
 
 

To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to 

Decide on the Truth Value of Mathematical Statements and Construct Proofs and 

Counterexamples 

 

 

 

 

 

A dissertation presented to 

the faculty of 

The Patton College of Education of Ohio University 

 

In partial fulfillment 

of the requirements for the degree 

Doctor of Philosophy 

 

 

 

 

Kelly M. Bubp 

December 2014 

© 2014 Kelly M. Bubp. All Rights Reserved. 



2 
 

This dissertation titled 

To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to 

Decide on the Truth Value of Mathematical Statements and Construct Proofs and 

Counterexamples 

 

 

by 

KELLY M. BUBP 

 

has been approved for 

the Department of Teacher Education 

and The Patton College of Education by 

 

 

Robert M. Klein 

Associate Professor of Mathematics 

 

 

 

Renée A. Middleton 

Dean, The Patton College of Education  



3 
 

Abstract 

BUBP, KELLY M., Ph.D., December 2014, Mathematics Education 

To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to 

Decide on the Truth Value of Mathematical Statements and Construct Proofs and 

Counterexamples 

Director of Dissertation: Robert M. Klein 

 Deciding on the truth value of mathematical statements is an essential aspect of 

mathematical practice in which students are rarely engaged.  This study explored 

undergraduate students’ approaches to mathematical statements with unknown truth 

values.  The research questions were      

1. In what ways and to what extent do students use intuition and analysis to decide 

on the truth value of mathematical statements? 

2. What are the connections between students’ process of deciding on the truth value 

of mathematical statements and their ability to construct associated proofs and 

counterexamples? 

3. What types of systematic intuitive, mathematical, and logical errors do students 

make during the proving process, and what is the impact of these errors on the 

proving process? 

Clinical task-based interviews utilizing the think-aloud method revealed students’ 

reasoning processes in depth.  Twelve undergraduate students each completed four 

mathematical tasks requiring them to decide on the truth value of a statement and prove 

or disprove it accordingly.  Through analysis of the data, I developed a framework for 
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distinguishing among types of reasoning based on their cognitive and mathematical 

properties.  The framework identifies four distinct categories of reasoning – intuitive, 

semantic-empirical, semantic-deductive, and syntactic – each with subcategories.     

 The students in this study used all four types of reasoning for deciding on the 

truth value of the statements in the tasks.  Their use of semantic-deductive and syntactic 

reasoning mirrored mathematicians’ use of these reasoning types for decision-making.  

With the exception of one task, the students’ decision-making and construction processes 

were generally connected.  Connections in which the construction process was based on 

decision-making process mostly facilitated proving.  However, simultaneous decision-

making and construction processes often led to overturned decisions.  Regarding intuitive 

decision-making, only property-based intuitive decisions were connected to the 

corresponding construction process.   

 The students in this study made numerous systematic mathematical and logical 

errors, but systematic intuitive errors were limited and occurred on only one task.  The 

systematic conceptual misunderstandings surrounding the concept of function are 

troubling due to the centrality of this concept to mathematics.  Few errors were 

overcome, but a certain level of uncertainty may aid students in overcoming logical 

errors.      
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Chapter 1: Introduction  

 Mathematicians understand that reasoning and proof are essential components of 

doing mathematics.  According to Schoenfeld, proof is the “soul” of mathematics (2009, 

p. xii).  As a college mathematics instructor, Hersh (2009) wished his students understood 

that “proof, in the broadest sense, of careful reasoning leading to definite, reliable 

conclusions, is what mathematics is all about” (pp. 19–20).  The American Mathematical 

Association of Two-Year Colleges (AMATYC, 1995) and the Committee on the 

Undergraduate Program in Mathematics (CUPM, 2004) call for focusing the 

undergraduate mathematics curriculum on reasoning and proof.  However, many 

undergraduate students do not grasp the importance of proof, struggle with numerous 

aspects of mathematical reasoning, and have limited facility in constructing mathematical 

proofs and counterexamples (Alcock, 2010; Dreyfus, 1999; Harel & Sowder, 1998, 2009; 

Moore, 1994; Selden & Selden, 1987, 2003, 2007; Solomon, 2006; Weber, 2001).    

 Intuitive and analytical reasoning are fundamental components of proof-based 

mathematics.  Intuition constructs an automatic mental representation of a task, taking 

into consideration task cues, prior knowledge, and experience, and operates 

independently of working memory (Evans, 2009. 2010, 2012b; Fischbein, 1987; Wilder, 

1967).  On the other hand, analysis is a deliberate process of reasoning that can be 

explained and decomposed into its constituent parts, and requires the use of working 

memory (Evans, 2008, 2012a, 2012b; Fischbein, 1987).  Although often seen as 

competing modes of thought, intuition and analysis can be recognized as complementary, 

each playing key roles in evaluating mathematical statements and producing proofs and 
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counterexamples (Fischbein, 1987; Hersh, 1997; Tall, 1991; Wilder, 1967).  Dual-process 

theories of reasoning and decision-making assert that intuition and analysis correspond to 

distinct types of cognitive processing, each with specified characteristics, roles, and 

difficulties (Evans, 2006, 2008, 2010; Kahneman, 2002).   

 Analytical reasoning includes both informal and formal reasoning, an important 

distinction in mathematics.  Formal reasoning is based on logic and deduction, and 

informal reasoning includes reasoning strategies such as visual, example-based, or 

pattern-based reasoning.  A mathematical proof is a justification of an assertion consisting 

entirely of formal reasoning.  However, the proving process is complex and encompasses 

a multitude of activities including exploring and identifying patterns and relationships, 

generating conjectures and generalizations, and testing, refining, and proving conjectures 

(AMATYC, 1995; CUPM, 2004; de Villiers, 2010; Durand-Guerrier et al., 2012).  Thus, 

although intuitive and informal reasoning have no place in a mathematical proof—the 

finished product – they are crucial aspects of the proving process.    

Due to the important distinction between informal and formal reasoning, research 

in mathematics education typically groups together intuitive and informal reasoning in 

contrast to formal reasoning.  In a series of articles (Alcock & Weber, 2010; Weber & 

Alcock, 2004, 2009), Alcock and Weber describe two distinct reasoning styles and 

approaches to proof production that they call semantic (or referential) and syntactic.  

Semantic reasoners produce proofs through a focus on general understanding guided by 

intuition, examples, diagrams, or informal explanations, and syntactic reasoners produce 

proofs mainly through formal reasoning based on logic and structure (Weber & Alcock, 
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2004).  However, this division conceals the cognitive differences between intuitive and 

analytical reasoning as well as the cognitive similarities between informal and formal 

reasoning (both being analytical).  It is important in mathematics education to distinguish 

between intuitive and analytical reasoning as well as informal and formal reasoning.  In 

this study, I will reconcile dual-process theory and Alcock and Weber’s theory of 

semantic and syntactic reasoning by separating intuition from semantic reasoning and 

using “semantic” and “informal” synonymously as well as “syntactic” and “formal” (see 

Figure 1).  With this framework, I can study intuition separate from analysis, and within 

my study of analysis, I can distinguish semantic and syntactic reasoning.    

   

 
Intuitive 

 

 
Analytical 

Informal            Formal 
 

Dual-Process Theory 
 

 
Semantic 

Intuitive            Informal 

 
Syntactic 
(Formal) 

 
Mathematics Education 

 
Intuitive 

 
Analytical 

Semantic             Syntactic 
(Informal)             (Formal) 

 
This Study 

Figure 1.  Distinction of reasoning types in dual-process theory, mathematics education, 
and this study. 
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 The use of dual-process theory in addition to theories of mathematical reasoning 

can support interpretations of students’ reasoning in the proving process that distinguish 

among intuitive, semantic, and syntactic reasoning.  Some mathematics educators 

encourage the use of dual-process theory because of its focus on “general cognitive 

considerations that are not limited to mathematics,” as well as its “tightening, refining, 

and operationalizing” of the distinction between intuition and analysis (Leron & Hazzan, 

2006, pp. 115, 122).  In particular, it has been suggested that the use of dual-process 

theory in mathematics education research can provide fresh viewpoints on students’ (a) 

reasoning and systematic errors on mathematical tasks (Leron & Hazzan, 2006, 2009), 

and (b) strategies for evaluating the truth value of mathematical assertions (Buchbinder & 

Zaslavsky, 2007).   

Problem Statement and Research Questions 

 Although there is extensive research on proof and proving, such research mainly 

addresses students’ understanding of what constitutes a proof and students’ difficulties in 

constructing proofs for statements that are given as true.  There is little research on 

intuition as a way of reasoning separate from semantic reasoning and little research on 

the reasoning that students use to decide on the truth value of mathematical statements.  

However, the research on dual-process theory from cognitive psychology can shed new 

light on students’ reasoning on mathematical proof tasks.  This study uses dual-process 

theory in conjunction with theories of mathematical reasoning as a lens through which to 

examine students’ use of intuitive and analytical reasoning while deciding on the truth 

value of mathematical statements and constructing proofs and counterexamples.  This 
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study explores (a) the ways intuition and analysis interact in the decision-making process, 

(b) the ways this decision-making process influences students’ constructions of associated 

proofs or counterexamples for the statements, and (c) the impact of students’ systematic 

errors on the proving process.  The overarching research questions are: 

1. In what ways and to what extent do students use intuition and analysis to decide 

on the truth value of mathematical statements? 

2. What are the connections between students’ process of deciding on the truth value 

of mathematical statements and their ability to construct associated proofs and 

counterexamples? 

3. What types of systematic intuitive, mathematical, and logical errors do students 

make during the proving process, and what is the impact of these errors on the 

proving process? 

Significance 

 Due to the way undergraduate mathematics is taught, many students lack an 

understanding of the true nature of doing mathematics and have difficulties constructing 

proofs and counterexamples.  Mathematicians use intuition, informal reasoning, 

conjecture, creativity, and rigor in constructing proofs, however, instruction in proof 

involves “definition, theorem, proof,” and repeat (Davis & Hersh, 1981, p. 151).  “The 

definition-theorem-proof approach to mathematics has become almost the sole paradigm 

of mathematical exposition and advanced instruction.  Of course, this not the way 

mathematics is created, propagated, or even understood” (Davis & Hersh, 1981, p. 306).  

Although this type of instruction cuts off students from the intuitive and creative aspects 
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of proof and does not reflect the way mathematicians do mathematics, it is still the 

standard form of instruction of undergraduate proof-based mathematics in the United 

States (Davis & Hersh, 1981; Tall, 1991; Weber, 2004; Wilder, 1967).     

 As a consequence of standard mathematical instruction, students rarely are 

engaged in aspects of the proving process involving uncertainty, especially determining 

the truth value of mathematical statements (Alibert & Thomas, 1991; de Villiers, 2010; 

Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  Due to students’ limited 

engagement in such activities, little is known about how they evaluate conjectures and 

what types of reasoning they use to do so.  In particular, there is a lack of research on 

students’ ways of deciding on the truth value of general mathematical statements 

involving general mathematical objects in the context of proof-based mathematics. 

 However, determining the truth value of mathematical statements is an important 

component of the proving process.  Generating and evaluating mathematical conjectures 

is an essential aspect of mathematical practice.  Additionally, important knowledge can be 

gained through the exploration of both true and false mathematical statements.  When 

dealing with uncertainty, mathematicians often try to decide on a statement’s truth value 

with some degree of confidence before investing a significant amount of time attempting 

to prove or refute it (de Villiers, 1990, 2010; Inglis, Mejia-Ramos, & Simpson, 2007).  

Intuitive reasoning can be helpful in this process because it can suggest what is plausible 

in the absence of a proof (Burton, 2004; Davis & Hersh, 1981; Fischbein, 1994).  Study 

of this decision process is essential for determining the ways of reasoning that can lead to 

successful decisions about the truth or falsity of mathematical statements.  Furthermore, 
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studying successful students engaging in this process, rather than mathematicians, is 

more likely to yield results of pedagogical value and “suggest learning trajectories that 

might be applicable for many other students as well” (Weber, 2009, p. 201).  Such 

trajectories may help students understand that although the proving process is a complex 

combination of creativity and rigor, it involves a variety of accessible reasoning types 

that they can learn to use to build ideas that connect deciding on the truth value of 

mathematical statements to the construction of associated proofs and counterexamples.     

Definition of Terms 

 Analysis (analytical reasoning) is a deliberate process of reasoning that can be 

decomposed into its constituent parts and requires the use of working memory (Evans, 

2008, 2012a, 2012b; Fischbein, 1987).  Analysis includes both semantic and syntactic 

reasoning and is used in this study in contrast to intuition.      

 An argument is an intuitive or semantic justification for the truth or falsity of a 

mathematical statement.  Argument is used in this study in contrast to proof. 

 A clinical task-based interview is an interview conducted in a laboratory or 

clinical setting that involves participants completing tasks that are determined in advance 

by the researcher and answering questions about their work on the task that will elicit 

their thought processes on how or why they took particular actions. 

 A counterexample is an example that establishes the falsity of a mathematical 

statement.  A single counterexample is sufficient to refute a statement with absolute 

certainty.       



   20 
 

 

 Dual-process theory is a theory of reasoning and decision-making that 

distinguishes intuition and analysis as distinct types of cognitive processing, each with 

specified characteristics, roles, and difficulties (Evans, 2006, 2008, 2010; Kahneman, 

2002). 

 First-level member check is a process in which participants confirm the accuracy 

of their responses to the interview questions (Bratlinger et al., 2005).   

 Intuition (intuitive reasoning) constructs an automatic mental representation of 

a task, taking into consideration task cues, prior knowledge, and experience, and operates 

independently of working memory (Evans, 2010, 2012b; Fischbein, 1987; Wilder, 1967).  

Intuition is used in this study in contrast to analysis (including semantic and syntactic 

reasoning).   

 Mathematicians in this study are individuals who are working on or have a 

graduate degree in mathematics.  Mathematicians may or may not teach mathematics at a 

postsecondary institution, but engage in work that uses mathematics significantly.    

 A (mathematical) proof is a justification consisting entirely of syntactic 

reasoning for the truth or falsity of a mathematical statement.  Proof is used in this study 

in contrast to argument. 

 The proving process is the process of constructing a proof or counterexample for 

a mathematical statement.  This process encompasses a multitude of activities including 

exploring and identifying patterns and relationships, generating conjectures and 

generalizations, and testing, refining, and proving conjectures. 
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 Reasoning refers to any kind of cognition, including intuitive, semantic, and 

syntactic. 

 Semantic (informal) reasoning includes a variety of reasoning strategies such as 

visuo-spatial, example-based, graphical, diagrammatic, physical, kinaesthetic, analogical, 

inductive, and pattern-based.  Semantic reasoning is a form of analytical reasoning and is 

used in this study in contrast to syntactic and intuitive reasoning.   

 Syntactic (formal) reasoning is reasoning from definitions, axioms, 

assumptions, and theorems based solely on logic and deduction that conforms to 

specified rules regarding language, symbols, and frameworks for argumentation.  

Syntactic reasoning is a form of analytical reasoning and is used in this study in contrast 

to intuitive and semantic reasoning.   

 Students in this study refers to undergraduate students unless otherwise noted.   

 The think-aloud method is a clinical task-based interview method that involves 

participants speaking aloud everything they are thinking while they work on a task, thus 

reporting their thoughts concurrently with their work on the task (van Someren, Barnard, 

& Sandberg, 1994). 

 Working memory is a cognitive system “of limited capacity closely linked with 

executive and attentional functions . . . which seems to be the only part of the mind that is 

consciously accessible, at least in a cognitive sense” (Evans, 2010, p.314).   

Organization of the Chapters 

 This dissertation is organized in 5 chapters as follows: 
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 Chapter 1 introduces the topic of study, its significance, and my research 

questions.  This chapter concludes with definitions of terms and organization of the 

chapters. 

 Chapter 2 reviews the related literature in order to frame this study in research 

from cognitive psychology and mathematics education.  The cognitive psychology 

literature on dual-process theory provides a general framework for the study of intuition, 

analysis and decision-making.  The mathematics education literature on proof and 

proving situates intuition and analysis as essential components of the proving process and 

further divides analysis into semantic and syntactic reasoning.   

 Chapter 3 describes the research methods used in this study for data collection 

and analysis.  In order to explore students’ reasoning in depth, qualitative interview 

methods are used.  In particular, this study employs clinical task-based interviews and the 

think-aloud method.  Benefits and limitations of these methods are discussed.  

Additionally, this chapter describes sampling, interview, and data analysis procedures. 

 Chapter 4 represents the results of the interview data.  Each of the four tasks is 

presented separately, and within each task, the students’ decision-making and 

construction processes are described so as to provide insight into the answers to my 

research questions.  This chapter concludes with a discussion of themes that arose across 

tasks with respect to my research questions.   

 Chapter 5 concludes this dissertation with a summary of chapters 1-4, a 

discussion of the conclusions with respect to my research questions as well as other 

conclusions, implications of the study, and suggestions for future research.    
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Chapter 2: Literature Review  

 Intuition and analysis are fundamental components of mathematics that are crucial 

to the evaluation of mathematical conjectures and construction of proofs and 

counterexamples.  This chapter presents a review of literature on (a) intuitive and 

analytical reasoning in dual-process theory and mathematical proof and proving, (b) the 

important distinction within analytical reasoning between semantic and syntactic 

reasoning in the proving process, (c) the process of deciding on the truth value of a 

mathematical statement and the uses of intuitive and analytical reasoning in this process, 

and (d) connections between the processes of deciding on the truth value of a 

mathematical statement and constructing an associated proof or counterexample.          

Intuition 

 Intuition is an essential feature of mathematics (Fischbein, 1987; Hersh, 1997; 

Wilder, 1967).  “If one is . . . trying to look at people who are doing mathematics and to 

understand what they are doing, then the problem of intuition becomes central and 

unavoidable” (Davis & Hersh, 1981, p. 393).  However, the study of intuition in 

mathematics has been limited, especially as a concept separate from informal reasoning 

(Burton, 2004; Fischbein, 1987). 

A consideration of intuition as it is actually experienced leads to a notion which is 

difficult and complex, but it is not inexplicable or unanalyzable.  A realistic 

analysis of mathematical intuition is a reasonable goal, and should become one of 

the central features of an adequate philosophy of mathematics. (Davis & Hersh, 

1981, p. 393)   
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Leron and Hazzan (2006) note that dual-process theory can contribute to this goal due to 

its refined and operationalized distinction between intuition and analysis.  In this section, 

the concept of intuition will be explained by (a) defining intuition; (b) describing how 

intuition develops; (c) indicating reliability issues associated with intuition, including 

systematic intuitive errors; and (d) discussing intuition in mathematical proving.    

 Definition of intuition.  Many definitions of intuition have been proposed by 

researchers in a variety of disciplines, including psychology, philosophy, and 

mathematics.  Common characteristics of intuition are that it is relatively quick, 

automatic, and requires little cognitive effort (Evans, 2008; Hammond, 1980).  Intuition 

is a process of organizing and integrating information from both environment and 

memory into a judgment, decision, or interpretation and operates at least partially without 

awareness of the process by which these are formed (Evans, 2010; Fischbein, 1982; 

Glockner & Witteman, 2010; Hammond, 2007; Noddings & Shore, 1984; Wilder, 1967).  

This partial lack of awareness means that intuitive responses cannot be fully explained or 

decomposed into their constituent elements, unlike analytical responses (Evans, 2010; 

Fischbein, 1982).  Following Evans (2008, 2009, 2012b), the defining feature of intuition 

is its independent operation from working memory.  Working memory needs content with 

which to work, and intuition supplies working memory with mental representations (see 

below) (Evans, 2009).   

 Although the concept of intuition can encompass a variety of underlying cognitive 

processes, this study will focus on constructive intuition because mathematical intuition 

is viewed as being constructed (Davis & Hersh, 1981; Fischbein, 1987; Noddings & 
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Shore, 1984; Smith & Hungwe, 1998; Tall, 1991).  Constructive intuition is based on a 

mental representation of a task that is constructed from given cues in the task as well as 

information retrieved from memory (Glockner & Witteman, 2010).  These intuitive 

representations are constructed automatically and provide a default response to a task 

(Evans, 2009, 2010, 2012a; Wilder, 1967).  This “natural” production of representations 

is what makes intuition especially important in decision-making (Fischbein, 1987, p. 14).  

Despite the quickness of this construction, intuition takes into account prior knowledge, 

experiences, beliefs, task features, and the current goal of the reasoning to create the task 

representation (Evans, 2006, 2010).  Furthermore, “intuition is able to organize 

information, to synthesize previously acquired experiences . . . to guess, by extrapolation, 

beyond the facts at hand” (Fischbein, 1982, p. 12).           

 Development of intuition.  Intuition is developed and modified through active 

experience and knowledge construction (Burton, 2004; Davis & Hersh, 1981; de Villiers, 

2010; Evans, 2008, 2010; Fischbein, 1982, 1987; Noddings & Shore, 1984; Wilder, 1967; 

Wittmann, 1981).  Experience shapes intuition by creating expectations of truth or falsity 

based on similar situations or related tasks (Davis & Hersh, 1981; Fischbein, 1987).  

Wilder (1967) notes that nonmathematicians do not have mathematical intuition, thus it 

must be developed through mathematical experience and knowledge.  In mathematics, 

the development of intuition is usually linked to active knowledge construction and 

engagement in experimentation (Davis & Hersh, 1981; de Villiers, 2010; Fischbein, 1982, 

1987; Noddings & Shore, 1984; Tall, 1991; Wilder, 1967; Wittmann, 1981).   
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 Limited experiences with the exploration of mathematical objects and theories 

will inhibit the development of intuition.  Thus, in order to develop students’ 

mathematical intuition, it is imperative to adopt an instructional approach to proof and 

proving that focuses on the entire process of proving rather than only the product 

(Hadamard, 1954; Tall, 1991).  Such an approach would include experimentation and 

argumentation in addition to deduction and proof (Burton, 1999b, 2004).  Unfortunately, 

few students learn this way in today’s mathematics classrooms, especially in the United 

States (Burton, 1999a; de Villiers, 2010; Fischbein, 1987; Weber, 2004).              

 Reliability of intuition.  Due to inconsistencies or inaccuracies in prior learning 

experiences, a person’s intuitive representation may not faithfully represent the situation 

at hand (Evans, 2008; Fischbein, 1987; Tall, 1991; Wilder, 1967).  The reliability of 

intuitive representations often depends on how deeply intuition is developed through 

relevant experience (Burton, 2004; Evans, 2008, 2010; Noddings & Shore, 1984; Wilder, 

1967).  If the constructed intuitive representation correctly represents the underlying task 

structure, then the interpretation should lead to high achievement on the task (Evans, 

2012a; Glockner & Witteman, 2010).  On the other hand, intuitive representations may be 

distorted or deficient due to systematic errors (see below), leading to poor achievement 

(Evans, 2010; Glockner & Witteman, 2010; Kahneman, 2002). 

 Systematic intuitive errors.  Systematic intuitive errors are errors of intuitive 

reasoning that cause misrepresentations of situations and persist across situations and 

people.  Many systematic intuitive errors can be classified as accessibility errors 

(Glockner & Witteman, 2010; Kahneman, 2002).  Accessibility is the ease with which 
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certain knowledge is evoked or certain task features are perceived and is a crucial 

component of intuitive reasoning and decision-making (Kahneman, 2002).  Two key 

accessibility errors involve (1) attribute substitution, and (2) knowledge and task feature 

relevance. 

 Attribute substitution errors occur when a more readily accessible attribute is 

substituted in a task for a less readily accessible attribute (Kahneman, 2002).  For 

example, similarity is an attribute that is always accessible because it is processed 

intuitively (Kahneman & Frederick, 2002).  Participants may intuitively notice 

similarities between a given task and previously encountered tasks and substitute more 

accessible attributes for less accessible ones based on these similarities (Kahneman & 

Frederick, 2002).  Thus, participants often unknowingly transform the given task into a 

similar more accessible task.  For example, consider a professor who has just listened to a 

talk given by a candidate for job opening and is asked the question “How likely is it that 

this candidate could be tenured in our department?”  This professor may instead 

unknowingly answer the easier question “How impressive was the talk?” (Kahneman & 

Frederick, 2002, p. 52).   

 Relevance errors occur when knowledge and task features are deemed irrelevant 

because they are not readily accessible (Evans, 2008, 2010; Fischbein, 1987; Kahneman, 

2002).  When forming intuitive task representations, (a) less accessible relevant 

knowledge is often not brought to bear on the task (Weber, 2001), (b) less accessible 

relevant task features are often overlooked, and (c) more accessible irrelevant task 

features are often overemphasized (Evans, 2008).  Leron and Hazzan (2006) provide an 
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example of a relevance error based on the wording in a task.  Students who were asked to 

construct an equation to represent the sentence “There are six times as many students as 

professors at this university” (as found in Clement et al., 1981) intuitively deemed the 

order of the wording to be relevant and wrote the incorrect equation 6S = P. 

 The influence of accessibility on reasoning and decision-making is strong, yet 

decreases with increased experience and knowledge.  Due to the automatic operation of 

intuition, people are unaware of the influence of accessibility and the predominance of 

accessibility errors.  However, the reliability of intuition improves as experience and 

knowledge increase, and the negative influence of accessibility often decreases (Evans, 

2010; Kahneman, 2002, 2011).  Thus, experience “increases the accessibility of useful 

responses and of productive ways to organize information” (Kahneman, 2002, p. 453).  

Although novices with some relevant knowledge (rather than naive novices) are most 

susceptible to accessibility errors in intuitive reasoning and decision-making, even 

experts still succumb to such errors (Kahneman, 2002, 2011).    

 Intuition in mathematical proving.  Intuition organizes information into a 

meaningful representation in order to provide an initial understanding of a mathematical 

task (Burton, 2004; Fischbein, 1982; Noddings & Shore, 1984).  This understanding can 

provide a starting point, suggest a direction to pursue, or guide action on the task (Burton, 

2004; Fischbein, 1982, 1987; Smith & Hungwe, 1998; Wilder, 1967).  This is important 

because many students struggle to begin a mathematical proof task (Moore, 1994).  

Additionally, intuition can help connect the current task to prior knowledge and 



     29 
 

 

experiences by helping students recognize similarities and see a “common global 

situation” (Burton, 2004; Fischbein, 1987, p. 53). 

 Intuitive representations may take on many forms in mathematics.  Intuitive 

representations may take the form of visual images or perceptual representations of 

concepts or objects (Davis & Hersh, 1981; Hadamard, 1954; Hammond, 1980; Tall, 

2008).  Hadamard (1954) stresses the importance of intuitive representations as vague 

images that help mathematicians make sense of situations, bring to mind certain ideas, 

and coordinate the subparts of solutions.  On the other hand, intuition can be logical or 

deductive (Hadamard, 1954; Tall, 1991).  Hadamard (1954) and Tall (1991) suggest that 

deductive thinking is intuitively natural to mathematicians due to their extensive 

experience with logical thinking.  “Thus, aspects of logic too can be honed to become 

more ‘intuitive’ to the mathematical mind” (Tall, 1991, p. 14). 

 Difficulties with intuitive reasoning.  Despite the importance of intuition to the 

proving process, students have a variety of difficulties with intuitive reasoning, including 

falling victim to systematic intuitive errors.  Students often lack intuitive understandings 

altogether or have narrow intuitions based on examples and visualizations that may 

prohibit effective intuitive reasoning during proof construction (Moore, 1994; Raman, 

2003).  Many students have limited logical intuition (Tall, 1991).  Such limitations in 

intuition make it more likely that students’ intuitive representations will be distorted or 

inaccurate and lead to incorrect conclusions (Burton, 2004; de Villiers, 2010; Fischbein, 

1987; Hadamard, 1954; Noddings & Shore, 1984; Wilder, 1967).  Thus, it is essential that 

intuitive representations are examined critically and followed up with a mathematical 
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proof (Burton, 2004; de Villiers, 2010; Hadamard, 1954; Smith & Hungwe, 1998).  

However, students’ intuitive understandings may not lead directly to a proof or 

counterexample, or students may not recognize the relationship between their intuition 

and a syntactic proof or counterexample (Raman, 2003; Tall, 1991).   

 Limited research has indicated that students are subject to attribute substitution 

and relevance errors when working on mathematical proof tasks.  In analyzing high-

school students’ reasoning while deciding on the truth value of number theory 

conjectures, Buchbinder and Zaslavsky (2007) found that in certain situations, students’ 

intuitive responses ignored “relevant cues or relevant content knowledge” (p. 569).  Bubp 

(2013) reported on a mathematical task given to four undergraduate mathematics majors 

and one graduate student in mathematics on which all five students committed a 

systematic intuitive error.  The task was presented to the students as follows: 

Definitions: A function 𝑓: ℝ → ℝ is said to be increasing if and only if for all 

𝑥1, 𝑥2  ∈ ℝ, (𝑥1 < 𝑥2 implies 𝑓(𝑥1) < 𝑓(𝑥2).  Similarly, a function 𝑓: ℝ → ℝ is 

said to be decreasing if and only if for all 𝑥1, 𝑥2 ∈ ℝ, (𝑥1 < 𝑥2 implies  

𝑓(𝑥1) >  𝑓(𝑥2)).  Prove or disprove: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are decreasing 

on an interval I, then the composite function 𝑓 ∘ 𝑔 is increasing on I. (p. 2-446)     

Two undergraduate students committed attribute substitution errors.  One student 

“substituted the similar concept of negative times negative equals positive for the task 

concept of decreasing composed with decreasing equals increasing” (p. 2-447).  The 

other student “substituted the incorrect concept odd times odd equals even in place of 

decreasing composed with decreasing equals increasing” (p. 2-447).  The three other 
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students committed the same relevance error.  “They each ignored the interval restriction 

in the task, responding as if the task was to prove or disprove the following: If 𝑓: ℝ → ℝ 

and 𝑔: ℝ → ℝ are decreasing, then the composite function 𝑓 ∘ 𝑔 is increasing” (p. 2-447).  

Each student constructed a distorted intuitive representation of the task based on a 

systematic intuitive error that led them to decide that the false statement was true. 

 Leron and Hazzan (2006) reported on an abstract algebra task on which students 

made attribute substitution and relevance errors.  The task required students to determine 

the truth value of the statement “ℤ3 is a subgroup of ℤ6” and to explain their reasoning.  

The participants were 113 computer science majors taking an abstract algebra course.  

Twenty of these students invoked Lagrange’s theorem to claim that this statement was 

true.  However, Lagrange’s theorem is not applicable to this statement because it requires 

a subgroup as an assumption and cannot be used to conclude a subset is a subgroup.  The 

students actually used an incorrect version of the converse of Lagrange’s theorem.  Thus, 

the students committed an attribute substitution error by substituting an easier and more 

accessible situation represented by their distorted version of Lagrange’s theorem for the 

more difficult and less accessible situation in the given task.  Furthermore, students 

committed compound relevance errors.  Their intuition invoked irrelevant knowledge 

(Lagrange’s theorem) based on the irrelevant task cues of the word subgroup and the fact 

that three divides six. 

Analysis 

 Analysis, including both semantic and syntactic reasoning, is fundamental to 

mathematics.  The American Mathematical Association of Two-Year Colleges 
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(AMATYC, 1995) and the Committee on the Undergraduate Program in Mathematics 

(CUPM, 2004) call for focusing the undergraduate mathematics curriculum on semantic 

reasoning and syntactic proof.  Although a proof must be a syntactic product, the process 

of proving can involve both semantic and syntactic reasoning.  Types of semantic 

reasoning include: visuo-spatial, example-based, graphical, diagrammatic, physical, 

kinaesthetic, analogical, inductive, and pattern-based.  Syntactic reasoning includes 

logical and deductive reasoning based on axioms, definitions, theorems, and standard 

proof frameworks.  Both types of reasoning are important to proving, and successful 

mathematical provers employ semantic and syntactic reasoning strategies flexibly “in 

response to changing demands during a proof attempt” (Alcock, 2010, p. 84).  In this 

section, the concept of analysis will be explained by (a) defining analysis, and (b) 

discussing analysis in mathematical proving, including distinguishing between semantic 

and syntactic analysis and specifying students’ difficulties with each.    

 Definition of analysis.  Analysis is a deliberate and systematic process of 

reasoning.  Common characteristics of analytical reasoning are that it is relatively slow, 

controlled, and requires much cognitive effort (Evans, 2008, 2010).  It is a decomposable 

process that can be separated into its constituent parts and explained or justified (Evans, 

2010; Fischbein, 1987).  Thus, unlike intuition, people are aware of both the process and 

the product of analysis (Evans, 2010; Hammond, 1980).  Like intuition, there are multiple 

viewpoints for the defining feature of analysis, and this study will employ Evans’ (2009, 

2012a, 2012b) definition that analysis “requires access to a single central working 

memory system among other resources” such as “systems for attention, language 
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processing, [or] memory retrieval” (2009, p. 38).  Thus, once an intuitive representation 

of a task is thrust into working memory, analysis accesses that working memory content 

in order to mentally manipulate the now explicit representations (Evans, 2009). 

 Once analytical reasoning is brought into action in response to an automatically 

generated intuitive representation of a task situation, it may be overpowered by intuition 

and limited in its functionality (Evans, 2010; Kahneman, 2002; Noddings & Shore, 1984; 

Smith & Hungwe, 1998).  First, analysis may be bound by intuition, thus depending on 

the same biased or incomplete task representations on which the intuition was based 

(Fischbein, 1994; Thompson, 2009).  Second, analytical cognition may be invoked solely 

to justify an intuitive representation, thus failing to consider alternative representations of 

a task (Thompson, 2009).  Lastly, analysis may be blinded by overconfidence in an 

intuitive response, ignoring discovered alternative representations of a task (Burton, 

1999b; Thompson, 2009).  The power of intuition may lead to analysis being employed 

erroneously to support an intuitive response to a task.  Thus, it may be the case that errors 

that seem to be the result of poor analytical cognition are actually caused by faulty 

intuitive representations. 

 Alternatively, analysis may be used to overpower an intuitive task representation.  

First, analysis may override representations based on biased or incomplete intuitions by 

recognizing (a) relevant information that was ignored in the intuitive representation, or 

(b) a logical rule that contradicts the intuitive representation (Kahneman, 2002).  Second, 

analytical cognition may be invoked with the goal of finding alternative representations 

of the task rather than supporting the intuitive representation (Thompson, 2009).  Lastly, 
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analysis may consider alternative representations due to a lack of confidence in an 

intuitive representation (Thompson, 2009).  In each of these cases, analysis operates 

according to the structure of the task rather than relying on intuitive representations. 

 Analysis in mathematical proving.  In a series of articles (Alcock & Weber, 

2010; Weber & Alcock, 2004, 2009), Alcock and Weber describe two distinct reasoning 

styles and approaches to proof production that they call semantic (or referential) and 

syntactic.  In this study, “semantic” and “informal” will be used synonymously as well as 

“syntactic” and “formal.”  Semantic reasoners produce proofs through a focus on general 

understanding guided by examples, diagrams, or other informal explanations, and 

syntactic reasoners produce proofs mainly through formal reasoning based on logic and 

structure (Weber & Alcock, 2004).  Both styles of reasoning present students with 

opportunities and difficulties in proof production, and no correlation has been found 

between reasoning style and performance in constructing correct mathematical proofs 

(Weber & Alcock, 2009).  Thus, Alcock and Weber (2010) have concluded that “neither 

of these approaches should be used exclusively by students and both syntactic and 

referential approaches to proving are necessary for proving competence” (p. 96).    

 Semantic reasoning.  Semantic reasoning plays essential roles in mathematical 

proving (Alcock & Weber, 2010).  The proving process can encompass experimentation 

and argumentation supporting conjecturing and generalization as well as the construction 

of counterexamples and formal proofs.  Weber & Alcock (2004) found that knowledge of 

“multiple informal representations of specific and generic examples” supported 

competence in proving (Weber & Alcock, 2009, p. 332).  This section will elaborate on 
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how semantic reasoning can support the following activities during proving: (a) 

developing understanding of the components of the proof task, (b) formulating and 

testing conjectures and generalizations, and (c) fostering the construction of 

counterexamples and formal proofs.      

 Semantic reasoning helps students develop understanding of mathematical proof 

tasks (AMATYC, 1995; CUPM, 2004; Smith, 2006).  Generating examples and 

nonexamples of relevant definitions can enhance students’ understanding of the 

definitions and related task concepts (de Villiers, 2010; Harel & Sowder, 1998; Weber & 

Alcock, 2004, 2009).  In particular, analyzing special or limiting cases can assist with 

determining the boundaries of a definition and can create a more complete understanding 

of a definition (de Villiers, 2010).  Additionally, students’ informal exploration of 

relationships and connections among multiple representations can assist with sense 

making (Borwein, 2005; Zbiek & Heid, 2011).  For example, by comparing graphical, 

numerical, and symbolic representations of a task situation, students can inform, 

question, or confirm their understanding of mathematical concepts (Heid, Hollebrands & 

Iseri, 2002). 

 Semantic reasoning plays an important role in developing and testing conjectures 

and generalizations, but this aspect of the proving process is often overlooked in the 

classroom (Alibert & Thomas, 1991; de Villiers, 2010; Durand-Guerrier et al., 2012).  

Inductive reasoning from a series of examples can guide the production and evaluation of 

conjectures and generalizations (de Villiers, 2010; Durand-Guerrier et al., 2012; Heid & 

Blume, 2008; Kasube & McCallum, 2001).  Additionally, through various informal 
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explorations, students can discover, generalize, and justify mathematical patterns and 

relationships (Borwein, 2005; National Council of Teachers of Mathematics (NCTM), 

2000).  Because the use of semantic reasoning in testing conjectures is a key component 

in this study, it will be developed more fully in a subsequent section.   

 Semantic reasoning can provide a basis for and support the development of a 

syntactic proof or counterexample (Alcock, 2010; de Villiers, 2010).  Specifically, 

semantic reasoning can be essential in bridging the gap between intuition and syntactic 

proof (Moore, 1994; Raman, 2003; Weber & Alcock, 2004; Wittmann, 1981).  First, by 

exploring examples, graphs, analogies, or patterns, students can draw empirical 

inferences that can support proof construction (de Villiers, 2010; Weber & Alcock, 2009).  

Second, semantic reasoning can reveal a “hidden clue or underlying structure of a 

problem, leading eventually to the construction or invention of a proof” (de Villiers, 

2010, p. 215).  In particular, Borwein (2005) and Zbiek and Heid (2011) suggest the use 

of graphing to expose mathematical principles, such as relationships between symbolic 

and graphical representations.  Finally, inductive reasoning from a series of geometric 

constructions, examples, or patterns can guide the development of formal symbolic 

representations, counterexamples, and proofs (de Villiers, 2010; Durand-Guerrier et al., 

2012; Kasube & McCallum, 2001).   

 Difficulties with semantic reasoning.  Despite the importance of semantic 

reasoning, students have difficulty understanding its role in the proving process.  This 

section provides an overview of the following student difficulties with semantic 

reasoning: (a) non-use of semantic reasoning to assist with proof production, (b) use of 
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semantic arguments as a substitute for a syntactic proof, or (c) non-use of semantic 

reasoning to connect intuition to a syntactic proof. 

 There is evidence that students and mathematicians alike have a preferred 

reasoning style and some never use semantic reasoning during proof construction 

(Alcock & Weber, 2010; Weber, 2009; Weber & Alcock, 2004).  Often, students do not 

generate examples for themselves to support understanding in proof construction, even 

when they can do so at the request of someone else (Alcock & Inglis, 2008; Weber & 

Alcock, 2004), whereas other students are simply unable to produce examples (Moore, 

1994; Smith, 2006).  Pinto and Tall (1999) found that some students, despite their 

attempts, could not produce adequate diagrams to help them informally understand 

definitions in a real analysis course.    

