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ABSTRACT

BALLONE, FRANK A., Ph.D., April 2017, Mathematics

γ-Sets and the
(

A
B∞

)
Selection Principle

Director of Dissertation: Todd Eisworth

The field of Selection Principles in Mathematics is in some sense the study of

diagonalization processes. It has its roots in a few basic selection principles that

arose from the study of problems in analysis, dimension theory, topology, and set

theory. These “classical” selection principles were formally defined by M. Scheepers

in 1996, but they go back to classical works of F. Rothberger, W. Hurewicz, and

K. Menger. Since then, new selection principles and new types of covers have been

introduced and studied in relation to the classical selection principles.

We consider the relationship between γ-sets, which are spaces satisfying a specific

classical selection principle, and a newer selection principle
(

A
B∞

)
that was introduced

by B. Tsaban in 2007. First, we survey known results of γ-sets due to F. Galvin

and A.W. Miller and prove which results hold for the
(

A
B∞

)
selection principle. Then,

we establish filter characterizations for these selection principles to prove new prop-

erties and positively answer a question asked by B. Tsaban. Afterward, we prove

several results about a concrete construction of a γ-set on the Cantor space due to T.

Orenshtein and B. Tsaban. Lastly, we revisit our properties to formulate some open

questions raised by our work.
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CHAPTER 1: INTRODUCTION TO SELECTION

PRINCIPLES

The purpose of this chapter is to introduce the reader to the field of selection

principles. We will first outline definitions and relations, as well as give a brief

history of what are known as “classical” selection principles. Then, we will introduce

two recently documented classes of selection principles, emphasizing properties and

relations to the classical selection principles. We will end the chapter with brief

summary of our research results.

1.1: The Spaces Considered

Many of the results mentioned in this paper apply to spaces X which are Ty-

chonoff, perfectly normal, or Lindelöf in all powers. Unless otherwise indicated, we

will consider spaces X which are sets of reals or homeomorphic to sets of reals. There

will be some instances where we consider spaces with a more combinatorial structure.

In particular, subsets of the Baire space ωω of infinite sequences of natural numbers,

as these are homeomorphic to sets of reals.

Considering these types of spaces greatly narrows our scope. However, doing this

will provide “good” examples of spaces we can work with, and it will filter out some

pathological examples.

1.2: Covers

Definition 1.1. We say U is a cover of a space X if X 6∈ U and X =
⋃
U .

This is also known as a non-trivial cover of X, as X cannot cover itself. Note

that elements of U need not be open. The primary special sorts of covers that we will

consider throughout this paper are as follows.

Definition 1.2. Let U be a cover of X.

(a) U is an ω-cover of X if each finite F ⊆ X is contained in some U ∈ U .
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(b) U is a γ-cover of X if U is infinite and each x ∈ X belongs to all but finitely

many U ∈ U .

Adapting B. Tsaban’s notation from [29], we let the boldfaced symbols OOO, ΩΩΩ, and

ΓΓΓ denote the collections of all covers, ω-covers, and γ-covers, respectively. Simple

arguments establish

ΓΓΓ ⊆ ΩΩΩ ⊆OOO.

We also let O, Ω, and Γ denote the corresponding collections of open covers. CΩ

will denote the collection of all clopen ω-covers.

When trying to prove results about covers, it is often more convenient to work

with countable covers instead of covers of arbitrary cardinality. Notice that each

infinite subset of a γ-cover is also a γ-cover and therefore each γ-cover of X contains

a countable γ-subcover of X. We can also reduce an ω-cover of X to a countable

ω-subcover in certain situations. J. Gerlits and Zs. Nagy [9] proved every ω-cover of

a space X has a countable subset that is a ω-cover of X if and only if every finite

power of X is Lindelöf. Since we are working on spaces which have this property, we

can assume without loss of generality that any ω-cover or γ-cover is countable.

1.3: The
(

A
B

)
Selection Principle

Given a cover U of a space X, we will first consider a property which chooses

a new cover of X by selecting a sub-collection from U which also covers X. This is

known as a selection principle as we are selecting a new cover of X from a given cover.

We will denote this selection principle by
(

A
B

)
. Formally, let A and B be collections

of covers of a space X.
(

A
B

)
is defined as follows.

(
A
B

)
: Every member of A has a subset which is a member of B.

Many topological phenomena are captured by the general framework of
(

A
B

)
in



13

the situation where A and B are certain types of covers. For instance, a topological

space X is compact if every open cover has a finite subcover. This can be represented

by
(

A
B

)
if we let A be the collection of all open covers of X and B be the collection of

all finite elements of A . Another example would be Lindelöf spaces, as a topological

space X is Lindelöf if every open cover has a countable subcover. Letting A denote

the collection of open covers of X and B the countable members of A will give us

an
(

A
B

)
representation for Lindelöf spaces.

Using Ω and ΓΓΓ with this selection principle, we obtain what are called γ-sets.

Definition 1.3. A space X satisfying
(

Ω
ΓΓΓ

)
is called a γ-set. In other words, X is a

γ-set if every open ω-cover contains a γ-cover.

The idea behind γ-sets was introduced by Gerlits and Nagy in [9] with the γ-

property. They defined a space X to have the γ-property if given an open ω-cover

U of X, there is family {Vn : n < ω} ⊆ U such that Vn is a γ-cover of X. This

property was used to help investigate convergence properties of Cp(X), the space of

all real-valued continuous functions on X with the topology of pointwise convergence.

Gerlits and Nagy proved, for a space X, the space Cp(X) is Fréchet Urysohn if X

satisfies the γ-property.

One may also consider a “sequential” modification of the definition of γ-sets,

where instead of a single open ω-cover, we look at a sequence of open ω-covers. More

precisely, let {Un : n < ω} be a sequence of open ω-covers of X. Let us call a space

X a γ′-set if there is a sequence {Vn : n < ω} such that for each n, Vn ∈ Un and

{Vn : n < ω} is a γ-cover of X.

We need the following simple observation before comparing γ-set and γ′-sets:

Without loss of generality, any sequence {Un : n < ω} of open ω-covers of X can be

replaced by a refining sequence of open ω-covers. To see this, let U1 and U2 be open

ω-covers of X and consider V = {A∩B : A ∈ U1 and B ∈ U2}. We claim V is an open
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ω-cover of X which refines both U1 and U2. V refines both U1 and U2 by definition.

Furthermore, V is open. Letting F ⊆ X be finite, there is an A ∈ U1 and B ∈ U2

such that F ⊆ A and F ⊆ B. Therefore, F ⊆ A ∩ B ∈ V , implying V is an ω-cover

of X.

Now, suppose {Un : n < ω} is a collection of open ω-covers of X. Define

V0 = U0

V1 = {A ∩B : A ∈ V0 and B ∈ U1}

V2 = {A ∩B : A ∈ V1 and B ∈ U2}

V3 = {A ∩B : A ∈ V2 and B ∈ U3}
...

Vn = {A ∩B : A ∈ Vn−1 and B ∈ Un}

Then, {Vn : n < ω} is a refining sequence of open ω-covers of X.

Theorem 1.1. The following are equivalent for a space X.

1. X is a γ-set.

2. X is a γ′-set.

Proof. (2 ⇒ 1). γ′-sets are clearly γ-sets, as the sequence of open ω-covers of X

could be constant.

(1 ⇒ 2) [9]. Let {Un : n < ω} be a sequence of open ω-covers of X. WLOG,

we can assume Un+1 is a refinement of Un for each n < ω. By the assumption, it is

enough to show there is an infinite subsequence {nk : k < ω} and a sequence Uk ∈ Unk

such that {Uk : k < ω} is a γ-cover of X.

Now, choose a sequence {xn : n < ω} of distinct points in X and let Vn =

{U − {xn} : U ∈ Un} and V =
⋃
{Vn : n < ω}. V is an open ω-cover of X. As X is a

γ-set, there is a family {Vk : k < ω} ⊆ V that forms a γ-cover of X.
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For any k < ω, there is an nk < ω and a set Uk with Vk ⊆ Uk ∈ Unk
. Now, if

n < ω and {xi : i ≤ n} ⊆ Vk, then nk > n. Thus, {nk : k < ω} is infinite. �

1.4: Other Classical Selection Principles

It turns out that γ′-sets satisfy a specific instance of the S1 selection principle.

This, along with two other classical selection principles, were formally defined by

M. Scheepers in [24], although they go back to classical works of F. Rothberger, W.

Hurewicz, and K. Menger. The classical selection principles are defined as follows.

Let A and B be collections of covers of a space X.

S1(A ,B): For each sequence {Un}n<ω of members of A , there exists

members Un ∈ Un, n < ω, such that {Un : n < ω} ∈ B.

A

B

Figure 1.1: The S1(A ,B) Selection Principle

This selection principle builds a new cover by choosing a single element from each

Un. Theorem 1.1 shows X satisfies
(

Ω
ΓΓΓ

)
if and only if X satisfies S1(Ω,ΓΓΓ).

The next selection principle chooses a new cover of X by piecing together unions

of finite subsets.
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Ufin(A ,B): For each sequence {Un}n<ω of members of A which do not

contain a finite subcover, there exist finite (possibly empty)

subsets Fn ⊆ Un, n < ω, such that {
⋃
Fn : n < ω} ∈ B.

Instead of selecting a single element of Un, this selection principle chooses finitely

many elements and takes their union. Note that since each Un does not have a finite

subcover, Fn will not cover X. This also applies to each
⋃
Fn.

A

B

Figure 1.2: The Ufin(A ,B) Selection Principle

The final classical selection principle we will consider is similar to Ufin(A ,B), but

it does not “glue” the finite sub-collections together.

Sfin(A ,B): For each sequence {Un}n<ω of members of A , there exists

finite (possibly empty) subsets Fn ⊆ Un, n < ω, such that⋃
n<ω

Fn ∈ B.

Each Fn consists of finitely many subsets of X. Therefore,
⋃
n<ω Fn is the family

of subsets of X obtained when we collect those sets together. Sfin(A ,B) says this

family is a cover of X and it belongs to the collection B as well.
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1.5: A Brief History

In this section, we will give a brief history of the S1, Sfin, and Ufin selection

principles.

In 1925, W. Hurewicz derived two selection principles in [10]. Hurewicz first

derived Sfin(O,OOO) from a conjecture by K. Menger in [16]. In his paper, Menger

introduced the following basis covering property for metric spaces.

The Menger Basis Property. For each basis B of a metric space (X, d), there is a

sequence {Bn : n < ω} in B such that {Bn : n < ω} covers X and lim
n→∞

diamd(Bn) = 0.

Menger noticed every σ-compact metric space has this property and conjectured

having this property implies that a metric space is σ-compact. Hurewicz showed

that a metric space has the Menger basis property if and only if it has the selection

principle Sfin(O,OOO). This leads us to the following definition.

Definition 1.4. The covering property Sfin(O,OOO) is called the Menger property. Any

topological space with the Menger property is called a Menger space, that is, X is

Menger if for any countable sequence of open covers {Un}n<ω of X, there exists finite

subsets Fn ⊆ Un, n < ω, such that
⋃
n<ω Fn is an open cover of X.

Motivated by Menger’s conjecture, Hurewicz also introduced the selection princi-

ple Ufin(O,ΓΓΓ).

Definition 1.5. The covering property Ufin(O,ΓΓΓ) is called the Hurewicz property.

Any topological space with the Hurewicz property is called a Hurewicz space, that is,

X is Hurewicz if for any countable sequence of open covers {Un}n<ω of X which do

not contain a finite subcover, there exists finite subsets Fn ⊆ Un, n < ω, such that

{
⋃
Fn : n < ω} is a γ-cover of X.

In relation to Menger spaces, Hurewicz observed: σ-compact ⇒ Hurewicz prop-

erty⇒ Menger property in [11]. Hurewicz also questioned if his property was strictly
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stronger than Menger’s, that is, Sfin(O,OOO) ; Ufin(O,ΓΓΓ). In 2002, J. Chamber and

R. Pol provided a positive solution to Hurewicz’s question in [4] using the topologi-

cal “Michael technique” and a dichotomic argument with the cases b = d and b < d.

Their solution established the existence of a set of reals X without the Hurewicz prop-

erty such that all finite powers of X have the Menger property. In 2005, T. Tsaban

and L. Zdomsky constructed a concrete set in [30] having the Menger property but

not the Hurewicz property. Their construction gave a non-dichotomic, combinatorial

proof. Finally, in 2006, A. Rinot proved the existence of a positive solution in [19]

using a more direct, dichotomic proof, again distinguishing between the cases b = d

and b < d.

The S1 selection principle was first introduced in 1938 by F. Rothberger in [20].

Rothberger was interested in strong measure zero sets in metric spaces. Strong mea-

sure zero sets were first defined in 1919 by Borel in [3].

Definition 1.6. A metric space (X, d) has strong measure zero if for any sequence of

positive reals {εn}n<ω, there is a cover {Un : n < ω} of X such that diamd(Un) < εn

for all n.

Rothberger observed that if a metric space has the property S1(O,OOO), then it has

strong measure zero. This lead to a new type of space.

Definition 1.7. The covering property S1(O,OOO) is called the Rothberger property.

Any topological space with the Rothberger property is called a Rothberger space, that

is, X is Rothberger if for each sequence {Un}n<ω of open covers of X, there exists

Vn ∈ Un such that {Vn : n < ω} is an open cover of X.

