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ABSTRACT 

LIU, XI, Ph.D., December 2015, Mechanical and Systems Engineering 

Semi-parametric Bayesian Inference of Accelerated Life Test Using Dirichlet Process 

Mixture Model (100 pp.) 

Director of Dissertation: Tao Yuan 

Accelerated life testing (ALT) is commonly used to estimate the reliability of 

highly reliable products. This dissertation develops statistical models to predict useful life 

of nano devices with data collected under constant-stress ALT and step-stress ALT. As 

an example of nano devices, nc-MoOx embedded ZrHfO high-k dielectric thin film is 

studied with respect to its physical properties, failure mechanisms, and long-term 

stability. The devices used for ALT and reliability prediction demonstration have 

identical structure with this nc-MoOx embedded device. 

This research develops a semi-parametric Bayesian method to analyze ALT. The 

model assumes a log-linear lifetime-stress relationship, without assuming any parametric 

form of the failure-time distribution. The Dirichlet Weibull mixture model is employed to 

model the failure-time distribution under a given stress level. The model is fitted with a 

simulation-based algorithm, which implements Gibbs sampling to analyze ALT data and 

predicts the failure-time distribution at a normal stress level.  

Two practical examples related to the reliability of nanoelectronic devices are 

presented for constant-stress ALT, including one right-censored data and one complete 

data set. One right-censored practical example is demonstrated for simple step-stress 
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ALT. All three examples illustrate the capability of the proposed methodology to provide 

accurate prediction of the failure-time distribution at a normal stress level. 
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CHAPTER 1: INTRODUCTION 

 
1.1 Motivation and Objective 

For the purpose of increasing competitive advantages, decreasing costs, and 

satisfying increasing customer expectations, manufacturers strive to design and produce 

highly reliable products. Consequently, the studies of reliability data analysis have been 

promoted. Quantitative methods to predict and assess product reliability are required to 

improve reliability of existing products and ensure the high reliability of new products [1]. 

The data obtained from life tests are commonly supplied to statistical method for 

reliability estimation [2]. Conventional lifetime data analysis assumes the failure time 

following certain parametric distributions such as exponential, Weibull, or log-normal 

and estimates the parameters of the distributions [3]. However, in some situations it may 

be difficult to choose the appropriate parametric model. For example, modern complex 

products may involve multiple failure modes and therefore simple lifetime distributions 

are not adequate to describe their failure mechanisms. For some new technologies such as 

nanotechnology, the failure mechanisms have not been well understood. Therefore, more 

flexible nonparametric methods are needed. In recent years, the development of Markov 

chain Monte Carlo (MCMC) methods for simulation-based implementation and analysis 

assures the feasibility of nonparametric data analysis [4].  

This dissertation aims to assess the reliability under normal stress levels based on 

ALT using Bayesian models involving Dirichlet process mixture Models (DPMM). Both 

constant-stress ALT and step-stress ALT are studied in this work. The rest of this chapter 
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provides a brief background introduction of reliability and related functions, ALT, 

acceleration models, step-stress ALT, and commonly used estimation methods.  

1.2  Reliability and Related Functions 

The reliability is the probability that a system or component can perform its 

function under operation conditions for a specified period of time. It can be 

mathematically presented as: 

                                                    R(t) = Pr{T ≥ t},                                                         (1.1) 

where T is a random variable denoting the time to failure of a non-repairable device or 

the time to the first failure of a repairable device, and R(t) is called the reliability function 

of the failure-time distribution. 

 Denote F(t) as the cumulative distribution function (CDF) of the failure-time 

distribution, which is the probability that the lifetime is less than t, i.e., 

                                              F(t)= 1-R(t) = Pr{T <t}.                                                    (1.2) 

If the CDF is a continuous function of t, a third function defined by the derivative 

of F(t) is used to describe the shape of the failure-time distribution. It is called the 

probability density function (PDF), and can be expressed as: 

                                             ,)()()(
dt

tdR
dt

tdFtf                                                      (1.3) 

where f(t) is a non-negative function.  

Taking Weibull failure-time distribution as an example, its PDF, CDF, and 

reliability function can be written as: 

                      








 



 
 tttf exp)( 1 ,                                                   (1.4) 
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 



 tt
edttttF  








                                   (1.5) 

and              .)(1)( /tetFtR                                                     (1.6) 

where  and  are the shape and scale parameters, respectively. 

Figure 1.1 graphically shows these three functions when the time to failure 

follows the Weibull distribution with the shape parameter = 1.5 and the scale parameter 

= 7.  

 

 
Figure 1.1. The reliability function, CDF and PDF of the Weibull distribution with= 

1.5 and= 7. 

 

Another important function, the failure rate or hazard rate function, is used to 

provide an instantaneous failure rate, which can be denoted as:  

                                      .
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)(
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)()(lim)(

0 tR
tf

tTt
tFttFth

t








                                           (1.7) 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50
Time to Failure 

R(t)
F(t)
f(t)



  14 
   
When h(t) is an increasing, constant, or decreasing function, the failure rate can be 

described as increasing (IFR),  constant (CFR), or decreasing (DFR), respectively [5]. 

The mean time to failure (MTTF) and the median time to failure are commonly 

used as measures of the center of a failure-time distribution. The MTTF is the average 

length of time until failure, and can be defined as the expected value of T, i.e., 

                                    .)()()(MTTF
00 


 dttRdtttfTE                                       (1.8) 

For a given value of p[0, 1], if tp satisfies 

                                                        F(tp) = p,                                                                 (1.9) 

then tp is called the pth percentile of the lifetime distribution, which means 100p% of the 

failures occur before time tp. If p=0.5, then t0.5 is the median time to failure. When the 

distribution is highly skewed, the median is preferentially used as the measure of the 

center location of a distribution. The median, t0.5, as well as the lower and upper 25% 

percentiles, t0.25 and t0.75, respectively, are important characteristics of a lifetime 

distribution. 

1.3  Accelerated Life Testing 

Reliability life testing is carried out to obtain failure information for the purpose 

of quantifying reliability [5]. Highly reliable products, such as electronic devices, usually 

have long lifetimes. Therefore, only very few failures can be obtained within reasonable 

time period under actual operating condition and it is difficult to obtain adequate failure-

time data for statistical methods. One approach to solve this problem is to use ALT, in 

which the units are placed under higher than operational stress conditions to speed up the 

failure occurrence [2]. Classical stress includes voltage, current, humidity, temperature, 
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pressure, cycling rate or load [6]. Then the failure-time data collected at elevated stress 

levels are analyzed and extrapolated to predict the reliability at the normal stress level 

through an acceleration model. ALT is based on the fundamental principles that the unit 

under test will have the same failure mechanisms in a short time at a high stress level as it 

exhibits in a longer time at a lower stress level [7]. Figure 1.2 shows the basic concept of 

an ALT estimation which uses lifetime data collected from a four-level single-stress test 

to estimate mean life under normal stress. The variable xi denotes the stress level with x0 

representing the normal stress. According to Dasgupta and Pecht [8], there are four 

categories of failure mechanisms: stress-strength, damage-endurance, challenge-response, 

and tolerance-requirement. The ALT is the most appropriate with the damage-endurance 

failure and some cases of tolerance-requirement failure [7].  

 

 

Figure 1.2. Accelerated life testing concept. 

 

The constant-stress ALT and the step-stress ALT are the two typical types of 

accelerated life testing. In constant-stress ALT each single unit is placed only under one 
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higher than normal stress level, while the step-stress ALT (SSALT) allows several stress 

levels. 

1.4  Acceleration Model 

One difficulty of ALT data analysis is how to predict the reliabilities of units at 

the normal stress level from the failure-time data under higher stress levels. Basically, a 

functional relationship called the acceleration function is applied to describe the 

relationship between the lifetimes and the stress conditions [6]. The log-linear model 

which assumes the log-linear relation for the lifetime is widely used, it can be expressed 

as: 

mmxbxba  ...ln 11 ,                                              (1.10) 

where denotes the stress related characteristic,  and x1,…,xm  denote the stress factors 

(or proper transformation of them). The log-linear model is used because it is simple and 

can be transformed from many other relationships. 

 For example, when the temperature primarily contributes to the failures, the 

Arrhenius model is commonly used: 

                                                        

,exp









KT
EAr a                                                  (1.11) 

where  r is the reaction or process rate, A is constant, Ea represents the activation energy 

in electron volts, T is the absolute temperature(˚K), and K is the Boltzmann’s constant, a 

known physical constant equals to 8.617×10-5 (eV/˚K) [9]. This equation can be 

transformed to the log-linear model as lnr = lnA-(Ea/K) (1/T) with x=1/T. 
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 The generalized Eyring model is applicable for failures related to two types of 

stresses, one thermal and one nonthermal stress. The simplest form of Eyring model can 

be presented as: 

                                     

,)(expexp
















 s

T
CB

KT
E

ATr a                                      (1.12) 

where  r is the process rate, A, , B, and C are constants, Ea is the activation energy, T is 

the absolute temperature(˚K), K is the Boltzmann’s constant, and s is the second stress 

[10]. When =0 and C=0, this equation can be transformed to the log-linear model as 

BsTKEAr a  )/1)(/(lnln with x1=1/T and x2=s. 

The E-model can be used to study the time-dependent dielectric breakdown of 

gate dielectric thin films where the stress is the electrical field. The E-model is expressed 

as: 

                                      ,)(exp EEG bdLL                                            (1.13) 

where L and GL are unknown, temperature-dependent constants, E is the applied 

electrical field, and Ebd is the field above which breakdown occurs immediately [11]. The 

E-model can also be expressed as a log-linear function ln=lnL + )( EEG bdL  . 

 In this study, the log-linear acceleration model will be used and the details will be 

introduced in section 5.1.1. 

1.5  Step-Stress Accelerated Life Testing 

  Step-stress accelerated life testing (SSALT) can further ensure enough failures 

within reasonable time period by testing the units through more than one level of stress. 

In the SSALT, the stress levels change (usually increase) at pre-specified times (time-step 
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stress ALT) or after pre-specified numbers of failures (failure-step stress ALT). A test 

with only one change of stress is called a simple step-stress ALT, while a test with several 

stress changes is called a multiple step-stress ALT [6]. The number of failures in the time-

step stress ALT is random at each level of stress. The time duration of each level of stress 

in the failure-step stress ALT is also random. If the test ends at a pre-specified time, it is 

called type-I censoring; if the test ends when a pre-specified number of failures has 

achieved, it is called type-II censoring. Figure 1.3 shows a multi-SSALT with four 

stresses and type-I censoring. The test ends at a pre-specified time tc. All units that have 

not failed by tc are censored. The xi’s and i’s are the stress levels and stress changing 

times, respectively. 

 In order to analyze SSALT data, a model describing the effect of changing stress 

is needed. Nelson [12] proposed the cumulative exposure model, which assumes that “the 

remaining life of specimens depends only on the current cumulative fraction failed and 

current stress- regardless of how the fraction accumulated.” 

 

Time

St
re

ss
 L

ev
el

x1

x2

1 tc

x3

x4

2 3

 
Figure 1.3. Step-stress accelerated life testing. 
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 Denote Fi as the CDF of the failure-time distribution under stress xi, Fi under a 

step-stress pattern expressed by the cumulative exposure model can be written as: 

                              
























,),(
...
...

,),(
,),(
,0),(

)( 32223

21112

11

0

ttF

tutF
tutF
ttF

tF

mm 







                                        (1.14)

 

where τi is the time of changing the stress from the ith stress level to the (i+1)th stress 

level, Fi(t) is the CDF under the ith stress level, and ui is the solution of  

Fi+1(ui) =Fi(τi- τi-1 + ui-1). 