 Although semantic reasoning is important for supporting proving, it cannot be a 

substitute for syntactic proof.  Students often fail to recognize this distinction (Harel & 

Sowder, 1998, 2007), perhaps partially because instructors and textbooks seldom 

distinguish between explanation, argument, and proof (Dreyfus, 1999).  Many students 

tend to accept inductive arguments based on examples as proofs (Dreyfus, 1999; Harel & 

Sowder, 1998; Inglis et al., 2007).  Additionally, perceptual arguments based on images, 

geometric figures, or graphs may be seen as an appropriate alternative to a syntactic proof 

(Dreyfus, 1999; Hadamard, 1954).  However, “an example or image may incorporate 

properties that are not universally true, and therefore mislead the reasoner into trying to 

prove untrue general claims” (Weber & Alcock, 2009, p. 334). 
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 Semantic reasoning may be the key to building bridges from intuition to 

mathematical proof, but students often struggle to make these connections (Hadamard, 

1954).  Raman (2003) notes that students seldom link their intuitive understandings to a 

syntactic proof.  This can occur because students (a) have limited or distorted intuitions 

that are difficult to link to syntactic proofs (Moore, 1994); (b) have inaccurate or 

incomplete informal representations of concepts (Tall & Vinner, 1981); or (c) fail to 

recognize the relationship between their intuitive understandings and a syntactic proof 

(Raman, 2003).  However, the key to a proof for some mathematicians is a semantic 

understanding of the main concept in the proof that connects intuition and formality 

(Raman, 2001, 2003; Weber & Alcock, 2004).  

 Syntactic reasoning.  Syntactic reasoning constitutes the use of logical and 

deductive reasoning based on axioms, definitions, and theorems.  Syntactic reasoning is 

required to produce a proof that would be acceptable to the community of 

mathematicians (NCTM, 2000; Weber & Alcock, 2009).  The fact that mathematical 

results must be proved through syntactic reasoning is often seen as a defining feature of 

the field of mathematics and the key to its separation from the empirical sciences.  Thus, 

the development of formal mathematical reasoning and the ability to understand and 

construct syntactic proofs is one of the key goals of undergraduate mathematics education 

(AMATYC, 1995, 2006; CUPM, 1992, 2004; Kasube & McCallum, 2001).   

 A variety of unique features classify syntactic reasoning and proof.  First, 

syntactic reasoning requires the careful statement of problems and the precise use of 

language, notation, symbols, and definitions (CUPM, 2004; Kasube & McCallum, 2001; 
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Weber & Alcock, 2009).  Second, a syntactic proof must be clear and coherent so that 

there is no ambiguity and the proof framework is apparent (CUPM, 2004; Weber & 

Alcock, 2009).  Third, acceptable proof frameworks, such as direct proof, indirect proof, 

or proof by mathematical induction provide the structure for the proof and specify 

admissible assumptions and proper conclusions (Weber & Alcock, 2009).  Fourth, 

syntactic proofs contain only mathematical statements that use some combination of the 

precise use of the English language and first-order logic.  Finally, all reasoning in a 

syntactic proof must be based on definitions, assumptions, theorems, and the use of 

logical deduction.  Informal representations such as graphs or examples, as well as 

reasoning based on informal representations are not permitted as a basis for conclusions 

(Weber & Alcock, 2009). 

   Formal reasoning can contribute to students’ understanding of the relevant 

concepts and definitions involved in a proof construction as well as the construction 

process itself (AMATYC, 1995).  Applying proof frameworks to organize a proof and 

invoking relevant definitions is often the first step in constructing a proof (Selden & 

Selden, 2009; Weber & Alcock, 2009).  Through this use of syntactic reasoning, students 

can reflect on what they have done in order to gain understanding of the formal reasoning 

process (Weber & Alcock, 2009).  Additionally, syntactic reasoning may reveal the key 

idea in a proof and suggest exactly what is needed to complete the proof (Selden & 

Selden, 2009; Solomon, 2006).  Finally, syntactic reasoning can be used to develop 

semantic and intuitive understandings of the concepts and definitions in a proof task 

(NCTM, 2000; Harel & Sowder, 1998; Selden & Selden, 2009; Weber & Alcock, 2009).      
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 Difficulties with syntactic reasoning.  Although syntactic reasoning is essential to 

the proving process, students often struggle to understand the need for precision and 

conformity to structure and logical rules in mathematical proof.  This section will 

elaborate on the following difficulties that students encounter with syntactic reasoning: 

(a) lack of understanding of basic logical principles and proof frameworks, and (b) 

acceptance of semantic knowledge of definitions and lack of understanding about how to 

use definitions and theorems in proof productions.   

 Students often lack an understanding of logical principles as well as the use of 

logical language and notation in a proof.  Students have limited logical inferencing 

abilities, including difficulties with quantifiers, negations, contrapositive statements, and 

converse statements (Connor, Moss, & Grover, 2007; Harel & Sowder, 2007; Moore, 

1994; Selden & Selden, 1987).  Moore (1994) found that undergraduate students have a 

“lack of knowledge of logic and methods of proof” (p. 263) and trouble determining 

appropriate proof frameworks.  In interviews with Alcock (2010), mathematicians who 

teach transition-to-proof courses noted that students’ main difficulties with proof related 

to structural and logical reasoning.  Additionally, in Selden and Selden's (1987) 

classification of reasoning errors in undergraduate students’ proof productions, many 

were logical errors, such as beginning with the conclusion of the statement to be proved, 

using circular reasoning, and ignoring or extending symbols and quantifiers.  Likewise, 

Moore (1994) observed that students’ lack of understanding of appropriate uses of logical 

language and notation formed a key barrier to their proof production.      
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 Students’ difficulties with definitions and theorems usually relate to a lack of 

understanding of the need for precision in proof.  Moore (1994) found that undergraduate 

students often fail to state definitions precisely or use them appropriately to structure a 

proof.  Furthermore, mathematics professors in one study believed these difficulties 

correspond to students’ lack of understanding of the merit of definitions in proof, 

specifically that definitions are valued for their precision, and exact statements of 

definitions, rather than general understandings, are necessary (Harel & Sowder, 2009).  

Additionally, Alcock & Simpson (2002) found evidence to support Harel and Sowder’s 

viewpoint in a study with undergraduate students taking a real analysis course.  Such 

difficulties with definitions may prohibit students from developing a syntactic conception 

of proof in mathematics (Moore, 1994).  Similar misunderstandings occur with theorems 

involved in proof productions, both with the theorem to be proved and in using other 

theorems in a proof.  Students’ lack of understanding of precision and formality often 

leads them to neglect or misinterpret either the hypotheses or the conclusion in theorems 

and use theorems when they are not applicable (Selden & Selden, 1987).   

Deciding on the Truth Value of a Mathematical Statement 

 The process of proving mathematical statements often starts with formulating and 

testing mathematical conjectures—activities that involve uncertainty.  Unfortunately, 

students are rarely engaged in uncertain aspects of the proving process, including 

determining the truth value of mathematical statements (Alibert & Thomas, 1991; de 

Villiers, 2010; Durand-Guerrier et al., 2012).  Due to these limited opportunities, students 

experience a variety of difficulties studying conjectures, including (a) knowing how to 
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begin an exploration, (b) formulating ideas and opinions about the truth of a conjecture, 

and (c) connecting ideas and opinions to proofs or counterexamples (Alibert, 1988).  

However, it is important for students to engage in such activity in order to experience 

these aspects of proving, engage in intuitive and semantic reasoning, and develop “an 

attitude of reasonable skepticism” (Alibert & Thomas, 1991; de Villiers, 2010; Durand-

Guerrier et al., 2012, p. 357).  Furthermore, Alibert (1988) found that students were more 

involved, interested, and curious about mathematical tasks that involved uncertainty. 

 Despite the centrality of proof to mathematics, many students possess an 

understanding of mathematics for which proof is unnecessary (Harel & Sowder, 1998; 

Solomon, 2006).  This can be attributed to an overemphasis on syntactic reasoning in 

proof and the over-use of tasks requiring students to prove a statement that is presented as 

true (Alibert & Thomas, 1991; Durand-Guerrier et al., 2012).  Thus, it is imperative to 

find ways to motivate students’ need for proof.  Many mathematics educators believe that 

engaging students in exploring the truth value of mathematical statements can prompt a 

need for proof.  “The necessity, the functionality, of proof can only surface in situations 

in which the students meet uncertainty about the truth of mathematical propositions” 

(Alibert, 1988, p. 32).  “A main challenge in teaching argumentation and proof is to 

motivate students to examine whether and why statements are true or false. . . . Thus, 

many mathematics educators now promote the development, at every level of the 

curriculum, of problems where the truth-goal is at stake” (Durand-Guerrier et al., 2012, p. 

362).  As students’ opportunities with uncertainty in the proving process increase, 

“previous experience of doubt of the truth or falsity of mathematical statements can lead 
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students to see the need for validation as meaningful in terms of their own experiences, 

conjectures, and mathematical backgrounds” (Durand-Guerrier et al., 2012, p. 358). 

 The remainder of this section includes a (a) description of a general framework of 

decision-making pathways that students may follow that highlights the use and 

interaction of intuition and analysis during decision-making, (b) review of the literature 

on the use of intuitive and analytical reasoning by mathematicians and students during 

the process of deciding on the truth value of a mathematical statement, and (c) discussion 

of the distinctions and connections between the decision-making and construction 

processes in the proving process.      

 Decision-making pathways.  Intuitive and analytical reasoning can be used 

together in numerous ways to make decisions.  If an intuitive decision is not made, then a 

decision may be made through analysis (Kahneman, 2002) or not at all.  If an intuitive 

decision is made, it may be accepted without analytical reasoning, or it may be intervened 

upon by analysis (Evans, 2010, 2012a).  When intervention occurs, the intuitive decision 

may be supported or overridden.  This suggests a framework for dual-process theory 

decision-making as illustrated in Figure 2 (Evans, 2010, 2012a; Kahneman, 2002).   
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Figure 2.  Dual-process decision-making pathways.     
  
 

Analysis is often brought into action in response to an intuitive representation of a 

task (Evans, 2010; Kahneman, 2002).1  When an intuitive decision is not accessible, 

decision-making becomes the task of analytical reasoning, but still may be influenced by 

accessibility errors in the intuitive representation.   

 Analytical reasoning may or may not be invoked in response to an intuitive 

decision on a task (Evans, 2010; Kahneman, 2002).  Due to the high effort involved in 

analysis, intuitive decisions often are accepted with little or no analytical intervention 

(Evans, 2010; Kahneman, 2002).  However, the need for intervention through analysis 

can be provoked by explicit directions to reason analytically (Evans, 2010) or by a lack of 

                                                 
1Such a representation need not include an intuitive decision. 
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confidence in an intuitive decision (Thompson, 2009).  Upon an intervention, analytical 

reasoning may be used to either confirm or override an intuitive decision. 

 Limited research in mathematics education indicates that students use a variety of 

decision-making pathways to decide on the truth value of mathematical statements.  Both 

Bubp’s (under review) study of undergraduate students in transition-to-proof courses and 

Buchbinder and Zaslavsky’s (2007) study of high school students found that a majority of 

students’ decision-making pathways involved an intuitive decision that either was 

supported or overridden by analysis.  Each study reported on a case in which students 

used sound analytical reasoning to overturn an incorrect intuitive decision or to support a 

correct intuitive decision (Bubp, under review; Buchbinder & Zaslavsky, 2007).  

Additionally, Buchbinder & Zaslavsky (2007) described two cases in which students’ 

analytical reasoning was blinded by their overconfidence in their intuitive decisions, (a) 

prohibiting them from recognizing a counterexample for a statement they were convinced 

was true, and (b) leading them to create a nonexistent counterexample for a statement 

they were convinced was false.  On the other hand, Bubp (under review) found that 

students’ systematic intuitive errors were the key influence on their analytical reasoning 

being unable to overturn incorrect intuitive decisions. 

  Bubp (under review) and Buchbinder and Zaslavsky (2007) further report cases 

in which students did not make an intuitive decision.  In one situation, a student failed to 

make either an intuitive or analytical decision, and indicated that she would attempt a 

proof, and if that failed, then she would conclude the statement was false (Bubp, under 

review).  However, she did not know how to begin a proof and discontinued work on the 
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task.  Despite this case, most of the students used a variety of forms of analytical 

reasoning to evaluate the conjectures, including looking at specific examples (Buchbinder 

& Zaslavsky, 2007), searching for an appropriate theorem or rule to use (Buchbinder & 

Zaslavsky, 2007), and performing algebraic or symbolic manipulations (Bubp, under 

review; Buchbinder & Zaslavsky, 2007). 

 Types of reasoning.  Most research on the types of reasoning engaged in while 

deciding on the truth value of a mathematical statement comes from the study of 

mathematicians’ reasoning rather than students’ reasoning.  Furthermore, little research 

has been conducted with undergraduate students evaluating conjectures that involve 

general objects and their properties and for which a proof or counterexample is the 

expected end product.  Although the types of reasoning reported on here may shed some 

light in the ways mathematicians and students decide on the truth value of a mathematical 

statement, more research is needed on undergraduate students’ ways of reasoning.  

 Intuitive reasoning.  Intuition is especially important for deciding on the truth 

value of a mathematical statement because it can suggest what is plausible in the absence 

of a proof (Burton, 2004; Davis & Hersh, 1981; Fischbein, 1994) and “provides a 

justification for, but is prior to, the search for convincing argument and, ultimately, 

proof” (Burton, 1999b, p. 32).  In the limited research on intuition in mathematics 

education, researchers have found a variety of types of intuitive reasoning used by 

students and mathematicians to evaluate mathematical conjectures.  Additionally, there 

were situations in which mathematicians’ and students’ intuitions were inaccurate and led 
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them to incorrect decisions about the truth value of mathematical conjectures (Bubp, 

2012, 2013; Buchbinder & Zaslavsky, 2007; Inglis et al., 2007; Leron & Hazzan, 2006). 

 Mathematicians’ intuitive support for the truth or falsity of a mathematical 

statement was based on either suspected properties about mathematical objects or known 

relationships between mathematical concepts (Inglis et al., 2007).  For various 

conjectures, mathematicians used expected properties of certain types of numbers as a 

basis for reducing their uncertainty, such as intuitive arguments about the divisors of even 

and odd numbers (Inglis et al., 2007).  On another conjecture, the mathematicians’ 

intuitive arguments were based on their understanding of the relationships between 

divisors and addition or multiplication—in particular that divisors are not preserved 

under addition, but are preserved under multiplication (Inglis et al., 2007). 

 Students’ intuitive decisions on the truth value of mathematical statements were 

based on (a) cues in the statement (Buchbinder & Zaslavsky, 2007; Leron & Hazzan, 

2006); (b) definitions and mental images (Bubp, 2012); or (c) expected relationships 

between mathematical objects with certain properties (Bubp, 2013).  First, high school 

students examining the following statement, “If two triangles have 2 sides and 3 angles 

that are equal, then the triangles are congruent” intuitively responded to the lack of the 

word respectively and concluded that the statement was likely false (Buchbinder & 

Zaslavsky, 2007, p. 565).  Furthermore, undergraduate students asked to determine the 

truth value of the statement “ℤ3 is a subgroup of ℤ6” were prompted to use Lagrange’s 

Theorem because of the word subgroup and the fact that three divides six.  Second, Bubp 

(2012) described a student whose intuition consisted of a combination of the definition of 
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one-to-one and a vague image of a function that can “double back on itself” (p. 196), and 

another student who intuited a mental image of the relationship between the definitions of 

function and one-to-one, and the vertical and horizontal line tests.  Finally, two students 

used their intuitive understandings of suspected relationships between increasing and 

decreasing functions and either positive and negative numbers, or even and odd numbers, 

respectively, to decide on the truth value of a mathematical statement (Bubp, 2013).   

 Semantic reasoning.  Mathematicians have long engaged in experimentation and 

informal reasoning to evaluate conjectures (de Villiers, 1990, 2010; Hanna, 2007).  

Mathematicians use a variety of semantic reasoning strategies to decide on the truth value 

of a mathematical statement, including: drawing geometric figures or diagrams (de 

Villiers, 2010), examining special or limiting cases (Alcock & Inglis, 2008; de Villiers, 

2010), reasoning by analogy (Alcock & Inglis, 2008; de Villiers, 2010), exploring 

patterns (Alcock & Inglis, 2008; de Villiers, 2010), studying specific or generic examples 

(Alcock & Inglis, 2008; Inglis et al., 2007), searching for counterexamples (Inglis et al., 

2007), and engaging in informal plausibility argumentation about properties of relevant 

mathematical objects (Alcock & Inglis, 2008; Inglis et al., 2007).  Although much less is 

known about how undergraduate students reason informally about the truth value of a 

mathematical conjecture, evidence has been found that they (a) study specific examples 

(Buchbinder & Zaslavsky, 2007; Connor, Moss, & Grover, 2007; Durand-Guerrier et al., 

2012; Weber & Mejia-Ramos, 2009); (b) search for counterexamples (Durand-Guerrier et 

al., 2012); (c) draw diagrams, especially Venn diagrams (Weber, Brophy, & Lin, 2008); 

and (d) construct semantic arguments about mathematical properties of examples (Weber 
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& Mejia-Ramos, 2009).  Despite this overwhelming use of semantic reasoning for 

evaluating conjectures, it is important to remember that such reasoning can be misleading 

and should be followed up with syntactic proof (Hadamard, 1954).    

 Syntactic reasoning.  Mathematicians and students both employ various syntactic 

reasoning strategies to decide on the truth value of a mathematical statement.  Inglis et al. 

(2007) found that mathematicians engaged in reasoning from definitions, algebraic 

reasoning, and counterexamples to determine the truth value of a mathematical 

conjecture.  Weber (2009) provides an account of a successful undergraduate student who 

used only syntactic reasoning to evaluate conjectures.  This student would reformulate a 

conjecture by using logically equivalent statements or alternate definitions, determine 

logical inferences that could be made from the assumptions, or attempt a proof.  If he got 

stuck on a proof attempt, he would examine why he got stuck in order to try to determine 

logically why the statement may be false instead.  Despite this student’s success in 

simply attempting a proof in order to evaluate a conjecture, Weber et al. (2008) indicate 

that most of the less successful undergraduate students in their study used this technique.  

Additionally, students may perform algebraic or symbolic manipulations (Bubp, under 

review; Buchbinder & Zaslavsky, 2007) or consider possibly relevant theorems, rules, or 

definitions when determining the truth value of a mathematical statement (Buchbinder & 

Zaslavsky, 2007; Durand-Guerrier et al., 2012).   

 Connecting decision-making to proof or counterexample construction.  When 

approaching the uncertainty of a conjecture, mathematicians and students usually decide 

on the conjecture’s truth or falsity with some degree of confidence before investing a 
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significant amount of time attempting to prove or refute it (Bubp, 2012; Buchbinder & 

Zaslavsky, 2007; de Villiers, 1990, 2010; Inglis et al., 2007). 

 Conjectures vary in the degrees of faith a person has in their potential truth.  The 

amount of effort a person is willing to make in seeking evidence that would 

render the conjecture a fact (or refute it) is in some proportion to her or his faith in 

the truth (or falsity) of the conjecture. (Harel & Sowder, 1998, p. 242) 

Thus, there are often distinct decision-making and construction phases during the proving 

process.  The decision-making process entails reasoning that is used to reduce uncertainty 

about the truth value of a conjecture to the point that a decision is made as to whether a 

proof or counterexample should be pursued (Harel & Sowder, 1998; Inglis et al., 2007).  

The construction process entails the construction of a proof or counterexample to support 

the decision and remove all uncertainty regarding the statement’s truth value.  Because 

mathematical proofs and counterexamples are syntactic, intuitive and semantic reasoning 

are only appropriate to reduce uncertainty about the truth value of a mathematical 

statement, not remove it (Inglis et al., 2007). 

 Inglis et al. (2007) suggest the beginnings of a framework for categorizing 

reasoning used to reduce uncertainty regarding a statement’s truth value during decision-

making.  Such reasoning categories are called warrant-types and grounded in empirical 

evidence.  They offer this categorization as a companion to Harel and Sowder’s (1998) 

categorization of reasoning used to remove uncertainty during the construction phase of 

the proving process.  Harel and Sowder (1998) call their reasoning categories proof 

schemes.  The key difference is that warrant-types are used to reduce uncertainty during 
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decision-making whereas proof schemes are used to remove uncertainty during the 

construction process.  These two frameworks form the basis for deeper classification of 

reasoning types beyond the broad categories of intuitive, semantic, and syntactic 

reasoning.  Furthermore, these frameworks suggest different forms of reasoning that are 

appropriate for different phases of the proving process. 

 Harel and Sowder (1998) describe three main classes of proof schemes, some 

with subcategories that students may use to remove uncertainty about the truth or falsity 

of a conjecture.  Harel (2007) updated these proof schemes, and I will follow the updated 

version here.  The three classes of proof schemes are: (a) the external conviction proof 

scheme class, (b) the empirical proof scheme class, and (c) the deductive proof scheme 

class.  I will not discuss the external conviction proof schemes because they are not based 

on intuitive, semantic, or syntactic reasoning.  The empirical proof scheme class includes 

(a) the inductive proof scheme in which conjectures are evaluated quantitatively in one or 

more cases, and (b) the perceptual proof scheme in which conjectures are evaluated 

based on static mental images that cannot be transformed.   

 The deductive proof scheme class contains the subcategories of transformational 

and modern axiomatic proof schemes.  Transformational proof schemes utilize logical 

inference, but there are no strict rules for such inferences, so semantic elements are often 

included.  Additionally, transformational proof schemes include a restriction related to at 

least one of the following: (a) context of the argument, (b) generality of the argument’s 

justification, or (c) mode of the justification (Harel, 2007, p. 68).  The restrictions reflect 

students’ difficulties with context-dependent reasoning, justification in general terms, and 
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understanding of causality, respectively.  On the other hand, modern axiomatic proof 

schemes include strict rules for logical inference, resulting in only syntactic reasoning, 

and is free from the three restrictions described above (Harel, 2007).                            

 Inglis et al. (2007) discuss three categories of reasoning for reducing uncertainty 

during decision-making: (a) the inductive warrant-type, (b) the structural-intuitive 

warrant-type, and (c) the deductive warrant-type.  The inductive warrant-type 

corresponds to Harel and Sowder’s (1998) inductive proof scheme in which conjectures 

are evaluated quantitatively in one or more cases.  The structural-intuitive warrant-type is 

a decision based on “observations about, or experiments with, some kind of mental 

structure, be it visual or otherwise” (Inglis et al., 2007, p. 12).  This warrant-type often 

corresponds to intuitive reasoning.  Finally, deductive warrant-types correspond to the 

modern axiomatic proof scheme and include only syntactic reasoning.  Deductive 

warrant-types include mathematical proofs, algebraic manipulations, and 

counterexamples (Inglis et al., 2007, p. 15).         

 Mathematicians are aware that any intuitive or semantic reasoning used during the 

decision-making phase must be confirmed with a syntactic proof, but students often lack 

this awareness (Alcock & Simpson, 2002; Dreyfus, 1999; Harel & Sowder, 1998; Inglis 

et al., 2007).  Additionally, students often have difficulty connecting the decision-making 

and construction phases because of their difficulty in connecting intuitive and semantic 

reasoning to syntactic reasoning (Moore, 1994; Raman, 2003; Tall, 1991; Weber & 

Alcock, 2004).  However, researchers suggest that connections between the decision-

making and construction processes facilitate proving whereas disconnections hinder it 
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(Garuti, Boero, & Lemut, 1998).  In particular, Garuti, Boero, and Lemut (1998) 

hypothesize that the greater the gap between the arguments for the truth value of the 

conjecture and the arguments that can be translated into mathematical proofs, the greater 

the difficulty in constructing a mathematical proof. 

Summary 

 This chapter reviewed literature on intuition, analysis, and the process of deciding 

on the truth value of a mathematical statement.  Intuition and analysis were defined and 

situated in dual-process theory as a general cognitive theory of reasoning and decision-

making.  Furthermore, the distinction between semantic and syntactic analytical 

reasoning was developed.  Studies have shown that there are benefits and difficulties 

involved when using both intuitive and analytical reasoning in mathematical proof and 

proving.  In the context of deciding on the truth value of a mathematical statement, 

decision-making pathways were described, and the use of intuitive, semantic, and 

syntactic reasoning was discussed.  Finally, connections between the processes of 

deciding on the truth value of a mathematical statement and constructing an associated 

proof or counterexample were considered.      
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Chapter 3: Research Methods  

 In order to understand students’ ways of reasoning while deciding on the truth 

value of mathematical statements and constructing proofs or counterexamples, I used 

qualitative interview methods.  In particular, clinical task-based interviews and the think-

aloud method provided me with the opportunity to explore students’ reasoning processes 

in depth.   

 Clinical task-based interviews and the think-aloud method are prominent 

interviewing methods in research in mathematics education (Ginsburg, 1981, 1997; 

Goldin, 1998; Hunting, 1997; Koichu & Harel, 2007; Teppo, 1998; van Someren, 

Barnard, & Sandberg, 1994).  “There is overwhelming evidence that clinical task-based 

interviews open a window into the subject’s knowledge, problem-solving behaviors, and 

reasoning” (Koichu & Harel, 2007, p. 349).  Furthermore, studying problem solving and 

reasoning processes can shed light on “the mechanisms underlying human reasoning, the 

cause of errors, [and] the character and origin of differences in performance between 

people” (van Someren, Barnard, & Sandberg, 1994, p. 14).  Both clinical task-based 

interviews and the think-aloud method can be used either inductively to create theories of 

reasoning processes or deductively to test the validity of an existing theory (Ginsburg, 

1981, 1997; van Someren, Barnard, & Sandberg, 1994). 

 In this chapter, I describe (a) the methods, benefits, and limitations associated 

with clinical task-based interviews and the think-aloud method; (b) my personal 

perspective and how it influenced my decisions in this study; (c) my sampling, data 

collection, interview, and data analysis procedures. 



  55 
 

 

Clinical Task-Based Interviews 

 Clinical task-based interview methods are a class of methods in which interviews 

are conducted in a laboratory or clinical setting, and participants complete tasks that are 

determined in advance by the researcher (Ginsburg, 1981, 1997; Goldin, 1998; Hunting, 

1997; Koichu & Harel, 2007; Opper, 1977).  The researcher asks the participants various 

predetermined questions about their work on the task, specifically including questions 

that will elicit participants’ thought processes on how or why they took particular actions.  

Additionally, the researcher asks probing and exploratory questions and may have 

participants complete further tasks to investigate emerging hypotheses based on the 

participants’ solutions or explanations to the predetermined tasks (Ginsburg, 1997).  “The 

essence of the clinical interview is deliberate nonstandardization and flexibility” 

(Ginsburg, 1997, p. 70).  A variety of tasks can be used in clinical task-based interviews 

to explore participants’ thinking processes (Ginsburg, 1997).  Such tasks include 

analyzing a video or a solution to a problem written by another person, constructing a 

solution to a given problem, or analyzing one’s own work on a problem completed at a 

prior time. 

 Piaget developed the clinical task-based interview in the 1920s as a method to 

explore deeply participants’ thinking processes (Ginsburg, 1997; Opper, 1977).  Piaget 

thought that the standard research methods of the time—standardized tests and natural 

observation—were unable to reveal thinking processes.  Thus, he created his own 

method, modeling it on the method psychiatrists used in diagnoses.  Piaget’s original 

version of the method was open-ended and allowed the researcher the freedom to use any 
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means necessary to explore the concept at hand and tailor the interview process to each 

participant (Opper, 1977).  As it is used today, the clinical task-based interview is semi-

structured rather than open-ended (Ginsburg, 1997; Hunting, 1997; Opper, 1977).  

Piaget’s goals for his method were to (a) elicit participants’ spontaneous thought through 

exploration, (b) identify participants’ thought processes through on-the-spot hypothesis 

development and testing, and (c) consider participants’ entire mental context through 

examining non-cognitive aspects such as attention and motivation (Ginsburg, 1997). 

The Think-Aloud Method 

 The think-aloud method is another task-based interview method that occurs in a 

clinical setting and elicits participants’ thought processes (Patton, 2002; van Someren, 

Barnard, & Sandberg, 1994).  In this method, participants speak aloud everything they are 

thinking while they work on a task.  If participants stop speaking, the interviewer will 

prompt them to continue to think aloud throughout the process.  The key to the think-

aloud method is that participants report their thoughts concurrently with their work on the 

task rather than retrospectively after they have completed the task (van Someren, 

Barnard, & Sandberg, 1994).  A variety of types of tasks can use the think-aloud method, 

such as problem solving, painting, or medical diagnoses. 

 The think-aloud method originated in psychological research in the 1940s as a 

reaction to issues with the standard method of introspection (van Someren, Barnard, & 

Sandberg, 1994).  The introspection method involves participants choosing intermediate 

points within the process of completing a task to stop and report on their thinking.  

Participants are expected to provide “an accurate, complete, and coherent report on a 
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cognitive process” (van Someren, Barnard, & Sandberg, 1994, p. 22).  However, this can 

be difficult for participants because a report of the process often requires participants to 

interpret their actions, may necessitate the use of psychological terminology, and is 

separated from the process itself (van Someren, Barnard, & Sandberg, 1994).  

Furthermore, the method introspection does not treat the verbal reports as data.  Instead, 

the data consists of the actual events that are being analyzed and explained by the 

participant.  “However, these data are fundamentally accessible only to a single observer, 

who also performs the thought process.  This makes it impossible to replicate empirical 

studies and thereby to settle scientific discussions about thought processes” (van 

Someren, Barnard, & Sandberg, 1994, p. 30).  These issues turned the psychological 

community away from cognitive research methods and contributed to the rise of 

behaviorism in the 1930s (van Someren, Barnard, & Sandberg, 1994).  Then, in the 

1940s, the think-aloud method emerged as a cognitive method that avoids the issues of 

introspection because it uses a verbalization process rather than an interpretation process 

and verbal protocols that are accessible to everyone as data. 

 The techniques of clinical task-based interviews and the think-aloud method are 

quite similar.  Both methods involve (a) participant solutions to tasks requiring decisions, 

(b) researcher questioning in response to participants’ work on the tasks, (c) limited 

researcher interference in participants’ thought processes, (d) researcher neutrality toward 

correctness of solutions, and (e) researcher emphasis on how participants arrived at their 

solutions (Ginsburg, 1981, 1997; Hunting, 1997; Koichu & Harel, 2007; van Someren, 

Barnard, & Sandberg, 1994).  The key difference is that the think-aloud method requires 
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concurrent verbalization and completion of tasks whereas clinical task-based interviews 

depend mostly on verbal reflections after completing a task (Ginsburg, 1981, 1997; van 

Someren, Barnard, & Sandberg, 1994).  However, many researchers consider the think-

aloud method to be an integral component of clinical task-based interviewing (Hunting, 

1997; Koichu & Harel, 2007). 

 There are several key differences between more common interviewing methods 

and the clinical task-based and think-aloud interview methods.  Clinical task-based 

interviews must be semi-structured and occur in a clinical setting.  Thus, these techniques 

cannot be used in standardized or open-ended interviews, cannot take place in a 

naturalistic setting, and will not work in the absence of a task.  The key difference 

however is the goal of the interview.  The purpose of most interviews is to learn about 

participants’ experiences, life stories, or thoughts on a particular concept.  The goal of 

clinical task-based interviews and the think-aloud method is to learn about participants’ 

underlying cognitive processes that are engaged during completion of a particular task.  

These interview methods seek to uncover cognitive processes and reveal what and how 

participants are thinking.   

Limitations of Interview Methods 

 Three limitations of clinical task-based interviews and the think-aloud method 

should be considered when using these methods to elicit participants’ reasoning 

processes: (a) participant verbalization, (b) participant introspection, and (c) researcher 

influence. 
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 Participant verbalization.  Researchers conducting clinical task-based 

interviews and think-aloud methods need to consider limitations of these methods related 

to participants’ verbalization of their thinking processes.  Participants often have 

difficulty verbalizing their thinking (Ginsburg, 1981; Hunting, 1997; van Someren, 

Barnard, & Sandberg, 1994).  Participant’s use of language may make it difficult for 

researchers to make strong, trustworthy interpretations, and these interviewing techniques 

rely heavily on researcher interpretation (Ginsburg, 1981; Hunting, 1997; van Someren, 

Barnard, & Sandberg, 1994).  Finally, the data are inevitably incomplete because 

participants can only verbalize what is in their working memory, so it is impossible for 

them to verbalize their entire thought process (van Someren, Barnard, & Sandberg, 

1994). 

 Participant introspection.  Participants may be inclined to attempt to interpret 

their thinking during think-aloud tasks rather than simply report it.  Although the think-

aloud method was designed to encourage only verbal reports, it is common for 

participants to interpret their thinking instead (van Someren, Barnard, & Sandberg, 

1994).  Such introspection can distort participants’ actual thoughts, and may affect the 

quality of the data (van Someren, Barnard, & Sandberg, 1994).  However, it is common 

for researchers conducting clinical task-based interviews to ask participants to reflect on 

their thinking after completion of the tasks.  The difference is that participants are 

reflecting on their thinking after the task rather than interpreting their thinking during the 

task.  In order to ensure reliability of the data, interviewers must encourage participants to 
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only report their thinking, and not interpret it, while working on the tasks (Ginsburg, 

1981; Hunting, 1997; van Someren, Barnard, & Sandberg, 1994).    

 Researcher influence.  Researchers’ must acknowledge that their interactions 

with participants influence the interviews.  Regardless of the level of interaction, the 

researcher is still an active member of the interview process (Goldin, 1998; Hunting, 

1997; Koichu & Harel, 2007; Rubin & Rubin, 2012).  Thus, researchers must consider 

the effects of this social interaction on participants’ responses (Goldin, 1998; Koichu & 

Harel, 2007).  Participants may say what they think the researcher wants to hear or worry 

about the “right” answer as opposed to simply describing their thoughts or experiences 

(Goldin, 1998).  Seidman (1998) warns that too much interaction can cloud the 

relationship between the researcher and the participant so that “the question of whose 

experience is being related and whose meaning is being made is critically confounded” 

(p. 80).    

 Interactions are of particular interest in clinical task-based interviews and the 

think-aloud method because a trade-off is often required with respect to the amount of 

prompting the researcher does.  Prompts to think aloud or clarification questions can lead 

to completeness, but these can also disturb a participant by interfering with their thought 

processes (Goldin, 1998; Koichu & Harel, 2007; van Someren, Barnard, & Sandberg, 

1994).  Furthermore, interactions between the researcher, participant, and knowledge 

being constructed create a unique situation in each interview (Koichu & Harel, 2007; 

Patton, 2002).  This makes replication of interview procedures difficult and may result in 

concerns for reliability (Goldin, 1998; Koichu & Harel, 2007). 
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Research Questions 

 In this study, I was interested in the ways that undergraduate students decide on 

the truth value of a mathematical statement.  This includes their reasoning during the 

decision-making process as well as how that reasoning influences the subsequent 

construction of a corresponding proof or counterexample.  Furthermore, I was interested 

in the types of systematic errors that students make during the proving process.  Through 

clinical task-based interviews and the think-aloud method, I gained insight into students’ 

reasoning during decision-making and constructing proofs and counterexamples.  My 

overarching research questions were: 

1. In what ways and to what extent do students use intuition and analysis to decide 

on the truth value of mathematical statements? 

2. What are the connections between students’ process of deciding on the truth value 

of mathematical statements and their ability to construct associated proofs and 

counterexamples? 

3. What types of systematic intuitive, mathematical, and logical errors do students 

make during the proving process, and what is the impact of these errors on the 

proving process? 

Reflexivity: Personal Perspective 

 The personal perspective of researchers, including their opinions and experiences, 

affects what questions they choose to ask as well as how they understand the answers to 

those questions (Goldin, 1998; Patton, 2002; Rubin & Rubin, 2012).  Researchers need to 

acknowledge their impact on the interview process as well as their role in interpreting, 
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analyzing, and describing the situation under study (Ernest, 1998; Goldin, 1998; Hunting, 

1997; Koichu & Harel, 2007; Kvale & Brinkmann, 2009; Patton, 2002; Rubin & Rubin, 

2012; Seidman, 1998).  Consequently, researchers must reflect about how their 

perspective influences the interview process.  My perspective on proof and proving 

evolved through three stages of experience: (a) my undergraduate study of mathematics, 

(b) my graduate study of mathematics, and (c) my study of mathematics education.  This 

perspective influenced my choice of research questions and research design for this study.   

 My undergraduate study of mathematics.  As an undergraduate student, proof 

and proving were about logic and deductive reasoning.  My love of logic and deduction 

blossomed through completion of a variety of courses on formal logic, computer 

programming, and proof-based mathematics.  As a mathematics major, I took a transition-

to-proof course my sophomore year, and all of my upper-division undergraduate 

mathematics courses were proof-based.  I had little difficulty unpacking the logic of 

definitions or theorems, understanding quantifiers, or proof methods.  I could easily set 

up the logical structure of a proof and determine relevant inferences from definitions and 

the assumptions.  

 I had no reason to believe that proof was about anything other than logical 

reasoning.  My mathematics instructors presented proofs in their polished form as if the 

entire thought process proceeded in a linear and deductive fashion.  An acceptable proof 

on homework or exams was a deductive argument using definitions and previously 

proved theorems that led from the assumptions to the conclusion.  All inferences were 

based on logical reasoning.  It never occurred to me that there could be a difference 
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between proving and proof.  The process of proving was to construct a deductive proof, 

and it seemed that logical reasoning was the clear choice to lead to a deductive proof.      

 Looking back on my undergraduate career, I realize now that I could construct 

straightforward deductive proofs in which the proof essentially fell out from the 

definitions, but not much else.  Additionally, I had difficulty understanding the abstract 

content of some of my upper-division courses, especially abstract algebra.  Even though I 

could construct most of the proofs for the class, I did not understand how abstract algebra 

related to the algebra I had been doing since eighth grade.  Thus, the proofs were not 

helping me make sense of the material.  There was a disconnect between my ability to 

construct proofs and my ability to understand the material.   

 My graduate study of mathematics.  As I completed my Master’s degree in 

mathematics, my understanding of proof progressed and my success in constructing 

proofs declined.  Abstract algebra made perfect sense to me the second time around.  This 

understanding, along with algebra being congenial to a logic-based proof style, led to 

success in this area of mathematics.  Analysis, however, was a different story.  My 

approach did not work well on most analysis proofs because they seemed to depend on 

some insight or “trick” into how to construct an object with desired properties.  Although 

I could not come up with the “tricks” on my own, I could read and understand analysis 

proofs, and could follow the description of the “trick” and its placement within the rest of 

the logical structure of the proof.  Thus, I had no difficulty understanding the end result, 

the deductive proof, but I could not construct such proofs.  Although proofs were still 



  64 
 

 

deductive arguments, the proving process now seemed to require something other than 

logical reasoning, something that I called “creativity.” 

 What was this creativity in mathematics that allowed for insight into “tricks” in 

proofs?  Until graduate school, I had never considered it.  Then, it became this magical 

quality that I was lacking.  I did not think that I could learn to be creative in mathematics.  

I thought of creativity as some innate ability that I lacked, and there was nothing I could 

do about it.  I had classmates who were creative, in my determination, and I would study 

with them, but I was unable to figure out the source of their creativity.  Thus, the idea of 

creativity remained a mystery and an unattainable goal.      

 My study of mathematics education.  My experiences with proof and my love 

of logic and mathematics led me to investigate proof and proving as a doctoral student in 

mathematics education.  I wondered whether there was something more to mathematical 

creativity and whether it could be taught.  I had heard that students did not need to learn 

logic in order to do mathematical proofs.  How could that be possible when all of my 

proofs were built on logic?   

 Through my readings on semantic and syntactic reasoning by Alcock and Weber 

(Alcock & Weber, 2010; Weber & Alcock, 2004, 2009), I realized two important things: 

(a) I was a syntactic reasoner, and (b) what I called “creativity” closely resembled what 

they call “semantic reasoning.”  One of the key difficulties syntactic provers face is that 

they can often produce a correct proof of a statement without understanding why it is true 

(Weber & Alcock, 2009).  As an undergraduate, this was often the case for me.  I did not 

use examples, graphs, visualizations, or other semantic aspects of mathematics to assist 



  65 
 

 

me with constructing proofs.  I did not use these to help me obtain an informal 

understanding of a statement before attempting a proof construction.  Maybe my 

difficulty with proving was not due to a lack of creativity in mathematics, maybe I lacked 

semantic reasoning skills.  Even better, maybe I could learn such skills.  Unfortunately, 

my instructors did not indicate that there was a place for semantic reasoning in proof 

productions.  They did not demonstrate such skills while presenting polished proofs in 

class.  They did not assign exercises geared toward developing semantic reasoning skills 

or using these in the proving process.  This realization made me feel as though my 

mathematical education had been incomplete in process preparation, even if it was 

complete in product preparation.  Additional readings, such as Selden and Selden (2009) 

and Tall (1991), reiterated the idea that proving is a process that entails semantic 

reasoning in addition to logical reasoning.  Furthermore, they indicated that traditional 

mathematics instruction does not address the full range of reasoning competencies 

needed to construct mathematical proofs successfully.    

