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Abstract

AKINYEMI, LANRE B., Ph.D., May 2018, Mathematics

The Interface Dynamics in the Hele-Shaw Cell (92 pp.)

Director of Dissertation: Tatiana Savin

Hele-Shaw free boundary problems have been attracting attention of engineers,

physicists and mathematicians for many decades because of the fact that the number of

moving boundary processes such as solidification, electro-deposition, flows in porous

media can be reduced to Hele-Shaw problems. There are two classical formulation of

Hele-Shaw problems which are the one-phase and two-phase Hele-Shaw problems. The

one-phase Hele-Shaw problem has been studied extensively by many researchers and

many explicit solutions are known. Regarding the two-phase Hele-Shaw problem (also

know as the “Muskat problem”), much less progress has been made.

In this dessertation, we study the evolution of a two-phase Hele-Shaw problem under

assumption of a negligible surface tension. Our models involve the sinks and sources to be

line distributions with disjoint supports located in the exterior and the interior domains as

well as time dependent change in the gap width. We use the tools of complex analysis

such as the Schwarz function and the complex potential. We give examples of exact

solutions when the interface belongs to a certain family of algebraic curves, defined by the

initial shape of the boundary.
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1 Introduction

1.1 Brief description of Hele Shaw problem

In the 19th century, one of the famous works in Fluid Dynamic was a succession of

papers written by Henry Selby Hele-Shaw (1854 − 1941). The Hele-Shaw cell is a device

used to study two-dimensional flows of viscous fluids. It consists of two parallel plates

and a viscous fluid, sandwiched in a narrow gap between the plates, see Figure 1.1.

Figure 1.1: Hele-Shaw cell [89].

The Hele-Shaw cell is extensively used as a model in various fields of engineering

and natural sciences, in particularly, fluid mechanics, materials science, and crystal growth

[86]. One of the important characteristics of the flows in a Hele-Shaw problem is that the

Navier-Stokes equations averaged over the gap reduce to a much simpler relation as

Darcy’s law and then to the Laplace equation for pressure [29]. Hele-Shaw free boundary

problems have been extensively studied over the last century (see [29], [86] and

references therein).
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There are two classical formulations of the Hele-Shaw problems: the one-phase

problem and the two-phase problem (also known as the “Muskat problem”). In one-phase

problem one of the fluids is assumed to be viscous while the other is effectively inviscid

(that is, it has a constant pressure). There are two statements of one-phase problem,

• The interior problem: where oil is surrounded by air in a Hele-Shaw cell.

• The exterior problem: where an air bubble is surrounded by oil in a Hele-Shaw cell.

The two-phase Hele-Shaw problem is a free boundary problem related to the theory

of flows in porous media [54]. The problem describes an evolution of an interface

between two immiscible fluids, oil and water, in a Hele-Shaw cell or in a porous medium.

While the one-phase problem has been studied for many decades and many explicit

solutions are known, much less progress has been made for the two-phase problem.

Concerning the two-phase Hele-Shaw problem, the global existence of solutions to some

specific two-phase Hele-Shaw problems was considered in [24], [80] and [91].

Howison [38], has obtained several simple solutions including travelingwave solutions

and stagnation point flow. In [38], an idea of a method for solving some two-phase

problems was proposed and used to reappraise the Jacquard and Séguier solution [44].

Crowdy [14], presented an exact solution to the Muskat problem for the elliptical initial

interface between two fluids of different viscosity. In [14], it was shown that an elliptical

inclusion of one fluid remains elliptical when placed in a linear ambient flow of another

fluid. Bazaliy and Vasylyeva [8], proved that the problem has a unique solution in the

weighted Holder classes locally in time and specify the sufficient conditions for the

existence of the “waiting time” phenomenon.

The main difficulty of the two-phase problems is the fact that the pressure on the

interface is unknown. That is why there are not too many solutions to the two-phase

problem. However, due to the mathematical analogy with free boundary problems such as
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solidification, electro-deposition, ice crystal growth, flows in porous media it is important

to have better understanding of solutions to the two-phase problem.

The dissertation is devoted to the two-phase Hele-Shaw problem with a negligible

surface tension. The material is taken from two published papers. One of them, [3], is

related to the two-phase problem in the presence of the line distributions of sinks and

sources, while the other problem, in addition to line distributions of sinks and sources,

involves a time dependent change in the gap width [76]. Next, we give a summary of

topics included throughout the course of this research.

1.2 Organization of thesis

In chapter 2, we discuss preliminaries and definitions which includes the

mathematical description and a brief explanation of fluid mechanics. In section 2.1, we

derive the Navier-Stokes equations equations for incompressible fluids which constitute

the continuity equations and basic conservation applied to properties of fluids. The

equations are as follows

∂v
∂t

+ (v · ∇)v =
1
ρ

(−∇p + ν∆v), (1.2.1)

∇ · v = 0, (1.2.2)

where ∇ =
(
∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
is the del-operator, ∆ = ∇ · ∇ =

3∑
i=1

∂2

∂x2
i
, v = (v1, v2, v3) is the

velocity of the flows, p is the pressure of the fluid, ν is the viscosity coefficient and ρ is the

density of the fluid. Equation 1.2.1 is called the momentum equation while equation 1.2.2

is called the continuity equation. In section 2.2, we define the complex and velocity

potentials. In section 2.3, we derive the one-phase Hele-Shaw problem by considering the

Navier-Stokes equations for incompressible fluids and neglecting the gravity. In section

2.4, we define the Schwarz function, give some examples of Schwarz function, and

describe the properties of the Schwarz function.
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Chapter 3 consists of a paper [3], which is joint work with Drs Tatiana Savina and

Alexander Nepomnyashchy. In this chapter we obtain the exact solutions to Muskat

problem with line distributions of sinks and sources. Section 3.1 is the introduction

extracted from [3]. In section 3.2, we discuss the formulation of the problem which is as

follows:

Let Ω2(t) ⊂ R2 with a boundary Γ(t) at time t be a simply-connected bounded domain

occupied by a fluid with a constant viscosity ν2, and let Ω1(t) be the region R2 \ Ω̄2(t)

occupied by a different fluid of viscosity ν1. Consider the two-phase Hele-Shaw problem

forced by sinks and sources:

v j = −k j∇p j, j = 1, 2, (1.2.3)

where the pressure p j is a harmonic function almost everywhere in the region Ω j(t),

satisfying boundary conditions

p1(x, y, t) = p2(x, y, t) on Γ(t) (1.2.4)

and

− k1
∂p1

∂n
= −k2

∂p2

∂n
= vn on Γ(t). (1.2.5)

Equation (1.2.4) states the continuity of the pressure under the assumption of

negligible surface tension. Equation (1.2.5) means that the normal velocity of the

boundary itself coincides with the normal velocity of the fluid at the boundary. Here v j is

a velocity vector of fluid j, k j = h2/12ν j, and h is the gap width of the Hele-Shaw cell. In

section 3.3 we reformulate the two phase Hele-Shaw problem in terms of the Schwarz

function and we point out the steps of the suggested method of finding the exact solutions.

Section 3.4 is devoted to the two-phase mother body in the context of the Muskat problem.

In Section 3.5, we consider some algebraic curves as initial position of the interface, and
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we compute the corresponding exact solutions, and finally, in section 3.6 we give the

conclusions.

Chapter 4 consists of a paper in [76], which is joint work with Dr.Tatiana Savina and

Avital Savin. In this chapter, we reformulate the Muskat problem with the time dependent

gap in terms of the Schwarz function equation. We describe a method of constructing

exact solutions, and using this method we consider examples in the presence and in the

absence of additional sinks and sources. The structure of the chapter is as follows. Section

4.1 is the introduction extracted from [76]. In section 4.2, we discuss the formulation of

the problem which is as follows:

Let Ω2(t) ⊂ R2 with a boundary Γ(t) at time t be a simply-connected bounded domain

occupied by a fluid with a constant viscosity ν2, and let Ω1(t) be the region R2 \ Ω̄2(t)

occupied by a different fluid of viscosity ν1. To consider a two-phase Hele-Shaw flow

forced by a time-dependent gap, we start with the Darcy’s law

v j = −k j∇p j in Ω j(t), j = 1, 2, (1.2.6)

where v j and p j are a two-dimensional gap-averaged velocity vector and a pressure of

fluid j respectively, k j =
h2(t)
12ν j

, and h(t) is the gap width of the Hele-Shaw cell. Equation

(1.2.6) is complemented by the volume conservation,

A(t)h(t) = A(0)h(0) (1.2.7)

for any time t, where A(t) and A(0) are the areas of Ω2(t) and Ω2(0) respectively. The

conservation of volume for a time-dependent gap may be written as a modification of the

usual incompressibility condition

∇ · V2 = 0,

where V2 = (u, v,w) is a three-dimensional velocity vector of the fluid occupying the

domain Ω2(t). Indeed, the averaging of the three-dimensional incompressibility condition
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across the gap gives [79]:

0 =
1

h(t)

h(t)∫
0

(ux + vy + wz) dz

=
1

h(t)

h(t)∫
0

ux dz +
1

h(t)

h(t)∫
0

vy dz +
1

h(t)

h(t)∫
0

wz dz

= uav
x + vav

y +
(w(h(t)) − w(0))

h(t)

= uav
x + vav

y +
ḣ(t)
h(t)

.

(1.2.8)

Here z = 0 corresponds to the lower plate and z = h(t) corresponds to the upper plate, and

and h(t) and ḣ(t) are assumed to be small enough to avoid any inertial effects as well as to

keep the large aspect ratio. The latter implies [79]

∇ · v2 = −
ḣ(t)
h(t)

in Ω(t), (1.2.9)

where v2 = (uav, vav). We also note that similar consideration may be applied to any finite

part of the region Ω1(t). Thus, from equation 1.2.6,

∇ · v2 = ∇ · (−k j∇p j).

Hence, from equation 1.2.9 we obtain

∇ · v2 = −k j (∇ · ∇p j) = −
ḣ(t)
h(t)

.

Since ∆ = ∇ · ∇, the problem in terms of the pressure p j as a solution to Poisson’s

equation is given as follows,

∆p j =
1
k j

ḣ(t)
h(t)

, (1.2.10)

almost everywhere in the region Ω j(t), satisfying boundary conditions

p1(x, y, t) = p2(x, y, t) on Γ(t) (1.2.11)
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and

− k1
∂p1

∂n
= −k2

∂p2

∂n
= vn on Γ(t). (1.2.12)

Equation (1.2.11) states the continuity of the pressure under the assumption of

negligible surface tension. Equation (1.2.12) means that the normal velocity of the

boundary itself coincides with the normal velocity of the fluid at the boundary. In Section

4.3 we describe the method of finding exact solutions for a Muskat problem with a

time-dependent gap. In Section 4.4, we gives examples of the exact solutions, and the

concluding remarks are given in Section 4.5.

In chapter 5, we list of some future proposed problems.
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2 Preliminaries and Definitions

2.1 Newtonian fluid

It is useful to begin with the definition of a fluid. A fluid is a substance which

deforms continuously whenever there is a presence of a small shear stress. A fluid, in

which there is a linear relationship between viscosity and shear stress, is called a

Newtonian fluid, which was named after Sir Issac Newton (1642-1726). Many common

fluids such as water and petroleum products are Newtonian fluid. Newtonian fluids obey

the Newton’s law of viscosity,

σ = ν
∂v
∂y
. (2.1.1)

Here the coefficient of proportionality ν is called the coefficient of viscosity or simply

dynamic viscosity, σ is the shear stress, which is the ratio between the force and the area,

σ =
F
A
,

and ∂v
∂y is the rate of change of velocity with respect y or the rate of shear deformation. In

words, we say that the shear stress in the direction of x of the flow is proportional to the

velocity gradient with respect y with the constant of proportionality ν.

2.1.1 Navier-Stokes equations

To derive the Navier-Stokes equations, we use the continuity equation and the

momentum equation. The conservation of mass is used in deriving the continuity equation

while the Newton’s second law results eventually in the momentum equation. For

derivation of the continuity equation we use the Reynolds’ Transportation Theorem,

which was named after Osborne Reynolds (1842–1912). Let us consider a fluid that

occupies a control volume CV, and it is bounded by a control surface CS at time t. The

change in time t + dt, denotes that the system has begun to move out of the control volume

(see Figure 2.1).
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Figure 2.1: The system and the fixed control volume, adopted from [77].

Theorem 2.1.1. ([30], [77]) (Reynolds’ Transport Theorem). The rate of change of an

extensive property Φ of the system is equal to the rate of change the extensive property Φ

inside the control volume CV plus the rate of the flux of N across the control surface CS

at time t:

dΦ

dt

∣∣∣∣∣
sys

=

∫
CV

∂

∂t
(ηρ) dV +

∮
CS
ηρv·n dS , (2.1.2)

where η is intensive property which is equal to the extensive property per unit mass, that

is, η = dΦ/dm, ρ is the fluid density, the velocity vector v = (v1, v2, v3), and n is the unit

normal vector in the outward direction.

Theorem 2.1.2. ([81]) (Divergence Theorem). Let F be a vector field, whose component

functions have continuous partial derivative on an open region that contains R. Where R

is the region inside of S , and S is a closed surface. Then"
S

F · dA =

$
R

div (F) dV,

where div F = ∇ · F and ∇ =
(
∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
.
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Using the Divergence theorem (2.1.2) (also know as Guass theorem), equation (2.1.2)

implies

dΦ

dt

∣∣∣∣∣
sys

=

∫
CV

[
∂

∂t
(ηρ) + ∇· (ηρv)

]
dV. (2.1.3)

For simplicity, we introduce an Eulerian derivative D
Dt , which is defined as follows

D
Dt

=
∂

∂t
+ v · ∇,

which can also be written in coordinate system as

D
Dt

=
∂

∂t
+ v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3
.

Then from equation (2.1.3), we have

dΦ

dt

∣∣∣∣∣
sys

=

∫
CV

(
D(ηρ)

Dt
− v · ∇(ηρ) + ∇· (ηρv)

)
dV.

