
Efficient Algorithms for Calculating the System Matrix and the Kleene Star Operator for

Systems Defined by Directed Acyclic Graphs over Dioids

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Esmaeil Bahalkeh

December 2015

© 2015 Esmaeil Bahalkeh. All Rights Reserved.

 2

This thesis titled

Efficient Algorithms for Calculating the System Matrix and the Kleene Star Operator for

Systems Defined by Directed Acyclic Graphs over Dioids

by

ESMAEIL BAHALKEH

has been approved for

the Department of Industrial and Systems Engineering

and the Russ College of Engineering and Technology by

Robert P. Judd

Professor of Industrial and Systems Engineering

Dennis Irwin

Dean, Russ College of Engineering and Technology

 3

ABSTRACT

BAHALKEH, ESMAEIL, M.S., December 2015, Industrial and Systems Engineering

Efficient Algorithms for Calculating the System Matrix and the Kleene Star Operator for

Systems Defined by Directed Acyclic Graphs over Dioids

Director of Thesis: Robert P. Judd

Calculating the performance measures of a manufacturing system is of

fundamental importance in many industrial engineering problems, particularly

scheduling. The max-plus algebra representation of a system is given by the system

matrix, shown by , that can be used to calculate different performance measurements.

This study proposes an efficient and structured algorithm to calculate from the

graph representation of the system. The proposed algorithm uses Kahn’s algorithm [1] to

topologically sort the nodes in the graph.

In addition, using the same algorithm the Kleene star of a matrix can be computed

in a slightly more efficient way. Kleene star contains longest path values between any

two vertices. It is used to solve linear equations and also for performance measure

purposes.

Moreover, this study performs interval analysis on proposed algorithms. In

interval system, unlike deterministic systems, input data of the system such as processing

times are shown by intervals.

 4

ACKNOWLEDGEMENTS

This thesis would not have been possible without help and support of many

people.

First of all, I would like to express my deepest gratitude to my thesis advisor, Dr.

Robert P. Judd for his expertise, guidance, and continuous support during this study.

Second, I would like to thank my thesis committee, Dr. Gursel Suer, Dr. Dusan

Sormaz and Dr. Faizul Huq, for their encouragement, insightful comments, and crucial

questions.

Last but not the least; I would like to thank my parents and my dear siblings for

their continuing love and support.

 5

TABLE OF CONTENTS

Page
Abstract ... 3
Acknowledgements ... 4
List of Tables .. 6
List of Figures ... 7
List of Symbols and Definitions ... 8
1. Introduction ... 10

1.1. Research Scope ... 11
1.2. Contributions... 11

2. Literature Review .. 13
2.1. Manufacturing Systems .. 13

2.1.1. Graphical Modeling of Manufacturing Systems 14
2.2. Dioids .. 16

2.2.1. Max-plus Algebra ... 17
2.2.1.1. Background of Max-plus Algebra .. 17
2.2.1.2. Definitions and Notations ... 20

2.3. System Matrix ... 21
2.4. Kleene Star .. 24
2.5. Longest Path Problem ... 26
2.6. Interval System ... 28

3. System Matrix ... 29

3.1. Modified Algorithm to Calculate Start Times .. 29
3.2. System Matrix Algorithm ... 31
3.3. Numerical Example .. 34

4. Kleene Star Operator ... 37
4.1. Kleene Star Algorithm .. 37
4.2. Numerical Example .. 40

5. Interval Analysis ... 43
5.1. Operations on Intervals ... 43

5.1.1. Maximum of Intervals... 43
5.1.2. Addition of Intervals ... 45

5.2. Interval System ... 46
5.3. Numerical Example .. 51

6. Conclusion .. 54
7. Future Study .. 55
References ... 56

 6

LIST OF TABLES

 Page

Table 1: Processing order of jobs / Respective processing times15

Table 2: Sequence for all the machines ..15

Table 3: Initial vectors ..34

Table 4: Algorithm results for each n exited from Q ..36

Table 5: Comparison of computational complexity of different algorithms for A*40

Table 6:Initial values ...41

Table 7: Algorithm results for each n exited from Q ..42

Table 8: Initialization phase of algorithm 2 ..52

Table 9: Summary of the results ...52

 7

LIST OF FIGURES

Page

Figure 1: Graph of the given manufacturing system ..15

Figure 2: General graph representation of a manufacturing system22

Figure 3: Gantt chart of the system for = ...23

Figure 4: Gantt chart of the system for = ..24

Figure 5: Graph representation of ...37

Figure 6: Expanded graph representation of ..38

Figure 7: Final graph representation of a ...39

Figure 8: Graph of a system ..40

Figure 9: Converted graph of A ..41

Figure 10: Disjointed intervals and their maximun ..44

Figure 11: Enclosed intervals and their maximum ...44

Figure 12: Overlapped intervals and their maximum ...44

Figure 13: Summation of intervals ...45

Figure 14:Summation of intervals ..45

Figure 15: Manufacturing system with interval weights ..51

 8

LIST OF SYMBOLS AND DEFINITIONS

 System Matrix

 Kleene star of

DAG Directed Acyclic Graph

CMS Choice-free Manufacturing System

 Graph with and as set of nodes and

arcs respectively

 The edge connecting nodes to

 { }

 { }

⊕ Maximization

 Addition

 Unit element of maximization

 Unit element of addition .

 { }

 Start time vector

 Due date vector

 () Eigenvalue of

 Completion time vector

 Lateness vector

 Tardiness vector

 Cycle time or period of the system

 9

 Makespan

 Start time vector of node

 Set of source nodes which is defined by

{ }

 V Counter

 The processing time of edge

p An array indexed by the nodes

 An index that is initialized with

 Unit vector that is defined by

{

 The column of

 A function that returns the first node of the

job

 A function that returns the last node of job

the

 Number of jobs

 10

1. INTRODUCTION

It is important to have efficient algorithms to evaluate performance measurements

in manufacturing systems. In order to analyze manufacturing systems from different

aspects, considerable research has been done in recent years. Among these, sequencing

and scheduling of jobs, machines, human resources and also customers all have been hot

topics. In the scheduling domain, depending on the nature of the problem, there are

different performance measures such as makespan, tardiness, etc. In order to tackle these

problems, different mathematical modeling techniques have been used. This research,

however, uses graph theory and max-plus algebra as mathematical tools that aid in the

analysis of these systems.

The max-plus algebra representation of a system is given by the system matrix, .

