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Abstract 

HALSEY, PHILLIP A., Ph.D., August 2015, Psychology 

The Nature of Modality and Learning Task: Unsupervised Learning of Auditory 

Categories 

Director of Dissertation: Ronaldo Vigo  

Categorization and concept-learning has a long-standing influence on the field of 

psychology because the notions of concept-learning are key to how individuals learn.  

Central to this idea is; how do we categorize stimuli that vary according to different 

dimensions?  How do we categorize stimuli under different conditions?  How do we store 

these categorizes as mental representations?  And does the modality of the stimuli affect 

our construction of a mental concept, and to what extent does this affect categorization 

behavior?  To partially answer this last question, it has been determined that the modality 

of a stimulus does influence categorization behavior but the extent of this is unknown.  

The current dissertation explores the manner in which stimulus modality, relationships 

between stimulus dimensions, and learning method affects categorization behavior.  Two 

experiments are conducted in order to examine the auditory dimensions individuals 

attend to when making comparisons, and how individuals spontaneously categorize 

auditory stimuli based on the attended dimensions.  Participant’s data was then examined 

according to three models of unsupervised learning: the simplicity model, SUSTAIN, and 

GISTM. 
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Chapter 1: Introduction 

 During one’s lifetime, it is often advantageous to make categorical determinations 

about particular stimuli– be it an object or sound – encountered within a particular 

environmental context.  The process of categorization allows an individual to determine 

whether that stimulus is similar enough to a group of objects categorized from prior 

knowledge, or whether that stimulus represents something new or unique that might 

represent an entirely new group or category.  To illustrate, imagine your friend has 

invited you to their residence for the first time.  After arriving, you enter the home only to 

find that rather than the standard couches and chairs you’re accustomed to seeing and 

using, on the floor lay several large amorphous bags filled with undetermined material.  

Assuming no prior knowledge about these objects (although the reader would easily 

identify them as beanbag chairs), a key question arises; namely, would these objects 

(beanbags) be considered chairs or would they form their own group?  Perhaps you 

observed your friend sitting down on one of the objects; certainly given this event you 

could determine that these objects serve a similar function to an idealized chair– namely 

sitting – but would you categorize these objects as chairs if asked later to formulate a list 

of all the chairs you could recall?  Would you consider the physical features of these 

objects as variations of what constitutes a “chair”?  In an extreme example, what if your 

friend had only small pillows on the floor surrounding a table rather than chairs or 

beanbags?  

 In both examples, the limits of what an individual might consider “chairness” – 

possible and allowable dimensional variations of an object considered as a chair, such as 
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the beanbag chair and the pillows – are tested.  In other words, how does an individual 

form a concept containing possible defining characteristics or dimensions of an object 

such as a chair?  Furthermore, how does a concept defined by such characteristics 

influence an individual’s future classifications in determining whether a particular object 

is or is not a chair? 

Researchers in the field of categorization behavior are interested in exactly the 

above questions.  How does a concept - or mental representation of a category – develop 

and become defined over time?  And when presented with a unique set of stimuli, how do 

we learn to classify and organize these stimuli into new concepts?  In studying these 

phenomena, researchers are interested in examining two key aspects of categorization and 

concept learning.  First, researchers examine the learnability of a category – typically 

assessed via proportion of errors – and determine how the overall complexity or amount 

of variation within a category affects learnability.  Then based on these results, they 

aspire to predict individual future performance on a particular category solely on the 

inherent complexity within that category (Feldman, 2000, 2006; Vigo, 2006, 2009).  Such 

prediction of categorization and concept learning behavior is typically assessed via 

supervised learning tasks in which individuals categorize objects into experimentally 

defined categories according to relevant object features (a more detailed discussion of 

supervised versus unsupervised learning will follow in Chapter 4).   

The second aspect of research examines various category structures that are 

relevant to the conditions influencing or directing an individual’s categorization behavior.  

Specifically, when allowing an individual to freely categorize objects, will contextual or 
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experimental manipulations result in a different classification sorting?  To use the 

example above, what conditions may result in an individual classifying or not classifying 

the beanbag as belonging to the category of “chair”?  Researchers examining 

experimental or contextual manipulations employ an unsupervised learning task - also 

referred to as a free sorting task (Ashby, Queller, & Berretty, 1999) – in which the 

individual is able to freely categorize the stimuli based on one of the more relevant 

features.  

Although tasks such as supervised and unsupervised learning are not necessarily 

modality specific, research in categorization has favored the examination of visual 

information representation (Murphy, 2002).  Despite humans relying primarily on visual 

learning (Shiffrar & Pinto, 2002), it has been determined that detection and processing 

using other modalities such as audition does assist in the visual processing of information 

(Thomas & Shiffrar, 2010).  An unseen animal emitting a sound or vocalization may 

inform us whether or not we are in danger.  We determine this by categorizing the 

stimulus we just heard based on previous stimulus categories, and then generalize our 

behavior to that sound accordingly.  A “woof” might incline us to categorize a sound a 

certain way and behave - possibly more relaxed; a shrieking sound in a castle may incline 

us to determine we’ve heard a banshee and run. 

This is but one simple example and there are certainly a myriad of circumstances 

in which we may wish to categorize auditory stimuli.  For example, imagine attending an 

orchestral performance and listening to the following instrumentation: a string section 

(i.e. violin, viola, cello, and bass), the woodwinds (i.e., clarinet, flute, oboe), a brass 
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section (i.e., French horn, tuba), and finally the percussion instruments (i.e., timpani, 

chimes, bass drum).  As you close your eyes and listen to the music, how might you 

categorize the instruments you are hearing?  Would you do so based on how the 

instruments sound, the notes played, or play style of the notes?  Or, alternatively, would 

you categorize the sounds according to several of these criteria?  It may be that you group 

certain string instruments together because their sound is similar in some capacity.  But 

suppose the violin and brass sections play a portion of the orchestral piece in which the 

musical dynamics of the piece are identical?  How does categorization occur in this 

instance?  As the remainder of the orchestra, the horns and violins, continue to play, the 

variance of pitch and dynamics will also influence the ability to categorize.  In this 

situation would you categorize the violins together based on what they’re playing (e.g., 

pitch), or continue to categorize the violins with the other string instruments?   

 This scenario provides an example of the importance of how context and/or 

conditions influence categorization behavior.  The condition of “similar strings” may lead 

to one unique classification whereas “similar violins and brass” may lead to another.  

Thus, given certain conditions, how do individuals freely categorize auditory stimuli?  

Namely, when specific salient dimensions define the auditory experience, on what basis 

will individuals categorize the sounds?  As an example, would an individual categorize 

tones of a similar sound together (their timbre) regardless of the pitch being played by the 

two instruments?  Or would an individual consider these stimuli as belonging to separate 

categories (both timbre and pitch used for categorization)?  In what ways are humans 

purported to develop internal representations of categories?  In the following research, I 
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investigated these questions, and how they affect categorization and concept learning 

behavior.  But first, a brief overview of the current theories exploring categorization and 

concept learning is necessary. 
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Chapter 2: Theories of Concept Learning 

One of the primary goals of concept learning is to determine how individuals 

categorize stimuli and how they later retrieve these categorical relationships via a mental 

representation.  When we make contact with a particular stimulus – for example, a whale 

– how do we form a conceptual, mental representation of the category “whale”?  

Furthermore, what structure does this mental representation take and how will the 

hypothesized conceptual structure influence categorization?  For example, under what 

conditions might we categorize a whale as a mammal rather than a fish?  Can researchers 

explain errors in categorization such as categorizing a whale as a fish rather than a 

mammal?  Below are some of the primary types of theories that researcher developed in 

order to account for categorization behavior and theorize the nature of a concept’s 

structure. 

Rule-based Theories 

 In the history of concept learning, describing concepts as rules has been one of the 

earliest known representational paradigms.  The theory behind concepts-as-rules is that 

individuals define concepts according to their features or attributes.  As such, these 

definitions need to be both necessary and sufficient for the inclusion of only that concept 

and the exclusion of all others.  Such definitions can be translated into rules which adhere 

to the notions of logic, specifically logical connectives such as “AND”, “OR”, and “IF”.  

Accordingly, because of the adherence to logic, definitions are determined to be either 

“TRUE” or “FALSE”.  By complying with these basic elements of logic, a particular 

concept is either included or excluded from a category; the degree to which a concept 
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occupies a category cannot be ambiguous, as determined by the dichotomy of the truth-

values.  Thus, in this respect, the distinction between belonging to category A or category 

B is defined by the truth of the definitional statements made about the concept.  If the 

presence of an object’s attributes is determined to be true according to the definitions 

then it is included in the category; otherwise, a participant may consider to the object to 

belong in another category.   

 For example, an individual may develop the concept of a “tree” according the 

definitions of “has leaves” and “has a woody trunk”.  However, such a description would 

not include elements of the concept that are known to be trees but do not have leaves, 

such as evergreen trees.  Thus, it would be necessary to increase the specificity of the 

definition to include this aspect about trees (e.g., “has a woody trunk”, and “has leaves” 

or “has nettles”).  By adding more definitions according to the logical conjunctives, more 

conditions are necessary to include any members of the concept.  The revised definition 

of trees would include deciduous and evergreen trees that have a woody trunk, but such a 

definition would exclude young trees that have not yet developed such a trunk.  It would 

be necessary to further revise the definition such that young trees are included.  However, 

what of deciduous trees that that shed their leaves during winter?  According to the 

current revised definition, trees during winter would not satisfy the definition of being a 

“tree”.  The individual would need to revise the concept definition repeatedly to satisfy 

the conditions of tree-ness under any contingency.  As a result, the definition of the 

concept would be exceedingly complex with no common attribute between the trees that 

unities them all under the concept of “tree”. 
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Early offshoots of rule-based theories - such as semantic networks (Collins & 

Quillian, 1969; Quillian, 1967) - had some success despite examining only semantic 

relationships.  Similar to the example above, semantic networks begin with a general set 

of features and iteratively decompose the feature set until a group of specific features 

described only one object1.  The field of concept learning has largely progressed beyond 

these theories due to their inherent inadequacies (Murphy, 2002; Rumelhart & Ortony, 

1976) and many theories have arisen that directly attempt to address how conceptual 

frameworks develop from categorization behavior.  

Representational Theories 

Beyond observing and explaining how individuals categorize or organize different 

objects, researcher developed representational theories in order to create a plausible 

explanation for how individuals store a category as a mental representation, or concept, 

and how individuals access and use these concepts are accessed and usd during the 

categorization process.  Two theories exemplify the representational perspective of 

concept learning behavior; Rosch’s (1975) Prototype Theory and the Exemplar Theory 

(Medin & Schaffer, 1978; Nosofsky, 1984). 

 Prototype theory.  Rosch (1975) conceived the representational paradigm of 

prototypes in response to the inadequacies of the rule-based paradigm.  Prototypes, 

according to Rosch, were summaries of all the features of that concept; such summary 

                                                        
1 For example, through this iterative process of increasing specificity, an individual can 
describe a word or object such as “penguin” using adjectives and verbs such as “black”, 
“bird”, “swims”, “and “flightless”.  Depending on the other words within the network, 
this may be sufficient enough to categorize and describe a penguin. 
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representations described the features that were most prominent (or most frequently 

occurring) in the members within that concept.  Features occurring more frequently have 

higher weights; therefore our concept learning process may assign higher weights to 

features that are more prominent in a particular concept.  For trees, the attribute of 

“woody” might rate highly as the majority of trees have woody trunks (a more typical 

attribute); atypical attributes (such as “non-woody”) rate lower.  Thus, due to the use of 

weighting on these summary representation features, contradictions are permitted (e.g., 

both “woody” and “non-woody” are connected to the concept of tree) and, more 

importantly, concepts can occupy a continuum.   

 One final important feature of the prototype paradigm, and not present in the rule-

based paradigm, is intransitivity.  To put simply, the prototype theory allows for 

violations of the hierarchal nature present in the definitional theory; the transitive 

property of A < B < C need not hold – C does not necessarily need to be “greater” than A 

or B (where the values are features).  

 Certain issues do exist with the prototype representation.  First, prototype in 

Rosch’s exact definition of what constitutes a prototype is ambiguous and unclear and as 

a result, there has been little consensus as to what exactly qualifies a prototype.  This 

ambiguity has led researchers to interpret the definition of a prototype in such a manner 

that facilitates their own research endeavors rather than creating one absolute definition.  

Second, the prototype model is unable to account for attributes or features that are 

defined continuously; for example, when precise measurements are used (e.g., length, 

volume) where values can take a nearly infinite amount of values, it is necessary to 
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partition these measurements into different categories (e.g., small, medium, and large).  

Naturally, this partitioning leads to information loss and precision in defining concepts 

(in some respects, this issue is analogous to those of the rule-based concept learning).  

Finally, according to the prototype paradigm, an individual does not necessarily learn 

features in isolation; rather they learn feature combination in order to describe a concept.  

The number of possible feature combinations can lead to a combinatorial explosion; that 

is, the number of feature combinations that can define a particular concept becomes 

intractable for a human to cognitively manage.  This very obviously presents a significant 

problem with the prototype paradigm; if the computational costs of learning a concept via 

a few features of a prototype easily becomes extensive, humans will be unable to learn 

concepts with more than a couple of features.  These issues and deficiencies contributed 

to the rise of other representational models that attempted to correct these issues. 

 Exemplar theory.  Exemplars provided an alternative mental representation to 

that of prototypes, beginning with the writing of Medin and Schaffer (1978) and their 

proposed model of exemplar-based concept learning, the context model.  An exemplar 

refers to instance of a particular stimulus that is stored in memory; thus, instances that 

share certain similar features form a concept.  For example, light fixtures may vary in 

size, placement, and color, but the relative similarity of these instances of light fixtures 

would differentiate them from coat racks.  When encountering a unique instance of an 

exemplar, the individual compares the similarity between the features of the unique 

exemplar and the features of exemplars stored in memory.  The saliency of these features 

determines classification; specifically, if an individual may categorize stimuli together if 
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the salient features between the unique exemplar and the exemplars in memory are 

similar. 

Thus, exemplar theory differs from prototype theory in a very meaningful way. 

Rather than compare a test stimulus to a single internally represented average stimulus 

that defines the category structure, an individual compares the test stimulus to a known 

set of instances belonging to that particular category. For example, when an individual is 

attempting to determine whether an object that lacks legs but has a back is a chair, the 

individual retrieves a group of chair representations from memory that tend to exemplify 

the dimensions of “chair-ness.”  To the extent that the observed stimulus demonstrates 

similarity to stored exemplars, the individual may categorize the stimulus as an instance 

of the concept chair.  

Medin and Shaffer’s (1978) context model examined categorization behavior with 

the underlying assumption that individuals learn objects in a given category set as 

exemplars.  For instance, the exemplars in Medin and Schaffer’s experiment comprised 

visual stimuli that each occupied some point in psychological space.  In order to retrieve 

an exemplar from memory, a test stimulus presented to an individual would act as a cue 

for exemplar.  If knowledge of a particular exemplar was incomplete, then an individual 

may categorize the test stimulus in a manner similar to the exemplar it most closely 

resembles.  For example, an individual presented with a test stimulus of 1100 (where 

each value of 1 or 0 in the 4-value sequence represents a single binary dimension of the 

stimulus, e.g., the first value in the sequence refers to stimulus color where 0 = black and 

1 = white), might categorize the test stimulus as the exemplar “11?0” (where the ‘?’ 
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represents incomplete information) rather than “0?11” because the latter is more 

dimensionally divergent from the test stimulus whereas the former is more dimensionally 

congruent.  Medin and Shaffer argued that a multiplicative rule in conjunction with 

dimensional saliency parameters best describes how to determine the probability of 

categorizing an object in a particular manner.   

Nosofsky proposed an extension of Medin and Shaffer’s (1978) context model in 

order to interpret categorization through the lens of choice and similarity.  The resulting 

model, the generalized context model (GCM; Nosofsky, 1984) united three distinct 

components from psychological science and information science; the aforementioned 

context model, Shepard’s psychological distance metric (1957, 1958a, 1958b), and 

Luce’s choice axiom (1963).  

Nosofsky formulated that, mathematically, for such a multiplicative rule to predict 

classification behavior, the underlying measure for determining stimulus similarity must 

be an exponential decay function such that the distance metric between the stimuli in 

multidimensional scaling space was based on the city-block.  The foundations of this are 

traceable to Shepard’s work on distance metrics in multidimensional scaling (Shepard, 

1957; 1958a) and more recent works (Shepard, 1987).  The incorporation of both 

Shepard’s exponential distance metric (and subsequently the Minkowski-r metric) and 

parameterization of the context model allowed for the GCM to make computations 

concerning the perceived similarity of a test stimulus to an exemplar in terms of 

psychological distance in multidimensional space between the stimulus and the exemplar.  
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 In order to make predictions about categorization behavior, the final component 

incorporated into the GCM is Luce’s choice axiom (1963; 1977), a measure also 

incorporated into the context model (Medin & Shaffer, 1978), as a description of the 

probability of a response given a particular test stimulus given a set of exemplars.  Luce’s 

choice axiom pertains to the probability that a chosen stimulus was proportional to the 

strength the stimulus exerted over the behavior.  Put simply, it is the percentage an 

individual will correctly classify a test stimulus as belonging to category A (or 

alternatively category B) given the combined set of both category A and B.   

 Taken together, Nosofsky’s GCM is composed of three distinct elements; Medin 

and Schaffer’s context model, Shepard’s psychological distance metric, and Luce’s 

choice axiom.  Together, they demonstrate that the probability that a test stimulus will be 

classified as belonging to category A (or B) given the test stimulus’ similarity to 

exemplars in psychological space is a function of both the exponential decay of similarity 

between the compared stimuli and exemplar and the Minkowski-r distance metric 

provided the individual attends to the appropriate features of the stimuli for correct 

classification.  Nosofsky elegantly described the relationship between these three 

components as: 

APC = 100
[∑ 𝑃(𝑋|x, 𝐷, w) +  ∑ 𝑃(𝑌|y, 𝐷, w)𝑦 ∈𝑌𝑥 ∈𝑋 ]

𝐷
 

where the percentage of categorizing an object in the correct category is a function of the 

sum weighted psychological distance between a test stimulus and the stimuli in a 

particular category (equation 2) with respect to the psychological distance of the test 

stimulus to all stimuli in both categories (A and B).  As such, the predicted percentage of 
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correct categorization can be determined for each test stimulus with respect to the 

categories.  The accuracy of the GCM in predicting certain categories and categorization 

difficulty orderings result in its use as the standard to compare against other concept 

learning models. 

Complexity Reduction Theories 

 How individuals minimize or reduce objects into their most important – or 

diagnostic – features is the concept behind complexity reduction theories.  Such theories 

predominately use rule reduction as the complexity reduction mechanism.  In order to 

reduce a category’s complexity, these theories state that individuals examine a concept 

using a general set of rules and iteratively reduce these rules while also preserving 

category’s original elements.  For example, given a Boolean expression of xy’ + xy, 

where each literal is an object feature (x and x’ are black and white, y and y’ are triangle 

and circle, respectively), the expression could be minimized to x(y’ + y) and still actually 

describe the objects.  Stated differently, rather than describe the two objects as “a black 

circle and a black triangle”, the objects could be denoted as “a black circle and triangle.”  

In this case, the definition of the category remains the same, but stylistically the 

expression is smaller.   

 As another example, let’s say that I work at a grooming facility where I 

exclusively wash cats.  As such, I may want to expedite the process so that I finish with 

easy-to-wash cats first in order to attend to more difficult cases.  Cats are extremely 

multi-dimensional; there’s fat ones, small ones, ones with an excessive number of toes, 

ones with a normal amount of toes, ones with black ones, multi-colored ones.  My goal 
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would be to reduce all this complexity and variation into an easy to work with concept to 

facilitate the process I want to accomplish - separate the cats so I can find the easy ones.  

I may learn that cats with polydactyl toes, regardless of color, are quite docile when I 

dunk them in the tub and scrub them down.  Already I’ve reduced my complexity down 

to “polydactyl, and black or multi-colored” for the “easy” category.  In terms of 

accomplishing my washing task, I’m making progress.  But will size matter?  It certainly 

may.  Given what I already know, I might learn that fat ones with polydactyl also have 

tendencies towards violence against my person when I dunk them in water, whereas the 

small ones are perfectly easy to deal with.  I can now, for the most part, successfully 

categorize the cats and may assign a label to each category as being either “Nermals” 

(small and polydactyl, and black or multi-colored) or “Garfields” (everyone else). 

 According to minimization theory, individuals achieve their categorization 

objective when they attempt to minimize the features of a data set to its most basic 

diagnostic dimensions in order to increase the learnability of the set (Feldman, 2000, 

2003, 2006; Vigo, 2006).  More specifically, Feldman (2000) suggested that the 

underlying complexity of a given set of objects (i.e., category) corresponds to the shortest 

Boolean expression length of that set.  Thus, individuals presented with a set of objects 

associated with a highly minimized Boolean expression will be able to quickly and 

accurately categorize those objects, because the underlying expression may be simple 

(such as the example above).  Conversely, an expression that is incompressible or lacking 

in minimization manipulations, such as x’y’z + xyz’, would be more difficult for 

individuals to categorize, due to the lack of minimization “shortcuts.”  Although Vigo 
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(2006) found that the Boolean factorization used by Feldman demonstrated a 

computation bias towards proving Feldman’s argument, models of complexity reduction 

still exist in the field such as QMV factorization (Vigo, 2006) and the simplicity model 

(Pothos & Chater, 2002). 

Ideotype Theory 

 The Generalized Invariance Structural Theory (GIST; Vigo, 2013, 2014), an 

extension of Categorical Invariance Theory (CIT; Vigo, 2009), is a more successful 

notion of how individuals store and retrieve concepts.  Unlike other formal theories that 

rely on probabilistic notions of concept learning, the GIST is a general, deterministic 

framework that thus far, based on historical and recent data, has proven to more 

accurately predict concept-learning difficulty than the leading theories, such as 

Feldman’s (2000) above-mentioned Boolean minimization Nosofsky’s (1984) GCM, and 

Goodwin and Johnson-Laird’s (2011) mental models. 

 The primary notion behind the GIST - and its predecessor, CIT - is that 

individuals are pattern detectors.  Namely, when given a category, individuals will try to 

detect patterns - referred to as invariants - across the available stimuli.  The usage of 

invariants as a measure of performance directly echoes other sciences, such as physics, 

where certain attributes of an object remain invariant regardless of transformations or 

alterations.  However, Vigo (2008, 2009, 2011, 2013, 2014) introduced a new notion of 

invariance which he named “categorical invariance”.  Vigo’s notion is more general than 

previous notions and not limited by spatial intuitions. 
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 As an example, suppose there is a set of three objects defined dimensionally 

according to the Boolean rules explained under “Complexity Reduction Theories.”  Each 

object varies according to color (x = black, x’ = white), size (y = small, y’= large), and 

shape (z = circle, z’ = triangle).  The resulting three objects are; a black, small circle (xyz, 

or 000), a white, small circle (x’yz, or 100), and a black, large circle (xy’z, or 010).  To 

establish invariance, a single dimension is perturbed, or transformed along a single 

dimension.  Objects present in both the original and perturbed set are invariants.  As a 

brief example, perturbing the color dimension using our example stimulus category 

would result in the following set of objects: 

{100, 000, 110} 

Compared against the original set {000, 100, 010}, it is apparent that two of the objects - 

000 and 100 - are preserved or are invariant under a color perturbation.  

 Dimensional perturbations occur across all dimensions until exhausted.  

Continuing to the next dimension would result in a perturbed set of: 

{010,110, 000} 

Despite the perturbation of the dimension of size, two of the object-stimuli within the 

original category remain in the set. 