 This dissertation studies the simple SSALT with two stress levels and assumes the 

failure-time distribution under each stress level following a Dirichlet process mixture 

model with Weibull kernel. The details of inference will be given in Chapter 6. 

1.6 Commonly Used Estimation Method 

The commonly used data estimation method for ALT analysis can be classified as 

parametrical and non-parametrical, depending on if there are parameters assumed in the 

model. Two widely applied parametric estimation groups are Maximum Likelihood 

Estimation and parametrical Bayesian estimation. While commonly used nonparametric 

estimation methods for ALT analysis are empirical method and nonparametrical Bayesian 

Inference. In addition, the Dirichlet Process Mixture Model is a popular nonparametric 

Bayesian estimation method frequently cited in literature.  
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1.6.1 Parametric method 

 The parametric method is one approach to performing ALT model inference. The 

parametric inference assumes the lifetime distribution under each stress level comes from 

the same parametric family and is preassigned with a theoretical distribution such as 

Weibull, exponential, or log-normal distribution. After that an acceleration model is 

chosen and the parameters are estimated. The Maximum Likelihood Estimation (MLE) is 

one of the most widely used parametric estimation method to estimate the model 

parameters given the sample data. Given n failure-time data t = (t1… tn) collected from 

the test, the point estimator of parameters are obtained by maximizing the likelihood 

function L(|t): 

                                              
),()|(

1
i

n

i
i tLL ΘtΘ 



 ,                                                   (1.15) 

where Li is the likelihood contribution of the ith observation and  is the parameter 

vector to be estimated. For the complete data set, Li = f(ti |), and for rightly censored 

data, Li = R(t*), where t* is the censored time. The logarithm of likelihood function (log-

likelihood function) instead of the likelihood function is usually maximized for 

computational convenience. In general, the maximum likelihood estimator is obtained by 

solving the following sets of equations: 

                                                  
,0),(ln

,0),(ln 1
1











t

t

k
k

L

L







                                                      (1.16) 

where k is the number of parameters, and  is the estimated parameters. 
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 The MLE method assumes unknown parameters as fixed. Therefore, in order to 

obtain precise estimation, a large sample size and accurate model assumptions are 

required. Another parametric approach to conducting ALT model inference, Bayesian 

inference, has been applied. Bayesian inference assumes the parameters are random and 

describes the uncertainties by a joint prior distribution. The prior distribution is 

formulated before data collection and is based on the historical data or experts’ opinions. 

The main advantage of Bayesian inference is the ability of combining the collected data 

with any related information available for reliability analysis, which can relax the sample 

size limitation. The Bayesian data analysis estimates parameters using the posterior 

distribution f(|t), which is obtained by incorporating its prior distribution f() and the 

likelihood function of data L(). The prior distribution is updated after the data is 

collected according to the Bayes’ theorem: 

                                           

,
)(

)()|()(
t

ΘtΘtΘ
f

fLf 

                                               

     (1.17) 

 where 

                                              

,)()|()(  ΘtΘt fLf                                                     (1.18) 

which is called the preposterior marginal distribution of t. 

 In many practical problems which are complex and involve more than one 

parameter, multiple levels of integration are necessary in Bayesian inference. Mostly 

these integrations are analytically intractable and therefore numerical methods are used 

instead. For example, the Markov chain Monte Carlo (MCMC) simulation has been 

widely used for numerical integrations. Generally, it “simulates a Markov chain in such a 
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way that the stationary distribution of the chain is the posterior distribution of the 

parameters,” and then uses the simulated data to compute Bayes estimation [13]. The 

Gibbs sampling, which is usually applied when it is difficult to directly sample from 

multivariate probability distribution is a type of MCMC simulation that is particularly 

useful in high dimensional problems. For example, when samples from f(1,  2|t) are 

needed, and it is difficult to sample directly from their marginal distributions )( 1 tf  and 

)( 2 tf , their conditional distributions  ),( 21  tf  and ),( 12  tf  are sampled instead in 

each iteration. When the number of iterations is sufficiently large, the samples obtained 

from conditional distributions can be regarded as simulated observations sampled from 

their marginal distributions. In this study, the Gibbs sampling will be applied in the semi-

parametric Bayesian methods for simulating posterior distributions. 

 Generally, the parametric reliability analysis is performed by fitting the lifetime 

data with a suitable parametric model. Usually, a failure distribution with parameter(s)  

is assigned and then  is estimated based on the observed data. Some commonly used 

failure-time distributions are Weibull, exponential, or log-normal probability distribution.  

In the accelerated life testing, an acceleration relationship is also selected and then the 

parameters are estimated.  

1.6.2 Nonparametric Bayesian method 

The accuracy of conventional parametric estimation is based on the parametric 

assumptions that are assigned to the data, that is, the particular parametric family of 

distributions assumed. However, the failure mechanism of some products may be 

unknown and may involve multiple modes or steps which are impossible to model using 
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a simple lifetime distribution. Therefore, more flexible methods-nonparametric methods 

have been developed.  

One class of nonparametric methods is empirical, which have no restrictive 

assumptions on the lifetime distributions and derive the reliability properties such as PDF 

and CDF directly from the data. Some commonly used empirical methods include 

Kaplan-Meier estimator and Median rank, which are shown in equations (1.19) and 

(1.20), respectively. 

                                                     

,)11()(ˆ
:





ttj jj

n
tR

                                                 

(1.19) 

where tj is the ordered failure times and nj is the number remaining at risk just prior to the 

jth failure. 

                                                       

,
4.0
3.0)(ˆ






n
itF i

                                                    

(1.20) 

where i is the ith ordered failure and n is the sample size. 

The nonparametric Bayesian inference is another group of nonparametric methods 

which has been proposed to estimate a probability distribution. The nonparametric 

Bayesian methods in the practical use are actually probability models with infinitely 

many parameters on function spaces [14]. In ALT analysis, the failure-time data under 

each stress level is not suggested by any standard model. Therefore it is distribution-free. 

Generally, a prior distribution on the class of all distribution functions is placed and the 

posterior distribution on the class of all distribution functions is obtained from data. The 

prior distributions for the underlying distribution functions constitute a stochastic 

process. 
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There are many nonparametric Bayesian methods for different applications, 

including Gaussian process (GP), spline models and DPMM, etc. [14]. These methods are 

widely used in statistical inference problems, such as density estimation, regression, and 

clustering. In this study, the DPMM is proposed to be used to estimate the ALT data. 

Although the nonparametric methods are more flexible, when both parametric and 

nonparametric methods are applicable for a problem, the parametric method is preferred 

because of its efficiency and computational convenience [3]. 

1.6.3 Dirichlet process mixture model 

The Dirichlet Process (DP) is “by far the most popular nonparametric model in 

the literature” [14]. The DP prior which was formally developed by Ferguson [15] is the 

first prior defined for spaces of distribution functions [16]. It fulfilled two desirable 

properties of prior distribution for nonparametric problems: large support of the prior 

distribution and analytically manageable posterior distributions [15]. 

The foundation of Dirichlet process is the Dirichlet distribution. Defining the 

probabilities of n discrete space = {1,...,n} are Θ= {θ1,…,θn}, i.e. p(X=i) = θi. Then 

the PDF of Dirichlet distribution can be defined as: 
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where B(y) is the normalizing constant expressed in terms of gamma function: 

                                                      .
)(

)(
)(

1

1













 n

i
i

n

i
i

y

y
yB                                                    (1.22) 



  25 
   
Denote  i iy as the concentration parameter of and m = {m1, …, mn}=xi/ as the 

base measure, the Dirichlet distribution can be expressed as: 
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The concentration parameter shows how much the probability would be concentrated 

around m. When n=2, the Dirichlet distribution reduces to a Beta distribution.  

 The Dirichlet process can be regarded as the extension of the Dirichlet 

distribution to continuous spaces, which includes two parameters: a positive scalar 

parameter M and a probability base measure G0. The base distribution G0 is where the 

nonparametric distributions are centered and usually represents the prior belief [17]. The 

concentration parameter M indicates the degree of concentration of the distribution 

around G0. The greater the M, the more samples from Dirichlet process are concentrated 

around G0 [18]. Therefore, the distribution function G with a DP prior can be written as 

[19]: 

                                                 G ~ DP(G0).                                                             (1.24) 

It is worth noting that although the Dirichlet process is defined over a continuous space, it 

is still discrete, as it consists of countably infinite point probability mass.  

Understanding the format of a mixture model is a necessary step before 

understanding DPMM. Given the observation of n independent random variables v1, v2,…, 

vn, generated from a population with unknown PDF k(v), a parametric mixture model 

with k components can be written as [20]: 
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where k(v|) is a parametric kernel with parameter vector , and the mixing proportions 

0<j<1 satisfy 1 j . Define a latent allocation variable zi as the group to which the 

observation vi belongs and zi is supposed to be drawn independently from the distribution 

[21]: 

                                                .,...,1,)( kjjzp ji                                              (1.26) 

The hierarchical form of the parametric mixture model can be written as: 

                                        vi | zi    ~    )(
izivk θ , i = 1, 2, 3, …n, 

                                              θj     ~   G0(),  j = 1, 2, 3, …k,                                        (1.27) 

                                              zi    ~   Multinomial(), i = 1, 2, 3, …n, 

    ~   Dirichlet (/k,…, /k), 

where  is concentration parameter of Dirichlet distribution. In this model, all θj’s are 

assumed to come from a common distribution G0()  and the mixing proportion  is 

assigned as a Dirichlet prior. When k→∞, the Dirichlet distribution becomes the Dirichlet 

process, and the parametric mixture model becomes the Dirichlet process mixture model 

given by: 

                                            vi | θi     ~    k(vi | θi), i = 1, 2, 3, …,n, 

                                               θi      ~    G(), i = 1, 2, 3, …,n,                                     (1.28) 

                                            G()     ~     DP(G0). 

In the DPMM, the parameter vector i'sare assumed to be from a common distribution 

function G() with a DP prior. The unknown PDF f(t) modeled by the DPMM can be 

expressed as: 
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                                                  .)()|()(  θθ dGvkvf                                                 (1.29) 

The behavior of the DPMM is affected by the choice of the kernel distribution k. Many 

common distributions have been applied in the DPMM, such as DP Gaussian mixture 

model (DPGMM), DP exponential mixture model (DPEMM), and DP Weibull mixture 

model (DPWMM). In this study, the DPWMM is applied for ALT analysis. 

1.7 Nanocrystals Embedded High-k Device 

The ALT data which are analyzed in this study are the failure times of 

nanocrystals embedded high-k devices collected at Thin Film Nano & Microelectronics 

Research Laboratory, Texas A&M University. 

When the metal–oxide–semiconductor field-effect transistor (MOSFET) is scaled 

down to the nano scale to satisfy the requirements of technology development, the 

thickness of the silicon dioxide (SiO2) gate dielectric layer has to be reduced drastically. 

This degrades the device performance and reliability [22]. One effective solution is to use 

a high dielectric constant (high-k) film to replace SiO2. The high-k films have also been 

used in memory devices [23]. The conventional poly-Si floating-gate nonvolatile memory 

(NVM) device contains a continuous poly-Si layer in the SiO2 gate dielectric as the 

charge-trapping medium. Therefore, a single leakage path in the tunneling oxide may 

quickly drain all the charges. The nanocrystals embedded dielectric structure can solve 

this problem because the nanodots are isolated from each other by the surrounding 

dielectric materials. Therefore, a single leakage path can only drain charges stored in one 

or a few dots locally [24]. Various conductive and semiconductive materials, such as Si, 

ITO, ZnO, and MoOx have been prepared into the nanocrystalline form and embedded in 
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high-k films as electron- or hole-trapping media [23], [25]–[27]. Figure 1.4 shows a 

cross-sectional view of a general single-layer nanocrystals embedded ZrHfO capacitor. 

