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ABSTRACT 

BAHALKEH, ESMAEIL, M.S., December 2015, Industrial and Systems Engineering 

Efficient Algorithms for Calculating the System Matrix and the Kleene Star Operator for 

Systems Defined by Directed Acyclic Graphs over Dioids  

Director of Thesis: Robert P. Judd 

Calculating the performance measures of a manufacturing system is of 

fundamental importance in many industrial engineering problems, particularly 

scheduling. The max-plus algebra representation of a system is given by the system 

matrix, shown by  , that can be used to calculate different performance measurements.  

This study proposes an efficient and structured algorithm to calculate   from the 

graph representation of the system. The proposed algorithm uses Kahn’s  algorithm [1] to 

topologically sort the nodes in the graph.  

In addition, using the same algorithm the Kleene star of a matrix can be computed 

in a slightly more efficient way. Kleene star contains longest path values between any 

two vertices. It is used to solve linear equations and also for performance measure 

purposes.  

Moreover, this study performs interval analysis on proposed algorithms. In 

interval system, unlike deterministic systems, input data of the system such as processing 

times are shown by intervals.    
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1. INTRODUCTION 

It is important to have efficient algorithms to evaluate performance measurements 

in manufacturing systems. In order to analyze manufacturing systems from different 

aspects, considerable research has been done in recent years. Among these, sequencing 

and scheduling of jobs, machines, human resources and also customers all have been hot 

topics. In the scheduling domain, depending on the nature of the problem, there are 

different performance measures such as makespan, tardiness, etc. In order to tackle these 

problems, different mathematical modeling techniques have been used. This research, 

however, uses graph theory and max-plus algebra as mathematical tools that aid in the 

analysis of these systems.  

The max-plus algebra representation of a system is given by the system matrix,  . 

Matrix   contains concise and useful information about the system. These types of 

information play a critical role in scheduling problems. It can be shown that   can be 

used to calculate different performance measurements such as makespan, critical path, 

cycle time, tardiness, lateness, etc. Although this research does not address the scheduling 

problem directly, it will make scheduling algorithms more efficient.   

Kleene star of  , shown by   , is another performance measure tool that contains 

longest path values.    is also used in solving linear max-plus algebra equations. 

Therefore, having an efficient algorithm to compute Kleene star of a matrix becomes 

important.  

Proposed algorithms for calculating system matrix and Kleene star becomes more 

valuable if they can be applied for interval systems. In interval systems, input data such 
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as processing times are given by interval values. Therefore, at the end of this thesis, the 

algorithms are expanded to systems defined by intervals.  

1.1. Research Scope 

This thesis considers graphical representations of choice-free manufacturing 

systems to develop efficient algorithms for calculating system matrix and Kleene star, 

and analyzes the proposed algorithms in interval system. Choice-free manufacturing 

systems have predetermined schedule of jobs on machines. In other words, sequence of 

jobs on each machine and also sequence of machines on each job remains the same 

during each the production.  

In addition, it will be assumed that the processing times are represented by either 

fixed times or by intervals. Since graph of the manufacturing systems under these 

assumptions has a special structure, called Directed Acyclic Graphs (DAG) [2], this 

research focuses on this type of graphs.  

1.2.Contributions 

 Developed an efficient algorithm to calculate start times of all operations in a  

manufacturing systems using dynamic programming and topology sorting 

simultaneously 

 Developed an efficient and structured algorithm to calculate system matrix for 

any system with DAG structure 

 Developed a method to calculate Kleene star operator for any system with 

DAG  structure by using the system matrix algorithm that runs slightly faster 

than the fastest algorithm in the literature 
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 Performing interval analysis and expanding proposed algorithms to interval 

system 
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2. LITERATURE REVIEW 

In order to develop efficient algorithms for calculating system matrix and Kleene 

star in manufacturing systems, this thesis uses max-plus algebraic techniques to model 

manufacturing systems. Then, it applies graph theoretical algorithms to come up with 

efficient algorithms.  

Next sections provide a review of recent and relevant publications in the area of 

manufacturing systems and modeling them, dioids, max-plus as an example of dioids, 

system matrix, Kleene star, longest path problem and its relationship with system matrix 

and Kleene star, and finally, interval systems.    

2.1.Manufacturing Systems 

Modeling of manufacturing systems in order to analyze and optimize different 

performance measures is an important research topic. Imaev [3] developed graphical 

model to represent manufacturing systems. In his model, predetermined schedule of jobs 

and machines form a graph that jobs have horizontal flow on machines and machines 

have vertical flow on jobs. Moreover, each operation is exhibited by a node and sequence 

of resources described by directed arcs. When a buffer with infinite capacity is assumed 

for each operation, each of the nodes will have at most two input and two output arcs in 

the graphical model.  

A manufacturing system with predetermined schedule of jobs and machines is 

called a Choice-free Manufacturing System (CMS) [4]. A graph of a CMS does not have 

any cycle, because existence of cycle means deadlock in the system [2]. Due to its special 

structure, CMS belongs to a certain type of graphs, called Directed Acyclic Graphs 
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(DAG). This special structure of CMS enables this study to use well-known graph 

theoretical algorithms for performance evaluation purposes.  

