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Abstract

JI, YIZHEN, M.S., May 2013, Industrial and Systems Engineering

Degradation Analysis for Heterogeneous Data Using Mixture Model (76 pp.)

Director of Thesis: Tao Yuan

New product testing presents a significant challenge to manufacturers of highly

reliable products. For products with high reliability, very few or even no failures might be

expected in reliability testing, resulting in limited information about reliability of the

products. If a degradation measure that is closely related to failure can be monitored,

degradation analysis, as an alternative to the failure time analysis, may lead to improved

reliability inference and provide additional information related to the failure mechanisms.

Degradation analysis has attracted considerable attention in recent years.

Mixed-effects models have been frequently employed to analyze repeated-measures

degradation data of multiple units. In existing studies, the test units are usually assumed to

be sampled from a homogeneous population, and the random effects in the degradation

models are generally assumed to be normally distributed. However, in practical

applications of degradation analysis, excessive variability among the degradation paths of

different units may be observed due to different reasons such as quality, degradation

mechanism, and external environmental condition, etc. The normal distribution may not

be adequate to describe the observed unit-to-unit variability. Reliability analysis for units

from a nonhomogeneous population with subgroups has been considered only in failure

time analysis.

This thesis considers the degradation analysis for units coming from a

nonhomogeneous population. Instead of the normal distribution, this thesis assumes a

normal mixture distribution for the random effects. Both maximum likelihood and

Bayesian approaches are adopted in this thesis for the inference of the model parameters

and for the derivation of the lifetime distribution. Practical example is used to illustrate
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the usefulness of the proposed methods. The results show that: (1) both ML method and

Bayesian approach give similar estimates for the model parameters; (2) the mixture model

has its notable advantages in fitting heterogenous data and providing detailed information

regarding different subgroups.
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1 Introduction

This chapter introduces the motivation, objectives and background of this thesis.

Topics that are introduced in this chapter include: reliability, degradation analysis,

maximum likelihood estimation, Bayesian inference, and Gaussian mixture model.

1.1 Motivation and Objectives

Owing to the quantum leaps in technology, the manufacturing process becomes

significantly mature. Meanwhile, the fierce competition among similar products promotes

the customer’s expectation and satisfaction level of new products. Therefore, products are

expected to have high quality and reliability. For this reason, only a few or even no failure

occurs even under accelerated test conditions during a long period. In practice, it is

expensive and time-consuming to obtain enough failure data for highly reliable products.

Under this circumstance, traditional life-time failure data analysis which is based on the

collection of failure data loses its effectiveness to perform reliability assessment. In recent

decades, since level degradation was widely applied as an alternative expression of failure,

the degradation analysis has been developed as a convenient and analytically sound

alternative method to the conventional failure time analysis.

In reliability analysis, previous studies usually assume that the units come from a

homogeneous population due to similar failure mechanism. Most degradation analyses

focus on developing various degradation models and conducting data analysis for the units

under the homogeneity assumption. But in practice, because of different quality of the

units or different failure mechanism, it is possible that the units come from a

heterogeneous population and can be classified into subgroups. Although some pervious

studies have observed the heterogeneous failure data, they only suggested using mixture

lifetime distributions for reliability analysis. However, degradation analysis considering

the units from a heterogeneous population of mixing subgroups has not been studied yet.
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The motivation of this thesis stems from the significance of degradation analysis.

Since the products become more and more reliable, it is hard to obtain sufficient failure

data within an acceptable period to perform conventional failure time analysis. Therefore,

degradation analysis can be applied as an effective way to assess reliability of products.

Another significant motivation is generated from practical problems. One motivated

example is “Percent increase in operating current for GaAs lasers” reported by Meeker and

Escober [1]. By plotting degradation curve of this example, it is reasonable to assume that

there exists the possibility that the degradation data can be classified into subgroups based

on similar degradation rate (slope of the degradation curve). Thus, a model which can

describe heterogeneous degradation data is needed. In addition, to analyze heterogeneous

degradation data, it is necessary to employ powerful statistical method and corresponding

computational algorithm for parameter estimation and failure time distribution derivation.

Driven by above motivations, this thesis has three objectives as follows:

(1) Propose a random-effect degradation model to analyze the degradation data

generated from heterogeneous population. A Gaussian mixture model is employed to

model the variability among different groups.

(2) Employ both maximum likelihood method and Bayesian approach to estimate the

model parameters. For statistical computation, Expectation-Maximization (EM) algorithm

and Gibbs sampling are developed corresponding to each method. Moreover, failure time

distribution is derived.

(3) Compare and select the most appropriate model to fit the data according to one

specific model selection criteria.
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1.2 Background

1.2.1 Reliability analysis

Reliability is defined to be the probability that a component or a system will perform

a required function adequately for a given period of time when used under stated

operating conditions [2]. If the continuous random variable T is defined to be the time to

failure of the component or a system, then the reliability function can be expressed as:

R(t) = P(T > t) =

∫ ∞

t
f (u)du (1.1)

where f (u) is the probability density function (PDF) of the failure-time distribution.

Based on failure data collected in the life test, the reliability for a component or

systems can be assessed by failure time analysis. Traditional failure time analysis records

only failure times to predict reliability, which requires both sufficient time and data. In

contrast, by interpreting the failure in terms of a specified level of degradation, degradation

analysis is a more flexible and practical method to provide information of reliability.

1.2.2 Degradation analysis

For components and systems with high reliability, conventional failure time analysis

may not be adequate due to the difficulty of collecting enough failure data within an

acceptable period. Although the accelerated testing approach can be used to improve the

testing efficiency to some extent, it may still be not good enough. Therefore, degradation

analysis and modeling, using a sequence of degradation measures to assess reliability,

have attracted considerable attention recently [3]. Compared to the traditional failure data

analysis, degradation analysis is a more convenient and analytically sound method of

estimating failure-time distributions and assessing reliability [4]. Moreover, degradation

analysis provides information related to failure mechanisms as well.
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Degradation analysis is usually based on some degradation path models. A general

random-effect degradation path model is given by

yi j = g(ti j;ϑ) + εi j, i = 1, . . . , n, j = 1, . . . , ni (1.2)

where n is the number of units and ni is the number of measurements for ith unit. yi j is the

jth response on ith units and g(·) with unknown parameter vector ϑ models the expected

degradation curve. Generally, λi is assumed to be generated from a normal distribution

with mean µ and variance σ2 to account for the unit-to-unit variability. εi j is the

measurement error which is usually assumed to be independent and normally distributed

with mean zero and constant variance δ2.

Degradation-based analysis is shown to perform better than failure-time distribution

in estimation precision and efficiency in terms of representative statistics such as: the

number of inspections, the amount of measurement error, etc. In addition, degradation

analysis shows its biggest advantage in terms of statistical efficiency, especially when it

estimates quantiles of failure probabilities is beyond the range of the data [8].

1.2.3 Maximum likelihood estimation

In degradation analysis, maximum likelihood estimation (MLE) is a general and

versatile tool for estimating unknown parameters in degradation models. In general, given

a fixed set of data and underlying statistical model, the maximum likelihood method

chooses values of the model parameters which will maximize the likelihood function. The

likelihood can be written as the joint probability of the data t = (t1, . . . , tn), which is

collected from the test.

L(λ) = L(λ|t) =

n∏
i=1

Li(λ|ti) (1.3)

where Li(λ|ti) is the likelihood contributed by the ith observation, ti is the ith observation,

λ is the vector of parameters to be estimated. To estimate λ from the available data, we

find the values of λ that maximize L(λ) [4]. For computation convenience, the logarithm
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of likelihood function (i.e. log-likelihood function) is used instead of the original

likelihood function. Mathematically, the estimators of model parameters are obtained by

taking the first partial derivatives of the log-likelihood function and setting these partials

equal to zero [2].

The likelihood of the random-effect degradation model in (1.2) can be written as

L(µ, σ2, δ2) =

n∏
i=1

∫  ni∏
j=1

1
√

2πδ2
exp

−
(
yi j − g(ti j; λi)

)2

2δ2

 1
√

2πσ2
exp

(
−

(λi − µ)2

2σ2

) dλi (1.4)

To compute the MLEs for the model parameters, it may involve difficulty in obtaining the

closed form of the integral. Therefore, various approximation algorithms are proposed for

numerical computation such as: Pinheiro and Bates’ (PB) algorithm, Lindstrom and

Bates’ (LB) algorithm [8] and Expectation-Maximization (EM) algorithm [6].

1.2.4 Bayesian inference

In addition to the likelihood-based estimation, Bayesian approach also can make

statistical inference for degradation models and have its advantages from several aspects.