Since,

∇ · (ηρv) = ∇(ηρ) · v + ηρ(∇ · v)

Hence, we obtain

dΦ

dt

∣∣∣∣∣
sys

=

∫
CV

(
D(ηρ)

Dt
+ ηρ(∇ · v)

)
dV. (2.1.4)

2.1.2 The continuity equation

Since the mass neither created nor destroyed, the law of conversation of mass states

that the rate of change of mass with time in a system is zero. That is,

dm
dt

∣∣∣∣∣
sys

= 0. (2.1.5)

If we now consider a control volume CV, occupying fluid mass m, then, equation (2.1.4)

with Φ ≡ m and η ≡ 1 reads as

dm
dt

∣∣∣∣∣
sys

=

∫
CV

(Dρ
Dt

+ ρ(∇ · v)
)

dV.
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According to equation (2.1.5) the above equation implies∫
CV

(Dρ
Dt

+ ρ(∇ · v)
)

dV = 0.

Since this equation holds for any control volume, we have

Dρ
Dt

+ ρ(∇ · v) = 0.

In the case of an incompressible fluid, we considered ρ to be constant and the above

equation reduces to

∇ · v = 0, (2.1.6)

since in coordinate system

Dρ
Dt

=
∂ρ

∂t
+ v1

∂ρ

∂x1
+ v2

∂ρ

∂x2
+ v3

∂ρ

∂x3
= 0.

Equation 2.1.6 is known as the continuity equation [66], [77].

2.1.3 The conservation of momentum

Let us consider a fluid that occupies by a control volume CV and bounded by a

control surface CS at time t. Its momentum is given by∫
CV
ρv dV.

Hence, the rate of change of momentum is

d
dt

∫
CV
ρv dV =

∫
CV
ρ

Dv
Dt

dV. (2.1.7)

By Newtons second law, the rate of change of momentum is equal to the sum of all

external forces. The total force Fp is the sum of the body force due to gravity and surface

force due to viscous shear and normal stresses. That is,

Fp =

∫
CV
ρg dV +

∫
CS

[σ] · dS,
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where g is the gravity constant, [σ] is the stress tensor. Using the Divergence theorem

(2.1.2) to the above equation we obtain

Fp =

∫
CV

( ρg + ∇ · [σ]) dV. (2.1.8)

For any control volume CV , equation (2.1.7) and (2.1.8) must be equal according to

Newtons second law, then we obtain∫
CV
ρ

Dv
Dt

dV =

∫
CV

( ρg + ∇ · [σ]) dV.

Hence,

ρ
Dv
Dt

= ρg + ∇ · [σ] . (2.1.9)

Equation (2.1.9) is known as the Cauchy equation [66], [77] . The physical

interpretation of this Cauchy equation is seen clearly in Cartesian coordinates in two

dimensions (see Figure 2.2) as follows. Momentum equation in x axis:

ρ
Dv1

Dt
= ρgx +

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
,

momentum equation in y axis:

ρ
Dv2

Dt
= ρgy +

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
,

and momentum equation in z axis:

ρ
Dv3

Dt
= ρgz +

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
.

The components σi j can be expressed as the ratio of the force to the unit area in the i

direction across a plane with normal in the j direction. The gradients in the stress tensor

must be there to serve as a net force on any element. In particular, the stress tensor is

symmetric, so σxy = σyx [5].
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Figure 2.2: The surface stresses on a fluid element in two dimensions [53], [77].

The Stokes’ viscosity law for incompressible fluid states that the stress tensor [σ] is

given by [30],

σi j = −Pδi j + ν

(
∂vi

∂x j
+
∂v j

∂xi

)
, (2.1.10)

where

δi j =


1, if i = j

0, if i , j.
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Substituting equation (2.1.10) into (2.1.9) we obtain the momentum in the x, y and z axis

as follows. Momentum equation in x axis:

ρ
Dv1

Dt
= ρgx −

∂p
∂x

+ ν

(
∂2v1

∂x2 +
∂2v1

∂y2 +
∂2v1

∂z2

)
,

momentum equation in y axis:

ρ
Dv2

Dt
= ρgy −

∂p
∂y

+ ν

(
∂2v2

∂x2 +
∂2v2

∂y2 +
∂2v2

∂z2

)
,

momentum equation in z axis:

ρ
Dv3

Dt
= ρgz −

∂p
∂z

+ ν

(
∂2v3

∂x2 +
∂2v3

∂y2 +
∂2v3

∂z2

)
.

In a vector form, we can rewrite the momentum equation as

ρ
Dv
Dt

= ρg − ∇p + ν∆v. (2.1.11)

If we neglect the body force due to gravity, then we have
∫

CV
ρg dV = 0 and equation

(2.1.11) reduce to

Dv
Dt

=
1
ρ

(−∇p + ν∆v) , (2.1.12)

where
D
Dt

=
∂

∂t
+ v · ∇.

Hence the equations (2.1.6) and (2.1.12) are called the Navier-stokes equations for

incompressible fluids.

2.2 Complex potential

Definition 2.2.1. Consider a complex variable z = x + iy. Let ϕ be a twice differentiable

function which satisfy a Laplace’s equation and therefore, harmonic. Then there exist a

harmonic conjugate, denoted by ψ, such that

W(z) = ϕ(x, y) + iψ(x, y)
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which is analytic. The function ψ is called the stream function and the analytic function

W is called the complex potential [67]. The complex velocity is obtained by computing the

derivative of W with respect to z.

The component functions ϕ and ψ of the complex potential W is harmonic, satisfying

Laplaces equation, that is, 
∇2ϕ = 0

∇2ψ = 0.
(2.2.1)

Since the complex potential W is analytic, its component functions ϕ and ψ satisfies

the Cauchy-Riemann equations, that is,
∂ϕ

∂x
=
∂ψ

∂y
∂ϕ

∂y
= −

∂ψ

∂x
.

(2.2.2)

2.3 The derivation of the one-phase Hele-Shaw model

To derive the Hele-Shaw equations we first consider the Navier-Stokes equations

neglecting the gravity (2.1.6) and (2.1.11),

Dv
Dt

=
∂v
∂t

+ (v · ∇)v =
1
ρ

(−∇p + ν∆v), (2.3.1)

∇ · v = 0, (2.3.2)

where ∇ =
(
∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
is the del-operator, ∆ = ∇ · ∇ =

3∑
i=1

∂2

∂x2
i
, v = (v1, v2, v3) is the

velocity of the flows, p is the pressure of the fluid, ν is the viscosity coefficient and ρ is the

density of the fluid. Assume that the injection of the fluid is slow enough for the flow to be

approximately stationary and that the flow is entirely horizontal. This means that the term

∂v
∂t can be neglected in equation (2.3.1) and v3 = 0. Then equations (2.3.1) and (2.3.2)

reduce to [30], [31],
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(
v1

∂

∂x1
+ v2

∂

∂x2

)
v1 = −

1
ρ

(
∂p
∂x1

)
+
ν

ρ
∆v1, (2.3.3)

(
v1

∂

∂x1
+ v2

∂

∂x2

)
v2 = −

1
ρ

(
∂p
∂x2

)
+
ν

ρ
∆v2, (2.3.4)

0 = −
1
ρ

(
∂p
∂x3

)
. (2.3.5)

Consider the boundary conditions v1 = v2 = 0 whenever x3 = 0 or x3 = h. By putting

∂v1

∂x j
=
∂v2

∂x j
=
∂2v1

∂x2
j

=
∂2v2

∂x2
j

= 0

for j = 1, 2, then equations (2.3.3), (2.3.4) and (2.3.5) reduce to

1
ν

(
∂p
∂x1

)
=
∂2v1

∂x2
3

,
1
ν

(
∂p
∂x2

)
=
∂2v2

∂x2
3

. (2.3.6)

Integrating both side of equations (2.3.6) with respect to x3 and applying the

boundary conditions v1 = v2 = 0 whenever x3 = 0 or x3 = h and finally solving for v1 and

v2 = 0 we obtain

v1 =
1
2
∂p
∂x1

(
x2

3

ν
−

hx3

ν

)
, (2.3.7)

v2 =
1
2
∂p
∂x2

(
x2

3

ν
−

hx3

ν

)
. (2.3.8)

The average velocity vave
j over the gap is given by

vave
j =

1
h

∫ h

0
V j dx3, (2.3.9)
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where j = 1, 2. Evaluating this average velocity for j = 1, we obtain

vave
1 =

1
h

∫ h

0
V1dx3,

=
1
h

∫ h

0

1
2
∂p
∂x1

(
x2

3

ν
−

hx3

ν

)
dx3,

=
1

2h
∂p
∂x1

(
x3

3

3ν
−

hx2
3

2ν

)∣∣∣∣∣∣
x3=h

x3=0

,

=
1

2hν
∂p
∂x1

(
h3

3
−

h3

2

)
,

= −
h2

12ν
∂p
∂x1

.

(2.3.10)

Similarly by repeating the same procedure for j = 2 we derive v2 to be

vave
2 =

1
h

∫ h

0
V2dx3,

=
1
h

∫ h

0

1
2
∂p
∂x2

(
x2

3

ν
−

hx3

ν

)
dx3,

=
1

2h
∂p
∂x2

(
x3

3

3ν
−

hx2
3

2ν

)∣∣∣∣∣∣
x3=h

x3=0

,

=
1

2hν
∂p
∂x2

(
h3

3
−

h3

2

)
,

= −
h2

12ν
∂p
∂x2

.

(2.3.11)

Hence,

V = −
h2

12ν
∇p, (2.3.12)

where V = (vave
1 , vave

2 , vave
3 ) and vave

3 = 0. Where V and p depend only on x1 and x2.

Therefore the equation (2.3.12) describes a two dimensional potential flow, where the

potential function is proportional to the pressure. Due to compressibility of the flow the

pressure is a harmonic function. Equation (2.3.12) is called the Hele-Shaw equation. It is

of the same form as Darcy’s law, which governs flow in porous media [30].
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2.4 The Schwarz function for an analytic curve

The Schwarz function has played a significant role in reformulating, understanding

and generating new ideas and concepts on how to find an exact solutions to the Hele-Shaw

and Laplacian growth problems in the plane. According to Davis [17], the Schwarz

function for an analytic curve is defined as follows. Let Γ(t) be an analytic curve for a

fixed t given by the equation F(t, x, y) = 0, where F(t, x, y) is a polynomial with respect to

x and y with real coefficients and its partial derivatives Fx(t, x, y) and Fy(t, x, y) do not

vanish simultaneously along an analytic curve Γ. Using the change of variables z = x + iy

and z̄ = x − iy, then, this function for a real-analytic curve Γ := {F(t, x, y) = 0} is defined

as a solution to the equation F
(

z+z̄
2 ,

z−z̄
2i , t

)
= 0 with respect to z̄. Such a solution exists in

some neighborhood ΩΓ of the curve Γ and a uniquely determined analytic function S (t, z),

for z ∈ ΩΓ, such that z̄ = S (t, z) for z ∈ Γ. This function S (t, z) is called the Schwarz

function and is defined and analytic in a neighborhood ΩΓ(t) of Γ(t). Let us consider a few

examples of some familiar curves.

2.4.1 Examples of Schwarz function

Example 1. The equation of a circle centered at the point (x0, y0) of radius r(t) for fixed t

in Cartesian coordinates is given by

(x − x0)2 + (y − y0)2 = r2(t).

By performing the change of variables x = z+z̄
2 , y = z−z̄

2i , and solving for z̄ in terms of z, we

obtain the corresponding Schwarz function

z̄ = S (t, z) =
r2(t)
z − z̄0

+ z̄0,

which has a simple pole at the point z = z̄0 [71].
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Example 2. The equation of an ellipse centered at the origin for fixed t in rectangular

form is given by
x2

a2(t)
+

y2

b2(t)
= 1.

By performing the change of variables x = z+z̄
2 , y = z−z̄

2i , and solving for z̄, we obtain the

corresponding Schwarz function as follows

z̄ = S (t, z) =
a2(t) + b2(t)
a2(t) − b2(t)

z +
2a(t)b(t)

b2(t) − a2(t)

√
z2 + b2(t) − a2(t),

which has foci at the points z = ±
√

a2(t) − b2(t) for fixed t [71].

Example 3. A curve of the fourth order (called the ovals of Cassini) in rectangular form

is given by the equation

(x2 + y2)2 − 2b2(x2 − y2) = a4 − b4,

where a and b are unknown positive function of t. This equation describes a simple closed

curve if a > b. and two closed curves otherwise. Using the change of variables

x = z+z̄
2 , y = z−z̄

2i , and solving for z̄ in terms of z, we obtain its Schwarz function as

S (t, z) =

√
b2z2 + a4 − b4

√
z2 − b2

.

Which has two interior singularities at the points z = ±b and two exterior singularities at

the points z = ±

√
b4−a4

b2 [71].

Example 4. Consider a Neumann’s oval [78] whose boundary Γ(t) is given by the

eaquation

Γ(t) =
{
(x2 + y2)2 − a2(t)x2 − b2(t)y2 = 0

}
,

After performing change of variables x = z+z̄
2 , y = z−z̄

2i , and solving for z̄ in terms of z, we

obtain its Schwarz function as

S (z, t) =
z(a2(t) + b2(t)) + 2z

√
z2d2(t) + a(t)2b2(t)

4z2 − d2(t)
.
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Which has two interior simple poles at z = ±d
2 , and two exterior branch points at z = ± iab

d ,

where d2(t) = a2(t) − b2(t). [71]

2.4.2 Properties of the Schwarz function

Let Γ(t) be an analytic curve for fixed t with the Schwarz function z̄ = S (t, z) where

z ∈ Γ(t), then the following properties hold along Γ(t) [17]:

1. The derivative of the Schwarz function does not vanish at any point on the curve,

that is, ∂zS , 0 and |∂zS | = 1.

Indeed, along the analytic curve Γ(t), differentiating z̄ w.r.t z, we have

dz̄
dz

=
dx − idy
dx + idy

. (2.4.1)

Since the derivative of an analytic function is independent of the direction, in which

increments are taken, and z̄ = S (t, z) where z ∈ Γ(t) we have

∂zS =
dz̄
dz

=
dx − idy
dx + idy

(2.4.2)

and

|∂zS | =
∣∣∣∣∣dz̄
dz

∣∣∣∣∣ =

∣∣∣∣∣dx − idy
dx + idy

∣∣∣∣∣ . (2.4.3)

It follows that |∂zS | = 1 and ∂zS , 0.