Matrix contains concise and useful information about the system. These types of

information play a critical role in scheduling problems. It can be shown that can be

used to calculate different performance measurements such as makespan, critical path,

cycle time, tardiness, lateness, etc. Although this research does not address the scheduling

problem directly, it will make scheduling algorithms more efficient.

Kleene star of , shown by , is another performance measure tool that contains

longest path values. is also used in solving linear max-plus algebra equations.

Therefore, having an efficient algorithm to compute Kleene star of a matrix becomes

important.

Proposed algorithms for calculating system matrix and Kleene star becomes more

valuable if they can be applied for interval systems. In interval systems, input data such

 11

as processing times are given by interval values. Therefore, at the end of this thesis, the

algorithms are expanded to systems defined by intervals.

1.1. Research Scope

This thesis considers graphical representations of choice-free manufacturing

systems to develop efficient algorithms for calculating system matrix and Kleene star,

and analyzes the proposed algorithms in interval system. Choice-free manufacturing

systems have predetermined schedule of jobs on machines. In other words, sequence of

jobs on each machine and also sequence of machines on each job remains the same

during each the production.

In addition, it will be assumed that the processing times are represented by either

fixed times or by intervals. Since graph of the manufacturing systems under these

assumptions has a special structure, called Directed Acyclic Graphs (DAG) [2], this

research focuses on this type of graphs.

1.2.Contributions

 Developed an efficient algorithm to calculate start times of all operations in a

manufacturing systems using dynamic programming and topology sorting

simultaneously

 Developed an efficient and structured algorithm to calculate system matrix for

any system with DAG structure

 Developed a method to calculate Kleene star operator for any system with

DAG structure by using the system matrix algorithm that runs slightly faster

than the fastest algorithm in the literature

 12

 Performing interval analysis and expanding proposed algorithms to interval

system

 13

2. LITERATURE REVIEW

In order to develop efficient algorithms for calculating system matrix and Kleene

star in manufacturing systems, this thesis uses max-plus algebraic techniques to model

manufacturing systems. Then, it applies graph theoretical algorithms to come up with

efficient algorithms.

Next sections provide a review of recent and relevant publications in the area of

manufacturing systems and modeling them, dioids, max-plus as an example of dioids,

system matrix, Kleene star, longest path problem and its relationship with system matrix

and Kleene star, and finally, interval systems.

2.1.Manufacturing Systems

Modeling of manufacturing systems in order to analyze and optimize different

performance measures is an important research topic. Imaev [3] developed graphical

model to represent manufacturing systems. In his model, predetermined schedule of jobs

and machines form a graph that jobs have horizontal flow on machines and machines

have vertical flow on jobs. Moreover, each operation is exhibited by a node and sequence

of resources described by directed arcs. When a buffer with infinite capacity is assumed

for each operation, each of the nodes will have at most two input and two output arcs in

the graphical model.

A manufacturing system with predetermined schedule of jobs and machines is

called a Choice-free Manufacturing System (CMS) [4]. A graph of a CMS does not have

any cycle, because existence of cycle means deadlock in the system [2]. Due to its special

structure, CMS belongs to a certain type of graphs, called Directed Acyclic Graphs

 14

(DAG). This special structure of CMS enables this study to use well-known graph

theoretical algorithms for performance evaluation purposes.

This thesis uses DAGs to model manufacturing systems. Then, it applies longest

path algorithm to develop efficient algorithms for calculating system matrix and Kleene

star of the system.

2.1.1. Graphical Modeling of Manufacturing Systems

Given a Choice-free Manufacturing System (CMS), Imaev [5] showed that the

system can be represented by stacking operation blocks together according the job

specification and schedule. The resulting block diagram can be simplified into a DAG.

To create the graph directly, just create a node for each operation. Then connect the

nodes horizontally in the order that the corresponding operations are specified in the jobs.

Likewise, the nodes are connected vertically as specified by the schedule. The edges

(arcs) of the graph are assigned weights equal to the processing time of the operation.

Notice, by this construction, every node has at most two incoming and outgoing arcs.

Consider a manufacturing system described by the jobs in Table 1 and the sequence is

given in Table 2. The graph representing this system is illustrated in Figure 1. For

convenience, each operation is labeled with an integer.

 15

Table 1: Processing order of jobs / Respective processing times

J1 M2/3 M1/4 M3/6

J2 M1/3 M2/4 M3/9

J3 M3/2 M2/1 M1/5

Table 2: Sequence for all the machines

M1 M2 M3

J2 J1 J3

J3 J2 J2

J1 J3 J1

Figure 1: Graph of the given manufacturing system

In this representation, terminating node of each job is connected to a dummy node

(shown by dashed arcs).

 16

Let be a DAG that corresponds to a manufacturing system. Define to be the

set of nodes and the set of edges in . Further, define to be the edge

connecting nodes to . Define the predecessor and successor functions as follows

 { } ,

 { } .

A node is called a source node if ; it is call a destination node if

 ; all other nodes are called interior nodes. Finally, define the function

 which maps the arcs to process times. These are the represented as weights of

the arcs.

2.2.Dioids

Since all algorithms in this thesis are derived from longest path algorithms, which

are developed over dioids, knowing the concept of dioid and its definition becomes

important to understand the framework of proposed algorithms and also the way they are

expanded to interval systems.

According to definition, set equipped with addition (⊕ and multiplication (

operations is called dioid if it has following properties [6]:

1- Associativity of addition

 ⊕ ⊕ ⊕ ⊕

2- Commutativity of addition

 ⊕ ⊕

3- Associativity of multiplication

 17

4- Distributivity of multiplication with respect to addition

 ⊕ ⊕

 ⊕ ⊕

5- Existence of a null element

 ⊕

6- Absorbing null element

7- Existence of an identity element

8- Idempotency of addition

 ⊕

2.2.1. Max-plus Algebra

Max-plus algebra, as an example of a dioid [6], is used in this thesis to develop

efficient algorithms for calculating system matrix and Kleene star operator. This section

provides background research in max-plus, then it introduces the basics of this algebra

that are used in this thesis.

2.2.1.1.Background of Max-plus Algebra

Regular algebra is equipped with two operations, addition and multiplication. In

max-plus algebra, as its name indicates, there are maximization and addition operators.

Max-plus algebra is a tool to model discrete event systems and to analyze marking times

in petri nets[6]. A petri net is a graphical representation of a system that can be used to

evaluate the system dynamically. Therefore, most researchers not only use block

 18

diagrams, state equations, and queueing theory, but also petri nets and max-plus algebraic

tools to model and analyze manufacturing systems.