Being free of approximation method, it is simple for Bayesian approach to derive

estimators based on previous knowledge and belief on the parameters. Furthermore, with

powerful simulation method like Markov Chain Monte Carlo simulation, prediction of

unknown parameters is easy to obtain.

Unlike the likelihood-based method, in Bayesian approach, the unknown parameter λ

is considered to be a random variable with a probability distribution (called prior

distribution of λ). This prior distribution is specified and provides a theoretical description

of information about λ that was available before any data was obtained [5].

If f (λ) is assumed to be the joint prior distribution of λ, the joint posterior

distribution can be derived according to the Bayes’ formula by using the likelihood of the
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data and the prior distribution on λ,

f (λ|t) ∝ L(λ|t) × f (λ) (1.5)

where f (λ|t) is the posterior distribution of λ. With the information in the data (i.e. in the

likelihood), the prior distribution is updated according to Bayes’ rule to obtain the

posterior distribution. The posterior distribution, the conditional distribution of λ given the

sample t1, t2, . . . , tn, summarizes all of the pertinent information about the parameter λ.

In reliability analysis, Bayesian approach has its particular advantage of making

inference on failure data when the sample size is relatively small. Based on previous

knowledge and experiences, Bayesian inference is a more flexible and effective method to

estimate parameter and to predict reliability, especially when not enough data can be

collected or the information obtained directly from the data is limited.

1.2.5 Gaussian mixture model

A Gaussian mixture model is a parametric PDF represented as a weighted sum of

Gaussian component densities [6]. In Gaussian mixture model, it is assumed that the

observations are generated from a mixture distribution

f (t|θ) =

G∑
k=1

πk fk(t|θk) (1.6)

where θk = (θ1, . . . , θG;σ2
1, . . . , σ

2
G; π1, . . . , πG). πk is the proportion (or weight) satisfying

πk ≥ 0,
∑G

k=1 πk = 1. G is the number of components in the mixture model. fk(·) is the PDF

of a normal distribution with parameter vector θk. πk and θk can describe the

characteristics of the subgroups. The parameters of Gaussian mixture model are usually

estimated by EM algorithm. However, only limited studies made statistical inference of

Gaussian mixture model under Bayesian framework.
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Gaussian mixture model has been successfully applied in many fields, such as:

biometric system, psychology, geology, and astrophysics. Clustering and pattern

classification are significant applications of Gaussian mixture model in engineering field.
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2 Literature Review

This chapter reviews previous research on degradation analysis by using maximum

likelihood and Bayesian methods, reliability analysis considering heterogeneous data, and

Gaussian mixture model and its applications.

2.1 Statistical inference on degradation analysis

There are numerous studies on applying different statistical methods to analyze the

degradation data. Two most frequently used approaches for statistical inferences are the

maximum likelihood method and Bayesian approach.

2.1.1 Maximum likelihood method in degradation analysis

Maximum likelihood, as a long-standing method, has been extensively applied on

degradation analysis for years. In accelerated degradation analysis, the majority of the

literature suggested the maximum likelihood method for predicting model parameters [7].

Maximum likelihood has been used to study linear or log-linear degradation models. For

instance, as an extension for general degradation model, Lu et al. [9] developed a

random-effect coefficient regression model and applied likelihood-based estimation for

linear degradation data. With consideration of the change point, Bae and Kvam [10]

proposed two log-linear regression models to characterize the unstablized stage and used

maximum likelihood method for related estimation.

Besides linear degradation models, there are many studies on employing maximum

likelihood method for parameter estimations of nonlinear degradation models. In study on

fatigue crack growth data, Lu and Meeker [11] suggested a nonlinear random-effect model

and developed a least-square based two-stage method for deducing the maximum

likelihood estimators. Owing to incomplete burn-in (called aging in the industry) in the

manufacturing process, the degradation path is not always monotonic. Therefore, to
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analyze the degradation behavior of plasma display panels (PDP) and vacuum fluorescent

display (VDF), a general nonlinear random-coefficients model was introduced to describe

the non-monotonic degradation behavior. Four approximation method based on the

likelihood function were introduced for parameter estimation: first-order method,

Lindstrom and Bates’ (LB) algorithm, adaptive importance sampling, and adaptive

Gaussian quadrature [12]. Bae et al. [13] [14] proposed a bi-exponential model (also

called “two-compartment model”) with random coefficients for nonlinear degradation

paths (a longitudinal behavior) in PDP and membrane electrode assemblies (MEAs) in

direct methanol fuel cell (DMFC). Model parameters were inferred by means of

maximum likelihood approach with LB algorithm. Taking account for the natural ordering

of degradation performance, Huang and Dietrich presented a truncated Weibull

distribution to fit degradation path and employed maximum likelihood method for

statistical inference [15].

2.1.2 Bayesian approach in degradation analysis

Compared to the application of maximum likelihood method in degradation models,

Bayesian approach has not been widely applied to analyze degradation data. Robinson

and Crowder [16] applied Bayesian approach to analyze nonlinear growth curves with

repeated degradation measures and predicted the failure time distribution of fatigue crack

growth data. The considerable advantage of the proposed methodology is to improve

computation efficiency by avoiding approximations and high dimensional integrals.

Gebraeel et al. [17] developed a Bayesian updating procedure for two exponential

degradation models to predict stochastic parameters and obtained a closed-form

residual-life distribution for the monitored device. By modeling the degradation process

as a Wiener process, Pettit and Young made inferences on model parameters and predicted
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items reliability by using Bayesian approach. Gibbs sampling was used to obtain posterior

distributions and predictive distributions [18].

2.2 Reliability analysis considering heterogeneous data

Statistical methods in reliability analysis developed in the past usually focused on a

single population. However, in practice, the data may come from a heterogeneous

population with subgroups. In previous studies, there are several discussions concerning

reliability analysis for heterogeneous data. By dividing a failure population into

subpopulations, Mendenhall and Hard [19] introduced mixed- exponential distribution to

represent different types or causes of failure. Estimates of the population parameters were

obtained and sampling was censored at a predetermined test termination time. In survival

analysis, a new three-parameter family of Gamma and inverse Gaussian distributions on

the positive numbers was proposed for the application on failure distributions with

heterogeneous population. For this complicated density, a simple saddlepoint

approximation was provided for estimates [20]. Bučar et al. [21] proposed that a finite

Weibull mixture with positive proportion to assess the reliability of an arbitrary system.

EM algorithm was suggested to estimate the mixing proportion, and a m-fold Weibull

mixture was derived. In order to classify the aging properties of the lifetimes of

multi-component systems, a generalized mixture of Weibull distributions was studied and

the result can also extend the cases to exponential or Rayleigh distributions [22].

Erişoǧlu [23] discussed a mixture of Exponential-Gamma, Exponential-Weibull and

Gamma-Weibull distributions in order to model heterogeneous survival data. Maximum

likelihood approach with EM algorithm was employed for parameter estimation.

2.3 Gaussian mixture model

Gaussian mixture models have been proposed and successfully applied in many

fields. In general, likelihood-based method with EM algorithm and Bayesian approach are
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two major methods to make statistical inference for Gaussian mixture model. In previous

studies, the EM algorithm has been extensively used to estimated the parameters of

Gaussian mixture model. For instance, Yang and Ahuja [6] applied a finite Gaussian

mixture model to detect human skin color and estimate model parameters by EM

algorithm. Reynolds [24] applied Gaussian mixture model for speaker identification and

verification. To avoid local optimization, Pernkopf and Bouchaffra [25] presented

Gaussian mixture models and applied genetic-based EM algorithm (GA-EM) for

parameter estimation. However, EM algorithm has its limitations in three aspects:

sensitivity to initial value; local convergence by providing biased estimates for model

parameters and having difficulty in assessing model uncertainty. Bayesian approach to

estimate model parameters for Gaussian mixture models has been developed because of

the great advantages of Bayesian computation. Banfield and Raftery [26] introduced

model-based Gaussian and non-Gaussian for clustering analysis. In addition, Roberts et

al. [27] implemented Bayesian approach to Gaussian mixture modeling in clustering

analysis.

To sum up, when a system has a number of components for analysis, the typical

approach is to assume homogeneity among all system components in a statistical model.

Previous studies on degradation models generally focused on the data from homogeneous

population and most of the studies employed maximum likelihood method for parameter

estimation. Meanwhile, mixture models were only developed for lifetime analysis, and

Gaussian mixture model by using Bayesian inference has not been widely applied on

degradation analysis. However, in degradation analysis, if components can be classified

into meaningful subgroup, it may be more reasonable to assume heterogeneity among the

system components with mixing of subgroups. Therefore, in the next chapter, a

degradation model for heterogeneous data will be proposed.
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3 ProposedMethodologies

This chapter proposes a mixture model to describe the heterogeneous degradation

data. Both two-stage based maximum likelihood method and Bayesian approach are

implemented for the parameter estimation. Moreover, model selection criteria is

introduced for choosing the best model to fit the data. At the end of this chapter, the

failure time distribution is derived by simulation method.