Another famous S1 selection principle, which we previously mentioned, was intro-

duced by J. Gerlits and Zs. Nagy in [9], namely S1(Ω,ΓΓΓ). We will focus more on this

selection principle in later sections.
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1.6: Relation Properties of Selection Principles

The classical selection principles can be related in various ways. One relation is a

type of monotonicity property, being antimonotonic in the first component and mono-

tonic in the second component. This property was formally introduced by Scheepers

in [24].

Proposition 1.1. Suppose Π is a selection principle and A , B, C , and D are families

of subsets of an infinite set.

1. If A ⊆ C , then Π(C ,B)⇒ Π(A ,B).

2. If B ⊆ D , then Π(A ,B)⇒ Π(A ,D).

This proposition is illustrated in Figure 1.3.

( ,  )A BΠ ( , )A DΠ

( , )C DΠ( ,  ) C BΠ

Figure 1.3: Monotonicity Laws

We will now show how the classical selection principles are related. Let X be

a space, A ∈ {Γ,Ω,O}, and B ∈ {ΓΓΓ,ΩΩΩ,OOO}. Note that if X satisfies S1(A ,B),

then X satisfies Sfin(A ,B). The proof of this relation is trivial as the finite subsets

considered in the Sfin(A ,B) definition can all have size 1.

Lemma 1.1. If X satisfies Sfin(A ,B), then X satisfies Ufin(A ,B).

We will prove this result shortly.

Lemma 1.2. If X satisfies Sfin(A ,B), then X satisfies
(

A
B

)
.
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Proof. Let U ∈ A . Consider a sequence of members of A that is constant with

a value of U . As X satisfies Sfin(A ,B), there exists finite (possibly empty) subsets

Fn ⊆ U for each n < ω such that
⋃
n<ω Fn ∈ B. �

Figure 1.4 summarizes the relations mentioned thus far.

( )1
A,BS ( )fin

A,BS ( )fin
A,BU

B

A 

 
 

Figure 1.4: Relating Classical Selection Principles

If we let A range over {Γ,Ω,O} and B over {ΓΓΓ,ΩΩΩ,OOO}, then there are potentially

nine distinct classes of spaces for each selection principle. Figure 1.5 illustrates how

the nine S1 selection principles are related using the monotonicity laws.

( )1 O, ΓS ( )1 O, ΩS ( )1 O O,S

( )1 Ω,ΓS

( )1 Γ,ΓS

( )1 Ω,ΩS ( )1 Ω, O,S

( )1 Γ,ΩS ( )1 OΓ,S

Figure 1.5: S1(A ,B) Classes

S1(O,ΓΓΓ) and S1(O,ΩΩΩ) are impossible for X, as any regular T2 space X with at

least two points has an open cover which is not an ω-cover. To see this, let x, y ∈ X

with x 6= y. Then, there is an open set U in X such that x ∈ U and y 6∈ U . By

regularity, there exists another open set V in X such that x ∈ V with V ⊆ U .

U = U ∪ (X \ V ) is an open cover of X, but there is no set in U which contains

both x and y. Therefore, X cannot satisfy S1(O,ΩΩΩ). Furthermore, X cannot satisfy

S1(O,ΓΓΓ) as S1(O,ΓΓΓ)⇒ S1(O,ΩΩΩ).
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A similar relation diagram can be created for the Sfin selection principle. There

is a stronger relation when considering the Ufin selection principle.

Lemma 1.3. Ufin(O,B) ⇔ Ufin(Γ,B) for B ∈ {ΓΓΓ,ΩΩΩ,OOO}.

Proof. Ufin(O,B) ⇒ Ufin(Γ,B) by the monotonicity laws. To show the reverse

implication, suppose {Un}n<ω is a sequence of open covers which do not contain a

finite sub-cover. Notice that given an open cover {Um : m < ω}, we may replace it

by {
⋃
i<m Ui : m < ω}. This set is infinite as {Um : m < ω} does not contain a finite

subcover. Furthermore, it is a γ-cover. Therefore, we can apply Ufin(Γ,B). �

This lemma implies that the diagram for the nine potential classes of the Ufin

can be reduced to any of its rows since the three selection principles in each column

are equivalent. This means it is enough to prove Sfin(Γ,B) ⇒ Ufin(Γ,B) for B ∈

{ΓΓΓ,ΩΩΩ,OOO} in order to show Sfin(A ,B)⇒ Ufin(A ,B).

Proof of Lemma 1.1. We consider three cases for B. In each case, let {Un}n∈ω be

a sequence of open γ-covers of X, each without a finite subcover.

Case 1: Suppose X satisfies Sfin(Γ,OOO). Then, there exists finite subsets Fn of Un

such that
⋃
n<ω Fn covers X. Notice that,

X ⊆
⋃ ⋃

n<ω

Fn =
⋃
n<ω

⋃
Fn.

Therefore, X satisfies Ufin(Γ,OOO).

Case 2: Suppose X satisfies Sfin(Γ,ΩΩΩ). Again, choose a sequence {Un}n<ω of open

γ-covers of X such that no Un has a finite subcover. Applying Sfin(Γ,ΩΩΩ), there exists

finite subsets Fn of Un such that
⋃
n<ω Fn is an ω-cover of X. If F is any finite subset

of X, then some element of
⋃
n<ω Fn contains F . There is an n < ω and U ∈ Fn such

that F ⊆ U . Therefore, F ⊆
⋃
Fn and the desired result follows.

Case 3: Suppose X satisfies Sfin(Γ,ΓΓΓ). Choose a sequence {Un}n<ω of open γ-

covers of X such that no Un has a finite subcover and apply Sfin(Γ,ΓΓΓ) to get finite
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subsets Fn of Un such that
⋃
n<ω Fn is an γ-cover of X. Note that if x ∈ X, then x

is contained in all but finitely many sets in
⋃
{Fn : n < ω}. Thus, x is contained in

all but finitely many members of {
⋃
Fn : n < ω}. �

We will now consider equivalent selection principles. For a space X, Theorem

1.1 stated S1(Ω,ΓΓΓ) ⇔
(

Ω
ΓΓΓ

)
. Combining this result with Figure 1.4, it follows that

S1(Ω,ΓΓΓ)⇔ Sfin(Ω,ΓΓΓ).

We will present a proof from [24] which shows X satisfies Sfin(O,OOO) if and only if

it satisfies Ufin(Γ,OOO).

Proposition 1.2. For a space X, Sfin(O,OOO)⇔ Ufin(Γ,OOO).

Proof. Using the monotonicity laws and Figure 1.4 relations, Sfin(O,OOO)⇒ Sfin(Γ,OOO)⇒

Ufin(Γ,OOO).

To reverse the implication, suppose X satisfies Ufin(Γ,OOO). Let {Un}n<ω be a

sequence of open covers of X. We may assume each Un is countably infinite and no

finite subset covers X, as X is not compact. For each n, enumerate each Un bijectively

as Un = {Un
k : k = 1, 2, 3, . . .}. Then, let Wn be the collection whose mth member is⋃m

k=1 U
n
k .

Wn is infinite since Un has no finite subcover, and x ∈ Wn for large enough n.

Therefore, Wn is a γ-cover of X. Now, apply the Ufin(Γ,OOO) selection principle and

choose a finite subset Fn from each Wn such that
⋃∞
n=1Fn is an open cover of X.

As Wn is increasing, choose Fn = {Un
0 ∪ . . . ∪ Un

kn
} for some k. Then, {Un

i : n <

ω, i ≤ kn} covers X. �

Below are additional equivalences that have been established over the years. We

give references rather than proofs and use “=” to denote equivalence when considering

selection principles.

• S1(Γ,ΓΓΓ) = Sfin(Γ,ΓΓΓ) [27]
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• Sfin(O,OOO) = Sfin(Ω,OOO) = Sfin(Γ,OOO) = Ufin(Γ,OOO) [24]

• S1(O,OOO) = S1(Ω,OOO) [24]

Figure 1.6 illustrates all the selection principle relationships mentioned thus far.

Most articles refer to this diagram as the Scheepers diagram.

( )fin
ΓΓ,U

( )1
Ω,ΓS

( )fin
Ω,ΓS

( )fin
Γ,ΓS

( )1
Γ,ΓS

( )1
Ω,ΩS

( )1
O O,S

( )1
OΩ,S

( )1
Γ,ΩS

( )fin
Ω,ΩS

( )fin
O O,S

( )1
OΓ,S

( )fin
OΩ,S

( )fin
OΓ,S( )fin

Γ,ΩS

( )fin
Γ,OU( )fin

Γ,Ω�U

Figure 1.6: The Scheepers Diagram

1.7: Newer Selection Principles

In this section, we will survey newer selection principles which were recently in-

troduced by Tsaban in [29]. These selection principles will play a big role throughout

this paper.

Definition 1.8. For a family A of covers of a set X, A∞ is the family of all U such

that there exists infinite sets Un ⊆ U , n < ω, with {
⋂
Un : n < ω} ∈ A .

By combining this new family of covers with the
(

A
B

)
selection principle, Tsaban

obtained the
(

A
B∞

)
selection principle. The motivation behind Tsaban’s study of this

selection principle began with a result of M. Sakai about Tychonoff spaces and the

Pytkeev property in [22]. We will focus more on the Pytkeev property in chapter 5.
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There is a relation between the
(

A
B

)
and

(
A

B∞

)
selection principles when considering

surjectively derefinable covers.

Definition 1.9. A family B of covers of X is surjectively derefinable if {f(U) : U ∈

U} ∈ B for each U ∈ B and each f : U → P(X) \{X} such that for each U ∈ U ,

f(U) is open and contains U .

Tsaban proved the following result in [29]. We will also present the proof.

Lemma 1.4. Assume that B is a surjectively derefinable family of covers of X. Then(
A

B∞

)
⇒
(

A

B

)
.

Proof. Let A and B be families of covers of X, with B surjectively derefinable, and

suppose X satisfies
(

A
B∞

)
. Furthermore, let U ∈ A . Since X satisfies

(
A

B∞

)
, there are

infinite sets U1,U2, . . . ⊆ U such that V = {
⋂
Un : n < ω} ∈ B. Now, for each n,

choose f(
⋂
Un) ∈ Un. Since B is surjectively derefinable, W = {f(

⋂
Un) : n < ω} ∈

B. It follows that W ⊆ U . Therefore, U has a subset which is in B. �

Note that the familiesOOO, ΩΩΩ, and ΓΓΓ are surjectively derefinable, meaning we can use

Lemma 1.4 to create new relations using the
(

A
B

)
selection principles. For instance,(

Ω
ΓΓΓ∞

)
⇒
(

Ω
ΓΓΓ

)
.

If we let A range over {Γ,Ω,O} and B over {ΓΓΓ,ΩΩΩ,OOO}, then there are potentially

nine distinct classes of spaces for the
(

A
B∞

)
selection principle. Using the monotonicity

laws, we can create a diagram similar to Figure 1.5 to see how all nine of these classes

are related. Several of these classes can be ruled out. As mentioned in [29], any T1

space with more than one element has a finite open cover. Since the spaces considered

are T1, this will rule out the
( O

B∞

)
selection principle for B ∈ {ΓΓΓ,ΩΩΩ,OOO}.

Tsaban proved in [29] that the
(

Γ
ΓΓΓ∞

)
selection principle will always hold in X. We

include his proof for completeness.



25

Proposition 1.3. Every space satisfies
(

Γ
ΓΓΓ∞

)
.

Proof. Assume U is a γ-cover of a space X. We may assume U is countable as any

infinite subset of a γ-cover is a γ-cover. Now, enumerate U = {Un : n < ω} bijectively

and take Un = {Uk : k ≥ n} for each n. Then, V = {
⋂
Un : n < ω} ∈ Γ as V is

infinite and X is not covered by finitely many members from V . Therefore, U contains

a subset which is a member of ΓΓΓ∞. �

There is also an equivalence in [29] between γ-sets and sets satisfying the
(

Ω
ΓΓΓ∞

)
selection principle.

Corollary 1.1.
(

Ω
ΓΓΓ

)
=
(

Ω
ΓΓΓ∞

)
.

Proof. By Lemma 1.4, (
Ω

ΓΓΓ∞

)
⇒
(

Ω

ΓΓΓ

)
.

By Proposition 1.3, (
Ω

ΓΓΓ

)
⇒
(

Ω

ΓΓΓ

)
∩
(

Γ

ΓΓΓ∞

)
⇒
(

Ω

ΓΓΓ∞

)
,

with the last implication following from the definition of
(

A
B

)
. �

Considering clopen ω-covers in the
(

A
B∞

)
selection principles leads us once more

to strong measure zero sets. The following definition of strong measure zero sets is

slightly modified from the metric space definition mentioned earlier.

Definition 1.10. A set X ⊆ R has strong measure zero if for each sequence of positive

reals {εn}n<ω, there exists a cover {In}n<ω of X such that for each n, the diameter of

In is smaller than εn.

The following theorem relating strong measure zero sets to the
(

A
B∞

)
selection

principle was proved in [28] and [29].
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Theorem 1.2. If X ⊆ R and X satisfies
(
CΩ

OOO∞

)
, then X has strong measure zero.