The reliability of this kind of device has not been well studied, which is important to the 

practical applications. The time-dependent dielectric breakdown refers to  damage-

endurance failures [7] and therefore ALT can be applied for obtaining the failure data of 

dielectric devices.  In this study, the failure-time data of this kind of device are applied in 

the DPMM for reliability analysis. 

 

Al Gate

Interface Layer
p-Si

ZrHfO high-k

nanocrystals

 
Figure 1.4. Cross-sectional view of nanocrystals embedded ZrHfO capacitor. 

 

1.8  Dissertation Overview  

The balance of this dissertation is organized as the following: Chapter 2 reviews 

previous research on inference of accelerated life testing and Dirichlet process mixture 

model; Chapter 3 describes the notations and assumptions, as well as the problem solved 

in this study; Chapter 4 introduces the nano-crystals embedded sample investigated in the 

research; Chapter 5 studies the constant-stress ALT; Chapter 6 investigates the step-stress 

ALT; and finally, Chapter 7 concludes the dissertation. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews previous research on ALT inference, including constant-

stress ALT and step-stress ALT. The review of Dirichlet process mixture model is also 

summarized.  

2.1 Inference of Constant-Stress Accelerated Life Testing 

 A traditional parametric approach to develop the inference on constant-stress ALT 

requires two assumptions. Firstly, the failure-time distribution under each stress level is 

assumed to come from the same parametric distribution family. For example, it is typical 

to assume that a failure-time distribution is from a location-scale family, such as 

exponential, Weibull, log-normal or normal. Secondly, an acceleration relationship called 

the “time transformation function” such as the Arrhenius and Eyring law is assumed to 

relate the parameters of the distributions under various stress levels. A semi-parametric 

ALT analysis usually relaxes one of these two assumptions and has been applied widely 

in literature.  

2.1.1 Parametric estimation of constant-stress ALT 

The ALT assuming various time transformation functions and failure-time 

distributions have been analyzed with different parametric estimation methods in 

literature. 

Singpurwalla et al. [28], Kahn [29] and Barbosa and Louzada-Neto [30] used 

Least Squares Estimation for the ALT. Singpurwalla et al. [28] handled the censored data 

using Erying model with normal failure-time distribution. The authors defined a linear 

model for the parameters in Erying model and estimated the parameters using Least 
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Square Estimation. Kahn [29] followed the approach of  Singpurwalla et al. [28] and used 

the inverse power law with an exponential, rather than normal failure-time distribution. 

Barbosa and Louzada-Neto [30] estimated the mean lifetime of the units under working 

conditions. The censored data was handled. The authors assumed a Weibull distribution 

for lifetime, and a log-linear relationship as the time transformation function. The point 

estimation of parameters was obtained with Iteratively Reweighted Least Squares 

Algorithm and the interval estimation was obtained with MLE.  

Whitman [31], Abdel-Ghaly et al. [32], Watkins [33], [34], Glaser [35], Hirose 

[36], and Newby [37] applied ML method to estimate the parameters. Whitman [31] 

assumed the failure-time distribution to be log-normal and used the Arrhenius model for 

the median time to failure as the time transformation function. The author estimated the 

parameters in the Arrhenius model and the median time to failure at a certain stress, and 

also provided their confidence intervals. Both complete data set and data with censoring 

have been modeled. Abdel-Ghaly et al. [32] estimated the data with type-II censoring, 

assuming a 3-parameter Pareto failure-time distribution and inverse power law as the 

time transformation function. The authors predicted the value of the shape parameter as 

well as the reliability function at a mission time under operating condition. Watkins [33], 

[34] fitted Weibull distribution to ALT data. Watkins [33] assumed power-law model and 

dealt with a complete data set. The common shape parameter of Weibull distribution and 

parameters of power-law model were estimated. The ML estimators were obtained by 

Newton-Raphson iterative method. Watkins [34] specified a log-linear relationship to 

describe the scale parameter of Weibull distribution. The author fitted data with 
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censoring and estimated parameters with Newton’s method. Glaser [35] estimated a 

Weibull ALT model. Both scale and shape parameters were expressed as functions of the 

testing environment, while in most cases, the shape parameter was assumed to be 

constant. Besides complete data and censored data, this paper also handled grouped data 

by introducing a status indicator. Hirose [36] developed a Weibull inverse power law 

including a threshold stress considering type-I censoring. The authors considered both 

scenarios of common shape parameter and stress-related shape parameters. Newby [37] 

introduced a generalized treatment of AFT model using general shape, scale and location 

parameter families of distributions. The Arrhenius model was assumed in the paper. 

 Mazzuchi and Soyer [38] and Mazzuchi [39] did Bayesian inference for the ALT 

model with power-law transformation function. Mazzuchi and Soyer [38] assumed an 

exponential lifetime distribution. The author rewrote the power-law function by taking 

logarithm and then set up a linear model. The Linear Bayesian Approach was used to 

solve the model. Mazzuchi [39] presented a Bayesian procedure for inference assuming 

Weibull failure-time distribution. The procedure was based on the General Linear Model 

set up by “linearizing” the time transformation function and then it employed Linear 

Bayesian Approach to produce computable results.  

Bai and Chung [40] proposed both constant-stress and progressive-stress ALT 

based on Weibull lifetime distribution and inverse power law. Both MLE and Bayesian 

methods were used to estimate the parameters. A Monte Carlo study was carried out to 

investigate the behavior of estimators.  
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Biernat et al. [41] dropped the assumption that the failure-time distribution at 

different stress levels was from the same family distribution. Instead, the authors assumed 

the failure-time distribution might be governed by different forms of distribution. The 

authors fitted each CDF of failure-time distribution with empirical CDF and computed 

quantiles of each CDF. They then performed regression on each quantiles based on the 

inverse power law. The estimated parameters of inverse power law function were 

obtained from regression, and the CDF in use condition was a step function based on the 

computed quantiles. This method can only produce a discrete CDF. 

Kim and Bai [42], AL-Hussaini and Abdel-Hamid [43], [44] developed mixture 

models for data with more than one failure mode. Kim and Bai [42] analyzed ALT data 

under two failure modes by assuming the log lifetime followed mixture of two location-

scale distributions and each location parameter had a linear relation with the stress. The 

ML estimates of the distribution parameters and the mixing proportions were obtained by 

the expectation and maximization algorithm. AL-Hussaini and Abdel-Hamid [43], [44] 

assumed that the type-II censoring lifetimes under various failure modes were distributed 

according to a finite mixture model, in which each failure mode was represented by a 

nonnegative and continuous function. In both papers, the power-law relationship applied 

to the mixture of two Weibull components was presented. AL-Hussaini and Abdel-Hamid 

[43] estimated the parameters, reliability and hazard rate functions using the Bayesian 

method, while AL-Hussaini and Abdel-Hamid [44] applied the MLE method. Moreover, 

AL-Hussaini and Abdel-Hamid [44] used mixtures of two exponentials, Rayleigh and 

Weibull components models as illustrative examples. 
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2.1.2 Semi-parametric estimation of constant-stress ALT 

 A commonly used semi-parametric estimation for ALT in literatures drops the 

first assumption of parametric form of lifetime distribution and retains a parametric 

acceleration function. For example, Shaked et al. [45], Shaked and Singpurwalla [46], 

Bai and Lee [47], and Basu and Ebrahimi [48] all followed this approach. Shaked et al. 

[45] assumed a parametric relationship between any two stress levels and estimated the 

MTTF under normal stress based on the empirical distribution function. Shaked and 

Singpurwalla [46] assumed inverse power law as time transformation function and also 

estimated the MTTF and CDF under use condition based on the empirical CDF. 

Moreover, the authors tested whether the estimated CDF followed a member of a 

specified family of CDF’s using Kolmogorov-Smironov statistic and obtained the 

confidence bounds for CDF based on the test result. Bai and Lee [47] assumed inverse 

power law and used empirical estimator to estimate the ALT under intermittent 

inspection, in which the test units were only inspected at specified points of time. Since 

the empirical distribution functions are discrete, it may be difficult to handle censoring 

data with empirical estimators. Basu and Ebrahimi [48] extended the work of Shaked and 

Singpurwalla[46] to include the censoring data by introducing the scale model.  

Some literatures drop the second assumption- parametric acceleration model and 

retain the assumption that the failure-time distribution at each condition is from a family 

of distribution. Dorp and Mazzuchi [49], [50] proposed a model for general ALT, 

including regular ALT, constant-stress ALT, step-stress ALT, and profile-stress ALT. 

The lifetime distribution at each stress level was assumed to be exponential in Dorp and 
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Mazzuchi [49] and Weibull in Dorp and Mazzuchi [50]. The authors did not assume any 

parametric time transformation function. Instead, the multivariate Ordered Dirichlet 

distribution was used as prior information to define a multivariate prior distribution for 

the scale parameter at various stress levels and the common shape parameter. This 

approach required information of a specified quantile on the mission time reliability at 

the operating stress level to infer the use stress life parameters estimates. Louis [51] 

assumed the Weibull family and developed a scale-change model by introducing a scale 

change parameter to parameterize the difference between two survival distributions. Then 

the efficient score statistic was used to estimate the scale change parameter. Schmoyer 

[52] analyzed ALT with two-level single-stress, including an accelerated stress and a 

normal stress. The author proposed a general model of the form Pr(t; x) = F(g(x)h(t)), 

where Pr(t; x) denoted the probability of failure by time t at stress level x, F was a CDF 

on [0, ∞), g and h were nonnegative and nondecreasing, g had S-shaped curvature and 

g(0)=0. Either F or h was assumed to be known. If F was known and F(u)= 1- e-u, then 

this was a proportional hazards model; if h was known and h(t)= t, it was a accelerated 

failure time model. Based on these assumptions, the author developed confidence bounds 

for low-stress long-time probabilities and quantiles. Because no acceleration function was 

assumed, neither approach developed by Louis [51] nor Schmoyer [52] can predict the 

failure-time distribution under use condition. 

Proschan and Singpurwalla [53] and Maciejewski [54] relaxed both assumptions. 

Proschan and Singpurwalla [53] divided the test time to intervals and assumed the 

probability (pj,i) of failure of a unit in time interval i under stress j was Beta distributed 
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and estimated the failure rate with weighted average failure rate. The estimated pj,i was 

obtained with Bayesian estimation and the weight parameters were obtained with Least 

Square Estimation. Maciejewski [54] first fit the CDF at each stress level to a parametric 

family of functions with empirical CDF, then derived quantiles of the levels and their 

dispersions for each CDF. The author defined a function which could be derived from 

each quantile level and used this function to calculate the estimate of each quantile level 

in use condition. Then fit the CDF with quantiles in use condtion.  

Some more recent literatures assumed a linear or log-linear model between failure 

time and covariate, resulting in a more generic acceleration model. No parametric 

distribution function was assumed and regression was carried out. The regression model 

was defined as (ln)Yi= ′Xi + i, i=1,…,n, where Y was the failure time, X was a p × 1 

vector of covariates,  was a p × 1 vector of unknown regression parameters, and i’s 

were s-independent and had an unspecified distribution function. To estimate the 

regression coefficient , Lin and Geyer [55] developed computational methods to 

implement rank regression procedures using simulated annealing. The unknown error 

function was estimated using the Kaplan-Meier estimator. Komarek and Lesaffre [56] 

developed a Bayesian linear regression model with paired doubly interval-censored data. 

The bivariate error distribution was assumed as a finite mixture of bivariate normal 

densities. The Bayesian approach with the Markov chain Monte Carlo (MCMC) 

methodology was used for inference. Komarek and Lesaffre [57] analyzed the 

multivariate doubly-interval-censored data considering clustering. The univariate 

densities of random errors and random effects were modeled as penalized Gaussian 
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mixture with an overspecified number of mixture components. The Bayesian approach 

with MCMC sampling was used to estimate the model parameters. Argiento et al. [58] 

examined the accelerated failure-time model for univariate data with right censoring. The 

error distribution was represented as a nonparametric hierarchical mixture of Weibull 

distribution on both shape and rate parameters, and the mixing measure was a priori 

distributed as the generalized gamma measure. Other linear or log-linear regression 

model involved with Dirichlet process mixtures will be reviewed in section 2.3. 