The notations used in this thesis are list as following:

yi j: jth response on the ith unit

ti j: time of the jth measurement for ith unit

n: total number of units

ni: number of observations for the ith unit, i = 1, . . . , n

λi: random coefficient of the degradation path

εi j: measurement error with constant variance δ2

πk: mixing proportion of the mixture model

µk: mean of the kth group

σ2
k: variance of the kth group

N : normal distribution

D: Dirichlet distribution

IG: inverse gamma distribution

3.1 Degradation model

For each unit from a random sample with n units, degradation measurements are

available at specified times. If the degradation path is assumed to be an increasing linear

curve, the degradation path of the ith unit can be defined as

yi j = g(ti j, λ) + εi j = λiti j + εi j, i = 1, . . . , n, j = 1, . . . , ni, (3.1)
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where εi j is the measurement error and is assumed to follow a normal distribution with

constant variance δ2, εi j ∼ N(0, δ2). To describe inherent variability among different units,

random-effect model or Bayesian hierarchical model can be employed. In previous

studies, if the units are sampling from a homogeneous population, unknown parameter λi

is assumed to be normally distributed in a random-effect model: λi ∼ N(µ, σ2). Under

Bayesian framework, parameter vectors with a common population distribution (e.g.

normal distribution) are applied to model the unit-to-unit variability.

To consider the possibility that the units may come from a heterogeneous population,

it is reasonable to assume that λi’s are generated from a Gaussian mixture distribution

with probability density function

f (λi) =

G∑
k=1

πk
1

√
2πσk

exp
(
−

(λi − µk)2

2σ2
k

)
, i = 1, . . . , n, (3.2)

where G is the number of mixing subgroups, and πk is the mixing proportions. To separate

units from each other based on similar degradation mechanism, latent variables

zi = (zi1, . . . , ziG), i = 1, . . . , n, are introduced according to

zik =


1, if the ith unit belongs to the kth cluster,

0, otherwise.
(3.3)

for k = 1, . . . ,G. The class indicator zi hence follows an identical and independent

multinomial distribution of a single trial,

f (zi|π) =

G∏
k=1

πzik
k , i = 1, . . . , n, (3.4)

where π = (π1, . . . , πG)

3.2 Two-stage maximum likelihood estimation

Under the heterogeneity assumption, this section proposes a two-stage ML method

and EM algorithm to estimate the model parameters for the mixture model, which extends

the inference procedure described by Lu and Meeker [8].
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3.2.1 Two-stage maximum likelihood method

With the introduction of latent variables, the likelihood function can be rewritten as:

L(Θ) =

n∏
i=1

∫ 
ni∏
j=1

1
√

2πδ2
exp

−
(
yi j − λiti j

)
2δ2

 G∑
k=1

πk
1√

2πσ2
k

exp

− (λi − µk)2

2σ2
k


 dλi (3.5)

where Θ = (µi, . . . , µG;σ2
i , . . . , σ

2
G; πi, . . . , πG). Since it is difficult to directly obtain a

close-form expression for the likelihood function, approximation algorithms can be

applied to obtain the maximum likelihood estimators. Some approximation approaches

like PB algorithm, LB algorithm and EM algorithm have been developed in previous

research. However, PB and LB algorithms have only been discussed for estimating

unknown random-effect coefficients which are generated from a normal distribution, see

Bae and Kvam [12]. To estimate random-effect coefficients in the mixture model, a

two-stage approach is proposed as following:

Stage 1: For each degradation path, apply the MLE procedure to estimate the model

parameters and obtain λi, i = 1, . . . , n.

Stage 2: For all λi obtained from stage 1, treat λi’s as “pseudo-data” and estimate the

parameters in the Gaussian mixture model.

In the second stage, in order to provide a good approximation for random-effect

coefficients from the Gaussian mixture distribution, this thesis uses the EM algorithm for

estimation which was discussed by Hwang and Kuo [28] for the estimation procedure.

The procedure is implemented by repeating the following two steps:

1. E-step

Given π̂(m), µ̂(m)
k , and σ̂2

k

(m)
, γ̂(m+1)

ik can be computed by the following formula:

γ̂(m+1)
ik =

π̂(m)
k fk

(
λi|π̂

(m)
k , σ̂2

k

(m)
)

∑G
j=1 π̂

(m)
j f j

(
λ j|π̂

(m)
j , σ̂2

j

(m)
) (3.6)
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where γ̂(m+1)
ik is the current guess of the probability that sample yi came from the kth cluster.

2. M-step

Maximize the likelihood function L(µ, σ2, π, z|λ) =
∏n

i=1
∏G

k=1

[
πk fk(λi|µk, σ

2
k)
]zik

with

respect to πk, µk, σ
2
k given γ̂(m+1)

ik , which is the estimate of conditional expectation of z(m+1)
ik

in the mth iteration. As a result of the maximization, the optimal solution at (m + 1)th

iteration is π̂(m+1)
k =

∑n
i=1 γ̂

(m)
ik

n and µ̂(m+1)
k , σ̂2

k

(m+1)
are the optimal solution of the likelihood

function

L
(
µ̂(m+1)

k , σ̂2
k

(m+1)
|λ
)

=

n∏
i=1

[
πk fk

(
λi|µ̂

(m+1)
k , σ̂2

k

(m+1)
)]zik

(m+1)

(3.7)

The two steps are repeated until the convergence criteria are satisfied: the relative

improvement of the log likelihood is below a certain threshold ε. For example, in this

thesis, the convergence criteria can be written as:
∣∣∣∣ `k(Θ)(m+1)−`k(Θ)(m)

`k(Θ)(m)

∣∣∣∣ ≤ 0.05. The initial point

γ̂(0) is chosen arbitrarily or by certain rules. Since EM algorithm depends on the initial

point, the algorithm can be applied with several initial points. The best result can be

chosen according to the likelihood [29].

3.2.2 Determination of number of components

Determination of the number of components, G, can be regarded as the selection

procedure for different models. Once the number of components is determined, the model

which fit data best can be chosen. To measure of the relative goodness of fit of a statistical

model, several criteria have been discussed in the previous research like: the Akaike

information criterion (AIC) [30], the Bayesian information criterion (BIC) [31], and the

Bayes factor [32]. Among these three criteria, the penalty for introducing extra parameters

for AIC is weaker than the penalty for BIC. The computational procedure of Bayes factor

is very complex. For simplicity, in this thesis, BIC is suggested to determine the number

of components. The BIC is approximated as

BIC ≈ −2`k(Θ) + d log(n) (3.8)
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where `k(Θ) is the maximized log-likelihood of the model with k components; d is the

total number of independent parameters in the model with k components; and n is the

sample size. BIC not only rewards goodness of fit, but also includes a penalty that is an

increasing function of the number of estimated parameters. However, when this penalty

improves the goodness of the fit, it also discourages increasing the number of free

parameters in the model. Given a set of candidate models for the data, the preferred model

is the one with the minimum BIC value. In order to reduce computational efforts, the first

local minimum of the BIC value is chosen. The procedure of model selection based on

BIC can be described as following:

Input Data

G = G + 1

Initialization

Estimation

Evaluate BIC

Is BIC

met?

Output

No

Yes

Figure 3.1: Flow chart of parameter estimation and model selection
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With the two-stage ML method, model parameters can be estimated and BIC value is

calculated given the number of components. Then, the number of components is increased

by one and this procedure is repeated. When BIC value reaches the first local minimum,

optimal number of components can be decided.

3.2.3 Derivation of failure-time distribution

This section derives the predictive failure-time distribution from the degradation data

by using maximum likelihood method. The general nonlinear degradation model given by

Equation (3.1) is used to illustrate the procedure.

If y∗ is specified as the predetermined degradation level, and the failure time T of one

unit can be defined as the first hitting time when the threshold level (i.e. y∗) and the actual

degradation path intersects. Hence, the distribution function of T is expressed by

FT (t|Ψ) = P(T ≤ t|Ψ) = P (g(t, λ) + ε ≤ y∗|Ψ) = Φ

(
y∗ − g(t, λ)

σ

)
(3.9)

where Ψ ≡ (π, µk, σ
2
k , δ

2) and Φ(·) denotes the cumulative distribution function (CDF)

of the standard normal distribution.