2. The unit tangent vector and its conjugate along the curve can be reformulated in

terms of the Schwarz function as

dz
ds

=
1√
∂zS
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and
dz̄
ds

=
√
∂zS ,

respectively. Where s is the arc length parameter on Γ(t) at any time t.

Indeed, since s is the arc length parameter on the analytic curve, we have

ds2 = dx2 + dy2 = (dx + idy)(dx − idy) = dzdz̄. (2.4.4)

Using the fact that

dz̄ = ∂zS (t, z)dz

Thus, from equation (2.4.4), we obtain

ds =
√

dz∂zS dz =
√
∂zS (dz)2. (2.4.5)

Hence,

dz
ds

=
1√
∂zS

. (2.4.6)

In addition, since z̄ = S (z, t), computing the derivative with respect to the arc length

s we obtain

dz̄
ds

=
dz̄
dz

dz
ds

= ∂zS
dz
ds
. (2.4.7)

Substituting equation (2.4.6) into equation (2.4.7), we obtain

dz̄
ds

= ∂zS
1√
∂zS

=
√
∂zS . (2.4.8)

Hence, dz
ds = 1√

∂zS
and dz̄

ds =
√
∂zS are respectively the tangent vector and its

complex conjugate in terms of the Schwarz function.

3. The directional derivatives of a function F(z, z̄) along and normal to the curve Γ(t)

can also be written in term of the Schwarz function as follows

dF
ds

= Fz
1√
∂zS

+ Fz̄

√
∂zS , (2.4.9)
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and

dF
dn

= −i

Fz
1√
∂zS
− Fz̄

√
∂zS

 (2.4.10)

respectively.

Indeed, according to Davis [17], we can write dF
ds and dF

dn with the tangent angle ω as

follows

dF
ds

= Fzeiω + Fz̄e−iω (2.4.11)

and

dF
dn

= −i
(
Fzeiω − Fz̄e−iω

)
. (2.4.12)

Letting F(z, z̄) = z and F(z, z̄) = z̄ in equation (2.4.11) and (2.4.12) respectively, we

obtain

dz
ds

= eiω = i
dz
dn
, (2.4.13)

and

dz̄
ds

= e−iω = −i
dz̄
dn
. (2.4.14)

Hence, equation (2.4.11) and (2.4.12) combined with (2.4.13) and (2.4.14) yields

dF
ds

= Fz
dz
ds

+ Fz̄
dz̄
ds
, (2.4.15)

and

dF
dn

= Fz
dz
dn

+ Fz̄
dz̄
dn
. (2.4.16)
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Substituting equation (2.4.6) and (2.4.8) into (2.4.13) and (2.4.14), we obtain, in

addition, the normal vector and its complex conjugate in term of the Schwarz

function as

dz
dn

= −
i√
∂zS

, (2.4.17)

and

dz̄
dn

= i
√
∂zS . (2.4.18)

Finally, substituting equations (2.4.6), (2.4.8), (2.4.17) and (2.4.18) into equations

(2.4.15) and (2.4.16), yields the relations (2.4.9) and (2.4.10)

4. If we denote the curvature of Γ(t) by κ, according to Davis [17] then κ can be

expressed in terms of the Schwarz function as follows

κ =
i
2
∂zzS

(∂zS )
3
2

, (2.4.19)

where the ∂zS = ∂S
∂z and ∂zzS = ∂2S

∂z2 . Also the derivative of the curvature along the

boundary is given by [17]:

∂sκ =
i
2

(
∂zS ∂zzzS − 3/2(∂zzS )2

(∂zS )3

)
. (2.4.20)

Let ω be the angle between the tangent to the Γ(t) and the real axis. Then,

tanω = y′ =
dy
dx
,

and

ω = tan−1 y′.

The curvature is defined as

κ =
dω
ds

=
d(tan−1 y′)

dx
dx
ds
. (2.4.21)
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Since dx
ds = dx

dz
dz
ds , equation (2.4.21) yields

κ =
d(tan−1 y′)

dx
dx
dz

dz
ds
. (2.4.22)

Hence,

κ =
y′′

1 + y′2
dx
dz

dz
ds
. (2.4.23)

Where y′, y′′, dz
dx and dz

ds in term of the Schwarz function are as follows

y′ = −i
1 − ∂zS
1 + ∂zS

,
dz
dx

=
2

1 + ∂zS
,

dz
ds

=
1√
∂zS

(2.4.24)

and

y′′ =
dy′

dz
dz
dx

=
4i∂zzS

(1 + ∂zS )3 . (2.4.25)

Substituting equations (2.4.24) and (2.4.25) into (2.4.23), we obtain the curvature κ

in term of the Schwarz function

κ =
i
2
∂zzS

(∂zS )
3
2

.

Differentiating the curvature κ with respect to s we obtain

∂sκ =
∂κ

∂s
=
∂κ

∂z
∂z
∂s

=
i
2

(
∂zS ∂zzzS − 3/2(∂zzS )2

(∂zS )3

)
.

Hence,

∂sκ =
i
2
{S , z} , (2.4.26)

where {S , z} =
(
∂zS ∂zzzS−3/2(∂zzS )2

(∂zS )3

)
.



33

Example 5. A circle centered at the origin has a constant curvature.

From example 1, the Schwarz function z̄ = S (t, z) = a2

z , which has a simple pole at the

origin and radius a. Then,

∂zS =
−a2

z2 , ∂zzS =
2a2

z3 , ∂zzzS =
−6a2

z4 . (2.4.27)

Using equation (2.4.19) we obtain κ = −1
a . Hence,

{S , z} = 0, ∂sκ =
i
2
{S , z} = 0. (2.4.28)

Proposition 2.4.1. ([37], [48]) The normal velocity νn in ΩΓ(t) of Γ(t) can be written in

terms of the Schwarz function as follows

νn =
−i∂tS (t, z)

2
√
∂zS (t, z)

=
∂tS (t, z)

2i
√
∂zS (t, z)

. (2.4.29)

Proof. The normal velocity of the boundary, νn = v·n, where v is the velocity vector

which after change of variables x = z+z̄
2 and y = z−z̄

2i can be written in a complex plane as

v =

(zt + z̄t

2
,

zt − z̄t

2i

)
and n is the outward normal,

n =

(zn + z̄n

2
,

zn − z̄n

2i

)
.

Thus,

v·n =

(zt + z̄t

2
,

zt − z̄t

2i

)
·

(zn + z̄n

2
,

zn − z̄n

2i

)
,

and we obtain

v·n =

(zt + z̄t

2

)
·

(zn + z̄n

2

)
+

(zt − z̄t

2i

)
·

(zn − z̄n

2i

)
.

Hence,

v·n =
zt z̄n + z̄t zn

2
(2.4.30)
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Using equations (2.4.17) and (2.4.18) in the third property of Schwarz function, equation

(2.4.30) yields

νn = v·n =
i
2

zt

√
∂zS − z̄t

1√
∂zS

 . (2.4.31)

Let us differentiate the equation describing the boundary, z̄ = S (t, z), with respect to time t,

we obtain,

z̄t = ∂tS + ∂zS zt. (2.4.32)

Substitution (2.4.32) into (2.4.31) we obtain the normal velocity of the boundary,

νn = v·n =
i
2

zt

√
∂zS − (∂tS + ∂zS zt)

1√
∂zS

 . (2.4.33)

Hence, we have derived our desired formula (2.4.29). The Schwarz function was used by

many authors in the context of the Hele-Shaw problem in order to reformulate the

problem in terms of so called complex potential. �
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3 Exact Solutions toMuskat ProblemWith Line

Distribution of Sinks and Sources

3.1 Introduction

This chapter was published in the AMS journal “Contemporary Mathematics” (see

the reference [3]). It concerns exact solutions to the two-phase Hele-Shaw problem with

the line of distribution of sinks and sources [3], extending the results obtained by Crowdy

[14]. The main difficulty of the two-phase problems is the fact that the pressure on the

interface, that is separating the two fluids, is unknown. However, if we assume that the

free boundary remains within the family of curves, specified by the initial shape of the

interface separating the fluids (which is feasible if the surface tension is negligible) then

the problem is drastically simplified. Our study is devoted to the situations when the

evolution of the interface is controlled by a special choice of sinks and sources. The

suggested method allows to obtain exact solutions for a certain class of curves for which

the Schwarz function can be computed.

3.2 Mathematical formulation of the Muskat problem

The mathematical formulation of the problem is as follows. Let Ω2(t) ⊂ R2 with a

boundary Γ(t) at time t be a simply-connected bounded domain occupied by a fluid with a

constant viscosity ν2, and let Ω1(t) be the region R2 \ Ω̄2(t) occupied by a different fluid of

viscosity ν1. To consider the two-phase Hele-Shaw problem forced by sinks and sources,

we start with the Darcy’s law, which stated that the velocities of fluids are proportional to

the pressure gradients [16].

v j = −k j∇p j, j = 1, 2, (3.2.1)
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where the pressure p j is a harmonic function almost everywhere in the region Ω j(t), that is,

∆p = 0 in Ω(t), (3.2.2)

satisfying boundary conditions

p1(x, y, t) = p2(x, y, t) on Γ(t), (3.2.3)

−k1
∂p1

∂n
= −k2

∂p2

∂n
= vn on Γ(t). (3.2.4)

Here v j is a velocity vector of fluid j, k j = h2/12ν j, and h is the gap width of the

Hele-Shaw cell. Equation (3.2.3) states the continuity of the pressure under the

assumption of negligible surface tension. Equation (3.2.4) means that the normal velocity

of the boundary itself coincides with the normal velocity of the fluid at the boundary. The

free boundary Γ(t) moves due to the sources and sinks located in both regions. Therefore,

we adopt a natural physical assumption that the fluid flux generated by the system of

sources and sinks is finite. That allows no more than the logarithmic growth of the fluid

pressure near a point source/sink or at infinity,

|p j(x, y, t)| ≤

∣∣∣∣∣∣−Qa(t)
2πk j

log
√

(x − xa)2 + (y − ya)2

∣∣∣∣∣∣ , (3.2.5)

where Qa(t) is the strength of the source/sink. We would like to stress that this physical

assumption is not a restriction of the suggested method. In Section 3.5, for the sake of

curiosity, we obtain a solution, whose far field flow is linear. The latter type of flow was

obtained by Crowdy [14].

In this study, we allow the supports of sinks and sources to not only be points, but

lines/curves as well, which could essentially change the dynamics of the evolution of the

interface. A similar approach was used for the one-phase problems [71], [75]. In the case

of the interior problem, this approach was motivated by the fact that during extraction

through a point sink located within a viscous fluid, the free boundary is unstable, and the
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solution breaks down before all the fluid is extracted due to the formation of cusps, except

for the situation of a circular boundary with a sink in the center. In [71] it was shown that

a choice of sinks with line distributions linked to the initial shape occupied by the viscous

fluid allows to enlarge the class of domains, from which the viscous fluid can be

completely extracted without a cusp formation. Analogously, for the exterior problem

with uniform extraction at infinity Howison [41] has proven that the elliptical bubbles are

the only finite bubbles which exist for all times and whose boundary crosses all points

initially outside the bubble. In all other cases, the solution either fails to exist in a finite

time or the solution has some points on the interface that have a finite limit as time

approaches infinity, so some fluid is “left behind” [11]. In the recent work [75], it was

shown that if a point sink at infinity is replaced with a specific line distribution of sinks in

the exterior region, then the evolution changes and it is possible to find other than

elliptical shapes for which in the course of growing, the boundary of the air bubble crosses

all points outside the bubble.

The notion of the two-phase mother body, which generalizes the dynamical

(one-phase) mother body was used in [71] and [75]. We would like to acknowledge the

results obtained by Karp related to the unbounded quadrature domains, including the

asymptotic behavior of the boundary in R2 [45] and the connections between the

generalized Newtonian potential and the unbounded quadrature domains in Rn, n ≥ 3 [46].

It is also worth mentioning the recent development in the two-phase quadrature domain

theory [18], [26]. In the spirit of the latter theory the problem in question could be

reformulated as follows. Let u(x, y) be a continuous across Γ(t) function, such that

u(x, y)χ[Ω1] = p1 and u(x, y)χ[Ω2] = p2, where

χ[Ω j] =


1, if (x, y) ∈ Ω j ∪ Γ

0, if (x, y) < Ω j ∪ Γ.
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Find a solution to the problem

∆u = ν1 + ν2 in R2, (3.2.6)

−k j
∂u
∂n
χ[Ω j] → vn as (x, y)→ Γ(t), (3.2.7)

where ν j(t) are time dependent distributions with supp ν j(t) ⊂ Ω j, supp ν1 ∩ supp ν2 = ∅.

3.3 The Schwarz function method of finding exact solutions for the Muskat

problem

As mentioned above, the evolution of the interface separating the fluids is determined

by the distributions of sinks and sources, which in the absence of the surface tension,

could be chosen in such a way that keeps Γ(t) within a family of curves defined by Γ(0).

For what follows, it is convenient to reformulate problem (3.2.1)–(3.2.5) in terms of the

Schwarz function S (z, t) of the curve Γ(t) [17], [78]. This function for a real-analytic

curve Γ := {g(x, y, t) = 0} is defined as a solution to the equation

g
(
(z + z̄)

2
,

(z − z̄)
2i

, t
)

= 0,

with respect to z̄. Such (regular) solution exists in some neighborhood UΓ of the curve Γ,

if the assumptions of the implicit function theorem are satisfied [17]. Note that if g is a

polynomial, then the Schwarz function is continuable into Ω j, generally as a

multiple-valued analytic function with a finite number of algebraic singularities (and

poles). In UΓ, the normal velocity, vn, of Γ(t) can be written in terms of the Schwarz

function [37] as,

vn =
−i∂tS (z, t)

2
√
∂zS (z, t)

see proposition 2.4.1 for the proof.

To complete the reformulation of this two phase problem in terms of the Schwarz

function, we introduce the complex potential,

W j = p j − iψ j,
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which is an analytic multiple-valued function defined on Γ(t) and in Ω j(t) ∩ UΓ, for

j = 1, 2. Here ψ j be a stream function. Let τ be an arclength along Γ(t). Following [15],

[48] and [49]. For the derivative of W j(z, t) with respect to z on Γ(t) we have

∂zW j =
∂τW j

∂τz
=
∂τ(p j − iψ j)

∂τz

=
∂τp j − i∂τψ j

∂τz
,

(3.3.1)

Taking into account the Cauchy-Riemann equations in the (n, τ) coordinates,

∂p j

∂n
= −

∂ψ j

∂τ
,

∂ψ j

∂n
=
∂p j

∂τ
, (3.3.2)

we have

∂zW j =
∂τp j − i∂τψ j

∂τz

=
∂τp j + i∂n p j

∂τz

=
∂τp j − i vn

k j

∂τz
.