This thesis uses DAGs to model manufacturing systems. Then, it applies longest 

path algorithm to develop efficient algorithms for calculating system matrix and Kleene 

star of the system.  

2.1.1. Graphical Modeling of Manufacturing Systems  

Given a Choice-free Manufacturing System (CMS), Imaev [5] showed that the 

system can be represented by stacking operation blocks together according the job 

specification and schedule.  The resulting block diagram can be simplified into a DAG. 

To create the graph directly, just create a node for each operation.  Then connect the 

nodes horizontally in the order that the corresponding operations are specified in the jobs.  

Likewise, the nodes are connected vertically as specified by the schedule. The edges 

(arcs) of the graph are assigned weights equal to the processing time of the operation. 

Notice, by this construction, every node has at most two incoming and outgoing arcs. 

Consider a manufacturing system described by the jobs in Table 1 and the sequence is 

given in Table 2. The graph representing this system is illustrated in Figure 1.  For 

convenience, each operation is labeled with an integer. 



  15 
   

Table 1: Processing order of jobs / Respective processing times 

J1 M2/3 M1/4 M3/6 

J2 M1/3 M2/4 M3/9 

J3 M3/2 M2/1 M1/5 
 

 

Table 2: Sequence for all the machines 

M1 M2 M3 

J2 J1 J3 

J3 J2 J2 

J1 J3 J1 

 

 

Figure 1: Graph of the given manufacturing system 

 

In this representation, terminating node of each job is connected to a dummy node 

(shown by dashed arcs).  
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Let   be a DAG that corresponds to a manufacturing system.   Define   to be the 

set of nodes and   the set of edges in  .  Further, define            to be the edge 

connecting nodes    to   .  Define the predecessor and successor functions as follows 

        {              } , 

        {              } . 

A node   is called a source node if          ; it is call a destination node if 

         ;  all other nodes are called interior nodes.  Finally, define the function 

      which maps the arcs to process times.  These are the represented as weights of 

the arcs.   

2.2.Dioids 

Since all algorithms in this thesis are derived from longest path algorithms, which 

are developed over dioids, knowing the concept of dioid and its definition becomes 

important to understand the framework of proposed algorithms and also the way they are 

expanded to interval systems.  

According to definition, set   equipped with addition (⊕  and multiplication (   

operations is called dioid if it has following properties [6]: 

1- Associativity of addition 

              ⊕   ⊕    ⊕   ⊕     

2- Commutativity of addition  

              ⊕    ⊕     

3- Associativity of multiplication  
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4- Distributivity of multiplication with respect to addition 

              ⊕           ⊕        

                                                               ⊕       ⊕      

5- Existence of a null element  

                       ⊕       

6- Absorbing null element  

                            

7- Existence of an identity element  

                                  

8- Idempotency of addition  

                 ⊕       

2.2.1. Max-plus Algebra  

Max-plus algebra, as an example of a dioid [6], is used in this thesis to develop 

efficient algorithms for calculating system matrix and Kleene star operator. This section 

provides background research in max-plus, then it introduces the basics of this algebra 

that are used in this thesis.  

2.2.1.1.Background of Max-plus Algebra 

Regular algebra is equipped with two operations, addition and multiplication. In 

max-plus algebra, as its name indicates, there are maximization and addition operators. 

Max-plus algebra is a tool to model discrete event systems and to analyze marking times 

in petri nets[6]. A petri net is a graphical representation of a system that can be used to 

evaluate the system dynamically. Therefore, most researchers not only use block 
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diagrams, state equations, and queueing theory, but also petri nets and max-plus algebraic 

tools to model and analyze manufacturing systems.  

 In the scheduling of manufacturing systems with blockings, Mejia [7] used petri 

net approach to model the system and evaluate the scheduling issues. In addition, Labadi 

[8] used stochastic petri net models to modeling and performance analysis of logistic 

systems. Moreover, modeling a transportation system with petri nets and analyzing 

scheduling time tables with max-plus algebra were introduced in [9]. Basics of max-plus 

algebra, algorithms to calculate eigenvectors and eigenvalues and their interpretations in 

max-plus algebra have been studied in [9], [10].  

  For scheduling and performance evaluations purposes, max-plus operators can 

be used to simplify the system complexities. For example, an operation can be started 

when both required machine and  part are available, therefore, starting  time of the 

operation is simply the maximum of the time that both machine and part are available. To 

complete the operation, one can also add its associated processing time by an addition 

operator. Because of this simplicity and convenience, significant research has applied 

max-plus algebra in the scheduling area which some of them are mentioned in the 

following paragraphs.  

Minimizing product of matrices by max-plus algebra and its application in 

scheduling problems such as single machine, two- and three-machine flowshop 

scheduling problems have been studied in [11]. Considering makespan as objective 

function and analyzing it with max-plus algebra can be found in [12], [13], [14], [15]. In 

these papers, jobshop scheduling problem with and without recirculation conditions were 
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taken into account. In addition, researchers focused on flowshop scheduling problem and 

evaluated different performance analysis. For example, Imaev [16] proposed algorithms 

to explain spectral properties for the max-plus dynamics matrix for flowshops. Moreover, 

Nambiar [17] developed mathematical formulation for cyclic permutation flowshops 

using max-plus algebra. In this type of problem, a group of certain parts is repeatedly 

produced within a fixed cycle. In all cycles, the sequence of machines and jobs remains 

the same. He proposed an efficient formulation to compute the period of this type of 

scheduling systems [17]. On the other hand, max-plus algebra and its application in 

cyclic jobshop scheduling problem has been studied in [18].  