To estimate FT (t|Ψ) given by equation (3.8), Bae et al. [16] developed a

simulation-based algorithm to obtain the estimated value of FT (t|Ψ) by ML method. In

order to estimate Ψ = (π, µk, σ
2
k , δ

2) under ML method, the approximation method can be

applied by using PB algorithm [33]. Then FT (t|Ψ) is estimated by replacing with their

estimates Ψ. However, in some circumstances, if FT (t|Ψ) does not have a closed form,

FT (t|Ψ) can be derived by Markov Chain Monte Carlo simulation(MCMC) described in

Lu and Meeker [11].

In MCMC simulation, the estimated parameters µ̂k and σ̂2
k can be used to generate the

N simulated realizations k̂. For N values of k̂, by substituting k̂ value into degradation

model y∗ = g(t, λ) + ε, the N failure-times t̂ can be computed. Then, the failure-time

distribution FT |S (t|Θ) is estimated from the simulated empirical distribution for any time
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point t as equation shown below:

F̂T (t) =
number o f (t̂ ≤ t)

N

3.3 Bayesian inference

Model parameters of the mixture model can also be estimated under Bayesian

framework. In this section, a hierarchical Bayesian approach is proposed to analyze the

degradation data.

3.3.1 Prior specification

In Bayesian approach, the first step is to specify the prior distribution for the model

parameters. In the proposed model, the prior distribution of mixing proportion πk follows

a Dirichlet distribution: πk ∼ D(c1, . . . , cG).

f (π1, . . . , πk) =
Γ(c1 + . . . + cG)
Γ(c1) . . . Γ(cG)

πc1−1
1 . . . πcG−1

G (3.10)

where c = (c1, . . . , cG) are pre-specified constants and Γ(·) is the Gamma function. The

prior distribution of variance δ2 follows an inverse gamma distribution: δ2 ∼ IG(a, b),

f (δ2) =
ba

Γ(a)

(
δ2

)−(a+1)
exp

(
−

b
δ2

)
(3.11)

The prior distribution of mean µk follows a normal distribution:

µk ∼ N(mk, s2
k), k = 1, . . . ,G.

f (µk) =
1√
2πs2

k

exp
(
−

(µk − mk)2

2s2
k

)
(3.12)

The prior distribution of variance σ2
k follows an inverse gamma distribution:

σ2
k ∼ IG(αk, βk), k = 1, . . . ,G

f (σ2
k) =

βαk
k

Γ(αk)

(
σ2

k

)−(αk+1)
exp

(
−
βk

σ2
k

)
(3.13)
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3.3.2 Markov Chain Monte Carlo simulation with Gibbs sampling

In the Bayesian framework, inference on each parameter is based on its marginal

posterior distribution. For high-dimensional models, marginal posterior distributions of

the model parameters need to be obtained by processing multiple levels of integration. In

general, the procedure appears not analytically tractable. Under this circumstance,

MCMC simulation can be unitized as an efficient way to compute the posterior

distributions for Bayesian hierarchical models [34].

In MCMC simulation, Gibbs sampling is one particular MCMC algorithm which is

useful for many multidimensional problems. Each iteration of the Gibbs sampling cycles

through the unknown parameters, drawing a sample of one parameter conditional on the

latest values of all the others. When the number of iteration is large enough, the sample

draws on one parameter can be regarded as simulated observation from its marginal

distribution. Therefore, the parameters in the model are estimated by simulating from the

joint posterior distribution with a Gibbs sampler [34].

According to the Bayesian hierarchical model proposed in 3.3, MCMC simulation at

(n + 1)th iteration consists of the following steps:

(a) Simulate the latent variables z(n+1)
i according to their conditional posterior

distributions.

(b) Simulate the mixing proportions π(n+1) =
(
π(n+1)

1 , . . . , π(n+1)
G

)
given z(n+1)

i according to

their conditional posterior distributions.

(c) Simulate the mean of mixture normal distributions, µ(n+1)
k , k = 1, . . . ,G given z(n+1)

i

according to their conditional posterior distributions.

(d) Simulate the variance of mixture normal distributions, σ2
k

(n+1)
, k = 1, . . . ,G given

z(n+1)
i according to their conditional posterior distributions.
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3.3.3 Conditional posterior induction

According to the Bayes’ Law, the joint posterior distribution can be derived for all

the model parameters conditioning on data as following:

f (λ1, . . . , λi; µ1, σ
2
1, . . . , µG, σ

2
G; π1, . . . , πG) ∝

n∏
i=1

ni∏
j=1

(
δ2

)−1/2
exp

−
(
yi j − λiti j

)2

2δ2


×

n∏
i=1

G∏
k=1

[
πk

(
σ2

k

)−1/2
exp

(
(λi − µk)2

2σ2
k

−

)]zik

×

G∏
k=1

(
s2

k

)−1/2
exp

(
−

(µk − mk)2

2s2
k

)
×

G∏
k=1

(
σ2

k

)−1/2
exp

(
−
βk

σ2
k

)
× πck−1

k ×
(
δ2

)a+1
exp

(
−

b
δ2

)
(3.14)

Given the prior distribution, the conditional posterior distribution can be derived.

(a) The conditional posterior distribution of the classification indicator zi is a

multinomial distribution

zi|rest, data ∼ Multinomial(1, pk), pk =

πk

(
σ2

k

)−1
exp

(
−

(λi−µk)2

2σ2
k

)
∑G

k=1 πk

(
σ2

k

)−1
exp

(
−

(λi−µk)2

2σ2
k

) , k = 1, . . . ,G

(3.15)

(b) The conditional posterior distribution of the mixing proportions π j is a Dirichlet

distribution

f (π|rest, data) ∝
n∏

i=1

G∏
k=1

(πk)zik ×

G∏
k=1

πck−1
k (3.16)

π|rest, data ∼ D

c1 +

n∑
i=1

zi1, . . . , cG +

n∑
i=1

ziG

 (3.17)
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(c) The conditional posterior distribution of λi is a normal distribution

f (λ|rest, data) ∝
ni∏
j=1

exp

−
(
yi j − λiti j

)2

2δ2

 × exp
(
(λi − µk)2

2σ2
k

)

∝ exp

−
(
λi −

µγiδ
2+σ2

γi

∑ni
j=i yi jti j

σ2
γi +

∑ni
j=i t2i j+δ

2

)2

2
δ2σ2

γi

σ2
γi

∑ni
j=1 t2i j+δ

2

 (3.18)

λ|rest, data ∼ N

µγiδ
2 + σ2

γi

∑ni
j=i yi jti j

σ2
γi

∑ni
j=1 t2

i j + δ2
,

δ2σ2
γi

σ2
γi

∑ni
j=1 t2

i j + δ2

 (3.19)

where γi = k if zik = 1.

(d) The conditional posterior distribution of δ2 is an inverse gamma distribution

f (δ2|rest, data) ∝ (δ2)−
−

∑n
i=1 ni
2 exp

−
∑n

i=1
∑ni

j=1

(
yi j − λiti j

)2

2δ2


× (δ2)−(a+1) exp

(
−

b
δ2

)
(3.20)

δ2|rest, data ∼ IG

a +

∑n
i=1 ni

2
, b +

∑n
i=1

∑ni
j=1

(
yi j − λiti j

)2

2

 (3.21)

(e) The conditional posterior distribution of µk is a normal distribution

f (µk|rest, data) ∝
G∏

k=1

[
exp

(
−

(λi − µk)2

2σ2
k

)]zik

×

G∏
k=1

exp
(
−

(µki − mk)2

2s2
k

)

∝ exp

−
(
µk −

s2
k
∑

i:zik=1 λiσ
2
kmk

s2
k
∑n

i=1 zik+σ2
k

)2

2 σ2
k s2

k
σ2

k+s2
k
∑n

i=1 zik

 (3.22)

µk|rest, data ∼ N
(

s2
k

∑
i:zik=1 λiσ

2
kmk

s2
k

∑n
i=1 zik + σ2

k

,
σ2

k s2
k

σ2
k + s2

k

∑n
i=1 zik

)
(3.23)

(f) The conditional posterior distribution of σ2
k is an inverse gamma distribution

f (σ2
k |rest, data) ∝ (σ2

k)−
∑n

i=1 zik
2 ×

G∏
k=1

[
exp

(
−

(λi − µk)2

2σ2
k

)]zik

∝ (σ2
k)−(αk+1) exp

(
−
βk

σ2
k

)
(3.24)
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σ2
k |rest, data ∼ IG

(
αk +

∑n
i=1 zik

2
, βk +

∑
i:zik=1(λi − µk)2

2

)
(3.25)

3.3.4 Determination of number of components

Similarly, BIC criteria is used to determine the number of components under

Bayesian framework. Given number of components, model parameters can be estimated

by Bayesian approach and BIC value is calculated. The number of components is

increased by one and repeat the procedure. When BIC value reaches the first local

minimum, optimal number of components is decided.