 These invariances present across stimuli lay the foundation for what Vigo (2013) 

refers to as the dimensional binding process.  These bound dimensions regulate the 

process of pattern detection.  The dimensional binding process makes intuitive sense; if 

the same attribute exists between several objects, it’s more relevant to disregard this 

attribute so that the individual can focus their attention on other attributes that may 
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facilitate concept learning.  This goal-oriented behavior frees attentional resources to 

focus, and subsequently encode, the relevant category structure. 

 The proportion of detected invariants for a given stimulus dimension relative to 

the number of stimuli within a given category set comprises what Vigo refers to as the 

structural kernal (Vigo, 2013).  As the name implies, a structural kernal is an encoding of 

the structural information for a given stimuli dimension.  Structural kernals encoded for 

each dimension carry the relevant structural information for the given dimension of the 

category stimuli.  The structural kernals are stored as a memory trace, or ideotype (Vigo, 

2013).  Ideotypes retain the structural information of the structural kernals for a particular 

category and, as such, provide information about the relative difficulty of category 

learnability and allow for an informed formation of rules.  Thus, ideotype theory posits a 

process of pattern perception, invariance detection, redundancy reduction (through 

dimensional binding), and structural encoding. 

 Of the previously explained theories, current research in categorization and 

concept-learning behavior has focused on three theories: exemplar theory (most notably 

Nosofsky’s GCM), simplicity reduction, and ideotype theory.  Reflecting this, the current 

experiment will use these theory’s relevant mathematical and computational models to 

examine concept-learning behavior. 
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Chapter 3: Overview of the Dissertation 

Both concept learning and auditory perception are expansive fields of study.  The 

intersection between these two fields is still growing; relative to visual categorization, 

less research exists for auditory categorization (a quick scan of Murphy, 2002 

demonstrates just how prevalent visual categorization is within the field).  However, as it 

is important to understand the context and conditions under which individuals will form a 

concept based on visually perceived objects, it is equally important to learn these 

conditions when perceiving auditory stimuli.  Stimuli are not necessarily always visually 

perceived first (e.g., you may hear the Wampa before you see him, as Luke did in The 

Empire Strikes Back), and thus auditory categorization and concept learning requires the 

same examination as visual learning.  The following chapters provide an overview of the 

primary experimental paradigms used in categorization and concept learning study; 

specifically, supervised and unsupervised learning of categories.  These two paradigms 

differ in terms of how researchers conduct the experiment and, more importantly, in their 

experimental aims.  

Supervised learning seeks to predict categorization and concept learning behavior 

by using an individual’s number or proportion of errors in categorization when 

categorizing two labeled categories (e.g., category A and B).  In contrast, the purpose of 

unsupervised learning is not necessarily to predict or anticipate an individual’s 

categorization performance; instead, researchers use unsupervised learning to determine 

how the set of conditions and environmental context affects categorization and concept 

learning when an individual freely categorizes unlabeled objects.  Experimental data on 
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human (and artificial intelligence) visual categorization and concept learning under these 

learning tasks is readily available as it has been extensively documented and studied for 

years (Murphy, 2002).  In comparison, human auditory categorization and concept 

learning has been documented to a lesser degree compared to visual categorization, with 

a research focus on artificial intelligence auditory categorization (e.g., Blumensath & 

Davies, 2004; Cai, Lu, & Hanjalic, 2005; Park & Glass, 2008; Van Segbroeck & Van 

hamme, 2009; Wulfing & Riedmiller, 2002).  The following chapters will provide a more 

complete examination of these paradigms, including the categorization of visual objects 

and how to define these stimuli dimensionally, with specific intent to extend those 

notions to an unsupervised learning task of auditory stimuli.  

The perception of an auditory stimulus, generated through either computer music 

and synthesis or acoustic instrumentation, results according to changes to dozens of 

parameter values or, in the case of acoustic instruments, physical changes or variations 

(e.g., Grey, 1977).  Given this vast variability, research has attempted to find the 

contributing factors to multi-faceted auditory dimensions such as timbre; as a primer, the 

major dimensions of auditory stimuli are discussed with respect to their importance and 

usage in the current literature (e.g., Bonebright, 2001; Bulgarella & Archer, 1962; 

Clarkson & Pentland, 1999; Gao, Lee, & Zhu, 2004; Goudbeek, Swingley, & Smits, 

2009; Guastavino & Katz, 2004).  In addition, I will discuss auditory categorization with 

respect to these dimensions with a focus on non-speech auditory categorization.  Though 

the importance of examining speech-related categorization cannot be understated, it will 

be evident that less research has examined categorization and concept learning of non-
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speech sound.  Of the categorization research conducted in non-speech sound, particular 

inquiries analogous to those in visual categorization and concept learning have arisen 

(Goudbeek, Swingley, & Smits, 2009); for example, under what conditions do we freely 

categorize sounds that we hear?  When given a set of sounds that conform to well-defined 

dimension (audio with dimensions defined according to Boolean rules, e.g., amplitude as 

either 0 = soft or 1 = loud), how will individuals categorize these sounds?  Will 

individuals attempt to categorize with an easily learned rule that lacks precision - such as 

categorizing according to a single dimension, e.g., instrument type - or will individuals 

use multiple dimensions during the categorization process in order to create more 

categories that more accurate reflect the myriad of varying dimensional attributes 

between different sounds?  It is the intention of the current dissertation to examine these 

lines of inquiry and begin the groundwork for future, similar lines of inquiry concerning 

the nature of unsupervised auditory learning. 

In the final chapters of the current dissertation proposal, I will discuss the 

experimental procedures for both experiments with emphasis on the interconnected 

nature between the experiments.  The analyses to be conducted for each experiment of 

the dissertation will be discussed, including a final comparison between three 

mathematical and computational models’ performance in relation to the participants’ data 

during the categorization task. These three models will include; Pothos and Chater’s 

simplicity model (2002), Love, Medin, and Gureckis’ SUSTAIN (2004) algorithm, and 

the generalized structural invariance model (GISTM; Vigo, 2013, 2014).  Pothos and 

colleagues (2005) previously established the performance comparison between the 
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simplicity model and SUSTAIN on an unsupervised learning task.  These two models use 

the theories of complexity reduction and specifically analyze unsupervised learning tasks.  

The GISTM, a more recently developed model based on the notion of ideotypes and the 

principles of invariance is notably accurate on supervised learning tasks, but it is as of yet 

untested according to an unsupervised learning task.   
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Chapter 4: Categorization 

Research in the field of categorization and concept learning has a rich and 

detailed history, including those investigations on the phenomena pre-dating the 

Cognitive Revolution of the 1950’s (Hull, 1920; Smoke, 1933).  After the Cognitive 

Revolution  and the unification of cognitive psychology with a highly interdisciplinary, 

interest in the way in which individuals - and algorithms, a term used here for simplicity 

to refer to neural networks, support vector machines, and other programs that learn data - 

categorize and learn object classifications increased.  Because concept learning and 

categorization represents a high level behavior that encompasses low-level cognitive 

phenomena such as perception, attention, and others, understanding how individuals 

engage in concept learning behavior is key in understanding human behavior in general 

(Murphy, 2002).  As such, researchers have historically investigated human concept 

learning behavior according to supervised and unsupervised learning research designs. 

Supervised Learning 

 In the machine learning literature, a supervised learning task was one in which 

labels were assigned to specific objects in order to denote category membership 

(Kotsiantis, Zaharakis, & Pintelas, 2007).  Thus, if given two categories of objects, A and 

B, an algorithm’s performance relates to the proportion of correct object classifications.  

Prior exposure to the stimuli and their labels would initiate a learning mechanism within 

the algorithm.  For example, a neural network would adjust “neural” weights to 

accommodate the incoming information in preparation for the supervised learning task.  

Categorization accuracy indicates algorithm performance when prompted to categorize 
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unlabeled stimuli.  To the extent that an algorithm demonstrated a high degree of 

accuracy on the categorization task, one may arrive at the belief that the algorithm is 

successful.  Often, if the research pursuit is to develop an algorithm that demonstrates 

some key capacities of human category learning - such as the aforementioned SUSTAIN 

(Love et al., 2004) - the algorithm’s performance will be contrasted on human 

performance on several influential studies within the concept-learning field. 

  Highly influential studies in cognitive psychology, including those by Bourne, 

and Shepard, Hovland, and Jenkins (Bourne, 1963; Bourne & Guy, 1968; Shepard, 1991; 

Shepard, Hovland, & Jenkins, 1961), act as these performance benchmarks, not only for 

that of algorithms, but also for mathematical models of human categorization behavior.  

In addition, these studies helped to establish the role of task and environmental context as 

a governing factor in concept learning behavior (Billman & Knutson, 1996; 

Wattenmaker, Dewey, Murphy, & Medin, 1986; Wisniewski & Medin, 1994).  In these 

seminal categorization experiments, researchers presented visual stimuli to participants 

according to a specific procedure and asked participants to categorize the stimuli 

according to the stimulus features or dimensions.  Variation of stimulus features adhered 

to a binary scale; for example, the dimension of color included only black or white values 

with no permissible gradations.  Shape was either one of two values, such as a triangle or 

circle (Shepard, Hovland, & Jenkins, 1961).  The number of stimulus features under 

examination ultimately determined the number of stimuli within the overall category set.  

The total number of objects in a category is:  

p =2D 
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where D is the number of binary-varying dimensions and p is the total number of objects 

in the category (Feldman, 2000; Vigo, 2009).  Thus, a category with four varying 

dimensions consists of a total of 16 category objects.  Researcher them partition the total 

category in any way such that some objects are in the “positive” category and some 

objects are in the “negative” category, or alternatively category A and B (e.g., Shepard.  

Hovland, & Jenkins, 1961; Vigo, 2009, 2013). 

 Particular interest has been given to the category of four positive objects defined 

by three dimensions, generally referred to as the 3[4] category2 (Feldman, 2000; 

Goodwin & Johnson-Laird, 2011; Kruschke, 1992; Nosofsky, 1984, 1986; Nosofsky, 

Gluck, Palmeri, McKinley, & Glauthier, 1994; Shepard, Hovland, & Jenkins, 1961; Vigo, 

2009, 2011, 2013).  This category allows for the creation of six unique groups – or types 

– each consisting of eight objects.  In an influential study, Shepard, Hovland, and Jenkins 

(1961) examined the learning difficulty of these six types.  A participant’s categorization 

of each object within a category type was successful if they used a particular “rule” for 

each type.  Type I objects could be categorized by using only a single dimension; if the 

difference between groups was shape, participants only needed to attend to the object’s 

shape (e.g., triangle or circle) in order to correctly categorize every object in the set.  

Thus, objects within the Type I category share one similar quality (e.g., shape).  Type II 

objects required attention to two of the objects’ dimensions and used an exclusive or 

                                                        
2 Note that Vigo (2013) extended this notation such that it can now denote gradations.  
For example, the notation 32[4] would be equivalent to the previous notation of 3[4]; in 
both examples, four objects vary according to three binary dimensions.  A set of features 
could take on three possible values rather than two binary values, for example 33[4].  The 
subscript specifies the possible values or states of the features. 
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(XOR) rule to determine membership.  As a concrete example, objects in one particular 

category had to be either black and triangular or white and circular.  Without satisfying 

both those conditions, the participant should not categorize the object as a member of that 

particular group.  Three of the four objects in types III, IV, and V categories adhered to a 

single rule - triangular, for example - while the fourth a combination of rules to 

categorization.  Individuals could no categorize type VI objects by the simple rules such 

as those above; in fact, no particular rule allows object categorization without engaging 

memory (Shepard, et al., 1961).  Figure 1 presents a possible visual construction of the 

3(4) category using Boolean rules. 

 The results from the study indicated that participants experienced increasing 

difficulty in categorizing objects correctly as the number of dimensions necessary to 

attend to increased.  That is, as the “rule” necessary for categorization became more 

complex, the proportion of correct responses decreased.  Resulting from this, the 

following difficulty ordering (proportion of errors) was established; I < II < III, IV, V < 

VI (Shepard et al., 1961).  Extensive replication demonstrates a distinctive difficulty 

ordering of the six types occurs when individual engage in a supervised learning task 

(Nosofsky, et al., 1994; Shepard, Hovland, & Jenkins, 1961).  Due to the robust ordering 

that is produced, the 3[4] category has been used as a performance benchmark for 

mathematical modeling and prediction (Feldman, 2000; Kruschke, 1992; Nosofsky, 1984; 

Nosofsky, et al., 1994; Vigo, 2009, 2011, 2013). 

 It is important to note that while the difficulty order is a robust effect, the 

proportion of errors between each type (or learnability) is distinctly affected by the 
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experimental presentation (Vigo, 2011, 2013).  For example, in the Shepard, Hovland, 

and Jenkins (1961) experiment, researchers showed participants a series of images each 

containing a single object from one of two possible category types.  Participants 

responded categorizing the objects and received corrective feedback.  The feedback 

should allow the participant to categorize the objects with greater accuracy (e.g., less 

errors) when presented with the same category structure and type in the future.  More 

specifically, participants learn to categorize the set of objects based on the relevant 

features of that category.  For example, a category may vary on one dimension – let’s say 

color – and therefore an individual need only categorize the objects according to that 

dimension.  That is, if the participant learns that objects of shape “circle” belong in 

category A and objects of shape “triangle” belong in category B, only the dimension of 

object “shape” is necessary for categorization.  

This method of category presentation involving corrective feedback has been 

studied extensively in order to validate mathematical models (e.g., Nosofsky, 1984; Vigo, 

2009, 2011, 2013, 2014), theories of concept learning behavior, such as prototype theory 

and exemplar theory (Medin & Schaffer, 1978; Nosofsky, 1984; Rosch & Mervis, 1975), 

and to present experimental replications of the study to verify results (Nosofsky, et al., 

1994).  Vigo referred to this as a serio-informative task (Vigo, 2013, 2014).  

The 3[4] category has also been tested in a procedure that differs from the serio-

informative task and – as a result – demonstrates the same difficulty ordering but with 

different proportions of errors on each category type (Feldman, 2000; Vigo, 2009, 2013).  

In this modification of the concept-learning task, participants can view the category or 
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categories of interest for some pre-defined duration.  That is, the participant has access to 

perceive the category – consisting of the positive instances or both the positive and 

negative instances partitioned into the respective categories on-screen– prior to making 

responses to individual objects regarding their category of origin.  Vigo referred to whole 

category presentation as the para-informative task (Vigo, 2013).  Responses during the 

presentation of single objects in the para-informative task are identical to that of the 

serio-informative task; if the object belonged to the positive category, participants make a 

response to categorize that object as belonging to the positive category.  Once made, the 

participant then views the next object in the category; the participants receives no 

feedback following each response.  Thus, the serio-informative and para-informative 

tasks differ both in the presence of feedback and in the presentation of the category.  

Recent articles have examined how this method of presentation affects category 

learnability (Feldman, 2000; Vigo, 2009, 2013).  As indicated previously, they have both 

found – despite some procedural inconsistencies in the Feldman experiment – that the 

learnability of the six 3[4] categories does decrease in terms of proportion of errors, but 

the overall difficulty ordering is preserved.  Vigo found similar results in additional 

experiments (2009, 2013). 

 One of the fundamental goals of examining the learnability of category 

membership in a supervised learning experiment pertains to the ability to predict human 

(and nonhuman animal) performance given a particular category (Feldman, 2000; 

Goodwin & Johnson-Laird, 2011; Kruschke, 1992; Love, Medin, & Gurekis, 2004; 

Medin & Schaffer, 1978; Nosofsky, 1984; Vigo, 2009).  If examining supervised learning 
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involving a particular category structure - for example the linearly separable 3[4] Type I 

category (e.g., groups easily separated by using only one dimension) - researchers can 

anticipate the individual’s performance on that category relative to the specific presented 

task.  It would further be anticipated that an individual presented with this category 

structure using a serio-informative task (single item presentation with corrective 

feedback) would demonstrate slightly different performance than an individual presented 

with the same category on a para-informative task (whole category presentation with no 

feedback) (Vigo, 2009; Vigo, 2012).  However, because the outcomes (the associated 

labels) are known prior to the experiment, supervised learning can explicitly aim to 

predict and determine changes in human performance behavior between the specific 

conditions associated with the serio-informative and para-informative tasks (Pothos & 

Chater, 2002; Vigo, 2009, 2011). 

Unsupervised Learning 

 Unsupervised concept learning, in contrast to supervised concept learning, is used 

to examine the conditions under which an individual categorizes a group of stimuli given 

variations in the stimulus dimensions (Goudbeek, Swingley, & Smits, 2009; Pothos & 

Chater, 2002).  In the machine learning literature, an algorithm is presented with a 

collection of stimuli or objects that it must then spontaneously sort into groups (Bengio, 

Courville, & Vincent, 2012; Ghahramani, 2004).  Generally, a successful algorithm 

would ideally sort these objects in such a way that groups have a high degree of within 

group similarity while maintaining a low degree of similarity between different groups 

(although the exact mechanism would depend on the type of implemented algorithm).  In 
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other words, the algorithm is assessing the underlying structure of the object collection in 

order to facilitate a partition or grouping.  When presented with the 3[4]-1 objects that 

have thus far been the ever-present example in this dissertation, the algorithm should 

group similar shapes together.  In doing so, each of the two groups - triangular and 

circular - would have a high degree of within-group similarity while, when comparing 

groups against each other, would demonstrate a low degree of similarity.  Using 

categories that are not divided as easily as 3[4]-1 may result in more unique groupings in 

order to satisfy the within-group and between-group conditions (Fleiss and Zubin, 1969; 

Pothos & Chater, 2002, 2005; Zubin, 1938, etc...). 

 Research on human participants is similar (Colreavy & Lewandowsky, 2008; 

Pothos & Chater, 2002; Love, 2002).  Individuals observe a collection of stimuli, and 

categorize the stimuli by assigning a category label to each one of the stimuli.  Much like 

the algorithms described above, an individual should ideally be making these category 

assessments and groupings by evaluating the degree of similarity or coherence between 

the presented stimuli (Pothos & Chater, 2002).  Unlike the serio-informative and para-

informative (Shepard, Hovland, & Jenkins; Vigo, 2009, 2013) supervised learning tasks, 

unsupervised learning provides no corrective feedback or category cues.  Instead the 

participant spontaneously constructs groupings of objects in order to increase within-

group similarities and between-group differences.  Once participants group all objects in 

such a way that they feel the groupings are subjectively coherent, the participant begins 

again with a new collection of objects.  In experiments with visual objects, participants 

group similar objects by drawing lines to separate dissimilar objects or circling around 
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similar objects (Compton & Logan, 1993, 1999; Pothos & Chater, 2002).  Figure 2 

presents a simple example of this process; the participant would separate the objects by 

using lines or circles in order to establish groups of similar objects. 

 Ashby, Queller, and Berretty (1999) distinguished between two types of 

unsupervised learning tasks, what they referred to as the “unsupervised learning task”, in 

which individuals are not provided corrective feedback but are told the number of 

categories, and the “free sorting task” in which individuals are provided neither the 

corrective feedback nor the category number.  Henceforth, we will discuss the free 

sorting task and refer to it as unsupervised learning since it is primarily used in 

unsupervised learning research (Edwards, Perlman, & Reed, 2012; Goudbeek, Swingley, 

& Smits, 2009; Pothos & Chater, 2001; Pothos & Chater, 2002). 

 In addition, the purpose of unsupervised learning research differs from 

supervised learning in that, rather than attempt to predict how individuals classify stimuli, 

unsupervised learning allows for the examination of the conditions under which an 

individual will classify stimuli a particular way (Pothos & Chater, 2002; Ashby, Queller, 

& Berretty, 1999).  In other words, in what manner do experimental manipulations - 

whether through prompting or instructions, or through the choice of stimulus modality 

and dimensions – affect the free and spontaneous categorization of stimuli.  

Over a series of studies, Pothos and Chater (2002) examined just this question; 

participants categorized visual objects according to different criteria across several 

experiments.  In their first experiment, participants viewed a rectangular space containing 

markers placed in a coordinate plane, similar to that presented in Figure 2.  Because 
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location was the factor that influenced categorization, each object varied according to two 

dimensions; the X-coordinate and the Y-coordinate.  Participants categorized stimulus 

sets of increasing response variability.  That is to say, early tasks in the experiment had a 

clear solution for grouping despite not being explicitly stated (e.g., two large groups 

clustered on the opposite ends of the coordinate space).  When the task required 

partitioning the space into three clusters - response variability increased as compared to 

the two-cluster condition.  Specifically, participants developed more “distinct solutions”, 

as Pothos and Chater (2002) refer to it, to the problem of dividing the space into three 

clusters.  When comparing this result against the two-cluster condition, it appears that a 

uni-dimensional solution (categorizing solely by the X or Y coordinate in this case) will 

result in less response variability. 

As mentioned, when reassigning dimensions used to manipulate stimuli to 

different attributes without a change in the inherent categorization requirements, 

responses to the unsupervised learning task change.  Pothos and Chater (2002) reassigned 

the previously described dimensional variation from an X/Y coordinate system to the 

inner and outer diameter of a star.  Specifically, changes along the Y axis in the previous 

experiment corresponded to the size of the inner star diameter, whereas changes in the X 

axis corresponded to the size of the outer star diameter (Figure 3).  The dimensional 

reassignment resulted in more response variability or distinct solutions than the stimuli 

presented on the X/Y coordinate system despite the same categorization requirements 

being present (e.g., separating two large clusters).  This refers back to the central goal of 

unsupervised learning; how do the conditions, context or stimuli affect the categorization 
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process?  In the Pothos and Chater (2002) experiments, a simple dimensional 

reassignment fundamentally changes the unsupervised learning process by increasing 

categorization response variability to the prescribed conditions. 

The above studies by Pothos and Chater (2002) provided an example of the 

delicate relationship the categorization process maintains to the available stimuli, and 

how changes in one subsequently affect the other.  While these and other studies (Ashby, 

Queller, & Berretty, 1999; Love, Medin, & Gureckis, 2004) have focused exclusively on 

unsupervised learning of visual category stimuli, only a few have examined how 

individuals perform when given an unsupervised learning task involving auditory stimuli 

(Goudbeek, et al., 2009; Gygi, et al., 2007).  Thus to further expand the knowledge of 

how conditions and stimulus modality affects categorization behavior, in the current 

experiment I will examine the behavioral response of individuals in an unsupervised 

learning task involving auditory concepts varying across multiple dimensions.  The 

current experiment will expand on the usage of audio stimuli from previous research will 

be discussed in detail in Chapter 7. 
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Chapter 5: Auditory Stimuli 

 Prior to discussing auditory categorization, it may be useful to provide a brief 

primer on auditory stimulus dimensions.  Auditory stimuli vary according to three broad 

dimensions: frequency, amplitude, and timbre (Melara & Marks, 1990; Roads, 1996, 

2002).  However, these dimensions decompose further into sub-features, particularly 

timbre which when analyzed in the frequency domain is a composite of many individual 

features (Grey, 1977).  

Auditory Dimensions 

Auditory stimuli contain a robust amount of information as evidenced by the 

number of dimensions in which they can vary (Bonebright, 2001; Bulgarella & Archer, 

1962; Clarkson & Pentland, 1999; Gao, Lee, & Zhu, 2004; Goudbeek, Swingley, & 

Smits, 2009; Guastavino & Katz, 2004).  The attributes used to define the auditory 

stimuli in the current experiments – namely, pitch, amplitude, and timbre - will be briefly 

described and discussed according to their definition and, where applicable, their 

perceptual definitions.  Researchers have found the following features of auditory stimuli 

to be significant or necessary to the human perception of sound (Caclin, McAdams, 

Smith, & Winsberg, 2005; Grey, 1977; Lockhead & Byrd, 1981). 

