final_model_predictors <- map_df(predictorlist, ~as.data.frame(.x), .id="UniqueID") 
 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "estimate", "beta") 
 
model_estimates <- final_stepwise_coeff[complete.cases(final_stepwise_coeff[, 
modelVar]), modelVar] 
 
person_model <- list() 
term_model <- list() 
step_model <- list() 
weights <- list() 
stdweights <- list() 
 
for(k in 1:count){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
  step_model[[k]] <- as.data.frame(subset(stepwise_model, UniqueID == k)) 
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  stdweights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$beta))) 
  setDT(stdweights[[k]], keep.rownames = TRUE)[] 
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  setnames(stdweights[[k]], 1, "Predictor") 
  setnames(stdweights[[k]], 2, "Mean") 
   
  step_model[[k]]$intercept <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 1, 0)) 
  step_model[[k]]$X1 <- sum(ifelse(weights[[k]]$Predictor == 'X1', 1, 0)) 
  step_model[[k]]$X2 <- sum(ifelse(weights[[k]]$Predictor == 'X2', 1, 0)) 
  step_model[[k]]$X3 <- sum(ifelse(weights[[k]]$Predictor == 'X3', 1, 0)) 
  step_model[[k]]$X4 <- sum(ifelse(weights[[k]]$Predictor == 'X4', 1, 0)) 
 
  step_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X1_b <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X2_b <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X3_b <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X4_b <- sum(ifelse(weights[[k]]$Predictor == 'X4', 
weights[[k]]$Mean, 0)) 
 
  step_model[[k]]$intercept_beta <- sum(ifelse(stdweights[[k]]$Predictor == '(Intercept)', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X1_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X1', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X2_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X2', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X3_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X3', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X4_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X4', 
stdweights[[k]]$Mean, 0)) 
   
 } 
 
stepwise_model <- map_df(step_model, ~as.data.frame(.x), .id="NumberID") 
 
Conditions <- subset(data, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "rStructure") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
CORSIMfinal_stepwise_coeff <- merge(condition, final_stepwise_coeff, by = 
c('UniqueID'), all.x = TRUE) 
CORSIMstepwise_model <- merge(condition, stepwise_model, by = c('UniqueID'), all.x 
= TRUE) 
 
##SAVING ON PERSONAL PC: PC1### 
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write.csv(CORSIMfinal_stepwise_coeff, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " 
CORSIMfinal_stepwise_coeff.csv", sep = "")) 
write.csv(CORSIMstepwise_model, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " 
CORSIMstepwise_model.csv", sep = "")) 
write.csv(CORSIMfinal_model_predictors, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " 
CORSIMfinal_model_predictors.csv", sep = "")) 
 
}  
 
########################################################################
##################RUN STEPWISE ANALYSIS FUNCTION################## 
#Set seed run function with different datasets 
 
sets <- list(ACorrSim1, ACorrSim2, ACorrSim3, ACorrSim4, ACorrSim5, ACorrSim6, 
ACorrSim7, ACorrSim8, ACorrSim9, ACorrSim10, ACorrSim11, ACorrSim12, 
ACorrSim13, ACorrSim14, ACorrSim15, ACorrSim16, ACorrSim17, ACorrSim18, 
ACorrSim19, ACorrSim20, ACorrSim21, ACorrSim22, ACorrSim23, ACorrSim24,  
ACorrSim25, ACorrSim26, ACorrSim27, ACorrSim28, ACorrSim29, ACorrSim30, 
ACorrSim31, ACorrSim32, ACorrSim33, ACorrSim34, ACorrSim35, ACorrSim36, 
ACorrSim37, ACorrSim38, ACorrSim39, ACorrSim40) 
 
sets_num <- list(1, 2, 3, 4, 5,  6,  7,  8,  9, 10,  
             11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
             21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
             31, 32, 33, 34, 35, 36, 37, 38, 39, 40)  
 
set.seed(1015) 
tfunc <- Sys.time()  
mapply(step_analysis, sets, sets_num) 
print(totalanalysis <- (Sys.time()-tfunc)) 
 

Stepwise Regression Analysis Data Structure B 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("lm.beta") 
 
rm(list=ls()) 
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library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(lm.beta) 
library(data.table) 
 
#Data from Personal PC: PC1 
BCorrSim1 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim1.csv", 
header=TRUE, sep=",") 
BCorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim2.csv", 
header=TRUE, sep=",") 
BCorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim3.csv", 
header=TRUE, sep=",") 
BCorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim4.csv", 
header=TRUE, sep=",") 
BCorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim5.csv", 
header=TRUE, sep=",") 
BCorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim6.csv", 
header=TRUE, sep=",") 
BCorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim7.csv", 
header=TRUE, sep=",") 
BCorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim8.csv", 
header=TRUE, sep=",") 
BCorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim9.csv", 
header=TRUE, sep=",") 
BCorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim10.csv", 
header=TRUE, sep=",") 
 
BCorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim11.csv", 
header=TRUE, sep=",") 
BCorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim12.csv", 
header=TRUE, sep=",") 
BCorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim13.csv", 
header=TRUE, sep=",") 
BCorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim14.csv", 
header=TRUE, sep=",") 
BCorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim15.csv", 
header=TRUE, sep=",") 
BCorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim16.csv", 
header=TRUE, sep=",") 
BCorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim17.csv", 
header=TRUE, sep=",") 
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BCorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim18.csv", 
header=TRUE, sep=",") 
BCorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim19.csv", 
header=TRUE, sep=",") 
BCorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim20.csv", 
header=TRUE, sep=",") 
 
BCorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim21.csv", 
header=TRUE, sep=",") 
BCorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim22.csv", 
header=TRUE, sep=",") 
BCorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim23.csv", 
header=TRUE, sep=",") 
BCorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim24.csv", 
header=TRUE, sep=",") 
BCorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim25.csv", 
header=TRUE, sep=",") 
BCorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim26.csv", 
header=TRUE, sep=",") 
BCorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim27.csv", 
header=TRUE, sep=",") 
BCorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim28.csv", 
header=TRUE, sep=",") 
BCorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim29.csv", 
header=TRUE, sep=",") 
BCorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim30.csv", 
header=TRUE, sep=",") 
 
BCorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim31.csv", 
header=TRUE, sep=",") 
BCorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim32.csv", 
header=TRUE, sep=",") 
BCorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim33.csv", 
header=TRUE, sep=",") 
BCorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim34.csv", 
header=TRUE, sep=",") 
BCorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim35.csv", 
header=TRUE, sep=",") 
BCorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim36.csv", 
header=TRUE, sep=",") 
BCorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim37.csv", 
header=TRUE, sep=",") 
BCorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim38.csv", 
header=TRUE, sep=",") 
BCorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim39.csv", 
header=TRUE, sep=",") 
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BCorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim40.csv", 
header=TRUE, sep=",") 
 
BCorrSim1 <- as.data.frame(BCorrSim1[with(BCorrSim1, order(UniqueID, Y)),]) 
BCorrSim2 <- as.data.frame(BCorrSim1[with(BCorrSim2, order(UniqueID, Y)),]) 
BCorrSim3 <- as.data.frame(BCorrSim1[with(BCorrSim3, order(UniqueID, Y)),]) 
BCorrSim4 <- as.data.frame(BCorrSim1[with(BCorrSim4, order(UniqueID, Y)),]) 
BCorrSim5 <- as.data.frame(BCorrSim1[with(BCorrSim5, order(UniqueID, Y)),]) 
BCorrSim6 <- as.data.frame(BCorrSim1[with(BCorrSim6, order(UniqueID, Y)),]) 
BCorrSim7 <- as.data.frame(BCorrSim1[with(BCorrSim7, order(UniqueID, Y)),]) 
BCorrSim8 <- as.data.frame(BCorrSim1[with(BCorrSim8, order(UniqueID, Y)),]) 
BCorrSim9 <- as.data.frame(BCorrSim1[with(BCorrSim9, order(UniqueID, Y)),]) 
BCorrSim10 <- as.data.frame(BCorrSim1[with(BCorrSim10, order(UniqueID, Y)),]) 
 
BCorrSim11 <- as.data.frame(BCorrSim1[with(BCorrSim11, order(UniqueID, Y)),]) 
BCorrSim12 <- as.data.frame(BCorrSim1[with(BCorrSim12, order(UniqueID, Y)),]) 
BCorrSim13 <- as.data.frame(BCorrSim1[with(BCorrSim13, order(UniqueID, Y)),]) 
BCorrSim14 <- as.data.frame(BCorrSim1[with(BCorrSim14, order(UniqueID, Y)),]) 
BCorrSim15 <- as.data.frame(BCorrSim1[with(BCorrSim15, order(UniqueID, Y)),]) 
BCorrSim16 <- as.data.frame(BCorrSim1[with(BCorrSim16, order(UniqueID, Y)),]) 
BCorrSim17 <- as.data.frame(BCorrSim1[with(BCorrSim17, order(UniqueID, Y)),]) 
BCorrSim18 <- as.data.frame(BCorrSim1[with(BCorrSim18, order(UniqueID, Y)),]) 
BCorrSim19 <- as.data.frame(BCorrSim1[with(BCorrSim19, order(UniqueID, Y)),]) 
BCorrSim20 <- as.data.frame(BCorrSim1[with(BCorrSim20, order(UniqueID, Y)),]) 
 
BCorrSim21 <- as.data.frame(BCorrSim1[with(BCorrSim21, order(UniqueID, Y)),]) 
BCorrSim22 <- as.data.frame(BCorrSim1[with(BCorrSim22, order(UniqueID, Y)),]) 
BCorrSim23 <- as.data.frame(BCorrSim1[with(BCorrSim23, order(UniqueID, Y)),]) 
BCorrSim24 <- as.data.frame(BCorrSim1[with(BCorrSim24, order(UniqueID, Y)),]) 
BCorrSim25 <- as.data.frame(BCorrSim1[with(BCorrSim25, order(UniqueID, Y)),]) 
BCorrSim26 <- as.data.frame(BCorrSim1[with(BCorrSim26, order(UniqueID, Y)),]) 
BCorrSim27 <- as.data.frame(BCorrSim1[with(BCorrSim27, order(UniqueID, Y)),]) 
BCorrSim28 <- as.data.frame(BCorrSim1[with(BCorrSim28, order(UniqueID, Y)),]) 
BCorrSim29 <- as.data.frame(BCorrSim1[with(BCorrSim29, order(UniqueID, Y)),]) 
BCorrSim30 <- as.data.frame(BCorrSim1[with(BCorrSim30, order(UniqueID, Y)),]) 
 