Max-plus linear equations can be used to control and analyze flow line by 

generating state-space equations. Seleim modeled manufacturing flow lines with 

considering two scenarios, with finite buffer capacity and with infinite buffer capacity 

[19], [20].  

Kajiwara studied max-plus algebraic techniques to scheduling problems of block 

assembly line [21]. Other researchers applied max-plus algebraic algorithms to schedule 

ship building lines [22], [23].   

Model predictive scheduling of semi-cyclic discrete event systems by max-plus 

linear models were also studied by Van den [24]. He considered system matrix and 

studied control of routing, ordering and synchronization issues by a set of variables.  

High-variety and low-volume manufacturing systems and their scheduling 

problems under the condition of preventive maintenance has been studied in [25].  
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Alirezaei studied max-plus algebra and its application in optimal scheduling of 

multiple sheets in a printer [26].  

Max-plus algebra also has been used frequently to analyze different queueing 

systems. Stochastic processes and Markov diffusion processes in max-plus algebra have 

been studied in [27]. Max-plus modeling and its application to analyze different queueing 

systems have been studied in [28], [29], [30]. Monitoring and performance evaluation of 

specific classes of queueing systems have been studied in [31], [32]. 

2.2.1.2.Definitions and Notations  

In max-plus algebra, as its name indicates, there are maximum and addition 

operators which are represented by ⊕ and   respectively. The unit element for 

maximization is defined by        and the unit element of addition is        . Define 

    =     { } and let            , the two aforementioned operators are defined as 

follows 

 ⊕            , 

         . 

Let   and   be two     matrices in     
    , then the addition of two matrices is 

defined as follows 

  ⊕      =       ⊕        , 

which right side takes the maximum of    elements in   and   matrices and saves as the 

   element of the   maximum   matrices. 

Multiplication operator between matrices        
    and        

    is defined as  

         ⊕   
                 . 
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Finally, for vectors     in     
   and scalar   we define the following vector 

operations 

  ⊕    =     ⊕      . 

      =        . 

2.3.System Matrix  

System matrix contains brief and useful information about the system which can 

be used for performance evaluation purposes [9]. The max-plus algebra representation of 

system is represented by the system matrix,  . The    element of   represents the 

completion times of job   , given that job   is started at time zero and all other jobs started 

early enough that do not affect job   (theoretically, this time is    ) [14].  

A few researchers studied algorithms to generate the state-space equations of the 

system using max-plus algebra [20, 33-35]. These equations contain the same 

information that system matrix does; however, using set of equations for evaluating and 

controlling manufacturing systems is burdensome.   

From the computational complexity perspective of system matrices, as Singh [14] 

showed, a manufacturing system can be represented by transition matrices  ,   and  , 

input vector   and output vector   as shown in Figure 2.  
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Figure 2: General graph representation of a manufacturing system 

 

Defining max-plus algebra equations [9] for the system represented by Figure 2, 

results 

       ⊕      , 

                ⊕                . 

According to definition, system matrix is a matrix that relates input vector to the 

output vector; therefore,  

          . 

The star operator in    is called Kleene star.     

This thesis uses the concept of longest path in DAG structures to develop efficient 

algorithms for calculating system matrix and Kleene star.    

From the application perspective, if   (start time vector),   (due date vector),   

(system matrix), and   (eigenvalue of  ); then, completion time vector ( ), lateness 

vector ( ), tardiness vector ( ), cycle time or period of the system ( ), and makespan (  ) 

can be calculated as followings 
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         ⊕     

          

   ⊕   
   ⊕   

   
      

For example, consider a manufacturing system represented in Figure 1. System 

matrix of this system is  = [
      
      
     

]. From the application perspective, assume 

that start time vector is   = [
 
 
 
] , then completion time of jobs are          = 

[
      
      
     

]   [
 
 
 
]= [

  
  
 

] which is shown in the following gantt chart.  

 

 

Figure 3: Gantt chart of the system for   =     

 

As another illustration of system matrix application, assume that all jobs start at 

time zero, then    = [
 
 
 
] and          = [

      
      
     

]   [
 
 
 
]= [

  
  
  

] . Figure 4 

represents its gantt chart.  
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Figure 4: Gantt chart of the system for   =   

 

Finally, the makespan of the system is equal to the maximum element of the 

system matrix which gives        .  

2.4.Kleene Star  

Kleene star of a matrix, shown by   , is an important operator in max-plus 

algebra. Its primary purpose is in solving linear max-plus algebraic equations [9]. For 

matrix         
   , it is defined as 

   ⊕   
                  .  

