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Abstract 

LU, WEIYING, Ph.D., August 2011, Chemistry 

Development of Radial Basis Function Cascade Correlation Networks and 

Applications of Chemometric Techniques for Hyphenated Chromatography–

Mass Spectrometry Analysis (153 pp.) 

Director of Dissertation: Peter de B. Harrington 

A cascade correlation learning architecture has been devised for radial 

basis function neural networks.  Cascade correlation furnishes incremental 

learning networks.  The proposed algorithm was applied to three different 

datasets:  a synthetic dataset and two chemical datasets.  The synthetic 

dataset was used to test the novelty detection ability of the proposed 

network.  In the chemical datasets, the growth regions of Italian olive oils 

were identified by their fatty acid profiles; mass spectra of 

polychlorobiphenyl compounds were classified by chlorine number.  The 

prediction results by bootstrap Latin partition indicate the proposed neural 

network is useful for pattern recognition. 

A discriminant based charge deconvolution analysis pipeline is 

proposed.  The molecular weight determination (MoWeD) charge 

deconvolution method was applied directly to the discrimination rules 

obtained by the fuzzy rule-building expert system (FuRES) pattern classifier.  

This approach was demonstrated with synthetic electrospray ionization mass 

spectra.  Identification of the tentative protein biomarkers by bacterial cell 

extracts of Salmonella enterica serovar typhimurium strains A1 and A19 by 



  4 
   

liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-

MS) was also demonstrated.  The data analysis time was reduced by applying 

this approach.  Furthermore, this method was less affected by noise and 

baseline drift. 

The gasoline and kerosene collected from different locations in the 

United States were identified by gas chromatography/mass spectrometry 

(GC/MS) followed by chemometric analysis.  Classifications based on two-

way profile and target component ratio were compared.  The projected 

difference resolution (PDR) mapping was applied to measure the differences 

among the ignitable liquid (IL) samples by their GC/MS profiles 

quantitatively.  FuRESs were applied to classify individual ILs.  The FuRES 

models yielded correct classification rates greater than 90% for 

discriminating between samples.  PDR mapping, a new method for 

characterizing complex data sets, was consistent with the FuRES 

classification result.  
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Chapter 1 Introduction 

1.1 General Statement  

This dissertation presents the development of a novel neural network 

for chemical data processing; biochemical and forensic applications of 

chemometric methods in chromatography and spectrometry methods are 

also introduced.  Chapter 1 presents the general introduction of analytical 

instrumentation and chemometric methods used in this dissertation.  In 

Chapter 2, the development of a novel neural network named radial basis 

function cascade correlation network is described.  In Chapter 3, a 

discriminant based charge deconvolution analysis pipeline for protein profiling 

by high performance liquid chromatography–mass spectrometry (HPLC–MS) 

is devised.  The chemometric study of ignitable liquid (IL) identification using 

gas chromatography/mass spectrometry (GC/MS) data is presented in 

Chapter 4.  The summary and future works are introduced in Chapter 5.  The 

publications and presentations associated with this dissertation are listed in 

the Appendices. 

1.2 Chromatography and Mass Spectrometry 

The analytical instrumentation used to conduct the research reported 

in this dissertation is briefly introduced here.  Chromatography is an 

important separation technique in chemistry.1  In general, an analyte is 

transported in a mobile phase and passes through a chromatographic 

column.  The stationary phase materials are coated or pack inside the 

column.  Because different components have different retention abilities in 
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the stationary phase, different chemical components of a mixture migrate 

through the column at different speed and eluted from the column at 

different times, which results in the chemical separation.  The 

chromatographic measurement is referred to as a chromatogram for which 

the abscissa is the retention time and the ordinate is the measured quantity 

of material detected.  Gas chromatography (GC) and liquid chromatography 

(LC) are commonly used chromatographic techniques, in which the mobile 

phases are respectively gas and liquid.  High performance liquid 

chromatography (HPLC) was derived from LC.  HPLC decreases the particle 

size of the stationary phase or the stationary phase support in the column.  

In addition, the HPLC instrument requires pumps capable of producing high 

pressures in the mobile phase enough to overcome the viscosity of the 

mobile phase as it moves through the small channels between the stationary 

phase particles.  In addition, the pump must maintain precise flow control.  

The separation ability of HPLC is greatly increased compared with 

conventional LC. 

Another widely used technique in instrumental analysis is mass 

spectrometry (MS).2, 3  In a mass spectrometer, an analyte is introduced 

from an inlet to an ion source.  Ionization takes place in the ion source that 

transforms compounds into ions.  Afterwards, the ions are separated in a 

mass analyzer by their mass-to-charge ratio.  By measuring the ion current 

at an electronic detector, the relative abundance of each ion is obtained with 

respect to the mass-to-charge ratio.  The MS measurement is reported as a 
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spectrum for which the abscissa is mass-to-charge ratio and the ordinate is 

intensity.  A mass spectrometer can be applied as a detector that is 

hyphenated to a GC or an HPLC instrument, respectively referred to as 

GC/MS and HPLC–MS.  GC/MS and HPLC–MS generate two-way spectra that 

furnish data in a 3D matrix that can be viewed as an image.   The axes of the 

image correspond to retention and mass-to-charge ratio and the intensity of 

the image encodes the ion current.  Figure 1-1 gives a representation of a 

two-way spectrum.   

 

 

Figure 1-1.  A two-way spectrum of GC/MS and HPLC–MS. 

 

With the development of modern analytical instrumentation, the 

throughput and resolution of chemical measurements are increasing.  The 

measurement can be performed rapidly using high throughput instruments.  

Meanwhile, the number of data points obtained from each measurement 

increases with the increase of resolution.  The increase resolution may be 
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exploited to yield more analytical information obtained from a complex 

mixture.  Therefore, the characterization of complex mixtures is possible.  

Nowadays, HPLC–MS is applied for a wide range of biological samples to 

identify and quantify compounds.  The applications of HPLC–MS include food 

and nutritional supplements authentication4, 5, drug analysis and 

metabolomics6, 7, medical diagnostics8, 9, etc.  GC/MS also has a wide range 

of applications, for instance, the identification of ignitable liquids10-12 and the 

detection of illicit drugs13, 14, explosives15, 16, and pesticides17, 18. 

The U.S. Centers for Disease Control and Prevention (CDC) estimated 

that each year 48 million American people are infected by foodborne 

diseases, of which 128 000 are hospitalized, and 3000 died.19  As a harmful 

pathogenic bacterium, salmonella infections typically affect the intestines, 

causing symptoms such as vomiting and fever, and for some cases could be 

life-threatening.  The CDC claimed that salmonella is the top pathogen 

causing hospitalization and death.19  Because the contaminated food neither 

generates odor nor has visible changes in color or texture in most cases, 

bacteria that cause diseases are hard to detect.  As a result, research on 

developing bacterial identification methods has attracted much attention.  In 

the research described in Chapter 3, the protein profiling of whole cell 

extracts of bacteria Salmonella enterica are analyzed by HPLC–MS.   

Arson is the leading cause of fires, and second leading cause of deaths 

and injuries according to the U.S. Fire Administration.20  Therefore, arson 

investigation is important to the criminal justice system.  The criminals may 
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use ignitable liquids, typically commercially available fuels or solvents, as 

accelerants to start a fire.  Identification of the ignitable liquids is difficult 

because the ignitable liquids mostly are mixtures consisting of hundreds of 

components.  In the work presented in Chapter 4, the gasoline and kerosene 

were analyzed by GC/MS.  Chemometric analysis pipelines were proposed 

and evaluated to achieve an automatic and quantitative measure of 

identification. 

1.3 Chemometrics Techniques 

Chemometrics was introduced by Wold and Kowalski in the 1970’s.21-23  

Chemometrics can be described as the systematic application of 

mathematical and statistical knowledge to chemical research.  Key areas of 

chemometrics are experimental design, signal processing, and multivariate 

data analysis.  Overwhelming amounts of data obtained from the chemical 

measurements can be used to characterize complex mixtures.  As a result, it 

is important to develop chemometrics techniques on a computer system to 

process the spectra, because of the significant increase in throughput and 

resolution of modern analytical instruments.   

Programs implementing chemometrics algorithms provide efficient, 

rapid, and reliable approaches to process large amounts of analytical data by 

computer.  This dissertation focuses on research and applications of pattern 

classification techniques in chemometrics.   
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1.3.1 Notation 

This dissertation follows the American Chemical Society (ACS) style.  

Specifically, scalars and elements of vectors and matrices are denoted as 

lowercase italic letters; vectors are denoted as bold lowercase letters; 

matrices are denoted as bold uppercase letters.   

1.3.2 Pattern Classification 

Pattern classification, or classification, originates from pattern 

recognition and machine learning in computer science.24  Classification is a 

category of techniques to characterize samples into different classes.  In 

each class, one or more samples are tested.  A classifier is an algorithm used 

to perform classification based on the data matrix described above as input.  

Classification methods can be supervised or unsupervised.  Unsupervised 

classification methods such as clustering find similarities for unlabeled data 

and groups the data into classes.  In supervised classification, the classes are 

known and the classifier forces the data into one of the predetermined 

classes.  Supervised classification on chemical data is studied in this 

dissertation.   

The data was organized into a matrix to perform classification.  In 

chemometrics, the sample is measured in the experiment, from which the 

data is obtained.  In this dissertation, the data matrix for classification is 

organized so that the rows are observations of the samples, which are 

referred to as objects.  When each sample is measured in several replicates, 

each replicate can be treated as an object.  The columns are measurements, 
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usually referred to as variables or factors.  Figure 1-2 is an example of a 

matrix used for classification.  When dealing with two-way spectra, each 

intensity measurement corresponds to a mass-to-charge ratio and a 

retention time measurement.  The two-way matrix can be reorganized into a 

single row.  This process is referred to as unfolding.  In this dissertation, 

different classifiers were applied to different data sets.  Performances among 

the classifiers are compared.   

 

 

1.3.3 Bootstrap Latin Partition Validation 

Validation techniques evaluate the performance of the classifiers.  

Classification constructs mathematical models from a set of experimental 

data.  This process of model building is referred to as training or calibration.  

The data used for this process is called the training data or the calibration 

data.  Because supervised classifiers build models that force the data into the 

known classes, many powerful classifiers will achieve this goal by modeling 

 

Figure 1-2.  Arrangement of data matrix for classification. 
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noise or spurious components in the data.  This problem is especially 

prevalent when the data matrix is underdetermined (i.e., it has more 

variables than objects).  The results of the model applied to the calibration 

data are referred to as estimates and the associated error is referred to as 

calibration error.   

Therefore, it is always important to validate the model to assure that 

the model is characterizing systematic features in the data and not random 

components.  A fundamental method of validation is accomplished by 

applying the model to an independent set of data.  The independent set of 

data is referred to as the test set or the prediction set.  The data are 

independent because they were never used for any aspect of constructing or 

modifying the model.  The classification model is applied to the test set and 

the predicted classes are compared with the known classes.  The 

classification results from the model with the independent data may be less 

than perfect.  The term prediction is only used with the results from 

independent data sets.  The results of the prediction set are referred to as 

predictions and the associated error is referred to as prediction error. 

Another important term is generalization.  Classification models should 

be general and have the ability to interpolate among different samples.  

Therefore, when validating models it is always useful to make sure that the 

data in the training and test sets are from different samples and not replicate 

measurements of the same sample. 
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Performing additional experiments could be time-consuming and 

costly.  As a result, validation techniques without extra experiments have 

been developed.  The most typical method is cross-validation.  In cross-

validation, samples are equally divided into n parts.  Each part is extracted 

from the original data once and only once as the test set. The remaining part 

of the data after extraction is the corresponding training set.  As a result, n 

pairs of training and test sets are generated.  Then, n classification models 

are trained and tested by using n pairs of training sets and test sets.   

In cross-validation, data is divided randomly so that the proportional 

distribution of classes in training and test sets is not maintained.  As a result, 

bias in the classification model may occur.  This may cause a problem 

because the models will typically minimize the largest classification errors.  

Therefore, the class with the largest number of objects will also have the 

better prediction accuracy.  In extreme cases, some classes may not be 

present in the training set at all.   

The Latin partition was developed to avoid this problem.  Latin 

partition has an improvement over cross-validation technique by applying a 

constraint to maintain the proportional distribution of classes in each 

partitioned pair of training and test sets.  Figure 1-3 demonstrates the Latin 

partition with three partitions in a data set that contains two classes.   
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Figure 1-3.  Demonstration of a Latin partition process.  A, B, and C are three 
different partitions.  Boxes in different colors are different classes in the data 
set. 
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Unlike cross-validation that repeatedly analyzes subsets of the data, 

bootstrapping is a method that performs multiple validations by re-sampling.  

The prediction results for each Latin partition can be pooled because each 

object is used once and only once.  Because the Latin partitions are created 

using random sampling, the process may be repeated many times.  

Therefore each set of Latin partitions are independent.  This process of 

repeating the Latin partitions is referred to as bootstrapping.   

Because each bootstrap or set of Latin partition is independent the 

variation characterizes the reproducibility of the data and its affect on the 

model.  The average prediction results across the bootstraps can be reported 

to give a general measure of prediction and the variation about the average 

result can be used for form confidence intervals.  This approach is very 

important for optimizing and comparing chemometric methods and 

characterizing a critical source of variation.  The dependency of the result on 

the division of the data into training and test sets.   

The combined approach for model validation is referred to as  

Bootstrap Latin partitions (BLP).25  In this dissertation, BLP validation is 

applied to compare different classifiers and different data processing 

methods.   Through BLP many simple statistical test (e.g., t-test or ANOVA) 

are made available to compare prediction results and optimize classifiers. 

1.3.4 Artificial Neural Networks 

Artificial neural networks (ANNs) mimic the biological structure and 

behavior of the central nervous system.26, 27  The study of ANN is major field 
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in artificial intelligence.  The ANN is used as a classifier in this dissertation.  

The fundamental processing units of an ANN are the artificial neurons, or 

units.  Each neuron furnishes single or multiple input data and evaluates the 

data by a mathematical function to a single output or multiple outputs.  The 

function is referred to as transfer function or activation function.  Typically, 

transfer functions are either linear functions, sigmoid functions, or radial 

basis functions.   

The artificial neurons are organized into several layers; each layer 

consists of one or more artificial neurons.  The network size is determined by 

the number of layers and number of neurons in each layer.  The first layer is 

the input layer, and the last layer is the output layer of the network.  All 

other layers between the input and the output layer are hidden layers.   

The neural network architecture refers to the interconnection of the 

neurons.  Many different neural network architectures exist.  The most 

commonly applied architecture is the multi-layered feed-forward (MLF) neural 

network.28  In an MLF network, a weight is multiplied to the data at each 

connection.  The input of a neuron is the weighted sum of outputs from the 

previous layer, given by 

       

 

   

   (1-1) 

for which x is the input to the transfer function, n is the total number of 

neurons in the previous layer, xi is the input signal from the ith neuron in the 

previous layer, wi is the weight, and b is the intercept.  The intercept is 

implemented by adding a bias neuron to the input layer and each hidden 



  31 
   

layer, whose output is constantly unity.  The sigmoid function is typically 

applied as the transfer function in the hidden neuron, given by 

            (1-2) 

for which f is the output of the neuron. 