BCorrSim31 <- as.data.frame(BCorrSim1[with(BCorrSim31, order(UniqueID, Y)),]) 
BCorrSim32 <- as.data.frame(BCorrSim1[with(BCorrSim32, order(UniqueID, Y)),]) 
BCorrSim33 <- as.data.frame(BCorrSim1[with(BCorrSim33, order(UniqueID, Y)),]) 
BCorrSim34 <- as.data.frame(BCorrSim1[with(BCorrSim34, order(UniqueID, Y)),]) 
BCorrSim35 <- as.data.frame(BCorrSim1[with(BCorrSim35, order(UniqueID, Y)),]) 
BCorrSim36 <- as.data.frame(BCorrSim1[with(BCorrSim36, order(UniqueID, Y)),]) 
BCorrSim37 <- as.data.frame(BCorrSim1[with(BCorrSim37, order(UniqueID, Y)),]) 
BCorrSim38 <- as.data.frame(BCorrSim1[with(BCorrSim38, order(UniqueID, Y)),]) 
BCorrSim39 <- as.data.frame(BCorrSim1[with(BCorrSim39, order(UniqueID, Y)),]) 
BCorrSim40 <- as.data.frame(BCorrSim1[with(BCorrSim40, order(UniqueID, Y)),]) 
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###################SIMULATED DATA STEPWISE ANALYSIS############## 
step_analysis <- function(data, CorrSIMGroup){ 
   
    datagroup <- CorrSIMGroup 
    count<-length(unique(data$UniqueID)) 
 
  datalist <- list() 
  full_model <- list() 
  null_model <- list() 
  stepwise <- list() 
  summaries <- list() 
  list_names <- list() 
  df_coefficients <- list() 
  df_betas <- list() 
  df_fstat <- list() 
  scale_full_model <- list() 
  scale_null_model <- list() 
  scale_stepwise <- list() 
   
t1 <- Sys.time() 
for(i in 1:count){ 
  datalist[[i]] <- as.data.frame(subset(data, UniqueID == i)) 
   
  full_model[[i]] <- lm(Y ~ X1 + X2 + X3,  
                        data = datalist[[i]]) 
   
  null_model[[i]] <- lm(Y ~ 1, data = datalist[[i]]) 
   
  stepwise[[i]] <- step(null_model[[i]], scope = list(upper = full_model[[i]])) 
   
  scale_full_model[[i]] <- lm(scale(Y) ~ scale(X1) + scale(X2) + scale(X3),  
                              data = datalist[[i]]) 
   
  scale_null_model[[i]] <- lm(scale(Y) ~ 1, data = datalist[[i]]) 
   
  scale_stepwise[[i]] <- step(scale_null_model[[i]], scope = list(upper = 
scale_full_model[[i]])) 
   
  summaries[[i]] <- summary(stepwise[[i]]) 
   
  require(broom)     
  df_coefficients[[i]] <- tidy(stepwise[[i]]) 
  df_betas[[i]] <- tidy(scale_stepwise[[i]]) 
  df_fstat[[i]] <- as.data.frame((summaries[[i]][["r.squared"]])) 
  colnames(df_fstat[[i]]) <- "r.squared" 



253 
 

  df_fstat[[i]]$value <- ifelse(is_empty(summaries[[i]]$fstatistic[[1]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[1]]) 
  df_fstat[[i]]$numdf <- ifelse(is_empty(summaries[[i]]$fstatistic[[2]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[2]]) 
  df_fstat[[i]]$dendf <- ifelse(is_empty(summaries[[i]]$fstatistic[[3]]) == TRUE, 0, 
summaries[[i]]$fstatistic[[3]]) 
   
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
df_coefficients[[1]] 
 
#############Model Statistics########################### 
#Adjusted R^2# 
model_stats <- rbind(lapply(summaries, `[`, 9)) 
model <- map_df(model_stats, ~as.data.frame(.x), .id="UniqueID") 
 
#F-Statistics# 
fstats <- bind_rows(df_fstat, .id = 'UniqueID') 
fstats$fstat <- fstats$value 
fstatVar <- c("UniqueID", "fstat", "numdf", "dendf") 
fstatistics <- fstats[complete.cases(fstats[, fstatVar]), fstatVar] 
 
#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_model <- merge(model, fstatistics, by = c('UniqueID'), all.x = TRUE) 
 
#Computing p-values, assigning binary significance values 
stepwise_model$pvalue<- pf(stepwise_model$fstat, stepwise_model$numdf, 
stepwise_model$dendf, lower.tail = FALSE)  
stepwise_model$modelsig <- ifelse(stepwise_model$pvalue < .05, 1, 0) 
################################################################ 
#Creating dataframe for unstandardized coefficient estimates#  
coefficients <- bind_rows(df_coefficients, .id = 'UniqueID') 
 
#Creating mergeable dataframe for standardized coefficient estimates# 
betas_mid <- bind_rows(df_betas, .id = 'UniqueID') 
betas_mid 
betas_mid$term2 <- gsub("scale\\(", "", betas_mid$term) 
betas_mid$term3 <- gsub("[)]", "", betas_mid$term2) 
betas_mid$term <- gsub("[(]Intercept", "(Intercept)", betas_mid$term3) 
betas_mid$beta <- betas_mid$estimate 
 
betaVar <- c("UniqueID", "term", "beta") 
betas <- betas_mid[complete.cases(betas_mid[, betaVar]), betaVar] 
betas$beta_value <- ifelse(betas$term == '(Intercept)', NA, betas$beta) 
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#Merging standardized coefficient estimates with larger coefficient dataframe# 
stepwise_coeff <- merge(coefficients, betas, by = c('UniqueID', 'term')) 
 
######Assigning Meta Values################  
#Significance values# 
stepwise_coeff$coeffsig <- ifelse(stepwise_coeff$p.value < .05, 1, 0) 
#Positive/negative betas# 
stepwise_coeff$coeffdirection <- ifelse(stepwise_coeff$beta > 0, 'positive', 'negative') 
 
#Ranking values# 
coeff_data <- list() 
for(i in 1:count){ 
  coeff_data[[i]] <- as.data.frame(subset(stepwise_coeff, UniqueID == i)) 
  coeff_data[[i]]$rank <- rank(-abs(coeff_data[[i]]$beta_value), na.last = FALSE, 
ties.method = "average") 
  coeff_data[[i]]$adjrank <- coeff_data[[i]]$rank - 1 
  final_stepwise_coeff <- bind_rows(coeff_data) 
} 
 
#Adding Predictor Count to File# 
final_model <- as.data.frame(subset(final_stepwise_coeff)) 
predictors <- c("UniqueID", "term") 
 
CORSIMfinal_model_predictors <- final_model[complete.cases(final_model[, 
predictors]), predictors] 
 
stepmodel <- list() 
predictorlist <- list() 
for(i in 1:count){  
  stepmodel[[i]] <- as.data.frame(subset(stepwise_model, UniqueID == i)) 
  predictorlist[[i]] <- as.data.frame(subset(CORSIMfinal_model_predictors, UniqueID == 
i)) 
  predictorlist[[i]]$Count <- (nrow(predictorlist[[i]]))-1 
  stepmodel[[i]]$model_var <- (nrow(predictorlist[[i]]))-1 
} 
 
stepwise_model <- map_df(stepmodel, ~as.data.frame(.x), .id="UniqueID") 
final_model_predictors <- map_df(predictorlist, ~as.data.frame(.x), .id="UniqueID") 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "estimate", "beta") 
 
model_estimates <- final_stepwise_coeff[complete.cases(final_stepwise_coeff[, 
modelVar]), modelVar] 
 
person_model <- list() 
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term_model <- list() 
step_model <- list() 
weights <- list() 
stdweights <- list() 
 
for(k in 1:count){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
  step_model[[k]] <- as.data.frame(subset(stepwise_model, UniqueID == k)) 
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  stdweights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$beta))) 
  setDT(stdweights[[k]], keep.rownames = TRUE)[] 
  setnames(stdweights[[k]], 1, "Predictor") 
  setnames(stdweights[[k]], 2, "Mean") 
   
  step_model[[k]]$intercept <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 1, 0)) 
  step_model[[k]]$X1 <- sum(ifelse(weights[[k]]$Predictor == 'X1', 1, 0)) 
  step_model[[k]]$X2 <- sum(ifelse(weights[[k]]$Predictor == 'X2', 1, 0)) 
  step_model[[k]]$X3 <- sum(ifelse(weights[[k]]$Predictor == 'X3', 1, 0)) 
 
  step_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X1_b <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X2_b <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  step_model[[k]]$X3_b <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
   
  step_model[[k]]$intercept_beta <- sum(ifelse(stdweights[[k]]$Predictor == '(Intercept)', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X1_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X1', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X2_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X2', 
stdweights[[k]]$Mean, 0)) 
  step_model[[k]]$X3_beta <- sum(ifelse(stdweights[[k]]$Predictor == 'X3', 
stdweights[[k]]$Mean, 0)) 
 
} 
 
stepwise_model <- map_df(step_model, ~as.data.frame(.x), .id="NumberID") 



256 
 

 
 
Conditions <- subset(data, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "rStructure") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
CORSIMfinal_stepwise_coeff <- merge(condition, final_stepwise_coeff, by = 
c('UniqueID'), all.x = TRUE) 
CORSIMstepwise_model <- merge(condition, stepwise_model, by = c('UniqueID'), all.x 
= TRUE) 
 
##SAVING ON PERSONAL PC: PC1### 
write.csv(CORSIMfinal_stepwise_coeff, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " 
CORSIMfinal_stepwise_coeff.csv", sep = "")) 
write.csv(CORSIMstepwise_model, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " 
CORSIMstepwise_model.csv", sep = "")) 
write.csv(CORSIMfinal_model_predictors, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " 
CORSIMfinal_model_predictors.csv", sep = "")) 
 
}  
 
#################RUN STEPWISE ANALYSIS FUNCTION################### 
#Set seed run function with different datasets 
sets <- list(BCorrSim1, BCorrSim2, BCorrSim3, BCorrSim4, BCorrSim5, BCorrSim6, 
BCorrSim7, BCorrSim8, BCorrSim9, BCorrSim10, BCorrSim11, BCorrSim12, 
BCorrSim13, BCorrSim14, BCorrSim15, BCorrSim16, BCorrSim17, BCorrSim18, 
BCorrSim19, BCorrSim20, BCorrSim21, BCorrSim22, BCorrSim23, BCorrSim24,  
BCorrSim25, BCorrSim26, BCorrSim27, BCorrSim28, BCorrSim29, BCorrSim30, 
BCorrSim31, BCorrSim32, BCorrSim33, BCorrSim34, BCorrSim35, BCorrSim36, 
BCorrSim37, BCorrSim38, BCorrSim39, BCorrSim40) 
 
sets_num <- list(1, 2, 3, 4, 5,  6,  7,  8,  9, 10,  
             11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
             21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
             31, 32, 33, 34, 35, 36, 37, 38, 39, 40)  
 
set.seed(122) 
tfunc <- Sys.time()  
mapply(step_analysis, sets, sets_num) 
print(totalanalysis <- (Sys.time()-tfunc)) 
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All Subsets Analysis Data Structure A 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(data.table) 
 
#Data from Personal PC: PC1 
ACorrSim1 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim1.csv", 
header=TRUE, sep=",") 
ACorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim2.csv", 
header=TRUE, sep=",") 
ACorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim3.csv", 
header=TRUE, sep=",") 
ACorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim4.csv", 
header=TRUE, sep=",") 
ACorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim5.csv", 
header=TRUE, sep=",") 
ACorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim6.csv", 
header=TRUE, sep=",") 
ACorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim7.csv", 
header=TRUE, sep=",") 
ACorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim8.csv", 
header=TRUE, sep=",") 
ACorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim9.csv", 
header=TRUE, sep=",") 
ACorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim10.csv", 
header=TRUE, sep=",") 
 
 
ACorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim11.csv", 
header=TRUE, sep=",") 
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ACorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim12.csv", 
header=TRUE, sep=",") 
ACorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim13.csv", 
header=TRUE, sep=",") 
ACorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim14.csv", 
header=TRUE, sep=",") 
ACorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim15.csv", 
header=TRUE, sep=",") 
ACorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim16.csv", 
header=TRUE, sep=",") 
ACorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim17.csv", 
header=TRUE, sep=",") 
ACorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim18.csv", 
header=TRUE, sep=",") 
ACorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim19.csv", 
header=TRUE, sep=",") 
ACorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim20.csv", 
header=TRUE, sep=",") 
 
ACorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim21.csv", 
header=TRUE, sep=",") 
ACorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim22.csv", 
header=TRUE, sep=",") 
ACorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim23.csv", 
header=TRUE, sep=",") 
ACorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim24.csv", 
header=TRUE, sep=",") 
ACorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim25.csv", 
header=TRUE, sep=",") 
ACorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim26.csv", 
header=TRUE, sep=",") 
ACorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim27.csv", 
header=TRUE, sep=",") 
ACorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim28.csv", 
header=TRUE, sep=",") 
ACorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim29.csv", 
header=TRUE, sep=",") 
ACorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim30.csv", 
header=TRUE, sep=",") 
 
ACorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim31.csv", 
header=TRUE, sep=",") 
ACorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim32.csv", 
header=TRUE, sep=",") 
ACorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim33.csv", 
header=TRUE, sep=",") 
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ACorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim34.csv", 
header=TRUE, sep=",") 
ACorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim35.csv", 
header=TRUE, sep=",") 
ACorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim36.csv", 
header=TRUE, sep=",") 
ACorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim37.csv", 
header=TRUE, sep=",") 
ACorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim38.csv", 
header=TRUE, sep=",") 
ACorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim39.csv", 
header=TRUE, sep=",") 
ACorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim40.csv", 
header=TRUE, sep=",") 
 
ACorrSim1 <- as.data.frame(ACorrSim1[with(ACorrSim1, order(UniqueID, Y)),]) 
ACorrSim2 <- as.data.frame(ACorrSim1[with(ACorrSim2, order(UniqueID, Y)),]) 
ACorrSim3 <- as.data.frame(ACorrSim1[with(ACorrSim3, order(UniqueID, Y)),]) 
ACorrSim4 <- as.data.frame(ACorrSim1[with(ACorrSim4, order(UniqueID, Y)),]) 
ACorrSim5 <- as.data.frame(ACorrSim1[with(ACorrSim5, order(UniqueID, Y)),]) 
ACorrSim6 <- as.data.frame(ACorrSim1[with(ACorrSim6, order(UniqueID, Y)),]) 
ACorrSim7 <- as.data.frame(ACorrSim1[with(ACorrSim7, order(UniqueID, Y)),]) 
ACorrSim8 <- as.data.frame(ACorrSim1[with(ACorrSim8, order(UniqueID, Y)),]) 
ACorrSim9 <- as.data.frame(ACorrSim1[with(ACorrSim9, order(UniqueID, Y)),]) 
ACorrSim10 <- as.data.frame(ACorrSim1[with(ACorrSim10, order(UniqueID, Y)),]) 
 
ACorrSim11 <- as.data.frame(ACorrSim1[with(ACorrSim11, order(UniqueID, Y)),]) 
ACorrSim12 <- as.data.frame(ACorrSim1[with(ACorrSim12, order(UniqueID, Y)),]) 
ACorrSim13 <- as.data.frame(ACorrSim1[with(ACorrSim13, order(UniqueID, Y)),]) 
ACorrSim14 <- as.data.frame(ACorrSim1[with(ACorrSim14, order(UniqueID, Y)),]) 
ACorrSim15 <- as.data.frame(ACorrSim1[with(ACorrSim15, order(UniqueID, Y)),]) 
ACorrSim16 <- as.data.frame(ACorrSim1[with(ACorrSim16, order(UniqueID, Y)),]) 
ACorrSim17 <- as.data.frame(ACorrSim1[with(ACorrSim17, order(UniqueID, Y)),]) 
ACorrSim18 <- as.data.frame(ACorrSim1[with(ACorrSim18, order(UniqueID, Y)),]) 
ACorrSim19 <- as.data.frame(ACorrSim1[with(ACorrSim19, order(UniqueID, Y)),]) 
ACorrSim20 <- as.data.frame(ACorrSim1[with(ACorrSim20, order(UniqueID, Y)),]) 
 
ACorrSim21 <- as.data.frame(ACorrSim1[with(ACorrSim21, order(UniqueID, Y)),]) 
ACorrSim22 <- as.data.frame(ACorrSim1[with(ACorrSim22, order(UniqueID, Y)),]) 
ACorrSim23 <- as.data.frame(ACorrSim1[with(ACorrSim23, order(UniqueID, Y)),]) 
ACorrSim24 <- as.data.frame(ACorrSim1[with(ACorrSim24, order(UniqueID, Y)),]) 
ACorrSim25 <- as.data.frame(ACorrSim1[with(ACorrSim25, order(UniqueID, Y)),]) 
ACorrSim26 <- as.data.frame(ACorrSim1[with(ACorrSim26, order(UniqueID, Y)),]) 
ACorrSim27 <- as.data.frame(ACorrSim1[with(ACorrSim27, order(UniqueID, Y)),]) 
ACorrSim28 <- as.data.frame(ACorrSim1[with(ACorrSim28, order(UniqueID, Y)),]) 
ACorrSim29 <- as.data.frame(ACorrSim1[with(ACorrSim29, order(UniqueID, Y)),]) 
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ACorrSim30 <- as.data.frame(ACorrSim1[with(ACorrSim30, order(UniqueID, Y)),]) 
 
ACorrSim31 <- as.data.frame(ACorrSim1[with(ACorrSim31, order(UniqueID, Y)),]) 
ACorrSim32 <- as.data.frame(ACorrSim1[with(ACorrSim32, order(UniqueID, Y)),]) 
ACorrSim33 <- as.data.frame(ACorrSim1[with(ACorrSim33, order(UniqueID, Y)),]) 
ACorrSim34 <- as.data.frame(ACorrSim1[with(ACorrSim34, order(UniqueID, Y)),]) 
ACorrSim35 <- as.data.frame(ACorrSim1[with(ACorrSim35, order(UniqueID, Y)),]) 
ACorrSim36 <- as.data.frame(ACorrSim1[with(ACorrSim36, order(UniqueID, Y)),]) 
ACorrSim37 <- as.data.frame(ACorrSim1[with(ACorrSim37, order(UniqueID, Y)),]) 
ACorrSim38 <- as.data.frame(ACorrSim1[with(ACorrSim38, order(UniqueID, Y)),]) 
ACorrSim39 <- as.data.frame(ACorrSim1[with(ACorrSim39, order(UniqueID, Y)),]) 
ACorrSim40 <- as.data.frame(ACorrSim1[with(ACorrSim40, order(UniqueID, Y)),]) 
 
 
#################ALL SUBSETS ANALYSIS FUNCTION##################### 
all_subsets <- function(data, bootset, CorrSIMGroup){  
 
  t1 <- Sys.time() 
   
  data <- data 
  datagroup <- CorrSIMGroup 
  start <- 1 
  end <- 4 
   
  datalist <- list() 
  resamples <- list() 
  boot_set <- list() 
  leaps <- list() 
  summary <- list() 
  maxadjr2 <- list() 
  variables1 <- list() 
  variables2 <- list() 
  variables3 <- list() 
  coefficients1 <- list() 
  coefficients2 <- list() 
  bestmodel <- list() 
  corsim_bestmodels <- list() 
   
  bestfit <- list() 
  only_bestmodels <- list() 
   
  modelsonly1 <- list() 
  modelsonly2 <- list() 
  modelsonly3 <- list() 
  freqmodel <- list() 
  variable_importance <- list() 
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for(k in start:end){ 
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(data, UniqueID == k)) 
   
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(datalist[[k]], 50, replace = T)) 
   
  for(j in 1:bootset){  
    t3 <- Sys.time() 
    boot_set[[j]] <- resamples[[k]][[j]] 
    leaps[[j]] <-  
      regsubsets(Y ~ X1 + X2 + X3 + X4,  
                 data = boot_set[[j]], 
                 nbest = 1,       # 1 best model for each number of predictors 
                 nvmax = NULL,    # NULL for no limit on number of variables 
                 force.in = NULL, force.out = NULL, 
                 method = "exhaustive")  
    summary[[j]] <- summary(leaps[[j]]) 
    maxadjr2[[j]] <- which.max(summary[[j]]$adjr2) 
    variables1[[j]] <- map_df(summary[[j]]$which[maxadjr2[[j]],], ~as.data.frame(.x), 
.id="term") 
    variables1[[j]]$included <- variables1[[j]]$.x 
    variables2[[j]] <- variables1[[j]][-c(2)] 
    variables3[[j]] <- as.data.frame(subset(variables2[[j]])) 
    variables3[[j]]$adj.r.squared <- summary[[j]]$adjr2[maxadjr2[[j]]] 
    variables3[[j]]$inclusion <- ifelse(variables3[[j]]$included == TRUE, 1, 0) 
    variables3[[j]]$modelcode <- paste0(variables3[[j]]$inclusion, collapse = "") 
    coefficients1[[j]] <- map_df(coef(leaps[[j]],maxadjr2[[j]],vcov=FALSE), 
~as.data.frame(.x), .id="term") 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$`coef(leaps[[j]], maxadjr2[[j]], vcov = 
FALSE)` 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$.x 
    coefficients2[[j]] <- coefficients1[[j]][-c(2)] 
     
    bestmodel[[j]] <- merge(variables3[[j]], coefficients2[[j]], by = "term") 
    modelsonly1[[j]] <- bestmodel[[j]][!duplicated(bestmodel[[j]]$modelcode),] 
     
    print(bootstrapset <- Sys.time()-t3) 
     
  } 
     
  modelsonly2[[k]] <- map_df(modelsonly1, ~as.data.frame(.x), .id="bootset1") 
  modelsonly3[[k]] <- count(modelsonly2[[k]], modelcode) 
  freqmodel[[k]] <- which.max(modelsonly3[[k]]$n) 
  modelsonly3[[k]]$bestfit <- modelsonly3[[k]]$modelcode[freqmodel[[k]]] 
  modelsonly4 <- map_df(modelsonly3, ~as.data.frame(.x), .id="UniqueID") 
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  corsim_bestmodels[[k]] <- map_df(bestmodel, ~as.data.frame(.x), .id="bootset") 
  bestfit[[k]] <- merge(corsim_bestmodels[[k]], modelsonly3[[k]], by = "modelcode") 
  bestfit[[k]]$bestmodel <- ifelse(bestfit[[k]]$modelcode == bestfit[[k]]$bestfit, TRUE, 
FALSE) 
  only_bestmodels[[k]] <- subset(bestfit[[k]], bestmodel == TRUE) 
  variable_importance[[k]] <- count(corsim_bestmodels[[k]], term) 
  variable_importance[[k]]$frequency <- variable_importance[[k]]$n 
  variable_importance[[k]]$probability <- (variable_importance[[k]]$frequency)/(bootset) 
  print(judgeanalysis <- Sys.time()-t2) 
   
 #Hashtagged text included below for saving all bootstrapped models if desired  
 #complete_bootsets <- map_df(bestfit, ~as.data.frame(.x), .id="UniqueID") 
  #complete_bootsets <- complete_bootsets[ 
   # with(complete_bootsets, order(UniqueID, bootset, term)), 
    #] 
  #complete_bootsets$UniqueID <- as.numeric(complete_bootsets$UniqueID) + index 
   
  CORSIMfinal_bestmodels <- map_df(only_bestmodels, ~as.data.frame(.x), 
.id="UniqueID") 
  CORSIMfinal_bestmodels <- as.data.frame(CORSIMfinal_bestmodels[ 
    with(CORSIMfinal_bestmodels, order(UniqueID, bootset, term)), 
    ]) 
   
  CORSIMpredictor_importance <- map_df(variable_importance, ~as.data.frame(.x), 
.id="UniqueID") 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
CORSIMpredictor_importance 
CORSIMfinal_bestmodels 
 