 In addition to semantic reasoning strategies, intuition is another idea that I had not 

considered as a part of proof production until I encountered it in my exploratory research 

study. The idea of intuition as an important component of proving led me to the literature 

on dual-process theory.  This theory has changed my view of proving to more of a 

cognitive psychological rather than a mathematical perspective and has shaped my plan 

for data analysis in this study.   

 My current understanding of proof and proving is that proving is a complex 

process that involves intuition, semantic reasoning, creativity, logical, and deductive 
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reasoning.  Although the end result, the proof itself, is a syntactic argument, much more 

than logical reasoning goes into the process of constructing a proof.  Additionally, the 

struggles that I encountered as a student are shared by others.  Furthermore, other 

students have other types of difficulties, such as with logical reasoning skills.  I am 

excited about the idea of being able to contribute to research on the teaching and learning 

of proof and to help students realize that the proving process involves an accessible 

variety of reasoning strategies that they can learn and learn to use successfully as creative 

and rigorous mathematics students.   

 My evolving understanding of proof and proving influenced the research 

questions and design of this study.  I spent most of my mathematical career not knowing 

that there were intuitive, semantic, and syntactic reasoning strategies and not 

understanding why I was unsuccessful at intuitive and semantic aspects of the proving 

process although I could comprehend the proofs I read and thought that I had a strong 

understanding of the material.  I want future mathematics majors to have better 

experiences with proving and more opportunities to develop intuitive and semantic 

reasoning skills and use these in proof constructions.  Thus, the ultimate goal of this 

study is to improve instruction in proof and proving.  However, as a stepping stone, I 

concentrated on students’ learning rather than instruction.  This study focused on 

students’ use of intuitive, semantic, and syntactic reasoning in the proving process, 

especially when dealing with the uncertainty of deciding on the truth value of a 

mathematical statement.  In the remainder of this chapter, I describe my sampling, data 

collection, interview, and data analysis procedures.   
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Sampling Procedures  

 The participants in this study were chosen according to purposeful sampling 

(Patton, 2002; Seidman, 1998), whereby I selected information-rich cases that were 

relevant to the purpose of the study.  Seidman (1998) suggests that purposeful sampling is 

the best sampling strategy when random sampling is not an option and that maximum 

variation purposeful sampling is “the most effective basic strategy for selecting 

participants for an interview study” (p. 45).  This sampling technique allowed for a range 

of participants that fit certain criteria and were “fair to the larger population” (p. 45).  

Patton (2002) notes that this sampling strategy yields two kinds of information: “(1) high-

quality, detailed descriptions of each case that are useful for documenting uniquenesses, 

and (2) important shared patterns that cut across cases and derive their significance from 

having emerged out of heterogeneity” (p. 235).  Being able to gather data on shared 

patterns helped me determine the extent to which my findings may be applicable in other 

situations (Rubin & Rubin, 2012).  Additionally, this strategy allowed me to “explore the 

richness of a particular that may serve as an exemplar of something more general” 

(Ernest, 1998, p. 34).  This section is organized into three parts: (a) participant selection, 

(b) sample size, and (c) description of participants.  Participant recruitment and data 

collection took place between September and December of 2013 and occurred after the 

Ohio University Institutional Review Board (IRB) approved the proposed study.   

 Participant selection.  Purposeful sampling was used to select participants from 

the main campus of a public university in the Midwest United States.  I recruited 

participants from the students enrolled in the following upper-division undergraduate 
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mathematics courses during fall semester 2013: College Geometry, Secondary 

Mathematics Methods, Secondary Mathematics Curriculum, Abstract Algebra I, 

Advanced Calculus I, or Undergraduate Mathematics Seminar.  This selection strategy 

provided variation in students’ experiences with proof as well as students’ majors.   

 I attended a class meeting of each of the courses, described the study and what 

would be required of the participants, and asked the students to complete a short 

questionnaire (see Appendix A).  The questionnaire included questions that determined if 

the student was interested in participating in a research study on mathematical proof, and 

if they met the selection criteria of (a) being an undergraduate student at the university, 

and (b) having passed at least one proof-based mathematics course with a grade of B or 

better.  If a student was interested and met the selection criteria, they were asked to 

provide me with their email address so that I could contact them with additional 

information and set up an interview.  However, this strategy did not yield a sufficient 

sample size, so I had an email sent to all mathematics majors at the university, including 

the questionnaire and asking the students to email me if they were interested in 

participating in the study.  The use of this additional recruitment technique allowed me to 

achieve my desired sample size (n = 12).        

 By restricting my participants to those who had earned a B or better in a proof-

based mathematics course, I intended to choose participants who could be successful on 

the interview tasks and had demonstrated successful training in constructing proofs and 

counterexamples.  Researchers in mathematics education have indicated that in addition 

to understanding students’ difficulties with proof, we need to understand how successful 
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students reason during proof tasks (Harel & Sowder, 2007; Weber, 2009).  Furthermore, 

Evans (2010) indicates that researchers applying dual process theories should move away 

from using participants that have no formal training in logical reasoning to studying 

participants with formal training in reasoning techniques.  This may provide a different 

perspective on how intuition and analysis interact during reasoning and decision-making 

and can be used to test the scope of systematic intuitive errors.    

 Sample size.  I selected a sample of 12 participants based on the 

recommendations of Guest, Bunce, and Johnson (2006) and a review of the sample sizes 

used in quality, peer-reviewed research on proof and proving utilizing clinical task-based 

interviews and the think-aloud method, as suggested by Onwuegbuzie and Leech (2007).  

My review of 11 articles yielded the following information: (a) there were 16 sample 

sizes reported as some articles reported on multiple studies; (b) the sample sizes ranged 

from two through 18 participants; (c) of the two studies that had 18 participants, one of 

them indicated that a sample of six was representative of the entire sample; (d) the mean 

sample size was approximately eight participants; (e) the median sample size was six; (f) 

the mode of the sample sizes was four.  Thus, I chose to use 12 participants.  This was 

reasonable based on this review, corresponded to the recommendation of Guest, Bunce, 

and Johnson (2006), and seemed sufficient to generate the variability described by 

Seidman (1998) and necessary for this study.   

 Description of participants.  The participants in this study had one of the 

following majors: (a) mathematics, (b) Adolescent-to-Young Adult (AYA) integrated 

mathematics education (secondary mathematics teacher certification), (c) dual majors in 
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mathematics and AYA integrated mathematics education, or (d) economics.  Most 

students were in their fourth year of undergraduate study, but there was one student in his 

second year, and one student in his third year.  The minimum number of college level 

mathematics course that a participant had taken or was enrolled in during data collection 

was six, and the maximum number was 17.  However, this number is not necessarily an 

accurate reflection of the participants’ mathematical background because (a) the 

university switched from quarters to semesters during the participants’ undergraduate 

studies so that three courses on the quarter system would be equivalent to two courses on 

the semester system, and (b) the students’ lowest level collegiate mathematics course 

ranged from college algebra to calculus III.  The minimum number of proof-based 

mathematics courses completed by a participant was one and the maximum was seven, 

and some participants were enrolled in proof-based mathematics courses during data 

collection.  However, different proof-based courses represent different levels of rigor so 

that an equivalent number of proof-based courses does not necessarily correspond to 

equivalent experiences with proof.  Table 1 provides an overview of these demographics 

for each participant.   
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Table 1 
 
Participant Demographics 
Name 
(Pseudonym) 

Major Year in 
School 

# college 
level math 

courses 

# proof based 
courses 

completed 

# proof based 
courses 

enrolled in 
Fall 2013 

Aurelia AYA math 
education 

4 15 3 0 

Edward Economics 4 6 1 1 
Elliot Math 3 16 6 2 
Emily Math 4 15 4 1 
Evan Math 2 8 3 1 
Inigo Math/AYA math 

education 
4 16 4 2 

Jalynn AYA math 
education 

4 17 3 0 

Jay Math 4 11 3 1 
Julie AYA math 

education 
4 14 4 0 

Louis AYA math 
education 

4   10^ 3 0 

Michael Math 4 17 7 1 
Tina Math/AYA math 

education 
4 10 2 1 

Note: ^ data incomplete 
 
  

Despite differences in the participants’ number of mathematics courses and proof-

based mathematics courses taken, there were similarities in the mathematics courses they 

had taken at the university level.  Every student passed either third semester or fourth 

quarter calculus and passed or was enrolled in some form of linear algebra (eight proof-

based and four non-proof-based).  Eleven of the 12 participants passed a non-proof-based 
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discrete mathematics course and 10 of the 12 students passed a proof-based number 

theory course.  Eight of the twelve students passed a college geometry course and passed 

or were enrolled in some form of abstract algebra (either introductory abstract algebra or 

abstract algebra).  Finally, seven of the twelve students passed or were enrolled in an 

advanced calculus course.  See Appendix F for a detailed list of the proof-based courses 

taken by each student. 

Data Collection 

  I conducted two interviews with each participant and each lasted approximately 

one hour.  I separated each interview with the same participant by roughly one week, but 

was flexible to accommodate participants’ schedules.  During the first interview, 

participants completed a questionnaire on their mathematical history, solved three tasks, 

and answered follow-up questions regarding the tasks (see Appendix C).  There was one 

exception as Julie only completed two tasks due to time constraints (she completed three 

tasks during the second interview).  In the second interview, participants completed two 

tasks and answered follow up questions to the tasks and general questions on 

mathematical proof and intuition (see Appendix D).  The interviews were audio recorded 

for transcription by a paid transcriber.  Each task used in the interviews provided a 

different piece of information related to my research questions, thus, this strategy allowed 

me to see a complete picture of this information from all participants.  Additionally, I was 

able to analyze the data both across participants and across tasks, providing multiple 

layers of interpretation.      



  73 
 

 

 Data sources.  The data for this dissertation came from (a) a questionnaire on 

participants’ mathematical backgrounds, (b) transcripts from the participants’ clinical 

task-based interviews using the think-aloud method, (c) participants’ written work on the 

tasks in the interviews, and (d) my field notes from the interviews.  The mathematical 

background questionnaire (see Appendix B) provided information on students’ major, 

undergraduate experience with mathematics, which proof-based courses they had taken, 

and their grades in their mathematics courses (self-reported).  This information offered 

insight into the population(s) from which my sample was drawn.   

 The two task-based interviews using the think-aloud method produced two data 

sources: verbal protocols (transcribed from the interview) and written documents.  The 

protocol for the first interview included (a) three prove-or-disprove tasks, and (b) follow-

up questions regarding the interview tasks (see Appendix C).  The protocol for the second 

interview included (a) two prove-or-disprove tasks, (b) follow-up questions regarding the 

interview tasks, and (c) general questions regarding proof and intuition (see Appendix D).  

A random selection from the tasks was used to determine the order and choice of tasks on 

each interview.  Furthermore, there were two different sets of directions for the tasks: (a) 

prove or disprove, and (b) determine, with proof or refutation, whether the following 

statement is true or false.  For each participant, one set of directions was randomly 

chosen for the tasks in the first interview, and then the other set of directions was used for 

the tasks in the second interview.  Thus, each participant saw both sets of directions, but 

the directions were consistent within each interview.   
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During completion of the tasks, participants were provided with paper on which 

to write any notes or scratch work as well as their completed proofs and counterexamples 

for the tasks.  This paper was collected as further documentation of the students’ thinking.  

Additionally, I provided participants with a LiveScribe Pen to use to complete the tasks.  

This Pen, when used on special paper, recorded audio and writing synchronously.  This 

synchronization allowed me to listen to what participants said at each moment that they 

wrote.      

 I asked follow-up questions to the interview tasks in order to gather data 

retrospectively regarding participants’ work on the tasks.  These data were used to check 

against the participants’ work during the task.  Additionally, it provided reflective insight 

into students’ thinking that was not expressed during their work on the task.     

 The general questions on proof and intuition provided information on the 

participants’ typical approaches to prove-or-disprove tasks to indicate whether their 

approaches on the interview tasks were consistent with what they think they usually do.  

Additionally, the questions provided information on the participants’ conceptions of proof 

and intuition.     

 Confidentiality.  In order to minimize the possibility of identification, all 

participants were asked to give themselves a pseudonym under which their data were 

recorded and stored.  However, not all participants chose to use a pseudonym.  

Participants were asked to write their chosen name on their mathematical history 

questionnaire and that name was used to identify the subsequent interviews, written work, 

and interview transcriptions.  There is no written record linking the pseudonyms to 
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participants’ real names.  The audio recordings and written work from the LiveScribe Pen 

and paper were uploaded to a password protected PC.  The audio recordings were erased 

from the Pen itself between each interview.  Additionally, the interviews were audio 

recorded on a second recorder as a backup.  The interviews were deleted from this 

recorder after the transcription was complete.  Finally, the participants’ written work is 

currently stored in a secure cabinet accessible only to me. 

Interview Procedures 

 Building rapport.  Building rapport with participants was essential for making 

them feel comfortable enough to speak freely.  Researchers can build rapport by being 

“open, honest, fair, and accepting” (Rubin & Rubin, 2012, p.79).  Additionally, showing 

empathy and understanding helps build trust with participants (Kvale & Brinkmann, 

2009; Patton, 2002; Rubin & Rubin, 2012).  Participants feel more comfortable with 

researchers when they “feel some personal connection” or “share a common background” 

(Patton, 2002; Rubin & Rubin, 2012, p.79).  I helped participants feel this way by sharing 

my experiences with mathematics and proof (see Appendix C).  During the interview, I 

was careful not to press participants too hard for information and put them on the 

defensive (Rubin & Rubin, 2012; Seidman 1998).  I remained neutral to participants’ 

responses and did not convey judgment on their reasoning or the correctness of their 

answers through either verbal or non-verbal reactions (Hunting, 1997; Patton, 2002; 

Rubin & Rubin, 2012; Seidman, 1998).  During the interviews, I let the participants know 

that I was not interested in the correctness of their answers, only their thinking processes.  

However, I showed empathy toward the participants, providing emotional scaffolding as 
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needed to encourage them that they were doing fine, were being helpful, and to continue 

in the face of frustration.              

 Interview tasks.  In order to design a study that would provide information on 

students’ uses of intuition and analysis in deciding on the truth value of mathematical 

assertions and constructing proofs and counterexamples, the first step was to determine 

which types of mathematical tasks addressed these aspects of the proving process.  I 

decided on prove-or-disprove tasks, inspired by the textbook Extending the Frontiers of 

Mathematics: Inquiries Into Proof and Argumentation by Burger (2007).  Such tasks have 

two parts.  First, students must decide if they think the statement in the task is true or 

false.  This decision could use a variety of reasoning strategies, both intuitive and 

analytical.  Second, students must construct either a proof or counterexample that 

supports their decision and may additionally use intuitive, semantic, and syntactic 

reasoning.  This structure allowed me to investigate the ways that students reasoned 

during both the decision and construction processes, including whether students’ 

reasoning in the decision process informed their proof or counterexample construction.   

 Participants were provided with five prove-or-disprove tasks, one at a time on 

separate sheets of paper, over the course of two interviews, each approximately an hour 

long.  Two sets of directions were used for the tasks, one set per interview so that each 

participant received both over the course of their two interviews.  The directions read 

either “Prove or disprove” or “Determine, with proof or refutation, whether the following 

statement is true or false.”  The differing directions were intended to promote deliberation 

on the truth value of the statement prior to attempting a proof.  Participants were not (a) 
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given any instructions other than to think aloud during the process, (b) provided with any 

information other than a list of definitions of terms in the tasks (see Appendix E), or (c) 

given the use of any materials.  I indicated to the participants in the beginning of the 

interview (and reminded them as necessary) that I was not concerned with the correctness 

of their work, and that I was only interested in their reasoning processes.  Although I 

wanted them to be successful, valuable data were collected from students’ unsuccessful 

attempts.  During the interviews, I asked participants to clarify or expand on their 

thinking if something was unclear or particularly interesting to me.  Otherwise, I 

interfered with the thinking process as little as possible, except to remind them to 

continue speaking aloud when necessary.   

 The following tasks were used in this study.   

Task A: Injective Function Task: Let 𝑓: 𝐴 → 𝐵 be a function and suppose that  

𝑎0 ∈ 𝐴 and 𝑏0 ∈ 𝐵 satisfy 𝑓(𝑎0) = 𝑏0.  Prove or disprove: If  

𝑓(𝑎) = 𝑏 and 𝑎 ≠ 𝑎0, then 𝑏 ≠ 𝑏0. 

Task B: Monotonicity Task: Prove or disprove: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are 

decreasing on an interval I, then the composite function 𝑓 ∘ 𝑔 is increasing  

on I.      

Task C: Equivalence Relation Task: Let D be a set.  Define a relation ≈ on functions 

with domain D as follows: 𝑓 ≈ 𝑔 if and only if there exists 𝑥 ∈ 𝐷 such that 

𝑓(𝑥) = 𝑔(𝑥).  Prove or disprove: The relation ≈ is an equivalence relation.     

Task D: Global Maximum Task:  Prove or disprove: If 𝑓 is an increasing function, 

then there is no real number 𝑐 that is a global maximum for 𝑓.   
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Task E: Composite Function Task:  Let 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ be functions.  Prove 

or disprove: If the composite function 𝑓 ∘ 𝑔 is one-to-one, then 𝑔 is  

one-to-one. 

The tasks cover basic information about functions and relations with which students who 

have taken at least one proof-based mathematics course should be familiar because all 

such students will have taken at least Calculus II.  The tasks were chosen to (a) be 

accessible to the participants, (b) cover the same general topic of functions and relations, 

(c) be approachable using intuitive, semantic, or syntactic reasoning methods, and (d) 

provide opportunities to construct both proofs and counterexamples (see Appendix F for 

an elaboration on the origin of the tasks).  Although the tasks were chosen to be 

accessible and within the same general topic, it became apparent during data analysis that 

the equivalence relation task was not as accessible as I had intended and did not seem to 

be in line with the other tasks that focused on functions.  Subsequently, the Equivalence 

Relation Task was not included in the data analysis for this study.   

 In line with Alcock and Weber (2010), each of these tasks refers to general objects 

and their properties.  These tasks were chosen to provide a range of tasks that I thought 

would be amenable to intuitive, semantic, and syntactic reasoning strategies, both in the 

decision-making and construction processes.  The following hypotheses were based on 

my task analysis prior to data collection:   

 The Global Maximum Task should lend itself to an intuitive reaction based on 

visualization.   
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 The Composite Function Task was not likely to produce an intuitive reaction due 

to the backward thinking needed.  The task provided information about the 

composite function and asked for information about one of the component 

functions.  However, students who are familiar with the fact that a composite 

function is one-to-one if its component functions are one-to-one may have an 

intuitive reaction based on similarity.   

 The Injective Function Task should lend itself to analysis due to the logic needed 

to unpack the statement.   

 The Monotonicity Task was of high interest because each student in my 

exploratory study committed a systematic intuitive error on this task that led them 

to believe that the statement in the task was true.  Thus, this task was likely to 

produce an intuitive reaction that would lead participants to an incorrect 

designation of its truth value. 

 A distinguishing characteristic of the chosen tasks that affected students’ 

approaches to the tasks is the task complexity.  For this study, the task complexity was 

determined by the structure of the proof or counterexample for the task and was an 

indicator of the difficulty of the task (Selden & Selden, 2009).  Relatively speaking, the 

Injective Function and Global Maximum Tasks are less complex and the Monotonicity 

and Composite Function Tasks are more complex. 

 The structure of a counterexample for the Injective Function Task requires only a 

direct application of the definition of one-to-one.  A counterexample consists of any 

single non-injective function.  On the other hand, the structure of a counterexample for 
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the Monotonicity Task is more complex.  It requires two distinct functions that satisfy a 

given property on a restricted interval such that when they are composed, they satisfy a 

different property on the same restricted interval.  Additionally, the key to this 

counterexample is to choose an inner function (in the composite) with a range that is 

outside the given restricted interval.   

 The structure of a proof for the Global Maximum Task has some complexity 

because it is a proof by cases, but each case is straightforward.  In the case in which the 

domain of the given function is all real numbers, the statement is true and a proof by 

contradiction can be used.  The assumption for contradiction that there exists a global 

maximum directly contradicts the given assumption that the function is increasing.  The 

other case, in which the domain is restricted to a closed interval, is false.  A 

counterexample consists of any increasing function on any closed interval since it will 

attain a global maximum at the right hand endpoint of the interval. 

 The structure of the proof of the Composite Function Task is relatively more 

complex compared to the proof of the Global Maximum Task.  The proof by 

contradiction involves an assumption for contradiction that requires the negation of an 

implication, a logical process that can be confusing.  Through this assumption, the 

existence of two specific points is posited.  The proof then requires the application of the 

given assumption that the composite function is one-to-one on these specific points.  Note 

that because the given assumption is not used until after the assumption for contradiction, 

the construction of this proof is not a linear process.  Finally, the application of the given 

assumption results in an expression that contradicts the outer function (in the composite) 
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being a function.  This is not an obvious contradiction to the definition of function, and it 

does not contradict the given assumption in the task that is often the expected 

contradiction.        

Data Analysis 

 The data were analyzed according to uses of intuition and analysis during the 

participants’ processes of deciding whether each assertion was true or false and 

constructing proofs and counterexamples.  Additionally, students’ decision-making and 

construction processes were analyzed to determine students’ decision-making pathways 

and the connections between these processes.  Finally, systematic intuitive and analytical 

errors were identified, and the correctness of proofs and counterexamples was 

determined.   

 Intuitive and analytical reasoning.  Originally, reasoning used during the 

proving process was to be classified as intuitive or analytical, with analytical reasoning 

further classified as semantic or syntactic.  However, through the process of attempting to 

classify students’ reasoning, many subtypes of intuitive, semantic, and syntactic 

reasoning emerged.  In order to accommodate these subtypes, I developed a framework 

(Table 2) that incorporated aspects of the following theories/frameworks: (a) dual-process 

theory (Evans, 2008, 2012b), (b) semantic and syntactic reasoning (Alcock & Weber, 

2010; Weber & Alcock, 2004, 2009), (c) warrant-types (Inglis et al., 2007), and (d) proof 

schemes (Harel, 2007; Harel & Sowder, 1998).   

 The reasoning classification framework has four main categories: intuitive, 

semantic-empirical, semantic-deductive, and syntactic.  The intuitive category includes 
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six subtypes and corresponds directly to intuition in dual-process theory and roughly to 

Inglis et al.’s structural-intuitive warrant-types.  Analytical reasoning includes semantic-

empirical, semantic-deductive and syntactic reasoning.  Semantic reasoning was divided 

into two main categories – semantic-empirical and semantic-deductive – to reflect the 

differences in semantic reasoning based on empirical evidence versus semantic reasoning 

based on informal definitions and deductions.  The semantic-empirical category has two 

subtypes and roughly corresponds to Inglis et al.’s (2007) inductive warrant-type and 

Harel’s (2007) empirical proof scheme class.  The semantic-deductive category has eight 

subtypes and roughly corresponds to Harel’s (2007) transformational proof schemes.  

Finally, syntactic reasoning includes six subtypes and corresponds directly to syntactic 

reasoning in Alcock and Weber’s theory as well as roughly to Harel’s (2007) modern 

axiomatic proof schemes.  Further, if grouped together, my semantic-deductive and 

syntactic reasoning types closely correspond to Inglis et al.’s (2007) deductive warrant-

types and Harel’s (2007) deductive proof scheme class (that includes transformational 

and modern axiomatic proof schemes as subclasses). 

 The four main categories in my classification scheme were chosen to distinguish 

both among intuitive, semantic, and syntactic reasoning and between reasoning that is 

acceptable as a basis for a decision versus reasoning that is acceptable as support for a 

decision.  By “acceptable,” I mean what is acceptable to a given mathematical 

community.  Examples of mathematical communities include an elementary school 

classroom, an undergraduate discrete mathematics course, or the community of 
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contemporary mathematicians.  Each mathematical community sets its own standards for 

what is acceptable as proof of a mathematical assertion.   

Although each type of reasoning – intuitive, semantic-empirical, semantic-

deductive, and syntactic – can form the basis for a decision, intuitive and semantic-

empirical reasoning are not acceptable as support for a decision.  On the other hand, 

semantic-deductive and syntactic reasoning are sufficient to support a decision, but the 

level of acceptable formality will vary depending of the given community.  In some 

communities (such as secondary school classrooms), semantic-deductive reasoning is 

acceptable as proof of a statement’s truth value, but in other communities (such as the 

community of contemporary mathematicians), only syntactic reasoning constitutes 

acceptable proof.   

 For the purposes of this study, it was important to distinguish between semantic-

deductive and syntactic reasoning because only syntactic reasoning is acceptable as proof 

to the mathematical community to which the students belong (the community of students 

taking upper-level undergraduate mathematics courses).  This became clear based on 

students’ professed ideas about proof as well as their general behavior to proceed into a 

syntactic argument although they had already convinced themselves of a statement’s truth 

value with a semantic-deductive argument. 
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Table 2 
 
Reasoning Classification Framework 
Category Subtypes 
Intuitive (a) Memory-based 

(b) Property-based 
(c) Similarity-based 
(d) Understanding-based 
(e) Unjustified 
(f) Visualization-based 

Semantic-empirical (a) Example-based 
(b) Graph-based 

Semantic-deductive (a) Definition-based informal argument 
(b) Diagram-based informal argument 
(c) Generalization 
(d) Graph-based informal argument 
(e) Inconclusive-based informal argument 
(f) Informal definition-based 
(g) Kinaesthetic-based informal argument 
(h) Visualization-based informal argument 

Syntactic (a) Counterexample 
(b) Failed counterexample 
(c) Failed proof 
(d) Formal definition 
(e) Need for assumption 
(f) Proof/Disproof 

         
  

Intuitive reasoning.  I classified reasoning as intuitive if the student was unable to 

fully justify the reasoning or used similarity to make an assessment of the task (Evans, 

2010; Kahneman & Frederick, 2002; Witteman & van Greenen, 2010).  Descriptions of 

the six subtypes of intuitive reasoning are given in Table 3.   
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Table 3 
 
Subtypes of Intuitive Reasoning 
Subtype Description 
Memory-based Based on a personal memory regarding the concepts 
Property-based Based on vague ideas about properties of concepts 
Similarity-based Based on similarity with other concept(s) 
Understanding-based Based on personal understanding of the concepts 
Unjustified No basis 
Visualization-based Based on visualization of the concepts 
 
 

Analytical reasoning.  I classified reasoning as analytical if it was semantic-

empirical, semantic-deductive, or syntactic reasoning that was fully justified by the 

student (Evans, 2010).  This included reasoning that was justified at the time of the 

reasoning or during post-task questioning. 

 Semantic-empirical reasoning.  Semantic-empirical reasoning is based on 

empirical evidence.  Descriptions of the two sub-types of semantic-empirical reasoning 

are in Table 4. 

 

Table 4 
 
Subtypes of Semantic-empirical Reasoning 
Subtype Description 
Example-based Based on an example as a test case 
Graph-based Based on a graph as a test case 
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Semantic-deductive reasoning.  Semantic-deductive reasoning is based on 

informal definitions or deductions.  Descriptions of the eight subtypes of semantic-

deductive reasoning are given in Table 5. 

 

Table 5 
 
Subtypes of Semantic-deductive Reasoning 
Subtype Description 
Definition-based 
informal argument 

Informal deductive argument based on informal definitions 

Diagram-based 
informal argument 

Informal deductive argument based on a diagram 

Generalization Informal deductive argument generalized from an example 
Graph-based informal 
argument 

Informal deductive argument based on a graph 

Inconclusive-based 
informal argument 

Informal deductive argument based on inconclusiveness of 
information 

Informal definition-
based 

Based on informal representations or rephrasing of formal 
definitions 

Kinaesthetic-based 
informal argument 

Informal deductive argument based on kinaesthetic movement 

Visualization-based 
informal argument 

Informal deductive argument based on visualization of concepts 

 
 

Syntactic reasoning.  Syntactic reasoning is formal deductive reasoning that 

adheres to the guidelines for a syntactic proof (Weber & Alcock, 2009) or accepted 

refutation.  Descriptions of the six subtypes of syntactic reasoning are in Table 6.     
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Table 6 
 
Subtypes of Syntactic Reasoning 
Subtype Description 
Counterexample Based on an example that is recognized as refutation for a 

statement 
Failed counterexample Based on a failed attempt at constructing a counterexample 
Failed proof Based on a failed attempt at constructing a proof 
Formal definition Based on a formal definition 
Need for assumption Based on the need for an assumption that was not given 
Proof/disproof Formal argument based on syntactic reasoning that proves or 

refutes a statement 
 
 

Pathways and connections.  Students’ decision-making and 

proof/counterexample construction processes were analyzed in order to determine their 

decision-making pathways as well as the connections between the decision-making and 

construction processes.  My original pathways framework based on decision-making in 

dual-process theory turned out to be too restrictive in terms of its focus on intuitive 

versus analytical reasoning as well as the possible pathways.  A more general framework 

was needed because so few decisions were intuitive.  The resultant pathways depend on 

only the basic flow of reasoning (of any type) and decisions.  The pathway structure is 

linear and the emphasis is on the order in which reasoning and decisions occur.  Thus, the 

pathways indicate whether reasoning preceded or succeeded each decision.  With this 

new framework, any number of pathways can emerge.  In this study, the students used 

eight distinct pathways (Figure 3).  In the pathway structure, blunt and pointed arrows 

represent reasoning and boxes represent decisions. 



  88 
 

 

 The naming scheme for the pathways indicates the order of reasoning (R) and 

decisions (D).  For example, Pathway RDR indicates reasoning followed by a decision, 

followed by further reasoning.  The classification of the reasoning used to make a 

decision is based on the reasoning that precedes the decision.  In pathways such as DRD 

or DRDR, multiple decisions are made and the reasoning that occurs between the 

decisions is often a combination of reasoning that (a) attempts to support the first 

decision, (b) overturns the first decision, and (c) supports the second decision (in 

Pathway DRD, but not DRDR).  Pathways that end in decisions may include full support 

for the decision offered before the decision was made.  Additionally, pathways can begin 

with decisions not based on any type of reasoning.  

  

 
Figure 3.  Decision-making pathways. 
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The analysis of the connections between students’ decision-making and 

proof/counterexample construction processes resulted in two distinct types of both 

connections and disconnections.  Connections between construction and decision-making 

were categorized as either construction based on decision-making or simultaneous 

construction and decision-making.  Disconnections were constructions not based on 

decision-making and no decision-making.  Some of these differences can be seen in the 

decision-making pathways.  Pathways that begin with decisions represent disconnections 

in which no decision-making actually occurred.  Pathways that end in decisions represent 

connections with simultaneous decision-making and construction processes.  Pathways 

including reasoning that occurs both before and after a decision represent situations in 

which the construction was either based or not based on the decision-making process.  

This distinction requires deeper analysis to identify and is indicated on a case-by-case 

basis in the results section.               

 Errors.  I analyzed errors that were made during the proving process to determine 

if they were systematic intuitive or analytical errors.  Additionally, I identified cases in 

which students were able to overcome errors.  Errors were classified as systematic if they 

were committed by at least three students.  Systematic intuitive errors were categorized as 

relevance errors according to the definition given in the literature review.  The students in 

this study did not commit any attribute substitution errors and no new intuitive errors 

were identified. 

 Systematic analytical errors included both mathematical and logical errors.  

Mathematical errors can be contributed to faulty or incomplete mathematical knowledge, 
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such as incorrectly graphing a given function or incorrectly identifying an example of a 

given concept.  Logical errors include: incorrect logical inferences, misinterpretation of 

logical notation, and use of inappropriate proof frameworks.   

 Search for patterns.  The data were analyzed for emerging patterns in terms of 

both participants and tasks (Ginsburg, 1997; Patton, 2002).  One level of analysis focused 

on describing how each participant completed the tasks.  This allowed for identification 

of patterns that emerged across participants on each task as well as patterns regarding 

each participant’s performance on the tasks.  A broader level of analysis focused on 

patterns that emerged across tasks and participants (so that they were not task- or 

participant-dependent). 

Credibility and Trustworthiness 

 A variety of strategies can be used to increase the level of credibility and 

trustworthiness in qualitative research, and I used: (a) triangulation of (i) interview 

transcripts and documents, and (ii) tasks within and across participants; and (b) first-level 

member checks (Bratlinger, Jimenez, Klingner, Pugach, & Richardson, 2005; Glesne, 

2011; Patton, 2002).   

 Triangulation.  Two types of triangulation of data sources were used: 

triangulation of verbal protocols and documents, and triangulation of tasks within and 

across participants (Bratlinger et al., 2005; Ginsburg, 1997; Glesne, 2011; Patton, 2002).  

I used both the verbal protocols from the interviews and the written work from the 

interviews to provide multiple data sources.  Additionally, I compared participants’ 

strategies across two interviews that occurred roughly a week apart.  These triangulation 
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methods were considered both within and across participants (Ginsburg, 1997).  Thus, the 

data were analyzed in terms of what each participant did across all tasks (the tasks acted 

as multiple data sources for the participant) as well as what was done on each task across 

all participants (the participants acted as multiple data sources across tasks).     

 First-level member checks.  First-level member checks of transcripts allowed 

participants to confirm the accuracy of their responses to the interview questions 

(Bratlinger et al., 2005; Rubin & Rubin, 2012).  Within a few days of each interview, I 

provided participants with a short summary of their responses to each question from the 

interview.  I did not address the correctness of their responses or provide any opinion or 

judgment on their responses.  I simply asked them if the summary accurately reflected 

their responses in the interview.  In the few situations in which a student indicated that 

something was inaccurate, I changed it to reflect what they thought was the correct 

version of their response.  These changes were minor and did not affect the data in this 

study.     
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Chapter 4: Results and Discussion 

 In this chapter, I present the results of this study and conclude with a discussion 

related to my research questions.  The chapter is organized by task, with the following 

order: Monotonicity Task, Composite Function Task, Injective Function Task, and Global 

Maximum Task.  Within each task, the results are organized by research question so that 

they address:  

1. In what ways and to what extent do students use intuition and analysis to decide 

on the truth value of mathematical statements? 

2. What are the connections between students’ process of deciding on the truth value 

of mathematical statements and their ability to construct associated proofs and 

counterexamples? 

3. What types of systematic intuitive, mathematical, and logical errors do students 

make during the proving process, and what is the impact of these errors on the 

proving process? 

The results of Research Question 1 (RQ1) orient the reader to each task and provide an 

overview of the students’ reasoning as categorized by the reasoning classification 

framework (Table 2).  The results of Research Question 2 (RQ2) include detailed 

summaries of students’ work on each task to illustrate their decision-making and 

construction processes.  Finally, the results of Research Question 3 (RQ3) detail students’ 

errors and their impact on the proving process.   
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Monotonicity Task 

 The Monotonicity Task considers what happens when two decreasing functions 

are composed (Figure 4).  The statement in this task is false because of the interval 

restriction.  Thus, a 𝑓: ℝ → ℝ counterexample for this task must include a function 𝑔 

with outputs that are not elements of the interval I.  This task would have been true if it 

had been stated without the interval restriction.  This is why I expected students to 

commit systematic intuitive errors that would lead them to an incorrect decision.   

 

Prove or disprove: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ decreasing on an interval I, then the 

composite function 𝑓 ∘ 𝑔 is increasing on I.      

Relevant Definitions from Definition List: 

If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are two functions, then the composite function 𝑓 ∘ 𝑔 is 

defined by (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). 

A function 𝑓: ℝ → ℝ is said to be decreasing if and only if for all 

𝑥1, 𝑥2 ∈ ℝ, (𝑥1 < 𝑥2 implies 𝑓(𝑥1) > 𝑓(𝑥2)). 

A function 𝑓: ℝ → ℝ is said to be increasing if and only if for all 

𝑥1, 𝑥2 ∈ ℝ, (𝑥1 < 𝑥2 implies 𝑓(𝑥1) < 𝑓(𝑥2)). 

Figure 4.  The Monotonicity Task and relevant definitions.  
 
 

The results of this task are organized by approaches students used: correct 

counterexample, incorrect proof, and over-generalization of an examples.  The students 

were generally unsuccessful on this task with only 4 of the 12 providing a correct 
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counterexample or demonstrating a correct understanding of why the statement was false.  

Five students provided an incorrect proof of the task based on the definitions of 

increasing and decreasing on ℝ (a correct proof for the related task without the interval 

restriction).  Three students constructed an incorrect generalization based on an example 

that indicated that the statement may be true.   

Decisions and justifications for decisions (RQ1).  The 12 students made a total 

of 17 decisions on the Monotonicity Task – five made two decisions each whereas the 

other seven students made only one decision.  Of the five students who made two 

decisions, two students overturned incorrect true decisions for correct reasons that led to 

a correct decision of false supported by correct counterexamples.   

 I classified the reasoning of the decisions based on the type of reasoning that 

preceded each.  The students justified their decisions on the Monotonicity Task using 

intuitive, semantic-empirical, semantic-deductive, and syntactic reasoning.  Of the 17 

decisions on this task, three were intuitive and 13 were analytical.  The following 

subtypes of reasoning were used for decision-making on the Monotonicity Task: 

 Intuitive: Property-based (3) 

 Semantic-empirical: Example-based (4) 

 Semantic-deductive: Definition-based informal argument (2) 

 Syntactic: Proof (2) and disproof (2) 

 Combination: Syntactic failed proof and syntactic counterexample (1) 

 Combination: Semantic-deductive, inconclusive-based, informal argument, 

syntactic failed proof, and syntactic need for assumption (1) 



  95 
 

 

 Combination: Semantic-empirical example-based and semantic-deductive 

generalization (1)  

One student simply assumed that the statement was true, thus her decision was not 

justified by either intuition or analysis.      

Of the 12 students who made a total of 17 decisions– five made two decisions 

each whereas the other seven students made only one decision.  All five students who 

made two decisions on this task overturned their first decision and the reasoning that was 

used to overturn the first decision also acted as full support for their second decision.  

Three students initially thought the statement was true but overturned those incorrect 

decisions.  Aurelia overturned an incorrect true decision through a failed proof attempt 

that led her to re-examine an example and find a counterexample.  Edward’s failed proof 

attempt due to a needed assumption led him to realize why this statement was actually 

false and overturn his original true decision in favor of a correct false decision.  Jay’s 

intuition led him to think that the statement would be true, but a mathematical mistake in 

his attempted proof resulted in a disproof that overturned his incorrect true decision.  Two 

students initially thought the statement was false but overturned those correct false 

decisions to ultimately decide incorrectly that it was true.  Jalynn overturned a correct 

decision supported by an incorrect disproof by noticing a mathematical mistake in her 

disproof.  However, her revised proof was also incorrect.  Tina’s intuition was that the 

statement was false, but over generalizing an example convinced her to overturn her 

correct false decision to claim that the statement was true instead.   
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 Participants used both intuitive and analytical reasoning to make decisions, but 

they only used analytical reasoning to support their decisions.  Table 7 provides an 

overview of the reasoning used by each student on this task for both decision-making and 

supporting decisions.  Each student in the incorrect proof group provided either a 

syntactic proof or disproof of the statement.  Three students in the correct solution group 

constructed syntactic counterexamples, and the fourth student provided an informal 

argument for why the statement would be false.  Each student in the generalization group 

constructed an informal argument based on generalizing an example.  None of the 

students in the generalization group believed that their example was sufficient to prove 

the statement, and all attempted to provide syntactic justification for why the phenomena 

in the example would generalize.   
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Table 7 
 
Types of Reasoning Used on Monotonicity Task Organized by Approach and Student  
Student Types of Reasoning Used 
 Intuitive Semantic-

empirical 
Semantic-
deductive 

Syntactic 

Incorrect Proof 
Elliot   Definition-based 

informal argument 
Proof 

Emily 
Evan 

   Proof 

Jalynn    Proof 
Disproof 

Jay Property-based   Disproof 

Correct Solution 
Aurelia  Example-based  Failed proof, 

Counterexample 

Edward  Example-based Inconclusive-based 
informal argument 

Failed proof, 
Need 

assumption 

Inigo Property-based   Counterexample 

Michael   Definition-based 
informal argument 

Counterexample 

Generalization 
Julie 
Louis 

 Example-based Generalization  

Tina Property-based Example-based Generalization  
            
 

All analytical reasoning–semantic and syntactic–used on this task to both make 

and support decisions was deliberate and justified.  To support decisions, eight students 

used syntactic reasoning in the form of either a proof, disproof, or counterexample, and 
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four students constructed semantic-deductive informal arguments, including three who 

generalized examples.        