The architecture of an MLF network is given in Figure 1-4.  Neurons 

are given in circles; the connections are lines, and arrows give the directions 

of data processing.  There are two input neurons, three hidden neurons, and 

two output neurons.   

 

 

Figure 1-4.  The architecture of an MLF network that contains three layers.  
The circles are artificial neurons; the connections are lines with arrows 
indicate the direction of data processing. 
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To determine the weights in an MLF network, a training algorithm is 

required.  The most commonly used learning algorithm for the MLF network 

is back-propagation.  The MLF network trained with a back-propagation 

learning algorithm is a back-propagation network (BNN).28  In a BNN, the 

error back-propagation is used in training the neural network.  The transfer 

functions in the input and output layers are linear functions, and the hidden 

layers are units with sigmoid functions.  The network size and structure are 

fixed before training.  In the training process, the weights of ANN are 

adjusted simultaneously based on the comparison between the error of 

output and the desired outputs.  The adjustment routine iterates until an 

error threshold is achieved.   

The simultaneous adjustments of all the weights in back-propagation 

training cause the problem of slow training and difficulties in the convergence 

of a BNN, especially when the size of the neural network is large.29  In 

addition, a BNN cannot detect outliers because the sigmoid function applied 

in a BNN divides the output space by a hyperplane.  In Chapter 2, a radial 

basis function cascade correlation network (RBFCCN) is developed to solve 

the problems of BNN.  Comparisons with six other classifiers by synthetic and 

chemical data sets are reported.  

1.3.5 Fuzzy Rule-Building Expert System 

Besides ANNs, rule-building expert systems are also important 

classification techniques.  The classification model of a rule-building expert 

system is given in a tree structure.  Each rule is located in the nodes of the 
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classification tree.  The rule contains an antecedent which determines 

whether a condition arises, and a consequent which directs the next rule 

(nodes) or indicates a classification.  Univariate rule-building expert systems 

are the simplest form of the expert systems, where only one variable is 

processed in each rule.  Univariate rule-building expert systems models 

multivariate relations by a sequential approach.  Multivariate rule-building 

expert systems apply linear combinations of all variables to construct rules in 

their antecedents.   

A fuzzy rule-building expert system (FuRES)30, 31 is a classifier that 

builds multivariate rule with the combination of decision tree algorithm and 

fuzzy logic.  Given an antecedent A and the consequent C, each FuRES rule is 

constructed to minimizes the entropy of classification )( ACH ,  given by 
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for which )( jaCH  is the information entropy for consequent aj.  The number 

of classes n and m is the number of rule consequents.  )( ji acp  is the 

conditional probabilities calculated by 

   



n

k

kA

n

k

kAji xxacp
i

11

)( 

 
(1-5) 

for which xk is the projection of object k on the linear discriminant.  χA is the 

output of fuzzy membership functions.   
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Unlike most classifiers, fuzzy logic are used in FuRES instead of crisp 

logic.  The fuzzy logic is implemented by fuzzy membership functions in each 

branch of the classification tree.  The fuzzy membership functions χA is given 

by 

               (1-6) 

for which t is the computational temperature that controls the degree of 

fuzziness; x is the input variable.   

Compared to other classifiers such as neural networks and support 

vector machines, FuRES has advantages from the decision tree algorithm and 

fuzzy logic.  FuRES model can be presented in a simple hierarchical tree 

structure, where general rules are located at the root of the tree and precise 

rules are located at the leaves.  By applying the fuzzy logic, the FuRES 

classifier avoids ill-conditioned solutions when the data set is partially 

overlapped.  FuRES has been successfully applied to investigate GC/MS10, 

gas chromatography–differential mobility spectrometry (GC–DMS)32, 33, and 

near-infrared spectroscopy34, etc. 

1.3.6 Electrospray ionization-mass spectrometry and Charge State 

Deconvolution Algorithms  

The ionization source is an essential part of a mass spectrometer.  

Electrospray ionization (ESI) is a soft ionization source for MS.  The 

electrospray ionization-mass spectrometry (ESI-MS) technique is usually 

hyphenated with LC, referred to as LC–ESI-MS.  The ESI-MS technique was 

developed by Fenn et al.35  ESI-MS is suitable to detect large biomolecules 
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such as proteins and peptides.  Figure 1-5 is a simplified structural 

representation of ESI-MS.  The analytes in a liquid solvent pass through a 

capillary tube towards a metal inlet.  An electric potential, typically 1–5 kV, is 

applied between the capillary and the mass analyzer, causing the charge 

separation in the liquid, and the analyte molecules acquire charges.  The 

charged ions migrate to the surface of the spray droplet.  The electric forces 

pull the analyte solvent out of the capillary tube, forming a cone shaped 

spray of droplets known as a Taylor cone.  The charged droplets break apart 

from the tip of the Taylor cone and move to the metal inlet.  A spray known 

as electrospray is produced in this process.  The droplets continue to break 

apart due to the collision and the electric field in the spray.   
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Figure 1-5.  Schematic of an ESI ion source. 
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When analyzing proteins and peptides, the molecules in the droplets 

usually are multiply charged.  The number of charges usually ranges from 10 

to 50, depending on the size and structure of the molecule.  Because 

different charged molecules of a same compound have different mass-to-

charge ratios, ESI-MS spectra for proteins and peptides are often convolved 

into a series of peaks.  An example of ESI-MS spectra is given in Figure 1-6. 

 

 
Figure 1-6.  An ESI-MS spectrum of myoglobin.  The spectrum was a sample 
spectrum of Promass software version 2.5 (Novatia, NJ). 
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To obtain a direct presentation about the relative intensities and 

molecular weights of the components, data analysis is required because of 

the complexity of ESI-MS spectra.  Compared to manually transformation of 

a convolved spectrum to transform the peak clusters from the multiply 

charged domain to zero or singly charged domain, automated algorithms 

have been developed.  The deconvolution algorithms were first developed by 

Mann et al.36  It should be addressed that although the deconvolution 

technique is widely used in signal processing and image processing, the term 

―deconvolution‖ in this dissertation specifically refers to charge state 

deconvolution for ESI-MS.  After the introduction of automated deconvolution 

method, many algorithms have been proposed for different types of ESI-MS 

instruments followed by different principles, such as maximum entropy37-39, 

multiplicative correlation40,  scoring on each possible charge state pattern41-

43, the least squares method44, minimum standard deviation45, charge ratio 

analysis46, 47, etc.   

Different deconvolution techniques should be applied depending on the 

MS instrumentation and the size of the analyte molecules.  In work described 

in Chapter 3, the molecular weight determination (MoWeD) method was used 

to process ESI-MS spectra because MoWeD performs rapidly and is suitable 

in processing data from quadrupole time-of-flight mass spectrometry.  The 

deconvolved myoglobin spectrum by MoWeD is given in Figure 1-7. 
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Figure 1-7.  Deconvolved myoglobin spectrum by MoWeD. 

 

The MoWeD algorithm was proposed by Pearcy and Lee41, which 

performs charge state deconvolution by applying a scoring function with 

respect to each possible charge state.  First, the peaks in the spectrum are 

detected by a peak-finding routine.  Starting with the highest intensity 

peaks, this algorithm calculates and assigns charge states to each peak that 

is above a given noise threshold.  After charge assignment of all peaks, the 

ESI-MS spectrum is deconvolved into the zero-charge domain.  The charge 

assignment process contains the following steps: 
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2. For each candidate charge, calculate charge state patterns.  Charge 

state patterns are a series of mass-to-charge ratio values from a 

contiguous charge state series. 

3. A score is calculated for each candidate charge state by a scoring 

function.  The scoring function is the number of peaks present in the 

charge state pattern minus the number of gaps in the charge state 

pattern. 

4. The candidate charge with the maximum score is assigned to the peak.  

5. The zero-charge spectrum is updated each time after a charge is 

assigned.  For every point in an original peak, the molecular mass is 

calculated.  The calculated molecular mass is the abscissa of the peak 

points and the peak intensity is the ordinate.  According to the 

predefined molecular mass range and molecular mass increment, the 

intensities in the zero-charge spectrum are calculated by linear 

interpolation between adjacent peak points.  The zero-charge 

spectrum is updated by adding the interpolated intensity. 
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Chapter 2 Radial Basis Function Cascade Correlation Networks  

Adapted with permission from Lu, W. and Harrington, P.B.; Algorithms 2009, 

2, 1045-1068. 

Copyright 2009 MDPI Publishing 

2.1 Introduction 

Artificial neural networks (ANNs) are widely used pattern recognition 

tools in chemometrics.  The most commonly used neural network for 

chemists is the back-propagation neural network (BNN).  The BNN is a feed 

forward neural network, usually trained by error back-propagation.48, 49  

BNNs have been applied to a broad range of chemical applications.  Recent 

analytical applications of BNNs in fields such as differential mobility 

spectrometry50 and near-infrared spectroscopy51 have been reported in the 

literature.   

Although BNN is useful, BNNs converge slowly during training 

especially when the network contains many hidden neurons.  This slow and 

chaotic convergence is partially caused by the simultaneous adjustments of 

weights of all hidden neurons during the training of BNNs, which is referred 

to as the ―moving target problem‖.  To avoid this problem, a network 

architecture named cascade correlation network (CCN) was proposed by 

Fahlman and Lebiere.29  A CCN begins training with a minimal network, which 

has only an input layer and an output layer.  During training, the CCN 

determines its topology by adding and training one hidden neuron at a time, 

resulting in a multilayer structure.  In this training strategy, the moving 
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target problem is avoided because only weights of single hidden neuron in 

the network are allowed to change at any time.  CCNs have been applied to 

the prediction of the protein secondary structure52 and estimation of various 

ion concentrations in river water for water quality monitoring53. 

A temperature constrained cascade correlation network (TCCCN)54 

combines the advantages of cascade correlation and computational 

temperature constraints.  By adapting the sigmoid transfer function, a 

temperature term is added to constrain the length of the weight vector in the 

hidden transfer function.  The temperature is adjusted so that the magnitude 

of the first derivative of the covariance between the output and the residual 

error is maximized.  As a result, fast training can be achieved because of the 

larger gradient of the response surface.  TCCCNs have been successfully 

applied to many areas in analytical chemistry, such as identification of toxic 

industrial chemicals by their ion mobility spectra55, classification of official 

and unofficial rhubarb samples based on their infrared reflectance 

spectrometry56, and prediction of substructure and toxicity of pesticides from 

low-resolution mass spectra57, etc. 

Besides BNNs and CCNs, the radial basis function network (RBFN) is 

another important type of neural network.  An RBFN is a three-layered feed 

forward network, which use radial basis functions (RBFs) as transfer 

functions in the hidden layer.  The most commonly used RBF is the Gaussian 

function.  The number, centroids and radii of the hidden units of an RBFN can 

be determined by random generation, clustering, and genetic algorithms, etc.  
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The RBFN can also be trained by back-propagation.  Wan and Harrington 

developed a self-configuring radial basis function network (SCRBFN).58  In a 

SCRBFN, a linear averaging (LA) clustering algorithm is applied to determine 

the parameters of the hidden units.  Class memberships of the training 

objects are used during clustering in the LA algorithm.   

Recently, many novel supervised learning methods have gained 

increasing popularity, such as the support vector machine (SVM) and random 

forest (RF).  The SVM was introduced by Vapnik.59  The SVM first projects the 

training data into high-dimensional feature space by kernel functions.  An 

optimal decision hyperplane is determined by finding the maximum margin 

between classes.   

The RF method was developed by Breiman.60  The RF method derives 

from the decision tree algorithm.  During the RF training, many decision 

trees are trained by ensemble learning techniques, i.e. bootstrapping of the 

training set.  Because each tree is built from different individual subset, the 

trees are different from each other.  The classification result is then 

calculated by voting from all the trees built. 

A radial basis function cascade correlation network (RBFCCN) that 

combines the advantages of CCNs and RBFNs was devised in the present 

work.  The RBFCCN benefits from the RBF as the hidden transfer function 

instead of the commonly used sigmoid logistic function.  The RBFCCN also 

has a cascade-correlation structure.  The network performance was tested 

using both synthetic and actual chemical data sets.  The partial least 
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squares-discriminant analysis (PLS-DA) was also tested as the standard 

reference method.  Comparisons were made with the BNN, RBFN, SCRBFN, 

PLS-DA, SVM, and the RF method.  Two synthetic data sets were 

constructed.  The first data set is to evaluate classifier performance when a 

novel data set class is introduced.  The second data set is designed to 

measure the performance with an imbalanced data set in that one class has 

much fewer objects than the other classes. Two chemical data sets were also 

evaluated.  One is the fatty acid methyl ester measurements of Italian olive 

oils and the other is a collection of mass spectra from different 

polychlorobiphenyl (PCB) congeners.  The bootstrap Latin partition (BLP)25 

validation method were used in this study. 

2.2 Theory  

The network architectures of an RBFN and an RBFCCN are given in 

Figures 2-1 and 2-2, respectively.  By applying the cascade correlation 

algorithm, the RBFCCN has a different network topology compared with 

conventional RBFNs.  In RBFCCNs, the transfer function applied in the hidden 

neuron is the Gaussian function.  Unlike an RBFN that usually has only one 

hidden layer, the RBFCCN has a multi-layered structure.  Each hidden layer 

contains only one neuron.  In RBFCCNs, the kth hidden neuron is connected 

with k + l - 1 inputs, where l denotes the number of input neurons.  The 

output of the ith object from the kth hidden neuron oik is given by: 

                              
 

     

   

      
    (2-1) 
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for which gk is the notation of the Gaussian function; xik is the input vector; 

xikp is the corresponding pth element of xik.  The µkp term denotes the pth 

element of centroid µk, and σk denotes the kth radius.  The oik term will 

depend on two factors:  the Euclidean distance between the sample and the 

centroid and the radius.  In the cascade-correlation training architecture, the 

hidden units are added and trained sequentially during training.  The training 

process of an RBFCCN includes the following steps: 

1. Initialize the network. 

2. Add a hidden neuron to the network.  Initialize this hidden neuron by 

setting initial values of µk and σk of the Gaussian function. 

3. Train the hidden neuron.  Determine the values of µk and σk. 

4. Train the weights Wk in the output layer. 

5. Repeat step 2 to step 4 until a given error threshold is achieved or a 

given number of hidden units were added. 
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Figure 2-1.  Network architecture of an RBFN.  This network has three input 

neurons, two hidden neurons, and two output neurons.  

 

 

 
Figure 2-2.  Network architecture of an RBFCCN.   This network has three 

input neurons, two hidden neurons, and two output neurons.  
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2.2.1 Initialize the RBFCCN 

The RBFCCN initialization is given in Figure 2-3.  RBFCCN begins its 

training with a minimal network, which only has an input layer and an output 

layer.  The number of input neurons l is equal to the number of variables of 

the data set.  The number of output neurons n is equal to the number of 

classes in the training set.  The neurons in the output layer are linear.   