###SAVE RELEVANT FILES  
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMfinal_bestmodels, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " All Subsets 
CORSIMfinal_bootsets.csv", sep = "")) 
write.csv(CORSIMpredictor_importance, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " All Subsets 
CORSIMpredictor_importance.csv", sep = "")) 
#write.csv(SIMcomplete_bootsets, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " All Subsets 
SIMcomplete_bootsets.csv", sep="")) 
 
best_models <- list() 
bootset_model <- list() 
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AS_model <- list() 
criticality <- list() 
VI_model <- list() 
VI <- list() 
term_model <- list() 
final_model <- list() 
weights <- list() 
 
t1a <- Sys.time()  
for(k in start:end){  
  t2 <- Sys.time() 
  best_models[[k]] <- as.data.frame(subset(CORSIMfinal_bestmodels, UniqueID == k)) 
  bootset_model[[k]] <- as.data.frame(subset(best_models[[k]], bootset == min(bootset))) 
   
  criticality[[k]] <- as.data.frame(subset(CORSIMpredictor_importance, UniqueID == k)) 
   
  AS_model[[k]] <- bootset_model[[k]][!duplicated(bootset_model[[k]]$UniqueID),] 
   
  AS_model[[k]]$model_var <- sum(bootset_model[[k]]$inclusion) - 1  
   
  AS_model[[k]]$mean_adjR2 <- mean(best_models[[k]]$adj.r.squared) 
   
  term_model[[k]] <-  split(best_models[[k]], best_models[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
   
  VI_model[[k]] <- split(criticality[[k]], criticality[[k]]$term) 
  VI[[k]] <- as.data.frame(sapply(VI_model[[k]], function(x) mean(x$probability))) 
   
  final_model[[k]] <- as.data.frame(subset(CORSIMfinal_bestmodels, UniqueID == k)) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  setDT(VI[[k]], keep.rownames = TRUE)[] 
  setnames(VI[[k]], 1, "term") 
  setnames(VI[[k]], 2, "Mean") 
   
  AS_model[[k]]$intercept <- sum(ifelse(final_model[[k]]$term == '(Intercept)', 1, 0)) 
  AS_model[[k]]$X1 <- sum(ifelse(final_model[[k]]$term == 'X1', 1, 0)) 
  AS_model[[k]]$X2 <- sum(ifelse(final_model[[k]]$term == 'X2', 1, 0)) 
  AS_model[[k]]$X3 <- sum(ifelse(final_model[[k]]$term == 'X3', 1, 0)) 
  AS_model[[k]]$X4 <- sum(ifelse(final_model[[k]]$term == 'X4', 1, 0)) 
 
  AS_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
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  AS_model[[k]]$X1_b <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X2_b <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X3_b <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X4_b <- sum(ifelse(weights[[k]]$Predictor == 'X4', 
weights[[k]]$Mean, 0)) 
     
  AS_model[[k]]$intercept_PC <- sum(ifelse(VI[[k]]$term == '(Intercept)', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X1_PC <- sum(ifelse(VI[[k]]$term == 'X1', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X2_PC <- sum(ifelse(VI[[k]]$term == 'X2', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X3_PC <- sum(ifelse(VI[[k]]$term == 'X3', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X4_PC <- sum(ifelse(VI[[k]]$term == 'X4', VI[[k]]$Mean, 0)) 
}   
 
CORSIMall_subsets_model <- map_df(AS_model, ~as.data.frame(.x), .id="UniqueID") 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMall_subsets_model, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " All Subsets CORSIM 
Model Outcomes.csv", sep = "")) 
 
print(cross_validated <- (Sys.time()-t1)) 
 
} 
 
######################################################################## 
#############RUN ALL SUBSETS ANALYSIS FUNCTION#################### 
#Set seed once and run function with different datasets 
 
sets <- list(ACorrSim1, ACorrSim2, ACorrSim3, ACorrSim4, ACorrSim5, ACorrSim6, 
ACorrSim7, ACorrSim8, ACorrSim9, ACorrSim10, ACorrSim11, ACorrSim12, 
ACorrSim13, ACorrSim14, ACorrSim15, ACorrSim16, ACorrSim17, ACorrSim18, 
ACorrSim19, ACorrSim20, ACorrSim21, ACorrSim22, ACorrSim23, ACorrSim24,  
ACorrSim25, ACorrSim26, ACorrSim27, ACorrSim28, ACorrSim29, ACorrSim30, 
ACorrSim31, ACorrSim32, ACorrSim33, ACorrSim34, ACorrSim35, ACorrSim36, 
ACorrSim37, ACorrSim38, ACorrSim39, ACorrSim40) 
 
sets_num <- list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  
             11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
             21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
             31, 32, 33, 34, 35, 36, 37, 38, 39, 40)  
 
set.seed(1015) 
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tfunc <- Sys.time()  
mapply(all_subsets, sets, 500, sets_num) 
print(totalanalysis <- (Sys.time()-tfunc)) 
 

All Subsets Analysis Data Structure B 

#install.packages("tidyverse") 
#install.packages("broom") 
#install.packages("dplyr") 
#install.packages("readxl") 
#install.packages("lmf") 
#install.packages("leaps") 
#install.packages("olsrr") 
 
rm(list=ls()) 
 
library(tidyverse) 
library(broom) 
library(readxl) 
library(lmf) 
library(purrr) 
library(dplyr) 
library(leaps) 
library(data.table) 
 
#Data from Personal PC: PC1 
BCorrSim1 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim1.csv", 
header=TRUE, sep=",") 
BCorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim2.csv", 
header=TRUE, sep=",") 
BCorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim3.csv", 
header=TRUE, sep=",") 
BCorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim4.csv", 
header=TRUE, sep=",") 
BCorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim5.csv", 
header=TRUE, sep=",") 
BCorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim6.csv", 
header=TRUE, sep=",") 
BCorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim7.csv", 
header=TRUE, sep=",") 
BCorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim8.csv", 
header=TRUE, sep=",") 
BCorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim9.csv", 
header=TRUE, sep=",") 
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BCorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim10.csv", 
header=TRUE, sep=",") 
 
BCorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim11.csv", 
header=TRUE, sep=",") 
BCorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim12.csv", 
header=TRUE, sep=",") 
BCorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim13.csv", 
header=TRUE, sep=",") 
BCorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim14.csv", 
header=TRUE, sep=",") 
BCorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim15.csv", 
header=TRUE, sep=",") 
BCorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim16.csv", 
header=TRUE, sep=",") 
BCorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim17.csv", 
header=TRUE, sep=",") 
BCorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim18.csv", 
header=TRUE, sep=",") 
BCorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim19.csv", 
header=TRUE, sep=",") 
BCorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim20.csv", 
header=TRUE, sep=",") 
 
BCorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim21.csv", 
header=TRUE, sep=",") 
BCorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim22.csv", 
header=TRUE, sep=",") 
BCorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim23.csv", 
header=TRUE, sep=",") 
BCorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim24.csv", 
header=TRUE, sep=",") 
BCorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim25.csv", 
header=TRUE, sep=",") 
BCorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim26.csv", 
header=TRUE, sep=",") 
BCorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim27.csv", 
header=TRUE, sep=",") 
BCorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim28.csv", 
header=TRUE, sep=",") 
BCorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim29.csv", 
header=TRUE, sep=",") 
BCorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim30.csv", 
header=TRUE, sep=",") 
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BCorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim31.csv", 
header=TRUE, sep=",") 
BCorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim32.csv", 
header=TRUE, sep=",") 
BCorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim33.csv", 
header=TRUE, sep=",") 
BCorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim34.csv", 
header=TRUE, sep=",") 
BCorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim35.csv", 
header=TRUE, sep=",") 
BCorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim36.csv", 
header=TRUE, sep=",") 
BCorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim37.csv", 
header=TRUE, sep=",") 
BCorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim38.csv", 
header=TRUE, sep=",") 
BCorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim39.csv", 
header=TRUE, sep=",") 
BCorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim40.csv", 
header=TRUE, sep=",") 
 
BCorrSim1 <- as.data.frame(BCorrSim1[with(BCorrSim1, order(UniqueID, Y)),]) 
BCorrSim2 <- as.data.frame(BCorrSim1[with(BCorrSim2, order(UniqueID, Y)),]) 
BCorrSim3 <- as.data.frame(BCorrSim1[with(BCorrSim3, order(UniqueID, Y)),]) 
BCorrSim4 <- as.data.frame(BCorrSim1[with(BCorrSim4, order(UniqueID, Y)),]) 
BCorrSim5 <- as.data.frame(BCorrSim1[with(BCorrSim5, order(UniqueID, Y)),]) 
BCorrSim6 <- as.data.frame(BCorrSim1[with(BCorrSim6, order(UniqueID, Y)),]) 
BCorrSim7 <- as.data.frame(BCorrSim1[with(BCorrSim7, order(UniqueID, Y)),]) 
BCorrSim8 <- as.data.frame(BCorrSim1[with(BCorrSim8, order(UniqueID, Y)),]) 
BCorrSim9 <- as.data.frame(BCorrSim1[with(BCorrSim9, order(UniqueID, Y)),]) 
BCorrSim10 <- as.data.frame(BCorrSim1[with(BCorrSim10, order(UniqueID, Y)),]) 
 
BCorrSim11 <- as.data.frame(BCorrSim1[with(BCorrSim11, order(UniqueID, Y)),]) 
BCorrSim12 <- as.data.frame(BCorrSim1[with(BCorrSim12, order(UniqueID, Y)),]) 
BCorrSim13 <- as.data.frame(BCorrSim1[with(BCorrSim13, order(UniqueID, Y)),]) 
BCorrSim14 <- as.data.frame(BCorrSim1[with(BCorrSim14, order(UniqueID, Y)),]) 
BCorrSim15 <- as.data.frame(BCorrSim1[with(BCorrSim15, order(UniqueID, Y)),]) 
BCorrSim16 <- as.data.frame(BCorrSim1[with(BCorrSim16, order(UniqueID, Y)),]) 
BCorrSim17 <- as.data.frame(BCorrSim1[with(BCorrSim17, order(UniqueID, Y)),]) 
BCorrSim18 <- as.data.frame(BCorrSim1[with(BCorrSim18, order(UniqueID, Y)),]) 
BCorrSim19 <- as.data.frame(BCorrSim1[with(BCorrSim19, order(UniqueID, Y)),]) 
BCorrSim20 <- as.data.frame(BCorrSim1[with(BCorrSim20, order(UniqueID, Y)),]) 
 
BCorrSim21 <- as.data.frame(BCorrSim1[with(BCorrSim21, order(UniqueID, Y)),]) 
BCorrSim22 <- as.data.frame(BCorrSim1[with(BCorrSim22, order(UniqueID, Y)),]) 
BCorrSim23 <- as.data.frame(BCorrSim1[with(BCorrSim23, order(UniqueID, Y)),]) 
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BCorrSim24 <- as.data.frame(BCorrSim1[with(BCorrSim24, order(UniqueID, Y)),]) 
BCorrSim25 <- as.data.frame(BCorrSim1[with(BCorrSim25, order(UniqueID, Y)),]) 
BCorrSim26 <- as.data.frame(BCorrSim1[with(BCorrSim26, order(UniqueID, Y)),]) 
BCorrSim27 <- as.data.frame(BCorrSim1[with(BCorrSim27, order(UniqueID, Y)),]) 
BCorrSim28 <- as.data.frame(BCorrSim1[with(BCorrSim28, order(UniqueID, Y)),]) 
BCorrSim29 <- as.data.frame(BCorrSim1[with(BCorrSim29, order(UniqueID, Y)),]) 
BCorrSim30 <- as.data.frame(BCorrSim1[with(BCorrSim30, order(UniqueID, Y)),]) 
 