3.3.5 Derivation of failure-time distribution

This section derives the predictive failure-time distribution from the degradation data

under the Bayesian formula. The general degradation model given by Equation (3.1) is

used to illustrate the procedure.

By modifying the Bayesian approach discussed by Robinson and Crowder [16], this

thesis proposes a simulation method to estimate the failure-time distribution from the

degradation data. The Bayesian posterior predictive distribution function of the failure

distribution is given by

π (FT (t)|y) =

∫
Ψ

P(g(t, λ) + ε ≤ y∗|Ψ)π(Ψ|y)dΨ (3.26)

where π(Ψ|y) is the posterior distribution of Ψ. In general, the integration does not have a

closed form. However, the Gibbs sampling algorithm provides a straightforward

sampling-based solution to such problem. The procedure is described as follows:

If M is assumed as the total number of time points, the failure-time distribution

FT (tk), k = 1, . . . ,M can be estimated for a pre-specified set of time points tk. In lth

iteration of the Gibbs sampling procedure, the Gibbs sampler simulates values for all the

model parameters at lth iteration as Θ(l) ≡ (π(l), µ(l)
k , σ

2
k

(l)
, δ2(l)). Meanwhile, a simulated

value for FT (tk) can also be generated , denoted by FT
(l)(tk), for k = 1, . . . ,M. To simulate
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the value for FT
(l)(tk), n vectors according to λi ∼

∑G
k=1 πkN(µk, σ

2
k) for large number of n

are randomly generated, denote them as λ1
(l), . . . , λn

(l). Consider the jth vector λ j
(l), the

expected response value at time tk can be calculated, denoted by yi
(l)(tk) = g

(
tk, λ j

(l)
)
. With

formulae Fi
(l)(tk) = Φ

(
y∗−yi

(l)(tk)
σ(l)

)
, n values for F(l)(tk) are obtained , denoted by

F(l)
1 (tk), . . . , F

(l)
n (tk). Then, a simulated value for F(tk) can be obtained by taking average of

F(l)
1 (tk), . . . , F

(l)
n (tk). After N Gibbs sampling iterations, a random sample for F(tk) from its

posterior distribution is obtained, i.e. F(1)(tk), . . . , F(N)(tk). Posterior inference for F(tk)

can be obtained based on the sample statistics.
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4 Case Study

In this chapter, a case study is presented to illustrate the methodologies discussed in

Chapter 3. A mixture model is proposed for the experimental data. Maximum likelihood

method and Bayesian approach can be employed to estimate unknown parameters in the

model, respectively. The results for each method are compared in the end. The number of

components for the data is determined by BIC criteria, and the best model can be selected

as well. MATLAB and WinBUGS are used to perform statistical computing algorithms,

and the codes are listed in Appendix.

4.1 Analysis with two-stage maximum likelihood method

The experimental data is collected from “Percent increase in operating current for

GaAs lasers test” [1]. Over the life of some laser devices, degradation causes a decrease in

light output. Some lasers, however, contain a feedback mechanism that will maintain

nearly constant light output by increasing operating current as the lasers degrade. When

the operating current gets too high, the device is considered to have failed. The

experimental data shows the increase in operating current over time for a sample of GaAs

lasers test at 80◦C (this temperature, though much higher than the use temperature, was

used to accelerate the failure mechanism so that degradation information would be

obtained more rapidly). Table 4.1 presents the data obtained from the experiment. In this

experiment, 15 unique units were under the test, and each unit was observed over 17

equally spaced time points (from 0 to 4000 hours). At each time point, the percent

increase in operating current was obtained. “Failure” of the GaAs lasers is defined to occur

when the increase level in operating current reaches 10 percent during observation time.
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Percent increase in operating current is plotted over inspection time points. As

indicated in Figure 4.1, it is not difficult to find that the 15 observed units show different

degradation rates. The units in group 1 have steep slopes and degrade more rapidly; while

the rest units in group 2 have mild slopes and degrade gracefully. Therefore, it is

reasonable to assume that the units may be divided into two subgroups (i.e. weak group

with steeper slopes and strong group with mild slopes).
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Figure 4.1: Plot of percent increase in operating current for GaAs lasers tested at 80◦C

In order to determine number of groups for the data, a mixture model in Chapter 3 is

proposed to model the experimental data. Two-stage ML method and EM algorithm are

used to estimate the model parameters. The computing procedure is implemented in

Matlab. Under ML method, the number of groups, the mean and variance within each

group and corresponding BIC value are listed respectively in Table 4.2.
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Table 4.2: MLEs of the parameters in GaAs Laser model

Group# Subgroup µ σ2 BIC

1 No 0.205 0.200×10−6 -45.253

G1 0.272 0.050×10−6

2
G2 0.180 0.030×10−6 -46.773

G1 0.272 0.031×10−6

3 G2 0.192 5.280×10−6 -41.641

G3 0.164 1.470×10−6

By comparing the BIC values, the first local-minimum BIC was achieved when the

units are classified into two subgroups. Moreover, the two-stage ML method can also give

the information that each unit belongs to which subgroup and the proportion of each

subgroup.

Table 4.3: Unit allocation by ML method in GaAs laser model

Subgroup Proportion Unit#

1 0.268 1,2,6,10

2 0.732 3,4,5,7,8,9,11,12,13,14,15

4.2 Analysis with Bayesian approach

The model parameters are also estimated by Bayesian approach. In order to compute

the posterior mean of model parameters, all all the noninformative priors should be

assigned.
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If there is only one group in the data, the prior distribution can be assigned as:

µ ∼ N(0, 10−6), σ2 ∼ IG(1, 0.0001) and δ2 ∼ IG(1, 0.0001). If the data are coming from

more than one group, for instance, the data is consisted of two subgroups, the prior

distribution can be specified as: µ1 ∼ N(0, 10−6), µ2 ∼ N(0, 10−6), σ2
1 ∼ IG(1, 0.0001),

σ2
2 ∼ IG(1, 0.0001) and π ∼ D(1, 1).

Once the prior distributions are assigned, Bayesian posterior statistics can be inferred

by Gibbs sampling algorithm, which was implemented by both Matlab and WinBUGS.

With posterior mean and variance, BIC is calculated and compared for single-component

model and two-components model. The posterior mean and variance of model parameters

and BIC value are summarized in Table 4.4.

Table 4.4: Bayesian estimates for the parameters in GaAs laser model

Group# Subgroup µ σ2 BIC

1 No 0.205 0.215×10−6 -45.280

G1 0.266 0.103×10−6

2
G2 0.180 0.039×10−6 -45.913

When the data is divided into 3 subgroups, the result failed to converge. After making

comparison between the estimates obtained by ML method and Bayesian approach, it

indicates that the two methods provide very similar results. Then consistency of results

from the two estimation methods validates the proposed degradation model. Moreover,

identical with ML method’s conclusion, results from Bayesian approach also indicates

that two-component model is more appropriate for the experimental data. The information

regarding group proportion and subgroup items can be concluded in Table 4.5.
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Table 4.5: Unit allocation by Bayesian approach in GaAs laser model

Subgroup Proportion Unit#

1 0.324 1,2,6,10

2 0.676 3,4,5,7,8,9,11,12,13,14,15

Given all the estimated value for the model parameters, the degradation paths of the

units can be re-plotted based on similar degradation patterns. In Figure 4.2, it is more

rigorous to classify the degradation path into two subgroups compared to the initial

degradation plot in Figure 4.1.
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Figure 4.2: Plot of percent increase in operating current for GaAs lasers tested at 80◦C with
2 subgroups
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4.3 Failure time distribution

By applying the simulation methods introduced in Chapter 3, failure time

distributions are derived and plotted by both ML method and Bayesian approach.

If there is only one group in the experimental data, with MLEs and Bayesian

posterior statistics, the failure time distribution can be plotted respectively in Figure 4.3.

The figure indicates that these two methods give very close failure time distribution.

