
Dynamical Systems In Biological Modeling: Clustering In the Cell Division Cycle of

Yeast

A dissertation presented to

the faculty of

the College of Arts and Sciences of Ohio University

In partial fulfillment

of the requirements for the degree

Doctor of Philosophy

Gregory J. Moses

August 2015

© 2015 Gregory J. Moses. All Rights Reserved.



2

This dissertation titled

Dynamical Systems In Biological Modeling: Clustering In the Cell Division Cycle of

Yeast

by

GREGORY J. MOSES

has been approved for

the Department of Mathematics

and the College of Arts and Sciences by

Todd Young

Professor of Mathematics

Robert Frank

Dean, College of Arts and Sciences



3

Abstract

MOSES, GREGORY J., Ph.D., August 2015, Mathematics

Dynamical Systems In Biological Modeling: Clustering In the Cell Division Cycle of

Yeast (218 pp.)

Director of Dissertation: Todd Young

This thesis is devoted to using the techniques of dynamical systems to studying

clustering in the cell division cycle of yeast through the medium of a feedback model in

which cells in one part of the cell division cycle influence the rate of cells in a different

part of the cell division cycle.

In Chapter 1, we introduce the model and see that it causes clustering under both

positive and negative feedback.

In Chapter 2 we pass to a clustered submanifold. We factorize a Poincaré map

and use this factorization to prove that asymptotically stable cyclic solutions exist under

negative feedback. We partition parameter space in a way that allows us to quickly

investigate stability of solutions under a wide range of parameter values. In Chapter 3

we prove many of the observations of Chapter 2, in particular that positive feedback

gives rise to unstable solutions. We also prove that asymptotic stability in the clustered

submanifold implies asymptotic stability in the full phase space.

In Chapter 4, we contrast the effect of adding biologically motivated bounded

noise against the effect of zero-mean Gaussian white noise, and see that the various noise

models act essentially similarly under a variety of metrics.

In Chapter 5, we consider a modification of the system wherein certain previously

disjoint intervals are allowed to overlap. We observe that in the clustered subspace, the

dynamics of this system are similar to those of the original system. However, we observe

complicated behavior in the full phase space, where solutions that are asymptotically

stable in the clustered space are merely stable, or even unstable, in the full phase space.
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1 Introduction∗

1.1 Authorship and publication history

This thesis is primarily comprised of material taken from five papers or

unpublished manuscripts that I share authorship in †.

The introduction extracts parts of [96]. I am the fourth coauthor, and had

the least influence on this paper of all the papers that form this thesis. To limit the

chapters of this thesis to material I have personally worked on, I have divided this

paper into two, and put work I was not personally involved in into this introduction.

The introduction is therefore primarily the work of Dr. Young, Dr. Fernandez, Dr.

Buckalew, and Dr. Boczko, although I have edited and expanded when it seemed

appropriate. Figure 1.5 and the accompanying discussion (not part of the published

paper) is my work.

Chapter 2 extracts the rest of [96]. I contributed to the k = 2 section of the

published paper, and made the observation that results we had proved under linear

feedback could be generalized. In the dissertation, I worked on the k = M + 1 case,

proving the order of event lemmas that were assumed without proof in the published

manuscript. The rest of that chapter is taken from [10] (first author, Nathan Breitsch,

other authors, Dr. Young and Erik Boczko; I am the second author). I was part of that

paper from its initial conception, writing large parts of the manuscript and working on

all the sections of that paper.

Chapter 3 is solo work.
∗ In accordance with ScienceDirect’s policy for using previously published articles in an academic dis-

sertation, we here give the DOI number by which the official publication from which this introduction is
drawn may be found: 10.1016/j.jtbi.2011.10.002.

† Material published in [10] as Cell cycle dynamics: clustering is universal in negative feedback sys-
tems, in the Journal of Mathematical Biology, is reused with kind permission from Springer Science and
Business Media. The papers [31] and [96] were published by the Journal of Theoretical Biology, a Sci-
enceDirect journal, which allows academic theses and dissertations to contain embedded published journal
articles and be publicly posted by the awarding institution, as long as DOI information is provided.
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Chapter 4 is joint work with Xue Gong (first author), Dr. Neiman, and

Dr. Young, and was published as [31]. I am the second author. I introduced the variable

rate model, met weekly with Xue Gong and Todd Young to discuss the results of the

simulations and the programming issues, wrote one of the appendices (Appendix B.2,

moved out of the chapter and into the appendix of the dissertation) and edited the

paper.

Chapter 5 is joint work with Denise Scalfano. I am the first author; everything

but some of the calculations of the appendix (moved into the appendix of the

dissertation) and some of the lemmas of Section 5.3.2 is my work (while the

calculations and lemmas were collaborative), and I wrote the manuscript.

A full bibliography is included at the conclusion of this document.

1.2 Motivation

Throughout this manuscript, we consider simple dynamical models of the cell

division cycle. Specifically, consider a culture of n cells, and visualize the cell division

cycle as a circle, [0,1] where 0 ∼ 1 (0 is identified with 1) and cells move clockwise

around the circle as they pass from birth to division. We take the progression of the i-th

cell to be governed by the equation

dci

dt
= 1 + a(ci, c̄) 1 ≤ i ≤ n, (1.2.1)

where ci is the position of the cell within the cycle and c̄ denotes the state of all the

cells in the culture.

Our primary motivation for this model is recent theoretical and experimental

work on Yeast Autonomous Oscillations (YAO) [16, 36, 50, 77, 97], the periodic

oscillations of physiologically relevant variables that have been reported and studied for

over 40 years [16, 26, 45, 52, 59, 64–66, 71, 76, 79, 91] (to name a few that explicitly

motivated the research upon which this dissertation is based; a full list would be

prohibitively long). Different types of YAO have been called metabolic [97], glycolytic
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[5] or respiratory [36] oscillations. The control of oscillation and the regulation of yeast

metabolism has been an important theme in the chemical engineering literature devoted

to the efficient management of bioprocesses [14, 34, 39, 68, 84]. These phenomena are

of basic biological interest because they expose questions regarding the coordination of

the cell cycle and metabolism, and interconnectedness of various cellular and genetic

processes [7, 50]. A correlation between YAO and the bud index was noted as early

as [52, 59]. However, it seems that the link between YAO and the Cell Division Cycle

(CDC) was obscured by the fact that the periods of YAO are always shorter than the

CDC times (computed from dilution rate) and a relationship between YAO and the

CDC seems to have been largely ignored, although in [50], [97], and elsewhere, the

correlation between YAO and CDC was again noted in genetic expression data.

Figure 1.1: Phases of the yeast cell cycle. The G1 phase begins following cell division.
The beginning of the DNA synthesis phase, S, coincides with budding. G2 is a second
“gap” phase. The M phase is characterized by narrowing or “necking” between the parent
and daughter cell; it ends in cell division. The hypothesized R region is the later portion
of G1 and the signaling region S is in the S phase. That is, a large subpopulation of cells
in the replicative S phase may promote or inhibit progression of cells approaching the
G1-S boundary.
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In [6] and [77] the authors proposed cell cycle clustering as a possible

explanation of the interaction between YAO and the CDC. Figure 1.1 roughly illustrates

the arrangement of phases of the cell cycle of yeast. It was hypothesized that subtle

feedback effects on CDC progression could cause populations of cells to segregate

into approximately CDC-synchronized subpopulations. Experimental bud index data

reported in [77] supported this conjecture. In [6] the authors studied a few simple

forms of (1.2.1) with the hypothesis that cells in one part of the CDC may influence

other cells in different parts of the CDC in different ways through various diffusible

chemical products. They hypothesized that a large subpopulation of cells in the critical

S-phase might affect metabolism production and the metabolites may in turn inhibit

or promote cell growth in the later part of the G1 phase, thus setting up a feedback

mechanism in which YAO and CDC clustering are inextricably intertwined, and they

showed analytically and numerically that differential CDC feedback such as this can

robustly cause CDC clustering in the models. By clustering we do not mean spatial

clustering (cultures that exhibit YAO occur in well-mixed bioreactors), but groups of

cells that are traversing the CDC in near synchrony.

Guided by these mathematical results, Stowers et. al. verified the existence of

clusters in two types of oscillating yeast [83] using both bud index and cell density

data. Some of the measurements from those experiments are shown in Figure 1.2. First

we note that the cell cycle period, as calculated by the dilution rate, is approximately

400 minutes, and two O2 oscillations occur during this period, suggesting that there

may be two clusters. Next, analyzing the figure, we see that approximately half of the

cells are budding at times t = 50 and t = 250, while at t = 170 less than 10% of the cells

are budded. Each budding event is accompanied by a decrease in density (no cells are

dividing) and followed by a sharp increase in cell density as these budded cells proceed

through division. Note that at t = 170 since less than 10% of the cells are budded, most

of the cells must be in the G1 phase of the cycle. When the bud index hits its next
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Figure 1.2: Experimental time series from a continuous culture of budding yeast.
Dissolved O2 percentage (green), bud index percentage (blue) and cell density (red) are
plotted versus elapsed time. The average cell cycle period as calculated from dilution rate
was about 400 minutes. The plot shows clearly that the bud index (percentage of cells
with buds from microscopy) and cell density (by flow cytometry) are both synchronized
with the oscillation in the level of dissolved O2.

maximum at t = 250, approximately half of the cells must have budded. The other half

of the cells must at that time still be in the G1 phase. As the cells that are budded then

divide and the cell density increases, the cells that remained in G1 must still be in G1

since the bud index is again low. When the first group of cells has divided, the second

group has been in G1 for at least 200 minutes. The next rise in bud index then must be

due to these cells, since they have had time to mature, while the first group of recently

divided cells clearly has not had time to reach budding again. Thus, these experiments

show conclusively the existence of two clusters and that CDC clustering coexists with

YAO.
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1.3 Modeling of the cell cycle and feedback

In standard modeling, the cell volume vi(t) is a proxy for position in the cell

cycle. This has justification for yeast in that milestones in the cell cycle, such as

the onset of budding, are closely associated with volume milestones and thought to

be causally related. Measurements show that the growth of a single cell is roughly

exponential [1], so a first order approximation is that the volume of the i-th cell

satisfies a linear differential equation

dvi

dt
= cvi. (1.3.1)

Growth rate c is often assumed to be independent of vi, i.e. it is independent of

the cell’s current state within the cycle and of other cells; it depends instead on the

nutrients available and other environmental factors. Applying a logarithmic change

of variables the growth law becomes dci/dt = c, and by further normalizing both the

coordinate c and time, the cell cycle can be represented by the unit interval [0,1], and

the equation of motion becomes dci/dt = 1. In this simple model each cell reaches

division (cytokinesis) at 1 when it returns (perhaps with its descendant cell) to 0

and begins the cycle again. Note that a change to normalized coordinates does not

depend essentially on the form of (1.3.1). Any model of cell growth where cells do

not interact while growing deterministically can be normalized to the form dci/dt = 1,

with ci(t) ∈ [0,1]. This model is insufficient in light of the data of [77], as it does not

predict clustering behavior.

A much more general model (again using normalized coordinates) is (1.2.1),

which we reproduce for convenience:

dci

dt
= 1 + a(ci, c̄) 1 ≤ i ≤ n, (1.3.2)

where ci is the position of the cell within the cycle and c̄ denotes the state of all the

cells in the culture.
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We propose to consider forms of (1.3.2) where the cells in one region of the

cell cycle, S for signaling, may influence the growth rate of cells in a preceding

portion that we term R for responsive. For example the R region may reside in the

later portion of the G1 phase and the signaling region S may be the biological S phase

(see Figure 1.1). This is philosophically justified by the fact that the S phase is the

most critical part of the CDC and the link between YAO and CDC may function to

protect the integrity of transcription [16]. It is also known that growing yeast store

carbohydrates, then metabolize them in the late G1 phase [28]. The actual positions

of the signaling and responsive regions within the biological cell cycle play no role in

the mathematical analysis of deterministic models of this form; they will become more

relevant in Chapter 4 when noise is introduced to the system, and we will return to the

topic at that time. Throughout this manuscript we will use S to denote the signaling

region. and on the few occasions when we refer to the yeast’s S phase we will do so

explicitly.

1.3.1 Definition. Consider n cells whose coordinates are given by ci ∈ [0,1], 1

identified with 0, and governed by an equation of the form (1.3.2). When a cell reaches

1 it continues at 0. We call such a system an RS-feedback system if:

(H1) R is an interval that directly precedes another interval S , i.e. the last endpoint of R

is the first endpoint of S ,

(H2) a(ci, x̄) vanishes except when ci ∈ R and there are some c j in S ,

(H3) 0 < vmin ≤ 1 + a(ci, c̄) ≤ vmax for all ci and c̄,

(H4) feedback is monotone, thus adding a cell to S will increase the value ∣a(ci, c̄)∣ for

ci ∈ R, and,

(H5) a(ci, c̄) is a smooth function for ci in the interior of R and each c j in the interior of

S , j ≠ i, and the one sided derivatives exist at the boundaries of R and S .
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The requirements (H2) and (H4) imply that a(ci, x̄) is either always non-negative

or always non-positive. By positive feedback we mean a is positive for ci ∈ R if there are

one or more c j in S . We define negative feedback analogously.

For the sake of definiteness we will specify:

S = [0, s) and R = [r,1), 0 < s < r < 1.

The final endpoint of R is 1, which corresponds to 0, the initial endpoint of S . See

Figure 1.4 below. The regions R and S are thus adjascent but disjoint. See Figure 1.3.

Figure 1.3: The phase diagram of the RS model; cells in S influence the rate of cells in R,
causing cells to cluster together. In this example, multiple clusters are forming, which we
will see is indicative of negative feedback.

Note that our restriction that R precedes S, while motivated by biological con-

siderations, is not the only possibility. It is worth noting that in the reverse case, when

R follows S, many of our results hold with the roles of positive and negative feedback

reversed. In particular, this is true for Propositions 1.5.1, 1.5.2, 1.5.4, 1.6.1, 1.6.2, and

Corollary 1.6.3. In [30] the authors dropped the requirement (H1) entirely by allowing
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S and R to be non-adjacent. We consider in Chapter 5 a similarly-defined model where

R and S overlap.

Note that in Definition 1.3.1 the number of cells in the culture is fixed at n.

Thus we will consider neither death, harvesting, nor proliferation. In the oscillation

experiments we are modeling there are in fact proliferation and harvesting (and an

insignificant rate of death), but they approximately balance when averaged over a

cell cycle. Thus the expected number of cells descended from a single cell in any

future cycle is approximately 1. Further, in the model we are considering, there is no

distinction between the two cells resulting from a division and to keep track of both

trajectories would be redundant (although in Chapter 4 we will consider modeling the

distinction between mother and daughter cells as a natural way to add noise to the

system.)

The differential equation in the general model (1.3.2) with RS feedback may

have discontinuities, and the standard results of Picard on existence and uniqueness

of solutions therefore do not apply. However, note that the equations may be

discontinuous only when a variable is at the boundaries of R and S i.e. at the hyper-

surfaces given by {x̄∣x j = 0, s, or r for some j}. Thus state space consists of open

regions of continuity, separated from one another by hyper-surfaces. Because all

derivatives are positive and bounded away from 0, any solution can only cross a

surface of discontinuity non-tangentially with non-zero speed. In these regions of

continuity, unique classical solutions exist, by classical methods; extending these to the

hyperplane, we thus have classical solutions joined together continuously at a discrete

set of time points. This is a solution in the sense that it satisfies the corresponding

integral equation, although the derivative does not exist at the points where the

solutions are joined together. More formally, the vector field is directionally continuous,

and because solutions can only cross surfaces non-tangentially in zero time, the vector
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field has bounded directional variation. Thus solutions exist, are unique, and depend

Lipschitz-continuously on initial conditions; see e.g. [11].

We will be primarily concerned with the following special case of the model:

dci

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if ci ∉ R

1 + f (I), if ci ∈ R
(1.3.3)

where

I(c̄) ≡ #{ j ∶ c j ∈ S }
n

= #{ j ∶ c j ∈ [0, s)}
n

, (1.3.4)

i.e. I is the fraction of cells in the signaling region. The “response function” f (I) in

(1.3.3) must satisfy f (0) = 0 (H2) and be monotone (H4), but can be non-linear, for

instance sigmoidal (S-shaped). Models of this form, while fairly general, can be studied

in some detail.

Understanding the CDC at the genetic and biochemical level is a topic

of intense interest and progress has been made in identifying the agents and the

nature of relationships between them [8, 18, 28, 80, 82, 89]. Our approach uses a

“caricature” of the cell cycle, rather than detailed modeling, and this simplification

demands justification. First, we wish to deal with individual cells in a population-wide

phenomenon. If details within each cell are considered, then the dimensions of the

phase space would be extremely large and results would be difficult to obtain. Second,

our understanding of the details of the cell cycle and its relations with other processes

is not complete and even if the general nature of relationships were well-understood,

the resulting set of differential equations would contain many parameters, e.g. rate

constants, that could only be estimated. With our simplified model which is based on

biological insight, we hope to obtain general principles that will inform further detailed

investigations.

The approach in part of this work is basically that of “phase oscillator” models,

e.g. Kuramoto equations, in which details of each individual actor are projected onto a
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Figure 1.4: Our coordinate representation of the cell cycle and (weakly clustered) groups
of cells from a negative feedback simulation with n = 200 and parameter values s = .25
and r = .75. Positions of individual cells are denoted by red asterisks. In this coordinate
system the S region is the interval [0, .25) and the R region is [.75,1), where 1 is
identified with 0.

simple phase space and emergent population behaviours are studied. In fact, if f (I) is

linear then our model can be put into the Kuramoto form by integrating over the cell

cycle for each pair of cells and adding the effects (see [53] p. 65-67). This derivation

fails in general for RS models (1.3.2) or (1.3.3), since the effects of cells in general are

not additive.

We note here another modeling simplification that we have implicitly made;

namely one might more accurately model the feedback term as a(ci, z) where z is a

vector variable representing all substrate factors that contribute to growth rate and z

itself is coupled with x̄ [38]. Dropping the z variable can be justified if the time-scale

of the dynamics of this variable is significantly shorter than the time-scale of the CDC.
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1.4 Clusters, gaps, and isolation

In this section we begin to study the existence and stability of periodic

“clustered” solutions for both positive and negative RS -feedback systems, and in

later sections we point out crucial differences between these two types of feedback.

Reducing to the study of clustered solutions is of practical interest since clusters

appear in experiments with YAO (and are in fact the motivation for this work). It also

limits the dimensions of the problem to a manageable size. This strategy has proven

indispensable in many fields; for instance in fluid dynamics, insight is obtained by

studying finite dimensional vortex equations rather than the full Navier-Stokes partial

differential equations [67].

1.4.1 Definition. By a cluster, we will formally mean a group of cells that are completely

synchronized in the CDC. We will denote clusters by xi rather than ci to keep them

notationally distinct from individual cells.

The differential equation (1.3.3) can be naturally generalized to the case of

clusters,

dxi

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if xi ∉ R

1 + h(I), if xi ∈ R,
(1.4.1)

where

I(x̄) ≡ #{ j ∶ x j ∈ S }
k

= #{ j ∶ x j ∈ [0, s)}
k

, (1.4.2)

If the cells that make up the clusters are perturbed, then we pass from (1.4.1) to

(1.3.3).

1.4.2 Lemma. Let k clusters of n/k cells be subject to the dynamical system defined by

(1.4.1), with feedback function h. Then h = f , where f is the feedback function in (1.3.3).

In other words, thinking of each cluster moving under the dynamics of (1.4.1)

is equivalent to thinking of each cell in each cluster moving under the dynamics of

(1.3.3).
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Proof. If the clusters are broken into their component cells (which cannot happen under

the influence of the stated dynamics, but may, e.g., happen under the influence of noise),

then the cells travel under the influence of (1.3.3), with feedback function f .

Now consider (H5) of Definition 1.3.1. By way of contradiction, let q be a rational

number between 0 and 1 such that f (q) ≠ h(q). Then if q is the fraction of cells in S ,

(H5) states that moving cells about S (which does not change I), if it causes a to vary at

all, will cause it to vary continuously. However, we have just assumed that as the cells

pass continuously from an unclustered to a clustered solution, a jumps discontinuously

from f (q) to h(q). �

This lemma will be significant in the investigations of stability in Chapter 3.

Note that RS-feedback systems as defined have the symmetry of globally

coupled networks with identical nodes; namely, the vector field is equivariant with

respect to the group of permutations of coordinates. This symmetry implies that any

cells that initially share the same phase keep the same phase as time evolves. The

simplest trajectory consists in taking all cells initially in the same phase. We have a

single cluster x (synchrony) that generates a periodic solution that runs at velocity 1

around the circle (i.e. x(t) = x(0) + t mod 1 for all t > 0).

1.4.3 Definition. We call the solution where all cells are initially in the same phase the

synchronous solution.

Note that under the dynamics of the system, cells in the same phase remain in

the same phase indefinitely, while cells not in the same phase cannot enter the same

phase.

The interval [0,1], with the endpoints identified, is a circle. On this circle, we

can specify a positive direction as associated with the increasing direction on [0,1]. A

distance between points x and y on the circle using these coordinates is given by the

minimum of ∣x − y∣ and 1 − ∣x − y∣.



26

1.4.4 Definition. By the gap between two clusters or cells at xi−1 and xi we mean the open

interval on the circle from xi−1 to xi, in the direction of the flow that contains no cells and

has width wi = d(xi, xi−1).

Note that if there are only two clusters x1 and x2 in the system, then they define

two gaps.

It follows from our assumed coordinates that if two clusters are in S ∪R then the

distance between them on the circle is less than ∣R∣ + ∣S ∣ = 1 − r + s. Here ∣R∣ denotes

the length of the interval R = [r,1), which is 1 − r and ∣S ∣ = s denotes the length

of the interval S = [0, s). See Figure 1.4. We say that a cluster of cells is isolated

if there are gaps between the cluster and any other cells on either side of length at

least ∣R∣ + ∣S ∣ and strictly isolated if the widths of gaps are more than ∣R∣ + ∣S ∣. This

terminology is motivated by the fact that strictly isolated clusters cannot exert feedback

on cells outside the cluster, or have feedback exerted upon them from outside. While

we consider only clustered solutions in the strictest sense, in real cultures individual

cell differences will lead to a weaker form of clustering. For clarity we will refer to

such a weakly clustered subset of cells as a group of cells. Groups are isolated (strictly

isolated) if the distance between any cell in a group and any cell not in that same group

is greater than or equal to (strictly greater than) 1 − r + s.

The following definition will play a large role in the analysis of the model.

1.4.5 Definition. Define

M ∶= ⌊(∣R∣ + ∣S ∣)−1⌋. (1.4.3)

M is the maximum number of isolated clusters that can simultaneously exist, given the

sizes ∣R∣ and ∣S ∣ of R and S .

Here ⌊x⌋ denotes the floor function, that is, the greatest integer less than or

equal to x.
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1.4.6 Proposition. For any RS feedback model and any positive integer k ≤ M there exist

periodic solutions consisting of k isolated clusters that do not interact.

Proof. For k ≤ M consider the solution with initial conditions: x1 = 0, x2 = 1
k , ..., xk = k−1

k .

We claim that this is such a periodic solution. Notice from the definition of M that

M ≤ (∣R∣ + ∣S ∣)−1

and so
1
k
≥ 1

M
≥ ∣R∣ + ∣S ∣ = 1 − r + s.

Since the distance between any two consecutive clusters x and y is initially d(x, y) = 1/k,

no two clusters can be in R ∪ S simultaneously. Thus no feedback will occur and thus the

distance between clusters will not change.

By the same reasoning any initial condition of k ≤ M clusters, where all pairs of

clusters satisfy d(x, y) ≥ ∣R∣ + ∣S ∣, will also lead to a periodic solution where all clusters

move indefinitely with speed 1.

Conversely, if more than M clusters exist, then at least two of them are within a

distance ∣R∣ + ∣S ∣ of each other, and while the first of these clusters lies in the signaling

region, it will exert feedback on the second cluster for a non-empty interval of time. �

Note that a solution consisting of strictly isolated clusters can be at most

neutrally stable (not asymptotically stable) since moving a cluster to the left or right

still produces an isolated cluster.

In Figure 1.5 we plot the results of numerical simulations which compare the

number of clusters that formed with the maximum number M of possible isolated

clusters. The number of cells n was 1000, with initial condition ci = (i − 1)/1000; the

model used was (1.3.3) with f linear. Specifically, for the positive feedback simulations

f (I) = .6I, and f (I) = −.6I in the negative feedback simulations. In order to picture r,

s, and the number of clusters formed in two dimensions, we set ∣S ∣ = ∣R∣. By letting s

run over [.1, .45] in 400 increments, M runs from 1 to 6.
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The simulation was performed by selecting a cell c1 and defining a Poincaré

section under the dynamics of the flow, {x̄∣c1 = 0}. This defines a corresponding

Poincaré map, which was iterated 500 times (we will discuss this Poincaré section,

together with its map, in far more detail later in this thesis, starting in Chapter 2). In

general, sharp clusters formed well before then. We detected clustering automatically

by dividing the unit interval into 20 bins; a cluster was a maximal set of adjacent

bins each of whom contained a threshhold number of cells. After 200 iterations of the

Poincaré map, clustering is observed to be both obvious and tight; for s = .3 and r = .7,

for example, all but 6 cells in the first 500-cell cluster are .517 when rounded to three

decimal places (the worst “outlier” is at .495), while all but 4 cells in the second 500-

cell cluster lie at 1 when rounded to three decimal places (the worst outlier is a cell

at .989). We exclude 0 < s < .1 because as the size of S and R go concurrently to 0,

the number of iterations required for clustering to appear goes to infinity (but we have

spot-verified that clustering occurs for these parameter values; for s = 1 − r = .01,

for example, we clearly observe clustering begin to occur by 40,000 iterations of the

Poincaré map. Note, however, that the number of clusters that appear increases as r

and s decrease, so at a critical value, in particular at s = 1/20000, clustering will no

longer occur; or rather, the “clusters” will contain one cell each. To observe this, note

that x1000 will enter R at the same time that x1 leaves S , and the distance between cells

will thus never decrease.)

The most striking feature of the plots in Figure 1.5 is that for positive feedback

the number of clusters formed is always less than or equal to M, but for negative

feedback the number of clusters formed is always greater than M. Notice that

clustering is always observed to occur, except when s ≈ 0, and the nonappearance of

clustering in that region is merely an artifact of letting the number of iterations of the

Poincaré map run by the algorithm be independent of that parameter, combined with

the fact that the number of clusters that form increases as s → 0. Finally, it is worthy
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Figure 1.5: The number of clusters that form in simulations compared with
M = ⌊(∣R∣ + ∣S ∣)−1⌋, the maximum number of isolated clusters given R and S , by way of s.
Red circles represent positive feedback, blue circles negative feedback, and black dots are
placed at M.

of note that for negative feedback, there are no occurrences of one-cluster solutions.

Analysis in the next sections will shed light on these observations.

An interesting facet of the diagram is that under negative feedback, the number

of clusters formed initially decreases as s increases, but eventually starts to increase

with s. This is an artifact of letting ∣S ∣ = ∣R∣; more particularly, as s → 1/2, s → r. We

will discuss this phenomon further in Section 2.6.2 of Chapter 2.

Besides solutions consisting of k ≤ M isolated clusters, RS-feedback systems

have other periodic solutions. One of these consists of all n cells spread along the cycle

as uniformly as possible.

1.4.7 Definition. We will define a uniform solution to be a trajectory for which the

coordinates satisfy the following relation for some time d > 0:

ci(d) = ci+1(0) for all i = 1, . . . ,n − 1, and cn(d) = c0(0) mod 1. (1.4.4)
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Since the velocity of cells in the complement of R is precisely 1, it follows that

for such a solution the cells in Rc will be uniformly distributed with inter-cell distance

d. The uniform solution represents a completely unclustered state, but the proof of

the existence of the uniform solution will also show the existence of stable, clustered

solutions.

Suppose that k divides n and k sets of n/k cells are initially synchronized. Then

we may greatly reduce the dimensions of the differential equations, from O(1010) to

O(k), by considering only the positions of the k clusters which we may denote by

{x1(t), x2(t), . . . , xk(t)}. In particular we will prove that there always exists a solution

of k clusters as in the following definition.

1.4.8 Definition. Let there be some positive number d such that

xi(d) = xi+1(0) for all i = 1, . . . , k − 1, and xk(d) = x1(0) mod 1. (1.4.5)

We will refer to such solutions as k-cyclic solutions.

The uniform solution is thus the n-cyclic solution.

1.4.9 Proposition. There exists a uniform solution of any RS-feedback system for any n.

If k is a divisor of n, then a cyclic k cluster solution exists consisting of n/k cells in each

cluster.

We defer the proof of this proposition until Section 2.1 in Chapter 2.

For n large, as in the application in mind, then we expect k cluster solutions for

k ≪ n to exist even if k does not exactly divide n. For example hyperbolicity (linear

stability or instability) of the k cyclic solutions when k divides n would imply that such

solutions exist for all n′ ≈ n.

1.5 Positive feedback systems

In a RS model with positive feedback, a group of cells that is isolated will

remain isolated. Such isolated groups will converge to clusters as time goes to infinity.
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1.5.1 Proposition. In a general RS model (1.3.2) under positive feedback, suppose that a

solution has a gap between two adjacent cells ci−1 and ci of width greater than or equal to

∣R∣+ ∣S ∣. Then the width of this gap will never decrease. In particular, an isolated group or

isolated cluster will remain isolated indefinitely.

If there are only two clusters in the system, then this proposition applies to

either of the two gaps that has width at least ∣R∣ + ∣S ∣.

Proof of Proposition 1.5.1. Suppose that two consecutive cells ci−1 and ci are separated by

a gap of width wi ≥ ∣R∣+ ∣S ∣. Since feedback is positive, the cell ci always moves at a speed

of at least 1. The cell speed of ci−1, being governed by (1.2.1), will be exactly 1 whenever

wi is greater than or equal to ∣R∣ + ∣S ∣, since there will be no cells in S when xi−1 is in R.

We then find that the time derivative of wi is non-negative when wi ≥ ∣R∣ + ∣S ∣. Therefore,

the gap can never decrease. It follows immediately that a group or cluster of cells that is

isolated will remain isolated. �

1.5.2 Proposition. In a general RS model (1.3.2) with positive feedback, suppose that a

group of cells with width w less than ∣R∣ + ∣S ∣ is isolated. Then the width of the group will

converge to zero as t → +∞.

Proof. By the previous proposition the group will remain isolated for all future time and

we may consider this group of cells as a decoupled sub-system. Without loss of generality

we may renumber the cells in the group so that they have coordinates: c1, c2, . . . , c`,

(ordered in the direction of the flow). For i = 1, . . . , ` − 1, denote by wi = c` − ci the width

of the interval from ci to c`. By assumption w`−1 ≤ wi ≤ w1 < ∣R∣ + ∣S ∣. Observe that this

condition ensures that each ci, i = 1, . . . , `−1 will experience some acceleration every time

it passes through R. This implies that if wi(t) is non-zero, then wi(t) will decrease each

time the group passes through R and S .

Since the group will remain isolated, the cell c` will always move with speed 1

and wi(t) will never increase. Since each wi(t) is non-increasing and bounded below by
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0, it must have a limit w∞
i . Now consider a solution with an initial condition such that

ci(0) = c`(0) −w∞
i for 1 ≤ i < `, that is to say, we take a solution whose initial condition is

the limit of the original solution. By continuous dependence on initial conditions, each

wi(t) will be identically w∞
i for all t. This implies that w∞

i must be zero, since, from

above, a non-zero wi(t) < ∣R∣ + ∣S ∣ must decrease during each cycle. �

For the case where the RS model has the form of (1.3.3), this proposition is a

special case of Lemma 3.2.8 (see Chapter 3).

In the next result we discuss stability, for which we need the concept of distance

and neighborhoods in phase space, which for the models we are considering is the n-

torus, Tn, where n is the number of cells. We will defer a detailed discussion of this

issue until such a time as it will be more useful, in Chapter 3. For the present, we

simply note that on Tn there is a natural metric defined by the maximum of the (mod

1) coordinate differences.

1.5.3 Proposition. In a RS model (1.3.2) with positive feedback, the set of strictly isolated

cluster solutions is locally asymptotically stable. A solution consisting of k ≥ 2 strictly

isolated clusters is neutrally stable (stable, but not asymptotically stable) within the set of

solutions with k clusters.

Proof. First observe that an ε-neighborhood of a configuration consisting of isolated

clusters consists of groups of cells within ε of the original clusters. If the original clusters

are strictly isolated, then we may make ε small enough that the groups are also strictly

isolated. By Propositions 1.5.1 and 1.5.2 each of these groups will remain isolated

and converge to a cluster. Thus a solution starting at any initial condition within a

neighborhood of the set of strictly isolated clusters will asymptotically approach the set.

The second part of the claim follows since, if a strictly isolated cluster is moved

a small distance, then it is still strictly isolated. Thus a small perturbation of a solution

consisting of k strictly isolated clusters also will be a solution consisting of k strictly
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isolated clusters. The distance between the two solutions will remain constant for all

future time and thus they are stable, but not asymptotically stable. �

Points near the set of isolated cluster solutions will converge to the set, but

individual solutions are only neutrally stable with respect to perturbations inside the

set.

Since the set of clustered solutions is locally stable, it must have a basin of

attraction and it is natural to ask how big the basin is. In simulations for positive

feedback systems, the basin seems to include almost all initial conditions. In the next

proposition we see that the basin of attraction extends far beyond a small neighborhood

of the set.

1.5.4 Proposition. Suppose that a solution x̄(t) in a RS model (1.3.2) with positive

feedback has at least one gap of width greater than or equal to ∣R∣ + ∣S ∣. Then the solution

will converge to a periodic solution consisting entirely of isolated clusters.

Proof. We will call a gap large if its width is greater than or equal to ∣R∣ + ∣S ∣. At time t0,

the cells may be grouped into a minimum number of groups in which there are no large

internal gaps. The number of such groups is the same as the number of large gaps. Note

that each such group is isolated, and the number of such groups cannot be larger than

M = ⌊(∣R∣ + ∣S ∣)−1⌋. Consider one such group. Since it contains no large internal gaps and

it is isolated, during passage through R the last cell must be accelerated by the presence

of at least one cell in S and so its speed is sometimes greater than 1. On the other hand,

since the group is isolated it will remain isolated by Proposition 3.1, and the lead cell will

travel indefinitely with speed 1 by the same argument that appears in the proof of that

proposition.

Thus during one passage through R the distance between the lead cell and the final

cell in the group must decrease. If this group continues to have no large internal gaps,

then it follows that the width of the group will continue to decrease. By an elementary
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argument (as in Proposition 1.5.2), the width will converge to zero; in other words the

group will converge to a cluster. Otherwise, if a large internal gap develops then the cells

that are separated by the gap will be isolated from each other and thus form two isolated

groups. When this occurs the number of isolated groups will increase. Since the number

of isolated groups is bounded from above, large internal gaps may form only a finite

number of times and thus eventually we have a fixed number of groups that never develop

large internal gaps and each of these converges to an isolated cluster. �

1.6 Negative feedback systems

The key observation is that for negative feedback, isolated clusters are not

stable. This is because as a group of cells crosses the R-S boundary all cells of the

group are delayed except the lead cell, which moves with unit velocity, causing the

group to spread.

1.6.1 Proposition. In a RS model (1.3.2) with negative feedback, a solution consisting of

strictly isolated clusters is locally unstable.

Proof. Let c∗(t) denote a solution consisting of strictly isolated clusters. First observe

that under the condition of strict isolation the gaps between clusters are all larger than

∣R∣ + ∣S ∣, and so any sufficiently small perturbation of the clusters consists of groups

that are still isolated. Now let c(t) be a solution with initial condition c(0) that differs

from c∗(0) in only the i-th coordinate, i.e. an initial condition such that one cell has been

perturbed away from the cluster. When this cluster-cell pair passes through the boundary

from R to S the separation between ci and the cluster to which it formerly belonged will

increase. If we further let the perturbation be sufficiently small, then the cluster-cell pair

will remain isolated from other clusters.

Now recall the definition of stability: given any ε > 0, there exists δ > 0 such

that any solution c(t) starting within a δ neighborhood of c∗(t) will remain indefinitely

within an ε neighborhood of c∗(t). Let ε0 be the largest ε so that any c(0) within an ε
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neighborhood of c∗(0) will consist of isolated groups and let ε = ε0/2. If c(0) is as in

the previous paragraph and is arbitrarily close to c∗(0) then the distance between c(t)

and c∗(t) will continue to increase on each unit time interval as long as c(t) continues to

consist of isolated groups. Therefore it follows that c(t) will eventually be outside of an

ε0/2 neighborhood of c∗(t). Thus c∗(t) is not stable. �

For the case where the RS model has the form of (1.3.3), this proposition is a

weaker version of Lemma 3.2.7. In fact, Lemma 3.2.7 demonstrates linear instability

(i.e. that nearby orbits are exponentially repelled).

It follows that in order for clusters to remain coherent under small perturbations

in negative feedback, they must not be isolated, i.e. the gaps between them must be

less than ∣R∣ + ∣S ∣, and so the number of stable clusters must be at least M + 1. This

is clearly confirmed in simulations (see Figure 1.5). We will show in Section 2.3 that

a k = M + 1 cluster cyclic solution is stable for negative feedback of the form (1.3.3)

under certain conditions, and devote all of Chapters 2 and 3 to considering the stability

of k-cyclic solutions, under both positive and negative feedback.

In the following proposition we see that interacting clusters tend to spread out

from each other as far as possible.

1.6.2 Proposition. In a RS model (1.3.2) with negative feedback suppose that two clusters

are within ∣R∣ + ∣S ∣ of each other, but are isolated from other cells (non-empty). If they

remain isolated from other cells, then the gap between the two clusters will increase and

converge to ∣R∣ + ∣S ∣. In the case that the two clusters contain all the cells in the system, if

one gap has width less than ∣R∣ + ∣S ∣ and the second gap has width ≥ ∣R∣ + ∣S ∣, then as long

as the width of the second gap remains greater than ∣R∣+ ∣S ∣ the first gap will increase and

approach ∣R∣ + ∣S ∣.

Proof. If the gap width (or smaller gap width in the case of only two clusters) is less than

∣R∣+∣S ∣ then each time the second cluster passes through R, the first cluster will be in S for
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a non-empty interval of time. During this time interval, the cluster in R will experience

deceleration, and the width of the gap will increase during the passage through R. If the

cluster pair remains isolated, then the distance will be preserved through the rest of the

cycle. Thus the distance between clusters will increase during each cycle. The distance is

bounded above by ∣R∣ + ∣S ∣ and so, by a standard argument, the sequence of distances thus

generated will converge to ∣R∣ + ∣S ∣. �

1.6.3 Corollary. Suppose that there are k ≤ M clusters in a RS system (1.3.2) with

negative feedback. Then the solution will converge to a periodic clustered solution with

isolated clusters.
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2 The Clustered Subspace‡

We have seen that an RS system exhibits, or can exhibit, clustering under either

positive or negative feedback. We now turn our attention to the dynamics of a system

where clustering has already occurred, i.e. the state space is the k-dimensional simplex

0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ 1, where we recall that we use the notation xi to denote

clusters, differentiating them from cells (denoted by ci). We assume that clusters are of

equal size, although we recall that by the discussion after Proposition 1.4.9, stability

results should also hold for clusters of only approximately equal size. The first time

clustering was verified in a laboratory setting [85], two clusters were observed, and we

are able to consider the 2-cyclic solution in detail. Three clusters have tentatively been

observed as well, although the time costs involved in the experiments of [85] did not

permit rigorous verification. Even in such low dimensions as k = 3, a complete global

analysis of the system is prohibitively complicated [25]. Among other complications,

the feedback function in the k = 3 case may be nonlinear. We can, however, study the

k-cyclic solution in the generic case that k is small, in particular where k = M + 1.