BCorrSim31 <- as.data.frame(BCorrSim1[with(BCorrSim31, order(UniqueID, Y)),]) 
BCorrSim32 <- as.data.frame(BCorrSim1[with(BCorrSim32, order(UniqueID, Y)),]) 
BCorrSim33 <- as.data.frame(BCorrSim1[with(BCorrSim33, order(UniqueID, Y)),]) 
BCorrSim34 <- as.data.frame(BCorrSim1[with(BCorrSim34, order(UniqueID, Y)),]) 
BCorrSim35 <- as.data.frame(BCorrSim1[with(BCorrSim35, order(UniqueID, Y)),]) 
BCorrSim36 <- as.data.frame(BCorrSim1[with(BCorrSim36, order(UniqueID, Y)),]) 
BCorrSim37 <- as.data.frame(BCorrSim1[with(BCorrSim37, order(UniqueID, Y)),]) 
BCorrSim38 <- as.data.frame(BCorrSim1[with(BCorrSim38, order(UniqueID, Y)),]) 
BCorrSim39 <- as.data.frame(BCorrSim1[with(BCorrSim39, order(UniqueID, Y)),]) 
BCorrSim40 <- as.data.frame(BCorrSim1[with(BCorrSim40, order(UniqueID, Y)),]) 
 
#####################ALL SUBSETS ANALYSIS FUNCTION################# 
all_subsets <- function(data, bootset, CorrSIMGroup){  
 
  t1 <- Sys.time() 
   
  data <- data 
  datagroup <- CorrSIMGroup 
  start <- 1 
  end <- 5 
   
  datalist <- list() 
  resamples <- list() 
  boot_set <- list() 
  leaps <- list() 
  summary <- list() 
  maxadjr2 <- list() 
  variables1 <- list() 
  variables2 <- list() 
  variables3 <- list() 
  coefficients1 <- list() 
  coefficients2 <- list() 
  bestmodel <- list() 
  corsim_bestmodels <- list() 
   
  bestfit <- list() 
  only_bestmodels <- list() 
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  modelsonly1 <- list() 
  modelsonly2 <- list() 
  modelsonly3 <- list() 
  freqmodel <- list() 
  variable_importance <- list() 
 
for(k in start:end){ 
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(data, UniqueID == k)) 
   
  resamples[[k]] <- lapply(1:bootset, function(i) sample_n(datalist[[k]], 50, replace = T)) 
   
  for(j in 1:bootset){  
    t3 <- Sys.time() 
    boot_set[[j]] <- resamples[[k]][[j]] 
    leaps[[j]] <-  
      regsubsets(Y ~ X1 + X2 + X3,  
                 data = boot_set[[j]], 
                 nbest = 1,       # 1 best model for each number of predictors 
                 nvmax = NULL,    # NULL for no limit on number of variables 
                 force.in = NULL, force.out = NULL, 
                 method = "exhaustive")  
    summary[[j]] <- summary(leaps[[j]]) 
    maxadjr2[[j]] <- which.max(summary[[j]]$adjr2) 
    variables1[[j]] <- map_df(summary[[j]]$which[maxadjr2[[j]],], ~as.data.frame(.x), 
.id="term") 
    variables1[[j]]$included <- variables1[[j]]$.x 
    variables2[[j]] <- variables1[[j]][-c(2)] 
    variables3[[j]] <- as.data.frame(subset(variables2[[j]])) 
    variables3[[j]]$adj.r.squared <- summary[[j]]$adjr2[maxadjr2[[j]]] 
    variables3[[j]]$inclusion <- ifelse(variables3[[j]]$included == TRUE, 1, 0) 
    variables3[[j]]$modelcode <- paste0(variables3[[j]]$inclusion, collapse = "") 
    coefficients1[[j]] <- map_df(coef(leaps[[j]],maxadjr2[[j]],vcov=FALSE), 
~as.data.frame(.x), .id="term") 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$`coef(leaps[[j]], maxadjr2[[j]], vcov = 
FALSE)` 
    coefficients1[[j]]$estimate <- coefficients1[[j]]$.x 
    coefficients2[[j]] <- coefficients1[[j]][-c(2)] 
     
    bestmodel[[j]] <- merge(variables3[[j]], coefficients2[[j]], by = "term") 
    modelsonly1[[j]] <- bestmodel[[j]][!duplicated(bestmodel[[j]]$modelcode),] 
     
    print(bootstrapset <- Sys.time()-t3) 
     
  } 
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  modelsonly2[[k]] <- map_df(modelsonly1, ~as.data.frame(.x), .id="bootset1") 
  modelsonly3[[k]] <- count(modelsonly2[[k]], modelcode) 
  freqmodel[[k]] <- which.max(modelsonly3[[k]]$n) 
  modelsonly3[[k]]$bestfit <- modelsonly3[[k]]$modelcode[freqmodel[[k]]] 
  modelsonly4 <- map_df(modelsonly3, ~as.data.frame(.x), .id="UniqueID")  
 
  corsim_bestmodels[[k]] <- map_df(bestmodel, ~as.data.frame(.x), .id="bootset") 
  bestfit[[k]] <- merge(corsim_bestmodels[[k]], modelsonly3[[k]], by = "modelcode") 
  bestfit[[k]]$bestmodel <- ifelse(bestfit[[k]]$modelcode == bestfit[[k]]$bestfit, TRUE, 
FALSE) 
  only_bestmodels[[k]] <- subset(bestfit[[k]], bestmodel == TRUE) 
  variable_importance[[k]] <- count(corsim_bestmodels[[k]], term) 
  variable_importance[[k]]$frequency <- variable_importance[[k]]$n 
  variable_importance[[k]]$probability <- (variable_importance[[k]]$frequency)/(bootset) 
  print(judgeanalysis <- Sys.time()-t2) 
   
  complete_bootsets <- map_df(bestfit, ~as.data.frame(.x), .id="UniqueID") 
  CORSIMcomplete_bootsets <- complete_bootsets[ 
   with(complete_bootsets, order(UniqueID, bootset, term)), 
    ] 
  complete_bootsets$UniqueID <- as.numeric(complete_bootsets$UniqueID) 
   
   
  CORSIMfinal_bestmodels <- map_df(only_bestmodels, ~as.data.frame(.x), 
.id="UniqueID") 
  CORSIMfinal_bestmodels <- as.data.frame(CORSIMfinal_bestmodels[ 
    with(CORSIMfinal_bestmodels, order(UniqueID, bootset, term)), 
    ]) 
   
  CORSIMpredictor_importance <- map_df(variable_importance, ~as.data.frame(.x), 
.id="UniqueID") 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
###SAVE RELEVANT FILES  
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMfinal_bestmodels, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " All Subsets 
CORSIMfinal_bootsets.csv", sep = "")) 
write.csv(CORSIMpredictor_importance, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " All Subsets 
CORSIMpredictor_importance.csv", sep = "")) 
write.csv(CORSIMcomplete_bootsets, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " All Subsets 
CORSIMcomplete_bootsets.csv", sep = "")) 
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#write.csv(SIMcomplete_bootsets, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " All Subsets 
SIMcomplete_bootsets.csv", sep="")) 
 
best_models <- list() 
bootset_model <- list() 
AS_model <- list() 
criticality <- list() 
VI_model <- list() 
VI <- list() 
term_model <- list() 
final_model <- list() 
weights <- list() 
 
t1a <- Sys.time()  
for(k in start:end){  
  t2 <- Sys.time() 
  best_models[[k]] <- as.data.frame(subset(CORSIMfinal_bestmodels, UniqueID == k)) 
  bootset_model[[k]] <- as.data.frame(subset(best_models[[k]], bootset == min(bootset))) 
   
  criticality[[k]] <- as.data.frame(subset(CORSIMpredictor_importance, UniqueID == k)) 
   
  AS_model[[k]] <- bootset_model[[k]][!duplicated(bootset_model[[k]]$UniqueID),] 
   
  AS_model[[k]]$model_var <- sum(bootset_model[[k]]$inclusion) - 1  
   
  AS_model[[k]]$mean_adjR2 <- mean(best_models[[k]]$adj.r.squared) 
   
  term_model[[k]] <-  split(best_models[[k]], best_models[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) mean(x$estimate))) 
   
  VI_model[[k]] <- split(criticality[[k]], criticality[[k]]$term) 
  VI[[k]] <- as.data.frame(sapply(VI_model[[k]], function(x) mean(x$probability))) 
   
  final_model[[k]] <- as.data.frame(subset(CORSIMfinal_bestmodels, UniqueID == k)) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  setDT(VI[[k]], keep.rownames = TRUE)[] 
  setnames(VI[[k]], 1, "term") 
  setnames(VI[[k]], 2, "Mean") 
   
  AS_model[[k]]$intercept <- sum(ifelse(final_model[[k]]$term == '(Intercept)', 1, 0)) 
  AS_model[[k]]$X1 <- sum(ifelse(final_model[[k]]$term == 'X1', 1, 0)) 
  AS_model[[k]]$X2 <- sum(ifelse(final_model[[k]]$term == 'X2', 1, 0)) 
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  AS_model[[k]]$X3 <- sum(ifelse(final_model[[k]]$term == 'X3', 1, 0)) 
 
  AS_model[[k]]$intercept_b <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X1_b <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X2_b <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  AS_model[[k]]$X3_b <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
 
  AS_model[[k]]$intercept_PC <- sum(ifelse(VI[[k]]$term == '(Intercept)', 
VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X1_PC <- sum(ifelse(VI[[k]]$term == 'X1', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X2_PC <- sum(ifelse(VI[[k]]$term == 'X2', VI[[k]]$Mean, 0)) 
  AS_model[[k]]$X3_PC <- sum(ifelse(VI[[k]]$term == 'X3', VI[[k]]$Mean, 0)) 
}   
 
CORSIMall_subsets_model <- map_df(AS_model, ~as.data.frame(.x), .id="NumberID") 
 
Conditions <- subset(data, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "rStructure") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
CORSIMall_subsets_model <- merge(condition, CORSIMall_subsets_model, by = 
c('UniqueID'), all.x = TRUE) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMall_subsets_model, file = 
paste0("C:/Users/Kristina/Documents/BCorrSim", datagroup, " All Subsets CORSIM 
Model Outcomes.csv", sep = "")) 
 
print(cross_validated <- (Sys.time()-t1)) 
 
} 
 
######################################################################## 
#############RUN ALL SUBSETS ANALYSIS FUNCTION#################### 
#Set seed once and run function with different datasets 
sets <- list(BCorrSim1, BCorrSim2, BCorrSim3, BCorrSim4, BCorrSim5, BCorrSim6, 
BCorrSim7, BCorrSim8, BCorrSim9, BCorrSim10, BCorrSim11, BCorrSim12, 
BCorrSim13, BCorrSim14, BCorrSim15, BCorrSim16, BCorrSim17, BCorrSim18, 
BCorrSim19, BCorrSim20, BCorrSim21, BCorrSim22, BCorrSim23, BCorrSim24,  
BCorrSim25, BCorrSim26, BCorrSim27, BCorrSim28, BCorrSim29, BCorrSim30, 
BCorrSim31, BCorrSim32, BCorrSim33, BCorrSim34, BCorrSim35, BCorrSim36, 
BCorrSim37, BCorrSim38, BCorrSim39, BCorrSim40) 
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sets_num <- list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  
             11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
             21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
             31, 32, 33, 34, 35, 36, 37, 38, 39, 40)  
 
set.seed(128) 
tfunc <- Sys.time()  
mapply(all_subsets, sets, 500, sets_num) 
print(totalanalysis <- (Sys.time()-tfunc)) 
 