2.2 Inference of Step-Stress Accelerated Life Testing 

 Besides the two traditional assumptions in constant-stress ALT, a classical 

approach to analyze a SSALT requires an additional assumption to relate the distribution 

under step stresses to the distribution under constant stress. Major models used in 

literatures include the Tampered Random Variable (TRV) model [59], the Cumulative 

Exposure (CE) model [12], and the Tampered Failure Rate (TFR) model [60]. 

2.2.1 Parametric estimation of step-stress accelerated life testing 

 The Cumulative Exposure model was first proposed by Nelson [12] and has been 

widely accepted and used in SSALT analysis. The CE model assumes the remaining life 

of the units depends only on the cumulative exposure the units have experienced, without 

memory on how this exposure was accumulated. Nelson [12] presented the inference 

using ML estimators for Weibull failure data under the inverse power law. The data of 

time to breakdown of electrical insulations was fitted as illustration. Xiong [61] presented 

the inference of parameters in an simple SSALT with type-II censoring, assuming CE 

model and exponential lifetime distribution with a mean that was a log-linear function of 



  37 
   
stress. The confidence intervals were constructed using a pivotal quantity. Xiong and Ji 

[62] studied a similar problem with type-I censoring. Xiong and Milliken [63] 

constructed the model with the same assumptions to estimate the parameters in log-linear 

function and further predicted the lifetime under design stress as well as that during a 

future SSALT. The failure-step stress ALT was conducted in this paper. Zhang and Geng 

[64] constructed the analysis for both constant-stress and step-stress ALT by applying a 

Weibull lifetime distribution with a linear Arrhenius lifetime-stress relationship. The 

Least Square Method was used to estimate the Weibull parameters and a self-designed 

software was programmed to predict the life under use condition. Abdel-Hamid and AL-

Hussaini [65] applied an exponentiated distribution, with a scale parameter which was a 

log-linear function of the stress and hold the CE model. Special attention was paid to an 

exponentiated exponential distribution. The ML estimates of parameters under 

consideration were obtained based on type-I censoring. Wang [66] derived the confidence 

intervals for the exponential SSALT model under progressive type-II censoring which 

employed the removal of surviving units at time of failure. The mean life was assumed to 

be a log-linear function of stress and the MLE was applied. Yin and Sheng [67] derived 

the lifetime distribution under progressive stress ALT, in which the stress was 

proportional to time. The lifetime distribution was assumed to follow an exponential or a 

Weibull distribution with inverse power law and the parameters were estimated using 

MLE. Gouno [68], and Lee and Pan [69]–[71] all assumed exponential lifetime 

distribution at each individual stress level and used failure rate to describe PDF and 

reliability under step-stress. This resulted in the same form with that derived from CE 
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model. Gouno [68] presented a practical method to analyze temperature SSALT data with 

type-II censoring considering an Arrhenius model. Both Least Squares and MLE were 

used to estimate the parameters of an Arrhenius model and failure rate under use 

condition. Lee and Pan [69], [70] presented Bayesian inference model for SSALT with 

type-II censoring. The mean lifetime at each stress was assumed to be a log-linear 

function of stress level. Lee and  Pan [69] constructed the model for simple SSALT and 

derived the Bayesian inference with conjugate prior. Lee and Pan [70] constructed the 

model for multi-SSALT and used MCMC technique to deal with nonconjugate prior. Lee 

and Pan [71] analyzed multi-stress ALT with right censoring assuming a Generalized 

Linear Model (GLM) and log-linear relationship. Both the MLE and Bayesian estimation 

were used to estimate the GLM parameters.  

 Tang et al. [72] modified the CE model to analyze ALT with failure-free life 

(FFL), which is the age of a product below which no failure should occur. The FFL was 

characterized by a location parameter in the distribution. The authors proposed a Linear 

Cumulative Exposure Model (LCEM) which assumed the fractional exposure was 

linearly accumulated. The 3-parameter Weibull distribution with location and scale 

parameters expressed as inverse power law relationship with stress was used to illustrate 

the estimation procedure, and the MLE was used. 

Khamis and Higgins [73] proposed the KH model as an alternative to the Weibull 

CE model in SSALT. The proposed model was based on a time transformation of the 

exponential CE model. The new model was as flexible as the Weibull CE model for 

fitting data while easier to obtain the ML estimates of the parameters. 
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 When an SSALT only has two steps, i.e., simple SSALT, the time transformation 

function is not necessary and many researchers use original parameters at each stress 

level directly. For example, Balakrishnan et al.[74], [75], Kateri and Balakrishnan [76], 

Balakrishnan and Xie [77], Balakrishnan and Han[78], and Han and Balakrishnan [79] all 

used original parameters of different assumed distributions at each stress level as 

estimates and applied the MLE method. Moreover, Balakrishnan and Xie [77] considered 

type-II hybrid censoring scheme, in which the test was terminated at time T if the rth 

failure occurred before time T; otherwise, the test was terminated as soon as the rth 

failure occurred. This type of censoring scheme ensures the test can obtain at least r 

failures. Balakrishnan and Han [78] and Han and Balakrishnan [79] considered the 

simple SSALT with two fatal causes for the failure and assumed different risk factors 

were independent and exponentially distributed. Balakrishnan and Han [78] analyzed 

type-II censored data and Han and Balakrishnan [79] analyzed type-I censored data. 

Balakrishnan et al. [80] developed the model for multi-SSALT without assuming any 

time transformation function. The authors assumed an exponential lifetime distribution 

and developed the order restricted MLE under right censored sampling situations. 

DeGroot and Groel[59] introduced the Partially Accelerated Life Test (PALT) in 

which if a unit survived to a specified time at design stress, it was switched to a higher 

level of stress. The authors modeled the effect of switching the stress by multiplying the 

remaining lifetime of the unit by some unknown factor called the tampering coefficient 

and the model was called Tampered Random Variable (TRV) model. DeGroot and Groel 

[59] assumed the lifetime under use conditions is exponential and applied Bayesian 
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estimation. Madi [81], Abdel-Ghaly et al. [82], and Wang et al. [83] applied TRV model 

to analyze PALT considering different censoring schemes. Madi [81]proposed an 

empirical Bayes approach to pool data from several groups of units that were tested at 

different instances to estimate the parameters. Abdel-Ghaly et al. [82] and Wang et al. 

[83] assumed a Weibull lifetime distribution and used MLE to estimate the distribution 

parameters and tampering coefficient. Abdel-Ghaly et al. [82] considered type-I and type-

II censoring, and Wang et al. [83] considered multiply censored data. 

Battacharyya and Soejoeti [60] modified the TRV model by assuming that the 

effect of changing the stress was to multiply the failure rate function over the remaining 

life and the modified model was called Tampered Failure Rate (TFR) model. The authors 

assumed a Weibull lifetime distribution and estimated the parameters with MLE. An 

extension to fully SSALT was derived with the application of log-linear life-stress 

function. Wang and Fei [84] applied the TFR model to the progressive stress ALT, 

assuming a Weibull-time failure distribution with the scale parameter satisfying inverse 

power law. The parameters were estimated using MLE. 

 Zhao and Elsayed [85] proposed a general SSALT model based on the 

acceleration models and produced some commonly used lifetime-stress relationship and 

their  acceleration factors. The MLE method was utilized to solve for the Weibull and 

lognormal lifetime distributions. 

2.2.2 Semi-parametric estimation of step-stress accelerated life testing 

 Most semi-parametric estimation inference for SSALT is obtained by dropping 

the lifetime distribution assumption, while holding the parametric time transformation 
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function and the CE model. Lin and Fei[86], Bai and Chun [87], and Tyoskin and 

Krivolapov [88] all used this approach. The lifetime properties under use conditions were 

obtained based on transformed failure times and some empirical estimators. Shaked and 

Singpurwalla [89] developed a model which assumed the distribution of the lifetime was 

a function of the total accumulated V, where V was the stress and  was an unknown 

constant. The new model unified and generalized the TRV and CE models. Hu et al. [90] 

extended the work of Schmoyer [52] to a simple SSALT and obtained the upper 

confidence bounds for cumulative failure probability under use conditions. 

 Dorp et al. [91] assumed the failure times at each stress level were exponentially 

distributed and dropped the time-transformation function. The model was developed for 

SSALT considering linear ramping stress. The multivariate Ordered Dirichlet distribution 

was used as prior information to define a multivariate prior distribution for the failure 

rates at various stress levels. Bayes point estimates, as well as probability statement 

lifetime parameters under use conditions were developed. 

2.3 Dirichlet Process Mixture Model 

The DP was first formally developed by Ferguson [15] as a random probability 

model to define priors for spaces of distribution functions. It consists of countably infinite 

point probability masses. In order to relax the restriction of discreteness, the DPMM was 

developed and has been widely applied in the area of nonparametric Bayesian data 

analysis.  

The DP Gaussian mixture model using a normal kernel has been extensively 

applied, e.g., in density estimation [92]–[95], curve fitting [96], and regression [97]–
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[100]. Some other classical kernels have also been applied. Kottas [101] proposed a 

DPMM with a Beta distribution to estimate density and intensity. West et al. [102] 

introduced the DP Gamma mixture model for hierarchical linear regression and density 

estimation. Mukhopadhyay and Gelfand [103] developed the Generalized Linear Models 

with DP mixture of binomial and Poisson kernels. Carota and Parmigiani [104] 

developed the DP Poisson mixture model for regression problems in which the response 

variable is a count. 

Some researchers have applied DPMM in survival data analysis. Kottas and 

Gelfand [97] introduced both semi-parametric and nonparametric Bayesian modelling 

approaches for the error distributions of median regression. Both models were based on 

DP normal mixture models. The censored survival data was handled in the paper. 

Gelfand and Kottas [98] demonstrated a computational approach to obtain the entire 

posterior distribution for nonparametric Bayesian inference with DPMM. The application 

of comparison of survival times from different populations under fairly heavy censoring 

was illustrated. Gelfand and Kottas[99] extended the nonparametric Bayesian modeling 

approach with DPMM in Gelfand and Kottas [97] to median residual life distribution. 

The DP normal mixture model was applied to survival data. Kottas [19] applied the DP 

Weibull mixture model to censored survival data. The mixes were applied over both the 

shape and scale parameters of the Weibull kernel.  

 Kuo and Mallick [18], Hanson [105], and Ghosh and Ghosal [106] developed a 

DP mixture model with log-linear acceleration relationship for constant-stress ALT 

analysis. Kuo and Mallick [18] proposed two hierarchical models to estimate error 
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distribution of log-linear model, which was shown in equation (1.14) as iii WxT  ln . 

The first model applied the DP mixture model for the distribution of Vi = exp(Wi) and the 

other modeled the distribution of Wi. The DP mixture model with normal and log-normal 

kernel was used. Hanson [105] modeled the distribution of Vi by the DP mixture model 

with gamma kernel and Ghosh and Ghosal [106] applied the DP Weibull mixture with a 

fixed shape parameter. 
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CHAPTER 3: PROBLEM STATEMENT 

This chapter first describes the notations and basic assumptions applied in the 

dissertation. Then the primary objective as well as its sub-tasks is presented to illustrate 

the problem that will be solved. 