 Frequency and pitch.  Frequency describes the behavior of periodic vibrations - 

or waves - that may be perceivable by humans according to the auditory modality 

(Farnell, 2010; Roads, 1996; 2004) and described in units of hertz (Hz).  The range of 

frequencies extends from 0 Hz to extreme ultra-frequencies, although the range of human 

auditory perception is limited to only frequencies between 20 to 20000 Hz.  These values 
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represent a human with no auditory deficits (e.g., tinnitus) at a younger age.  As 

individuals age, the upper bound of human hearing (20,000 Hz) tends to decline 

progressively (Robinson & Sutton, 1979). 

Auditory waves behave in cycles – the rise and fall of the wave from the resting 

point (the horizontal line in Fig. 4).  The amount of time it takes for a single cycle to 

complete is the period, T.  Frequency can then by measured as an inverse relation of the 

period: 

f = 1/T 

Hertz (Hz) are the standard unit for the resulting frequency (f).  To provide an 

example, a wave with a frequency of 150 Hz would have a periodicity of 1/150, or 

occurring every 0.006 seconds.  Thus, according to this formula, cycles with shorter 

periods result in higher frequencies (see Figure 5 for a comparison of two 

frequencies/waves). 

Frequency in more subjective and psychophysical terms is a sound’s pitch.  As 

such, this allows for individuals to articulate relationships between frequencies.  A 12 

note scale describes the relationship of frequency according to octaves.  An octave 

provides a standard unit of measurement that describes a sound as twelve notes higher 

than the root pitch.  An octave higher than that (+24) will be similar to the root pitch, and 

so on.  Thus, pitch describes a highly linear relationship; increasing a root pitch by a 

certain number of notes will have the same relationship between the notes regardless of 

the originating octave (e.g., playing seven notes up from C3 results in the same note as 

playing seven notes up from C4).  In terms of frequency, however, the relationship is 
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non-linear.  The change in frequency between notes C2 and C3 is less than the change in 

frequency between notes C3 and C4.   

Pitch is a highly identifiable aspect of musical and auditory content under 

different conditions.  In individuals with normal hearing, they are able to assess a just 

noticeable difference between two complex tones differing by as little as 1 Hz 

(Kollmeier, Brand, & Meyer, 2008).  Therefore, individuals assess two tones differing by 

only 1 Hz as being different along a dimension of pitch.  Differences in behavioral 

history also affect pitch perception.  Tervaniemi, et al., (2005) found that the behavioral 

history of the individual contributes to pitch identification and discrimination; the most 

striking and fundamental difference in this case is whether the individual has a history of 

playing and performing music or not.  Thus, performance on an auditory measure can be 

highly dependent on the individuals’ history.  Musicians are more likely to discriminate 

and accurately respond to a change in pitch than non-musicians.  The ability to determine 

these relations, described as relative pitch (RP) perception, is a behavioral characteristic 

of trained musicians in that they are able to identify pitch when given a contextual cue, 

such as an additional, named note like ‘B’ (Levitin & Rogers, 2005).  Thus, because of 

their musical training, identifying previous musical training present in an individual’s 

behavioral history is critical for avoiding any potentially confounded or biased results. 

Differences in the timbre content also demonstrate an effect on an individual’s 

ability to accurately report perceived pitch.  Lockhead and Byrd (1981) reported that 

when a sound contained timbre, or overtone information in the form of a piano tone, 

participants identified absolute pitch with 99% accuracy.  In contrast, when researchers 
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removed overtone information by using a pure sine tone – where no partial frequencies 

are present other than the fundamental frequency - absolute pitch identification dropped 

to 58% accuracy.  Balzano (1986) found a somewhat conflicting result; while 

investigating absolute pitch identification of pure sine tones, he found a median accuracy 

of 84.3% identification.  Despite this apparent contradiction, these results establish the 

interdependent relationship between pitch and timbre, (an additional discussion focusing 

on this interdependent relationship will continue in the timbre section of this paper.)  

Moore Glasberg, and Peters (1984) examined the contribution and dominance of each 

harmonic partial, or overtone, in an individuals’ assessment of a complex tones’ 

perceived pitch.  Moore and colleagues (1984) found that the distribution of the dominant 

harmonic partials in a particular complex tone played at a particular pitch, varied between 

tones.  However, when researchers detuned the dominant harmonic partials greater than 

+/- 2 to 3%, there was an overall change in judgment of the tone’s pitch content. 

One of the primary measures of pitch discrimination and accuracy is pitch 

matching.  In such paradigms, individuals may be asked to do one of the following: vary 

a tone’s pitch until it matches, or approximates, the pitch of the original tone (Plack & 

Oxenham, 2005), match a pitch by entering the note and octave value (Balzano, 1986), or 

determine the relative increases or decreases in pitch by making corresponding matches 

(Zatorre, Evans, & Meyer, 1994).  By making individuals perform these comparisons, 

researchers are able to gauge the effect other auditory dimensions may have on the 

perception of pitch.  It follows that individuals will tend to match or categorize similar 

pitches into groups.  Kohler (1987) found that changes in the fundamental frequency 
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appeared to result in different classifications of the tones.  More specifically, when 

increasing or decreasing the fundamental frequency, individuals classify manipulated 

tones as being different from each other.  Thus, based on this result, I anticipate that 

changes in pitch across the stimuli will affect the resulting grouping structure in an 

unsupervised classification task. 

The exact nature of pitch perception is continually under investigation, but it does 

appear that some group differences require documentation.  As previously mentioned, 

musicians tend to perceive pitch more accurately than non-musicians (Tervaniemi, et al., 

2005).  However, there have been some disparate results with regard to age.  Most 

notably, a child’s ability to discriminate and perceive pitch accurately has seen some 

conflicting results (Bundy, Colombo, & Singer, 1982; Clarkson & Clifton, 1985; Speer & 

Meeks, 1985), but such results may be an effect of the natural contingencies in their 

developmental history, such as having a parent with musical training (Levitin & Roger, 

2005).  Thus, the connecting thread behind this body of research is musical training; 

either having the requisite training or growing up in an environment with strong musical 

ties appears to affect pitch detection and categorization behavior.  Therefore, in assessing 

categorization behavior of individuals using the auditory dimension of pitch, participant 

screening should take place based on musical training or at least documenting the extent 

of training that they possess.  Because the focus of the experiment does not relate to 

musical training, I will document and screen participants as the situation warrants. 
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 Amplitude and loudness.  The dimension of amplitude refers to the pressure a 

wave propagated through a medium, such as air.  Amplitude has both positive and 

negative components associated with sound.  Each are relative to the resting point of the 

sound which generates no waves and is the absence of sound.  When generating a 

positive increase in the amplitude, the medium through which it travels is compressed.  

Negative decreases in amplitude result in rarefactions of the medium.  A change in the 

compression and rarefaction through the medium corresponds with a change in 

amplitude; increases result in higher amplitude, decreases result in lower amplitude.  The 

absolute amplitude describes the difference between the peak displacement and the zero 

(resting) point.  In terms of computational descriptions of amplitude, this value varies 

between zero (no amplitude) and one (full amplitude).  Changes in amplitude can further 

be described in units of decibels (dB), the logarithmic unit of the relative intensity of two 

auditory stimuli, or the RMS (root mean squared) amplitude.  Of these, dB amplitude has 

been reported frequently as an analysis measure of amplitude (Glasberg & Moore, 2002; 

Munhall, Jones, Callan, Kuratate, & Vatikiotis-Bateson, 2004; Ohl, Scheich, & Freeman, 

2001; Svirsky, 2000; Wong, Skoe, Russo, Dees, & Kraus, 2007). 

 Loudness – the psychophysical description of loudness - is the perceived, 

subjective determination of a stimulus’ intensity relative to other factors, such as 

frequency or, subjectively pitch.  To measure the subjective loudness of a sound, Stevens 

and Volkman (1940; Stevens, 1960, 1970) created the unit of sones.  A sone is a relative 

ratio measurement, where one sone is equal to a 1 kHz sine wave at 40 dB.  An increase 

in volume to 50 dB, a change of 10 dB, the wave in sones would be twice as loud.  A 
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further increase – such as an increase to 60 dB – would result in the wave four times as 

the original 40 dB wave.  Despite being the psychophysical analog of amplitude, current 

research infrequently uses sones as a measure of loudness.  More typically, dB or RMS 

amplitude is used as the measurement of loudness in perceptual experiments because 

these units can easily be converted (e.g., Jesteadt, Luce, & Green, 1977; Khalfa, et al., 

2004; Neuhoff, McBeath, & Wanzie, 1999; Puckette, 2006). 

 Generally, individuals are able to establish a just noticeable difference between 

the loudness of two sounds by only 1 dB (Howard & Angus, 2012).  However, the 

changes in loudness can also affect the perception of other auditory dimensions.  The 

apparent loudness of a stimulus is dependent upon frequency changes of the auditory 

stimulus.  Neuhoff, McBeath, and Wanzie (1999) examined square waves varying in 

frequency across time.  The frequency increased, decreased, or remained constant across 

the duration of the auditory stimulus.  Additionally, each sound also varied in loudness 

under several conditions; loudness increased, decreased, or remained constant.  Neuhoff 

et al. found that increases in the frequency across time results in the perception that the 

perceived loudness is also increasing.  Similarly, decreases in the frequency across time 

resulted in a lower perceived loudness of the square wave.  Other researchers have 

experienced similar results indicating that loudness and frequency are interrelated 

dimensions that affect one another (Canevet & Scharf, 1990). 

 Subjective, perceptual determinations of loudness differ across groups of 

individuals.  For example, Khalfa and colleagues (2004) found that, relative to 

developmentally normal children, children with autism - in addition to having a smaller 
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auditory dynamic range - tend to have increased perception of auditory stimuli loudness.  

In other words, children with autism, perceive sounds as louder compared to loudness 

perception of developmentally normal children.  Other groups of individuals perceive 

loudness differently.  Similar to the subjective perceptual differences of pitch found 

between musicians and non- musicians, the subjective loudness of an auditory stimulus 

has also been found to differ depending on whether an individual plays or has played a 

musical instrument (Hoover & Cullari, 1992).  In contrast, some groups of individuals, 

such as the blind, do not differ from individuals with normal vision (Yates, Johnson, & 

Starz, 1972).  As with pitch, due to variation in loudness perception between groups, it is 

necessary to take note of the relevant physiological or behavioral history of the 

individuals in the experiment. 

 Perceived loudness of an auditory stimulus is highly dependent upon other 

features or dimensions of sound such as frequency (Neuhoff, McBeath, & Wanzie, 1999), 

and also highly dependent upon previous behavioral history and physical or 

psychological afflictions (Hoover & Cullari, 1992; Khalfa, et al., 2004; Yates, Johnson, 

& Starz, 1972).  Additionally, the manner in which amplitude varies across time, known 

as the amplitude envelope, also has a profound influence on both pitch perception and 

perception of timbre (Berger, 1964; Houtsma, 1997).  The contour of the amplitude 

envelope determines the duration of a sound; thus, the shape and attributes of the 

amplitude envelope determine the duration of an auditory stimulus.  The amplitude 

envelope is traditionally – in the field of both computer music and synthesis (Roads, 

1996) – described according to four components: attack, decay, sustain, and release. 
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 Amplitude envelope.  The amplitude envelope is a description of the flow of 

amplitude across time.  For synthetic and physically modeled instruments, these are the 

parameters that govern the amplitude of the instrument across time, often referred to as 

the voltage controlled amplifier.  For computer or synthesizer based instruments, the 

amplitude envelope is typically defined by the attack, decay, sustain, and release 

components (in short referred to as the ADSR; Figure 6), although variations of differing 

complexity such as ADR (attack, decay, release), AR (attack, release), and ADBDR 

(attack, decay, breakpoint, decay, release) exist. 

Attack.  The attack of the ADSR is the duration of time that an instrument 

requires to go from zero to maximum amplitude.  This corresponds to the onset of a 

sound; sounds with a longer onset sonically appear to swell at a gradual rate while sounds 

with shorter onsets appear more percussive.  Sounds with a very short attack, ~ 10 ms, 

produce an audible click, although physical instruments rarely exhibit an attack of such 

short duration.  Many instruments are physically capable of producing a continuum of 

attack times.  For example, striking a violin string suddenly produces a very short attack 

– e.g. short rise time – with the result being that the maximum amplitude occurs in a very 

short period.  In contrast, lightly dragging the bow across the strings and gradually 

increasing the pressure and intensity of the bow to the string creates a slow attack – or 

long rise time.  The differing rates of attack also influence the perception of the 

instrument’s timbre (Caclin, et al., 2005; Grey, 1997).  Specifically, the same instrument 

played with different attack speeds generates introduces the listener to the sound’s 

overtones at different rates.  Thus, while the attack is a function of varying the amplitude 
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envelope over time, it also results in effects on the perceived timbre.  I will address 

timbre more thoroughly in a later section. 

Decay.  Auditory decay occurs immediate after the attack, and is the period where 

the force initially applied during the attack (e.g., blowing on a horn or striking the strings 

with a bow) decreases from the friction present on the instrument.  As a result, the energy 

contributed during the attack portion exits the system and there is a subsequent decrease 

in amplitude.  After dispersing excess energy from the initial attack, the amplitude 

decreases until it reaches an equilibrium referred to as sustain.   

Sustain.  Sustain is an equilibrium state of energy input and output within the 

instrument.  A constant flow of energy input is equal to a constant flow of energy output.  

To give a more specific example, the energy input by bowing a string on an instrument is 

equal to the output.  Energy input continues into the system; the bow is still moving 

across the strings.  Sustain continues until energy is no longer supplied to the system.  

Once energy input ceases, the release phase begins. 

Release.  The dispersal of residual energy after no further energy input into the 

system results in the release.  During the release, the instrument continues to produce 

some sound over time, but the amplitude of the tone decreases.  The decrease in 

amplitude is consistent with the duration of the dispersal of energy.  In other words, the 

duration from the moment equilibrium is disrupted (sustain) until the amplitude returns to 

a stable resting state, defines the release.  As a practical example, once the bow stops 

making contact with the string the amount of time the instrument takes to go silent refers 

to the release period.  The shape of the waveform’s amplitude through time, as controlled 
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by the amplitude envelope, plays an important role in the both the perceived pitch of an 

instrument or synthesized tone.  Changes in the amplitude envelope can have a dramatic 

effect on the perception of pitch.  Hartmann (1978) found that when individuals are 

presented with tones, those tones that have an exponential decay of the amplitude 

envelope rather than a gated envelope are estimated as being higher in pitch (Hartmann, 

1978).  Neuhoff and colleagues (1999) found similar results; not only do changes in 

loudness affect pitch perception, but also changes in the amplitude envelope affect the 

release stage (Hartmann, 1978).  The amplitude envelope also plays a critical role in the 

perception of speech, including perception of speech by both children and adults with 

dyslexia (Goswami, Gerson, & Astruc, 2010; Goswami, Thomson, Richardson, 

Stainthorp, Hughes, Rosen, & Scott, 2002; Corriveau, Pasquini, & Goswami, 2007), the 

ability for individuals to speech-read or lip-read (Grant, Ardell, Kuhl, & Sparks, 1985; 

Grant, Braida, & Renn, 1991; Grant, Braida, & Renn, 1994), and recognition of 

languages such as Chinese (Fu, Zeng, Shannon, & Soli, 1998; Luo & Fu, 2004).  In fact, 

the amplitude envelope plays a very fundamental role in language perception and 

comprehension; recognition of elements such as consonant-vowel ratio (Freyman, 

Nerbonne, & Cote, 1991) and the perception of consonants and vowels (Shinn & 

Blumstein, 1984) are both highly dependent upon the shape of the amplitude envelope.  

As such, the amplitude envelope represents a critical feature in both perception of speech 

and musical tone. 

 



55 
 
 Timbre.  Acoustically, a precise and unanimous technical description of timbre 

has remained elusive in auditory research due to its fundamental nature.  It is also 

difficult to define and specify the exact physical dimensions as well as other contributing 

dimensions to the overall timbre (Pitt, 1994).  The longstanding definition, as put forth by 

the American National Standards Institute defines timbre as:  

The attribute of auditory sensation in terms of which a listener can judge that two 

sounds similarly presented and having the same loudness and pitch are dissimilar.  

(American Standards Association, 1960) 

 In other words, timbre is the defining characteristic that would result in an 

individual’s ability to determine: a) that an individual perceives the sound resulting from 

a piano played at several different octaves is the same instrument, and b) the tone from a 

piano and an oboe are from different instruments when played at the same pitch and same 

loudness.  While such a definition may be adequate from a perceptual standpoint, many 

researchers have found this definition to be imprecise and incomplete from an acoustic 

standpoint (McAdams, Winsberg, Donnadieu, Soete, & Krimphoff, 1995; Pitt, 1994; 

Smalley, 1994) and, as a result, have made attempts at determining the relevant – and 

minimum – number of dimensions that contribute to the perception of an instrument’s 

sound.  From a more theoretical perspective, many have debated how timbre arises and 

how we are able to perceive the same timbre at two different pitches or two degrees of 

loudness as being the same or similar.   

 Often, researcher can extract the features of timbre via a Fourier transform – 

typically Fast Fourier Transform (or FFT) – which converts the audio signal from the 
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time domain to the frequency domain so that spectral analysis can be conducted on the 

features (Grey, 1977; Roads, 2004).  The time domain consists of an audio signal as 

represented continuously through time (Fig. 7), wherein the shape of the amplitude 

envelope is easily discernable.  Although information about a particular pitch is available 

in the time domain based on the analysis of single wave cycles at a microsound level, 

information concerning the frequency spectrum is unavailable (Roads, 2004).  The 

frequency domain allows for analysis of the entire frequency spectrum of a particular 

sound in one instant, rather than over a lengthy period of time.  The duration of the 

instant depends on the window size of the FFT; window sizes are based on the number of 

samples present within the window (e.g., 1024 is equivalent to two cycles of a waveform 

consisting of 512 samples).  Researchers can perform any number of analyses once the 

audio is in the frequency domain, including analysis of the harmonic spectrum, power 

spectrum, spectral centroid, and others (Grey, 1977; Roads, 2004).  FFT has been the 

standard method of analyzing the timbre of a sound.  

However, there are some criticisms of the FFT process and inferring perceptual 

relationships based solely on the analysis of FFT.  Balzano (1986) argued that because 

there exist variations in timbre, not only due to changes in pitch and loudness, but also 

due to natural variation between instruments, such a process will not necessarily result in 

an auditory stimulus that approximates the timbre of the original instrument at the 

recorded pitch and loudness.  His solution was to examine the timbre for possible cues, or 

invariances, that provide information about the underlying structure in relation to the 

signal dynamics (Balzano, 1986).  In this sense, spectral analysis is analogous to 
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descriptive statistics; descriptive information about a sound or wave results, but the 

relationships and underlying dynamics that connect the attributes of timbre perception are 

not directly considered. 

 Despite issues concerning the apparent superficiality of the FFT process, spectral 

analysis has served an important purpose in the analysis of timbre.  Previous research has 

focused on the dimensional reduction of timbre such that only the most salient or 

diagnostic dimensions are preserved.  Much of the research has found that timbre 

couldn’t be isolated to a single, unifying dimension; it appears that timbre is composed of 

multi-dimensional physical features of sound (Grey, 1977; Houtsma, 1997; de Bruijn, 

1978).  Of these features, it appears that the spectral envelope represents an important 

dimension of timbre (de Bruijn, 1978; Ter Keurs, Festen, & Plomp, 1992; Warren, 

Jennings, Griffiths, 2005).  The spectral envelope is the frequency-domain (FFT) 

representation of an auditory stimulus given a particular frame of time; the shape of the 

spectral envelope describes differences in amplitude intensity at each frequency.  Figure 

8 provides an example of two differing spectral envelopes; as the amplitude energy at 

each frequency changes, so does the perceivable timbre.  When more overtones – or 

harmonics - are present at higher frequencies, individuals tend to label such sounds as 

being “brighter”, specifically in regards to what some describe as “tone” color (von 

Bismarck, 1974; Clarkson, Clifton, & Perris, 1988; Krumhansl & Iverson, 1992).  Such 

subjective labels are characteristic of timbre research.  A more precise measure of 

differences in auditory spectra may be the spectral centroid (McAdams, Winsberg, 

Donnadieu, Soete, & Krimphoff, 1995; Samson, Zatorre, & Ramsay, 1997).  The spectral 



58 
 
centroid is the center, or average, of the spectrum; thus, sounds with higher averages 

(through frequency distributions weight more highly or more positively skewed towards 

higher frequencies) typically contain more high frequency overtones and result in 

descriptions such as “bright” (Grey & Gordon, 1978). 

In addition to the spectral centroid, researcher have identified other dimensions as 

contributing to the characteristics that distinguish different auditory timbres.  McAdams 

and colleagues (1995) investigated the number of features that distinguish timbre by 

using a latent class model.  The result demonstrated three significant correlations 

associated between timbre dimensions and Krimphoff’s (1993) proposed acoustic 

correlates.  The three dimensions are: log-attack time, spectral centroid, and spectral flux.  

Log-attack time represents the logarithm of duration of time from the onset of a sound 

(set via a threshold of 2% of the maximum amplitude) until the maximum amplitude is 

reached.  Spectral centroid, as mentioned, is the average overtone or harmonic content of 

an audio source and spectral flux refers to the variance associated with the spectral 

envelope over time.  Krimphoff (1993) measured spectral flux as the average of the 

correlations between the amplitude spectra in subsequent time windows.  As further 

described by McAdams, the correlation would be highest when variation across each 

window is minimized.  Thus, spectral flux in timbre is low when variability between 

windows is also low.   

However, from a practical, psychological standpoint, Caclin and colleagues 

(2005) found that spectral flux demonstrated little effect on an individual’s assessment of 

dissimilarities as compared to other influencing dimensions such as log-attack time.  In a 
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sequence of studies, Caclin and colleagues (2005) found that participants were generally 

unable to distinguish variations in spectral flux when it used as a varying dimension of 

timbre.  Only when the spectral variability was at its highest did individuals use spectral 

flux to assess dissimilarity, and even given these conditions spectral flux acted as a 

supplement to other dimensions of timbre.  Caclin and colleagues found that log-attack 

time and spectral centroid were the most salient attributes of timbre along with the 

spectral structure of the sound.  

The result from Caclin’s studies (2005) that three dimensions for timbre 

recognition is consistent with previous research (Krumhansl, 1989; McAdams & 

Cunibile, 1992; Miller & Carterette, 1975).  Given this research, perhaps three features of 

timbre – specifically spectral centroid, spectral structure, and log-attack time – will 

provide a more objective starting point for assessment of dimensional importance in 

determining differences and similarities in auditory stimuli, via multi-dimensional scaling 

as possible subjective “definitions” of timbre by the participants. 

Regardless of the varied definitions of timbre, the identification and 

discrimination of timbre has played a key role in auditory perception.  Of particular 

interest has been timbre discrimination in infants and young children with the aim of 

answering key questions; namely, “Is timbre discrimination something that is learned?” 

and, “At what age can an individual effectively discriminate between different timbres?” 

(Clarkson, Clifton, & Perris, 1988; Trainor, Wu, & Tsang, 2004; Trehub, Endman, & 

Thorpe, 1990).  In favor of the argument that timbre discrimination is something that is 

learned, musical training has been shown to influence timbre identification - similar to 
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the research of musician pitch identification – as the specific neural correlates of timbre 

perception between musicians and non-musicians has been studied (Chartrand & Belin, 

2006; Crummer, Walton, Wayman, Hantz, & Frisina, 1994; Prior & Troup, 1988; Vurma, 

Raju, & Kuuda, 2010).  Generally, musical training increases an individual’s sensitivity 

to timbre changes when compared to non-musicians (McAdams, Winsberg, Donnadieu, 

De Soete, & Krimphoff, 1995).  Therefore, as with pitch, due to known differences in 

performance between musicians and non-musicians, it will be necessary to document 

such behavioral history prior to the experiment. 
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Chapter 6: Integral Dimensions 

Not only can the dimensional variation of stimuli affect learning, but the degree to 

which there is interplay between those dimensions can also have effects.  So far, the 

majority of the discussed studies have used separable dimensions – where an individual 

can isolate the contribution of each stimulus dimension – but some dimensions and 

stimuli display an interconnectedness that doesn’t promote isolated processing.  When 

dimensions behave as such, they possess integral dimensions.  Learning processes differ 

between separable and integral dimensions (Garner, 1974; Garner & Felfoldy, 1970; 

Shepard, 1991).  