Expressing vn and ∂τz in terms of the Schwarz function, vn = − i∂tS

2
√
∂zS

and ∂τz = 1√
∂zS

, we

obtain

∂zW j = ∂τp j

√
∂zS −

∂tS
2k j

. (3.3.3)

Here ∂zW j ≡
∂W j

∂z , ∂τz ≡ ∂z
∂τ

etc. Since p1 = p2 on Γ(t), equation (3.3.3) implies

∂zW1 +
∂tS
2k1

= ∂zW2 +
∂tS
2k2

= ∂τp j

√
∂zS . (3.3.4)

To keep Γ(t) in a certain family of curves defined by Γ(0), for example, in a family of

ellipses, we assume that p j on Γ(t) is a function of time only. In that case the problem is

simplified drastically, and on Γ(t) we have

∂zW j = −
∂tS
2k j

j = 1, 2. (3.3.5)

The reformulation of the two-phase problem in terms of the Schwarz function of the

interface can be summarized in the following theorem.
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Theorem 3.3.1. Let Γ(t) be an analytic curve for fixed t. Then there exist multiple-valued

analytic complex potential functions W j(z, t), for j = 1, 2, defined on Γ(t) and in

Ω j ∩ UΓ(t) that satisfy the equations

∂zW j =
∂W j

∂z
= −

∂tS
2k j

,

whose real parts<[W j] = p j solves the free boundary problem (3.2.1)-(3.2.4).

Taking into account that ∂tS can be continued off of Γ(t), each equation (3.3.5) can be

continued off of Γ into the corresponding Ω j, where W j is a multiple-valued analytic

function. Note that equations (3.3.5) indicate that the singularities of W1, W2 and the

Schwarz function are linked. Therefore, as we show below, those singularities in some

cases can be used to control the interface between the fluids. Thus, the problem reduces to

finding the distributions µ1(t) and µ2(t), that keep Γ(t) in a family of curves generated by

Γ(0). The latter problem can be viewed as a generalization of a classical problem of

electrostatics: find a two-charge system that yields the (desired) zero potential on a

conducting plate.

To find the exact solutions, suppose that at t = 0 the interface is an algebraic curve,

n∑
k=0

ak(0)xk−nyn = 0,

with the Schwarz function S (z, a0
k). Assume that during the course of evolution the

Schwarz function of the interface S (z, ak(t)) ≡ S (z, t) is such that S (z, ak(0)) = S (z, a0
k).

The steps of the method are

1. Compute the Schwarz function S (z, t), locate its singularities, and define their type.

2. Using equations (3.3.5) find preliminary expressions for ∂zW j and, by putting

restrictions on the coefficients ak(t), eliminate their terms that involve

non-integrable singularities.
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3. Find the quantities W j by integrating (3.3.5) with respect to z.

4. Compute the quantities p j by taking the real parts of W j.

5. Evaluate the quantities p j on the interface to determine the independent of z

function of integration from the step 3).

6. Compute the two-phase mother body.

We comment that the steps 1-5 are straight-forward, and the step 6 is discussed

below.

3.4 A two-phase mother body

Generally, the complex potentials W j are multiple-valued functions in Ω j. To choose

a branch for each of these functions, one has to introduce the cuts, that serve as supports

for the distributions of sinks and sources. The union of these distributions µ1(t), µ2(t) with

disjoint supports (see formula (3.2.6)) and integrable densities, which allows a smooth

evolution of the interface, is called below a two-phase mother body. The notion of a

mother body comes from the potential theory [18], [26], [32]-[70]. The supports of these

distributions consist of sets of arcs and/or points and do not bound any two-dimensional

subdomains in Ω j(t), j = 1, 2. Each cut included in the support of µ j(t) is contained in the

domain Ω j(t), and the limiting values of the pressure on each side of the cut are equal. The

value of the source/sink density on the cut is equal to the jump of the normal derivative

∂n p j of the pressure p j. To ensure that the total flux through the sources/sinks is finite, all

of the singularities of the function W j must have no more than logarithmic growth.

If Γ(t) is an algebraic curve, then the singularities of W j are either poles or algebraic

singularities. Thus, each cut originates from an algebraic singularity za(t) of the potential

W j. To ensure that the limiting values of p j on both sides of each cut are equal, using the

terminology of algebraic topology ([35], p. 21), we proceed as follows. We fix a point
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zb ∈ Γ(t), the base point, and consider a fundamental group of loops l ⊂ Ω j(t), having zb as

their starting and the terminal point, and surrounding the singular point za(t), the group

π1(Ω j\sing (W j), za). A multiple-valued function W j varies along l. We denote its variation

by varl W j, and the real part of its variation by varl p j. Then, the zero level sets varl p j = 0

describe the location of the desired cuts. Typically, the algebraic singularities are not

stationary, that is ża , 0. The location of za(t) is determined by the Schwarz function. The

theorem below states the uniqueness of the direction of the cut at a non-stationary

singularity za(t) in general position. The latter means that the singularity za(t) appears from

a finite regular characteristic point of the complexification of the boundary Γ(t), and the

tangency between this singular point and the corresponding characteristic ray is quadratic.

Under such requirements the function S (z, t) at za(t) has the square root type singularity:

S (z, t) = Φ (z, t)
√

z − za(t) + Ψ (z, t) . (3.4.1)

Here Φ (z, t) and Ψ (z, t) are regular functions of z in a neighborhood of the point za(t), and

Φ (za(t), t) , 0. The following theorem describes restrictions on the branch cuts in terms

of their admissible slopes in the neighborhood of za(t).

Theorem 3.4.1. Let za be a singular point of the complex potential W j located in Ω j(t),

j = 1, 2, such that ża , 0. Then, under the assumption of general position (3.4.1), the

direction of the cut, on which varl p j = 0 near this point, is uniquely defined by the formula

ϕ = π − 2(arg[Φ (za(t), t)] + arg[ża]) + 2πk, k = 0,±1,±2.... (3.4.2)

Proof. We start with representation (3.4.1) dropping the regular part, Ψ (z, t), in it and

expanding the function Φ (z, t) into the Taylor series with respect to z at the point (za(t), t),

S (z, t) =
√

z − za(t)
∞∑

m=0

cm(t) (z − za(t))m . (3.4.3)

The time derivative of the Schwarz function (3.4.3) has the form:
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Ṡ (z, t) = −
ża

2

∞∑
m=0

cm (z − za)m−1/2 +

∞∑
m=0

(
ċm − ża(m + 1)cm+1

)
(z − za)m+1/2 , (3.4.4)

therefore, formula (3.3.5) implies:

W j (z, t) = żac0(z − za)1/2
( 1
2k j

+ ξ1(z, t)
)
− ċa(z − za)3/2

( 1
3k j

+ ξ2(z, t)
)
,

where ξ1 and ξ2 are regular functions near za vanishing at this point, and c0 = Φ (za(t), t).

Hence, the variation of the pressure along the loop l is

varl p j = <
{
żac0(z − za)1/2

( 1
k j

+ 2ξ1(z, t)
)
− ċ0(z − za)3/2

( 2
3k j

+ 2ξ2(z, t)
)}
. (3.4.5)

Consider a small neighborhood of the point za, and set there

z = za + ρeiϕ,

assuming that ρ is small. Since ża , 0, the second term in (3.4.5) is small with respect to

the first term and therefore should be dropped. Setting the principal part of varl p to zero,

we have

varl p j =
1
k j
|ża||c0|

√
ρ<

{
exp i

(
ϕ

2
+ πn + arg ża + arg c0

)}
= 0, (3.4.6)

where n = 0,±1,±2, . . . . Equation (3.4.6) implies formula (3.4.2), which finishes the

proof.

Remark that if ża = 0 that is, z0 is a stationary singular point, and Φ̇ (za(t), t) , 0,

from formula (3.4.5) follows

varl p j = −
2

3k j
ρ

3
2 <

[
e
( 3iϕ

2 +iθ0
)
{Ṙ0 + iR0θ̇0}

(
1 + ξ1

(
za + ρeiϕ

))]
= 0,

which results in three direction of admissible cuts

ϕ = ϕk =
2
3

(πk − θ0 + ν0),
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and k = 0,±1,±2, ..., where

ν0 = arcsin(Ṙ0/
√

Ṙ2
0 + R2

0θ̇
2
0),

R0 and θ0 are the modulus and the argument of Φ (za(t), t) respectively. In the case when

ża = 0 and first ( j − 1) time derivatives of Φ (z, t) at za(t) equal to zero, but the j-th

derivative is not, the number of directions is (2 j + 3).

The constructed support of the distribution µ j must satisfy the following conditions:

each cut emanates from a singular point of W j, located in the domain Ω j(t), and varl p j

vanishes on each cut. To obtain a two-phase mother body, one has to calculate the

corresponding density along each cut. In the next section we show examples when a

two-phase mother body exists and is unique, and we use the constructed mother bodies to

derive the exact solutions to the Muskat problems.

3.5 Examples of specific Γ(0)

3.5.1 Circle

To illustrate the method, we start with the simplest example for which solution is

known. Suppose that the initial shape of the interface is a circle with equation

x2 + y2 = a2(0),

and during the evolution the boundary remains circular,

x2 + y2 = a2(t).

The corresponding Schwarz function see example (1) is

S =
a2(t)

z
,

and the derivative with respect to t is given as

Ṡ =
2aȧ

z
.
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Equation (3.3.4) in this case reads as

∂z(W2 −W1) =
( 1
k1
−

1
k2

)aȧ
z
.

Integrating this equation with respect to z, we have

W2 −W1 =
( 1
k1
−

1
k2

)
aȧ log z + C(t).

The complex potential W2 has a singularity at zero, while W1 has a singularity at

infinity. Thus, the two-phase mother body has support at these two points, one of which

serves as a sink and the other as a source. Taking the real parts of both sides of the

previous equation, we obtain

p2 − p1 =
( 1
k1
−

1
k2

)
aȧ ln

√
x2 + y2 +<[C(t)],

which is satisfied if

p j = −
aȧ
2k j

ln(x2 + y2) + C j(t),

for j = 1, 2 with C j chosen from the condition (3.2.3). This choice is, obviously, not

unique. To specify, for instance, C1(t) one could use the condition at infinity. If the

condition reads as

p1(x, y, t) = −
Q(t)
2πk1

ln
√

x2 + y2 as
√

x2 + y2 → ∞

with a defined sink/source strength Q(t) at infinity, then C1 = 0 and

p1 = −
aȧ
2k1

ln(x2 + y2).

The evolution of the boundary is defined by the equation Q(t) = Ȧ = 2πaȧ via ȧ. Here

Ȧ(t) is the rate of change of the area of the interior domain Ω2(t). The interior pressure is

p2 = −
aȧ
2k2

ln(x2 + y2) +
aȧ
2k2

ln a2 −
aȧ
2k1

ln a2,
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with a source/sink at the origin of the strength |Q(t)|. Alternatively, we could choose C j

such that p j vanishes on Γ. Then,

p1 = −
aȧ
2k1

ln(x2 + y2) +
aȧ
2k1

ln a2, (3.5.1)

and

p2 = −
aȧ
2k2

ln(x2 + y2) +
aȧ
2k2

ln a2. (3.5.2)

We remark, that in the case of the circular initial interface, condition (3.2.3) could be

replaced with

p1 − p2 = γκ,

while keeping the boundary in the family of concentric circles during the course of the

interface evolution. Here γ is a constant surface tension coefficient and κ is a free

boundary curvature. In that case the equation in (3.5.1) is replaced with

p1 =
aȧ
2k1

ln(a2/(x2 + y2)) +
γ

a
.

3.5.2 Ellipse

Consider a two-phase problem with an elliptical interface,

Γ(0) =

{
x2

a2(0)
+

y2

b2(0)
= 1

}
,

where a(0) and b(0) are given and a(0) > b(0). The Schwarz function see example (2) of

an elliptical interface with semi-axes a(t) and b(t) is

S (z, t) =
a2(t) + b2(t)

d2(t)
z −

2a(t)b(t)
d2(t)

√
z2 − d2(t),

where d(t) =
√

a2(t) − b2(t) is the half of the inter-focal distance. Assuming that the

interface remains elliptical during the course of the evolution, from equation (3.3.4) we

have
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W2 −W1 =
( 1
k2
−

1
k1

){
−

z2

4
∂

∂t

(a2 + b2

d2

)
+

z
2

√
z2 − d2 ∂

∂t

(ab
d2

)
−

1
2

log(z +
√

z2 − d2)
∂(ab)
∂t

}
+ C(t). (3.5.3)

The first two terms in the right hand side of (3.5.3) have poles of order two at infinity.

Those terms are eliminated, if the eccentricity of the ellipse does not change with time, the

latter implies that the ratio a(t)/b(t) = const. This ensures the existence of no more than

logarithmic singularity at infinity and agrees with the solution to the exterior one-phase

problem reported in [41]. Thus, the expression for the complex potentials reduces to

W2 −W1 = −
1
2
∂(ab)
∂t

(
1
k2
−

1
k1

)
log(z +

√
z2 − d2) + C(t). (3.5.4)

Taking the real parts of both sides, we have

p2 − p1 = −
1
2
∂(ab)
∂t

(
1
k2
−

1
k1

)
ln |z +

√
z2 − d2| + C2(t) −C1(t),

which can be written as

p j = −
1

2k j

∂(ab)
∂t

ln |z +
√

z2 − d2| + C j(t),

where C j(t) may be chosen from the condition p j = 0 on Γ(t), which leads to

p j = −
1

2k j

∂(ab)
∂t

(
ln |z +

√
z2 − d2| − ln(a + b)

)
, (3.5.5)

or

p j = −
1

2k j

∂(ab)
∂t

(
ln

√
(x + α)2(1 + y2/α2) − ln(a + b)

)
,

where

<[C j(t)] =
1

2k j

∂(ab)
∂t

ln(a + b),

and

α2 =
(
x2 − y2 − d2 +

√
(x2 − y2 − d2)2 + 4x2y2

)
/2.
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Note that the inter-focal distance, d(t) = 2b(t)
√

a2(0)/b2(0) − 1, of such an ellipse

changes, while the eccentricity is constant. The support of the two-phase mother body

consists of a point sink/source at infinity and a source/sink distribution with density

µ2(x, t) =
2ab∂t(

√
d2 − x2)

d2k2

along the inter-focal segment. The support of this distribution is defined using formula

(3.4.2). Indeed, the singular points of W2 are z = ±d with

Φ(z, t) =
−2ab

√
z ± d

d2 ,

respectively. Formula (3.4.2) implies that the direction of the cut at z = d is defined by the

angle ϕ = π + 2πk, and at z = −d by the angle ϕ = 2πk, k = 0,±1,±2, . . . . Thus, the

two-phase mother body, described above, allows the interface between two fluids remain

elliptical for an infinite time if the domain Ω2 grows (sources are located along the

interfocal segment and a sink is located at the point of infinity). The opposite sink/source

choice allows the complete removal of the fluid initially occupied domain Ω2.