Gerlits and Nagy proved in [9] that every γ-set has strong measure zero. We

are now able to prove this theorem using an alternate method with the results and

definitions mentioned throughout this section.

Corollary 1.2. Every γ-set has strong measure zero

Proof. We have the following.(
Ω

ΓΓΓ

)
=

(
Ω

ΓΓΓ∞

)
⇒
(

Ω

ΩΩΩ∞

)
⇒
(

Ω

OOO∞

)
⇒
(
CΩ

OOO∞

)
�

The classical selection principles can also be connected to the
(

A
B∞

)
selection prin-

ciple. For instance, we have the following relation and proof from [29].

Proposition 1.4. If X satisfies Sfin(Ω,ΩΩΩ) and
(

Ω
ΩΩΩ∞

)
, then X satisfies S1(Ω,ΩΩΩ).

Proof. By definition,

Sfin(Ω,ΩΩΩ) ∩
(

Ω

ΩΩΩ∞

)
= Sfin(Ω,ΩΩΩ∞).

Therefore, it is enough to show Sfin(Ω,ΩΩΩ∞) implies S1(Ω,ΩΩΩ).

Suppose Un, n < ω, are open ω-covers of X. By Sfin(Ω,ΩΩΩ∞), choose finite Fn ⊆ Un

such that V =
⋃
n<ω Fn ∈ ΩΩΩ∞.

Now, choose infinite Vn ⊆ V for each n < ω such that {
⋂
Vn : n < ω} is an ω-

cover of X. Since each Fn is finite, each Vn will contains sets from Uk for arbitrarily

large k. Thus, we can construct an increasing sequence mn such that Vn contains an

element Umn of Umn . If k 6= mn for all n, let Uk be any element of Uk. It follows that

{Uk : k < ω} witnesses S1(Ω,ΩΩΩ). �.

We immediately have the following.

Corollary 1.3. Sfin(Ω,ΩΩΩ∞)⇒ Sfin(Ω,ΩΩΩ).
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This next relation was also proved by Tsaban in [29].

Corollary 1.4. S1(Ω,Ω∞Ω∞Ω∞)⇒ S1(Ω,ΩΩΩ).

Proof. By previous results:

S1(Ω,Ω∞Ω∞Ω∞) = S1(Ω,ΩΩΩ) ∩
(

Ω

ΩΩΩ∞

)
,

⇒ Sfin(Ω,ΩΩΩ) ∩
(

Ω

ΩΩΩ∞

)
,

= S1(Ω,ΩΩΩ). �

Tsaban also introduced a new type of selection principle in [29] that is a selective

version of the
(

A
B∞

)
selection principle, similar to how

(
A
B

)
and S1(A ,B) are related.

Let A and B be collections of covers of a space X.

⋂
∞(A ,B): For every sequence {Un}n∈ω of members of A , there is for each n

an infinite set Vn ⊆ Un such that {
⋂
Vn : n < ω} ∈ B.

A trivial argument establishes the following.

Proposition 1.5.
⋂
∞(A ,B) ⇒

(
A

B∞

)
.

Tsaban also proved in [29] how the
⋂
∞(A ,B) selection principle is related to the

S1(A ,B) selection principle. We omit the proof.

Proposition 1.6. Assume B is a surjectively derefinable family of covers of X. Then,

⋂
∞

(A ,B)⇒ S1(A ,B) .

Finally, we note the following results of Tsaban from [29].

Theorem 1.3.
⋂
∞(Γ,ΓΓΓ) = S1(Γ,ΓΓΓ),

Corollary 1.5.
⋂
∞(Ω,ΓΓΓ) = S1(Ω,ΓΓΓ).
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1.8: Research Motivation and Results

Our motivation behind the study of γ-sets and the
(

A
B∞

)
selection principle origi-

nated from the following conjecture in [29].

Conjecture 1.1. The Continuum Hypothesis (CH) implies

1. there is a set of reals X satisfying
(

Ω
ΩΩΩ∞

)
but not

(
Ω
Γ

)
, and

2. there is a set of reals X satisfying
(

Ω
OOO∞

)
but not

(
Ω

ΩΩΩ∞

)
.

We are interested in proving the consistency of both items in this conjecture. In

other words, do we have strict implications in the following:(
Ω

ΓΓΓ

)
=

(
Ω

ΓΓΓ∞

)
⇒
(

Ω

ΩΩΩ∞

)
⇒
(

Ω

OOO∞

)
. (1.1)

Showing any of the implications cannot be reversed, assuming CH, will prove the

consistency of Conjecture 1.1. It is also worth noting that a similar situation arises

for the
⋂
∞(A ,B) selection principle. Using the monotonicity laws and properties

previously mentioned,
⋂
∞(Ω,ΩΩΩ) and

⋂
∞(Ω,OOO) lie between

(
Ω
ΓΓΓ

)
and

(
Ω
OOO∞

)
. This leads

to the following relations.(
Ω

ΓΓΓ

)
=
⋂
∞

(Ω,ΓΓΓ)⇒
⋂
∞

(Ω,ΩΩΩ)⇒
⋂
∞

(Ω,OOO)⇒
(

Ω

OOO∞

)
(1.2)

Question 1.1. Assuming CH, what can be said about the reverse implications in

(1.2)?

Below is an itemized list of our main research results. Any undefined notation

and terminology will be discussed in later chapters.

• The properties
(

Ω
ΩΩΩ∞

)
and

(
Ω
OOO∞

)
are Fσ-hereditary, meager-additive, and linearly

σ-additive.
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• It is consistent that spaces satisfying
(

Ω
ΩΩΩ∞

)
and

(
Ω
OOO∞

)
are countable while every

set of reals of cardinality ℵ1 has strong measure zero.

• The
(

Ω
OOO∞

)
property is countably-additive.

• Assuming �ω1 , there exists X ⊆ R which satisfies
(

Ω
OOO∞

)
but isn’t a γ-set.

• A space X satisfies
(

Ω
ΩΩΩ∞

)
if and only if Xn satisfies

(
Ω

ΩΩΩ∞

)
for all n < ω. This

will positively answer a question asked by Tsaban in [29].

• Spaces satisfying
(

Ω
ΓΓΓ∞

)
,
(

Ω
ΩΩΩ∞

)
, and

(
Ω
OOO∞

)
can be characterized using filters on ω.

• Spaces satisfying
(

Ω
ΩΩΩ∞

)
under finite powers can be characterized using filters and

countable π-bases of order n.

• The union of two “unbounded tower spaces” of cardinality p is a γ-set.

In chapter 2, we will survey known properties of γ-sets due to F. Galvin and A.W.

Miller in [8] and determine which of these properties hold for the other selection prin-

ciples in (1.1). Results and open questions concerning additivity, meager-additivity

and countability will be discussed. In chapter 3, we will provide characterizations for

the selection principles in (1.1) using filters on ω in order to prove linear σ-additivity

and characterize spaces satisfying
(

Ω
ΩΩΩ∞

)
. In chapter 4, we show that the family of

γ-sets constructed by T. Orenshtein and B. Tsaban from t = b is closed under finite

unions. In chapter 5, known results about ω-shrinkable open ω-covers and the Pyt-

keev property will be utilized to make new observations and open questions about

the
(

A
B∞

)
selection principle. In chapter 6, we will focus on filters on ω by revisiting

properties from the previous chapters and formulating some open questions raised by

our work.
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CHAPTER 2: CONSEQUENCES OF F. GALVIN’S AND

A.W. MILLER’S RESULTS

2.1: A Few Properties

We will first outline a couple properties of γ-sets due to Galvin and Miller in

[8] and prove which properties hold when considering the
(

Ω
ΩΩΩ∞

)
and

(
Ω
OOO∞

)
selection

principles. Galvin and Miller investigated when the property of being a γ-set is

preserved. They proved γ-sets are preserved when intersected with Fσ-sets. First, we

remind the reader of the relevant definition.

Definition 2.1.

(a) The subset A ⊆ X is said to be an Fσ-set if it can be expressed as a countable

union of closed sets of X, that is, if there exist closed sets F1, F2, . . . in X such

that

A =
∞⋃
k=1

Fk.

(b) The subset B ⊆ X is said to be a Gδ-set if it can be expressed as a countable

intersection of open sets of X, that is, if there exist open sets G1, G2, . . . in X

such that

B =
∞⋂
k=1

Gk.

Theorem 2.1. [8] Suppose X is a γ-set and Y is a Fσ subset of X. Then, X ∩ Y is

a γ-set.

As
(

Ω
ΓΓΓ

)
=
(

Ω
ΓΓΓ∞

)
, we have the following.

Corollary 2.1. Suppose X satisfies
(

Ω
ΓΓΓ∞

)
and Y is a Fσ-set. Then, X ∩ Y satisfies(

Ω
ΓΓΓ∞

)
.
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We now show spaces satisfying
(

Ω
ΩΩΩ∞

)
or
(

Ω
OOO∞

)
have this property.

Theorem 2.2. Suppose X satisfies
(

Ω
OOO∞

)
and Y is an Fσ-subset of X. Then, Y

satisfies
(

Ω
OOO∞

)
.

Proof. Let Y =
⋃
n<ω Yn with Yn closed and Yn ⊆ Yn+1. Suppose U is an open

ω-cover of Y . Consider

V = {D ∪ (X \ Yn) : D ∈ U and n < ω}.

U is an open ω-cover of X. Therefore, there exists infinite Vn ⊆ U such that

{
⋂
n Vn : n < ω} covers X. The proof follows as Y ⊆ X. �

The proof of this result for spaces satisfying
(

Ω
ΩΩΩ∞

)
is similar and uses the following

observation. Note that if Y ⊆ X, where X and Y are nonempty sets, then any

ω-cover of X is an ω-cover of Y . Let U = {Un : n < ω} be an ω-cover of X. By

definition, X 6∈ U , X =
⋃
n Un, and each finite subset F ⊆ X is contained in some

Un ∈ U As Y ⊆ X, U covers Y . Furthermore, any finite subset of Y is in X, and

hence is contained in some Un ∈ U . This leads to the following result.

Theorem 2.3. Suppose X satisfies
(

Ω
ΩΩΩ∞

)
and Y is an Fσ-subset of X. Then, Y

satisfies
(

Ω
ΩΩΩ∞

)
.

The next property of γ-sets proved by Galvin and Miller in [8] was motivated by

results from [5] and [7] and focuses on sets of first category, also known as meager

sets.

Definition 2.2.

(a) A subset Y of a space X is of first category in X, or is meager in X, if it can

be written as the countable union of nowhere dense subsets of X.
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(b) A subset N of a space X is nowhere dense in X if there is no open, nonempty

set U of X in which N is dense, that is, for every nonempty open U ⊆ X, there

is an open V ⊆ U such that

N ∩ V = ∅.

It was shown in [5] and [7] under the assumption of Martin’s axiom that there

is a set of reals X of cardinality c with the property that the set X + Y has first

category for every set Y of first category. Sets satisfying this property are called

meager-additive.

Definition 2.3. A set X ⊆ R is meager-additive if for each meager subset M ⊆ R,

X +M is meager.

Galvin and Miller proved γ-set are meager-additive in [8]. We will prove a space

satisfying
(

Ω
OOO∞

)
is meager-additive. To show this, we need the following lemma and

its proof from [8]. [A]<ω will denote the set of all finite subsets of A.

Lemma 2.1. Suppose P is a compact nowhere dense set, F ∈ [R]<ω, and Ii is a

bounded interval for i < n. Then, there exists a finite union of intervals C with

F ⊆ C and intervals Ji with Ji ⊆ Ii for i < n such that

J̄i ∩ (C̄ + P ) = ∅.

Proof. Let Ci for i < ω be a decreasing finite union of intervals with F ⊆ Ci and⋂
i<ω Ci = F . Recall F is finite, so F+P will be closed and nowhere dense. Therefore,

there exists intervals Ji ⊆ Ii for i < n with

J i ∩ (F + P ) = ∅.

As (
⋂
m<ω Cm) + P =

⋂
m<ω(Cm + P ), it follows by compactness that there exists m
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for every i < n such that

J i ∩ (Cm + P ) = ∅. �

We come now to our result.

Theorem 2.4. If X satisfies
(

Ω
OOO∞

)
, then X is meager-additive.

Proof. Let X satisfy
(

Ω
OOO∞

)
and Y be a meager subset of R. We will show X + Y

is meager. It suffices to prove X + P is meager whenever P is a compact nowhere

dense set. Consider the set {In : n < ω} intervals In with rational endpoints. By the

previous lemma, let On be a family of open sets such that for all C ∈ On, there exists

an interval Jm ⊆ Im for m < n such that

Jm ∩ (C + P ) = ∅,

and On covers the n-element subsets of X. Next, let {xn : n < ω} be distinct elements

of X and let

U =
⋃
n

{C \ {xn} : C ∈ On}.