We will see in the k = M + 1 case that the stability of k-cyclic solutions

depends on a number of inequalities involving the parameters s and r. Guided by this,

we consider how the (s, r)-triangle (0 ≤ s ≤ r ≤ 1) may be partitioned into convex

regions such that two parameter pairs (s1, r1) and (s2, r2) in the same region generate

k-cyclic solutions of the same stability, and consider a number of such partitions. We

observe trends in the stability diagrams so generated; in Chapter 3, we formalize and

prove many of those observations.

‡ In accordance with ScienceDirect’s policy for using previously published articles in an academic dis-
sertation, we here give the DOI number by which the official publication from which the first half of this
chapter, up to and including Section 2.3, is drawn may be found: 10.1016/j.jtbi.2011.10.002.
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2.1 Dynamics in the clustered subspace

2.1.1 The return map for a clustered system

Let us continue to consider the most general model (1.2.1) with RS feedback.

Let a population of n cells be organized into k equal clusters and let the clusters be

labeled by an index i ∈ {1, . . . , k} so that x̄ = {xi}k
i=1 represent clusters of n/k cells each.

One can assume that all coordinates xi(0) of the k clusters are initially well-ordered as

0 = x1(0) ≤ . . . ≤ xi(0) ≤ . . . ≤ xk(0) ≤ 1, i = 1, . . . , k − 1.

This ordering is preserved under the dynamics (this can be well-defined using the

orientation of the circle and x1(t) as a moving reference point). Moreover, the first

coordinate x1 must eventually reach 1, i.e. there exists tR such that x1(tR) = 1. Thus

the set {x̄∣x1 = 0} defines a Poincaré section for the dynamics and the mapping

(x2(0), x3(0), . . . , xk(0))↦ (x2(tR), x2(tR), . . . , xk−1(tR))

defines the corresponding return map. However, even in the k = 2 case, the Poincaré

map is difficult to study directly. Instead, we will consider a factorization of the

Poincaré map, as follows.

Starting from t = 0, compute the time t1 that xk needs to reach 1 and compute

the location of the remaining clusters at this time. Define a map F by

F ∶ (x2(0), x3(0), . . . , xk(0))↦ (x1(t1), x2(t1), . . . , xk−1(t1)). (2.1.1)

Note that x1(t1) = t1, because previous to time t1, no clusters enter S . Thus, either

x1 does not enter R, and experiences no feedback, or x1 enters R, but because x1, the

first cluster in S , has already left S , and no cluster has replaced it, S is empty and no

feedback occurs. By the method by which F was defined, xk(t1) = 1. An illustration of

F in the case k = 3 is given in Figure ??.

Now the time t1 + t2 that xk−1 needs to reach 1, together with the population con-

figuration at t = t1+t2, follow by applying F to the configuration (x1(t1), x2(t1), . . . , xk−1(t1)).
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Figure 2.1: The function F for k = 3. Note that the domain of F does not include x1(0),

and the range of F does not include x3(t1).

By repeating the argument, the return time tR is given by tR = t1 + t2 + ⋅ ⋅ ⋅ + tk and the de-

sired return map is Fk (where Fk is used to denote k compositions of F). Therefore, to

study the dynamics one only has to understand the first map F.

We will first consider general properties of the map F and then we will compute

and analyze it for feedback of the form (1.3.3) in the simplest case, k = 2.

2.1.2 General properties for arbitrary k

We may regard F as a continuous piecewise affine map of the (k − 1)-

dimensional simplex

0 ≤ x2 ≤ x3 ≤ ⋅ ⋅ ⋅ ≤ xk ≤ 1

into itself. (Although the boundaries 0 and 1 are identified in the original flow, in the

analysis here, we consider them as being distinct points for convenience.)

On the edges of the simplex, F has relatively simple dynamics. Indeed,

if initially all coordinates are equal, then they must all reach the boundary 1

simultaneously. In other words, on the diagonal (xi = x for all i), we have F(x, . . . , x) =

(t1,1, . . . ,1) where t1 = min{t∣xk(t) = 1} depends on r, s and x. Note that during time

0 < t < t1, no cluster enters S . Thus even if x1 enters R during that time interval, it

travels at a constant rate of 1 (since if x1 has left S then all clusters in S have left S ,

and S is thus empty). This, combined with the assumption that x1(0) = 0, accounts

for the fact that x1(t1) = t1. Note also that because F has as its domain (x2, x3, ..., xk),

the fact that the argument of F in this case is (x, . . . , x) does not mean that all clusters
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are assumed to be synchronized. Clusters x2, x3, ..., xk are synchronized, but this says

nothing of x1. If x = 0 = x1, all k clusters are synchronized and t1 = 1 independently of r

and s.

Moreover, starting with xk = 1 implies t1 = 0 which yields

F(x2, . . . , xk−1,1) = (0, x2, . . . , xk−1)

whatever the remaining coordinates x2, . . . , xk−1 are. As a consequence, the edge

{(x,1, . . . ,1) ∶ x ∈ [0,1]}

is mapped onto

{(0, x,1, . . . ,1) ∶ x ∈ [0,1]}

which is mapped onto {(0,0, x,1, . . . ,1) ∶ x ∈ [0,1]} and so on, until it reaches the

edge (0, . . . ,0, x), which is mapped back onto the diagonal (after k iterations; because

xk(t1) = 1 = 0, F may indeed be iterated repeatedly, since it takes configurations with a

cluster on 0 to configurations with a cluster on 1 ∼ 0, although it is formally necessary

to cyclically relabel the indexes of each cluster after each iteration).

A particular orbit on the edges is the k-periodic orbit passing the vertices, and

which corresponds to the single cluster of velocity 1 in the original flow, namely

(0, . . . ,0)↦ (1, . . . ,1)↦ (0,1, . . . ,1)↦ (0,0,1, . . . ,1)↦ ⋅ ⋅ ⋅↦ (0, . . . ,0,1)↦ (0, . . . ,0).

Geometrically, the corners of the simplex are cyclically permuted by the map F. It

follows that the k − 2 dimensional simplexes (faces) that make up the boundary of the

k−1 simplex are also cyclically permuted by F. This implies that F cannot have a fixed

point on the boundary.

We now prove that uniform and cyclic solutions exist.

Proposition (Proposition 1.4.9). There exists a uniform solution of any RS-feedback

system for any n. If k is a divisor of n, then a cyclic k cluster solution exists consisting

of n/k cells in each cluster.
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Proof of Proposition 1.4.9. The simplex is a convex and compact invariant set under

F, and the continuous dependence of the ODE on initial conditions implies that F is

continuous. Thus the Brouwer fixed point theorem implies the existence of a fixed point.

Since the boundary cannot contain any fixed point, the fixed point is in the interior, i.e.

0 = x1 < x2 < x3 < ... < xk < 1. Note that the k-cyclic solutions are fixed points of F and

vice versa. Since there exist k-cyclic solutions for any k, there exists an n-cyclic solution,

i.e. the uniform solution. �

The proof of Proposition 1.4.9 includes the following important fact about

uniform solutions (and hence k-cyclic fixed points), which we extract and isolate.

2.1.1 Corollary. A configuration of n cells such that no two cells are synchronized, i.e.

ci ≠ c j if i ≠ j, viewed as a point on the simplex such that c1 = 0, is a point on the uniform

solution if and only if it is a fixed point of F. Likewise, a configuration of k clusters is a

k-cyclic solution if and only if it is a fixed point of F.

We further observe that an edge on a simplex is a 1-dimensional k-periodic

set, whose coordinates are either 0, 1, or x, 0 ≤ x ≤ 1. The boundaries of such a

1-dimensional space, x = 0 and x = 1, both correspond to the 1-cyclic clustered

solution, which Propositions 1.5.2 and 1.6.1 tell us is stable under positive feedback

and unstable under negative feedback. Since there are two points of a periodic orbit

at each boundary of every edge, and since these points are either both stable or both

unstable, there must be at least one other k-periodic orbit on the edges with coordinates

between 0 and 1. Whether this orbit is unique might depend on parameters.

2.2 Dynamics for small k

In this section we primarily study the dynamics of 2-cluster systems for the

model (1.3.3). Studying the behavior in the cases of a small number of clusters is not

just a matter of convenience, but is important from the perspective of applications since

presumably only a small number of clusters can form (for fixed n, the presence of more
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clusters implies that each cluster contains fewer cells and thus can exert less influence)

and be observable (smaller clusters would produce smaller oscillation in metabolites

and other chemical agents). In the experiment reported in Figure 1.2 there are two

clusters. The dynamics of the 3-cluster system, insofar as they have yielded to analysis,

are essentially the same as in the 2-cluster case, and are summarized here as well.

2.2.1 The map F

Consider (1.3.3) where f is a monotone function. In the case k = 2, since only

one cluster can exert feedback on the other, RS-feedback (1.3.3) simplifies to:

dxi

dt
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + f (1
2) if xi ∈ [r,1) and x j ∈ [0, s), j ≠ i

1 otherwise

Let α = f (1
2) for notational simplicity.

For k = 2, F is defined on the interval [0,1] and is determined by x1(t1) = t1

where t1 is the time at which x2(t) reaches 1. When regarded as a function of x2 only,

its explicit form depends on the parameters r and s. There are two cases depending

on the relative sizes of the signaling and responsive regions, specifically on the size of

(1+α)s with respect to 1− r: either (1+α)s < 1− r or (1+α)s > 1− r. We have put the

details of the computation and analysis of F(x2) in Appendix A.1.

We observe the meaning of the inequality that differentiates the cases. The first

cluster x1, is in S for a time period of s (as it travels from 0 to s at a rate of 1), and

it therefore follows, in the k = 2 case, that a cluster can experience feedback for only

that length of time over the course of a single Poincaré map. Suppose that x2(0) = r.

Then after time s, x2(s) = r + (1 + α)s; if r + (1 + α)s > 1, then x2 reaches 1 before x1

reaches s. Since r is the furthest that x2 can lie from 1 while still being in R, it follows

that if x2 ∈ R and r + (1 + α)s > 1, x2 will reach 1 before x1 leaves S . It follows that

in this case, there can be no fixed point of F such that x2 ∈ R, since if x2 ∈ R and
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T = min{t∣x2(t) = 1}, x1(T) < s < r < x2(0), and a 2-cyclic fixed point is defined

by the equality x1(T) = x2(0).

Calculating the Poincaré map F2 is prohibitively complicated, but in

Appendix A.1 we use these two possible forms of F to analyze the dynamics. In the

next section we summarize the results.

2.2.2 Analysis of the dynamics

In Appendix A.1 we find only four distinct types of dynamics; two for positive

feedback and two for negative.

• Positive feedback:

1. There is a unique unstable fixed point for F2.

2. There is an interval of fixed points for F2.

All other orbits are asymptotic to the x1 = x2 boundary of the simplex, i.e. the

clusters merge.

• Negative feedback:

1. There is a unique stable fixed point for F2.

2. There is an interval of fixed points for F2.

All other orbits, except the boundary points, are asymptotic to the stable fixed

point or the interval of fixed points.

These possibilities, for some specific parameter values, are illustrated in Figure 2.2.

An interval of fixed points, we observe in the Appendix A.1, can occur not

only because the two clusters may be isolated from each other, but also in certain other

situations. Namely if either:

• x1 is in S for the entire time that x2 is in R, or,
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Figure 2.2: Plots of the Poincaré map F2 in the case k = 2 for various parameter values
(α = f (1

2)). Clockwise from top left: interval of fixed points under negative feedback,
unstable fixed point under positive feedback, interval of fixed points under positive
feedback, stable fixed point under negative feedback.

• x2 is in R for the entire time that x1 is in S ,

then the unique fixed point of F is neutral and contained in an interval of neutral

period 2 points (fixed points of F2). Both these cases amount to the system decoupling;

see Section 3.4 of Chapter 3.

In [25] the authors present similar computations for a subset of parameter

values with three clusters and positive linear feedback. The results there are similar

to those reported here; for all the cases examined the three cluster cyclic solution

is either unstable or in the interior of a set of neutral periodic solutions (period 3
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points of F). We will verify in Appendix A.2 that the 3-cyclic solution may never be

stable under positive feedback, and comment extensively on instability under positive

feedback in Chapter 3. No other periodic orbits were detected in [25], and all other

initial conditions tend to two-cluster or one-cluster periodic solutions (on the boundary

of the domain of the map F).

For both k = 2 and k = 3, we find that if the system has positive feedback,

then many initial conditions lead to a single cluster, but if the initial condition begins

with 2 or 3 clusters, or close to such, then these clusters might persist depending on

the parameters and initial conditions, e.g. if the clusters are isolated. If the system has

negative feedback, then there may be solutions with 2 or 3 clusters (depending on the

parameter values) that are stable within the set of clustered solutions. One cluster is

never stable under negative feedback. Biologically, synchrony is likely to appear in

systems with positive feedback and clustering in systems that have negative feedback.

2.3 Cyclic M + 1 cluster solutions

Again consider the model (1.3.3) of RS feedback. Recall that M = ⌊(∣R∣ + ∣S ∣)−1⌋

is the maximum number of clusters that can exist without mutual interactions. In

this section we consider the cyclic solutions consisting of k = M + 1 clusters, with

coordinates x1, ..., xk, in the dynamics corresponding to (1.3.3).

There are a number of reasons for isolating M + 1 for special consideration.

Biologically, we expect only a small number of clusters to form, but for feedback

to occur, the number of clusters cannot be too small, or the clusters will be isolated.

The M + 1 case, being the least number of clusters such that they are not isolated,

balances these conflicting requirements. Furthermore, we will see in Chapter 3 that a

number of more complicated cases can be understood in terms of the M + 1 case (e.g.

Theorems 3.4.14 and 3.4.18).
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Recall that s is the right endpoint of the signaling region, and r is the left

endpoint of the response region. Thus ∣S ∣ = s and ∣R∣ = 1 − r.

2.3.1 Proposition. Consider RS feedback of the form (1.3.3). For any 0 < s < r < 1,

there is a cyclic solution consisting of k = M + 1 equal clusters of the form x1 = 0, x2 =

d, ..., xk = (k − 1)d, for some d > 0. If

s < 1
k
(1 + αr

1 + α ) and r > k − 1
k

(1 − sα), (2.3.1)

where α = f (1
k), then the fixed point is unstable (in the subspace of clustered solutions)

for positive α and stable for negative α. Otherwise, the solution is neutrally stable.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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Figure 2.3: Regions of parameter space for the k-cyclic solutions with k = M + 1. Each
diagonal band contains the parameters for a specific k and is partitioned into three cases.
In case I the k-cyclic solution is unstable for positive feedback and stable for negative. In
cases II and III the k-cyclic solution is neutral and is contained in a set of neutral period k
solutions. In this plot α = f (1

k) is taken to be 1/k.

Note that if the solution is neutrally stable, then the fixed point of F must be

contained in the interior of a set of period k points that are also neutrally stable, since
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the return map is piece-wise affine. This is consistent with the results for two- and

three-cluster systems.

The M-cyclic solution consists of M isolated clusters. This isolation sharply

limits the form of the fixed point. When x1 = 0, R must be empty by isolation, and xk

cannot enter R until x1 has left S . The signaling region S can contain only x1, since if

it included another cluster x2, x1(T) = x2(0) where T is the minimum positive number

such that xk(T) = 1, and thus xk passes through R while x1 is still in S , i.e. the clusters

are not isolated. Adding one additional cluster may cause the (M + 1)-cyclic solution

to have a cluster in R when x1 = 0, or it may cause S to contain the cluster x2 when

x1 = 0, but it may not do both.

2.3.2 Lemma. When the (M + 1)-cyclic solution lies on the Poincaré section, either S

contains only x1 and R is empty; or S contains only x1 and R is nonempty; or S contains

clusters other than x1, and R is empty.

Proof. By the form of the k-cyclic solutions, all clusters not in R are equally spaced; i.e.

there is some positive number d such that xi+1 = xi + d if xi+1 ∉ R. The statement that S

contains some cluster other than x1 when x1 = 0 is equivalent to the inequality d < s, and

the statement that R is nonempty is equivalent to r < (k − 1)d. By way of contradiction,

suppose that d < s and r < (k − 1)d. Then in the k = M + 1 case, where we recall that

M = ⌊ 1
1−r+s⌋ ≤ 1

1−r+s , the following string of inequalities holds.

r < (k − 1)d < (k − 1)s = Ms

r < ⌊ 1
1 − r + s

⌋s ≤ s
1 − r + s

r − r2 + rs < s

0 < r2 − r − rs + s

0 < −r(1 − r) + s(1 − r)

0 < (s − r)(1 − r)

(2.3.2)

This is a contradiction, since 1 − r > 0 and s − r < 0. �
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In a neighborhood of the M-cyclic solution, R is empty and S contains one

cluster. We have seen that passing to the M + 1 case can result in either R becoming

nonempty, or S containing more than one cluster, but not both. We now prove two

additional restrictions. If R is nonempty, it can contain only one cluster. If S contains

clusters other than x1, it contains only one such cluster, which leaves S without

exerting feedback on any cluster in R.

2.3.3 Lemma. On the Poincaré section, if k = M + 1 then R contains no more than 1

cluster. If R contains a cluster, then xk−1 does not enter R until x1 leaves S , i.e. there is

never more than one cluster receiving feedback in the system.

Proof. Let d be the time it takes for xk ∈ R to reach 1. Then d is also the distance between

clusters not in R. If there is more than one cluster in R, then r − (k − 2)d < 0 < s, and

r − s < (k − 2)d

r − s < ( 1
1 − r + s

− 1)d

(r − s)(1 − r + s) < (r − s)d

1 − r + s < d.

(2.3.3)

If there is 1 cluster in R, xk−1 = (k − 2)d, and r − (k − 2)d < s implies that xk−1

reaches r before x1 reaches s. In either event, this is a contradiction. To see this, note that

xk reaches 1 in time d = 1−r+ s+ν, where ν > 0. Over the first s time units, xk moves some

distance; it is now strictly within distance 1 − r of 1. At this point, x1 has left S , and xk no

longer experiences feedback. The cluster xk then must travel at rate 1 for time d′ = 1− r+ν

before it reaches 1, contradicting the fact that its distance to 1 is less than that.

�

2.3.4 Lemma. If S contains clusters other than x1 = 0 on the Poincaré section, then it

contains only one additional cluster, and that cluster leaves S before xk reaches r.
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Proof. We prove that x1 = d must leave S before xk reaches r. This also proves the first

part of the lemma, since if there were more than two clusters in S , then after a single

application of F, x1(T) = x2(0) = 2d < s would not leave S at all.

By way of contradiction, we suppose r − (k − 1)d < s − d and derive

r − (k − 1)d < s − d,

r − Md < s − d,

r < s + (M − 1)d,

r < s + (⌊ 1
1 − r + s

⌋ − 1)d ≤ s + ( 1
1 − r + s

− 1)d,

r < s + r − s
1 − r + s

d,

r − s < r − s
1 − r + s

d,

1 − r + s < d,

d = 1 − r + s + ν.

(2.3.4)

As in the previous lemma, this is a contradiction. The cluster xk is within a

distance d of r, or xk(d) < r < 1. Since d < s in this case, by time t = s, xk will have

passed into R and S will be empty. Traveling the remaining time 1 − r + ν at a rate of 1, it

will pass 1 before time d. But by assumption, xk(d) = 1. �

Proposition (Proposition 2.3.1). Consider RS feedback of the form (1.3.3). For any

0 < s < r < 1, there is a cyclic solution consisting of k = M + 1 equal clusters of the

form x1 = 0, x2 = d, ..., xk = (k − 1)d, for some d > 0. If

s < 1
k
(1 + αr

1 + α ) and r > k − 1
k

(1 − sα), (2.3.5)

where α = f (1
k), then the fixed point is unstable (in the subspace of clustered solutions)

for positive α and stable for negative α. Otherwise, the solution is neutrally stable.

Proof of Proposition 2.3.1. That an (M + 1)-cyclic solution exists is known from

Proposition 1.4.9. We prove that it has the properties claimed of it. Consideration of the
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previous lemmas shows that in a neighborhood of the (M + 1)-cyclic solution, there

are never more than 1 clusters in S while R is non-empty, and thus the dynamics of the

system are determined entirely by α = f (1
k). Those same lemmas demonstrate that the

(M + 1)-cyclic solution can have only a very limited number of forms.

The evolution of the system may be described qualitatively in terms of a sequence

of events, e.g. x1 reaching s, or xk reaching 1. We first consider a system which evolves

via the following sequence of events (which we call Case 1):

xk ↦ r, x1 ↦ s, xk ↦ 1. (2.3.6)

Recall that by definition, a k-cyclic solution is one such that, if xk(T) = 1, then

xi(T) = xi+1(0) for i = 1,2, ..., k − 1. Thus, after xk ↦ 1, after relabeling xi ∶= xi−1 for

i = 2,3, ..., k, and x1 ∶= xk = 1 ∼ 0, we have the initial condition again. By calculating

the time taken in each step and finding the final value of x1, one can use the relation

xk = (k − 1)d to solve analytically for d, getting:

d = 1 + α(r − s)
k + α(k − 1) . (2.3.7)

Note that the Case 1 sequence will occur provided that s < x2 = d and xk = (k − 1)d < r.

Using (2.3.7) in these relations gives (2.3.5).

Two other sequences of events are possible. Each occurs when one of the

constraints in (2.3.5) is dropped (and the other maintained.) Case 2, when we allow r < xk,

i.e. r < (k − 1)d, is characterized by:

x1 ↦ s, xk−1 ↦ r xk ↦ 1,

and Case 3, when we allow x2 < s, i.e. s > d, by:

x2 ↦ s, xk ↦ r, xk ↦ 1.

Following the same procedure as in Case 1, we obtain for Case 2:

d = 1 − sα
k
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and for Case 3:

d = 1 + rα
k(1 + α) .

We have seen in the proceeding lemmas that these three cases are exhaustive. A

graphical representation of the regions of parameter space corresponding to these three

cases can be seen in Figure 2.3.

The map F is affine in a neighborhood of the fixed point, i.e. x⃗ ↦ Ax⃗ + b⃗ where

x⃗ = (x0, ..., xk−1)T and A is a matrix. We next analyze A in the three cases.

Case 1:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0 −(1 + α)

1 0 0 ⋯ 0 −(1 + α)

0 1 0 ⋯ 0 −(1 + α)

⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 −(1 + α)

0 0 0 ⋯ 1 −(1 + α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.8)

Thus we may determine the stability of the fixed point by studying the eigenvalues A,

which has characteristic equation

λk−1 + (1 + α)(λk−2 + λk−3 +⋯ + λ + 1) = 0. (2.3.9)

Observe that if α > 0, (2.3.8) has at least one eigenvalue outside of the unit circle.

This is because it has determinant of modulus 1 + α > 1 (the constant term of (2.3.9)), and

the modulus of the determinant of a matrix is the product of the moduli of its eigenvalues.

Thus the fixed point is unstable in that case; we will in fact demonstrate a stronger result,

that all eigenvalues are outside the unit circle.

Now let α < 0. Notice that λ = 1 can easily be ruled out as a root. For λ ≠ 1 we can

rewrite (2.3.9) as
1

1 + αλ
k +

k−1

∑
i=0
λi = λk

1 + α +
λk − 1
λ − 1

= 0.
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After simplification, we see that λ ≠ 1 is a solution of (2.3.9) if and only if

(λ + α
1 + α)λk = 1. (2.3.10)

Now, suppose α > 0. If ∣λ∣ ≤ 1 (and λ ≠ 1), then ∣λk∣ ≤ 1 and ∣λ + α∣ < ∣1 + α∣. Thus

∣λ + α
1 + α ∣ ∣λk∣ < 1,

i.e. λ cannot satisfy (2.3.10). Thus for positive feedback all of the eigenvalues lie outside

the unit disk and so the map is unstable at the fixed point. Further, it is not only unstable,

but is repelling in all possible perturbation directions.

For the case α < 0, suppose ∣λ∣ > 1. Write λ + α as λ − (−α). Then by the reverse

triangle inequality, ∣λ + α∣ = ∣λ − (−α)∣ ≥ ∣∣λ∣ − ∣ − α∣∣ = ∣∣λ∣ + α∣ = ∣λ∣ + α > 1 + α. Thus we

have

∣λ + α
1 + α ∣ ∣λk∣ > 1,

and (2.3.10) is not satisfied. Also, if ∣λ∣ = 1 but λ ≠ 1, then ∣λ+α∣ < 1+α. Therefore if α < 0

then all the eigenvalues of A lie on the interior of the unit disc, and the map is stable.

Case 2 and Case 3: In Cases 2 and 3, the linear part of the map at the fixed point is

represented by the matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0 −1

1 0 0 ⋯ 0 −1

0 1 0 ⋯ 0 −1

⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 −1

0 0 0 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix has characteristic equation λk−1 + λk−2 + ... + λ + 1 = 0 whose roots all have

modulus 1. Thus the map is linearly neutrally stable in both cases 2 and 3. �

The stability results for case 1 are illustrated in Figure 2.4 for k = 2,4, . . . ,12

and α = f (1
k) ∈ (−0.5,0.5).



53

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.4

0.6

0.8

1.0
1.2

1.4

1.6

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.7

0.8

0.9

1.0

1.1
1.2

1.3

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.80

0.85

0.90

0.95

1.00

1.05

1.10

�0.6�0.4�0.20.0 0.2 0.4 0.6

0.90

0.95

1.00

1.05

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.92

0.94

0.96

0.98

1.00

1.02

1.04

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.95

0.96

0.97

0.98

0.99

1.00

1.01

�0.6�0.4�0.20.0 0.2 0.4 0.6

0.97

0.98

0.99

1.00

1.01

�0.6�0.4�0.20.0 0.2 0.4 0.6
0.975

0.980

0.985

0.990

0.995

1.000

1.005

Spectral Radius / Minimum Eigenvalues, k=2,…,10

Figure 2.4: Case 1. The spectral radius / smallest eigenvalue modulus for k = 2,4, . . . ,12.
The x-axis is the feedback parameter α. For negative α, the y-axis shows the spectral
radius of A. For positive α, the smallest eigenvalue (w.r.t. modulus) is plotted. The plots
show that the k = M + 1 solution is stable for negative feedback and unstable (in all
directions) for positive feedback. Notice that as k grows, the stability/instability becomes
weaker.

2.4 The map F near cyclic solutions

2.4.1 Single event maps

We observe in the proof of Proposition 2.3.1 that the form of F hinges on the

order of events – a cluster’s progress through the cell cycle can be described in terms of

a sequence of events, such as the cluster entering R or reaching 1. Clusters progress

through the cell cycle at rates specified by the equation (1.3.3). These rates remain

constant until a cluster reaches s, r, or 1. We denote by ei the event wherein a cluster

reaches the milestone i, i.e. by er we mean that a cluster has reached the milestone r.

The three events relevant to our needs are thus es, er, and e1.

When a k-cyclic solution crosses the Poincaré section (i.e. when x1 = 0),

there will be some number of clusters in S and some number of clusters in R. These

parameters are fixed, that is they will be the same every time the k-cyclic solution
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Figure 2.5: Event ei occurs when a cluster reaches the milestone i, for i ∈ {r, s,1}.

crosses the Poincaré section. We define σ to be the number of clusters in S , and ρ the

number of clusters not in R, i.e. xσ < s ≤ xσ+1 and xρ < r ≤ xρ+1. Thus at the beginning

of a time interval on which the map F is applied the initial positions of the k clusters

will be:

0 = x1 < . . . < xσ < s ≤ xσ+1 < . . . < xρ < r ≤ xρ+1 < . . . < xk < 1.

Given the current positions of the clusters, we may calculate the time elapsed

until the next event occurs. It is the minimum of

ts = s − xσ, tr = r − xρ, t1 =
1 − xk

1 + f (I) . (2.4.1)

For each event, we define a corresponding function on a subset of the state space:

ei(x) = ei(x1, x2, ...xk) = (x1(ti), x2(ti), ..., xk(ti)),

where i runs over the symbol space {s,r,1}. The domain of ei is restricted to those x

such that event i is the first of the three events to occur (or an event such that no other

event occurs strictly before it, if events occur concurrently).

Because clusters move at constant speeds between events, ei(x) can be easily

calculated for any x. Each single event map is affine and has the form: ei(x j) =

x j + ratei j ∗ timei; see Section 2.5 for a more detailed description. Note that when event
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e1 occurs, xk = 1 ∼ 0; we therefore introduce a fourth function, ere, that re-indexes the

clusters.

If we relabel after each iteration of F, then in a neighborhood of a given k-

cyclic solution it is always the same cluster, xσ, that experiences event es. Likewise, xρ

experiences event er and xk event e1. If we want to emphasize that a particular cluster

undergoes a certain event, we will put it in the superscript, e.g. eσs .

Given parameters (s, r) and an initial condition x on the Poincaré section, the

partial return map F essentially moves the system forward by a discrete time T , where

T is the minimum time at which event e1 occurs. The F-map is thus a composition

of the maps es and er, possibly repeated or empty (for an arbitrary x̄ on the Poincaré

section; we will see momentarily that in a neighborhood of a k-cyclic solution, each

map appears exactly once), followed by e1, although we note that since the event maps

are of the form Ax̄+b, where A is a k×k matrix, their composition is of the form Bx̄+c,

where B is a k × k matrix. However, the first row and column of B will each consist

entirely of 0’s, and eliminating these gives the expected (k − 1) × (k − 1) matrix.

We have assumed above that all k clusters have distinct positions. Clearly we

can extend the maps e j continuously to the boundaries of this region (xi = xi+1). With

this extension, the map F (along with reindexing ere) in a continuous mapping of the

coordinate simplex:

S = {0 = x1 ≤ x2 ≤ . . . ≤ x j ≤ . . . ≤ xk ≤ 1} (2.4.2)

into itself.

2.4.1 Proposition. The sequence of events followed by any k-cyclic solution under any

feedback is either es, er, e1,... or er, es, e1,...

Proof. Up to relabelling (as per the event map ere), the k-cyclic solution is a fixed point

of the map F, and thus the intervals [0, s) , [s, r) and [r,1) must contain the same number

of clusters before and after an iteration of F. Exactly one cluster leaves [r,1) and enters
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[0, s) (event e1) by the way that F is defined. To balance, one cluster must leave [0, s)

and one cluster must enter [r,1). In other words, events es and er must occur exactly once

before or simultaneously with event e1. �

It was observed in [6], and is reinforced throughout this thesis, that the behavior

of k-cyclic solutions seems to be largely independent of the precise form of the

feedback function f . From the above proposition we see that, in a neighborhood of a

k-cyclic solution in the clustrered subspace, the only relevant values of the feedback

function are f (σ/k) and f ((σ − 1)/k). Thus in a neighborhood of a cyclic solution,

only two values of the feedback function are relevant.

We wish to consider the map F for arrangements of clusters near the cyclic

solutions using a composition of single event maps. Since the form of F will depend

upon the order of events, we first partition parameter space into regions for which k-

cyclic solutions have a fixed order of events.

2.4.2 Definition. Fix k. We call a subset τ of the (s, r)-triangle isosequential if the k-

cyclic solutions corresponding to each parameter pair in the interior of τ has the same

σ and ρ and the same order of events.

For clarity, first consider a system with no feedback. In that case the k-cyclic

solution is given by initial condition x j = j−1
k for 1 ≤ j ≤ k, irrespective of σ and

ρ. If we move r and s the order of events will change whenever r or s crosses the

position of a cluster. This leads to the observation that the order of events partitions the

parameter triangle precisely into isosequential, regular sub-triangles. Figure 2.6 shows

the simplex partitioned by event order for the cyclic solution with 3 clusters and no

feedback. We will call these isosequential sub-triangles event triangles.

We first partition parameter space using the values of σ and ρ in the cyclic

solution. For 1 ≤ i ≤ j ≤ k, we may select all values of r and s such that σ = i and ρ = j;

The corresponding subset of parameter space is given by the inequalities i−1
n < s < i

n and
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Figure 2.6: Regions of parameter space and appropriate initial conditions for a k = 3
cyclic solution. For example, regions 7 and 8 both begin with x1 ∈ [s, r) and x2 ∈ R. In
region 7 cluster x1 reaches s before x2 reaches r, while in region 8, x2 reaches r before x1

reaches s. Boundaries between the regions correspond to simultaneous events (see
Section 2.4.2).

j−1
n < r < j

n . The two inequalities partition parameter space into quadrilaterals except

when i = j. In that case the region defined is a triangle with the line r = s forming one

of its sides. In Figure 2.6, these correspond to triangles 1, 4, and 9.

Next, we refine the partition by dividing each quadrilateral into two parts

depending on which event, es or er, occurs first. If (r − xρ) < (s − xσ), then event er

happens first. If (r − xρ) > (s − xσ), then event es happens first. Observe that the line

r = s + (xρ − xσ) intercepts the corresponding quadrilateral at two of the vertices, and

thus each quadrilateral is divided into a pair of triangles. Our partition now matches the

one shown in Figure 2.6. Within each triangle, ρ, σ, and the event order are fixed.

For k = 3, we observe 32 = 9 event triangles; this reflects the general fact that

parameter space will be partitioned into k2 triangles. There are k+(k−1)+(k−2)+ ...+1

ways to select integers 1 ≤ σ ≤ ρ ≤ k; of these ways k (letting σ = ρ), result in triangles.

The remaining 1 + 2 + ... + k − 1 ways yield quadrilaterals that will be divided into two

triangles, and there are thus 2(1 + 2 + ... + (k − 1)) + k = k2 triangles in total.
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The event triangles constructed in this section (without feedback) are

isosequential. We will show that isosequential regions remain triangular under non-zero

feedback.

2.4.2 Simultaneous points

Now we return to the model with non-zero feedback. By simultaneous points,

we mean points in the (s, r) triangle for which the corresponding k-cyclic solution

has events es, er, and e1 occurring simultaneously (Thus, when the solution passes

the Poincaré section, there is a cluster on s, r, and 1. Note that because 1 and 0 are

associated, we do not have to explicitly require a cluster on 1, since there is a cluster

on 0 by the way the section is defined. The points where only two of the three events

occur simultaniously form the edges of event triangles.) The vertices of each triangular

region in Figure 2.6 that fall within the interior of the (s, r)-triangle are simultaneous

points. For a k-cyclic solution to lie on a simultaneous point, clusters must initially lie

on the milestones r and s. See Figure 2.7.

Figure 2.7: The k-cyclic solutions with clusters on all three milestones (s, r, and 1)
correspond to vertices of event triangles. We illustrate with with k = 4; the clusters of the
4-cyclic solutions are designated by diamonds, circles, and squares; the corresponding
symbol represents the same point on the (s, r)-triangle.
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Fix integers σ and ρ with 1 ≤ σ ≤ ρ ≤ k. It is then easy to calculate the exact

values of r, s, and x for a cyclic solution such xσ+1 = s and xρ+1 = r. As shown above,

clusters outside the responsive region are spaced by distance d and clusters inside the

responsive region by another distance d′. These are the distances clusters move during

one iteration of the map F. This is a property shared by arbitrary k-cyclic solutions, but

in general, actually calculating the values of d and d′ is complicated by the fact that the

distance between xρ and xρ+1 is neither d nor d′. In this special case where xρ+1 = r,

however, it is simply d.

Since the distance around the circle is 1, we obtain the equation ρd + (k − ρ)d′ =

1. Clusters enter and leave the signaling region at the same time (in particular, xk

enters at the same time that xσ leaves), and feedback is thus constant, f ( i
n) = αi, so

d′ = (1 + ασ)d. These equations have a unique solution:

d = 1
ρ + (k − ρ)(1 + ασ)

, d′ = 1 + ασ
ρ + (k − ρ)(1 + ασ)

.

From d we can compute r and s: r = ρd and s = σd.

The simultaneous points on the vertical and horizontal axis are easily computed

because on those axis, there is no feedback, and xi = (i − 1)/k. Thus the simultanious

points on those axes are (0, i/k) and (i/k,0) for i = 0,1, ..., k − 1.

On the diagonal (r = s, σ = ρ), the last cluster lies at r + (k − ρ − 1)e, and

d = 1−r−(k−ρ−1)e
1+ f (ρ/k) . From the equation ρd + (k − ρ)d′ = 1, we can then compute d′, and

hence d.

2.4.3 Convexity of domains

2.4.3 Proposition. Fix integers σ and ρ with 1 ≤ σ ≤ ρ ≤ k and parameters r, s. Then the

domains of the maps es, er and e1 are convex subsets of the coordinate simplex S .

Proof. First note that for fixed σ, the value of ασ = f (σk ) is constant and so it is constant

throughout the domain of an event map. The domain of an event map is thus defined by

linear constraints and is therefore convex. �
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The F-map is the composition of event maps, and event maps are continuous,

affine maps with convex domains. Convexity is preserved by affine pre-images, and the

following thus holds:

2.4.4 Theorem. Fix integers σ and ρ with 1 ≤ σ ≤ ρ ≤ k and parameters r, s. Then the

map F is a continuous, piece-wise affine map. On each subdomain on which it is affine it

is equal to compositions of event maps es and er followed by e1. These affine subdomains

are convex.

For fixed σ and ρ write Ei
σρ(r, s,x) for the map (r, s,x) ↦ (r, s, ei(x)) where

ei(x) is applied with the parameters r and s. We restrict the domains of these functions

accordingly:

dom(E s
σρ) = {(r, s,x) ∈ Oσρ ∶ (s − xσ) ≤ (r − xρ) and (s − xρ) ≤

1 − xk

1 + α }

dom(Er
σρ) = {(r, s,x) ∈ Oσρ ∶ (r − xρ) ≤ (s − xσ) and (r − xρ) ≤

1 − xk

1 + α },

dom(Ed
σρ) = {(r, s,x) ∈ Oσρ ∶

1 − xk

1 + α ≤ (s − xσ) and
1 − xk

1 + α ≤ (r − xρ)},

where

Oσρ = {(r, s,x) ∶ x j < x j+1, xρ < r < xρ+1, xσ < s < xσ+1}.

In the equations above, Oσρ represents basic ordering assumptions.

2.4.5 Proposition. For a fixed pair of integers σ, ρ, the domain of each Ei
σρ is convex.

Proof. For a fixed σ, the domain is defined by a set of linear inequalities. �

2.4.6 Definition. We define a generalized isosequential region as a maximal subset I of

∆ × S k−1 such that for any fixed σ and ρ and any (r, s,x) ∈ I the map F applied to x is the

same combination of event maps.

2.4.7 Proposition. Let (ri, si,xi)m
i=1 be a set of m points in a generalized isosequential

region such that each solution xi is cyclic. Any weighted average of these points is also

cyclic solution which follows the same order of events.
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Proof. Let F̄ denote the map (r, s,x) ↦ (r, s,F(x)) restricted to the isosequential region.

Since each xi is cyclic F̄ is a composition with events in the order esere1 or erese1. We

argue that any weighted average ∑m
i=1 αi(ri, si,xi) is also a fixed point in the domain

of F̄. We assume that αi satisfies ∑m
i=1 αi = 1 and (∀i)(αi ≥ 0). Since dom(F̄) is

convex, ∑m
i=1 αi(ri, si,xi) ∈ dom(F̄). The map F̄ is affine, so it can be written in the form

F̄ = (r, s,Ax+b), where A is constant, depending only on the order of events. The vector b

depends on r and s, but can easily be seen from the form of the event maps to be linear in

those terms, allowing us to write F̄ = (r, s,Ax + k + ru + sv), where neither u nor v depend

on r, s, or x.

Now (r, s,x) is a fixed point of F if and only if F(x) = x for parameter values

r and s. This condition can be rewritten as (A − I)x = b. Substituting (R,S ,Y) =

∑m
i=1 αi(ri, si,xi) yields

(A − I)Y

= (A − I)
m

∑
i=1
αix j

=
m

∑
i=1
αi(A − I)x j

=
m

∑
i=1
αi(−bi).

Factoring the negative sign out of the summand and substituting for bi, we continue this

string of equalities,

(A − I)Y

= −
m

∑
i=1
αi(k + riu + siv)

= −(k + (
m

∑
i=1
αiri)u + (

m

∑
i=1
αisi)v)

= −(k + Ru + S v)

= −b.