 In the scheduling of manufacturing systems with blockings, Mejia [7] used petri

net approach to model the system and evaluate the scheduling issues. In addition, Labadi

[8] used stochastic petri net models to modeling and performance analysis of logistic

systems. Moreover, modeling a transportation system with petri nets and analyzing

scheduling time tables with max-plus algebra were introduced in [9]. Basics of max-plus

algebra, algorithms to calculate eigenvectors and eigenvalues and their interpretations in

max-plus algebra have been studied in [9], [10].

 For scheduling and performance evaluations purposes, max-plus operators can

be used to simplify the system complexities. For example, an operation can be started

when both required machine and part are available, therefore, starting time of the

operation is simply the maximum of the time that both machine and part are available. To

complete the operation, one can also add its associated processing time by an addition

operator. Because of this simplicity and convenience, significant research has applied

max-plus algebra in the scheduling area which some of them are mentioned in the

following paragraphs.

Minimizing product of matrices by max-plus algebra and its application in

scheduling problems such as single machine, two- and three-machine flowshop

scheduling problems have been studied in [11]. Considering makespan as objective

function and analyzing it with max-plus algebra can be found in [12], [13], [14], [15]. In

these papers, jobshop scheduling problem with and without recirculation conditions were

 19

taken into account. In addition, researchers focused on flowshop scheduling problem and

evaluated different performance analysis. For example, Imaev [16] proposed algorithms

to explain spectral properties for the max-plus dynamics matrix for flowshops. Moreover,

Nambiar [17] developed mathematical formulation for cyclic permutation flowshops

using max-plus algebra. In this type of problem, a group of certain parts is repeatedly

produced within a fixed cycle. In all cycles, the sequence of machines and jobs remains

the same. He proposed an efficient formulation to compute the period of this type of

scheduling systems [17]. On the other hand, max-plus algebra and its application in

cyclic jobshop scheduling problem has been studied in [18].

Max-plus linear equations can be used to control and analyze flow line by

generating state-space equations. Seleim modeled manufacturing flow lines with

considering two scenarios, with finite buffer capacity and with infinite buffer capacity

[19], [20].

Kajiwara studied max-plus algebraic techniques to scheduling problems of block

assembly line [21]. Other researchers applied max-plus algebraic algorithms to schedule

ship building lines [22], [23].

Model predictive scheduling of semi-cyclic discrete event systems by max-plus

linear models were also studied by Van den [24]. He considered system matrix and

studied control of routing, ordering and synchronization issues by a set of variables.

High-variety and low-volume manufacturing systems and their scheduling

problems under the condition of preventive maintenance has been studied in [25].

 20

Alirezaei studied max-plus algebra and its application in optimal scheduling of

multiple sheets in a printer [26].

Max-plus algebra also has been used frequently to analyze different queueing

systems. Stochastic processes and Markov diffusion processes in max-plus algebra have

been studied in [27]. Max-plus modeling and its application to analyze different queueing

systems have been studied in [28], [29], [30]. Monitoring and performance evaluation of

specific classes of queueing systems have been studied in [31], [32].

2.2.1.2.Definitions and Notations

In max-plus algebra, as its name indicates, there are maximum and addition

operators which are represented by ⊕ and respectively. The unit element for

maximization is defined by and the unit element of addition is . Define

 = { } and let , the two aforementioned operators are defined as

follows

 ⊕ ,

 .

Let and be two matrices in
 , then the addition of two matrices is

defined as follows

 ⊕ = ⊕ ,

which right side takes the maximum of elements in and matrices and saves as the

 element of the maximum matrices.

Multiplication operator between matrices
 and

 is defined as

 ⊕
 .

 21

Finally, for vectors in
 and scalar we define the following vector

operations

 ⊕ = ⊕ .

 = .

2.3.System Matrix

System matrix contains brief and useful information about the system which can

be used for performance evaluation purposes [9]. The max-plus algebra representation of

system is represented by the system matrix, . The element of represents the

completion times of job , given that job is started at time zero and all other jobs started

early enough that do not affect job (theoretically, this time is) [14].

A few researchers studied algorithms to generate the state-space equations of the

system using max-plus algebra [20, 33-35]. These equations contain the same

information that system matrix does; however, using set of equations for evaluating and

controlling manufacturing systems is burdensome.

From the computational complexity perspective of system matrices, as Singh [14]

showed, a manufacturing system can be represented by transition matrices , and ,

input vector and output vector as shown in Figure 2.

 22

Figure 2: General graph representation of a manufacturing system

Defining max-plus algebra equations [9] for the system represented by Figure 2,

results

 ⊕ ,

 ⊕ .

According to definition, system matrix is a matrix that relates input vector to the

output vector; therefore,

 .

The star operator in is called Kleene star.

This thesis uses the concept of longest path in DAG structures to develop efficient

algorithms for calculating system matrix and Kleene star.

From the application perspective, if (start time vector), (due date vector),

(system matrix), and (eigenvalue of); then, completion time vector (), lateness

vector (), tardiness vector (), cycle time or period of the system (), and makespan ()

can be calculated as followings

 23

 ⊕

 ⊕
 ⊕

For example, consider a manufacturing system represented in Figure 1. System

matrix of this system is = [

]. From the application perspective, assume

that start time vector is = [

] , then completion time of jobs are =

[

] [

]= [

] which is shown in the following gantt chart.

Figure 3: Gantt chart of the system for =

As another illustration of system matrix application, assume that all jobs start at

time zero, then = [

] and = [

] [

]= [

] . Figure 4

represents its gantt chart.

 24

Figure 4: Gantt chart of the system for =

Finally, the makespan of the system is equal to the maximum element of the

system matrix which gives .

2.4.Kleene Star

Kleene star of a matrix, shown by , is an important operator in max-plus

algebra. Its primary purpose is in solving linear max-plus algebraic equations [9]. For

matrix
 , it is defined as

 ⊕
 .

It is shown [9] that if exists, the maximization needs only go through

 where is the number of columns in . Calculating Kleene star with this definition

requires

 operations, because each element of requires

computations (times of ⊕, and times of), therefore, computations

are required for computing . Calculating all other powers require the same

computation. Since there are different powers (starting from 2 to),

 computations are needed for generating all powers. After that, maximization

operator compares all elements of these matrices which needs computations

 25

(operation required for comparing two matrices, and there are different matrices).