Then, U is an open ω-cover of X. Since X satisfies
(

Ω
OOO∞

)
, there exists infinite subsets

C1, C2, . . . Ci of U such that {
⋂
iCi : i < ω} covers X. We may assume Ci ∈ Oki ,

where the ki are distinct. By construction,
⋂
iCi + P is nowhere dense. Therefore,

X + P can be written as the union of countably many nowhere dense sets. �

2.2: The γ-Borel Conjecture

It is known that every γ-set has strong measure zero. In Chapter 1, we briefly

mentioned that Borel introduced the concept of strong measure zero sets of real

numbers in [3]. He conjectured that only countable sets of real numbers have strong

measure zero. This became known as the Borel conjecture. Laver later proved in [14]

the consistency of the Borel conjecture in 1976.
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Miller [17] used Hechler forcing, H and Laver forcing L to prove it is consistent

that every γ-set is countable while not every strong measure zero set is countable. In

fact, every set of reals of cardinality ℵ1 has strong measure zero in this model.

Miller’s motivation behind this idea originated from P. Szeptycki’s question of

whether or not it was possible to have a weak Borel cojecture, stating that every

γ-set is countable while the actual Borel conjecture is false. This became known as

the γ-Borel conjecture. We will now show a similar result holds for spaces satisfying(
Ω
OOO∞

)
.

Theorem 2.5. If H is iterated ω2 times with finite support over a model of CH, then

in the resulting model, every space satisfying
(

Ω
OOO∞

)
is countable and every set of reals

of cardinality ℵ1 has strong measure zero.

We are going to need two facts from [17] about Hechler forcing and its iteration

in order to prove theorem 2.5. First, we provide a brief definition and consequence of

Hechler forcing.

Definition 2.4. Let H = {(s, f) : s ∈ ω<ω, f ∈ ωω and s ⊆ f}, ordered by (t, g) ≤

(s, f) if s ⊆ t, let g dominate f everywhere, and let f(i) ≤ t(i) for all i ∈ |t| \ |s|. H

is called Hechler forcing.

Defining d =
⋃
{s : (s, f) ∈ G for some f ∈ ωω} yields a dominating real, where

G ⊆ D is a generic filter. A dominating real in a generic extension is a real y ∈ ωω

such that for all f ∈ V ∩ωω, f(n) ≤ y(n) for all n, where V denotes the von Neumann

universe.

Let AB denote the set of all functions f from A to B. [ω]ω denotes all the infinite

subsets of ω. For f ∈ ωω, define Uf to be the following family of clopen subsets of

2ω, the collection of functions from ω to {0, 1},

Uf = {CF : ∃n F ⊆ 2f(n), |F | ≤ n} where CF = {x ∈ 2ω : x � f(n) ∈ F}.
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Lemma 2.2. Suppose M is a model of set theory, f is H-generic over M , and X ⊆ 2ω

is in M . Then

M [f ] |= “∀C ∈ [Uf ]ω
∣∣∣⋂C ∩X

∣∣∣ ≤ ω.”

Definition 2.5. (aα ∈ [ω]ω : α < ω1) is eventually narrow if and only if for every

b ∈ [ω]ω there exists α < ω1 so that b \ aβ is infinite for all β > α.

Lemma 2.3. Suppose N is a model of set theory and

N |= (aα ∈ [ω]ω : α < ω1) is eventually narrow.

Then for any Gω2 which is Hω2 generic over N , we have that

N [Gω2 ] |= (aα ∈ [ω]ω : α < ω1) is eventually narrow.

Proof of Theorem 2.5. Since any space X satisfying
(

Ω
OOO∞

)
is zero-dimensional, as

any γ-set is zero-dimensional, we only have to consider uncountable Y ⊆ 2ω. Suppose

Y ⊆ 2ω is uncountable. We claim Y does not satisfy
(

Ω
OOO∞

)
in M [Gω2 ]. Let X ⊆ Y be

a subset of size ω1. Next, construct g : ω → ω so that for every n < ω

|{x � g(n) : x ∈ X}| > n.

By the usual ccc finite support arguments, find α > ω2 so that X, g ∈ M [Gα]. Let

h = hα be the next Hechler real added so that h(n) ≥ g(n) for all n. From the results

above, the set
⋂
C ∩X is countable for every infinite C ⊆ Uh, i.e.

N = M [Gα+1] |= ∀C ∈ [Uh]ω
⋂

C ∩X is countable.

As h(n) > g(n), there is no U ∈ Uh which covers X. By definition, Uh is an ω-cover

of 2ω and hence Y .

We claim Uh does not contain an O∞ cover. Since X is a subset of size ω1, let
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X = {Xα : α < ω1} and Uh = {Un : n < ω}. In the model N = M [Gα+1] define

aα = {n < ω : xα ∈ Un}.

Note that aα is the set of n’s for which xα is in Un. We now claim N |= (aα ∈

[ω]ω : α < ω1) is eventually narrow. By definition, (aα ∈ [ω]ω : α < ω1) is eventually

narrow if and only if for any b ∈ [ω]ω, there exists α < ω1 so that b \ aβ is infinite for

every β > α. If b \ aα is finite for uncountably many α < ω1, then for some infinite

subsequence c ⊆ b, the set

Z = {xα : c ⊆ aα}

is uncountable. However, this implies Z is in every Un for n ∈ c, that is, Z ⊆
⋂
{Un :

n ∈ c}. This contradicts Lemma 2.2. Therefore, N |= (aα ∈ [ω]ω : α < ω1) is

eventually narrow.

The tail of a finite iteration of H is itself a finite support iteration of H. By Lemma

2.3,

N [G[α+2,ω2)] = M [Gω2 ]

models that (aα : α < ω1) is eventually narrow. We claim Y does not satisfy
(

Ω
OOO∞

)
.

Suppose {
⋂
Un ∈ U : n ∈ b} is an open cover of X ⊆ Y . This means any member

of X is contained in every Un. However, this would imply for some infinite c ⊆ b,

X ∩
⋂
{Un : n ∈ c} is uncountable. Thus, c ⊆ aα as any member of c is in aα.

However, c ⊆ aα contradicts the fact that aα is eventually narrow. Therefore, Y does

not satisfy
(

Ω
OOO∞

)
. �

T. Eisworth noted every set reals of cardinality ℵ1 is in fact meager additive in

Miller’s model. This leads to the following.

Corollary 2.2. It is consistent that every space satisfying
(

Ω
OOO∞

)
is countable, but

every set of reals of size ℵ1 is meager additive.
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This shows that spaces satisfying
(

Ω
OOO∞

)
are theoretically a much smaller class than

meager additive sets, even though it is consistent that they coincide.

2.3: Results on Additivity

Unlike many other properties considered earlier, Galvin and Miller showed in [8]

it is consistent that neither the union nor the product of two γ-sets is a γ-set. They

utilized the following theorem from Todorčević and an extra result about Fσ and Gδ

sets to prove this result.

Theorem 2.6. Assuming �ω1 , there exists a γ-set of X of cardinality ω1 = c all of

whose subsets are also a γ-set.

The diamond principle �ω1 was used in this theorem to construct an Aronzajn

tree. This principle is due to Jensen in [12].

Theorem 2.7. Suppose A ⊆ X ⊆ [0, 1] and (X \A) ∪ (A+ 1) is a γ-set. Then A is

Gδ and Fσ in X.

Corollary 2.3. If X and Y are γ-sets, it is consistent assuming �ω1 that neither

X ∪ Y nor X × Y is necessarily a γ-set.

We now look at a generalization of Theorem 2.7 using γ∗-spaces.

Definition 2.6. We say that X is a γ∗-set if for any open ω-cover U of X, there are

infinite Un ⊆ U for n < ω such that

1. {
⋂
Un : n < ω} covers X, and

2. m 6= n implies Um ∩ Un 6= ∅.

Clearly a γ∗-set satisfies the
(

Ω
OOO∞

)
covering property by the first condition. We

claim γ-sets are γ∗-sets.
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Proof of Claim. Suppose X is a γ-set, let U be an open ω-cover of X, and let V ⊆ U

be a countable γ-subcover of U . Enumerate V bijectively as {Vn : n < ω}.

For each n < ω, let Un = {Vm : m > n}. The collection {Un : n < ω} satisfies the

conditions of definition 2.6. �

Therefore, γ∗-set are “in-between” γ-sets and spaces satisfying
(

Ω
OOO∞

)
, that is, γ ⇒

γ∗ ⇒
(

Ω
OOO∞

)
.

Notice that if we strengthen the second condition in the definition of γ∗-sets so

that the collection {Un : n < ω} has the finite intersection property instead of pairwise

non-empty intersections, then we end up with γ-sets. Choosing V to be a pseudo-

intersection for countably many Un yields a γ-subcover of U . It isn’t clear how γ∗-sets

are related to the
(

Ω
ΩΩΩ∞

)
covering property.

We now prove Theorem 2.7 for γ∗-spaces.

Theorem 2.8. Suppose A ⊆ X ⊆ [0, 1] and (X \A)∪ (A+ 1) is a γ∗-set. Then A is

Gδ and Fσ in X.

Proof. Let Y = (X \ A) ∪ (A + 1), F ⊆ Y be finite, and choose open subsets

CF and DF in [0, 1] with disjoint closures such that F ⊆ CF ∪ (DF + 1). Then,

U = CF ∪ (DF + 1) is an open ω-cover of Y .

Since Y is a γ∗-set, there exists finite Fm
n subsets of Y and infinite Un = {CFm

n
∪

(DFm
n

+ 1) : n < ω} ⊆ U for m < ω such that

1.
{⋂

(CFm
n
∪ (DFm

n
+ 1)) : n < ω

}
covers X, and

2. k 6= n implies Uk ∩ Un 6= ∅.

We claim X \ A =
⋃
m<ω

⋂
n<ω CFm

n
. Suppose x ∈ X \ A. Then choose m > ω

such that x ∈
⋂
n<ω(CFm

n
∪ (DFm

n
+ 1)). As x is not a member of any DFm

n
, it follows

that x ∈
⋂
n<ω CFm

n
⊆
⋂
n<ω CFm

n
.
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Conversely, suppose x ∈
⋃
m<ω

⋂
n<ω CFm

n
. We want to show x ∈ X \A. Suppose

otherwise, that is, x ∈ A. Then, there exists m∗ < ω such that x+ 1 ∈
⋂
n<ω(CFm∗

n
∪

(DFm∗
n

+ 1)). By the second condition, there exists n and n∗ such that CFm
n
∪ (DFm

n
+

1) = CFm∗
n∗
∪ (DFm∗

n∗
+ 1). This implies x ∈ DFm∗

n
However, x ∈ CFm

n
for all n <

ω. Thus, x 6∈ A. This claim shows A is Gδ in X. By a similar argument, A =⋃
m<ω

⋂
n<ωDFm

n
, which implies A is Fσ in X. �

This result leads to the existence two γ-spaces whose union is not a γ∗-space.

Corollary 2.4. If X and Y are γ-sets, it is consistent assuming �ω1 that neither

X ∪ Y nor X × Y is necessarily a γ∗-set.

We will we now prove spaces satisfying
(

Ω
OOO∞

)
are additive, that is, preserved under

finite unions.

Theorem 2.9. Suppose X and Y both satisfy
(

Ω
OOO∞

)
. Then, X ∪ Y satisfies

(
Ω
OOO∞

)
.

Proof. Let U = {Ui : i < ω} be an open ω-cover of X ∪ Y . By definition, U is an

ω-cover of both X and Y . Since X satisfies
(

Ω
OOO∞

)
, there are infinite Vx1 ,Vx2 , . . . ⊆ U

such that {
⋂
Vxn : n < ω} covers X. Similarly, there are infinite Vy1 ,V

y
2 , . . . ⊆ U such

that {
⋂
Vyn : n < ω} covers Y . Therefore, {

⋂
Vxn : n < ω} ∪ {

⋂
Vyn : n < ω} covers

X ∪ Y . Thus, X ∪ Y satisfies
(

Ω
OOO∞

)
. �

Note that the same proof establishes closure under countable unions. As a conse-

quence of this theorem, we can show it is consistent that spaces satisfying
(

Ω
OOO∞

)
need

not be γ∗ nor γ-sets assuming �ω1 .

Corollary 2.5. (�ω1) There exists a space X ⊆ R satisfying
(

Ω
OOO∞

)
, but not

(
Ω
ΓΓΓ

)
.

We will end the chapter by presenting a list of open questions from the results

mentioned in this section.
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Question 2.1. If both spaces X and Y satisfy
(

Ω
ΩΩΩ∞

)
, does X ∪ Y satisfy

(
Ω

ΩΩΩ∞

)
?

Question 2.2. If X and Y are γ-sets, does X ∪ Y satisfy
(

Ω
ΩΩΩ∞

)
?

Question 2.3. If X and Y both satisfy the
(

Ω
ΩΩΩ∞

)
selection principle, does X × Y

satisfy the
(

Ω
ΩΩΩ∞

)
selection principle?

We will later show that if X satisfies
(

Ω
ΩΩΩ∞

)
, then Xn satisfies

(
Ω

ΩΩΩ∞

)
for all n < ω.

Question 2.4. If X and Y both satisfy the
(

Ω
OOO∞

)
selection principle, does X × Y

satisfy the
(

Ω
OOO∞

)
selection principle? What can be said about Xn?

A positive answer to the first three questions, assuming CH, will prove the con-

sistency of Conjecture 1.1.
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CHAPTER 3: GENERAL FILTER

CHARACTERIZATIONS

3.1: ω-covers and Footprint Filters

Basic results for filters on ω will allow us to prove new results concerning the

selection principles mentioned in Conjecture 1.1.