Thus any weighted average of fixed points is a fixed point also. �
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2.4.8 Theorem. For any feedback function and given k, each isosequential region is

convex. The parameter triangle ∆ is partitioned into k2 isosequential regions which are

triangles with simultaneous points at the corners.

Proof. By its definition an isosequential region is a set of parameters values in the (s, r)-

triangle such that any two parameter points in the same isoequential region define fixed

points of F with the same σ and ρ and the same order of event. It follows that it is the

projection onto the parameter variables of a cross section of a generalized isosequential

region consisting of the fixed points of F̄. By the above proposition the cross section is

convex and thus its projection is convex.

If we fix 1 ≤ σ ≤ ρ ≤ k and the order in which events s and r occur, there are three

simultaneous points S 1, S 2, and S 3 on the boundary of the domain of the corresponding

composite map. At S 1 where xσ = s, xρ = r. At S 2 where xσ = s, xρ+1 = r if event s

happens first, or, where xσ+1 = s, xρ = r if event r happens first. Finally, at S 3, xσ+1 = s,

xρ+1 = r. By the convexity of the domain of E s
σρ and Er

σρ in the parameter triangle, the

sub-triangle spanned by these three points defines an order of events for the fixed point

associated with any pair (s, r) in its interior. �

Thus generally isosequential regions are triangles and we refer to them as event

triangles.

2.5 Linear algebra

We have seen that the (s, r) triangle can be partitioned into event triangles, such

that if (s1, r1) and (s2, rs) fall in the same triangle, they share the same values of σ and

ρ, and the same order of events. Consider such a triangle. Any k-cyclic solution in that

triangle has a known σ, ρ, and order of events, and each event map that makes up F

has the form given in Section 2.4.1. The Jacobian of the affine map F can be calculated

as the product of the Jacobians of the individual event maps with the first column and

row removed (after the product has been taken). Although the Jacobian of the general
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F map can also be calculated, the algorithm for generating stability diagrams is based

on the event maps; for the sake of completeness, we nevertheless include the Jacobian

of F as Appendix A.3

First, we give the explicit functions of the event maps.

es(x) j = x j +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s − xσ if j ≤ ρ

(1 + ασ)(s − xσ), if j > ρ,
er(x) j = x j +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r − xρ if j ≤ ρ

(1 + ασ)(r − xρ), if j > ρ,

e1(x) j = x j +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−xk
1+ασ if j ≤ ρ

(1 − xk), if j > ρ.
ere(x) j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x j−1 if j ≠ 0

xk, if j = 0.

Based on these, each of those Jacobians can be seen to be quite simple; in

particular, both Des and Der have the same structure.

There are 1’s along the diagonal, except for one entry. Let j = σ for es and

j = ρ for er. The j-th column has −1’s down the first j − 1 rows, a 0 at the diagonal and

−(1 + ασ+1) in the rest of the rows.

J1,2 = De1,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0 −1 0 ⋯ 0

0 1 ⋯ 0 −1 0 ⋯ 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 1 −1 0 ⋯ 0

0 0 ⋯ 0 0 0 ⋯ 0

0 0 ⋯ 0 −(1 + ασ) 1 ⋯ 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 −(1 + ασ) 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.5.1)
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The matrix for e1 has the following structure:

J3 = Ded =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0 0 ⋯ −
1

1+ασ
0 1 ⋯ 0 0 0 ⋯ −

1
1+ασ

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 1 0 0 ⋯ −
1

1+ασ
0 0 ⋯ 0 1 0 ⋯ −

1
1+ασ

0 0 ⋯ 0 0 1 ⋯ −1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the final column, −1 appears for rows ρ + 1 ≤ j ≤ k − 1.

All of these matrices are k by k. The row corresponding to the cluster that will

experience an event will consist entirely of 0’s, since the corresponding cluster is being

moved to either s, r, or 1, regardless of where any of the clusters lie.

Using standard computational software, we may therefore simply calculate the

Jacobian and eigenvalues associated with each event triangle.

2.6 Regions of stability and instability

We have outlined a process through which, for a fixed feedback function and

a fixed k, we may efficiently and completely characterize the stability of the k-cyclic

solution for any parameters s and r. The parameter triangle is partitioned into event

triangles for small negative feedback. For each triangle the linear part of F is generated

and its eigenvalues are calculated numerically using standard software. Each event

triangle is then colored according to the linear stability of cyclic solutions associated

with parameter values in its interior. If the eigenvalues of DF are all in the interior of

the unit circle in C then the cyclic solutions are asymptopically stable and the triangle

is colored blue. If at least one eigenvalues of DF is on the unit circle and the rest are

inside the circle then the cyclic solutions are neutrally stable and the triangle is colored

white. If at least one of the eigenvalues of DF has modulus greater than one then the
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k-cyclic solutions for those parameter values are unstable and the triangle is colored

red.

In this section, we will do this for a number of values of k (we have

investigated all values of k between 2 and 100; we reproduce a representative sample).

We note the patterns that emerge, some of them open conjectures, others theorems that

we will establish in the following chapter.

2.6.1 Instability under positive feedback

The problem of the stability of k-cyclic solutions under positive feedback

is largely solved. We reproduce a representative sample of stability diagrams in

Figure 2.8.
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Figure 2.8: Red - Unstable; White - Neutral. Parameter regions of instability for k-cyclic
clustered solutions with k = 3,4,10,15. The picture is similar for any k ≥ 2. There are no
regions of stability for the clustered solutions with positive feedback.

We observe alternating neutrality along the edges, and instability everywhere

else. The instability in the interior of parameter space has been confirmed (Theorems 3.3.3

and 3.3.4), and the neutrality along the vertical and horizontal edges is easily explained

(Lemmas 3.4.2 and 3.4.3). The instability of event triangles with a vertex on the verti-

cal or horizontal axes is more intricate, but known (see Section 3.4 of the next chapter

for both the theorems and the machinary of the proofs). On the other hand, the behav-

ior on the hypotenuse is a largely open problem. It is known (Theorem 3.4.25) that for
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sufficiently strong positive feedback, the observed neutrality will be replaced with in-

stability, but the cause of this remains unknown, and proving that neutrality occurs for

weak positive feedback remains open. A detailed discussion of this case is found in

Section 3.4.5.

2.6.2 Computation of event triangles and their stability under negative feedback

Under negative feedback, the patterns are more intricate, and theorems harder to

come by. Figures 2.9, 2.11, 2.12, and 2.13 illustrate a wide range of k-values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Clusters

r

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9 Clusters

r

s

Figure 2.9: Blue - Stable; Red - Unstable; White - Neutral. Parameter regions of stability
for cyclic clustered solutions with k = 2,3, . . . ,9.

In Figure 2.9 we plot the regions of stability, neutrality and instability for the

cyclic solution for k = 2 to k = 9. For k = 2 there is a single triangle of parameter values

in the triangle for which the 2-cyclic solution is stable, consistent with the analysis in

Section 2.2. For k = 3 there are three triangles on which the 3-cyclic solution is stable.

These calculations are rigorously verified in Appendix A.2. Note that from the two

plots for k = 2 and k = 3 we already observe regions of bi-stability. For these parameters
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there exist at least two different stable cyclic solutions and each will have some basin

of attraction.
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Figure 2.10: (a) An overlay of regions of stability for k = 1, . . . ,7. Notice that the area not
covered by the stability regions are only adjacent to the edges. We conjecture that every
parameter pair in the interior of the triangle is eventually covered by a stability region for
some k. (b) Numbers of clusters realized in a cell cycle simulation using a mediated
feedback. There is strong agreement between the two plots. In both of these plots the
feedback function was f (I) = −.6I.

If we look at the union of the regions of stability for the first few k, we find that

these regions of stability rapidly cover most of the area of the parameter triangle. In

Figure 2.10, we plot the union of the regions of stability for k = 2, . . . ,7. We find that

the union of these regions account for 82% of the area.

Investigating Figures 2.9 and 2.11, we observe a variety of patterns in the

interior space for most values of k. However, for k = 5,7,11,13, we observe nothing

but instability, with alternating neutrality on the edges. Since those numbers are all

the prime numbers between 1 and 15 that have event triangles that do not intersect the

boundaries of the simplex, we make the following conjecture.
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Figure 2.11: Blue - Stable; Red - Unstable; White - Neutral. Parameter regions of stability
for cyclic clustered solutions with k = 10,11,12,13,14,15. We recognize a distinction
between prime and composite values of k.

1 Conjecture (Primality conjecture). For k prime, under negative feedback, the k-cyclic

solution in any event triangle strictly in the interior of the (s, r) triangle. Triangles with

an edge on a boundary of the simplex are neutral, while triangles with a vertex on the

boundary of the simplex are stable.

This conjecture is largely open, although the problem of the horizontal and

vertical edges has been solved. We generate the stability diagram for a number of other

prime numbers in Figure 2.12, observing the conjectured behavior.

In Figure 2.13 we plot the stability of each event triangles for several composite

values of k. The patterns are more complex than for k prime.

From these and similar simulations, we offer the following conjectures.

2 Conjecture. Given any pair (s, r) in the interior of the triangle 0 < s < r < 1, there is

some k ≥ 2 such that the k-cyclic solution is stable for (s, r).
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Figure 2.12: Blue - Stable; Red - Unstable; White - Neutral. Parameter regions of stability
for cyclic clustered solutions for k prime, k = 17,19,23,29,31,37. For all prime k we
have investigated, the pattern is completely regular.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

18 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 Clusters

r

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

22 Clusters

r

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24 Clusters

r

s

Figure 2.13: Blue - Stable; Red - Unstable; White - Neutral. Parameter regions of stability
for cyclic clustered solutions for some k composite, k = 16,18,20,21,22,24.
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3 Conjecture. If k is composite, triangles in the interior of the simplex are mostly

unstable, but some may be neutral along the lines r = 1/2, s = 1/2 and 1− r + s = 1/2. As k

grows large the area covered by neutral triangles goes to zero.

If these conjectures are true, they would imply the following:

4 Conjecture (Instability conjecture). For k large, the k-cyclic solution is unstable for all

except a small set of parameter values with area O(1/k).

This conjecture is relevant to the uniform solution where k = n = O(1010). It

would imply the uniform solution, which is the “steady-state” solution is unstable for

practically all parameter values and any feedback. This question remains an area of

active study.

5 Conjecture. Stability diagrams are symmetric along the antidiagonal.

These plots also help explain the seemingly anomalous patterns of Figure 1.5.

In the simulation that generated that figure, we let ∣S ∣ = ∣R∣ and considered the number

of clusters that formed as ∣S ∣ → 1/2. We observed that initially, increasing ∣S ∣ caused

the number of clusters that formed to shrink, reflecting the fact that M + 1 decreases

as ∣S ∣ increases; but as ∣S ∣ approached 1/2, the number of clusters formed began to

increase. We may now see that because ∣S ∣ = ∣R∣, as ∣S ∣ → 1/2, the (s, r)-pair

approaches the s = r boundary. Because the stable 2-cyclic triangle has only a vertex on

that line, it becomes progressively less likely that a 2-cyclic solution near that boundary

will be stable. In general, the number of stable triangles with a vertex on the r = s line

increases with k, and as (s, r) approaches that boundary, we observe k-cyclic solutions

for larger values of k (in particular for k = 5 and k = 7, where there are large regions of

stability along the s = r line.)
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2.7 Simulations

Finally, we consider the formation of clusters in simulation; see Figure 2.14

below. We select parameter values (.2, .4) because, as we have seen from the

proceeding diagrams, under negative feedback (Figure 2.9) this is a region of strong

multistability. The 3-, 4-, and 5-cyclic solutions ((c), (d), and (e) respectively) are

stable under modest feedback, and the 2-cyclic solution (b) is neutrally stable. The

synchronous solution (a) is unstable. We also consider an initial condition of 100

equally spaced cells as a loose approxomation of the uniform solution (f), which is

unstable under both positive and negative feedback for these parameter values.

(a) A neighborhood of the
1-cyclic solution.

(b) A neighborhood of the
2-cyclic solution.

(c) A neighborhood of the
3-cyclic solution.

(d) A neighborhood of the
4-cyclic solution.

(e) A neighborhood of the
5-cyclic solution.

(f) A neighborhood of the
uniform solution.

Figure 2.14: Various initial conditions under repeated applications of the Poincaré map
with negative feedback. Here f (I) = −.6I, s = .2, and r = .4. For this set of parameter
values the 3-, 4-, and 5-cyclic solutions are asymptotically stable. The horizontal axis
represents the number of iterations of the Poincaré map, the vertical axis the unit circle.
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We see that neighborhoods of the 3-, 4-, and 5-cyclic solutions converge quickly

back to the stable fixed point. For an initial condition of two groups near the neutral

2-cyclic solution, each of the two groups breaks fairly neatly into two clusters, while

the equally spaced cells converge quickly to a 3-cyclic solution. A neighborhood of the

synchronous solution also converges to the 3-cyclic solution; (.2, .4) is solidly in the

interior of the stable 3-cyclic event triangle, while it is closer to the boundary of the 4-

cyclic triangle, and almost on the boundary of the stable 5-cyclic triangle (observe in

Figure 2.14e that x2 lies practically at s = .2; in the zero feedback case, the 5-cyclic

solution lies directly on the boundary of the event triangle), so it is not surprising to

see initial conditions that are not close to other stable fixed points converge to the 3-

cyclic solution.

In the case of positive feedback (Figure 2.15), for the same initial conditions

and parameter values ( f (I) = .6I) as in Figure 2.14, the system converges to the stable

1-cyclic fixed point in five out of six cases. The exception is when the initial condition

lies in a neighborhood of the neutrally stable 2-cyclic fixed point, in which case it

converges to a 2-clustered solution (although not the 2-cyclic solution).

(a) A neighborhood of the
1-cyclic solution.

(b) A neighborhood of the
2-cyclic solution.

(c) A neighborhood of the
3-cyclic solution.

Figure 2.15: Various initial conditions under repeated applications of the Poincaré map
with positive feedback. Here f (I) = .6I, s = .2, and r = .4. The vertical axis represents the
unit circle, the horizontal axis time.
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2.8 Conclusions and discussion

In the first part of this chapter, we showed that under arbitrary negative

feedback, cyclic solutions consisting of small (but not small enough to be isolated)

numbers of clusters are asymptotically stable. This is consistent with experimental

observation, where small numbers of clusters are seen to form.

In the second part, we reduced the study of cyclic solutions to the study

of simpler event maps. This has led to the idea of separating parameter space into

isosequential regions. Our main result is that isosequential regions are sub-triangles

and that the Poincaré map near the cyclic solutions for parameter values in these event

triangles all have the same linearization. This has allowed us to conveniently and

reliably compute both the event triangles and the stability of k-cyclic solutions for any

fixed k.

For negative feedback, we observe that given a small k there are several event

triangles for which the k-cyclic solution is stable. Also, given any fixed (s, r) there

seems to be at least one, maybe more than one, value of k for which the k-cyclic

solution is stable. A surprising observation in the negative feedback case is that the

regions of stability depend on whether k is prime or composite.

The computations for positive feedback show that there are no parameter

regions on which the k-cyclic solution is stable for any 2 ≤ k ≤ 100. The synchronous

solution appears to be the only attractor under positive feedback. We will verify this in

the following chapter.

The uniform solution (k = n large) appears to be unstable for most parameter

values. This is in sharp contrast to previous results on cell cycle models with dispersion

and without feedback [21, 22, 33]. In those studies the uniform (steady-state) solution

was found to be stable. This shows that feedback is necessary to account for the

clustering behavior as observed in yeast experiments. In real systems with both

feedback and dispersion we expect a bifurcation curve in the feedback strength vs.
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dispersion strength parameter plane. For high dispersion and low feedback, the uniform

solution should be stable, whereas for high feedback and low dispersion clustered or

synchronous solutions should be stable.

We note that these results are quite general. In particular, all of our results did

not assume anything about the feedback function f other than it be either positive or

negative. Further, we note that the coupling mechanism modeled here is more general

and much closer to biological reality than classical phase oscillator models that have

been widely considered.

The main implication of this chapter is that clustering type behavior, such as

that in yeast autonomous oscillations require a negative feedback mechanism, whereas

synchronous behavior requires a positive feedback. We note that Kilpatrick et al. [46]

and Mauroy [58] have found similar results in certain neural network models.

We note that the region of stability for k = 2 clusters and the region where 2

clusters are realized is a triangular region with centroid at s ≈ 0.35 and r ≈ 0.75.

We can hypothesize that since the experiment represented in Figure 1.2 shows the

existence of two clusters, then the parameters s and r should be within this region and

in particular are likely on the order of s = 0.35 and r = 0.75. Thus in the search for

biological mechanisms involved in the yeast experiments we should expect a signaling

mechanism to be active for around 35% of the cell cycle and the response mechanism

to be active for around 25% of the CDC.

In the experimental data the time period in which the O2 dilution drops is

relatively narrow. It is ≈ 40 minutes or approximately 10% of the cell cycle (see

Figure 1.2). If the drop in dissolved oxygen were the signal, then this suggests that

s ≈ .1. We see in Figure 2.10 that the r values corresponding to stability of k = 2

and s = 0.1 are quite narrow. This suggests that the drop in DO2 is unlikely to be the

primary signaling mechanism involved in the feedback.
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3 Stability Results In the Partitioned Parameter Space

3.1 Introduction

In the previous chapter, we considered how we might partition the (s, r)-triangle

into isosequential regions, which we saw to be triangles. Each point in a triangle

corresponds to a k-cyclic solution of (1.3.3), and points in the same isosequential

region share the same stability type (asymptotically stable, linearly neutral, or unstable).

We continue our investigation of the stability of k-cyclic fixed points in this chapter.

We prove that under positive feedback, k-cyclic solutions are overwhelmingly unstable.

We investigate the behavior of stability triangles on the s = 0 and r = 1 edges of

parameter space, and consider triangles on the s = r line. Finally, we prove that stability

in the clustered subspace implies stability in the full phase space.

For ease of reference, we reproduce (from Chapter 2) examples of the partitions

under consideration (Figure 3.1 and Figure 3.2). For k and f fixed, any pair (s, r)

corresponds to a k-cyclic solution with some fixed σ, ρ, and order of events. Likewise,

for a fixed feedback function, any k-cyclic solution corresponds uniquely to some pair

(s, r) in the parameter space. When convenient, we therefore speak of the k-cyclic

solution and its corresponding (s, r) coordinate interchangeably, e.g. when we speak

of a solution lying in a certain event triangle.

Figure 3.1: When k=2, the (s, r)-triangle is partitioned into four subtriangles. Each
triangle is labeled (σ,ρ,order of events).
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(a) k = 4, positive feedback.
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(b) k = 6, negative feedback.
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(c) k = 8, negative feedback.

Figure 3.2: For a fixed k, the parameter space 0 ≤ s ≤ r ≤ 1 is divided into k2 triangles.
Parameters in the same triangle give rise to k-cyclic solutions with identical Jacobians,
and thus identical stability. The figure was generated in the limiting case where f=0, but
the triangles were colored according to the stability of k-cyclic solutions in each triangle
under weak positive or negative feedback. Red indicates instability of the k-cyclic
solution, blue indicates stability, and white neutrality.

3.2 Small perturbations

To answer questions of the stability, we consider small perturbations of k-cyclic

solutions, and then investigate the behavior of the perturbed system. We must therefore

start any investigation of stability by clarifying what “small” and “perturbation” mean

in this context. We consider the second question first.

There are two obvious, but distinct, ways of viewing the k-cyclic solution,

where k is the number of clusters and n is the number of cells (and each cluster

contains n/k cells). The first is to view it as a point on the k-dimensional simplex

x1 ≤ x2 ≤ ... ≤ xk, where we know that the k-cyclic solution occurs in the interior of

the simplex (xi < xi+1); this is the philosophy of Chapter 2. The second is to view it as

a point on the n-dimensional simplex S n, c1 ≤ c2 ≤ ... ≤ cn/k+1 ≤ ... ≤ cn, where

c1 = c2 = ... = cn/k < cn/k+1 = cn/k+2 = ... < c(k−1)(n/k)+1 = ... = cn. (3.2.1)

Initially synchronized cells cannot de-synchronize under the dynamics of the system,

and in the absence of noise, these two viewpoints generate identical systems. In
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particular, F defines a discrete dynamical system on each simplex. Let A ⊂ S n be the

clustered subset of the n-dimensional simplex whose coordinates satisfy (3.2.1). Then

i ∶ S k ↦ A ⊂ S n, the “identity” map defined by

i(c1, cn/k+1, ..., c(k−1)(n/k)+1) = (c1, c2, ..., cn/k+1, ..., c2n/k+1, ..., c(k−1)(n/k)+1) (3.2.2)

is a conjugacy on the maps of the system, that is to say that it is a homeomorphism

from S k to A such that i(F(x)) = F(i(x)) (see also Figure 3.3; in this special case, F1

and F2 are defined identically). However, the effect of independently perturbing each

oscillator will be radically different depending on whether the domain of F is taken to

be S k or the clustered n-dimensional submanifold A ⊂ S n. In the first case, there will

still be k distinct oscillators after a small perturbation. In the second case, perturbing

each oscillator will cause the clusters to de-synchronize into loose groups. We refer to

the first case as a perturbation in the clustered subspace (for brevity; the “subspace” is

actually a submanifold of the simplex S n, which is itself a manifold with boundary),

and to the second as a perturbation in the full phase space.

Figure 3.3: Dynamical systems defined by maps F1 and F2 are conjugate if there is a
homeomorphism i between their state spaces such that this diagram commutes. A
seemingly complicated system may sometimes be understood in terms of a more
transparent conjugate system, an idea we will exploit several times in this chapter.

We now consider the question of perturbations. Let x̄ be a k-cyclic solution

on the Poincaré section. We have seen that the Poincaré map (and its factorization F)

may be understood purely as a sequence of event maps indexed by symbols ei
j, where

i is a number 1 ≤ i ≤ k, and j belongs to the symbol space {r, s,1}. The symbol

ei
j encodes the information that xi has reached j. In a neighborhood of the k-cyclic
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solution, each event has a single cluster uniqely associated with it, and the superscript

may be dropped. A sequence of these symbols, read left to right, defines the order of

events of an F-map and a Poincaré map; we call this the event string of x̄. For an event

string to be defined in this way, it is necessary to restrict x̄ such that distinct events

do not occur simultaniously (i.e. to the interior of an event triangle), although the

concept of defining F in terms of its order of events can be extended to the boundaries

of event triangles. We observe that by definition, the event string of a k-cyclic solution

is invariant under the Poincaré map. The event string of a k-cyclic solution is likewise

invariant under F if we include in F a cyclic relabeling of coordinates (i.e. if after each

iteration of F we relabel clusters in ascending order so that the number σ of clusters in

S is also the subscript of the last cluster in S ).

3.2.1 Definition. Let x̄ be a configuration of clusters on the Poincaré section. We define

the event neighborhood of x̄ to be the set of all states lying on the Poincaré section that

have the same event string as x̄. We call ȳ an event-small perturbation of x̄ if ȳ is in the

event neighborhood of x̄.

Since the definition of event strings is restricted to the interiors of event

triangles, the definitions of event neighborhoods and event-small perturbations are

likewise restricted. Note one motivation of this restriction: event neighborhoods are

open sets in the Euclidean metric on the k-dimensional simplex, and thus for all finite-

dimensional metrics generated by a p-norm. Event neighborhoods of points on the

edges of event triangles, defined in the natural way, are non-open, while the event

neighborhoods of vertices of event triangles would be singletons.

We have only defined an event-small perturbation in the clustered subspace. But

the notion generalizes naturally to the full phase space. Let x̄ be a point as described

on the clustered submanifold embedded in the n-dimensional simplex, whose cells are

initially synchronized into k clusters. After perturbing the solution in the full phase

space, we define k groups, gi = {c(i−1)/k+1, c(i−1)/k+2, ..., ci/k} for 1 ≤ i ≤ k. Once the
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cells have been perturbed, their order becomes invariant, so relabeling as necessary, we

may assume without loss of generality that the cells in a group are listed in ascending

order. The first and last cells of a group gi will be of particular importance, since a

group converges to a cluster if and only if the distance between them (defined below)

converges to 0. We define symbols

ciF = max{c j∣c j ∈ gi}

ciL = min{c j∣c j ∈ gi},
(3.2.3)

where the i will be suppressed unless confusion is likely to occur. We have numbered

the cells of a group in ascending order of be consistent with the numbering of clusters.

An artifact of this is that ciF , the first cell of gi to undergo any event, is the last cell in

the list gi = {c(i−1)/k+1, c(i−1)/k+2, ..., ci/k}.

3.2.2 Definition. The diameter of a group is diam(gi) = d(ciF , ciL) = min{∣ciF − ciL∣,1 −

∣ciF − ciL∣}.

Once a cluster has been broken into a group, the previously-defined order of

events concepts can be applied without modification to the component cells of the

groups. We define a group event to be an ordered pair eg j
i = {e jF

i , e
jL
i }, i ∈ {s, r,1},

j ∈ {1,2, ..., k}, and say that a group event eg j
i occurs before a group event egm

` if both

e jF
i and e jL

i occur before emF
` occurs.

Note that the concept of one group event happening before another can not be

used to define a total order on the events; if the diameters of one or more groups is

sufficiently large then for some events i,m ∈ {s, r,1}, and distinct groups g` and g j, the

cells c`F , c jF , and c`L may undergo events e`Fi e jF
m e`Li . In other words, the first cell of g`

crosses some milestone, and before the last cell of g` can do the same, the first cell of

another group crosses some other milestone. In this case, neither group event is said to

happen before the other. However, where group events are comparable, we may define

their event string in the natural way.
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Let x̄ be a k-clustered solution on the n-dimensional simplex, as described by

(3.2.1), i.e. x̄ ∈ A. Note that the function (3.2.2) is one-to-one. Its inverse takes a

clustered configuration in S n and maps it to a configuration in S k. Let x̄ ∈ A. Define

a k-dimensional representative point ȳ = i−1(x̄). We must do this to speak of the event

string of x̄ because x̄ is not in the interior of the n-dimensional simplex. Then we

generalize the concept of event-small perturbations to the full phase space as follows.

3.2.3 Definition. Let x̄ ∈ S n have a representative point ȳ ∈ S k, and let the Poincaré map

of ȳ have an event string e j1
i1 e j2

i2 . . . e
jm
im . Then a perturbation of x̄ in the full phase space is

said to be event-small if the resultant groups have the same event string eg j1
i1 eg j2

i2 . . . eg jm
im .

The collection of event-small perturbations is the event neighborhood of x̄.

Again, we restrict our attention to those cases where x̄ lies in the interior of

an event triangle, and the event neighborhood is an open set in any finite-dimensional

metric generated by a p-norm. We always consider “small” perturbations to be event-

small, in clustered subspace or in the full space, when considering stability.

3.2.1 Divisions of parameter space

Throughout this chapter, we will classify the stability of k-cyclic solutions

based on which event triangle they fall into. We consider two natural ways that event

triangles may be classified.

We have seen one method of classification. A k-cyclic solution can only have

one of two orders of events (Proposition 2.4.1 of Chapter 3): erese1 or esere1. Every

event triangle may thus be classified by its order of events.

Another method of classification comes from the observation that when event

triangles have an edge or boundary on the edge of parameter space (i.e. on the lines

r = 1, s = 0, and s = r), that sharply restricts the complexity of the k-cyclic solution,

since it implies that either σ = 1 (an edge or vertex on s = 0), ρ = k (an edge or vertex

on r = 1), or σ = ρ (an edge or vertex on s = r), and thus eliminates one of the two



81

parameters that control the form of the solution. We therefore define an event triangle

to be a boundary triangle if it has an edge or vertex on the lines s = 0, r = 1, or s = r,

and an interior triangle otherwise.

These two methods of classification are summarized in Figure 3.4.

Figure 3.4: We classify each event triangle in two ways. In the left-hand figure, triangles
are classified as either interior (green) or boundary (purple). On the right, triangles are
classified according to order of events; yellow triangles have event strings eser, while grey
triangles have order of events eres.

3.2.2 Order of event results

We start with a number of results that are true for both interior and boundary

triangles. We note that if k = 1, Lemma 3.2.7 and Corollary 3.2.9 are alternative proofs

of the (already known) facts that the synchronous solution is unstable under negative

feedback and stable under positive feedback. Having made that observation, we will

assume that k > 1 for the remainder of the section.

3.2.4 Lemma. Consider a negative-feedback system. Let x̄ be any k-cyclic solution such

that xρ enters R before xσ leaves S , i.e. assume x̄ has event chain eres. Let ȳ be any event-

small perturbation of x̄ in the full phase space. Then after the application of a single

Poincaré map, the diameters of each group of ȳ will contract uniformly. In other words,
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for each i, diam(gi(T)) ≤ c ⋅ diam(gi(0)) where T is the Poincaré return time and c < 1 is

independent of i.

Proof. Let x̄ be a k-cyclic solution that has the order of events eres. Let g be a group in

the (full phase) event neighborhood of x̄. From time t = 0 to time t = T , where T is

the return time of the Poincaré map, the diameter of the group will change twice, when

it enters R and when it leaves R.

We select an arbitrary group g of diameter ε. Let cF be its first cell, cL the final

cell of that group. Then from the time cF enters R until the time cL enters R, the diameter

ε is contracted to (1 + f (σ/k))ε, since there are σ groups in S . The diameter will not

change again until cF reaches 1, before which time one group has left S . As the cells of

g begin to enter S , the feedback on the cells of g still in R increases, but the proportion

of cells exerting feedback is always strictly less than σ
k ; an explicit upper bound is α =

(σ)(n/k)−1
n < σ(n/k)

n = σ
k .

Thus, although negative feedback now begins to pull the solution away from

the clustered subspace (i.e. the cells spread out as they enter S ), by the time g has

entirely entered S , its diameter is no more than 1+ f (σ/k)
1+ f (α) ε. Since feedback is monotone

and f is negative, the denominator of the coefficient is less than the numerator, and this

is a contraction of the diameter. Since the upper bound of α is uniform, every group

experiences a contraction of at least that degree. �

The proof of the following lemma is essentially identical.

3.2.5 Lemma. Consider a positive-feedback system. Let x̄ be any k-cyclic solution with

order of events eres, and let ȳ be any event-small perturbation of x̄ in the full phase space.

Then the diameters of each group will expand uniformly over the course of a single

Poincaré map, i.e. for each i, diam(gi(T)) ≥ c ⋅ diam(gi(0)) where T is the Poincaré

return time and c > 1 is independent of i.
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Proof. A group of diameter ε that enters R while σ cells are in S is expanded to a

diameter of (1 + f (σ/k))ε. Its diameter will then remain constant until it enters S . At

this time, it will start to contract, but there are strictly fewer cells in S , no more than

α = (σ)(n/k)−1
n < σ

k . Thus after the group has passed completely into S , its diameter

is no less than 1+ f (σ/k)
1+ f (α) ε, and since the feedback function is positive and monotone, the

numerator of that fraction is strictly greater than the diameter. �

Note that Lemma 3.2.4, taken by itself, is fairly weak; it gains significance

when the k-cyclic fixed point is stable in the submanifold (Theorem 3.5.1). On the

other hand, since a necessary condition for stability is that a solution remain in an ε-

small neighborhood of the fixed point, Lemma 3.2.5 has the following corollary.

3.2.6 Corollary. Consider a positive-feedback system. Let x̄ be any k-cyclic solution with

order of events eres (xρ enters R before xσ leaves S ). Then x̄ is unstable in the full phase

space.

In the order of events eres of the previous two lemmas, groups entering R

experience the full feedback of σ groups, and groups entering S experience strictly

less feedback. If we reverse the order of events, this effect is reversed, and the previous

results likewise are reversed.

3.2.7 Lemma. Consider a negative-feedback system. Let x̄ be any k-cyclic solution

governed by the event string eser, and let ȳ be any event-small perturbation of x̄ in the

full phase space. Then over the Poincaré return time T , the diameters of each group will

expand uniformly, as in Lemma 3.2.5.

Proof. As a group of diameter ε passes into R, there are σ − 1 clusters in S , and thus

ε → ε
1+ f ((σ−1)/k) . The diameter will not change again until the group leaves R. When that

happens, there will be σ − 1 clusters in S , but the first cell of the group will be exerting

feedback on the last cell of the group. From the time the first cell of the group enters

R to the time the last cell enters R, the last cell will travel a distance of ε
1+ f ((σ−1)/k) at a
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(variable) rate bounded above by 1 + α < 1 + f ((σ − 1)/k). Thus the final diameter of the

group is greater than
ε

1+ f((σ−1)/k)
1+α , which is greater than ε. �

3.2.8 Lemma. Let x̄ and ȳ be as in Lemma 3.2.7 (with event string eser) in a positive

feedback system. Then over the course of a single Poincaré map, the diameters of each

group will contract uniformly, in the sense of Lemma 3.2.4.

Proof. When a group enters R its diameter expands to ε
1+ f ((σ−1)/k) . When it leaves S ,

there are σ − 1 clusters in S , together with cells of the group, and the rate of the last cell is

therefore bounded below by some rate 1 + α > 1 + f ((σ − 1)/k), and the final diameter of

the group is bounded above by 1+ f ((σ−1)/k)
1+α ε < ε. �

3.2.9 Corollary. Consider a negative-feedback system. Let x̄ be any k-cyclic solution such

that xρ enters R after xσ leaves S (event string eser). Then x̄ is unstable in the full phase

space.

The case of isolated groups (i.e., a configuration of groups such that when any

cells of one group lie in R, only cells of that same group can lie in S ) are a special

case of the eser order of events, and we demonstrate Lemmas 3.2.7 and 3.2.8 in

simulations. If s = .2 and r = .8, then x2 = .5 (on the Poincaré section) undergoes

order of events eser. Under negative feedback, this fixed point is unstable in the full

phase space (Corollary 3.2.9). Under positive feedback, on the other hand, event-

small perturbations collapse back the the clustered submanifold; it is only when the

groups grow large enough in diameter that they begin to influence on another, and

Lemma 3.2.7 no longer applies, that the trajectory of the system can exhibit different

behavior, in this case converging to the 1-cyclic solution.
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(a) α = .05 (b) α = .26 (c) α = .27

(d) α = .28 (e) α = .29 (f) α = .05 under negative
feedback.

Figure 3.5: From an initial condition in a neighborhood of the isolated, neutral 2-cyclic
solution, we consider the state of the system (i.e. the location of cells on the unit circle,
represented by the vertical axis) as a function of the number of iterations of the Poincaré
map (the horizontal axis). There are 100 cells in total, spread uniformly in α-balls around
x1=0 and x2=.5. Figures (a)-(e) represent positive feedback of strength f (I)=.2I. We see
that the previous lemmas continue to apply outside the realm of the hypothesis, i.e. it does
not effect the stability of the system if there is still one cell of g1 in S when g2 begins to
enter R. Nevertheless, the transition from convergence to isolated, neutral 2-clustered
solutions under positive feedback to convergence to the synchronous solution is fairly
abrupt. The instability under negative feedback ( f (I) = −.6I) is seen in (f).

3.3 Results in the interior of parameter space

We now turn our attention to interior event triangles. In all the results of this

section, we assume implicitly that the event triangle under consideration is an interior

event triangle. A consequence of this is that k > 2, since for k ≤ 2, all event triangles are

boundary triangles.

The order of events sharply limits where asymptotic stability can occur

in the clustered subspace, for either positive or negative feedback. We have seen
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(Corollary 3.2.9) that one order of events implies instability of the k-cyclic solution

under negative feedback in the full phase space. We will now see that this order of

events always implies instability in the clustered subspace. We start by noting that it

cannot imply stability.

3.3.1 Lemma. For any order of event triangle where xρ enters R after xσ leaves S (eser),

the k-cyclic solution is not exponentially attracting in the clustered submanifold, under

either positive or negative feedback, i.e. it cannot have all eigenvalues strictly inside the

unit disk.

We introduce a minor change of variables that will simplify this and later

calculations. In a neighborhood of the k-cyclic solution, any cluster in R always

experiences feedback from either σ or σ − 1 clusters. Thus the feedback f ((σ −

1)/k) is in some sense “background feedback” that can be thought of as existing

independently of the location of the clusters. If we rescale the system, in particular by

allowing division to occur at some number other than 1 and appropriately increasing or

decreasing the size of R so that a cluster, influenced solely by the background feedback,

takes R time units to traverse R, we may eliminate that feedback. Thus we can think

of a cluster in R as experiencing feedback only when a full set of σ clusters are in S .

This change of variables, stated as a function V ∶ I → [0, r + 1−r
1+ f ((σ−1)/k)] is given by the

piecewise affine map

V(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x if 0 ≤ x ≤ r

r + x−r
1+ f ((σ−1)/k) if r < x ≤ 1.

(3.3.1)

This function V is a homeomorphism from S 1 onto itself, and when x̄ is

sufficiently close to the k-cyclic solution,

Ṽ ∶ (x1 < x2 < ... < xk)→ (V(x1) < V(x2) < ... < V(xk)),

defines a topological conjugacy (Ṽ serves the role of i in Figure 3.3, where F again

serves as the map for both discrete dynamical system). Note that this defines a change
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of variables locally, in an event-small neighborhood of x̄. Once a solution moves

sufficiently far from the k-cyclic solution, clusters may be in R while fewer than σ − 1

clusters are in S , and the change of variables it is no longer appropriate. However,

since we are considering only local stability, a piece-wise smooth coordinate change

in a neighborhood of the k-cyclic solution will not alter the dynamics being analyzed.

This helps explain the observation, made in [6] and throughout this thesis, that the

exact form of the feedback function seems to have a minimal influence on the system,

since locally to any cyclic solution, the feedback function can be treated as linear.

Proof of Lemma 3.3.1. Consider the Jacobian of the F-map of the k-cyclic solution, and

the characteristic polynomial it defines. The Jacobian is extremely sparse. Scaling away

the background feedback as described, we find that the rows corresponding to clusters in

R (the (ρ + 1)’st row to the (k − 1)’st row) have a 1 on the semi-diagonal and −1 in the

last column. Rows corresponding to clusters not in R have −1’s down the last column

as well, and a 1 in the semi-diagonal as well; the only difference is that they also have a

β = f (σ/k) term down the column corresponding to xσ (which is the (σ − 1)’st column),

and there is a 1 + β term where the semidiagonal meets that column. The β terms below

the 1 + β entry in the (σ − 1)’st column extend down to the ρ’th row (thus in the special

case that σ = ρ they are absent, which will account for the restriction that σ ≠ ρ in

Lemma 3.3.2). The matrix can be derived from the matrix DFsr of Appendix A.3 by

letting f ((σ − 1)/k) = 0.
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Jsr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... β 0 ... 0 0 −1

1 0 0 ... β 0 ... 0 0 −1

0 1 0 ... β 0 ... 0 0 −1

... ... ... ... ... ... ... ... ... ...

0 0 0 ... 1 + β 0 ... 0 0 −1

0 0 0 ... β 1 ... 0 0 −1

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

0 0 0 ... 0 0 ... 1 0 −1

0 0 0 ... 0 0 ... 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Because J only has two columns with more than a single non-zero element

in them, and all the columns with a single non-zero element have 1 as that element,

computing the determinant of J is an elementary exercise. We select a column with a

single element, and expand along it to compute det J = ±1 det J′, where J′ has the same

sparcity properties as J. Repeating this process, we arrive at det J = ±1 ⋅
RRRRRRRRRRRRRRR

β −1

1 + β −1

RRRRRRRRRRRRRRR
= ±1.

We recall that the constant term of the characteristic polynomial of J is (−1)k−1 det(J) =

±1, while the leading coefficient is 1.

If all the roots of a discrete system are inside the unit circle, then the constant

term of the characteristic polynomial must be less in absolute value than the leading term;

this is often stated as part of the Jury Criterion. It is not the case here, as the leading and

constants terms are both 1 in absolute value. As an alternative argument, we observe that

since the absolute value of the determinant is 1, and the determinant is the product of the

eigenvalues, the eigenvalues cannot all have modulus less than 1. �

We now prove that, in fact, these solutions are unstable. We will do this through

investigation of the characteristic polynomial.
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3.3.2 Lemma. If x̄ is a k-cyclic solution with order of events eser and σ ≠ ρ, the linear

term of the characteristic polynomial of the Jacobian of F is an integer.