In this work, binary coding is used to determine the training target 

value.  Each class has a corresponding binary sequence of unity or zero in 

which an element of unity indicates the identity of the object’s class 

membership.  For example, suppose an object belongs to the second class in 

a training set of four classes.  The training target value will be encoded as (0, 

1, 0, 0), i.e., the desired output vector of the trained network model is (0, 1, 

0, 0).  
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Figure 2-3.  Network initialization of an RBFCCN.  This network has three 
input neurons and two output neurons.  
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2.2.2 Add and Initialize a Hidden Neuron  

Figures 2-4 and 2-5 demonstrate adding the first and second hidden 

neurons to the RBFCCN, respectively.  Unlike the CCN that adds and trains a 

pool of candidate neurons, the RBFCCN adds and trains only one hidden 

neuron at a time because the initialization method applied in the RBFCCN is 

deterministic.  The trained neuron of the RBFCCN is unique.  Once the kth 

hidden neuron is added to the RBFCCN, the centroid µk is initialized with the 

mean vector of the target objects, and the initial radius σk is given by the 

mean of the standard deviations of the target objects.  The target objects of 

the kth hidden neuron are training objects from tkth training class.  When k ≤ 

n, for which n denotes the number of training classes, tk = k.  When k > n, tk 

is the class that contains the maximum total residual error among all training 

classes.  According to the central limit theorem, all the objects from the 

same class tend to be normally distributed in the input space.  The Gaussian 

function represents a class of objects.  The initial hidden units represent 

clusters of the training data similar to LA clustering.  This initialization 

method advantages over the random initialization method, because the value 

is fixed, the convergence is faster.   
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Figure 2-4.  Adding first hidden neuron into an RBFCCN.  This network has 

three input neurons, one hidden neuron and two output neurons.  The 
neurons and connections being trained are red.  µ1, σ1 and W1 are 

parameters to be trained. 

 
Figure 2-5.  Adding second hidden neuron into an RBFCCN.  This network has 
three input neurons, two hidden neurons and two output neurons.  The 

neurons and connections being trained are red.  µ2, σ2 and W2 are 
parameters to be trained.   
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2.2.3 Train the Hidden Neurons  

The training strategy of the hidden neurons is adopted from that of the 

CCN.  After initialization, the centroids µk and radii σk are trained by 

maximizing the absolute value of the covariance between the output and the 

target value of a hidden unit by appropriate optimization algorithms.  The 

covariance Ck from the kth hidden unit is given by 

                  

 

   

 (2-2) 

for which oik is the output of the ith observation and the kth hidden neuron; yik 

is the corresponding target value; m is the total number of training objects.  

Once a hidden neuron is trained, the centroid and radius of it will remain 

unchanged for the rest of the network training process. 

Instead of using all training objects as target values, only objects in 

tkth training class are selected as the target value for the training of the 

hidden neurons, for which tk is the target class membership used in 

initializing kth hidden neuron.  As a result, the target value yik of the ith object 

and the kth hidden neuron is given by 

      
            

            
  (2-3) 

for which ci is the class membership of the ith training object.   

2.2.4 Train the Weights in the Output Layer 

The weights in the output layer are recalculated and stored after each 

hidden neuron is trained.  As the case in TCCCNs, the input units do not 

connect to the output units directly.  The predicted value     of the network 
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with kth hidden neurons is calculated by the product of the output matrix Ok 

and the weight matrix Wk, which is given by 

         (2-4) 

for which Ok is the output matrix for the hidden neurons.  The matrix is 

augmented with a column of unity, which allows a bias or intercept value to 

be calculated.  Therefore, the output matrix Ok has m rows and k + 1 

columns, for which m denotes the total number of training objects.  The 

weight matrix Wk stores the weight vector of the output layer.  The Wk 

matrix has k + 1 rows and n columns, for which n denotes the number of 

classes of the training object.  Singular value decomposition (SVD) is applied 

to determine the values of the weight vectors, given by 

           
  (2-5) 

in which Uk and Vk are eigenvectors that respectively span the column and 

row spaces for the Oj matrix, and Sk is the singular value matrix.  By using 

SVD, the pseudoinverse of Ok can be computed with     
    

 .  According to 

Eq. 2-4, Wk is the least squares fit of the targets onto the outputs of the 

hidden layer units and is given by 

         
    

  (2-6) 

for which Y is the target value matrix of the whole training set. 

2.2.5 Evaluate the Stopping Condition of RBFCCN 

The RBFCCN can be trained until a given number of hidden units were 

added and trained, or a given error threshold is achieved.  The relative root 
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mean square error of calibration (RRMSEC) was used in this work.  The 

RRMSEC is given by 

        
            

  
   

 
   

           
  

   
 
   

 (2-7) 

for which m is the total number of training objects, n is the number of 

classes, yij is the target value for the ith object and class j,      is the network 

model output for object i and class j, and     is the average target value for 

class j.  To have a relative metric, the standard error of calibration is 

corrected by the standard deviation.  By applying the RRMSEC thresholds, 

the experimental results only depend on different network topologies.  

Different training algorithms such as QuickProp, Rprop, and Bayesian 

approach affect the convergence time and achieve equivalent classification 

accuracies for the training sets. 

Figure 2-6 gives the RRMSEC with respect to hidden unit number 

trained by the RBFCCN.  The RRMSEC thresholds were determined by 

training an RBFCCN model using one training data set from the bootstrap 

Latin partition until the RRMSEC is not significantly improved.  Once the 

RRMSEC threshold is determined, it is applied to train all the other neural 

networks.  Of course, this method is biased in favor of the RBFCCN but it is 

required so that all the other reference classifiers have the same 

performance.  However, the primary goal of this research is to compare the 

prediction accuracies and the ability of the different classifiers to generalize 

when trained to similar target values of classification accuracies.  Because 
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the classifiers for comparison are inherently different, the RRMSEC threshold 

is only applied to train the network models.   

 

 
Figure 2-6.  The RRMSEC with respect to hidden unit number trained by the 
RBFCCN using one training data set from the bootstrapped Latin partition.  

Magenta line with x:  novel class data set; black line with □:  imbalanced 
data set; red line with +:  Italian olive oil data set; blue line with o:  PCB 
data set. 

 

  

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden units

R
R
M

S
E
C



  55 
   

2.2.6 Identify the Class Membership 

The class membership of an object is determined by its corresponding 

output vector using the following strategies.  When all the outputs are below 

0.5, the object is labeled as unknown.  Otherwise, the class is determined by 

the winner-take-all method, in which the unknown is classified by the index 

of the maximum element in the output vector.  The SVM and RF have their 

own novel class evaluation procedure, which is not performed simultaneously 

with classification.  The RF evaluates outliers by a metric which is referred to 

as proximity.  The proximity measure is the fraction of trees in which a pair 

of objects is in the same terminal node among the entire bootstrapped trees.  

The proximity is based on the rule that similar objects should be in the same 

terminal nodes more often than dissimilar ones.  The degree of the 

outlyingness is then calculated by the sum of squared proximities between 

that objects and all other objects in the same class.  The novel class 

evaluation procedure of SVM is referred to as one-class SVM, which models 

the inlier into a hyper-sphere in the data space.  The SVM and RF method 

were excluded from the novel class evaluation. 

2.2.7 Advantages of RBFCCN 

The RBFCCN offers several advantages.  The cascade-correlation 

architecture has the ability of incremental learning.  Incremental learning 

refers that the network build and expand itself during training by adding and 

training one hidden unit at a time.  First, the incremental learning ability 

avoids the moving target problem in the BNN and the network converges 
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rapidly.  Second, the cascade-correlation architecture does not require 

determining the size of the network prior to training.  Cascade-correlation 

networks can be trained to a threshold of residual error instead.  Third, 

multiple networks can be obtained by training only once.  These trained 

networks are networks with hidden units ranging from one to the total 

number of hidden units added to the cascade-correlation network.  Fourth, 

by using RBF transfer functions, RBFCCNs are suitable for performing novel 

class evaluation, i.e., the ability to identify unknown data or outliers in a data 

set. 

2.3 Experimental Section 

2.3.1 General Information 

All calculations were performed on an AMD Athlon XP 3000+ personal 

computer running Microsoft Windows XP SP3 operating system.  The 

programs were in-house scripts in MATLAB version 7.5, except for the 

analysis of variance (ANOVA), SVM, and RF.  ANOVA was performed in 

Microsoft Excel version 12.0.  The SVM calculations were performed by the 

LIBSVM software version 2.89 with MATLAB interface.61  The RF program 

were obtained from reference.62  The training of RBFCCN was implemented 

through fminbnd and fminunc functions by their default parameters from the 

MATLAB optimization toolbox version 3.1.2.  The fminunc function uses the 

Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method with a cubic line 

search procedure.  The fminbnd function is based on golden section search 

and parabolic interpolation algorithm.  In the RBFCCN, RBFN, and SCRBFN, 
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the weights of the output neurons were updated by the SVD algorithm.  The 

SVD algorithm is implemented by the MATLAB function pinv.  The PLS-DA 

and all ANNs apply binary coding to determine the classes of the outputs. 

Instead of training neural networks to achieve the minimum error of 

an external validation set, all the neural networks (the BNNs, SCRBFNs, 

RBFNs, and RBFCCNs) compared in this work were trained to a given 

RRMSEC in each data set.  All the neural networks and PLS-DA applied the 

binary coding method to set the training target value, and the method to 

identify the class membership stated above.  The BNNs used in this work 

consists of three layers:  one input layer, one hidden layer and one output 

layer.  The sigmoid neuron was used in the hidden layer, and the output 

layer was linear.  The two-stage training method of RBFN is applied.  The 

centroids and radii of RBFN are initialized by the K-means clustering, and 

optimized by back-propagation.  The centroid of the kth hidden neuron µk is 

initialized by the mean of the objects in the kth cluster, and the radius of the 

kth hidden neuron σk is initialized by  

              
 

 

   

     (2-8) 

for which µq is the three nearest neighbors of µk.  The details of this method 

is described in the reference63.  In the SCRBFNs, the parameter λ in the 

linear averaging clustering algorithm was adjusted gradually to achieve the 

RRMSEC.   
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For the RBFN model, the number of hidden neurons h equals to the 

number of training classes.  For the BNN model, h is empirically proposed by 

    
                                         
                       

  (2-9) 

for which l denotes the number of variables of the data set, n denotes the 

number of classes of the training object, round denotes round to the closest 

integer.  Because two synthetic data sets were relatively simple in data size 

that have less variables and classes, h were fixed without further 

evaluations.  To demonstrate the numbers of hidden neurons was 

appropriate, independent tests were performed by evaluating BNNs on two 

chemical data sets with half h and double h hidden neurons so that the 

network performances can be observed by significantly decreasing or 

increasing the hidden layer size.   

Table 2-1 gives the average prediction accuracies of the BNN models 

of Italian olive oil and the training set of the PCB data set.  For the Italian 

olive oil data set, the BNN models with 7 and 14 hidden neurons did not 

significantly differ with respect to prediction accuracy.  The BNN models with 

four hidden neuron had too few hidden units to model the data sufficiently.  

For the PCB dataset, the effect of the three different numbers of hidden 

neurons on the prediction results was not significant.  The BNNs with extra 

hidden neurons will not overfit the data if trained to the same RRMSEC.  As a 

result, the heuristic equation of h was appropriate. 
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Table 2-1.  Average prediction accuracies of the BNN models with 95% 
confidence intervals of Italian olive oil and the training set of the PCB data 

set.  The BNN was trained by different number of hidden neurons with 30 
BLPs. 

Data set Number of hidden neurons Prediction accuracy 

Olive oil 7 95.5 ± 0.3 

 14 95.9 ± 0.4 
 4 87.7 ± 0.2 

PCB 13 99.9 ± 0.1 
 26 99.9 ± 0.1 

 7 99.9 ± 0.1 
 

To determine the learning rates and momenta of the BNNs and RBFNs, 

these networks were trained by three different sets of learning rates and 

momenta with BLPs.  Thirty bootstraps and two partitions were applied.  

Table 2-2 gives the prediction results by the Italian olive oil data set and the 

training set of the PCB data set.  The training parameters of the back-

propagation networks did not significantly affect the comparison of the 

modeling methods.  These sets of learning parameters were also trained by 

the two synthetic data sets and same results were obtained.  For each data 

set, there was no statistical difference of the BNN and RBFN prediction 

results at a 95% confidence interval by two-way ANOVA with interaction.  

Therefore, the learning rates and momenta were fixed respectively at 0.001 

and 0.5 for all further evaluations.   
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Table 2-2.  Average prediction accuracies of the BNN and RBFN models with 

95% confidence intervals of Italian olive oil and the PCB data sets.  The BNN 
and RBFN were trained by three different sets of learning rates and momenta 
with 30 BLPs. 

Data set Learning rate Momentum BNN RBFN 

Olive oil 0.001 0.5 95.5 ± 0.3 92.0 ± 0.7 
 1 × 10-4 0.5 95.4 ± 0.3 91.9 ± 0.7 

 0.001 0 95.6 ± 0.3 91.5 ± 0.6 
PCB 0.001 0.5 99.9 ± 0.1 92 ± 6 

 1 × 10-4 0.5 99.5 ± 0.2 91 ± 6 
 0.001 0 99.9 ± 0.1 94 ± 5 

 

 

The PLS-DA was implemented by the non-linear iterative partial least 

squares (NIPALS) algorithm64.  The number of latent variables was 

determined by minimizing the root mean squared prediction error in each 

test.  As a result, the PLS-DA was a biased reference method.  The numbers 

of latent variables in the PLS-DA models may vary between runs.  

All the SVMs used the Gaussian RBF as their kernel functions.  Two 

SVM parameters:  the cost c and the RBF kernel parameter γ must be 

adjusted before each prediction.  The grid search of parameter pairs (c, γ), in 

which c = 2i, i = -2, -1, 0, …, 20; γ = 2j, j = -10, -9, -8, …, 10, was 

performed to determine their value by achieving the best training accuracies.  

The defaults of the remaining parameters were used.  Because the result of 

the RF algorithm is not sensitive to the parameter selected, 1000 trees with 

the default setting of the number of variables to split on at each node is used 

in all evaluations. 
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Thirty bootstraps and two Latin partitions were applied to evaluate all 

the data sets in this study.  The results are reported as prediction accuracy, 

which is the percentage of correctly predicted objects.  Four data sets were 

tested, including the novel class data set, imbalanced data set, Italian olive 

oil data set, and the PCB data set.  The numbers of variables, objects, and 

classes of data sets are given in Table 2-3.  The modeling parameters of the 

ANNs, PLS-DA, SVM, and the RF method are given in Table 2-4.  Similar to 

the latent variables used in the PLS-DA models, the numbers of hidden 

neurons used to train SCRBFN and RBFCCN models may vary between 

different runs.  Therefore, only typical latent variables and numbers of 

hidden neurons are reported.  

 

Table 2-3.  The numbers of variables, objects, and classes of the data sets 
evaluated. 