 All intuitive reasoning used on this task was non-deliberate and only partially 

justified.  The three intuitive decisions were based on vague ideas regarding the 

properties of the functions in the task.  Jay’s intuition was based on the idea that the 

composition of two decreasing functions would result in an increasing function, similar to 

the way in which the product of two negative quantities results in a positive quantity.  

Inigo had a vague idea about how two negatives would behave with a quadratic function.  

Tina based her intuitive decision on the idea that graphs of decreasing functions should 

continue to decrease when the functions are composed.   

Connecting decisions and constructions – Decision-making pathways (RQ2).  

In this section, I will discuss students’ decision-making pathways and the connections 

between the decision-making and construction processes.  There were four different 

decision-making pathways used on this task (Figure 5).  Pathways RDR and RDRD were 

used by five students each, and Pathways DR and RD were each used once.  There were 

six students whose pathways ended with a decision (Pathways RD and RDRD) and six 

students whose pathways ended with follow-up justification (Pathways RDR and DR).   
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RDR 
Reasoning

  

Reasoning

 
 

Elliot (IP) 
Michael (CS) 
Inigo (CS) 
Louis (G) 
Julie (G) 

DR 
 

Reasoning 

 
  Emily (IP) 

RD 
Reasoning

  
  Evan (IP) 

RDRD 
Reasoning

  

Reasoning

  

Jalynn (IP) 
Jay (IP) 
Aurelia (CS) 
Edward (CS) 
Tina (G) 

Figure 5.  Decision-making pathways for Monotoncity Task.  (IP) indicates incorrect 
proof group, (CS) indicates correct solution group, and (G) indicates generalization 
group. 
 
  

This section will be organized by solution groups.  Within each solution group, 

further organization will be provided by pathway, and within pathways, organization is 

by reasoning type. 

 Incorrect proof group.  Each student constructed the same basic incorrect proof 

based on the inequality inference in the definitions of decreasing and increasing with 

limited or no consideration of the domains of the functions in the task.  An example of the 

incorrect proof is as follows: 

Assume 𝑥1 < 𝑥2.  Since 𝑔 is decreasing, 𝑔(𝑥1) > 𝑔(𝑥2).  Then, because 𝑓 is 

decreasing,   𝑓(𝑔(𝑥1)) < 𝑓(𝑔(𝑥2)).   Thus, 𝑥1 < 𝑥2 implies  

𝑓(𝑔(𝑥1)) < 𝑓(𝑔(𝑥2)).  Hence, the composite function 𝑓(𝑔(𝑥)) is increasing. 

Although this is not a proof of the given statement, it is a correct proof for the following 

related statement: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are decreasing, then the composite function 

Decision 

 

Decision 

 

Decision 

 

Decision 

 
Decision 
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𝑓 ∘ 𝑔 is increasing.  Thus, the incorrect proof does not incorporate the interval restriction 

that is a key part of the Monotonicity Task.  

 Elliot.  Elliot’s decision-making followed Pathway RDR with a semantic-

deductive, definition-based, informal argument leading to a true decision supported by a 

syntactic proof (Figure 6).  Elliot began by constructing an informal argument based on 

an informal representation of the definitions of increasing and decreasing.  He used 

vertical arrows to indicate whether the elements of the domain or range of the functions 𝑓 

and 𝑔 were increasing or decreasing (Figure 7).  Elliot noticed that the arrows switched 

directions when the composite function was formed, and decided the statement was true: 

So that means that as 𝑥 increases, 𝑔(𝑥) decreases and for 𝑓...as 𝑥 decreases on 𝑓, 

𝑓(𝑥) increases ‘cause it would just be going the opposite way on this interval I.  

And since the values 𝑔(𝑥) in the range of 𝑔 are what’s being plugged into 𝑓, that 

means the values of 𝑓(𝑔(𝑥)), the values of 𝑔(𝑥) are decreasing, so 𝑓(𝑔(𝑥)) 

would be increasing.  So I’m going to say that’s true, and be, go about proving 

that. 

 

Informal argument 

 

 Proof 
 

 

Figure 6.  Elliot’s decision-making pathway. 
 
 

 

True 

 



  101 
 

 

 

Figure 7.  Elliot’s semantic work.   
 
 

Elliot translated his informal argument into a syntactic proof by connecting the 

changing direction of the arrows to the changing direction of the inequalities in the 

formal definitions of increasing and decreasing.  Because Elliot’s proof was based on his 

informal argument, his decision-making and construction processes were connected.  

 Emily.  Emily’s decision-making followed Pathway DR with a true decision 

supported afterward by a syntactic proof (Figure 8).  Emily did not engage in a legitimate 

decision-making process because she was “assuming it was true from the get-go.”  Due to 

her experiences in her mathematics courses in which she was “used to being handed a 

statement and told to prove it, and told that it’s true,” she did not consider the statement’s 

truth value being in question.   

 

 Proof 
 

 

Figure 8.  Emily’s decision-making pathway. 
  
 

Emily began by writing the definition of decreasing for the functions 𝑓 and 𝑔.  

Unlike the other students in this solution group, Emily eventually recognized that the 

inputs in the definition belonged to the interval I.  However, when she applied the 

True 
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definition of 𝑓 decreasing to 𝑔(𝑥1) and 𝑔(𝑥2) she failed to verify that they were elements 

of the interval I, resulting in a variation on the incorrect proof.  Because Emily simply 

assumed that the statement was true, her decision-making and construction processes 

were not connected.   

 Evan.  Evan’s decision-making followed Pathway RD with a syntactic proof 

leading to and supporting a true decision (Figure 9).  Evan did not have an initial sense of 

whether the statement was true or false:  

As of now, and I’m not actually sure which way I think this is going to go, so I’m 

going to come back to my definition of the composition function and see if there’s 

just a better way to rewrite this so I can see what, kind of, what direction it’s 

going.  

Evan algebraically composed the functions to determine the direction of the final 

inequality because this determined whether the composite function was increasing or 

decreasing.  By ignoring the interval restriction, Evan’s work led him to conclude that the 

composite function was increasing and the statement was true.  Because Evan’s proof 

simultaneously led to and supported his decision, his decision-making and construction 

processes were one in the same.  

   

Proof 

 
   

Figure 9.  Evan’s decision-making pathway. 
  

 

True 
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Jalynn.  Jalynn’s decision-making followed Pathway RDRD with a syntactic 

disproof leading to a false decision that was overturned by a syntactic proof that resulted 

in and supported a true decision (Figure 10).  In the beginning, Jalynn was uncertain of 

the truth value of the statement, so she algebraically composed the functions and applied 

the definition of decreasing to determine the direction of the inequalities.  However, 

Jalynn made a mathematical mistake based on a substitution she had made that led her 

final inequality to indicate that the composite function was decreasing (Figure 11).  She 

stated, “So that means it’s a decreasing function.  I mean, it’s still decreasing.  So then 

it’s false then.  I think.  That’s what, I mean, I don’t know if I confused myself 

somewhere.”   

 

Disproof 

 

 Proof 

 

  

Figure 10.  Jalynn’s decision-making pathway.   
  
 

Due to her concern, Jalynn reviewed her work:  

Oh, wait, but hold on.  So it is increasing....Let me look at my definition.  Yeah.  

Because 𝑥1 < 𝑥2, and we found for it to be increasing that the function of that 

[ 𝑥1] is less than that [𝑥2].  So to rewrite, it’s 𝑓(𝑔(𝑥1)) < 𝑓(𝑔(𝑥2)) where  

𝑥1 < 𝑥2.   

False 
 

True 
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Figure 11.  Jalynn’s proof illustrating her initial error based on her substitution of 𝑎 for 
𝑔(𝑥1) and 𝑏 for 𝑔(𝑥2). 
 
 

Thus, Jalynn identified and overcame her mathematical mistake and decided that the 

statement was true.  However, because she did not attend to the interval restriction in the 

task, her final proof was the incorrect proof.  Jalynn’s decision-making and proof 

construction processes were synonymous because each decision came after she had a 

disproof or proof of the statement, respectively.   

 Jay.  Jay’s decision-making followed Pathway RDRD with a property-based 

intuition leading to a true decision that was overturned by a syntactic disproof that 

resulted in and supported a false decision (Figure 12).  At first, Jay thought that the 

statement was true based on a vague idea about how the functions should behave.  He 

described, “Initially, I thought it was probably true because if you take the composite of a 

decreasing function, it seems like it should be increasing if both are decreasing....Sort of, 

like, the double negative.”   
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Intuition 

 

 Disproof 

 

  

Figure 12.  Jay’s decision-making pathway.   
  
 

Jay used the definition of decreasing and algebraically composed 𝑓 and 𝑔 in an 

effort to support his intuitive decision.  However, a mathematical mistake with his 

inequalities (the same one that Jalynn made) coupled with ignoring the interval restriction 

led Jay to construct a variation of the incorrect proof that disproved the statement.  Jay’s 

decision that the statement was false resulted from having a disproof of the statement so 

that his decision-making and construction processes were one in the same for his second 

decision.   

 Jay’s initial intuitive decision was based on a vague idea about how decreasing 

functions should behave, but the relationship between this decision and his disproof 

construction is unclear.  It is possible that either his reference to the “double negative” 

was an attempt at a retrospective justification of his intuition based on his disproof or he 

actually had this idea in mind before he wrote his disproof.  Jay did comment that he was 

expecting the inequalities to switch in his work: “plug that into 𝑓, then that should turn it 

around.”  This could indicate that he initially thought the inequalities would flip “like, the 

double negative.”  This expectation that the inequalities would switch could have been 

based on Jay’s intuitive idea that composing two decreasing functions may work like 

multiplying two negative quantities, but because of his mathematical mistake, he did not 

get the anticipated result.  However, the data do not indicate whether this relationship to 

the “double negative” resulted from Jay’s work with the inequalities and was not a 

True 
 

False 
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component of his original intuitive decision or if his idea that the inequalities should 

switch stemmed from his intuitive idea about how these functions should behave.      

 Correct solution group.  There were four students who determined correctly that 

the statement in the Monotonicity Task is false.  Aurelia, Inigo, and Michael provided a 

correct counterexample.  Edward demonstrated a correct understanding of why the task is 

false, but did not provide a counterexample.  Each student produced at least one example, 

but the examples were used and constructed in various ways.  Six decisions were made 

by this group – one intuitive, two semantic-empirical, one semantic-deductive, one 

syntactic, and one semantic-deductive/syntactic combination.  This section is organized 

by pathway and reasoning.   

 Michael.  Michael’s decision-making followed Pathway RDR with a semantic-

deductive, definition-based, informal argument leading to a false decision supported by a 

syntactic counterexample (Figure 13).  Michael began by considering the formal 

definitions of decreasing for 𝑓 and 𝑔 and taking the derivative of the composite function 

𝑓(𝑔(𝑥)).   He was aware that he was making an unjustified assumption about the 

differentiability of the functions, but thought it would help him make progress on the 

task.  He realized that in order for the composite function to be increasing, the outputs of 

𝑔(𝑥) would have to be in the interval I where the function 𝑓 was decreasing:  

Because if that’s the case [that the functions are differentiable], then its [𝑔(𝑥)] 

derivative is, um, less than or equal to zero....Then since 𝑓 is also, it [𝑓'(𝑔(𝑥))] 

should be...less than or equal to zero, which means that their product [the 

derivative, 𝑓'(𝑔(𝑥))𝑔'(𝑥)] should be greater than or equal to zero, but that only 
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holds if 𝑔(𝑥) is in I.  I’m trying to think of a counterexample because it wouldn’t 

work if, if 𝑔(𝑥) weren’t in I, then it [𝑓(𝑥)] might not be decreasing on that 

interval.  

 

Informal argument 

 

 Counterexample 
 

 

Figure 13.  Michael’s decision-making pathway. 
  
 

Michael’s informal argument not only led him to decide that the statement was 

false, but also provided him with specific conditions for a counterexample to satisfy.  He 

started with the function 𝑔(𝑥) = −𝑥 − 1 and restricted it to 𝑥 ∈ [0,1].  He then noted that 

the outputs of 𝑔(𝑥) would be in the interval [−2, −1].  He wanted to find a function 𝑓 

that was decreasing on [0,1] and increasing on [−2, −1].  He tried the function  

𝑓(𝑥) = −𝑥2 multiple times before he realized that it satisfied his requirements.  Michael 

was unique in his approach to constructing the counterexample in that he used the 

interval restriction and the properties that he wanted in the function 𝑓 in order to 

determine an appropriate function.  This is a sophisticated example-construction strategy 

not often used by undergraduate students (Iannone, P., Inglis, M., Mejia-Ramos, J. P., 

Simpson, A., & Weber, K., 2011).  Michael described his process, “I went about trying to 

find a function that sent, sent the elements of, say, the unit interval to somewhere where 

the function 𝑓 wasn’t decreasing.”  When describing his counterexample, Michael said: 

because 𝑔 takes this out of the interval itself, 𝑓 doesn’t necessarily have to be 

decreasing on any place outside of that interval because that’s all they’re saying.  

False 
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They’re saying if it’s [𝑓] decreasing on one interval that would mean that 𝑔 would 

have to take it to the interval itself in order for 𝑓’s decreasing-ness [sic] to even 

apply. 

 Inigo.  Inigo’s decision-making followed Pathway RDR with a property-based 

intuition leading to a false decision supported by a syntactic counterexample (Figure 14).  

Though Inigo had “never actually thought about this [task] before,” initially he did not 

think it was true.  Later, he said, “I definitely looked at it and knew it was false, and I’m 

not sure how...It didn’t feel true...I just felt like a negative and a negative with functions 

is not going to do something like that because of something squared.”  This property-

based intuition led directly to a counterexample.  He showed that an example with linear 

functions would indicate that the statement was true, but a more complicated example 

would tell a different story:  “If 𝑓 is that [−𝑥2 + 2] and then 𝑔 is – 𝑥, then...[𝑓(𝑔(𝑥)) 

is] −𝑥2 + 2.  So that one is still decreasing.  So this is not true.”   

 

Intuition 

 
 Counterexample 

 
 

Figure 14.  Inigo’s decision-making pathway. 
  
 

Inigo’s counterexample was incorrect because he did not provide an interval 

restriction, and both 𝑓 and 𝑓(𝑔(𝑥)) were not decreasing on their entire domains.  

However, Inigo’s uncertainty regarding 𝑓 and 𝑔 as decreasing functions prompted him to 

correct this error.  After mentally considering the functions’ derivatives, Inigo wrote the 

derivative of 𝑓, drew a set of axes for a graph, then drew a partial graph of 𝑓 on [0, ∞).  

False 
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He noted that both f and g were decreasing on [0, ∞), and chose this as his interval I.  By 

partially graphing his counterexample, Inigo realized his error and provided a complete 

and correct counterexample.  Because Inigo’s counterexample involved a quadratic and 

two negatives, the intuition that led to Inigo’s decision also led to his counterexample 

construction, connecting his decision-making and construction processes. 

 Aurelia.  Aurelia’s decision-making followed Pathway RDRD with a semantic-

empirical example leading to a true decision that was overturned by the combination of a 

syntactic failed proof attempt and a syntactic counterexample, resulting in a false 

decision (Figure 15).  Aurelia began with the relevant definitions in the task, but she 

made no progress, so she tried an example “to test it out and see, like, which way it 

worked.”  She chose 𝑓(𝑥) = −𝑥 and 𝑔(𝑥) = −𝑥2, resulting in 𝑓(𝑔(𝑥)) = 𝑥2.  She did 

not restrict these to an interval, committing an error because 𝑔 and 𝑓 ∘ 𝑔 are both 

increasing and decreasing, depending on the interval.  However, when she drew the 

partial graph of 𝑔(𝑥) = −𝑥2 from (−∞, 0) she decided to “just deal with this from zero 

to infinity,” indicating that she realized the function was only decreasing on (0, ∞).  As 

with Inigo, a graph allowed Aurelia to overcome her error and restrict appropriately the 

function.  Because the composite function was increasing on the restricted interval, she 

decided that the statement was true. 

 

Example 

 
 

Proof attempt/   
Counterexample 

 
 

 

Figure 15.  Aurelia’s decision-making pathway. 
 
  

True 

 
False 
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Aurelia did not analyze her example for an indication of why the statement may 

be true; rather she attempted a direct proof and then a proof by contradiction using the 

formal definition of decreasing.  Thus, her decision-making and construction processes 

for her first decision were not connected.  When she was unable to make progress on a 

proof, rather than change her decision, she tried to construct a counterexample.  She 

returned to her example, drawing a pair of coordinate axes and wondering “What if I put 

these [f and g] in the opposite?  Ah!”  She interchanged the functions 𝑓 and 𝑔 in her 

example, making 𝑓(𝑥) = −𝑥2 and 𝑔(𝑥) = −𝑥 so that the composite was  

𝑓(𝑔(𝑥)) = −𝑥2.  She hesitated, drew a partial graph of 𝑓(𝑔(𝑥)) = −𝑥2 on (0, ∞), and 

said “that’s right, because I want it to be decreasing.”   

Aurelia’s failed proof attempt prompted her to search for a counterexample that 

led to the overturn of her initial decision and the new decision that this task was false.  

Although Aurelia’s failed proof attempt did not inform her search for a counterexample, 

the counterexample led directly to her decision that the statement was false, connecting 

her decision-making and construction processes for her second decision.   

 Edward.  Edward’s decision-making followed Pathway RDRD with a semantic-

empirical example leading to a true decision.  That decision was overturned by the 

combination of a syntactic failed proof attempt, syntactic need for an assumption, and a 

semantic-deductive inconclusive-based informal argument that led to a false decision 

(Figure 16).  Edward began with an example, choosing 𝑓(𝑥) = −𝑥 + 2 and 𝑔(𝑥) = −𝑥2, 

and indicating his chosen restricted interval: “So let's say our I is zero to positive infinity.  

Both are decreasing.”  Upon composing the functions, 𝑓(𝑔(𝑥)) = 𝑥2 + 2, Edward said, 
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“That is increasing.  All right, so it could be true.  Is it necessarily true?  On this practice 

interval, it is increasing.”  Because Edward’s example did not inform his subsequent 

proof attempt, his first decision-making process was unconnected to his proof 

construction process.   

 

Example 

 
 

Proof attempt/Need assumption/ 
Informal argument 

 
 

 

Figure 16.  Edward’s decision-making pathway. 
  
 

Edward’s proof attempt was similar to the incorrect proof with one significant 

difference – Edward knew that in order for his proof to be correct, he had to assume that 

the range of the function 𝑔 was in the interval I.  In fact, he made this assumption in his 

proof, but upon completing his proof, noted “I’ll say it’s increasing on I.  Although I 

didn’t do a good job at all of proving where I is or working with where I is.”  This 

concern over the interval restriction led Edward to determine that his proof was invalid:  

If they are both decreasing on an interval I, that doesn’t necessarily mean the 

intervals overlap...Because we would need the range of 𝑔 to be in I...we would 

need the domain of 𝑓 to be the same decreasing interval as the range of g, and 

we’d need to, the domain of g to be decreasing.  So, and I didn’t prove that 

connection.  I should have.  

In response to further prompting, he explained, “I would not necessarily believe this 

proof because I didn’t match up the range to the domain.”   

True 

 
False 
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 When I asked about the assumption in his proof that the range of 𝑔 was in the 

interval I, he indicated that it was a necessary but illegitimate assumption, “If I make that 

assumption, yes...that the range of 𝑔 then is also in this interval I,...it does work...But 

without making that assumption, yes, I don't think it holds....I don’t think that’s an 

assumption I can legitimately make.”  However, it was not until he finally made sense of 

why that assumption was necessary that he decided that this statement was actually false.  

He concluded: 

Without this [the assumption], 𝑓…could be increasing or decreasing I.  I mean, 

depending on where the range of g is mapped onto the domain of 𝑓 and what, 

whether it’s increasing or decreasing at that interval...‘cause the interval...doesn’t 

necessarily line up at 𝑓 and 𝑔.  That makes this statement false.   

For Edward’s second decision, his decision-making and construction processes were 

connected because they coincided.  His syntactic failed proof attempt and need for an 

assumption led to his semantic-deductive, informal argument regarding the assumption’s 

necessity, all of which both led to and supported his decision that the statement was false.    

 Generalization group.  Three students constructed a semantic-deductive 

generalization of an example based on the idea that the product of two negative quantities 

is a positive quantity.  Each student in this group looked at an example of the composition 

of two decreasing functions.  In each case, the students chose negative functions as the 

decreasing functions, and through the composition, the negatives canceled, resulting in a 

positive function that was classified as increasing.  Each student determined that 

negativity was a defining feature of decreasing functions, and that this phenomena would 
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happen any time two decreasing functions were composed, resulting in an increasing 

function.  This section is organized by pathway and students with the same pathway and 

reasoning are discussed together.   

 Julie and Louis.  The decision-making of Julie and Louis followed Pathway RDR 

with a semantic-empirical example leading to a true decision that was supported by a 

semantic-deductive generalization of the example (Figure 17).  Although Julie began with 

an example, Louis first considered the definition of decreasing and used it to construct his 

example:  

The definition, it’s saying from one y term to the next of, by the definition of a 

decreasing function, is smaller even though the 𝑥’s are increasing.  So by looking 

at this, by plugging in a decreasing number into your function, does that make the 

overall function increase?   

Louis was the only student to think of decreasing in terms of “plugging in a decreasing 

number.”  Louis chose 𝑔(𝑥) = −3𝑥 and 𝑓(𝑥) = −2𝑥, but he did not form the general 

composite function.  Instead, he chose a set of increasing 𝑥-values, 1, 2, and 3, and 

formed the composite function for each specific 𝑥-value (6, 12, and 18, respectively) 

(Figure 18).   

 

Example 

 
 Generalization 

 
 

Figure 17.  Julie and Louis’ decision-making pathway. 
 
  

 

True 
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Figure 18.  Louis’ computational composite functions. 
 
 

In response to his results, he said “So in that specific case, the function was increasing.”  

Julie chose 𝑓(𝑥) = − 𝑥 and 𝑔(𝑥) = − 𝑥3 so that 𝑓(𝑔(𝑥)) = 𝑥3.  She said that this 

composite function was positive and therefore increasing.  Julie concluded, “just based 

off of that, I’m going to assume that this is true.”    

Both students’ examples led them to decide that the statement was true, and they 

supported this decision with a generalization of what happened in the example.  Julie 

explained: 

It is going to be true because anytime you have a negative and if the, if both f and 

g are decreasing, then that means that they’re both negative...so for what I would 

assume is that decreasing functions are negative, and when you compose the two, 

you’re going to have a negative times a negative.”   

Similarly, Louis claimed, “So you’re multiplying your decreasing value, which in these 

cases were negative by the negative slope to give you a positive number, which overall 

was increasing.”  Although both Julie and Louis tried, neither student was able to use the 

definition of decreasing to construct a syntactic argument, so they settled on their 

generalizations.  For both students, the example that led to the decision also formed the 
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basis for their generalization that supported the decision, so their decision-making and 

construction processes were connected.     

 Tina.  Tina’s decision-making followed Pathway RDRD with a property-based 

intuition leading to a false decision that was overturned by a semantic-empirical example 

and its semantic-deductive generalization, resulting in a false decision (Figure 19).  Tina 

started with the relevant definitions and constructed an example (a mathematical error 

resulted in a decreasing composite function.), but said “I don’t think that helped me at 

all.”  Then, she expressed the following intuitive idea about properties of decreasing 

functions:  

You would think if, like, the graphs were already decreasing, I don’t know how 

they can just automatically increase unless that something dramatic changed.  

Like, they’re both on the same interval, so wouldn’t they just both stay decreasing 

if you’re putting a decreasing function into a decreasing function?...I’m pretty 

sure that it’s going to be decreasing. 

Although Tina expressed this intuition after her preliminary work with the definitions and 

example, it is unclear whether her intuition related to that work because Tina’s intuition 

referenced graphs and intervals rather than the definitions and example in her preliminary 

work.  On the other hand, even though she did not say anything about it, her example 

showed that the composite function was decreasing, so her intuition may have stemmed 

from the example. 

 

Intuition 

 
 Example/Generalization 

 
  

Figure 19.  Tina’s decision-making pathway. 

False 

 
True 
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Tina attempted to analyze her example by substituting specific numbers into the 

functions, and a mathematical error suggested that the numbers were decreasing in the 

composite function.  Thus, Tina began rewriting her example to provide clearer support 

for her decision.  However, after writing “if 𝑥1 = 5, 𝑥2 = 6, 𝑔 = −𝑥2,” she said: 

If I have two decreasing functions and I do its composite, the negatives will 

cancel out, making it a positive function.  Which, if that’s true, then it would be 

increasing then.  So would the composite be increasing then?  I would say that 

maybe it’s right.   

She did not write the example that led her to this change in decision, but since she was 

rewriting her earlier example, it is likely that she correctly composed the functions this 

time, as this would support what she said.  This combination of an example and its 

generalization led to her second decision and sufficed as both the decision-making and 

construction process for that decision 

Errors/Difficulties (RQ3).  The students in this study committed intuitive, 

mathematical, and logical errors on the Monotonicity Task (Table 8).  The only 

systematic intuitive error was a relevance error related to the interval restriction in the 

task.  The students committed two systematic mathematical errors: defining decreasing 

functions as negative and overgeneralizing the idea that “two negatives make a positive.”  

Additionally, students made various nonsystematic mathematical and logical errors.  In 

this section, I will discuss the three systematic errors and then summarize the 

nonsystematic errors.    
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Table 8 
 
Error Types on Monotonicity Task Organized by Approach and Student 
Student Error  Types 

Incorrect Proof 
Elliot  
Evan 

Intuitive – relevance 

Emily Intuitive – relevance* 
Logical – antecedent not satisfied 

Jay 
Jalynn 

Intuitive – relevance 
Mathematical – inequalities (Jalynn)* 

Correct Solution 
Aurelia 
Inigo 

Intuitive – relevance* 

Edward Logical – illegal assumption* 

Michael None 

Generalization 
Julie Intuitive – relevance 

Mathematical – decreasing means negative 
Mathematical – overgeneralization 

Louis Mathematical – decreasing means negative 
Mathematical – overgeneralization 

Tina Mathematical – decreasing means negative 
Mathematical – overgeneralization 
Mathematical – composition of functions* 
Mathematical – multiplication 

* error was overcome 
 
  

    Relevance errors.  The only systematic intuitive errors committed on this task 

were relevance errors regarding the interval restriction.  These errors took on two forms: 

(a) ignoring the meaningfulness of the interval restriction, and (b) completely ignoring 

the interval restriction.  This error is especially significant in this task because the interval 
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restriction is the key to the falsity of the statement.  Eight students made this error, 

including all students in the incorrect proof group, Aurelia and Inigo in the correct 

solution group, and Julie in the generalization group.  Only Emily (incorrect proof 

group), Aurelia, and Inigo (correct solution) were able to overcome this error.        

 Ignoring meaningfulness.  Evan, Elliot, and Jalynn from the incorrect proof group 

did not place value on the interval restriction beyond being a trivial component of the 

task.  All three students wrote the interval restriction in the beginning of their proof, but 

never used it in a meaningful way.  Both Evan and Jalynn rewrote the definitions for 

increasing and deceasing, but did not include the domain for the functions.  They only 

wrote the inequality implication (thus they did not indicate what set 𝑥1  and 𝑥2 were 

elements of, and only wrote, for example,  𝑥1 < 𝑥2 implies 𝑓(𝑥1) > 𝑓(𝑥2) for the 

definition of 𝑓 decreasing).  By not attending to the interval restriction, Evan, Elliot, and 

Jalynn essentially changed the task to the related task without the interval restriction for 

which the incorrect proof is a correct proof.  Because these students intuitively deemed 

the interval restriction irrelevant, they were led to an incorrect solution for the task.  

Although the students’ reasoning on this task was mathematically sound (since Jalynn 

corrected her mathematical mistake), they ended up with an incorrect solution because 

they were reasoning about a different task than the one given to them.  For Evan, Elliot, 

and Jalynn, an incorrect determination by their intuition that the interval restriction was 

not meaningfully relevant led to the incorrect solution.  Their intuitive representation of 

the task excluded the interval restriction before these students had the chance to reason 
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about it.  Furthermore, because their syntactic work seamlessly led to a proof, no red 

flags went up to signal that they needed to take it into account in their reasoning.  

 Aurelia’s intuition also ignored the meaningfulness of the interval restriction in 

this task, but she overcame this error with a partial graph of a quadratic example function.  

Aurelia began with an example of two decreasing functions and their composite function, 

but she used a quadratic as one of the decreasing functions and did not initially provide 

an interval restriction.  Since quadratics are only decreasing on part of their domains, this 

is an incorrect example without the associated interval restrictions.  After composing 

𝑓(𝑥) = −𝑥 and 𝑔(𝑥) = −𝑥2, Aurelia drew the portion of the graph of 𝑔(𝑥) = −𝑥2 from 

(- ∞, 0) and said “Oh, we’ll just deal with this from zero to infinity,” indicating that the 

function was increasing in her graph and only decreasing, as desired, on (0, ∞).  Thus, 

sketching this partial graph of a quadratic function led Aurelia to realize that the interval 

restriction was necessary and allowed her to overcome her relevance error.   

 Ignoring completely.  Julie and Inigo completely ignored the interval restriction, 

but Inigo was able to overcome it through an experience similar to Aurelia’s.  Upon 

proposing the counterexample of 𝑓(𝑥) = −𝑥2 + 2, 𝑔(𝑥) = −𝑥, and  

𝑓(𝑔(𝑥)) = −𝑥2 + 2, Inigo offered no interval restriction.  However, he expressed 

uncertainty regarding whether 𝑓 and 𝑔 were both decreasing.  This uncertainty prompted 

him to consider their derivatives and then sketch a pair of coordinate axes.  He asked me 

“Am I allowed to choose the interval?”  I said that he could, and he drew the portion of 

the graph of 𝑓 on [0, ∞) and said “that’s [𝑔] decreasing all the time, and that one’s [𝑓] 

decreasing there [on [0, ∞)].  So at least there [[0, ∞)], it overlaps, and you said for any 
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interval, so I’m going to stand by this.”  Like for Aurelia, Inigo’s sketching of a partial 

graph of a quadratic helped him realize that he needed the interval restriction and allowed 

them to overcome his relevance error.  Unlike Aurelia and Inigo, Julie chose linear and 

cubic functions in her example – functions that are decreasing on their entire domains.  

Thus, when she drew the graphs of her example functions, there was no red flag that went 

up as was the case when Aurelia and Inigo drew the graphs of their quadratic functions.  

So, like most of students in the incorrect proof group who committed a relevance error, 

there was nothing that caused conflict with Julie’s intuitive choice to ignore the interval 

restriction.   

 Emily also ignored the interval restriction at first, but overcame this error by 

carefully reading the task.   At first, Emily defined 𝑓 as a decreasing function as follows: 

∀𝑥1, 𝑥2 ∈ ℝ, 𝑥1 < 𝑥2, 𝑓(𝑥1) > 𝑓(𝑥2).  Then, as she was writing the definition for 𝑔, she 

looked back at her definition for 𝑓 and said “I’m actually going to change my 𝑥1 and 𝑥2 

to belonging in the interval because I guess I only know it’s decreasing on it.”  She 

crossed out ℝ in her definition for 𝑓 and replaced it with I.  She then completed her 

definition for 𝑔, also with 𝑥1 and 𝑥2 elements of I.    

 Finally, Jay also completely ignored the interval restriction on this task because he 

only mentioned it while initially reading the statement aloud.  Thus, Jay’s intuitive 

representation deemed the interval restriction completely irrelevant to the task.    

 Decreasing functions are always negative.  Four students committed the 

mathematical error of deciding that decreasing functions would always be negative (in 

the sense that the leading coefficient would be negative).  This led to an incorrect solution 
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for Julie, Louis, and Tina (the entire generalization group) who used this association as 

the basis for their overgeneralization of their example.  Inigo correctly solved this task, 

but used this relationship as the basis for a semantic-deductive generalization of a 

counterexample.  Each student expressed uncertainty about this idea, but used it anyway.   

 Julie and Inigo both indicated that decreasing functions have negative slopes by 

definition, as Inigo noted: “Those are decreasing because their slope is negative, and 

that’s the definition of a decreasing function, I believe.”  There is the additional issue that 

they specifically said that decreasing functions have negative slopes, and only linear 

functions have slopes.  Students often use the word “slope” inappropriately, such as when 

they say a function has a negative slope although they mean that it has a negative 

derivative.  The students in this study typically indicated that the leading coefficient of 

the function was negative when they said the function had a negative slope.  Tina and 

Louis did not specifically indicate that the relationship was by definition, but did express 

their hesitant belief in it, as evidenced by Tina’s statement: “So if it’s true that for a 

function to be decreasing, then it’s negative...”     

 Generalization of “two negatives make a positive.”  Although this mathematical 

error only caused difficulties for the three students in the generalization group (Julie, 

Louis, and Tina), seven of the students in this study stated a version of this idea at some 

point during their work on this task.  Julie, Louis, and Tina used the idea that decreasing 

functions are always negative as the basis for their generalization that when composing 

two decreasing functions, the two negatives (from the decreasing functions) would 

multiply and cancel, resulting in a positive, increasing, composite function.  Each student 
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saw this phenomenon occur in the example they chose to explore and decided that it 

would occur anytime two decreasing functions were composed.  Thus, the idea that “two 

negatives make a positive” was generalized from their example into a semantic-deductive 

informal argument for the truth of the statement.  Although this was the key to their 

generalization, there were other issues involved such as the fact that the students 

generalized from a single example and did not take into consideration a variety of 

functions or the order of the composition. 

 Nonsystematic errors.  Of the nonsystematic errors on this task Jay and Jalynn 

each wrote their inequalities in the wrong direction in their proofs for the composite 

function.  Both errors stemmed from substitutions the students made that seemed to 

confuse them.  Jay did not double check his work although he originally thought that the 

inequalities would work out the other way.  On the other hand, Jalynn immediately 

thought that she had confused herself with the inequalities, double-checked her work, and 

fixed her mistake.  During Tina’s generalization, she made algebraic mistakes by 

incorrectly composing her example functions and incorrectly multiplying negative 

numbers.    

 Emily and Edward each made logical errors.  Emily assumed the conclusion of an 

implication without checking that the antecedent was satisfied (and it was not).  When 

she used the assumption that 𝑓 was decreasing, she did not check that the inputs (the 𝑔 

outputs) were in the interval I even though she had written that they must be for 𝑓 to be 

decreasing.  She did not realize this error.  Edward assumed a statement in a proof that 

was not a given assumption and did not follow from other statements in the proof.  
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However, his uncertainty about this assumption led him to conclude that he could not 

legitimately make the assumption.  Thus, he overcame the error, leading to his correct 

decision that the statement was false.  

Monotonicity Task summary.  The students in this study provided three distinct 

solutions for this task.  The incorrect proof was based heavily on syntactic reasoning and 

relevance errors regarding the interval restriction.  Although each student in this group 

committed a relevance error, Emily was the only one to overcome the error.  Students 

mostly engaged in reasoning prior to making decisions, and then followed their decision 

with a proof or disproof.   

 Students who provided correct solutions to the task engaged in intuitive, 

semantic-empirical, semantic-deductive, and syntactic reasoning.  Aurelia and Inigo (in 

the correct solution group) overcame relevance errors through the use of a partial graph 

of a quadratic function.  All students in this group engaged in reasoning prior to an initial 

decision.  Inigo and Michael followed their decisions with counterexamples.  Aurelia and 

Edward followed their decisions with proof attempts that led to the overturning of their 

initial decision and a second, correct decision.   

 The generalization group used mostly semantic-empirical and semantic-deductive 

reasoning, and committed the systematic errors of assuming decreasing functions are 

negative and overgeneralizing.  Julie and Louis based their decision on an example and 

supported it with a subsequent generalization of the example.  Tina began with an 

intuitive decision that was overturned by an example and generalization that led to her 

second decision.   
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Composite Function Task 

 The Composite Function Task asks if a one-to-one composite function implies 

that the inner function is also one-to-one (Figure 20).  The statement in this task is true 

and can be proved by contradiction (Figure 21).   

 

Let 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ be functions.  Determine, with proof or refutation, whether 

the following statement is true or false: If the composite function 𝑓 ∘ 𝑔 is 

one-to-one, then 𝑔 is one-to-one. 

Relevant Definition(s) from Definition List 

If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are two functions, then the composite function 𝑓 ∘ 𝑔 is 

defined by (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). 

A function 𝑓: ℝ → ℝ is called one-to-one if and only if for all 𝑥1,𝑥2 ∈ ℝ, 

(𝑓(𝑥1) = 𝑓(𝑥2) implies 𝑥1 = 𝑥2). 

Figure 20.  Composite Function Task and relevant definitions. 
   
 

Assume (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) is one-to-one.  Assume for contradiction that 𝑔 is not one-

to-one.  Then, there exists 𝑎1, 𝑎2 ∈ ℝ such that 𝑎1 ≠ 𝑎2 and 𝑔(𝑎1) = 𝑔(𝑎2).  Since 𝑓(𝑔(𝑥)) 

is one-to-one and 𝑎1 ≠ 𝑎2, we have 𝑓(𝑔(𝑎1)) ≠ 𝑓(𝑔(𝑎2)).  But, this is a contradiction 

because 𝑔(𝑎1) = 𝑔(𝑎2).  Thus, 𝑔 is one-to-one.   

Figure 21.  Proof of the Composite Function Task.  
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The students were mostly unsuccessful on this task (only two constructed a correct proof 

of the statement) despite the fact that nine decided correctly that the statement was true.  

Students’ incorrect proofs and arguments resulted from a variety of logical and 

mathematical errors.  The three students who thought that the statement was false 

constructed counterexamples that were incorrect based on not using the absolute value 

when taking a square root.     

 The analysis for this task is based on only 9 of the 12 students in this study.  

Louis, Julie, and Tina each had significant difficulty on this task, so I excluded them from 

the analysis.  Each student thought the statement was true, but their confusion on this task 

led to incoherent arguments based on incorrect understandings of the concept of one-to-

one and an inability to meaningfully link the function 𝑔 to the composite function 𝑓 ∘ 𝑔.  

These struggles made it impossible for me to categorize meaningfully their decision-

making and construction processes, so their work on this task was irrelevant to my 

research questions.   

Decisions and justifications for decisions (RQ1).  The students in this study 

justified their decisions on the Composite Function Task using both intuitive and 

analytical reasoning.  The nine students made a total of 13 decisions – six students made 

one decision each, two students made two decisions each, and one student made three 

decisions.  All three students who made multiple decisions (Emily, Inigo, and Michael) 

were concerned about the lack of information on the function 𝑓 and had failed proof 

and/or counterexample attempts. 
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 Of the 13 decisions made on the Composite Function Task, five were intuitive, six 

were analytical, and one was based on a combination of intuitive and analytical 

reasoning.  The following subtypes of reasoning were used for decision-making on this 

task: 

 Intuitive: Similarity-based (3), understanding-based (1), and unjustified (1) 

 Syntactic: Need for assumption (1) and failed counterexample (2) 

 Combination: Syntactic need for assumption and failed proof (2) 

 Combination: Intuitive memory-based and syntactic need for assumption (1) 

 Combination: Semantic-empirical example-based and semantic-deductive 

informal definition (1) 

Additionally, one student simply assumed that the given statement was true.   