Proof. The linear term of the characteristic polynomial is the sum of the determinants of

the submatrices formed by removing row i and column i for i = 1,2, ..., k (i.e. the sum of

the determinants of the principle minors). It is easily seen, from the sparsity of the matrix,

that each of these determinants is either ±1 or 0, and their sum is thus an integer.

The requirement that σ ≠ ρ is necessary for the determinant of the submatrix

formed by removing the σ’th row (and thus the σ’th column) to be ±1. If σ = ρ

then by pivoting down the first σ − 2 (sparse, containing only a single non-zero term)

columns, the determinant of that submatrix is calculated to be ±1 det K, where K has a

column that consists entirely of 0’s, except for one nonzero entry of β, introducing this

(presumably non-integer) term into the sum. If ρ > σ, repeatedly pivoting down sparse

columns will not cause that column to become sparse, and the determinant of that minor

is ±1 ⋅
RRRRRRRRRRRRRRR

β −1

1 + β −1

RRRRRRRRRRRRRRR
= ±1. �

This lemma gains it significance from three facts. First, the trace of the Jacobian

can be easily seen by studying the matrix to be −1 + β, which, in general, is not an

integer. More formally, we have noted that by scaling away “background” feedback,

a feedback function in a neighborhood of a k-cyclic solution may be defined entirely

in terms of a single positive number, f (σ/k), which takes its values over (−1,∞). For

only a discrete subset of the real numbers (the integers) is −1+ f (σ/k) an integer. Thus,

for any feedback function f outside of the exceptional set of functions that take integer

values on some rational number, −1 + f (σ/k) is not an integer. For negative feedback,

−1 + β is never an integer, since β ∈ (−1,0).

Second, the trace (up to sign) is the coefficient of the k − 2 term of the (k − 1)-

degree characteristic polynomial of the Jacobian. In other words, outside of a discrete
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set, the characteristic polynomial is p(x) = xk−1 + ck−2xk−2 + ...+ c1x1 + c0, where (because

one of them is an integer, and the other is not) ∣ck−2∣ ≠ ∣c1∣.

Third, it is necessary (although not sufficient) [17] for polynomials with real

coefficients, all of whose roots lie on the unit circle, to be symmetric or anti-symmetric.

That is, for either αk−i = αi for i = 0,1, ..., k, or αk−i = −αi for i = 0,1, ..., k, where αi

is the coefficient of xi. We have just seen that in any interior event triangle with order

of events eser, the characteristic polynomial of the Jacobian of the fixed point cannot

be symmetric or anti-symmetric under negative feedback, and can only be symmetric

under positive feedback for some discrete set of values of f (σ/k). If the product of

the eigenvalues is 1, as we have seen, and all of the eigenvalues do not lie on the unit

circle, then some roots lie inside the unit circle, and some roots lie outside the unit

circle. We have thus proved the following major result.

3.3.3 Theorem. Consider a k-cyclic solution x̄ in the interior of event space with

order of events eser. For any negative feedback function, x̄ is unstable in the clustered

submanifold. For any given positive feedback function that does not take integer values on

rational numbers, x̄ is unstable in the interior of event space in the clustered subspace.

We believe that the conclusion of this theorem is true for all positive feedback

functions; the requirement that −1 + β ∉ N is a technical requirement that allows the

proof to pass through, but we have not found examples where violating that restriction

results in neutrality. For a fixed k the restriction that the feedback function does not

take integer values on rational arguments could be weakened considerably, to say

that the function must not take integer values between −k and k on arguments i/k for

i = 0,1, ..., k − 1.

The form of the proof shows that in the interior of event space, under this order

of events, some eigenvalues of the Jacobian lie inside the unit circle, and others lie

outside of it. Thus the k-cyclic fixed point is a saddle; this is a weaker instability than
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the k = M + 1 case, where all eigenvalues lie outside the unit circle, and the fixed point

is therefore a source.

Every interior event triangle (in fact, every event triangle) has one of two orders

of events. We have seen that one order of events, eser, yields instability under both

positive and negative feedback. We now consider the other order of events, eres. Under

positive feedback, these event triangles are also unstable.

3.3.4 Theorem. For any order of event triangle where xρ enters R before xσ leaves S , the

k-cyclic solution is unstable for positive feedback in the clustered submanifold.

Proof. Again, the Jacobian is extremely sparse. In fact, the Jacobian in this case is

identical to the Jacobian of the last case, with the exception of one entry: J(ρ, ρ − 1) =

1 + β. That is the only non-zero entry in the (ρ − 1)’th column, and if one expands down

that column, one finds that det J = ±(1 + β)det J′, where, since expanding down that

column removes the only point of difference, J′ has the same form as the Jacobian from

the proof of Lemma 3.3.1 (the reader is again referred to Appendix A.3 of the previous

chapter for a detailed derivation). Thus the determinant is ±(1 + β). Since the modulus

of the determinant is the product of the moduli of the eigenvalues, at least one eigenvalue

has modulus at least 1 + β > 1. �

This proof cannot be generalized to negative feedback, and in fact, we do

not always observe instability in the interior of event space under negative feedback

(e.g. k = 8; see Figure 3.1). Note that since the constant term of the characteristic

polynomial, 1 + β, is different from the leading term 1, when neutrality occurs under

negative feedback, it means that some, perhaps most, of the eigenvalues are inside the

unit circle. Thus such neutral fixed points are attracting in some directions. Contrast

this to neutral fixed points on the edge of parameter space, all of whose eigenvalues

have modulus 1.
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Since Theorems 3.3.3 and 3.3.4 cover both possible orders of events, the

following result for positive feedback is reached.

3.3.5 Corollary. For a fixed feedback function that satisfies the technical restrictions

outlined in Theorem 3.3.3, the k-cyclic solution is unstable (in the clustered subspace,

and thus also in the full phase space) under positive feedback.

We recall the restriction that k > 1. The 1-cyclic (synchronous) solution has

already been seen to be stable in the full phase space under positive feedback, and

unstable under negative feedback. We will see in the next section that for k > 1, event

triangles on the edge of parameter space are not asymptotically stable under positive

feedback (they may be neutral). This, together with Corollary 3.3.5, implies that the

1-cyclic solution is the only stable k-cyclic solution under positive feedback.

However, one should take care not to read more into this result than it actually

implies. Consider the 2-cyclic solution under positive feedback for s = .2 and r = .8.

The 2-cyclic solution is defined by x2 = .5, and it is neutrally stable, due to the isolation

of the clusters (see Figure 3.5). Now consider an event-small perturbation of the 2-

cyclic solution in the full phase space. The groups will remain isolated from each

other (Proposition 1.5.1), and thus the diameters of both groups will converge to 0

(Lemma 3.2.8). Thus although this perturbation need not converge back to the 2-cyclic

solution (a fixed point of F), it converges back to a 2-clustered solution ε-close to the

2-cyclic solution, where ε depends on the size of the initial perturbation. We have

seen such clusters form in simulations (Figure 1.5), and know that the set of strictly

isolated, clustered solutions is locally asymptotically stable under positive feedback

(Proposition 1.5.3).
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3.4 Specialized results along the edge of parameter space

3.4.1 Introduction and a summary of previous results

We now turn our attention to the edges of parameter space. We reiterate that

by the edge of parameter space we are referring not to the topological boundary of the

triangle formed by the lines s = 0, r = 1, and r = s, but to event triangles that have

a boundary or vertex on one of those lines. On the other hand, the interior of an event

triangle is its topological interior, and all the theorems that follow apply only for k-

cyclic solutions in that interior. Context should prevent any confusion.

In this section, we will accomplish two aims. First, we will examine the

stability of event triangles that have a vertex, but no edge, on either the vertical (r = 1)

or horizontal (s = 0) edge of parameter space. Under positive feedback, we see only

instability, but under negative feedback, more complicated patterns emerge. This is a

result of a decoupling mechanism. We explore this decoupling in depth, and state and

prove the theorems governing its behavior.

Second, we discuss the “hypotenuse” of parameter space. Although the

questions of stability in those event triangles remains more open, we illustrate a signal

difference between those and previous cases, that for strong enough positive feedback,

neutrality in those event triangles can be broken. This represents the first observed case

where the strength of the feedback, rather than its sign, dictates the stability of the k-

cyclic solution.

We have previously considered the following event triangle, stated in a different

form as part of the k = M + 1 case.

3.4.1 Corollary. A k-cyclic solution in the event triangle defined by S containing only x1

when x̄ passes the Poincaré section, R being empty, and order of events eres is unstable

under positive feedback and stable under negative feedback in the clustered subspace.

The neutral k = M + 1 cases are special cases of the following lemmas.
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3.4.2 Lemma. If S initially contain only x1 and xρ enters R after x1 leaves S , the k-cyclic

solution is neutrally stable in the clustered subspace.

Proof. In this case, no feedback is ever exerted; for small perturbations, the k-cyclic

solution still experiences no feedback. Thus all clusters move at a constant rate of 1, and

the distance between them never changes. �

3.4.3 Lemma. If R is initially empty and xρ enters R after xσ leaves S , the k-cyclic

solution is neutrally stable in the clustered subspace.

Proof. Any time a cluster is in R in a neighborhood of the cyclic solution, it experiences

the constant feedback f (σ−1
k ); by rescaling the size of R, as discussed in the proof of

Lemma 3.3.1, we may produce a conjugate system that removes that feedback effect

(locally to the k-cyclic solution). Thus all clusters travel at a constant rate of 1 without

interacting with one another, as in Lemma 3.4.2. Alternatively, we could simply note that

since clusters in a neighborhood of the k-cyclic solution experience constant feedback in

R, rather than a feedback that changes as clusters enter and leave S , they are not actually

coupled to each other, and individual clusters may be perturbed without having any effect

on the rest of the system. �

Referring back to Figure 3.2, Corollary 3.4.1 and Lemmas 3.4.3 and 3.4.2 all

relate to the edge of parameter space. In particular, the stated theorems fully explain

the behavior of the event triangles that have an edge along the r = 1 or s = 1 axis

(Lemmas 3.4.2 and 3.4.3), and the single event triangle that has a vertex on each of

those axes (Corollary 3.4.1). See Figure 3.6.
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Figure 3.6: For any k (k=5 for this figure), there is an event triangle (blue), corresponding
to the k = M + 1 proposition, that is stable under negative feedback and unstable under
positive feedback. There are two other k=M + 1 triangles that are neutral under any
feedback (maroon), and an event triangle that is neutral because the clusters of the
k-cyclic solution are isolated (grey). We have seen in this section that the other triangles
with edges on the r=1 axes (light green, Lemma 3.4.3) and s=0 axes (dark green,
Lemma 3.4.2) are neutrally stable under either positive or negative feedback.

3.4.2 Decoupling

Over the course of the next sections, we will finish classifying the dynamics

on s = 0 and r = 1; see Figure 3.7. The event triangles with vertices on these axes

have more intricate behavior than the event triangles with edges on r = 1 or s = 0,

both of which cases were disposed of rather easily. This section will lay the necessary

groundwork.

Figure 3.7: We finish classification of the dynamics on the vertical and horizontal edges.
This section provides the necessary background; the light blue triangles the subject of
Section 3.4.4, while the purple triangles are the subject of Section 3.4.3. The other
triangles are as in Figure 3.6.
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We consider what effect each cluster has on each other cluster in a neighbor-

hood of a k-cyclic solution. We begin with a concrete example to clarify the results of

this subsection.

Consider a k-cyclic solution x̄ such that when x̄ crosses the Poincaré section,

there are σ clusters in S and no clusters in R, and when xk reaches r, there are still

σ clusters in S , i.e. x̄ has event string eres. Thus in a neighborhood of the k-cyclic

solution, xk receives feedback first from clusters x1, x2, ..., xσ, then from x1, x2, ..., xσ−1.

Biologically, we would say that cells in cluster xk are receiving feedback from σ

clusters and then from σ − 1 clusters. Mathematically, however, the derivative of the

cluster xk depends only on its own location (whether or not it is in R), and the cluster

xσ (whether or not it is in S ). It travels at a rate of 1 until it reaches r at time r − xk,

and then travels at a rate of 1 + f (σ/k) for time s − xσ − (r − xk). At this point, xσ

reaches s. The cluster xk then travels at a rate of 1 + f ((σ − 1)/k) until it reaches 1,

and travels at a rate of 1 for the remainder of the Poincaré map. The precise locations

of clusters x1, x2, ..., xσ−1, to which it is hypothetically coupled, do not effect xk at all,

beyond the general fact that they are somewhere in S for time 0 ≤ t ≤ T , where T is the

return time of F.

Thus, over the course of a single Poincaré map, perturbing one cluster may have

no influence on the rate of another cluster, even though they are theoretically coupled.

Putting the discussion above into the form of a differential equation, we see that the

derivative of xk over the course of a single Poincaré map, as long as x̄ remains in an

event neighborhood of the k-cyclic solution, can be understood as

ẋk(x̄, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if xk ∉ R

1 + βσ if xk ∈ R and xσ ∈ S

1 + βσ−1 if xk ∈ R and xσ ∉ S .



97

Thus in a neighborhood of the k-cyclic solution, ẋk(x̄, t) = ẋk(xk, xσ, t), since it is

constant with respect to the all other variables.

The mathematical context of the dynamical system has been the torus (original,

continuous system) or the k-simplex (the discrete system defined by F). Viewing a

cluster as a coordinate of a point on a simplex is not convenient to our current purpose,

which is to study subcollections of clusters in isolation, however. In the following

discussion, we therefore view x̄(t) = {x1(t), x2(t), ..., xk(t)} as a simple set of variables,

each changing at a rate that depends on some or all of the other variables. So we may,

for example, isolate a subset of clusters, as in Definition 3.4.4.

Preliminarily to that definition, we formalize the notion of a set of clusters

being “in the neighborhood” of a point on a simplex (or torus). Define a series of

projection maps, one for every combination of indices,

pi, j,...,`⟨x1(t), x2(t), ..., xi(t), ..., x j(t), ..., x`(t), ..., xk(t)⟩ = (xi(t), x j(t), ..., x`(t)). (3.4.1)

A set of clusters is in a small neighborhood of the k-cyclic solution if it is a

projection of a point in a small neighborhood of the solution.

The previous discussion of decoupling motivates the following definition. If

a configuration of clusters is in the neighborhood of a k-cyclic solution, then given

a cluster x in that configuration, there is a minimum collection of clusters such that

knowledge of the location of each cluster in that collection gives complete information

of the location and derivative of x at any time.

3.4.4 Definition. Let k be fixed, x̄ be a k-cyclic solution, and let A be a set of clusters.

We say a cluster x is S -coupled to A, denoted x ∈S A, if A is a minimal set such that in a

neighborhood of the k-cyclic solution, ẋk(x̄, t) = ẋk(A, t). If x ∈S A but x ∉ A, we redefine

A = A ∪ {x}. We say that a cluster x is S -coupled to another cluster y if x ∈S A and y ∈ A.

If clusters are not isolated then the implication x ∈S A → x ∈ A comes

automatically, since the rate of x depends on whether or not it is in R. We will want



98

to be able to gain complete information of a cluster x, both its position and derivative,

from complete information of the clusters it is S -coupled to, which is why when

x ∈S A, we define A to necessarily include x. The following lemma is obvious, but

is only true because any cluster is S -coupled to itself. Otherwise, an isolated cluster

would be S -coupled to the empty set.

3.4.5 Lemma. For any cluster x there exists a nonempty set A such that x ∈S A.

If a cluster x is S -coupled to a set A then given the location of x and the

location of all the clusters in A, the derivative of x can be determined. This is not

equivalent to saying that the cluster is moving about S 1 independently of clusters not

in A; if x1 ∈S {x1, x2} and x2 ∈S {x2, x3} then perturbing x3 may influence x2, which

may in turn influence x1. However, at any given time, the rate and position of x1 can be

calculated from the position of x1 and x2, without knowledge of the position of x3.

It is possible that in a neighborhood of a k-cyclic solution, a collection of

clusters might be truely self-contained, in the sense that perturbing one cluster of the

collection will only effect the rates and locations of other clusters in the collection,

while perturbing clusters not in the collection will not effect the clusters in the

collection.

3.4.6 Definition. A set of clusters A is S -isolated if in a neighborhood of a k-cyclic

solution,

1. for any xi ∈ A, if xi ∈S B then B ⊂ A, i.e. in a neighborhood of the k-cyclic solution,

the derivatives of clusters in A depend only on the locations of other clusters in A,

and

2. if xi ∈S B and B ∩ A ≠ ∅ then xi ∈ A, i.e. the rates of clusters not in A do not depends

on the locations of clusters in A.

One visualization of these definitions would be to define an undirected graph

of k nodes, and let an edge connect nodes x and y if either xεS A and y ∈ A, or vice
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versa; this visualization is suggested by Figure 3.8. In that context, S -isolated sets are

the connected components of the graph.

Figure 3.8: Two cyclic solutions. In both figures, xk ∈S {xk, xσ}. In the right-hand
diagram, the entire k-cyclic solution is the S -isolated set, reflecting the discussion
immediately previous to Definition 3.4.6. In the left-hand figure, however, the k-cyclic
solution is the union of four disjoint S -isolated sets.

As long as an S -isolated set remains in a neighborhood of the k-cyclic solution,

it exists as a truely isolated object. Perturbing a cluster in an S -isolated set does not

effect the position or rate of clusters not in that S -isolated set (if perturbing xi ∈ S

affects the rate of x j in a neighborhood of the k-cyclic solution then x j ∈S B, and B ⊂ A

by Condition 1 of Definition 3.4.6), and perturbing a cluster not in an S -isolated set

never affects the rate of clusters in the set (Condition 2). We have seen one example of

this phenomenon already.

3.4.1 Example. If x̄ is a neutrally stable solution consisting of isolated clusters, as in

Lemma 3.4.2, each singleton is an S -isolated set.

The following example is slightly less trivial.

3.4.2 Example. Any k-cyclic solution as in Lemma 3.4.3 consists of S -isolated singletons.
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The important point is that when a cluster is in R, it receives constant feedback,

so its rate is determined entirely by its position on the unit circle, even though, absent

the variable change in the proof, clusters are not isolated in a traditional sense, i.e.

feedback is being exerted. The cluster xk recieves feedback from clusters x1, x2, ..., xσ−1,

but perturbing those clusters slightly has no effect on the rate of xk, which is a constant

1 + f ((σ − 1)/k).

3.4.3 Example. The above definitions pass through unchanged if clusters are replaced

with cells. Consider a (neutrally stable in the clustered subspace) set of isolated clusters,

and an event-small perturbation in the full phase space. Then each group is an S -isolated

set. In particular, if the cells of a group are numbered in the counterclockwise direction

(so that c1 if the first cell of the group to undergo any order of events) then c1 ∈S {c1},

c2 ∈S {c1, c2}, c3 ∈S {c1, c2, c3}, and so forth.

Since S -coupling is defined in terms of event neighborhoods, it follows that it is

preserved by small perturbations.

3.4.7 Lemma. Let x̄ be a k-cyclic fixed point (viewed as a set), and let xi ∈S A. If x̄′ is

an event-small perturbation of x̄, such that xi is perturbed to x′i , then x′i ∈S A′, where

A′ = {x′j∣x j ∈ A}.

Proof. Consider a cluster x. This cluster moves at a rate of 1 when it is not in R, and

when it is in R, its rate changes when a cluster enters S or leaves S . It is therefore S -

coupled to the clusters that enter or leave S while x is in R. Since we are always assuming

that the k-cyclic solutions are in the interiors of event triangles, small perturbations of x

and small perturbations of the clusters x is S -coupled to will not change these orders of

events. �

S -isolation is potentially temporary, in the sense that it is defined in terms

of behavior in a neighborhood of a k-cyclic solution, but if the k-cyclic solution

is unstable, initial conditions near the solution will leave such a neighborhood. In
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Example 3.4.3, under positive feedback the groups will be isolated for all time, by

Proposition 1.5.1, while under negative feedback, isolated groups will spread out

(Lemma 3.2.7) until they are no longer isolated.

We will mostly consider two special cases of S -isolated groups. We make the

following observation.

3.4.8 Lemma. Let x̄ be a k-cyclic solution, and let A ⊂ x̄ be a proper S -isolated subset

of x̄ of cardinality j. Then x̄ is the disjoint union of k/ j S -isolated sets, which are cyclic

permutations of each other in the sense that if x̄ and ȳ are two such sets, there is a value

of T such that x̄(T) = ȳ.

Proof. This follows immediately from the symmetry of k-cyclic solutions, and from

the fact that S -coupling and S -isolation are spacial properties, i.e. they depend on the

location of clusters on the circle. Let x ∈S A and y ∉S A. Then there is some minimum

time T such that y(T) = x(0), and y is S -coupled to B = A(−T). �

The above lemma is always true, although in general only trivially, that is, the

only S -isolated set is, in most cases, all of x̄.

The point of writing a k-cyclic solution x̄ as the union of S -isolated sets is

that, in a neighborhood of the k-cyclic solution, the behavior of the k-cyclic solution

may be understood as, essentially, the union of the behavior of S -isolated sets. We

define a special sort of S -isolated set that will be most relevant to our needs. For ease

of notation, when a cluster x is S -coupled to the two-element set {x, y}, we drop set

notation and write x <S y.

3.4.9 Definition. An S -chain is a nonrepeating sequence of clusters {xbi} j
i=1 such that

xbi <S xbi+1 for 1 ≤ i < j and xb j <S xb1. Call j the length of the S -chain.

If x̄ contains an S -chain, one of two things might happen; either the S -chain

xk <S xσ <S ... might cover x̄ (i.e. be of length k), or it does not, in which case it is of

length j and x̄ is the union of k/ j S -chains (Lemma 3.4.8).
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If x = ℘{x1, x2, ..., xk}, then any point in x of cardinality C can be naturally

ordered and mapped to the C-dimensional simplex. Using this mapping, S -chains of

length j of a k-cyclic solution may be studied as points on a j-dimensional simplex. In

fact, the S -chains of a k-cyclic solution, viewed in this light, are themselves j-cyclic

solutions, after a rescaling of the feedback function.

3.4.10 Theorem. If x = {x1, x2, ..., xk} is a k-cyclic solution containing an S -chain

ȳ of length j, then ȳ is a j-cyclic solution on the j-dimensional simplex, if the feedback

function is rescaled appropriately.

Proof. This follows immediately from the symmetry of the cyclic solution. If xi <S x j,

and x j is the m’th cluster after xi (counting clockwise for definiteness), then x j <S x`,

where x` is the m’th cluster after xi, and so on, by the symmetry of the solution. Then if T

is minimal such that xk(T) = 1, mT is minimal such that every member of the S -chain,

at time mT , passes to the adjacent member of the S -chain. This is true in the original

setting, i.e. when all clusters are present.

On the j-dimensional simplex, the feedback function must be rescaled, because

removing clusters not in the S -chain changes the parameter σ and the fractions I. On the

k-dimensional simplex, clusters in a neighborhood of the k-cyclic solution experience

only two feedbacks, f (σ/k) and f ((σ − 1)/k). Removing clusters not in the S -chain

produce new values of σ and k, and we define new feedback values fnew(σnew/ j) =

f (σ/k) and fnew((σ − 1)new/ j) = f ((σ − 1)/k). These are the only arguments that the

feedback function takes in a neighborhood of the k-cyclic solution, and so the details of

fnew are not otherwise relevant. �

If a k-cyclic solution is the union of disjoint S -chains, those S -chains control

the stability of the k-cyclic solution. Such a k-cyclic solution is never stable.

3.4.11 Lemma. A k-cyclic solution that is the union of disjoint S -chains of length i, all of

which are stable as i-cyclic solutions on the i-simplex, is neutrally stable.
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Proof. For ease of writing we consider a specific k-cyclic solution x̄ that is the union of

two S -chains, z1, z2, ..., zi and y1, y2, ..., yi, where i = k/2. The same proof works for any

number of S -chains. A perturbation of x̄, x̄′, can be viewed as a perturbation of ȳ and a

perturbation of z̄, ȳ′ and z̄′

As long as ȳ′ and z̄′ remain in event neighborhoods of x̄, they will remain disjoint,

non-interacting S -chains. They do remain in such an event neighborhood, since by

stability, ȳ′ and z̄′ remain in neighborhoods of z̄ and ȳ, and x̄ = ȳ ∪ z̄. Thus ȳ′ and z̄′ do

not interact, and z̄′ → z̄, while z̄′ → z̄.

To understand why this does not imply stability, we consider that although x̄ =

ȳ ∪ z̄, and ȳ(T) and ȳ(T + ε) define the same periodic orbit, x̄(T) ≠ ȳ(T + ε) ∪ z̄(T). It

may therefore happen that a small perturbation of x̄ converges back not to x̄ = ȳ ∪ z̄, but

to ȳ(T + ε) ∪ z̄(T). In fact, to produce an explicit example of a neighborhood of x̄ that

does not converge back to x̄, simply take all the clusters of ȳ and run time forward by ε

for those clusters alone. From the point of view of the S -chains, this is no perturbation

at all; ȳ and z̄ are still on their orbits. But it is a perturbation of x̄ that will be maintained

indefinitely. �

Theoretically, Lemma 3.4.11 could be strengthened to the case where some

S -chains are stable and some are neutral, but such a situation cannot occur. By the

symmetry of the k-cyclic solutions, all S -chains share the same stability.

We omit the proofs of the following, which are trivial variations of the proof of

Lemma 3.4.11.

3.4.12 Lemma. A k-cyclic solution that is the union of disjoint S -chains of length i, all of

which are neutral as i-cyclic solutions on the i-simplex, is neutral.

3.4.13 Lemma. A k-cyclic solution that is the union of disjoint S -chains of length i, all of

which are unstable as i-cyclic solutions on the i-simplex, is unstable.
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Figure 3.9: In Section 3.4.3, we consider the stability of triangles with a vertex on the
r = 1 boundary of the simplex, excluding one such triangle whose stability is already
known from the k = M + 1 case.

3.4.3 Decoupling along the r = 1 axes

Although we did not explicitly use the terminology, Lemmas 3.4.2 and 3.4.3

were essentially proven using Lemma 3.4.12, where the S -chains are of length 1. We

will now apply the machinery of the last subsection to more complicated cases.

Consider boundary triangles such that, when the k-cyclic solution crosses the

Poincaré section, R is empty but S contains more than 1 cluster. We know they are

neutrally stable under the order of events eser (Lemma 3.4.3). We now consider the

other order of events. For positive feedback, we will observe instability in all such

triangles, as a consequence of Lemma 3.4.13 (we will see this in detail shortly). For

negative feedback, the behavior is more complicated, and depends on gcd(k, σ). We

first consider the case where gcd(k, σ) = 1.

3.4.14 Theorem. Consider an event triangle such that ρ = k, σ > 1 is fixed, and cyclic

solutions have event string eres. Then if gcd(k, σ) = 1, the corresponding cyclic solution

is asymptotically under negative feedback, and unstable under positive feedback.

Under the hypothesis of the theorem, when the solution passes the Poincaré

section, R is empty. The restriction σ > 1 is unnecessary for the statement of the
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theorem, but the σ = 1 case has already been proven as Proposition 2.3.1 (and it was

necessary to prove it separately, as the proof of Theorem 3.4.14 depends on the σ = 1

case).

We first observe the following.

3.4.15 Lemma. If the hypothesis of Theorem 3.4.14 holds, then the k-cyclic solution is

itself an S -chain.

Proof. Let w = k − σ. Then xk <S xk−w <S xk−2w <S xk−3w <S ... <S xk, where the

substraction in the subscript is done modulus k. The reason that the cluster xk (= xρ) about

to enter R depends only upon itself and the last cluster in S has already been elaborated

on. The list xk, xk−w, xk−2w, ... does not terminate early because if k = k − α(k − σ) mod k

then αk = ασ mod k, and the property of being relatively prime implies α = k mod k. �

Proof of Theorem 3.4.14. First, we replace the system in question with the conjugate

system defined by (3.3.1).

Let snew = s − xσ. We renumber the clusters so that x1 <S x2 <S x3 <S<S ... <S xk.

Then the dynamical system is defined by the differential equation

ẋi(x̄, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if xi ∉ R

1 + α if xi ∈ R and xi+1 ∈ S

1 + β if xi ∈ R and xi+1 ∉ S ,

where ∣β∣ < ∣α∣.

Now consider the original system (or rather, the conjugate, rescaled, but not

renumbered system). Redefine s to be snew. Then the dynamical system is defined by the

differential equation
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ẋi(x̄, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if xi ∉ R

1 + α if xi ∈ R and xi+1 ∈ S

1 + β if xi ∈ R and xi+1 ∉ S ,

where ∣β∣ < ∣α∣.

The dynamics of these two systems are identical in a neighborhood of the k-cyclic

solution. Each cluster is uniquely coupled with one other cluster; perturbing one cluster

will change the amount of time it spends in S , which will perturb the cluster coupled with

it, which will change the amount of time it spends in S , and so on, until the “perturbation

wave” has passed through the entire cycle, and the last cluster influences the first. More

formally, the renumbering of clusters defines a conjugacy map on the two copies of S k

being considered.

Figure 3.10: We summarize the proof of Theorem 3.4.14 pictorially. In this case, S is
theoretically quite large, but when the background feedback is scaled away, there is only
signaling when one cluster (xσ) lies in a small region (Ŝ ). We define a conjugate system
(right) that shares this behavior, relabeling clusters so that xρ remains S -coupled to xσ
under the conjugacy.

We observe that the second system is simply the Corollary 3.4.1 case, and its

stability, and thus the stability of the system under consideration, is known. �
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When the greatest common denominator of k and σ is greater than 1, the k-

cyclic solution decouples into disjoint S -chains, and is therefore neutral (when the S -

chains are stable) or unstable (when the S -chains are unstable.)

3.4.16 Lemma. Consider an event triangle such that ρ = k, σ > 1 is fixed, and cyclic

solutions have event string eres. If there exists a maximum integer a > 1 such that a∣k and

a∣σ, then the k-cyclic solution x̄ is the union of a disjoint S -chains of length k/a.

Proof. One explicit S -chain in this case is xk <S xk−(k−σ) = xσ <S xk−2(k−σ) = x2σ−k <S

xk−3(k−σ) = x3σ−2k <S ... <S xk−(k/a)(k−σ) = x0 = xk, where the last equality is made clear

be letting k = m1a, σ = m2a, and recalling that we are working modulus k. The other

S -chains are cyclic shifts of this by Lemma 3.4.8. �

3.4.17 Lemma. If the hypotheses of Lemma 3.4.16 holds, then the disjoint S -chains are

stable under negative feedback and unstable under positive feedback.

Proof. An S -chain in this case is itself a (k/a)-cyclic solution that satisfies the hypothesis

of Theorem 3.4.14. �

Figure 3.11: When the greatest common denominator of k and σ is greater than 1, the
k-cyclic solution under discussion in this section can be decomposed into independent
subcollections of clusters, each governed by the k = M + 1 theorem.
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We now characterize the stability of k-cyclic solutions on the r = 1 axis when k

and σ have a greatest common denominator greater than 1.

3.4.18 Theorem. In the order of events triangle such that the hypothesis of Lemma 3.4.16

holds, the corresponding k-cyclic solution is neutrally stable under negative feedback,

and unstable under positive feedback.

Proof. This is immediate from Lemmas 3.4.17, 3.4.12 and 3.4.13. �

3.4.4 Decoupling along the s = 0 axes

Figure 3.12: In Section 3.4.4 we consider the stability of event triangles with a vertex on
the line s=0, excluding one case whose stability is known from previous results.

The results in this section are analogous to those of the previous section, but it

is necessary to slightly recast the framework in which we consider them.

Consider event triangles such that, when x̄ passes the Poincaré section, S

contains only x1 = 0 but R contains multiple clusters. Since we have already considered

the order of events eser (Lemma 3.4.2), we now consider event chain eres.

Consider what happens when xρ enters R. It travels at a certain rate (1+ f (1/k)),

then travels at a rate of 1 until xk reaches 1. It then travels at a rate of 1 + f (1/k) for

time s. It then moves at rate 1, until xk−1 reaches 1, at which point it travels at rate
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1 + f (1/k) for s time units. And so on, until it reaches 1. Thus the only cluster that,

when perturbed, affects the time it takes xρ to reach 1 is x1.

We cannot use without modification the concept of S -chains, because in spite

of the discussion in the previous paragraph, here clusters are not decoupled in the same

sense. The derivative of xρ does depend on the location of xρ+1, xρ+2, ..., xk. On the other

hand, we have largely considered stability in terms of a discrete dynamical system

defined by the Poincaré map, rather than in terms of the flow of the original system.

In that context, it does not matter if, moment to moment, the rate of each cluster is

known; the stability is controlled by DF, the contruction of which does not require

such fine detail. We therefore pass to the discrete case. The eigenvalues of F are inside

the unit circle (likewise on or outside the unit circle) if and only if the eigenvalues of

Fρ ∶= Fk−ρ+1 are inside (on, outside) the unit circle, since F is a factorization of Fρ. We

have seen in the previous paragraph that the return time of Fρ depends directly on only

one other cluster.

Let an initial condition x̄(0) be given in the neighborhood of a k-cyclic solution

in an event triangle such as we are considering (ρ arbitrary, σ = 1, event string eres). In

a neighborhood of the k-cyclic solution, the time T it takes for xρ to reach 1 depends

only on the location of xρ (and on x1 = xσ, but by assumption on F, and thus Fρ, we

have x1 = 0.) After one iteration of Fρ, a new cluster, xρ−(k−ρ+1), takes the place of xρ,

in the sense that it is the last cluster not in R when xρ = 0. By symmetry, the return

time of this cluster depends only on xρ. Proceeding in this manner, we define a list,

the discrete equivalent of an S -chain, such that the return time of each cluster under

Fρ depends only on itself and the cluster immediately before it in the list. We will call

such a list of clusters an F-chain. Eventually, the F-chain will reach its initial cluster

xρ, at which time it may or may not cover x̄.

Geometrically, S - and F-chains are both formed similarly. Select a cluster xm; it

is coupled with another cluster, xm+p for some p. By symmetry, this cluster is coupled
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to xm+p+p, which is coupled to xm+p+p+p, and so forth, taking ”every p’th cluster.”’ It is

therefore natural that geometrically, F- and S -chains behave in the same way.

3.4.19 Lemma. If gcd(k, k − ρ + 1) = 1, x̄ is a single F-chain. If gcd(k, k − ρ + 1) > 1, it is

the union of disjoint F-chains.

Proof. An F-chain is formed by taking every (k − ρ + 1)’th cluster. An S -chain is formed

by taking every σ’th cluster. This lemma therefore is the exact analogue of Lemmas

3.4.15 and 3.4.16, with k − ρ + 1 in place of σ. �

Because F-chains are self-contained under the discrete dynamics, we obtain the

following results.

3.4.20 Theorem. The i-dimensional F-chains of a fixed point x̄ are fixed points of F on

the i-dimensional simplex.

The proof of this theorem is identical to the proof of Theorem 3.4.10, with

x <S y replaced with x <F y, where the <F relation is defined in the obvious way.

Under the discrete dynamical system, F-chains are self-contained, i.e. the

stability of each F-chain depends only on the clusters in the F-chain. A fixed point

of a Poincaré map is stable if and only if the corresponding periodic orbit of the

continuous dynamical system is stable, so the following three discrete analogues of

continuous results follow automatically.

3.4.21 Corollary. If x̄ is the disjoint union of unstable F-chains than x̄ is unstable.

3.4.22 Corollary. If x̄ is the disjoint union of neutral F-chains than x̄ is neutral.

3.4.23 Corollary. If x̄ is the disjoint union of stable F-chains than x̄ is neutral.

Then the stability results, in terms of gcd(k, k−ρ+1), are parallel to those of the

previous section.
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3.4.24 Theorem. If x̄ is a k-cyclic solution in an event triangle such that σ = 1 and the

k-cyclic solution has event string eres, and gcd(k, k − ρ + 1) = 1, then x̄ is unstable under

positive feedback and neutrally stable under negative feedback.

Proof. This theorem is clearly a direct analogue of Theorem 3.4.14, and if instead of

replacing s with snew = s − xσ we replace r with rnew = r − xρ, the proof passes through

without further modification. �

These results apply to the clustered subspace. It is clear, however, that

instability in the clustered subspace implies instability in the full phase space, and

we will see that the same holds true for aymptotic stability (Theorem 3.5.1). The

implications of neutrality in the clustered subspace on the behavior in the full phase

space remain a subject for future research.

3.4.5 The hypotenuse

We consider now the hypotenuse of the parameter-space triangle. Event

triangles with their edge on the hypotenuse correspond to k-cyclic solutions with every

cluster in R or S ; there is only one order of events possible in this case, eσs eσr (as

σ = ρ). Event triangles with a single vertex on the line s = r correspond to k-cyclic

solutions where ρ = σ + 1, and xρ enters R before xσ leaves S ; these triangles have no

special proporties, e.g. they are unstable under positive feedback.

Consider an event triangle such that σ clusters lie in S and k − σ clusters lie

in R. The corresponding order of events (necessarily eser) was seen to be unstable in

the interior of parameter space, the proof of which rest on the fact that characteristic

polynomials are not palindromic (Theorem 3.3.3). On the edge of parameter space, this

is not true; we observe palindromic characteristic polynomials, and observe neutrality

for weak positive feedback (where we will not formally quantify ”weak” and ”strong’)’.

We also observe, however, that neutrality breaks down for sufficiently powerful positive

feedback.



112

3.4.25 Theorem. Consider a positive feedback system, and let k > 1 be fixed. Consider

an event triangle such that σ = ρ and the order of events is eser. Then there exists some

positive number N such that if f (σ/k) ≥ N, then the k-cyclic solution is unstable in the

clustered subspace.

Proof. We cite Theorem 2 of [43], which gives a lower bound on the spectral radius %%%(A)

as %%%(A) ≥ 1
rank (A) ∣tr A∣. The trace of A can easily be calculated as −1 + f (σ/k) (see the

matrix in the proof of Lemma 3.3.1). The rank, k − 1, is fixed and feedback-independent.

Therefore, by selecting f (σ/k sufficiently large, the spectral radius may be made to be

greater than 1, implying instability. �

The characteristic polynomials in this case contain coefficients of the form

(1 − mβ) for integers m ≥ 1, where β is the feedback exerted by σ clusters once the

feedback exerted by σ − 1 clusters has been scaled from the system. One might expect,

therefore, that the change in stability will happen abruptly when coefficients become 0.

This, however, is not the case (Figure 3.14a).

We consider in simulation the behavior of the 3-cyclic solution in a neutral (for

weak positive feedback) event triangle on the hypotenuse. Using parameter values

s = .5 and r = .55, and an initial condition on the Poincaré section, we iterate the

Poincaré map 100 times, plotting the number of iterations (horizontal axis) against

the location of cells in the interval [0,1] (verticall axis). We use feedback functions

f (I) = .2I and f (I) = .6I to simulate strong and weak feedback, respectively. We first

observe the behavior in a neighborhood of the 3-cyclic solution in a neighborhood of

the 3-cyclic solution (i.e. with an initial condition of three clusters, which we place

at x1 = 0, x2 = 1/3, and x3 = 2/3) in Figure 3.15a, observing a wave pattern that

neither converges to a fixed point (which can be calculated to lie at approxomately

(0, .4273, .7071)) nor moves too far away from it. The eigenvalues of this system lie at

approxomately λi = −.4705 ± .88242i and have modulus 1. For strong positive feedback,

we use the same initial condition, which is in fact closer to the fixed point (lying at
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(a) The modulus of the maximum
eigenvalue for the 15-cyclic solutions in the
event triangle defined by σ = ρ = 4. A
bifurcation occurs at approximately
β = .455.

(b) The roots of the polynomial for β = .4
(cyan), .45 (blue), .50 (magenta), and .55
(red).