 When a stimulus’ dimensions are separable, an individual can easily distinguish 

between the values or intensity of the dimensions (Garner, 1974; Pothos & Chater, 2002).  

For example, a blue colored circle possess two identifiable and distinct features.  More 

formally, the separation between dimensions - such as dimension of color (“blue”) and 

the dimension of shape (“circle”) – refers to orthogonality.  The example stimuli from 

Pothos and Chater (2002) in Figure 2 present a concrete example of separable 

dimensions.  An individual can easily distinguish that there are two attributes that define 

each stimulus in the rectangular space; the X coordinate and the Y-coordinate.  Nosofsky 

and colleagues (2013) used the apt term “highly analyzable” to describe such separable 

dimensions.  Indeed, an individual can readily decompose a separable-dimension 

stimulus into the constituent components, in the case the X-coordinate and the Y-

coordinate.  
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 Little and colleagues (2013) found evidence that individuals perform serial or 

parallel processing when making categorization decisions of stimuli based on their 

separable dimensions.  Based on a series of isolated dimensional assessments (e.g., taking 

into account only one dimension at a time), individuals successively determined how to 

categorize a given stimulus (Little, Nosofsky, & Denton, 2011; Little, et al., 2013).  Some 

categorization errors may occur during this process; an individual examining an object 

with separable dimensions may encounter interference in stimulus categorization based 

on the attended orthogonal dimensions.  Each of the independent dimensions may 

compete for attention resources and, as a result, influence the response made by the 

individual (Garner & Felfoldy, 1970).  Conversely, when an individual categorizes 

separable-dimension stimuli, they may be able to filter out stimulus features that are no 

indicative of a category’s structure.  The reduction/filtering of attended stimulus 

dimensions facilitates the categorization process and, in such situations, an individual 

may categorize based on a single dimension (uni-dimensionally) and disregard - or filter 

out - all other dimensions (Gottwald & Garner, 1975).   

 Much of the traditional categorization literature has examined separable 

dimensions, including the seminal study by Shepard, Hovland, and Jenkins (1961).  

Current research in categorization and concept learning has also focused on 

categorization using separable dimensions, such as the amoebas used by Feldman (2000) 

and the flasks used by Vigo (2009, 2011, 2013; Vigo & Basawaraj, 2013; Vigo, Zeigler, 

& Halsey, 2013).  Furthermore, researchers examined separable dimensions in eye-

tracking experiments on categorization.  Rehder and Hoffman (2005), much like Shepard 
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and colleagues (1961), conducted research in which they separated each dimension 

spatially during presentation to the participants, allowing stimuli or objects composed of 

separable dimensions to be examined while filtering out other features of the stimuli.  

Overall, consensus across studies indicates that individuuals process separable-dimension 

stimuli by an individual through serial or parallel processing (Garner & Felfoldy, 1970; 

Little, Nosofsky, & Denton, 2011; Little et al., 2013). 

 In contrast to separable dimensions, integral dimensions lack the orthogonality of 

dimensions.  When a stimulus’ dimensions are integral, each feature is inseparable from 

the higher-order stimulus to which it contributes (Garner & Felfoldy, 1970; Nelson, 

1993).  Early research by Garner and Felfoldy (1970) found examples of this 

inseparability in several modalities.  In vision, dimensions such as color, shape, and size 

are easily separable and psychologically distinct; color is independent of shape and 

individuals may attend to color accordingly.  However, visual dimensions such as hue, 

color and brightness of a stimulus are integral (Garner & Felfoldy, 1970).  An individual 

presented with such a stimulus would be unable to psychologically separate these 

dimensions and would, accordingly, process the whole stimulus rather than individual 

dimensions (Cheng & Pachella, 1984; Nosofsky, et al., 2013; Nosofsky & Palmeri, 1996; 

Patchella, Somers, & Hardzinski, 1981; Shepard, 1991).  

 Because of the inherent relationship between the stimuli dimensions, individuals 

are able to efficiently perform categorize integral-dimension stimuli via speed-sorting.  In 

fact, this relationship between the stimulus features may under certain circumstances 

represent a redundancy (Garner & Felfoldy, 1970).  While separate dimensional 
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processing is not possible, holistic relationships between dimensions facilitate an increase 

in discrimination and categorization response time by allowing the individual to 

selectively filter their attention from dimensional commonalities between stimuli (Garner 

& Felfoldy, 1970).  

 Research indicates that while separable-dimensional stimuli are processed serial 

or in parallel, integral-dimension stimuli are examined according to a coactive process 

(Little, Nosofsky, & Denton, 2011; Little, et al., 2013).  That is, when categorizing 

integral-dimension stimuli, assessments of each dimension are pooled together to form a 

categorization decision.  Compared to separable-dimension stimuli where each 

dimensional is assessed individually, a holistic processing of the collective dimensions 

informs the categorization process (Nosofsky, et al., 2013).  

 Auditory stimuli are dimensionally integral; each dimension has an effect upon 

every other auditory dimension (Melara & Marks, 1990).  Because of the integrality of 

the dimensions, individuals often perceive the auditory stimulus as a whole rather than 

based on individual features (Nelson, 1993).  Pitch and loudness are integral dimensions 

and, in addition, the dimensional value of each affects the other dimensions (Melara & 

Marks, 1990; Nelson, 1993; Pitt, 1994).  Research by Grau and Nelson (1988) has 

supported this interpretation; because of the integrality of dimensions, the interference in 

a classification task is redundant between the dimensions – in this case, pitch and 

loudness.  In other words, Grau and Nelson found that individuals perceive pitch and as a 

single unit rather than separate features.  This is an intuitive result; it has been found that 

when pitch and loudness are correlated (i.e., high pitch matched with high loudness and 
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low pitch matched with low loudness), fewer errors are made in identification tasks 

(Neuhoff, McBeath, & Wanzie, 1999).  That is, when auditory dimensions are both 

congruent, the audio tone is more easily perceived as a single, integral unit.  Grau and 

Nelson also examined the integrality of pitch and timbre, and they found greater 

interference, or errors, in the tested task (Grau & Nelson, 1988).  Thus, while pitch and 

loudness are integral dimensions, pitch and timbre may be somewhat more separable; 

specifically, the pitch of a note and the type of instrument are distinguishable as 

somewhat different dimensions. 

 However, this is not to say that pitch and timbre are as separable as, say, a shape 

and a color.  There exists a level of interaction between these dimensions even though it 

may be possible to distinguish between an instrument’s sound and the pitch (Melara & 

Marks, 1990; Pitt, 1994).  When playing an instrument – for example a French horn – 

timbre changes as a function of the pitch.  FFT analysis of the horn playing at two 

different fundamental frequencies reveals the presence of different overtones, or 

harmonics, in the spectrum (Roads, 2004).  When holding timbre constant in the form of 

both notes emanating from a French horn, the fundamental frequency still affects timbre.  

However, in the case of timbre and pitch, both these dimensions typically co-vary; this is 

particularly apparent in the analysis of the spectral centroid (an increase in pitch results in 

an increase in the spectral centroid; Melera & Marks, 1990).  

 The relationship between timbre and loudness also demonstrates an interacting 

effect.  When timbre is positively correlated with loudness (e.g., loudness increases as 

timbre increases), the information supplied by both features appears to be redundant.  In 
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other words, the dimensions interact such that individuals perceive the stimulus as a 

single unit rather than two separate dimensions.  There are some inherent interacting 

effects between each of the auditory dimensions (Melara & Marks, 1990; Nelson, 1993; 

Pitt, 1994).  As a result of this interaction between features, auditory stimuli are not as 

readily separable according to dimension.  Even analysis of timbre, such as FFT, still 

provides a result that is dependent upon both the loudness and pitch of a particular 

stimulus.  This is due in part to interaction and natural variability (Balzano, 1986). 

In summary, auditory stimuli are less perceivable by their dimensions than some 

visual stimuli.  For example, when imaging the pitch of a sound, it will always be 

associated with a particular loudness.  Psychologically it would be difficult if not 

impossible to image pitch isolation from loudness (e.g., pitch without any loudness).  A 

level of interconnectedness between dimensions will always exist; pitch can’t exist 

without loudness, timbre can’t exist without pitch (or loudness again, for that matter!).  

The effects of this integrality might manifest in the form of how individuals allocate 

auditory attention when perceiving and attending to auditory stimuli.  Much like 

perceiving the dimensions of color – hue, saturation, and brightness – individuals’ may 

lack the cognitive ability to pointed and specifically allocate attention to a specific 

dimension when dealing with integral dimensions (Little, Nosofsky, & Denton, 2011; 

Little, et al., 2013).  Thus, I will assume equal and distributed attention across all 

dimensions in the current experiment. 
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Chapter 7: Auditory Categorization 

 Audio categorization research, while not as extensively studied as visual 

categorization, exists for both supervised and unsupervised learning tasks (Goudbeek, 

Swingley, & Kluender, 2007; Goudbeek, Swingley, & Smits, 2009; Howard & 

Silverman, 1976; Vandermosten, Boets, Luts, Poelmans, Wouters, & Ghesquiere, 2011; 

Vigo, Barcus, Zhang, & Doan, 2013).  In particular, unsupervised learning of audio 

categories has been extensively researched by computer scientists and engineers in an 

attempt to create an algorithm that accurately and efficiently categorizes audio signals 

(Blumensath, Davies, 2004; Goa, Lee, & Zhu, 2004; Park & Glass, 2008; Van Segbroeck, 

& Van hamme, 2009).  However, fewer studies exist in which humans freely categorize 

auditory stimuli.  Despite this, results have found significant categorization changes in 

unsupervised learning tasks when the type of stimulus and the auditory dimensions are 

experimentally manipulated (Goudbeek, Cutler, & Smits, 2007; Goudbeek Swingley, & 

Smits, 2009; Vallabha, McClelland, Pons, Werker, & Amono, 2007). 

Multidimensional scaling (MDS) solutions for auditory stimulus experiments – 

used to examine the relevant number of auditory dimensions that participants perceive 

and attend to during a similarity or dissimilarity task - result in a consistent solution 

across studies.  The overall trend of discovery within the literature demonstrates that 

individuals tend to assess similarity based on three dimensions of the given set of 

dimensions examined (Alrich, Hellier, & Edworthy, 2008; Bonebright, 2001; Howard & 

Silverman, 1976; McAdams, et al., 1995; Samson, Zatorre, & Ramsay, 1997).  For 

example, Howard and Silverman (1976) examined the number and type of relevant 
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dimensions used by individuals when making similarity assessments of non-speech 

sounds.  Researchers defined each non-speech sound by four dimensions: fundamental 

frequency, waveform shape, formant frequency, and number of formants.  Howard and 

Silverman found that using multidimensional scaling for individual differences, three 

dimensions were determined to be the most relevant based on model R2 and dimensional 

interpretability.  Of the dimensions examined, fundamental frequency and waveform 

shaped played a substantial role in similarity judgments with the third remaining 

dimensions being a combination of the two formant dimensions.  Thus, only three 

dimensions in this early experiment on auditory dimension assessment were sufficient for 

describing participant behavior (Howard & Silverman, 1976). 

In another example, Gygi, Kidd, and Watson (2007) also examined the number of 

auditory dimensions participants used when assessing similarity and what specific 

auditory dimensions or categorization strategies these dimensions correlated.  That is, 

Gygi and colleagues were interested in the dimensional criteria individuals used for 

similarity.  Stimuli for this experiment were natural sounds - such as airplanes flying, the 

sound of bowling, a person coughing, glass breaking, toilet flushing, falling ice, and more 

– rather than dimensionally defined stimuli.  Multi-dimensional scaling on these stimuli 

demonstrated that individuals assessed similarity based on three – then undetermined – 

dimensions.  Visually, three distinct clusters of audio formed.  On the basis of the 

qualitative features shared by the sounds contained within these clusters, Gygi and 

colleagues defined these dimensions as: harmonic (sounds with some perceivable pitch or 

pitch change, such as instrument sounds, babies crying, etc…), discrete impact 
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(percussive sounds with a distinct termination, such as a gunshot, glass breaking, etc…), 

and continuous (sounds with a longer duration that change across time in some way, such 

as a toilet flushing, a person coughing, etc…).  Thus, even with the wealth of auditory 

information present in naturalistic sounds, it appears that based on MDS participants are 

reducing the dimensional space down to three dimensions in order to assess similarity 

(Gygi, Kidd, & Watson, 2007). 

Similarity assessment is widely believed to play an integral role in the formation 

of categories and largely results in the development of an individual’s conceptualization 

of that category (Medin & Schaffer, 1978; Nosofsky, 1984; Pothos, et al., 2002; Rosch & 

Mervis, 1975).  Nosofsky’s generalized context model (1984) uses similarity assessment 

between dimensions to determine categorization predictions within a given set (context) 

of objects.  The similarity assessment of these models, and previous notions of similarity 

(Tversky & Goti, 1978, 1982), essentially constitutes multiple pairwise comparisons 

between stimulus features to determine the presences or absence of shared features.  

Recent theories have traded these notions of pairwise comparisons for theories of 

underlying complexity and invariance of which by far the most successful is Vigo’s 

theories of categorical invariance (Vigo, 2009, 2013, 2014)3.  The success of this model 

implies that individuals perceive and encode the underlying category structure rather than 

engage in a seemingly combinatorial number of pairwise comparisons.  Therefore, when 

individuals are engaging in similarity judgments, it appears likely that similarity 

                                                        
3 Although, in his book, Vigo (2014) defines a particular principle of GIST referred to as 
invariance-similarity equivalence that translates invariance into a pairwise comparison 
process that involves both dimensional binding and partial similarity assessment. 
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responses are the result of an underlying pattern detection process rather than pairwise 

comparisons between stimulus dimensions.  

Of course, the extent to which individuals are able to make these comparisons is 

dependent upon their ability to perceive and attend to the relevant stimulus dimensions.  

The saliency of particular stimulus dimensions will influence an individual’s ability to 

attend to and use those dimensions for similarity assessment (Fritz, et al., 2007).  For 

stimuli such as audio, it may be that the integrality of the dimensions impedes individuals 

from attending to specific dimensions without interference from additional dimensions 

(Melara & Marks, 1990; Nelson, 1993; Pitt, 1994).  In auditory similarity assessment, 

individuals may be attending to the dimensions that are relatively easiest to extract from 

the stimuli and use those to form their similarity judgments.  And given the consistency 

of MDS solutions in previous audio research to find that three dimensions sufficiently 

describe human performance, three dimensions may represent an approximate upper 

bound in the amount of auditory information an average individual can attend to and 

processes (Chen & Cowan, 2005; Cowan, Chen, & Rouder, 2004; Saults & Cowan, 2009; 

Tulving & Patkau, 1962). 

Researchers have then used such MDS results to examine and/or predict by which 

dimensions individuals will categorize auditory stimuli.  In a continuation of their MDS 

analysis, Gygi and colleagues (2007) studied the way individuals would freely categorize 

these natural auditory stimuli; specifically, would the dimensions implied by the MDS 

solution also be used in categorization, or would individuals establish different 

categorization criteria based on the vast number of auditory dimensions present in the 
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natural stimuli.  As might be anticipated given the type of stimuli, individuals did not 

strictly group sounds together according to these similarity judgments; instead 

participants established their own categorization criteria based on the saliency of auditory 

dimensions, specifically audio source (machine vs. non-machine, or animal vs. human) 

and context (outdoors vs. indoors).  As might be gleaned from these category divisions, 

participants tended to separate auditory stimuli uni-dimensionally, such that stimuli either 

belonged to one group or belonged to the other, and participants separated by sound 

source.  Thus, rather that construct complex rules or categorization criteria, participants 

tended to define and categorize auditory stimuli based on a subset of salient stimulus 

features and use them in a straightforward manner (Gygi et al., 2007). 

Goudbeek, Swingley and Smits (2009) found a somewhat similar pattern of uni-

dimensional categorization behavior in both supervised and unsupervised learning tasks.  

In their experiment, Goudbeek and colleagues pre-defined the stimulus dimensions to 

vary according to duration and formant frequency rather than determine the relevant 

number and type of dimensions.  Participants categorized stimuli either based on a single 

dimension (either duration or frequency) or according to multiple dimensions (duration 

and frequency).  In supervised learning, these instructions would correspond to learning a 

rule of uni-dimensional categorization such that either frequency or duration was relevant 

to successfully categorize the stimuli.  In such conditions, participants readily learned the 

categorization rule and demonstrated a high level of categorization performance in terms 

of percentage correct (although, there was a slight increase in performance when 

categorizing by duration rather than frequency).  When the categorization rule required 
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participants to attend to both dimensions (similar to the 3[4]-2 category type previously 

discussed in Chapter 4), participant performance dropped such that correct categorization 

was only slightly better than chance. 

Unsupervised learning of the auditory stimuli resulted in similar behavior by the 

participants.  Because unsupervised learning does not entail the correct/incorrect 

performance metric of supervised learning, Goudbeek and colleagues examined the 

number of categorization solutions performed by participants when a particular 

dimension was sufficient for categorizing the stimuli.  For example, if only duration 

varied between the two stimuli – taking on two possible values – then participants should 

optimally construct categories based on only that dimension.  When tested, they found 

that participants frequently used the single relevant dimension to establish their category 

boundary.  If duration was the relevant dimension, participants constructed two 

categories based on the two durations; if formant frequency was the relevant dimension, 

participants constructed two categories based on the two formant frequencies.  However, 

when both dimensions were relevant towards creating possible categories, 7 of the 12 

participants continued to use only a single dimension to create each category (Goudbeek 

et al, 2009).  

Much like the study by Gygi and colleagues, (2007), this demonstrated 

persistence in using a single dimension rather than multiple dimensions in order to 

categorize auditory stimuli implies an important distinction between how we categorize 

different modalities and stimuli.  When presented with visual stimuli, participants can 

readily learn and extract the relevant patterns for successful categorization.  For instance, 
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category types of the 3[4] family, as previously mentioned, require differing amounts of 

attention allocation to the dimensions to categorize successfully (Nosofsky, 1984; 

Shepard, Hovland, & Jenkins, 1961).  Somewhat remarkably, while participant 

performance indicates an obvious preference and ability to categorize uni-dimensionally, 

performance rates of category types requiring attention towards multiple dimensions 

continues to remain relatively high (e.g., 3(4)-2; Nosofsky, 1984; Nosofsky, et al., 1994).  

Although it might be reasonable to expect individuals to use the additional auditory 

information to assist in categorization much as they do with visual stimuli, this does not 

appear to be the case (Goudbeek, et al., 2009).  Instead, individuals might be developing 

concepts based on single dimensions and their concept formation is apparent in their 

categorization strategy.  

However, there is an obvious gap in knowledge between these and many other 

studies examining dimensional relevance and categorization.  Namely, no study to date 

examines both similarity assessment – using multi-dimensional scaling to establish the 

number and type of auditory dimensions used by individuals – and how individuals 

engage in an unsupervised, free-sorting task using well-defined category structures.  The 

study by Gygi and colleagues (2007) did examine auditory similarity assessment and 

free-sorting categorization but used naturalistic sounds.  Such stimuli tend to be ill-

defined with respect to category structure, such as those categories defined by Boolean 

logical rules (e.g., Feldman, 2000; Vigo, 2009; Vigo, 2013).  Even when tightly 

controlling auditory stimulus dimensions through digital signal processing or meticulous 

field recording, dimensions can take on to a continuum of possible values and interact in 



74 
 
unique ways that inhibit a researcher’s control of dimensional values.  Understanding 

how individuals determine similarity and subsequently engage in free-sorting 

categorization using tightly controlled and defined auditory stimuli can go a long way 

towards understanding the conditions under which we spontaneously develop concepts of 

non-speech auditory stimuli. 

Additionally, few studies have applied the current mathematical and algorithmic 

models of categorization and concept learning to auditory stimuli (only Vigo, Barcus, & 

Yu, 2015 appears to apply these types of models to audio).  These models are proposed 

accounts of human concept learning and categorization behavior but have only examined 

visual stimuli (Love, et al., 2004; Pothos & Chater, 2002).  Therefore, the extent to which 

these models successful account for human concept learning of other modalities – namely 

audio – needs to be addressed to assess their robustness not just dealing with different 

category types, but also with modeling different modalities.  Should the models be 

successful, this can provide some insight into the underlying cognitive processes 

individuals engage in when developing and learning categories and concepts. 

Perhaps by using well-defined auditory stimuli, inferences about human similarity 

assessment and the underlying categorization and concept learning mechanisms may 

become apparent.  In the current experiments, we explore how individuals engage in an 

unsupervised free-sorting task in order to determine the manner in which individuals are 

processing these stimuli and developing concepts. 
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Chapter 8: Current Research 

The intention of this dissertation proposal is three-fold.  The first objective of the 

current research will be to determine the number of auditory dimensions needed to create 

unsupervised learning categories as it relates to human attention of auditory dimensions, 

assuming the current methods are sensitive enough to establish this determination.  As is 

typical in this research, participants will assess similarity between pairs of audio stimuli 

that vary according to several dimensions (Caclin et al., 2005; Grey, 1977; Krumshansl & 

Iverson, 1992; Mark & Melara, 1990).  To determine the number of auditory dimensions, 

I will conduct multi-dimensional scaling (MDS) on similarity comparisons prior to the 

unsupervised learning task.  The auditory stimuli will vary according to dimensions 

recognized in the literature as having a significant contribution on the tonal qualities of an 

auditory stimulus; namely, frequency/pitch, amplitude/loudness, timbre (spectral 

structure, spectral centroid), and the timbre-amplitude interaction (log-attack time).  I 

expect that the MDS solution will correspond to limits in the participants’ auditory 

attention systems.  Specifically, because the limits of the average human auditory 

attention system hit an upper bound of approximately three to four dimensions (Chen & 

Cowan, 2005; Cowan, Chen, & Rouder, 2004; Saults & Cowan, 2009; Tulving & Patkau, 

1962), I anticipate that the best MDS solution will be approximately three dimensions.  

Such a finding would add to the current body of research also confirming similar results 

(Gygi, et al., 2009). 

The second objective is to examine the manner in which individuals classify well-

defined integral-dimension auditory stimuli using an unsupervised free-sort learning task.  
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Previous research (Gygi, et al., 2007) has examined unsupervised learning using 

categories of stimuli that are dimensionally more robust than well-defined categories 

(e.g., naturalistic sounds) and, as a result, may have contained excessive information that 

interferes with categorization behavior (Garner & Felfoldy, 1970).  Previous research that 

has used dimensionally defined auditory stimuli has generated stimulus dimensions that 

were possibly arbitrary and not explicitly determined to be of importance to human 

categorization and concept learning behavior (Goudbeek, et al., 2009).  By using well-

defined stimuli developed based off MDS results, the current unsupervised learning 

experiment bridges the gap between the studies of Gygi and colleagues (2007) and 

Goudbeek and colleagues (2009).  In the Goudbeek study, researchers examined 

unsupervised learning using well-defined stimuli but the dimensions of these stimuli were 

arbitrary defined.  That is, the choice of dimensions on which stimuli varied was not 

necessarily based on how and what individuals dimensionally perceive and attend to in a 

given auditory stimulus.  In contrast, Gygi (2007) did use MDS to determine dimensions 

which individuals may attend and use as the basis of categorization, but they used 

naturalistic sounds and the MDS analysis didn’t inform the development of the auditory 

stimuli used in unsupervised learning.  