All nine of the students who completed this task constructed a syntactic proof or 

counterexample in support of their final decision on this task.  Because students’ 

decisions were based mostly on intuition or syntactic needs for assumptions or failed 

proof or counterexample attempts, it makes sense that these would be followed up with 

syntactic proofs or counterexamples.  No students based a decision on an informal 

argument for this task, and only one student used semantic reasoning for decision-

making.  

 All analytical reasoning used on this task during the decision-making and 

construction processes was deliberate and justified.  In addition to the semantic reasoning 

already discussed that led to decisions, Elliot used a semantic-deductive 

diagram/definition-based informal argument in combination with a syntactic proof to 
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support his decision.  The remaining eight students supported their decisions with a 

syntactic proof or counterexample. 

 Students’ intuitive reasoning on this task was non-deliberate and either unjustified 

or partially justified by similarity, understanding, or memory.  Jay noted that “Initially, I 

thought it was probably true,” but provided no justification for this intuitive decision.  

Elliot and Jalynn simply noted that their decision was based on having seen something 

similar to this task before whereas Edward specifically noted that this task was similar to 

the true statement that if 𝑓 and 𝑔 are one-to-one, then 𝑓 ∘ 𝑔 is one-to-one.  Evan’s 

intuition was understanding-based because his decision was based on the idea that the 

statement seemed to “make sense” to him.  Finally, Emily’s memory-based intuition was 

rooted in the idea that she remembered the true statement that if 𝑓 and 𝑔 are one-to-one, 

then 𝑓 ∘ 𝑔 is one-to-one was not an if and only if statement.  The chart in Table 9 

provides an overview of the reasoning used by each of the nine students included in the 

analysis on this task for both decision-making and supporting decisions.   
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Table 9 
 
Types of Reasoning Used on Composite Function Task Organized by Approach and 
Student 
Student Types of Reasoning Used 
 Intuitive Semantic-

empirical 
Semantic-
deductive 

Syntactic 

Counterexample 
Aurelia  Example-based Informal 

definition 
Counterexample 

Emily Memory-based   Need 
assumption 

Failed 
counterexample 

Failed proof 
Counterexample 

Inigo    Need 
assumption 
Failed proof 

Counterexample 

Proof 
Edward 
Jalynn 

Similarity-based   Proof 
 

Elliot Similarity-based  Diagram/ 
definition-based 

informal 
argument 

Proof 

Evan Understanding-
based 

  Proof 

Jay Unjustified   Proof 

Michael    Need 
assumption 

Failed 
counterexample 

Proof 
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Connecting decisions and constructions – Decision-making pathways (RQ2).  

Four different pathways were used on this task (Figure 22).  Inigo, who used Pathway 

DRDR, was the only student whose pathway began with a decision as he simply assumed 

that the given statement was true.  Each pathway used ended in support for a decision. 

 

 
Figure 22.  Decision-making pathways used on Composite Function Task.  (C) indicates 
counterexample group and (P) indicates proof group. 
 
 

All nine students provided syntactic support for their decisions on this task in the 

form of proofs and counterexamples.  Many students did not engage in semantic 

reasoning on this task, using only syntactic reasoning or intuition followed by syntactic 

reasoning.  The solutions to this task are organized by solution type, resulting in two 

categories: syntactic counterexample and syntactic proof.  Within each solution group, 

additional organization will be provided by pathway, and within pathways, organization 

is by reasoning type.   

 Syntactic counterexample group.  The three students in this group, Aurelia, 

Emily, and Inigo, decided incorrectly that this statement was false and provided a 
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counterexample to support their decision.  Each student in this group used a different 

pathway.   

 Aurelia.  Aurelia’s decision-making followed Pathway RDR with the combination 

of a semantic-deductive informal definition and a semantic-empirical example leading to 

a false decision that was supported by a syntactic counterexample (Figure 23).  Aurelia 

began by considering the definitions of composite function and one-to-one, but she 

struggled to make sense of the definition of one-to-one.  Then she decided to look at an 

example.  She chose 𝑔(𝑥) = 𝑥2 − 1, and 𝑓(𝑥) = 2𝑥 so that 𝑓(𝑔(𝑥)) = 2𝑥2 − 2.  

However, she said that these were all one-to-one functions and she needed an example of 

a function that was not one-to-one.  She said that a vertical line was not one-to-one, 

indicating her confusion regarding the definition of one-to-one and the definition of a 

function.  Finally, she tried to look at a piece-wise defined function, but only constructed 

part of it and a partial corresponding graph.   

 

Informal definition/Example 

 
 Counterexample 

 
 

Figure 23.  Aurelia’ decision-making pathway. 
  
 

Due to her struggles with trying to find an example of a function that was not one-

to-one, Aurelia decided to determine exactly what it meant to not be one-to-one based on 

the definition.  She wrote that 𝑓(𝑥1) = 𝑓(𝑥2) when 𝑥1 ≠ 𝑥2.  At this point, she realized 

that it was the horizontal line test that corresponded to one-to-one, and she said that 

both cos(𝑥) and 𝑥2 were not one-to-one.  She then provided the following 

False 
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counterexample: 𝑔(𝑥) = 𝑥2, 𝑓(𝑥) = √𝑥, and 𝑓(𝑔(𝑥)) = 𝑥.  However, this is an 

incorrect counterexample because 𝑓(𝑔(𝑥)) = ∣𝑥∣. 

 After Aurelia constructed her counterexample, I asked her at what point she 

thought that the statement was false, and she said it was once she realized “one-to-one is 

horizontal lines, not vertical lines, where it has to pass through both.”  She then choose 

 𝑥2 because it “is really easy to manipulate, and it’s not one-to-one.”  So it was the 

combination of realizing that the horizontal line test corresponded with the definition of 

one-to-one and recognizing that 𝑥2  was not one-to-one that led Aurelia to decide that this 

was a true statement.  Her decision-making was connected to her counterexample 

construction since her counterexample involved 𝑥2.   

 Emily.  Emily’s decision-making followed Pathway RDRDRDR with the 

combination of memory-based intuition and a syntactic need for an assumption leading to 

a false decision that was overturned by a syntactic failed counterexample attempt.  The 

failed counterexample attempt led to a true decision that was overturned by the same 

syntactic need for an assumption leading to another false decision that was supported by a 

syntactic counterexample (Figure 24).  Initially, Emily thought that this statement was 

false because she thought that she needed additional information about the function 𝑓, 

and her memory of a similar statement did not include the statement in the task: “I 

remember a proof that when both functions are one-to-one,...the composite function is 

also one-to-one, but I seem to remember that that was not an if and only if statement.”  

However, Emily struggled to construct a counterexample, trying to determine an 
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appropriate 𝑓 function that would satisfy the properties of a counterexample when 

coupled with 𝑔(𝑥) = 𝑥2. 

 

  
Figure 24.  Emily’s decision-making pathway. 
 
 

This failed attempt at constructing a counterexample led Emily to consider that 

the statement may be true.  Emily attempted to set up a proof structure, but another 

change in decision was prompted when she stated:    

I don't know anything about 𝑓.  I don't know if 𝑓 is one-to-one or not.  And so the 

inputs could, theoretically, be different, even if I have the same, the outputs could, 

theoretically, be different even if I have the same output, I think, so I really think 

that this is going to be false. 

Her final decision was supported by the following counterexample 𝑔(𝑥) = 𝑥2, 

𝑓(𝑥) = 𝑥3 2⁄ , and 𝑓(𝑔(𝑥)) = 𝑥3 in which 𝑓 ∘ 𝑔 is one-to-one but 𝑔 is not one-to-one.  

However, this counterexample is incorrect because 𝑓(𝑔(𝑥)) = (∣𝑥∣)3 is not one-to-one.  

Although Emily decided to stick with this counterexample, she expressed hesitation that 

this case was similar to taking the square root of a squared function.   

 Emily’s reasoning was not connected because the reasoning that led to each 

decision was not mirrored in her attempts to support the decisions.  However, this makes 

sense because her reasoning for why she thought the statement was false was based on a 

lack of information on the function 𝑓 that would inhibit a proof attempt rather than 
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support a counterexample search.  Additionally, a failed counterexample attempt led her 

think the statement may be true rather than reasoning that may suggest why the statement 

would be true.       

 Inigo.  Inigo’s decision-making followed Pathway DRDR with an initial true 

decision that was overturned by a syntactic failed proof attempt, resulting in a false 

decision that was supported by a syntactic counterexample (Figure 25).  Inigo simply 

assumed that this statement was true from the beginning, as he did on other tasks as well.  

After looking at the definitions for one-to-one and composite functions, Inigo was 

concerned about the relationship between the domain of a composite function and the 

domains of the component functions.  He constructed two examples in which he 

composed two functions, found the domains of the functions, and tried to determine the 

relationship between the domains.  He thought that he needed this information in order to 

prove the given statement.  However, he did not think he was making progress and 

decided that perhaps he was approaching the task in the wrong way.   

 

 
Failed proof attempt/ 

Need assumption 

 

 Counterexample 
 

Figure 25.  Inigo’s decision-making pathway. 
  
 

Inigo’s lack of progress made him consider trying a proof by contradiction, and he 

considered the possibility of the function 𝑔 not being one-to-one.  However, he still 

thought that the lack of information on the relationship between the domain of the 

composite function and the domain of g prohibited him from proving this statement, so 

True 

 
False 
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he finally considered whether he could find a counterexample.  His first counterexample 

involved the situation in which 𝑔 was one-to-one and the composite function 𝑓 ∘ 𝑔 was 

not one-to-one.  He illustrated his example with graphs and showed they were and were 

not one-to-one, respectively, with the horizontal line test.  Afterward, he said “wait...what 

did I just show?”  He realized he had not constructed an appropriate counterexample and 

that what he actually needed to disprove this statement was a function 𝑔 that was not one-

to-one and a corresponding composite function 𝑓 ∘ 𝑔 that was one-to-one.  He 

constructed the same counterexample as Aurelia, 𝑔(𝑥) = 𝑥2, 𝑓(𝑥) = √𝑥, and  

𝑓(𝑔(𝑥)) = 𝑥 that is not a correct counterexample because 𝑓(𝑔(𝑥)) = ∣𝑥∣.  Inigo’s 

decision-making and construction processes were not connected.  He assumed the 

statement was true, so his initial decision-making did not involve reasoning that could be 

connected to his proof attempt.  Additionally, his lack of progress on his proof is what 

overturned his first decision and led to his second decision, and the construction of his 

counterexample did not include reasoning related to his failed proof attempt.   

 Syntactic proof group.  Six students constructed a syntactic proof in support of 

their decision that this statement was true.  Two of the six constructed correct proofs – 

Edward and Elliot – and the other four constructed incorrect proofs – Evan, Jay, Jalynn, 

and Michael.  The five students (Edward, Elliot, Jalynn, Jay, and Evan) in this group who 

used Pathway RDR made intuitive decisions.  These were the only intuitive decisions 

made on this task, and include the two students who constructed correct proofs.  Michael 

is the only student in this group who did not use Pathway RDR and did not make an 

intuitive decision.  In this section, I will analyze the work of the students with the correct 
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proofs first, followed by the students with the incorrect proofs, with further organization 

by pathway.     

 Edward and Jalynn.  The decision-making of Edward and Jalynn followed 

Pathway RDR with similarity-based intuition leading to a true decision that was 

supported by a syntactic proof (Figure 26).  Edward thought that this statement was true 

because “I know, I've seen the proof once before...that if both f and 𝑔 are one-to-one, then 

the composite 𝑓 of 𝑔 is also one-to-one, and that seems very similar in nature to the 

question being asked here.”  Although Edward struggled initially, he constructed a correct 

proof by contradiction (Figure 27).   

 

Intuition 

 
 Proof 

 
 

Figure 26.  Edward and Jalynn’s decision-making pathway. 
 
  

 

Figure 27.  Edward’s correct proof of the Composite Function Task. 
 
 

True 
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Edward’s decision-making and construction processes were not connected as his proof 

was not based on his intuitive decision.  On the other hand, Jalynn constructed an 

incorrect proof in which she made mathematical and logical errors, including assuming 

that f was one-to-one.  When she wrote what she wanted to show, she said “So, we want 

to show that 𝑔(𝑥1) = 𝑔(𝑥2), given that 𝑥1 = 𝑥2.”  Although she did not use 𝑥1 = 𝑥2 as 

an assumption, she did conclude her proof with 𝑔(𝑥1) = 𝑔(𝑥2).  (Figure 28).  Because 

Jalynn’s intuition was unrelated to her proof, her decision-making and construction 

processes were not connected. 

 

 

Figure 28.  Jalynn’s incorrect proof of the Composite Function Task. 
 
 

Elliot.  Elliot’s decision-making also followed Pathway RDR with similarity-

based intuition leading to a true decision that was supported by the combination of a 

semantic-deductive, diagram/definition-based, informal argument and a syntactic proof 

(Figure 29).  After Elliot constructed his proof, he noted that he thought the statement 

was true from the start: “I was pretty sure that it was true at the beginning because I think 

I remember doing something like this a couple years back.  I just didn’t really remember 
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how to show that it was true.”  Thus, Elliot began by trying to determine why this 

statement would be true.  He drew a general diagram of a composite function, wrote the 

definitions of one-to-one for 𝑓 ∘ 𝑔 and 𝑔, and then related his diagram to the definitions 

by noting that since 𝑓 ∘ 𝑔 was one-to-one, “for any given point in domain C, there’s a 

unique point in domain A that maps to it” (Figure 30).   

 

Intuition 

 
 Informal argument/Proof 

 
 

Figure 29.  Elliot’s decision-making pathway. 
  
 

 

Figure 30.  Elliot’s general diagram for the composition of functions. 
 
 

However, Elliot was unable to progress using this line of reasoning, so he decided to try a 

proof by contradiction instead.  He drew a new diagram, this time illustrating how 

assuming that 𝑔 was not one-to-one (based on the definition) would lead to a 

contradiction.  He then translated this argument into a correct syntactic proof (Figure 31).   

True 
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Figure 31.  Elliot’s diagram and his associated correct proof showing that if 𝑔 was not 
one-to-one, then a contradiction would occur.   
 
 

Although Elliot’s decision-making and construction processes were not connected, he did 

base his proof on the informal argument he constructed, connecting his semantic and 

syntactic reasoning.   

Jay.  Jay’s decision-making followed Pathway RDR with an unjustified intuition 

leading to a true decision that was supported by a syntactic proof (Figure 32).  Jay 

thought this statement was true was from the beginning, but provided no justification for 

his decision, only noting “Initially, I thought it was probably true.”  Jay began his work 

by incorrectly writing what it meant for the composite function to be one-to-one, writing 

that 𝑓(𝑔(𝑥1)) = 𝑓(𝑔(𝑥2)) then 𝑔(𝑥1) = 𝑔(𝑥2).  He thought that this alone implied that 

𝑔 was one-to-one, but he decided to construct a proof by contradiction to make sure.  

However, his proof contained numerous errors, including incorrectly stating what it 

meant for 𝑔 to not be one-to-one and contradicting 𝑔(𝑥1) = 𝑔(𝑥2).  Additionally, Jay’s 
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proof had notational issues that made him “think there is something missing.”  Although 

he did not know how to fix his proof, he maintained that he thought that the statement 

was true.  Because Jay’s intuition was unjustified, there was no connection between his 

decision-making and construction processes.   

     

Intuition 

 
 Proof 

 
 

Figure 32.  Jay’s decision-making pathway. 
  
 

Evan.  Evan’s decision-making followed Pathway RDR with an understanding-

based intuition leading to a true decision that was supported by a syntactic proof (Figure 

33).  Evan’s intuition was that the statement was true because it “look[ed] like [it] made 

sense” and he “had some ideas floating around that I, at least, wanted to try into the 

proof.”  Evan used the definitions of composite function and one-to-one to construct an 

incorrect direct proof that included the errors of assuming that 𝑓 was one-to-one and 

misuse of the hypothesis of the statement (Figure 34).   

 

Intuition 

 
 Proof 

 
 

Figure 33.  Evan’s decision-making pathway.        
  

 

 

True 

 

True 
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Figure 34.  Evan’s incorrect proof of the Composite Function Task. 
 
 

It is unclear whether Evan’s decision-making and construction processes were connected 

as he did not say specifically why he thought the statement made sense or what ideas he 

wanted to try in his proof.  

Michael.  Michael’s decision-making followed Pathway RDRDR with a syntactic 

need for an assumption leading to a false decision.  This decision was overturned by a 

syntactic failed counterexample attempt that led to a true decision that was supported by a 

syntactic proof (Figure 35).  At first, Michael decided that this statement was false 

because “if you have a composite function being one-to-one, then I think the outer 

function has to be one-to-one.”  However, Michael was unable to construct a 

counterexample to support this decision.  He chose 𝑔(𝑥) = 𝑥2 because it is a simple 

function that is not one-to-one, but was unable to find an appropriate 𝑓(𝑥) to compose it 

with that would result in a one-to-one composite function.  He thought that 𝑓(𝑥) = √𝑥 

should work, but finally realized that the composition would not be one-to-one.  
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Need assumption

  

Failed 
counterexample

 
 

Proof 

 

 

Figure 35.  Michael’s decision-making pathway. 
  
 

This failed attempt at constructing a counterexample led Michael to change his 

decision, considering that the statement may be true.  He drew a composite function 

diagram, but said that this was not helpful and that he was having a difficult time 

visualizing the task.  After a short break, Michael returned to this task and wrote what it 

meant for 𝑔 to not be one-to-one.  Unfortunately, he incorrectly negated the definition of 

one-to-one, writing 𝑔(𝑥) = 𝑔(𝑦) iff 𝑥 ≠ 𝑦.  Then he said “I might have a proof by 

contradiction, maybe.  But it’s fishy.”  He wrote his proof, based on his incorrect 

interpretation of 𝑔 not being one-to-one, but was concerned about the “if and only ifs” in 

the proof (Figure 36).  He mulled over his proof for a while and constructed an example 

in which 𝑓 was not one-to-one, 𝑔 was one-to-one, and the composite function was not 

one-to-one.  He said that this example increased his confidence in his proof, and he 

decided that he was content with it. 

 

 

Figure 36.  Michael’s incorrect proof of the Composite Function Task. 

False 

 
True 
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Michael’s first decision was based on thinking that he needed the assumption that 

f was one-to-one, but his counterexample search did not seem to depend on that.  His 

inability to construct a counterexample led to his second decision, but was not connected 

to his construction of his proof by contradiction.  Thus, for both of Michael’s decisions, 

his decision-making was unconnected to his construction process. 

Errors/Difficulties (RQ3).  The students in this study did not commit any 

intuitive errors on this task, but they did commit both mathematical and logical errors 

(Table 10).  There was one systematic mathematical error on this task, committed by 

three students.  The systematic mathematical error of claiming the square root of a 

squared function did not need absolute value was committed by the three students who 

provided incorrect counterexamples for this task.  Furthermore, students made various 

nonsystematic mathematical and logical errors.  No student was able to overcome a 

systematic error, and only one student overcame any error on this task.  Additionally, the 

errors were significant in that they formed the basis for students’ incorrect proofs and 

counterexamples.  In this section, I will discuss the three systematic errors and then 

provide a summary of the nonsystematic errors. 
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Table 10 
 
Error Types on Composite Function Task Organized by Approach and Student 
Student Error Types 

Counterexample 
Emily 
Aurelia 

Mathematical – missing absolute value 

Inigo Mathematical – missing absolute value 
Mathematical – incorrect domain of 
composite 
Logical – incorrect counterexample 
structure* 

Proof 
Edward 
Elliot 

None 

Evan Logical – assumed 𝑓 was one-to-one 
Logical – if-then issues 

Jay Logical – incorrect negation of one-to-one 
Logical – if-then issues 
Mathematical – incorrect definition of one-
to-one composite function 
Mathematical – notational issues 

Jalynn Logical – incorrect proof structure 
Logical – assumed 𝑓 was one-to-one 

Michael Logical – incorrect negation of one-to-one 

* error was overcome 
 

 

 Missing absolute value.  Aurelia, Emily, and Inigo each made the mathematical 

error of not considering absolute value when taking the square root of a squared function.  

These three students were the only three that decided that this task was false and provided 

counterexamples.  However, each of their counterexamples were incorrect due the same 

mistake.  Aurelia and Inigo each used the same counterexample: 𝑔(𝑥) = 𝑥2, 
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𝑓(𝑥) = √𝑥, and 𝑓(𝑔(𝑥)) = 𝑥.  Neither student questioned their counterexample although 

the correct composite function is 𝑓(𝑔(𝑥)) = ∣𝑥∣.  The counterexample that Emily settled 

on had the same problem: 𝑔(𝑥) = 𝑥2, 𝑓(𝑥) = 𝑥3 2⁄ , and 𝑓(𝑔(𝑥)) = 𝑥3.  Unlike Aurelia 

and Inigo, Emily was hesitant about her counterexample, and noted that she was 

uncertain about: 

…taking [an] exponent and raising [it] to a three half power.  I feel like there 

might be a caveat where I'm not getting  𝑥3 perfectly....I still think that this is false 

and I think that this works, but it's kind of, like, square root of  𝑥2, you think it 

should be 𝑥, but it's really absolute value of 𝑥, and so I don't know if something 

funky like that is, should be happening here. 

 Nonsystematic errors.  Five types of nonsystematic logical errors were made on 

this task.  Jay and Michael each incorrectly negated the definition of one-to-one when 

assuming for contradiction that the function 𝑔 was not one-to-one.  Jay incorrectly wrote 

“for any 𝑥3, 𝑥4 ∈ ℝ, 𝑥3 ≠ 𝑥4 and 𝑔(𝑥3) ≠ 𝑔(𝑥4).  Although Jay determined the correct 

operation here, he did not negate the components correctly or use the correct quantifier.  

On the other hand, Michael negated the components correctly, but did not use the correct 

operation or clarify what quantifier he used: 𝑔(𝑥) = 𝑔(𝑦) iff 𝑥 ≠ 𝑦.  For both students, 

these incorrect negations formed the basis for their incorrect proofs on this task.    

 Evan and Jalynn each assumed that the function 𝑓 in the task was a one-to-one 

function.  Although no information was given on 𝑓, the key step in both students’ proofs 

depended on 𝑓 being one-to-one.  Evan used the inverse function 𝑓 in his proof in order 

to eliminate the 𝑓 function.  He assumed that the inverse function existed, but this is only 
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the case if 𝑓 is one-to-one.  Thus, it was an implicit assumption.  Jalynn’s assumption that 

𝑓 was one-to-one was also implicit as she may have been thinking that she was using her 

assumption that the composite function was one-to-one, but with different variables (see 

Figure 28 – Jalynn’s proof).  However, what she actually used, and assumed, was that 𝑓 

was one-to-one.   

 Evan and Jay each made errors in their work with the if-then statements in the 

task.  Because the hypothesis in the task was that the composite function was one-to-one, 

this was an if-then statement.  Evan incorrectly used the implication in this hypothesis to 

create a new implication that 𝑔 was one-to-one (see Figure 34 – Evan’s proof).  Jay 

incorrectly used the consequent of the hypothesis to contradict a later statement in his 

proof, pulling the consequent out of its if-then structure (Figure 37).   

 

 

Figure 37.  Jay’s error with the if-then statement (misuse of his assumption). 
  
 

The final logical errors are related to proof and counterexample structure.  

Although Jalynn correctly wrote the definition of one-to-one, when she set up her direct 
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proof, she wrote that she wanted to show that 𝑔(𝑥1) = 𝑔(𝑥2) when 𝑥1 = 𝑥2.  Although 

she did not use 𝑥1 = 𝑥2 as an assumption in her proof, she did conclude her proof with 

𝑔(𝑥1) = 𝑔(𝑥2).  Inigo incorrectly structured his counterexample for this task, but he 

overcame this error.  At first, he constructed a counterexample in which 𝑔 was one-to-one 

and the composite function 𝑓 ∘ 𝑔 was not one-to-one.  However, he immediately realized 

that this was not what he needed to show to disprove this statement and constructed a 

counterexample with the correct structure, that 𝑔 was not one-to-one and the composite 

function 𝑓 ∘ 𝑔 was one-to-one. 

 Three nonsystematic mathematical errors were made on this task.  Jay 

misinterpreted what it meant for the composite function to be one-to-one, writing that if 

𝑓(𝑔(𝑥1)) = 𝑓(𝑔(𝑥2)) then 𝑔(𝑥1) = 𝑔(𝑥2).  Additionally, Jay had notational issues 

related to his use of multiple variables.  He was uncertain about the arbitrariness of the 

variables and whether he could interchange them.  Inigo made the mathematical mistake 

of determining incorrectly the domain of a composite function in an example he 

constructed.  However, this mistake did not affect his work on this task as he abandoned 

the need to know about the domains of the functions.   

Composite Function Task summary.  The students in this study solved this task 

with either a syntactic proof or counterexample, but experienced numerous difficulties.  

Of the six students who constructed proofs, only two constructed correct proofs.  

Students’ incorrect proofs were based mostly on logical errors related to using if-then 

statements and the definition of one-to-one.  Additionally, Jay’s incorrect proof contained 

mathematical errors.  The three students who constructed incorrect counterexamples all 
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made the error of not considering absolute value when taking the square root of a 

function.  Despite the large quantity of errors on this task, only one student was able to 

overcome one error.   

 Aurelia was the only student whose decision-making and construction processes 

were connected on this task.  For every other student, the reasoning that led to their 

decision was unrelated to their construction of a corresponding proof or counterexample.  

It is possible that this lack of connection, along with the general lack of semantic 

reasoning, promoted the students’ difficulties on this task.  Additionally, although I did 

not expect intuition to be a factor on this task because of the backward thinking needed, 

four students made intuitive decisions.  However, none of these intuitions were related to 

why this statement was true, so these intuitions were not translatable into or connected to 

students’ proofs or counterexamples.        

Edward and Elliot were the only students who made both correct decisions on this 

task and constructed correct proofs.  Both students made similarity-based intuitive 

decisions on this task.  One of the keys to their success was the ability to correctly negate 

the definition of one-to-one.  Although Edward’s reasoning in support of his decision was 

syntactic, Elliot engaged in both semantic-deductive and syntactic reasoning.   

Injective Function Task 

 The Injective Function Task deals with the question of whether a general function 

is also a one-to-one function (Figure 38).  Although the word “one-to-one” is not 

mentioned in the task, the statement refers to the definition of one-to-one.  The statement 

in this task is false because not every function is one-to-one.  Many students in this study 
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realized this rather quickly.  Any function that is not one-to-one is suitable as a 

counterexample for this task.  Intuition was not used by any student on this task.  This 

was expected due to the need for analysis to unpack the statement in the task.   

 

Let 𝑓: 𝐴 → 𝐵 be a function and suppose that 𝑎0 ∈ 𝐴 and 𝑏0 ∈ 𝐵 satisfy 𝑓(𝑎0) = 𝑏0.  

Prove or disprove: If 𝑓(𝑎) = 𝑏 and 𝑎 ≠ 𝑎0, then 𝑏 ≠ 𝑏0. 

Relevant Definition from Definition List 

A function 𝑓: ℝ → ℝ is called one-to-one if and only if for all 𝑥1, 𝑥2 ∈ ℝ, 

(𝑓(𝑥1) = 𝑓(𝑥2) implies 𝑥1 = 𝑥2). 

Figure 38.  Injective Function Task and relevant definition. 
  
 

The majority of the students were successful on this task, with 8 of the 12 students 

providing a correct counterexample and/or demonstrating a correct understanding of why 

the statement was false.  All of the students’ arguments centered on the definitions of 

function and one-to-one.  Three students assumed that the given function was one-to-one, 

but two of them realized that they were not allowed to do so and provided a correct 

counterexample.  Other students assumed that being a function implied that 𝑓 was also 

one-to-one.  Furthermore, there was some general misunderstanding about the 

relationship between “function” and “one-to-one.”   

Decisions and justifications for decisions (RQ1).  The students justified their 

decisions on the Injective Function Task using various types of analytical reasoning.  No 

student used intuition on this task, and all reasoning was deliberate and justified.  The 12 
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students made a total of 15 decisions – nine students made one decision each, and three 

students made two decisions each.  All three of the students who made two decisions 

overturned incorrect decisions.  The following subtypes of reasoning were used for 

decision-making on this task: 

 Semantic-deductive: Informal definition (2) and definition-based, informal 

argument (2) 

 Syntactic: Formal definition (5) and proof (1) 

 Combination: Semantic-deductive informal definition and syntactic failed      

proof (1) 

 Combination: Syntactic failed proof, syntactic need for assumption, and syntactic 

counterexample (2) 

There were two decisions that were not based on reasoning because the students simply 

assumed the statement was true.   

Of the three students who overturned incorrect decisions, Aurelia decided that the 

statement was true based on the formal definition of function and the assumption that she 

was dealing with different y-values.  However, as she was constructing her proof, she 

realized that she was actually given different 𝑥-values in the task and overturned her 

original decision because a function can have different 𝑥-values corresponding to the 

same 𝑦-value.  Inigo and Jalynn also thought that the statement was originally true, but 

each overturned this decision upon realizing that a proof required the assumption that the 

function 𝑓 was one-to-one, and they could not legitimately make that assumption because 

it was not a given in the task.        
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 Almost every student provided syntactic support for their decisions on the 

Injective Function Task.  Every student in the correct solution group except Edward 

provided a counterexample, and some provided additional informal arguments.  Edward 

was the only student who did not provide a fully syntactic argument.  Although Edward 

provided a counterexample, he did not see it as sufficient to refute the statement and 

longed for a general argument that disproved it.  However, Edward was unable to provide 

a syntactic argument for why the statement was false, instead providing an inconclusive-

based informal argument.  Every student in the incorrect solution group provided a 

“proof” of the statement.  Table 11 provides an overview of the reasoning used by each 

student on this task for both decision-making and supporting decisions.       
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Table 11 
 
Types of Reasoning Used on Injective Function Task Organized by Correctness and 
Student 
Student Types of Reasoning Used 
 Intuitive Semantic-

empirical 
Semantic-
deductive 

Syntactic 

Correct Solution 
Elliot 
Emily 

  Informal 
definition 

Counterexample 

Michael 
Evan 

  Inconclusive-
based informal 

argument 

Formal 
definition 

Counterexample 

Edward  Example-based Inconclusive-
based informal 

argument 

Formal 
definition 

Proof 

Jalynn 
Inigo 

   Failed proof 
Need 

assumption 
Counterexample 

Aurelia   Informal 
definition 

Formal 
definition 

Failed proof 
Counterexample 

Incorrect Solution 
Tina 
Louis 

  Definition-based 
informal 
argument 

Proof 

Julie    Formal 
definition 

Proof 

Jay    Proof 
 
 

Connecting decisions and constructions – Decision-making pathways (RQ2).  

In this section, I will discuss students’ decision-making pathways and the connections 
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between their decision-making and construction processes.  Five different pathways were 

used on this task (Figure 39).  Ten students used pathways that ended with follow-up 

justification and only two students used pathways that ended in decisions.   

 

RDR 
Reasoning

  

Reasoning

 
  

Elliot (CS) 
Emily (CS) 
Michael (CS) 
Evan (CS) 
Edward (CS) 
Tina (IS) 
Louis (IS) 
Julie (IS) 

DR 
 

Reasoning

 
   Jay (IS) 

RDRD 
Reasoning

  

Reasoning

  
 Jalynn (CS) 

DRD 
 

Reasoning

  
  Inigo (CS) 

RDRDR 
Reasoning

  

Reasoning

  

Reasoning

 
Aurelia (CS) 

Figure 39.  Decision-making pathways used on Injective Function Task.  (CS) indicates 
correct solution group and (IS) indicates incorrect solution group.   
 
 

The solutions to this task are organized based only on whether they are incorrect 

or correct because there were not any clearly distinct solutions within these broad groups.  

All of the students’ reasoning on these tasks centered on the definitions of function and 

one-to-one.  These definitions provided the connections between their decision-making 

and construction processes.  Within each solution group (correct and incorrect), the 

results are organized by pathway with further organization by reasoning type.     

Decision 
 

Decision 
 

Decision 
 

Decision 
 

Decision 
 

Decision 
 

Decision 
 

Decision 
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 Correct solution group.  The students in the correct solution group realized at 

some point in their work that the condition of being one-to-one is necessary for this to be 

a true statement and provided counterexamples and informal arguments to justify their 

decisions. Three students in this group originally thought that the statement was true, but 

overturned their decisions.  This section is organized by pathway and reasoning type.   

 Emily and Elliot.  The decision-making of Emily and Elliot followed Pathway 

RDR with a semantic-deductive informal definition leading to a false decision that was 

supported by a syntactic counterexample (Figure 40).  Both students based their decision 

that the statement was false on an informal definition of function.  Emily said, “Because 

𝑓 is a function, if the inputs are different, the outputs aren’t necessarily different.  So, I 

feel like it is going to be false.”  Emily and Elliot both connected this idea to their 

counterexamples by constructing a function that mapped two inputs to the same output.  

Each constructed the counterexample 𝑓(𝑥) = 𝑥2, indicating that unique inputs, 2 ≠ −2 

yield non-unique outputs, 4 = 4. 

 

Informal argument 

 
 Counterexample 

 
 

Figure 40.  Emily and Elliot’s decision-making pathway. 
  
 

Michael and Evan.  The decision-making of Michael and Evan followed Pathway 

RDR with a syntactic formal definition leading to a false decision that was supported by a 

semantic-deductive, inconclusive-based, informal argument and a syntactic 

counterexample (Figure 41).  Both Michael and Evan noticed quickly that the statement 

would be false because they are not given that the function is one-to-one.  After this 

False 
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decision, both provided an inconclusive-based informal argument based on having 

insufficient information to reach the conclusion of the statement.  This argument connects 

to the idea that the given function is not one-to-one, thus linking the decision-making 

process to the construction of the argument.  Evan argued that a counterexample would 

be a function that maps 𝑎 to 𝑏0 because “nowhere in the statement does it say 𝑏 can't 

equal 𝑏0...there’s nothing directly preventing 𝑓(𝑎) from equaling 𝑏0 when 𝑎’s ≠ 𝑎0.”  

Thus, this argument also directly connected to the construction of a counterexample.  

However, both Michael and Evan were hesitant to commit to a specific counterexample. 

  

Formal definition 

 
 

Informal argument/ 
Counterexample 

 

 

Figure 41.  Michael and Evan’s decision-making pathway.  
 
 

Michael seemed content to stop with the idea that any non-injective function 

would suffice as a counterexample, but he eventually said that 𝑓(𝑥) = 𝑥2 was the 

“ultimate” example of non-injectivity and that 𝑓(𝑥) = 𝑥2, 𝑎 = 1, 𝑎0 = −1, 𝑏 = 𝑏0 = 1 

would be a specific counterexample.  On the other hand, Evan wavered due to the 

abstractness of the task because the domain and range were given as generic sets rather 

than the real numbers.  He was concerned that 𝑓(𝑥) = 𝑥2 could not be used as a 

counterexample in this abstract setting and that anything that mapped two different 𝑥-

values to a single 𝑦-value would show the statement was false.  However, Evan finally 

realized that it was okay to use a specific counterexample in this situation and provided 

the same example as Emily and Elliot.  Thus, both Michael and Evan eventually 

False 

 



  155 
 

 

constructed specific counterexamples that connected back to their informal arguments 

and original idea that a non-injective function would refute the statement.   

 Edward.  Edward’s decision-making followed Pathway RDR with a syntactic 

formal definition leading to a false decision that was supported by a semantic-deductive, 

inconclusive-based, informal argument and a syntactic proof (Figure 42).  He stated, “I 

think, from the beginning this is false, reading that, because we do not know if the 

function is one-to-one.”  Although Edward understood quickly why this statement was 

false, he struggled to disprove this statement.  Edward’s original plan for showing that 

this statement was false was to use a proof by contradiction in which he assumed that the 

statement was true, but reached a contradiction based on the function not being one-to-

one.  He had difficulty with this approach, so he decided to use an example “just to get 

my thoughts together.”  He use the same quadratic example provided by others to show 

that the statement did not hold in a particular case, but he thought a general argument was 

still necessary to disprove the statement.  Because Edward did not consider this a 

counterexample, and, hence, sufficient to disprove a statement, I categorized it as a 

semantic-empirical example.   

 

Formal definition 

 
 Informal argument/Proof 

 
 

Figure 42.  Edward’s decision-making pathway. 
 
 

Edward then attempted to construct a general disproof of this statement by trying 

to find statements equivalent to the definition of one-to-one, but he was unsuccessful.  

Finally, he provided an argument constructed of two cases based on whether or not 𝑓 was 

False 
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one-to-one: (a) a proof by contradiction that the statement is true if 𝑓 is one-to-one, and 

(b) an inconclusive-based argument that the statement is false if 𝑓 is not one-to-one 

because “we can’t say anything about the relationship of 𝑏 and 𝑏0... the relationship is 

still ambiguous of 𝑏 to 𝑏0.”  All of Edward’s work connected back to his original idea 

that the statement was false because the function was not one-to-one, thus linking his 

decision-making and construction processes.      

 Jalynn.  Jalynn’s decision-making followed Pathway RDRD with a syntactic 

proof leading to a true decision.  This decision was overturned by a combination of a 

syntactic failed proof attempt, need for an assumption, and counterexample, resulting in a 

false decision (Figure 43).  From the beginning, Jalynn thought that solving this task was 

related to the concept of one-to-one, but she was unsure how.  She was confused about 

the notation 𝑓: 𝐴 → 𝐵, wondering whether it only indicated the domain and range of the 

function or if it also implied that the function was onto or one-to-one.  She began by 

writing the givens, indicating that she wanted to show that 𝑏 ≠ 𝑏0, and noting that 

𝑓(𝑎0) ≠ 𝑓(𝑎) → 𝑏0 ≠ 𝑏.  However, her confusion about one-to-one continued: “I don’t 

know if I can just say that it’s one-to-one.  I can assume that it’s one-to-one.  Okay.  I’ll 

go with that...there would just be a condition for it then.”  With this assumption that the 

function 𝑓 was one-to-one, Jalynn constructed a proof for the statement that led to her 

initial decision that the statement was true.  

 

Proof 

 
 

Failed proof/Need assumption/ 
Counterexample 

 
 

 

Figure 43.  Jalynn’s decision-making pathway. 
  

True 

 
False 
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After she completed her proof, I asked Jalynn if she thought that the assumption 

that 𝑓 was one-to-one was a necessary condition for her proof.  She said that she was 

unsure because she was still confused about whether the notation indicated that the 

function was one-to-one.  So, I asked her what she thought if we just assumed that the 

notation only indicated the domain and range of the function, and she replied that 

“…probably would change it.  But I don’t, I mean, I’m just trying to think of, like, a [sic] 

example.”  She wrote 𝑓(𝑥) = 𝑥2, and showed that 𝑓(3) = 𝑓(−3) = 9.  She said: 

I know that that function isn’t one-to-one.  Right, so, but if I made the function 

one-to-one, like, by restricting the domain to just positive numbers, then it would 

work because there’s no positive number that has the same value for that.  So I 

think that in a general case, this would have to work for it to be one-to-one.  

Thus, she determined that one-to-one was a necessary condition for this statement to be 

true.   

 Finally, I asked Jalynn to clarify whether she thought this statement was true or 

false, and she replied “it’s true if it’s one-to-one and it, it’s false if, overall it would be 

false in any case, just like how here [referring to her example of 𝑓(𝑥) = 𝑥2]...I mean, I 

guess it just asks for the general case.”  By analyzing the assumption that the function 𝑓 

was one-to-one in the context of an example, Jalynn overturned her original decision, 

determining that this statement was false.  Jalynn used the concept of one-to-one 

throughout her work on this task, linking her decision-making and construction 

processes.      
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 Inigo.  Inigo’s decision-making followed Pathway DRD with a true decision that 

was overturned by a combination of a syntactic failed proof attempt, need for an 

assumption, and counterexample, resulting in a false decision (Figure 44).  Inigo assumed 

from the beginning that this statement was true, saying “for some reason, I always 

assume all of your things are true.”  After clearing up a couple questions regarding 

notation, Inigo said “So essentially this is asking if it’s one-to-one.”  Thus, Inigo knew 

this statement was related to the concept of one-to-one, and he attempted to construct a 

proof by contradiction in order to prove the statement.  In the proof, in order to claim that 

(𝑓(𝑎) = 𝑓(𝑎0) implies 𝑎 = 𝑎0), Inigo noted that he needed to assume that 𝑓 was one-to-

one, did so, and finished the proof.   