It is shown [9] that if    exists, the maximization needs only go through     

  where   is the number of columns in  . Calculating Kleene star with this definition 

requires 

                 operations, because each element of    requires      

computations (    times of ⊕, and   times of  ), therefore,        computations 

are required for computing   . Calculating all other powers require the same 

computation. Since there are     different powers (starting from 2 to     ),     

        computations are needed for generating all powers. After that, maximization 

operator compares all elements of these matrices which needs    computations 
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(  operation required for comparing two matrices, and there are   different matrices). 

Therefore, this algorithm has total complexity of                .  

A bit more efficient algorithm is called divide and conquer which divides the 

matrix into four sub-matrices.  

   [ 
    

    
]
 

 [ 
  

 ⊕   
        

   ⊕    
     

   
        

   ⊕    
 

     
   ⊕    

     
      

   ⊕    
 ] 

Using this method recursively results the Kleene star of the system in a 

complexity of   
 
      [14], [36]. 

Goto [37, 38] proposed an algorithm to calculate Kleene star for graph 

representation of a system. This algorithm assumes that topological sort of the graph is 

given. Based on the sorted graph, it computes the Kleene star. In terms of complexity, 

this algorithm has two parts that need to be summed. First part is topology sorting of the 

graph, and the second part is the algorithm. Since Kahn’s algorithm is the most efficient 

way to sort the nodes topologically, this research considers Kahn algorithm’s complexity 

for the first part which is             .  

The second part of the algorithm is similar to the steps 2-6 of algorithm 2. 

Therefore, total complexity is                         .  

 He also studied computing Kleene star in a fast way by using parallelization 

concept in cell broadband engine [39]. Moreover, he designed numerical examples to 

illustrate the efficiency of this methodology. In addition, he introduced a fast way to 

calculate Kleene star in max-plus algebra using Compute Unified Device Architecture 

(CUDA) graphic processing units [40].  
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2.5. Longest Path Problem  

For a given graph of a manufacturing system, longest path is the same as 

makespan of the system [13]. There are multiple ways to compute the longest path within 

a graph. One of the ways to find longest path in graphs is to multiply the distances by -1 

and find the shortest path by using shortest path algorithms. Following paragraphs review 

shortest path algorithms and their applicability to this idea.  

One of the most common algorithms for finding shortest path within a graph is 

introduced by Dijkstra [41]. This algorithms finds the shortest path from a given source 

node to each of the other nodes with time complexity of         which      is the set of 

graph nodes [42]. Since Dijkstra algorithm is a greedy algorithm [42], it is not possible to 

use negative distances for calculating longest path.  

Another shortest path algorithm is developed separately by three researchers, 

Bellman, Ford and Moore [43-45]. Therefore, it is known as Bellman-Ford-Moore 

algorithm. This algorithm runs in                       time which   is the set of 

edges. This algorithm handles edges with negative weights and uses dynamic 

programming, therefore, it is possible to modify this algorithm to find the longest path 

[43-45].  

In addition, Floyd-Warshal algorithm finds shortest path between all pairs of 

nodes in                         time [46]. This algorithm also handles edges 

with negative weights. It is an example of dynamic programming; therefore, it can be 

applied for finding longest path [47].  
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The longest path can also be obtained by sorting nodes topologically. Topology 

sort or topology order of nodes, is a process that makes a sequence of nodes in a line in 

which predecessors of each node appears before that node itself [1]. Researchers studied 

topology sort problem in order to develop efficient algorithms to generate them. Er [48] 

studied parallel computation method to generate topology orders.  

Since topology sort is not unique and there might be multiple topology sorts for a 

given graph, Kalvin [49] proposed an algorithm that generates all topology orders of a 

given graph.  

Considering DAG structure of manufacturing systems, Pearce [50] introduced a 

simple algorithm that dynamically maintains the topology order of DAG’s. The 

simplicity of his proposed algorithm improves the running time of the algorithm.  

Inoue [51] introduced an algorithm to generate all topology sorts of a DAG based 

on data structure and permutations of nodes. They proposed the first algorithm for 

implicit generation of all topology sorts with dynamic manipulation in the most efficient 

way in terms of time and space [51].  

Italiano [52] reviewed different topology sort algorithms and showed that Kahn’s 

algorithm [1] is the most efficient algorithm to find a single topology sort in a DAG 

structure [53]. Therefore, this thesis uses Kahn’s algorithm as a base to develop most 

efficient algorithms to calculate system matrix and Kleene star.  

The most efficient way to calculate the longest path is to sort the nodes 

topologically and use dynamic programming [37]. Topological ordering of a directed 
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graph is a linear ordering of its nodes such that for every directed arc         from 

node   to node   ,   comes before    in the ordering. 

Sorting the nodes take place based on their priorities. Therefore, it is impossible 

to find a topological sort for a graph if there is a cycle, because any node in the cycle is 

both predecessor and successor of other nodes in the same cycle.  As a summary, 

topology sort exists for only DAGs. Obviously, the topological sort is not unique if it 

exists.  

The most efficient way for topological sorting is introduced by Kahn [1], [53]. 

Since manufacturing systems are DAG, this thesis uses this algorithm to sort the nodes 

topologically. After doing that, longest path algorithm is calculated using dynamic 

programming.  

2.6.Interval System 

A system with defined operations on intervals is called an interval system. 