We remark that from (3.5.5) follows that the pressure at infinity grows as

p1 ∼ −(2k1)−1 ln |z|∂t(ab) = −
Ȧ

2k1
ln

√
x2 + y2,

which agrees with formula (3.2.5). Moreover, the strength of the sink/source at infinity is

in agreement with the total strength of the source/sink distribution in Ω2 since,∫ d

−d
k2ν2(x, t) dx = π∂t(ab) = Ȧ.

Note that Crowdy [14] obtained an exact solution with a different type of growth at

infinity; the solution, reported in [14], has a linear far field flow and a constant area of

ellipse. We observe that under the assumption that the area of the elliptical inclusion does

not change in time, that is, a(t)b(t) = const, equation (3.5.3) implies

W j =
1
k j

{
−

z2

4
∂

∂t

(a2 + b2

d2

)
+

z
2

√
z2 − d2 ∂

∂t

(ab
d2

)}
+ C j(t), j = 1, 2,
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therefore, the pressure p1 is defined by

p1 =
1
k1
<

{
−

z2

4
∂

∂t

(a2 + b2

d2

)
+

ab z
2

√
z2 − d2 ∂

∂t

( 1
d2

)}
−

b2aȧ
k1d2 ,

which retries a linear far field flow. However, the obtained solution is different from

Crowdy’s, since the interior flow reported in [14] is a simple linear flow, while the solution

in question, in addition to the linear flow, has another term

p2 =
1

2k2

{ (y2 − x2)
2

∂

∂t

(a2 + b2

d2

)
+

ab x(α2 − y2)
α

∂

∂t

( 1
d2

)}
−

b2aȧ
k2d2 .

The interior flow is generated by the density

µ =
ab ∂t(d2)

k2d4

(2x2 − d2)
√

d2 − x2
,

supported on the inter-focal segment. Such a density changes sign along the inter-focal

segment, so the area of the ellipse does not change in time: if a(t) increases with time, the

ellipse becomes “thiner”.

3.5.3 The Neumann’s oval

Let the initial free boundary have a shape of the Neumann’s oval [78] given by the

equation

Γ(0) =
{
(x2 + y2)2 − a(0)2x2 − b(0)2y2 = 0

}
,

(see Fig. 3.1). Its Schwarz function at time t = 0 is given by

S (z, 0) =
z(a2(0) + b2(0)) + 2z

√
z2d2(0) + a(0)2b2(0)

4z2 − d2(0)
,

where d2(0) = a2(0) − b2(0) > 0 with given a(0), b(0). Assume that during the evolution

the domain retains the Neumann’s oval shape,

Γ(t) =
{
(x2 + y2)2 − a2(t)x2 − b2(t)y2 = 0

}
,

with unknown a(t), b(t) for t > 0. The singularities of the Schwarz function,

S (z, t) =
z(a2(t) + b2(t)) + 2z

√
z2d2(t) + a(t)2b2(t)

4z2 − d2(t)
,
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located in the interior domain Ω2(t) are simple poles at z = ±d
2 , while the singularities

located in the exterior domain Ω1 are the branch points at z = ±
ia(t)b(t)

d(t) .

To ensure at most logarithmic growth of the pressure at the singular points, d must be

constant. In that case

Ṡ =
z∂t(a2 + b2)

4z2 − d2 +
z∂t(a2b2)

(4z2 − d2)
√

z2d2 + a2b2
. (3.5.6)

Then equation (3.3.4) implies

p2 − p1 = −
1
2

( 1
k2
−

1
k1

){∂t(a2 + b2)
8

<
[
log(4z2 − d2)

]
−
∂t(a2b2)

2(a2 + b2)
<

[
tanh−1 2

√
a2b2 + d2z2

a2 + b2

]}
+ C(t). (3.5.7)

Taking into account that when d is constant, ∂t(a2 + b2) = 4aȧ and ∂t(a2b2) = 2aȧ(a2 + b2),

we have

p2 − p1 = −
aȧ
2

( 1
k2
−

1
k1

)
<

{
log(4z2 − d2)

− log(a2 + b2 + 2
√

a2b2 + d2z2 )
}

+ ln(d) + C(t). (3.5.8)

Note that on the interface

log
(

4z2 − d2

a2 + b2 + 2
√

a2b2 + d2z2

)
= log

(z
z̄

)
,

whose real part is zero on Γ(t). Therefore, to satisfy the condition (3.2.3),

C(t) = −
aȧ ln d

2

( 1
k2
−

1
k1

)
.

Thus, we have

p j =
aȧ
2k j
<

log
a2 + b2 + 2

√
a2b2 + d2z2

4z2 − d2

 , j = 1, 2, (3.5.9)

and the interior part of mother body µ2 consists of either two point sinks or two point

sources.
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To find the directions of the cuts in Ω1, we use formula (3.4.2) (it is general position

like an ellipse). In the neighborhood of the branch point z0 = iab
d ∈ Ω1,

arg[Φ (z0(t), t)] = −π/4 + πk, arg[ż0] = ±π/2, where the plus corresponds to the growth of

the interior domain Ω2. The direction of the cut near this point is ϕ = π/2 + 2πk,

k = 0,±1,±2, . . . . Similarly, at the z0 = −iab/d, arg[Φ (z0(t), t)] = π/4 + πk,

arg[ż0] = ±π/2, where the plus corresponds to the decrease of the interior domain Ω2. The

direction of the cut near this point is ϕ = −π/2 + 2πk, k = 0,±1,±2, . . . .

(a) (b)

Figure 3.1: The Neumann’s ovals (solid lines), singularities of the complex potential (dots),

and the cuts (dashed lines) for d =
√

5: (a) a = 2.5, b =
√

5/2; (b) a = 4, b =
√

11 [3].

The support of the two-phase mother body for the Neumann’s oval is shown in Fig.

3.1. The cuts are the dashed lines that go along the imaginary axis starting at each branch

point (the dots in the exterior domain in Fig. 3.1) to infinity. The dots in the interior

domain correspond to the simple poles.
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To obtain the sink/source density along the cut located above the x-axis, we first

compute the variation of S (z, t)

varl S (z) = 4z(4z2 − d2)−1
√

z2d2 + a2b2
∣∣∣
z=iy,y>ab/d

=
4y

√
y2d2 − a2b2

4y2 + d2 ,

then the jump of ∂zW1, that is,

varl ∂zW1 = −
1

2k1
∂t(varl S (z)) = −

2y
k1
∂t

( √
y2d2 − a2b2

4y2 + d2

)
,

finally, the sink distribution on both cuts equals

µ1(y, t) =
1
k1

∣∣∣∣ ∂t(a2b2)y

(4y2 + d2)
√

y2d2 − a2b2

∣∣∣∣.
To compute the rate, Q1(t), through the cuts located in the exterior domain, one has to

integrate k1µ1(y, t) along the cuts, which implies

Q1(t) =
π

2
∂t(a2b2)
(a2 + b2)

=
π

2
∂t(a2). (3.5.10)

From formula (3.5.9) follows that the rate at infinity is

Q(t) =
π

4
∂t(a2 + b2) =

π

2
∂t(a2). (3.5.11)

Those rates are linked to the change of the area

Q(t) + Q1(t) = π∂t(a2) = Ȧ, (3.5.12)

where A(t) is the area of the interior domain. Indeed, the area of the Neumann’s oval is

A = π(a2 + b2)/2 (see [78], p. 20), which can be rewritten as A = π(a2 − d2/2). Since in

the case in question d is constant, Ȧ = π∂t(a2). Note also that the rate through each of the

two point sources/sinks located in the domain Ω2 equals Ȧ/2.

We remark that since d2(t) = a2(t) − b2(t) = const, in the case of decreasing area of

Ω2, the obtained solution is valid up to the limiting case when b approaches zero and Γ

splits into two circles (x + d
2 )2 + y2 = d2

4 and (x − d
2 )2 + y2 = d2

4 .
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3.5.4 The Cassini’s oval

Similar to the previous examples, assume that Γ(t) remains in the specific family of

curves, the Cassini’s ovals, given by the equation

(
x2 + y2

)2
− 2b(t)2

(
x2 − y2

)
= a(t)4 − b(t)4,

or [
(x − b)2 + y2

] [
(x + b)2 + y2

]
= a4,

where a(t) and b(t) are unknown positive functions of time. This curve consists of one

closed curve if a(t) > b(t) (see Fig. 3.2), and two closed curves otherwise. Assume that at

t = 0 a(0) > b(0).

(a) (b)

Figure 3.2: The Cassini’s ovals (solid lines), singular points of the complex potential (dots),

and the cuts (dashed lines) for b = 1: (a) a = 1.1, (b) a = 2 [3].

The Schwarz function of the Cassini’s oval see example (2.4.1),

S (z, t) =

√
b2z2 + a4 − b4

√
z2 − b2

,



54

has two singularities in Ω1(t), z = ±i
√

(a4 − b4)/b2, and two singularities, z = ±b, in Ω2(t).

Differentiating the Schwarz function with respect to t, we have

Ṡ (z, t) =
bḃz2 + 2a3ȧ − 2b3ḃ

√
b2z2 + a4 − b4

√
z2 − b2

+
bḃ
√

b2z2 + a4 − b4√
(z2 − b2)3

.

To ensure that the singularities of the complex potential have no more than the

logarithmic type, ḃ must be zero. Thus, we have

Ṡ (z, t) =
2a3ȧ

√
b2z2 + a4 − b4

√
z2 − b2

.

Then equation (3.3.4) implies

W2 −W1 = −aȧ
( 1
k2
−

1
k1

)
F
(
cos−1(b

z
)
,

√
a4 − b4

a2

)
+ C(t), (3.5.13)

where F(α , β) is the incomplete elliptic integral of the first kind,

F
cos−1(b

z
)
,

√
a4 − b4

a2

 =

√
1− b2

z2∫
0

dt√
1 − a4−b4

a4 t2
√

1 − t2

=

cos−1( b
z )∫

0

dt√
1 − a4−b4

a4 sin2 t
. (3.5.14)

Then

p2 − p1 = −
aȧ
2

( 1
k2
−

1
k1

) [
F
(
ξ,

√
a4 − b4

a2

)
+ F

(
ξ,

√
a4 − b4

a2

)]
+ C(t), (3.5.15)

where ξ = cos−1(b
z

)
. Using the property F(α , β) = F(α , β) and the summation formula for

the elliptic integrals [6], we have

p2 − p1 = −
aȧ
2

(
1
k2
−

1
k1

)
F

α, √a4 − b4

a2

 + C(t), (3.5.16)

where

α = sin−1

cos ξ sin ξ
√

1 − a4−b4

a4 sin2 ξ + cos ξ sin ξ
√

1 − a4−b4

a4 sin2 ξ

1 − a4−b4

a4 sin2 ξ sin2 ξ

 . (3.5.17)
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Since, ξ = cos−1(b
z

)
, then,

cos ξ =
(b
z
)
, cos ξ̄ =

(b
z̄
)
,

and

sin ξ =

√
1 −

b2

z2 , sin ξ̄ =

√
1 −

b2

z̄2 .

Rewriting (3.5.17) in terms of z and z, we obtain the following expression

α = sin−1

b
z̄

√
1 − b2

z2

√
1 − a4−b4

a4
(z̄2−b2)

z̄2 + b
z

√
1 − b2

z̄2

√
1 − (a4−b4)

a4
(z2−b2)

z2

1 − (a4−b4)
a4

(z2−b2)
z2

(z̄2−b2)
z̄2

, (3.5.18)

and finally we obtain

α = sin−1

a2z
√

z2 − b2
√

b2z̄2 + a4 − b4 + a2z̄
√

z̄2 − b2
√

b2z2 + a4 − b4

b2z2z̄2 + (a4 − b4)(z2 + z̄2 − b2)

 . (3.5.19)

The pressures satisfying (3.5.16) are

p j = −
aȧ
2k j

F
(
α,

√
a4 − b4

a2

)
+ C j(t), (3.5.20)

where the terms C j(t) are computed from the values of p j on the interface, on which

p j = −
aȧ
2k j

F
(π
2
,

√
a4 − b4

a2

)
+ C j(t).

Finally, for the pressure we have

p j = −
aȧ
2k j

F
(
α,

√
a4 − b4

a2

)
+

aȧ
2k j

F
(π
2
,

√
a4 − b4

a2

)
. (3.5.21)

Let us construct the two-phase mother body starting with its part located in the

domain Ω1. This is a generic situation, so we can use formula (3.4.2). In the neighborhood

of the point z0 = i
√

(a4 − b4) /b, arg[ż0] = π/2 + 2πk, arg[Φ (z0(t), t)] = ±π/2 + π/4 + πk.

Thus, according to (3.4.2) the direction of the cut is ϕ = π/2 + 2πk, k = 0,±1,±2, . . . .

Similarly, at the point z0 = −i
√

(a4 − b4) /b, arg[ż0] = −π/2 + 2πk,

arg[Φ (z0(t), t)] = ±π/2 − π/4 + πk. Therefore, the direction of the cut is ϕ = −π/2 + 2πk.
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Taking into account symmetry with respect to x-axis, we conclude that the support of

µ1 consists of two rays starting at the branch points and going to infinity. The

corresponding density is

µ1(y, t) = −
2a3ȧ

k1

√
b2y2 − a4 + b4

√
y2 + b2

.