Therefore, this algorithm has total complexity of .

A bit more efficient algorithm is called divide and conquer which divides the

matrix into four sub-matrices.

 [

]

 [

 ⊕

 ⊕

 ⊕

 ⊕

 ⊕
]

Using this method recursively results the Kleene star of the system in a

complexity of

 [14], [36].

Goto [37, 38] proposed an algorithm to calculate Kleene star for graph

representation of a system. This algorithm assumes that topological sort of the graph is

given. Based on the sorted graph, it computes the Kleene star. In terms of complexity,

this algorithm has two parts that need to be summed. First part is topology sorting of the

graph, and the second part is the algorithm. Since Kahn’s algorithm is the most efficient

way to sort the nodes topologically, this research considers Kahn algorithm’s complexity

for the first part which is .

The second part of the algorithm is similar to the steps 2-6 of algorithm 2.

Therefore, total complexity is .

 He also studied computing Kleene star in a fast way by using parallelization

concept in cell broadband engine [39]. Moreover, he designed numerical examples to

illustrate the efficiency of this methodology. In addition, he introduced a fast way to

calculate Kleene star in max-plus algebra using Compute Unified Device Architecture

(CUDA) graphic processing units [40].

 26

2.5. Longest Path Problem

For a given graph of a manufacturing system, longest path is the same as

makespan of the system [13]. There are multiple ways to compute the longest path within

a graph. One of the ways to find longest path in graphs is to multiply the distances by -1

and find the shortest path by using shortest path algorithms. Following paragraphs review

shortest path algorithms and their applicability to this idea.

One of the most common algorithms for finding shortest path within a graph is

introduced by Dijkstra [41]. This algorithms finds the shortest path from a given source

node to each of the other nodes with time complexity of which is the set of

graph nodes [42]. Since Dijkstra algorithm is a greedy algorithm [42], it is not possible to

use negative distances for calculating longest path.

Another shortest path algorithm is developed separately by three researchers,

Bellman, Ford and Moore [43-45]. Therefore, it is known as Bellman-Ford-Moore

algorithm. This algorithm runs in time which is the set of

edges. This algorithm handles edges with negative weights and uses dynamic

programming, therefore, it is possible to modify this algorithm to find the longest path

[43-45].

In addition, Floyd-Warshal algorithm finds shortest path between all pairs of

nodes in time [46]. This algorithm also handles edges

with negative weights. It is an example of dynamic programming; therefore, it can be

applied for finding longest path [47].

 27

The longest path can also be obtained by sorting nodes topologically. Topology

sort or topology order of nodes, is a process that makes a sequence of nodes in a line in

which predecessors of each node appears before that node itself [1]. Researchers studied

topology sort problem in order to develop efficient algorithms to generate them. Er [48]

studied parallel computation method to generate topology orders.

Since topology sort is not unique and there might be multiple topology sorts for a

given graph, Kalvin [49] proposed an algorithm that generates all topology orders of a

given graph.

Considering DAG structure of manufacturing systems, Pearce [50] introduced a

simple algorithm that dynamically maintains the topology order of DAG’s. The

simplicity of his proposed algorithm improves the running time of the algorithm.

Inoue [51] introduced an algorithm to generate all topology sorts of a DAG based

on data structure and permutations of nodes. They proposed the first algorithm for

implicit generation of all topology sorts with dynamic manipulation in the most efficient

way in terms of time and space [51].

Italiano [52] reviewed different topology sort algorithms and showed that Kahn’s

algorithm [1] is the most efficient algorithm to find a single topology sort in a DAG

structure [53]. Therefore, this thesis uses Kahn’s algorithm as a base to develop most

efficient algorithms to calculate system matrix and Kleene star.

The most efficient way to calculate the longest path is to sort the nodes

topologically and use dynamic programming [37]. Topological ordering of a directed

 28

graph is a linear ordering of its nodes such that for every directed arc from

node to node , comes before in the ordering.

Sorting the nodes take place based on their priorities. Therefore, it is impossible

to find a topological sort for a graph if there is a cycle, because any node in the cycle is

both predecessor and successor of other nodes in the same cycle. As a summary,

topology sort exists for only DAGs. Obviously, the topological sort is not unique if it

exists.

The most efficient way for topological sorting is introduced by Kahn [1], [53].

Since manufacturing systems are DAG, this thesis uses this algorithm to sort the nodes

topologically. After doing that, longest path algorithm is calculated using dynamic

programming.

2.6.Interval System

A system with defined operations on intervals is called an interval system.

Interval values are represented by pair that indicates [54]. Interval

analysis can be used for analyzing a system and finding optimal solutions. For example,

Schichl [55] applied interval analysis on DAGs for finding global optimum solutions.

Different methods and applications of interval systems can be found in [56].

In this thesis, proposed algorithms are expanded to interval systems where the

input values of algorithms are considered intervals.

 29

3. SYSTEM MATRIX

System matrix () is square matrix that connects the input vector to the output

vector. System matrix contains useful data about the time delays between different

operations; therefore, it can be used to calculate and analyze different performance

measurements in a manufacturing system such as makespan, tardiness, lateness, etc.

In order to calculate system matrix efficiently, this thesis modifies Kahn’s

algorithm to include the dynamic programming required to compute start and completion

times of jobs, then it modifies the algorithm to calculate system matrix.

3.1. Modified Algorithm to Calculate Start Times

Algorithm 1 uses Kahn’s [1] topological sort algorithm and dynamic

programming at the same time to calculate start times.

Define as the start time of node . The set is initialized with all the source

nodes. Step 9 only adds a node to the set if all of its predecessors have been visited.

Step 6 will update , where is a successor of node . Notice that when node is

added to , will be the maximum of all its predecessors. Hence, it would then be

the start time of the operation.

 Steps 11-12 detect the cycles if there is any. The counter V (number of visited

nodes) is initialized with the number of nodes in the set . Every time that a node gets

added to , this counter is incremented. After the algorithm terminates, if some of the

nodes have not been added to , then a cycle exists which means that DAG represents a

system with an infeasible solution.