 Novel class Imbalanced Olive oil PCB 

 Training Test Training Test 
BLP 

validation 

BLP 

validation 

External 

validation 
Variables 2 2 2 2 8 18a 18a 

Objects 400 100 610 10 478 131 154 
Classes 4 1 3 1 6 7 8b 

 

aThis number is the number of variables after the modulo preprocessing 

method. 

bThe PCB non-PCB compounds and PCB congeners that contain 1, 9 and 10 
chlorine atoms were considered as one class.  
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Table 2-4.  The modeling parameters of the ANNs, PLS-DA, SVM, and the RF 
method.  Hidden units are the number of hidden units in the trained network 
model.  Latent variables are the number of latent variables used in the PLS-

DA models.   The RBF kernel parameter is denoted by γ in the SVM method.  
Mtry is the number of variables to split on at each node in the RF method. 

 
Modeling 

parameters 

Novel 

class 
Imbalanced 

Olive 

oil 
PCB 

 RRMSEC threshold 0.02 0.2 0.4 0.1 

BNN Learning rate 0.001 0.001 0.001 0.001 
 Momentum 0.5 0.5 0.5 0.5 
 Hidden units 4 3 7 13 

RBFN Learning rate 0.001 0.001 0.001 0.001 
 Momentum 0.5 0.5 0.5 0.5 

 Hidden units 4 3 6 7 
SCRBFN Hidden units - 17 ~6 ~20-30 
RBFCCN Hidden units 4 3 ~6 ~8 

PLS-DA Latent variables - 2 ~8 ~16-18 
SVM Cost - 210 210 213 

 γ - 2-1 1 2-5 
RF Number of trees - 1000 1000 1000 
 Mtry - 1 2 4 
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2.3.2 Detection of a Novel Class Using a Synthetic Data Set 

This synthetic data set was designed to test the BNN, RBFN, and 

RBFCCN abilities to respond to a novel class during prediction.  The training 

set comprised two variables and four classes.  Each training class and the 

test objects had 100 objects.  Each class was normally distributed with 

means of (0.0, 0.0), (40.0, 0.0), (0.0, 40.0), and (40.0, 40.0), respectively, 

with a standard deviation of 1.5.  The test objects were distributed about a 

mean of (20.0, 20.0) with a standard deviation of 1.5.  Both networks were 

trained repeatedly 30 times on this data set to obtain statistically reliable 

results.   

2.3.3 Synthetic Imbalanced Data Set 

An imbalanced data set is a data set that the numbers of objects are 

not equal in each class.  This data set was designed to compare the 

performances when the data set is highly imbalanced.  This data set has two 

variables.  The training set comprised three normally distributed classes.  

Two classes are majority classes, which have 300 objects respectively 

distributed with means of (3.0, 0.0), (-3.0, 0.0) and with standard deviations 

of unity.  The other training class is the minority class that has only 10 

objects distributed about a mean of (0.0, 0.0) with a standard deviation of 

0.1.  The test class has the same distribution with the minority training class.  

The ANNs were trained to the RRMSEC thresholds of 0.2.  The network 

performances were evaluated by predicting the minority class in the training 
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set.  All modeling methods were reconstructed 30 times to obtain statistically 

reliable results.   

2.3.4 Italian Olive Oil Data Set 

Italian olive oil data were obtained from references65, 66.  This data set 

is a well-studied standard reference data set.  Different source regions of 

Italian olive oil were classified by the profile of eight different fatty acids.  To 

minimize the effect of class imbalance and obtain fair comparison results, 

objects from smaller classes that have less than 50 objects were removed 

from the evaluation data.  The number of classes was six.  Each variable in 

the training sets was scaled between 0 and 1.  The variables of the test sets 

in each Latin partition were scaled using the range acquired from the training 

set to obtain unbiased results.  The RRMSEC threshold for training was 0.4.   

2.3.5 PCB Data Set 

In the PCB data set, PCB congeners with different numbers of chlorine 

atoms were classified by their electron ionization mass spectra.54, 58  The 

mass spectra were obtained from reference67.  These spectra were split into 

the training set and the external validation set.  The PCB congeners in the 

training set contained 2 to 8 chlorine atoms.  Most of the PCB congeners 

have duplicate spectra.  Among these duplicate spectra, the spectra with the 

lowest record numbers were selected for training, because these spectra are 

of the highest quality in the reference library.  The PCB congeners in the 

external validation set contained 0 to 10 chlorine atoms.  The external 

validation set was built from the remaining replicate spectra.  This data set 
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comprised of PCB congeners that have less than 10 objects, and non-PCB 

compounds.  The non-PCB compounds and PCB congeners that contain 1, 9 

and 10 chlorine atoms were uniquely different from any of the training 

classes.  The external validation set contains 45 unique spectra.   

Each spectrum was mean-centered and normalized to unit vector 

length.  The spectra were transformed to a unit mass-to-charge ratio scale 

that ranged from 50 to 550 Th and any peaks outside this range were 

excluded.  Because the raw data were underdetermined, i.e., there were 

more variables than objects, the dimensions of PCB data set were further 

reduced by using the modulo preprocessing method68, 69.  This compression 

method is especially effective for mass spectral data.  Based on the previous 

study54 by the principal component analysis (PCA), the divisor value of 18 

was chosen.  The compressed spectra were centered about their mean and 

normalized to unit vector length.  The training RRMSEC thresholds were 0.1.   

2.4 Results and Discussion 

2.4.1 Detection of a Novel Class Using a Synthetic Data Set 

The bivariate plot of the synthetic data set is given in Figure 2-7.  The 

response surface of the BNN is in Figure 2-8.  RBFN and RBFCCN networks 

have similar response surfaces, given in Figure 2-9.  For each sampling point, 

the maximum of the output neurons is plotted.  Because of the different 

shapes and properties of the sigmoid function and the Gaussian function, 

these networks have unique response surfaces.  The BNN model gave an 

open, sigmoidal shaped response surface that divides the output space into 
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regions that correspond to the four classes.  When the BNN model 

extrapolates outside the region defined by the data objects, the response can 

be larger than unity, which is occurs when the output units are linear.  

Alternatively, the RBFCCN and RBFN had a Gaussian shaped response 

surface that has a finite span of the output space, which is closed and 

compact.  The maximum response of RBFCCN is unity.  

 

 
Figure 2-7.  Two-variable plot of the synthetic novel class data set.  A, B, C, 

and D denote the training sets, and E denotes the test set.  The 95% 
confidence intervals were calculated around each training class.  
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Figure 2-8.  The BNN response surface of the synthetic novel class data set.  
For each sampling point, the maximum of the output neurons is plotted. 

 

 
Figure 2-9.  The RBFN and RBFCCN response surface of the synthetic novel 
class data set.  For each sampling point, the maximum of the output neurons 

is plotted. 
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The test set was designed to be uniquely different from the data in the 

training set.  The ideal prediction results of these test objects should be no 

excitation from any of the output neurons, i.e., the outputs are (0, 0, 0, 0).  

Figure 2-10 gives different outputs of the test set with respect to the 

different models.  The outputs of RBFCCN and RBFN were the same for all 

repeats.  The trained BNN models have different weights, hence different 

response functions each time they are trained.  Because in most cases one 

output element was larger than 0.5, the BNN models misclassified most of 

the test objects as one of the training classes.  The RBFCCN and RBFN 

models correctly identified all test objects as unknown.  Compared to the 

RBFN models, the prediction of RBFCCN models were closer to the ideal 

solution, because the outputs from the RBFN models spread more widely 

than the RBFCCN models.   
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Figure 2-10.  Average prediction outputs from the test set.  BNN, RBFCCN 
and RBFN models were obtained by training each network 30 times.  The 

95% confidence intervals are indicated as the thin lines around the BNN 
outputs.  Different colors represent excitations from different output 

neurons. 
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2.4.2 Synthetic Imbalanced Data Set  

The bivariate plot of the synthetic imbalanced data set is given in 

Figure 2-11.  It can be observed that objects in two majority classes have 

larger spans than the minority classes in the input space.  The predictions of 

small classes by different ANNs are given in Table 2-5.  The prediction of the 

SCRBFN and RBFCCN models are better than the prediction results of the 

BNN and PLS-DA models.  The RBFCCN, SVM, and RF methods have better 

predictions among all seven methods.  The RBFN models have slightly worse 

prediction results than the three methods above.  The trained models of the 

ANNs will have a relatively loose fits to the training set by setting the training 

error threshold to 0.2. 

The BNN and PLS-DA models trend to first model the majority classes 

in the prediction class.  As a result, predictions of minority classes are poor. 
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Figure 2-11.  Two-variable plot of the synthetic imbalanced data set.  A (red), 

B, and C denote the training classes.  D (green) denotes test class.  The 95% 
confidence intervals were calculated around each training class. 

 

 

2.4.3 Italian Olive Oil Data Set 

The principal component scores of the Italian olive oil data set are 

given in Figure 2-12.  From this plot, it can be seen that objects in the same 

classes form clusters, but the confidence intervals are overlapped with each 

other.  The prediction accuracies of different ANN models are given in Table 

2-6.  The SVM and RF models have the highest prediction accuracy of 97.9%.  

The results calculated by the BNN and RBFCCN models are better than the 
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Table 2-5.  Average numbers of correctly predicted objects with 95% 
confidence intervals from class D in an imbalanced data set by different 

models.  All modeling methods were reconstructed 30 times. 

 Total BNN SCRBFN RBFN RBFCCN 
PLS-
DA 

SVM RF 

Correctly 

predicted 
10 0 7 9.1 ± 0.1 10 0 10 10 
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results calculated by the SCRBFN and RBFN models.  The PLS-DA models 

yield a lower average prediction accuracy of 89.8%.  A two-way ANOVA with 

interaction at a significance level of 0.05 was performed to analyze the 

sources of variation and prediction accuracies.  The results of ANOVA are 

given in Table 2-7.  Different modeling methods, different source regions and 

the interaction between the classifiers show significant differences in 

prediction.  The ANOVA results indicate that the methods evaluated have 

different performances.  The SVM and RF perform best among the methods 

evaluated.  The RBFCCN and BNN have statistically better performance in 

predicting this data set compared to PLS-DA, RBFN, and SCRBFN.   

 

 
Figure 2-12.  A principal component score plot for the olive oil data set.  
Each axis is labeled with the percent total variance and the absolute 

eigenvalue.  Each observation of the data set was scaled to [0, 1].  The 95% 
confidence intervals appear as an ellipse around each class.  The sources 
regions are:  (A) Calabria; (B) South Apulia; (C) Inland Sardinia; (D) East 

Liguria; (E) West Liguria; (F) Umbria. 
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Table 2-6.  Average numbers of correctly predicted objects with 95% 
confidence intervals of Italian olive oil data set by different modeling 
methods with 30 BLPs. 

Source 

regions 
Total BNN SCRBFN RBFN RBFCCN 

Calabria 56 50.9 ± 0.6 50.3 ± 0.5 52.5 ± 0.6 52.7 ± 0.2 

South Apulia 206 
203.8 ± 

0.5 
199.5 ± 

0.6 
203.5 ± 

0.4 
200.1 ± 

0.3 

Inland Sardinia 65 65 58.3 ± 0.3 63.4 ± 0.4 64.2 ± 0.2 
East Liguria 50 38 ± 1 37.4 ± 0.7 24.4 ± 3.6 35.4 ± 0.7 
West Liguria 50 48.2 ± 0.3 43.3 ± 0.5 47.6 ± 0.8 48.5 ± 0.3 

Umbria 51 50.4 ± 0.4 40.4 ± 0.4 48.7 ± 0.8 50.9 ± 0.1 

Prediction 
accuracy (%) 

 95.5 ± 0.3 89.8 ± 0.3 92.0 ± 0.7 94.5 ± 0.2 

Source 
regions 

Total PLS-DA SVM RF 
 

Calabria 56 40.9 ± 0.5  53.6 ± 0.4 53.2 ± 0.4 
 

South Apulia 206 
202.4 ± 

0.4 
202.5 ± 

0.6 
203.5 ± 

0.7  

Inland Sardinia 65 63.7 ± 0.4 65 65 
 

East Liguria 50 27 ± 1 47.3 ± 0.4 46.4 ± 0.4 
 

West Liguria 50 48.4 ± 0.3 48.9 ± 0.4 49.0 ± 0.2 
 

Umbria 51 47.2 ± 0.6 50.9 ± 0.1 50.9 ± 0.1 
 

Prediction 

accuracy (%) 
 89.8 ± 0.3 97.9 ± 0.2 97.9 ± 0.2 

 
 

 

Table 2-7.  ANOVA table of the Italian olive oil data set by different source 
regions and modeling methods.  Fcrit is the critical value. 

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square 
F Fcrit 

Source regions 4.44 5 0.89 1919.9 2.22 

Modeling methods 0.53 6 8.79 × 10-2 189.8 2.11 

Interaction 2.03 30 6.78 × 10-2 146.5 1.47 

Within 0.56 1218 4.63 × 10-4 
  

Total 1.49 1259 
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2.4.4 PCB Data Set 

The principal component scores of the PCB data are given in Figure 2-

13.  The principal components and mean were calculated only from the 

training set. The training set was labeled with upper case letters.  The 

external validation set was projected onto the first two principal components, 

labeled with underlined lower case letters.  The external validation scores 

were more dispersed than the training set.  A part of the external validation 

scores are outside of the 95% confidence interval of their respective class 

because of their low quality.  The principal component scores of non-PCB 

compounds and PCB congeners that contain 1, 9 and 10 chlorine atoms are 

uniquely different from the training set.  The BLP internal validation for the 

training set alone was first performed.  The prediction accuracies of internal 

validations are given in Table 2-8.  The average prediction accuracies of the 

SVM, RF, RBFCCN, and BNN models are better than the average prediction 

accuracy of the SCRBFN, RBFN, and PLS-DA model.  
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Figure 2-13.  A principal component score plot for the PCB data set.  The 
letters with upper case represents the training set.  The underlined letters 

with lower case represents the external validation set.  The external 
validation set was projected onto the first two principal components from 

the training set.  Each axis is labeled with the percent total variance and the 
absolute eigenvalue from the training set.  The 95% confidence intervals 
were calculated and given as an ellipse around each class from the training 

set.  The PCB congeners are:  (A) 2; (B) 3; (C) 4; (D) 5; (E) 6; (F) 7; (G) 8; 
(H) 9; (i) 10; (j) 1; (k) 0, the numbers denotes the number of chlorine 

atoms in the PCB congeners. 
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Table 2-8.  Average numbers of correctly predicted spectra with 95% 
confidence intervals of PCB data set by different modeling methods with 30 
BLPs. 