 

Random Forest Analysis Data Structure A 

#install.packages("VSURF") 
#install.packages("randomForest") 
#install.packages("party") 
#install.packages("readxl") 
#install.packages("purrr") 
#install.packages("data.table") 
#install.packages("dplyr") 
 
rm(list = ls()) 
 
library(VSURF) 
library(randomForest) 
library(party) 
library(readxl) 
library(purrr) 
library(data.table) 
library(dplyr) 
 
#Data from Personal PC: PC1 
ACorrSim1 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim1.csv", 
header=TRUE, sep=",") 
ACorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim2.csv", 
header=TRUE, sep=",") 
ACorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim3.csv", 
header=TRUE, sep=",") 
ACorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim4.csv", 
header=TRUE, sep=",") 
ACorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim5.csv", 
header=TRUE, sep=",") 
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ACorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim6.csv", 
header=TRUE, sep=",") 
ACorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim7.csv", 
header=TRUE, sep=",") 
ACorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim8.csv", 
header=TRUE, sep=",") 
ACorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim9.csv", 
header=TRUE, sep=",") 
ACorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim10.csv", 
header=TRUE, sep=",") 
 
 
ACorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim11.csv", 
header=TRUE, sep=",") 
ACorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim12.csv", 
header=TRUE, sep=",") 
ACorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim13.csv", 
header=TRUE, sep=",") 
ACorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim14.csv", 
header=TRUE, sep=",") 
ACorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim15.csv", 
header=TRUE, sep=",") 
ACorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim16.csv", 
header=TRUE, sep=",") 
ACorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim17.csv", 
header=TRUE, sep=",") 
ACorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim18.csv", 
header=TRUE, sep=",") 
ACorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim19.csv", 
header=TRUE, sep=",") 
ACorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim20.csv", 
header=TRUE, sep=",") 
 
ACorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim21.csv", 
header=TRUE, sep=",") 
ACorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim22.csv", 
header=TRUE, sep=",") 
ACorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim23.csv", 
header=TRUE, sep=",") 
ACorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim24.csv", 
header=TRUE, sep=",") 
ACorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim25.csv", 
header=TRUE, sep=",") 
ACorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim26.csv", 
header=TRUE, sep=",") 
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ACorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim27.csv", 
header=TRUE, sep=",") 
ACorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim28.csv", 
header=TRUE, sep=",") 
ACorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim29.csv", 
header=TRUE, sep=",") 
ACorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim30.csv", 
header=TRUE, sep=",") 
 
ACorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim31.csv", 
header=TRUE, sep=",") 
ACorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim32.csv", 
header=TRUE, sep=",") 
ACorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim33.csv", 
header=TRUE, sep=",") 
ACorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim34.csv", 
header=TRUE, sep=",") 
ACorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim35.csv", 
header=TRUE, sep=",") 
ACorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim36.csv", 
header=TRUE, sep=",") 
ACorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim37.csv", 
header=TRUE, sep=",") 
ACorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim38.csv", 
header=TRUE, sep=",") 
ACorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim39.csv", 
header=TRUE, sep=",") 
ACorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/ACorrSim40.csv", 
header=TRUE, sep=",") 
 
ACorrSim1 <- as.data.frame(ACorrSim1[with(ACorrSim1, order(UniqueID, Y)),]) 
ACorrSim2 <- as.data.frame(ACorrSim1[with(ACorrSim2, order(UniqueID, Y)),]) 
ACorrSim3 <- as.data.frame(ACorrSim1[with(ACorrSim3, order(UniqueID, Y)),]) 
ACorrSim4 <- as.data.frame(ACorrSim1[with(ACorrSim4, order(UniqueID, Y)),]) 
ACorrSim5 <- as.data.frame(ACorrSim1[with(ACorrSim5, order(UniqueID, Y)),]) 
ACorrSim6 <- as.data.frame(ACorrSim1[with(ACorrSim6, order(UniqueID, Y)),]) 
ACorrSim7 <- as.data.frame(ACorrSim1[with(ACorrSim7, order(UniqueID, Y)),]) 
ACorrSim8 <- as.data.frame(ACorrSim1[with(ACorrSim8, order(UniqueID, Y)),]) 
ACorrSim9 <- as.data.frame(ACorrSim1[with(ACorrSim9, order(UniqueID, Y)),]) 
ACorrSim10 <- as.data.frame(ACorrSim1[with(ACorrSim10, order(UniqueID, Y)),]) 
 
ACorrSim11 <- as.data.frame(ACorrSim1[with(ACorrSim11, order(UniqueID, Y)),]) 
ACorrSim12 <- as.data.frame(ACorrSim1[with(ACorrSim12, order(UniqueID, Y)),]) 
ACorrSim13 <- as.data.frame(ACorrSim1[with(ACorrSim13, order(UniqueID, Y)),]) 
ACorrSim14 <- as.data.frame(ACorrSim1[with(ACorrSim14, order(UniqueID, Y)),]) 
ACorrSim15 <- as.data.frame(ACorrSim1[with(ACorrSim15, order(UniqueID, Y)),]) 
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ACorrSim16 <- as.data.frame(ACorrSim1[with(ACorrSim16, order(UniqueID, Y)),]) 
ACorrSim17 <- as.data.frame(ACorrSim1[with(ACorrSim17, order(UniqueID, Y)),]) 
ACorrSim18 <- as.data.frame(ACorrSim1[with(ACorrSim18, order(UniqueID, Y)),]) 
ACorrSim19 <- as.data.frame(ACorrSim1[with(ACorrSim19, order(UniqueID, Y)),]) 
ACorrSim20 <- as.data.frame(ACorrSim1[with(ACorrSim20, order(UniqueID, Y)),]) 
 
ACorrSim21 <- as.data.frame(ACorrSim1[with(ACorrSim21, order(UniqueID, Y)),]) 
ACorrSim22 <- as.data.frame(ACorrSim1[with(ACorrSim22, order(UniqueID, Y)),]) 
ACorrSim23 <- as.data.frame(ACorrSim1[with(ACorrSim23, order(UniqueID, Y)),]) 
ACorrSim24 <- as.data.frame(ACorrSim1[with(ACorrSim24, order(UniqueID, Y)),]) 
ACorrSim25 <- as.data.frame(ACorrSim1[with(ACorrSim25, order(UniqueID, Y)),]) 
ACorrSim26 <- as.data.frame(ACorrSim1[with(ACorrSim26, order(UniqueID, Y)),]) 
ACorrSim27 <- as.data.frame(ACorrSim1[with(ACorrSim27, order(UniqueID, Y)),]) 
ACorrSim28 <- as.data.frame(ACorrSim1[with(ACorrSim28, order(UniqueID, Y)),]) 
ACorrSim29 <- as.data.frame(ACorrSim1[with(ACorrSim29, order(UniqueID, Y)),]) 
ACorrSim30 <- as.data.frame(ACorrSim1[with(ACorrSim30, order(UniqueID, Y)),]) 
 
ACorrSim31 <- as.data.frame(ACorrSim1[with(ACorrSim31, order(UniqueID, Y)),]) 
ACorrSim32 <- as.data.frame(ACorrSim1[with(ACorrSim32, order(UniqueID, Y)),]) 
ACorrSim33 <- as.data.frame(ACorrSim1[with(ACorrSim33, order(UniqueID, Y)),]) 
ACorrSim34 <- as.data.frame(ACorrSim1[with(ACorrSim34, order(UniqueID, Y)),]) 
ACorrSim35 <- as.data.frame(ACorrSim1[with(ACorrSim35, order(UniqueID, Y)),]) 
ACorrSim36 <- as.data.frame(ACorrSim1[with(ACorrSim36, order(UniqueID, Y)),]) 
ACorrSim37 <- as.data.frame(ACorrSim1[with(ACorrSim37, order(UniqueID, Y)),]) 
ACorrSim38 <- as.data.frame(ACorrSim1[with(ACorrSim38, order(UniqueID, Y)),]) 
ACorrSim39 <- as.data.frame(ACorrSim1[with(ACorrSim39, order(UniqueID, Y)),]) 
ACorrSim40 <- as.data.frame(ACorrSim1[with(ACorrSim40, order(UniqueID, Y)),]) 
 
 
################SIMULATED DATA RANDOM FOREST ANALYSIS########## 
#Set seed once only at the beginning# 
set.seed(1015) 
 
##UPDATE DATA AND GROUP NUMBER HERE FOR EACH SET:### 
data <- ACorrSim1 
CorrSIMGroup <- 1 
 
###############################################################   
 
##########RUN ALL CODE BELOW AS SINGLE BLOCK################# 
  datagroup <- CorrSIMGroup 
  count<-length(unique(data$UniqueID)) 
  test <- list() 
   
  datalist <- list() 
  sample <- list() 
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  model_sample <- list() 
  validate_sample <- list() 
  VSURF.output <- list() 
  predictor_num <- list() 
  n <- list() 
  actual <- list() 
  predicted <- list() 
  R2 <- list() 
  adjR2 <- list() 
  predictors <- list() 
  thres_predictors <- list() 
  var_imp <- list() 
  correlate <- list() 
  R2_predict <- list() 
  MSE_predict <- list() 
  PRESS_predict <- list() 
 
  t1 <- Sys.time()  
  for(k in 1:count){  
  t2 <- Sys.time() 
  datalist[[k]] <- as.data.frame(subset(data, UniqueID == k)) 
 
  VSURF.output[[k]] <- VSURF(datalist[[k]][,3:6], datalist[[k]]$Y, ntree = 2000,  
                        mtry = max(floor(ncol(datalist[[k]][,3:6])/3), 1), 
                        nfor.thres = 50, nmin = 1, nfor.interp = 25, nsd = 1) 
   
  n[[k]] <- nrow(datalist[[k]])  
  predictor_num[[k]] <- nrow(as.data.frame(VSURF.output[[k]]$varselect.interp)) 
   
  datalist[[k]]$actual <- datalist[[k]]$Y 
  datalist[[k]]$predicted <- predict(VSURF.output[[k]], datalist[[k]], step = c("interp")) 
 
  R2[[k]] <- 1 - (sum((datalist[[k]]$actual-
datalist[[k]]$predicted)^2)/sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2)) 
  adjR2[[k]]  <- 1-((sum((datalist[[k]]$actual-datalist[[k]]$predicted)^2))/(n[[k]]-
predictor_num[[k]]-1))/((sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2))/n[[k]]-
1) 
 
  predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.interp) 
  predictors[[k]]$predictor_num <- predictors[[k]]$`VSURF.output[[k]]$varselect.interp` 
  predictors[[k]]$term <- colnames(datalist[[k]])[2+predictors[[k]]$predictor_num] 
  predictors[[k]] <- subset(predictors[[k]], select = -1) 
  predictors[[k]]$rank <- row.names(predictors[[k]]) 
  CORSIMincluded_predictors <- map_df(predictors, ~as.data.frame(.x), 
.id="UniqueID") 
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  thres_predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.thres) 
  thres_predictors[[k]]$predictor_num <- 
thres_predictors[[k]]$`VSURF.output[[k]]$varselect.thres` 
  thres_predictors[[k]]$term <- 
colnames(datalist[[k]])[2+thres_predictors[[k]]$predictor_num] 
  thres_predictors[[k]] <- select(thres_predictors[[k]], -1)   
  thres_predictors[[k]]$var_importance <- VSURF.output[[k]]$imp.varselect.thres 
  thres_predictors[[k]]$rank <- row.names(thres_predictors[[k]]) 
   