 

 
Failed proof/Need assumption/ 

Counterexample 

 
 

 

Figure 44.  Inigo’s decision-making pathway. 
  
 

Upon completing his proof, Inigo said “I know there’s a flaw in some logic there 

because of this [underlining his assumption that 𝑓 is one-to-one], but I’m finished.”  I 

asked him if he could tell me why he thought it was wrong, and he said “I am assuming 

that this is one-to-one.  And it’s not necessarily one-to-one....And I know you can’t 

actually make that assumption here....Wait.  Maybe that’s a counterexample.”  He then 

wrote 𝑓(𝑥) = 𝑥2 − 2, 2 → 4 = 4 and said “Yeah.  Yep.  So when it’s one-to-one, that 

holds [indicating proof]; and then when it’s not, there [underlining counterexample].”  

Like Jalynn, Inigo realized that making the assumption that 𝑓 was one-to-one in his proof 

True 

 
False 
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was problematic, and this led him to construct a counterexample and overturn his 

decision.  Although he did not engage in a legitimate decision-making process for his first 

decision, all of Inigo’s work related back to the concept of one-to-one, leading to his 

failed proof attempt, counterexample, and the overturn of his decision.       

 Aurelia.  Aurelia’s decision-making followed Pathway RDRDR with a syntactic 

formal definition leading to a true decision that was overturned by a combination of a 

syntactic failed proof attempt and a semantic-deductive informal definition.  This led to a 

false decision that was supported by a syntactic counterexample (Figure 45).  After 

writing the key elements of the task, Aurelia said “So it’s a function, so, yeah, that’s 

definitely true.”  Aurelia began constructing a proof of the statement, but partway 

through she wrote 𝑎 ≠ 𝑎0and realized that she was thinking incorrectly about the task.  

She was originally thinking that she was given two different y-values, but then 

recognized that she was actually given two different 𝑥-values.  Then she said “Hm, no, 

it’s a counterexample.  So, and so, we’re assuming we have two different 𝑥-values, but 

they can definitely have the same y-value.”  Thus, she overturned her original decision 

through a realization that she was considering the task incorrectly that led to a failed 

proof attempt and a semantic-deductive informal definition of function.  Aurelia 

constructed the following counterexample: 𝑓(𝑥) = cos(𝑥), 0 ≠ 2𝜋, but cos(0) =

cos(2𝜋) = 1.  She drew a graph of 𝑓(𝑥) = cos(𝑥) to help her determine which specific 

values to use in her counterexample.   
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Formal definition

  

Failed proof/ 
Informal definition

  

Counterexample 

 

 

Figure 45.  Aurelia’s decision-making pathway. 
  
 

Aurelia’s first decision was based thinking that she was given two distinct y-

values, and that “if you have a function, you can have an 𝑥-value that has two different  

𝑥-values.”  Her proof attempt was also based on 𝑓 being a function, linking her first 

decision and attempt to support it.  Her second decision was based on the realization that 

she was dealing with distinct 𝑥-values rather than distinct 𝑦-values.  This led to her 

informal definition that different 𝑥-values can correspond to the same 𝑦-value.  She then 

constructed a counterexample that exhibited this behavior, again connecting her decision-

making and construction processes.      

 Incorrect solution group.  The four students in this group thought that the 

statement in the Injective Function Task was true and proved it.  Tina and Louis assumed 

that 𝑓 being a function implied that it was also one-to-one although they did not realize 

that this was an assumption.  Julie’s incorrect proof structure led her to a simple “proof” 

of the task.  Finally, Jay knowingly assumed that 𝑓 was one-to-one in his “proof,” but I 

was unable to coax an explanation from him regarding this assumption.  This section is 

organized by pathway with further organization by reasoning type.   

 Tina and Louis.  The decision-making of Tina and Louis followed Pathway RDR 

with a semantic-deductive, definition-based, informal argument leading to a true decision 

that was supported by a syntactic proof (Figure 46).  Both Tina and Louis were confused 

by the relationship between the concepts of function and one-to-one, assuming that being 
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a function implied being one-to-one, but not realizing that this was an assumption.  Both 

students used the definition of one-to-one, but they thought that because 𝑓 was a 

function, it was also one-to-one.  Tina and Louis each based their decision that this 

statement was true on the following incorrect definition-based informal argument: “you 

know that there’s only one output for every input, then you know that another input can’t 

produce that same output or else it wouldn’t be a function.”  This reasoning indicates 

their confusion about the concepts of function and one-to-one.  Both seem to think that 

not being one-to-one actually violates the definition of a function.  Tina and Louis both 

produced a syntactic proof as follow-up support for their decisions (Figure 47).  Although 

there were differences in their proofs, both incorporated the informal argument that led to 

their decisions, connecting their decision-making and construction processes.     

 

Informal argument 

 
 Proof 

 
 

Figure 46.  Tina and Louis’ decision-making pathway. 
 
 

  

True 
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Figure 47.  Tina’s incorrect proof of the Injective Function Task.   
 
  

Julie.  Julie’s decision-making followed Pathway RDR with a syntactic formal 

definition leading to a true decision that was supported by a syntactic proof (Figure 48).  

Julie’s decision that this was a true statement was based on the definition of a function, 

“for every 𝑥 there's one and only and one 𝑦.”  Julie’s proof is an attempt to contradict this 

definition of function by showing that a given 𝑥-value maps to distinct 𝑦-values, thereby 

linking the decision-making and construction processes.  She begins her proof by 

contradiction by assuming that 𝑓(𝑎) = 𝑏0.  Because she was given that 𝑓(𝑎) = 𝑏, 

together these implied that 𝑓(𝑎) = 𝑏 = 𝑏0.  She claimed that this was a contradiction to 𝑓 

being a function because 𝑎 was mapped to two distinct 𝑏-values.  However, she assumed 

that 𝑏 was equal to 𝑏0, so these are not distinct values.  
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Formal definition 

 
 proof 

 
 

Figure 48.  Julie’s decision-making pathway. 
 
  

Jay.  Jay’s decision-making followed Pathway DR with a true decision supported 

afterward by a syntactic proof (Figure 49).  Jay’s decision was not based on reasoning as 

he simply assumed the statement was true and constructed a direct proof (Figure 50).  

After Jay completed his proof, I asked him what the key step was, and he said “Well, just, 

for me, the idea since 𝑎 ≠ 𝑎0, then, I, sort of, made a jump and assumed that the, that 

𝑓(𝑎) then is not equal to 𝑓(𝑎0).”  I inquired about making this jump, and he replied 

“That’ll only be true if the function was one-to-one, but from just the given information, I 

don’t know exactly if it is one-to-one.”  I continued attempting to draw information out of 

him about his use of one-to-one despite being uncertain whether 𝑓 was one-to-one, but I 

was unable to gather additional information.    He repeated that his proof would work if 

he knew the function was one-to-one, but he never indicated decisively whether he knew 

this nor suggested that it was not given in the statement of the task.  Because Jay did not 

engage in a legitimate decision-making process, it could not be linked to his construction 

process. 

 

 Proof 

 
  

Figure 49.  Jay’s decision-making pathway. 
 

True 

 

True 
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Figure 50.  Jay’s incorrect proof of the Injective Function Task. 
 
 

Errors/Difficulties (RQ3).  Although there were no intuitive errors committed on 

the injective-definition task, the students made various mathematical and logical errors, 

including two systematic errors (Table 12).  Three students committed the logical 

systematic error of making the illegal assumption in their proof that the given function 

was one-to-one.  Some students were able to overcome this error.  Additionally, three 

students made the mathematical systematic error of assuming that functions are one-to-

one.  Both of these systematic errors were committed by students who correctly and 

incorrectly solved the task.  Furthermore, students made various nonsystematic 

mathematical and logical errors.  All of the errors were committed by only 8 of the 12 

students with Emily, Elliot, Michael, and Evan making no errors.  In this section, I will 

discuss the two systematic errors and then provide a summary of the nonsystematic 

errors.   
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Table 12 
 
Error Types on Injective Function Task Organized by Correctness and Student 
Student Error Types 

Correct Solution 
Emily 
Elliot 
Michael 
Evan 

None 

Edward Logical – incorrect proof structure 
Logical – power of counterexample 

Aurelia Mathematical – function implies one-to-
one 
Mathematical – misinterpret statement of 
task* 

Inigo Logical – incorrect proof structure* 
Logical – assumed f was one-to-one* 

Jalynn Logical – assumed f was one-to-one* 
Mathematical – misunderstanding notation 

Incorrect Solution 
Tina Mathematical – function implies one-to-

one 

Louis Logical – incorrect proof structure* 
Mathematical – function implies one-to-
one 

Julie Logical – assumed conclusion 
Mathematical – different labels imply 
distinct objects 

Jay Logical – assumed f was one-to-one  

* error was overcome 
 
 

 Assuming 𝑓 is one-to-one.  Inigo, Jalynn, and Jay each made the logical error of 

assuming in their respective proofs that the given function 𝑓 was one-to-one.  All three 
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students knew that this assumption was problematic, but only Inigo and Jalynn were able 

to overcome this error and correctly determine that the statement was false.   

 Inigo knew his proof was flawed because of this assumption, saying “I am 

assuming that this is one-to-one.  And it’s not necessarily one-to-one....And I know you 

can’t actually make that assumption here.”  Thus, Inigo knew that this was an illegal 

move, but he made it anyway.  However, he then realized that he could construct a 

counterexample in which 𝑓 was not one-to-one and did so correctly.   

 Jalynn’s nonsystematic error relating to her confusion about the notation 𝑓: 𝐴 → 𝐵 

contributed to her systematic error of assuming that the given function was one-to-one.  

Jalynn was uncertain whether the notation 𝑓: 𝐴 → 𝐵 implied that 𝑓 was one-to-one in 

addition to specifying its domain and range.  She knew that she needed 𝑓 to be one-to-

one in order to complete her proof, so she settled on making it an assumption.  However, 

upon pressing from me, she realized that this task considered a general case and that she 

could not assume that the function was one-to-one.  Thus, Jalynn was able to overcome 

her error by considering the necessity of her assumption that the function was one-to-one 

and how it related to her assumptions about the notation.   

 Jay assumed this statement was true and constructed a proof that included that 

assumption that 𝑓 was one-to-one.  However, he “made a jump” in his proof that would 

“only be true if the function was one-to-one, but from just the given information, I don’t 

know exactly if it is one-to-one.”  Although I pressed Jay, I was unable to get him to 

consider this assumption in a way that would help him overcome it.       
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Assuming functions are one-to-one.  Aurelia, Louis, and Tina each made the 

mathematical error in their respective proofs of assuming that since 𝑓 was a function, 

then 𝑓 was one-to-one.  For Aurelia, this assumption became moot because she realized 

that she had misinterpreted the statement and abandoned her proof attempt.  However, 

this assumption formed the crux of Tina and Louis’ proofs that the statement was true.  

Unlike the students who assumed that 𝑓 was one-to-one, none of these students seemed to 

recognize that they had made an assumption.  They believed that being one-to-one was a 

property of all functions.   

 Aurelia originally thought that this statement was true and began a proof with the 

assumption that functions are one-to-one: “We’re gonna go ahead and use one-to-one.  So 

we are told that it is a function, so, by definition six [one-to-one]...”  However, this 

assumption became irrelevant for Aurelia as another aspect of the task led her to realize 

that the statement was actually false.   

  Tina and Louis based their proofs on the argument that different inputs must have 

different outputs because each input has exactly one output in a function.  Neither seemed 

to realize that they were conflating the concepts of function and one-to-one, but both 

indicated that functions are one-to-one.  Tina used the given definition of one-to-one in 

her proof, and the crux of her proof was that “if 𝑏 were to be equal to 𝑏0, we would have, 

or it would fail the horizontal line test, I guess I can say that, causing 𝑓 to not be a 

function.”  Louis’ first line in his proof was “we are given a function, which means there 

is only one output for every input (def. of one-to-one).”  Additionally, when I asked Louis 

about the key idea of his proof, he said that since 𝑓(𝑎0) = 𝑏0, 𝑓(𝑎) = 𝑏, and 𝑎 ≠ 𝑎0, 
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“then you can also know that 𝑏 is not equal to 𝑏0 by the definition of a function, which is 

a one-to-one relationship.” 

 Nonsystematic errors.  Of the nonsystematic errors made on this task, there were 

five logical errors and three mathematical errors.  Both Louis and Inigo incorrectly 

assumed for contradiction that 𝑎 = 𝑎0, but each overcame this error upon reconsidering 

their desired conclusions and made the correct assumption for contradiction that 𝑏 = 𝑏0.  

Edward wanted to prove that the statement was false, so he attempted to do so with a 

proof by contradiction in which he assumed that the statement was true.  However, he 

assumed 𝑏 ≠ 𝑏0 as a separate given rather than assuming the statement as a whole if-then 

statement.  This error became irrelevant as Edward changed his approach to the task.  

Additionally, Edward did not recognize the power of a counterexample – that it is 

sufficient to disprove a statement.  This led Edward to construct a general argument for 

the falsity of the statement.  Lastly, Julie assumed what she was trying to prove when she 

claimed that she had reached a contradiction due to 𝑏 and 𝑏0 being distinct objects.  This 

error corresponded to Julie’s mathematical error of assuming that objects with different 

labels (𝑏 and 𝑏0) are in fact different.  This error was costly as it formed the crux of 

Julie’s proof.    

 Two other students made mathematical errors: Aurelia and Jalynn.  Aurelia 

misinterpreted the task, initially assuming that she was given two distinct 𝑦-values rather 

than two distinct 𝑥-values.  However, she was able to overcome this mistake simply by 

recognizing that she had switched the 𝑥- and 𝑦-values when she wrote 𝑎 ≠ 𝑎0 in her 

proof.  Overcoming this error is what allowed Aurelia to correctly solve this task.  
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Finally, Jalynn’s confusion about the notation 𝑓: 𝐴 → 𝐵 is a mathematical error that she 

was not able to overcome on her own.  However, I provided her an opportunity to 

consider it correctly by asking her to assume that the notation only indicated the domain 

and range of the function.  This assumption, coupled with a consideration of her 

assumption that the function was one-to-one led her to overcome an incorrect decision 

and construct a correct counterexample.  

Injective Function Task summary.  The students in this study based their 

solutions to this task around the definitions of function and one-to-one.  Most students 

recognized that this task was false because the given function was not one-to-one and 

were able to provide a correct counterexample.  However, a few students were unable to 

overcome various mistakes that led them to incorrect “proofs” for this task.  All reasoning 

on this task with either semantic-deductive or syntactic, with the lone exception of 

Edward’s counterexample that he did not recognize as such.   

 Students who provided a correct solution to this task mostly based their decisions 

on informal or formal definitions.  Every student in this group constructed a correct 

counterexample except for Edward who did not recognize his example as a 

counterexample.  The only three students who overturned decisions were in this group, 

with all overturning incorrect decisions.  Inigo was the only student in this group who did 

not engage in reasoning prior to an initial decision.  Despite ending up with correct 

solutions, half of the students in this group made a variety of mathematical and logical 

errors that were either overcome or became irrelevant due to a change in direction.   
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 All students who provided an incorrect solution to this task supported their 

decision with a syntactic proof.  Tina and Louis based their decision on an informal 

argument that conflated the definitions of function and one-to-one.  Julie based her 

decision on the formal definition of a function, but her proof was derailed by mistakes.  

Jay was the only student in this group who did not engage in reasoning prior to an initial 

decision.   

Global Maximum Task 

 The Global Maximum Task asks whether an increasing function has a global 

maximum (Figure 51).  This task was ambiguous because it did not specify the domain of 

the given function.  If the domain of the given function is taken to be the real numbers, 

then the statement in this task is true because a function increasing on the real numbers 

does not a have a global maximum.  However, if the domain of the given function is 

restricted to a closed interval, then the statement in the task is false because an increasing 

function on a closed interval will achieve a global maximum at the right hand endpoint of 

the interval.  The correctness of students’ solutions was based on their assumptions or 

inferences about the domain of the function.  I expected intuition to play a role in this 

task because the task lends itself to visualization.   
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Prove or disprove: If 𝑓 is an increasing function, then there is no real number 𝑐 that is a 

global maximum for 𝑓. 

Relevant Definitions from Definition List 

A function 𝑓: ℝ → ℝ is said to have a global maximum at a real number 𝑐 if and only 

if for all 𝑥 ∈ ℝ such that 𝑥 ≠ 𝑐, 𝑓(𝑥) < 𝑓(𝑐). 

A function 𝑓: ℝ → ℝ is said to be increasing if and only if for all 𝑥1, 𝑥2 ∈ ℝ, 

(𝑥1 < 𝑥2 implies 𝑓(𝑥1) < 𝑓(𝑥2)). 

Figure 51.  Global Maximum Task and relevant definitions. 
  
 

The majority of the students, 11 out of 12, correctly decided that the statement in 

this task was true when assuming that the domain of the function was all real numbers.  

One student unknowingly changed the statement to: If 𝑓 is an increasing function, then 

there is a global maximum for 𝑓.  He provided two cases depending on the domain of the 

function.  However, because of his change of the statement, he decided that it was false 

when the domain was all real numbers and true when the domain was restricted to a 

closed interval.  These are correct for his changed statement, but not for the given 

statement.  The students’ decisions on this task were based on the following types of 

reasoning: intuitive, semantic-deductive, syntactic, intuitive/semantic-deductive 

combination, and semantic-empirical/semantic-deductive combination.     

 Many of the students quickly made decisions on this task, likely due to their 

familiarity with the concepts in this task.  Based on observations alone, I could not 

determine what led to their decisions without follow-up questioning after they completed 



  172 
 

 

the task.  Most of the students’ informal arguments that led to their decisions were not 

expressed until after they had constructed their proof when I asked them about what led 

to the decision.  Thus, I often had to rely on their reflections after the fact in order to 

determine their initial thought processes and what led to their decisions.  The time line 

and classifications for the decision-making were somewhat unclear as they were often 

based on their after-the-fact reflections rather than what happened in real time.  This 

means that it is unclear whether these post hoc descriptions actually described what the 

students were originally thinking or were retroactive justifications based on the proofs or 

arguments they had already constructed.  However, I had no reason to believe they were 

not accurate because students’ post hoc descriptions in other instances, where their real-

time reasoning was clear, were accurate.    

Decisions and justification for decisions (RQ1).  The students in this study 

justified their decisions using both intuitive and analytical reasoning, with the analytical 

reasoning taking the form of semantic-empirical reasoning, semantic-deductive informal 

arguments, and syntactic reasoning.  The 12 students made a total of 15 decisions – 10 

students made one decision each, one student made two decisions, and one student made 

three decisions.  The following subtypes of reasoning were used for decision-making on 

the Global Maximum Task: 

 Intuitive: Unjustified (1) 

 Semantic-deductive: Definition-based, informal argument (4) 

 Syntactic: Need for assumption (1) 
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 Combination: Semantic-deductive, visualization/definition-based, informal 

argument (5) 

 Combination: Intuitive visualization-based and semantic-deductive, definition-

based, informal argument (1) 

 Combination: Semantic-empirical example/graph-based and semantic-deductive, 

visualization/kinaesthetic-based, informal argument (1) 

 Combination: Semantic-empirical example/graph-based and semantic-deductive, 

definition-based, informal argument (1) 

 Combination: Semantic-deductive, visualization/definition-based, informal 

argument and semantic-deductive, graph/definition-based, informal argument (1) 

Edward and Evan were the only two students who made multiple decisions.  Each 

of Edwards’ three decisions was based on a definition-based, informal argument.  He 

went back and forth on this task as he attempted to orient himself to the concept of global 

maximum (that he originally confused with the concept of boundedness).  Upon 

clarifying the concepts, he decided that the statement was true for an increasing function 

on the real numbers.  Evan, on the other hand, did not overturn a decision although he 

made two decisions.  He originally determined that the statement was false (thinking that 

the statement said that there was a global maximum), but realized that he had made an 

assumption about the domain of the given function.  He added this assumption to original 

disproof, keeping the decision that it was false in that case, and determined that he would 

have a second case in which the statement was true.   
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 All analytical reasoning used on this task during the decision-making and 

construction processes was deliberate and justified.  In addition to the semantic reasoning 

already discussed that led to decisions, three students used semantic reasoning in the form 

of definition-based informal arguments to support their decisions.  Syntactic reasoning 

used to support decisions took the form of proofs, with the exception of Evan’s disproof.   

Students’ intuitive reasoning on this task was non-deliberate and either unjustified 

or partially justified.  Louis’ intuition was unjustified as he simply thought it was true 

upon reading the statement, but didn’t know why until he began constructing his proof.  

Jay noted that “just off the top of my head, you know, when you think of increasing 

function, it'll be going to infinity, and you can't find a constant.”  Table 13 provides an 

overview of the reasoning used by each student on this task for both decision-making and 

supporting decisions.   
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Table 13 
 
Types of Reasoning Used on Global Maximum Task Organized by Approach and Student 
Student Types of Reasoning Used 
 Intuitive Semantic-empirical Semantic-deductive Syntactic 

Proof by Contradiction 
Inigo 
Emily 
Aurelia 
Elliot 

  Visualization/ 
definition-based 

informal argument 

Proof 

Michael 
Edward 

  Definition-based 
informal argument 

Proof 

Louis Unjustified   Proof 

Jalynn   Visualization/ 
definition-based 

informal argument 
Graph/definition-

based informal 
argument 

Proof 

Evan   Visualization/ 
definition-based 

informal argument 

Disproof 
Need 

assumption 
Proof 

Informal Argument 
Tina  Example/graph-

based 
Definition-based 

informal argument 
 

Jay Visualization/ 
property-

based 

 Definition-based 
informal argument 

 

Julie  Example/graph-
based 

Visualization/ 
kinaesthetic-based 
informal argument 
Definition-based 

informal argument 

 

 

Connecting decisions and constructions – Decision-making pathways (RQ2).  

In this section, I will discuss students’ decision-making pathways and the connections 
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between their decision-making and construction processes.  Three different pathways 

were used on this task (Figure 52).  Evan used a linked combination of a pair of pathway 

RDRs in which the reasoning that supported the first pathway was linked to the reasoning 

that led to the decision in the second pathway (see Evan’s summary).  Tina was only 

student whose pathway ended in a decision. 

 

  
Figure 52.  Decision-making pathways used on Global Maximum Task.  (P) indicates 
proof by contradiction group and (I) indicates informal argument group. 
 
 

The solutions on this task are organized by their level of rigor, resulting in two 

categories: the syntactic proof by contradiction and the semantic-deductive informal 

argument.  Nine students constructed some version of the proof by contradiction and 

three students constructed some type of informal argument.  Students’ reasoning centered 

on the definitions of increasing and global maximum, as well as visualization or graphs 

related to increasing functions.  The remainder of this section will be organized by 

solution groups.  Within each solution group, further organization will be provided by 

pathway, and within pathways, organization is by reasoning type.     
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 Proof by contradiction group.  The statement in the Global Maximum Task is 

true if the domain of the function is all real numbers and false if the domain is restricted 

to a closed interval.  The proof by contradiction is based on the domain of the function 

being all real numbers.  An example of the proof by contradiction is as follows: 

Assume for contradiction that 𝑐 = 𝑓(𝑎), 𝑎 ∈ ℝ, is a global maximum for 𝑓.  Then 

for all 𝑥 ∈ ℝ such that 𝑥 ≠ 𝑎, 𝑓(𝑥) < 𝑓(𝑎).  Consider 𝑎 + 1 > 𝑎.  Since 𝑓 is 

increasing, 𝑓(𝑎 + 1) > 𝑓(𝑎), a contradiction to 𝑐 = 𝑓(𝑎) being the global 

maximum.  Thus, there is no real number c that is a global maximum for 𝑓.     

 The students in this solution group either assumed or inferred that the domain of 

the given function was all real numbers, decided that the statement was true, and 

constructed a proof by contradiction.  Edward and Evan are two non-typical members of 

this group – Edward overturned a couple of decisions before taking the proof by 

contradiction approach, and Evan  was the only student whose final solution consisted of 

both cases.  Evan constructed both the proof by contradiction and an additional proof for 

the case in which the domain was restricted to a closed interval.  However, Evan’s proof 

by contradiction was actually a disproof because he changed the statement to read that the 

given function had a global maximum (rather than did not have one).   

 Aurelia and Inigo.  The decision-making of Aurelia and Inigo followed Pathway 

RDR with a semantic-deductive, visualization/definition-based, informal argument 

leading to a true decision that was supported by a syntactic proof (Figure 53).  Aurelia 

and Inigo based their decisions on the informal argument that an increasing function 

defined on the real numbers cannot have a global maximum.  Both students had images 
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of increasing functions in their heads that related to this idea that they did not draw until I 

asked if they had related images (Figure 54).  Aurelia was thinking about vague 

increasing functions and noted that: 

If you’re just increasing, you can never decrease to, like, make that a global 

maximum.  Because it has to be some sort of, like, high point.  But if you’re just 

increase-, unless it stops, there is no way that there’s not a higher point. 

 

Informal argument 

 
 Proof 

 
 

Figure 53.  Aurelia and Inigo’s decision-making pathway. 
 
 

   

Figure 54.  Aurelia’s drawings of her images of increasing functions.    
 
 

Inigo, on the other hand, was specifically thinking about linear functions, saying 

that linear functions couldn’t have a global maximum because “any increasing function, 

True 
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they’re always increasing, so there’s never, because the range of any increasing function 

is almost always just to infinity.  And then if something goes to infinity, there’s no 

maximum for it.” 

Inigo seemed to assume that for this task, the domain of the function was all real 

numbers.  On the other hand, Aurelia struggled throughout her work on this task with 

whether she could assume that the domain was all real numbers and actually completely 

stopped working on the task at several points.  Upon first reading the statement, Aurelia 

said “So, I’m assuming that means if 𝑓 is increasing throughout the whole entire 

function?  So, this is obviously not true if you have, like, an [sic] composite function that 

stops at a certain point.  And that might be a counterexample.”  She attempted to 

construct a piece-wise function that had a restricted domain and said “it’s just the 

definition of a function that I’m getting caught up with right now.  Like, can a function 

actually just stop or does it have to keep going further?”  She drew a graph of 𝑓(𝑥) = 𝑥2 

restricted to [0,2].  She indicated that if that was considered a function, then it was a 

counterexample, but if not, then she should be able to prove the statement.  Then she said 

that she did not think that I was trying to trick her, so that probably was not a function, 

and she would try to prove the statement again.   

 Aurelia and Inigo supported their decisions with the proof by contradiction.  

Aurelia’s informal argument included the idea that the global maximum was the highest 

point and that an increasing function defined on the real numbers will always have a 

higher point, so her argument is reflected in the proof by contradiction, linking her 

decision-making and construction processes.  On the other hand, Inigo’s informal 
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argument was based on the idea that “if something goes to infinity, there’s no maximum 

for it,” and this does not explicitly translate into the proof by contradiction.  Thus, there is 

no clear connection between Inigo’s decision-making and construction processes.   

 Michael.  Michael’s decision-making followed Pathway RDR with a semantic-

deductive, definition-based, informal argument leading to a true decision that was 

supported by a syntactic proof (Figure 55).  Michael inferred that the domain of the 

function would be all real numbers because the task dealt with a global maximum that, 

for him, ruled out the case of the restricted domain.  His informal argument was based on 

the idea that an increasing function defined on all real numbers would not have a global 

maximum, and he constructed the proof by contradiction.  Michael’s decision-making 

and construction processes were not connected explicitly because the idea of an 

increasing function on the real numbers not having a global maximum is not connected 

explicitly to the definitions of increasing and global maximum.    

  

Informal argument 

 
 Proof 

 
 

Figure 55.  Michaels’s decision-making pathway. 
  
 

Elliot and Emily.  The decision-making of Elliot and Emily followed Pathway 

RDR with a semantic-deductive, visualization/definition-based, informal argument 

leading to a true decision that was supported by a syntactic proof (Figure 56).  Both Elliot 

and Emily’s decisions that this statement was true were based on the informal argument 

that one can always find a larger function value on an increasing function.  Upon reading 

the question and writing the definition for increasing, Emily asked herself, “Do I need to 

True 
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prove or disprove this?” She replied to herself, “I believe that it’s true because if it’s an 

increasing function, then I’ll always be able to find an x-value that gives me an 𝑓(𝑥) 

value that’s larger than it.”  Later, Emily said that that she had an image of 𝑦 = 𝑥 in her 

head when she was originally thinking about an increasing function.  Although Elliot also 

had an image of an increasing function in his head, it was not a specific function (Figure 

57).  He explained that “for any point c, there would be a larger point further on the 

graph.”   

     

Informal argument 

 
 Proof 

 
 

Figure 56.  Elliot and Emily’s decision-making pathway. 
 
 

 

Figure 57.  Elliot’s drawing of his image of a generic increasing function.   
  

 

Elliot’s and Emily’s arguments depended on the idea that the given function was 

increasing infinitely.  Emily simply assumed that the domain of 𝑓(𝑥) was all real 

True 
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numbers although she did not mention the domain of the function.  However, Elliot 

inferred that the domain was all real numbers because the function was strictly 

increasing.  Elliot and Emily’s construction process was connected to their decision-

making process by the definitions of increasing and global maximum because the proof 

by contradiction is based on the idea that for an increasing function on the real numbers, 

one can find a greater function value than an assumed global maximum.  

 Jalynn.  Jalynn’s decision-making followed Pathway RDR with the combination 

of a semantic-deductive, visualization/definition-based, informal argument and a 

semantic-deductive, graph/definition-based, informal argument leading to a true decision 

that was supported by a syntactic proof (Figure 58).  Upon reading the statement, Jalynn 

asked, “I can assume that it’s an infinitely increasing function?”  I said that she could 

(although this restricted the task not only to a function defined on the real numbers, but 

also to an unbounded function, assuming she meant that 𝑓(𝑥) → ∞ as 𝑥 →  ∞).  Later, 

she said that she had an image in her head of the graph of a function that had the property 

that any point you tried to call a global maximum would have a point higher because it 

was increasing.  Jalynn wrote the definitions for increasing and global maximum used 

these to expand her visualization/definition-based informal argument into a 

graph/definition-based informal argument.  She drew the graph she had visualized and 

elaborated on her initial argument (Figure 59).  She said: 

I would want to show that there is another number that’s bigger than c [the global 

maximum].  I know that if we have this function [drawing graph], no matter what 
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it’s doing, if it keeps going like that [increasing] then we can’t [have a global 

maximum] because it’s going off to infinity.  

  

Informal argument 

 
 Proof 

 
 

Figure 58.  Jalynn’s decision-making pathway. 
 
  

 

Figure 59.  Jalynn’s drawing of her image of why an increasing function has no global 
maximum.  
 
 

Finally, Jalynn constructed the proof by contradiction.   Her reasoning is connected 

throughout as her first informal argument formed the basis for her second informal 

argument that in turn provided the idea for her proof.   

Louis.  Louis’ decision-making followed Pathway RDR with an unjustified 

intuition leading to a true decision that was supported by a syntactic proof (Figure 60).  

After Louis completed his proof, I asked him when he thought that this statement was 

true.  He replied “Well, when I first read it, I kind of thought that it was a true statement.”  

However, he said that he did not really know why until he began constructing his proof.  

True 
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Louis used the definition of global maximum to infer that the function would be 

increasing on the real numbers.  He noted that a global maximum was different from a 

local maximum because “it’s not like you could set an interval for which one point would 

be the highest.”   Although Louis essentially constructed the proof by contradiction, it 

was embedded in an inductive argument that Louis explained as follows: “if you could 

show 1 to 2, 2 to 3.  And then, you could continue that logic on to show that if you pick 

any number, 𝑓(𝑥𝑛), it can be shown that there is a greater number or whatever.”  Thus, 

Louis had the idea that he could always find a larger number than any number that he 

picked as a potential global maximum.  His proof began inductively, but the only part of 

his argument that he actually used to prove the statement consisted of the proof by 

contradiction (Figure 61).  Because Louis did not know why he initially thought this 

statement was true, his decision-making and construction processes were not connected.     

  

Intuition 

 
 Proof 

 
 

Figure 60.  Louis’ decision-making pathway. 
 
  

 

 

True 
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Figure 61.  Louis’ correct proof (steps 7, 8 and 9) embedded in an inductive “proof.”  
 
 

Edward.  Edward’s decision-making followed Pathway RDRDRDR with a 

semantic-deductive, definition-based, informal argument leading to a true decision.  This 

decision was overturned by a second semantic-deductive, definition-based, informal 

argument that led to a false decision.  This decision was overturned by a yet a third 

semantic-deductive, definition-based, informal argument that led to a true decision that 

was supported by syntactic proof (Figure 62).  Initially, Edward thought that this 

statement was true because increasing functions cannot have a maximum.  He said, “At 

first I was thinking about just crossing some artificial threshold, and I needed to prove 
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that I would cross some artificial threshold c, that was a global maximum, to show that I 

was passing it.”  He began a proof by contradiction by assuming that the function 𝑓(𝑥) 

was bounded by some number M.  After getting stuck, he said “It doesn't say how much it 

increases...I've come to the conclusion that this is false.”  Later he explained that, “I had 

the realization that increasing functions can converge, and there is a limit.  There can be a 

limit to a bounded increasing function.”  However, as he tried to talk through this idea, he 

changed his mind again: 

If 𝑓 is an increasing function that is bounded, then there is a real number c that is 

a global maximum for 𝑓…but it wouldn't be a global maximum because you 

could keep increasing.  OK, I think this is true again.  'Cause no real number c 

will be a global maximum for 𝑓 as 𝑓 is always increasing by the nature of it being 

an increasing function.  

 Edward realized that he had confused the ideas of a bound and a global maximum, and 

he then constructed the proof by contradiction.  Edward was able to overturn his 

decisions by thinking through the concepts in the given task and making sense of the task 

situation.  In the end, he had a correct understanding of the concepts that led to a correct 

proof, assuming the domain of the function was all real numbers.  Edward’s ideas in both 

his decision-making and construction processes were connected. 

 

 
Figure 62.  Edward’s decision-making pathway. 
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Evan.  Evan’s decision-making followed a linked pair of Pathway RDRs with a 

semantic-deductive, visualization/definition-based, informal argument leading to a false 

decision that was supported by a syntactic disproof.  This disproof required an 

assumption that led to a second case and true decision that were supported by a syntactic 

proof (Figure 63).  Although Evan wrote the statement correctly on his paper, all of his 

work indicates that he was thinking that the statement said that the function did have a 

global maximum rather than saying that it did not have a global maximum.  Thus, 

although Evan decided that the statement was false in the case in which the domain of the 

given function was all real numbers, his disproof was the proof by contradiction.  Before 

he constructed his proof, he wrote the definitions for increasing and global maximum and 

provided the following informal argument that led to his decision that this statement was 

false: “from what I know about a global maximum, there has to be a value on either side 

of it that's smaller than it,” but since 𝑓 is increasing, “it'll be increasing indefinitely.”  

Evan later said that he had the image of 𝑦 = 𝑥 in mind when thinking about an increasing 

that “never goes back down.”  Evan noted that the key idea to his disproof was that for an 

increasing function, “if you pick a point, then next point's going to be larger....I knew that 

if I assigned a global max, c, anywhere, as long as 𝑓 was unbounded, you'd be able to 

find a larger value.”  Thus, Evan connected his decision-making to his disproof 

construction process.  
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Informal argument

  

Disproof/ 
Need assumption

  

 

 

  
Need assumption

  

Proof 

 
Figure 63.  Evan’s decision-making pathway. 
  
 

After Evan had constructed the proof by contradiction, he added the assumption 

that the domain of the function was all real numbers to his disproof and created a second 

case in which the domain was a closed interval.  He knew that in this case, the statement 

would be true (the function would have a global maximum) and provided the following 

proof: if the domain was [a, b], then for all 𝑥 < 𝑏, 𝑓(𝑥) < 𝑓(𝑏), so that 𝑓(𝑏) was the 

global maximum.  The need for the assumption in his disproof led to the need for the 

second case and his decision that the second case was true.  His proof was based on 

having a closed interval for the domain, connecting his decision-making and construction 

processes on the second case.          

 Informal argument group.  The three students in this group did not support their 

decision with the proof by contradiction although they all decided that the statement was 

true.  Instead, each constructed an informal argument as support for their decisions.  Tina 

and Jay seemed to think that what they had constructed was sufficient for a proof, but 

Julie knew that her argument was not a proof.  Julie struggled to translate her informal 

argument into a syntactic proof, and I told her that an explanation to support her decision 

False 

 

True 
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was sufficient.   Although the students in this group were unable to provide syntactic 

proofs, they each had the basic idea as to why the statement was true. 

 Jay.  Jay’s decision-making followed Pathway RDR with the combination of 

visualization-based intuition and a semantic-deductive, definition-based, informal 

argument leading to a true decision that was supported by a semantic-deductive, 

definition-based, informal argument (Figure 64).  Although Jay did not think that this 

statement was true until after he developed his informal argument, he had an intuitive 

idea about it: “just off the top of my head, you know, when I, when you think of 

increasing function, it'll be going to infinity, and you can't find a constant.”  His intuition 

corresponded with a function defined on all real numbers, and Jay simply assumed the 

function in the task had a domain of all real numbers.  After looking at the definitions for 

increasing and global maximum, Jay provided an informal argument for how to show that 

this statement was true:  “The formal way of doing this would be finding an interval for 

𝑥1 and then finding a c greater than that, but then also finding that 𝑓(𝑥2) is greater than 

c.”  So Jay’s idea seemed to be that he could find a function value greater than a 

supposed global maximum.  Although Jay had the right idea, his argument in support of 

this idea falls short of being complete (Figure 65).  Jay attempted an inductive argument 

involving repeatedly finding greater function values that could never be global 

maximums because there were even greater function values.  Thus, Jay’s support for his 

decision reflected the same idea that led to the decision, connecting his decision-making 

and construction processes.   
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Intuition/Informal argument 

 
 Informal argument 

 
 

Figure 64.  Jay’s decision-making pathway. 
 
 

   

Figure 65.  Jay’s incorrect proof for the Global Maximum Task. 
 
 

Julie.  Julie’s decision-making followed Pathway RDR with the combination of a 

semantic-deductive, visualization/kinesthetic-based, informal argument and a semantic-

empirical example/graph leading to a true decision that was supported by a semantic-

deductive, definition-based, informal argument (Figure 66).  After reading the statement, 

Julie said: 

True 
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When it says increasing function, I'm thinking about a linear function that just 

keeps increasing, but doesn't just have to be a linear function.  There are, for 

example, quadratic functions that increase, but then, at some point, they also 

decrease if there's a maximum. 

She made an upward motion with her hand when she said the linear function just keeps 

increasing and later said that she had an image in her mind of a line such as 𝑦 = 𝑥.  At 

first, Julie was uncertain as to whether the quadratic function she had in mind satisfied 

the hypothesis of the task, so she moved on to reading the definitions for increasing and 

global maximum.  Although she said “I keep picturing 𝑓 as a linear function,” she was 

still concerned about other types of functions.  She drew a graph of a quadratic and a 

cubic and indicated that the cubic was always increasing (Figure 67).   

 

Informal argument 

 
 Informal argument 

 
 

Figure 66.  Julie’s decision-making pathway. 
  
 

 

Figure 67.  Julie’s graphs on the Global Maximum Task. 
 

True 
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She played around with her quadratic for some time, but eventually said that she did not 

think that it was an increasing function and focused on the cubic instead.  She continually 

reread her definitions, especially for global maximum.  She said that for 𝑓(𝑥) = 𝑥3 there 

was no “𝑐” from the definition of global maximum, but “that's just one example.  You 

also have linear functions, which are increasing and have no maximum.”  Julie did not 

realize that she had assumed that the domain of the given function was all real numbers.   

This reasoning ultimately led her to conclude this statement was true and 

introduced her own definition based on her graphs for a global maximum.  This definition 

formed the basis for the semantic-deductive, definition-based, informal argument she 

offered in support of her true decision.  She explained: 

From what I remember, a maximum is where the, I guess, the turning point from 

where the slope is positive and then it turns negative.  So an increasing function, 

then, has to have a negative slope at some point, which would make it decreasing.  