Cl number Total BNN SCRBFN RBFN RBFCCN 

2 10 10   8.3 ± 0.5   8.0 ± 0.8 10 

3 12 12 11.1 ± 0.8 11.0 ± 0.7 12 

4 28 28 26 ± 2 26 ± 2 28 

5 29 28.9 ± 0.1 27 ± 2 27 ± 2 28 

6 24 24 23.3 ± 0.9 23 ± 1 24 

7 18 18 17 ± 1 17 ± 1 18 

8 10 10   9.0 ± 0.7   9.4 ± 0.6 10 

Prediction 
accuracy (%) 

 99.9 ± 0.1 93 ± 5 92 ± 6 99.2 

Cl number Total PLS-DA SVM RF 
 

2 10   9.9 ± 0.1 10 10 
 

3 12 11.9 ± 0.1 12 11.9 ± 0.1 
 

4 28 27.5 ± 0.3 28 28 
 

5 29 26.2 ± 0.5 29 29 
 

6 24 22.0 ± 0.4 24 24 
 

7 18 14.8 ± 0.6 18 18 
 

8 10 10.0 ± 0.1 10 10 
 

Prediction 

accuracy (%) 
 93.3 ± 0.6 100 99.9 ± 0.1 
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After internal validation, the entire training set was trained and the 

external validation set was predicted repeatedly 30 times.  The prediction 

accuracies of external validation set are given in Table 2-9.  The prediction 

accuracy without novel classes (i.e., classes that were not used during 

training) is the prediction accuracy calculated by the external validation set 

excluding the non-PCB congeners that contain 1, 9 and 10 chlorine atoms.  

The total prediction accuracy is the prediction accuracy calculated by the 

complete external validation set.  Because the prediction set contained low 

quality spectra that make the data set more difficult to classify, the result is 

generally worse than BLP validation of the training set.  The SVM, BNN, and 

RF method obtained better results than other methods.  The RBFCCN models 

yielded average prediction accuracy of 81.7% without the novel classes, 

which was ranked fifth among seven methods.  The RBFCCN and SCRBFN 

models respectively indentified 95.6% and 100% of the unknown objects.  

The BNN and RBFN models were capable of classifying the test objects, but 

they can hardly identify the unknown objects.  This result is consistent with 

the result from the synthetic novel class data set.  As a result, the BNN and 

PLS models yielded total prediction accuracies less than 65%. 
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Table 2-9.  Average numbers of correctly predicted spectra with 95% 
confidence intervals of PCB external validation data set.  All modeling 

methods were reconstructed 30 times.  The prediction accuracy without 
unknown is the prediction accuracy calculated by the external validation set 
excluding the non-PCB compounds and PCB congeners that contain 0, 1, 9 

and 10 chlorine atoms.  The total prediction accuracy is the prediction 
accuracy calculated by the complete external validation set. 

Cl number Total BNN SCRBFN RBFN RBFCCN 

2 13 13 11 12.1 ± 0.1 12 

3 20 17.5 ± 0.4 17 16.6 ± 0.2 16 

4 28 26.8 ± 0.4 19 24.9 ± 0.2 27 

5 21 17.2 ± 0.4 20 15.5 ± 0.4 16 

6 13 11.3 ± 0.3 10 11.0 ± 0.5 7 

7 7  6.7 ± 0.2 5   5.0 ± 0.1 6 

8 7 6 3   4.8 ± 0.4 5 

0,1,9,10 45 0.3 ± 0.4 45 23.5 ± 8.3 43 

Prediction 

accuracy 
without 

unknown (%) 

 90.4 ± 0.6 78.0 82.4 ± 0.5 81.7 

Total 

prediction 
accuracy (%) 

 64.0 ± 0.5 84.4 74 ± 6 85.7 

 

Cl number Total PLS-DA SVM RF 
 

2 13 10 13 13 
 

3 20 14 19 18.6 ± 0.2 
 

4 28 28 28 26.3 ± 0.2 
 

5 21 11 17 15.0 ± 0.1 
 

6 13 8 11 11.1 ± 0.2 
 

7 7 7 7 5 
 

8 7 6 6 6 
 

0,1,9,10 45 0 - - 
 

Prediction 

accuracy 
without 

unknown (%) 

 77.1 92.7 87.2 ± 0.4 
 

Total 
prediction 

accuracy (%) 

 54.5 - - 
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2.5 Conclusions 

The proposed RBFCCN network combines the concepts of RBFN and 

CCN.  During the training of RBF hidden units, an RBFCCN applies both the 

initialization technique similar to that of the SCRBFN and the optimization 

technique of CCNs.  The cascade correlation algorithm furnishes the 

incremental learning ability of the RBFCCN.  The incremental learning ability 

ensures the RBFCCN automatically builds its network topology during 

training.  Before training RBFCCNs, no prior information about network 

topology is required.  As a result, training RBFCCNs are more convenient 

than training BNNs.  Another advantage of cascade-correlated structure is 

that it avoids the moving target problem and converges more rapidly than 

the BNNs.   

RBFCCNs, BNNs, RBFNs, SCRBFNs, PLS-DAs, SVMs and RFs were 

tested with four data sets.  The test results were obtained with statistical 

measurements of confidence intervals.  The SVM and RF methods proved 

their excellence over the neural network approaches on these classification 

problems.  All three neural networks were generally yielded better 

performance than PLS-DA in prediction.  Compared with the RBFN and 

SCRBFN models in four test data sets, the RBFCCN models generally yielded 

better prediction accuracies.  The RBF transfer function applied in RBFCCNs 

makes RBFCCNs a reliable approach for novel class evaluation.  RBFCCNs 

generally yielded better novel class evaluation ability compared with RBFNs, 

BNNs and PLS-DA by setting an output threshold 0.5.  The RBFCCN is also 
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capable of modeling imbalanced data.  The RBFCCN was statistically shown 

to be a robust and effective classification algorithm for chemometrics, 

especially in novel class evaluation and outlier detection.   

Future work will involve in developing novel training methods to train 

the networks more rapidly.  Investigations of different optimization 

algorithms such as the genetic algorithms and particle swarm optimizations 

to train RBFCCNs are necessary.  In addition, it is important to compare 

RBFCCNs with other methods for outlier or novel class evaluation, such as 

one-class SVM in chemical data sets. 
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Chapter 3 A Discriminant Based Charge Deconvolution Analysis 

Pipeline for Protein Profiling of Whole Cell Extracts Using Liquid 

Chromatography–Electrospray Ionization-Quadrupole Time-of-Flight 

Mass Spectrometry 

Adapted with permission from Lu, W., Callahan, J.H., Fry, F.S., Andrzejewski, 

D., Musser, S.M., and Harrington, P.B.; Talanta 2011, 84(4), 1180-1187. 

Copyright 2011 Elsevier 

3.1 Introduction 

Electrospray ionization-mass spectrometry (ESI-MS) methods such as 

liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-

MS) and capillary electrophoresis–electrospray ionization-mass spectrometry 

(CE–ESI-MS)70 have been applied to the analysis of intact proteins in recent 

years.  CE–ESI-MS has been applied to the diagnosis of cancer71, to detect 

glycoproteins72 and ribosomal proteins of Escherichia coli73, etc.  Protein 

expression profiling analyses on bacteria whole cell extracts without 

proteolytic digestion by liquid chromatography–electrospray ionization-

quadrupole time-of-flight mass spectrometry (LC–ESI-QTOF MS) have been 

reported.74-77  A new analysis pipeline to process the LC–ESI-MS data for 

whole cell extracts is proposed.  LC–ESI-MS spectra of biological samples 

often have hundreds of component peaks, and some peaks may have a low 

signal-to-noise ratio (SNR).  The proposed analysis pipeline applies data 

processing methods including wavelet denoising, baseline removal, peak 

binning, peak centroiding, and multivariate classification to extract proteomic 
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information.  The analysis can be automated and the results are easier to 

reproduce than manual spectra inspection.74, 78-80 

For biomolecules such as proteins, ESI-MS often produces multiply 

charged spectra.  This multiplicity of charge states gives an envelope of 

peaks in a spectrum for each component.  The charge state deconvolution 

method, also known as deconvolution, is a method that determines the 

molecular mass of a biomolecule from multiply charged ESI-MS peaks.35  

Deconvolution transforms a multiply charged ESI-MS spectrum into a zero-

charge or singly charged spectrum.  The zero-charge spectrum is a spectrum 

that each component data point has an abscissa of its molecular mass.  

Similarly, in the singly charged spectrum, each component data point has an 

abscissa that is the mass-to-charge ratio of its singly charged ion.   

All multiply charged spectra were deconvolved into zero-charge 

spectra in this work.  Many deconvolution methods have been proposed, such 

as thorough high resolution analysis of spectra by Horn (THRASH)44, 

molecular weight determination (MoWeD)41, maximum entropy 

deconvolution37, multiplicative correlation algorithm (MCA)40, Zscore42, etc.  

Generally, different deconvolution algorithms are designed for low-resolution 

and high-resolution ESI-MS data, based on whether the isotopic peaks are 

resolved.42  MoWeD, MCA, and maximum entropy deconvolution were 

suitable for low-resolution mass spectrometry such as quadrupole time-of-

flight mass spectrometry (QTOF-MS), which has unresolved isotopic peaks, 

particularly for high-charge states and high molecular weight proteins.  
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THRASH was designed for high-resolution mass spectrometry (resolved 

isotopic peaks) such as Fourier transform ion cyclotron resonance–mass 

spectrometry (FTICR-MS).  Zscore has different deconvolution routines for 

each resolution.  The deconvolution method was originally designed to 

deconvolve ESI-MS spectra.  To deconvolve a two-way LC–ESI-MS spectrum, 

the deconvolution should be performed on the binned ESI-MS scan in a given 

retention time window.   

The deconvolved spectra can be used as input data to multivariate 

pattern classifiers, and the discriminant rules with candidate biomarker 

information can be obtained.  In this work, this general approach was 

performed by the MoWeD deconvolution algorithm and the fuzzy rule-

building expert system (FuRES)31 as the pattern classifier.  This general 

analysis approach is named MoWeD–FuRES.  The MoWeD deconvolution 

algorithm was chosen because this algorithm is relatively efficient, simple, 

and is suitable for the deconvolution of low-resolution mass spectra.  FuRES 

combines the advantage of the fuzzy logic data analysis with the decision 

tree algorithm.  FuRES has been successfully applied in matrix-assisted laser 

desorption/ionization-mass spectrometry (MALDI-MS) data analysis such as 

mouse age identification81, premature or at-term deliveries classifications of 

amniotic fluids82.  FuRES is also capable of two-way data analysis in 

applications such as classification of jet fuels33 and ignitable liquids53. 

In general analysis approaches such as MoWeD–FuRES, applying 

deconvolution and the data processing methods on an individual mass 
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spectrum is time-consuming, especially when there are many samples and 

the noise threshold in the deconvolution method is low.  A novel hyphenated 

approach named FuRES–MoWeD is proposed in the analysis pipeline, which 

applies charge deconvolution algorithm to multivariate pattern recognition 

rules.  Because FuRES was performed prior to the deconvolution, only peaks 

correlated to each class are deconvolved.  As a result, the FuRES–MoWeD 

approach is more robust in terms of the classification ability than MoWeD–

FuRES with respect to baseline drift and noise.  In addition, this approach is 

efficient because the deconvolution is performed only once for a set LC–ESI-

MS of spectra.  FuRES–MoWeD is compared to the MoWeD–FuRES approach 

on a synthetic data set and a Salmonella enterica strain identification data 

set. 

3.2 Theory  

The FuRES–MoWeD analysis approach focuses on effectively obtaining 

molecular component differences between different classes of samples.  

Figure 3-1 gives the flowcharts of FuRES–MoWeD and MoWeD–FuRES 

approaches for comparison.  Both approaches combine the pattern 

recognition methods with the charge deconvolution.  In MoWeD–FuRES 

approach, charge deconvolution is applied to every ESI-MS scan.  When the 

chromatographic separation time is long, the deconvolution will be 

computationally demanding.  As a result, the deconvolution should be 

performed after binning the spectra in a given retention time interval. 
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Figure 3-1.  Diagram of key steps in a general LC–ESI-MS analysis pipeline 

(MoWeD–FuRES) and the analysis pipeline proposed in this work (FuRES–
MoWeD). 
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In the proposed FuRES–MoWeD approach, FuRES classification is 

applied to the LC–ESI-MS spectra prior to charge deconvolution.  The 

resultant FuRES discriminant comprises a two-way image of retention time 

and mass-to-charge ratio.  The spectrum of each retention time in the 

discriminant is then deconvolved from the FuRES discriminant image.  

Because the discriminant image contains fewer data points than a complete 

set of sample data, FuRES–MoWeD approach reduces the analysis time 

compared to MoWeD–FuRES approach.  In addition, because the 

discriminants only retain relevant information for the classification, there is 

less noise in the discriminants than the sample spectra.  Therefore, the 

analysis result is less affected by noise in the spectra than MoWeD–FuRES 

approach. 

Compared to a LC–ESI-MS spectrum, a FuRES discrimination rule is 

different because the discrimination rule contains both positive and negative 

peaks that respectively represent the relative importance for two classes.  To 

extract the zero-charge spectrum from the FuRES discrimination rule, first 

the deconvolution was performed on the absolute value of the discrimination 

rule spectrum.  Afterwards, the sign of each peak of the zero-charge 

spectrum from the deconvolved rule was determined by counting and 

comparing the number of positive and negative peaks in the charge state 

pattern calculated from the MoWeD algorithm (step 3).  If the number of 

positive rule peaks in the pattern is larger than the negative peaks, the 

deconvolved rule peak is positive, and vice versa.  The signs of the peaks in 
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the zero-charge spectrum indicate the corresponding class.  Positive peaks 

are selective for spectra that are partitioned to the right branch of the 

classification tree by the discrimination rule, and contrarily, the negative 

peaks are selective to the left branch of the classification tree. 

3.3 Experimental Section 

3.3.1 Synthetic Data Set 

A synthetic data set with two classes was generated by methods 

adapted from the reference83.  Class A comprises 30 synthetic ESI-MS 

spectra of horse heart myoglobin with baseline noise.  The isotopic 

distribution of this protein was calculated by the polynomial algorithms84 with 

a permutation threshold of 0.01.  The charge distributions were calculated by 

the binomial distribution, assuming each basic amino acid in the protein has 

a probability of 0.5 to receive a proton.  Each peak was a Gaussian peak with 

a full width at half maximum (FWHM) resolution of 10 000.  The pure signal 

was normalized to a maximum intensity of 10.  It is assumed that in LC–ESI-

MS spectra of cell extracts, many chemical impurities irrelevant to 

identification will cause a bell-shaped noise in the mass spectrum.  The noise 

model is further validated by Section 4.2.  The chemical noise was simulated 

by a Gaussian function with amplitude of 30, a center of 0.4 and a standard 

deviation of 0.1 at the 0–1 abscissa.  According to the literature83, Poisson 

distributed shot noise was added.  Each spectrum was sampled in a mass-to-

charge ratio range of 550–2000 Th with an increment of 0.1 Th.  Class B 

comprises 30 spectra containing baseline noise only.  All spectra were 
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normalized to unit length. The data set was stored as a 60 × 14 501 matrix, 

for which the spectra were rows. 

3.3.2 Bacterium Identification Data Set 

Two strains, designated A1 and A19, of Salmonella enterica reference 

set A (SAR A)85 were analyzed.  Strains A1 and A19 are classified as part of 

the typhimurium serovar.  All bacteria were grown 24 h on tryptic soy agar 

plates (Difco Laboratories, Sparks, MD).  The cells were first vortexed to form 

a slurry of cells in 70% ethanol.  Two hundred microliters of the slurry was 

collected and centrifuged to a pellet, and the 70% ethanol was removed.  