  CORSIMthreshold_step <- map_df(thres_predictors, ~as.data.frame(.x), 
.id="UniqueID") 
   
  var_imp[[k]] <- as.data.frame(VSURF.output[[k]]$imp.mean.dec.ind) 
  var_imp[[k]]$predictor_num <- var_imp[[k]]$`VSURF.output[[k]]$imp.mean.dec.ind` 
  var_imp[[k]]$term <- colnames(datalist[[k]])[2+var_imp[[k]]$predictor_num] 
  var_imp[[k]] <- select(var_imp[[k]], -1)   
  var_imp[[k]]$var_importance <- VSURF.output[[k]]$imp.mean.dec 
  var_imp[[k]]$rank <- row.names(var_imp[[k]]) 
   
  CORSIMvar_importance <- map_df(var_imp, ~as.data.frame(.x), .id="UniqueID") 
   
  print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMincluded_predictors, file = 
paste0("C:/Users/Kristina/Documents/Ohio University/Dissertation 9.19.17/R 
Code/Study Three Analysis/ACorrSim", datagroup, " CORSIM Random Forest Final 
Predictors.csv", sep = "")) 
write.csv(CORSIMthreshold_step, file = paste0("C:/Users/Kristina/Documents/Ohio 
University/Dissertation 9.19.17/R Code/Study Three Analysis/ACorrSim", datagroup, " 
CORSIM Random Forest Threshold Predictors.csv", sep = "")) 
write.csv(CORSIMvar_importance, file = paste0("C:/Users/Kristina/Documents/Ohio 
University/Dissertation 9.19.17/R Code/Study Three Analysis/ACorrSim", datagroup, " 
CORSIM Random Forest Variable Importance.csv", sep = "")) 
 
########################################### 
### Model Statistics ### 
 
R2_model <- map_df(R2, ~as.data.frame(.x), .id = "UniqueID") 
R2_model$R2_model <- R2_model$.x 
R2_model <- select(R2_model, -2) 
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adjR2_model <- map_df(adjR2, ~as.data.frame(.x), .id = "UniqueID") 
adjR2_model$adjrR2 <- adjR2_model$.x 
adjR2_model <- select(adjR2_model, -2) 
 
### Merging Model Stats ### 
R_model_stats <- merge(R2_model, adjR2_model, by = c('UniqueID'), all.x = TRUE) 
 
#Adding Variable Count to File# 
final_model <- as.data.frame(subset(CORSIMincluded_predictors)) 
predictors <- c("UniqueID", "term", "rank") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
predictorlist <- list() 
statslist <- list() 
for(i in 1:count){  
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, UniqueID == i)) 
  statslist[[i]] <- as.data.frame(subset(R_model_stats, UniqueID == i)) 
   
  statslist[[i]]$model_var <- nrow(predictorlist[[i]]) 
} 
 
R_model_stats <- map_df(statslist, ~as.data.frame(.x), .id="UniqueID") 
 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "var_importance", "rank") 
 
model_estimates <- CORSIMvar_importance[complete.cases(CORSIMvar_importance[, 
modelVar]), modelVar] 
 
person_model <- list() 
term_model <- list() 
forest_model <- list() 
final_model <- list() 
weights <- list() 
 
for(k in 1:count){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
 
  forest_model[[k]] <- as.data.frame(subset(R_model_stats, UniqueID == k)) 
   
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
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  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) 
mean(x$var_importance))) 
  final_model[[k]] <- as.data.frame(subset(final_model_predictors, UniqueID == k)) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  forest_model[[k]]$intercept <- sum(ifelse(final_model[[k]]$term == '(Intercept)', 1, 0)) 
  forest_model[[k]]$X1 <- sum(ifelse(final_model[[k]]$term == 'X1', 1, 0)) 
  forest_model[[k]]$X2 <- sum(ifelse(final_model[[k]]$term == 'X2', 1, 0)) 
  forest_model[[k]]$X3 <- sum(ifelse(final_model[[k]]$term == 'X3', 1, 0)) 
  forest_model[[k]]$X4 <- sum(ifelse(final_model[[k]]$term == 'X4', 1, 0)) 
   
  forest_model[[k]]$intercept_VI <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X1_VI <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X2_VI <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X3_VI <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X4_VI <- sum(ifelse(weights[[k]]$Predictor == 'X4', 
weights[[k]]$Mean, 0)) 
 
} 
 
R_model_stats <- map_df(forest_model, ~as.data.frame(.x), .id="UniqueID") 
 
Conditions <- subset(data, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "rStructure") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
R_model_stats <- subset(R_model_stats, select=-c(UniqueID, UniqueID.1)) 
CORSIMR_model_stats <- merge(condition, R_model_stats, by = c('UniqueID'), all.x = 
TRUE) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMR_model_stats, file = 
paste0("C:/Users/Kristina/Documents/ACorrSim", datagroup, " CORSIM Random Forest 
Model Stats.csv", sep = "")) 
 

Random Forest Analysis Data Structure B 

#install.packages("VSURF") 
#install.packages("randomForest") 



281 
 

#install.packages("party") 
#install.packages("readxl") 
#install.packages("purrr") 
#install.packages("data.table") 
#install.packages("dplyr") 
 
rm(list = ls()) 
 
library(VSURF) 
library(randomForest) 
library(party) 
library(readxl) 
library(purrr) 
library(data.table) 
library(dplyr) 
 
#Data from Personal PC: PC1 
BCorrSim1 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim1.csv", 
header=TRUE, sep=",") 
BCorrSim2 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim2.csv", 
header=TRUE, sep=",") 
BCorrSim3 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim3.csv", 
header=TRUE, sep=",") 
BCorrSim4 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim4.csv", 
header=TRUE, sep=",") 
BCorrSim5 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim5.csv", 
header=TRUE, sep=",") 
BCorrSim6 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim6.csv", 
header=TRUE, sep=",") 
BCorrSim7 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim7.csv", 
header=TRUE, sep=",") 
BCorrSim8 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim8.csv", 
header=TRUE, sep=",") 
BCorrSim9 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim9.csv", 
header=TRUE, sep=",") 
BCorrSim10 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim10.csv", 
header=TRUE, sep=",") 
 
 
BCorrSim11 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim11.csv", 
header=TRUE, sep=",") 
BCorrSim12 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim12.csv", 
header=TRUE, sep=",") 
BCorrSim13 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim13.csv", 
header=TRUE, sep=",") 
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BCorrSim14 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim14.csv", 
header=TRUE, sep=",") 
BCorrSim15 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim15.csv", 
header=TRUE, sep=",") 
BCorrSim16 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim16.csv", 
header=TRUE, sep=",") 
BCorrSim17 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim17.csv", 
header=TRUE, sep=",") 
BCorrSim18 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim18.csv", 
header=TRUE, sep=",") 
BCorrSim19 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim19.csv", 
header=TRUE, sep=",") 
BCorrSim20 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim20.csv", 
header=TRUE, sep=",") 
 
BCorrSim21 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim21.csv", 
header=TRUE, sep=",") 
BCorrSim22 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim22.csv", 
header=TRUE, sep=",") 
BCorrSim23 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim23.csv", 
header=TRUE, sep=",") 
BCorrSim24 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim24.csv", 
header=TRUE, sep=",") 
BCorrSim25 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim25.csv", 
header=TRUE, sep=",") 
BCorrSim26 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim26.csv", 
header=TRUE, sep=",") 
BCorrSim27 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim27.csv", 
header=TRUE, sep=",") 
BCorrSim28 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim28.csv", 
header=TRUE, sep=",") 
BCorrSim29 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim29.csv", 
header=TRUE, sep=",") 
BCorrSim30 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim30.csv", 
header=TRUE, sep=",") 
 
BCorrSim31 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim31.csv", 
header=TRUE, sep=",") 
BCorrSim32 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim32.csv", 
header=TRUE, sep=",") 
BCorrSim33 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim33.csv", 
header=TRUE, sep=",") 
BCorrSim34 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim34.csv", 
header=TRUE, sep=",") 
BCorrSim35 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim35.csv", 
header=TRUE, sep=",") 
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BCorrSim36 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim36.csv", 
header=TRUE, sep=",") 
BCorrSim37 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim37.csv", 
header=TRUE, sep=",") 
BCorrSim38 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim38.csv", 
header=TRUE, sep=",") 
BCorrSim39 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim39.csv", 
header=TRUE, sep=",") 
BCorrSim40 <- read.csv(file="C:/Users/Kristina/Documents/BCorrSim40.csv", 
header=TRUE, sep=",") 
 
BCorrSim1 <- as.data.frame(BCorrSim1[with(BCorrSim1, order(UniqueID, Y)),]) 
BCorrSim2 <- as.data.frame(BCorrSim1[with(BCorrSim2, order(UniqueID, Y)),]) 
BCorrSim3 <- as.data.frame(BCorrSim1[with(BCorrSim3, order(UniqueID, Y)),]) 
BCorrSim4 <- as.data.frame(BCorrSim1[with(BCorrSim4, order(UniqueID, Y)),]) 
BCorrSim5 <- as.data.frame(BCorrSim1[with(BCorrSim5, order(UniqueID, Y)),]) 
BCorrSim6 <- as.data.frame(BCorrSim1[with(BCorrSim6, order(UniqueID, Y)),]) 
BCorrSim7 <- as.data.frame(BCorrSim1[with(BCorrSim7, order(UniqueID, Y)),]) 
BCorrSim8 <- as.data.frame(BCorrSim1[with(BCorrSim8, order(UniqueID, Y)),]) 
BCorrSim9 <- as.data.frame(BCorrSim1[with(BCorrSim9, order(UniqueID, Y)),]) 
BCorrSim10 <- as.data.frame(BCorrSim1[with(BCorrSim10, order(UniqueID, Y)),]) 
 
BCorrSim11 <- as.data.frame(BCorrSim1[with(BCorrSim11, order(UniqueID, Y)),]) 
BCorrSim12 <- as.data.frame(BCorrSim1[with(BCorrSim12, order(UniqueID, Y)),]) 
BCorrSim13 <- as.data.frame(BCorrSim1[with(BCorrSim13, order(UniqueID, Y)),]) 
BCorrSim14 <- as.data.frame(BCorrSim1[with(BCorrSim14, order(UniqueID, Y)),]) 
BCorrSim15 <- as.data.frame(BCorrSim1[with(BCorrSim15, order(UniqueID, Y)),]) 
BCorrSim16 <- as.data.frame(BCorrSim1[with(BCorrSim16, order(UniqueID, Y)),]) 
BCorrSim17 <- as.data.frame(BCorrSim1[with(BCorrSim17, order(UniqueID, Y)),]) 
BCorrSim18 <- as.data.frame(BCorrSim1[with(BCorrSim18, order(UniqueID, Y)),]) 
BCorrSim19 <- as.data.frame(BCorrSim1[with(BCorrSim19, order(UniqueID, Y)),]) 
BCorrSim20 <- as.data.frame(BCorrSim1[with(BCorrSim20, order(UniqueID, Y)),]) 
 