3.1 Notations 

xi: stress or a proper transformation of the stress 

: shape and scale parameter of Weibull distribution  

: regression coefficient in the log-linear lifetime-stress relationship 

t: failure time 

tc: censoring time 

: censoring indicator 

: precision parameter of the Dirichlet process 

: mixing proportions of the parametric mixture process 

: parameter vector of the parametric kernel 

F(·), f(·): cumulative distribution function (CDF) and probability density function (PDF)  

G(): random distribution function for  

G0(): base distribution of the Dirichlet process 

R(t): reliability function of failure time, R(t)=1-F(t) 

K(·), k(·): CDF and PDF of the parametric kernel  

v: v= texp(x) 

: stress changing time in a simple SSALT 
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3.2 Assumptions 

This dissertation makes the following basic assumptions: 

(1) n identical and independent units are placed  in the test. 

(2) The relationship of failure time ti under different stress levels is log-linear, which 

can be expressed as logti = -xi + wi, i=1, 2...,n, where wi is error term. 

(3) Each vi is from an independent Weibull kernel ),( iiivk  . 

(4) A cumulative exposure model is assumed for simple SSALT. 

(5) For constant-stress ALT, three accelerated stresses are used in the test. The 

breakdown time was observed by the jump of leakage current. Each unit under 

test was tested individually and broke down independently. A stress lower than 

these three accelerated stress is assumed to be normal stress level. 

(6) For simple SSALT, a unit is first tested under the lower stress level xL. If the unit 

has not failed by a pre-specified time, the stress level is increased to xH at the 

changing time  and the test is continued until failure or the censoring time tc 

(i.e., type-I censoring). The lower stress xL is assumed to be normal stress level. 

3.3 Problem Description 

 In this dissertation, the sample size n, the testing stress levels, and stress changing 

time for simple SSALT are pre-specified. The primary objective is to predict CDF of 

lifetime distribution under normal stress level from experimental data. Three 

experimental datasets, including one complete dataset and two right censored datasets are 

used to illustrate the applicability of the proposed methodology.  In order to fulfill this 

objective, the following sub-tasks are performed.  
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3.3.1 Investigation of metal oxide nanodots-embedded ZrHfO high-k film 

The experimental datasets used in this dissertation were collected at the Thin Film 

Nano & Microelectronics Research Laboratory at Texas A&M University. In order to 

further understand the device, this dissertation investigates the fabrication process, 

physical properties, and memory functions of the device tested for life time prediction.  

3.3.2 Development of simulation-based algorithm 

 The DP Weibull mixture ALT model is a high dimensional problem with multiple 

parameters.  Gibbs sampling is a popular algorithm to fit DP mixture model. This 

dissertation develops Gibbs sampling algorithm to formulate posterior inference on 

parameters, as well as failure-time CDF. 

3.3.3 Comparison between parametric Weibull log-linear ALT model and DP Weibull 

mixture ALT model 

 A parametric ALT analysis is also performed for the purpose of comparison. It is 

assumed the failure time at a given stress level comes from a Weibull distribution, and 

the relationship between lifetime and stress level is log-linear. This Weibull log-linear 

ALT model is estimated with standard MLE method, and is implemented using Minitab. 

Then, the CDF of failure-time distribution under normal stress level predicted with 

parametric ALT model and the proposed DP mixture model, as well as empirical CDF 

are plotted and visual compared. 
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CHAPTER 4: MEMORY FUNCTIONS OF MOLYBDENUM OXIDE NANODOTS 

EMBEDDED ZRHFO HIGH-K†1 

This chapter introduces the device tested in the dissertation, including the 

fabrication process, its physical characteristics, charge trapping and detrapping 

mechanisms, as well as memory properties. 

4.1 Fabrication of Nanocrystals Embedded ZrHfO High-k Device 

The ZrHfO (tunnel oxide)/ MoOx/ZrHfO (control oxide) gate dielectric stack was 

deposited on the HF precleaned p-type (1015cm-3) Si (100) wafer in one pump down 

without breaking the vacuum. The tunnel and control ZrHfO layers were sputtered from a 

composite Zr/Hf (12/88 wt %) target in an Ar/O2 (1:1) mixture at 5 mTorr and 60 W for 2 

and 10 min, separately. The MoOx film was sputtered from the Mo target in Ar/O2 (1:1) 

at 5 mTorr and 100 W for 15 s. After the gate dielectric stack was accomplished, the post 

deposition annealing (PDA) step was carried out by rapid thermal annealing (RTA) at 

800oC in the pure N2 ambient for 1 min. An aluminum (Al) film was sputter deposited, 

lithography patterned, and wet etched into gate electrodes. The Al film was also 

deposited on the backside of the wafer for ohmic contact. The final MOS capacitor was 

annealed at 300 °C under H2/N2 (10/90) for 5 min. The control sample, i.e., containing 

only the ZrHfO gate dielectric without the embedded nc-MoOx layer, was also prepared 

and characterized for comparison.  The capacitor’s capacitance-voltage (C-V) and 

current-voltage (I-V) characteristics were measured with an Agilent 4284A LCR meter 

                                                 
†Reprinted with permission from Xi Liu, Chia-Han Yang, Yue Kuo, and Tao Yuan, 
Electrochemical and Solid-State Letters, 2012, vol. 15, issue 6, H192 (2012). Copyright 
2012, The Electrochemical Society. 
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and an Agilent 4155C semiconductor parameter analyzer, respectively. The high-k stack 

was analyzed with X-ray photoelectron spectroscopy (XPS) for chemical bond states and 

X-ray diffraction (XRD) for the crystallinity.  

4.2 Physical Properties of Nanocrystals Embedded ZrHfO high-k Device 

Figure 4.1(a) shows the XPS O1s peak of the MoOx embedded ZrHfO high-k 

stack prepare in this study. It has been deconvolued into 4 sub peaks. The peak with the 

binding energy (BE) of 530.3 eV is MoO3. Peaks with BE 529.6 eV and 531.3 eV are 

related to HfO2 and ZrO2. The peak with BE 531.65 eV is probably contributed by the 

Al2O3 from the gate electrode. A small Mo 3d5/2 peak at 227.3 eV BE was detected, 

which is the Moδ+ element [107]. The nanodots are crystalline MoO3 detected by X-ray 

diffraction (XRD), as shown in Fig. 4.1(b). The crystal size is about 28 nm, determined 

from the peak location and full width at half maximum using the Scherrer equation [108]. 

Previously, it was demonstrated that under the same process condition, discrete nc-ITO 

nanodots were formed in the ZrHfO film[109]. However, it is not clear if the embedded 

nc-MoOx film was composed of discrete dots. In addition, the density of the nanodots in 

the dielectric layer is important to the charge retention and reliability. In order to obtain 

these data, the sample has to be analyzed with the high resolution TEM, which is under 

study now. The equivalent oxide thickness of the control sample and the nc-MoOx 

embedded sample are 7.8 nm and 8.5 nm, respectively, calculated from the C-V curve. 
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Figure 4.1. (a) XPS O 1s peak, and (b) XRD pattern of the MoOx embedded ZrHfO 

sample 

 

4.3 Charge Trapping and Detrapping Mechanisms 

 The charge trapping characteristics of the capacitor can be examined from the C-V 

hysteresis curves. Figure 4.2 shows the C-V hysteresis curves of the capacitor with the 

nc-MoOx embedded ZrHfO dielectric measured at 1 MHz. The gate was stressed with a 

voltage (Vg) from negative to positive, i.e., the forward direction, and then back to  

negative, i.e., backward direction, in three  ranges, i.e., -3V to 3V to -3V (±3V), -6V to 

6V to -6V (±6V), and -8V to 8V to -8V (±8V), separately. The memory window can be 

defined as flat band voltage difference (VFB) between the VFB of the forward curve and 

that of the backward curve. The control sample was prepared and compared with the nc-

MoOx embedded sample for defect formation consideration. The charge trapping density 

(Q) of the capacitor can be estimated from the following equation [110]: 
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,

q
VCQ FBFB 

                                                        (4.1)                                     

where CFB  is the flatband capacitance and q is the electron charge.  

For the control sample, since the C-V hysteresis is very small, i.e., VFB = 0.06 V, 

the ZrHfO film has negligible charge trapping capability.  For the nc-MoOx embedded 

sample, the C-V hysteresis phenomenon is more pronounced. The charge trapping 

densities Qot’s are 2.21×1010 cm-2, 1.45×1011 cm-2, and 7.13×1011 cm-2 for the Vg sweep 

ranges of ±3V, ±6V, and ±8V, separately. Therefore, the charges are trapped to the nc-

MoOx site. The charge trapping capability is related to the amount of charges supplied to 

the high-k stack. It is worth to note that the magnitude of the VFB of the forward C-V 

curve is highly dependent on the starting Vg, i.e., -0.49 V, -0.62 V, and -1.15 V for 

starting Vg = -3V, -6V, and -8V, separately.  The VFB of the forward C-V curve of the 

fresh nc-MoOx embedded sample is -0.46 V. Compared with the control sample, holes 

are trapped to the nc-MoOx stack are a density of 6.62×1010 cm-2, 3.87×1011 cm-2, and 

1.59×1012 cm-2 with the starting Vg of -3V, -6V, and -8V, separately. Therefore, nc-MoOx 

is effective in trapping holes, which is similar to the nc-RuO or nc-ITO case [111]–[113]. 

On the other hand, the VFB of the backward curve is more negative with the increase of 

the sweeping voltages, i.e., -0.48 V at ±3 V, -0.56 V at ±6 V and -0.84 V at ±8 V. 

Therefore, holes trapped in the forward sweeping are not completely erased in the back 

sweeping direction.        
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Figure 4.2 C-V hysteresis curves of the nc-MoOx embedded ZrHfO capacitor measured at 

1 MHz.  The inset is the hysteresis curve of the control sample. 

 

To further study the hole-trapping mechanism, the leakage current density-voltage 

(J-V) curves of the nc-MoOx embedded sample and the control sample were measured 

from -8 V to +8 V, as shown in Figure 4.3. The polarity of the leakage current is defined 

as positive when the current flows toward the substrate and negative when the current 

flows toward the gate. Compared with the control sample, the nc-MoOx embedded 

sample has a larger leakage current and the J-V curve is less smooth. There are several 

bumps in the J-V curve of nc-MoOx embedded sample. First, a very small bump appears 

at point A, which is near the VFB of the corresponding C-V curve in Fig.4.2 at Vg = -1.15 

V. The current changes its polarity at this point because of the release of loosely trapped 

holes, which are probably located at the nc-MoOx/ZrHfO interface[111], [113]. Second, a 
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slightly more obvious jump of the current is observed  at point B near Vg = 0 V, which is 

due to the further release of a large number of remaining trapped holes from the change 

of the Vg polarity [111], [113]. Third, there are two obvious peaks at points C and D near 

Vg = 1 V. These are the negative differential resistance (NDR) peaks commonly observed 

in floating gate memory rapping devices [25], [114].  This is caused by the Coulomb 

blockade effect, i.e., the nc-MoOx site is saturated with the trapped charges [23], [115], 

[116].When the Vg is further increased, e.g., beyond 2 V, an inversion layer is fully 

established and the leakage current increases drastically with the increase of Vg.  