Proteins were extracted from bacterial cells with a 50:45:5 solution of 

acetonitrile (J.T. Baker, Phillipsburg, NJ), HPLC-grade water (J.T. Baker), and 

formic acid (Sigma–Aldrich, St. Louis, MO).  The cells were mixed with 1 mL 

of the extraction solution and placed in a Barocycler extraction tube 

(Pressure Biosciences Inc., Boston, MA).  In the Barocycler, the sample is 

exposed to cycles of high (35 kpsi) and low (0 kpsi) pressure.  Each pressure 

is maintained for 25 s.  A series of 10 cycles was performed to extract the 

proteins.  The cellular debris was then centrifuged to a pellet, and the clear 

solution extract was removed. 

Separations of protein extracts were performed on an Agilent 1100 

HPLC system (Agilent Technologies, Palo Alto, CA) installed with two 150 mm 

× 2.1 mm Prosphere P-HR (Alltech Associates, Deerfield, IL) columns.  The 

columns were sequentially connected to improve the chromatographic 

resolution.  Mobile phase A and B was respectively 5% acetic acid in water, 
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and 5% acetic acid in acetonitrile.  After sample injection, the solvent 

composition was held constant at 10% B for 5 min, linearly increased to 50% 

B between 5 and 70 min, followed by a linear increase to 90% B at between 

70 and 80 min.  The solvent composition was then linearly changed back to 

10% B by 110 min.  The flow was split after the column with approximately 

25% of the flow going to the mass spectrometer while the remaining eluent 

was diverted to an HP 1100 fraction collector.   

Mass spectra were acquired on a Waters Q-Tof Premier mass 

spectrometer (Waters, Milford, MA) over a mass-to-charge ratio range of 

550–2000 Th using electrospray ionization in the positive ion mode.  The 

scan time was 2.0 s with a 0.1 s interscan delay.  The spectra were collected 

in continuum mode.  Five replicates were obtained for each bacterial strain. 

The LC–ESI-MS spectra of Salmonella enterica were converted into 

ASCII text files using the Databridge program with MassLynx version 4.0 

(Waters, Milford, MA).  The text files were then imported into MATLAB.  The 

original spectra were binned by a mass-to-charge ratio increment of 0.1 Th 

and a retention time increment of 0.1 min.  The mass-to-charge ratio cutoff 

range was 550–2000 Th and the run time cutoff was 85 min.  The MS scans 

were stored as rows in the matrix.  Each binned spectrum was stored as an 

851 × 14 501 matrix. 

3.3.3 Data Processing 

All calculations were performed on a personal computer equipped with 

a Core i7 940 CPU and 12 GB memory running Microsoft Windows XP x64 
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SP2 operating system.  All programs were in-house scripts written in MATLAB 

version 7.11 (The MathWorks Inc., Natick, MA).  The MATLAB code used in 

this study are available upon request from the corresponding author. 

In MoWeD–FuRES approach, each ESI-MS scan was denoised by a 

wavelet denoising method, in which the nonlinear discrete wavelet transform 

is applied.  In FuRES–MoWeD approach, the same denoising method was 

applied to the FuRES discrimination rule.  Wavelet denoising was performed 

by using the ThreshWave function in the WaveLab toolbox for MATLAB 

version 8.5.86  The wavelet filter used was the Symmlet level 4.  The 

threshold was determined by the visually calibrated adaptive smoothing 

(VisuShrink) method87.  Soft thresholding technique was applied on the 

wavelet coefficients.  After applying wavelet denoising, the signal and noise 

components were separated. The wavelet based noise estimation spectra 

were then used to calculate the SNR for each peak.   

The component peaks were identified by finding local maxima in the 

spectrum with SNRs larger than 3.  The range of the component peak is 

defined by a starting point and an ending point.  The starting point and 

ending point are two local minima of the spectrum, which are nearest to the 

peak maxima on both sides.  When some peaks with low intensities appeared 

near a large peak and none of these neighboring peaks were more than three 

times more intensive than the large peak, these small peaks were considered 

to be the post-translational modification of this protein.  Therefore, the same 

charge states were assigned to these small peaks.  
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In MoWeD–FuRES approach, the spectra were baseline corrected by 

using an iterative 10th order polynomial fitting after wavelet denoising.  The 

iteration stopped when the number of the fitted points was less than 10% of 

the number of points in the spectrum or the median of the absolute value of 

the residuals converged.   

The MoWeD charge deconvolution method was applied on the 

processed spectra and the FuRES discrimination rule for MoWeD–FuRES and 

FuRES–MoWeD approaches, respectively.  The maximum possible molecular 

mass was 50 kDa.  After deconvolution, the mass spectra were transformed 

to 550–50 000 Da with a molecular mass increment of 1 Da.  For the 

bacterium identification data set, each deconvolved two-way spectrum was 

stored as an 851 × 49 451 matrix.   

Each two-way object in the bacterium identification data set was 

unfolded to a vector that respectively had 42 082 801 and 12 340 351 points 

for the MoWeD–FuRES and FuRES–MoWeD approach.  All vectors were 

normalized to unit length.  All unfolded vectors were stored as rows in a 10 × 

42 082 801 sparse matrix and a 10 × 12 340 351 sparse matrix for MoWeD–

FuRES and FuRES–MoWeD approach, respectively.  The principal component 

transformation (PCT) was applied as a lossless compression method before 

FuRES modeling.  After PCT compression, the number of variables equals to 

the number of objects in the training set.  Therefore, the computation time 

and memory requirement of the FuRES classification were greatly reduced.   
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3.4 Results and Discussion 

3.4.1 Synthetic Data Set 

The examples of generated synthetic ESI-MS spectra were 

demonstrated in Figure 3-3.  The peak of horse heart myoglobin could not be 

observed in class A because of relatively low concentrations compared with 

the baseline noise.  Figure 3-3 demonstrates the input vectors for MoWeD 

deconvolution and the FuRES discrimination rules from the synthetic data set 

by two processing methods.  Because the pure signal is three times weaker 

than the baseline, the MoWeD–FuRES could not identify the protein because 

each protein feature was not extracted from noise when deconvolution was 

applied on the individual unprocessed spectra.  The protein signals were 

identified as high frequency noise and deconvolved to a high molecular mass 

domain.  However, the FuRES–MoWeD could generate the discrimination 

rules correctly because the protein features were correctly extracted from the 

whole set of spectra by FuRES discrimination rules, which made it possible to 

distinguish between the protein peaks and noise. 
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Figure 3-2.  Examples of synthetic horse heart myoglobin spectra (Class A 

and Class B) and the pure spectrum. 
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Figure 3-3.  The mass spectra and the discrimination rules of the synthetic 
data set processed by MoWeD–FuRES (top panels) and FuRES–MoWeD 

(bottom panels) approach.  (A) An example of the denoised and baseline 
corrected spectrum as the input data for deconvolution, (B) the final MoWeD–
FuRES discriminant rule, (C) the denoised and baseline corrected FuRES 

discriminant rule as the input data for deconvolution, (D) the final FuRES–
MoWeD discriminant rule. 
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3.4.2 Bacterium Identification Data Set 

The example LC–ESI-MS spectra of two strains of Salmonella enterica 

are given in Figure 3-5.  The total ion chromatogram and total mass profile 

are also shown.  The two-way spectra are transformed and plotted in 

logarithmic scale.  From this figure, it is concluded that the two-way spectra 

of the two bacteria strains are similar.  In addition, the noise components 

form a bell shape in the middle mass-to-charge ratio range and the retention 

time from 20 to 80 min. This phenomenon is also observed from the total ion 

chromatogram and the total mass profile.  The characteristics of noise in the 

experimental data were consistent with the noise simulated in the previous 

data set.  The deconvolution results by MoWeD for a single spectrum of 

Salmonella enterica strains A1 and A19 are given in Figure 3-5.  The profiles 

generated by MoWeD were consistent with the spectra calculated by a 

commercial software package, ProTrawler 6 (BioAnalyte, Cambridge, MA).  

The comparison indicates the MoWeD deconvolution is a suitable method in 

this analysis pipeline for the bacterium identification data set.  Because the 

deconvolution method used in ProTrawler is not publicly available, further 

comparisons were not performed. 
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Figure 3-4.  Two-way LC–ESI-MS data objects of Salmonella enterica strains 

A1 and A19.  The intensity in the two-way image is plotted in logarithmic 
scale to compare the amount of noise.  The total ion chromatogram and total 

mass spectra are besides the two-way image. 
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Figure 3-5.  Comparison of the deconvolved protein profiles by MoWeD and 
the ProTrawler on a representative spectrum of Salmonella enterica strains 

A1 (top panel) and A19 (bottom panel). 
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When dealing with a two-way LC–ESI-MS data set, the data processing 

speed will be a more important factor compared to an ESI-MS data set, 

because the size of the data set is usually hundreds to thousands times 

larger.  The effectiveness of the proposed FuRES–MoWeD approach is 

apparent in Table 3-1 by comparing run times and the total number of 

deconvolution routine evaluations.  The actual computation time will vary by 

many factors such as the software and hardware configuration of computer 

system, the choice of programming language, etc.  However, a general 

comparison of algorithmic efficiency between two approaches can be made 

by program profiling.  The run time was measured by the cputime function in 

MATLAB.  Because the deconvolution calculation was performed only on 

FuRES discriminant, fewer deconvolution routine evaluations are needed. 

Moreover, the baseline correction routine is not performed.  The FuRES–

MoWeD approach required less time than the MoWeD–FuRES to perform.   

 

Table 3-1.  Comparisons on run time and total number of deconvolution 
routine evaluations of bacterium identification data set. 

 MoWeD–FuRES FuRES–MoWeD 

Total deconvolution routine 
evaluations 

8510 851 

Run time for deconvolution 
routine  (min:s) 

12:49 1:46 

Total run time (min:s) 25:18 3:08 
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The FuRES discrimination rules calculated by FuRES–MoWeD and 

MoWeD–FuRES approaches are given in Figures 3-6 and 3-7.  In Figure 3-6, 

the discrimination rules were summed along the retention time dimension. 

The positive value indicates the corresponding component has 

characteristically high concentration in class A1 over A19, and vice versa.  

Similar summed spectra were obtained, which indicates the results of the two 

approaches are consistent in terms of detecting major proteomic features.  

The protein signals in both low and high molecular weight range can be 

observed sufficiently, which means the proposed method improves the 

detectability of high MW proteins when incorporated with FuRES.  LC–ESI-MS 

provides the molecular weight and retention time of the proteins, which is 

insufficient to identify proteins due to various effects such as post-

translational modification, mass errors and isotopic distribution.  The five 

most abundant peaks and the corresponding tentative protein search results 

by SwissProt/TrEMBL database88, 89 are listed in Table 3-2.  After searching 

the database with organism keyword ―Salmonella typhimurium‖, a list that 

contains 15 744 protein entries were exported.  The theoretical average 

molecular weights were then calculated by Compute pI/Mw, which is a part of 

ExPASy proteomics tools90.  The search result was a protein entry that has 

the least mass difference between the observed mass and the calculated 

mass.  Four out of five proteins were matched for both approaches.   

  



  100 
   

 
Figure 3-6.  Comparison of the summed discrimination rules calculated by 

MoWeD–FuRES (top panel) and FuRES–MoWeD (bottom panel) approaches.  
The discrimination rules are summed along the retention time dimension.  

The positive value indicates the corresponding component has 
characteristically high concentration in class A1 over A19, and vice versa.  
The protein signals in both low and high molecular weight range were 

sufficiently extracted. 
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Figure 3-7.  The discrimination rules calculated by MoWeD–FuRES (top 
panels) and FuRES–MoWeD (bottom panels) approaches.  The rule weights 
are plotted in logarithmic scale to compare the amount of noise. 
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Table 3-2.  Five largest peaks observed in the summed discrimination rules 
and the tentative SwissProt/TrEMBL database search results for FuRES–

MoWeD and MoWeD–FuRES approaches 

 
Observed 
molecular 

mass (Da) 

Calculate
d average 
molecular 

massa 
(Da) 

Relative 
intensity 

Classb 
Tentative 

accession ID 

MoWeD–
FuRES 

9520 9520.96 1 A1 P0A1R6 
18,585 18586.08 0.7316 A1 Q7CQV9 

15,990 15988.81 0.6395 A19 P0A1J7 

40,595 40595.34 0.5315 A19 P19576 

6092 6094.94 0.4738 A19 D0ZSD2 

FuRES–

MoWeD 

9520 9520.96 1 A1 P0A1R6 

18,585 18586.08 0.6270 A1 Q7CQV9 
15,990 15988.81 0.5171 A19 P0A1J7 
40,595 40595.34 0.4764 A19 P19576 

9239 9239.61 0.4704 A1 P0A1R8 
 

aResults were obtained by Compute pI/Mw, which is a part of ExPASy 

proteomics tools.   

bClass means the characteristic protein in the specified strain has relatively 
high concentration against the other strain.  
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The noise in LC–ESI-MS spectra possibly comes from the polymer 

contaminants from column degradation and other baseline noise 

components.  These noise components can affect the deconvolution routine 

because noise peaks can be mistaken as signal peaks, which is a typical case 

that creates high mass artifacts in the deconvolved spectra.  Figure 3-7 

demonstrates the two-way LC–ESI-MS discrimination rules.  The intensities 

were plotted in logarithmic scale to compare the amount of noise.  It can be 

observed that there is a greater amount of noise in the rules obtained by the 

MoWeD–FuRES approach in the high mass range than that from the FuRES–

MoWeD approach.  The noise in the rules image is consistent with the results 

from the synthetic data set and previous study74.  These artifacts were 

retained by using MoWeD–FuRES.  In the FuRES–MoWeD approach however, 

noise levels are reduced in the FuRES discrimination rules before 

deconvolution, because the noise did not correlate with the systematic 

differences between the two bacterial strains.  As a result, there are fewer 

artifact peaks in the FuRES–MoWeD approach than MoWeD–FuRES. 

Theoretically, the FuRES classification rule is generated to minimize 

the entropy of classification between different classes, so that relevant 

protein signals are extracted for deconvolution without the cost of sensitivity 

and specificity.  When and only when a protein signal is not characteristic for 

differentiating between the two rule consequents, that signal will not be 

present in the rule and thus be omitted from deconvolution.  In practice, low-

lying signals were correctly identified in the simulated data set.  Additionally, 



  104 
   

the locations of low-intensity peaks were consistent between the two 

comparing approaches in Figure 3-6.  The reason is that the FuRES rule looks 

for correlation among features of the spectra.  There is a signal averaging 

benefit among the multiple charge state peaks and among objects common 

to each rule consequent. 

Another concern is about the treatment of multiple charge variants of 

a protein, because the multiple charge envelope of a protein is different 

between different runs.  Because the FuRES classification rule only picks 

signals with systematic differences between samples, the random variation of 

the multiple charge distribution between different samples will be omitted.  