Thus, in the current unsupervised learning experiment, using well-defined stimuli 

allows increased research control over auditory dimensions.  The use of auditory stimuli 

developed in this manner allows researchers to make informed decisions not only about 

the unsupervised learning process but the unsupervised learning process in the context of 

how individuals initially reduce auditory dimensional space through attention, 
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discrimination, and similarity assessment of auditory dimensions.  I anticipate that during 

the free-sorting task, individuals may exhibit a preference towards uni-dimensional 

categorization as demonstrated in previous experiments, even though the dimensional 

space of the stimuli in the current experiment is more tractable than that of naturalistic 

stimuli (Gygi, et al., 2009).  That is, participants will prefer to categorize auditory stimuli 

using a single subjective diagnostic dimension (e.g., categorizing by pitch, or by 

instrument type) rather than categorizing based on multi-dimensionality.  Overall, I 

believe that the data will tend to show a linearly separable trend, such that individuals 

categorize stimuli as belonging to one of two categories. 

The third and final objective of the current experiments is to examine three 

models of unsupervised learning with respect to the categorization data: the simplicity 

model (Pothos & Chater, 2002), SUSTAIN (Love, Medin, & Gureckis, 2004) and GIST 

(Vigo, 2013, 2014).  While all three of these models examine both supervised and 

unsupervised learning of visual stimuli, to date researchers have not examined to the 

robustness of these models to account auditory categorization behavior4.  Examining 

model performance in this capacity is dual-purpose; it allows researchers to make 

assessments about model performance and appropriateness with respect to the data and it 

may allow for some insight into the cognitive processes of individuals when behaving 

and engaging in auditory categorization tasks. 

                                                        
4 The exception to this is a study conducted by Vigo and Barcus (2015) in which they 
used the pre-cursor to the GISTM, the categorical invariance model (Vigo, 2009), to 
examine auditory stimuli.  However, the GISTM itself remains untested as of yet on such 
stimuli. 
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 Of these models, it is hypothesized that the GIST (Vigo, 2013, 2014) and the 

SUSTAIN (Love, Medin, & Gureckis, 2004) model will demonstrate unsupervised 

learning more similar to that of the participants than the simplicity model. Previous 

research (Pothos, et al., 2008) using visual stimuli demonstrated that the lack of 

parameterization on the simplicity model a similar trend due to the high level of 

parameterization within the SUSTAIN model.  Additionally, the simplicity model has 

difficulty with unsupervised categorization tasks that include multiple, smaller categories 

(Pothos, et al., 2011).  Essentially, if the distribution of stimuli results in more than two 

groups, particularly if these groups contain an unequal number of stimuli, the simplicity 

model falls apart.  Given these issues, it is anticipated that SUSTAIN will outperform and 

the simplicity model using auditory stimuli, especially if the stimulus groupings are 

complex.  With respect to the GIST, although it is untested in regards to unsupervised 

learning experiments, previous research in supervised learning (Vigo, 2009, 2011, 2013, 

2014) and information judgments (Vigo, 2011b; Vigo & Basawaraj, 2013) has 

established that the mathematical framework is both flexible enough to accommodate 

interpretations of different psychological phenomena and robust enough to make accurate 

predictions of human performance relative to other models of concept-learning behavior 

(Vigo, 2009, 2011, 2013, 2014).  The GIST should, if prior research is any indication, 

provide an accurate description of human concept-learning behavior in the unsupervised 

learning task and should provide some key indicators of an underlying cognitive process. 
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Chapter 9: Experiment 1 

The purpose of the first experiment is to determine the number and type (e.g., 

pitch, loudness, etc.) of psychologically relevant auditory dimensions needed to create the 

auditory stimuli for unsupervised learning.  To accomplish this, the number of relevant 

dimensions will be confirmed via multi-dimensional scaling (MDS) and using 

participants’ rating of each of auditory dimension with respect to their allocation of 

attention will determine which dimensions are used in the stimulus construction.  To 

determine these reduced dimensional aspects of auditory stimuli, participants engaged in 

pairwise similarity ratings of auditory stimuli.  

Method 

Participants.  Participants included 35 undergraduate students from Ohio 

University recruited through the Psychological Research Participant Pool who received 

course credit for participation.  Only participants who report normal, un-assisted hearing 

and who are not professional musicians can participate in the study.  

Stimuli.  The five auditory dimensions examined in experiment 1 were: 

frequency/pitch (370 or 523 Hz; Krumshansl & Iverson, 1992), amplitude/loudness (64 

dB or 70 dB; Melara & Mark, 1990), spectral centroid (no harmonic unit above 

fundamental frequency or three harmonic units above fundamental frequency; Caclin, et 

al., 2005), overall spectral structure (string instruments or wind instrument; Caclin, et al., 

2005; Grey, 1977), and log-attack (15 ms or 200 ms; Caclin, et al., 2005).  Table 1 

presents each value a stimulus dimensions can take.  According to the formula in Chater 

4, 5 dimension generate a total of 32 stimuli (Table 2 and 3).   
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 Stimulus dimensions of frequency, amplitude, spectral structure, and log-attack 

time were generated using the ChucK v.1.3 programming language’s library of physical 

instrument models.  Sonic Visualizer v.2.0 confirmed dimensional values for each 

stimulus in order to standardize the stimuli and decrease the integrated influence each 

dimension exerts over the others.  Consistent with the findings of previous research 

concerning similarity judgments of harmonic units (Caclin et al., 2005), the spectral 

centroid of manipulated sounds is equivalent to the third harmonic unit.  To manipulate 

the spectral centroid, audio derived from ChucK and verified in Sonic Visualizer was 

loaded into Ableton Live v.8.2.6 where the spectral centroid of each sound was 

manipulated using SpectrumWorx’s v.2.5.0 spectral centroid module.  Output from 

Ableton Live and SpectrumWorx was re-examined in Sonic Visualizer to ensure that the 

original values remained consistent and not affected by the additional changes.  After 

verification of dimensional consistency, each stimulus was output as a .wav file recorded 

in 16-bit and 44100Hz format.  

 Procedure.  Researchers led participants into the research laboratory where 

participants sat at a table to review participation consent forms.  After completing the 

forms, the researcher read the following experimental instructions: 

In the following experiment you will be asked to rate the similarity between the 

two sounds.  During the experiment, a pair of sounds will be played.  After you 

have listened to both sounds, use the slider located below the icons to rate the 

similarity.  A value of 1 means they are identical; a value of 11 means they are 

very different.  You will have 20 seconds to provide a rating, so be prompt in your 
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response.  After you have made a similarity judgment on the sounds you have 

heard, click the ‘Enter’ button on the computer keyboard to continue with the 

experiment. 

 After answering any participant questions, the researcher performed an informal 

hearing test.  To identify that participants can adequately hear the frequency range of the 

experimental audio, participants listened to a series of eight sine wave harmonics 

beginning at 370 Hz and ascending to 2960 Hz.  Each tone played at 64 dB and the 

timing between each sound randomized in order to dissuade automatic, temporal-based 

responding.  Participants wore a pair of Koss SB/45 headphones to listen to the tones.  If 

the participant heard all eight harmonic tones, they listened a second hearing test to 

determine the upper frequency bound of their hearing.  The researcher played a series of 

seven sine wave tones play at 64 dB and beginning at 14 kHz and ending at 20 kHz for 

the participant.  As in the previous experimental-tone hearing test, the program had 

randomized timing between each tone.  With the upper hearing range identified, the 

researcher recorded the value and the participant was asked to self-report any music 

performance experience. 

Following the hearing test, participants sat in front of a HP WX4600 workstation 

with a Dell 1798FP 15-inch flat panel LCD monitor (5-ms response time).  At each 

experimental station, the participant listened to the audio through Koss SB/45 

headphones.  The experiment, programmed in PsychoPy version 1.78.01, began by 

presenting the experimental instructions.  Participants can initiate the experimental trials 

with a response on the “Enter” key.  During a single trial of the experiment, a target cue 
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appeared on the screen and two of the sounds played sequentially.  After the sounds 

played, the target cue disappeared and a rating slider appeared on the screen.  Participants 

used the slider to rate the similarity between the pair of sounds using a scale ranging from 

1 (identical) to 11 (completely dissimilar).  After confirming their similarity rating by 

pressing “Enter” on the keyboard, participants saw another target cue and two more 

sounds played in a sequence.  Participants went through half the total number of possible 

stimulus pairings (512) and took a short 5-10 minute break halfway through the 

experiment to rest their ears.  The volume of the auditory stimuli remained at a 

consistent, comfortable level throughout each trial.  Overall, most participants completed 

the task in approximately an hour. 

After completing the experiment, participants completed a form in which they 

rated the five auditory dimensions used in the experiment according to the amount of 

attention they allocated to each dimensions during the similarity judgment task.  Each 

dimension included a definition in understandable terms such that the participant 

understood which dimension they are rating.  For example, the spectral structure would 

be described as “Type of instrument playing,” thus differentiating between the two 

physical models.  Below each description, participants assigned ratings to each described 

dimension using a scale from 0 to 10, where a rating of ‘0’ indicates no attention was 

given to that dimension and a rating of ‘10’ indicates attention resources were allocated 

predominately to that dimension.  The researcher then debriefed participants on the 

experiment once they complete the rating form. 
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Results 

Subject data was examined to determine whether participants were responding 

and engaging in the task.  Data demonstrating systemic, obvious indications that the 

participant was not engaging in the task appropriately were discarded from further 

analysis (e.g., giving ratings of ‘11’ to every stimulus pair, only rating using the extreme 

values).  Furthermore, subjects that demonstrated a high level of musical experience such 

that it exceed 10 years, regardless of instrument and time in which they stopped playing 

(if applicable), were also excluded due to their extensive training and expertise dealing 

with such stimuli (Tervaniemi, et al., 2005).  Of the remaining participants, 10 had 

experience playing musical instruments with an average of 4.1 years of experience 

(median of 3.5, SD = 3.5), and a range of 2 to 8 years’ experience. 

The similarity ratings from the remaining subjects (N = 32) were analyzed using 

non-metric multidimensional scaling (NMDS) and models were generated by iteratively 

increasing the dimensional space of the NMDS solution (Giguere, 2007).  To assess the 

appropriate number of dimensions from which stimuli for the second experiment would 

be constructed, several metrics were used to examine each NMDS dimensional model; 

these were the stress benchmarks put forth by Kruskal & Wish (1978), visual 

examination of the stress scree plot (Borg & Groenen, 2005; Giguere, 2007; Groenen & 

Velden, 2005; Jaworska & Chupetlovska, 2009), examination of the Shepard diagrams 

(Bord & Groenen, 2005; Jaworska & Chupetlovska, 2009), and examining each solution 

according to its’ intuitiveness given the conducted metrics. 
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 The stress of each dimensional solution of the NMDS was examined using the 

benchmarks of Kruskal and Wish (1978).  These benchmarks indicate the fit of the 

NMDS model to the data given the dimensionality.  The stress benchmarks, while lacking 

interpretability between datasets, allow for a comparison of the relative fit each 

dimensional NMDS model.  As such, the stress values may fall within one of the 

following intervals in terms of fit: stress ≥ 0.20 (poor), 0.10 ≤ stress ≤ 0.20 (fair), 0.05 ≤ 

stress ≤ 0.1 (good), 0.025 ≤ stress ≤ 0.05 (excellent), stress < 0.025 (perfect).  Thus, an 

increasingly lower proportion of stress indicates that the model fits the data better than 

other, lower dimensional models (Gigeure, 2007; Kruskal & Wish, 1978).  

As anticipated, increasing the dimensionality of the model results in increasingly 

lower stress metrics (Table 4) with the most pronounced decrease occurring between a 

one and two dimensional NMDS model.  According to the benchmarks, the one and two 

dimensional solutions only provide “fair” and “good” fits to the data, respectively.  

Increasing the dimensionality to a three dimensional solution offers the first indication of 

an “excellent” fit to the data (stress = 0.034), while an increase to a four dimensional 

solution decreases stress such that it barely exceeds the next categorical benchmark cutoff 

(stress = 0.022).  Thus, a three dimensional NMDS solution may provide a sufficient 

model from which to base further research.  Beyond three dimensions, the decrease in 

model stress between the three and four dimensional NMDS is not as large as previous 

model.  Any improvements in fit are likely just a function of higher dimensionality rather 

than meaningful.  A four dimensional solution may be fitting the data better (perhaps 

even overfitting) at the expense of interpretability (Borg & Groenen, 2005; Kruskal, 
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1964); specifically, does the four dimensional solution accurately reflect participant’s 

behavior or is this just a mathematically better fit with no behavioral underpinnings?  

Because determining the appropriate number of dimensions is integral to the second 

experiment, further tests were conducted to determine which dimensional model provided 

the closest meaningful interpretation of the behavioral data. 

 A scree plot of the stress values from each dimensional model indicates a similar, 

albeit less definitive, assessment (Figure 10) relative to the benchmark method.  No clear 

“elbow” or leveling off indicating the appropriate number of dimensions exists in the 

scree plot; rather, there is a gradual decrease for stress between the three, four and five 

dimensional solutions.  The visualized stress data lends an amount of ambiguity as to 

which dimensional solution is most appropriate, but based on the scree plot it would 

appear that the solution is potentially higher dimensional.  Specifically, there does appear 

to be more leveling off in the scree plot after the three dimensional model than previous 

dimensional models. 

 To further examine the NMDS models, Shepard diagrams using linear and non-

metric R2 fits of each NMDS dimensional solution were examined to determine the 

number of dimensions (Figures 11-15).  Visually, the variance of points around the model 

fit decreases as the number of dimensions increases resulting in high R2 fits for even low-

dimensional solutions.  A scree plot of the R2 values for the linear (Figure 16) and non-

metric (Figure 17) fits shows a similar, albeit exaggerated, pattern as compared to the 

stress scree plot.  The “elbow” of these graphs distinctly occurs on the two dimensional 

NMDS solution.  There is still some fit increase on the third dimension and little to no 
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increase for higher dimensional models.  Figures 18 shows that when the three 

dimensional NMDS solution is graphed, three dimensions are clearly being used in order 

to assess similarity.  Thus, it appears that the appropriate number of dimensions indicated 

by the Shepard diagrams is possibly two to three dimensions. 

 This result is consistent with the stress benchmarks of each NMDS dimensional 

solution.  Recall that the stress benchmarks indicated that the two dimensional solution 

only provided a “good” fit to the data while the three dimensional solution provided an 

“excellent” fit.  Contrast against the Shepard diagram data, it would seem that, while the 

two dimensional solution is accounting for a large amount of variance, the three 

dimensional solution is still contributing to the model and a three dimensional model 

make interpretable and intuitive sense.  

Previous experiments have demonstrated that MDS solutions of auditory stimuli 

tend to demonstrate three dimensional solutions rather than lower dimensional solutions 

and the current one is no exception.  In a previous MDS experiment, Gygi, Kidd, and 

Watson (2007) found that individuals assessed similarity based on three auditory 

dimensions when making similarity judgments of naturalistic sounds.  Other research has 

found similar results; when given a set of stimuli and asked to judge similarity, 

individuals tended to use three dimensions to accomplish this task (Alrich, Hellier, & 

Edworthy, 2008; Bonebright, 2001; Howard & Silverman, 1976; McAdams, et al., 1995; 

Samson, Zatorre, & Ramsay, 1997).  For example, Howard and Silverman (1976) 

performed multidimensional scaling on auditory stimuli and found that individuals were 

assessing stimulus similarity based on three dimensions (namely, fundamental frequency, 
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type of waveform, and presence of high frequency formants).  Therefore, based on the 

obtained data and a review of the literature, it appears that the NMDS solution that most 

adequately satisfies the tests of fit and interpretability is a three dimensional model. 

 To determine which of the five dimensions were used by participants in the 

similarity assessment, participants rated each of the five dimensions on a scale of 0 to 10 

to indicate to how often they used that dimension to make their similarity judgments.  A 

value of ‘0’ corresponded with a dimension that was never used to determine similarity; a 

value of ’10’ corresponded with a dimension that was using in every similarity 

comparison.  Descriptive statistics from these ratings, presented in Table 5, show a 

qualitative pattern of dimensional number that corroborates the story told by NMDS.  

Namely that of the five dimension used in the audio stimuli, three dimensions were rated 

most highly and similarly- frequency, amplitude, and spectral envelope were rated most 

highly, respectively.  To evaluate differences between the five auditory dimensions, a 

Kruskal-Wallis test was conducted on participant rating.  Correcting for tied ranks, the 

test was significant Χ2(4, 32) = 39.68, p < 0.001.  

Follow-up tests using a Bonferroni adjustment were conducted to determine 

significant differences among the five auditory dimensions. The significance values are 

presented in Table 6.  Of the comparisons, three were significant with one approaching 

significance.  Pitch, rated highest by the participants, was significantly different from 

spectral centroid and log-attack time but not loudness or spectral envelope.  Loudness 

was also significantly different from log-attack time.  The difference between spectral 

envelope and log-attack time approached significance.  It appears that the participant 
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ratings have nearly formed two groups: one group being pitch, loudness, and spectral 

envelope, and the other group being spectral centroid and log-attack time.  There is some 

overlap between these groups in that loudness and spectral envelope are not strictly 

significant from spectral centroid and log-attack time.  However, it may be that the 

integrality of dimensions is influencing participant rating such that spectral centroid and 

log-attack time are both influencing perceived loudness and timbre perception (Caclin, et 

al., 2005; Melara & Marks, 1990; Nelson, 1993; Pitt, 1994).  Despite this potential 

influence of integrality, it appears that participant ratings correspond to the three 

dimensional NMDS model and that these three dimensions correspond to pitch, loudness, 

and spectral envelope. 
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Chapter 10: Experiment 2 

The second experiment was an unsupervised learning task using auditory stimuli 

dimensionally defined according participants’ attention ratings and using a number of 

dimensions confirmed by the MDS results from experiment 1.  The purpose of the 

experiment is to examine how individuals spontaneously sort a group of sounds given the 

experimental verified constraints on the number and type of auditory dimensions. 

Method 

 Participants.  Participants included 49 undergraduate students from Ohio 

University recruited through the Psychological Research Participant Pool who received 

course credit for participation commiserate with experiment duration.   

 Stimuli.  The stimuli were generated in the manner described above, although 

they were created using only the three dimensions identified in the MDS: frequency, 

amplitude, and spectral envelope. 

Procedure.  The researcher led participants into the research laboratory where 

participants reviewed participation consent forms.  The experimenter read the following 

instructions, similar to those used by Pothos and Chater (2002), to the participants: 

In the following experiment, you will be asked to categorize a set of auditory 

stimuli.  Square icons will be presented on the computer screen.  Using the left 

mouse button to click on an icon will activate the audio clip of a particular sound 

from the audio group; likewise clicking a different icon plays a different sound 

from the group.  When listening to the sounds, use the slider below each icon to 

assign the sound to a group.  For example, if you believe two sounds are similar 
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enough to be grouped together, you would assign a value of 1 to each of those 

sounds.  When assigning each sound to groups, try not to use more groups than is 

necessary.  You may change your group responses for any of the individual 

sounds during the trial.  Once you have assigned a group value to each of the 

sounds, hit the “Enter” key on the keyboard to move to the next set of auditory 

stimuli. 

 The researcher answered any participant questions and sat the participant in front 

of a HP WX4600 workstation with a Dell 1798FP 15-inch flat panel LCD monitor (5-ms 

response time).  At each experimental station, participants listened to the audio through 

Koss SB/45 headphones.  The researcher initiated the unsupervised learning program 

written in PsychPy version 1.78.01.  The experiment began with a prompt containing on-

screen instructions similar to those read by the researcher.  The participant started the 

experiment by pressing the “Enter” key or, if no response is made, the experiment began 

automatically after 60-s.  The experiment will consist of a number of trials such that the 

participant categorizes all category types for the given number of dimensions (Feldman, 

2003).  During a single trial of the experiment, participants saw a set of white square 

icons arranged in a manner to dissuade grouping/patter bias.  The exact arrangement of 

the set of square icons depended on the category type/number of stimuli.  Each square 

icon was associated with a specific auditory stimulus in the current category set (Figure 

19).  Participants moved the mouse pointer around the screen and, by clicking the left 

mouse button when the mouse pointer is within a square icon, they triggered audio clips 

associated with each square icon.  When participants clicked a square icon, the audio clip 
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played uninterrupted for its full duration (2-s); additional mouse presses during this time 

did not re-trigger the audio clip.  Only when the audio completed playing could the 

participant re-trigger the audio clip.  Participants could play each audio clip as often as 

they wanted within each category set.  

 Below each icon was a slider where individuals input the category label they 

wished to assign that specific sound.  For example, assigning a label of ‘1’ to two 

different sounds indicated that the participant found those stimuli sufficiently similar, 

according to their dimensions, to categorize them together.  Accordingly, participants 

grouped the stimuli in any way that they saw fit and in as many groups as they deemed 

necessary.  Participants were be able to re-assign category labels within each 

categorization set without penalty if they wanted to change groupings. 

 After participants assigned each auditory stimulus a label, the participant could hit 

enter and continue to the next category set.  In total, participants categorized the 

following categories: 3(2), 3(3), 3(4), 3(5), and 3(6).  Each participant examined all the 

types within each category a total of four times.  Cumulatively, participants sorted 156 

categories total. 
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Model Analysis 

 After determining the manner in which individuals categorize auditory stimuli a 

critical analysis, a model comparison of the predominant mathematical descriptions of 

unsupervised learning was performed.  While other minimization models exist – namely, 

Feldman’s minimization (2000) and mental models (Goodwin & Johnson-Laird, 2011) – 

their current derivations are specific to supervised learning tasks.  For that reason, 

analysis will consist of a comparison between two models of simplicity created 

specifically for the analysis of unsupervised learning; the simplicity model (Pothos & 

Chater, 2002) and the Supervised and Unsupervised Stratified Adaptive Incremental 

Network (SUSTAIN; Love, Medin, & Gureckis, 2004) and the Generalized Invariance 

Structural Model (GIST; Vigo, 2013, 2014).  The following is a brief description of how 

these models function. 

Simplicity model.  Pothos and Chater (2002) developed a model of unsupervised 

categorization behavior based on a simplicity principle that the authors referred to as the 

simplicity model (henceforth referred to as SM).  To achieve simplicity, specifically in 

relation to unsupervised learning, an individual would try to minimize within-group 

differences while maximizing between-group differences.  In this case, simplicity would 

refer to a participant categorizing stimuli in the least number of groupings or clusters, 

while maximizing an internal consistency between within-group stimuli (Fleiss & Zubin, 

1969; Pothos & Chater, 2002, 2005; Zubin, 1938).  Such a method of categorization is 

similar to recently proposed theories in the field of supervised categorization, such as 

minimization complexity (Feldman, 2000), algebraic complexity (Feldman, 2006), and 
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mental models (Goodwin & Johnson-Laird, 2011).  While the proposed cognitive 

mechanisms differ slightly between these models and that of SM, the underlying proposal 

is similar; that is, when an individual learns a category they attempt to minimize required 

knowledge in order to learn the category.  Stated differently, an individual is guiding their 

categorization behavior through using the simplest possible mechanism to group objects - 

whether that is color, shape, or some simple, easily implemented combination of object 

features.  For example, suppose a participant views a group of related stimuli, such as the 

category “chairs.”  For simplicity, these stimuli – chairs - vary on three dimensions; 

namely, number of legs, wood grain, and height from the floor.  Additionally, all vary on 

type of wood grain and height from the floor, but share the dimension four legs.  

According to minimization theory, success in learning this category would be dependent 

upon learning only one dimension: number of legs.  Since the other dimensions vary 

between chairs, learning each set of features per chair would decrease the learnability of 

the category.  Therefore, the participant can easily learn the category according a single 

dimension, and this single dimension would represent a minimized expression (Feldman, 

2003). 