Similarly, if the experimental data can be classified into two subgroups, the failure time

distribution plotted by two proposed methods appear to be similar not only for each

individual group (Group 1, Group2, respectively), but also for the mixed group (Group 1

and Group 2 together).
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Figure 4.3: F(t) comparison with single component in GaAs laser model
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Figure 4.4: F(t) comparison with two components in GaAs laser model

Under Bayesian framework, when sampling the failure-time distribution in Gibbs

sampling procedures, the number of simulated model parameters is set to 2000. If tested

units are assumed to be sampled from one group, the failure time distribution and 95%

point wise confidence interval are plotted in Figure 4.5. If experimental units are classified

into 2 subgroups, mean of each individual’s failure time distribution are plotted by the

dash and dash-dot curves. The solid curve indicates the mean of failure time distribution

for the mixed group.
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Figure 4.5: F(t) and 95% C.I. with single component
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Figure 4.6: F(t) with two components
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In Figure 4.7, for each failure time curve above, the 95% point wise confidence

interval are plotted as well. As shown, all the solid curves stand for the mean value of the

failure time distribution(F(t),F1(t) and F2(t), respectively), while the dash-dot curves

indicate corresponding 95% point wise confidence interval for each F(t).
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Figure 4.7: F(t) and 95% C. I. with two components

In addition, in order to decide best candidate model, another effective way is to

compare probability plot with the failure-time distribution of single-component,

two-components. In the figure, if the probability plot is more closer to one degradation

path, the degradation model will fit the data better than the other models. In order to

construct the probability plot, each failure time ti is plotted against an estimated value of

the probability of failing for the corresponding time F(ti). Because of skewness and

convenience of use, the estimate of F(ti) by using the approximation to the median
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plotting position F̂(ti) = i−0.3
n+0.4 , where i is the number of failure unit observed at time ti and

n is the number of units under test.

In this problem, y∗ = 10% increase in current is the specified failure level. All the ti

can be obtained by t =
y∗

λ̂i
, where λ̂i is the estimated value of model parameter λi.

Therefore, if y∗ = 10% increase in current occurs before 4000 hours, the failure times ti

can be read directly from the figure. However, if y∗ = 10% increase in current occurs after

4000 hours, the pseudo failure times ti is obtained by prolonging the degradation path

until it intersects with the threshold line. Figure 4.8 presents failure time distribution for

single-component, two-components and a comparison among single-component,

two-components and median plotting position. As shown in the figure, it is obvious to

conclude that two-components failure-time distribution capture the curvature of median

plotting position. Therefore, the probability plot method also indicates that that

two-components degradation model fits data better than single-component model.
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Figure 4.8: Comparison among probability plot, F(t) with single component and two
components in GaAs laser model
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5 Conclusion and Future Research

This chapter concludes the methodologies and case study proposed in this thesis. In

addition, future research is discussed in the end.

5.1 Conclusions

For units with high reliability, degradation analysis which uses the level degradation

as an alternative way to express failure, is important and convenient in conducting

reliability analysis. In existing studies, most of the degradation models have homogeneity

assumption, and the random effects in the degradation models are generally assumed to be

normally distributed. However, in practical problems, it is possible that the degradation

behavior among different units may vary a lot due to different quality and degradation

mechanism. Under this circumstance, the homogeneity assumption is ineffective and

normal distribution is not adequate to model the degradation data. Although reliability

analysis for units from a heterogeneous population with subgroups has been considered, it

was only discussed in failure time analysis.

This thesis proposes a degradation model to consider the units sampled from a

heterogeneous population. Instead of using a normal distribution, this thesis proposes a

mixture model to describe the random effects. Both two-stage ML method and Bayesian

approaches are developed in this thesis for statistical inferences for model parameters, and

for the derivation of the failure-time distributions. In ML method, EM algorithm is used

for model parameter estimation. Under Bayesian framework, Gibbs sampling algorithm is

employed to obtain the estimates. Software Matlab and WinBUGS are employed to for

simulation and computation. Meanwhile, in order to determine the number of

components, BIC is use as model selection criteria to choose best model to fit data.

To illustrate the proposed methodologies, a practical example is used: the

degradation data of 15 GaAs lasers are get by measuring percentage increase input current
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as time passes by. Proposed degradation model and algorithms are used to analyze the

degradation pattern of the lasers. The estimates obtained from ML method and Bayesian

posterior statistics show that two methods provide very similar results in mean, variance

and group promotion for each subgroup. As a result, the test lasers can be classified into

two groups. 4 out of 15 lasers are in the weak group since they degrade more rapidly, and

the remaining 11 units are in the strong group with a slower degradation rate. According

to BIC, model with two-components returns the first local minimum BIC value, which

means the number of subgroups should be two.

In summary, the main contribution of this thesis can be concluded from three aspects:

(1) propose a mixture model to fit the degradation data with subgroups, and find out that

the mixture model can fit heterogeneous data better than the general degradation model;

(2) developed both ML method and Bayesian approach to estimate the model parameters,

and the results show these two method give similar estimates of parameters and

failure-time distributions; (3) given the grouping information, the proposed methodology

can provide information regarding different failure mechanism or different quality of the

products, which may help the manufacturers to improve the products’ quality and

reliability.

5.2 Future research

This thesis proposed a degradation model with a linearity assumption for the data.

However, for some practical problems, it is possible that the non-linear degradation

models may be needed to fit the data. Therefore, in the future research, the linear model in

this thesis can be extended to non-linear degradation models.

Another future research topic is residual-life distribution and maintenance

optimization. Since residual-life distribution can provide estimates of failure time, it can

be used for maintenance management for a system. With accurate assessment of system
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failure time information, precise evaluation the remaining life of specific degrading

components can be estimated, which will effectively reduce the cost of maintenance

activities [36].

In addition, condition monitoring, as one significant application of degradation

analysis, can be used to evaluate the performance of a system by capturing the current

condition of the system and predict the future state of the system [7]. Hence, unnecessary

system maintenance can be effectively eliminated and failures become more predictable,

which bring the benefits such as reduce cost and enhance reliability of the system. In the

future research, condition monitoring can be used for maintenance optimization.
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Appendix: Appendix

This chapter includes MATLAB codes for computation procedure in this thesis.

A.1 Two stage ML method for parameter estimation and failure time distribution

derivation

%% Input data

t = load(’tC17.csv’)/100;

y = load(’yC17.csv’);

n = 15;

ni = 17*ones(1,n);

ni_max = max(ni);

yt = zeros(1, n);

t2 = zeros(1, n);

for i = 1 : n

yt(i) = t(i,:) * y(i,:)’;

t2(i) = t(i,:) * t(i,:)’;

end

%% Stage 1:

lambda = zeros(n, 1);

delta2 = zeros(n, 1);

epsilon2 = zeros(n, ni_max);

var_delta2_lambda = zeros(n, 1);

for i = 1 : n

lambda(i) = yt(i) / t2(i);

end
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for i = 1 : n

for j = 1 : ni(i)

epsilon2(i,j) = ( y(i,j) - lambda(i)*t(i,j) )ˆ2;

end

end

delta2_common = sum(sum(epsilon2)) / sum(ni);

disp(delta2_common);

for i = 1 : n

delta2(i) = sum( epsilon2(i,1:ni(i)) ) / ( ni(i)-1 );

var_delta2_lambda(i) = delta2(i) / t2(i);

end

disp(lambda);

%% Stage 2:

% Single Component

options = statset(’Display’,’final’);

result1 = gmdistribution.fit(lambda,1,’Options’,options);

disp(result1.mu);

disp(result1.Sigma);

disp(result1.BIC);

disp(result1.AIC);

% Two components
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result2 = gmdistribution.fit(lambda,2,’Options’,options);

disp(result2.mu);

disp(result2.Sigma);

disp(result2.BIC);

disp(result2.AIC);

[idx,nlogl,P] = cluster(result2, lambda);

disp(result2)

% Three components

result3 = gmdistribution.fit(lambda,3,’Options’,options);

% disp(result2.mu);

% disp(result2.Sigma);

disp(result3.BIC);

disp(result3.AIC);

disp(result3)

A.2 ML method for deriving failure time distribution for single component

L = 1000;

tm = [2000:100:4000, 4500:500:13000];

tm = tm/100;

ntm = size(tm,2);

F = zeros(ntm,1);

ystar = 10;
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mu = 0.204660249554367; % results from C17_2stage.m

sigma2 = 0.001997607400332;

sigma = sqrt(sigma2);

delta2 = 0.037445188214323;

delta = sqrt(delta2);

Fsim = zeros(ntm, L);

for j = 1 : L

contd = 1;

while contd

lam_sim = normrnd(mu, sigma);

if lam_sim > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim * tm(k);

tmp = (ystar - Ey)/delta;

Fsim(k,j) = 1-normcdf(tmp,0,1);

end

end

F(:) = mean(Fsim,2);

R = zeros(ntm, 2);

for k = 1 : ntm

R(k,:) = [tm(k), F(k)];
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end

plot(R(:,1), R(:,2),’g-’);