Interval values are represented by pair       that indicates       [54]. Interval 

analysis can be used for analyzing a system and finding optimal solutions. For example, 

Schichl [55] applied interval analysis on DAGs for finding global optimum solutions. 

Different methods and applications of interval systems can be found in [56].  

In this thesis, proposed algorithms are expanded to interval systems where the 

input values of algorithms are considered intervals. 
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3. SYSTEM MATRIX 

System matrix ( ) is square matrix that connects the input vector to the output 

vector. System matrix contains useful data about the time delays between different 

operations; therefore, it can be used to calculate and analyze different performance 

measurements in a manufacturing system such as makespan, tardiness, lateness, etc.  

In order to calculate system matrix efficiently, this thesis modifies Kahn’s 

algorithm to include the dynamic programming required to compute start and completion 

times of jobs, then it modifies the algorithm to calculate system matrix.   

3.1. Modified Algorithm to Calculate Start Times 

Algorithm 1 uses Kahn’s  [1] topological sort algorithm and dynamic 

programming at the same time to calculate start times.   

Define      as the start time of node  .  The set   is initialized with all the source 

nodes.  Step 9 only adds a node to the set   if all of its predecessors have been visited.  

Step 6 will update       , where    is a successor of node  .  Notice that when node    is 

added to  ,       will be the maximum of all its predecessors. Hence, it would then be 

the start time of the operation.   

 Steps 11-12 detect the cycles if there is any. The counter V (number of visited 

nodes) is initialized with the number of nodes in the set  . Every time that a node gets 

added to  , this counter is incremented. After the algorithm terminates, if some of the 

nodes have not been added to  , then a cycle exists which means that DAG represents a 

system with an infeasible solution.   
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Algorithm 1: Modification of Kahn algorithm for topological sort to 
calculate the start time of each node 
input DAG 
         is the processing time of edge         
output       is the start time of each node 
 

1. let     be a set of nodes, and p an array indexed by the nodes 
2. initialize                ,      = ,     and  

  {             }, V=| | 
3. while   is not empty 
4.     remove node n from   
5.     for all            
6.                                    
7.         decrement       
8.         if (     =0) then 
9.           add    to    
10.           increment V 
11. if (V<    ) then 
12.     return ERROR: Infeasible Solution 

 

Each node in the graph enters to   at most once (if there is no cycle in the graph, 

each node enters once; otherwise, the nodes in the cycle do not enter). When a node 

enters to  , it will finally exit from   by running step 4 of the algorithm. Therefore, this 

algorithm terminates. 

Moreover, when a node is removed from  ,      is set to the maximum of the 

completion time of all of its predecessor nodes (step 4-6). The completion time of an 

operation is the sum of its start time plus its operation time. Thus      is the start time of 

node  . Therefore, when the algorithm completes,      will contain the start time of all 

the operations given that source nodes start their operations at time  . 

The complexity of the algorithm 1 is fairly easy to compute.  Going back to 

algorithm 1, step 2 initializes 2    elements; each node is added to   only once, so steps 

3-4 and 9-10 are each executed     times.  Steps 5, through 8 are execute for every 
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outgoing arc for every node, or simply every arc in  ; hence, there are 5    operations in 

these steps.  For any feasible schedule, steps 11-12 require only one operation.    

Therefore, there is a total of           operations, since          for large 

manufacturing systems, the complexity of the algorithm is          for DAG that 

represent such systems. Since each operation is represented by a node, the algorithm in 

linear with respect to the number of operations in the system. 

3.2. System Matrix Algorithm 

Define the unit vector 

   {
           

           
 . 

Then it is easy to verify that 

        , 

where    is the     column of  .  So, instead of initializing all the jobs to start at time 0 

(i.e  ) as was done implicitly in Algorithm 1, only job   starts at time 0 and the others 

start at   .  Then the start time of the last nodes (the nodes that are added to the original 

graph) for each job form the elements of the column   . From an algorithmic perspective, 

this can be accomplished easily by initializing  

      {
           
          

,   

where          is a function that returns the starting node for job   and then executing 

Algorithm 2.  Then if    is the     column of the system matrix associated with job  , then   

       (       )
 
 , 

where         is a function that returns the terminating node for job  .  
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By executing the algorithm multiple times with initial values corresponding to 

         (  is the number of jobs) and collecting the start times of the last operation 

of all jobs then the entire matrix   is found. This results in a total complexity of 

            to find the system matrix where   is the set of nodes.  

A slightly more efficient algorithm can be developed, by realizing that the 

topological sort does not need to be regenerated for each job.  In the new algorithm each 

node will hold a vector      of start times, where the    component is the start time of 

the node assuming the initial starting times of the jobs are initialized to   .  These vectors 

are initialized as follows 

     {
            

          
  , 

where   is a vector of the additive identity elements. 