 30

Algorithm 1: Modification of Kahn algorithm for topological sort to
calculate the start time of each node
input DAG
 is the processing time of edge
output is the start time of each node

1. let be a set of nodes, and p an array indexed by the nodes
2. initialize , = , and

 { }, V=| |
3. while is not empty
4. remove node n from
5. for all
6.
7. decrement
8. if (=0) then
9. add to
10. increment V
11. if (V<) then
12. return ERROR: Infeasible Solution

Each node in the graph enters to at most once (if there is no cycle in the graph,

each node enters once; otherwise, the nodes in the cycle do not enter). When a node

enters to , it will finally exit from by running step 4 of the algorithm. Therefore, this

algorithm terminates.

Moreover, when a node is removed from , is set to the maximum of the

completion time of all of its predecessor nodes (step 4-6). The completion time of an

operation is the sum of its start time plus its operation time. Thus is the start time of

node . Therefore, when the algorithm completes, will contain the start time of all

the operations given that source nodes start their operations at time .

The complexity of the algorithm 1 is fairly easy to compute. Going back to

algorithm 1, step 2 initializes 2 elements; each node is added to only once, so steps

3-4 and 9-10 are each executed times. Steps 5, through 8 are execute for every

 31

outgoing arc for every node, or simply every arc in ; hence, there are 5 operations in

these steps. For any feasible schedule, steps 11-12 require only one operation.

Therefore, there is a total of operations, since for large

manufacturing systems, the complexity of the algorithm is for DAG that

represent such systems. Since each operation is represented by a node, the algorithm in

linear with respect to the number of operations in the system.

3.2. System Matrix Algorithm

Define the unit vector

 {

 .

Then it is easy to verify that

 ,

where is the column of . So, instead of initializing all the jobs to start at time 0

(i.e) as was done implicitly in Algorithm 1, only job starts at time 0 and the others

start at . Then the start time of the last nodes (the nodes that are added to the original

graph) for each job form the elements of the column . From an algorithmic perspective,

this can be accomplished easily by initializing

 {

,

where is a function that returns the starting node for job and then executing

Algorithm 2. Then if is the column of the system matrix associated with job , then

 ()

 ,

where is a function that returns the terminating node for job .

 32

By executing the algorithm multiple times with initial values corresponding to

 (is the number of jobs) and collecting the start times of the last operation

of all jobs then the entire matrix is found. This results in a total complexity of

 to find the system matrix where is the set of nodes.

A slightly more efficient algorithm can be developed, by realizing that the

topological sort does not need to be regenerated for each job. In the new algorithm each

node will hold a vector of start times, where the component is the start time of

the node assuming the initial starting times of the jobs are initialized to . These vectors

are initialized as follows

 {

 ,

where is a vector of the additive identity elements.

As similar to algorithm 1, steps 11-12 detect the cycles if there is any by counting

the number of entered nodes to . For any feasible schedule that does not contain any

cycle in its graph, these steps do not return any error. The counter V (number of visited

nodes) initializes with the number of nodes in the set . Every time that a node gets

added to , this counter becomes incremented. After the algorithm terminates, if some of

the nodes are not added to , it means an infeasible schedule.

 33

Algorithm 2: Modification of Algorithm 1 to compute
input DAG
 is the processing time of edge
output system matrix

1. let be a set of nodes, and p an array indexed by the nodes

2. initialize , {

, and

 { }, V=| |
3. while is not empty
4. remove node n from
5. for all
6.
7. decrement
8. if (=0) then
9. add to
10. increment V
11. if (V<) then
12. return ERROR: Infeasible Solution

13. return

[

 ()

 ()

 ()

 ()

]

Again, each node in the graph enters to at most once (if there is no cycle in the

graph, each node enters once; otherwise, the nodes in the cycle do not enter). When a

node enters to , it will finally exit from by running step 4 of the algorithm. Therefore,

this algorithm terminates.

In addition, when a node is removed from , the operation times of its successor

edges are added to and compared with of related successor (step 4-6). Thus

when the algorithm completes, will contain the start time vectors. Since dummy

nodes are directly added to the end of each job by an edge with weight zero, the start time

 34

of the dummy nodes are the same as completion times of their previous nodes. Therefore,

 of last jobs determine the rows of the system matrix.

In terms of computational complexity, each of the steps 3-4-9-10 requires

computations. Step 2 requires initializations. Similar to algorithm 1, each of

the steps 5-7-8 requires computations and step 6 needs computations. Step 11

requires only one computation and step 12 does not require any computation for feasible

schedules. Finally, step 13 returns the system matrix. This step does not require any

computation if value of terminating node in each job is stored in this format from

the beginning. Therefore, the total complexity is . In large

systems, , hence, total complexity is .

Therefore, compares favorably to the complexity ,

because in large systems, ; hence, complexity shows significant

improvement, over three times faster.

3.3.Numerical Example

Consider the system modeled by the DAG in Figure 1. First the s(n) vectors are

initialized as shown in Table 3.

Table 3: Initial vectors

Node 1 2 3 4 5 6 7 8 9

Initial

Value for

s(n)

[

] [

] [

] [

] [

] [

] [

] [

] [

]

 35

The set is initialized to {2, 4, 6}. Suppose arbitrarily node 2 is removed from

 . The successors of node 2 are 1 and 5. So step 7 results in

 = [
 ⊕
 ⊕
 ⊕

] = [

] and = [

 ⊕
 ⊕
 ⊕

] = [

].

After removing node 4 from and executing steps 4-8, node 5 becomes eligible

to be added to , since is now 0. Hence, now contains {5, 6}. This process

repeats until gets empty. Table 4 summarizes the results of running algorithm 2.

 36

Table 4: Algorithm results for each n exited from Q

Q node
removed
from Q

Updated values of s(n)

2,4,6 2
 s(1) = [

] , s(5)= [

]

4,6 4
 s(5)= [

] , s(9)= [

]

5,6 5
 s(7)= [

] , s(8)= [

]

6 6
 s(7) = [

], s(8)= [

]

7,8 7
 s(3)= [

], s(11)= [

]

8 8
 s(9)= [

]

9 9
 s(1)= [

], s(12)= [

]

1 1
 s(3)= [

]

3 3
 s(10) = [

]

The system matrix can be found as follows

 =

[

 ()

 ()

 ()

]

 [

]

 37

4. KLEENE STAR OPERATOR

First section of this chapter provides a new approach to compute Kleene star

based on dynamic programming and the concept of system matrix algorithm that is

proposed in this thesis. Second section provides a numerical example for the proposed

algorithm in section one. Third section overviews different graphical and algebraic

approaches and compares them in terms of computational complexity.