On the other hand, the FuRES rules treat systematic multiple charge variants 

as separate signals.  However, a systematic change of variations between 

classes could possibly be caused by conformational changes91, when the 

conformation and envelopes are on opposing consequents of the rule.  

Although the molecular weight remains unchanged, the proposed approach 

retains the specific proteins as tentative biomarkers in this regard.  Again, 

further structure elucidation work is required for confirmation. 

The FuRES–MoWeD uses the unprocessed spectra as training data, 

while the MoWeD–FuRES uses the deconvolved spectra.  Therefore, the 

FuRES models obtained from these two methods have different predictive 

powers.  Because both approaches apply pattern recognition methods during 

processing, internal validation methods can be applied.  BLP validation25 was 

applied to compare the FuRES classification ability on the deconvolved 
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spectra and the unprocessed spectra.  The number of bootstraps and the 

number of partitions were respectively 10 and 2.  The prediction results are 

in Table 3-3.  The prediction accuracy was 89 ± 5% and 100% for MoWeD–

FuRES and FuRES, respectively.  This lower prediction accuracy indicates the 

loss of information in wavelet denoising, baseline removal and peak picking.  

The difference of the prediction results is statistically significant by two-way 

analysis of variance (ANOVA) with interaction at a significance level of 0.05. 

 

Table 3-3.  The confusion matrix of average correctly predicted objects with 

95% confidence intervals between the two approaches of FuRES models.  
Each class contains five data objects. 

 MoWeD–FuRES FuRES 

 A1 A19 A1 A19 

A1 4.6 ± 0.4 0.4 ± 0.4 5 0 

A19 0.7 ± 0.5 4.3 ± 0.5 0 5 
 

 

Besides the validation of the two approaches, the BLP can be used to 

validate the biomarker candidate in the deconvolved FuRES rule.  Figure 3-8 

is the average FuRES–MoWeD discrimination rule with upper and lower 95% 

confidence intervals.  The plot is zoomed out into 25–30 kDa for 

demonstration purposes.  The average rule is plotted as a thick blue line and 

the confidence intervals are plotted as thin gray lines.  The rules are summed 

along the retention time dimension.  The average is obtained from 20 
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MoWeD deconvolved FuRES discriminants by BLP.  Peaks in the discriminant 

that extend beyond the confidence interval are significant at a 0.05 

probability.  Most peaks in this plot are greater than their respective 

confidence intervals, indicating the biomarker candidates are significantly 

characteristic features in the FuRES-MoWeD model. 

 

 
Figure 3-8.  The average FuRES–MoWeD discrimination rule with upper and 
lower 95% confidence intervals.  The plot is zoomed out into 25–30 kDa.  
The average rule is plotted as a thick blue line and the confidence intervals 

are plotted as thin gray lines.  The rules are summed along the retention 
time dimension.  The average is obtained from 20 FuRES discriminants by 

10 bootstraps of two Latin partitions.  The magnitudes of most peaks are 
greater than their respective confidence intervals.  
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3.5 Conclusions 

The proposed FuRES–MoWeD approach could rapidly find the features 

in complex sets of ESI-MS data.  This approach was demonstrated by a 

synthetic ESI-MS data set and a LC–ESI-MS data set for bacteria strain 

identification, with the comparison of the MoWeD–FuRES approach.  The 

resultant discrimination rule indicates that biomarker candidates can be 

found when signal-to-noise ratios in the spectra are low by FuRES–MoWeD 

approach.  Performing the charge deconvolution on the FuRES discriminant 

rules as opposed to each individual across replicates yielded models less 

affected by baseline noise and was an order of magnitude more 

computationally efficient.  In addition, the models obtained by the two 

approaches were evaluated by using bootstrapped Latin partitions to furnish 

statistical relevance and confidence intervals. 

This proposed approach was not limited to FuRES models and MoWeD 

methods demonstrated in the current study.  Future work will involve the 

applications of deconvolution on rules of other classifiers such as partial least 

squares-discriminant analysis, and using other deconvolution methods such 

as Zscore and MCA.  This analysis pipeline is also feasible in the applications 

of high-resolution ESI-MS and CE–ESI-MS.  The pipeline can be 

advantageous because the increased data size produced by high-resolution 

ESI-MS usually demands rapid analysis methods.  As a pre-screening 

method, the proposed pipeline can be also applied in differential protein 

expression by liquid chromatography–tandem mass spectrometry (LC–
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MS/MS) that provides helpful fragmentation information to identify protein 

biomarkers specifically.  Following the basic concept of the FuRES–MoWeD 

approach, the potential application can be extended further to other areas of 

proteomics.  The processing method applied to the discriminant is not limited 

to charge deconvolution for LC–MS data.  When processing LC–MS or LC–

MS/MS profiles, a database search routine for peptide fragments can be 

applied to the discriminant instead.  Database searches on discriminants 

could potentially be useful when dealing with protein digest samples, where 

small peptide peaks are present.   
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Chapter 4 Ignitable Liquid Identification Using Gas 

Chromatography/Mass Spectrometry Data by Projected Difference 

Resolution Mapping and Fuzzy Rule-Building Expert System 

Classification 

4.1 Introduction 

Ignitable liquid (IL) identification is an important topic in arson crime 

investigation, because liquids such as gasoline and kerosene are commonly 

used as accelerants in arson crimes.  The American Society for Testing and 

Materials (ASTM) E1618 standard method has been devised to identify 

different types of ILs by gas chromatography/mass spectrometry (GC/MS).92  

More specific classification is required in some actual casework.  For 

example, when comparing fire debris samples with an IL sample found in a 

suspect’s possession or on his clothing, classification of the type of ILs is not 

specific because of the wide availability of gasoline and kerosene and their 

variability due to crude oil source, production processes, and blending at the 

refinery or in storage tanks at retail outlets.  Therefore, it is important to be 

able to compare two or more samples in a case to determine if the ignitable 

liquid residues share a common source.  The recent National Academy of 

Science report recommends that pattern recognition techniques (of which 

ignitable liquid residue analysis is one) have established ―error rates‖ to meet 

―Daubert‖ rules of evidence in court.93, 94  This research was undertaken to 

establish such rates for comparing patterns in GC/MS analyses of ignitable 

liquid residues (ILR). 
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In recent years, GC/MS data analysis of ignitable liquids by 

chemometric techniques has been reported.  A variety of methods such as 

covariance mapping95, 96, trace organic compound analysis by principal 

component analysis (PCA) and linear discriminant analysis (LDA)97-101, and 

artificial neural networks102, 103 have been applied, which demonstrates the 

utility of chemometrics to forensic investigations.  Analysis by chemometric 

techniques can be performed more efficiently and objectively than manual 

operations by an expert, because the predictions are performed 

automatically once the model is generated.  The analytical result is 

quantitative, unbiased, and can be validated by cross-validation and 

bootstrap Latin partition (BLP)25 techniques that estimate prediction abilities 

of models with given confidence intervals, as opposed to the subjective 

opinions furnished by an expert.   

Gasoline and kerosene samples collected from the refinery, distribution 

terminals, and retail outlets on different dates were analyzed by GC/MS.104  

Both two-way GC/MS profiles and target component ratio data were 

processed.  Classification by partial least squares-discriminant analysis (PLS-

DA) and fuzzy rule-building expert systems (FuRESs) were performed to 

identify each sample.  The projected difference resolution (PDR) metric is 

calculated to demonstrate the separations between each pair of IL samples 

as well.  

Two-way GC/MS profiles and target component ratios are applied as 

two comparative inputs for classification in this study.  A two-way GC/MS 
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profile retains both retention properties and mass spectrum information as 

an image of GC/MS measurement.10, 32  In addition, no component peaks 

were discarded.  Figure 4-1 is a two-way GC/MS image of a gasoline sample.  
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Figure 4-1.  Two-way GC/MS data of a gasoline sample.  The peak intensities 

were plotted in logarithmic scale to show more detail from the smaller peaks. 
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Target component ratio is an analysis method developed for comparing 

neat samples to fire debris submitted from casework.105  The target 

component ratio is calculated by searching specified retention time windows 

for the presence of peaks of specific compounds.  The ratios of peak areas 

from the sequential peaks are calculated to establish a unique profile for the 

identification of ignitable liquids.  The target component ratio method was 

reported to be a possible method to compare gasoline residues in fire debris 

to a gasoline source.  Different IL samples from different locations have 

unique production processes (crude oil sources and blending for time of year 

and altitude) and different storage conditions, which results in characteristic 

chemical compositions.  The theoretical assumption of the target component 

ratio method is the speed of the evaporation stays constant for components 

that have similar chemical structure in ignitable liquids and consequently 

similar gas chromatographic retention times (especially on a non-polar 

polydimethylsilicone capillary column).  The ratio of an adjacent peak pair of 

an evaporated or burnt sample should have an insignificant change compared 

to the neat sample.  Figure 4-2 gives a comparison of the total ion current 

and the target component ratio profile.  The component ratios are given in 

bar plots.  Each bar was connected to the corresponding peak pair from 

which the component ratio is calculated.     
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Figure 4-2.  TIC chromatograms and component ratios of a gasoline sample 

(Top panel) and a kerosene sample (Bottom panel).  The component peaks 
are labeled with numbers.  Each component ratio bar was located under the 

peak that is denominator in the corresponding ratio.  Each bar was connected 
to a pair of corresponding component peaks by lines. 
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The PDR metric is an analog to chromatographic resolution.106  PDR is 

applied to measure the separation of pairs of samples quantitatively in a 

multivariate data space.  Given a GC/MS data set that comprises two classes, 

the number of variables (i.e., number of data points, which is calculated by 

the number of retention time measurements times the number of mass-to-

charge ratio measurements) is n, the numbers of objects (i.e., amount of 

GC/MS spectra) in classes a and b are respectively m1 and m2.  The data 

matrices Xa and Xb respectively have sizes of m1 × n and m2 × n, in which 

each row is a two-way GC/MS data.  The PDR measure of class separation 

Rs(a, b) is a scalar calculated by  

        
         

        
 (4-1) 

for which ta and tb are the scores  for the two classes obtained by projecting 

the objects onto the difference vector   
       

     of the class averages, given by   

        
       

       (4-2) 

        
       

       (4-3) 

for which   
     and   

     are the average class vectors  that have a length of n.  

The column vectors ta and tb have lengths of m1 and m2, respectively.  From 

the projections the averages    and    and their corresponding standard 

deviations sa and sb are calculated. 

PDR is proposed as a straightforward multivariate measure for rapidly 

quantifying the separation of multivariate data objects for a pair of classes.  
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The smaller the PDR, the harder to predict two classes by multivariate 

pattern recognition methods.  Generally, a well-resolved separation of two 

classes has a PDR value greater than 1.5, which is comparable to the 

minimum resolution for baseline resolution between a pair of 

chromatographic peaks.  When the data set contains more than two classes, 

the PDR metric for each pair of classes is systematically calculated for all 

combinations of pairs.  The PDR matrix can be as a triangle that measures 

the separation of each pair of classes. 

Column bleeding was observed in the measurement of kerosene 

samples because of the higher column temperatures that are required for 

elution, which may bias the pattern classification of the two-way profiles.  As 

a result, the baseline was corrected by a procedure based on the PCA result.  

For a two-way GC/MS data matrix X, mass spectrometry scans are stored by 

rows and extracted ion chromatograms are stored by columns.  First, the 

spectrum segment of the final 1 minute retention time window was selected 

to acquire background mass spectral scans.  The PCA is performed on this 

background matrix of mass spectra for each sample.  By performing the 

classification based on background subtraction using 1–10 largest principal 

components, it is concluded that the loading of the first principal component 

v1 characterize the mass spectrum of column bleeding impurities.  Therefore, 

background correction is obtained by 

            
  (4-4) 
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for which Xc is the baseline corrected spectrum.  Figure 4-3 is a comparison 

of total ion current (TIC) chromatograms showing the effect of the 

background correction. 

Two approaches were applied to determine the number of latent 

variables in the partial least squares-discriminant analysis (PLS-DA)64 

method.  In the optimal partial least squares-discriminant analysis (oPLS-

DA), the number of latent variables is determined by achieving highest 

prediction accuracy for the prediction set.  As a result, oPLS-DA is positively 

biased, which is applied as a reference method.   

The other PLS-DA method is unbiased because the prediction set is not 

used to determine the number of latent variables in the PLS-DA model.  The 

procedure for unbiased PLS-DA training is similar to the BLP method107.  

First, the training set is split into two subsets using Latin partitions.  Then, 

each partitioned subset is used once for prediction and once for model-

building.  The procedure is bootstrapped 10 times.  Lastly, the prediction 

accuracies are averaged across the 10 bootstraps, the number of latent 

variables is determined by achieving highest average prediction accuracy.     

FuRES is based on the decision tree algorithm and fuzzy logic theory, 

where each branch of the decision tree model is a multivariate fuzzy rule.31  

FuRES has been successfully applied in forensic researches to analyze two-

way GC/MS and gas chromatography–differential mobility spectrometry (GC–

DMS) data.10, 32 
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OPLS-DA, PLS-DA, and FuRES were validated by the BLP method25.  

The PDRs of each training set is calculated for comparison as well.  

Bootstrapping is a re-sampling method.  Latin partition is a block cross-

validation, in which the class distributions are maintained between the 

training set and the prediction set.  BLP provides validation results with 

confidence intervals by running the evaluation repeatedly with different 

training and prediction set partitions.   

4.2 Experimental 

4.2.1 Sample Collection 

The details of the sample collections and GC/MS experiments were 

described in the literature104.  A number of gasoline and most kerosene 

samples come from the Quality Assurance Laboratory of Marathon Ashland 

Refinery, Catlettsburg, KY.  The quality assurance laboratory collects samples 

from Marathon refineries and distribution terminals.  The gasoline samples 

were regular grade (87 octane) gasoline.  Most of the samples were from the 

Midwestern states where Marathon distribution terminals are located.  Other 

gasoline samples were collected at a number of retail outlets across the US 

and over several years.  A few kerosene samples were purchased locally 

(Huntington, WV) from service stations or home improvement stores. The 

locations of samples are listed in Table 4-1.   
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Table 4-1.  Sources of the collected gasoline and kerosene samples. 

Gasoline Kerosene 

States Number of samples States Number of samples 

AL 1 IL 2 

CA 1 IN 2 

CT 1 KY 2 

FL 2 MI 2 

GA 3 MN 1 

IL 1 OH 1 

IN 5 TN 1 

KY 2 WI 2 

LA 1 Total 13 

MI 7   

NC 1   

OH 8   

TN 5   

TX 1   

WI 1   

WV 2   

Total 42   
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4.2.1 GC/MS Measurement 

Spectra from neat samples were used in this work.  There were 126 

objects and 42 classes in the gasoline data set, and 39 objects and 13 

classes in the kerosene data set.  Each sample was analyzed in triplicate.   