 

 

Figure 4.3 J-V curve of nc-MoOx embedded capacitor Vg swept from -8 V to +8 V. The 

inset is the J-V curve of control sample. 
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4.4 Charge Retention Capability 

The charge retention capability of the capacitor could be determined by 

measuring the percentage of charge remained in the device after releasing the stress 

voltage for a period of time. The following equation was used to calculate the percentage 

of charge from the VFB shift over a period of time [113]: 

                              
,

)()(
)()( (%) remainingCharge

freshVstressV
freshVtV

FBFB

FBFB




                           (4.2)                  

where VFB(stress) is the VFB immediately after the Vg stress, VFB(fresh) is the VFB before 

the Vg stress, and VFB(t) is the VFB after releasing the stress for time t. After releasing the 

write stress, the C-V curve was measured over a small Vg range i.e., -2 V to +1 V, to 

determine the VFB(t). Figure 4.4 shows the charge retention curve of the nc-MoOx 

embedded capacitor after being stress at Vg = -8 V for 10 seconds. The total measurement 

time was 10 hrs and the VFB was determined every 1,800 s. First, a quick loss of nearly 20% 

of trapped holes occurred within 1,800 s after releasing the stress Vg, which is due to the 

detrap of the loosely-trapped holes from the nc-MoOx/ZrHfO site [111], [113]. Then, the 

strongly-trapped holes were gradually released, e.g., totally 9% loss from 1,800s to 

36,000s. The phenomenon of the 2-step release of trapped holes have been observed in 

the nc-RuO and nc-ITO embedded capacitors [111], [113]. The exact location of the 

charge trapping site can be clarified using the frequency dispersion method [26], [117]. 

The inset of figure 4.4 shows the extrapolation of the curve to 10 year period. About 54% 

of trapped holes remained in the nc-MoOx embedded sample after releasing the stress Vg 

for 10 years, which is the desirable characteristic for the nonvolatile memory device.  



  54 
   

 

Figure 4.4 Retention property of holes trapped in the nc-MoOx embedded capacitor. The 

inset shows the extrapolation of the curve to 10 years projection. 

 

4.5 Conclusions 

Memory functions of the nc-MoOx embedded ZrHfO high-k MOS capacitor have 

been studied. The C-V hysteresis and J-V data show that holes were trapped to the nc-

MoOx site of the high-k stack. The charge trapping capability is affected by the supply of 

the charges from the wafer substrate. Holes trapped from the negative gate voltage stress 

could not be completely erased by a positive gate voltage with the same magnitude. The 

J-V curve of the nc-MoOx embedded sample confirmed that those loosely trapped holes 

were released easily. The Coulomb blockade effect was observed under the electron 

trapping condition. The charge retention study shows that about 20% of the trapped holes 

were loosely trapping and more than half of those originally trapped holes remained in 

the device after 10 years.  In principle, the nc-MoOx embedded ZrHfO high-k capacitor is 
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a unique memory device of which the operation is based on hole trapping and detrapping. 

For the giga level application, in addition to the enlargement of the storage capacity 

through the optimization of the structure and operation parameters, detailed charge 

trapping site and reliability issues need to be investigated.   
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CHAPTER 5: BAYESIAN ANALYSIS FOR ACCELERATED LIFE TESTS USING 

DIRICHLET PROCESS WEIBULL MIXTURE MODEL2† 

This chapter develops the Dirichlet proess Weibull mixture model for constant-

stress ALT. The model is employed to predict failure-time distribution at a given stress 

level. A simulation-based model fitting algorithm that implements Gibbs sampling is 

developed to analyze complete and right-censored ALT data and to predict the failure-

time distribution at the normal stress level. Two practical examples related to the 

reliability of nanoelectronic devices are presented. The results have demonstrated that the 

proposed methodology is capable of providing accurate prediction of the failure-time 

distribution at the normal stress level without assuming any restrictive parametric failure-

time distribution.  

5.1 Methodologies 

5.1.1 Dirichlet process Weibull mixture ALT model 

 Section 1.6.3 introduced the general form of Dirichlet process mixture model. In 

this section, a Dirichlet process mixture model with the Weibull kernel is developed to 

model failure-time distribution at a given stress level, and a log-linear regression model is 

assumed to describe  the relationship of failure time under various stress levels. 

Assume n items are tested in ALT and let d = {(ti, xi, i,), i = 1,2,…, n} denote the 

ALT data, where the ith unit is tested at the stress xi. Note that xi may be a transformation 

observation, and i equals zero when ti is a right-censored observation. Kuo and 

                                                 
†©2014 IEEE. Reprinted, with permission, from Tao Yuan, Xi Liu, Saleem Z. Ramadan, 
and Yue Kuo, Bayesian Analysis for Accelerated Life Tests Using a Dirichlet Process 
Weibull Mixture Model, IEEE Transactions on Reliability, vol. 63, No.1, March 2014 
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Mallick [18]  and Ghost and Ghosal [106] considered the following semiparametric linear 

regression model for ALT  

          (5.1) 

where xi is the ith stress level,  is the coefficient of stress level, and wi is the error term 

If the error terms wi, i = 1,2,… , n are assumed to be s-independent and identically 

distributed (i.i.d.) from the smallest extreme value distribution, or equivalently, if vi = exp 

(wi), i = 1,2,… , n are i.i.d. Weibull random variables, the model given by Eq. (5.1) is the 

widely used Weibull ALT model with a log-linear lifetime-stress relationship [1], [118]. 

Kuo and Mallick [18] modeled the distribution of vi by the DP mixture model with the 

normal kernel and the lognormal kernel. Ghost and Ghosal [106] modeled the distribution 

of vi by the DP mixture model with the Weibull kernel with a fixed shape parameter.  

This study extends the work of Kuo and Mallick [18]and Ghost and Ghosal [106], 

and uses the DP mixture model with the Weibull kernel, where the shape parameter is not 

fixed, to model the distribution of vi. Kottas [19] pointed out that using Weibull kernel 

has the computational advantage over the normal and lognormal kernels when dealing 

with censoring because the Weibull kernel has a closed form CDF. In addition, mixing on 

both the shape and scale parameters of the Weibull kernel can result in a flexible mixture 

that can model a wide range of distributional shapes [19]. 

Assuming that vi, i = 1,2,… , n, are iid from the following PDF  

                     ),,(),()( iiiiii ddGvkGvf                                               (5.2) 

where ),( iiivk  is the PDF of the Weibull kernel. The PDF and CDF of the Weibull 

kernel are given by  

                                  iii wxt  ln , i = 1,2,… , n.                                                                                 
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                                    ),exp(),( 111   vvvk                                                (5.3) 

and                                           

                                          ),exp(1),( 1  vvK                                                  (5.4) 

respectively, where > 0 is the shape parameter, and > 0 is the scale parameter. From 

)( Gvf i given by Eq. (5.2), and according to the log-linear relationship function,

),exp( iii xvt   the PDF of ti can be derived through the transformation of random 

variables: 

                   ).,(),)exp(()exp()(),( iiiiiii
i

i
ii ddGxtkx

dt
dvGvfGtf         (5.5) 

The CDF of ti then can be derived as: 

                       



 

 







).,(),)exp((

),(),)exp(()exp(

),(),)exp(()exp(),(

0

0

iiiiii

ii

t

iiii

t

iiiiiii

ddGxtK

dddsGxskx

dsddGxskxGtF
i

i







                 (5.6) 

The base distribution G0 can be considered as prior guess on  and , and in this 

dissertation the following G0 is adopted: 

                                ).,(Gammainverse),0(Uniform),(0  dG                   (5.7) 

This base distribution can offer both computational convenience and modeling 

flexibility [19]. The inverse-Gamma distribution is the conditional conjugate prior for the 

Weibull scale parameter  when the shape parameter is known. There is no nature 

conjugate prior for the Weibull shape parameter. d =2 is set so that the inverse-Gamma 

distribution has an infinite variance, which can convey the lack of prior knowledge.  
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In summary, the DP Weibull mixture ALT model can be written in the following 

hierarchical form: 
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where ),(  baf , ),(  baf , ),(  baf , and ),(  baf denote the prior distributions 

for , , , and , respectively. i denotes the indicator function. i=1 indicates exact 

failure time and i=0 indicates the censored observation. The following prior distributions 

are assumed: 

).,(Gamma~
),,(Gamma~

),,(Pareto~

),,(Normal~




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The Pareto distribution and Gamma distribution are the conjugate prior distributions for  

and , respectively. Using the Gamma prior for the precision parameter  of the DP prior 

can result in a very attractive computational convenience [93]. A normal prior is assumed 

for  because  may be negative, especially when xi is a transformation of the stress.  

The proposed DP Weibull mixture ALT model handles censoring differently from 

the work of Kuo and Mallick [18] and Ghost and Ghosal [106]. The previous two studies 
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used an imputation method to replace the censored observations with simulated failure 

times. This dissertation uses the reliability function of ti if ti is a censored observation in 

the first stage of the hierarchical model (5.8). This is intuitively appealing because it is 

consistent with the general approach to deal with censoring in parametric data analysis, in 

which the likelihood contribution from a right-censored observation is the reliability 

function.  

5.1.2 Simulation-based model fitting 

This section presents a simulation-based algorithm for fitting the DP Weibull 

mixture ALT model. Gibbs sampling has become the standard algorithm for fitting the 

DP mixture models as a useful tool for high dimensional problems with many parameters. 

Each iteration of the Gibbs sampling cycles through the unknown parameters, sampling a 

value of one parameter conditioning on the latest values of all the other parameters. 

When the number of iterations is large enough, the sample drawn on one parameter can 

be regarded as simulated values from its marginal posterior distribution. Sample statistics 

can then be used to formulate posterior inference on that parameter [119].  

A key feature of the DP mixture models is the discreteness of G(,) under the 

DP assumption, inducing clustering of (i, i)’s [15], [93]. Denote n* as the number of 

clusters in (i, i), i = 1, 2, ..., n, and ( ** , jj  ), j = 1,2,.., n*, as the distinct clusters. The 

vector of indicators c = {c1, c2, …, cn} is introduced to indicate the clustering 

configuration. ci = j when (i, i) = ( ** , jj  ), indicating that the ith observation belongs to 

the jth cluster. Let nj denote the number of members in the jth cluster. 
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This dissertation develops a Gibbs sampling algorithm to fit the model (5.8). Each 

iteration of the algorithm consists of the following steps:  

(a) Draw (i, i) from the conditional posterior distribution denoted by: 

      ;,...,1for),,,,,},'),,,{(,( ''' niiicf iiiii  d  

(b) Adjust the cluster locations ),( **
jj   by sampling from conditional posterior 

distribution: ;,...,1for),,,,,,,( *** njf jj dc   

(c) Update , , and  by sampling from their conditional posterior distributions; 

(d) Sample  from its conditional posterior distribution; 

(e) Sample F(t|, G, x0), the failure-time CDF at the normal stress level x0. 

Details of these five steps will be described in the remainder of this section. 

A. Step (a): Update (i, i) 

 Step (a) draws  new values of (i, i) and updates the clustering location indicator 

ci for each observation ti. The new values of (i, i) can either be one of the (i’, i’) i'≠ i, 

or could be new values drawn from G0. Denote n*- as the number of clusters in {(i’, i’), 

i'≠ i}, i.e., the number of clusters when (i, i) is removed from {(1, 1) , (2, 2) ,… , 

(n, n) }, and let (  ** , jj  ), j = 1,…, n*- , denote the distinct clusters in {(i’, i’), i'≠ i}. 

Also denote 

jn as the number of members in the cluster (  ** , jj  ), for j = 1,…, n*- .  

If  ti is an exact failure-time observation (i.e., if i = 1), the conditional posterior 

distribution in Step (a) has the following mixture form: 
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where 
),( ** 

jj 
denotes a point mass at (  ** , jj  ), and 

                  ),,)exp(()exp(),)exp(( ****   jjiiijjii
o
j xtkxxtkq                 (5.10) 

and  

,
))]exp([(

)]exp([

)exp(
)(

1))]exp([exp()]exp([

),(),)exp((

),(),)exp(()exp(

0 1

1

0 0

1111

0 0 0

00

id
ii

iii
d

ii
i

d
d

iiiiiii

iiiiiiii

iiiiiiiii
o

d
xt
xtd

dd
d

xtxt

ddGxtk

ddGxtkxq

i

i

i
ii






































 

 
























                                                                                                                                (5.11) 

which can be easily computed numerically. The superscript o is used to indicate that ti is 

an exact failure time observation. Therefore, (i, i) equals (  ** , jj  ) with the probability 
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where {}I is an indicator function. ),,,,,,( iiii
o xth   can be expressed as: 
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In order to draw new values of (i, i) from ),,,,,,( iiii
o xth  , first a value for i 

is sampled from ),,,,,( iii xtf  given by equation (5.13) by discretization, and then 

a value for i is drawn from the inverse-Gamma distribution given by equation (5.14). 