Definition 3.1. A filter F on a nonempty set X is a nonempty collection of subsets

of X such that

1. ∅ 6∈ F ,

2. if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ,

3. if F ∈ F and F ⊆ A, then A ∈ F .

Recall the following basic definitions.

Definition 3.2.

(a) A base (filter base) for a filter F is a subfamily of F that contains subsets of

all the sets in F . In other words, a subfamily B of F is a base for F if for

every set F ∈ F , there is a set B ∈ B such that B ⊆ F .

(b) B is a sub-base for a filter F if B ⊆ F and every element of F contains a

finite intersection of sets from B.

(c) Let A be a family of subsets of X. We say A satisfies the finite intersection

property if every finite subfamily of A has a nonempty intersection.

Also recall the following properties.

Proposition 3.1.
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1. If B is a sub-base for a filter F , then the collection of all finite intersections of

elements of B is a base for F .

2. If B has the finite intersection property, then the collection of supersets of finite

intersections from B is a filter with B as a sub-base. If B is closed under finite

intersections, then B is a base for F .

Notice that conditions 1 and 2 of Definition 3.1 imply that a filter on a set satisfies

the finite intersection property. Conversely, any family of sets satisfying the finite

intersection property generates a filter. Throughout this chapter, when generating a

filter, we mean “as a sub-base.”

There is a natural relation between filters on ω and ω-covers on a set X. Let X

be an infinite set and let U be an ω-cover of X. By definition, U is countable and

X 6∈ U . As U is countable, we can enumerate it as 〈Un : n < ω〉. For x ∈ X, define:

Ax = {n < ω : x ∈ Un}.

Then, the family

{Ax : x ∈ X}

has the finite intersection property. To see this, consider a finite subfamily of {Ax : x ∈

X}, consisting of Ax1 , Ax2 , . . . , Axk for x1, x2, . . . xk ∈ X and k < n. The intersection

of this subfamily is the collection of n < ω such that every x1, x2, . . . xk is in Un. As

U is an ω-cover of X, such an n exists. Therefore, the intersection of this subfamily

is nonempty. As a result, A = {Ax : x ∈ X} generates a filter on ω.

F =

{
Y ⊆ ω :

⋂
i<n

Axi ⊆ Y for n < ω,Axi ∈ A , and xi ∈ X

}
.

Note that this depends on the enumeration of U , but different enumerations will

produce isomorphic filters.
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Definition 3.3. Let U = {Un : n < ω} be a countable ω-cover of the space X. The

footprint filter F (U) associated with U is the filter on ω generated by the collection

A = {Ax : x ∈ X} (as a sub-base).

We are going to use these ideas to investigate the spaces under consideration in

Conjecture 1.1. We will first need the notion of a pseudo-intersection of a family of

sets.

Definition 3.4. The quasi-order ⊆∗ on P(ω) is defined by A ⊆∗ B if A\B is finite .

A ⊆ ω is a pseudo-intersection of a filter F if A is infinite and A ⊆∗ F for each

F ∈ F .

γ-sets can be characterized using pseudo-intersections.

Theorem 3.1. The following are equivalent for a space X.

1. X is a γ-set.

2. for any open ω-cover U of X, the footprint filter F (U) has an infinite pseudo-

intersection.

Proof. (1 ⇒ 2). Suppose X is a γ-set. If U is a countable open ω-cover of X, then

there is a subset V of U such that V is a γ-cover of X. Generate the footprint filter

F (U) on ω from {Ax : x ∈ X} where Ax = {n < ω : x ∈ Un}. We claim F (U) has a

pseudo-intersection. Let Y ∈ F (U) and B = {m < ω : Um ∈ V}. B is infinite, as V

is infinite. For Un ∈ V , C = {n < ω : x 6∈ Un} is finite as V is a γ-cover of X. Recall,⋂
i<k Axi is the set of n < ω such that Un contains every xi for i < k. However, if

m ∈ C, then m 6∈
⋂
i<k Axi . Therefore, C 6⊆ Y , and B \ Y is finite.

(2 ⇒ 1). Let U = {Un : n < ω} be a countable open ω-cover of X. Suppose the

footprint filter F (U) has an infinite pseudo-intersection B. We claim {Un : n ∈ B}

is a γ-cover for X. For x ∈ X and sufficiently large n ∈ B, n ∈ Ax. Thus, x ∈ Un for

sufficiently large n, which proves the claim. �
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The
(

Ω
ΩΩΩ∞

)
and

(
Ω
OOO∞

)
selection principles can be characterized with the notion of a

π-base.

Definition 3.5. A π-base for B ⊆ [ω]ω is a family A ⊆ [ω]ω such that every set in

B has a subset in A .

We will be interested in case when B is a filter or filter base. The difference

between a π-base and a pseudo-intersection for a filter F and a base for F is that

a π-base need not be a subfamily of F . In particular, a π-base for a filter need not

have the finite intersection property.

Theorem 3.2. The following are equivalent for a space X.

1. X satisfies
(

Ω
ΩΩΩ∞

)
.

2. For any open ω-cover U of X, the footprint filter F (U) has a countable π-base.

Proof. (1⇒ 2). Suppose X satisfies
(

Ω
ΩΩΩ∞

)
and U = {Un : n < ω} is an open ω-cover

of X. By definition, there are infinite sets V1,V2, . . . ⊆ U such that {
⋂
Vn : n < ω}

is an ω-cover of X. Consider the footprint filter F (U) generated by {Ax : x ∈ X},

where Ax = {n < ω : x ∈ Un}. We will show F (U) has a countable π-base. Let

Bn = {m < ω : Um ∈ Vn}.

We claim there is an n such that Bn ⊆ Y for any Y ∈ F (U).

Bn is infinite as each Vn is infinite. Let Y ∈ F (U). Then for i < k < ω, there are

x1, x2, . . . xi ∈ X such that
⋂
i<k Axi ⊆ Y as {Ax : x ∈ X} has the finite intersection

property and generates F (U). It is given that {
⋂
Vn : n < ω} is an ω-cover of X,

so choose n such that {x1, x2, . . . xk} ⊆
⋂
Vn. Now, we claim Bn ⊆

⋂
i<k Axi . Recall,⋂

i<k Axi is the set of n < ω such that Un contains all the xi for i < k. If m ∈ Bn,

then m < ω such that Um ∈ Vn. However, {x1, x2, . . . xi} ⊆
⋂
Vn, so xi ∈ Um for
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i < k. Therefore, m ∈
⋂
i<k Axi , implying Bn ⊆

⋂
i<k Axi . Thus Bn ⊆ Y , and Bn is a

countable π-base for F (U).

(2 ⇒ 1). Let U = {Un : n < ω} be a countable open ω-cover of X and B =

{Bn : n < ω} be a countable π-base for the footprint filter F (U). Then, there exists

an n < ω such that Bn ⊆ Y for any Y ∈ F (U). Let {x1, x2, . . . xk}, k < n, be a

finite subset of X. It follows that Bn ⊆
⋂k
i=1Axi . Thus, for m ∈ Bn, xi ∈ Um for

all i ≤ k. Therefore, {x1, x2 . . . xk} ∈
⋂
m∈Bn

Um. The collection 〈Um : n < ω〉 where

Um = {Um : m ∈ Bn} will let X satisfy
(

Ω
ΩΩΩ∞

)
. �

Theorem 3.3. The following are equivalent for a space X.

1. X satisfies
(

Ω
OOO∞

)
.

2. for any open ω-cover U of X, the collection A = {Ax : x ∈ X} which generates

the footprint filter F (U) has a countable π-base.

Proof. (1 ⇒ 2). X satisfies
(

Ω
OOO∞

)
. Then for an open ω-cover U = {Un : n < ω} of

X, there are infinite sets V1,V2, . . . ⊆ U such that {
⋂
Vn : n < ω} is a cover of X.

As before, the family A = {Ax : x ∈ X}, where Ax = {n < ω : x ∈ Un}, generates

F (U). We claim A has a countable π-base. Let

Bn = {m < ω : Um ∈ Vn}.

Bn is infinite as each Vn is infinite. Suppose m ∈ Bn, then m < ω such that Um ∈ Vn.

However, since {
⋂
Vn : n < ω} covers X, {x1, x2, . . . xi} ⊆

⋂
Vn for xi ∈ X with

i < ω. Therefore, xi ∈ Um for i < ω, meaning m ∈ Axi . This implies Bn ⊆ A , and

hence A has a countable π-base.

(2 ⇒ 1). Let U = {Un : n < ω} be a countable open ω-cover of X and let

B = {Bn : n < ω} be a countable π-base for A . Then, for every A ∈ A , there

exists n < ω such that Bn ⊆ A. This implies for every x ∈ X, there is an n < ω
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such that Bn ⊆ Ax. Thus, x ∈ Um for every m ∈ Bn, that is, x ∈
⋂
m∈Bn

Um. Let

Un = {Um : m ∈ Bn}. The collection 〈Un : n < ω〉 will let X satisfy
(

Ω
OOO∞

)
. �

Note that if X =
⋃
iXi is a countable union and each Xi has a countable π-base

Bi, then
⋃
iBi is a countable π-base for X. This leads us to the following.

Proposition 3.2. The property
(

Ω
OOO∞

)
is countably-additive.

It is not known how the
⋂
∞(A ,B) selection principle is associated with filters

on ω.

Question 3.1. Is there a characterization of the
⋂
∞(Ω,B) selection principle for

B ∈ {ΓΓΓ,ΩΩΩ,OOO} using filters on ω?

3.2: Applications of Footprint Filters to
(

Ω
ΩΩΩ∞

)
-Spaces

We are going to use the ideas from Section 3.1 to answer some questions about

spaces satisfying
(

Ω
ΩΩΩ∞

)
.

Definition 3.6. A property P is linearly σ-additive if it is preserved by countable

increasing unions.

T. Orenshtein and Tsaban proved in [18] that the covering property Π(A ,ΩΩΩ)

is linearly σ-additive for all Π ∈ {S1, Sfin,Ufin} and A ∈ {Γ,Ω,O}. The classical

selection principles S1(O,O), S1(Γ,O), S1(Γ,Γ), Sfin(O,O), and Ufin(O,Ω) are each

linearly σ-additive. This was shown in [27].

The class of γ-sets were shown to be linearly σ-additive by F. Jordan [13] using

results about Fréchet filters, and Orenshtein and Tsaban [18] proved the linear σ-

additivity of the class of γ-sets directly from properties of selection principles. Thus,

the
(

Ω
ΓΓΓ∞

)
covering property is linearly σ-additive. We already established the

(
Ω
OOO∞

)
covering property is countably additive, implying it is linearly σ-additive. This leaves

the open question of the behavior of the
(

Ω
ΩΩΩ∞

)
covering property. We are able to prove

this covering property is linearly σ-additive.
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Theorem 3.4. The
(

Ω
ΩΩΩ∞

)
covering property is linearly σ-additive.

Proof. Let X =
⋃
iXi, where X1 ⊆ X2 ⊆ X3 ⊆ · · · and each Xi satisfies

(
Ω

ΩΩΩ∞

)
.

Suppose U is a countable open ω-cover for X. We may assume U is an open ω-cover

for each Xi. Then, there exists corresponding footprint filters Fi(U) on each Xi. By

assumption, Fi(U) has a countable π-base Bi. Therefore, Bi ⊆ Yi for any Yi ∈ Fi(U).

We claim the footprint filter F (U) on X will have a countable π-base. To see this,

notice that Fi(U) ⊆ Fi+1(U) as the union is increasing. Thus, F (U) =
⋃

Fi(U).

This is a filter as Fi(U) ⊆ Fi+1(U). We want to show there exists a countable

B ⊆ [ω]ω such that if Y ∈ F (U), then B ⊆ Y for some B ∈ B. Consider B =
⋃
i Bi.

If we assume Y ∈ F (U), then Y ∈ Fi(U) for some i < ω. Therefore, there exists

Bi ∈ B such that Bi ⊆ Y . �

We will now show how the filter characterizations can be used to prove results

about covering properties for the finite powers of a space. Tsaban proved the following

in [29].

Proposition 3.3. If all finite powers of X satisfy
(

Ω
OOO∞

)
, then X satisfies

(
Ω

ΩΩΩ∞

)
.

It was asked by Tsaban in [29] if the converse of this implication is provable. We

will provide a positive answer using filters.

Theorem 3.5. The following are equivalent for a separable metric space X.

1. X satisfies
(

Ω
ΩΩΩ∞

)
.

2. Xn satisfies
(

Ω
ΩΩΩ∞

)
for all n < ω.

3. Xn satisfies
(

Ω
OOO∞

)
for all n < ω.

Proof. (1⇒ 2). Assume X satisfies
(

Ω
ΩΩΩ∞

)
. We will show condition 2 holds for X×X.

Suppose U is a countable ω-cover of X ×X. We can assume U = {Un × Un : n < ω}

where Un is open in X.
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We claim {Un : n < ω} is an ω-cover of X. Let {xi : i < k}, where k < ω, be a

finite subset of X. Consider a finite subset {< xi, xi >: i < k} ⊆ X ×X. As U is an

ω-cover of X ×X, choose n < ω such that {< xi, xi >: i < k} ⊆ Un×Un. Therefore,

{xi : i < k} ⊆ Un as required.