Minimization is central to the simplicity model (SM).  As previously mentioned, a 

central goal unsupervised learning tasks is to increase within-group similarity, and 

decrease between-group similarity during categorization.  As a measure of overall 

similarity and learnability, or compression, Pothos and Chater (2002) adopted the usage 

of code length from information theory.  Increased code length reflects a decrease in 

compression and a decrease of within-category consistency or categorical coherence; 
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categorization that results in a short code length reflects an increase in categorical 

coherence and may be the preferential categorization of stimuli by the individual.  

However, the SM makes no assumptions on the representation of the concept, therefore it 

is not exclusive to theories of mental representation such as prototypes (Rosch, 1975; 

Rosch & Mervis, 1975), exemplars (Medin & Schaffer, 1978, Nosofsky, 1984, 1986) 

process accounts of minimization (Goodwin & Johnson-Laird, 2011) or invariance theory 

(Vigo, 2009, 2013). 

Similar to other models of minimization and similarity (Tversky, 1977), SM 

makes several assumptions about the nature of data.  First, the data must adhere to 

minimality, or that the distance of stimulus A from itself is always equal to zero.  Second, 

stimuli within the data must demonstrate symmetry.  As a specific example, the distance 

of stimulus A to stimulus B must be equivalent to the distance of stimulus B to stimulus 

A.  In contrast to previous theories of similarity, SM theory does violate transitivity for 

reasons noted by the authors, but accordingly does not affect optimality (see Pothos & 

Chater, 2002 for details).  Of particular interest, SM theory makes no assumptions on the 

number of groupings, or category numbers, required by the participants.  This lack of 

group distribution, or non-parametricity, is a particular strength of the model.  In 

unsupervised learning tasks, there is often no “correct” response for categorization of a 

given stimulus; rather, as described previously, the purpose of unsupervised 

categorization is to determine conditions under which an individual will categorize in a 

particular manner.  Therefore, the lack of assumptions regarding category number is 

congruent with natural categorization; rarely does an individual have pre-existing 
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knowledge concerning general category formation (Ashby, Queller, & Berretty, 1999; 

Pothos & Chater, 2002; Pothos, Perlman, Edwards, Gureckis, Hines, & Chater, 2008). 

To determine these conditions, the SM computation includes in two parts: (1) the 

code length of grouping similarity, and (2) the code length of group.  In determining part 

(1), Pothos and Chater define a grouping such that all within-group similarity is greater 

than any between-group similarity.  First, the number of distances between stimuli is 

determined by: 

s = r(r - 1)/2 

where r is the number of objects in the unsupervised learning task and s is the total 

number of comparisons.  Using this value, the total number of similarity constraints 

(inequalities) in the unsupervised learning task assuming no groups is: 

u = s(s - 1)/2 

Because unsupervised learning is concerned with how individuals form 

categories, only a certain number of the total inequalities will exist between groups.  Each 

group will have a number of within-group inequalities (ngroup * (ngroup – 1)/2) and 

between-group inequalities (ngroup1 * ngroup2/2).  Multiplying these values gives the 

number of distances (inequalities) according to the number of groups. 

Because groups are being used, the codelength necessary to specify these groups 

must be determined and the influence of errors in group specification must be taken into 

account.  The formula for to compute this is: 

log2(u + 1) + log2(uCe) 
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where log2(u + 1) is the codelength to specify groupings and log2(uCe) is the codelength 

to correct for errors.  First, to specify the number of groupings, the formal computation of 

log2(u + 1) is: 

log2 ∑ (−1)𝑣
𝑛

𝑣=0
((𝑛 − 𝑣)𝑟/(𝑛 −  𝑣)! 𝑣!) 

where r is the total number of objects and n is the number of categories.  This 

computational cost to specify the number of categories results in a decrease in the number 

of total inequalities given a number of categories, u - log2(u + 1).  If the individual makes 

a particular error in the unsupervised learning task, log2(uCe) is computed.  Errors are 

instances in which an individual will incorrectly judge distances between pairs of stimuli 

(Pothos & Chater, 2002).  For example, if in reality the distance between pairs was (A,B) 

< (C,D), but an individual group pairs such that (A,B) > (C, D), this would reflect a 

participant’s error given the categorization constraints.  The number of e errors varies 

between 0 to u and the codelength necessary to correct for these errors is:  

uCe = (u/e!(u – e)!) 

The final codelength to correct for errors, log2(uCe), and the cost to specify 

groups, log2(u + 1), affect the compression of the final codelength.  A greater 

compression of the codelength (i.e., the smaller the resulting bit size) indicates more 

category coherence.  As described by Pothos and Chater (2002), “smaller codelengths 

should correspond to more obvious groupings” (p. 317). 

 As an example, let’s use the 3[4]-1 category of objects.  As previously described, 

this category is linearly separable according to a single dimension; e.g., four of the eight 
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objects will triangular and the remaining four objects will be circular.  The number of 

similarities between pairs of these eight objects corresponds to: 

s = r(r - 1)/2 

where r is the number of objects.  From this the resulting number of similarities within 

3[4]-1 is 8(8-1)/2 = 28 distances between pairs.  Furthermore the total number of 

inequalities is given by s(s - 1)/2 resulting in a value of 28(28-1)/2 = 378 inequalities. 

 Because 3[4]-1 is linearly separable, let’s assume that when analyzed by a 

clustering algorithm two distinct groups are established.  Within each group, there will be 

four objects resulting in 4(4-1)/2 = 6 distances (12 distances overall) and 4*4 = 16 

distances across groups.  This gives us a total of (12 * 16) = 192 inequalities.  Because 

we’re specifying categories, the number of bits required to create these categories is: 

log2 ∑ (−1)𝑣
𝑛

𝑣=0
((𝑛 − 𝑣)𝑟/(𝑛 −  𝑣)! 𝑣!) 

resulting in approximately 7 bits of code length.  If the participant makes no grouping 

errors (because these groups are so very distinct), the final compression from the 3[4]-1 

category is a compressed code length of 185 with a full code length of 192 bits.  Because 

these code lengths are small, the implication is that an individual may easily distinguish 

and categorize the available objects in such a way as to maintain a high level of category 

coherence.  

 Therefore in summary, the SM works on the similarity principle wherein an 

individual attempts to create a high degree of category coherence by decreasing the 

dissimilarity within-group and increase dissimilarity between-group (Fleiss & Zubin, 

1969; Pothos & Chater, 2002, 2005; Zubin, 1938).  In doing so, SM can be used to 
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determine the category that adheres closest to the similarity principle; information 

particularly relevant to human classification performance. 

 SUSTAIN.  SUSTAIN (Love & Medin, 1998; Love, Medin, & Gureckis, 2004) is 

a connectionist network implementation of a clustering algorithm that models both 

supervised and unsupervised learning.  Stimuli are categorized on a trial-by-trial basis 

and, when categorizing stimuli, SUSTAIN operates on a simplicity principle similar to 

that of the simplicity model (Pothos & Chater, 2002); simple solutions are considered 

first before more complex solutions are used.  For example, if a group of stimuli can be 

clustered according to a single dimension (e. g, all blue stimuli or all red stimuli), 

SUSTAIN will use this linear separation to generate a clustering solution.  The model 

uses similarity between the stimuli to determine category membership, and establish the 

fewest number of clusters possible for categorization. 

When a novel stimulus does not conform to the current clustering, only then does 

SUSTAIN create different clusters or sub-clusters to accommodate the stimulus.  Such 

adaptive clustering, initially beginning with simple solutions and progressing to complex 

clustering, allows the model to avoid issues relating to standard back propagation 

techniques and the bias-variance dilemma (Love, et al., 2004). 

SUSTAIN compares the similarity of currently presented stimulus against that of 

each cluster.  Clusters then, in essence, compete for inclusion of the presented stimulus 

through activation, which varies according to attention weights that adjust to direct the 

model’s focus towards the most salient feature, or set of features, that facilitate consistent 

categorization behavior.  When there is a cluster that is clearly more active, SUSTAIN 
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assigns that stimulus the cluster.  In addition, when proper clustering is less clear-cut 

based on activation, SUSTAIN creates a new cluster should a particular threshold value 

be exceeded.  This parameter, referred to by Love and colleagues (2004) as the “cluster 

recruitment mechanism”, is a free parameter and allowed to vary between values of 0 and 

1.  Higher values indicate a higher threshold; therefore, such high values will decrease the 

likelihood that SUSTAIN creates a new cluster for a given stimulus. 

Applied to data, SUSTAIN has been found to replicate human performance in 

unsupervised learning tasks, such as those conducted by Billman and Knutson (1996) and 

Medin and colleagues (1987).  Through application of the SUSTAIN model to the 

experimentation data, it was found that unsupervised categorization behavior depended 

on the saliency of the stimulus features.  Additionally, it was also found that SUSTAIN is 

somewhat unaffected by the initial parameter values; more specifically, the model is 

slightly insensitive to these values.  Therefore, SUSTAIN used the parameter values 

reported by Love et al. (2004) in the current experiment.  Such a tactic is not without 

precedent; Pothos and colleagues (2008) adopted a similar solution and subsequently 

only manipulated the threshold parameter.  Thus, SUSTAIN will be used to predict 

categorization behavior of auditory stimuli according to these values in the current 

experiment. 

Generalized structural invariance model.  The generalized structural invariance 

model (GISTM; Vigo, 2013, 2014) is an extension of the categorical invariance model 

(CIM; Vigo, 2009) in which continuous dimensions are permissible for analysis.  As 

previously discussed, the GISTM falls under the ideotype theory of concept-learning (see 
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Chapter 2).  Currently, the model has primarily been applied to predict the degree of 

learning difficulty of categories in supervised learning tasks; although, in Mathematical 

Principles of Conceptual Behavior (Vigo, 2014) an extension of the model generates the 

probability of a correct classification for each item of a predefined category.  GIST 

provides the theoretical framework for analyzing qualitative aspects of unsupervised 

categorization tasks (Vigo, personal communication, October 31, 2014). 

 First, it is necessary to understand how the theory works through a basic, informal 

example (for the cognitive underpinnings of the model, refer to Chapter 2 and to Vigo, 

2013, 2014).  To use Vigo’s (2013) example, let’s begin with a set of three objects each 

defined according to three dimensions: shape (x), size (y), and color (z).  For the purpose 

of this example, value assignment to the dimensions is binary, although recall that this 

can vary continuously between 0 and 1.  If the presented categorical stimulus is defined 

by the Boolean rule xyz + x’yz + x’y’z’, then it can easily be encoded as the following set 

{111,  011, 000}, where 111 would refer to a small, black, triangle.  Perturbing this 

category according to each dimension in isolation allows for comparison to the original 

set.  If any objects in the original set remain in the perturbed set, Vigo refers to these 

objects as categorical invariants.  Using the current example, perturbing the shape 

dimension would result in the new set {011, 111, 100}.  Of these, 011 and 111 are 

present in both sets, thus two of the three objects are invariant to a change to the shape 

dimension and gives a partial invariance of 2/3.  Continuing this process with each 
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dimension results in a logical manifold of (2/3, 0/3, 0/3)5.  According to Vigo’s theory, 

the overall degree of variance is the square root of the sum of the square of the partial 

invariances: 
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and can be generalized by using the Minkowski distance (Vigo, 2011, 2013, 2014, p. 

100) such that the distance metric becomes: 
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The resulting value determines the degree of perceived difficulty of a categorical stimulus 

(Vigo, 2013, 2014) using an exponential form of: 

𝜓(X) = 𝑝𝑒−𝑘Φ̂2(X)  

where p is the number of dimensions (in this case ‘3’) and k is a discrimination index.  

Thus, this last computation of the GISTM is a measure of the degree of perceived concept 

learning difficulty based on the degree of perceived categorical invariance. 

 GISTM allows for three different measures of qualitative examination: the 

structural manifolds, the category difficulty, and the category invariance.  The structural 

manifolds are the mathematical description of the ideotypes – which themselves are 

memory traces of concepts within psychological space – and they have utility in 

providing a qualitative representation of the underlying patterns within a category 

                                                        
5 It is important to note that the produced manifold in this example is a logical manifold 
because the dimensions used are binary.  When the dimensions occur along a continuum 
– values may be between 0 and 1 – it is a structural manifold.  To remain consistent with 
the GISTM, I will refer to as structural manifolds beyond the example. 
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composed of continuous dimensions.  Current research examining the structural 

manifolds with respect to the category it’s representing shows the individuals categorize 

in a manner consistent with a parsimony principle (Vigo, 2013, 2014).  

According to the parsimony principle, individuals have a tendency to place 

“disproportional emphasis… on structural kernals (SKs) (of ideotypes) with values of 0 

and 1.”  The reason for this, according to Vigo (2014) is that “the extreme SK values of 0 

and 1 of the structural manifold representing the ideotype exert a much greater relative 

influence on the perceived learnability of a concept than SK values between 0 and 1.”  As 

an example, the resulting structural manifolds of participant groupings would more likely 

take extreme patterns such as (0/4, 0/4, 0/4) rather than patterns which only show some 

invariances to perturbations such as (2/4, 2/4, 2/4).  The notion is that individuals tend 

towards the most intuitive groupings possible given a set of objects and dimensions.  A 

structural manifold of (0/4, 4/4, 4/4) is easily understood according to parsimony; every 

object within that category would remain invariant to two of the three dimensional 

perturbations.  This would be akin to grouping all identical objects together.  The 

structural manifold of (0/4, 0/4, 0/4) represents a set of objects that have no invariances 

with respect to dimensional perturbations.  These two extremes act as anchors from 

which participants can construct their categories.  In the current unsupervised learning 

experiment, I anticipate that the structural manifolds resulting from the participants’ 

stimulus groupings would adhere to the parsimony principle. 

Alternatively, the participants’ groupings may demonstrate qualities of the 

structural equilibrium principle.  When a group of stimuli are in structural equilibrium, all 
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dimensions are diagnostic necessary for an individual to correctly categorize the stimuli.  

Structural manifolds such as (0/4, 0/4, 0/4) exhibit this quality; no invariances are present 

in the dimensional perturbations and as a result all dimensions must be attended to by the 

perceiver in order to form the correct category concept.  Vigo (2014) describes structural 

equilibrium in terms of the following relationship: 

[A]s the degree of structural equilibrium of a categorical stimulus X increases, the 

easier it is to determine which dimensions should participate in rule formation. 

(pg. 93) 

In other words, an individual presented with a category associated with a structural 

manifold of (0/4, 4/4, 4/4) would be able to easily determine that the first dimension of 

this structural manifold demonstrates diagnosticity.  That is, if the individual were to 

partition the whole category into multiple groups, it is likely that they would use that first 

dimension (that exhibits structural equilibrium) to form their categorization rule.  If that 

first dimension were associated with size, the participant would create groups based on 

size rather than the other two dimensions. 

The second GISTM measure is the category’s difficulty.  Within the context of 

supervised learning experiments, a category’s difficulty relates to invariances present 

within the structural manifold, or: 

𝑒−Φ 

Taking the negative exponential of phi (refer to the formula above for the 

calculation of phi) gives a category’s difficulty.  For an unsupervised learning task, the 

GISTM theory can examine the distance between the ideotype (the memory trace of the 
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structural manifold) and the zero ideotype within psychological space thereby giving the 

qualitative category difficulty.  As put by Vigo (2013): 

The shorter this distance is, the less homogenous the categorical stimulus 

is perceived to be and, consequently, the more difficult it is judged to be 

from the standpoint of concept formation. (pg. 95) 

A manifold, such as the one given above (0/4, 4/4, 4/4), demonstrates some 

invariances to dimensional perturbations and is therefore more likely to be 

perceived as being more homogenous than categories lacking these invariances.  

As a result, an individual may be able to successfully for a concept of the 

perceived structure.  Compare this to a structural manifold of (0/4, 0/4, 0/4): this 

manifold completely lacks invariances to dimensional perturbations.  Because this 

ideotype matches, or is equivalent to, the zero ideotype in psychological space, an 

individual would perceive it as being less homogenous or coherent.  They would 

therefore believe the category as being more difficult to form a concept from. 

A final measure of the GISTM is categorical invariance.  As previously stated, 

individuals prefer extreme structural kernals values – namely, 0 and 1 - The formula, 

given above, squares the value of phi and includes a discrimination index parameter k.  

By squaring the phi, relative contribution of these extremes is accentuated while the 

contribution of intermediate structural kernals that fall within the 0 to 1 interval are 

diminished (Vigo, 2013, 2014).  Such a move models the tendency of individuals to 

gravitate to these extremes given with respect to the category difficulty according to the 

perceiver.  Qualitatively, it becomes apparent using the measure of categorical invariance 
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where particular structural manifolds are in relation to each other.  Thus, the measure of 

categorical invariance uses category difficulty and the structural manifold to provide a 

full, qualitative picture of a category’s underlying structure and how this underlying 

structure relates to a participant’s categorization behavior. 

Results 

 After excluding participants who had incomplete data, didn’t follow task 

procedure, or had self-reported expertise with musical instruments (Tervaniemi, et al., 

2005), we analyzed the data of 39 number of participants.  Participants reported, on 

average, about 1.5 years of experience playing musical instruments (median = 0, SD = 

2.4) with a range of 0 to 9 years of experience. 

In the current experimental procedure, the amount of data is extensive and 

analyzing individual categorization behavior presents many logistical and practical issues 

(Love et al., 2004; Pothos & Chater, 2002; Pothos, et al., 2008) due to the number of 

unique classifications possible in the data.  Therefore, the predominant method of 

categorization utilized by the participants – referred to by Pothos and colleagues (2008) 

as category intuitiveness – will be analyzed to determine representativeness of the 

SUSTAIN and simplicity model simulations.  

Pothos (2008) proposed two metrics of category intuitiveness; examining 

classification variability and frequency of classification method.  Category variability 

related the diversity of categorization solutions within a given category or dataset.  If 

classification variability was low within a particular data set, the implication was that 

there would be more agreement in participants’ categorization and therefore the manner 
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in which to categorize the stimuli must be more intuitive (Pothos, et al., 2008).  Using 

this metric in the current experiment presents a number of problems.  Most notably each 

category contains a different number of stimuli and as a result, the diversity of categories 

with large sets of stimuli will often be larger simply due to a larger number of possible 

responses.  However, in the scheme of categorizations made compared to possible 

categorizations, smaller categories will always show a higher level of variability than 

larger categories.  For example, using two stimuli there are four possible configurations 

(two of which are functionally equivalent) for group assignment: group1-group1, group1-

group2, group2-group1, and group2-group2.  It’s likely that participants will use all these 

categorization types because it’s tractable for human learning.  Conversely, it’s 

impossible for participants to categorize 8 stimuli using every possible configuration, 

especially given the number of trials.  Therefore, with respect to the total number of 

possible categorizations, diversity will be lower.  In summary, this metric is not 

particularly appropriate for the current experiment given how the categories are 

constructed and the categorization possibilities that entails.  

The second metric is straightforward; the classification that occurs most 

frequently in the participants’ data for a given dataset corresponds to the most intuitive 

classification or “considered more obvious” (Pothos, et al., 2008).  Although diversity 

will not be used, the correlation between these two metrics was r = -0.76 (when diversity 

was unstandardized) and r = 0.76 (when standardized according to maximum possible 

categorizations).  For the unstandardized metric, as categorization strategy diversity 

increased, the frequency of the most used categorization strategy decreased.  This makes 
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sense; as the number of possible categorization strategies increased, fewer participants 

selected the same strategy.  With respect to the standardized metric, as the number of 

possible categorizations increased based on the number of stimuli, it’s less likely 

participants will respond according to the whole spectrum of categorization strategies.  

Thus, with respect to the maximum limit, participants focused on a smaller set of 

categorization strategies rather than diversifying their responses.  As mentioned, model 

analysis used the most frequent classification as an evaluation metric rather than 

diversity.  

 Participants tended to categorize the auditory stimuli using only two groups rather 

multiple groups even when exposed to categories with a higher number of stimuli.  In 

fact, across every possible set of category stimuli, participants exclusively created two 

categories based on the stimuli rather than multiple categories.  Table 7 presents the most 

frequent categorization strategy for each category and category type – presented in 

Boolean form - along with the frequency for that particular categorization strategy.  No 

category existed for which participants consistently elected to use a multi-group strategy; 

multi-group strategies account for less than 30% of the possible solutions for each 

category. 

Also noteworthy is the method in which participants created the categories; in 

other words, which dimension or dimensions of the auditory stimuli were used to 

partition the stimuli.  Across each category type, it appears as though the criteria for 

developing a category boundary changed.  More specifically, as the context (dimensional 

composition and number of stimuli) changed, participants constantly re-assessed their 
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conceptualization of the stimuli and this was reflected in spontaneous categorization of 

the audio (Table 7).  When the category contained a small set of stimuli, such as the 3(2) 

category, participants employed a categorization strategy using the relevant dimension to 

separate groups of stimuli.  In the case of 3(2), timbre was – across all types – the 

consistently different dimensions between stimuli, and its likely participants used this 

dimension to determine category membership.  In other small categories such as 3(3) and 

3(4), participants continued to use uni-dimensional strategies of categorization, whether 

the diagnostic dimension be spectral envelope, loudness, or frequency.  These results are 

consistent with those found by other wherein individuals tend to use one dimension in 

order to make a decision for categorization (Goudbeek, et al., 2009; Gygi, et al., 2007). 

In contrast, when participants engaged in the free-sorting task and multiple stimuli 

were available, the categorization strategy participants used was more complex than a 

simple uni-dimensional split.  For example, category types for 3(5) and 3(6) show no 

clear use of a single diagnostic dimension to separate the stimuli.  Rather than use only 

the spectral envelope, loudness, or frequency, participants used a combination of these 

dimensions to partition the stimuli.  For example, in the 3(6) category, it appears that 

participants grouped stimuli according to a similar frequency but also used the given 

loudness and spectral envelope of the stimuli to make their categorization.  

Participants could have easily used a single dimension for any category type to 

partition the set of stimuli but instead chose more complex categorization strategies.  This 

result hints that individuals are employing more than a simple A/B comparison of a single 
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dimension and, while biased towards using only two categories, they are not necessarily 

minimizing differences between stimulus dimensions. 

 The integrality of the auditory stimuli may in part be responsible for the complex 

categorization strategies; participants may have been processing the stimuli as a whole 

and distributing their attention across all dimensions of the stimuli (Little, Nosofsky, & 

Denton, 2011; Little, et al., 2013).  By doing so, new categorization strategies opened up, 

so to speak; rather than simply dividing stimuli into two categories based on a category-

relevant dimension, participants would now be engaged in determining the relative 

similarity between possible within-category stimuli.  In doing so, some categorization 

strategies more so resemble the ideal categorization for the 3(4)-2 category type where 

individuals must learn an “exclusive or” rule (e.g., high frequency and low amplitude OR 

low frequency and high amplitude).  Thus, individuals are employing both similarity and 

discrimination processes when creating category clusters, as opposed to simply uni-

dimensional discrimination.  To determine the possible cognitive processes used by the 

participants in the free-sorting tasks, we used three current mathematical models to 

evaluate their performance on the task and their plausibility (with respect the mechanisms 

and theories on which they are based) according to their performance. 

 SUSTAIN. The SUSTAIN model has been previously used to examine 

unsupervised learning tasks (Gureckis & Love, 2002; Love, Medin, & Gureckis, 2004) 

and, of particular interest, free-sorting tasks (Pothos, et al., 2008).  In examining the 

SUSTAIN model, Pothos and colleagues (2008) used specific parameters and 

assumptions in order to approximate the free-sorting task within SUSTAIN, which 
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typically functions trial-by-trial.  One assumption made by Pothos and colleagues was 

“that subjects consider each stimulus one at time but that the order of item consideration 

is idiosyncratic.”  Thus, even though SUSTAIN examines stimuli trial-by-trial, it’s 

assumed the random presentation is equivalent to how participants examined the audio 

stimuli. 