The singularities of the Schwarz function in the interior domain Ω2 have the inverse

square root type (which is not the generic case),

S (z, t) =
Φ (z, t)
√

z − z0
, (3.5.22)

where,

Φ (z, t) =
√

b2z2 + a4 − b4,

is a regular functions of z in the neighborhood of the point z0 = ±b with Φ (z0, t) , 0.

Expanding function Φ (z, t) into the Taylor series with respect to z at the point (z0, t),

S (z, t) =

∞∑
m=0

cm(t) (z − z0)m−1/2 . (3.5.23)

Differentiating (3.5.23) with respect to t, taking into account that z0 is a stationary

singularity since ḃ = 0, we have:

Ṡ (z, t) =

∞∑
m=0

ċm (z − z0)m−1/2 (3.5.24)

Integration of the latter formula with respect to z using (3.3.5) implies:

W2 (z, t) = −
ċ0

2k2

√
z − z0

(
1 + ξ(z, t)

)
,

where ξ is a regular function near z0 vanishing at this point, and c0 = Φ (z0, t).

The variation of the pressure along the loop l is

varl p2 = <
{
−

ċ0

k2

√
z − z0

(
1 + ξ(z, t)

)}
. (3.5.25)
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Consider a small neighborhood of the point z0, where,

z = z0 + ρeiϕ,

with a small ρ. Setting the principal part of varl p2 to zero, we have

varl p2 = −
|ċ0|

k2

√
ρ<

{
exp i

(
ϕ

2
+ πn + arg[ċ0]

)}
= 0, (3.5.26)

where n = 0,±1,±2, . . . .

Thus,

ϕ = π − 2 arg[Φ̇ (z0, t)] + 2πk,

which implies that the support of µ2 is the segment [−b, b] with the density

µ2 =
2a3ȧ

k2

√
b2x2 + a4 − b4

√
b2 − x2

.

Integrating k jµ j along the corresponding cuts, one obtains the rate of change of the area of

Ω2, which is given by the formula

Ȧ = ∂t(a2) F(π,
b2

a2 ) = π ∂t(a2) 2F1 (
1
2
,

1
2

; 1;
b4

a4 ),

where 2F1 is the hypergeometric series [88].

3.6 Conclusions

We have studied a Two-Phase problem with a negligible surface tension and

suggested a method of finding exact solutions. The idea of the method was to keep the

interface within a certain family of curves defined by its initial shape by constructing two

distributions with disjoint supports located on the different sides of the moving interface.

This study extended the results reported in [14] and [38]. We gave new examples of

exact solutions including the circle, an ellipse, and two ovals: Neumann’s and Cassini’s.

In those examples we assumed that the flux generated by the sinks/sources is finite, that is,
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the pressure may have at most a logarithmic growth. To demonstrate that this physical

assumption does not restrict our method, we have presented an example of an exact

solution with a linear far field flow. Our study showed the possibility for the control of the

interface via the two-phase mother body for the two-phase Hele-Shaw problem.
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4 On a Two-Phase Hele-Shaw ProblemWith a

Time-Dependent Gap and Distributions of Sinks and Sources

4.1 Introduction

This chapter was published in the Journal of Physics A (see the reference [76]). Free

boundary problems have been a significant part of modern mathematics for more than a

century, since the celebrated Stefan problem, which describes solidification, that is, an

evolution of the moving front between liquid and solid phases. Free boundary problems

also appear in fluid dynamics, geometry, finance, and many other applications (see [10]

for a detailed discussion). Recently, they started to play an important role in modeling of

biological processes involving moving fronts of populations or tumors [21]. These

processes include cancer, biofilms, wound healing, granulomas, and atherosclerosis [21].

Biofilms are defined as communities of microorganisms, typically bacteria, that are

attached to a surface. The biofilms motivated Friedman et al [22] to consider a two-phase

free boundary problem, where one phase is an incompressible viscous fluid, and the other

phase is a mixture of two incompressible fluids, which represent the viscous fluid and the

polymeric network (with bacteria attached to it) associated with a biofilm. Free boundary

problems are also used in modeling of a tumor growth with one phase to be the tumor

region, and the other phase to be the normal tissue surrounding the tumor [23].

A Muskat problem is a free boundary problem related to the theory of flows in porous

media [54]. It describes an evolution of an interface between two immiscible fluids, ‘oil’

and ‘water’, in a Hele-Shaw cell or in a porous medium. Here we study a two-phase

Hele-Shaw flow assuming that the upper plate uniformly moves up or down changing the

gap width of a Hele-Shaw cell. Hele-Shaw free boundary problems have been extensively

studied over the last century (see [29], [86] and references therein). There are two classical

formulations of the Hele-Shaw problems: the one-phase problem, when one of the fluids
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is assumed to be viscous while the other is effectively inviscid (the pressure there is

constant), and the two-phase (or Muskat) problem. A statement of the problem with a

time-dependent gap between the plates was mentioned in [19] among other generalized

Hele-Shaw flows. The one-phase (interior) version of this problem was considered in [79],

where conditions of existence, uniqueness, and regularity of solutions were established

under assumption that surface tension effects on the free boundary are negligible; some

exact solutions were constructed as well. An interior problem with a time-dependent gap

and a non-zero surface tension was considered in [74], where asymptotic solutions were

obtained for the case when initial shape of the droplet is a weakly distorted circle. Note

also that the mathematical formulation of the interior problem with a time-dependent gap

is similar to the problem of evaporation of a thin film [2]. When the surface tension is

negligible, the pressure in both formulations can be obtained as a solution to the Poissons

equation in a bounded domain with homogeneous Dirichlet data on the free boundary.

Much less progress has been made for the Muskat problem. Regarding the problem

with a constant gap width, we should mention works [3], [14], [24], [44], [38], [80] and

[91]. Specifically, Howison [38] has obtained several simple solutions including the

traveling-wave solutions and the stagnation point flow. In [38], an idea of a method for

solving some two-phase problems was proposed and used to reappraise the

Jacquard-Séguier solution [44]. Global existence of solutions to some specific two-phase

problems was considered in [24], [80] and [91]. Crowdy [14] presented an exact solution

to the Muskat problem for the elliptical initial interface between two fluids of different

viscosity. In [14], it was shown that an elliptical inclusion of one fluid remains elliptical

when placed in a linear ambient flow of another fluid. In [3], new exact solutions to the

Muskat problem were constructed, extending the results obtained in [14], to other types of

inclusions. This chapter is concerned with a two-phase Hele-Shaw problem with a

variable gap width in the presence of sinks and sources.
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4.2 The mathematical formulation of the two phase problem

Let Ω2(t) ⊂ R2 with a boundary Γ(t) at time t be a simply-connected bounded domain

occupied by a fluid with a constant viscosity ν2, and let Ω1(t) be the region R2 \ Ω̄2(t)

occupied by a different fluid of viscosity ν1. To consider a two-phase Hele-Shaw flow

forced by a time-dependent gap, we start with the Darcy’s law

v j = −k j∇p j in Ω j(t), j = 1, 2, (4.2.1)

where v j and p j are a two-dimensional gap-averaged velocity vector and a pressure of

fluid j respectively, k j =
h2(t)
12ν j

, and h(t) is the gap width of the Hele-Shaw cell. Equation

(4.2.1) is complemented by the volume conservation,

A(t)h(t) = A(0)h(0) (4.2.2)

for any time t, where A(t) and A(0) are the areas of Ω2(t) and Ω2(0) respectively. The

conservation of volume for a time-dependent gap may be written as a modification of the

usual incompressibility condition

∇ · V3 = 0,

where V3 = (u, v,w) is a three-dimensional velocity vector of the fluid occupying the

domain Ω2(t). Indeed, the averaging of the three-dimensional incompressibility condition

across the gap gives [79]:

0 =
1

h(t)

h(t)∫
0

(ux + vy + wz) dz

=
1

h(t)

h(t)∫
0

ux dz +
1

h(t)

h(t)∫
0

vy dz +
1

h(t)

h(t)∫
0

wz dz

= uav
x + vav

y +
(w(h(t)) − w(0))

h(t)

= uav
x + vav

y +
ḣ(t)
h(t)

.

(4.2.3)
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Here z = 0 corresponds to the lower plate and z = h(t) corresponds to the upper plate, and

and h(t) and ḣ(t) are assumed to be small enough to avoid any inertial effects as well as to

keep the large aspect ratio. The latter implies [79]

∇ · v2 = −
ḣ(t)
h(t)

in Ω(t). (4.2.4)

Note that similar consideration may be applied to any finite part of the region Ω1(t). Thus,

equations (4.2.1) and (4.2.4) suggest to formulated the problem in terms of the pressure p j

as a solution to Poisson’s equation,

∆p j =
1
k j

ḣ(t)
h(t)

, (4.2.5)

almost everywhere in the region Ω j(t), satisfying boundary conditions

p1(x, y, t) = p2(x, y, t) on Γ(t), (4.2.6)

−k1
∂p1

∂n
= −k2

∂p2

∂n
= vn on Γ(t). (4.2.7)

We remark that when sinks and sources are present in Ω j(t), equation (4.2.5) has an

additional term,

∆p j =
1
k j

ḣ(t)
h(t)

+ µ j,

describing the corresponding distribution. Equation (4.2.6) states the continuity of the

pressure under the assumption of negligible surface tension. Equation (4.2.7) means that

the normal velocity of the boundary itself coincides with the normal velocity of the fluid at

the boundary.

The free boundary Γ(t) moves due to a change of the gap width as well as the

presence of sinks and sources located in both regions. The supports of the sinks and

sources, specified in section 4.3, are either points or lines/curves. The presence of sinks

and sources obviously changes the dynamics of the evolution of the interface between the

fluids, which is shown for an elliptical interface in section 4.4.
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For what follows, it is convenient to reformulate the problem in terms of harmonic

functions p̃ j, where

p j(x, y, t) = p̃ j(x, y, t) +
1

4k j

ḣ(t)
h(t)

(x2 + y2). (4.2.8)

Then the problem (4.2.5)-(4.2.6) reduces to

∆p̃ j = χ jµ j in Ω j(t), (4.2.9)

where χ j = 0 or χ j = 1 in the absence or presence of sinks and sources in Ω j(t)

respectively,

p̃1(x, y, t) = p̃2(x, y, t) +
k1 − k2

4k1k2

ḣ(t)
h(t)

(x2 + y2) on Γ(t), (4.2.10)

−k1
∂ p̃1

∂n
= −k2

∂p̃2

∂n
= vn +

1
4

ḣ(t)
h(t)

∂

∂n
(x2 + y2) on Γ(t). (4.2.11)

The main difficulty of the two-phase problems is the fact that the pressure on the

interface is unknown. However, if we assume that the free boundary remains within the

family of curves, specified by the initial shape of the interface separating the fluids (which

is feasible if the surface tension is negligible), the problem is drastically simplified. Using

reformulation of the Muskat problem with the time-dependent gap in terms of the

Schwarz function equation, we describe a method of constructing exact solutions, and

using this method we consider examples in the presence and in the absence of additional

sinks and sources. Next, we will describe the method of finding exact solutions, gives

examples of the exact solutions and finally we conclude.

4.3 The method of finding exact solutions for a Muskat problem with a

time-dependent gap

Consider a problem

∆p̃ j = χ jµ j in Ω j(t), (4.3.1)
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p̃1(x, y, t) + Ψ1(x, y, t) = p̃2(x, y, t) + Ψ2(x, y, t) on Γ(t), (4.3.2)

−k1
∂ p̃1

∂n
= −k2

∂ p̃2

∂n
= vn + Φ(x, y, t) on Γ(t). (4.3.3)

In the case when

Ψ j =
1

4k j

ḣ(t)
h(t)

(x2 + y2), j = 1, 2, (4.3.4)

Φ =
1
4

ḣ(t)
h(t)

∂

∂n
(x2 + y2), j = 1, 2, (4.3.5)

the problem (4.3.1)-(4.3.3) coincides with (4.2.9)-(4.2.11).

As stated before, the evolution of the interface separating the fluids is forced by the

change in the gap width and the presence of sinks and sources. In the absence of the

surface tension, there is a possibility to control the interface by keeping Γ(t) within a

family of curves defined by Γ(0). For what follows, it is convenient to reformulate

problem (4.3.1)–(4.3.3) in terms of the Schwarz function S (z, t) of the curve Γ(t) [17],

[47], [72], and [78].

This function for a real-analytic curve Γ := {g(x, y, t) = 0} is defined as a solution to

the equation

g
(z + z̄

2
,

z − z̄
2i

, t
)

= 0

with respect to z̄. This (regular) solution exists in some neighborhood UΓ of the curve Γ, if

the assumptions of the implicit function theorem are satisfied [17]. Note that if g is a

polynomial, then the Schwarz function is continuable into Ω j, generally as a

multiple-valued analytic function with a finite number of algebraic singularities (and

poles). In UΓ, the normal velocity, vn, of Γ(t) can be written in terms of the Schwarz

function [37],

vn = −
i∂zS (z, t)

2
√
∂zS (z, t)

,

see proposition 2.4.1 for the proof.
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To complete the reformulation of problem in terms of the Schwarz function, we

introduce the complex potential

W j = p j − iψ j,

which is an analytic multiple-valued function defined on Γ(t) and in Ω j(t) ∩ UΓ, j = 1, 2.