But if we go by that, then there is no real number, c, that is a global maximum  

for 𝑓. 

She said that she did not know how to write this argument formally, so it stood as the 

support for her decision.  All of Julie’s arguments are based on the relationships between 

increasing, decreasing, and a global maximum on a graph, connecting her decision-

making and construction processes.   

 Tina.  Tina’s decision-making followed Pathway RD with the combination of a 

semantic-empirical example/graph and a semantic-deductive, definition-based, informal 

argument leading to and supporting a true decision (Figure 68).  Tina began by graphing 
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the function 𝑓(𝑥) = 𝑥2 and noting that there was no maximum because it was increasing 

“on both sides.”  She then looked at the definition of increasing, noting that increasing x-

values will result in increasing corresponding function values.  Based on this idea, she 

constructed an informal argument that led to her decision that the statement was true and 

simultaneously supported the decision: 

So if my initial 𝑥, starting value for 𝑥 is always going to be less than the next one 

and I'm going up, that means I can't have a maximum because I'm going to keep 

going up.  So it is saying that there is no real number 𝑐 that's a global maximum, 

so I’m gonna say true, or the statement is true. 

She explained that the key idea to her argument was that “if I'm going up [because 

increasing], I can't go up to a maximum because there would be no maximum if it kept, 

like, going up.”  Tina’s argument is based on the assumption that the domain of the 

function is all real numbers, but she did not realize that she had made this assumption.  

Her semantic-deductive, informal argument links to her semantic-empirical example and 

graph, and both led to and supported the decision, connecting her decision-making and 

construction processes.   

 

Informal argument 

 
   

Figure 68.  Tina’s decision-making pathway. 
 
 

Errors/Difficulties (RQ3).  The students did not commit any intuitive errors on 

this task, but they did commit various mathematical and logical errors, including two 

systematic errors (Table 14).  Both systematic errors relate to the fact that no domain was 

True 
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provided for the function in the task.  The logical systematic error was the assumption 

that the domain of the function was all real numbers, and eight students made this error.  

The second systematic error was mathematical, in that students inferred that the domain 

of the function was all real numbers from other given information.  Three students made 

this error.  Jalynn was the only student who did not commit one of these systematic errors 

because she had asked me if she could assume that the domain of the function was all real 

numbers, and I said that she could.  Furthermore, students made various nonsystematic 

mathematical and logical errors.  In this section, I will discuss the two systematic errors 

and then provide a summary of the nonsystematic errors. 
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Table 14 
 
Error Types on Global Maximum Task Organized by Approach and Student 
Student Error Types 

Proof by Contradiction 
Jalynn None 

Emily 
Aurelia 

Logical – assumed dom(𝑓) = ℝ 

Inigo 
Edward 

Logical – assumed dom(𝑓) = ℝ  
Mathematical – global maximum = upper 
bound* (Edward only) 

Evan Logical – assumed dom(𝑓) = ℝ* 
Logical – incorrect proof structure 
Logical – Changed task statement 

Elliot 
Michael 

Mathematical – inferred dom(𝑓) = ℝ 

Louis Mathematical – inferred dom(𝑓) = ℝ 
Logical – incorrect proof structure 

Informal Argument 
Julie Logical – assumed dom(𝑓) = ℝ 
Jay Logical – assumed dom(𝑓) = ℝ 

Logical – incorrect proof structure 

Tina Logical – assumed dom(𝑓) = ℝ 
Mathematical – misunderstanding of 
concept of increasing 

* error was overcome 
 
 

 Assuming dom(𝒇) = ℝ.  Aurelia, Edward, Emily, Evan, Inigo, Jay, Julie, and 

Tina each assumed that the domain of the given function was all real numbers.  Each 

student made some type of comment to the effect of increasing functions always getting 

bigger or going to infinity.  Julie noted that “when it says increasing function, I’m 

thinking about a linear function.”  Thus, the first function that came to mind was an 
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increasing function defined on the real numbers.  Jay’s intuition on this task was that 

“when you think of increasing function, it’ll be going to infinity.”  Thus, I think that the 

prototypical example of an increasing function is a function defined on the real numbers 

that approaches infinity as x approaches infinity that may have contributed to the 

students’ assumption.  

On the other hand, Tina, Inigo, Aurelia, and Evan mentioned that if the domain 

was restricted to a closed interval, then the function would have a maximum.  Tina and 

Inigo did not think that this case applied to this task.  Aurelia struggled throughout the 

entire task with whether a function could have a restricted domain, and even, had a 

counterexample ready in case she determined that it could.  In the end, she thought that 

was a special case that would only be considered if I was trying to “trick” her, so she 

decided that the case in which the domain was all real numbers was the only applicable 

case.  Evan was the only student who overcame his initial assumption that the domain 

was all real numbers and provided two cases in his solution depending on whether the 

domain was a closed interval or all real numbers.  However, he only realized he had made 

this assumption because I asked him to reread the statement and ensure that he was 

saying what he wanted to say, indicating that he may have made a mistake although this 

was not the mistake I was trying to get him to see. 

 Inferring dom(𝒇) = ℝ.  Elliot, Louis, and Michael each inferred from given 

information that the domain of the given function was all real numbers.  Louis and 

Michael claimed that the domain would be all real numbers because the task concerned a 

global maximum.  Louis said that there could not be a restricted domain because “this is 
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dealing with a global max” rather than a local maximum for which “you could set an 

interval.”  Michael said that “the key word here is global...because it’s global and then 

it’s for the entire real line.”  Michael also said that if the domain was a closed interval, 

then there would be a global maximum, but this was not the situation at hand.  Thus, both 

Louis and Michael considered the alternate case in which the domain was restricted to a 

closed interval, but thought the concept of a global maximum would not apply in that 

case.   

 Elliot determined that the domain was all real numbers because the function was 

strictly increasing: “When I saw that it was strictly increasing, I realized that...the 

function would have to be defined on all real numbers.”  Elliot did have the image of an  

increasing function that approached infinity as x approached infinity in his head for this 

task, so that may have influenced his inference.  Perhaps he was confusing the domain 

issue with whether the function could have been a constant function, but this was ruled 

out by the strictly increasing definition.   

Nonsystematic errors.  Of the non-systematic errors on this task, two types of 

logical errors were committed, both related to proof structures.  Evan used a proof by 

contradiction to disprove his altered version of the statement (that there was a global 

maximum).  Evan wanted to disprove the following statement: If 𝑓 is an increasing 

function, then there is a global maximum for 𝑓.  In order to disprove this, he would need 

to show that 𝑓 is increasing and 𝑓 does not have a global maximum.  However, he 

showed that if 𝑓 is increasing, then 𝑓 does not have a global maximum.  This does not 

logically disprove the statement if 𝑓 is increasing, then 𝑓 has a global maximum.   Louis 
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and Jay each made the logical error of trying to construct an inductive proof for a 

function defined on the real numbers.  Each attempted to choose a sequence of points that 

were potential global maximums and argue that there would always be a greater point.  

Their sequences were not well-defined and neither had a legitimate inductive structure.   

 Nonsystematic mathematical errors were made by Inigo, Edward, and Tina.  

Edward and Inigo both confused the concept of a global maximum with an upper bound.  

In particular, Inigo claimed that the concepts of global maximum and least upper bound 

were the same.  However, because Inigo used the definition of global maximum in his 

work, this error was moot.  Edward’s original decision that the statement was true was 

based on his thinking that he was dealing with an upper bound rather than a global 

maximum.  However, as he thought more about this idea, he considered the case that 

“increasing functions can converge...[but] it doesn't come to a specific number, that 

converging limit, which the distance between the function is always getting closer but 

never actually hits, so there is not a max that is seen as a maximum.”  Thus, he eventually 

saw the difference between an upper bound and a maximum.  Through this thinking, 

Edward was able to overcome this error and construct a proof based on the concept of a 

global maximum. 

 Tina had a couple of mathematical misunderstandings about the concept of 

increasing.  When she drew the graph of 𝑓(𝑥) = 𝑥2, she said “this has a minimum at a 

point, but it is constantly increasing on both sides, so there's no maximum.”  Thus, she 

seems to confuse the idea of the limit of a function approaching infinity with the function 

increasing.  Additionally, she continued the idea that an increasing function would have a 
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minimum in her proof, although she confused 𝑥- and 𝑦-values, by saying “each 𝑥𝑛 is less 

than 𝑥𝑛+1 value causing there to only be a minimum.”  Finally, she claimed that the 

definition of an increasing function said that “it's going to start at a point, and the 

numbers are just going to keep growing.”    

 Evan made an error that was not intuitive, logical, or mathematical when he 

somehow got it in his mind that the statement read that the given function had a global 

maximum.  When he wrote the statement on his paper, he wrote it correctly, but then 

when talking about the task, he was thinking about it in its altered version the entire time.  

After he wrote his proof by contradiction, he said that the statement was false, even 

though he produced a correct proof of the truth of the correct statement.  To ensure he had 

said what he intended, I asked him to reread the statement.  But rather than correct his 

mistake, he instead noticed his assumption regarding the domain of the function.  I do not 

consider this a relevance error because he clearly was still concerned about the relevance 

of whether the function had a global maximum based on his proof by contradiction.   

Global Maximum Task summary.  The students in this study based their 

solutions to this task around the idea that an increasing function will increase infinitely 

and therefore cannot have a global maximum.  All but one student provided an argument 

dependent on the domain of the given function being all real numbers although this was 

not given in the task.  Evan was the only student who determined that there would be two 

cases depending on whether the domain was restricted to a closed interval or was all real 

numbers.  The students used intuitive, semantic-empirical, semantic-deductive, and 



  200 
 

 

syntactic reasoning for decision-making on this task as well as semantic-deductive and 

syntactic reasoning to support their decisions.   

 The students who provided the proof by contradiction based their proofs on the 

idea that if they assumed they had a global maximum, they could always find a greater 

function value because the function was increasing infinitely.  This proof falls out easily 

from the definitions of increasing and global maximum, but most students had the idea in 

the form of a semantic-deductive informal argument before constructing their proofs.  

Edward was the only student who overturned decisions on this task, and he did so 

through consideration of his initial thoughts regarding upper bounds and how these 

actually relate to the concept of global maximum.  Once he realized that these were 

different concepts, he was able to prove the statement correctly, assuming the domain was 

all real numbers.  Although Evan made two decisions, he did not overturn any decisions.  

Instead, he provided a solution that included two cases that included consideration of the 

domain of the function.   

 The students who supported their decisions with semantic-deductive informal 

arguments generally had the right idea of why this statement was true assuming the 

domain of the function was all real numbers.  Jay argued that there would always be a 

greater number than a supposed global maximum, but his inductive argument missed the 

mark for this task.  Julie and Tina each used graphs of specific examples to help them 

make sense of this task and constructed corresponding informal arguments. 



  201 
 

 

Discussion 

 In this section, I discuss patterns across the four tasks regarding: (a) students’ 

reasoning types to address RQ1, (b) connections between decision-making and 

proof/counterexample construction to address RQ2, and (c) students’ errors and 

difficulties in addressing RQ3.   

 Students’ reasoning types.  In this section, I will discuss students’ use of 

intuitive and analytical reasoning for decision-making and relationships between 

reasoning type and students’ performance.  There were 60 decisions made in this study – 

11 intuitive and 49 analytical.  Students made various types of intuitive decisions, and 

within the analytical decisions, students used semantic-empirical, semantic-deductive, 

and syntactic reasoning, as well as subtypes of these, for decision-making.   

 Intuitive decision-making.  The students in this study made 11 intuitive 

decisions.  Half of the decisions on the Composite Function Task were intuitive.  There 

were three and two intuitive decisions on the Monotonicity and Injective Function Tasks, 

respectively.  Intuition was not used on the Injective Function Task.  Aurelia, Michael 

and Julie did not make any intuitive decisions, Jay made three intuitive decisions, and the 

other eight students each made one intuitive decision. 

 There was a variety of types of intuition used that helped students decide whether 

to pursue a proof or refutation of the task.  However, only one type of intuition provided 

a basis for such pursuits.  In three of the four cases of property-based intuitive decisions, 

the students’ support for their decision was connected to their intuition.  For example, on 

the Monotonicity Task, Inigo’s counterexample was based on his property-based intuition 
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about how a pair of negatives would interact with a quadratic function.  Each other type 

of intuition – unjustified, memory-based, understanding-based, and similarity-based – 

was unconnected to subsequent reasoning, such as when Elliot decided that the statement 

in the Composite Function Task was true because “I remember doing something like this 

a couple years back. I just didn’t really remember how to show that it was true.”  

Although Elliot’s intuition provided a decision on the statement’s truth value, it did not 

suggest why it was true or suggest how he could prove it.  This was a common 

experience for all of the students who made non-property-based intuitive decisions.   

 Analytical decision-making.  Every decision on the Injective Function Task, the 

vast majority of decisions on the Monotonicity and Global Maximum Tasks, and half the 

decisions on the Composite Function Task were analytical.  On the Injective Function, 

Global Maximum, and Composite Function Tasks, the decisions were based on mostly on 

semantic-deductive or syntactic reasoning.  On the Injective Function Task, most 

decisions were based on either informal (semantic-deductive) or formal (syntactic) 

definitions of function or one-to-one that formed the basis for students’ proofs or 

counterexamples.  On the Global Maximum Task, decisions were based mostly on 

visualization-based and/or definition-based informal arguments (semantic-deductive) that 

formed the basis for students’ proofs.  However, on the Composite Function Task, 

students’ analytical decisions were based mostly on failed proof or counterexample 

attempts (syntactic) that did not inform students’ subsequent reasoning.   

 The Monotonicity Task was the only task for which semantic-empirical reasoning 

was used significantly for decision-making.  Five students based their decisions on an 
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example (four students used 𝑓(𝑥) =  𝑥2), leading to incorrect decisions.  Of those five 

students, three (Louis, Julie, and Tina) overgeneralized their example to construct an 

informal argument in support of their decision.  However, the other two students (Aurelia 

and Edward) did not base their proof attempt on their examples.  This allowed them to 

overturn their example-based decisions and construct correct counterexamples for the 

task.   

 Reasoning types and performance.  A few patterns emerged with respect to 

students’ use of different reasoning types for decision-making and their membership in 

the three performance groups.  The students in the strong performance group (Edward, 

Elliot, Inigo, and Michael) used mostly semantic-deductive or syntactic reasoning for 

decision-making.  The students in the average performance group (Aurelia, Emily, Evan, 

and Jalynn) also used mostly semantic-deductive and syntactic reasoning, but much of it 

was in combination.  The weak performance group (Louis, Jay, Julie, and Tina) used 

mostly intuitive and semantic-empirical reasoning, sometimes in combination with 

semantic-deductive reasoning.  Overall, the strong and average groups preferred 

semantic-deductive and syntactic reasoning for decision-making whereas the weak group 

favored intuitive and semantic-empirical reasoning.   

 Across performance groups, most students used the same types of reasoning on 

the Injective Function, Global Maximum, and Composite Function Tasks.  However, on 

the Monotonicity Task, there were distinct patterns of reasoning type per performance 

group.  The strong group used mostly semantic-deductive reasoning, the average group 

used mostly syntactic reasoning, and the weak group used mostly semantic-empirical 
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reasoning.  This loosely corresponds to the three solution types on this task – the correct 

solution, standard incorrect proof, and generalization – respectively.        

 Connections between students’ decision-making and proof or 

counterexample construction processes.  Students’ decision-making and construction 

processes were mostly connected on the Injective Function, Monotonicity, and Global 

Maximum Tasks, but they were mostly disconnected on the Composite Function Task.  

When analyzing the connectedness of students’ decision-making and construction 

processes, I identified two distinct types of both connections and disconnections.  

Connections between construction and decision-making were categorized as either 

construction based on decision-making or simultaneous construction and decision-

making.  Disconnections were construction not based on decision-making and no 

decision-making.  Table 15 shows the type and frequency of connections and 

disconnections by task.  Simultaneous decisions and constructions and no decisions 

occurred less frequently than construction based on decisions and constructions not based 

on decisions.  Reasoning on the Injective Function, Monotonicity, and Global Maximum 

Tasks was mostly connected, and reasoning on the Composite Function Task was mostly 

disconnected.   
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Table 15 
 
Type and Frequency of Connections and Disconnections by Task 
 Injective  

Function 
Monotonicity Global  

Maximum 
Composite  
Function 

Construction based on 
decisions 

10 7 11 1 

Simultaneous decisions & 
construction 

3 6 1 0 

Construction not based on 
decisions 

0 3 3 10 

No decisions 2 1 0 1 
 
 

Connections or disconnections between decision-making and construction seem to be 

related to the following: (a) reasoning type, (b) task complexity, (c) solution correctness, 

and (d) overturned decisions.  

Reasoning type.  When considering the relationship between 

connections/disconnections and reasoning type, I only considered situations where the 

construction was based on the decision-making and where the construction was not based 

on the decision-making because both decision-making and construction take place and 

are separate components of the proving process.  Across all tasks, students mostly 

connected semantic-deductive and syntactic reasoning.  This usually took the form of 

proofs based on informal arguments such as when Elliot based his proof for the Global 

Maximum Task on the informal argument that there is always a larger function value on 

an increasing function defined on the real numbers.     

Students linked other types of reasoning as well, such as when Jay and Inigo 

based their syntactic proofs for the Monotonicity Task on their intuitions.  Julie and Louis 
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connected their semantic-empirical and semantic-deductive reasoning on the 

Monotonicity Task by generalizing their examples.  Other students linked different types 

of syntactic reasoning such as when Julie based her proof for the Injective Function Task 

on the formal definition of function.  Additionally, on the Composite Function Task, 

Evan based his proof for his second case on his need for the assumption in the first case 

that the domain of the function was all real numbers.    

 Constructions that were not based on the decision-making occurred on the 

monotonicity, global maximum, and Composite Function Task.  Both cases of disconnect 

on the Monotonicity Task involved semantic-empirical reasoning not connected to 

syntactic reasoning:  Aurelia and Edward constructed an example that illustrated the 

statement was true, but then did not use their example to inform their proof attempts.  In 

both cases, their failed proof attempts led them to determine that the statement was 

actually false and they were able to construct correct counterexamples.  Thus, in this 

case, the disconnect aided their ability to overturn an incorrect decision. 

On the Global Maximum Task, Inigo and Michael did not connect their semantic-

deductive informal arguments to their syntactic proofs.  Their informal arguments were 

based on the fact that functions that approach infinity do not have global maximums, but 

this idea did not translate explicitly into their proofs.  Across the Global Maximum and 

Composite Function Tasks, six students failed to link their intuition to their syntactic 

reasoning.  These intuitions were either unjustified, based on a memory about the task, or 

based on a similar task.  Because these intuitions lie outside the properties of the task 

itself, they provide no basis for connecting them to subsequent construction processes.  
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An example would be Edward or Jalynn’s similarity-based intuitions on the Composite 

Function Task that suggested the statement was true because the similar statement in 

which the component functions are one-to-one implies the composite function is one-to-

one is true.  Additionally on the Composite Function Task, there were five cases in which 

syntactic reasoning was not connected to other syntactic reasoning.  In each case, the 

situation involved a counterexample or proof that was not connected to a failed proof or 

counterexample or a need for an assumption.  For example, Michael did not base his 

counterexample search on his need for the assumption that the function f was one-to-one, 

and when his counterexample search failed, he did not consider why it failed when 

constructing his follow-up proof.   

Task complexity.  The less complex tasks seemed to correlate with constructions 

based on decision-making unlike the more complex tasks.  On the less complex tasks that 

only required a straightforward application of a definition, the Injective Function and 

Global Maximum Tasks, the vast majority of the students based their construction on 

their decision-making.  These connections mostly took the form of proofs or 

counterexamples based on informal arguments or informal definitions such as when 

Emily based her counterexample on the Injective Function Task on the informal 

definition of a function that different inputs do not necessarily result in different outputs. 

 On the more complex tasks that involved complex proof or counterexample 

structures, (the Monotonicity and Composite Function Tasks), students were less likely to 

base their construction process on their decision-making.  Almost half of the decisions in 

the Monotonicity Task were made simultaneously with the constructions.  In these cases, 
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students’ decision-making pathways ended in decisions because they were unable to 

come to a final decision on the statements’ truth value until after they already had a 

complete argument in support of its truth or falsity.  Such was the case with Evan who 

did not have an idea of whether the statement was true or false, so he used his definitions 

to construct a proof that simultaneously led to and supported his decision.   

 The Composite Function Task was the only task in which the majority of the 

students did not connect their decision-making and construction processes.  It is unclear 

how much of this related to the complexity of the task rather than the types of reasoning 

the students used.  The disconnections are most likely based on a combination of these 

factors.  Although many students had an intuition on this task, it did not set up potential 

reasoning for its truth or falsity.  Additional disconnections were related to failed proof 

and counterexample attempts.  The frequency of these failed attempts is probably based 

on the complexity of the task. Unfortunately, the simplicity of the failed attempts did not 

reveal conditions that could inform a subsequent proof or counterexample attempt, such 

as Inigo’s failed proof attempt based on the lack of a relationship between the domain of 

the composite function and the domain of g.  Thus, the students did not learn anything 

from these failed attempts that would aid further work on the task.                    

 Solution correctness.  The analysis of a relationship between solution correctness 

and connections is limited in scope.  Because the Global Maximum Task was true or false 

based on cases, and no student actually correctly solved the task, I will not consider it in 

this section.  Additionally, I have eliminated all cases in which a student made multiple 

decisions and experienced both connections and disconnections on the same task.  This is 
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simply because I need an injective function in order to determine frequencies.  With these 

restrictions, this part of the discussion is based only on 35 of the 60 total decisions made 

by the students in this study.  Table 16 shows the frequencies of connections and 

disconnections by solution correctness. 

 

Table 16 
 
Frequency Distribution of Connections and Disconnections by Solution Correctness 
 Correct Incorrect 
Connected Decision-making 
& Construction 

11 12 

Disconnected Decision-
making & Construction 

3 9 

 
 

As can be seen in Table 16, there does not seem to be a relationship between 

connectedness of construction and decision-making and correct solutions as connections 

between decision-making and construction occurred with about the same frequency for 

correct and incorrect solutions.  However, when it comes to disconnections, these are 

more likely to correspond with incorrect solutions than correct solutions.  Thus, 

connected decision-making and construction processes coincides with a higher likelihood 

of a correct solution than disconnected processes.   

 Overturned decisions.  There were a total of 14 overturned decisions across the 

four tasks.  Mostly syntactic reasoning was involved with the overturned decisions, and 

in particular, half of the overturned decisions were overturned due to a need for 

assumption or a failed proof or counterexample attempt.  Of the 14 overturned decisions, 
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10 of them related to either connected, simultaneous decision-making and construction or 

disconnected no decision-making. 

Of the ten total cases of simultaneous decision-making and construction, eight of 

these involved overturned decisions:  three on the Injective Function Task and five on the 

Monotonicity Task.  For example, on both the Injective Function and Monotonicity 

Tasks, Jalynn made two decisions with simultaneous decision-making and construction 

processes.  All of her reasoning was syntactic.  On the Injective Function Task, a proof 

led to the decision that the statement was true.  However, the need for an assumption in 

the proof led her to consider whether the statement was false.  After constructing a 

counterexample, she decided that it was in fact false in the general case.  On the 

Monotonicity Task, a mathematical error in a proof led her to a decision that the 

statement was false, but her uncertainty prompted her to double check her work.  She 

corrected the error that resulted in a proof that supported the subsequent decision that the 

statement was true. 

 Of the four cases of disconnections between construction and decision that 

involved no decision, two of these included overturned decisions (both by Inigo).  On the 

injective function and composite tasks, Inigo did not initially engage in decision-making 

and simply assumed that the given statement was true.  This caused a disconnect 

involving no decision for Inigo’s first decision on these tasks.  However, both decisions 

were overturned due to failed proof attempts.    

 Students’ errors and difficulties.  In this section, I will discuss logical and 

mathematical errors that occurred across tasks as well as a couple of recurring themes 
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that caused students difficulties in the tasks.  There were no intuitive errors that occurred 

across tasks as relevance errors were the only types of intuitive errors committed by the 

students and these only occurred on the Monotonicity Task.  The two key logical errors 

were making illegal assumptions and using incorrect proof structures.  The only key 

mathematical errors were conceptual misunderstandings.  The two recurring difficulties 

students experienced were related to function domains and the use of 𝑓(𝑥) = 𝑥2 as the 

preferred example in any situation.  I will also discuss the situations in which students 

were able to overcome errors.     

 Logical errors.  The students in this study made illegal assumptions across all 

tasks.  Between the Injective Function and Composite Function Tasks, five students 

assumed that a given function was one-to-one although this information was not given 

and could not be inferred from the conditions in the task.  This assumption changed the 

truth value of the statement in the Injective Function Task.  On the Global Maximum 

Task, eight students assumed that the domain of the given function was all real numbers 

although its domain was not stated.  Thus, the students failed to consider the case in 

which the domain was restricted.  Finally, on the Monotonicity Task, one student 

assumed that the range of the function 𝑔 was in the interval I where the function f was 

increasing.  This was a necessary assumption for the statement to be true, but it was not a 

legitimate assumption. 

 The other key logical error that students experienced in this study was incorrect 

proof structures.  These errors only occurred on the Injective Function, Global Maximum, 

and Composite Function Tasks, with eight instances total.  On the Injective Function and 
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Global Maximum Task, respectively, Edward and Evan each attempted to disprove a 

statement using proof by contradiction.  This strategy in itself is not viable, but they also 

made structural mistakes within these attempts.  On the Injective Function Task, Inigo 

and Louis each made an incorrect assumption for contradiction by negating a given rather 

than the conclusion.  On the Global Maximum Task, Louis and Jay each tried to construct 

an inductive proof although this was inappropriate for the task.  On the Composite 

Function Task, Jalynn incorrectly used the definition of one-to-one to structure her proof 

and Inigo incorrectly structured his counterexample by switching the desired properties 

of two functions. 

 Mathematical errors.  The most prominent mathematical errors were conceptual 

misunderstandings, but the concepts differed based on the task.  On the Injective 

Function Task, three students (Aurelia, Tina, and Louis) thought that all functions were 

one-to-one.  These concepts are closely related, so their misunderstandings are reasonable 

to some degree.  On the Global Maximum Task, Tina confused the concept of increasing 

with infinite limits at infinity.  She referred to the graph of 𝑓(𝑥) = 𝑥2 and indicated that 

it was increasing because it was “constantly increasing on both sides.”  Additionally, 

three students inferred that the given function 𝑓 was defined on all real numbers on the 

Global Maximum Task.  Louis and Michael thought that the domain was all real numbers 

because they were dealing with a global maximum versus a local maximum.  Michael 

said “the key word here is global...because it’s global, and then it’s for the entire real 

line.”  Elliot inferred that the function was defined on the real numbers because it was 

strictly increasing rather than increasing.   
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 On the Monotonicity Task, some students thought that decreasing functions were 

always negative and many students overgeneralized the concept of “two negatives make a 

positive.”  Four students specifically used the idea that decreasing functions are negative 

to justify a generalization from an example.  Furthermore, every student who constructed 

an example of a decreasing function chose a negative function.  It is possible that 

students’ prior mathematical experiences with increasing and decreasing functions – such 

as linear functions and derivatives – shaped their view of increasing and decreasing 

functions.  Seven students overgeneralized the idea that multiplying two negative 

quantities results in a positive quantity.  This idea manifested itself in two distinct ways – 

it was generalized from examples and from the switching of inequalities when using the 

definition of decreasing.  Aurelia, Julie, Louis, Inigo, and Tina each constructed 

examples that served as the basis for informal arguments to support their decisions.  On 

the other hand, Jay and Jalynn referred to the switching of the inequalities in their proofs 

as similar to two negatives resulting in a positive, as Jalynn explained: “So it made it 

opposite, and then whatever you put into 𝑓, it’s going to make it opposite again.  So it’s 

kind of like a double negative.”   

 Recurring difficulties.  The students in this study had various issues with respect 

to function domains on three of the four tasks.  On the Monotonicity Task, although the 

properties of increasing and decreasing only applied on a restricted interval, the students 

often assumed the properties applied to all real numbers.  This assumption may have 

stemmed from the fact that the function had a domain of all real numbers or the fact the 
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definitions for the properties were based on all real numbers.  Either way, this assumption 

changed the task and resulted in four incorrect proofs.   

 On the Injective Function Task, the given function was defined on an abstract 

domain A, causing difficulties for Evan and Jalynn.  Evan did not think that he could use 

𝑓(𝑥) = 𝑥2 as a counterexample because he did not know how to reconcile it with the 

abstract domain and thought that he had to construct an abstract example.  Jalynn thought 

that the domain and range designation on this task had additional meaning, such as that 

the function was one-to-one or onto, although she did not struggle with this on other 

tasks.  This seemed to be because the other tasks were defined on the reals rather than on 

abstract sets.   

 The domain and range of the function in the Global Maximum Task are not 

provided.  This made the task somewhat ambiguous, and a complete solution required 

consideration of the cases in which the domain was all real numbers (or an open interval) 

and when it was restricted (or a closed interval).  However, Evan was the only student 

who considered both cases, and this was only because I asked him to reconsider his 

answer due to his inadvertent change in the statement.  Seven students simply assumed 

that the given function was defined on all real numbers, and three students inferred that 

the domain was all real numbers.  Jalynn asked if she could assume that the function was 

defined on all real numbers.  Because most students determined that the function was 

defined on all real numbers, no student correctly solved this task.  It is likely that this 

determination either stemmed from the fact that the definitions were based on all real 



  215 
 

 

numbers or that many students are used to assuming that they are dealing with functions 

defined on all real numbers unless stated otherwise.   

 Another recurring theme that caused some difficulties for students was the use of 

the function 𝑓(𝑥) = 𝑥2 in almost every situation.  In general, the students repeatedly 

turned to 𝑓(𝑥) = 𝑥2, thinking that if it did not work, then nothing would.  Michael noted 

that it was the “ultimate” example of a non-injective function, and that in general, “if 

there were to be a counterexample, it would probably be 𝑥2, just because it’s so simple.”  

On the Injective Function Task, 𝑓(𝑥) = 𝑥2 was used appropriately by the majority of 

students as a counterexample, but students’ insistence that this example should always 

work led them to try to force its appropriateness in any situation.  As an example, on the 

Composite Function Task, Aurelia, Emily, and Inigo pushed themselves to make 

𝑓(𝑥) = 𝑥2 work as a counterexample, resulting in the mathematical error of not 

considering absolute value when taking the square root of a squared function. 

 Overcoming errors.  The students in this study committed 67 total errors and only 

overcame 14 of these.  See Table 17 for a breakdown of total and overcome errors by 

task.  Each student made some type of error on at least two tasks, and most students made 

errors on all tasks.  Eight of the 12 students were able to overcome at least one error that 

they made, and half of these students overcame multiple errors.        
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Table 17 
 
Frequency Table of Errors and Overcome Errors by Task 

Task Number of Errors Number of Overcome Errors 
Injective Function 15 5 

Monotonicity 20 6 
Global Maximum 18 2 

Composite Function 14 1 
Total 67 14 

 
  

The most prominent error types that were overcome were relevance errors, illegal 

assumptions, and incorrect proof structures.  In general, students overcame errors either 

because they were uncertain about their work and wanted to double-check it or they were 

indirectly prompted by me to reconsider their work.  For example, on the Injective 

Function Task, Inigo and Louis each corrected their proof structures after uncertainty 

propelled them to reconsider the desired conclusion of the task.  Also on the Injective 

Function Task, Jalynn overcame the error of making the illegal assumption that a given 

function was one-to-one upon prompting from me to rethink her notation confusion.   

In a few cases, further consideration of the mathematics involved led to the 

discovery of the error.  When Inigo and Aurelia each considered the partial graph of a 

quadratic function on the Monotonicity Task, they realized that they needed an interval 

restriction and overcame their relevance errors.  On the Global Maximum Task, Edward’s 

ongoing contemplation regarding global maximums and upper bounds led him to 

overcome his mathematical error confusing the two concepts.   
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  Based on these results, in the following chapter I make some concluding remarks 

regarding my research questions.  Additionally, I offer conclusions related to students’ 

performance on these tasks and their mathematical backgrounds as well as their 

understanding of the culture of proof in mathematics.  Finally, I discuss implications of 

this research for the teaching and learning of proof and proving in undergraduate 

mathematics and suggest directions for future research. 
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Chapter 5: Conclusions 

This research explored students’ use of intuitive, semantic, and syntactic 

reasoning during the processes of deciding on the truth value of mathematical statements 

and constructing proofs and counterexamples.  Additionally, this study investigated 

connections between the decision-making and construction processes and systematic 

errors of reasoning.  Because of the emphasis on syntactic reasoning and prove this 

statements in the undergraduate curriculum (Davis & Hersh, 1981; Durand-Guerrier et 

al., 2012; Weber, 2004), little is known about how students approach mathematical 

statements with unknown truth values, what types of reasoning are useful for deciding on 

their truth value, and what types of systematic errors may inhibit success in the proving 

process.  This study shed light on these topics by considering the following research 

questions: 

1. In what ways and to what extent do students use intuition and analysis to decide 

on the truth value of mathematical statements? 

2. What are the connections between students’ process of deciding on the truth value 

of mathematical statements and their ability to construct associated proofs and 

counterexamples? 

3. What types of systematic intuitive, mathematical, and logical errors do students 

make during the proving process, and what is the impact of these errors on the 

proving process? 

Although undergraduate students are rarely involved in evaluating the truth value of 

mathematical statements, this is an essential aspect of mathematical practice that deserves 
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attention.  Researchers hypothesize that students who are required to evaluate a 

conjecture before proving it, and who are able to connect these processes, are more likely 

to succeed at constructing a proof (Garuti et al., 1998).  Thus, experiences with 

statements in which the truth value is unknown could alleviate some of the difficulties 

that undergraduate students have with the proving process (Alcock, 2010; Dreyfus, 1999; 

Harel & Sowder, 1998, 2009; Moore, 1994; Selden & Selden, 1987, 2003, 2007; 

Solomon, 2006; Weber, 2001).   

 In this study, I used a combination of cognitive psychology and mathematics 

education theories to develop a framework for distinguishing among different types of 

reasoning based on both their cognitive and mathematical properties.  Dual-process 

theory emphasizes the distinction between intuitive and analytical reasoning based on 

whether the reasoning can be fully justified (Evans, 2010; Fischbein, 1982).  Alcock’s 

and Weber’s theory of semantic and syntactic reasoning differentiates semantic reasoning 

based on intuitive or informal representations of concepts from syntactic reasoning based 

on logic and structure (Alcock & Weber, 2010; Weber & Alcock, 2004, 2009).   The 

category of semantic reasoning was too broad to be useful, so intuitive reasoning was 

separated completely (to align with dual-process theory) and the remaining types of 

semantic reasoning were separated into semantic-empirical and semantic-deductive to 

distinguish between reasoning based on empirical evidence versus informal arguments.  

This resulted in a framework with four main categories of reasoning – intuitive, semantic-

empirical, semantic-deductive, and syntactic – each with subcategories.   
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 Previous research indicates that each of these types of reasoning can be useful for 

deciding on the truth value of mathematical statements and constructing proofs or 

counterexamples.  Intuition creates a meaningful representation of a task that can assist 

with understanding, providing a starting point, suggesting a direction to pursue, or 

guiding action on the task (Burton, 2004; Fischbein, 1982, 1987; Smith & Hungwe, 1998; 

Wilder, 1967).  Additionally, intuition can help students notice similarities that connect 

the current task to prior knowledge and experiences (Burton, 2004; Fischbein, 1987).  

Semantic reasoning can support understanding and can provide an informal basis for a 

proof or counterexample (de Villiers, 2010; Raman, 2002; Weber & Alcock, 2004, 2009).  

Syntactic reasoning can assist with understanding and provide structure for a proof or 

counterexample (AMATYC, 1995; Selden & Selden, 2009; Weber & Alcock, 2009). 

 The qualitative methods of clinical task-based interviews and the think-aloud 

method revealed students’ reasoning processes in depth.  The participants completed four 

mathematical tasks in which they were required to decide on the truth value of a given 

mathematical statement and either prove or disprove the statement accordingly.  Students 

spoke aloud as they worked on the task so that I could follow their thought processes.  

After each task, I asked them to reflect on their decision regarding the truth value of the 

statement in order to gain additional insight into their decision-making processes.  

Analysis of the students’ written work and transcripts of their spoken words focused on 

the types of reasoning the students used during the decision-making and construction 

processes, connections between these processes, and systematic errors that occurred 

during the processes.  In the remainder of this chapter, I discuss conclusions regarding (a) 
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my research questions, (b) students’ performance on the tasks and their mathematical 

backgrounds, and (c) students’ understanding of the culture of proof.  Additionally, I 

suggest implications for teaching and learning and recommendations for future research.   

Conclusions With Respect to RQ1 

 My first research question addressed the use of intuitive and analytical reasoning 

for deciding on the truth value of mathematical statements.  Of the 60 decisions made in 

this study, 11 were intuitive and 49 were analytical.  Both intuitive and analytical 

reasoning were used in numerous ways for decision-making, although intuition was not 

used as often as I had anticipated.     

 Use of intuition for decision-making.  The students in this study used intuition 

in a variety of ways to decide on the truth value of mathematical statements.  The six 

distinct types of intuition that I identified correspond to different ways intuition provided 

students with a starting point when approaching the tasks.  Students used memory-based 

and understanding-based intuitions that drew on their prior experiences with the concepts 

in the task to indicate a direction to pursue.  Similarity-based intuition was used when 

students identified a statement with a known truth value that was similar enough to the 

given statement to suggest the truth value of the given statement.  When using property-

based or visualization-based intuition, the students based their decisions on vague ideas 

about function properties or visualizations of the functions in the task.  Finally, even 

unjustified intuitions provided the students with a sufficient indication of a statement’s 

truth value to allow them to begin on the task.           
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 Limited use of intuition.  Intuition was not used as often as I had expected for 

deciding on the truth value of the mathematical statements in this study.  I had expected 

intuition to play a larger role due to its usefulness in providing a direction to pursue when 

a statement’s truth value is unknown.  I theorize that intuition did not play the role I 

expected due to methodological limitations and a poor choice of a working definition of 

intuition.   

 Methodological limitations.  In dual-process theory, intuition is defined by its 

independent operation from working memory.  In order to verify whether intuition is used 

based on this definition, special procedures, such as functional magnetic resonance 

imaging (fMRI), are needed to determine which areas of the brain are active during the 

decision-making process.  In this study, I did not have access to such procedures.  In lieu 

of these procedures, a working definition of intuition needs to be used in order to 

distinguish intuitive and analytical reasoning based on students’ expressed words and 

actions.  I used a working definition of intuition that did not seem to capture intuition as 

expected (see the next section). 

 In this study, I provided the students with a list of definitions of the terms in the 

tasks.  Many students immediately turned to this definition list upon reading each task 

statement and wrote the relevant definitions.  It is possible that the availability of these 

definitions alone hindered students’ use of intuition by suggesting that syntactic 

reasoning was the preferred starting point.    

 Working definition of intuition.  Based on the idea that an intuitive response is 

formed at least partially without awareness and cannot be fully explained (Evans, 2010; 
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Fischbein, 1982), I used justification as my sole criteria for distinguishing intuition from 

analysis in this study.  If a students’ reasoning was fully justified – even if it was justified 

later rather than in the moment – then I considered it analytical.  If the reasoning was 

partially or not justified, I classified it as intuitive.  Based on this limited working 

definition, I classified few instances of reasoning as intuitive.   

 There is no consensus on a working definition of intuition in mathematics, and 

other versions have the potential to capture intuition differently than the definition I used.  

Two variations that I think would have been better (in terms of defining intuition 

consistently with what mathematicians and mathematics educators would want to call 

intuition (Davis & Hersh, 1981)) would have (a) distinguished justifications made in the 

moment from post hoc justifications, and (b) considered various expressions of intuition.   

 In the moment versus post hoc justifications.  In this study, after the students 

completed their work on a task, I inquired as to when they made their decisions and what 

led to those decisions.  They often offered justifications for their decisions that were not 

expressed at the time they made the decision.  These were frequently tied to their support 

for the decisions, and it is reasonable to consider whether these were post hoc 

explanations of their work rather than delayed expressions of their thoughts at the time 

the decision was made.    