4.1. Kleene Star Algorithm

In general graph representation of manufacturing systems, inputs of the system

() is connected to outputs () with system matrix (). By connecting outputs () and

also auxiliary nodes () to inputs () with identity matrix and generating max-plus

equations, Kleene star can be computed.

Figure 5: Graph representation of

 ⊕ ⊕

The last equation is solved by [9]. In this equation, connects the

inputs to the outputs. Therefore, system matrix of Figure 5 is the same as Kleene star of

 38

 . Figure 6 shows the expanded form of a system with arc weights. Elements of matrix

 are the weights for continuous arcs, yet dashed arcs are all weighted with .

Figure 6: Expanded graph representation of

Since and nodes directly connected to input nodes with weight , these

nodes can be eliminated from the graph. Figure 7 represents the final form of the system

after removing these nodes.

 39

Figure 7: Final graph representation of a

In terms of computational complexity, this algorithm has

 complexity which is the same as algorithm 2.

According to Figure 7, . Therefore, complexity of the proposed algorithm

is .

Table 5 summarizes the introduced algorithms for calculating Kleene star of

along with their computational complexities. In first two algorithms that run with matrix

data, complexity is described based on the number of rows or columns; however, in last

two algorithms that run with graph, complexity is mentioned based on the number of

nodes in graph. For a system that is described with both matrix and graph forms,

 40

, therefore, Table 5 uses for convenience. In addition, one may consider

for the last two algorithms and compare their complexities with first two ones.

Table 5: Comparison of computational complexity of different algorithms for A*
Algorithm Data Type Complexity

Basic Definition Matrix

Divide and conquer Matrix

Goto Graph

Proposed in this thesis Graph

4.2.Numerical Example

Figure 8 represents a system with three jobs where job indices are shown within

nodes. In addition, [

] represents the same system in a matrix form.

Figure 8: Graph of a system

 41

In order to use Algorithm 2 to compute Kleene star, the system needs to be shown

in the form of Figure 7. Figure 9 represents the system in this form where each row

represents a job.

Figure 9: Converted graph of A

Considering the equation which is generated earlier, nodes are

inputs, nodes are outputs, and is the system matrix. Since nodes are unified with

nodes (shown in Figure 6 and Figure 7), nodes are both first nodes and last nodes in

each row. Following this facts, vectors are initialized in Table 6.

Table 6:Initial values
Node 1 2 3

Initial Value

for s(n)
[

] [

] [

]

 42

Table 7 summarizes the results of running algorithm 2 with DAG, shown in

Figure 9.

Table 7: Algorithm results for each n exited from Q

Q node

removed

from Q

Updated values of s(n)

1 1
s(2) = [

], s(3)= [

]

2 2
s(3)= [

]

3 3 -

And the Kleene star of can be computed as following

 [

] [

]

 43

5. INTERVAL ANALYSIS

This section generalizes the proposed algorithms to interval systems where inputs

of the system specified with interval values.

An interval is defined by lower-bound and upper-bound values. Maximization and

addition operators on intervals result a new interval with new lower and upper bounds

which are analyzed in the first subsection. After that, a standard form of interval system

is suggested. Then, proposed algorithms in previous chapters are expanded to interval

systems, using dioid definition.

5.1.Operations on Intervals

This subsection analyzes maximization and addition operations on intervals.

5.1.1. Maximum of Intervals

If , maximum of and belongs to a

new interval, which its lower-bound and upper-bound are maximum lower-bounds and

maximum upper-bounds of and respectively.

Two intervals are disjointed if there is no common area between them (Figure 10),

enclosed if one is covered thoroughly by the other one (Figure 11) , and overlapped if

they neither disjointed nor enclosed (Figure 12). The figures also show the interval that

the lie in.

 44

Figure 10: Disjointed intervals and their maximun

Figure 11: Enclosed intervals and their maximum

Figure 12: Overlapped intervals and their maximum

For the case that two intervals are disjointed, the right side interval is the

maximum of intervals, because any point in there is higher than any point in left side

interval. If two intervals are enclosed, the lower-bound and upper-bound of maximum

interval is equal to the lower-bound of shorter interval and upper-bound of the other one,

respectively. For overlapped intervals, the maximum is the same as disjointed intervals.

From mathematical perspective, since and ,

following equations prove the intervals shown in the figures.

 45

{

 {

{

 {

hence

 ⊕ ⊕ ⊕

5.1.2. Addition of Intervals

If , summation of and forms a new

interval, which its lower-bound is equal to summation of lower-bounds of and , and

its upper-bound is equal to summation of upper-bounds of and (see figures 13 and

14).

Figure 13: Summation of intervals

Figure 14:Summation of intervals

 46

For the addition of intervals, there is no general graphical method to determine the

lower-bound and upper-bound of the summation interval; however, they can be easily

calculated by adding of lower-bounds and upper-bounds, respectively.

From mathematical point of view, since and ,

following equations prove the aforementioned statement about lower-bound and upper-

bound.

{

hence

5.2.Interval System

This section shows that intervals form dioids. Since the proposed algorithms only

require the properties of dioid, then they will apply to intervals directly.

Theorem 7.1:

Interval system on with unit elements and =[,] , and operators

⊕ and that are defined

 ⊕ ⊕ ⊕ ⊕

is a dioid.

 47

Proof:

1- Associativity of maximization

 ⊕ ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕

█

2- Commutativity of maximization

 ⊕ ⊕

 ⊕ ⊕

 ⊕ ⊕

 ⊕

 ⊕

█

3- Associativity of addition

 48

█

4- Distributivity of addition with respect to maximization

 ⊕ ⊕ ⊕

 ⊕ ⊕

 ⊕ ⊕

 ⊕

 ⊕

Since addition is not assumed to be commutative, second part of this section needs to be

proved.

 ⊕ ⊕ ⊕

 ⊕ ⊕

 ⊕ ⊕

 ⊕

 ⊕

█

 49

5- Existence of a null element

 ⊕ ⊕

 ⊕ ⊕

 .

█

6- Absorbing null element

 .

Since addition is not assumed to be commutative, second part of this section needs to be

proved.

 .

█

7- Existence of an identity element

 50

 .

Since addition is not assumed to be commutative, second part of this section needs to be

proved.

 .

█

8- Idempotency of addition

 ⊕ ⊕

 ⊕ ⊕

█

 51

As it is mentioned in dioid subsection of background chapter, max-plus algebra is

a dioid. Therefore, proposed longest path algorithms can be expanded to any other dioids.