Here, ψ j be a stream function. Following [15], [48], [49], and [51] and also taking into

account the Cauchy-Riemann conditions in the (n, τ) coordinates,

∂p j

∂n
= −

∂ψ j

∂τ
,

∂ψ j

∂n
=
∂p j

∂τ
. (4.3.6)

For the derivative of W j(z, t) with respect to z on Γ(t) we have

∂zW j =
∂τW j

∂τz
=
∂τ( p̃ j − iψ j)

∂τz

=
∂τ p̃ j + i∂n p̃ j

∂τz

=
∂τ p̃ j − i(vn + Φ)/k j

∂τz
,

(4.3.7)

where τ is an arclength along Γ(t). Expressing vn and ∂τz in terms of the Schwarz function,

vn = −
i∂zS

2
√
∂zS

and ∂τz = 1
∂zS

, we obtain

∂zW j = ∂τ p̃ j

√
∂zS −

∂tS
2k j
−

iΦ
k j

√
∂zS . (4.3.8)

Here ∂zW j ≡
∂W j

∂z , ∂τ ≡ ∂
∂τ

. Equation (4.3.2) implies that

p̃1 + Ψ1 = p̃2 + Ψ2 = f

on Γ(t), where f is an unknown function. To keep Γ(t) in a certain family of curves

defined by Γ(0), for example, in a family of ellipses, we assume that f on Γ(t) is a function

of time only. This possibility is shown in Section 4.4, where specific examples are

discussed. In that case the problem is simplified drastically, and on Γ(t) we have

∂zW j = −
∂tS
2k j
− ∂z(Ψ j(z, S (z, t)) −

iΦ
k j

√
∂zS j = 1, 2. (4.3.9)
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For the special case when Ψ j and Φ are given by (4.3.4), (4.3.5), the last equation reduces

to

∂zW j = −
1

2k j
(Ṡ +

ḣ
h

S ) j = 1, 2. (4.3.10)

The reformulation of the two-phase problem with a time-dependent gap in terms of the

Schwarz function of the interface is summarized in the following theorem.

Theorem 4.3.1. Let Γ(t) be an analytic curve for fixed t. Then there exist multiple-valued

analytic complex potential functions W j(z, t), for j = 1, 2, defined on Γ(t) and in

Ω j ∩ UΓ(t) that satisfy the equations

∂zW j = −
1

2k j

(
∂tS +

ḣ
h

S
)
, (4.3.11)

whose real parts<[W j] = p̃ j solves the free boundary problem (4.2.9)-(4.2.11).

Corollary 4.3.2. The solution to the problem (4.2.5)-(4.2.7) has the form

p j = <[W j] +
ḣ(t)

4k jh(t)
(x2 + y2), (4.3.12)

where W j satisfies the equation (4.3.11) for j = 1, 2.

Remark that each equation (4.3.10) can be continued off of Γ into the corresponding

Ω j, where W j is a multiple-valued analytic function. The equations (4.3.9) and (4.3.10)

imply that the singularities of W1, W2, and the singularities of the Schwarz function are

linked. As such, the singularities of the Schwarz function play the crucial role in the

construction of solutions in question.

To find the exact solutions, suppose that at t = 0 the interface is an algebraic curve,

n∑
k=0

ak(0)xk−nyn = 0,

with the Schwarz function S (z, a0
k). Assume that during the course of evolution the

Schwarz function of the interface S (z, ak(t)) ≡ S (z, t) is such that S (z, ak(0)) = S (z, a0
k),

which leads us to the following six steps method:
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1. Compute the Schwarz function S (z, t), locate its singularities, and define their type.

2. Using equations (4.3.10) find preliminary expressions for ∂zW j.

3. By putting restrictions on the coefficients ak(t) in the preliminary expressions for

∂zW j eliminate the terms involving undesirable singularities (if possible).

4. Integrate (4.3.10) with respect to z in order to find W j up to an arbitrary function of

time.

5. Take the real part of W j in order to obtain p j up to an arbitrary function of time.

6. Evaluate the quantities p j on the interface to determine the independent of z

function of integration from the steps 3 and 4.

7. Locate the supports and compute the distributions of sinks and sources.

Before describing how to locate the supports, we remark that the distributions in step

7 are related to the two-phase mother body [3]. The notion of a mother body arises from

the potential theory [18], [26], [32], [33], and [70] and was adopted to the one-phase

Hele-Shaw problem in [75].

As mentioned above, generally, the complex potentials W j are multiple-valued

functions in Ω j. For instance, if Γ(t) is an algebraic curve, then the singularities of W j are

either poles or algebraic singularities. To choose a branch of W j, one has to introduce the

cuts, γ j(t), that serve as supports for the distributions of sinks and sources, µ j(t), j = 1, 2.

Thus, each cut originates from an algebraic singularity za(t) of the potential W j. The

supports consist of those cuts and/or points and do not bound any two-dimensional

subdomains in Ω j(t), j = 1, 2. Each cut included in the support of µ j(t) is contained in the

domain Ω j(t), and the limiting values of the pressure on each side of the cut are equal. The

value of the density of sinks and sources located on the cut is equal to the jump of the
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normal derivative ∂n p j of the pressure p j. In order for the total flux through the sinks and

sources to be finite, all of the singularities of the function W j must have no more than the

logarithmic growth.

The location of za(t), as well as the directions of the cuts emanating from za(t), are

determined by the Schwarz function via (4.3.10). In the examples considered below, the

Schwarz function has the following two representations near its singular points. The first

representation being the square root (general position)

S g (z, t) = ξg (z, t)
√

z − za(t) + ζg (z, t) , (4.3.13)

where za(t) is a non-stationary singularity, that is ża , 0. The second being the reciprocal

square root

S r (z, t) =
ξr (z, t)
√

z − za(0)
+ ζr (z, t) , (4.3.14)

where za(0) is a stationary singularity, that is ża = 0. Here ξg,r (z, t) and ζg,r (z, t) are regular

functions of z in a neighborhood of the point za(t), and ξg,r (za(t), t) , 0.

By plugging (4.3.13) and (4.3.14) into (4.3.10), in a small neighborhood of za(t) we

have

Wg
j (z, t) =

1
2k j

żaξ
g (za(t), t)

√
z − za(t) + . . . , (4.3.15)

Wr
j (z, t) =

1
k j

C0(t)
√

z − za(0) + . . . , (4.3.16)

where the dots correspond to the smaller and regular terms that do not affect the

computation of the directions of the cuts. The quantity C0(t) is defined by

C0(t) = ξ̇r (za(0), t) +
ḣ(t)
h(t)

ξr (za(0), t) .

Formulas (4.3.15) and (4.3.16) along with the substitutions

z = za + ρ exp (iϕg,r),
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with small ρ, imply that

pg
j (z, t) =

√
ρ

2k j
<[żaξ

g (za(t), t) exp (
iϕg

2
)] + . . . , (4.3.17)

pr
j (z, t) = −

√
ρ

k j
<[C0(t) exp (

iϕr

2
)] + . . . . (4.3.18)

Computing the zero level of a variation of p j along a small loop surrounding the singular

point, we finally obtain the following directions of the cuts: for the general position

ϕg = π − 2(arg[ξg (za(t), t)] + arg[ża]) + 2πk, k = 0,±1,±2.... (4.3.19)

and for the reciprocal square root

ϕr = π − 2 arg[C0(t)] + 2πk, k = 0,±1,±2.... (4.3.20)

In the next section, we use the described method to construct exact solutions to the

Muskat problem. In the considered examples, the evolution of the interface is driven by

the change in the gap width of the Hele-Shaw cell. The examples include the elliptical

shape with and without sinks and sources in the finite domain as well as the Cassini’s oval

in the presence of sinks and sources.

4.4 Examples of specific initial interfaces

4.4.1 Circle

To illustrate the method, we start with the simplest example for which the solution is

known. Suppose that the initial shape of the interface is a circle with the equation

x2 + y2 = a2(0),

and during the evolution the boundary remains circular,

x2 + y2 = a2(t).
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The corresponding Schwarz function is

S =
a2(t)

z
,

and the derivative with respect to t is given as

Ṡ =
2aȧ

z
.

Due to the volume conservation, functions a(t) must satisfy the equation

h(t) =
a2

0h0

a2(t)
,

ḣ(t)
h(t)

= −
2ȧ(t)
a(t)

, (4.4.1)

h(t) is the width gap. Taking into account equation 4.4.1 then, equation (4.3.10) in this

case reads as

∂zW j = −
1

2k j

(
2aȧ

z
+
−2ȧ

a

[
a2

z

])
= 0. (4.4.2)

Hence,

∂zW j = 0,

which implies that p̃ j is a function depending on t only,

p̃ j = −
a2

0h0ḣ
4k jh2 + f (t), (4.4.3)

therefore,

p j(x, y, t) =
1

4k j

ḣ(t)
h(t)

(
x2 + y2 −

a2
0h0

h(t)

)
+ f (t) (4.4.4)

and a(t) = a0

√
h0

h(t) .

4.4.2 Ellipse

Consider a two-phase problem with an elliptical interface,

Γ(0) =

{
x2

a(0)2 +
y2

b(0)2 = 1
}
,
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where a(0) and b(0) are given and a(0) > b(0). The Schwarz function of an elliptical

interface with semi-axes a(t) and b(t) is

S (z, t) =
a(t)2 + b(t)2

d2(t)
z −

2a(t)b(t)
d2(t)

√
z2 − d(t)2, (4.4.5)

where d(t) =
√

a(t)2 − b(t)2 is the half of the inter-focal distance. Differentiating the

Schwarz function (4.4.5) with respect to time t, we have

∂tS =
∂S
∂t

= z
∂

∂t

(
a2 + b2

d2

)
−

√
z2 − d2 ∂

∂t

(
2ab
d2

)
+

ab

d2
√

z2 − d2

∂

∂t
(d2). (4.4.6)

Assuming that the interface remains elliptical during the course of the evolution, we use

equation (4.3.10)

∂zW j = −
1

2k j

(
∂tS +

ḣ
h

S
)
.

Due to the volume conservation of the fluid occupying Ω2(t), the product of functions a(t)

and b(t) is linked to the gap width, h(t), via the equation

h(t) =
a0b0h0

a(t)b(t)
,

where a0 = a(0), b0 = b(0), and h0 = h(0). Therefore,

ḣ(t)
h(t)

= −
∂t(ab)

ab
,

and the equation (4.3.10) could be rewritten as

∂zW j = −
1

2k j

(
∂tS −

∂t(ab)
ab

S
)
, (4.4.7)

which results in

∂zW j = −
z

2k j

{ ∂
∂t

(a2 + b2

d2

)
−

(a2 + b2)
a b d2

∂

∂t
(ab)

}
−

(2z2 − d2)
√

z2 − d2

ab
2k jd4

∂

∂t

(
d2

)
(4.4.8)
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and

W j = −
z2

4k j

{ ∂
∂t

(a2 + b2

d2

)
−

(a2 + b2)
a b d2

∂

∂t
(ab)

}
−

a b z
2k jd4

√
z2 − d2 ∂

∂t
(d2) + C j(t), (4.4.9)

where C j(t) is an arbitrary function of time.

(a) (b) (c)

Figure 4.1: Squeezing of an ellipse: a0 = 2, b0 = 1, h0 = 0.1, h(t) = h0 − t; t = 0, t = 0.05,

t = 0.07, t = 0.09: (a) d2 = const, (b) d2(t) = d2
0 exp (25t), (c) d2(t) = d2

0 exp (−25t) [76].

(a) Evolution with constant inter-focal distance.

To obtain an exact solution in the absence of sinks and sources in the finite part of the

plane, we set d(t) = d(0). Then, the second term in the formula (4.4.9) vanishes, which

implies the following expression for the pressure

p̃ j = <[W j] =
1

4k j

(
(x2 − y2)

ȧ d2
0

a(a2 − d2
0)

+ 2ȧa
)

+ f (t), (4.4.10)

therefore,

p j =
ȧ

2k ja(a2 − d2
0)

(
d2

0 x2 − a2(x2 + y2) + a2(a2 − d2
0)
)

+ f (t) (4.4.11)

is the solution to the problem (4.2.5)-(4.2.7). Note that when d0 = 0, this formula

coincides with formula (4.4.4) related to the circular interface.
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Hence, Γ(t) is a family of co-focal ellipses,

x2

a2(t)
+

y2

b2(t)
= 1,

controlled by one of the functions a(t), b(t) or h(t). If h(t) is given, then by volume

conservation, A(t)h(t) = A(0)h(0) for any time t. Then, functions a(t) and b(t) must satisfy

the equation

a(t) =
a0b0h0

b(t)h(t)
, b(t) =

a0b0h0

a(t)h(t)
.

Let e(t) = a0b0h0/h(t), then a(t) = e(t)/b(t) and b(t) = e(t)/a(t). Using the fact that

d2(t) = a2(t) − b2(t) we obtain the following equations

b4(t) + d2(t)b2(t) − e2(t) = 0, a4(t) − d2(t)a2(t) − e2(t) = 0. (4.4.12)

Applying Quadratic formula to equations 4.4.12, we obtain

a2(t) = 1
2

(
a2

0 − b2
0 +

√
(a2

0 − b2
0)2 + 4e2(t)

)
, (4.4.13)

b2(t) = 1
2

(
b2

0 − a2
0 +

√
(a2

0 − b2
0)2 + 4e2(t)

)
, (4.4.14)

where e(t) = a0b0h0/h(t). An example of such an evolution with a linear function h(t) is

shown in Fig. 4.1 (a).

(b) Evolution with variable inter-focal distance.

If we admit solutions with variable inter-focal distance by keeping all terms in

(4.4.9), we must allow, in addition to the gap change, some sinks/sources located in Ω2. In

that case, the pressure is

p̃ j = −
(x2 − y2)

4k j

{ ∂
∂t

(a2 + b2

d2

)
−

(a2 + b2)
a b d2

∂

∂t
(ab)

}
−

a b
2k jd4

∂

∂t
(d2)

x (α2 − y2)
α

−
ab (ȧb − aḃ)

2k jd2 + f (t), (4.4.15)

where

α2 =
(
x2 − y2 − d2 +

√
(x2 − y2 − d2)2 + 4x2y2

)
/2,
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therefore, making

p j = −
(x2 − y2)

4k j

{ ∂
∂t

(a2 + b2

d2

)
−

(a2 + b2)
a b d2

∂

∂t
(ab)

}
−

ab (ȧb − aḃ)
2k jd2

−
a b

2k jd4

∂

∂t
(d2)

x (α2 − y2)
α

−
∂t(ab)
4k jab

(x2 + y2) + f (t). (4.4.16)

Equation (4.4.9) implies that there are two singular points in the interior domain Ω2,

z = ±d. The Schwarz function near those points has the square root representation (4.2.7)

with

ξg = −
2ab
d2

√
z ± d.

The direction of the cut at each point is defined by formula (4.3.19), which implies that at

the point za = d, the angle is ϕg = π + 2πk and at the point za = −d, the angle is ϕg = 2πk,

k = 0,±1,±2, . . . . Thus, the cut γ2(t) is located along the inter-focal segment [−d, d]. The

density of the distribution of sinks and sources along that segment is given by the formula

µ2 =
ab ∂t(d2)

k2d4

(2x2 − d2)
√

d2 − x2
.