As similar to algorithm 1, steps 11-12 detect the cycles if there is any by counting 

the number of entered nodes to  . For any feasible schedule that does not contain any 

cycle in its graph, these steps do not return any error. The counter V (number of visited 

nodes) initializes with the number of nodes in the set  . Every time that a node gets 

added to  , this counter becomes incremented. After the algorithm terminates, if some of 

the nodes are not added to  , it means an infeasible schedule.  
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Algorithm 2: Modification of Algorithm 1 to compute   
input DAG 
        is the processing time of edge         
output  system matrix 
 

1. let     be a set of nodes, and p an array indexed by the nodes 

2. initialize                ,      {
            

          
, and  

  {             }, V=| |  
3. while   is not empty 
4.     remove node n from   
5.     for all            
6.                                    
7.         decrement       
8.         if (     =0) then 
9.           add    to   
10.           increment V 
11. if (V<    ) then 
12.     return ERROR: Infeasible Solution  

13. return   

[
 
 
 
 
 
  (       )

 

 (       )
 

 (       )
 

 

 (       )
 
]
 
 
 
 
 
 

 

  

Again, each node in the graph enters to   at most once (if there is no cycle in the 

graph, each node enters once; otherwise, the nodes in the cycle do not enter). When a 

node enters to  , it will finally exit from   by running step 4 of the algorithm. Therefore, 

this algorithm terminates.  

In addition, when a node is removed from  , the operation times of its successor 

edges are added to      and compared with      of related successor (step 4-6). Thus 

when the algorithm completes,      will contain the start time vectors. Since dummy 

nodes are directly added to the end of each job by an edge with weight zero, the start time 
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of the dummy nodes are the same as completion times of their previous nodes. Therefore, 

     of last jobs determine the rows of the system matrix.  

In terms of computational complexity, each of the steps 3-4-9-10 requires     

computations. Step 2 requires          initializations. Similar to algorithm 1, each of 

the steps 5-7-8 requires     computations and step 6 needs       computations. Step 11 

requires only one computation and step 12 does not require any computation for feasible 

schedules. Finally, step 13 returns the system matrix. This step does not require any 

computation if      value of terminating node in each job is stored in this format from 

the beginning. Therefore, the total complexity is                       . In large 

systems,         , hence, total complexity is               .  

Therefore,                compares favorably to the complexity          , 

because in large systems,            ; hence, complexity          shows significant 

improvement, over three times faster.  

3.3.Numerical Example  

Consider the system modeled by the DAG in Figure 1.  First the s(n) vectors are 

initialized as shown in Table 3.  

 

Table 3: Initial      vectors 

Node 1 2 3 4 5 6 7 8 9 

Initial 

Value for 

s(n)     

[
 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] [

 
 
 
] 
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The set   is initialized to {2, 4, 6}.  Suppose arbitrarily node 2 is removed from 

 . The successors of node 2 are 1 and 5.  So step 7 results in   

    = [
   ⊕   
  ⊕   
  ⊕   

] = [
 
 
 
]  and      = [

   ⊕   
  ⊕   
  ⊕   

] = [
 
 
 
]. 

After removing node 4 from   and executing steps 4-8, node 5 becomes eligible 

to be added to  , since      is now 0.  Hence,   now contains {5, 6}.  This process 

repeats until   gets empty. Table 4 summarizes the results of running algorithm 2.  
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Table 4: Algorithm results for each n exited from Q 

Q node 
removed 
from Q 

Updated values of s(n) 

2,4,6 2 
 s(1) = [

 
 
 
] , s(5)= [

 
 
 
] 

4,6 4 
 s(5)= [

 
 
 
] , s(9)= [

 
 
 
] 

5,6 5 
 s(7)= [

 
 
 
] , s(8)= [

 
 
 
]   

6 6 
 s(7) = [

 
 
 
], s(8)= [

 
 
 
] 

7,8 7 
 s(3)= [

  
  
  

], s(11)= [
  
  
  

] 

8 8 
 s(9)= [

 
 
 
] 

9 9 
 s(1)= [

  
  
 

], s(12)= [
  
  
 

] 

1 1 
 s(3)= [

  
  
  

] 

3 3 
 s(10) = [

  
  
  

] 

 

The system matrix can be found as follows  

 = 

[
 
 
  (       )

 

 (       )
 

 (       )
 
]
 
 
 

 [
      
      
     

] 
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4. KLEENE STAR OPERATOR 

First section of this chapter provides a new approach to compute Kleene star 

based on dynamic programming and the concept of system matrix algorithm that is 

proposed in this thesis. Second section provides a numerical example for the proposed 

algorithm in section one. Third section overviews different graphical and algebraic 

approaches and compares them in terms of computational complexity.  

4.1. Kleene Star Algorithm 

In general graph representation of manufacturing systems, inputs of the system 

( ) is connected to outputs ( ) with system matrix ( ). By connecting outputs ( ) and 

also auxiliary nodes ( ) to inputs ( ) with identity matrix and generating max-plus 

equations, Kleene star can be computed.  

 

 

Figure 5: Graph representation of     

 

        

   ⊕    ⊕        

The last equation is solved by         [9]. In this equation,    connects the 

inputs to the outputs. Therefore, system matrix of Figure 5 is the same as Kleene star of 
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 . Figure 6 shows the expanded form of a system with arc weights. Elements of matrix 

  are the weights for continuous arcs, yet dashed arcs are all weighted with  .  

 

 

Figure 6: Expanded graph representation of    

 

Since    and    nodes directly connected to input nodes with weight  , these 

nodes can be eliminated from the graph. Figure 7 represents the final form of the system 

after removing these nodes.   
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Figure 7: Final graph representation of a    

 

In terms of computational complexity, this algorithm has              

           complexity which is the same as algorithm 2. 