 Similar to the participants in the experiment, SUSTAIN was given 4 trials of 

training per category type with a random ordering of the stimuli.  SUSTAIN takes the 

vector of each Boolean stimulus representation as input.  Because participants were told 

to categorize using any dimension or dimensions, SUSTAIN attention parameters for the 

three dimensions was set at an initial value of λ = 1.0 and could be adjusted per trial by 

SUSTAIN during learning.  This assumes SUSTAIN has equal initial attention to every 

dimension of the stimuli.  Other parameters – attentional focus, clustering competition, 

decision consistency, and learning rate – used the initial unsupervised learning values 

recommended by Love (2004).  Additionally, the threshold parameter, which sets the 

decision criteria to recruit new clusters, took on values sampled from a normal 

distribution of values per trial in order to simulate variation in participant stimulus 

categorization (Love, et al., 2004; Pothos, et al., 2008).  To the extent that SUSTAIN was 

able to replicate the observed participant categorization for each category type, the 

probability of SUSTAIN developing that solution was multiplied by 156 to obtain the 

equivalent frequency of the most popular response metric (Pothos, et al., 2008). 

 Overall, SUSTAIN was unable to develop categories resembling the ones created 

by participants (Figure 20).  Only when categories were simple such as 3(2) would 
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SUSTAIN’s categories - and the associated probabilities of obtaining that category - 

resembled the participants’ categories.  On the 3(2) categories, the dissimilarity between 

the two objects increased by type such that SUSTAIN computed these category 

separations.  Beyond the 3(2) category, the most frequent or relevant categories created 

by SUSTAIN in the 4 trials would often fail to mimic participant behavior.  The only 

exception to this appears to be the 3(4)-2 category type which, given the pattern of 

SUSTAIN’s clustering solution, seems to correspond to the participant data by pure 

chance.  Table 8 presents the most frequent – and relevant – SUSTAIN clustering 

solution per category type.  As discussed, whenever SUSTAIN would arrive at a two 

cluster solution, it was often incorrect with respect to the participants. 

The clustering behavior obtained by SUSTAIN indicates a difference from 

previous results.  Using stimuli that varied according to two dimensions, Pothos and 

colleagues (2008) found that SUSTAIN adequately captured the category structure 

obtained from participants.  Each category had different clusters based on these two 

dimensions and categories contained different number of clusters, from two clusters to 

five clusters to an ambiguous clustering.  Frequently, SUSTAIN clustering solutions 

would correspond to those of participants, particularly when the category contained a low 

number of anticipated clusters.  SUSTAIN clustering solutions, however, often predicted 

the frequency of obtaining that clustering solution to occur less frequently relative to the 

data.  It is perhaps the simplicity of the stimuli in previous experiments that contributed 

to SUSTAIN’s unsupervised learning performance; in the current experiment, the stimuli 

consisted of three dimensions rather than just two.  The increase in dimensional 
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complexity resulted in SUSTAIN’s unsupervised learning underperformance; an increase 

in stimulus dimensionality also increase in the number of possible ways to cluster the 

data.  Because the clustering solutions obtained by participants were all two cluster 

solutions and lack the complexity of multi-cluster solutions, these clustering patters 

should have occurred more frequently (if only just occurring) within the SUSTAIN 

model should there be no difference between the current study and the study by Pothos 

and colleagues (2008).  Specifically, because SUSTAIN performed fairly well with two 

cluster solutions in Pothos’ study, it should follow that SUSTAIN should also perform 

well with the two cluster solutions in the current experiment.  However, as mentioned, 

the increase in stimulus dimensionality obviously played an important role in the 

SUSTAIN model; even a simple dimensional increase can cause the model to perform 

poorly relative to previous performance. 

 Simplicity model.  Unlike SUSTAIN, the simplicity model (Pothos and Chater, 

2002; Pothos, et al., 2008) requires no parameter estimation or initial parameterization.  

The simplicity model, based off the Rosch and Mervis (1975) similarity proposal, 

examines total distances between the stimuli in the superset category and assesses the 

“savings” in clustering stimuli into smaller via a cost function.  The model outputs 

savings in terms of absolute gain (number of bits saved through clustering) and relative 

gain (percentage of bits saved with respect to superset bit-size).  According to the 

simplicity model, individuals are constantly attempting to minimize the code-length of 

the superset by partitioning it into smaller categories.  Therefore, a smaller percentage 

value associated with the relative gain corresponds to the non-reducible amount of 
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remaining code-length (e.g., 40% means only 40% of the original 100% code-length 

remains in the given reduction via clustering).  Smaller code-length corresponds to 

increased category intuitiveness and learnability (Pothos, et al., 2008; Pothos, et al., 

2011). 

 There are two computational mechanisms for determining code-length and 

categorization in the simplicity model.  Much like SUSTAIN, the simplicity model can 

attempt to predict the categorization in an unsupervised learning task by determining the 

best clustering - one that maximally minimizes the original superset code-length - via 

determining distances in a similarity matrix.  In this manner, simplicity model initializes 

with a trivial number of clustering (each stimulus “assigned” to its own category) and 

then minimizes the number of the trivial clusters to decrease code-length.  Using this 

mechanism, we can assess to what extent the simplicity model is capable of generatively 

creating clustering solutions that mirror those created by the participants in the current 

free-sorting task. 

 The other computational mechanism of the simplicity model allows the researcher 

to input a vector of numbers associated with the observed category labels and, rather than 

determine the best clustering, use these labels to compute any gains or loss in code-length 

according to the clustering.  This computation allows for an analysis of the participants’ 

observed clustering code-length.  Additionally, I can use the simplicity model’s best 

clustering algorithm to compare the “ideal” clustering compared to the observed data.  

These computational methods allow for model comparisons between the observed data in 

addition to SUSTAIN. 



114 
 
 To address the first computational method of ideal clustering, the stimulus values 

for each category type were entered individually into a matrix and a trivial clustering 

solution was initiated prior to running the best clustering algorithm.  The predicted per-

category type clustering solutions determined by the simplicity model are in Table 9.  

Overall, the model was often successful in minimizing the number of initial clusters 

although the extent to which it accomplished this was often poor.  

 Examining the percentage change in the form of relative gains (Table 10) reveals 

that often the clustering solutions simplicity model increased the code-length of the 

categories when generatively constructing categories.  The relative gain values computed 

by the simplicity model used the formula: 

[code-length to specify clusters]/[code-length without clusters]*100 

This ratio provides an indication of the bit number required to cluster categorical 

stimuli with respect to the bit number required to specify the category without clusters.  

Multiplying this value by 100 gives the relative percentage gains. Recall that the 

simplicity model attempts to minimize code-length, and therefore a smaller code-length 

to specify clusters relative to the code-length without clustering would specify that a 

particular clustering solution required less bits to construct than no clustering (reflected 

as a percentage lower than 100%).  Pothos and colleagues (2008, 2011) have previously 

associated gains and losses in code-length to increases and decreases in category 

intuitiveness; a decrease in relative code-length indicates a more intuitive categorization 

because less learning resources are necessary to encode the stimuli.  Conversely, a large 
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percentage of relative gains ( > 100%) means that the code-length of the clustering 

solution decreased the learnability or intuitiveness of the category.  

Such examples of increased relative gain are readily apparent in the current 

experiment.  For example, the relative gains of category type (3)3-1 increased with 

clustering the three stimuli into different categories so that the final code-length for 

clustering the stimuli resulted in a less intuitive categorization structure.  Increasing in 

gain occurred in four different category types: 3(3)-1, 3(3)-2, 3(3)-3, and 3(4)-4.  For the 

3(3)-1 types, it seems that the model is unable to minimize the clustering structure 

because the overall category has few stimuli.  The generated clustering solution for 3(4)-4 

makes sense within the context of the model.  When creating a similarity matrix based on 

the categorical stimuli, the between-stimulus distance would be identical and as a result 

the simplicity model would guess that each of these stimuli belonged in independent 

clusters.  Therefore, the simplicity model has difficulty predicting sub-100% code-lengths 

when the categories are small and the categorical stimuli are equidistant.  The simplicity 

model minimized – to some extent – the code-length for all other category types other 

than these four types. 

 Although the simplicity model generated ideal clusters for minimizing code-

length per category type, these clustering solutions frequently lacked correspondence 

with the observed data (Figure 21).  The simplicity model accurately predicted clustering 

solutions when the number of stimuli per category was small (i.e., 3(2) category types) 

and when the possible categorization rule was distinct (i.e., 3(4)-2, exclusive or “XOR” 

rule).  Other than these four category structures, the predicted clustering by the simplicity 
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model did not replicate the category clustering solutions performed by the participants 

and demonstrated a poor fit, r = 0.18.  Using the computational mechanism of category 

generation appears to be inappropriate for the current experiment. 

Previous studies by Pothos (2008, 2011) have shown that the simplicity model 

performance more than adequately on unsupervised learning tasks, but these studies 

differed from the current task in two key ways.  First, the constructed categories 

contained more stimuli (16) than the categories in the current experiment, a fact that as 

previously mentioned may have caused the simplicity model to generate clusters with 

poor relative gains for some category types.  Second, these experiment predefined the 

ideal clustering strategy prior to the experiment.  Specifically, researchers created 

stimulus such that they would generate certain clusters at a categorical level (e.g., two 

clusters, two ambiguous cluster, and three clusters).  The current experiment was a pure 

free-sorting task; there was no predefined ideal categorization strategy that influenced 

stimulus construction, so that it could be observed if individuals tend to use a particular 

categorization over another.  Due in part to these differences in experimental design, the 

current results of simplicity model performance do not corroborate those from previous 

research. 

Because the simplicity model also computes the absolute and relative gains for a 

pre-selected cluster solution, these were also examined (Table 10).  These results are 

notable with respect to the best clustering solutions generated by the simplicity model.  

For the human data, the relative gains for each category type are almost always higher 

than the best clustering solutions (with the exception of 3(4)-2, where the clustering was 
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accurately predicted).  According to the simplicity model, the most frequently used 

categorization solution made by individuals in the current experiment increased the code-

length of the category, implying that individuals were creating more difficult categories 

than necessary.  

The vast amount of literature on similarity, categorization, and concept learning 

does not support such an implication (Pothos, et al., 2008, 2011; Tversky & Goti, 1978, 

1982), and this highlights a potential issue with the simplicity model.  Namely, given that 

individuals are categorizing stimuli in a manner that might be counter-intuitive according 

the simplicity model, the underlying cognitive mechanisms used by individuals must 

differ from those assumed by the simplicity model.  Rather than generating these 

categories from perceived similarity according to a metric distance and minimizing the 

categorical expression so that it is tractable, individuals must be utilizing similarity and 

discrimination in a manner not employed by the simplicity model.  Therefore, for the 

current unsupervised learning task, it appears that participants are using the cognitive 

mechanisms of similarity assessment, discrimination, and attention in a more complex 

manner than assumed by the simplicity model. 

 Simplicity model vs. SUSTAIN.  The SUSTAIN and simplicity models have 

been compared previously on unsupervised learning tasks and found to both be 

approximately equivalent in terms of their generated categorical solutions and 

performance with respect to the human data (Pothos, et al., 2008; Pothos, et al., 2011).  In 

their studies, Pothos and colleagues (2008, 2011) used two dimensional stimuli 

resembling insects that varied continuously according to body length (long or short) and 



118 
 
leg length (long or short).  Researchers created a priori categories with the intention of 

specifying ideal categorizations that participants should create.  For example, Pothos and 

colleagues created stimuli in a manner to create two distinct clusters as the ideal solution 

by assigning all stimuli of that group approximately the same value.  In total, Pothos and 

colleagues created 9 different data sets contain different numbers of clusters and, when 

graphed, different proximities of the clusters in order to create ambiguity. 

 In comparing these two models, Pothos found that the simplicity model and 

SUSTAIN generated clustering solutions that successfully corresponded to some of the 

category structures human categorization fairly well (Pothos, et al., 2008; Pothos, et al., 

2011).  The simplicity model was able to capture categorization performance similar to 

that of the humans when the a priori categories had three groups or arranged in an 

ambiguous structure.  The simplicity model also had a tendency to over-predict the 

response frequency for simple categorizations such as the two group solutions.  Stimulus 

distances determine group inclusion in the simplicity model; for human participants 

engaging in similarity and discrimination of continuous dimension stimuli, the distances 

between stimuli are not as apparent.  Due in part to this ambiguity, the responses by 

human participants are just not as frequent as estimated by the simplicity model (Pothos, 

et al., 2011).  Also notable is the simplicity model’s performance on categories where a 

large number of clusters are created; when the optimal category solution was five 

clusters, human participants easily discriminated categorical boundaries while the 

simplicity model grossly under-predicted the participant response. 



119 
 
 In comparison, SUSTAIN generated an equivalent number of cluster solutions to 

the human data except when the categorization task required two clusters (Pothos, et al., 

2011).  Under these circumstances, SUSTAIN – much like the simplicity model – over-

estimated the frequency of the most popular clustering solution when only two clusters 

were necessary to sot the stimuli.  In this experiment, SUSTAIN did not drastically 

under-estimate the frequency of the most popular solution as the simplicity model did.  

However, the previous experiment by Pothos and colleagues (2008) found that while the 

simplicity model performed about the same as their more recent (2011) experiment, 

SUSTAIN would sometimes under-estimate the frequency of the solution and – at worst 

– fail to generate the category at all.  Based on these extreme differences in results, it 

seems that SUSTAIN is highly variable in terms of performance; more often than not the 

model will generate the correct clustering solution, but if the model fails it does so 

noticeably (Pothos, et al., 2008). 

 In order to examine these models, category clustering occurred generatively based 

on the stimulus vectors of each category type.  Figures 20 and 21 shows the empirical 

data and model predictions per category type. SUSTAIN provided a better fit (r = 0.68) 

than the simplicity model (r = 0.18).  However, these values still indicate weak 

performance with respect to predicting human categorization in the current unsupervised 

learning task.  This result may be due to previously mentioned reasons; the categories 

presented in the current experiment contain a smaller number of stimuli than those used 

in other experiments and the category clusters were not pre-defined (Pothos & Chater, 

2002; Pothos, et al., 2008; Pothos, et al., 2011).  Therefore the categories created by the 
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participants may have been intuitive to them but were not intuitive to the simplicity 

model and SUSTAIN.  

Overall the simplicity model and SUSTAIN are both poor descriptors and 

predictors of the human data from the current unsupervised learning free-sorting task.  

Their performance, although similar between the models, frequently demonstrated 

situations in which they inaccurately attempted to replicate humans, and this speaks to the 

validity of their internal mechanisms and assumptions as representations of human 

conceptual and categorization behavior. 

 Generalized structural invariance theory.  As previously discussed, the GISTM 

derives predictions of category learning from the inherent invariances present within a 

given category set.  In the supervised literature, researchers can utilize GISTM to 

determine the perceived learning difficulty of a category and how invariant that category 

is to perturbations, and in such a capacity, it has demonstrated much success and potential 

future applications (Vigo, 2009, 2013, 2014).  Additionally, current research has 

examined the structural manifolds with respect to whether they adhere to structural 

equilibrium or the parsimony principle (Chapter 4), specifically in choice behavior (Doan 

& Vigo, under review).  I adopt such a procedure in the current analysis as one method of 

GISTM analysis.  Therefore, in the current usage, GISTM will not provide an output like 

SUSTAIN or the simplicity model with respect to the frequency of most popular 

categorization strategy.  Instead, GISTM will essentially tell us the quality of the 

categorizations with respect to the underlying principles of invariance theory. 
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 An examination of the structural manifolds per category type reveals an 

interesting pattern (Table 11).  It appears that – as proposed by Vigo (2014) – individuals 

do prefer constructing categories that reflect extreme structural kernals such that in the 

current experiment participants demonstrated tendency towards structural manifolds of 

(0, 0, 0) for both categories. In fact, the participant created categories clearly demonstrate 

both the principle of invariance-parsimony and the principle of structural equilibrium. 

These state that when categorizing stimuli, an individual will demonstrate a 

disproportionate emphasis on extreme structural kernals (‘0’ or ‘1’) and by doing so 

participants are able to discriminate which dimensions are relevant or diagnostic to 

categorization (Vigo, 2014). 

For categories such as 3(2), the presence of structural equilibrium is relatively 

trivial; if participants separated the two stimuli, both categories of a single stimulus 

would always have a structural manifold of (0, 0, 0). In fact, other than the 3(2)-1 

category type, types 3(2)-2 and 3(2)-3 would have (0, 0, 0) structural manifolds even 

when grouping both stimuli together.  These types are only indicative of a very simple 

categorization task that regardless of categorization strategy results in the same 

underlying structure.  The except to this is the 3(2)-1 category type; rather than categorize 

these stimuli together such that the dimension of spectral envelope was invariant – and 

therefore not diagnostic under the invariance-parsimony principle – participants grouped 

each stimulus separately such that both single stimulus categories adhered to the 
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structural equilibrium principle6.  When examining the more complex categories, 

participants’ tendency towards structural equilibrium becomes apparent. 

 In the more complex categories where more than two audio stimuli are present, 

participant behavior still exhibits a preference towards extreme structural kernels and 

structural equilibrium.  In these categories, most participants constructed categories such 

that at least one manifold from the two groups maintained structural equilibrium and, 

when possible, participants constructed categories wherein one structural kernel was 

completely invariant to all perturbations (e.g., 3(3)-2).  Categories constructed containing 

single invariance kernels allowed individuals to disregard this dimensional redundancy 

and instead categorize using the other two dimensions.  As a specific example, in the 

3(3)-2 category participants created category groupings such that in one group the 

dimension of spectral envelope was invariant to dimensional perturbations.  Participant 

may have perceived the underlying structural invariance of spectral envelope and 

detecting this redundancy allowed participants to redirect attention towards the other 

dimensions when categorizing.  The other grouping participants created for the 3(3)-2 

category shows a structural manifold of (0, 0, 0) and an adherence to structural 

equilibrium.  When presented with these complex categories, the trend of participants to 

either create groups in which one structural kernel is invariant (an extreme SK) or create 

                                                        
6 It should be noted that according to GISTM, the participants’ behavior in separating 
3(2)-1 into two categories such that the structural manifolds equal (0, 0, 0) is fully 
supported by both the mathematical foundations and process account of the GISTM.  
Both SUSTAIN and the simplicity model were unable to account for the participants’ 
tendency to engage in this behavior.  
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groups which exhibit structural equilibrium is apparent.  Such a result is consistent with 

the principles of parsimony and structural equilibrium put forth by Vigo (2014). 

 Some unique structural manifolds are apparent in Table 11) such as manifolds in 

which the structural kernels are not at either extreme (e.g., 0.67).  For example, 3(5)-1 

demonstrates a group one manifold of (0, 0.67, 0.67) and a group two manifold of (0, 0, 

0).  While the structural manifold of the first group is not optimal according to either 

parsimony or structural equilibrium, taken in context it appears that individuals are 

sacrificing structural equilibrium and dimensional diagnosticity in order to attain 

structural equilibrium for the second category.  In a way, these categories containing 

structural kernels that fall between the extreme 0 and 1 values are acting as conceptual 

“junk draws”; categories that have little in terms of cohesion or invariance but allow 

other constructed categories to maintain some form of structure with respect to extreme 

SKs.  Categories 3(6)-1 and 3(6)-3 also show this pattern; it appears that it is easier for 

participants to develop and maintain a memory trace in which all dimensions of a 

category are in structural equilibrium. 

 From qualitatively assessing the structural manifolds of the most frequently used 

categorization strategy across each category type, it is very apparent that participants 

categorizing by using the underlying structure between stimuli to inform category sorting.  

Specifically individuals are using the principles of invariance-parsimony and structural 

equilibrium almost exclusively during the free-sorting task when encoding the category 

structure as an ideotype.  The degree of structural equilibrium informs individuals of the 

ease in which they can discriminate between stimuli and when a category is in perfect 
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structural equilibrium, all dimensions provide relevant or diagnostic information.  In the 

current experiment, stimuli grouped together and resulting in a high degree of structural 

equilibrium indicates that participants perceived the grouped stimuli to be highly 

discriminable to participants because the participants are attending to all dimensions.  

This results marks a departure from previous results in which participants created 

categories according to uni-dimensional criteria (Goudbeek, et al., 2009; Gygi, et al., 

2007).  Instead, participants are attending to all three dimensions in order to easily 

discriminate between stimuli. 

 The second GISTM measure examined in the current experiment is the perceived 

category difficulty of the each grouping created by the participants.  As mentioned, the 

category difficult can be assessed by examining the distance between each category 

type’s difficulty – psychologically manifested as the ideotype memory trace - and the 

zero ideotype in psychological space.  As the distance between the ideotype and the zero 

ideotype decreases, a category becomes difficult to learn and subsequently more difficult 

for an individual to develop the concept of the category.  Table 12 contains the difficulty 

values for each category type.  Consistently across each category type, participants 

tended to create categories such that at least one of the two categories represented an 

ideotype furthest away from the zero ideotype.  For example, participants’ groupings on 

the 3(3)-1 category type represent such a situation in which one structural manifold lacks 

invariance across every dimension whereas the other structural manifold demonstrates a 

single invariant SK.  Within the context of the current measure of category difficult, it 

appears that individuals are creating one, less homogenous category (that in turn doesn’t 



125 
 
adhere to the notion of structural equilibrium) in order to create one category that 

demonstrates a relatively homogenous quality (Vigo, 2014).  Categories with a high 

degree of difficulty are also more discriminable.  While stimuli may lack within-category 

similarity and dimensional redundancy, participants seem to prefer creating categories 

that are highly discriminable across all stimulus dimensions. 

The third measure used in the current experiment from the GISTM model 

examines the categorical invariance of each free-sorted category.  Squaring the value of 

phi accentuates the contribution of the extreme SKs while diminishing the contribution of 

intermediary SKs.  For the current analysis, the discrimination index parameter k = 1 so 

that there was no preference given to an expanded or diminished psychological space per 

category type.  The resulting invariance values correspond to the results of the first and 

second measures.  By accentuating the extreme values, the categorical invariance of each 

category structure shows a gravitation towards extremes rather than a tendency to remain 

firmly within the interval.  Based on the measure of categorical invariance, although 

some structural manifolds appeared to be almost squarely within the SK interval, the 

invariance from the structural manifolds shows that participants are still preferring 

extremes even when a structural manifold in perfect equilibrium is not possible.  

Participants inherently biased towards creating categories that are highly discriminable or 

as discriminable as they can make them given constraints. 

Based on these three measures, GISTM presents a different and useful theoretical 

alternative to that of SUSTAIN and the simplicity model.  In the current implementation, 

rather than fruitlessly attempt to predict or mimic the participants’ categorization 



126 
 
strategies, GISTM uses its flexible mathematical framework to determine the underlying 

relationships between the stimuli of each category (Vigo, 2013, 2014).  In doing so, 

GISTM allows researchers to determine how participants should categorize based on 

these underlying patterns and relationships.  It may be that the exact structure of the free-

sorted categories is un-important but that the stimulus relationships within group are what 

establish functional equivalence between free-sort responses.  As a concrete example, 

imagine there are four stimuli with varying dimensions; SUSTAIN and the simplicity 

model would attempt to exactly predict how an individual would group these objects and 

they are therefore trying to determine the exact structure of each category.  However, 

analyzing this scenario through the lens of invariance and the GISTM, there may be 

several combinations of stimulus groupings that satisfy structural equilibrium and 

parsimony.  Grouping stimulus 1 and 2 in our example may satisfy these principles, but 

grouping stimulus 1 and 3 may also do this.  In this respect, these two categories are 

functionally equivalent from an underlying structural standpoint; specifically, both 

grouping have the same SKs and structural manifold (granted, a participants’ exact 

response would depend on whether the manifold of the second grouping changed based 

on these changes).  The only reason an individual may select one categorization over 

another would depend on their ability to perceive, detect, and attend to particular patterns. 