Such a density changes its sign along the inter-focal segment, so its presence does not

affect the area of the ellipse,

Ȧ =

∫ d

−d
k2µ2(x, t) dx = 0.

Fig. 4.1 shows how the sinks and sources change the evolution of the interface with

increasing (see Fig. 4.1 (b)) and decreasing (see Fig. 4.1 (c)) inter-focal distances.

4.4.3 The Cassini’s oval

Similar to the previous examples, assume that Γ(t) remains in the specific family of

curves, the Cassini’s ovals, given by the equation

(
x2 + y2

)2
− 2b2(t)

(
x2 − y2

)
= a4(t) − b4(t),
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or [
(x − b)2 + y2

] [
(x + b)2 + y2

]
= a4,

where a(t) and b(t) are unknown positive functions of time. This curve consists of one

closed curve, if a(t) > b(t) (see Fig. 4.2), and two closed curves otherwise. Assume that at

t = 0, a(0) > b(0).

(a) (b)

Figure 4.2: Squeezing of the Cassini’s ovals for b(t) = b0 = 1, a0 = 1.1, h0 = 0.1,

h(t) = h0 − t: (a) t = 0, (b) t = 0.05 [76].

The Schwarz function of Cassini’s oval,

S (z, t) =

√
b2z2 + a4 − b4

√
z2 − b2

,

has two singularities in Ω1(t), z = ±i
√

(a4 − b4)/b2, and two singularities in Ω2(t), z = ±b.

Differentiating the Schwarz function with respect to t, we have

∂tS =
bḃz2 + 2a3ȧ − 2b3ḃ

√
b2z2 + a4 − b4

√
z2 − b2

+
bḃ
√

b2z2 + a4 − b4√
(z2 − b2)3

. (4.4.17)

The corresponding complex velocities using equation (4.3.10) have singularities at the

same points and is given by

∂zW j = −
1

2k j

 B1z2 + B2√
(b2z2 + a4 − b4)(z2 − b2)

+
bḃ
√

b2z2 + a4 − b4√
(z2 − b2)3

 . (4.4.18)
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Here

B1 = bḃ + b2ḣ/h, B2 = 2a3ȧ − 2b3ḃ + (a4 − b4)ḣ/h,

and
ḣ
h

= −
Ȧ
A
,

due to volume conservation. The area of Cassini’s oval can be computed in polar

coordinates,

A = a2E
(
π,

b2

a2

)
= 2a2E

(
b2

a2

)
,

where

E(φ, k) =

φ∫
0

√
1 − k2 sin2 t dt,

and E(k) = E(π/2, k), resulting in

Ȧ
A

=
2ȧ
a

+
∂tE

(
π, b2

a2

)
E

(
π, b2

a2

) . (4.4.19)

Taking into account ([58], p. 772),

∂E(φ, k)
∂k

=
1
k

(
E(φ, k) − F(φ, k)

)
,

where

F(φ, k) =

φ∫
0

1√
1 − k2 sin2 t

dt, (4.4.20)

and F(π/2, k) = K(k). Then,

∂

∂t

(
E(π,

b2

a2 )
)

=

(
E(π,

b2

a2 ) − F(π,
b2

a2 )
)

2aḃ − 2bȧ
ab

,

we have

B1(t) =
b

aE(π, b2

a2 )

(
−aḃE(π,

b2

a2 ) + 2(aḃ − ȧb)F(π,
b2

a2 )
)
, (4.4.21)

B2(t) =
2(ȧb − aḃ)

abE(π, b2

a2 )

(
a4E(π,

b2

a2 ) − (a4 − b4)F(π,
b2

a2 )
)
, (4.4.22)
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and

W j = −
1

2k j

(
B1I1 + B2I2 + bḃI3

)
. (4.4.23)

Here

I1 =
b2

a2 F
(
cos−1(b

z
)
,

√
a4 − b4

a2

)
−

a2

b2 E
(
cos−1(b

z
)
,

√
a4 − b4

a2

)
+

√
(z2b2 + a4 − b4)(z2 − b2)

zb2 ,

I2 =
1
a2 F

(
cos−1(b

z
)
,

√
a4 − b4

a2

)
= 1

a2

√
1−b2/z2∫
0

dt√
1− a4−b4

a4 t2
√

1−t2
= 1

a2

cos−1(b/z)∫
0

dt√
1− a4−b4

a4 sin2 t
,

and the integral I3 corresponds to the last term in (4.4.18).

To ensure that the singularities of the complex potential have no more than the

logarithmic type, we eliminate this term by setting ḃ to zero. Thus, we have

Ṡ (z) =
2a3ȧ

√
b2z2 + a4 − b4

√
z2 − b2

,

and the equation (4.3.10) implies

W j = − aȧ
k jE( b2

a2 )

[(
E(b2

a2 ) − K( b2

a2 )
)

F
(
ξ,
√

a4−b4

a2

)
(4.4.24)

+ K(b2

a2 ) E
(
ξ,
√

a4−b4

a2

)
−

K( b2

a2 )
√

(z2b2+a4−b4)(z2−b2)

a2z

]
+ C(t),

where ξ = cos−1(b
z

)
and F(α , β) is the incomplete elliptic integral of the first kind (4.4.20),

F
(
cos−1(b

z
)
,

√
a4 − b4

a2

)
=

√
1−b2/z2∫
0

dt√
1 − a4−b4

a4 t2
√

1 − t2

=

cos−1(b/z)∫
0

dt√
1 − a4−b4

a4 sin2 t
.

Since p j = < [W j], we need to compute the real parts for each term in (4.4.24).

Using the property F(α , β) = F(α , β) and the summation formula for the elliptic integrals

of the first kind [6], we have

1
2

[
F
(
ξ,

√
a4 − b4

a2

)
+ F

(
ξ,

√
a4 − b4

a2

)]
=

1
2

F
(
α,

√
a4 − b4

a2

)
,
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where

α = sin−1
cos ξ sin ξ

√
1 − a4−b4

a4 sin2 ξ + cos ξ sin ξ
√

1 − a4−b4

a4 sin2 ξ

1 − a4−b4

a4 sin2 ξ sin2 ξ
(4.4.25)

or

α = sin−1 a2z
√

z2 − b2
√

b2z̄2 + a4 − b4 + a2z̄
√

z̄2 − b2
√

b2z2 + a4 − b4

b2z2z̄2 + (a4 − b4)(z2 + z̄2 − b2)
. (4.4.26)

Similarly, using the property E(α , β) = E(α , β) and the summation formula for the elliptic

integrals of the second kind [6], we have

1
2

[
E
(
ξ,

√
a4 − b4

a2

)
+E

(
ξ,

√
a4 − b4

a2

)]
=

1
2

E
(
α,

√
a4 − b4

a2

)
+

(a4 − b4)
√

(z2 − b2)(z̄2 − b2)
2a4zz̄

sinα.

Consequently, the pressure is determined by

p̃ j = − aȧ
2k jE( b2

a2 )

[(
E(b2

a2 ) − K( b2

a2 )
)

F
(
α,

√
a4−b4

a2

)
+ K( b2

a2 ) E
(
α,

√
a4−b4

a2

)
(4.4.27)

+K( b2

a2 ) (a4−b4)
√

(z2−b2)(z̄2−b2)
a4zz̄ −

2K( b2

a2 )

a2 <{

√
(z2b2+a4−b4)(z2−b2)

z }
]

+ C j(t).

Here

<


√

(z2b2 + a4 − b4)(z2 − b2)
z

 =
x(α2

1α
2
2 − x2y2b2 + y2(α2

1b2 + α2
2))

(x2 + y2)α1α2
,

where

α2
1 = (x2 − y2 − b2 +

√
(x2 − y2 − b2)2 + 4x2y2 )/2

and

α2
2 = ((x2 − y2)b2 + a4 − b4 +

√
((x2 − y2)b2 + a4 − b4)2 + 4x2y2b2 )/2.

Taking into account the boundary condition to determine C j(t), we have

p̃ j = − aȧ
2k jE( b2

a2 )

[(
E( b2

a2 ) − K(b2

a2 )
)

F
(
α,

√
a4−b4

a2

)
+ K(b2

a2 ) E
(
α,

√
a4−b4

a2

)
+K(b2

a2 ) (a4−b4)
√

(z2−b2)(z̄2−b2)
a4zz̄ −

2K( b2

a2 )

a2 <{

√
(z2b2+a4−b4)(z2−b2)

z }

−
(
E(b2

a2 ) − K( b2

a2 )
)

K
( √

a4−b4

a2

)
− K(b2

a2 ) E
( √

a4−b4

a2

)]
+ f (t) (4.4.28)
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or

p̃ j = − aȧ
2k jE( b2

a2 )

[(
E( b2

a2 ) − K(b2

a2 )
)

F
(
α,

√
a4−b4

a2

)
+ K(b2

a2 ) E
(
α,

√
a4−b4

a2

)
+K( b2

a2 ) (a4−b4)
√

(x2+y2)2−2b2(x2−y2)+b4

a4(x2+y2) (4.4.29)

−
2K( b2

a2 )

a2
x(α2

1α
2
2−x2y2b2+y2(α2

1b2+α2
2))

(x2+y2)α1α2
− π

2

]
+ f (t).

Thereby,

p j = p̃ j −
ȧK( b2

a2 )

2k jaE( b2

a2 )
(x2 + y2).

To find the location of sinks and sources in the interior domain Ω2, note that the

Schwarz function near its singular points z = ±b has the reciprocal square root

representation (4.3.14) with

ξr(z, t) =

√
b2z2 + a4 − b4

√
z ± b

.

Formula (4.3.20) implies that ϕr(b) = π and ϕr(−b) = 0. This results (taking into account

the symmetry of the problem) in the segment x ∈ [−b, b] as a location of sinks and

sources. The corresponding density is

µ2 =
B1x2 + B2

k2

√
(b2x2 + a4 − b4)(b2 − x2)

.

Note that
b∫

−b

µ2(x) dx = 0,

which is consistent with the volume conservation.

To determine the location of the sinks and sources in domain Ω1, we start with

singular points za(t) = ±i
√

(a4 − b4) /b. The Schwarz function near these points has the

square root representation (4.2.7), and the directions of the cuts are defined by formula

(4.3.19).



80

In the neighborhood of the point za(t) = i
√

(a4 − b4) /b, we have arg[ża] = π/2 + 2πk

and arg[ξg (za(t), t)] = −π/4 + πk. Thus, according to (4.3.19) the direction of the cut is

ϕg = π/2 + 2πk, k = 0,±1,±2, . . . .

Similarly, at the point za(t) = −i
√

(a4 − b4) /b, arg[ża] = −π/2 + 2πk,

arg[ξg (za(t), t)] = −3π/4 + πk. Therefore, the direction of the cut is ϕg = −π/2 + 2πk.

Taking into consideration symmetry with respect to the x-axis, we conclude that the

support of µ1 consists of two rays starting at the branch points and going to infinity (see

the dashed lines in Fig. 4.2). The density of sinks and sources is defined by

µ1 =
B1y2 − B2

k1

√
(b2y2 − a4 + b4)(b2 + y2)

.

The evolution of the oval is controlled by a single function h(t), where b is constant and

the parameter a(t) is defined by the equation:

ḣ
h

= −
ȧ
a

K(b2/a2)
E(b2/a2)

.

Fig. 4.2 shows the evolution of the Cassini’s oval under squeezing with h(t) = h0 − t at

t = 0 (see Fig. 4.2 (a)) and t = 0.05 (see Fig. 4.2 (b)). The dots correspond to the singular

points za, the dashed lines correspond to the cuts.

4.5 Conclusions

We studied a Muskat problem with a negligible surface tension and a gap width

dependent on time. This study extended the results reported in [3], [74], and [79]. We

have suggested a method of finding exact solutions and applied it to find new exact

solutions for initial elliptical shape and Cassinis oval. The idea of the method was to keep

the interface within a certain family of curves defined by its initial shape.

For the elliptical shape, we found two types of solutions: without sinks and sources

in the interior domain, and with the presence of a special distribution of sinks and sources

along the inter-focal distance. In the former solution, the inter-focal distance remains
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constant, while in the latter, it changes. In the case when the inter-focal distance

decreases, the presence of the sink-source distribution since it does not change the area of

the interior domain could be possibly used to simulate the effect of surface tension. It will

be studied elsewhere. For the Cassinis oval, we found a solution to the problem when both

a gap change and special distributions of sinks and sources in both the interior and exterior

domains are present.
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5 FutureWork

In this section, we discuss the list of some future proposed problems.

1. To obtain some exact solutions of the two-phase Hele-Shaw problem with the

presence surface tension on the boundary and allow the sinks and sources to be line

distributions with disjoint supports located in the exterior and the interior domains,

a two-phase mother body. The mathematical formulation of the proposed future

problem is as follows:

Let Ω2(t) ⊂ R2 with a boundary Γ(t) at time t be a simply-connected bounded

domain occupied by a fluid with a constant viscosity ν2, and let Ω1(t) be the region

R2 \ Ω̄2(t) occupied by a different fluid of viscosity ν1. Consider the two-phase

Hele-Shaw problem forced by sinks and sources in the presence of the surface

tension:

v j = −k j∇p j, j = 1, 2, (5.0.1)

where the pressure p j is a harmonic function almost everywhere in the region Ω j(t),

satisfying boundary conditions

p1(x, y, t) − p2(x, y, t) = κγ on Γ(t), (5.0.2)

vn = −k1
∂p1

∂n
= −k2

∂p2

∂n
on Γ(t). (5.0.3)

Here v j is a velocity vector of fluid j, k j = h2/12ν j, κ is the curvature, γ is the

surface tension and h is the gap width of the Hele-Shaw cell. Equation (5.0.2) states

the continuity of the pressure in the presence of the surface tension. Equation

(5.0.3) means that the normal velocity of the boundary itself coincides with the

normal velocity of the fluid at the boundary. We will seek a solution with a constant

gap and with a variable gap (time-dependent gap).
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2. To obtain asymptotic solutions with surface tension and in the presence of other

external force.

3. To study the dynamics of the singularities in one-phase and two-phase Hele-Shaw

problems.
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