According to Figure 7,       . Therefore, complexity of the proposed algorithm 

is                         .   

Table 5 summarizes the introduced algorithms for calculating Kleene star of   

along with their computational complexities. In first two algorithms that run with matrix 

data, complexity is described based on the number of rows or columns; however, in last 

two algorithms that run with graph, complexity is mentioned based on the number of 

nodes in graph. For a system that is described with both matrix and graph forms,       
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, therefore, Table 5 uses   for convenience. In addition, one may consider     

          

 
 

for the last two algorithms and compare their complexities with first two ones.   

 

Table 5: Comparison of computational complexity of different algorithms for A* 
Algorithm Data Type Complexity 

Basic Definition Matrix                 

Divide and conquer Matrix  

 
      

Goto Graph                    

Proposed in this thesis Graph                    

 

4.2.Numerical Example  

Figure 8 represents a system with three jobs where job indices are shown within 

nodes. In addition,   [
   
   
   

] represents the same system in a matrix form.  

 

 

Figure 8: Graph of a system 
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In order to use Algorithm 2 to compute Kleene star, the system needs to be shown 

in the form of Figure 7. Figure 9 represents the system in this form where each row 

represents a job.  

 

 

Figure 9: Converted graph of A 
 

Considering the equation         which is generated earlier,   nodes are 

inputs,    nodes are outputs, and    is the system matrix. Since   nodes are unified with   

nodes (shown in Figure 6 and Figure 7),   nodes are both first nodes and last nodes in 

each row. Following this facts,      vectors are initialized in Table 6.  

 

Table 6:Initial     values 
Node 1 2 3 

Initial Value 

for s(n)     
[
 
 
 
] [

 
 
 
] [

 
 
 
] 
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Table 7 summarizes the results of running algorithm 2 with DAG, shown in 

Figure 9.   

 

Table 7: Algorithm results for each n exited from Q 

Q node 

removed 

from Q 

Updated values of s(n) 

1 1 
s(2) = [

 
 
 
], s(3)= [

 
 
 
] 

2 2 
s(3)= [

 
 
 
]  

3 3 -  

 

And the Kleene star of   can be computed as following 

 

    [

     

     

     

]   [
   
   
   

]   
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5. INTERVAL ANALYSIS  

This section generalizes the proposed algorithms to interval systems where inputs 

of the system specified with interval values.  

An interval is defined by lower-bound and upper-bound values. Maximization and 

addition operators on intervals result a new interval with new lower and upper bounds 

which are analyzed in the first subsection. After that, a standard form of interval system 

is suggested. Then, proposed algorithms in previous chapters are expanded to interval 

systems, using dioid definition.  

5.1.Operations on Intervals 

This subsection analyzes maximization and addition operations on intervals.  

5.1.1. Maximum of Intervals  

If                              , maximum of    and    belongs to a 

new interval, which its lower-bound and upper-bound are maximum lower-bounds and 

maximum upper-bounds of    and    respectively.  

Two intervals are disjointed if there is no common area between them (Figure 10), 

enclosed if one is covered thoroughly by the other one (Figure 11) , and overlapped if 

they neither disjointed nor enclosed (Figure 12).  The figures also show the interval that 

the             lie in. 

 



  44 
   

 

Figure 10: Disjointed intervals and their maximun 

 

 

Figure 11: Enclosed intervals and their maximum 

 

 

Figure 12: Overlapped intervals and their maximum 
 

For the case that two intervals are disjointed, the right side interval is the 

maximum of intervals, because any point in there is higher than any point in left side 

interval. If two intervals are enclosed, the lower-bound and upper-bound of maximum 

interval is equal to the lower-bound of shorter interval and upper-bound of the other one, 

respectively. For overlapped intervals, the maximum is the same as disjointed intervals.  

From mathematical perspective, since          and          , 

following equations prove the intervals shown in the figures.  
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{

      

   
     

   {
             

   
             

                          

{
      

   
     

    {
             

  
             

                                

hence  

                                       ⊕       ⊕      ⊕       

5.1.2. Addition of Intervals 

If                              , summation of    and    forms a new 

interval, which its lower-bound is equal to summation of lower-bounds of    and    , and 

its upper-bound is equal to summation of upper-bounds of    and    (see figures 13 and 

14). 

 

 

Figure 13: Summation of intervals 

 

 

Figure 14:Summation of intervals 
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For the addition of intervals, there is no general graphical method to determine the 

lower-bound and upper-bound of the summation interval; however, they can be easily 

calculated by adding of lower-bounds and upper-bounds, respectively.  

From mathematical point of view, since          and          , 

following equations prove the aforementioned statement about lower-bound and upper-

bound.  

{
        

   
        

                           

hence  

                      

5.2.Interval System 

This section shows that intervals form dioids. Since the proposed algorithms only 

require the properties of dioid, then they will apply to intervals directly.  