One individual may be more sensitive to the grouping of stimulus 1 and 2 because there’s 

a particular salient dimension that the individual’s attention is biased or directed towards.  

Thus, it appears that GISTM provides the most relevant account of human unsupervised 
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learning, specifically through the mechanisms of pattern detection, perceived difficulty, 

and the capacity of individuals to discriminate stimulus dimensions. 
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Chapter 11: Discussion 

General Discussion 
 
 Previous experiments in the human auditory categorization literature demonstrate 

that individuals typically attend to three dimensions when performing similarity 

assessment (Alrich, Hellier, & Edworthy, 2008; Bonebright, 2001; Gygi, et al., 2009; 

Howard & Silverman, 1976; McAdams, et al., 1995; Samson, Zatorre, & Ramsay, 1997).  

Result such as these are in correspondence to studies on limits of auditory attention; 

individuals are limited to approximately 3 to 4 auditory attributes or dimensions when 

attending to an auditory stimulus (Chen & Cowan, 2005; Cowan, Chen, & Rouder, 2004; 

Saults & Cowan, 2009; Tulving & Patkau, 1962).  The current experiment also had a 

similar result; when individuals were engaged in the similarity assessment task, they 

generally used three dimensions to make establish their assessment of similarity between 

the presented pair of auditory stimuli.  From this result, participants reported using 

frequency/pitch, amplitude/loudness, and the spectral envelope as dimensions for 

comparison.  These results make sense with respect to the literature within the area; the 

reported number of dimensions corroborate previous studies (Caclin, et al., 2005; Grey, 

1977; Howard & Silverman, 1976; Krumshansl & Iverson, 1992; McAdams, et al., 1995; 

Melara & Mark, 1990; Samson, Zatorre, & Ramsay, 1997).  Specifically, at most 

participants could only attend to approximately three dimensions when determining 

similarity between the stimuli. 

 These three dimensions were used to construct stimuli and examine unsupervised 

learning of Boolean categories (Feldman, 2000).  When constructing categories for each 
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set of stimuli, participants preferred to partition the stimuli into two categories rather than 

multiple categories.  Furthermore, participants often used multiple stimulus dimensions to 

determine categorization between these two groups, a result that differs from previous 

findings that individuals categorize uni-dimensionally (Goudbeek, et al., 2009; Gygi, et 

al., 2007).  The participant constructed categories were then examined according to three 

current mathematical models in order to determine validity of these models with respect 

to the current unsupervised learning task and - to the extent that these models do 

approximate the data - to examine possible cognitive processes that are occurring when 

participants engage in the task. 

 Of the three models tests – SUSTAIN, the simplicity model, and GISTM – only 

GISTM explained the human categorization results in a manner completely consistent 

with the theory and associated principles (Vigo, 2013, 2014).  The results of the 

simplicity model and SUSTAIN demonstrate that code-length reduction/minimization 

and exemplar based accounts of clustering and categorization are not capable of 

accurately representing human performance in the current free-sorting task.  These are as 

a result not plausible explanations for behavior.  Although the simplicity model and 

SUSTAIN may demonstrate the capacity to account for human behavior in unsupervised 

learning tasks involving a large number of stimuli (Pothos, et al., 2008, 2011), the failure 

to account for the data in the current experiment supposes that individuals are not 

engaging the task and using their cognitive abilities in the manner presupposed by 

SUSTAIN and the simplicity model.  Therefore, the answer for how individuals develop 
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concepts and categorize stimuli appears to lie in the notions of invariance, structural 

equilibrium, and parsimony (Vigo & Doan, 2015).  

Limitations and Future Directions 

The current experiment had some limitations that could be addressed in future 

experiments to expand the generalizability and strength of the current results.  

Concerning the first experiment in which we conducted MDS, the results from the scree 

plot and other measures hinted at a three dimensional solution but this was rather 

ambiguous at best.  This of course was due to the participant’s similarity responses per 

pairwise stimulus comparison.  One clear direction might resolve this ambiguity.  

Although the dimensional values for each stimulus came directly from previous research 

(Caclin, et al., 2005; Grey, 1977; Krumshansl & Iverson, 1992; Melara & Mark, 1990) it 

might be that some dimensional values we’re particularly salient to participants with no-

to-low musical experience compared to those with a year or more of experience.  As 

mentioned, there are documented differences between musicians and non-musicians 

(Tervaniemi, et al., 2005) and it may be that non-musicians weren’t sensitive enough to 

discriminate dimensional changes.  To address this, future studies may want to increase 

the distance between auditory stimulus dimensions to possibly further influence 

discriminability. 

Another potential reason for the ambiguity in the MDS may relate to potential 

individual differences in the MDS dimensional solutions.  The composition of the 

participant sample included some individuals who possessed musical ability and, though 

their years of experience were below previously established thresholds (Tervaniemi, et 
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al., 2005), this may have influenced the number of dimensions they attended and stored 

in memory.  Individuals with musical experience may have been attending to more 

dimensions than those lacking in musical training and, accordingly, the MDS reflected 

these differences in dimensional attention in the form of an ambiguous dimensional 

solution.  For example, suppose the individuals with musical training used four 

dimensions whereas individuals with no musical training used two dimensions; because 

MDS averages similarity judgments across participants, this distinction may have been 

lost. Future studies should examine these individual differences as an addition metric for 

determining the correct MDS dimensional solution.  Specifically, if the results is 

ambiguous yet the majority of individuals use a particular dimensional solution, the most 

popular dimensional solution would provide more evidence towards a correct 

dimensional solution. 

Additionally, different methods of altering the spectral centroid could allow 

researchers to determine whether these influence or changes human similarity judgments.  

In the current MDS experiment, I altered the spectral centroid using a spectral band-pass 

filter with a 12 dB slope centered on a particular harmonic unit of the audio source.  An 

alternative approach to this would be to use additive synthesis to have greater control 

over each partial within the tone.  This would allow the attenuation or reduction of 

specific partial harmonics by removing individual sine waves in the additive processes, 

allowing for the accentuation of only odd or even harmonics in the resulting tone.  If we 

wanted to continue examining physical models, recent modifications of the Karplus-
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Strong algorithm could potentially provide an increased level of control over the spectral 

components of the audio (Karjalainen, et al., 1998; Sullivan, 1990). 

In the unsupervised learning task, future studies might address several limitations.  

First, time allowing, I could collect more data from participants across several days.  In 

doing so, participants might eventually settle into a specific categorization strategy per 

category type.  Over time, individuals may demonstrate less categorization response 

variability and show a stronger preference for a particular strategy in the form of 

frequency of the most popular strategy.  It would then be necessary to further test the 

generalizability of the most frequent clustering solution across sample.  As a first step, 

observing whether individuals focus on a particular strategy could provide more insight 

into the cognitive processes used during the unsupervised learning experiment. 

Third, I did not test all possible instances of each category type.  By re-assigning 

the dimensional values of the stimuli, new relationships and patterns may form.  For 

example, under the current experiment the Boolean stimuli of 011 would represent a low 

frequency, a loud amplitude, and a woodwind timbre.  Dimensional reassignment could 

create a different stimulus using the same Boolean code; the stimulus 011 in a different 

instance of a category type could refer to a sound with a low amplitude, a high frequency, 

and a woodwind timbre.  Re-coding the stimuli and testing individuals on these 

categories would allow future researchers to establish whether the perception and 

attention to auditory dimensions is driving categorization or if the underlying structure – 

which is preserved – influences categorization.  To provide a specific example: imagine 

we are studying a category containing the objects 000 + 001 + 011 and have assigned the 
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dimensions sequentially, thus: frequency, amplitude, and timbre.  Under this 

configuration, perhaps participants develop a categorization based on timbre such that the 

groups are 000 | 001 + 011.  After dimensional reassignment, would individuals still 

direct attention to the timbre dimensions or would they be able to re-direct attention to 

the new dimensions occupying the Boolean value that timbre currently does.  That is, re-

assigning dimensions allows researchers to determine the extent to which individuals are 

learning patterns or engaging in stimulus (dimensional) directed attention (Feldman, 

2000; Vigo, 2009). 

 In future experiments, I can broaden the research goals to examine different 

aspects of unsupervised learning while maintaining a high level of experimental control.  

One possible direction is to examine multi-valued dimensional stimuli rather than simply 

examine binary values.  Stimulus dimensions rarely take on discrete binary values and 

it’s more common in daily life to experience stimuli that vary according to a continuous 

dimension.  The introduction of multi-dimensional stimuli need not be associated with an 

overwhelming number of values; we can gradually introduce multi-valued dimension 

such that they can take on four values rather than two similar to previous experiments by 

Vigo (2013, 2014).  By extending the number of values a dimension can take on, we are 

also getting closer to experiments examining natural sounds (such as Gygi, et al., 2007) 

but with rigorous pre-defined and generated stimuli.  This can allow us to remove any 

noise or influence from unintended stimulus dimensions that are often an integral part of 

field recorded stimuli (e.g., spatialization). 
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Future studies can also further examine GISTM (Vigo, 2013, 2014) with respect 

to different unsupervised learning tasks.  In current experiment, the GISTM qualitatively 

predicted how individuals would group stimuli according to the principles of parsimony, 

structural equilibrium, and invariance.  There is much potential in using the GISTM as it 

has been found to provide excellent fits of the human supervised learning performance 

and choice behavior (Vigo, 2009, 2013, 2014; Vigo & Doan, 2015).  However the model 

is relatively untested for unsupervised learning, and a good first step might be a 

replication of experiment performed by Pothos and colleagues (Pothos, et al., 2008, 2011) 

in order to continue establishing the validity of the GISTM as an accurate account of 

human concept learning and categorization for unsupervised learning.  

Concerning the models of unsupervised learning, a unique direction would be to 

modify the code associated with them to include machine listening components to more 

closely mimic the human experience.  Specifically, rather than using a vector of stimulus 

dimensions, the audio can be played for the program at which time auditory feature 

extractors and detectors (Hinton et al., 2012; Liu, Wang, & Chen, 1998) can attempt to 

determine the stimulus dimensions.  With the dimensions then estimated by the feature 

extractors, the models then can compute associated similarity values and distances and 

other metrics.  Applying these machine listening mechanisms for unsupervised learning 

could allow for the extended models to be applied to different domains including 

autonomous sensing agents (Magee, et al., 2004) and recommendation algorithms for 

auditory related programs and applications (Bu, et al., 2010; Huang & Jenor, 2004). 
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Finally, we can examine whether changes in categorization occurred according to 

different groups.  Specifically, to date no researchers have examined difference in 

categorization and unsupervised learning between musicians and non-musicians.  Only 

research examining differences between these two groups according to perception and 

discrimination of single and multiple dimensional auditory stimuli has been examined 

(Tervaniemi, et al., 2005).  Examining differences between these groups could provide 

insight into the differences between experts and novices and help to uncover any 

cognitive processes that differ between these groups.  Lastly, we can further investigate 

whether age and age-related perception of these stimuli influences categorization 

strategies of individuals from different age groups. 
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Table 1 
 
Auditory Values 

Dimension 0 1 

Frequency (Hz) 370 523 

Amplitude (dB) 64 70 

Spectral Structure String Clarinet 

Spectral Centroid 
(Harmonic) - 3 

Log-Attack Time (ms) 15 200 
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Table 2 
 
Auditory Stimulus Boolean Values 
 Freq Amp SpecEnv SpecCent Log-Attack 
1 0 0 0 0 0 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 0 0 1 0 0 
5 0 0 0 1 0 
6 0 0 0 0 1 
7 1 1 0 0 0 
8 1 0 1 0 0 
9 1 0 0 1 0 
10 1 0 0 0 1 
11 0 1 1 0 0 
12 0 1 0 1 0 
13 0 1 0 0 1 
14 0 0 1 1 0 
15 0 0 1 0 1 
16 0 0 0 1 1 
17 1 1 1 0 0 
18 1 1 0 1 0 
19 1 1 0 0 1 
20 1 0 1 1 0 
21 1 0 1 0 1 
22 1 0 0 1 1 
23 0 1 1 1 0 
24 0 1 1 0 1 
25 0 1 0 1 1 
26 0 0 1 1 1 
27 1 1 1 1 0 
28 1 1 1 0 1 
29 1 1 0 1 1 
30 1 0 1 1 1 
31 0 1 1 1 1 
32 1 1 1 1 1 
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Table 3 
 
Auditory Stimuli According to Boolean Values 
 Freq (Hz) Amp (dB) SpecEnv SpecCent Log-Attack 
1 370 64 Strings - 15 
2 523 64 Strings - 15 
3 370 70 Strings - 15 
4 370 64 Clarinet - 15 
5 370 64 Strings 3 15 
6 370 64 Strings - 200 
7 523 70 Strings - 15 
8 523 64 Clarinet - 15 
9 523 64 Strings 3 15 
10 523 64 Strings - 200 
11 370 70 Clarinet - 15 
12 370 70 Strings 3 15 
13 370 70 Strings - 200 
14 370 64 Clarinet 3 15 
15 370 64 Clarinet - 200 
16 370 64 Strings 3 200 
17 523 70 Clarinet - 15 
18 523 70 Strings 3 15 
19 523 70 Strings - 200 
20 523 64 Clarinet 3 15 
21 523 64 Clarinet - 200 
22 523 64 Strings 3 200 
23 370 70 Clarinet 3 15 
24 370 70 Clarinet - 200 
25 370 70 Strings 3 200 
26 370 64 Clarinet 3 200 
27 523 70 Clarinet 3 15 
28 523 70 Clarinet - 200 
29 523 70 Strings 3 200 
30 523 64 Clarinet 3 200 
31 370 70 Clarinet 3 200 
32 523 70 Clarinet 3 200 
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Table 4 

Stress per NMDS Model 
 k = 1 k = 2 k = 3 k = 4 k = 5 
Stress 
(proportion) 

0.101 0.051 0.034 0.022 0.016 

 

Table 5 

Participant ratings for each dimension 
 Mean Median SD 
Pitch 8.5 8.5 1.39 
Loudness 6.9 8 2.75 
Spectral Envelope 6.4 7 3.58 
Spectral Centroid 4.9 5 3.14 
Log-Attack Time 4.0 4.5 2.73 

 

Table 6 

Pairwise tests of audio dimensions. 
 Pitch Loudness SpecEnv SpecCent Log-Attack 
Pitch      
Loudness 0.2882     
SpecEnv 0.3731 1    
SpecCent 3.36E-05* 0.0990 0.4794   
Log-Attack 3.69E-08* 0.0019* 0.0614 1  

*p < 0.05



140 
 
Table 7 
 
Participant Groupings per Category Type 
Category Type Frequency Group 1 Group 2 

 
3(2) 

1 130 000 001 
2 130 000 011 
3 154 000 111 

 
3(3) 

1 63 000 + 010 001 
2 61 000 + 001 110 
3 69 000 + 011 101 

 
 
 

3(4) 

1 49 000 + 010 + 100 001 
2 102 000 + 001 110 + 101 
3 100 000 + 001 010 + 101 
4 50 000 + 001 + 100 010 
5 99 000 + 001 111 + 010 
6 99 000 + 110 101 + 011 

 
3(5) 

1 45 111 + 110 + 100 101 + 011 
2 48 111 + 010 + 100 101 + 011 
3 47 111 + 101 110 + 001 + 100 

 
 
 

3(6) 

1 34 111 + 011 + 100 + 010 110 + 101 
2 36 111 + 001 + 100 + 010 110 + 101 
3 34 010 + 011 + 100 + 001 110 + 101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



141 
 
Table 8 
 
SUSTAIN Categorization Predictions. 

Category Type Frequency Group 1 Group 2 
 

3(2) 
1 0 000 + 001  
2 78 000 011 
3 156 000 111 

 
3(3) 

1 0 000 + 010 + 001  
2 0 001 000 + 110 
3 0 000 + 101 011 

 
 
 

3(4) 

1 0 000 + 010 011 + 001 
2 78 110 + 111 001 + 000 
3 0 000 + 010 001 + 101 
4 0 000 + 010 + 001 +100  
5 0 000 + 010 + 100 111 
6 0 011 + 110 101 + 000 

 
3(5) 

1 0 111 + 100 + 101 + 110 011 
2 0 111 + 011 + 010 101 + 100 
3 0 111 + 101 + 001 + 100 110 

 
 
 

3(6) 

1 0 010 + 011 + 110 + 111 100 + 101 
2 0 010 + 001 + 100 + 110 + 

101 
 

3 0 110 + 101 + 011 010 + 100 + 001 
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Table 9 
 
Simplicity Model Predictions. 

Category Type Group 1 Group 2 Group 3 Group 4 
 

3(2) 
1 000 001   
2 000 011   
3 000 111   

 
3(3) 

1 000 010 001  
2 000 001 110  
3 000 101 011  

 
 
 

3(4) 

1 000 + 010 001 + 011   
2 000 + 001 110 + 111   
3 000 + 001 010 + 101   
4 000 001 100 010 
5 000 + 010 + 001 111   
6 000 + 101 + 011 110   

 
3(5) 

1 111 + 101 + 110 + 100 011   
2 111 + 101 + 100 010 + 011   
3 111 + 101 + 110 + 100 001   

 
 
 

3(6) 

1 010 + 011 100 + 110 + 
101+ 111 

  

2 010 + 100 + 110 001 + 101 + 
111 

  

3 010 + 011 100 + 110 101+ 001  
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Table 10 
 
Simplicity Model Computation. 

Category Type Abs.Gain 
(Human) 

Rel.Gain 
(Human) 

Abs,Gain 
(SM) 

Rel.Gain 
(SM) 

 
3(2) 

1 1 Inf 1 Inf 
2 1 Inf 1 Inf 
3 1 Inf 1 Inf 

 
3(3) 

1 6 191.8 5 152.8 
2 6 191.8 5 152.8 
3 6 191.8 5 152.8 

 
 
 

3(4) 

1 19 128.7 15 99.8 
2 15 99.8 15 99.8 
3 21 140.7 15 99.8 
4 17 115.3 17 113.3 
5 18 119.8 14 64.2 
6 15 99.8 14 64.2 

 
3(5) 

1 49 108.7 40 88.8 
2 55 122.5 36 81.0 
3 52 116.0 40 88.8 

 
3(6) 

1 115 109.6 81 77.0 
2 125 119.5 83 78.7 
3 113 107.9 83 79.3 
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Table 11 
 
Structural Manifolds for Each Type as Computed by GISTM. 

Category Type Group 1 Manifold Group 2 Manifold 
 

3(2) 
1 (0, 0, 0) (0, 0, 0) 
2 (0, 0, 0) (0, 0, 0) 
3 (0, 0, 0) (0, 0, 0) 

 
3(3) 

1 (0, 1, 0) (0, 0, 0) 
2 (0, 0, 1) (0, 0, 0) 
3 (0, 0, 0) (0, 0, 0) 

 
 
 

3(4) 

1 (0, 2/3, 2/3) (0, 0, 0) 
2 (0, 0, 1) (0, 1, 1) 
3 (0, 0, 1) (0, 0, 0) 
4 (2/3, 0, 2/3) (0, 0, 0) 
5 (0, 0, 1) (0, 0, 0) 
6 (0, 0, 0) (0, 0, 0) 

 
3(5) 

1 (0, 2/3, 2/3) (0, 0, 0) 
2 (0, 0, 0) (0, 0, 0) 
3 (0, 1, 0) (0, 2/3, 0) 

 
3(6) 

1 (1/2, 0, 1/2) (0, 0, 0) 
2 (0, 0, 0) (0, 0, 0) 
3 (0, 1/2, 1/2) (0, 0, 0) 
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Table 12 
 
Difficulty and Invariance Values per Category.. 

Category Type Group 1 Group 2 
Difficulty Invariance Difficulty Invariance 

 
3[2] 

1 1 1 1 1 
2 1 1 1 1 
3 1 1 1 1 

 
3[3] 

1 0.73 0.27 1 1 
2 0.73 0.27 1 1 
3 2 2 1 1 

 
 
 

3[4] 

1 1.17 0.45 1 1 
2 0.73 0.27 0.74 0.27 
3 0.73 0.27 1 1 
4 1.17 0.45 2 2 
5 0.73 0.27 2 2 
6 2 2 2 2 

 
3[5] 

1 1.17 0.45 2 2 
2 3 3 2 2 
3 0.73 0.27 1.54 0.79 

 
3[6] 

1 1.97 0.97 2 2 
2 4 4 2 2 
3 1.97 0.97 2 2 
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Figure 1. The 3[4] SHJ family. Each set of objects contains 4 positive objects defined 
according to three binary dimensions.  In this example, those dimensions are shape, size, 
and color.
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Figure 2. An example of how stimuli may be clustered in an unsupervised learning task. 
Each cross varies according to two dimensions; X-axis location and Y-axis location. The 
lower panel presents a possible grouping of the stimuli.  
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Figure 3. These stimuli are similar to those used by Pothos and Chater (2002). The X and 
Y dimensions of Figure 2 are translated in to different radius of the stars. 
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Figure 4. This presents a regular, repeating wave. The period of a wave is the amount of 
time necessary for the wave to return to the same state with respect to the zero crossing. 
The amount of deviation the wave makes from the zero crossing reflects the amplitude 
for the given period. 
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Figure 5.  The top panel represents a wave where the periodicity is short.  If the 
frequency of the waveform is within the range of human hearing, such a sound may be 
perceived as having a higher pitch.  The panel below represents a waveform with a longer 
period.  Relative to the waveform in the top panel, the pitch would be considered lower 
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Figure 6. The components of an ADSR (attack, decay, sustain, and release).  The 
amplitude of the audio changes through time.  
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Figure 7. A waveform in the time-domain as taken from Sonic Visualizer.  Intuitively, 
the X axis represents the progression of time while the Y axis represents the amplitude of 
the waveform. As can be discerned, the wave form contains several instances of 
amplitude dynamics – changes in the relative amplitude across time. 
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Figure 8. Waveforms in the frequency-domain. Instead of showing the waveform through 
time, the waveform is examined only for an instance of time (the window) for the 
frequency content.  These particular waveforms demonstrate differences in their 
harmonics (identified by their color, duration, and frequency bin location on the X axis). 
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Figure 9. The computer screen during the MDS of experiment 1. Participants listen to the 
pair of sounds play. Immediately the slider is presented. Participants can then drag the 
slider to input their answer. A value of ‘1’ is no difference/identical; A value of ‘11’ is 
completely different/no similarities. 
  



155 
 

 
 
 
 
Figure 10. Scree plot of the stress measures per NMDS model. 
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Figure 11. Shepard plot of one-dimensional NMDS. 
  

k = 1 
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Figure 12. Shepard plot of two-dimensional NMDS. 
 
  

k = 2 
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Figure 13. Shepard plot of three-dimensional NMDS. 
 
 

k = 3 
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Figure 14. Shepard plot of four-dimensional NMDS. 
  

k = 4 
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Figure 15. Shepard plot of five-dimensional NMDS. 
 
 
  

k = 5 



161 
 

 
 
 
 
Figure 16. Scree plot of unexplained variance for metric Shepard plot R2 
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Figure 17. Scree plot of unexplained variance for non-metric Shepard plot R2 
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Figure 18. Graph of the 3 dimensional NMDS solution.  
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Figure 19.  The computer screen during the unsupervised learning task. Each square icon 
is associated with a unique sound.  Participants listen to the sounds by clicking the 
associated icon. They can then input the group they wish to associate that particular 
sound, and can do so in any order. 
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Figure 20. SUSTAIN predictions against the human data. 
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Figure 21. Simplicity model predictions against the human data. 
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