This chapter proved that defined interval system is a dioid. Therefore, proposed system

matrix and Kleene star algorithms are applicable for interval systems as well.

5.3.Numerical Example

Figure 15 represents the same system shown in Figure 1, however, the edge

weights are changed to interval values. Terminating node of each job is connected to a

dummy node (shown by dashed lines).

Figure 15: Manufacturing system with interval weights

Initialization step of algorithm 2 for the given example is similar to the numerical

example in system matrix chapter. Table 8 shows the initialization phase.

 52

Table 8: Initialization phase of algorithm 2

Node 1 2 3 4 5 6 7 8 9
Initial
Value
for
s(n)

[

] [

] [

] [

] [

] [

] [

] [

] [

]

The results are shown in the Table 9.

Table 9: Summary of the results

Q node
removed
from Q

Updated values of s(n)

2,4,6 2
 s(1) = [

] , s(5)= [

]

4,6 4
 s(5)= [

] , s(9)= [

]

5,6 5
 s(7)= [

] , s(8)= [

]

6 6
 s(7) = [

], s(8)= [

]

7,8 7
 s(3)= [

], s(11)= [

]

 8 8
 s(9)= [

]

9 9
 s(1)= [

], s(12)= [

]

 53

1 1
 s(3)= [

]

3 3
 s(10) = [

]

And finally, the system matrix is

 [

] [

]

 54

6. CONCLUSION

This thesis proposed an efficient algorithm that calculates start times in a

manufacturing system with computational complexity of where is number

of nodes in the graph of the system.

Next, the former algorithm is modified to calculate the system matrix of

manufacturing systems. System matrix can be used for performance measures such as

completion time, lateness, tardiness, makespan, and period of the system. The thesis

proposed an efficient and structured algorithm to calculate the system matrix with

computational complexity of where is number of jobs and is

number of nodes in the DAG.

The thesis also proposed an efficient method to compute the Kleene star operator

for systems with DAG structures. Considering other algorithms, the proposed algorithm

runs slightly faster than the fastest algorithm in literature (see Table 5).

Finally, the thesis defined an interval system based on the concept of dioids, and

then expanded the proposed algorithms in previous steps to interval systems. In interval

systems, input data are shown by interval values.

 55

7. FUTURE STUDY

Following subjects can be considered as extension to this thesis:

 Perturbation analysis in different cases such as processing times, and topology of

the graph.

 Considering matrix form of manufacturing systems and modifying proposed

algorithms accordingly.

 Focusing on specific types of manufacturing systems with specific graph

structures and modifying the algorithms.

 Assigning certain distribution functions for input data and expanding the research

scope to stochastic environment.

 56

REFERENCES

[1] A. B. Kahn, "Topological sorting of large networks," Communications of the

ACM, vol. 5, pp. 558-562, Nov. 1962.

[2] Z. Li, N. Wu, and M. Zhou, "Deadlock control of automated manufacturing

systems based on Petri nets—A literature review," Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 42,

pp. 437-462, July 2012.

[3] A. Imaev and R. P. Judd, "Block diagram-based modeling of manufacturing

systems using," in American Control Conference, 2009. ACC'09., 2009, pp. 4711-

4716.

[4] M. Zhou, F. DiCesare, and A. Desrochers, "A hybrid methodology for synthesis

of Petri net models for manufacturing systems," Robotics and Automation, IEEE

Transactions on, vol. 8, pp. 350-361, Jun 1992.

[5] A. Imaev and R. P. Judd, "Hierarchial modeling of manufacturing systems using

max-plus algebra," in American Control Conference, 2008, 2008, pp. 471-476.

[6] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and

linearity: an algebra for discrete event systems: John Wiley & Sons Ltd, 1992.

[7] G. Mejía and C. Montoya, "Scheduling manufacturing systems with blocking: a

Petri net approach," International Journal of Production Research, vol. 47, pp.

6261-6277, 2009.

[8] K. Labadi, "Contribution to modelling and performances analysis of logistic

systems by using a new stochastic Petri nets model," 2005.

 57

[9] B. Heidergott, G. J. Olsder, and J. Van Der Woude, Max Plus at work: modeling

and analysis of synchronized systems: a course on Max-Plus algebra and its

applications: Princeton University Press, 2014.

[10] M. Akian, R. Bapat, and S. Gaubert, "Max-plus algebra," Handbook of linear

algebra. Chapman and Hall, London, 2006.

[11] J.-L. Bouquard, C. Lenté, and J.-C. Billaut, "Application of an optimization

problem in max-plus algebra to scheduling problems," Discrete Applied

Mathematics, vol. 154, pp. 2064-2079, 2006.

[12] H. Takahashi, H. Goto, and M. Kasahara, "Application of a critical chain project

management based framework on max-plus linear systems," in Complex,

Intelligent and Software Intensive Systems, 2009. CISIS'09. International

Conference on, 2009, pp. 898-903.

[13] M. Singh and R. P. Judd, "Efficient calculation of the makespan for job-shop

systems without recirculation using max-plus algebra," International Journal of

Production Research, vol. 52, pp. 5880-5894, 2014.

[14] M. Singh, "Mathematical Models, Heuristics and Algorithms for Efficient

Analysis and Performance Evaluation of Job Shop Scheduling Systems Using

Max-Plus Algebraic Techniques," Ph.D. dissertation, Indust. & Sys. Eng., Ohio

Univ., Athens, OH, 2013.

[15] P. R. Patlola, "Efficient Evaluation of Makespan for a Manufacturing System

Using Max-Plus Algebra," M.S. thesis, Indust. & Sys. Eng., Ohio Univ., Athens,

OH, 2011.

 58

[16] A. Imaev and R. P. Judd, "Spectral properties for the max plus dynamics matrix

for flow shops," in Proceedings of the Ninth IASTED International Conference on

Control and Applications, 2007, pp. 110-115.

[17] A. Nambiar and R. P. Judd, "Max-plus-based mathematical formulation for cyclic

permutation flow-shops," International Journal of Mathematical Modelling and

Numerical Optimisation, vol. 2, pp. 85-97, 2011.

[18] L. Houssin, "Cyclic jobshop problem and (max, plus) algebra," in World IFAC

Congress (IFAC 2011), 2011, pp. 2717-2721.

[19] A. Seleim and H. ElMaraghy, "Max-plus Modeling of Manufacturing Flow

Lines," Procedia CIRP, vol. 17, pp. 71-75, 2014.