A.3 ML method for deriving failure time distribution for multiple components

L = 1000;

tm = [2000:50:4000, 4500:100:13000];

tm = tm/100;

ntm = size(tm,2);

F1 = zeros(ntm,1);

F2 = zeros(ntm,1);

F = zeros(ntm,1);

ystar = 10;

mu = [0.271650796281094,0.180150631318982];

sigma2 = [5.333759594876598e-004,2.906869882085853e-004];

sigma = sqrt(sigma2);

delta2 = 0.037445188214323;

delta = sqrt(delta2);

pi = [0.267864, 0.732136];

Fsim1 = zeros(ntm, L);

Fsim2 = zeros(ntm, L);

for j = 1 : L

contd = 1;
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while contd

lam_sim = normrnd(mu(1), sigma(1));

if lam_sim > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim * tm(k);

tmp = (ystar - Ey)/delta;

Fsim1(k,j) = 1-normcdf(tmp,0,1);

end

contd = 1;

while contd

lam_sim = normrnd(mu(2), sigma(2));

if lam_sim > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim * tm(k);

tmp = (ystar - Ey)/delta;

Fsim2(k,j) = 1-normcdf(tmp,0,1);

end

end

F1(:) = mean(Fsim1,2);
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F2(:) = mean(Fsim2,2);

F(:) = pi(1)*F1(:) + pi(2)*F2(:);

R = zeros(ntm, 4);

for k = 1 : ntm

R(k,:) = [tm(k), F1(k), F2(k), F(k)];

end

plot(R(:,1), R(:,2),’r--’,R(:,1), R(:,3),’b-.’,R(:,1), R(:,4),’k-’);

A.4 Bayesian approach for parameter estimation and failure time distribution plot

for single component

%% Input data

t = load(’tC17.csv’)/100;

y = load(’yC17.csv’);

n = 15;

ni = 17*ones(1,n);

ni_max = max(ni);

yt = zeros(1, n);

t2 = zeros(1, n);

for i = 1 : n

yt(i) = t(i,:) * y(i,:)’;

t2(i) = t(i,:) * t(i,:)’;

end
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%% Setup data matrics and vectors

epsilon2 = zeros(n, ni_max);

nite = 20000;

istart = nite / 2 + 1; % discard the burn-in draws.

lambda = zeros(n, nite);

delta2 = zeros(1, nite);

mu = zeros(1, nite);

sigma2 = zeros(1, nite);

L = 1000;

tm = [2000:100:4000, 4500:500:13000];

tm = tm/100;

ntm = size(tm,2);

F = zeros(ntm,nite);

ystar = 10;

%% Prior distributions

% mu ˜ N(m, s2)

m = 0;

s2 = 1000000;

% sigma2 ˜ IG(alpha, beta)

alpha = 1;

beta = 0.0001;
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% delta2 ˜ IG(a, b)

a = 1;

b = 0.0001;

%% Initialization

lambda(:,1) = 1;

delta2(1) = 1;

mu(1) = 1;

sigam2(1) = 1;

%% Gibbs sampling

lambda_curr = lambda(:,1);

mu_curr = mu(1);

sigma2_curr = sigma2(1);

delta2_curr = delta2(1);

for ite = 2 : nite

if mod(ite, 100)==0

disp(ite);

end

% update lambda

for i = 1 : n

mean_tmp = (mu_curr*delta2_curr+sigma2_curr*yt(i))

/ (sigma2_curr*t2(i)+delta2_curr);

sd_tmp = sqrt( delta2_curr*sigma2_curr

/ (sigma2_curr*t2(i)+delta2_curr) );



61

lambda_curr(i) = normrnd(mean_tmp, sd_tmp);

end

lambda(:,ite) = lambda_curr;

% update delta2

for i = 1 : n

for j = 1 : ni(i)

epsilon2(i,j) = (y(i,j) - lambda_curr(i)*t(i,j))ˆ2;

end

end

a_tmp = a + sum(ni)/2;

b_tmp = b + sum(sum(epsilon2))/2;

inv_delta2_curr = gamrnd(a_tmp, 1.0/b_tmp);

delta2_curr = 1.0/inv_delta2_curr;

delta2(ite) = delta2_curr;

% updata mu

mean_tmp = (sigma2_curr*m+s2*sum(lambda_curr))

/ (sigma2_curr + n*s2);

sd_tmp = sqrt( sigma2_curr*s2 / (sigma2_curr + n*s2) );

mu_curr = normrnd(mean_tmp, sd_tmp);

mu(ite) = mu_curr;

% update sigma2

alpha_tmp = alpha + n/2;
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beta_tmp = beta + sum( (lambda_curr-mu_curr).ˆ2 )/2;

inv_sigma2_curr = gamrnd(alpha_tmp, 1.0/beta_tmp);

sigma2_curr = 1.0 / inv_sigma2_curr;

sigma2(ite) = sigma2_curr;

% % update F

if ite >= istart

Fsim = zeros(ntm, L);

for j = 1 : L

contd = 1;

while contd

lam_sim = normrnd(mu_curr, sqrt(sigma2_curr));

if lam_sim > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim * tm(k);

tmp = (ystar - Ey)/sqrt(delta2_curr);

Fsim(k,j) = 1-normcdf(tmp,0,1);

end

end

F(:,ite) = mean(Fsim,2);

end

end
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%% Computing posterior statistics

lambda_posterior = zeros(n, 4);

for i = 1 : n

lambda_posterior(i,:) = [mean(lambda(i,istart:nite)),

prctile(lambda(i,istart:nite),50),...

prctile(lambda(i,istart:nite),2.5),

prctile(lambda(i,istart:nite),97.5)];

end

disp(lambda_posterior);

mu_posterior = [mean(mu(istart:nite)),

prctile(mu(istart:nite),50),...

prctile(mu(istart:nite),2.5),

prctile(mu(istart:nite),97.5)];

disp(mu_posterior);

sigma2_posterior = [mean(sigma2(istart:nite)),

prctile(sigma2(istart:nite),50),...

prctile(sigma2(istart:nite),2.5),

prctile(sigma2(istart:nite),97.5)];

disp(sigma2_posterior);

delta2_posterior = [mean(delta2(istart:nite)),

prctile(delta2(istart:nite),50),...

prctile(delta2(istart:nite),2.5),

prctile(delta2(istart:nite),97.5)];

disp(delta2_posterior);
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R = zeros(ntm, 5);

for k = 1 : ntm

R(k,:) = [tm(k)*100, mean(F(k,istart:nite)),

prctile(F(k,istart:nite),50), ...

prctile(F(k,istart:nite),2.5),prctile(F(k,istart:nite),97.5)];

end

plot(R(:,1)/100, R(:,2),’k-’, R(:,1)/100, R(:,3),’b--’, ...

R(:,1)/100, R(:,4),’r-.’, R(:,1)/100, R(:,5),’r-.’);

A.5 Bayesian approach for parameter estimation and failure time distribution plot

for multiple components

%% Input data

scale = 100;

t = load(’tC17.csv’)/scale;

y = load(’yC17.csv’);

n = 15;

ni = 17*ones(1,n);

ni_max = max(ni);

yt = zeros(1, n);

t2 = zeros(1, n);

for i = 1 : n
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yt(i) = t(i,:) * y(i,:)’;

t2(i) = t(i,:) * t(i,:)’;

end

%% Number of clusters

K = 2;

%% Setup data matrics and vectors

epsilon2 = zeros(n, ni_max);

nite = 4000;

istart = nite / 2 + 1; % discard the burn-in draws.

lambda = zeros(n, nite);

delta2 = zeros(1, nite);

mu = zeros(K, nite);

sigma2 = zeros(K, nite);

pi = zeros(K, nite);

z = zeros(n, K);

p = zeros(1, K);

gamma = zeros(n, nite);

L = 1000;

tm = [2500:100:5000,5500,5750,5800:100:7500,

7750,8000:500:10000];
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tm = tm/scale;

ntm = size(tm,2);

F1 = zeros(ntm,nite);

F2 = zeros(ntm,nite);

F = zeros(ntm,nite);

ystar = 10;

%% Prior distributions

% mu_k ˜ N(m_k, s2_k)

m = zeros(1, K);

s2 = 1000000*ones(1, K);

% sigma2_k ˜ IG(alpha_k, beta_k)

alpha = 1*ones(1, K);

beta = 0.0001*ones(1, K);

% delta2 ˜ IG(a, b)

a = 1;

b = 0.0001;

% pi ˜ D(xi)

xi = ones(K,1);

%% Initialization

lambda(:,1) = scale*[0.0027,0.0024,0.0018,0.0017,

0.0018,0.0027,0.0016,0.0016,...