Figure 3.14: Two representations of the eigenvalues of the 15-cyclic solutions in the event
triangle defined by σ = ρ = 4. The characteristic polynomial has the form
λ14 + (1 − β)λ13 + (1 − 2β)λ12 + (1 − 3β)(λ11 + λ10 + ... + λ3) + (1 − 2β)λ2 + (1 − β)λ + 1,
where β = f (σ/k). For any negative and small positive feedback, all the roots of this
polynomial are on the unit circle. Referring back to our discussion at the end of
Section 3.3, we observe that the characteristic polynomial is symmetric.

approxomately (0, .4256, .6933)) then in the previous case. However, the eigenvalues

of the strong-feedback case are λi = −.609 ± 1.004, and have modulus 1.17, causing

the initial condition to leave the neighborhood of the fixed point and converge to the

synchronous solution (Figure 3.15b).

We also consider the behavior of the initial condition (0,1/3,2/3) in the

full phase space (n = 600). The behavior of the system in the full phase space is

substantially similar to the behavior in the clustered subspace. For weak positive

feedback (Figure 3.16a), the groups oscillate weakly while their diameters converge

to 0; under strong positive feedback (Figure 3.16b), instability in the clustered

submanifold is of course inherited.
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(a) The trajectory of an initial value near the
3-cyclic solution, in the clustered subspace,
under weak positive feedback. Three
clusters persist, the two visible in the graph
and one on the axis.

(b) The trajectory of an initial value near the
3-cyclic solution, in the clustered subspace,
under strong positive feedback.

Figure 3.15: The trajectory of an initial condition near the 3-cyclic solution with
parameters s = .5 and r = .55 in the clustered subspace under weak (a) and strong (b)
positive feedback. The horizontal axis represents the number of times the Poincaré map
has been interated, while the vertical axis represents the unit circle.

(a) The trajectory of an initial value near the
3-cyclic solution, under weak positive
feedback, in the full phase space. The
3-cyclic solution is neutral in the clustered
subspace.

(b) The trajectory of an initial value near the
3-cyclic solution in the full phase space,
under strong positive feedback. The
3-cyclic solution is unstable.

Figure 3.16: A trajectory of an initial condition near the 3-cyclic solution for parameters
s = .5 and r = .55 in the full phase space (200 cells spread uniformly in a diameter .1
group centered at each of (0, 1/3, and 2/3)) exhibits similar behavior to conditions near
the 3-cyclic solution in the clustered subspace.
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3.5 Stability in full phase space

We know (Lemma 3.2.4) that in those parts of parameter space where the k-

cyclic solution is defined by the order of events eres, the diameters of the groups

generated by an event-small perturbation of the k-cyclic solution in the full phase space

will shrink uniformly over the course of a single Poincaré map. Thus the Poincaré map,

at least initially, moves solutions in the full phase space towards the clustered subspace.

If the k-cyclic solution is asymptotically stable in the clustered subspace, then points

near the k-cyclic solution are moved towards the k-cyclic solution by the Poincaré map.

This combination implies stability in the full phase space

3.5.1 Theorem. In a negative-feedback system, consider the k-cyclic solution in a

stability triangle with order of events eres. If the k-cyclic solution is stable in the clustered

subspace, it is stable in the full phase space.

Proof. Let P be the Poincaré map. By asymptotic stability in the clustered subspace,

we may find an arbitrarily small open set UC in the clustered subspace C containing x̄,

such that UC is contained in an event-neighborhood of x̄ and Lemma 3.2.4 applies and

P(UC) ⊂ UC with P(ŪC/UC) ⊂ int UC, i.e. UC is a trapping region in the clustered

submanifold.

Now ŪC/int UC, and P(ŪC) are disjoint compact sets, so the distance D =

d(Ūc/Uc,P(ŪC) is well-defined. If w ∈ P(Ūc) and y is an arbitrary point, then for any

z ∈ C such that z ∉ UC, we know that ∣d(w, z) − d(w, y)∣ ≤ d(y, z) by the reverse

triangle inequality; if we assume that d(w, y) is sufficiently small, then since d(w, z) is

bounded below by D, the argument in the absolute value may be taken to be positive,

and we may drop the absolute value to write d(w, z) − d(w, y) ≤ d(y, z). Because

D < d(w, z), if we assume that d(w, y) < D, we may recover a bound on d(y, z): if

d(w, y) < ε1, then substituting the appropriate values into the triangle inequality equation

yields D − ε1 < d(y, z). Since D depends only on UC, which is fixed, whereas ε1 may be
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chosen arbitrarily small, we can make such a bound explicit by, for example, proscribing

ε1 < (1/3)D, in which case (2/3)D < d(y, z).

Now, because it is definined on a compact space, P is not only continuous, but

uniformly continuous. Find ε2 < (1/3)D such that for any z and y in the full phase space,

if d(z, y) ≤ ε2, then d(P(z),P(y)) ≤ ε1.

Let ∆ = {y∣d(y, ŪC) ≤ ε2}. We will show that this is a trapping region. First note

that ŪC ⊂ ∆, and since by construction, P(ŪC) ⊂ UC, if x̄ ∈ ŪC, then P(x̄ ∈ ŪC ⊂ ∆. Let

y ∈ ∆/ŪC. Then 0 < d(y, ŪC) ≤ ε2. A property of compactness is that if a point is a certain

distance from a compact set, it is that same distance from a specific point in that compact

set. Thus if d(y, ŪC) ≤ ε2, there exists some point w ∈ ŪC such that d(y,w) ≤ ε2. Then

d(P(y),P(w)) ≤ ε1, and P(w) ∈ P(ŪC). By the above discussion of the reverse triangle

inequality, we know that if v ∈ C but v ∉ UC, then d(P(y), v) > (2/3)D. However, we also

know from the Lemma 3.2.4 that d(P(y),C) < ε2 < (1/3)D, and because the clustered

submanifold is compact, there is some realization of this distance, that is, there is some

point W ∈ C such that d(P(y),W) = d(P(y),C) < ε2 < (1/3)D. This W can therefore only

be in UC. Thus d(P(y),UC) ≤ ε2, and P(y) ∈ T .

We may make such trapping regions arbitrarily small by selecting the initial

(clustered submanifold) trapping region arbitrarily small. We will show that if ȳ is an

initial value in such a trapping region, the trajectory of ȳ under P has the fixed point x̄ as

an ω-limit point. These two facts together imply that x̄ is a proper limit of the trajectory,

since the second fact ensures that the trajectory will get arbitrarily close to x̄, and the first

fact ensures that, having gotten arbitrarily close, it must stay close.

Let T be any trapping region such as was just constructed, and let ȳ ∈ T . Since

T is compact, the sequence {Pi(ȳ)}∞i=1 has a limit point z̄, which must lie on the clustered

submanifold C since any trajectory trapped in T converges exponentially to C. Take a

subsequence {z̄i} of {Pi(ȳ)}∞i=1 such that z̄i → z̄. For all i, Pi(z̄n) → Pi(z̄), and this,
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together with the fact that Pi(z̄) → x̄ as i → ∞ implies that x̄ is a limit point of the set

{Pnȳ∣n ∈ Z}, and is thus in the ω-limit set of ȳ. �

It is now natural to ask, when we have observed stability of the k-cyclic

solution, whether it has been in the regions of parameter space such that the hypothesis

of Lemma 3.2.4 holds (i.e., where the k-cyclic solution has event string eres). First, we

consider what that region looks like. Parameter space is first divided into quadrilaterals

by making statements about what clusters lie where when the solution passes the

Poincaré section (e.g. “There are 4 clusters in S , 3 clusters between S and R, and 5

clusters in R”), and each quadrilateral is divided into two event triangles by order-of-

event restrictions. One half of each quadrilateral, or every other event triangle, satisfies

the requirements of Lemma 3.2.4. We consider some concrete examples in Figure 3.17
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Figure 3.17: We partition parameter space into regions where the hypothesis of
Lemma 3.2.4, and thus Theorem 3.5.1, holds (in blue) and regions where it does not (red)
for k = 2,5, and 8.

If we compare regions of observed stability to regions where the lemma holds,

we see that the first has always been a subset of the second; thus in all observed

cases, stability in the clustered subspace implies stability in the full space. In fact,

we have the machinery in place to prove this. Lemma 3.3.1 states that asymptotic

stability cannot occur under the order of events eser, under any form of feedback, while

Theorem 3.5.1 says that if a k-cyclic solution is asymptotically stable in the clustered
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subspace under negative feedback, and has order of events eres, then it is stable in the

full phase space. These facts imply the following important theorem.

3.5.2 Theorem. Every k-cyclic solution that is asymptotically stable in the clustered

subspace is asymptotically stable in the full phase space.

3.6 Conclusions and discussion

In this chapter, we have proven a number of results on the stability of cyclic

and uniform solutions. From a biological viewpoint, two of these are paramount.

First, we have proven that cyclic and uniform solutions are unstable under

positive feedback in interior triangles, under very minor assumptions. We had suspected

positive feedback of being inappropriate for modeling clustering in the cell division

cycle of yeast because it facilitates synchrony, which is abiological, and the instability

of the k = M + 1 case further suggested this; we can now say that positive feedback

is appropriate only when synchrony of oscillators is observed. As an example of an

application where positive feedback might be an appropriate modeling tool, we cite the

work of Buckalew et al. [13], founded on the fact that drosophila embryos divide in

synchrony.

Second, we have proven that stability in the clustered subspace implies stability

in the full phase space. The significance of this is clear, since in the presence of noise

and other neglected biological realities, real configurations of yeast cells cannot occupy

the clustered subspace (i.e. go through division in perfect synchrony). We now see

that in the study of stability, at least, considering the clustered subspace is a valid

simplification.

We have seen in Chapter 2 that s and r may be expected to be on the order of

.35 and .75, respectively. Thus, for biologically realistic parameter values, the edges

of parameter space are of only mathematical interest. However, we also observed

in that chapter that in the negative-feedback case for k prime, stability triangles are
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seen to be perfectly regular. On the edges of the (s, r)-triangle this regularity can

now be understood, springing from the fact that if k is prime, the greatest common

denominator of k and any other number is 1. Although it is possible that the regularity

on the boundary and the regularity in the interior are unconnected, it seems more likely

that the results on the edge of parameter space are reflections of fundamental number-

theoretical properties of the RS model that are still poorly understood. Clarifying this

relationship remains an area of open research.

The other major open problem related to this chapter is the stability of the

uniform solution. We have proven that the uniform solution (like any k-cyclic solution)

is unstable under negative feedback for at least half of parameter space. Based on the

observations of the last chapter, we expect a much stronger theorem to be true: as

k →∞, the proportion of parameter space where the k-cyclic solution is unstable should

approach 1. This conjecture remains open.
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4 Stochastic Noise§

4.1 Introduction

In the previous two chapters, we considered the stability of the clustered k-

cyclic solutions. We found that the k = M + 1 solution, among others, is stable in

the clustered subspace, and therefore stable in the full phase space, under negative

feedback. We now consider stability in practical terms; what dispersive forces are at

work within the biological system, and whether asymptotic stability is powerful enough

to counteract them. For example, mother and daughter cells travel through the cell

division cycle at slightly different rates, and therefore may tend not to cluster together.

Other, less systematic, sources of noise might also tend to cause dispersion. Thus,

stability must be strong enough to overcome the specific biological phenomena causing

dispersion for clustering to occur. In this chapter we consider the relationship between

these two competing tendencies, clustering and dispersion, in the RS model (1.3.3). We

reproduce the differential equation below (4.1.1) for ease of reference.

We will consider the two biological mechanisms for dispersion that are known

in budding yeast, namely variable growth rate and asymmetric division [95] and

contrast them with standard additive Gaussian perturbations in terms of the effect on

solutions.

dci

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if ci ∉ R

1 + f (I), if ci ∈ R.
(4.1.1)

We recall from the introduction that the signaling region is hypothesized to

occur in the S phase of the CDC, and the response region to occur late in the G1

phase, while division occurs at the end of the M phase; see Figure 1.1. Traditionally,

division would be taken to occur at time 1 when the CDC is viewed as a unit circle
§ In accordance with ScienceDirect’s policy for using previously published articles in an academic dis-

sertation, we here give the DOI number by which the official publication of which this chapter is an edited
version may be found: 10.1007/s00285-014-0786-7.
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(satisfying the intuition that a cell should begin its life at 0), while we have also

used 1 to be the dividing point between R and S . This conflict, irrelevant to previous

chapters, cannot be ignored now that division will be used as a method of adding

noise to the system. Throughout this chapter, therefore, we will retain the intuition

that cells begin their life at 0 (i.e. that division occurs at 1) and define R = [0.3,0.65]

and S = [0.65,0.95]. Having rescaled the cell division cycle to be of length 1, these

intervals are in approxomately the correct location (the end of G1 and the beginning of

the biological S-phase), and their length is chosen such that the 2-cyclic solution is in

the interior of a stable event triangle.

Throughout this chapter, we will use σ to represent standard deviation, as is

standard in probability. We will not have cause to refer to the last cluster not in S on

the Poincaré section, and thus there should be no confusion with our previous usage.

4.2 Perturbed models and numerical integration

We summarize three methods of introducing noise into the system. Noise

is added on a cell-by-cell basis (i.e. as a method of perturbation in the full phase

space). All three of the models in this section will be taken to have the same standard

deviation, but in the asymmetric division model (Section 4.2.1), noise is applied

once, after which the cell in question travels through the CDC in the normal way (i.e.

at a rate governed by (4.1.1)). In the stochastic differential equation (SDE) model

(Section 4.2.2) and the variable rate model (Section 4.2.3), noise is applied at each time

step, and the effective noise is therefore expected to be higher than in the asymmetric

division model; this forms a recurring theme of the simulations, wherein the SDE

and variable rate models will frequently exhibit essentially similar behavior, while the

asymmetric division model will be phase-shifted to represent the fact that a larger σ is

required to produce the same effect. Of the three, asymmetric division is also the only

model to make use of a discrete random variable.
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4.2.1 Asymmetric division model

Budding yeast divides asymmetrically resulting in distinguishable mother and

daughter cells. Because daughter cells are smaller than their mothers at division, they

have a longer time to maturity and thus a longer cell cycle. These differences disperse

the cell cycle synchrony of an initially synchronous population [86, 95] and complete

population synchrony is generally impossible to maintain in the laboratory [9, 45, 93].

We refer to this mechanism of population dispersion as asymmetric division. Versions

of this mechanism were studied in [21, 33] where, in the absence of coupling, it was

shown to lead to a globally attracting steady state.

To model asymmetric division we use equations (4.1.1) for progression through

the cell cycle, but we adjust the length of the cell cycle by applying a Bernoulli

random variable to each cell when it divides. When a cell arrives at 1, the Bernoulli

random variable will determine if the cell begins the next cycle at either 0 or −2σ,

with equal probability. Thus each new cell will have equal probability of being either

a mother or daughter cell. Note that because if the placement of R and S , such a cell

travels at unit rate until it reaches 0. We remind the reader that because the population

in a bioreactor is approxomately constant, our model treats the number of cells as fixed,

and thus, although biologically division of course produces both a mother and daughter

cell, our model does not keep track of both of them.

Let Bk ∼ 2σB(1,0.5) be independent, identically distributed Bernoulli random

variables. We apply Bk on the cell ck when it divides, (i.e. the first time ck crosses 1

within each cycle). The progression of the k-th cell in each cycle governed by equation

(4.1.1) with the addition of this noise can be numerically integrated as

c j+1
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c j
k + ha(c j

k, I j) − 1 − Bk, c j
k + ha(c j

k, I j) > 1

c j
k + ha(c j

k, I j), otherwise.
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Thus in the numerics, we do not associate 0 with 1. Rather, we allow the cell ck to

travel for some fixed time step, and subtract 1 during the next time step if the current

time step takes it past 1.

The difference between mother and daughter cells is systematic; every time a

cell reaches division, it is assigned one of the two roles, but the system is otherwise

deterministic. This carries with it the (inaccurate) assumption that any two mother

cells or any two daughter cells will be identical at the moment of division. In reality,

physical variation and epigenetic differences among the isogenic cells may produce

small, non-systematic variations in growth rate. We consider two methods of adding

such noise to the system, one biologically motivated, one purely mathematical (but

well-understood.) Although it would be biologically realistic to consider a combination

of the asymmetric division model with one or both of these methods (thus modeling

both the mother/daughter dichotomy and epigenetic differences), we prefer to consider

each model separately for now; once each model is well-understood, considering how

they interact may form a source of future research.

4.2.2 Stochastic differential equation model

There is an obvious, and mathematically standard, way to add noise to the

system.

dck

dt
= a(ck, I) +σNk(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if ck ∉ R,

1 + f (I), if ck ∈ R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+σNk(t), (4.2.1)

where Nk(t) are zero-mean Gaussian white noise sources, uncorrelated among different

cells, i.e. Nk(t)Nk′(t + τ) = δk,k′δ(τ).

We used the Euler-Maruyama method to numerically integrate (4.2.1):

c j+1
k = c j

k + h a(c j
k, I j) +σ

√
hN j

k ,

where N j
k is a normally distributed pseudo-random numbers and h is the integration

time step.
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The advantage of adding zero-mean Gaussian white noise is that, since it is

standard, it is mathematically well-understood. However, this method of adding noise

to the system, beyond merely failing to be biologically motivated, is explicitly non-

biological, since it may cause cells to travel backwards through the cell division cycle,

when in fact cell growth is non-reversible, or cause every cell in the bio-reactor to pass

through its cell division cycle in a fraction of a second. We will see in simulation,

however, that even if such aberrant events may occur with non-zero probability, they

do not have a decisive influence on the system, which acts (under a wide variety of

metrics) similarly to more realistic models.

4.2.3 Variable rate model

Considering the epigenetic differences and physiological variations among the

isogenic cells which may produce small variations that favors population diffusion [3],

we propose the following perturbed coupling model:

dck

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 +Uk(t), if ck ∉ R

1 +Uk(t) + f (I), if ck ∈ R,
(4.2.2)

where Uk(t) is a uniformly distributed random variable, Uk(t) ∈ [−σ/
√

3, σ/
√

3]. The

standard deviation of a continuous, uniformly distributed random variable on an interval

[a,b] is b−a
2
√

3
, so this interval is chosen to have a standard deviation of σ. Because

the noise is being drawn from a closed interval, this model does not suffer from the

problems of the SDE model; for appropriately chosen σ, the derivative of (4.2.2) will

always be positive, and it is bounded above.

The variables {Uk(t), k = 1,⋯,n} are taken to be independent and identically

distributed and satisfy UkUk′ = δk,k′σ2. For the k-th cell, variable Uk(t) remains constant

within each cycle and is updated when the k-th cell passes through its division at 1 ∼ 0.

We integrate (4.2.2) numerically by the Euler method,

c j+1
k = c j

k + h [a(c j
k, I j) +U j

k] ,



125

where U j
k is updated when ck crosses 1. Figure 4.1 shows the distributions of the cells

in the variable rate model for several values of the noise’s standard deviation, σ.
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Figure 4.1: Steady-state distributions of two clusters in the variable rate model of noise
for the indicated values of σ. Insets show positions of cells on the circle with indicated
signaling (S) and responsive (R) regions.

4.2.4 Truncation errors of the method

Note that the vector field given by a(ck, I) in (1.3.3) is piece-wise constant.

On the domains where it is constant a first order Euler method is accurate to machine

rounding. A truncation error, δ, may occur when a cell crosses the S boundary, but

cells in R cannot increase in rate until the next time step. This error is at most

δ ≤ h ∣ f ( j
n
) − f ( j + 1

n
)∣ = O(h

n
).

In the simulations below, we will use f (I) = −0.5I and so the error is precisely

bounded by h/2n. Furthermore, this error applies to all cells in R equally, thus it

does not contribute to the dispersion of a cluster unless the cells in the cluster happen

to straddle the boundary of R when a cell crosses the S boundary. For weak noise
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(σ ≪ 1) these are rare events, since most cells are tightly clustered and the two clusters

are expected to cross the S and R boundaries at distinct times (see Appendix B.1).

There is also a similarly sized truncation error when a cell steps across the R boundary.

In order to make these errors smaller than the applied noise, we used the integration

step, h = 5.0 × 10−3, for which local truncation errors are at most 2.5 × 10−7 whereas our

smallest non-zero noise σ is 5.0 × 10−4.

4.3 Simulations and statistical measures

Throughout the simulations we set the coupling term to be linear and negative,

f (I) = −αI, where the parameter α determines the coupling strength. In the following

we fixed α = 0.5 and simulated an ensemble of n = 104 cells which were initially

distributed in two clusters at ck = x̄1 = 1
4 for k = 1, .., n

2 and ck = x̄2 = 51
70 for k = n

2 + 1, ...,n,

i.e. at the values of the two-cluster periodic solution of the deterministic system (see

Appendix B.1).

The collective dynamics of the cell ensemble are conveniently described on a

unit circle, so that the probability density function of the ensemble p(t, x) are periodic,

i.e. p(t, x) = p(t, x + 1). The second Fourier harmonic of such a distribution is,

V2(t) = exp[4πick(t)], (4.3.1)

where V2(t) is also known as the resultant vector in context of circular statistics

[27]. In (4.3.1) the averaging, ⋅, is taken over the entire ensemble, exp[4πick(t)] ≡

(1/n)Σn
k=1[exp[4πick(t)]]. The magnitude of the second harmonic, L2(t) = ∣V2(t)∣, which

we call the order parameter [87],

L2(t) = ∣exp[4πick(t)]∣, (4.3.2)

serves as a measure of phase coherence of the two-cluster solution. For the

deterministic case the probability density is the sum of two delta functions, p(x) =

0.5[δ(x − x̄1) + δ(x − x̄2)], the order parameter L2 attains its maximal value near 1 (it
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is not exactly 1 since in the periodic solution the phase difference of the clusters is not

exactly π). In the opposite limit of a disordered state with a uniform distribution, the

order parameter is 0, i.e. L2 = 0.

We comment on our use of the phrase “uniform distribution.” Under any type of

noise, the system cannot tend to a truely uniform state, because cells in R will always

(on average) travel at a slower rate than cells not in R, and thus the probability of a cell

being found in R is greater than ∣R∣. We retain the phrasology, however, because the

disordered state is the continuous analogue of the discrete uniform solution.

Noise-induced spread of a single cluster can be analyzed, with angular deviation

defined as follows. We introduce the resultant vector for the first cluster,

V1
2(t) = exp[4πick(t)]1,

where the averaging, ⋅1, is taken only over the cells which were initially in that cluster,

i.e. exp[4πick(t)]1 ≡ (2/n)Σn/2
k=1[exp[4πick(t)]]. Then, the angular deviation is

Dc(t) =
√

2[1 − ∣V1
2(t)∣] =

√
2[1 − ∣exp[4πick(t)]1∣], (4.3.3)

attaining values from 0 (delta-peaked cluster) to
√

2 (uniform distribution).

In addition to circular statistics measures above, the Shannon entropy, which

is maximized when a probability density function is uniform [57], is a natural way to

measure clustering. We have thus characterized the shape of the steady state probability

distribution p(x) using a normalized entropy E. Numerically, we used M = 100 equal-

sized partitions of the unit interval to estimate p(x) and its Shannon entropy,

H = −
M

∑
m=1

pm log pm. (4.3.4)

In the absence of noise, the two-cluster solution is characterized by a double delta-

peaked distribution and the entropy takes its minimal value, Hmin = log 2 for

symmetrical clusters with n/2 cells in each. In the completely disordered state the

distribution p(x) is uniform with the maximal possible entropy Hmax = log M. The



128

normalized entropy defined as,

E = H − Hmin

Hmax − Hmin
= −(

M

∑
m=1

pm log pm + log 2) / log(M/2), (4.3.5)

varies between 0 (noiseless two symmetrical clusters) and 1 (disordered state, cells are

distributed uniformly).

We find that increasing σ causes the normalized entropy of the SDE and

variable rate models to increase at almost precisely the same rate. The asymmetric

division model causes the entropy to increase at a slightly slower rate, since the noise

is added only once in that model, as opposed to in every time step, and thus the same

σ results in less actual noise being applied to the system. The essential similarity of

the models is important; a biologically useful model must be robust under noise, and it

would be problematic if two biologically motivated forms of noise gave rise to wildly

different behaviors.

For a given value of noise level, σ, the ensemble “thermalizes” – evolving

towards a steady state, which we characterized by two methods. The first method

was based on comparison of the ensemble distributions at consecutive times when

the ensemble was at a given position on the cycle. In particular, snapshots of the

ensemble were taken at moment of times when the imaginary part of the ensemble’s

second harmonic, sin[4πick(t)], was crossing zero with a negative slope. A two-sample

Kolmogorov-Smirnov (K-S) test was used to probe whether the ensemble distribution

settled down to its steady state. In the second method we used convergence to a steady

state value of the circular measures, L2(t) and Dc(t), introduced above. As we show

further on, for all the three models, the relaxation time for the ensemble to reach

its steady state is less than 100 cycles, as long as σ remains below a critical noise

strength at which the clustering effect of the model is destroyed completely. Because

of periodicity of the two-cluster solution and finite size fluctuations, the ensemble-

averaged measures L2, Dc and E are time-dependent even in the steady state. We thus
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performed additional time averaging of L2, Dc and E over T = 100 after the ensemble

reached its steady state, resulting in time-averaged quantities, L2, Dc and E.

Representative examples of steady-state distributions for individual clusters

are shown in Figure 4.1. For weak noise (σ ∈ [0.01,0.02]) the ensemble converges

to the steady state in less than 20 cycles, according to the K-S test. For larger noise,

σ > 0.025, convergence is slower, in about 80 cycles.

Time (a.u.)

x
x

x

σ = 0.01

σ = 0.02

σ = 0.04

Figure 4.2: Time-dependent probability distributions p(t, x) of the ensemble with
Gaussian white noise (SDE model) for the indicated values of noise level σ. Logarithm of
the probability distribution, log[p(t, x)], is shown as filled contours. For weak σ = 0.01
noise, clusters spread out but remain distinct. For weak-intermediate noise (σ = 0.02),
cells begin to move between clusters, but clustering still occurs. At σ = 0.04, clustering
has been destroyed. The critical point at which clustering fails, about σ = 0.35, is not
shown here, but see Figure 4.3.
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4.4 Results

4.4.1 Transitional dynamics

Figure 4.2 shows that the ensemble distributions taken at a fixed position on the

cycle (see previous section) evolves towards steady states for the SDE model. Weak

noise (σ = 0.01) results in the spread of cells within each group. Although there is

no theoretical minimum level of noise at which cells may transition between groups,

exponentially long waiting times for such events to occur in the presence of weak noise

make such events profoundly rare. Coherent groups still exist for an intermediate noise

(σ = 0.02), although cells migrate between them, which is indicated by appearance

of non-zero probability between peaks in the time-dependent probability map (middle

panel of Figure 4.2). For σ > 0.04 the asymptotic stability of the 2-cyclic solution is

no longer sufficient to overcome the dispersive force of the noise, and the ensemble

quickly approaches a steady state with a uniform distribution.

The transitional dynamics are characterized further in Figure 4.3. Both the

order parameter, L2(t), and angular displacement of individual clusters, Dc(t), show

characteristics approaching the steady state which are similar for all three models of

noise. For weak to intermediate noise (σ < 0.03), the order parameter and angular

displacement settle to steady states within 100 cycles as the asymptotic stability of

the 2-cyclic solution quickly overwhelms the noise. For large (σ > .04) noise, the

averaging of the expansive effect of the noise and the contractive effect of the stability

is expansive, and the parameters again reach steady states within 100 cycles as the

system moves to a completely disordered state. However, for a critical noise level

(σ ≈ 0.035 for the SDE, σ ≈ 0.034 for the uniform, and σ ≈ 0.04 for the Bernoulli noise

model), the relaxation process slows down dramatically and shows larger fluctuations in

the steady state. This indicates the occurrence of a phase transition (bifurcation) from

the ordered state with two clusters to the completely incoherent disordered state of the
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ensemble. We recall again that the noise of the Bernoulli model is applied only once

instead of at every time step, explaining why a larger σ is required to achieve the same

effect as in the other models. For the SDE model, the cell migration between groups

��������	�


��� � �� ��� ���� �����

�
�

���

��

���

���

���

���
��������

���������

��������

��������	�


��� � �� ��� ���� �����

�
�

���

��

���

���

���

���

��

���

��������

�����������������

��
 ��


Figure 4.3: Time-dependence of (a) the order parameter, L2(t), and of (b) the angular
deviation, Dc(t), for the indicated values of noise level σ in the SDE model. For a
comparison, the corresponding dependencies L2(t) for the variable rate model are shown
by grey lines on panel (a). The values of noise standard deviations are the same as for the
SDE model, except for the middle grey curve, where the noise standard deviation is
0.034.

is expected for any non-zero noise intensity with exponentially long waiting time. By

contrast, for bounded noise models (variable rate and asymmetric division) there is

a critical noise intensity, σh at which a “hard” bifurcation occurs [40]. For σ < σh

cells are bound to their initial cluster, while for σ > σh cells can migrate between the

clusters. Figure 4.4 shows the fraction of migrated cells after the ensemble evolves over

80 cycles, versus noise level. As expected, the fraction of migrated cells grows with σ

for all three models, saturating to 1/2 at the disordered state of the ensemble.

Analytic calculations presented in Appendix B.2 show that for the parameter

values used, the hard bifurcation occurs at σh ≤ 1.4 × 10−5, which is far below the

noise level where cell migration can be observed for a reasonable integration time.

We thus conclude that the hard bifurcation plays no essential role in these examples

of biologically motivated noise.
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Figure 4.4: Fraction of cells that have escaped from their initial groups after 80 cycles for
the three models. For noise levels below σ ≈ 0.01 cells are effectively bound to their
cluster by the asymptotic stability of the two-cluster solution.

4.4.2 Sensitivity to noise and order-disorder phase transition
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Figure 4.5: (a) Steady-state probability distributions p(x) of the ensemble with Gaussian
white noise (SDE model) versus the standard deviation σ of the noise. Logarithm of
steady state probability distribution, log[p(x)], is shown as filled contours. (b) Time
averaged normalized entropy E of the ensemble in three models versus the standard
deviation of the noise σ.

In the absence of noise, groups simply collapse back into clusters (Theorem 3.5.1).

As noise is added into the system, such point clustering will cease to occur, but coher-
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ent groups will continue to exist. As the strength of the noise increases, grouping will

become progressively looser until σ reaches its critical value above which the ensemble

assumes a disordered state where no clustering can be distinguishable, as shown in Fig-

ure 4.5(a). This change of shape of the steady state distribution is well-reflected by the

normalized entropy E, which increases from 0 (no noise) and reaches its maximal value

when the ensemble distribution becomes uniform (see Figure 4.5(b)). We can also see

from this figure that the three models show qualitatively identical behavior with respect

to noise level as to the distribution of the ensemble.
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Figure 4.6: Stationary statistical measures of the cell ensemble versus noise level σ for
the three noise models. (a) Time averaged order parameter, L2, vs noise standard
deviation, σ, of the three models. (b) Time averaged angular deviation of the first cluster
vs σ. Dotted line shows the maximum possible value of

√
2. (c) Local slopes of angular

deviations estimated from the curves in panel (b).
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The width of the groups increases along with the strength of the noise, which is

characterized by the order parameter and angular deviation shown in Figure 4.6(a,b).

This process must eventually terminate, or rather, for any coherent definition of

“group,” it will cease to be meaningful to talk about multiple groups. The order

parameter decreases with the increase of noise until σ reaches a critical effective value

σc, at which L2 vanishes and this occurs.

The spread of the cells in each group is best described by the angular deviation

Dc, which increases with the increase of noise and reaches its maximum value
√

2

at the transition point (i.e. at the point where the uniform distribution is reached and

talking about individual groups is no longer meaningful). The dependencies Dc(σ)

in Figure 4.6(b) show three distinct regions of σ. For weak noise, σ < 0.015, the

angular deviation increases linearly with σ, indicating a nearly linear response of the

ensemble to noise perturbations. The nearly linear response is broken for intermediate

noise whereby Dc non-linearly increases with progressively larger slopes. For strong

noise, σ > σc, the angular deviation Dc saturates to its maximum value. This is further

illustrated in Figure 4.6(c) by local slopes of Dc vs σ dependencies, which clearly

shows the regions of linear and non-linear responses. We note that the local slope is

a measure of sensitivity of the ensemble to noise perturbations and it shows that this

sensitivity is maximal near the transition to the disordered state. This is intuitive, since

a small perturbation of noise level where the noise is too small to have significant

control over the system will still result in small noise with a small effect. Similarly, for

σ > σc, i.e. in the disordered state, the ensemble is insensitive to noise perturbations, as

indicated by the zero slope of Dc(σ), since there is a maximum effective noise beyond

which the steady state is constant. Only in the border regions can a small change of

noise show a significant effect.

Figure 4.6 further indicates that the three noise models show qualitatively

identical dependencies on σ. Quantitatively, however, the asymmetric division model
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shows consistently lower sensitivity to noise perturbations. We note that while in

the SDE and variable rate models noise is applied throughout the whole cycle, the

asymmetric division model is perturbed by Bernoulli noise once per cycle only.

Hence an effective noise level of the SDE and variable rate model is larger than that

of the asymmetric division model. Furthermore, because the distribution of cells in

asymmetric division model always has a higher density in the interval [−2σ,0] in phase

space the order parameter saturates to a non-zero value for large σ in Figure 4.6(a),

although it is functionally uniform.

At the critical value of noise SD, σ = σc, the ensemble demonstrates features

of an order-disorder phase transition, such as slowdown of transient relaxation to the

steady state and large fluctuations (see Figure 4.3). The transition of the distribution

of the solution has the characteristics of an Andronov-Hopf bifurcation, as indicated

by Figure 4.7. For σ < σc the model possesses a stable limit cycle that bifurcates

to a stable focus for σ > σc. Here the large noise effectively stabilizes the uniform

solution, which otherwise is unstable. Further, in Figure 4.6(a) we observe that the

amplitude of the periodic orbit has a square root type dependency on σ, as in a Hopf

bifurcation. We note here that this transition is consistent with order-disorder transitions

in the Kuramoto model of globally coupled stochastic phase oscillators [74]. There

the rotation of the original variables has been discarded by the transformation to phase

differences, so the linearization there has zero imaginary part at the bifurcation.

Since the critical noise level, σc measures the point at which the noise

completely overwhelms the feedback, it is a function of the coupling strength, α.

Figure 4.8 shows that a stronger coupling requires stronger noise to destroy the two-

cluster ordered state. The white curve in this graph corresponds to a bifurcation line

separating ordered and disordered states in the (α,σ) parameter plane. The region

below the white curve represents cells in the two-cluster ordered state, possessing a

limit cycle. While the region above the white curve represents cells in disordered states,
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Figure 4.7: Phase portraits of the SDE model projected onto the complex plane of the
second Fourier harmonic. Black lines show steady state trajectories; grey lines show
transients on both panels. Left: two-cluster ordered state, with a stable periodic orbit,
σ = 0.03. Right: stable equilibrium distribution at the disordered state, σ = 0.04. The
order-disorder transition occurs at σc ≈ 0.035.

which is a stable uniform solution. This curve is also consistent with phase transitions

observed in globally coupled stochastic phase oscillator systems [74].
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Figure 4.8: Time averaged order parameter, L2, as a function of the coupling strength, α,
and noise SD, σ.

4.5 Yeast cultures have large coupling mechanisms

In budding yeast, a mother cell carries a scar from the bud and the daughter

does not. Replicative age can be determined from the number of scars [75]. A natural
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phase space for a model stratified by replicative age is to represent the cell cycle of the

daughters by I0 = [0,1] and successive generations by Im = [am,1]. In other words, the

phase space is: I0 ∪ I1 ∪ . . .∪ In where n is the highest generation considered. In a steady

state bioreactor, the fraction of cells in each generation decreases roughly geometrically

with age, so n does not need to be large for accurate modeling.

Denote τm = ∣Im∣ = 1 − am. The age distribution can be measured and is directly

related to the relative lengths of the cell cycles τm [4]. For one autonomous oscillation

experiment in which clustering was detected, our coauthors determined the following

population fractions as a function of generation for the first four generations: 0.55,

0.24, 0.11, 0.05 [4]. The corresponding τm’s are calculated to be: 1.0, 0.93, 0.86, 0.82,

so we find:

a0 = 0, a1 = .07, a2 = .14, a3 = .18.

In [4, 83] it was shown that simulations using these proportions can accurately

reproduce the behavior seen in the YAO experiment [6, 83]. A standard calculation [4]

shows that the standard deviation of the generational noise, σg, in the experiment is:

σg = 0.0365.

This quantity is normalized to a time unit of one cell cycle in the experiment.

In Figure 4.8, we see that for σ ≈ 0.036 a coupling coefficient of α > 0.6 is

needed for the coupling strength to overcome the dispersive action of the asymmetric

division and produce detectable clustering. Consider that the units here are all

normalized in terms of one unperturbed cell cycle. We can conclude that for clustering

to exist in the autonomous oscillation experiment, as observed, the strength of coupling

must be a rather large effect. In a two-cluster state, the clusters as they enter the region

where they experience coupling, need to have their rate of progression decreased by a

normalized factor of at least 0.3, or, 30%. Such a decrease cannot be considered to be a

small perturbation.
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4.6 Conclusions and discussion

We have studied the effects of two biologically motivated dispersive

mechanisms, as well as standard Gaussian white noise, in an ensemble cell cycle

coupling model that successfully predicts clustering behavior observed experimentally.

One conclusion for this simple generic model is that the difference between

biologically plausible bounded noise and Gaussian noise mechanisms is insignificant

after proper scaling of the noise level. This is observed in both the ensemble statistics

of the clusters and in terms of the expected phenomena of bounded noise dynamics. As

seen in Figure 4.6, asymmetric division and variable rate perturbations lead to circular

statistics measurements that are indistinguishable from the results using Gaussian

white noise perturbations. Further, the theory of bounded noise dynamical systems

predicts that cells will be unable to escape a stable cluster for noise levels below some

threshold. However, we observe in this application that the threshold is far too small

to play a role in observed behavior. For such small values of noise, the expected time

to escape would be extremely long for the Gaussian noise model and so there is no

observable difference.

For all three forms of applied noise perturbations the dispersion of clusters

occurs in three distinct phases. First, for small noise there is a linear relationship

between the noise level and the dispersion of the clusters measured by the circular

angular deviation. In this phase cells do not migrate from their initial groups on the

time scales considered. In the second phase cells begin to migrate more frequently

between clusters and the slope of the dispersion versus noise increases. Finally, for

noise level above a certain threshold the clustering structure is destroyed and the cells

assume a nearly uniform distribution. This phase transition between disorder and

order exhibits many characteristics of a Hopf bifurcation, e.g.the birth of a stable limit

cycle out of a stable equilibrium and a square-root dependence of the amplitude of the

periodic orbit on the bifurcation parameter (noise level).
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Finally, we conclude that the clustering observed in autonomous oscillation

experiments cannot be due to small coupling effects. When we compare experimental

data with the transition from clustered to uniform distribution in Figure 4.5, we can

see that the expermentally established level of dispersion due to asymmetric division

alone is enough to require a coupling strength at least strong enough to produce a

30% relative decrease in rate of progression when a cell enters the responsive region.

Although the model is minimal, it is both universal and normalized to the length of

the unperturbed cell cycle, so this estimate of relative effects of noise and coupling

is reliable. One possible explanation for a coupling strength of this magnitude is

that the mechanism actually involves one or more check points in the cycle. We also

note an alternative (or complimentary) solution. Xue at al. [30] have shown that

modeling even a small delay mechanism into an RS model will strengthen stability,

speeding up the rate of convergence significantly. It remains a source of future work

to formally investigate how the gap model of [30] and the noise mechanisms of this

chapter interact, but intuitively, we expect that modeling a delay will allow groups to

remain coherent under weaker feedback. It remains to try to detect such a slow-down

in laboratory settings.
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5 The OverlapModel

In the previous chapters, we have considered in some depth the RS feedback

model defined by regions R = [r,1), S = [0, s), and differential equation

dxi

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if xi ∉ R

1 + f (I), if xi ∈ R.
(5.0.1)

In the introduction, we mentioned that a number of theorems continue to hold

when positive and negative feedback are reversed, and the position of R and S are also

reversed, i.e. S = [s,1) and R = [0, r). In [30] the authors considered the effect of

adding a small gap between R and S .