[20] A. Seleim and H. ElMaraghy, "Generating max-plus equations for efficient

analysis of manufacturing flow lines," Journal of Manufacturing Systems, 2014.

Available http://dx.doi.org/10.1016/j.jmsy.2014.07.002

[21] H. Kajiwara, Y. Hitoi, and K. Hassan, "Max-plus approach to scheduling

problems of block assembly lines," in Proc Int Conf Mar Technol, 2010, pp. 189-

194.

[22] H. Kajiwara, Y. Hitoi, and Y. Nakao, "Max-plus-algebra based scheduling of a

ship building line," in Proc Int Conf Comput Appl Shipbuild, 2009, pp. 149-155.

[23] K. Hiroyuki, Y. Hitoi, and Y. Nakao, "On scheduling a shipbuilding line based on

Max-Plus system dynamic representation," in ICCAS-SICE, 2009, 2009, pp.

1738-1741.

 59

[24] T. J. van den Boom, G. D. Lopes, and B. De Schutter, "A modeling framework

for model predictive scheduling using switching max-plus linear models," in

Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 2013, pp.

5456-5461.

[25] I. Nasri, G. Habchi, and R. Boukezzoula, "Use of (max,+) algebra for scheduling

and optimization of HVLV systems subject to preventive maintenance,"

Simulation Modelling Practice and Theory, vol. 46, pp. 149-163, 2014.

[26] M. Alirezaei, T. van den Boom, and R. Babuska, "Max-plus algebra for optimal

scheduling of multiple sheets in a printer," in American Control Conference

(ACC), 2012, 2012, pp. 1973-1978.

[27] W. H. Fleming, "Max-plus stochastic processes," Applied Mathematics and

Optimization, vol. 49, pp. 159-181, 2004.

[28] B. Heidergott, "A characterisation of (max,+)-linear queueing systems," Queueing

systems, vol. 35, pp. 237-262, 2000.

[29] N. K. Krivulin, "Max-plus algebra models of queueing networks," arXiv preprint

arXiv:1212.0578, 2012.

[30] N. K. Krivulin, "The max-plus algebra approach in modelling of queueing

networks," arXiv preprint arXiv:1212.0895, 2012.

[31] N. K. Krivulin, "Algebraic modelling and performance evaluation of acyclic fork-

join queueing networks," in Advances in Stochastic Simulation Methods, ed:

Springer, 2000, pp. 63-81.

 60

[32] S. Masuda, "Monitoring and scheduling methods for MIMO-FIFO systems

utilizing max-plus linear representation," IEMS, vol. 7, pp. 23-33, 2008.

[33] S. Masuda, "Derivation algorithm of state-space equation for production systems

based on max-plus algebra," IEMS, vol. 3, pp. 1-11, 2004.

[34] T. Petrović and S. Bogdan, "Matrix-based sequencing in multiple re-entrant

flowlines," Transactions of the Institute of Measurement and Control, vol. 33, pp.

359-385, 2011.

[35] H. TAKAHASHI, "Efficient representation of the state equation in max-plus

linear systems with interval constrained parameters," IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol. 95,

pp. 608-612, 2012.

[36] G. Cohen, P. Moller, J.-P. Quadrat, and M. Viot, "Algebraic tools for the

performance evaluation of discrete event systems," Proceedings of the IEEE, vol.

77, pp. 39-85, 1989.

[37] H. Goto and M. Kasahara, "Efficient Computation Methods for the Kleene Star in

Max-Plus Linear Systems," in Intelligent Systems Design and Applications, 2009.

ISDA'09. Ninth International Conference on, 2009, pp. 1388-1393.

[38] H. TAKAHASHI, "Fast computation methods for the Kleene star in max-plus

linear systems with a DAG structure," IEICE transactions on fundamentals of

electronics, communications and computer sciences, vol. 92, pp. 2794-2799,

2009.

 61

[39] H. Goto, "High-Speed Computation of the Kleene Star in Max-Plus Algebraic

System Using a Cell Broadband Engine," IEICE transactions on information and

systems, vol. 93, pp. 1798-1806, 2010.

[40] H. Goto, "Acceleration of computing the Kleene Star in Max-Plus algebra using

CUDA GPUs," IEICE transactions on information and systems, vol. 94, pp. 371-

374, 2011.

[41] S. Skiena, "Dijkstra's Algorithm," Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica, Reading, MA: Addison-

Wesley, pp. 225-227, 1990.

[42] D. B. Johnson, "A note on Dijkstra's shortest path algorithm," Journal of the ACM

(JACM), vol. 20, pp. 385-388, 1973.

[43] R. Bellman, "On a routing problem," DTIC Document1956.

[44] L. R. Ford Jr, "Network flow theory," DTIC Document1956.

[45] E. F. Moore, The shortest path through a maze: Bell Telephone System., 1959.

[46] R. W. Floyd, "Algorithm 97: shortest path," Communications of the ACM, vol. 5,

p. 345, 1962.

[47] S. E. Dreyfus, "An appraisal of some shortest-path algorithms," Operations

research, vol. 17, pp. 395-412, 1969.

[48] M. Er, "A parallel computation approach to topological sorting," The Computer

Journal, vol. 26, pp. 293-295, 1983.

[49] A. D. Kalvin and Y. L. Varol, "On the generation of all topological sortings,"

Journal of Algorithms, vol. 4, pp. 150-162, 1983.

 62

[50] D. J. Pearce and P. H. Kelly, "A dynamic algorithm for topologically sorting

directed acyclic graphs," in Experimental and Efficient Algorithms, ed: Springer,

2004, pp. 383-398.

[51] Y. Inoue and S.-i. Minato, "An Efficient Method for Indexing All Topological

Orders of a Directed Graph," in Algorithms and Computation, ed: Springer, 2014,

pp. 103-114.

[52] G. F. Italiano, "Finding paths and deleting edges in directed acyclic graphs,"

Information Processing Letters, vol. 28, pp. 5-11, 1988.

[53] D. Jungnickel and T. Schade, Graphs, networks and algorithms: Springer, 2008.

[54] R. E. Moore, Interval analysis vol. 4: Prentice-Hall Englewood Cliffs, 1966.

[55] H. Schichl and A. Neumaier, "Interval analysis on directed acyclic graphs for

global optimization," Journal of Global Optimization, vol. 33, pp. 541-562, 2005.

[56] R. E. Moore and R. Moore, Methods and applications of interval analysis vol. 2:

SIAM, 1979.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services