Let U = {Un : n < ω} be an ω-cover of X and consider the corresponding

footprint filter F (U) on ω. As X satisfies
(

Ω
ΩΩΩ∞

)
, F (U) has a countable π-base. Let

{Bn : n < ω} be a π-base for F (U). Recall, given {xi : i < k} ⊆ X, there is an n

such that Bn ⊆
⋂
i<k Axi . Therefore, {xi : i < k} ⊆

⋂
m∈Bn

Um.

It follows that {Bn : n < ω} is a π-base for the footprint filter on X ×X. To see

this, consider a finite subset {〈xi, yi〉 : i < k} ⊆ X ×X. Let X0 = {xi : i < k} ∪ {yi :

i < k} ⊆ X. As Bn is a π-base for F (U), choose n < ω such that X0 ⊆
⋂
m∈Bm

Um.

Thus, {〈xi, yi〉 : i < k} ⊆ X0 ×X0 ⊆
⋂
m∈Bn

Um × Um.

Then, there is an n such that for all m ∈ Bn and for all i < k with 〈xi, yi〉 ∈

Um × Um, Bn ⊆
⋂
i<k A〈xi,yi〉. Therefore, Bn is a π-base for the footprint filter on

X ×X. Using induction on n yields the desired result.

(2⇒ 3). This holds as
(

Ω
ΩΩΩ∞

)
⇒
(

Ω
OOO∞

)
.

(3⇒ 1). [29] �

It is natural to ask for a characterization of those spaces X for which Xn satisfies(
Ω
OOO∞

)
, where n < ω is fixed. To do this, we need to introduce the concept of a π-base

of order n.

Definition 3.7. Let A be a centered subset of [ω]ω, that is, A has the finite inter-

section property. A set B ⊆ [ω]ω is a π-base of order n for A if for any n elements

{Ai : i < n}, there is a set B ∈ B such that

B ⊆
⋂
i<n

Ai.

Now we come to the promised characterization.
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Theorem 3.6. The following properties are equivalent for a separable metric space

X and n < ω.

1. Xn satisfies
(

Ω
OOO∞

)
.

2. For any countable open ω-cover U of X, there are infinite Um ⊆ U for m < ω

such that whenever F is an n-element subset of X, there is an m such that

F ⊆
⋂
Um.

3. For any countable open ω-cover U of X, {Ax : x ∈ X} has a countable π-base

of order n.

Proof. (3 ⇒ 2). Let U be a countable open cover of X and suppose the collection

{Ax : x ∈ X}, where Ax = {n < ω : x ∈ Un}, has a countable π-base of order n. This

implies there is an infinite set B ⊆ [ω]ω such that for any n elements {Axi : i < n} of

Ax, there is a B ∈ B such that

B ⊆
⋂
i<n

Axi .

Recall,
⋂
i<nAxi is the set of n < ω such that Un contains every xi for i < n.

Therefore, if m ∈ B, then
⋂
m∈B Um contains the finite subset {xi : i < n} of X.

(2 ⇒ 1). Let U be a countable ω-cover of Xn. We may assume U = {Uk ×

Uk × · · · × Uk : k < ω}, taking the product n times, where each Uk is open in X.

By condition 2, there are infinite Um ⊆ Uk for m < ω such that whenever F is an

j-element subset of X with j < ω, there is an m such that F ⊆
⋂
Um. Therefore,⋂

Um is an ω-cover of X, implying each X satisfies
(

Ω
ΩΩΩ∞

)
. By the previous lemma,

this is equivalent to Xn satisfying
(

Ω
OOO∞

)
.

(1⇒ 3). Suppose Xn satisfies
(

Ω
OOO∞

)
. Let U = {Ui : i < ω} be a countable ω-cover

of X. The collection {Un
i : i < ω} is an ω-cover of Xn. To see this, let {aj : j < k}

be a finite subset of Xn, where aj = {ajt : t < n} and k < ω. Since U is an ω-cover of
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X, there is an i < ω such that

{ajt : t < n, j < k} ⊆ Ui.

Note that, Un
i contains each aj.

The collection of sets {Ax : x ∈ X} has a countable π-base {Bn : n < ω} by the

initial assumption on Xn using filters. Given finite subset {xt : t < n} of X, we need

to show there is an i such that

Bi ⊆
⋂
i<n

Axt .

Let x = 〈xt : t < n〉 ∈ Xn. As Xn has a π-base, choose i such that

Bi ⊆ Ax.

Suppose m ∈ Bi. We need to show m ∈
⋂
i<nAxt , meaning every xt is in Um. This

automatically follows as x ∈ Un
m = Um × · · · × Um. �
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CHAPTER 4: CONSTRUCTING γγγ-SETS

We saw in Chapter 2 that there is an example of a space satisfying
(

Ω
OOO∞

)
that isn’t

a γ-space if we assume �ω1 . It is natural to ask if we can weaken this assumption

somewhat. We know that a “real” example of this phenomenon does not exist. The

next step is to try to construct a counterexample from assumptions about cardinal

characteristics of the continuum.

4.1: Cardinal Characteristics

We first recall a few cardinal characteristics of the continuum. In particular, p, b,

and t.

Definition 4.1. A family of countable sets had the strong finite intersection property

if every nonempty finite subfamily has an infinite intersection. The cardinal charac-

teristic p is the smallest cardinality of any family F ⊆ [ω]ω which has the strong

finite intersection property, but does not have a pseudo-intersection.

Notice that this means whenever X ⊆ [ω]ω has the strong finite intersection

property and |X| < p, then X has a pseudo-intersection.

Definition 4.2.

(a) ≤∗ is the quasi-ordering defined on ωω by f ≤∗ g if f(n) ≤ g(n) for all but

finitely many n < ω.

(b) B ⊆ ωω is unbounded if the set of all increasing enumerations of elements of B

is unbounded in ωω with respect to ≤∗.

(c) b is the minimal cardinality of a ≤∗-unbounded subset of ωω.

Definition 4.3. A tower of cardinality κ is a set T ⊆ [ω]ω which can be enumerated

bijectively as {xa : α < κ}, such that for all α < β < κ, xβ ⊆∗ xα. The cardinal

characteristic t is the smallest cardinality of a tower which has no pseudo-intersection.
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It is known that ℵ1 ≤ p ≤ t ≤ b ≤ c. In addition, M. Malliaris and S. Shelah

proved p = t in [15].

4.2: γ-Sets and Unbounded Towers

Let P be a nontrivial property of the set of reals. The critical cardinality of P ,

denoted non(P ), is the minimal cardinality of a set of reals not satisfying P . It is

naturally asked whether or not there is a set of reals of cardinality at least non(P )

which satisfies P , that is, a nontrivial example. It is known that non
((

Ω
ΓΓΓ

))
= p [8].

In other words, if |X| < p, then X is a γ-set.

Observe that if we want to construct a space satisfying
(

Ω
OOO∞

)
that isn’t a γ-set,

then we need to look at spaces of cardinality of at least p. We will turn our attention

to γ-sets.

Weakening the relations of the cardinal characteristics of the continuum has lead

to the existence of γ-sets. Galvin and Miller proved in [8] that p = c implies the

existence of a γ-set of cardinality p. We saw in the Hechler model from Miller,

see [17], that there are no uncountable γ-sets. In this model, ℵ1 = p = t < b.

Thus, p > ℵ1 implies the existence of uncountable γ-sets. Orenshtein and Tsaban

constructed a γ-set assuming p = t in [18]. We will introduce their construction,

prove slight modifications, and present new results.

Orenshtein and Tsaban considered the Cantor space equipped with the product

topology. The Cantor space {0, 1}ω is the space of all infinite sequences of 0’s and

1’s. The Cantor space can also be identified with P(ω) using characteristic functions.

This defines the topology of P(ω). The partition P(ω) = [ω]ω∪ [ω]<ω, into the infinite

and the finite sets, respectively, will be considered. These spaces are homeomorphic

to sets of reals.

The γ-set in question was constructed from an unbounded tower of cardinality p.

Definition 4.4. An unbounded tower of cardinality κ is an unbounded set T ⊆ [ω]ω
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which is a tower of cardinality κ.

The following results were used by Orenshtein and Tsaban in [18] to construct a

set of reals that is a γ-set. We present the proofs for the first two lemmas.

Lemma 4.1. (Folklore). If B ⊆ [ω]ω is unbounded, then for each increasing f ∈ ωω,

there is an x ∈ B such that x ∩ (f(n), f(n+ 1)) = ∅ for infinitely many n.

Proof. Assume otherwise, that is, there is an increasing f ∈ ωω such that for every

x ∈ B, x ∩ (f(n), f(n+ 1)) 6= ∅. Let g dominate all the functions fm(n) = f(n+m)

for m < ω. This means f(n + m) ≤ g(n) for all but finitely many n. Then, for each

x ∈ B, x ≤∗ g. To see why this is true, let m be such that for all n ≥ m,

x ∩ (f(n), f(n+ 1)) 6= ∅.

We can choose such an m by assumption. For each n, the nth element of x is smaller

than fm+1(n) = f(n + m + 1) = f((n + 1) + m), as f(x) ≤ x ≤ f(n + 1). Thus, x

is smaller than fm+1(n) which is dominated by g. This implies B is not unbounded,

leading to a contradiction. �.

Lemma 4.2. t = b if and only if there is an unbounded tower of cardinality t.

Proof. (⇒). Let t = b. We will construct an unbounded tower xα by induction on

α and show it has cardinality t.

Let {bα : α < b} ⊆ [ω]ω be an unbounded tower of cardinality b by the inductive

hypothesis. At step α, let a be a pseudo-intersection of {xβ : β < α}. Choose the

pseudo-intersection of this set as b = t and anything smaller than α has a pseudo-

intersection. Furthermore, take xα ⊆ a, which is in the pseudo-intersection of xβ,

such that the increasing enumeration of xα dominates bα.

(⇐). Suppose there is an unbounded tower T of cardinality t. It is known that

t ≤ b. Since T is unbounded, |T | ≥ b. Furthermore, by assumption, |T | = t.

Therefore t ≤ b ≤ |T | = t, implying t = b.



54

Lemma 4.3. Suppose [ω]<ω ⊆ X ⊆ P(ω) and U is an ω-cover of X. Then, there are

m1 < m2 < . . . and distinct U1, U2, . . . ∈ U such that {Un : n < ω} is a γ-cover of X

and for each x ⊆ ω, if x ∩ (mn,mn+1) = ∅ then x ∈ Un.

Corollary 4.1. Suppose [ω]<ω ⊆ X ⊆ P(ω) and X satisfies
(

Ω
ΓΓΓ

)
. Then for each

ω-cover U of X, there are m1 < m2 < . . . and distinct U1, U2, . . . ∈ U such that

{Un : n < ω} is a γ-cover of X and for each x ⊆ ω, if x∩ (mn,mn+1) = ∅ then x ∈ Un.

Orenshtein’s and Tsaban’s main result is as follows. Recall, S1(Ω,ΓΓΓ) =
(

Ω
ΓΓΓ

)
.

Theorem 4.1. If T ⊆ [ω]ω is an unbounded tower of cardinality p, then T ∪ [ω]<ω

satisfies S1(Ω,ΓΓΓ).

We will construct a γ-set by modifying the initial assumption of Theorem 4.1 and

modifying Lemma 4.1.

Lemma 4.4. Suppose T = {xα : α < κ} ⊆ [ω]ω is an unbounded tower. Then

for every increasing f : ω → ω and for all sufficiently large α < κ, it follows that

xα ∩ (f(n), f(n+ 1)) = ∅ for infinitely many n.

Theorem 4.2. Let T = {xα : α < κ} ⊆ [ω]ω, where κ is regular, T is an unbounded

tower, and {xβ : β < α} is a γ-set for each α < κ. Then, T ∪ [ω]<ω is a γ-set.

Proof. Let T = {xα : α < κ} such that κ is regular and {xβ : β < α} is a γ-set

for each α < κ. For each α, let Xα = {xβ : β < α} ∪ [ω]<ω. Let U be a ω-cover of

T ∪ [ω]<ω. We will show U contains a γ-subcover of T ∪ [ω]<ω.

We may assume U is countable. As κ is regular, there is an α1 < κ such that Xα1

is not contained in any member of U .

By assumption, Xα1 is a γ-set. By Lemma 4.3, since U is an γ-cover of Xα1 , there

are m1
1 < m1

2 < . . . and distinct U1
1 , U

1
2 , . . . ∈ U such that {U1

n : n < ω} is a γ-cover

of Xα1 , and for each x ∈ P(ω), if x ∩ (m1
n,m

1
n+1) = ∅, then x ∈ U1

n. Let D1 = ω.
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The set {xα : α1 < α < κ} is unbounded. By Lemma 4.1, there is α2 > α1 such

that D2 = {n : xα2 ∩ (m1
n,m

1
n+1) = ∅} is infinite. By our initial assumption, Xα2 is

a γ-set. As U is an ω-cover of Xα2 , Corollary 4.1 implies there are m2
1 < m2

2 < . . .

and distinct U2
1 , U

2
2 , . . . ∈ U such that {U2

n : n < ω} is a γ-cover of Xα2 , and for each

x ∈ P(ω), if x ∩ (m2
n,m

2
n+1) = ∅, then x ∈ U2

n. Furthermore, {U2
n : n ∈ D2} is a

γ-cover of Xα2 since D2 is infinite.