0.0020,0.0030,0.0019,0.0020,0.0021,0.0017,0.0016]’;

delta2(1) = 0.04;

mu(:,1) = [0.0018;0.0027]*scale;
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%sigma2(:,1) = [2.9e-08; 5.3e-08];

sigma2(:,1) = [1; 1];

gamma(:,1) = [2,2,1,1,1,2,1,1,1,2,1,1,1,1,1]’;

pi(:,1) = [0.73;0.27];

%% Gibbs sampling

lambda_curr = lambda(:,1);

mu_curr = mu(:,1);

sigma2_curr = sigma2(:,1);

delta2_curr = delta2(1);

pi_curr = pi(:,1);

gamma_curr = gamma(:,1);

for ite = 2 : nite

if mod(ite, 100)==0

disp(ite);

end

% update the latent variables, z and gamma

for i = 1 : n

for k = 1 : K

p(k) = pi_curr(k)*normpdf( lambda_curr(i),

mu_curr(k), sqrt(sigma2_curr(k)) );

end

p = p / sum(p);

z(i,:) = mnrnd(1,p);



68

gamma_curr(i) = find(z(i,:),1,’first’);

end

%force to have two clusters

gamma_curr(15) = 1;

z(15,:)=[1 0];

gamma_curr(10) = 2;

z(10,:)=[0 1];

gamma(:,ite) = gamma_curr;

% update lambda

for i = 1 : n

mean_tmp = (mu_curr(gamma_curr(i))*delta2_curr

+sigma2_curr(gamma_curr(i))*yt(i)) ...

/ (sigma2_curr(gamma_curr(i))*t2(i)+delta2_curr);

sd_tmp = sqrt( delta2_curr*sigma2_curr(gamma_curr(i))...

/ (sigma2_curr(gamma_curr(i))*t2(i)+delta2_curr) );

lambda_curr(i) = normrnd(mean_tmp, sd_tmp);

end

lambda(:,ite) = lambda_curr;

% update delta2

for i = 1 : n

for j = 1 : ni(i)

epsilon2(i,j) = (y(i,j) - lambda_curr(i)*t(i,j))ˆ2;

end

end
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a_tmp = a + sum(ni)/2;

b_tmp = b + sum(sum(epsilon2))/2;

inv_delta2_curr = gamrnd(a_tmp, 1.0/b_tmp);

delta2_curr = 1.0/inv_delta2_curr;

delta2(ite) = delta2_curr;

% update pi

c = xi;

for k = 1 : K

c(k) = c(k) + sum(z(:,k));

end

pi_curr = Dirichletrnd(c);

pi(:,ite) = pi_curr;

% updata mu and sigma

for k = 1 : K

idx = find(z(:,k)==1);

nk = sum(z(:,k));

if nk>=1

mean_tmp = (sigma2_curr(k)*m(k)+

s2(k)*sum(lambda_curr(idx))) ...

/ (sigma2_curr(k) + nk*s2(k));

sd_tmp = sqrt( sigma2_curr(k)*s2(k) /

(sigma2_curr(k) + nk*s2(k)) );

mu_curr(k) = normrnd(mean_tmp, sd_tmp);
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alpha_tmp = alpha(k) + nk/2;

beta_tmp = beta(k) + sum( (lambda_curr(idx)

-mu_curr(k)).ˆ2 )/2;

inv_sigma2_curr = gamrnd(alpha_tmp, 1.0/beta_tmp);

sigma2_curr(k) = 1.0 / inv_sigma2_curr;

end

end

mu(:,ite) = mu_curr;

sigma2(:,ite) = sigma2_curr;

% update F

if ite >= istart

Fsim1 = zeros(ntm, L);

for j = 1 : L

contd = 1;

while contd

lam_sim1 = normrnd(mu_curr(1), sqrt(sigma2_curr(1)));

if lam_sim1 > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim1 * tm(k);
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tmp = (ystar - Ey)/sqrt(delta2_curr);

Fsim1(k,j) = 1-normcdf(tmp,0,1);

end

end

F1(:,ite) = mean(Fsim1,2);

Fsim2 = zeros(ntm, L);

for j = 1 : L

contd = 1;

while contd

lam_sim2 = normrnd(mu_curr(2), sqrt(sigma2_curr(2)));

if lam_sim2 > 0

contd = 0;

end

end

for k = 1 : ntm

Ey = lam_sim2 * tm(k);

tmp = (ystar - Ey)/sqrt(delta2_curr);

Fsim2(k,j) = 1-normcdf(tmp,0,1);

end

end

F2(:,ite) = mean(Fsim2,2);

F(:, ite) = pi_curr(1)*F1(:,ite) + pi_curr(2)*F2(:,ite);

end

end
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%% Computing posterior statistics

istart = nite/2;

lambda_posterior = zeros(n, 4);

for i = 1 : n

lambda_posterior(i,:) = [mean(lambda(i,istart:nite)),

prctile(lambda(i,istart:nite),50),...

prctile(lambda(i,istart:nite),2.5),

prctile(lambda(i,istart:nite),97.5)];

end

disp(lambda_posterior);

mu_posterior = zeros(K, 4);

for k = 1 : K

mu_posterior(k,:) = [mean(mu(k,istart:nite)),

prctile(mu(k,istart:nite),50),...

prctile(mu(k,istart:nite),2.5),

prctile(mu(k,istart:nite),97.5)];

end

disp(mu_posterior);

sigma2_posterior = zeros(K, 4);

for k = 1 : K

sigma2_posterior(k,:) = [mean(sigma2(k,istart:nite)),

prctile(sigma2(k,istart:nite),50),...

prctile(sigma2(k,istart:nite),2.5),
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prctile(sigma2(k,istart:nite),97.5)];

end

disp(sigma2_posterior);

pi_posterior = zeros(K, 4);

for k = 1 : K

pi_posterior(k,:) = [mean(pi(k,istart:10:nite)),

prctile(pi(k,istart:10:nite),50),...

prctile(pi(k,istart:10:nite),2.5),

prctile(pi(k,istart:10:nite),97.5)];

end

disp(pi_posterior);

delta2_posterior = [mean(delta2(istart:nite)),

prctile(delta2(istart:nite),50),...

prctile(delta2(istart:nite),2.5),

prctile(delta2(istart:nite),97.5)];

disp(delta2_posterior);

R1 = zeros(ntm, 5);

for k = 1 : ntm

R1(k,:) = [tm(k)*scale, mean(F1(k,istart:nite)),

prctile(F1(k,istart:nite),50), ...

prctile(F1(k,istart:nite),2.5),

prctile(F1(k,istart:nite),97.5)];
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end

R2 = zeros(ntm, 5);

for k = 1 : ntm

R2(k,:) = [tm(k)*scale, mean(F2(k,istart:nite)),

prctile(F2(k,istart:nite),50), ...

prctile(F2(k,istart:nite),2.5),

prctile(F2(k,istart:nite),97.5)];

end

R = zeros(ntm, 5);

for k = 1 : ntm

R(k,:) = [tm(k)*scale, mean(F(k,istart:nite)),

prctile(F(k,istart:nite),50), ...

prctile(F(k,istart:nite),2.5),

prctile(F(k,istart:nite),97.5)];

end

plot(R1(:,1), R1(:,2),’k-’, R2(:,1), R2(:,2),’b--’, ...

R(:,1), R(:,2),’r:’);

A.6 Comparison among probability plot, failure time plot for single component and

multiple components

%% Input data

t = load(’tC17.csv’);

y = load(’yC17.csv’);

n = 15;
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ni = 17*ones(1,n);

ni_max = max(ni);

yt = zeros(1, n);

t2 = zeros(1, n);

for i = 1 : n

yt(i) = t(i,:) * y(i,:)’;

t2(i) = t(i,:) * t(i,:)’;

end

tf = zeros(n, 1);

lambda = zeros(n, 1);

F = zeros(n, 1);

ystar = 10;

for i = 1 : n

lambda(i) = yt(i) / t2(i);

tf(i) = ystar / lambda(i);

end

tf = sort(tf);

disp(tf);

for i = 1 : n

F(i) = (i-0.3)/(n+0.4);
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end

R = [tf,F];

F1 = load(’FT_C17_single_Bayes.txt’);

F2 = load(’FT_C17_multiple_Bayes.txt’);

%plot(tf,F,’ok’, F1(:,1),F1(:,2),’r-’, F2(:,1),F2(:,2),’b--’);

save FT_C17.txt R -ASCII

R=load(’FT_C17_Approximate.txt’);

plot(R(:,1)/100,R(:,2),’k-’, F1(:,1)/100,

F1(:,2),’r--’, F2(:,1)/100,F2(:,2),’b:’);
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