BCorrSim21 <- as.data.frame(BCorrSim1[with(BCorrSim21, order(UniqueID, Y)),]) 
BCorrSim22 <- as.data.frame(BCorrSim1[with(BCorrSim22, order(UniqueID, Y)),]) 
BCorrSim23 <- as.data.frame(BCorrSim1[with(BCorrSim23, order(UniqueID, Y)),]) 
BCorrSim24 <- as.data.frame(BCorrSim1[with(BCorrSim24, order(UniqueID, Y)),]) 
BCorrSim25 <- as.data.frame(BCorrSim1[with(BCorrSim25, order(UniqueID, Y)),]) 
BCorrSim26 <- as.data.frame(BCorrSim1[with(BCorrSim26, order(UniqueID, Y)),]) 
BCorrSim27 <- as.data.frame(BCorrSim1[with(BCorrSim27, order(UniqueID, Y)),]) 
BCorrSim28 <- as.data.frame(BCorrSim1[with(BCorrSim28, order(UniqueID, Y)),]) 
BCorrSim29 <- as.data.frame(BCorrSim1[with(BCorrSim29, order(UniqueID, Y)),]) 
BCorrSim30 <- as.data.frame(BCorrSim1[with(BCorrSim30, order(UniqueID, Y)),]) 
 
BCorrSim31 <- as.data.frame(BCorrSim1[with(BCorrSim31, order(UniqueID, Y)),]) 
BCorrSim32 <- as.data.frame(BCorrSim1[with(BCorrSim32, order(UniqueID, Y)),]) 
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BCorrSim33 <- as.data.frame(BCorrSim1[with(BCorrSim33, order(UniqueID, Y)),]) 
BCorrSim34 <- as.data.frame(BCorrSim1[with(BCorrSim34, order(UniqueID, Y)),]) 
BCorrSim35 <- as.data.frame(BCorrSim1[with(BCorrSim35, order(UniqueID, Y)),]) 
BCorrSim36 <- as.data.frame(BCorrSim1[with(BCorrSim36, order(UniqueID, Y)),]) 
BCorrSim37 <- as.data.frame(BCorrSim1[with(BCorrSim37, order(UniqueID, Y)),]) 
BCorrSim38 <- as.data.frame(BCorrSim1[with(BCorrSim38, order(UniqueID, Y)),]) 
BCorrSim39 <- as.data.frame(BCorrSim1[with(BCorrSim39, order(UniqueID, Y)),]) 
BCorrSim40 <- as.data.frame(BCorrSim1[with(BCorrSim40, order(UniqueID, Y)),]) 
 
 
################SIMULATED DATA RANDOM FOREST ANALYSIS########## 
#Set seed once only at the beginning# 
set.seed(1015) 
 
##UPDATE DATA AND GROUP NUMBER HERE FOR EACH SET:### 
data <- BCorrSim1 
CorrSIMGroup <- 1 
###############################################################   
 
##########RUN ALL CODE BELOW AS SINGLE BLOCK################# 
  datagroup <- CorrSIMGroup 
  count<-length(unique(data$UniqueID)) 
  test <- list() 
   
  datalist <- list() 
  sample <- list() 
  model_sample <- list() 
  validate_sample <- list() 
  VSURF.output <- list() 
  predictor_num <- list() 
  n <- list() 
  actual <- list() 
  predicted <- list() 
  R2 <- list() 
  adjR2 <- list() 
  predictors <- list() 
  thres_predictors <- list() 
  var_imp <- list() 
  correlate <- list() 
  R2_predict <- list() 
  MSE_predict <- list() 
  PRESS_predict <- list() 
 
  t1 <- Sys.time()  
  for(k in 1:count){  
  t2 <- Sys.time() 
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  datalist[[k]] <- as.data.frame(subset(data, UniqueID == k)) 
 
  VSURF.output[[k]] <- VSURF(datalist[[k]][,3:5], datalist[[k]]$Y, ntree = 2000,  
                        mtry = max(floor(ncol(datalist[[k]][,3:5])/3), 1), 
                        nfor.thres = 50, nmin = 1, nfor.interp = 25, nsd = 1) 
   
  n[[k]] <- nrow(datalist[[k]])  
  predictor_num[[k]] <- nrow(as.data.frame(VSURF.output[[k]]$varselect.interp)) 
   
  datalist[[k]]$actual <- datalist[[k]]$Y 
  datalist[[k]]$predicted <- predict(VSURF.output[[k]], datalist[[k]], step = c("interp")) 
 
  R2[[k]] <- 1 - (sum((datalist[[k]]$actual-
datalist[[k]]$predicted)^2)/sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2)) 
  adjR2[[k]]  <- 1-((sum((datalist[[k]]$actual-datalist[[k]]$predicted)^2))/(n[[k]]-
predictor_num[[k]]-1))/((sum((datalist[[k]]$actual-mean(datalist[[k]]$actual))^2))/n[[k]]-
1) 
 
  predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.interp) 
  predictors[[k]]$predictor_num <- predictors[[k]]$`VSURF.output[[k]]$varselect.interp` 
  predictors[[k]]$term <- colnames(datalist[[k]])[2+predictors[[k]]$predictor_num] 
  predictors[[k]] <- subset(predictors[[k]], select = -1) 
  predictors[[k]]$rank <- row.names(predictors[[k]]) 
  CORSIMincluded_predictors <- map_df(predictors, ~as.data.frame(.x), 
.id="UniqueID") 
   
  thres_predictors[[k]] <- as.data.frame(VSURF.output[[k]]$varselect.thres) 
  thres_predictors[[k]]$predictor_num <- 
thres_predictors[[k]]$`VSURF.output[[k]]$varselect.thres` 
  thres_predictors[[k]]$term <- 
colnames(datalist[[k]])[2+thres_predictors[[k]]$predictor_num] 
  thres_predictors[[k]] <- select(thres_predictors[[k]], -1)   
  thres_predictors[[k]]$var_importance <- VSURF.output[[k]]$imp.varselect.thres 
  thres_predictors[[k]]$rank <- row.names(thres_predictors[[k]]) 
   
  CORSIMthreshold_step <- map_df(thres_predictors, ~as.data.frame(.x), 
.id="UniqueID") 
   
  var_imp[[k]] <- as.data.frame(VSURF.output[[k]]$imp.mean.dec.ind) 
  var_imp[[k]]$predictor_num <- var_imp[[k]]$`VSURF.output[[k]]$imp.mean.dec.ind` 
  var_imp[[k]]$term <- colnames(datalist[[k]])[2+var_imp[[k]]$predictor_num] 
  var_imp[[k]] <- select(var_imp[[k]], -1)   
  var_imp[[k]]$var_importance <- VSURF.output[[k]]$imp.mean.dec 
  var_imp[[k]]$rank <- row.names(var_imp[[k]]) 
   
  CORSIMvar_importance <- map_df(var_imp, ~as.data.frame(.x), .id="UniqueID") 
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  print(judgeanalysis <- Sys.time()-t2) 
} 
print(totalanalysis <- (Sys.time()-t1)) 
 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMincluded_predictors, file = 
paste0("C:/Users/Kristina/Documents/Ohio University/Dissertation 9.19.17/R 
Code/Study Three Analysis/BCorrSIM", datagroup, " CORSIM Random Forest Final 
Predictors.csv", sep = "")) 
write.csv(CORSIMthreshold_step, file = paste0("C:/Users/Kristina/Documents/Ohio 
University/Dissertation 9.19.17/R Code/Study Three Analysis/BCorrSIM", datagroup, " 
CORSIM Random Forest Threshold Predictors.csv", sep = "")) 
write.csv(CORSIMvar_importance, file = paste0("C:/Users/Kristina/Documents/Ohio 
University/Dissertation 9.19.17/R Code/Study Three Analysis/BCorrSIM", datagroup, " 
CORSIM Random Forest Variable Importance.csv", sep = "")) 
 
########################################### 
### Model Statistics ### 
 
R2_model <- map_df(R2, ~as.data.frame(.x), .id = "UniqueID") 
R2_model$R2_model <- R2_model$.x 
R2_model <- select(R2_model, -2) 
 
 
adjR2_model <- map_df(adjR2, ~as.data.frame(.x), .id = "UniqueID") 
adjR2_model$adjrR2 <- adjR2_model$.x 
adjR2_model <- select(adjR2_model, -2) 
 
### Merging Model Stats ### 
R_model_stats <- merge(R2_model, adjR2_model, by = c('UniqueID'), all.x = TRUE) 
 
#Adding Variable Count to File# 
final_model <- as.data.frame(subset(CORSIMincluded_predictors)) 
predictors <- c("UniqueID", "term", "rank") 
 
final_model_predictors <- final_model[complete.cases(final_model[, predictors]), 
predictors] 
 
predictorlist <- list() 
statslist <- list() 
for(i in 1:count){  
  predictorlist[[i]] <- as.data.frame(subset(final_model_predictors, UniqueID == i)) 
  statslist[[i]] <- as.data.frame(subset(R_model_stats, UniqueID == i)) 
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  statslist[[i]]$model_var <- nrow(predictorlist[[i]]) 
} 
 
R_model_stats <- map_df(statslist, ~as.data.frame(.x), .id="UniqueID") 
 
#################################################################### 
 
modelVar <- c("UniqueID", "term", "var_importance", "rank") 
 
model_estimates <- CORSIMvar_importance[complete.cases(CORSIMvar_importance[, 
modelVar]), modelVar] 
 
person_model <- list() 
term_model <- list() 
forest_model <- list() 
final_model <- list() 
weights <- list() 
 
for(k in 1:count){  
  t2 <- Sys.time() 
  person_model[[k]] <- as.data.frame(subset(model_estimates, UniqueID == k)) 
 
  forest_model[[k]] <- as.data.frame(subset(R_model_stats, UniqueID == k)) 
   
  term_model[[k]] <- split(person_model[[k]], person_model[[k]]$term) 
  weights[[k]] <- as.data.frame(sapply(term_model[[k]], function(x) 
mean(x$var_importance))) 
  final_model[[k]] <- as.data.frame(subset(final_model_predictors, UniqueID == k)) 
  setDT(weights[[k]], keep.rownames = TRUE)[] 
  setnames(weights[[k]], 1, "Predictor") 
  setnames(weights[[k]], 2, "Mean") 
   
  forest_model[[k]]$intercept <- sum(ifelse(final_model[[k]]$term == '(Intercept)', 1, 0)) 
  forest_model[[k]]$X1 <- sum(ifelse(final_model[[k]]$term == 'X1', 1, 0)) 
  forest_model[[k]]$X2 <- sum(ifelse(final_model[[k]]$term == 'X2', 1, 0)) 
  forest_model[[k]]$X3 <- sum(ifelse(final_model[[k]]$term == 'X3', 1, 0)) 
   
  forest_model[[k]]$intercept_VI <- sum(ifelse(weights[[k]]$Predictor == '(Intercept)', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X1_VI <- sum(ifelse(weights[[k]]$Predictor == 'X1', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X2_VI <- sum(ifelse(weights[[k]]$Predictor == 'X2', 
weights[[k]]$Mean, 0)) 
  forest_model[[k]]$X3_VI <- sum(ifelse(weights[[k]]$Predictor == 'X3', 
weights[[k]]$Mean, 0)) 
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} 
 
forest_model[[5]] 
 
R_model_stats <- map_df(forest_model, ~as.data.frame(.x), .id="UniqueID") 
 
Conditions <- subset(data, !duplicated(UniqueID)) 
ConditionVar <- c("UniqueID", "rStructure") 
condition <- Conditions[complete.cases(Conditions[, ConditionVar]), ConditionVar] 
 
R_model_stats <- subset(R_model_stats, select=-c(UniqueID, UniqueID.1)) 
CORSIMR_model_stats <- merge(condition, R_model_stats, by = c('UniqueID'), all.x = 
TRUE) 
 
##SAVING ON PERSONAL PC: PC1###. 
write.csv(CORSIMR_model_stats, file = 
paste0("C:/Users/Kristina/Documents/BCorrSIM", datagroup, " CORSIM Random Forest 
Model Stats.csv", sep = "")) 
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