Continuing in the same manner, define for each k > 1, objects αk, Dk, and

{Uk
i : i < ω} such that:

(1) αk > αk−1;

(2) Dk = {n : xαk
∩ (mk−1

n ,mk−1
n+1) = ∅} is infinite;

(3) mk
1 < mk

2 < . . .;

(4) Uk
1 , U

l
2, · · · ∈ U are distinct;

(5) {Uk
n : n ∈ Dk} is a γ-cover of Xαk

;

(6) for each x ∈ P(ω), if x ∩ (mk
n,m

k
n+1) = ∅, then x ∈ Uk

n .

Let α = supk αk. Note that, Xα =
⋃
kXαk

is a countable increasing union. By

our initial assumption, since Xα is a γ-set, it also satisfies S1(Γ,Γ). Therefore, by

Lemma 2.9 in [18], there are infinite I1 ⊆ D1, I2 ⊆ D2, . . . such that each x ∈ Xα

belongs to
⋂
n∈Ik U

k
n for all but finitely many k < ω.

Take n1 ∈ I2. For k > 1 take nk ∈ Ik+1 such that

• mk
nk
> mk−1

nk−1+1,

• xα ∩ (mk
nk
,mk

nk+1) ⊆ xαk+1
∩ (mk

nk
,mk

nk+1), and

• Uk
nk
6∈ {U1

n, . . . U
k−1
nk−1
}.
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We claim {Uk
nk

: k < ω} is a γ-cover of T ∪ [ω]<ω. As {Uk
nk

: k < ω} is already a

γ-cover of Xα, it remains to show that for each x ⊆∗ xα, x ∈ Uk
nk

for all but finitely

many k. For each large enough k, mk
nk

is large enough so that

xα ∩ (mk
nk
,mk

nk+1) ⊆ xα ∩ (mk
nk
,mk

nk+1)

⊆ xαk+1
∩ (mk

nk
,mk

nk+1)

= ∅.

since nk ∈ Dk+1. Thus, x ∈ Uk
nk

. �

It is not known what will happen if the initial segments satisfy
(

Ω
OOO∞

)
.

Question 4.1. Let T = {xα : α < κ} ⊆ [ω]ω, where κ is regular, T is an unbounded

tower, and {xβ : β < α} satisfies
(

Ω
OOO∞

)
for each α < κ. What can be said about

T ∪ [ω]<ω?

Question 4.2. Can unbounded towers be used to construct a set X satisfying
(

Ω
ΩΩΩ∞

)
or
(

Ω
OOO∞

)
?

We have noted earlier that �ω1 implies the existence of two γ-sets whose union is

not a γ-set. p = b is currently the weakest assumption known to produce γ-sets. We

will now show that the union of two unbounded towers also produces a γ-set.

Proposition 4.1. Let T0 and T1 be unbounded towers of cardinality p. Then, T0 ∪

T1 ∪ [ω]<ω is a γ-set.

Proof. Let Ti for i ∈ {0, 1} be an unbounded tower of cardinality p. This is equivalent

to p = b. Let

Ti = {xiα : α < b}

be an unbounded tower for i ∈ {0, 1}. Furthermore, for each α, let

Xα = {x0
β : β < α} ∪ {x1

β : β < α} ∪ [ω]<ω.



57

As |Xα| < p, Xα is a γ-set for each α. Let U be a countable ω-cover of T0∪T1∪ [ω]<ω.

We need to show U has a γ-subcover.

Choose α1 such that Xα1 is not is not contained in any member of U . This will

guarantee that U is a ω-cover for each α ≥ α1 as U contains only finitely many subsets

of Xα.

Now, there are m1
1 < m1

2 < · · · and distinct U1
1 , U

1
2 , . . . ∈ U such that {U1

n : n < ω}

is a γ-cover of Xα1 and x ∩ (m1
n,m

1
n+1) = ∅ implies x ∈ U1

n. We will show there is

α2 > α1 such that

{n < ω : x0
α2
∩ (m1

n,m
1
n+1) = ∅ and x1

α2
∩ (m1

n,m
1
n+1) = ∅}

is infinite.

Since T0 is unbounded, choose β > α1 such that

{n : x0
β ∩ (m1

n,m
1
n+1) = ∅}

is infinite. Next, define g such that for each m < ω, there is an n such that g(m) <

m1
n < m1

n+1 < g(m+ 1) and

x0
β ∩ (m1

n,m
1
n+1) = ∅.

Since g is increasing and T1 is unbounded, we can choose α2 > β such that

x1
α2
∩ (g(m), g(m+ 1)) = ∅

for infinitely many m. Suppose x1
α2
∩ (g(m), g(m + 1)) = ∅ and x0

α2
\ x0

β ⊆ g(m).

Furthermore, choose n such that (m1
n,m

1
n+1) ⊆ (g(m), g(m+1)) and x0

β∩(m1
n,m

1
n+1) =

∅. It follows there are infinitely many n such that both

x0
α2
∩ (m1

n,m
1
n+1) = ∅ and x1

α2
∩ (m1

n,m
1
n+1) = ∅.

The remainder of the proof is similar to the proof of Theorem 4.2. Letting D1 = ω
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and D2 = {n : x0
α2
∩ (m1

n,m
1
n+1) = ∅ and x1

α2
∩ (m1

n,m
1
n+1) = ∅}, which is infinite,

continue in the same manner and define elements with the following properties for

each k > 1.

(1) αk > αk−1;

(2) Dk = {n : x0
αk
∩ (mk−1

n ,mk−1
n+1) = ∅ and x1

αk
∩ (mk−1

n ,mk−1
n+1) = ∅} is infinite;

(3) mk
1 < mk

2 < . . .;

(4) Uk
1 , U

k
2 , · · · ∈ U are distinct;

(5) {Uk
n : n ∈ Dk} is a γ-cover of Xαk

;

(6) for each x ∈ P(ω), if x ∩ (mk
n,m

k
n+1) = ∅, then x ∈ Uk

n .

Let α = supk αk. Since cf(b) > ω, α < b. Furthermore, Xα =
⋃
kXαk

is a

countable increasing union. By the initial assumption, since Xαk
is a γ-set, it also

satisfies S1(Γ,Γ). Therefore, there are infinite I1 ⊆ D1, I2,⊆ D2, . . . such that each

x ∈ Xα belongs to
⋂
n∈Ik U

k
n for all but finitely many k < ω.

Take n1 ∈ I2. For k > 1 take nk ∈ Ik+1 such that

• mk
nk
> mk−1

nk−1+1,

• x0
α ∩ (mk

nk
,mk

nk+1) ⊆ x0
αk+1
∩ (mk

nk
,mk

nk+1),

• x1
α ∩ (mk

nk
,mk

nk+1) ⊆ x1
αk+1
∩ (mk

nk
,mk

nk+1), and

• Uk
nk
6∈ {U1

n, . . . U
k−1
nk−1
}.

We will show {Uk
nk

: k < ω} is a γ-cover of T ∪ [ω]<ω. Since {Uk
nk

: k < ω} is

already a γ-cover of Xα, it remains to show that for each x ⊆∗ xα, x ∈ Uk
nk

for all but
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finitely many k. For each large enough k, mk
nk

is large enough so that

xα ∩ (mk
nk
,mk

nk+1) ⊆ (x0
α ∪ x1

α) ∩ (mk
nk
,mk

nk+1)

⊆ (x0
αk+1
∪ x1

αk+1
) ∩ (mk

nk
,mk

nk+1)

= ∅

as nk ∈ Dk+1. Thus, x ∈ Uk
nk

. �
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CHAPTER 5: ωωω-SHRINKABLE ωωω-COVERS

In this chapter, we will focus on the
(

A
B∞

)
selection principle using a different class

of covers and show how it is related to selection principles mentioned in Conjecture

1.1. We will also present new results related to the
(

A
B∞

)
selection principle and the

Pytkeev property.

5.1: Consequences of the Pytkeev Property

Tsaban’s motivation behind studying the
(

A
B∞

)
selection principle originated from

M. Sakai’s results in [21] about the Pytkeev property in the function space Cp(X).

Recall, for a space X, Cp(X) denotes the space of all real-valued continuous functions

on X with the topology of pointwise convergence. Basic open sets of Cp(X) are of

the form

[x1, x2, . . . , xk;U1, U2, . . . , Uk] = {f ∈ Cp(X) : f(xi) ∈ Ui, i = 1, 2, . . . , k},

where xi ∈ X and each Ui is an open subset of the real line.

It is well-known that there are relationships between properties of X and Cp(X),

see [1]. In [21], Sakai characterized the Pytkeev property of Cp(X) in terms of X.

Definition 5.1.

(a) For a space X and x ∈ X, a family N of subsets of X is called a π-network at

x if every neighborhood of x contains some element of N .

(b) A space X is called a Pytkeev space if x ∈ A\A and A ⊆ X imply the existence

of a countable π-network at x of infinite subsets of A

Sakai proved for a Tychonoff space X, Cp(X) has the Pytkeev property if and

only if X satisfies a particular
(

A
B∞

)
selection principle. This selection principle uses

ω-shrinkable ω-covers.
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Definition 5.2. An open ω-cover U of X is ω-shrinkable if there exists a closed

ω-cover {C(U) : U ∈ U} with C(U) ⊆ U for every U ∈ U .

Note some of the sets C(U) may be empty. We will use Ω̃ to denote the family of all

open ω-shrinkable ω covers, and we can now state Sakai’s main result.

Theorem 5.1. For a Tychonof space X, Cp(X) is a Pytkeev space if and only X

satisfies
(

Ω̃
ΩΩΩ∞

)
.

It is unknown whether or not the ω-shrinkable condition can be removed.

Question 5.1. For a Tychonof space X, is Cp(X) a Pytkeev space if and only X

satisfies
(

Ω
ΩΩΩ∞

)
?

Sakai also proved the
(

Ω̃
ΩΩΩ∞

)
covering property is linearly σ-additive in [21]. We

will present the proof.

Theorem 5.2.
(

Ω̃
ΩΩΩ∞

)
is linearly σ-additive.

Proof. Let X =
⋃
iXi, where X1 ⊆ X2 ⊆ X3 · · · and each Xn satisfies

(
Ω̃

ΩΩΩ∞

)
. Fur-

thermore, let U be an ω-shrinkable open ω-cover of X.

Consider the set Vn = {U ∩ Xn : U ∈ C}. By definition, Vn is a ω-shrinkable

open ω-cover of Xn. Ruling out the trivial case, assume the set {n < ω : Xn ∈ Vn}

is infinite. Then, there are sequences n0 < n1 < · · · and U0, U1, · · · ∈ U such that

Xni
⊆ Ui, i < ω. Since U is non-trivial, {Ui : i < ω} is infinite. Let Ui = {Un : n ≥ i}

for each i < ω. Then, Ui is infinite and {
⋂
Ui}i<ω is a ω-cover of X. Thus, arriving

at the desired result. Therefore, without loss of generality, we may assume that each

Vn is non-trivial.

As each Xn satisfies
(

Ω̃
ΩΩΩ∞

)
for n < ω, take a sequence {Vnm}m<ω of subfamiles of

Vn such that Vnm is infinite and {
⋂
Vnm}m<ω is an ω-cover of Xn.
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Next, take a subfamily Unm ⊆ U such that Vnm = {Unm ∩Xn : Unm ∈ Unm}. The

collection {Unm : n,m < ω} is infinite since U is non-trivial, and an ω-cover of X

since {
⋂
Vnm}m<ω is an ω-cover of Xn. �

The
(

Ω̃
Π∞

)
selection principle for Π ∈ {ΓΓΓ,ΩΩΩ,OOO} relates nicely to the selection

principles in (1.1). The monotonicity laws and the fact that Ω̃ ⊆ Ω leads to the

following.

Corollary 5.1. For Π ∈ {ΓΓΓ,ΩΩΩ,OOO},(
Ω

Π∞

)
⇒
(

Ω̃

Π∞

)
.

It is unknown whether or not this implication can be reversed.

Question 5.2. Does
(

Ω
Π∞

)
⇐
(

Ω̃
Π∞

)
for Π ∈ {ΓΓΓ,ΩΩΩ,OOO}?

There is also a similar result and question when considering γ-sets.

Corollary 5.2.
(

Ω
ΓΓΓ

)
⇒
(

Ω̃
ΓΓΓ

)
.

Question 5.3. Does
(

Ω
ΓΓΓ

)
⇐
(

Ω̃
ΓΓΓ

)
?

It also follows that a γ-set satisfies the
(

Ω̃
ΩΩΩ∞

)
selection principle. Let U be a ω-

shrinkable non-trivial open ω-cover of a γ-set X. Shrinkable implies for each U ∈ U ,

there is a closed set C(U) of X such that C(U) ⊆ U and C = {C(U) : U ∈ U}

is an ω-cover of X. As X is a γ-set, C has a γ-subcover. Therefore, there exists a

subcover {C(Uj)}j∈ω with X =
⋃
j∈ω{

⋂
m≥j C(Uj)}. As U is non-trivial, this yields a

ΩΩΩ∞-subcover of U .

This result can also be shown using the relations in (1.1) and the previous corollary

as
(

Ω
ΓΓΓ

)
=
(

Ω
ΓΓΓ∞

)
⇒
(

Ω
ΩΩΩ∞

)
⇒
(

Ω̃
ΩΩΩ∞

)
.