Theorem 7.1: 

Interval system on    with unit elements         and  =[  ,  ] , and operators 

⊕ and   that are defined    

  ⊕           ⊕            ⊕       ⊕        

                                       

is a dioid.  
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Proof:   

1- Associativity of maximization  

   ⊕    ⊕       ⊕       ⊕    ⊕         

                                          ⊕    ⊕        ⊕    ⊕     

                                               ⊕    ⊕        ⊕    ⊕      

                                                                           ⊕    ⊕       ⊕     

                                                                      ⊕    ⊕      

                   

█ 

 

2- Commutativity of maximization  

    ⊕            ⊕          

                     ⊕       ⊕     

                                  ⊕       ⊕     

                                      ⊕          

             ⊕      

                     

█ 

 

3- Associativity of addition 
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█ 

4- Distributivity of addition with respect to maximization 

   ⊕           ⊕        ⊕              

                          ⊕            ⊕         

                                                                   

         ⊕                  ⊕          

                                                                 ⊕                 

                 ⊕          

                      

Since addition is not assumed to be commutative, second part of this section needs to be 

proved.  

      ⊕                  ⊕        ⊕     

                                                                              ⊕            ⊕       

                                                                   

         ⊕                  ⊕          

                                                                  ⊕                 

                  ⊕          

                      

█ 
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5- Existence of a null element  

  ⊕         ⊕       

                ⊕     ⊕    

           

                                                                           . 

                     

█ 

6- Absorbing null element  

                  

                       

               

                                                                             . 

          

Since addition is not assumed to be commutative, second part of this section needs to be 

proved.  

                  

                       

                                                                              

                                                                       . 

          

█ 

7- Existence of an identity element  
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                                                                      . 

                   

Since addition is not assumed to be commutative, second part of this section needs to be 

proved. 

                  

                                                                                 

                                                                             

                                                                       . 

                   

█ 

8- Idempotency of addition  

 ⊕         ⊕        

       ⊕     ⊕    

        

                                                                           

          

█ 
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As it is mentioned in dioid subsection of background chapter, max-plus algebra is 

a dioid. Therefore, proposed longest path algorithms can be expanded to any other dioids. 

This chapter proved that defined interval system is a dioid. Therefore, proposed system 

matrix and Kleene star algorithms are applicable for interval systems as well.  

5.3.Numerical Example  

Figure 15 represents the same system shown in Figure 1, however, the edge 

weights are changed to interval values. Terminating node of each job is connected to a 

dummy node (shown by dashed lines).  

 

 

Figure 15: Manufacturing system with interval weights 

 

Initialization step of algorithm 2 for the given example is similar to the numerical 

example in system matrix chapter. Table 8 shows the initialization phase. 
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Table 8: Initialization phase of algorithm 2 

Node 1 2 3 4 5 6 7 8 9 
Initial 
Value 
for 
s(n)     

[

     
     
     

] [
     
     
     

] [

     
     
     

] [

     
     
     

] [

     
     
     

] [

     
     
     

] [

     
     
     

] [

     
     
     

] [

     
     
     

] 

 

The results are shown in the Table 9.  

 

Table 9: Summary of the results 

Q node 
removed 
from Q 

Updated values of s(n) 

2,4,6 2 
 s(1) = [

     
     
     

] , s(5)= [
     
     
     

] 

4,6 4 
 s(5)= [

     
     
     

] , s(9)= [
     
     
     

] 

5,6 5 
 s(7)= [

      
      
     

] , s(8)= [
      
      
     

]    

6 6 
 s(7) = [

      
      
     

], s(8)= [
      
      
     

] 

7,8 7 
 s(3)= [

       
       
      

], s(11)= [
       
       
      

] 

 8 8 
 s(9)= [

      
      
     

] 

9 9 
 s(1)= [

      
      
      

], s(12)= [
      
      
      

] 
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1 1 
 s(3)= [

       
       
      

] 

3 3 
 s(10) = [

       
       
       

] 

 

And finally, the system matrix is 

   [

      

      

      

]   [

                     
                    
                  

]   
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6. CONCLUSION  

This thesis proposed an efficient algorithm that calculates start times in a 

manufacturing system with computational complexity of          where     is number 

of nodes in the graph of the system.  

Next, the former algorithm is modified to calculate the system matrix of 

manufacturing systems. System matrix can be used for performance measures such as 

completion time, lateness, tardiness, makespan, and period of the system. The thesis 

proposed an efficient and structured algorithm to calculate the system matrix with 

computational complexity of                where   is number of jobs and     is 

number of nodes in the DAG.  

The thesis also proposed an efficient method to compute the Kleene star operator 

for systems with DAG structures. Considering other algorithms, the proposed algorithm 

runs slightly faster than the fastest algorithm in literature (see Table 5).  

Finally, the thesis defined an interval system based on the concept of dioids, and 

then expanded the proposed algorithms in previous steps to interval systems. In interval 

systems, input data are shown by interval values.   
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7. FUTURE STUDY  

Following subjects can be considered as extension to this thesis: 

 Perturbation analysis in different cases such as processing times, and topology of 

the graph. 

 Considering matrix form of manufacturing systems and modifying proposed 

algorithms accordingly. 

 Focusing on specific types of manufacturing systems with specific graph 

structures and modifying the algorithms. 

 Assigning certain distribution functions for input data and expanding the research 

scope to stochastic environment. 
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