There remains one natural modification to consider, a converse to adding a gap:

that R and S might be allowed to overlap. We consider such a model in this chapter.

We analyze the 2-cyclic solutions and the k = M + 1 solutions, and find similar behavior

to the RS model in the clustered submanifold. In the full phase space, however, we find

complex behavior dependent on the form of the feedback function, one of only two

known cases where the details of the function, rather than its sign, have a controlling

influence on the stability of k-cyclic solutions (see Section 3.4.5 for the other case,

where event triangles are neutral under weak positve feedback and unstable under

strong positive feedback).

5.1 Background and model

5.1.1 Signaling models

We have considered a feedback model where cells ci advance around S 1 under

the influence of the differential equation

ċi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ci ∉ R

1 + f (I) ci ∈ R,
(5.1.1)
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for i = 1,2, ...,n, where I is the proportion of cells in S and the feedback function f

is the mathematical mechanism by which the signaling occurs. The function f may be

taken to be quite general, with only a few clearly motivated restrictions:

1. Cells in S cannot produce signaling agents if there are no cells in S . Ergo,

f (0) = 0.

2. The more cells that are signaling, the stronger the signaling should be. Thus, f

should be monotonic.

3. Growth is a non-reversible process. Therefore, −1 < f (I) for all I.

We have assumed in previous chapters that S and R are intervals with an

endpoint in common and disjoint interiors, and that a cell not in R ∪ S , travelling in

the direction of the flow, enters R before it enters S . In Chapter 2 and Chapter 3, we

defined a specific coordinate system such that R = [r,1) and s = [0, s). This model is a

special case of an RS-feedback system (Definition 1.3.1).

We now consider the behavior of the model under the assumption that the

intersection of R and S has non-empty interior, with the following restrictions:

• Both R/S and S /R are nonempty, i.e. neither interval is a proper subset of the

other.

• If ci ∉ S ∪ R travels clockwise around the circle S 1 with some positive velocity, ci

will enter R before it enters S .

We consider two cases where a cell in R is being influenced by a single cell

in S . Intuitively, since the population is so large, a single cell in S /R should have a

negligible effect on cells in R (see the discussion after Theorem 5.2.1; also observe that

if f ∶ [0,1] → (−1,∞) is a continuous feedback function and n is sufficiently large, then

f (1/n) ≈ 0 by the condition that f (0) = 0.)
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Now consider the case where S contains only a single cell, but that cell lies in

S ∩ R. This cell is producing a chemical within itself, and immediately responding to

the presence of that chemical. This effect need not be trivial, although the cell is still

receiving feedback from only one cell, i.e. itself. We modify the differential equation

to reflect this. In the following equation, f is a feedback function, i.e. f (0) = 0, the

function f increases monotonically, and the codomain of f is (−1,∞):

ċi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ci ∉ R

1 + f (I) ci ∈ R/S

1 + g(I) ci ∈ R ∩ S ,

(5.1.2)

where g is a feedback function (i.e. satisfies the requirements (1) - (3) put on f ),

and has the same sign as f . Since g was explicitly brought into the system to allow

for more powerful feedback when a cell influences itself, it should also satisfy the

inequality ∣ f (I)∣ ≤ ∣g(I)∣ for all I. Viewing g as a function from the unit interval into

(−1,∞), g is presumably discontinuous at 0, since it was explicitly created to allow

∣g(1/n)∣ ≫ 0 when 1/n ≈ 0. The function g should have the same sign as f , and be

strictly monotone.

We will define O ∶= R ∩ S = [s1, r2). It will be necessary to speak of R̃ ∶= R/O;

likewise, we will let S̃ ∶= S /O. We now unify our notation for this chapter with that

of the previous chapters and [30]. In all three models, we will use r to represent the

beginning of the responsive region and s to represent the end of the signaling region. In

all three models, we (or the authors of [30]) choose a coordinate system such that the

end of the responsive region lies at 1, i.e. r2 = 1. By the definition of the RS model, 1

is thus also the beginning of the signaling region in that model. In [30], ε was used to

represent the beginning of the signaling region (and, concurrently, the size of the gap);

we choose a different representation for the beginning of the signaling region in the

overlap model, s1, to emphasize the fact that the beginning of S happens in a different
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part of the circle in each model–to the right of 0 in the gap model, and to the left of 1

in the overlap model.

Figure 5.1: The state space of the overlap model is the unit circle S 1 with two overlapping
regions, R = [r,1) and S = [s1, s). The cells are arranged in the form of a uniform solution
under negative feedback. Cells in R̃ travel at a slower rate than cells in S 1/R, and are
therefore closer together, while cells in O are closer together still, by the assumption that
∣g∣ ≥ ∣ f ∣ (g < f < 0 in this example). The overlap region O would normally be assumed to
be rather small; it is exaggerated here for emphasis.

5.1.2 Generalizations of previous concepts

The overlap model is similar enough to the RS model that many tools of

analyzing the RS model may continue to be used with no or minor modifications. We

start by observing that, as in the other models, (5.1.2) can be applied to equally-sized,

perfectly synchronized clusters as easily as to cells. Denoting clusters as xi, we obtain

ẋi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 xi ∉ R

1 + f (I) xi ∈ R̃

1 + g(I) xi ∈ O,

(5.1.3)
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where I is the proportion of clusters in S .

The proof of Lemma 1.4.2 generalizes to the overlap model without

modification, and thus the functions f and g for clusters in equation (5.1.3) are the

same as in (5.1.2) for cells.

The set {x̄∣x1 = 0} still defines a Poincaré section, and the Poincaré map

P is still factorized as the composition of k F-maps, where F(x2, x3, ..., xk) =

(x1(T), x2(T), ..., xk−1(T)), T = min{t∣xk(t) = 1}. The map F has fixed points in

the overlap model, by the same argument as in the RS model, which we term k-cyclic

fixed points, and these fixed points correspond to periodic orbits under the flow of the

system.

5.2 The synchronized solution

The most basic solution of (5.1.3) occurs when all cells are synchronized into

a single cluster that moves around the circle at a rate of 1 when it does not lie in O

and a rate of 1 + g(1) when it does. In the clustered subspace, it is meaningless to ask

questions of stability, since this solution covers the 1-clustered subspace. In the RS

model, we have seen that the synchronous solution is unstable in the full phase space

under negative feedback, and stable under positive feedback. In the gap model it is

neutrally stable. We now show that the overlap model acts similarly to the RS model,

with some (seemingly trivial) condition on the feedback function f .

5.2.1 Theorem. The synchronous solution is unstable in the full phase space under

negative feedback provided ∣ f (1
n)∣ is sufficiently small compared to the rate of growth of

the function g.

Proof. We explicitly exhibit a perturbation of the synchronous solution that moves away

from the synchronous solution. In particular, consider an arrangement of cells such that

each cell lies in one of two clusters, and the clusters are within a distance of ε of one

another. Let the leading cluster contain p cells and the trailing cluster contain n − p cells.
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The distance ε between these clusters will change only when the leading cluster is in O

and the trailing cluster is in R̃, or when the leading cluster is in S̃ and the trailing cluster is

in O. We consider both of these cases.

Let the leading cluster lie at s1. Then the trailing cluster travels a distance ε at a

rate of 1 + f (p/n), and therefore reaches s1 at time t = 1
1+ f (p/n)ε. During that time the

leading cluster has been traveling at a rate of 1 + g(p/n), so the distance between the

clusters contracts to 1+g(p/n)
1+ f (p/n)ε, since −1 < g(p/n) ≤ f (p/n) < 0.

Let time run further until the leading cluster reaches 1. Now there are still n cells

in S , but only the trailing cluster lies in R to experience feedback. It must travel a distance

of 1+g(p/n)
1+ f (p/n)ε at a rate of 1 + g(1), and the time that takes is 1+g(p/n)

(1+ f (p/n))(1+g(1))ε; since the

leading cluster has been traveling at rate 1, this is also the new distance between clusters.

For p = 1, therefore, ε ↦ 1+g(1/n)
(1+ f (1/n))(1+g(1))ε. This is an expansion if 1 + f (1/n) <

1+g(1/n)
1+g(1) .

�

For context, we know from Chapter 4 that f (I) = −.6I is strong enough to

overcome the noise inherent to the biological system and cause clustering. In a bio-

reactor of 1010 cells, under that feedback, 1 + f (1/n) = 1 − 6
100,000,000,000 ; if the greatest

rate a cell can attain under the effect of g, divided by the smallest rate that such a cell

can attain, is greater than this, an expansion will occur. This theorem thus states that

the synchronous solution is unstable under negative feedback in an overlap system

unless g is almost constant, where the value f (1/n) is used as a measure of what

“almost constant” formally means. Note, however, that if g were perfectly constant

(which cannot happen, but which we may consider as a limitting case), then it would

be true that ε ↦ 1
1+ f (1/n)ε > ε, which would also represent an expansion. It is therefore

not clear whether any restriction is in fact necessary to the theorem, or whether it is an

artifact of the method of proof.

The following theorem does not require any additional assumptions.
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5.2.2 Theorem. The synchronous solution is linearly stable under positive feedback.

Proof. Consider an initial condition in an ε/2-neighborhood of the synchronous solution,

i.e. all cells lie within an interval of length ε. For definiteness, assume that the ε-interval

has the form [0, ε], and number the cells such that ci > ci+1 for i = 1, ...,n − 1. If

ci = ci+1 for some i, the proof remains valid with only slight modifications. Notice

that we have numbered the cells in the reverse order than we have been accustomed to,

0 < cn < cn−1 < ... < c1. Assume that ε << min{∣S ∣, ∣R̃∣, ∣O∣}, in particular small enough that

over the course of one iteration of the Poincaré map, once the first cell in the group enters

R̃, S , or O, all of the cells in the group will enter that region before the first cell leaves it.

The cells have been numbered in such a way that when ci is in O but ci+1 is in R̃,

i cells from the group are exerting feedback on themselves (in the form of g) and on the

remaining cells in the group (in the form of f .) Let εi = ci − ci+1. Let time progress until

c1 = s1; until this time, the distances εi remain unchanged, since when the group enters R̃,

S is empty.

Consider how a distance εi changes as ci passes into O. Once ci reaches s1, ci+1

starts to experience feedback 1 + f (i/n). It therefore takes time t = εi
1+ f (i/n) for ci+1 to reach

s1; during that time ci is travelling at a constant rate of 1 + g(i/n), for a total distance (that

is also the new value of εi) of 1+g(i/n)
1+ f (i/n)εi. Once both cells lie in O, they experience the same

feedback, and the distance between them does not change again until ci reaches 1.

When ci reaches 1, all cells lie in either O or S̃ , so all cells exert feedback. Once

ci reaches 1, its rate slows to 1, while ci+1 continues to travel at a rate of 1 + g(1). Thus

the distance between ci and ci+1, that initially expanded to 1+g(i/n)
1+ f (i/n)εi, is now contracted,

and the contraction is powerful enough that the final distance between ci and ci+1 after an

iteration of the Poincaré map is strictly less than the initial distance εi; in particular, to

[1+g(i/n)]/[1+g(1)]
1+ f (i/n) εi. This is a contraction, since 1 < g(i/n) ≤ g(1) for i = 1,2,3, ...,n implies

that the numerator is at most 1, and it is divided by 1 + f (i/n) > 1, resulting in a fraction
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strictly less than 1. Note that every iteration of the Poincaré map reduces εi by a constant

factor.

�

5.3 Cyclic solutions

5.3.1 General cyclic solutions

Let x̄ be a cyclic solution on the Poincaré section. In a neighborhood of a given

k-cyclic solution, certain paramaters are fixed. Recalling our previously stated notation,

we return to letting σ denote the number of clusters in S on the Poincaré section, i.e.

xσ < s < xσ+1. (5.3.1)

By xρ we represent the last cluster not in R,

xρ < r < xρ+1, (5.3.2)

and introduce xζ as the last cluster not in O, so that

xζ < s1 < xζ+1. (5.3.3)

Since there are k clusters, and we number them in ascending order, we finally

let xk denote the cluster closest to 1. We allow the clusters xσ, xρ, xζ , and xk to

coincide (e.g. if O is empty then xζ = xk). Then over the course of a single F-map, xσ

leaves S , xρ enters R, xζ enters O, and xk reaches 1. The event “xk reaches 1” happens

last, as it defines the F-map, but the other three events may happen in any order.

We make explicit a lemma that was left implicit in Chapter 2

5.3.1 Lemma. Let σ ≤ ρ ≤ ζ ≤ k be fixed, and o be any order of events such that each

event occurs exactly once, and the last event is xk → 1. Then there are nontrivial feedback

functions f and g, and an open region of parameter space dependent on f and g, such

that in that region of parameter space, the cyclic solution has the prescribed order of

events.
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Proof. Let f = g = 0. These are not valid assignments of those functions, but we will

make our argument under those conditions, then use continuity to glean information about

the overlap model with valid feedback functions. Let xi = i−1
k . Then it is certainly possible

to move the parameters r, s1, and s so that xσ is the last cluster in S , xρ is the last cluster

not in R, and xζ is the last cluster not in O. It is likewise easy to ensure that the desired

order of events occur. Both these things may be accomplished while ensuring that no

cluster lies on a milestone (s, r, s1) except for x1, which is assumed to lie on 0. Then since

the cyclic solution depends continuously on the parameters f , g, r, s1, and s, we may add

small but nontrivial feedback, and the k-cyclic solution will retain its desired form. �

The lemma is proven for small feedback, but in numerical simulations, we have

observed all orders of events under strong feedback.

5.3.2 The cyclic solution for k = 2 clusters

In Appendix C.1 we enumerate every possible order of events that an F-map

may experience, 28 in all, and derive F in each of those cases. In order to make the

calculations of the appendix less cumbersome, we introduce a change of variables.

By the definition of O, any cluster in O experiences a certain amount of feedback

regardless of where other clusters lie on the circle. Since this “baseline” feedback of

g(1/k) may be thought to exist independently of the state of the system, it may be

simply removed by a change of variables that rescales O. We do this in Appendix C.1

for convenience, and thus necessarily do so in this section, whose theorems cite that

appendix.

We introduce the notation of the appendix; α = 1 + f (1/2) and β = 1 + g(1),

and take the opportunity to briefly discuss why, if the change of variables simplifies

calculations, we only apply it to this section. In the original system, α and β would

have a clear relationship, dictated by the constraints put on f and g. The function

g is stronger (or at least not weaker) than the function f , and g is monotonic, so
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∣ f (1/2)∣ < ∣g(1)∣. In the conjugate (rescaled) system, we cannot make any such claim,

nor compare α and β. Because so much of its influence has been scaled away (or

rather, since we have effectively replaced a strong influence over a short time with a

weaker influence over a longer time), g may be weaker or stronger than f .

Any configuration of clusters x̄ on the Poincaré section defines an order of

events and a corresponding map F. For x̄ to be a cyclic solution, x̄ and F i(x̄) must

have the same order of events for any i. This sharply limits the orders of events that

can correspond to a cyclic solution.

5.3.2 Proposition. For k = 2, there are seven possible orders of events that a 2-cyclic

solution may exhibit (excluding measure-zero regions of parameter space where multiple

events occur concurrently). They are:

1. For x2 ∈ R̃

(a) x1 → s, x1 → r, x2 → s1, x2 → 1

(b) x1 → s, x2 → s1, x1 → r, x2 → 1

(c) x2 → s1, x1 → s, x1 → r, x2 → 1

2. For x2 ∈ O

(a) x1 → s, x1 → r, x1 → s1, x2 → 1

3. For x2 ∉ R

(a) x1 → s, x2 → r, x2 → s1, x2 → 1

(b) x2 → r, x2 → s1, x1 → s, x2 → 1

(c) x2 → r,x1 → s, x2 → s1, x2 → 1

(d) x2 → s, xr → r, x2 → s1, x2 → 1

The cyclic solutions in Cases 1b, 1c, 3b, and 3c are asymptotically stable in the

clustered subspace under negative feedback and unstable under positive feedback, while
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in Cases 1a, 2a, 3a, and 3d, the cyclic solutions are neutrally stable under both positive

and negative feedback.

Proof. An exhaustive list of all possible orders of events can be found in the appendix.

To be the order of events of a cyclic solution, every “region” of the circle must be left

with as many clusters in it after F is applied as before, e.g. if one cluster enters R̃ then

one cluster must leave R̃. The seven mentioned are the only ones that satisfy this property.

For each order of events, the map F(x2) is calculated as F(x2) = ax2 + b; the stability of

this dynamical system is governed by the eigenvalue of the Jacobian [a], which is a, the

coefficient of x2 in the function F. Thus the k-cyclic fixed point is asymptotically stable

when ∣a∣ < 1, neutral when ∣a∣ = 1, and unstable otherwise. �

We assume that x̄ is in the interior of an event region, i.e. small perturbations of

x̄ in the clustered subspace share the order of events of x̄, and different events occur at

distinct times.

We observe that the neutrally stable cases tend to correspond to “extreme”

parameter values. Case 3a occurs when R, S , and O are all sufficiently small that the

system decouples, a concept we shall return to in Section 5.4. In Case 2a, O tends to

be extremely large compared to R̃ and S̃ , in Case 1a it is R̃ that tends to be large, and

Case 3d occurs when S̃ is large compared to other parameters. We do not quantify

“largeness,” but do observe that for a zero-feedback system, x2 = .5, and therefore,

in a system with relatively weak feedback, if x2 initially lies in O or S̃ , that region

must cover almost half of the unit circle. Figure 5.2 depicts each neutral interval in that

limitting zero-feedback case.

5.3.3 Proposition. A neutrally stable 2-cyclic fixed point of F satisfying one of the orders

of events 1a, 2a, 3a, or 3d of Proposition 5.3.2 is contained in a closed interval, invariant

under F, of 2-periodic fixed points of the Poincaré map. The interval is attracting under

negative feedback and repelling under positive feedback.
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(a) Case 1a (b) Case 2a

(c) Case 3a (d) Case 3d

Figure 5.2: Neutrality tends to occur when some interval, either O, R̃, S̃ , or (S ∪ R)C, is
much larger than the others.

We prove this proposition in the form of four lemmas, that also explicitly give

the endpoints of the intervals. The proofs of these lemmas are essentially similar.

First, we determine the endpoints of the interval. We do this by first observing that

the dictated orders of events define an interval [a,b], and that F(x) ∈ [a,b] defines an

overlapping interval (non-empty by the assumption that x is in the interior of an event

region). The intersection [a′,b′] of those two intervals is the interval of interest. Having

found the interval, [a′,b′], we explicitly consider values x2 = a′ − ε and x2 = b′ + ε
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and see what effect the map F has on them. In fact, since the end-points of the neutral

intervals lie on the same periodic orbit (F(a′) = b′, F(b′) = a′), we need only consider

one of the endpoints.

5.3.4 Lemma. In Case 3a, the neutral fixed point of F is contained in an interval of 2-

periodic fixed points of the Poincaré map, [1−r+ s, r− s], whose boundaries are attracting

under negative feedback and repelling under positive feedback.

Proof. The order of events for this case is x1 → s, x2 → r, x2 → s1, x2 → 1, with x2(0) ∉ R.

Let x2 be an arbitrary point satisfying this order of events.

Both x1 and x2 initially move at a rate of 1. For x1 = 0 to reach s before x2 reaches

r is therefore equivalent to s ≤ r − x2, or x2 ≤ r − s. Thus x2 ∈ (0, r − s].

If x̄ satisfies the mandated order of events, then x2 must reach r after x1 reaches s,

but it must also reach 1 before x1 reaches r. Note that x1 will reach r at time r. Under the

assumption that x2 reaches 1 before x1 reaches r, the time T that it takes for x2 to reach 1

is simply 1 − x2, recalling that the effect x2 has on itself in O has been scaled away by a

change of variables. Thus the restriction that x2 reach 1 before x1 reaches r is equivalent

to the inequality 1 − x2 ≤ r, i.e. x2 ∈ [1 − r,1).

Thus if x2 (more formally (0, x2), but working on the Poincaré section makes 2-

cyclic solutions one-dimensional) is to satisfy the given order of events, x2 ∈ (0, r − s] ∩

[1 − r,1), which we rewrite as x2 ∈ [1 − r, r − s].

For this order of events, F(x2) = 1 − x2; see Appendix C.1. If F(x2) also satisfies

this order of events, then F(F(x2)) = x2, and the interval where both x2 and F(x2) satisfy

the order of events (that is, (0, x2) and (0,F(x2)) satisfy the order of events) is therefore

a neighborhood of fixed points of F2. Asking that F(x2) ∈ [1 − r, r − s] is equivalent to

asking that 1 − r ≤ 1 − x2 ≤ r − s, that is to say x2 ∈ [1 − r + s, r].

Clearly, 1 − r < 1 − r + s and r − s < r, so the intersection of the intervals containing

x2 and F(x2) is x2 ∈ [1 − r + s, r − s]. It is easily verifiable that F(1 − r + s) = r − s and

F(r − s) = 1 − r + s.
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To determine whether the endpoints of the interval are attracting or repelling we

will analyze the F-maps at an arbitrarily small distance, ε, outside the interval.

Let x2 = r − s + ε, slightly above the upper endpoint. This value of x2 gives rise to

the order of events x2 → r, x1 → s, x2 → s1, x2 → 1, since at x2 = r − 2 the events x2 → r

and x1 → s occur simultaniously, and we now move x2 slightly closer to r.

Again citing Appendix C.1 (order of events 3(c)), we find that F(x2) = 1 −

r + s − α(s − r + x2), where α is a rate (0 < α). For x2 = r − s + ε, this function is

F(r − s + ε) = 1 − r + s − αε, slightly below the lower endpoint.

This places F(x2) in the original interval [1 − r, r − s], and it therefore has order

of events x1 → s, x2 → r, x2 → s1, x2 → 1 and F-map F(x2) = 1 − x2. Thus

F2(r − s + ε) = 1 − F(r − s + ε) = r − s + αε. If the feedback is negative (0 < α < 1),

then this is a contraction towards the boundary value r − s; if the feedback is positive, then

the distance to the boundary increases. �

Example 1: After re-scaling, let s = .2, r = .8. The parameter s1 is not relevant here.

Then the interval of Theorem 5.3.4 is [.4, .6]. We easily calculate F(.4) = .6 and

F(.6) = .4; the 2-periodic fixed point of F is x2 = .5.

5.3.5 Lemma. For Case 2a the interval of neutrally stable fixed points of the Poincaré

map is [s1,1 − βs − r − s1−r
α

+ s], and its boundaries are both attracting under negative

feedback and repelling under positive feedback.

Recall that α = 1 + f (1/2) and β = 1 + g(1) after the system has been rescaled.

Proof of Lemma 5.3.5. The order of events is x1 → s, x1 → r, x1 → s1, x2 → 1. The cluster

x2 starts in O,

x2 ∈ [s1,1].

The cluster x1 must reach s1 before x2 reaches 1. It will take x1 a time of r + s1−r
α

to reach s1. At that time, x2 will have traveled to x2 + βs + r − s + s1−r
α

; in particular, it will

travel a distance of βs while x1 ∈ S , will travel a distance of r − s in the r − s time units it
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takes x1 to travel from s to r, and a distance of s1−r
α

in the time it takes x2 to traverse R̃. So

any x̄ that satisfies the assumptions of the lemma must satisfy x2 + βs + r + s1−r
α
− s ≤ 1, i.e.

x2 ∈ [0,1 − βs − r − s1−r
α
+ s]. Thus,

x2 ∈ [s1,1 − βs − r − s1−r
α
+ s].

If an invariant interval exists, it must satisfy F(x2) ∈ [s1,1 − βs − r − s1−r
α

+ s]

for any x2 in the interval. Appendix C.1 gives the corresponding F-map for every possible

order of events; referring to the appendix, we see that for the order of events described by

the lemma, F is given by F(x2) = s1 + 1 − x1 − βs − r + s − s1−r
α

. It is easily observed that

F(F(x2)) = x2. The required inclusion, F(x2) ∈ [s1,1 − βs − r − s1−r
α
+ s], simplifies to

s1 ≤ s1 + 1 − x2 − βs + s − s1−r
α
− r ≤ 1 − βs − r − s1−r

α
+ s, or

x2 ∈ [s1,1 − βs − r − s1−r
α
+ s],

providing no new restriction. Thus the original restriction that x2 ∈ [s1,1 − βs − r −
s1−r
α
+ s] is all that is necessary for both x2 and F(x2) to satisfy the order of events of the

lemma.

Let x2 = s1 − ε. Then x̄ is governed by the order of events x2 → s1, x1 → s, x1 → r,

x1 → s1, x2 → 1, which is event 1(i) of the appendix, and

F(x2) = 1 − βs + βs1
α
− β

α
(s1 − ε) − r + s − s1−r

α
. This is β

α
ε above the upper

bound of the event interval we have calculated. We observe that this is the only part of

this section where the ambiguity introduced by the rescaling has the potential to come

into play; we do not know whether β
α

is greater than, less than, or equal to 1. However, the

second iteration of F will remove this term.

We note that F(x2) is in the order of events region x1 → s, x1 → r, x2 → 1, and F

in this event region is given by F(x2) = r + α(1 − x1 − βs − r + s). In particular,

F(1− βs+ βs1
α
− β

α
(s1 − ε)− r + s− s1−r

α
) = r +α(1− (1− βs+ βs1

α
− β

α
(s1 − ε)− r + s−

s1−r
α

) − βs − r + s) = s1 − βε. This is a contraction towards the boundary x2 = s for negative

feedback, but repels x2 away for positive feedback. �
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Example 2: Let s = .1, r = .2, s1 = .3. Let α = β = .5 (remembering that because

rescaling the system breaks the assumed relationship between the feedback functions,

we are not violating the restrictions on f and g by letting f (1/2) = g(1)). Then the

interval of fixed points of the Poincaré map is [.3, .65], and we observe, decomposing

F into its component event maps, that {0, .3} → {.1, .35} → {.2, .45} → {.3, .65} →

{0, .65} → {.1, .7} → {.2, .8} → {0, .3}. It is easily calculable, using the formula for F,

that the fixed point of F is x2 = .475.

5.3.6 Lemma. For Case 1a the neutrally stable fixed point is located in the interval of 2-

periodic points [r+α(1− s1), s1 −αs− r+ s], whose boundaries are attracting for negative

feedback and repelling for positive feedback.

Proof. Here x2 is initially in R, and the order of events is x1 → s, x1 → r, x2 → s1, x2 → 1.

The first and most basic condition that must be met in order to maintain this order

of events is that r ≤ x2 ≤ s1, i.e. x2 ∈ [r, s1].

The maintenance of the order of events depends on two further conditions. The

first is that x2 cannot reach s1 before time t = r, when x1 reaches r. The inequality

x2 + αs + r − s ≤ s1 ensures this condition and results in the restriction x2 ≤ s1 − αs − r + s,

i.e.

x2 ∈ [r, s1 − αs − r + s].

The second constraint needed to maintain the order of events is that x2 must reach

1 before x1 reaches s1, leading to the inequality r+ s1 − x2 −αs− r+ s+α(1− s1) ≤ s1. This

gives the restriction −αs + s + α(1 − s1) ≤ x2, i.e.

x2 ∈ [−αs + s + α(1 − s1), s1].

However, this is a weaker restriction than r ≤ x2, for reasons that will become

apparent. Thus the interval where the desired order of events occurs remains

x2 ∈ [r, s1 − αs − r + s].
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In order for the second iteration of F to also have this order of events, the

inequality r ≤ s1 − x2 −αs+ s+α(1− s1) ≤ s1 −αs− r + s must be satisfied, resulting in the

inclusion

x2 ∈ [r + α(1 − s1), s + s1 − αs + α(1 − s1) − r].

Taking the intersection of the two intervals results in the final interval of neutrally

stable points, [r+α(1− s1), s1−αs− r+ s]. Observe that the upper bound, strictly less than

s1, is obtained from the restriction r < x1. We observe that −αs + s + α(1 − s1) ≤ x2 ⇐⇒

F(x2) < s1, a weaker condition than the one implied by r < x2.

To determine whether the endpoints of this interval are attracting or repelling we

will analyze the F-maps at an arbitrarily small distance, ε, outside the interval. Placing

the cluster at an initial point of r + α(1 − s1) − ε will not change the order of events, and

one iteration of F will result in the new position of x2 = s + s1 − αs − r + ε. This new

position changes the order of events to x1 → s, x2 → s1, x1 → r, x2 → 1 (Case 1(b)).

Applying F(x2) = r +α(1− r + s− x2 −αs) gives a final position of x2 = r +α(1− s1)−αε,

which puts the cluster at a point closer to the boundary than it started (negative feedback),

or further from the boundary than it started (positive feedback). �

Example 3: Let s = .2, r = .3, s1 = .8, and α = β = .5. Then the interval of fixed points

of F2 is [.4, .6], and {0, .6}→ {.3, .8}→ {0, .4}→ {.3, .7}→ {.4, .8}→ {0, .6}.

5.3.7 Lemma. For Case 3d the neutrally stable fixed point is located in the interval of 2-

periodic points [r−s+ s1−r
α
+ 1−s1

β
, s], whose boundaries are attracting for negative feedback

and repelling for positive feedback.

Proof. Initially, the only restriction on the order of events is x2 < s. For this order of

events to occur, x1 must still be in S when x2 → 1, i.e. r − x2 + s1−r
α
+ 1−s1

β
≤ s, or

x2 ∈ [r + s1−r
α
+ 1−r

β
− s, s].

This is the only restriction. A starting condition ε above s has order of events 1(h)

(see appendix), and F(s + ε) = r − s − ε + s1−r
α
+ 1−s1

β
, a point on the order of ε below the
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lower endpoint. This has the same order of events of the fixed point (order of events 3(d)

in the appendix), and

F(r − s − ε + s1−r
α
+ 1−s1

β
) = s + βε. �

We observe that this neutrality is consistent with the neutrality of Case 2 in

Section 5.4.2, where x2 ∈ S .

Example 4 Let s = .7, r = .8, s1 = .9, α = β = .5. Then the neutral interval is [.5, .7], and

it is easily verified that F(.5) = .7 and F(.7) = .5, while the fixed point lies at x2 = .6.

For M = 1 (see Definition 5.4.2), the neutral Case 3d corresponds to the neutral

Case 2 of Section 5.4.2; Case 2a to Case 4, Case 1a to Case 3b, while Case 3a cannot

occur in the k = M + 1 case. Note that in the RS model, there was the potential to

have a neutral interval in S , a neutral interval in R, and a neutral interval in (S ∪ R)c;

adding an additional region O to the system added a corresponding neutral interval.

In each of these neutral cases, the system essentially decouples. For example, let O

be significantly larger than any other ”region” (R̃, S̃ , or S 1/(R ∪ S )) and x2(0) ∈ O.

Then x2 will travel at a constant rate (1+g(1)) for s time units, at another constant rate

(1 + g(1/2)) for another constant time unit (r − s + s1−r
1+ f (1/2) ), and then travel at a rate of

1 + g(1) until it reaches 1. The exact location of x1 is never relevant.

5.4 Decoupled and almost-decoupled systems

In this section, we will consider how the concept of isolation extends to the

overlap system, and we will investigate the stability of the k = M + 1 cyclic solution in

the overlap model. All stability results in this section refer to stability in the clustered

subspace.

5.4.1 Decoupled systems

A feature unique to the overlap model, as opposed to the RS or gap models, is

that any possible configuration of cells must eventually experience feedback; however,
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clusters may still be decoupled from one another. We have seen the following definition

before; we add a subscript to prevent confusion.

5.4.1 Definition. MRS ∶= ⌊ 1
∣R∣+∣S ∣⌋ = ⌊ 1

1−r+s⌋ is the maximal number of clusters k in the RS

system such that the k-cyclic solution experiences no feedback, i.e. if R is nonempty at any

time then S is empty.

In the RS model, there are an infinite number of non-interacting, neutral

solutions of k clusters for k ≤ M; in particular any sufficiently small perturbation of

the k-cyclic solution, that, when it intersects the Poincaré section, has the form xi = i−1
k

for i = 1, ..., k. Such a solution experiences no feedback. Thus the lowest value of k

guaranteed to be “interesting” in the RS model is k = MRS + 1. A system in the overlap

model must experience feedback, but the concept of isolation can be naturally defined

in the overlap model to produce the following definition.

5.4.2 Definition. Let M be the maximal number of clusters in the overlap model such that

the M-cyclic solution experiences no feedback except that which a cluster exerts upon

itself; i.e. if R̃ is nonempty then S is empty, and if O is nonempty then it contains only one

cluster and S̃ is empty.

If we view the RS model as a degenerate case of the overlap model where

O = ∅, then Definitions 5.4.2 and 1.4.5 correspond. The formula for M in the overlap

model is more complicated then the formula for MRS , however.

5.4.3 Lemma. An explicit formula for M is given by

M =
⎢⎢⎢⎢⎢⎣

1−s1
1+g(1/k) + s1

1−s1
1+g(1/k) + s1 − r + s

⎥⎥⎥⎥⎥⎦
. (5.4.1)

Proof. The form of MRS is easily calculated in the absence of an overlap region; there is

no feedback if r − xk > s; in the absence of any feedback, xk = k−1
k , and this inequality can

be rewritten as k < 1
1−r+s . The maximum integer that satisfies this is MRS = ⌊ 1

1−r+s⌋
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We pursue the same line of thought to find the value of M given in the above

definition. Because xk self-influences, it is no longer at a distance of 1/k from 1. If T

is the time it takes for xk to reach 1, then since xi(T) = xi+1 by the definition of the

cyclic solution, and as all clusters but xk travel at a constant rate of 1, it follows that

xk = (k − 1)T , and we therefore calculate

1 = s1 + (1 + g(1/k))(T − s1 + (k − 1)T),

1 = s1 + (1 + g(1/k))(kT − s1),

T =
1−s1

1+g(1/k)
k

+ s1

k
.

(5.4.2)

Then the inequality r − (k − 1)T ≥ s can be rewritten as k ≤
1−s1

1+g(1/k)+s1

1−s1
1+g(1/k)+s1−r+s

, and the

largest integer that satisfies this requirement is

M =
⎢⎢⎢⎢⎢⎣

1−s1
1+g(1/k) + s1

1−s1
1+g(1/k) + s1 − r + s

⎥⎥⎥⎥⎥⎦
.

�

Observe that MRS may be obtained as a special case of M by letting g(1/k) = 0.

The presence of the feedback function g in the definition of M is worth

observing. In both the original model and the gap model, the actual form of the

feedback function has played essentially no part–questions such as stability have

depended simply on whether the feedback was positive or negative. The following is

obvious.

5.4.4 Lemma. In the RS model, for any positive integer w, parameters r and s can be

chosen so that MRS = w for any feedback function.

The overlap model gives rise to a slightly weaker lemma.

5.4.5 Lemma. In the overlap model, for any positive integer w, and any feedback

functions f and g, parameters r, s1 and s can be chosen so that M = w for those fixed

feedback functions.
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Proof. By choosing s1 ≈ r ≈ 1, where the closeness of the required approximation

depends on both g(1/k) and the desired M, the fraction 1−s1
1+g(1/k) can be made arbitrarily

close to 0, and the argument of the floor function that defines M arbitrarily close to 1
s .

Then s can be chosen freely to give the desired integer. �

We also remark on the recursive elements Definition 5.4.2 brings to the system.

In the non-overlap model, we can define parameters r and s; calculate MRS ; and if we

then wish to investigate k = MRS +1, as in Chapter 4, we may select a feedback function

and procede. Such a mode of investigation would lead to difficulties in the overlap

model, since the function g depends on the number of clusters in the system, and the

number of clusters in the k = M + 1 system depends on g. We must then view k and

g as defined concurrently; having defined k, g, and the system parameters, an equality

such as k = M or k = M + 1 is merely a condition, that the system may or may not

satisfy. We isolate the following obvious lemma, then turn our attention to the more

interesting systems satisfying the equality k = M + 1.

5.4.6 Lemma. If k ≤ M for parameters k, g, r, s1 and s, then the k-cyclic solution is

neutrally stable in the clustered subspace.

Proof. In this case, the clusters do not interact; they each travel at a rate of 1 outside of O,

and a rate of 1 + g(1/k) inside O, independently of each other. �

5.4.2 The k = M + 1 system

If a system satisfies the equality k = M + 1, the form it may take is sharply

restricted. For k = M, when x1 = 0, all other clusters lie in the gap between S and R.

Adding another cluster to the system may force another cluster into S̃ , or it may force

a cluster into R̃; if O is sufficiently large, then a cluster may in fact be forced into O.

We consider the possible cases, and the stability of the k-cyclic solution in each case.

In all cases, we are referring to the k-cyclic solution when it intersects the Poincaré

section.
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For each case, we calculate T , the minimum time where xk(T) = 1. We will

refer to T as the return time of F. In the case where only xk experiences feedback,

this is sufficient to calculate the Jacobian J in the neighborhood of the k-cyclic fixed

point of F. In other cases, we must also calculate xk−1(T). Since F defines a discrete

dynamical system and is piecewise affine, a fixed point is stable if and only if all

of the eigenvalues of J are strictly in the interior of the unit circle, unstable if and

only if at least one eigenvalue is strictly outside the unit circle, and neutrally stable

otherwise. In all cases, either the Jacobian itself or the characteristic polynomial is

directly comparable to the Jacobian or characteristic polynomial of a case of the RS

model, described in Section 2.3 of Chapter 2, and we summarize those cases. The

calculations we have described are cumbersome; we put them in Appendix C.2 for

reasons of flow.

Case 1 of the RS model:

This case was defined by σ = 1, ρ = k, and event string eres.

The Jacobian J of F in the neighborhood of the (M + 1)-cyclic solution has the

form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −(1 + f (1/k))

1 0 0 ... 0 −(1 + f (1/k))

0 1 0 ... 0 −(1 + f (1/k))

0 0 1 ... 0 −(1 + f (1/k))

... ... ... ... ... ...

0 0 0 ... 1 −(1 + f (1/k))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.4.3)

The characteristic polynomial of J is

p(λ) = λk−1 + (1 + f (1/k))(λk−2 + λk−3 +⋯ + λ + 1). (5.4.4)

This polynomial has roots strictly within the unit circle (i.e. the fixed point is

stable) when 1 + f (1/k) < 1 (negative feedback), and roots strictly outside the unit
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circle (thus, the fixed point is unstable) when 1 + f (1/k) > 1, that is to say for positive

feedback.

Case 2 of the RS model:

There are two other cases in the RS model, but they each give rise to the same

Jacobian. One of the cases was defined by σ = 2, ρ = k, and event string eser; the other

by σ = 1, ρ = k − 1, and event string eser. In either case, the Jacobian in a neighborhood

of an (M + 1)-cyclic fixed point has the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −1

1 0 0 ... 0 −1

0 1 0 ... 0 −1

0 0 1 ... 0 −1

... ... ... ... ... ...

0 0 0 ... 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.4.5)

The characteristic polynomial is

p(λ) = λk−1 + λk−2 + λk−3 +⋯ + λ + 1, (5.4.6)

all of whose roots lie on the unit circle (i.e. the fixed point is neutral).

Compared to the RS model, where the (M + 1)-cyclic solution falls into one

of three cases (two of them sharing a Jacobian), the overlap model gives rise to seven

cases, categorized based on the initial positions of x2 and xk.

5.4.3 k = M + 1 cases in the overlap model

Case 1: When x1 = 0, R is empty and S contains no clusters other than x1

We will see that in this case the k-cyclic solution is stable for negative feedback

and unstable for positive feedback. This is identical behavior to that observed in the RS

model.
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There are two sub-cases; xk must enter R before x1 leaves S , or the system is

decoupled (violating the fact that k > M), but x2 may or may not enter O before x1

leaves S .

Case 1a: xk → r,x1 → s,xk → s1.