It is unknown whether or not this implication can be reversed.

Question 5.4. Does
(

Ω
ΓΓΓ

)
⇐
(

Ω̃
ΩΩΩ∞

)
?
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One way to partially answer the questions mentioned in this chapter is to deter-

mine which conditions guarantee that an open ω-cover is ω-shrinkable. Sakai proved

in [21] that the Menger property, Sfin(O,OOO), is associated with ω-shrinkable covers.

Theorem 5.3. Let X be a space such that each finite power of X has the Menger

property. Then, every open ω-cover of X is ω-shrinkable.

Furthermore, there is an interesting equivalence in [27].

Theorem 5.4. For a space X, the following are equivalent:

1. Every finite power of X has the Menger property.

2. X satisfies Sfin(Ω,ΩΩΩ).

Therefore, if it is assumed that X satisfies Sfin(Ω,ΩΩΩ), then every open ω-cover of

X is ω-shrinkable. Thus, questions 5.2 and 5.3 are positively answered under this

assumption.

In chapter 2, we saw it was consistent that any setX satisfying
(

Ω
ΓΓΓ∞

)
,
(

Ω
OOO∞

)
, or

(
Ω

ΩΩΩ∞

)
is countable. In [28] Miller proved if X ⊆ R and Cp(X) has the Pytkeev property,

then X has strong measure zero. Furthermore, it is consistent that there are no

uncountable strong measure zero sets. Therefore, we have the following consistency

result for the
(

Ω̃
ΩΩΩ∞

)
selection principle.

Corollary 5.3. It is consistent that every set X satisfying
(

Ω̃
ΩΩΩ∞

)
is countable.

Not much is known about the finite union nor product of sets satisfying
(

Ω̃
ΩΩΩ∞

)
.

Question 5.5. If X and Y both satisfy
(

Ω̃
ΩΩΩ∞

)
, does X ∪ Y satisfy

(
Ω̃

ΩΩΩ∞

)
?

Question 5.6. If X and Y both satisfy
(

Ω̃
ΩΩΩ∞

)
, does X × Y satisfy

(
Ω̃

ΩΩΩ∞

)
?
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The
(

Ω̃
ΩΩΩ∞

)
selection principle can also be used to reverse some of the implications in

Figure 5.1. This diagram is slightly modified from our previous Scheepers diagram.

As mentioned Lemma 1.3, we can replace Ufin(Γ,ΓΓΓ) with Ufin(O,ΓΓΓ) and Ufin(Γ,ΩΩΩ)

with Ufin(O,ΩΩΩ).

( )1
Ω,ΓS

( )fin
O,ΓU

( )1
Γ,ΓS

( )1
Ω,ΩS ( )1

O O,S

( )1
Γ,ΩS

( )fin
Ω,ΩS

( )fin
O O,S

( )1
OΓ,S

( )fin
Γ,ΩS

( )fin
O,Ω�U

Figure 5.1: Modified Scheepers Diagram

Tsaban and Zdomskyy utilized several combinatorial results to prove the following

theorem in [31].

Theorem 5.5. If Cp(X) has the Pytkeev property and X satisfies Ufin(O,ΩΩΩ), then

X satisfies Ufin(O,ΓΓΓ) as well as S1(O,OOO)

The following is an immediate consequence of Theorems 5.1 and 5.5.

Corollary 5.4. Suppose X satisfies the
(

Ω̃
ΩΩΩ∞

)
, then

1. Ufin(O,ΓΓΓ)⇐ Ufin(O,ΩΩΩ), and

2. S1(O,OOO)⇐ Ufin(O,ΩΩΩ).

Question 5.7. Can other implications in Figure 5.1 be reversed using the
(

Ω̃
ΩΩΩ∞

)
selection principle?
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One can also ask if assuming
(

Ω̃
ΩΩΩ∞

)
will reverse the implications for the newer

selection principles in (1.1).

Question 5.8. Can any of the implications in (1.1) be reversed assuming
(

Ω̃
ΩΩΩ∞

)
?

It is unknown whether or not we can prove the consistency of Conjecture 1.1

assuming CH. A positive answer to Question 5.8 will at least allow us to prove there

exists such spaces mentioned in Conjecture 1.1 if we assume
(

Ω̃
ΩΩΩ∞

)
instead of CH.
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CHAPTER 6: RESULTS CONCERNING FILTERS ON ωωω

We were unable to prove the consistency of both items in Conjecture 1.1, but

we were able to prove new results about the selections principles considered in the

conjecture. We will revisit these properties and the open questions asked in the

previous chapters to develop new results and open questions concerning filters on ω.

6.1: Properties and Open Questions

It is consistent that the union of two γ-sets need not be a γ-set. Using the filter

characterizations, this means if we have two filters F1 and F2 on ω, each having a

pseudo-intersection, then the filter generated by F1 ∪F2 is not guaranteed to have

a pseudo-intersection. We will given an example illustrating why the union is not

guaranteed to have a pseudo-intersection. First, recall the following definitions.

Definition 6.1.

(a) A filter F is an ultrafilter on X if for any A ⊆ X, either A ∈ F or X \A ∈ F .

(b) An ultrafilter on X is non-principle if it contains no finite subsets of X. In

other words, it contains only infinite subsets of X

Unlike filters on ω, it is impossible for a non-principle ultrafilter on ω to have an

infinite pseudo-intersection.

Lemma 6.1. No non-principle ultrafilter on ω has a pseudo-intersection.

Proof. Let F be a non-principle ultrafilter on ω. Assume F has a pseudo-intersection

P ∈ [ω]ω. Then, P \ F is finite for every F ∈ F . Since F is an ultrafilter on ω,

either P ∈ F or ω \ P ∈ F . However, P \ (ω \ P ) = P is infinite, so ω \ P 6∈ F .

Therefore, P ∈ F .

Consider a set G such that both G and ω \G contain infinitely many elements of

P . Then, either G ∈ F or ω \ G ∈ F . If G ∈ F , then P \ G is finite, which is a
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contradiction. If ω \ G ∈ F , then P \ (ω \ G) = P ∩ G is finite, leading to another

contradiction. Thus F cannot have a pseudo-intersection. �

We now present an example of two filters having a pseudo-intersection such that

the filter generated by the their union does not have a pseudo-intersection.

Define the filters F1 and F2 as follows. Let X ∈ F1 if and only if X contains

cofinitely many even numbers and U -many odd numbers, where U is a non-principle

ultrafilter. Let F2 be the cofinite filter on the evens.

F1 has a pseudo-intersection, namely the evens. F2 has the same pseudo-intersection.

Furthermore, the filter generated by F1 ∪F2 has the finite intersection property, as

it generates F2.

Next, define F3 to be the cofinite filter on the odds. F3 has a pseudo-intersection,

namely the odds. However, the filter generated by F1 ∪F3 generates the ultrafilter

U , which does not have a pseudo-intersection.

To guarantee the filter generated by the union does has a pseudo-intersection, we

need the notion of “ez” filters.

Definition 6.2.

(a) Given a collection B of subsets of ω, we denote by B+ the collection of sets in

ω which have nonempty intersection with each member of B. That is,

B+ = {S ⊆ ω : S ∩ T = ∅,∀T ∈ B}.

(b) We say a filter F on ω is ez if every F + set has a pseudo-intersection.

Lemma 6.2. Let X be a γ-set, U = {Un : n < ω} be an ω-cover of X, and F be the

footprint filter associated with U on ω. B ⊆ ω is in F + if and only if {Un : n ∈ B}

is an ω-cover.
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Proof. Suppose B ⊂ ω is in F +. Then B has a nonempty intersection with every

F ∈ F . Recall,

F =

{
Y ⊆ ω :

⋂
i<n

Axi ⊆ Y for n < ω,Axi ∈ A , and xi ∈ X

}
,

where A = {Ax : x ∈ X} and Ax = {n < ω : x ∈ Un}. This means for any F ∈ F ,⋂
i<nAxi ⊆ F . Note that

⋂
i<nAxi is the set of n < ω such that {x1, x2, . . . xi} ⊆ Un.

Since B ∩ F 6= ∅, there exists an n < ω such that {Un : n ∈ B} is an ω-cover of X.

To prove the reverse implication, let {Un : n ∈ B} be an ω-cover of X. Then,

{xi : i < k} is contained in some Un for n ∈ B. This implies
⋂
i<nAxi ⊆ B. As

F =
{
Y ⊆ ω :

⋂
i<nAxi ⊆ Y for n < ω

}
, B and any F ∈ F would have a nonempty

intersection. Therefore, B ∈ F +. �

Given a γ-set X and a countable ω-cover U of X, the footprint filter associated

with U on ω is always ez. Recall, being a γ-set means the footprint filter F has

a pseudo-intersection. By the previous lemma, a set B is in F + if and only if

{Un : n ∈ B} is an ω-cover ofX. AsX is a γ-set, there is a γ-subcover of {Un : n ∈ B}.

Representing γ-sets using filters, it follows F + would have a pseudo-intersection. This

leads us to the following.

Corollary 6.1. Any filter on ω generated by fewer than p sets is ez.

Recall, F1 and F3 each had a pseudo-intersection, but the filter generated by

F1 ∪ F3 did not. Furthermore, these filters were not ez. Adding the condition

that two filters are ez will guarantee the union generated by both filters will have a

pseudo-intersection. As ez filters are relevant to γ-sets, this emphasizes why this kind

of pathology does not happen with γ-sets.

It is also worth noting that ez filters share a connection with certain topological

spaces.
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Definition 6.3. A space X is called Fréchet-Urysohn space (FU-space) if for each

x ∈ X such that x is in the closure of A, there is a sequence in A converging to x.

Given a filter F on ω, we obtain a natural topological space XF defined as follows:

1. The underlying set of XF is ω ∪ {∞}.

2. Points in ω are isolated.

3. The neighborhoods of the point at infinity are given by elements of the filter,

that is, a basic open neighborhood of ∞ is given by U ∪ {∞} where U ⊆ ω is

in F .

It follows that a subset A of ω will “pick up” ∞ in its closure if and only if A is

positive with respect to F . Furthermore, P ⊆ ω is a pseudo-intersection for F if

and only if P converges to {∞} in the usual sense. Therefore, F is ez if and only if

the topological space XF is a FU-space.

Recall, it is consistent that the product of two γ-sets need not be a γ-set. It is

not known which conditions need to be placed on the footprint filters in order for the

filter generated by the product to have a pseudo-intersection.

Question 6.1. Suppose F1 and F2 are filters on ω, each having a pseudo-intersection.

Under what conditions would the filter generated by F1×F2 have a pseudo-intersection?

We will now revisit open questions from the previous chapters using filters on ω.

It is not known whether or not the union or product of two spaces satisfying
(

Ω
ΩΩΩ∞

)
also satisfies

(
Ω

ΩΩΩ∞

)
. Furthermore, it is not known if the

(
Ω
OOO∞

)
property is preserved

under finite products. This leads to the following open questions for filters on ω.

Question 6.2. Suppose F1 and F2 are filters on ω such that each filter has a count-

able π-base. Does the filter generated by F1 ∪ F2 or F1 × F2 have a countable
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π-base? If the answer is negative, then which conditions would provide a positive

solution?

Question 6.3. Suppose A1 and A2 generate the filters F1 and F2, respectively, on

ω. Furthermore, suppose both A1 and A2 have a countable π-base. Does A1 × A2

have a countable π-base? Which conditions will provide a positive solution?

We do know however that the union of two spaces satisfying
(

Ω
OOO∞

)
also satisfies(

Ω
OOO∞

)
. This means if F1 and F2 are filters generated by A1 and A2 on ω, then A1∪A2

has a countable π-base.

It is also unclear whether or not the union of two γ-sets satisfies
(

Ω
ΩΩΩ∞

)
.

Question 6.4. Suppose F1 and F2 are filters on ω, each having a pseudo-intersection.

Does the filter generated by F1 ∪F2 have a countable π-base? If not, then under

which conditions does it have a countable π-base?

We will now outline our results on linear σ-additivity using filters. Consider

the filter on ω generated by F =
⋃
n Fn with filters F1 ⊆ F2 ⊆ F3 . . . on ω.

Furthermore, let A =
⋃
n An with A1 ⊆ A2 ⊆ A3 . . ., where An generates Fn for

each n. We have the following.

1. If each filter Fn has a pseudo-intersection, then the filter generated by F has

a pseudo-intersection.

2. If each filter Fn has a countable π-base, then the filter generated by F has a

countable π-base.

3. If each generating set An has a countable π-base, then A has a countable

π-base.

We also proved the covering property
(

Ω
ΩΩΩ∞

)
is preserved under finite powers. It was

shown that the
(

Ω
ΓΓΓ

)
selection principle is preserved under finite powers by Scheepers,



71

Just, Miller, and Szeptycki in [27]. It is unknown if the covering property
(

Ω
OOO∞

)
is

preserved under finite powers.

Below is a table summarizing the known results and open questions for filters on

ω.

Table 6.1: Closure Properties for Filters on ω

Fin. Unions Inc. Unions Fin. Products Fin. Powers
Filter has a pseudo-
intersection

No Yes No Yes

Filter has a count-
able π-base

? Yes ? Yes

Generating set has a
countable π-base

Yes Yes ? ?
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