In particular, this change in working definition would have allowed me to classify 

three decisions on the Global Maximum Task as intuitive rather than analytical.  Elliot, 

Jalynn, and Inigo each provided post hoc justifications for their decisions, but it is likely 

these were based on their proofs rather than representing their thought processes during 
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decision-making.  Furthermore, these students made comments that indicated that their 

decisions were not fully justified at the time.  For example, Elliot noted that it was 

“immediately implausible” for an increasing function to have a global maximum, and 

Jalynn said “I just knew that if it was infinitely increasing, you couldn’t have a global 

maximum.”  

 On the Injective Function Task, four students (Aurelia, Edward, Evan, and 

Michael) made decisions classified as analytical based on post hoc justifications.  For 

example, Evan decided that the Injective Function Task was false because “it doesn’t say 

anything about the function being one-to-one.”  However, he said that this was just a 

“suspicion,” and later justified his decision by fully explaining that “nowhere in the 

statement does it say 𝑏 can't equal 𝑏0 ...there’s nothing directly preventing 𝑓(𝑎) from 

equaling 𝑏0 when 𝑎’s ≠ 𝑎0.” 

 Expression of intuition.  Working definitions of intuition may need to consider 

that students’ expression of intuition may vary by task (possibly related to task 

complexity).  It may be that intuition on a less complex task is expressed quickly, clearly, 

and with confidence.  On the other hand, intuition on a more complex task may be 

expressed slowly, vaguely, and with uncertainty.  

On the Injective Function and Global Maximum Tasks (the less complex tasks), 

many students had quick, confident responses with a clear, yet incomplete justification.  

Due to delayed expression of an explanation, these were classified as analytical decisions.  

However, it could be that these decisions were intuitive, especially because they were 

made quickly and the students had high confidence in them.  Although quickness and 
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confidence are not always associated with intuition, they are common correlates (Evans, 

2008; Thompson 2009).   

 By contrast, students’ intuitive decisions on the Monotonicity and Composite 

Function Tasks (the more complex tasks) were typically slow, vague, and coupled with 

uncertainty.  This manifestation of intuition was easier to classify as intuition using my 

working definition.  It is possible that the complexity of these tasks made it more difficult 

for students to have a clear intuition on the task, and also reduced their certainty in it.  

Often, students seemed hesitant about their intuitions on these tasks and were uncertain 

about how their intuitions corresponded with a solution to the task. 

 Use of analysis for decision-making.  Most decisions in this study were made 

using analytical reasoning in the form of either semantic-empirical, semantic-deductive, 

or syntactic reasoning.  Students who used semantic-empirical reasoning used an example 

or a graph as a test case and based their decision on the result of the test case.  Most 

semantic-deductive decisions stemmed from informal arguments based on examples, 

graphs, diagrams, visualization, kinaesthetic movement, informal definitions, or 

inconclusiveness of given information.  The other semantic-deductive decisions were 

based on informal definitions.  These informal arguments or definitions provided students 

with sufficient evidence of a statement’s truth value to warrant a decision.   

 Syntactic reasoning was used in similar ways as other reasoning types, but it was 

also used in unique ways.  Similar ways include syntactic decisions based on formal 

definitions or a suspected need for an assumption.  Unique ways that syntactic reasoning 

was used for decision-making include situations in which a decision was not made until 
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after a student had full support for the decision in the form of a proof, disproof, or 

counterexample.  In these cases, no additional reasoning was needed after the decision.  

Additionally, failed proof or counterexample attempts, often coupled with a lack of a 

needed assumption, led many students to overturn decisions and make new decisions. 

 Significance of RQ1 conclusions.  This study contributes to the limited research 

on the use of intuition for evaluating conjectures and expands the types of intuitive 

reasoning that can be used successfully for decision-making in mathematics.  Similarity-

based and memory-based intuitions are new types of intuition that, to my knowledge, 

have not been discussed in research on deciding on the truth value of mathematical 

statements.  If the mathematics education community can come to an agreed upon 

definition of intuition, we may be able to better understand how intuition can help guide 

students on proof tasks, and how to develop intuition in our students.   

The wide variety of semantic reasoning used to make decisions in this study 

corresponds with the reasoning used by mathematicians in prior research studies (Alcock 

& Inglis, 2008; de Villiers, 2010; Inglis et al., 2007).  Prior research on students’ 

reasoning has indicated that they accept semantic-empirical arguments as proof (Harel & 

Sowder, 1998, 2007; Inglis et al., 2007), but the reasoning of the students in this study 

moved beyond the semantic-empirical use of examples or diagrams to more sophisticated 

semantic-deductive reasoning.  Furthermore, students’ use of syntactic reasoning in this 

study to make decisions mirrored mathematicians’ use of syntactic reasoning for 

evaluating conjectures in prior research (Inglis et al., 2007; Weber 2009) and expanded 

the research on students’ uses of syntactic reasoning for decision-making (Buchbinder & 
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Zaslavsky, 2007; Durand-Guerrier et al., 2012).  The results of this study indicate that 

students can learn to use intuitive, semantic, and syntactic reasoning to evaluate 

conjectures appropriately and successfully.  Additionally, this suggests the value in 

encouraging students to learn a variety of reasoning types in order to assist with deciding 

on the truth value of mathematical statements.                 

Conclusions With Respect to RQ2 

 My second research question was concerned with what connections exist between 

the processes of deciding on the truth value of mathematical statements and constructing 

associated proofs or counterexamples.  In this section, I will discuss the following 

findings (a) the types of connections and disconnections that I identified, (b) the 

disconnect between intuition and analysis, and (c) the benefits and hindrances of both 

connections and disconnections.    

 Types of connections and disconnections.  I identified two types of both 

connections and disconnections between the processes of deciding on the truth value of 

mathematical statements and constructing associated proofs or counterexamples.  

Connections between these processes took the form of either a construction based on 

decision-making or simultaneous construction and decision-making.  Disconnections 

occurred when a construction was not based on decision-making or no decision-making 

took place.  Students’ ability to connect these processes seemed to depend on reasoning 

type and task complexity.   

 Disconnections between intuition and analysis.  In general, most connections 

occurred between semantic-deductive and syntactic reasoning in the decision-making and 
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construction processes.  The students in this study only connected one type of intuitive 

decision-making to the corresponding analytical construction process – property-based 

intuition.  The other types of intuition did not suggest a reason for the decision, so it is 

not surprising that they were not connected to analytical reasoning in the construction 

process.  However, because connections supposedly facilitate proving (Garuti et al., 

1998), certain types of intuition may be undesirable bases for decision-making.  

Benefits and hindrances of connections and disconnections.  In general, 

situations in which decision-making and construction were connected corresponded to a 

higher likelihood of a correct solution.  However, this may only apply to connections for 

which the construction is based on the decision-making.  In this study, of the 10 

occurrences of connected simultaneous decision-making and construction, eight of these 

decisions were overturned, suggesting that simultaneous decision-making and 

construction processes may not facilitate proving.   

 On the other hand, disconnections did not always hinder proving.  For example, 

on the Monotonicity Task, Aurelia and Edward used an example to decide that the 

statement was true.  However, their corresponding proofs were disconnected from their 

examples.  This allowed them to realize that their proof attempts would not be successful, 

and they overturned their incorrect decisions.  Julie, Tina, and Louis also used an 

example to decide that the Monotonicity Task was true, but they constructed incorrect 

proofs based on a generalization of the example. 

 Significance of RQ2 conclusions.  Connections in which the construction 

process was based on the decision-making process mostly facilitated proving, offering 
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some evidence to support the conjecture by Garuti et al. (1998).  Thus, experiences with 

proving that involve both a decision-making and construction process have significant 

potential to help students succeed in the proving process.  When students experience 

proving tasks in which the truth value of the statement is known, they do not engage in a 

decision-making process.  The fact that this situation (no decision-making) results in 

disconnections may suggest a reason for some of the documented difficulties students 

have with proof.   

Although intuition can be useful for decision-making, only property-based 

intuition led to connections between decision-making and construction in this study.  This 

suggests that the development of certain types of intuition, specifically those based on 

mathematical concepts, should be encouraged over the general development of any type 

of intuition.      

Conclusions With Respect to RQ3 

My third research question addressed systematic errors that students made during 

the proving process and the impact those errors had.  The only systematic intuitive errors 

made in this study were relevance errors, and these were only committed on the 

Monotonicity Task.  Although a variety of systematic logical and mathematical errors 

occurred on each task, these conclusions focus on errors that were systematic across 

tasks.  Systematic logical errors made across tasks included making illegal assumptions 

and using incorrect proof structures.  Systematic mathematical errors that occurred across 

tasks were related to conceptual misunderstandings.  Although some errors were 

overcome and a few ended up being irrelevant, most led to incorrect decisions on the 
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truth value of the mathematical statements or incorrect proofs, disproofs, or 

counterexamples.   

 Similar to the limited use of intuition in this study, I was surprised by the limited 

amount of systematic intuitive errors that occurred.  Not only did relevance errors occur 

only on the Monotonicity Task, but attribute substitution errors did not occur at all.  In 

my pilot work, attribute substitution errors occurred on the Monotonicity Task, including 

substituting the concept of multiplying two negative numbers results in a positive number 

for the concept of composing two decreasing functions results in an increasing function.  

Although many students in this study made this association, it was not an attribute 

substitution error because the students did not make an unknown substitution of these 

concepts.  Instead, they acknowledged the similarity of the situations, but did not 

completely replace one concept by the other.  This may have been due to the fact that the 

students in my pilot study were novice undergraduate provers whereas the students in this 

study were more experienced undergraduate provers.  In general, the students’ experience 

with proof and limited use of intuition are the most likely causes for the limited 

systematic intuitive errors.   

 I expected that students would make intuitive relevance errors on the 

Monotonicity Task, and seven of the twelve students in this study did so.  The errors took 

the form of either completely ignoring the interval restriction or ignoring the 

meaningfulness of the interval restriction.  However, of the seven students who made this 

error, three overcame it.  Aurelia and Inigo did so through the use of partial graph of a 



  231 
 

 

quadratic, and this was the key to their ability to make a correct decision on this task.  

Emily overcame the error by rereading the statement and noticing the interval restriction.     

 The systematic logical errors made by the students in this study – making illegal 

assumptions and using incorrect proof structures – are documented errors that students 

make in the proving process (Moore, 1994; Selden & Selden, 1987).  Previous research 

indicates that incorrect proof structures are common in proof tasks (Alcock, 2010; Moore, 

1994), but I am unaware of research indicating that making illegal assumptions is a 

frequently occurring error.  Of the 14 errors that were overcome in this study, seven were 

systematic logical errors.  Four students overcame the error of making an illegal 

assumption – two due to uncertainty related to the assumption and two due to indirect 

prompting from me.  Additionally, three students overcame the error of using incorrect 

proof structures, and all did so due to uncertainty that led to them double-check their 

structure.  Thus, it seems that some level of uncertainty in the proving process can be 

beneficial in prompting students to review their work and overcome errors.   

 The systematic mathematical errors made across tasks in this study were related to 

conceptual misunderstandings.  There was much confusion surrounding the concepts of 

function and one-to-one.  Some students thought that all functions were one-to-one or 

assumed that a given function was one-to-one.  On some level, this is not surprising due 

to the similarity in the definitions of these concepts, but it should be a major concern that 

some fourth year mathematics and mathematics education majors fail to recognize that 

not all functions are one-to-one.   



  232 
 

 

 Another overextension of mathematical properties was the assumption that 

decreasing functions are negative and increasing functions are positive.  This assumption 

has some merit because decreasing linear functions have negative slopes and increasing 

linear functions have positive slopes, and the procedure for determining whether a 

differentiable function is decreasing or increasing is to check whether the derivative is 

negative or positive, respectively.  However, this misunderstanding led some students to 

choose example functions that supported an incorrect decision on the Monotonicity Task 

and to overgeneralize the idea that multiplying two negative quantities results in a 

positive quantity into a justification for the (incorrect) truth of the statement in the 

Monotonicity Task.   

 A final conceptual misunderstanding that arose in this study was that the concept 

of a global maximum of a function inferred that the domain of the function must be all 

real numbers.  This confusion most likely arose from the distinction between local and 

global maximums and minimums and the overgeneralization of a global maximum being 

the maximum on a function’s entire domain to it being the maximum on the real 

numbers.   

 Significance of RQ3 conclusions.  The systematic errors made by the students in 

this study had a significant impact on the correctness of their solutions because few of 

them were overcome.  However, some level of uncertainty may assist students in 

overcoming errors.  Thus, if we encourage students to act with a sense of skepticism, 

which can be supported with the use of proof tasks in which the truth value of the 

statement in the task is unknown, then students may be more likely to overcome errors.  
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Even simply asking follow-up questions that prompt students to review their work could 

lead to the correction of many errors that otherwise might suggest that students have 

more difficulties with proof than they truly have.   

The conceptual misunderstandings exhibited by the students in this study are of 

concern due to the centrality of functions in mathematics.  The students should have had 

extensive experience with the concepts of functions, one-to-one functions, composite 

functions, and increasing and decreasing functions.  However, their work on these tasks 

showed significant misunderstandings.  This suggests that substantial work is needed in 

the area of helping undergraduate students develop strong conceptual understandings of 

these topics.       

Conclusions With Respect to Students’ Performance and Mathematical Background 

  As was discussed in the methods section, the four tasks in this study can be 

ordered based on the complexity of a proof or counterexample for the task.  The Injective 

Function and Global Maximum Tasks are less complex due to the structure of a proof or 

counterexample requiring straightforward applications of definitions.  The Monotonicity 

and Composite Function Tasks are more complex because the structure of a 

counterexample or proof is more complex.  The Monotonicity Task requires a 

counterexample with two functions that satisfy specific properties in relation to each 

other.  The proof for the Composite Function Task is not linear, requires applying the 

given assumption to a function created in the proof, and involves an unexpected 

contradiction.   
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The students in this study were grouped loosely according to their performance on 

the tasks.  Members of the strong performance group include Edward, Elliot, Inigo, and 

Michael, who met the criteria of correctly solving at least one of the more complex tasks 

and at least one of the less complex tasks with no errors or overcame their only errors.   

Members of the average performance group include Aurelia, Emily, Evan, and Jalynn, 

who did not meet the criteria for the strong performance group, but correctly solved at 

least one task with no or minor errors.  Finally, the members of the weak performance 

group include Louis, Jay, Julie, and Tina, who met the criteria of incorrectly solving or 

being unable to solve all of the tasks. 

The students in this study had one of the following majors: (a) mathematics, (b) 

Adolescent-to-Young Adult (AYA) integrated mathematics education who earned 

secondary mathematics teacher certification, (c) dual majors in mathematics and AYA 

integrated mathematics education, or (d) economics.  The strong performance group 

included two mathematics majors, one dual mathematics and AYA integrated 

mathematics education, and one economics major.  The average performance group 

included two mathematics majors and two AYA integrated mathematics education 

majors.  Finally, the weak performance group included two AYA integrated mathematics 

education majors, one mathematics major, and one dual mathematics and AYA integrated 

mathematics education major.     

 Although there are some general trends regarding the relationships between 

performance groups and students’ mathematical backgrounds, there are no absolutes.  

The combined number of proof-based courses that the students had taken or were 
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enrolled in ranged from two to eight courses.  The strong group contained the three 

students with the most number of proof-based courses and the student (Edward, the sole 

economics major) with the least number of proof-based courses.  The students in the 

average and weak groups had between three and five proof-based courses.  Every student 

in the strong group had passed or was currently enrolled in Advanced Calculus, but this 

was also the case with two students (Emily and Evan) in the average group and one 

student in the weak group (Jay).  Only one student in the strong group had taken College 

Geometry, but three students (Aurelia, Emily, Jalynn) in the average group had, as had all 

students in the weak group.  Most students across all groups had taken Number Theory, 

Linear Algebra, and either Abstract or Modern Algebra.  The lack of a clear connection 

between students’ background (in terms of major and prior and current coursework) and 

their performance on the tasks in this study may indicate that some other feature of a 

student’s background or approach to problem solving may influence their performance on 

prove or disprove tasks.  

Conclusions With Respect to Students’ Understanding of the Culture of Proof 

 The students in this study understood that a proof entails syntactic reasoning.  

Across all tasks the students attempted to provide syntactic support for their decisions 

and most were successful in reaching this level of formality.  However, there was at least 

one case on each task where a student was unable to construct an entirely syntactic 

argument for their proof or refutation.  For example, on the Monotonicity Task, each 

student in the generalization group constructed an informal argument based on 

generalizing an example.  However, none of the students in the generalization group 
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believed that their example was sufficient to prove the statement, and all attempted to 

provide syntactic justification for why the phenomena in the example would generalize.  

Contrary to previous research (Dreyfus, 1999; Harel & Sowder, 1998; Inglis et al., 2007), 

the students in this study were aware that an example was insufficient to prove a 

statement and a general argument was needed to accompany the example.  When students 

struggled to construct a syntactic argument, it was usually due to their inability to either 

understand or use the given definitions.  Whenever students used intuitive, semantic-

empirical, or semantic-deductive reasoning to make a decision on the truth value of a 

statement, they always attempted to follow it up with syntactic reasoning.  When I 

inquired about students’ understanding of proof, every student mentioned at least one of 

the following: use of assumptions to reach conclusions, use of definitions, use of logical 

reasoning, and use of proof structures.   The fact that these students understood what a 

proof was is encouraging.  This suggests that they know what the end goal is, and that we 

should focus on helping them develop the skills they need to reach that goal.  

 Although the students understood what a proof was even when they were unable 

to construct one, they did not demonstrate the same level of understanding when it came 

to refutations.  This is evidenced by (a) students’ thinking proof by contraction is used for 

disproving statements (3 times), (b) students’ assumptions that the statements were true  

(4 times), and (c) students’ assumptions of non-given statements that were necessary for 

the given statement’s truth (14 times).  Evan, Edward, and Jay stated that proof by 

contradiction was used to disprove statements, and Edward and Evan actually used proof 

by contradiction to try to disprove the Injective Function and Composite Function Tasks, 
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respectively.  Edward constructed a counterexample on the Injective Function Task, but 

did not find it sufficient to disprove the statement.  He seemed to think that a general 

argument supporting the falsity of a statement, akin to a proof supporting the truth of a 

statement, was necessary.    

 In four cases, students simply assumed that the given statement was true and did 

not consider its truth value being in question.  For Emily, this phenomenon was a result 

of her experiences in her mathematics courses in which she was “used to being handed a 

statement and told to prove it, and told that it’s true.”  It is possible that this was case for 

the other two students, Inigo and Jay, who also failed to question a statement’s truth 

value.    

 In the face of a needed assumption in a proof that was not given, the students in 

this study always made the illegal assumption rather than consider that the statement they 

were trying to proof may be false.  In some cases, and in particular on the Global 

Maximum Task, the students seemed unaware that they had made an illegal assumption.  

In other cases, students intentionally made an assumption knowing that it was not given.  

Inigo and Jalynn on the Injective Function Task, and Edward on the Monotonicity Task, 

made explicit assumptions in their proof attempts that they knew were assumptions.  

Each student completed a “proof” that included the illegal assumption.  Prompting from 

me to consider their assumptions was necessary and sufficient for each student to 

overcome these errors.  However, their hesitance in making the assumptions did not stop 

them from making them and did not prompt them to consider that the statement may be 

false.      
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 These difficulties with refutations seem to point to the idea that students may lack 

experience dealing with statements in which the truth value is in question.  Some students 

seem to have the wrong idea about how to disprove statements and the role of proof by 

contradiction.  Some students may have the wrong idea about mathematics if they believe 

that every statement thrust in front of them is true.  Furthermore, students seem to do 

whatever it takes to construct a proof a statement, even if that means making illegal 

assumptions, before they seem to consider that the statement may be false.  In each of 

these cases, students lack key strategies for thinking about, identifying, and refuting false 

statements.  This suggests that students simply need experience refuting statements so 

that they can develop these strategies.   

Implications for Teaching and Learning 

  The results of this research suggest implications for the teaching and learning of 

proof at the undergraduate level.  In general, it seems that students could benefit from 

additional experience with prove-or-disprove tasks that require consideration of the truth 

value of mathematical statements.  The emphasis on tasks involving mathematical 

statements with known truth values helps students develop their syntactic reasoning 

skills, but does not encourage the development of semantic or intuitive reasoning skills.  

Although prior research suggests that students use semantic reasoning as a substitute for 

proof (Harel & Sowder, 1998, 2007; Inglis et al., 2007), the students in this study 

understood the appropriate use of semantic and intuitive reasoning and used these 

successfully to evaluate conjectures.  Thus, instruction in proving should encourage the 
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use of semantic and intuitive reasoning as valuable tools in exploring and deciding on the 

truth value of mathematical statements.  

  Prior research has indicated that students and mathematicians have preferred 

reasoning types (Alcock & Weber, 2010; Weber, 2009; Weber & Alcock, 2004).  

However, the results of this study, as well as previous research (Alcock, 2010; Raman, 

2001, 2003) indicates that all types of reasoning are important for successful proving.  

Thus, it is important to encourage students to use reasoning types that they are less 

inclined to use without encouragement.  Through the classification of a student’s 

reasoning on proving tasks, an instructor may determine if a student has a preference for 

intuitive, semantic, or syntactic reasoning.  This will help the instructor determine the 

type(s) of reasoning with which the student needs more experience.  Armed with this 

information, the instructor may give the student proving tasks that encourage the use of a 

specific type of reasoning.  Thus, by identifying students’ preferred reasoning types, 

instructors may encourage the development of non-preferred reasoning types through 

thoughtful task selection.        

 Although the students in this study were comfortable with what a proof was and 

how to prove statements, many students lacked an understanding of how to disprove 

statements.  Additional experience with prove-or-disprove tasks would provide students 

with opportunities to develop their refutation skills and understandings.  Engagement 

with tasks that have the possibility of being false could also curb students’ tendency to 

weaken statements by making illegal assumptions.  Prove-or-disprove statements can be 

enhanced to include requirements to extend true statements or salvage false statements 
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such as in the textbook Extending the Frontiers of Mathematics: Inquiries Into Proof and 

Argumentation (Burger, 2007).  In this case, students need to alter the assumptions or 

conclusions in order to generalize a true statement or turn a false statement into a true 

one.  Such tasks should help students see when additional assumptions are needed to 

make a false statement true rather than make illegal assumptions in an attempt to force a 

statement to be true.   

 In addition to providing students opportunities to engage in both decision-making 

and construction processes in mathematics, instructors should monitor the ways students 

are connecting the processes.  This research suggests that a separate, yet connected, 

decision-making phase may be preferable to simultaneous decision-making and 

construction.  Thus, an exploratory phase should be encouraged allowing students to seek 

evidence that would support a decision.  In the subsequent construction phase, students 

could attempt to transform their evidence into a proof or counterexample.  In this way, 

students can see that although proving is a complex process, they can use a variety of 

reasoning strategies – intuitive, semantic, and syntactic – to connect the creative and 

rigorous aspects of proving.  This again points the importance of tasks in which the truth 

value of the statement is unknown.  When students are given a statement with a known 

truth value, the decision-making phase becomes non-existent.  There is no possibility of 

connections when there is no decision-making.  It is imperative that students have the 

opportunity to connect the decision-making and construction processes, which means that 

they need the opportunity to engage in the decision-making process.          



  241 
 

 

 In this study, students were often able to overcome errors when they felt uncertain 

about their work and explored these feelings.  Instructors should encourage students to 

consider feelings of uncertainty as potential tools that may suggest that something is 

wrong, and to follow-up on these feelings with review of their work.  Some students in 

this study expressed feelings of uncertainty when in fact they had made errors, but they 

did not act on those feelings, resulting in incorrect solutions.  Because mathematics is 

often presented in a way that suggests that everything is already known, prove-or-

disprove tasks can support the development of students’ skepticism about mathematics.  

When students have the opportunity to explore the truth-value of mathematical 

statements, they can learn to use uncertainty to their advantage rather than view it as a 

weakness.     

 The systematic conceptual misunderstandings reported in this study suggest that 

even advanced undergraduate mathematics and mathematics education majors have 

difficulties with certain mathematical concepts, even when they have significant 

experience with the concepts.  Thus, there is work to be done to address these 

misconceptions and to assist students in developing correct understandings of these 

concepts.  This is especially important for the AYA integrated mathematics education 

majors who will be teaching these concepts to their own grade 7-12 students.   

 Though the sample size is limited, most of the weakest performers in this study 

were AYA integrated mathematics education majors.  This is consistent with research 

showing that preservice and inservice teachers have considerable difficulty with proof 

and proving (see Harel & Sowder, 2007 for an overview).  This is a serious stumbling 
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block for the incorporation of the teaching and learning of proof throughout the entire K–

16 curriculum, as suggested by CUPM (2004), NCTM (2000), and Common Core State 

Standards (National Governors’ Association & Council of Chief State School Officers, 

(NGA & CCSSO), 2010) as well as researchers studying proof and proving such as 

Moore (1994) and Selden and Selden (2009).  Extensive teacher training in proof and 

proving seems necessary to develop the understanding teachers need in order to cultivate 

appropriate concepts of mathematical proof in their students (Harel & Sowder, 2007).  

Thus, teacher preparation and professional development programs should consider the 

attention they give to developing preservice and inservice teachers’ skills with proof and 

proving.     

Recommendations for Future Research 

 This study points us in certain directions regarding the intuitive and analytical 

reasoning students use to decide on the truth value of mathematical statements, the ways 

students connect the decision-making process to the process of constructing a proof or 

counterexample, and the systematic errors that prohibit students’ success in the proving 

process.  Additional research would be beneficial with respect to each of these topics. 

 Although intuition did not play a significant role in this study, this may be due to 

methodological limitations and an inadequate working definition of intuition.  Because 

the definition of intuition that I used relied on working memory and I did not use methods 

that could determine if working memory was engaged, I was forced to rely on a working 

definition of intuition.  Repeating this study with methods from neuroscience, such as 

functional imaging, that would reveal whether working memory was engaged could assist 
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with distinguishing intuition from analysis and help determine an appropriate working 

definition of intuition for mathematical proof tasks.  Additionally, the availability of the 

definition list in this study potentially circumvented students’ intuitive responses.  Thus, I 

think the study could be repeated without the use of the definition list, and I hypothesize 

that intuition would play a larger role.   

 Theoretical research on developing a standard working definition of intuition in 

mathematics would benefit the mathematics education community.  The limited research 

on intuition in mathematics indicates that there may be a variety of types of intuition that 

need to be distinguished along with differentiating intuition and analysis (Davis & Hersh, 

1981).  In this study, I chose a specific working definition based on dual-process theory, 

but it did not fully capture all of the cases that I thought should be classified as intuition.  

Thus, this research could benefit from additional analysis using different working 

definitions of intuition such as excluding retrospective justifications of reasoning or 

taking into account various expressions of intuition.    

 The results of this study suggest that task complexity may play a role in the types 

of reasoning students use as well as their connections between the decision-making and 

construction processes.  Additional research on task complexity, including how best to 

determine it, would improve our understanding of the relationship between a given task 

and students’ reasoning.  Selden and Selden (2009) suggest a variety of factors, such as 

the length of a proof, the hierarchical structure of a proof, and the applicability of an 

expected intuition to a proof, that may contribute to task complexity.  These should be 

explored with respect to the difficulty students’ have on a given proof task.  Additionally, 
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such research could help identify types of reasoning that facilitate proving independently 

of the task.  It also could suggest situations in which connections between the decision-

making and construction processes may be difficult to achieve.   

 The results of this study indicate that connections between the decision-making 

and construction processes are not always beneficial and disconnections are not always 

harmful.  Additional research into the types of reasoning that are associated with the 

different types of connections and disconnections could suggest key subtypes of intuitive, 

semantic, or syntactic reasoning that could facilitate the proving process.  Additionally, 

further identification of factors that affect connections could suggest situations in which 

connecting (or not connecting) the decision-making and proving processes may facilitate 

proving rather than hinder it. 

 The conceptual misunderstandings displayed by the students in this study are 

troubling considering the level and majors of the students.  Research into the 

development of these misunderstandings and instructional interventions that can help 

alleviate these misunderstandings could improve students’ understanding of these key 

mathematical concepts and processes.  Finally, the results of this study suggest that 

students can use their feelings of uncertainty to help them overcome errors.  

Metacognitive research on students’ feelings of uncertainty during the proving process 

could help reveal when uncertainty could be beneficial to students and how they can 

harness it as tool to facilitate proving.                              
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Appendix A: Questionnaire for Participant Recruitment 

1.  Are you interested in participating in a research study on mathematical proof? 

2.  Are you an undergraduate student? 

3.  Have you passed at least one proof-based mathematics course with a grade of B or 

better?  If yes, please list the course name, when it was taken, and your grade. 

 

 

Consent 

If you answered yes to each of these questions, please provide me with your email 

address so that I may contact you to provide additional information and hopefully set up 

an interview. 

 

Name:_____________________________________ 

Email:_____________________________________ 

 

Thank you! 

Kelly M. Bubp 

bubp@ohio.edu 

  

mailto:bubp@ohio.edu
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Appendix B: Mathematical Background Questionnaire 

 
1. What is your current year (1st, 2nd, etc.) and major in school? 

Current year (1st, 2nd, etc.) Major 
  

 

2. What mathematics course(s) are you currently enrolled in?  Why are you taking 

these courses at this particular time? 

 

 

3. List all college level mathematics courses you have taken (separate by year/level) 

and the grades you earned in them. 

Course Title Term/Year Grade 
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Appendix C: Protocol for First Interview 

 At the beginning of the first interview, I will talk to the participants in order to 

make sure they understand why I am conducting this study, what the interview process 

will entail, and the contents of the consent form.  I will ensure that they sign the consent 

form before I begin recording the interview.  What follows is a rough sketch of what I 

will say. 

 Hello.  It’s nice to see you.  Thank you so much for agreeing to participate 

in this study.  Before we begin, I just want to make sure that you understand the 

nature of the study, what you are agreeing to as a participant, and what will 

happen during the interview process.  I will also need to get your signature on the 

consent form.   

 I am conducting this study for my dissertation in mathematics education.  I 

have a Bachelor’s and Master’s degree in mathematics and have always been 

interested in proof and proving.  Mathematics never came naturally to me, so I 

have always had to work hard at it, especially when it came to constructing 

proofs.  So, don’t worry if you have any struggles with any of these problems.  

The point of this is not for you to get every problem right.  I don’t care about 

whether your proofs are right or wrong, all I am interested in is the reasoning that 

you engage in while completing the tasks.   

 Even though I recruited you from a mathematics class, this study has 

nothing to do with that class.  Your instructor has no idea that you have agreed to 

participate and will not know anything about these interviews.  So you don’t need 
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to worry about this having any impact on your grade or anything else for that 

class. 

 At this time, let me review what is on the consent form in front of you and 

let you know what is expected of you during the interview process.  Recall that I 

also sent the consent form to you in my last email so that you have a copy.  If you 

have any questions about anything, please don’t hesitate to ask.   

 As I have already explained, you will be asked to complete five proof 

tasks over the course of two interviews.  While you are working on the tasks, I 

need to you to think aloud.  This means that I need you to say out loud everything 

that you are thinking as you are working on the tasks.  If you stop talking, I will 

keep reminding you to talk out loud.  Other than that, I will not interfere with 

what you are doing.  You will have a list of definitions of terms in the tasks that 

you can reference at any time.  You are not allowed to use any other materials.  If 

you have questions during the interview, you are free to ask me anything.   

 In this first interview, you will work on three tasks, one at a time, and then 

complete two more in the second interview.  I will ask you follow-up questions to 

the tasks regarding the reasoning you used on the tasks and any difficulties you 

had on the tasks.  In the end of the second interview next week, I will also ask you 

some general questions about proof and proving.   

 Although I appreciate your participation in this study, it is entirely 

voluntary and you are free to quit the interview process at any time.  The only 

people that will see the information from your interviews is me and my 
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dissertation committee.  All of our names and contact information on the consent 

form in case you have any questions or concerns later on.   

 All of your information will be kept in the strictest confidence.  A 

pseudonym of your choice will identify all of your information so that no one will 

be able to link your written work or the interview transcripts to you.  Your 

information will be stored in a password protected PC and/or a secure cabinet and 

the recordings will be destroyed upon completion of the project. 

 Do you have any questions about anything?  Please take a moment to read 

through the consent form, and if you feel comfortable participating in this project, 

sign the form and we will get started.         

 

(Example task selection – choices and order will be randomly selected for each 

participant). 

Task A: Let 𝑓: 𝐴 → 𝐵 be a function and suppose that 𝑎0 ∈ 𝐴 and 𝑏0 ∈

𝐵 satisfy 𝑓(𝑎0) = 𝑏0.  Prove or disprove: If 𝑓(𝑎) = 𝑏 and 𝑎 ≠ 𝑎0, then  

𝑏 ≠ 𝑏0. 

 Task B: Prove or disprove: If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ decreasing on an interval I, 

then the composite function 𝑓 ∘ 𝑔 is increasing on I.      

Task C: Let D be a set.  Define a relation ≈ on functions with domain D as follows: 

𝑓 ≈ 𝑔 if and only if there exists 𝑥 ∈ 𝐷 such that 𝑓(𝑥) = 𝑔(𝑥).  Prove or 

disprove: The relation ≈ is an equivalence relation.         
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Follow-up questions: 

1.  At what point did you decide that you wanted to prove or disprove each statement?  

What specifically led you to that decision?    

2.  Describe any difficulties you had in deciding whether to prove or disprove the 

statements in this interview. 
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Appendix D: Protocol for Second Interview 

(Example task selection – the two tasks not chosen for the first interview will be used on 

the second interview). 

Task D: Determine, with proof or refutation, whether the following statement is true 

or false: If 𝑓 is an increasing function, then there is no real number c that is a 

global maximum for 𝑓.   

Task E: Let 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ be functions.  Determine, with proof or 

refutation, whether the following statement is true or false: If the composite 

function 𝑓 ∘ 𝑔 is one-to-one, then 𝑔 is one-to-one. 

 

Follow-up questions: 

1.  At what point did you decide that you wanted to prove or disprove each statement?  

What specifically led you to that decision?    

2.  Describe any difficulties you had in deciding whether to prove or disprove the 

statements in this interview. 

General questions on proof and intuition: 

1.  Describe any general strategies that you use when deciding whether to prove or 

disprove a given mathematical statement. 

2.  Is your approach to prove or disprove tasks different than your approach to tasks in 

which you are told to prove or told to disprove a statement? 

3.  Describe the process of proving.  What is a proof?  Is it different from the proving 

process? 
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4.  Do you think you have a mathematical intuition?  If so, describe how you obtained it 

and how you use it.  Does it help you decide whether you think a statement is true or 

false? 
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Appendix E: Definition List 

List of relevant definitions that will be provided to participants during interviews.  

Definitions are based on those found in Alcock and Weber (2010), Burger (2007), and 

Smith, Eggen, and St. Andre (1997).    

Definitions 

1.   If 𝑓: ℝ → ℝ and 𝑔: ℝ → ℝ are two functions, then the composite function 𝑓 ∘ 𝑔 is 

defined by (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). 

2.   A function 𝑓: ℝ → ℝis said to be decreasing if and only if for all 𝑥1,𝑥2 ∈ ℝ,  

(𝑥1 < 𝑥2 implies 𝑓(𝑥1) > 𝑓(𝑥2)). 

3.   A relation T on a set D is called an equivalence relation if and only if T is reflexive, 

symmetric, and transitive. 

4.   A function 𝑓: ℝ → ℝ is said to have a global maximum at a real number c if and 

only if for all 𝑥 ∈ ℝ such that 𝑥 ≠ 𝑐, 𝑓(𝑥) < 𝑓(𝑐). 

5.   A function 𝑓: ℝ → ℝ is said to be increasing if and only if for all 𝑥1, 𝑥2 ∈ ℝ, 

(𝑥1 < 𝑥2 implies 𝑓(𝑥1) < 𝑓(𝑥2)). 

6.   A function 𝑓: ℝ → ℝ is called one-to-one if and only if for all 𝑥1, 𝑥2 ∈ ℝ,  

(𝑓(𝑥1) = 𝑓(𝑥2) implies 𝑥1 = 𝑥2). 

7.   A relation T on a set D is called reflexive if and only if for all 𝑥 ∈ 𝐷, 𝑥𝑇𝑥. 

8.   A relation T on a set D is called symmetric if and only if for all  

𝑥, 𝑦 ∈ 𝐷, if 𝑥𝑇𝑦, then 𝑦𝑇𝑥. 

9.   A relation T on a set D is called transitive if and only if for all  

𝑥, 𝑦, 𝑧 ∈ 𝐷, if 𝑥𝑇𝑦, and 𝑦𝑇𝑧, then 𝑥𝑇𝑧. 
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Appendix F: Enrollment – Proof-Based Courses 

Detailed Listing of Proof-based Courses Passed or Enrolled in by Student 

Name Major Proof-based course numbers 
Aurelia AYA 300, 301, 302 
Edward Econ 303, 403 
Elliot Math 301, 304, 305, 401, 403, 404, 410, 411 
Emily Math 301, 302, 303, 304, 403 
Evan Math 301, 303, 401, 403 
Inigo Both 300, 301, 302, 303, 304, 403 
Jalynn AYA 301, 302, 304 
Jay Math 302, 303, 304, 403 
Julie AYA 300, 301, 302, 304 
Louis AYA 301, 302, 303 
Michael Math 301, 303, 401, 402, 403, 404, 405, 601 
Tina Both 301, 302, 303 
 
Course Titles – four digit numbers represent semester courses and three digit numbers 
represent quarter courses. 
 

Course Number Course Title 
300 Introduction to Proof 
301 Introduction to Number Theory 
302 College Geometry 
303 Principles of Linear Algebra 
304 Introduction to Abstract Algebra 
305 Introduction to Advanced Calculus 
401/402 Abstract Algebra I & II 
403/404 Advanced Calculus I & II 
405 Introduction to Topology 
601 Real Analysis I 
410 Special Topics – Topology 
411 Special Topics – Set Theory 
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Appendix G: Choice, Origin, and Modification of Interview Tasks 

 The Global Maximum and Equivalence Relation Tasks are from Alcock and 

Weber (2010).  These were both proof production tasks in that study.  The Equivalence 

Relation Task is exactly the same as it was in Alcock and Weber (2010), however, I 

changed the Global Maximum Task from a prove task to a prove-or-disprove task.  

Alcock and Weber (2010) indicate that these tasks are “general assertions about classes of 

mathematical objects with certain properties” (p. 97), and due to this general nature, “an 

individual may reasonably approach the question either by working syntactically with the 

appropriate definitions or by examining particular instances of the general objects 

discussed” (p. 98).  Additionally, they indicate that that by using a range of tasks with a 

variety of objects, the participants had the opportunity to “display a range of strategies if 

they were so inclined” (p. 98).  This may address the limitation that the findings of the 

study may be dependent on the chosen tasks.  Finally, the participants in this study were 

current students in an introduction to proof course, so these tasks should be appropriate 

for my planned participants. 

 The Composite Function and Monotonicity Tasks are modified from tasks in 

Smith, Eggen, and St. Andre (1997, pp. 178, 185), a textbook for a transition-to-proof 

course.  The Composite Function Task was altered to reflect its informal statement in the 

book: “if the composite of two functions is one-to-one, then the first function applied 

must be one-to-one” (p. 183).  Additionally, I eliminated the domain restrictions stated in 

the text to allow both functions to be real-valued.  For the Monotonicity Task, I included 

the definitions for increasing and decreasing that they had provided in the previous task 
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in the book, added the domain and codomain to the functions, and defined increasing and 

decreasing on ℝ rather than just on a proper subinterval 𝐼 ⊂ ℝ.   

 The Injective Function Task is from Burger (2007, p. 47), a textbook for a 

transition-to-proof course.  However, the notation was changed from its original set-

theoretic version that was used in my exploratory study, to function notation.  I changed 

this because the undergraduate participants in the exploratory study had a difficult time 

making sense of the notation, and I wanted to make it more accessible to them.  Thus, I 

changed it to function notation because they should be more likely used to seeing this 

notation at this stage in their mathematical career.   
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