The Jacobian in this case is identical to (C.2.1), except that 1 + f (1/k) is

replaced by 1+ f (2/k)
1+ f (1/k) . The question of whether the eigenvalues fall inside or outside

of the unit circle in that case is resolved entirely by whether the constant in the last

column is between 0 and 1 in absolute value (negative feedback, stable) or greater than

1 (positive feedback, unstable). Since −1+ f (2/k)
1+ f (1/k) is likewise a constant that is between

0 and 1 for negative feedback, and greater than 1 for positive feedback, this (M + 1)-

cyclic solution has the same stability as in Case 1 of the RS model, that is to say that it

is stable when the feedback is negative, and unstable when the feedback is positive.

Case 2: When x1 = 0, x2 < s

The Jacobian near the fixed point is given by (C.2.3). Thus this case shares the

stability of Case 2 for the RS model, i.e. the fixed point is neutrally stable.

Case 3: When x1 = 0, r ≤ xk < s1

In the RS model, an (M + 1)-cyclic solution that has a cluster in R when

x1 = 0 is neutrally stable under positive or negative feedback. In the overlap model,

there are three subcases, and only one of them is neutrally stable. The key difference

is that although x1 leaves S before xk−1 enters R, the cluster xk−1 will still experience

feedback in this model, since it will be in R while xk is in O. There are three subcases,

corresponding to orders of events.

Case 3a: xk → s1,x1 → s,xk−1 → r
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For notational simplicity, we let w = 1+ f (2/k)
(1+ f (1/k))(1+ f (1/k)) xk(0). The Jacobian of F

in this case is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −w

1 0 0 ... 0 −w

0 1 0 ... 0 −w

0 0 1 ... 0 −w

... ... ... ... ... ...

0 0 0 ... (1 + f (1/k)) −(1 + f (1/k))w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.4.7)

Although the Jacobian is different from the RS model, the characteristic polynomial is

the same as in Case 1b,

p(λ) = λk−1 + (1 + f (1/k))(λk−2 + λk−3 +⋯ + λ + 1), (5.4.8)

and is stable for negative feedback and unstable for positive feedback.

Case 3b: x1 → s,xk−1 → r,xk → s1

The Jacobian for this case has 1’s down the semidiagonal and −1’s down the

last column, and is neutrally stable for both positive and negative feedback.

Case 3c: x1 → s,xk → s1,xk−1 → r

The Jacobian for this case has 1s down the semidiagonal and −1’s down the

right column, except for the last row: J(k−1, k−2) = 1+ f (1/k) and J(k−1, k−1) = −(1+

f (1/k)). Its characteristic polynomial has leading coefficient 1 and all other coefficients

1 + f (1/k), again reducing to Case 1 from Chapter 2, and is thus asymptotically stable

under negative feedback, and unstable under positive feedback.

Case 4: When x1 = 0, s1 ≤ xk < 1
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The Jacobian of F near the cyclic solution is

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −1/(1 + f (2/k))

1 0 0 ... 0 −1/(1 + f (2/k))

0 1 0 ... 0 −1/(1 + f (2/k))

0 0 1 ... 0 −1/(1 + f (2/k))

... ... ... ... ... ...

0 0 0 ... 1 + f (2/k) −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and it has characteristic polynomial (C.2.4). Thus the fixed point is neutrally stable.

In analysis of the k = M + 1 case, the overlap may be seen, in a sense, to

strengthen the stability and instability of the RS model. That is to say, that cases that

were stable (unstable) under negative (positive) feedback in the RS model retain that

stability (instability), but some cases that were previously neutrally stable are promoted

to full stability (instability). In particular, although an initial solution with more than

one cluster in S can still only be neutrally stable, the overlap region allows for stable

solutions to exist where R is not initially empty. We note that the stability-reversal of

the gap model, where adding a gap can (in an ε-small region of parameter space) cause

k = M + 1 solutions to be unstable under negative feedback and stable under positive

feedback, does not occur in the overlap model.

We summarize the results of this section in Table 5.1.
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Table 5.1: Summary of the k = M + 1 cases in the overlap model

Case label σ ρ ζ order of events Stability

Case 1a 1 k k ek
re

1
se

k
ζe

k
1 stable/unstable

Case 1b 1 k k ek
re

k
ζe

1
se

1
k stable/unstable

Case 2 2 k k e2
se

k
re

k
s1

ek
1 neutral

Case 3a 1 k-1 k ek
s1

e1
se

k−1
r ek

1 stable/unstable

Case 3b 1 k-1 k e1
se

k−1
r ek

s1
ek

1 neutral

Case 3c 1 k-1 k e1
se

k
s1

ek−1
r ek

1 stable/unstable

Case 4 1 k-1 k-1 e1
se

k−1
r ek−1

s1
ek

1 neutral

We summarize the k=M + 1 cases. The “Case label” column refers to the bolded heading

by which each case is identified in the text. The columns σ, ρ, and ζ are self-explanatory.

Because so many parameters are repeated (e.g. ρ = ζ), superscripts are used in the event

chains to prevent confusion. In the final column, ”neutral” means that the k-cyclic

solution is neutrally stable under either positive or negative feedback, while

stable/unstable means that is is stable under negative feedback and unstable under positive

feedback.

5.5 The full phase space

Thus far, the results of this chapter have been direct analogues of previous

results; the addition of a condition to the synchrony theorem Theorem 5.2.1 seems

relativly trivial, and although we observe stability in regions of the parameter space,

in the k = M+1 case, where it could not previously occur, we observed no truly unusual

behavior, in contrast with [30] where stability can occur under positive feedback. We

have conducted our investigation, however, largely in the clustered subspace. We will

now see that the overlap model is capable of behavior in the full phase space very

different from anything previously observed.
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We start by observing that if O is assumed to be sufficiently small, then xζ → s1

will always be the penultimate event of F, followed by xζ → 1. We conduct our

investigation in this context. We first observe a result that is directly parallel to the RS

case (in particular, to Corollary 3.2.9).

5.5.1 Theorem. Let x̄ be a k-cyclic solution under negative feedback governed by the

order of events eser, such that x̄ is not on the boundary of an event region, and let the

overlap region O be sufficiently small. Then x̄ is unstable in the full phase space.

The proof of the theorem rests on the observation that small groups (such as the

desynchronized collection of cells formerly belonging to a single cluster) increase in

diameter under the order of events of the lemma as long they are in a neighborhood of

x̄.

Proof of Theorem 5.5.1. We mimic the proof of Theorem 5.2.2. Select a group of m = n/k

cells and number those cells cm < cm−1 < ... < c2 < c1. Under this numbering, when the

group begins to undergo an event, ci is the i’th cell of the group to cross that boundary (s,

r, s1, or 1) that defines the event. Let εi = ci − ci+1 for i = 1,2, ...,m − 1. We consider how

εi changes over the course of a single Poincaré map for a fixed i. First observe that when

both ci and ci+1 belong to the same region O, R̃, or S 1/(S ∪ R), they travel at the same

rate, and εi is unchanging. In fact, εi can only change during three periods of time: when

ci ∈ R, ci+1 ∉ R, when ci ∈ O, ci+1 ∈ R̃, and when ci ∈ S̃ , ci+1 ∈ O. We consider how εi

changes over these time intervals.

Over the course of a single Poincaré map, we may assume by continuity that entire

groups experience the same order of events. That is, the order of events tells us that when

the group of interest passes into R, there are σ − 1 groups in S , or σ−1
k of the groups in

the system. We now assume that when the group we are interested in passes into R, all of

the cells that belonged to those σ − 1 groups, or σ−1
k of the cells in the system, are in S .

It takes time εi for the cells to advance from ci = r to ci−1 = r, and over the course of that
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period, ci is traveling at a rate of (1 + f ((σ − 1)/k)). Thus

εi → (1 + f ((σ − 1)/k))εi.

Now consider how the size of the gap changes as ci and ci+1 enter O. For O

sufficiently small, xk of the k-cyclic solution entered O after xσ had already left S . For

sufficiently small perturbations, group we are considering therefore enter O after k/n

cells have left S . We recall that we have taken all εi to be sufficiently small that the group

entirely enters O before any of its cells pass into S̃ . When x1 = r, the fraction of cells in

O is I = (σ−1)(n/k)
n . The cells of the group of interest have been so numbered that when

ci = s1, there are I = (σ−1)(n/k)+i
n cells in S , since for O sufficiently small, O may be

assumed to be empty except for the i cells of the group that have passed into it.

When ci = s1, the adjacent cell ci+1 lies a distance of (1+ f ((σ−1)/k))εi behind it.

Travelling that distance at a rate of 1 + f ( (σ−1)(n/k)+i
n ) takes time t = (1+ f ((σ−1)/k))

(1+ f ( (σ−1)(n/k)+i
n ))εi.

In the time it takes ci+1 to reach s1, the cell ci, which is in O and therefore under the

influence of a different feedback function g, reaches the point

s1 +
(1 + f ((σ − 1)/k))
(1 + f ( (σ−1)(n/k)+i

n ))
(1 + g((σ − 1)(n/k) + i

n
))εi

. Thus

εi → (1 + f ((σ − 1)/k))εi →
(1 + f ((σ − 1)/k))
(1 + f ( (σ−1)(n/k)+i

n ))
(1 + g((σ − 1)(n/k) + i

n
))εi.

By the time ci reaches 1, there are σ/k cells in S , in the form of the cells that

formed σ − 1 of the k clusters lying in S̃ , and the cells that formed another cluster lying

in O. Because ci now moves at unit rate, the final size of εi is simply the time it takes ci+1

to reach 1. And because xi+1 is travelling at a constant rate, the time T it takes to traverse

distance (1+ f ((σ−1)/k))
(1+ f ( (σ−1)(n/k)+i

n ))(1 + g( (σ−1)(n/k)+i
n ))εi at rate (1 + g(σ/k)) is

(1 + f ((σ − 1)/k))
(1 + f ( (σ−1)(n/k)+i

n ))
(1 + g((σ − 1)(n/k) + i

n
))εi = (1 + g(σ/k))T, so

T = εfinal =
(1 + f ((σ − 1)/k))
(1 + f ( (σ−1)(n/k)+i

n ))
(1 + g( (σ−1)(n/k)+i

n ))
1 + g(σ/k) εi > εi.
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To see the final inequality, note that ((σ − 1)/k) = (σ−1)(n/k)
n < (σ−1)(n/k)+i

n and

σ/k = σ(n/k)
n > (σ−1)(n/k)+i

n for 0 < i < n/k. Since f is monotonically decreasing the

denominator of the fraction is smaller than the numerator.

Let U be any open neighborhood of x̄ small enough that the previous argument

holds in U. If an initial condition lies a bounded distance from x̄, then there is a uniform

bound on the distances between the cells of the clusters, εi ≤ ε. All εi grow by at least

some minimum factor, since there exists a uniform lower bound on that factor; this is

because σ and i in the above equation can take on only finitely many values. What that

lower bound is depends on the ratios of f and g, and thus on the details of the feedback

functions. Repeated applications of the Poincaré map thus take any initial condition in

U permanently outside of U, for any sufficiently small neighborhood U of x̄, i.e. x̄ is

unstable. �

If we draw parallels to the results of the RS model, we expect that if we switch

the order of events, the expansion we just observed will turn into a compression.

That is not true in the overlap model, where reversing the order of events can result

in a variety of behaviors. We start by the observation that the more unpredictable

behavior of the system is a result of it being defined in terms of two different feedback

functions. In the special case where f = g, the expansion still does not turn into

compression, but the behavior of the system is at least straightforward.

5.5.2 Proposition. Let f = g, and let x̄ be a k-cyclic solution governed by the order of

events eres. Then for ∣O∣ sufficiently small, and ȳ a sufficiently small perturbation of x̄ in

the full phase space, as long as ȳ remains in a neighborhood of x̄, the groups will neither

expand nor contract.

Proof. Mimicking the last proof, we see that εi ↦ (1+ f (σ/k))
(1+ f ( (σ−1)(n/k)+i

n ))
(1+g( (σ−1)(n/k)+i

n ))
1+g(σ/k) εi. For

f = g, this reduces to εi → εi. �
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We know that in the case of the RS system, groups governed by the order of

events in Lemma 5.5.2 decrease in diameter under negative feedback (Lemma 3.2.4

of Chapter 3) as long as they are in a neighborhood of the k-cyclic solution. If the k-

cyclic solution is stable in the clustered subspace, this implies stability in the full phase

space (Theorem 3.5.1). The proof generalizes to the case where solutions in the full

phase space do not increase in (component-wise Euclidean) distance from the clustered

subspace to yield the following.

5.5.3 Corollary. If x̄ is stable in the clustered subspace of the overlap system, under the

restrictions that ∣O∣ << min{∣S̃ ∣, ∣R̃∣, r − s} and f = g, then x̄ is neutrally stable in the full

phase space.

Theoretically, Corollary 5.5.3 applies to either negative or positive feedback.

However, in the RS model, asymptotic stability cannot occur under positive feedback,

and the behavior of the overlap model in the clustered subspace seems to mimic the

behavior of the RS model, suggesting that stability under positive feedback in the

clustered subspace in the overlap model does not occur.

For f ≠ g, no feedback-independent theorem can be stated. For example, if f

is approximately constant, and g increases relatively quickly in absolute value, then

groups will tend to expand; in the opposite case, with g approximately constant and

f quickly changing, groups will tend to contract. Biologically, there may be some

justification for assuming g to be approximately constant, if the reaction of a cell to

the chemicals it produces within itself is taken to be so overwhelming as to render its

reaction to the chemical production of other cells basically irrelevant, but we do not

expand this intuition into a restriction on the system.

Consider two graphics (Figure 5.3) illustrating this point. In both cases, fifty

cells are initially placed (in a uniform random pattern to remove any systematic bias of

the system) within an open ball of radius .01 centered at 0, and fifty cells are likewise

placed in a similar open ball centered at .5. In both simulations, we use s = .3, r = .7,
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s1 = .98, and f and g are weak enough that M = 1 as in the standard RS model, and the

2-cyclic solution is stable in the clustered subspace. In one case f is almost constant,

and in another, g is almost constant. The simulations confirm that this has the predicted

results.

(a) Here, f (I) = −.3I changes rather
quickly, while g(I) = −.01I − .3 (g(0) = 0)
is almost constant. As predicted, the groups
collapse into clusters almost immediately.

(b) Here, f (I)=−.01I and g(I) = −.1I. As
expected, the groups explode in diameter,
and the system moves away from the
2-cyclic solution.

Figure 5.3: In the overlap model (and only in the overlap model, of the three models we
have been contrasting), the dynamics of the system in the full phase space can be radically
altered by varying the feedback functions. Pictured is a neighborhood of the 2-cyclic
solution in a region of parameter space, s = .3, r = .7, and s1 = .98. The 2-cyclic solution
is stable in the clustered subspace in both figures, but different feedback functions yield
drastically different behaviors in the full phase space.

In general, from the proof Theorem 5.5.2, we can see that some cells may

converge towards one another while other cells remain apart (i.e. εi → 0 for some,

but not all, i), depending on the feedback functions. In particular, if the feedback

functions grow in an erratic fashion, such that adding one cell to S sometimes has a

negligable effect on the strength of the feedback, and sometimes causes the strength to

change abruptly, then this is likely to occur. We already saw from Lemma 5.4.1 how

the strength of the feedback functions can control the behavior of the k-cyclic solutions

in the clustered subspace, an idea we shall return to in Section 5.6. We know that the
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strength of the feedback functions controls the behavior of the k-cyclic solutions in the

full phase space; we consider further the effect of varying the feedback.

(a) Four clusters are
positioned in a neighborhood
of the 2-cyclic solution,
which is stable in the
clustered subspace.

(b) In this figure, we observe
100 cells in a neighborhood
of the 2-cyclic solution. They
are placed in a sufficiently
wide neighborhood that the
order of events of
Theorem 5.5.2 are not
satisfied.

(c) The cells are evenly
spread about the circle in an
approximation of the uniform
solution.

Figure 5.4: The evolution of the system with parameters s = .3, r = .7, and s1 = .98, with
f (I) = −.1I and g = f − .2. This is a region of stability for the 2-cyclic solution in the
clustered subspace. Intuitively, we expect that since f and g decrease at the same rate,
groups near the 2-cyclic solution should neither collapse to points nor expand too far
away from the solution. The initial value of (a) results in two pairs of two clusters,
something that can happen in the RS and gap model only if the k-cyclic solution is
neutrally stable in the clustered subspace. In (b), εi converges to 0 for some but not all
values of i, causing clusters of different sizes to develop. An initial condition of cells
spread uniformly around S 1 converges to two groups, which do not contract into clusters.

Figure 5.4c paints a pleasant picture of stability in the full phase space. True,

the system is not converging to the 2-cyclic solution in a region of parameter space

where, in the clustered subspace, the 2-cyclic solution is stable, but it is clearly self-

orgazing into two groups. Unfortunately, no general theorem in that vein can be stated.

In Figure 5.3b, we simulate the system for the first several thousand iterations of the

Poincaré map, and observe that the groups expand under the effect of the system. We

now observe the same system over the course of 15,000 iterations of P. We observe

that although the initial condition was in a neighborhood of the 2-cyclic solution, stable
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in the clustered subspace, the system never returns to that neighborhood. Instead, it

appears to converge to a 20-clustered solution, although since the size of the clusters

are not equal, it is not the 20-cyclic solution.

Figure 5.5: For parameter values s = .3, r = .7, and s1 = .98, and relatively weak feedback
functions f and g, the 2-cyclic solution is stable in the clustered subspace, but unstable in
the full phase space, behavior unique to the overlap model. We observe this instability in
simulation by considering an initial condition of 100 cells placed uniformly in an
ε-neighborhood of the 2-cyclic solution in the full phase space. Although it is not obvious
from the graph, we observe that the clusters that form are not all of the same size, and this
solution is therefore not converging to a cyclic solution.

We further consider in simulation what effect varying the strength of g has when

the remaining system parameters remain constant. We define the function

h(I) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 I = 0

−1 otherwise.
(5.5.1)

Starting with the feedback function f (I) = −.6I, we define a series of weighted

averages, gi = ih+ f
i+1 . Thus g0 = f , and the strength of gi increases with i. We vary i

and observe the effect it has on the model.
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(a) i=0 (b) i=.3 (c) i=.5

(d) i=.8 (e) i=1 (f) i=1.3

(g) i=1.5 (h) i=1.7 (i) i=2

Figure 5.6: Fifty cells are evenly distributed across the interval with s = .3, r = .7, s1 = .95.
The strength of g (in absolute value) increases from top left to lower right.

Here, at least, the behavior of the system is easy to understand in broad terms;

as g increases in magnitude, the parameter values move from being in the interior of

the (clustered) stability region of the 2-cyclic solution to the interior of the (clustered)

stability region of the 3-cyclic solution. Meanwhile, because the strengthening of g is

causing it to converge to the constant (zero-slope) function g = −1, the diameters of the

groups are converging to 0 as discussed after Corollary 5.5.3. Observe that although we

have seen that certain feedback functions can cause aberrant behavior, the system here

is behaving as one would naively expect, converging to k groups where the k-cyclic
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solution is stable in the clustered subspace. We will talk more about this transitioning

from one region of stability to another in the next section. Although it is framed in

terms of varying s1, there are obvious similarities between increasing the size of the

overlap interval and increasing the strength of the feedback.

5.6 Bifurcations in s1

Adding a sufficiently small overlap region does not effect the stability of k-

cyclic solutions in the clustered subspace.

5.6.1 Theorem. Consider two systems, an RS system and an overlap system with the same

parameters s, r, and f , and k-cyclic solutions x̄ and x̃, respectively. There exists an ε > 0

such that if 1−ε < s1 < 1, then x̄ and x̃ share the same stability type (asymptotically stable,

unstable, or neutrally stable) in the clustered subspace.

Proof. Consider x̄ in the RS system, and let time run forward until xk = s1 (a number

that has no significance in the RS system). This map, which wil bel denoted by GRS ,

defines the stability of the system when ε is sufficiently small, in the standard sense

that the eigenvalues of DGRS are either greater than, less than, or equal to 1. To justify

this observation, note that since xσ has already left S , by the time xk reaches s1 (by the

assumption that ε is sufficiently small), the time for xk to pass from s1 to 1 is constant,

tc = 1−s1
1+ f ((σ−1)/k) . Thus FRS = GRS + tcv+(1+ f ((σ−1))/k)tcu, where v and u are vectors of

1’s and 0’s carrying the information of which clusters are and are not in R. The map GRS

is affine, GRS = Ax + b; and FRS = Ax + c, where the constant c subsumes b, tcv, and tcu.

Thus FRS and GRS have the same linear part.

Now consider x̃ in the overlap model. We define GRS O in the analogous way.

Because the overlap model acts identically to the RS model until xk reaches s1, and the

time it takes to travel from s1 to 1 is a constant that does not affect the Jacobian, GRS O =

GRS . And for the same reason discussed above, GRS O defines the stability of the overlap

system. Thus the stability type of each system is determined by the same matrix. �
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As s1 decreases away from 1, however, the behavior of the overlap model

may change from the behavior of the RS model. These changes happen suddenly and

discontinuously, and come in two types. In the following definition, and the ensuing

discussion, we view M as a function of s1, with all other parameters fixed.

5.6.2 Definition. An M-Bifurcation occurs when reducing s1 away from 1 causes M to

change. More formally, for a fixed f , g, r, and s, a given s∗1 is an M-bifurcation point if

M(s∗1 − ε) ≠ M(s∗1) for arbitrarily small ε.

This may happen because the definition of MRS , in the RS model, depends

entirely on r and s, while M in the overlap model also depends on s1 and g.

5.6.1 Example. Let s = .2, r = .8, and f (I) = − 1
2 I. Then M = 2, and the 2-cyclic solution

(0,1/2) is neutrally stable.

It can be calculated that in the overlap model, for f (I) = −.5I and g(1/2) = −.9,

s1 = 44
45 is an M-bifurcation value, in the sense that for s1 ≥ 44

45 , M = 2, while for s1 < 44
45 ,

M = 1. The fixed point at s1 = 44
45 , x2 = .6, lies on the edge of an event triangle (x2 reaches

r at the same time that x1 reaches s), and is stable.

Since this M-bifurcation causes an interval of neutrally stable points that

were 2-periodic under F to converge to a single 1-periodic stable fixed point, this M-

bifurcation has parallels to the classic period-doubling bifurcation.

5.6.3 Theorem. The addition of an overlap region into an RS system, or the increase

of the size of O in an existing overlap system, can only cause M to remain constant or

decrease, in the case of negative feedback; or remain constant or increase, in the case of

positive feedback.

Proof. Observe that if s1 = 1, M = MRS = 1
1−r+s . Then if it can be shown that

M is increasing on the interval [r,1], we can conclude that the addition of an overlap

to an RS model can only cause M to remain constant or decrease. The derivative of



177
1−s1

1+g(1/k) + s1

1−s1
1+g(1/k) + s1 − r + s

is
( −1

1+g + 1)(−r + s)
( 1−s1

1+g(1/k) + s1 − r + s)2
. Under negative feedback, that is when g < 0,

the derivative is positive. Under positive feedback, the derivative is negative.

�

Because r < s1, there are limits to how large O can be made, and no guarantee

that an M-bifurcation will be possible for a given set of parameters (s, r, f ,g).

It is possible for M to remain unchanged by the addition of an overlap region

into the system, but the order of events, and thus potentially the stability of the system,

may change. This may happen, for example, when MRS = 1, and thus cannot be reduced

further, no matter how powerful and large the overlap region is made.

5.6.4 Definition. An E-Bifurcation occurs when M is constant in a neighborhood of s1,

but changing s1 changes the order of events, and thus potentially the stability type, of the

system.

5.6.2 Example. Refer back to Example 1. When s1 is slightly less than 44/45, the order

of events is ereses1e1. This order of events is maintained until s1 is reduced to 16/17, at

which point the order of events changes; in particular, this is the point at which events

es1 and es occur concurrently. Since M cannot decrease past 1, it is an E-bifurcation. In

spite of this language, there is no change in stability, because the new order of events,

Item 3b of Proposition 5.3.2, still corresponds to a stable 2-periodic fixed point. Although

event regions are not triangles (they are convex three-dimensional regions), Chapter 2

still provides enough intuition to see that this is not unexpected; passing from one stability

region to another is expected to change the stability in only a minority of cases (for

example, in the RS model under positive feedback, transitioning from an interior to a

boundary triangle may cause the k-cyclic solution to go from unstable to neutral, but any

transition from one interior triangle to another preserves instability.)

We have seen, however, that M, and the clustered subspace in general, only

sporadically and unreliably predict the behavior in the full phase space. Consider again
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the parameter values s = .3, r = .7, and define feedback functions f (I) = −.2I and

g(I) = −.3I − .1 (g(0) = 0). Then M = 1 is constant as s1 runs over R, but the dynamics

of the system in the full phase space undergo significant changes. We simulate this

behavior for sixteen values of s1 in Figure 5.7, taken at .02 intervals. Starting with

50 cells spread uniformly around the circle, the Poincaré map is repeatedly applied.

The horizontal axes of the graphs represent the number of times the Poincaré map has

been applied; once the system comes into a neighborhood of a fixed point the return

time becomes approximately constant, so the horizontal axes can also be thought of as

roughly representing time. The vertical axes, ranging from 0 to 1, represent the state of

the system after that iteration. Although changing s1 does not change M, it significantly

impacts the behavior of the system.

Figure 5.7p is the limiting case where s1 = 1, i.e. the RS model. The 2-cyclic

solution is stable for these values of s and r in the clustered subspace, and therefore

in the full phase space. As the overlap region widens, the stability in the clustered

subspace quickly loses its ability to control the system; for s1 = .98, convergence is

radically slowed, and somewhere between s1 = .98 and s1 = .94, the initial condition

begins to converge to a very different steady state.

Although a small overlap regions quickly breaks the stability of the 2-cyclic

solution in the full phase space, we observe that as s1 → r, the 2-cyclic solution again

begins to appear. For the limiting case s1 = r, the system behaves essentially the

same as in the non-overlap case. A cell enters R and starts to experience feedback; the

feedback it experiences is piecewise constant, increasing and decreasing as cells enter

and leave R according to the effects of a single feedback function. The only difference

between this limiting-case overlap model and the RS model is when a cell enters or

leaves S . It is therefore unsurprising that for s1 = r the system behaves similarly to an

RS model.
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(a) s1 = .7 (b) s1 = .72 (c) s1 = .74 (d) s1 = .76

(e) s1 = .78 (f) s1 = .80 (g) s1 = .82 (h) s1 = .84

(i) s1 = .86 (j) s1 = .88 (k) s1 = .90 (l) s1 = .92

(m) s1 = .94 (n) s1 = .96 (o) s1 = .98 (p) s1 = 1

Figure 5.7: For parameter values s = .3, r = .7, and feedback functions f (I) = −.2I and
g(I) = −.3I − .1 (g(0) = 0), we consider the effect of changing s1 on solutions starting
from an initial condition of 50 equally spaced cells under 500 iterations of the Poincaré
map.

Thus the limiting case where s1 = 1 is the RS model, and the limiting case

where s1 = r is “like the RS model.” We have seen that the RS model has the important

property that stability in the clustered subspace implies stability in the full phase space,

and we have seen that the overlap model lacks this property in general. It is natural to
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ask, as an area of future research, whether there are restrictions that can be put on s1

such that stability in the clustered subspace implies stability in the full phase space in

some subset of the (s, r, s1)-tetrahedron. One might intuitively expect that this behavior

will occur when s1 ≈ 1, since it occurs when s1 = 1. But it seems in simulation (we

include only a representative set of plots, but have performed such simulations with

a variety of parameter values) that in fact small perturbations of s1 = 1 cause this

property to be lost extremely quickly. On the other hand, the case that is only “like

the RS model” preserves the behavior of the RS model extremely well; the endpoint

s1 can increase by a full .10, from s1 = .7 to s1 = .8, before the stability of the 2-

cyclic solution in the clustered subspace ceases to result in stability in the full phase

space. We are therefore left with the unintuitive suggestion that the wilder behavior of

the overlap system is best minimized by increasing rather than decreasing the size of

the region that causes that behavior. This suggestion gains support from Section 5.4.2,

where cases that imply a large overlap region (Cases 1b and 3a) are seen to correspond

to stable solutions.

5.7 Conclusions and discussion

We have seen that the overlap model behaves similarly to the RS model in the

clustered subspace. In the full phase space, it acts in somewhat unpredictable ways that

require further research and clarification.

When f = g, stability in the clustered subspace implies neutrality in the full

phase space under one order of events. In the absence of noise, this may be suitable

for modeling. However, we have seen in Chapter 4 that even when a solution is

asymptotically stable in the full phase space, considerable feedback is required to

overcome the dispersive forces inherent to the biological system. When additive noise

is added to a system, neutrally stable solutions are likely to be untenable (e.g. [51]).
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Thus it is likely that g should be proscribed to be strictly greater than f if noise is to

be added to the system.

When g > f , we see that asymptotic stability in the clustered subspace may, or

may not, imply asymptotic stability in the full phase space. Clarifying the relationship

between stability in the clustered and full spaces is a subject of interest as of the time

of writing.
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Appendix A: Calculations In the RS model

In this appendix, we include such calculations as are necessary for the

discussion of the RS model in this thesis but, due to length, cannot be included in the

body of the thesis without disruption.

A.1 Analysis for k = 2

In this appendix, we completely quantify the possible behaviors of a two-cluster

system under the RS model.

Recall the notation α = f (1
2).

In the case where r + (1 + α)s < 1, we obtain that F is a continuous decreasing

map:

F(x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − x2 if 0 ≤ x2 ≤ r − s

1 − (1 + α)x2 + α(r − s) if r − s < x2 < r

1 − x2 − αs if r ≤ x2 < 1 − (1 + α)s

1
α+1(1 − x2) if 1 − (1 + α)s < x2 ≤ 1.

In the case where r + (1 + α)s ≥ 1, we calculate F to be

F(x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − x2 if 0 ≤ x2 < r − s

1 − (1 + α)x2 + α(r − s) if r − s < x2 ≤ 1
α+1 + α

α+1r − s

r − x2 + 1
α+1(1 − r) if 1

α+1 + α
α+1r − s < x2 ≤ r

1
α+1(1 − x2) if r < x2 ≤ 1.

We report the details of computations in the case where (1 + α)s < 1 − r. The

other case can be treated similarly and we only give below the resulting expression of

F. When (1 + α)s < 1 − r, there are 4 situations depending on the location of x1:

● x1 ≤ r − s. In this case, x0 leaves S before x1 enters R. The point x1 is not

submitted to any feedback and hence x1(t) = x1 + t for all t which implies

F(x1) = t1 = 1− x1. (The occurrence of this case is independent of r+(1+α)s < 1.)
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● r − s < x1 ≤ r. Here x1 is influenced, but not during the entire responsive region

since x0 gets out of S before x1 reaches 1. More precisely, we have¶

x1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + t if 0 < t < r − x1

r + (1 + α)(t − r + x1) if r − x1 < t < s

r + (1 + α)(s − r + x1) + t − s if s ≤ t

It follows that F(x1) = 1 − (1 + α)x1 + α(r − s).

● r < x1 ≤ 1 − (1 + α)s. Then

x1(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 + (1 + α)t if 0 < t < s

x1 + (1 + α)s + t − s if s ≤ t

from which we obtain F(x1) = 1 − x1 − αs.

● 1 − (1 + α)s < x1 ≤ 1. In this case, x1 starts sufficiently close to 1 to have velocity

1 + α when reaching the boundary. We have F(x1) = 1
α+1(1 − x1).

As argued for arbitrary k, the map F has a k-periodic orbit which, for k = 2, is

composed of the boundaries 0 and 1. By the Intermediate Value Theorem, it must also

have a fixed point on the diagonal.

The graph of F coincides with the anti-diagonal (1 − x1) for x1 ≤ r − s. For

α = f (1
2) > 0 it is strictly lower than this line if r − s < x1 < 1; but if α < 0, then it

is strictly greater than 1 − x1 for r − s < x1 < 1. The dynamics can be characterized

completely for arbitrary parameters when k = 2. The following conclusions hold:

• If r − s > 1
2 , each point of the interval [1 − r + s, r − s] is part of a 2-periodic orbit

x ↦ 1 − x ↦ x, except for the point x = 1
2 which is fixed. The return map F2 thus

has an interval of neutrally stable fixed points centered around x1 = 1
2 .

● If α > 0, if x1 is above (resp. below) this neutral interval, we have F2(x1) >

x1 (resp. F2(x1) < x1) and so any initial point converges to 1 (resp. 0).
¶ The occurrence of the late phase where x1, although being in R, moves with velocity 1, is because

r + (1 + α)s < 1; at time t = s, when x1 has left S , the cluster x2 is still in R.
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Figure A.1: Plots of the mapping F for k = 2 and α = f (1
2) = 1

2 . (a) r + 3
2 s < 1. (b)

r + 3
2 s ≥ 1. If r − s > 1/2 (which implies M ≥ 2) then there is a neutral fixed point at 1/2

that represents an isolated 2 cluster cyclic solution. If the second segment intersects the
diagonal, then there is an isolated 2 cluster cyclic solutions that is stable for α < 0 and
unstable for α > 0. There also may exist neutral fixed points for r − s < 1/2 (M = 1) and
certain conditions on the parameters where the third piecewise segment of F intersects the
diagonal line. These fixed points represent 2 cluster cyclic solutions that are not isolated,
but yet are neutrally stable.

● If α < 0, if x1 is above (resp. below) this neutral interval, we have F2(x1) <

x1 (resp. F2(x1) > x1) and so any initial point converges to the boundary of

the neutral interval.

• If r − s = 1
2 , there is a unique fixed point. It is stable for negative α and unstable

for positive α.

• If r − s < 1
2 there are three possibilities depending on where the diagonal line x = y

intersects the graph of F (see Figure A.1).

● If the diagonal intersects the second segment then there is a unique fixed

point which is stable if α < 0 and unstable if α is positive.

● If the diagonal intersects the third segment of F, then there is again an

interval of neutral period 2 points. The edge of the interval is stable for

negative α and unstable for positive α.
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● If the diagonal hits the boundary between segments 2 and 3 of F then

there is a unique fixed point which is stable for negative α and unstable for

positive α.

All of these possibilities are summarized in just four distinct types of behaviour in

Section 2.2 and Figure 2.2.

The condition r − s > 1/2 corresponds to M ≥ 2. In such a case the cyclic 2

cluster solution consists of isolated clusters and it is contained in an interval of neutral

period two points. This interval is an attractor for negative feedback and a repeller for

positive feedback.

Note that the condition r − s < 1/2 corresponds to ∣R∣ + ∣S ∣ > 1/2 which implies

that M = ⌊(∣R∣+∣S ∣)−1⌋ = 1. Thus when the 2 clusters cannot be isolated, there is a cyclic

2 cluster solution which is a fixed point of F. This solution may be unique and stable

(under negative feedback), unique and unstable (under positive feedback), or neutral,

depending on the parameters.

One can easily calculate that the diagonal line cannot intersect the fourth

segment of the graph of F in either case (A.1) or (A.1).

In case A.1 it is seen that the third segment can be intersected by the diagonal

by making r sufficiently small. This corresponds to the x1 coordinate of the fixed point

being greater than r so that the second cluster begins in the responsive region R. From

the conditions, it is still in R when x0 leaves S . There is an interval of fixed points for

F2 even though the clusters are not isolated.

The diagonal also can intersect the third segment for case A.1 if x1 is in S

when x2 enters R, and remains in S until x2 reaches 1. Thus we have another case

of interacting clusters that still leads to a neutral fixed point. Note, however, that in

a sufficiently small neighborhood of these fixed points, clusters can be meaningfully
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thought of as not interacting; each cluster moves at a rate of

ẋi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if 0 ≤ xi < r

1 + f (1/2) if r ≤ xi < 1,
(A.1.1)

regardless of the precise location of the other cluster.

A.2 The dynamics of the 3-cyclic solution

In this appendix, we rigorously investigate the stability of the 3-cyclic solution

in each of the nine stability triangles (see Chapter 2 that k = 3 defines.

Figure A.2: Regions of parameter space and appropriate initial conditions for a k = 3
cyclic solution. For example, regions 7 and 8 both begin with x1 ∈ [s, r) and x2 ∈ R. In
region 7 cluster x1 reaches s before x2 reaches r, while in region 8, x2 reaches r before x1

reaches s. Boundaries between the regions correspond to simultaneous events.

Referring to the labeling in Figure 2.6 (reproduced as Figure A.2), we present

calculations verifying rigorously the conclusions of the numerically generated plot

in Figure 2.9 for the case k = 3 under negative feedback. We also consider positive

feedback; the reader may want to focus attention on Region 4, which is of the greatest

interest.

Regions 2, 6, 7:
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In Figure 2.9 for the case k = 3 we see that regions 2 and 7 have neutral

stability of the 3-clustered cyclic solution and in region 6 it is stable. These three

regions are covered by Proposition 2.3.1.

Region 1:

We wish to confirm that for all parameter values in this region, the 3-cluster

cyclic solution is neutrally stable.

For parameter values in this region, all three clusters lie in S when x1 = 0.

After the application of a single F-map, x3 leaves S , enters R, and thereafter travels

at a constant rate of 1 + f (2/3). Thus in a neighborhood of the 3-cyclic solution, the

system is decoupled, i.e. a cluster’s rate depends only on whether or not it is in R.

Alternatively, we can calculate DF.

For parameter values in region 1 both x2 and x3 are initially in S . The order of

events is that first x3 reaches s, then it reaches r and finally it reaches 1. The rate of x3

will be 1 until it reaches r. While in R the cluster x2 will experience feedback due to

x1 and x2, which remain in S until after x3 reaches 1, and so it’s rate will be 1+ f (2/3).

The time required for x2 to reach 1 is thus:

t∗ = r − x2 +
1

1 + f (2/3)(1 − r).

The positions of x1 and x2 at this time will be:

x1(t∗) = t∗ x2(t∗) = x2 + t∗.

We observe that this map is affine in the variables x1 and x2. Thus the derivative of the

map F in a neighborhood of the initial condition of the cyclic solution is:

DF =
⎛
⎜⎜
⎝

0 −1

1 −1

⎞
⎟⎟
⎠
. (A.2.1)

The eigenvalues of this matrix are − 1
2 ± i

√
3

2 , which have magnitude 1. This implies that

the solution is linearly neutrally stable. Since the map is affine in a neighborhood of

the initial condition, the cyclic solution is neutrally stable.
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Region 3:

In this region we wish to confirm that the 3 cyclic solution is stable under

negative feedback, and unstable under positive feedback. The 3-cyclic regions in this

region have two clusters in S when x1 = 0, and none in R. The cluster x3 enters R

before x2 leaves S .

Thus x3 will experience feedback of f (2/3) for the times r − x3 < t < s − x2. For

t > s − x2 it will be subject to feedback f (1/3). The trajectory of x3 is thus:

x3(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3 + t for 0 ≤ t ≤ r − x3,

r + (1 + f (2/3))(t − r + x3) for r − x3 ≤ t ≤ s − x2,

r + (1 + f (2/3))(s − x2 − r + x3) + (1 + f (1/3))(t − s + x2) for s − x1 ≤ t ≤ t∗.

It follows that the return time t∗ satisfies:

1 = r + (1 + f (2/3))(s − x2 − r + x3) + (1 + f (1/3))(t − s + x2),

and so

t∗ = f (2/3) − f (1/3)
1 + f (1/3) x1 −

1 + f (2/3)
1 + f (1/3) x2 +C.

The local affine map is given by:

x1(t∗) = t∗, x2(t∗) = x2 + t∗,

which gives us:

DF =
⎛
⎜⎜
⎝

f (2/3)− f (1/3)
1+ f (1/3) − 1+ f (2/3)

1+ f (1/3)

1 + f (2/3)− f (1/3)
1+ f (1/3) − 1+ f (2/3)

1+ f (1/3)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

f (2/3)− f (1/3)
1+ f (1/3) − 1+ f (2/3)

1+ f (1/3)
1+ f (2/3)
1+ f (1/3) − 1+ f (2/3)

1+ f (1/3)

⎞
⎟⎟
⎠
. (A.2.2)

The characteristic polynomial for this matrix simplifies to:

λ2 + λ + 1 + f (2/3)
1 + f (1/3) = 0.