If ti is a right-censored observation, (i.e., if i = 0), the conditional posterior 

distribution ),,,,,},'),,,{(,( ''' iiiiiii xtiicf   , can be derived in a similar way by 

replacing ),)exp(( iiii xtk  with ),)exp((1 iiii xtK  . Because the Weibull kernel 

has the closed form CDF, censoring can be easily handled in the computation as   
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where the superscript c is used to indicate that ti is a right-censored observation,    
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and 

).,()],)exp((1[),,,,,,( 0 iiiiiiiiii
o GxtKxth    

Express ),,,,,,( iiii
c xth   as: 

),,,,,,,(),,,,,(),,,,,,( iiiiiiiiiii
c xtfxtfxth    

it can be shown that 
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and  

                    ).)]exp([,(Gammainverse~),,,,,,( i
iiiiii xtdxtf             (5.18) 

After (i, i) are sampled from the conditional posterior distribution given by equation 

(5.9) or (5.15), the configuration indicator ci and the cluster locations ( ** , jj  ) are updated 

accordingly. 

B. Step (b): update ),( **
jj   

Once Step (a) is completed for all n observations, the clustering configuration 

vector c and the cluster locations ( ** , jj  ), j = 1, 2, … , n* have been updated. Step (b) 
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adjusts the clustering locations conditioning on c, , , , , and d. For each cluster 

location ** , jj  , let o
jt and c

jt  denote, respectively, the set of exact failure time 

observations and the set of right censored observations in the jth cluster, i.e., 

}1and:{  iii
o
j jct t and }0and:{  iii

c
j jct t . In addition, let 

}:{ jct ii
c
j

o
jj  ttt  denote all the observations belonging to the jth cluster. The 

conditional posterior distribution for ( ** , jj  ) is given by: 
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To draw the values for ( ** , jj  ), first draw a value for *
j  from ),,,,,,( ** dc jjf , 

and then draw a value for *
j  from ),,,,,,( ** dc jjf .  It can be shown that 
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(5.20) 

where o
jn denotes the number of exact failure time observations in the jth cluster, and    
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which is a non-standard density function. The data augmentation method discussed by 

Damien et al. [120] can be implemented here to sample a value from

),,,,,,( ** dc jjf . Introduce auxiliary variables }:{ ,11
o
jii tu tu  , and

}:{ ,22 jii tu tu   so that the joint density can be expressed as: 
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The Gibbs sampling can be extended to first draw u1,i uniformly on the interval 

(
*

))exp((,0 j
ii xt 
 ),  and u2,i uniformly on the interval ( )))exp(()(exp(,0

*1* j
iij xt 
  ), 

and then draw *
j  from 
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21
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jjjf  dcuu                                 (5.23) 

restricted to the interval determined by  

}),))exp(()(exp({},))exp({),0(
** 1*

,2,1 jiiiji
o
jiiii txtutxtu jj tt   

 . 

This can be easily done using the inverse-CDF method. 

C. Step(c): update , , and  

 Step (c) draw values for , , and  from their conditional posterior distributions. 

Escobar and West [93] developed an augmentation method for sampling precision 

parameter  from its conditional posterior distribution when the Gamma prior is assumed 
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for . An auxiliary variable u is introduced such that u|, c, d ~ Beta( +1, n). Then the 

new value for  is sampled from a mixture Gamma posterior distribution expressed as                                               

                    pGamma(a + n*, b – logu)+(1–p)Gamma(a + n*– 1, b  – logu),         (5.24) 

where p = (a+ n*–1)/( n( b – logu)+ a+ n*–1).  

The prior distribution for is pareto distribution, therefore according to Bayes 

Law the conditional posterior distribution for  can be written as: 
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Similarly, given the prior of gamma distribution, the conditional posterior distribution for 

 is: 
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D.  Step (d): update  

 Step (d) samples a new value for  from its conditional posterior distribution  
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The data augmentation method can be applied again to simulate a value from

)},,...,2,1),,{(( dnif ii  . For each i{i: i=1}, draw an auxiliary variable u1,i 

uniformly on the interval (0, exp(ixi)). For each i, i=1,2,…,n, draw an auxiliary 

variable u2,i uniformly on the interval (0, ))exp(exp( 1




iiii xt i
 . Then a value for  is 
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It is routine to sample from the truncated normal distribution. 

E. Step (e): update the failure-time distribution 

One of the objectives of ALT analysis is to predict the failure-time distribution at 

the normal stress level x0. Kuo and Mallick [18] proposed two methods for predicting the 

failure-time CDF at x0. The first method simulates a sample of failure times at the normal 

stress level x0 from the predictive density, and constructs the failure-time distribution at 

x0 from the simulated failure times using some empirical estimators, such as the Kaplan-

Meier estimator. The second method uses the functional form of the kernel for 

evaluation, and needs to combine draws from multiple chains of the Gibbs sampling. In 

this dissertation, the method proposed by Kottas [19] is extended. Once Steps (a)-(d) 

have completed in one iteration of Gibbs sampling, Step (e) draws values for the failure-

time CDF at x0 conditional on the values of {(i, i), i = 1, 2,… ,n}, , , , and  

obtained at that iteration. According to equation (5.6), the failure-time CDF at the normal 

stress level x0 is given by: 

                               ).,(),)exp((),,( 00  ddGxtKxGtF                              (5.28) 
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The CDF given by equation (5.28) can be approximated by a finite mixture with a large 

number of mixing components, i.e., ),',')exp((),,( 0
1

0 llm
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l
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

  for                      

a prespecified grid of values tm, m = 1, 2,… , N, over the support of ),,( 0xGtF  , where 

L is the number of mixing components, and ),','( ll   l = 1,2, …, L, are i.i.d. draws from 

the mixture ]),,([)(
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i ii
Gn  . The weight coefficients l , l = 

1,2,…, L are simulated as follows. Introducing an auxiliary variable zl, first simulate zl 

i.i.d. from Beta(1, +n), and then compute l  according to ,11 z   
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s sll Llzz , and 





1

1
.1 L

j jL   The above procedure is based 

on the constructive definition of DP, which was discussed by Sethuraman [121]. L = 

2000 is used. A sensitivity analysis has proven that 2000 is a reliable and conservative 

choice for L. 

5.2 Illustrative Examples 

This section uses two practical examples to illustrate the proposed ALT model 

and algorithm. Both examples use experimental data collected at the Thin Film Nano and 

Microelectronics Research Laboratory at Texas A&M University, College Station. The 

first example studies the reliability of a new mixed oxides high-k dielectric material for 

nanoelectronic applications [11]. The second example evaluates the reliability of a novel 

nanocrystals-embedded high-k nonvolatile memory device [113]. Metal-Oxide-

Semiconductor (MOS) capacitors with the high-k dielectric film were subjected to 

accelerated electrical stresses.  
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5.2.1 Complete data set example 

Table 5.1 lists the failure-time observations of high-k dielectric tested at four 

stress levels. This is a complete data set without censoring. Although 7.1 MV/cm is not 

the normal stress level, we analyze the failure-time data collected at 7.5, 7.7, and 7.9 

MV/cm to predict the failure-time distribution at 7.1 MV/cm. The predicted failure-time 

distribution at x0 = 7.1 MV/cm can be compared with the experimental data collected at 

7.1 MV/cm.  

 

Table 5.1. Example 1: times-to-breakdown of MOS capacitors tested at four electrical 

field stresses [28]. 

Stress Time-to-breakdown  
(MV/cm) (seconds)  

7.9 
1 2 9 12 35 46 72 74 82 107 
142 153 193 251 290 348 399 511 556 1104 
1509 1535 1756 2376 2843 3140 3514 3616 3882 4583 

7.7 

9 18 20 25 29 66 124 127 175 221 
249 341 362 552 630 760 782 794 906 932 
968 1378 1386 1664 1728 2229 2249 2338 4058 4986 
6312 6400 6847 8474             

7.5 

39 40 77 247 253 299 311 633 666 830 
950 1060 1383 1416 1742 1843 1879 1905 2096 2337 
2532 2648 3020 3434 3947 4373 4729 5215 5614 6753 
9703 9898 10130 11090             

7.1 

28 88 99 107 211 213 248 301 311 593 
673 702 741 911 949 1040 1439 1971 2069 2253 
2501 3547 4452 4580 4882 5657 5737 6323 7565 8209 

10000 11650 15250 21620 25910           
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For the purpose of comparison, a parametric ALT analysis is also performed. It is 

generally accepted that the breakdown of gate dielectrics belongs to the class of weakest-

link problem of extreme value statistics, and thus is assumed to have the Weibull failure-

time distribution at a given stress level [122]. As introduced in section 1.4, E-model is a 

widely used physical lifetime-stress relationship, which relates the time-to-breakdown to 

the electrical field stress. The E-model is actually a log-linear lifetime-stress relationship. 

Therefore, the Weibull distribution with the log-linear lifetime-stress relationship is 

frequently used as the parametric ALT model for studying the time-dependent dielectric 

breakdown. The standard MLE method is used to fit the Weibull log-linear ALT model 

and to predict the failure-time CDF at x0 = 7.1 MV/cm.  

Because of the absence of any prior knowledge, we choose noninformative priors 

to reflect our absence of prior knowledge. Apply the Gamma(1,0.001) prior for  and , 

and the Normal(0, 106) prior for . Both Gamma(1,0.001) and Normal(0, 106) are widely 

used diffuse priors in the sense of not favoring any value [123]. For , Pareto (1, 1) prior 

is used, which has an infinite variance to reflect large prior uncertainty due to absence of 

prior knowledge. The algorithm is coded in Matlab®. The Gibbs sampling algorithm runs 

for 10,000 iterations, and the first 5,000 iterations are discarded before data anlaysis. 

Convergence is verified by running multiple chains from diverse starting points, 

examining the trace plots, and monitoring the Gelman-Rubin statistics [119]. Posterior 

prediction on the failure-time CDF at x0 is based on the posterior median. 

Figure 5.1 shows the failure-time CDF at the normal stress level predicted by the 

proposed DP Weibull mixture ALT model and the Weibull log-linear ALT model. Using 
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the experimental data collected at x0 = 7.1 MV/cm, an empirical CDF is computed from 

the median rank estimator, i.e.,  

,
4.0
3.0)(ˆ






n
itF i            i = 1, 2,… , n, 

where t(i), i = 1, 2,… , n, denote the ordered failure times. The proposed DP Weibull 

mixture ALT model provides much better predictive result than the Weibull log-linear 

ALT model. The Weibull log-linear ALT model fails to accurately predict the failure-

time distribution at the normal stress level. This may be caused by the involvement of 

multiple failure modes.  

 

 

Figure 5.1. Example 1: predicted failure-time CDF at the normal stress x0 = 7.1 MV/cm. 
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Figure 5.2 shows the Weibull fit to the data collected at 7.9 MV/cm and the 

empirical failure-time CDF at 7.9 MV/cm. The Weibull distribution does not fit the data 

adequately. Degraeve et al. [124] proposed a bimodal breakdown model with the 

following failure-time PDF  

),,()1(),(),(),(),([),,,,( iieaiiiieaeaii tfpRtftRtfpptf    

where the subscripts e and i denote, respectively, extrinsic breakdown and intrinsic 

breakdown, p is the fraction of devices with defects, and f and R are the Weibull PDF and 

the Weibull reliability function, respectively. For defect-free devices, the failures occur 

intrinsically. For devices with defects, the extrinsic and intrinsic failure modes are in 

competition with each other. Figure 5.2 indicates that the bimodal breakdown model fits 

the data better than the Weibull model. Because the Weibull distribution is not adequate 

to describe the failure-time distribution at a given stress level, the Weibull log-linear ALT 

model fails to accurately predict the failure-time distribution at the normal stress level. 