One can verify that the roots of this polynomial are less than 1 in modulus if and only

if f (2/3) < f (1/3), and greater than 1 in modulus if and only if f (1/3) < f (2/3).
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Those restrictions correspond to monotonicity of positive and negative feedback,

respectively.

Region 4:

We confirm that the 3-cyclic solution is neutrally stable in this region under

negative feedback, and discuss the positive-feedback case. We first compute the time

it takes x3 to reach 1; x3 travels with speed (1 + f (1/3)) until time t = s − x2, then

travels at speed (1 + f (1/3)), allowing us to set up the equation:

1 = x3 + (1 + f (2/3))(s − x2) + (1 + f (2/3))(t∗ − s + x2).

Solving, we find t∗ = 1 + ( f (1/3) − f (2/3))s
1 + f (1/3) − 1

1 + f (1/3) x3+
f (2/3) − f (1/3)

1 + f (1/3) x2.

Cluster x2 travels at speed 1; x2 travels at speed 1 until t = r − x2, then at speed

(1 + f (1/3)):

x2(t∗) = t∗ x2(t∗) = r + (1 + f (1/3))(t∗ − r + x2)

Gathering for convenience the constant terms as a single C, x2(t∗) = (1 +

f (1/3))x2 + ( f (2/3) − f (1/3))x2 − x3 +C = (1 + f (2/3))x2 − x3 +C; thus

DF =
⎛
⎜⎜
⎝

f (2/3)− f (1/3)
1+ f (1/3) − 1

1+ f (1/3)

1 + f (2/3) −1

⎞
⎟⎟
⎠
.

The characteristic polynomial of DF is given by λ2 + λ( f (1/3)− f (2/3)
1+ f (1/3) + 1) + 1. To

simplify the following expressions, we denote w = f (1/3)− f (2/3)
1+ f (1/3) . The roots of the

polynomial are then λ± = −w−1±
√

(w+1)2−4
2 = −w−1

2 ±
√

(w+1)2

4 − 1. We remark that for

negative feedback, 0 < w, and the restriction that −1 < f (2/3) implies that w < 1.

Thus for negative feedback, the roots are complex, and we compute the norm of λ+ as

∣ (−w+1)
2 + (

√
1 − (w+1)2

4 − 1)i∣ = 1

We will see that this is the only one of the nine cases where the strength of

the positive feedback, rather than the mere property of being positive, influences the

stability of the 3-cyclic solution. We will have more to say about this in Section 3.4.5
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of Chapter 3. For now, we observe that w < 0 in the case of positive feedback,

but unlike in the negative feedback case, w is not bounded in absolute value. For a

fixed f (1/3), the value f (2/3) can be made arbitrarily large without violating the

conditions of a feedback function. For modest feedback values (in particular, for

2 f (1/3) − f (2/3) > −3, or w < −3), the roots are complex and the previous argument

shows that they lie on the unit circle. But as w → −∞, both the summands of λ+ go

to +∞, and the maximum root thus increases past 1, i.e. neutrality is transformed into

instability.

Region 5:

In this event triangle, S is always empty when R is nonempty (S contains only

x1 when the cyclic solution passes the Poincaré section, while R is empty, and x3 enters

R only after x1 has left S ). Thus in a neighborhood of the 3-cyclic solution, all clusters

move at a constant rate of 1 for all time, and the 3-cyclic solution is a neutral solution

contained in a neighborhood of neutral 3-periodic solutions.

Region 8:

For parameter values in this region x3 is initially in R (while S contains only

x1), and travels with speed 1+ f (1/3) until time t = s, then at speed 1. The time it takes

to reach 1 can thus be calculated:

1 = x3 + (1 + f (1/3))s + t∗ − s→ 1 − x2 − f (1/3)s = t∗.

Clearly x1(t∗) = t∗; bearing in mind that x2 enters R before x1 leaves S , we

calculate:

x2(t∗) = r + (1 + f (1/3))(s − r + x2) + t∗ − s.

This gives rise to the matrix

DF =
⎛
⎜⎜
⎝

0 −1

1 + f (1/3) −1

⎞
⎟⎟
⎠
,
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yielding a characteristic polynomial of λ2 + λ + (1 + f (1/3)) and roots of λ± =
−1±

√
−3−4 f (1/3)

2 . If the roots are real, which implies that f (1/3) < 0, the maximum

root (in absolute value), λ−, is contained in the interval (−1,− 1
2); its upper bound from

the fact that it has the form −1
2 minus a positive number, its lower bound from the

fact that it increases monotonically in absolute value as f (1/3) decreases, and takes

on the value of −1 when f (1/3) = −1. If the roots are complex, their norm can be

explicitly calculated as
√

1 + f (1/3), which is clearly greater than 1 if and only if

f (1/3) > 0, and less than 1 if and only if f (1/3) < 0. There is thus stability under

negative feedback, and instability under positive feedback.

Region 9:

In this case, when x1 = 0, both x2 and x3 lie in R.

Cluster x3 travels at rate (1 + α1) until time t = s, whereafter it travels with

speed 1. Its rate is thus independent of the exact location of the other clusters, and the

system is decoupled, hence neutral. Alternatively, we can calculate the time it takes x3

to reach 1:

1 = x3 + (1 + f (1/3))s + t∗ − s,

yielding t∗ = 1 − x3 − f (1/3)s.

Cluster x2 experiences feedback exactly when x3 does, and thus travels the same

distance, x2(t∗) = x2 + 1 − x3. The local affine map is given by:

x1(t∗) = t∗ x2(t∗) = x2 + 1 − x3.

The resultant characteristic polynomial, λ2 + λ + 1, has roots strictly on the unit circle.

A.3 The Jacobian of F near a k-cyclic solution

We compute the general Jacobian of F in the RS model in a neighborhood

of the cyclic solution under either possible order of events, for any triangle in the

interior of event space (in particular, such that R is nonempty when x1 = 0). We start
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by computing the return time, which is independent of the order of events. We define

αi = f (i/k).

1 = xk + (1 + ασ)(s − xσ) + (1 + ασ−1)(T − s + xσ)

0 = xk − (1 + ασ)xσ + (1 + ασ−1)T + (1 + ασ−1)xσ +C

0 = xk + (ασ−1 − ασ)xσ + (1 + ασ−1)T +C

T = ασ − ασ−1

1 + ασ−1
xσ −

1
1 + ασ−1

xk +C

(A.3.1)

Then, again independent of the order of events, the following equation is

satisfied:

xi(T) = xi +
ασ − ασ−1

1 + ασ−1
xσ −

xk

1 + ασ−1
xk +C, for i = 1,2, ..., xρ−1. (A.3.2)

.

A special case of the above equation is that

xσ(T) = (1 + ασ − ασ−1

1 + ασ−1
)xσ −

xk

1 + ασ−1
xk +C. (A.3.3)

Any two clusters that start in R travel the same distance (and the last cluster in

R travels a distance 1− xk) over the course of the F-map, and thus, independently of the

order of events,

xi(T) = xi − xk +C for i = ρ + 1, ...k. (A.3.4)

Case 1: eser

If xρ does not enter R until after xσ leaves S , we calculate

xρ(T) = r + (1 + ασ−1)(T − r + xρ)

xρ(T) = (ασ − ασ−1)xσ − xk + (1 + ασ−1)ρ.
(A.3.5)

Thus, in this case, we calculate the following matrix, the Jacobian of F.
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DFsr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

1 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 1 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 1 + ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

1 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 1 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 0 1 + ασ−1 0 ⋯ 0 −1

0 0 ⋯ 0 0 0 ⋯ 0 0 1 ⋯ 0 −1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We clarify the matrix. The i’th row corresponds to the location of xi at time

T ; on the other hand, the i’th column corresponds to the coefficient of xi+1. So, for

example, assuming that ρ > 2, x2(T) = x2 + ασ−ασ−1
1+ασ−1

xσ − xk
1+ασ−1

xk + C. This corresponds

to the second row; the coefficient 1 of x2 appears in the first column, the coefficient

ασ−ασ−1
1+ασ−1

of xσ appears in the (σ − 1)’st column, and the coefficient xk
1+ασ−1

of xk appears

in the (k − 1)’st colum.

In summary:

• There are 1’s down the semidiagonal, except that DFsr(σ,σ − 1) = 1 + ασ−ασ−1
1+ασ−1

and

DFsr(ρ, ρ − 1) = 1 + ασ−1.

• In the column corresponding to xσ (the (σ − 1)’st column), the constant ασ−ασ−1
1+ασ−1

appears in the first through ρ’th rows, except the σ’th row (see the previous

bullet point for the behavior in the σ’th row). From the ρ’th row downwards, a

0 appears.
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• In the last colum, the constant − 1
1+ασ−1

appears in the first to ρ’th rows; from the

ρ’th to (k − 1)’st row, −1 appears.

Case 2: eres

All of the calculations in the previous discussion hold except for that of xρ(T).

We calculate instead

xρ(T) = r + (1 + ασ)(s − xσ − r + xρ) + (1 + ασ−1)(T − s + xσ)

xρ(T) = (1 + ασ)xρ − xk +C,
(A.3.6)

which gives rise to the matrix

DFrs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

1 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 1 ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 1 + ασ−ασ−1
1+ασ−1

0 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

1 ⋯ 0 0 0 ⋯ 0 −
1

1+ασ−1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 ασ−ασ−1
1+ασ−1

0 ⋯ 1 0 0 ⋯ 0 −
1

1+ασ−1

0 0 ⋯ 0 0 0 ⋯ 0 1 + ασ 0 ⋯ 0 −1

0 0 ⋯ 0 0 0 ⋯ 0 0 1 ⋯ 0 −1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋅ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This is identical to the previous matrix, except that DFrs(ρ,σ − 1) = 0 and

DFrs(ρ, ρ − 1) = 1 + ασ.

Although we did not use these matrices to generate stability plots, we will make

extensive use of them in the next chapter, in particular in the proofs of Theorems 3.3.3

and 3.3.4.
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Appendix B: Calculations In the NoiseModels

In this appendix, we include two series of calculations necessary for Chapter 4:

the location of x2, and a bound on the strength of the asymptotic stability of the model.

B.1 Calculation of the two-cluster periodic solution

In this appendix we derive the exact initial conditions for the periodic two-

cluster solution of the unperturbed (no noise) model.

Recall that the responsive region has coordinates R = [0.3,0.65] and the

signaling region is S = [0.65,0.95]. The coupling function is f (I) = −αI, with α = 0.5

in our computations. We know from [96] that a periodic two-cluster solution exists and

that for these parameter values it must be stable.

Let the initial condition of the first cluster be x1(0) = 1
4 and the initial condition

of second cluster be denoted as x2(0) which is near (but not exactly) 0.75 and inside S .

The calculation of the solution depends on the “order of events.” Namely, from [10] we

know that x1(t) must enter R while x2(t) is still in S and then x2(t) must leave S while

x1(t) is still in R. With these facts in mind we may calculate exactly the trajectory of

the clusters starting from our initial condition (1/4, x2(0)) as follows.

• x1 enters the responsive region, i.e. x1 = 0.3. When x1 reaches 0.3, we have

x1(t1) = 0.3. It is then easy to solve for

t1 = x1(t1) − x1(0) = 1
20
.

Since x2 is progressing with rate 1 during this phase, x2(t1) = x2(0) + t1 =

x2(0) + 1
20 .

• x1 experiences feedback before x2 leaves the signaling region, i.e. until x2 = 0.95.

Assume t2 is the time when x2 leaves the signaling region, then x2(t2) = 0.95.

Since x2 travels at a constant rate 1, we have

t2 = x2(t2) − x2(0) = 19
20

− x2(0).
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However, x1 is slowed by the coupling function f (1
2) = − 1

4 , so

x1(t2) = x1(t1) + (1 + f (1
2
)) (t2 − t1) =

3
10

+ 3
4
( 9

10
− x2(0)) = 39

40
− 3

4
x2(0).

• x2 arrives at x1(0) = 1
4 and because this is the periodic solution, x1 reaches x2(0).

During this phase, there is no feedback exerted. Thus the time t3 for x2(t3) = 1
4

can be found by:

t3 = t2 + (x2(t3) + 1 − x2(t2)) =
19
20

− x2(0) + 1
4
+ 1 − 0.95 = 5

4
− x2(0).

At this time,

x1(t3) = x1(t2) + (t3 − t2) =
39
40

− 3
4

x2(0) + 3
10

= x2(0).

We may solve the above equation to find that x2(0) = 51
70 .

We can also obtain from the above calculations that t3 = 5
4−x2(0) = 73

140 . Thus the

period for this two-cluster periodic solution is T2 = 2t3 = 73
70 > 1. This is slightly larger

than 1 as should be expected for negative feedback.

B.2 Hard bifurcation for the bounded noise system

We will derive an upper bound on the noise level σ at which a hard bifurcation

must occur. We first observe that in our negative coupling model “back stability” is

much weaker than front stability; that is to say a perturbation where one cell is pulled

behind the rest of the cluster converges back to the clustered solution very weakly. The

reason for this is that when a nearly synchronized group of cells crosses the boundary

from R to S the cells in the front of the group begin to add to the negative feedback in

R before the trailing cells leave R.

We will now quantify that statement for the parameters under consideration.

Consider the variable rate model and first set the noise equal to 0. Now consider the

two-cluster periodic solution (i.e. with x1(0) = 1/4 and x2(0) = 51/70), but perturb the
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solution by removing one cell from the cluster at 1/4, and placing it at 1/4 − ε. Denote

the state of this cell by x1ε . We may calculate the trajectory in the noiseless system,

starting at this initial condition exactly, using the same procedure as in the previous

section.

1. x1 reaches R before x2 leaves S , i.e. x1 = 0.3.

At this time, x2 = 109/140 and x1ε = 0.3 − ε.

2. x1ε reaches at R before x2 leaves S , i.e. x1ε = 0.3.

During this period, only x1 is experiencing coupling f (I) = −0.5I = −1/4 because

x2 is in the signaling region. So x1 = 0.3 + 0.75ε and x2 = 109/140 + ε.

3. x2 leaves S while x1 and x1ε are still in R, i.e. s2 = 0.95.

During this phase, both x1 and x1ε are affected by the couping. The time for x2 to

reach at 0.95 is 6/35 − ε. Thus at this time, x1 = 0.3 + 0.75ε + (6/35 − ε)0.75 = 3/7

and x1ε = 0.3 + (6/35 − ε)0.75 = 3/7 − 0.75ε.

4. x1 leaves R and arrives at S while x1ε is still in R, i.e. x1 = 0.65.

No feedback is exerted. So we have when x1 reaches 0.65, x2 = 0.95 + 31/140

mod 1 = 6/35 and x1ε = 0.65 − 0.75ε.

5. x1ε reaches at S as well, i.e. x1ε = 0.65.

In this case, x1 is in S and x1ε is in R. Thus the coupling function is f (I) =

−0.5 4990
10000 = −0.24995. The time for x1ε to arrive at 0.65 is 0.75ε/(1 − 0.24995) =

15000
15001ε. So we have x1 = 0.65 + 15000

15001ε.

After the first cluster and the cell both get out of R, we find the distance

between them is 15000
15001ε, which was initially ε. This spacing will persist as the cluster

x1 returns to 1/4, so the distance is decreased by a factor of 15000/15001. Thus we see

that the stability of the solution is very weak with respect to this particular perturbation.
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To consider how noise breaks this stability, perform the following perturbations

which are a possible realization of the variable rate model. Let x1 progress at a

constant rate of 1+σ, the single cell at a rate of 1−σ, and x2 progress at rate 1. Denote

β = f (1
2) and β̂ = f ( 4,999

10,000) where f (I) = −0.5I. The cell at x1ε and the cluster x1 are

progressing at different rates and therefore constantly drifting apart, except while the

coupling strength is pulling them together. We will make a simplifying assumption here

that we consider the drift only during the periods when x1 and x1ε are experiencing

different strength of coupling; we will see that even under such a strong assumption,

the derived upper bound on the bifurcation value is extremely small.

Considering a complete cell cycle of the cluster and the cell, there are three

stages when they experience different coupling:

1. When the 4,999-cell cluster x1(t) enters R, but x1ε has not yet entered R, the

second cluster x2(t) is still in S , so the coupling β only affects x1. It takes the

cell x1ε time ε
1−σ to enter R. At this time, the distance between x1ε and x1(t) is

1+σ−β
1−σ ε.

2. When the x1(t) and the cell x1ε both lie in R and the second cluster is still in S ,

both of the broken cluster and the cell experience the coupling β. We neglect the

changing of the distance between the cell and the cluster during this time by our

simplifying assumption.

3. When the cell x1ε lies in R and x1 enters S , we know the second cluster is not

in S . Hence the coupling strength the cell experiences is β̂. The time from the

cluster enters S to the cell enters S is 1
1−σ+β̂

1+σ−β
1−σ ε, thus the distance between the

cell and the cluster after the cell enters S is 1+σ
1−σ+β̂

1+σ−β
1−σ ε.

Setting the coefficient 1+σ
1−σ+β̂

1+σ−β
1−σ equal to 1, we calculate σ = .000014. For this

amount of noise, the original distance between cell and the broken cluster will stay the

same. Any more noise will increase the initial distance.
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The calculations above assume that we are near the cyclic solution. In our

calculations during stage 1, we assumed that when the cluster entered R, the second

(unbroken) cluster was in S , and remained there until after the isolated cell entered

R. In the calculations in stage 3, we assumed that the single cell reached 1 before the

broken cluster entered S again. When the cell is pulled sufficiently far from the cluster

to which it used to belong due to the noise, the assumption in stage 1 breaks down. We

next calculate the distance if this happens.

Consider the unperturbed model again. The threshold occurs when the broken

cluster lies at .65, the nonbroken cluster lies at .12858, and the cell lies at .47858.

Move the cell back to .47858 − ε, and let ε̂ denote the distance between cluster and

cell. Then initially, ε̂ = .17142 + ε. Run time until the first cluster lies at C1 = .3, the

second (broken) clutester lies at C2 = .77857, and the cell that was broken away lies at

c = .64 − ε; now ε̂ = .12857 + ε. Advance time further so that C2 = 1 and c = .87143 − ε;

at this time ε̂ = .12857 + ε. Running time until c = 1, we obtain ε̂ = .17142 + 1.3332ε.

So even in the non-perturbed model, once the cell has achieved a sufficient

separation from the cluster, the distance will widen; we do not need noise beyond

σ = .000014 that we initially obtained. The hard bifurcation, below which cells have

no possibility to escape their initial groups, is below the value .000014. While this

rigorous upper bound on the bifurcation is quite rough, we see in Figure 4.4 that it is

already far lower than noise levels for which an escape can actually be observed.
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Appendix C: Calculations In the OverlapModel

In this appendix, we isolate calculations from Chapter 5 that would be

disruptive if included in the main text. These include all the possible order of events

of F for a two-cluster configuration, together with the map F, and the calculations of

the Jacobians for the k = M + 1 case.

C.1 Calculations relating to the 2-clustered system in the overlap model

This section contains all possible orders of events that a 2-cluster solution might

experience in the overlap model, and the corresponding map F.

For k = 2, and placement of x1 such that the clusters lie on the Poincaré section

(e.g. x1 = 0) defines a corresponding F map, which is the composition of a number of

order-of-event maps. We exhaustively list every possible order of events, and, for every

order of events, we calculate the F-map F(x2). We give the details for the derivation of

F in the first case after the list; all others are similar.

Throughout the appendix, we work not in the overlap system (5.1.2), but

in a conjugate model. In particular, we observe that any time a cluster is in O, it

experiences some feedback as a result of the self-influence of the system. Since the

feedback g(1/2) is really independent of the state of the system, we may rescale O

such that a cluster travelling through O and experiencing only the feedback it exerts

on itself takes time ∣O∣ to pass through it, i.e. [s1,1] → [s1, s1 + 1−s1
1+g(1/2)]. Under this

change of variables, a cluster in O when S is otherwise empty travels at a rate of 1. We

perform this change of variables, letting 1̃ denote the end of O.

We define our shorthand:

xs
1 ∶ x1 → s

xr
1 ∶ x1 → r

xs1
1 ∶ x1 → s1

xr
2 ∶ x2 → r



208

xs1
2 ∶ x2 → s1

x1
2 ∶ x2 → 1̃

α = 1 + f (1/2)

β = 1 + g(1)

Orders of events that correspond to a cyclic F-map (see Section 5.3) are given

in bold.

1. x2 ∈ R̃

(a) xs
1xr

1xs1
2 x1

2

F(x2) = s1 − x2 − αs + s + α(1̃ − s1)

(b) xs
1xs1

2 xr
1x1

2

F(x2) = r + α(1̃ − r + s − x2 − αs)

(c) xs1
2 xs

1xr
1x1

2

F(x2) = r + α(1̃ − s1 − βs − r + s) + β(s1 − x2)

(d) xs
1xr

1xs1
2 xs1

1 x1
2

F(x2) = 1̃ − (1̃/α)(x2 + αs − s)

(e) xs
1xs1

2 x1
2

F(x2) = s − x2 − αs + 1

(f) xs
1xs1

2 xr
1xs1

1 x1
2

F(x2) = s1 + 1̃ − r + s − x2 − αs − s1−r
α

(g) xs1
2 x1

2

F(x2) = s1−x2
α

+ 1̃−s1
β

(h) xs1
2 xs

1x1
2

F(x2) = s + 1̃ − s1 − β(s − s1−x2
α

)

(i) xs1
2 xs

1xr
1xs1

1 x1
2

F(x2) = 1̃ − βs + βs1
α
− β

α
x2 − r + s − s1−r

α
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2. x2 ∈ O

(a) xs
1xr

1xs1
1 x1

2

F(x2) = s1 + 1̃ − x1 − βs − r + s − s1−r
α

(b) x1
2

F(x2) = 1̃−x2
β

(c) xs
1x1

2

F(x2) = s + 1̃ − x2 − βs

(d) xs
1xr

1x1
2

F(x2) = r + α(1̃ − x1 − βs − r + s)

3. x2 ∉ R

(a) xs
1xr

2xs1
2 x1

2

F(x2) = 1̃ − x2

(b) xr
2xs1

2 xs
1x1

2

F(x2) = s + 1̃ − s1 − β(s − r + x2 − s1−r
α

)

(c) xr
2xs

1xs1
2 x1

2

F(x2) = 1̃ − r + s − α(s − r + x2)

(d) xr
2xs1

2 x1
2

F(x2) = r − x2 + s1−r
α
+ 1̃−s1

β

(e) xs
1xr

2xs1
2 xr

1x1
2

F(x2) = r + α(1̃ − x2 − r)

(f) xs
1xr

2xs1
2 xr

1xs1
1 x1

2

F(x2) = s1 + 1̃ − x2 − r − s1−r
α

(g) xs
1xr

2xr
1xs1

2 x1
2

F(x2) = s1 − x2 + α(1̃ − s1)
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(h) xs
1xr

2xr
1xs1

2 xs1
1 x1

2

F(x2) = 1̃ − x2
α

(i) xr
2xs1

2 xs
1xr

1x1
2

F(x2) = r + α(1̃ − s1 − r + s) − αβ(s − r + x2 − s1−r
α

)

(j) xr
2xs1

2 xs
1xr

1xs1
1 x1

2

F(x2) = 1̃ − r + s − s1−r
α
− β(s − r + x2 − s1−r

α
)

(k) xr
2xs

1xs1
2 xr

1x1
2

F(x2) = r + α(1̃ − 2r + s) − α2(s − r + x2)

(l) xr
2xs

1xs1
2 xr

1xs1
1 x1

2

F(x2) = 1̃ + s1 − 2r + s − s1−r
α
− α(s − r + x2)

(m) xr
2xs

1xr
1xs1

2 x1
2

F(x2) = s1 − r − α(s − r + x2) + s + α(1̃ − s1)

(n) xr
2xs

1xr
1xs1

2 xs1
1 x1

2

F(x2) = 1̃ − s + r − x2 − r−s
α

Sample Calculation: We derive the F-map for case 1a. Initially, x1 = 0 and

x2 is arbitrary, such that the required order of events occurs. We consider where each

cluster lies after each event map.

Event Location of x1 after event Location of x2 after event

t = 0 x1 = 0 x2 = x2

xs
1 x1 = s x2 = x2 + αs

xr
1 x1 = r x2 = x2 + αs + r − s

xs1
2 x1 = s1 − x2 − αs + s x2 = s1

x1
2 x1 = s1 − x2 − αs + s + α(1 − s1) x2 = 1

By definition, F(x2) is the location of x1 when x2 = 1, so F(x2) = x1 =

s1 − x2 − αs + s + α(1 − s1)
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C.2 Calculations relating to the 2-clustered system in the overlap model

We derive the Jacobians and characteristic polynomials of Section 5.4.2.

Case 1 of the RS model:

This case was defined by σ = 1, ρ = k, and event string eres.

The Jacobian J of F in the neighborhood of the (M + 1)-cyclic solution has the

form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −(1 + f (1/k))

1 0 0 ... 0 −(1 + f (1/k))

0 1 0 ... 0 −(1 + f (1/k))

0 0 1 ... 0 −(1 + f (1/k))

... ... ... ... ... ...

0 0 0 ... 1 −(1 + f (1/k))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.2.1)

The characteristic polynomial of J is

p(λ) = λk−1 + (1 + f (1/k))(λk−2 + λk−3 +⋯ + λ + 1). (C.2.2)

This polynomial has roots strictly within the unit circle (i.e. the fixed point is

stable) when 1 + f (1/k) < 1 (negative feedback), and roots strictly outside the unit

circle (thus, the fixed point is unstable) when 1 + f (1/k) > 1, that is to say for positive

feedback.

Case 2 of the RS model:

There are two other cases in the RS model, but they each give rise to the same

Jacobian. They are σ = 2, ρ = k, and event string eser; and σ = 1, ρ = k − 1, and event

string eser. In either case, the Jacobian in a neighborhood of an (M + 1)-cyclic fixed
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point has the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −1

1 0 0 ... 0 −1

0 1 0 ... 0 −1

0 0 1 ... 0 −1

... ... ... ... ... ...

0 0 0 ... 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.2.3)

The characteristic polynomial is

p(λ) = λk−1 + λk−2 + λk−3 +⋯ + λ + 1, (C.2.4)

all of whose roots lie on the unit circle (i.e. the fixed point is neutral).

Compared to the RS model, where the (M + 1)-cyclic solution falls into one

of three cases (two of them sharing a Jacobian), the overlap model gives rise to seven

cases, categorized based on the initial positions of x2 and xk.

C.2.1 k = M + 1 cases in the overlap model

Case 1: When x1 = 0, R is empty and S contains no clusters other than x1

We will see that in this case the k-cyclic solution is stable for negative feedback

and unstable for positive feedback. This is identical behavior to that observed in the RS

model.

There are two sub-cases; xk must enter R before x1 leaves S , or the system is

decoupled (violating the fact that k > M), but x2 may or may not enter O before x1

leaves S .

Case 1a: xk → r,x1 → s,xk → s1.

All clusters but xk move at a constant rate of 1 for the time it takes xk to

reach 1.

The first event occurs when xk reaches r. The time this takes is t1 = r − xk, and

x1(t1) = r − xk.



213

The second event occurs when x1 reaches s. This takes time t2 = s − r + xk(0).

Over the time interval [t1, t1 + t2], the cluster xk travels at a constant rate of 1 + f (1/k),

and xk(t1) = r. Thus xk(t1 + t2) = r + (1 + f (1/k))(s − r + xk(0)).

At time t1 + t2, S is empty, and thus although xk ∈ R, it moves at a rate of 1.

We therefore calculate t3, the time it now takes xk to reach s1, as t3 = s1 − r − (1 +

f (1/k))(s − r + xk(0)). During the time it then takes xk to reach 1, the cluster xk will

experience only the feedback it exerts upon itself. Since it must traverse an interval of

length 1 − s1 at a rate of 1 + g(1/k), we calculate the time this takes as t4 = 1−s1
1+g(1/k) .

The total return time is

T = t1 + t2 + t3 + t4 =

r − xk(0) + s − r + xk(0) + s1 − r − (1 + f (1/k))(s − r + xk(0)) + 1 − s1

1 + g(1/k) =

− (1 + f (1/k)(xk(0)) + α,

where α is a constant.

Since all clusters except for xk move at unit rate,

xi(T) = xi(0)−(1+ f (1/k))xk(0)+α for all 1 ≤ i ≤ k−1, and the Jacobian of F in

a neighborhood of the fixed point is identical to (C.2.1), and it therefore has the same

stability. It follows that the k-cyclic solution is stable when the feedback is negative,

and unstable when the feedback is positive.

Case 1b: xk → r,xk → s1,x1 → s

It takes a total time of t1 = r− xk(0)+ s1−r
1+ f (1/k) for xk to reach s1, at which time x1

is still in S . It will take a further time t2 = s − r + xk − s1−r
1+ f (1/k) for x1 to reachy s (for a

total time of s), at which point xk(t1+t2) = xk(s) = s1+(1+g(2/k))(s−r+xk(0)− s1−r
1+ f (1/k)).

The time it takes xk to traverse O is t3 =
1−s1−(1+g(2/k))(s−r+xk(0)− s1−r

1+ f(1/k)
1+g(1/k) . Absorbing

together various constants, t3 = − 1+g(2/k)
1+g(1/k) xk(0) + α, and the return time is T = t1 + t2 + t3 =

− 1+g(2/k)
1+g(1/k) xk(0) + α + s.
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The resultant Jacobian is identical to (C.2.1), except that 1 + f (1/k) is replaced

by 1+g(2/k)
1+g(1/k) . The question of whether the eigenvalues fall inside or outside of the unit

circle in that case is resolved entirely by whether the constant in the last column is

between 0 and 1 in absolute value (negative feedback, stable) or greater than 1 (positive

feedback, unstable). Since − 1+g(2/k)
1+g(1/k) is likewise a constant that is between 0 and 1 for

negative feedback, and greater than 1 for positive feedback, this (M + 1)-cyclic solution

has the same stability as in Case 1 of the RS model, that is to say that it is stable when

the feedback is negative, and unstable when the feedback is positive.

Case 2: When x1 = 0, x2 < s

In this case, x2 leaves S before xk enters R, and there are no subcases. Having

entered R at time t1 = r − xk(0), the last cluster xk passes from r to s1 in time t2 =
s1−r

1+ f (1/k) , and from s1 to 1, at time t3 = 1−s1
1+ f (2/k) . The return time is T = t1+t2+t3 = −xk(0)+

α, and the linear system is defined by the system of equations xi(T) = xi(0) − xk(0) for

1 ≤ i ≤ k−1. The Jacobian near the fixed point is given by (C.2.3). Thus this case shares

the stability of Case 2 for the RS model, i.e. the fixed point is neutrally stable.

Case 3: When x1 = 0, r ≤ xk < s1

In the RS model, an (M + 1)-cyclic solution that has a cluster in R when

x1 = 0 is neutrally stable under positive or negative feedback. In the overlap model,

there are three subcases, and only one of them is neutrally stable. The key difference

is that although x1 leaves S before xk−1 enters R, the cluster xk−1 will still experience

feedback in this model, since it will be in R while xk is in O. There are three subcases,

corresponding to orders of events.

Case 3a: xk → s1,x1 → s,xk−1 → r

We first calculate the F-return time T . We will concurrently keep track of the

position of xk−1, since that cluster now experiences feedback and will not simply travel

a distance of T , as the other clusters do.
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The first event occurs when xk reaches s1 at time t1 = s1−xk(0)
1+ f (1/k) . At that time,

x1(t1) = t1, xk(t1) = s1, and xk−1(t1) = xk−1(0) + t1.

At time t2 = s − t1, x1 reaches s. During that time, xk−1 travels at unit rate, and

thus xk−1(t1 + t2) = xk−1(0) + s. The final cluster xk is in O and travels at a rate of

1 + g(2/k). Thus xk(t1 + t2) = s1 + (1 + g(2/k))(s − t1).

The next event occurs when xk−1 reaches r at time t3 = r − xk−1(0) − s. At that

time, xk(t1 + t2 + t3) = s1 + (1 + g(2/k))(s − t1) + (1 + g(1/k)(r − xk−1(0) − s). Grouping

constants together, this simplifies to xk(t1+t2+t3) = 1+g(2/k)
1+ f (1/k) xk(0)−(1+g(1/k))xk−1(0)+α.

The final event occurs when xk reaches 1. The cluster travels at a constant rate

of 1 + g(1/k) over a distance of 1 − 1+g(2/k)
1+ f (1/k) xk(0) + (1 + g(1/k))xk−1(0) − α. The time

this takes is t4 = − 1+g(2/k)
(1+ f (1/k))(1+g(1/k)) xk(0) + xk−1(0) + α2. The total return time is thus

T = t1 + t2 + t3 + t4 = − 1+g(2/k)
(1+ f (1/k))(1+g(1/k)) xk(0) + α3. Because xk−1(t1 + t2 + t3) = r, we

calculate xk−1(T) = r + (1 + f (1/k))t4 = − 1+g(2/k)
1+g(1/k) xk + (1 + f (1/k)xk−1 + (1 + f (1/k))α2.

For notational simplicity, we let w = 1+g(2/k)
(1+ f (1/k))(1+g(1/k)) xk(0).

The Jacobian is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −w

1 0 0 ... 0 −w

0 1 0 ... 0 −w

0 0 1 ... 0 −w

... ... ... ... ... ...

0 0 0 ... (1 + f (1/k)) −(1 + f (1/k))w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.2.5)

Although the Jacobian is different from either of the Jacobians associated with the RS

model, the characteristic polynomial is the same as in Case 1b of the overlap model,

and is asymptotically stable for negative feedback and unstable for positive feedback.

We note that we may perform a change of variables such as is described in

Section 5.3.2. In fact, we may perform two such changes of variables. Any time a

cluster is in O it experiences a certain background feedback, that we may scale away.
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In addition, any time a cluster is in R̃ it experiences feedback from one cluster, and we

may also scale that feedback away (since, in a neighborhood of the k-cyclic solution,

that level of feedback is always present, independent of the state of the system).

Although we have tended against such changes of variables, for reasons already

discussed, it greatly simplifies the calculations, and the modified system has a Jacobian,

(C.2.6), that is directly comparable to Case 1 of the RS model. This is an advantage,

since proving that (C.2.5) has the characteristic polynomial claimed of it is somewhat

cumbersome.

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −(1 + f (2/k))

1 0 0 ... 0 −(1 + f (2/k))

0 1 0 ... 0 −(1 + f (2/k))

0 0 1 ... 0 −(1 + f (2/k))

... ... ... ... ... ...

0 0 0 ... 1 −(1 + f (2/k))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.2.6)

Case 3b: x1 → s,xk−1 → r,xk → s1

The first event occurs when x1 leaves s. At time t1 = s, xk(s) = xk(0) + (1 +

f (1/k))s and xk−1(s) = xk−1(0) + s. Although the next event technically occurs when

xk−1 enters R, S is empty, and thus even when xk−1 enters R, its rate does not change.

Rather, the next significant event occurs when xk reaches s1, at time t2 = s1− xk(0)−(1+

f (1/k))s. Because it travels at a unit rate, xk(t1 + t2) = xk−1 + s + s1 − xk − (1 + f (1/k))s.

The next event occurs when xk reaches 1, at time t2 = 1−s1
1+g(1/k) . The total

return time is T = t1 + t2 + t3 = −xk(0) + α, and although it experiences feedback,

xk−1(t1 + t2 + t3) = xk−1 − xk + α2.

The Jacobian for this case thus has 1’s down the semidiagonal and −1’s down

the last column, and is neutrally stable for both positive and negative feedback.

Case 3c: x1 → s,xk → s1,xk−1 → r.

First, observe that xk moves entirely independently of other clusters in a

neighborhood of this solution; it travels at a rate of 1 + f (1/k) for time s, then at a rate
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of 1 until it reaches s1, then at a rate of 1 + g(1/k) until it reaches 1. Thus the return

time T can be easily calculated as T = −xk(0) + α.

At time t1 = s, xk−1(t1) = xk−1(0) + s and xk(t1) = xk(0) + (1 + f (1/k))s. At time

t2 = s1−xk−(1+ f (1/k))s, xk(t1+t2) = s1 and xk−1(t1+t2) = xk−1(0)+s+s1−xk−(1+ f (1/k))s.

At time t3 = r − xk−1 − s − s1 + xk(0) + (1 + f (1/k))s, xk−1(t1 + t2 + t3) = r and

xk(t1 + t2 + t3) = s1 + (1 + g(1/k))(r − xk−1 − s + s1 + xk + (1 + f (1/k))s).

The time t4 it now takes xk to reach 1 is calculable as 1−s1−(1+g(1/k)(r−xk−1−s+s1+xk+(1+ f (1/k)s))
1+g(1/k) .

Combining constants, we write t4 = xk−1 − xk + α. Thus xk−1(t1 + t2 + t3 + t4) = (1 +

f (1/k))xk−1 − (1 + f (1/k))xk + (1 + f (1/k))α.

The Jacobian for this case therefore has 1s down the semidiagonal and −1’s

down the right column, except for the last row: J(k − 1, k − 2) = 1 + f (1/k) and

J(k − 1, k − 1) = −(1 + f (1/k)). Its characteristic polynomial has leading coefficient

1 and all other coefficients 1 + f (1/k), again reducing to Case 1 from Chapter 2. To see

this, observe that if we write

J(k − 1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−λ 0 0 ... 0 −1

1 −λ 0 ... 0 −1

0 1 −λ ... 0 −1

0 0 1 ... 0 −1

... ... ... ... ... ...

0 0 0 ... 1 + f (1/k) −(1 + f (1/k)) − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (C.2.7)

then by expanding across the first row, we find det(J(k)) = −λdet J(k−2)+1+ f (1/k)) =

−λdet(k − 3) + λ(1 + f (1/k)) + (1 + f (1/k)) = λdet(k − 4) + λ2(1 + f (1/k)) +

λ(1 + f (1/k)) + (1 + f (1/k)).... This characteristic polynomial is the same as (C.2.4),

and the k-cyclic solution is unstable when the feedback is positive and stable when the

feedback is negative.

Case 4: When x1 = 0, s1 ≤ xk < 1
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We calculate T and xk−1(T) concurrently. The order of events is x1 → s, xk−1 →

r, xk−1 → s1, xk → 1.

At t1 = s, xk(t1) = xk(0) + (1 + g(2/k))s and xk−1(t1) = xk−1(0) + s.

At time t2 = r−xk−1(0)− s, the cluster xk−1(0) reaches r. At this time, xk(t1+t2) =

xk(0) + (1 + g(2/k))s + (1 + g(1/k))(r − xk−1(0) − s) = xk(0) − (1 + g(2/k))xk−1(0) + α.

The time it takes xk−1 to traverse R is a constant, t3 = s1−r
1+ f (1/k) . Thus xk(t1 + t2 +

t3) = xk − (1 + g(2/k))xk−1(0) + α2.

The time it takes xk to reach 1 is t4 = 1−xk+(1+g(2/k))xk−1(0)−α2
1+g(2/k) . Because xk−1(t1+ t2+

t3) = s1, xk−1(t1 + t2 + t3 + t4) = s1 + (1+ g(2/k))t4 = −xk(0)+ (1+ g(2/k))xk−1(0)−α2 + 1.

The total return time, T = t1 + t2 + t3 + t4, can be seen to be T = − 1
1+g(2/k) + α3.

The Jacobian near the cyclic solution is thus

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ... 0 −1/(1 + g(2/k))

1 0 0 ... 0 −1/(1 + g(2/k))

0 1 0 ... 0 −1/(1 + g(2/k))

0 0 1 ... 0 −1/(1 + g(2/k))

... ... ... ... ... ...

0 0 0 ... 1 + g(2/k) −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (C.2.8)

and using the same method as in Case 3c, where det(J(k)) = −λdet J(k − 2) − 1, we see

that it has characteristic polynomial (C.2.4). Thus the fixed point is neutrally stable.
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