On the other hand, the DP Weibull mixture ALT model describes the failure-time 

distribution nonparametrically using the DP Weibull mixture model. This modeling 

flexibility leads to an improved prediction of the failure-time distribution at the normal 

stress level.  
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Figure 5.2. Example 1: estimation of failure-time CDF at 7.9 MV/cm 

 

5.2.2 Right-censored data set example 

Table 5.2 lists the times-to-breakdown of memories tested at four gate voltage 

stress levels. This data set consists of 10, 8, and 37 right-censored observations at 7.9, 

7.5, and 7.1 V, respectively. Again, we assume the lowest stress level (i.e., 7.1 V) used in 

the experiment as the normal stress level, and use the data collected at 8.3, 7.9, and 7.5 V 

to predict the failure-time CDF at x0 = 7.1 V.  

Figure 5.3 shows the failure-time CDF at the normal stress level predicted by the 

DP Weibull mixture ALT model and the Weibull log-linear ALT model, and compares 

them with the empirical CDF computed by the median rank estimator. Because of the 

censoring, the empirical CDF is truncated at the censoring time of 600 seconds. For this 
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example, a visual comparison of the failure-time distributions predicted by the Weibull 

log-linear ALT model and the DP Weibull mixture ALT model shows that the two 

models provide very close results, and their predicted failure-time CDFs agree very well 

with the experimental data collected at x0 = 7.1 V. 

 

Table 5.2: Example 2: times-to-breakdown of nanocrystals-embedded high-k 

memories tested at four voltage stresses 

Stress Time-to-breakdown  
(volts) (seconds)  

8.3 
2 5 5 6 6 6 10 11 15 18 
21 28 39 49 86           

7.9 
5 8 8 12 15 26 29 39 45 69 
100 105 115 146 153 180+ (8 censored)  

7.5 
5 29 31 31 33 39 46 46 54 66 
70 86 87 107 122 137 176 181 190 218 
225 259 277 334 356 371 443 480+ (10 censored)  

7.1 

8 38 72 88 90 97 122 140 163 170 
188 198 199 223 232 256 257 265 318 371 
399 401 412 434 448 513 527 556 583  
600+ (37 censored)   
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Figure 5.3: Example 2: predicted failure-time CDF at the normal stress x0 = 7.1 V. 

5.3 Conclusions 

This study proposed the DP Weibull mixture ALT model and developed the 

Gibbs sampling algorithm for model fitting. This ALT model describes the failure-time 

distribution at a given stress level using the nonparametric DP mixture model with the 

Weibull kernel, which offers great modeling flexibility. Two practical examples related 

to the reliability of nanoelectronics have demonstrated that the proposed methodology is 

capable of providing accurate predication of the failure-time distribution at the normal 

stress level without assuming any restrictive parametric failure-time distribution.  

The Gibbs sampling algorithm presented in Section 5.1.2, although cumbersome 

in appearance, is easy to implement. All the conditional posterior distributions involved 

in the algorithm are routine to sample. Of course, the proposed model and algorithm are 
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computationally more intense than the ML estimation of the Weibull log-linear ALT 

model. Another disadvantage of the nonparametric Bayesian analysis is that it may 

require larger sample sizes than the parametric analysis, especially when noninformative 

prior distributions are used.  

This study considered only one stress variable. It is straightforward to extend the 

proposed methodology to consider multiple stress variables by allowing xi and  in 

Eq. (5.1) to be vector-valued. This study considered right censoring. Other censoring 

mechanisms can be easily considered due to the fact that the Weibull kernel has the 

closed-form CDF and the flexibility and generality of the Gibbs sampling algorithm.  
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CHAPTER 6: BAYESIAN ANALYSIS FOR SIMPLE STEP-STRESS 

ACCELERATED LIFE TESTING 

This chapter develops Dirichlet process Weibull mixture model for simple step-

stress ALT. The cumulative exposure model is applied to describe the effect of changing 

stress. The consistent model fitting algorithm with constant-stress ALT analysis is 

utilized. The results of practical example show this methodology is capable of accurately 

predicting the failure-time distribution at the normal stress level.  

6.1 Methodologies 

 The SSALT model introduces cumulative exposure model to the constant-stress 

ALT model. The CDF and PDF of the failure-time distribution in a simple SSALT with 

log-linear acceleration model can be respectively expressed as: 










,],)(exp([
,0),(

)(
2

1

ttxxF
ttF

tF
HL 

  

and,  










,],)(exp([
,0),(

)(
2

1

ttxxf
ttf

tf
HL 

  

where  is stress changing time, and xL and xH are lower and higher stress levels, 

respectively. Then, the hierarchical form of DP Weibull mixture model for SSALT can 

be written as: 
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(6.1) 

Again, assign normal prior for , Pareto prior for , Gamma prior for  and  as 

following. 
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The simulation algorithm of SSALT inference is similar to that of constant-stress 

ALT as following. 

(a) Draw (i, i) from its conditional posterior distribution, and update clustering 

indicator for each ti. For all ti>, replace ti with ti', where  

;))(exp('   HLii xxtt  

(b) Update cluster locations ),( **
jj   from *** ,...,1for),,,,,,,( njMf jj dc  , 

replace ti with ti' for all ti>; 

(c) Update , , and based on their conditional posterior distributions; 

(d) Sample value of from its conditional posterior distribution using slice sampling.  
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For each iteration, samples a new value for from its conditional posterior 

distribution  
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(a) Update the failure-time CDF at the normal use stress level. 
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6.2 Illustrative Examples 

The practical example used in this section also use experimental data collected at 

the Thin Film Nano & Microelectronics Research Laboratory at Texas A&M University, 

College Station. Table 6.1 presents the times-to-breakdown observations of device tested 

at a simple SSALT. The low and high stresses applied in the test are 7.5V and 8.3 V, 

respectively. The stress changed at  = 480 s, and the tests ended at tc = 600 s. The data 

set consists of 52 failure observations and 8 right-censored observations. Again, the 

lowest stress level (i.e., 7.5 V) used in the experiment is assumed as the normal stress 

level, and the data collected in the simple SSALT is used to predict the failure-time 

distribution at 7.5 V. This type of step-stress ALT is known as step-stress partially ALT, 

i.e., a unit is first tested under normal stress, if the unit does not fail by time  , increase 

the stress level and test the unit until it fails or censors. The predicted distribution can be 

compared with the empirical CDF computed from the median rank estimator.  

 

Table 6.1: Times-to-breakdown of nanocrystals-embedded high-k memories under 

simple SSALT. 

Time-to-breakdown (seconds) 
2 3 4 5 6 6 7 8 11 12 
14 15 22 22 25 31 31 33 33 35 
36 38 55 55 64 73 91 103 147 148 
170 187 213 221 263 277 278 299 305 381 
443 449 489 491 495 497 504 508 520 566 
569 575 600+ (8 censored)         
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Noninformative priors are chosen to reflect absence of any prior knowledge. 

Assume Gamma(1, 0.001) prior for  and , Pareto(1, 1) prior for , and Normal(0, 106) 

prior for . Utilize Matlab® to code the algorithm, and run Gibbs sampling algorithm for 

10,000 iterations, with the first 5,000 iterations discarded before data analysis. Figure 6.1 

shows the trace plots for parameters *, , and * with three different start points. It is 

reasonable to conclude that the convergence has achieved since the three chains appear to 

mix well after 5,000 iterations. 

 

 

Figure 6.1 Trace plots of *, , and * 
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The posterior prediction on the failure-time CDF at 7.5V is based on the posterior 

median. The 95% posterior intervals are also plotted to demonstrate the accuracy of 

prediction. Figure 6.2 shows the failure-time CDF at 7.5 V predicted by DP Weibull 

mixture SSALT model, the parametric Weibull log-linear SSALT model, and empirical 

CDF computed from the median rank estimator. The empirical CDF is truncated at the 

censoring time of 600 seconds. DP Weibull mixture SSALT model and parametric model 

provide very similar results. In addition, the 95% posterior interval of DP Weibull 

mixture model covers all experimental data.  

 

 

Figure 6.2 Predicted failure-time CDF at the use stress x0 = 7.5 V 
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CHAPTER 7: CONCLUSIONS 

This dissertation presents a semi-parametric Bayesian inference for accelerated 

life testing using Dirichlet process Weibull mixture model. A novel structure of  

nanoelectronics is investigated. Then the experimental datasets collected from similar 

structure of devices are applied in the semi-parametric ALT model proposed in this 

dissertation. The results demonstrate the capability of our model. In general, compare to 

parametric accelerated life testing model, the DPWM model is more applicable for 

emerging products, i.e., there exist uncertainties on the failure-time distribution of 

products, and very little prior knowledge on the model parameters are available.   

7.1 Memory Functions of MoOx Nanodots Embedded ZrHfO High-k 

The memory properties of nc-MoOx embedded ZrHfO high-k capacitor are shown 

to be contributed by hole trapping and detrapping. The C-V hysteresis and J-V curves 

detect that holes are trapped at the nc-MoOx site. Those two curves also confirm that 

some loosely trapped holes are easily released. The retention study further demonstrates 

those loosely trapped hole (approximate 20% of total trapped holes) release quickly. 

More than 50% of trapped holes remain in the device after 10 years. This is desirable for 

nonvolatile memory devices.  

7.2 Prediction of CDF of Failure-Time Distribution at Normal Stress Level 

The constant-stress ALT model proposed in the dissertation assumes a log-linear 

relationship between lifetime and stress levels. The nonparametric DP Weibull mixture 

model is used to describe the failure-time distribution at a given stress to relax the 

limitation of lack of distribution information. The step-stress ALT model introduced the 
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CE model to describe the effect of changing stress. Matlab® is used to implement the 

simulation algorithm and plot the predicted CDF curve of failure-time distribution under 

use condition. The simulation has proved to be converged. The result is compared with 

the parametric Weibull log-linear ALT model. In complete dataset example, DPWM 

model yields closer curve to empirical CDF. For right censored dataset, both 

semiparamtric and parametric models yield close curves. 

7.3 Future Research 

This dissertation develops a semiparametric method for ALT with one stress 

variable and it involves complete and type-I censored dataset. It can be generalized to 

include multiple stress variables and type-II censored data due to the flexibility and 

generality of Gibbs sampling algorithm. In addition, other distributions can be applied to 

Dirichlet process mixture model, such as exponential, normal or lognormal distribution, 

i.e., DPEM, DPNM, or DPLNM, respectively. 

Another future research with DPWM can be degradation analysis. Instead of 

“hard failure”, the failures for some electronics are defined as “soft failure”.  For example, 

failure time of light display devices is defined at the time when a device luminosity drops 

below 50% of its initial luminosity [125]. The failure of some laser products are defined 

as more than 20% output power loss. The analysis of performance degradation path, both 

under normal condition and accelerated stress condition, can further reduce lifetest time, 

and improve reliability inference. Degradation analysis can be performed as a 

nonparametric regression with DMWM model. 
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The cumulative exposure model is applied to deal with simple SSALT in this 

dissertation. Other models, for example, the Tampered Random Variable (TRV) model 

and the Tampered Failure Rate (TFR), can be applied and combined to DMWM model. 

Furthermore, simple SSALT modelling only deals with two stress levels. The algorithm 

involving multiple stress levels can be deduced by generalizing the cumulative exposure 

model with a log-linear function to multiple stresses.  
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