All spectra were collected on an Agilent 6890N gas chromatograph 

coupled to a 5973 mass selective detector.  The column was a 60 m long 

Varian DB-1 (100% dimethylpolysiloxane) column with an internal diameter 

of 250 μm, and film thickness of 1 μm.  The carrier gas was ultrahigh purity 

helium.  The injection volume was 0.1 µL.  For gasoline samples, the split 

flow was 200:1.  The temperature programming for gasoline was initial 35 °C 

with a 2.00 min hold time, and a linear temperature ramp of 5 °C/min to 250 

°C with 1.33 min hold time.  For kerosene samples, the split flow was 50:1.  

The temperature programming for kerosene was initial 100 °C with 1.00 min 

hold time, and a linear temperature ramp of 5 °C/min to a final temperature 

of 275 °C with 5.00 min hold time.  The solvent delay was 3.00 min. 

4.2.2 Data Processing 

All calculations were performed on a personal computer equipped with 

a Core i7 940 processor and 12 GB memory running Microsoft Windows XP 

x64 SP2 operating system.  All programs were in-house scripts written in 

MATLAB and C++ programming language using MATLAB version 7.11 (The 

MathWorks, Inc. Natick, MA) and Microsoft Visual C++ version 10.0, except 

that the component peaks were identified by AMDIS version 2.69 (National 

Institute of Standards and Technology, Gaithersburg, MD). 
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The first preprocessing step was binning of the spectra along mass-to-

charge ratio dimension to an increment of 1 Th, and an increment of 0.02 

min along the retention time dimension.  The mass-to-charge ratio range of 

40—300 Th and the retention time range of 3.00—38.00 min were used for 

further analysis.  Next, the baseline correction was performed on each 

GC/MS spectrum.  The PCA was performed by the singular value 

decomposition (SVD) method.  Each two-way spectrum was then reshaped 

into a vector that comprised 457 011 data points.  Each vector was 

normalized to unit vector length.  The sizes of the data matrices were 126 × 

457 011 and 39 × 457 011 for gasoline and kerosene, respectively.   

Because the size of the two-way GC/MS spectra and the number of 

classes is large, the principal component transformation (PCT) is used as a 

lossless compression method.  The PDR metric, oPLS-DA, PLS-DA, and FuRES 

classification were performed after PCT.  PCT compression was implemented 

by the SVD method.  All principal component scores were used for further 

calculation.  When applying BLP validation to the PCT compressed PLS-DA 

and FuRES classification models, the principal component scores of each 

prediction set were calculated by projecting the prediction set onto the 

principal component loadings calculated from the training set to achieve 

unbiased results.  After compression, the number of variables was greatly 

reduced to the number of objects, i.e., the number was respectively reduced 

from 457 011 to 126 and 39, and the compression ratio was respectively 

1:3627 and 1:11 718 for gasoline and kerosene data sets.   
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The component ratio was calculated by dividing peak areas of 

designated components.  Twenty-one and twenty-five target component 

ratios were respectively calculated for gasoline and kerosene spectra, which 

are listed in Tables 4-2 and 4-3.  The chromatographic components were 

identified by using ―Use Retention Time‖ analysis in AMDIS software by a 

pre-built mass spectra library that contains the target components.  If one or 

both of the component peaks were not detected, the corresponding ratio is 

set to zero.  The component ratio was preprocessed by autoscaling, by which 

each variable is subtracted by its mean and then divided by the standard 

deviation. 
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Table 4-2.  Target compound list, estimated retention time, and 
corresponding ratios identified in each gasoline sample 

Peak Compound Est. RT (min) Ratio Peak Ratio 

1 3-methylpentane 10.21 
  

2 2-methyl-1-pentene 10.37 1 2/1 

3 n-hexane 10.79 
  

4 2-hexene 10.95 2 4/3 

5 3-methylhexane 13.80 
  

6 1,3-dimethylcyclopentane 14.26 3 6/5 

7 2,2,4-trimethylpentane 14.40 4 7/5 

8 dimethylcyclopentane 15.90 
  

9 methylcyclohexane 15.98 5 9/8 

10 2,5-dimethylhexane 16.06 
  

11 2,4-dimethylhexane 16.18 6 11/10 

12 1,2,3-trimethylcyclopentane 16.63 7 12/11 

13 2,3,4-trimethylpentane 17.00 8 13/12 

14 dimethylhexane 17.54 
  

15 3-methylheptane 17.80 9 15/14 

16 2,3,4-trimethylhexane 17.88 
  

17 1,3-dimethylcyclohexane 18.22 10 17/16 

18 2,2,5-trimethylhexane 18.26 
  

19 1-ethyl-3-methylcyclopentane 18.62 11 19/18 

20 1,2-dimethylcyclohexane 19.15 
  

21 1,4-dimethylcyclohexane 19.40 12 21/20 

22 ethylbenzene 21.28 
  

23 m,p-xylene 21.60 13 23/22 

24 isopropylbenzene 23.73 
  

25 n-propylbenzene 24.86 14 25/24 

26 3-ethyltoluene 25.09 15 26/25 

27 a methyl indane 29.78 
  

28 tetramethylbenzene 30.64 16 28/27 

29 tetramethylbenzene 30.78 
  

30 a methyl indane 31.54 17 30/29 

31 a methyl indane 31.94 
  

32 naphthalene 33.18 18 32/31 

33 a dimethyl indane 33.39 19 33/32 

34 2-methylnaphthalene 36.53 20 34/33 

35 1-methylnaphthalene 37.08 21 35/34 
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Table 4-3.  Target compound list, estimated retention time, and 
corresponding ratios identified in each kerosene sample 

Peak  Compound 
Est. RT 
(min)  

Ratio Peak Ratio 

1 toluene   7.98 
  

2 p-xylene 10.20 1 2/1 

3 nonane 10.74 2 3/2 

4 1-ethyl-2-methyl-Benzene 12.57 3 4/3 

5 ethyl-methyl-benzene 12.65 4 5/4 

6 a trimethylbenzene 12.76 5 6/5 

7 a ethylmethylbenzene 13.17 6 7/6 

8 decane 13.41 7 8/7 

9 1,2,4-trimethyl-benzene 13.57 8 9/8 

10 a trimethylbenzene 14.48 9 10/9 

11 a diethylbenzene 15.10 10 11/10 

12 3-methyl-decane 15.47 11 12/11 

13 undecane 16.25 12 13/12 

14 a methyl-trans-decalin 17.66 13 14/13 

15 1,2,3,4-tetrahydronapthalene 18.81 
  

16 dodecane 19.11 14 16/15 

17 a dihydro-dimethyl-1H-indene 21.20 
  

18 1,2,3,4-tetrahydro-6-
methylnapthalene 

21.74 15 18/17 

19 tridecane 21.89 16 19/18 

20 a tetrahydrodimethylnapthalene 23.19 17 20/19 

21 tetradecane 24.54 18 21/20 

22 1,7-dimethyl-napthalene 26.08 19 22/21 

23 2,6,10,14-tetramethyl-

hexadecane 
26.19 20 23/22 

24 3-methyl-tetradecane 26.39 21 24/23 

25 pentadecane 27.06 22 25/24 

26 hexadecane 29.44 23 26/25 

27 heptadecane 31.70 24 27/26 

28 octadecane 33.84 25 28/27 
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Both oPLS-DA and PLS-DA was implemented by the nonlinear iterative 

partial least squares (NIPALS) algorithm108.  The classification method was 

PLS2.  In PLS-DA, oPLS-DA, and FuRES, binary encoding was applied to build 

the target (response) matrix Y.  For instance, when a data set has three 

classes, the first class will be encoded as (1, 0, 0).  The number of 

bootstraps was 10 and the number of partitions was 3 in BLP evaluations.  

Each object will be predicted 10 times, and each sample that ran in triplicate 

will be predicted 30 times in the BLP validation process. 

4.3 Results and Discussion 

4.3.1 Baseline Correction 

The TIC chromatograms of a gasoline and a kerosene sample are given 

in Figure 4-4.  The effect of baseline correction is demonstrated.  Because 

there is no significant column bleeding from the original spectra of gasoline, 

no significant change in TIC chromatograms is observed after baseline 

correction.  In kerosene samples, the baseline goes upwards in the 

uncorrected TIC profile.  Compared to the uncorrected spectra, the baseline 

of the corrected spectra is improved.  The pattern classification and PDR 

metric of the spectra before baseline correction is performed.  Comparisons 

were made between baseline corrected spectra and original spectra.  The 

result is given in section 3 below. 
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Figure 4-3.  TIC chromatograms of a gasoline sample and a kerosene 

sample.  (A) A gasoline sample before baseline correction, (B) the gasoline 
sample after baseline correction, (C) a kerosene sample before baseline 

correction, (D) the kerosene sample after baseline correction. 
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4.3.2 PDR Mapping 

The PDR mapping of gasoline and kerosene samples by the two-way 

profile method is given in Figures 4-4 and 4-5, respectively.  The geometric 

mean of PDRs are plotted in grayscale, which are measured repeatedly by 

removing one replicate from each class, a total of nine combinations of 

subsets for a pair of classes.  The darkness of the box indicates the PDR 

value.  All PDR values that are greater than or equal to 5 are plotted in 

white.  The numbers printed in the box are the number of times out of a total 

of 60 times that an object was misclassified between the pair of classes 

during the BLP validation by FuRES.  For example, sample 42 and sample 40 

was misclassified as each other 20 times in Figure 4-4.  Most of the 

misclassifications of the classes are located in gray boxes, indicating that the 

PDR metric effectively measures the predictive ability of the classifiers.  It 

can be concluded the lower the PDR between two classes, the more likely 

misclassification will occur.   
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Figure 4-4.  The PDR mapping of gasoline samples by the two-way profile 
method.  The PDR values and the FuRES prediction use different bootstrap 

approaches.  The PDR values are encoded by color intensity, which is the 
geometric mean of all possible subsets of Latin partitions.  All PDR values 

that are greater than or equal to 5 are plotted in white.  In a pair of classes 
that comprised of six objects, the subsets that comprised of four objects 

were obtained by removing one out of three objects in each class, which 
results nine possible combinations of subsets.  The numbers in the box are 
the numbers of misclassifications between the corresponding pair of samples 

out of a total of 60 times by the BLP validation of the FuRES model. 
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Figure 4-5.  The PDR mapping of kerosene samples by the two-way profile 

method.  The figure is plotted following the same method as described in 
Figure 4-4. 
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4.3.3 Pattern Classification 

The BLP validation of PDR metric, oPLS-DA, PLS-DA, and FuRES are 

given in Table 4-4.  The effect of baseline correction is evaluated.  Although 

the prediction accuracy is not improved for two-way profiles after baseline 

correction, the PDRs were improved significantly in the kerosene spectra, 

indicating that the separation between each pair of classes was generally 

improved.   

Both the two-way profile and component ratio methods achieved 

prediction accuracies greater than 90% using the FuRES classifier.  For the 

gasoline data set, the two-way profile method and the component ratio 

method performed equally well.  The two-way profile method achieved higher 

prediction accuracies than the component ratio method for the kerosene data 

set because the two-way profiles retain more chemical information.  The loss 

of peak information manifests itself in lower PDR values.  The PDRs of the 

component ratio method is lower than the two-way profile method for both 

gasoline and kerosene data.  It is essentially a differential transformation so 

there is a loss in signal-to-noise ratio, which can be expected with any 

differential transformation.   

   

  



  131 
   

Table 4-4.  PDRs and prediction accuracies of oPLS-DA, PLS-DA and FuRES 
with 95% confidence intervals by BLP validation.  Both full two-way profile 

and component ratio methods are reported. 

 Gasoline Kerosene 

Total number of objects 126 39 

Two-way profile, original spectra   

Geometric mean PDR 16 ± 3 17 ± 8 

oPLS-DA (%) 99 ± 0 100 ± 0 

PLS-DA (%) 95 ± 2 83 ± 6 

FuRES (%) 93 ± 3 97 ± 0 

Two-way profile with baseline correction   

Geometric mean PDR 16 ± 2 41 ± 15 

oPLS-DA (%) 99 ± 1 100 ± 0 

PLS-DA (%) 94 ± 2 92 ± 5 

FuRES (%) 94 ± 2 97 ± 0 

Component ratio   

Geometric mean PDR 8 ± 1 9 ± 2 

oPLS-DA (%) 81 ± 5 81 ± 7 

PLS-DA (%) 48 ± 7 62 ± 5 

FuRES (%) 94 ± 3 91 ± 6 
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The two-way spectra contain noise.  As a positively biased method, 

oPLS-DA achieved higher prediction accuracies for the gasoline data because 

of overfitting the data.  FuRES is a soft classifier and is inherently resistant to 

overfitting.  However, for the component ratio method overfitting is mostly 

avoided because the training data set is overdetermined (i.e., fewer variables 

than objects).  As a result, the FuRES method achieved better predictions for 

the component ratio data than the biased oPLS-DA method.  The unbiased 

PLS-DA method achieved marginally better prediction accuracies for the two-

way gasoline data that are statistically insignificant.  Unbiased PLS-DA 

performs worse than the FuRES method for the rest of the data sets, 

especially in the classification of component ratio data.  The performance 

demonstrated that FuRES is a powerful classifier for samples measured by 

GC/MS. 

4.4 Conclusions 

In this study, different IL samples were identified using several 

chemometric techniques.  PDR measured the separation between the 

different samples and the results were presented as heat maps.  PLS-DA and 

FuRES was used to build classification models.  The models were validated by 

BLP validation.  FuRES for both the gasoline and kerosene data sets predicted 

the classes with greater than 90% accuracy.  Furthermore, the results of 

PDRs and pattern classifications were consistent in both data sets.  The 

results indicated the usefulness of various chemometric methods including 

baseline correction by PCA, PCT, PDR, PLS-DA, and FuRES to the forensic 
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analysis workflow of the IL identification task by GC/MS.  A novel method, 

PDR mapping, is presented for the first time for characterizing complex data 

sets. 

The work also demonstrates the usefulness of both the two-way profile 

and component ratio methods.  The PCT compressed two-way profile keeps 

both the gas chromatographic and mass spectrometric information, which is 

useful in comparing unevaporated samples.  Although less accurate in 

kerosene sample prediction, the component ratio method is an effective 

method that provides an approach to compare unevaporated gasoline 

samples and fire debris.  Future work will involve the identification of ILR 

from fire debris by chemometrics, as well as to perform a feature selection 

study on the choice of component peaks.  
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Chapter 5 Summary 

The development of classification techniques is a large and active field 

that involves knowledge in chemistry, mathematics, statistics, computer 

science, etc.  It is important that the classifier combines some features in 

data analysis so as to process complex data set such as data sets that 

contain outliers and the imbalanced data.  In Chapter 2, the RBFCCN is 

proposed as a new classification method with the ability to detect outliers in 

the data set.  In addition, the RBFCCN has the advantage of incremental 

learning.  The RBFCCN has been compared to other classification methods.  

The result proves RBFCCN provides attractive abilities, including novelty 

detection, classification on imbalanced data, and incremental learning 

without sacrificing the classification performance compared to other RBFNs.   

In future studies, RBFCCN may be applied to other research projects.  

Other than the comparison of prediction performances against other 

classifiers, it is useful to conduct other studies on the comparisons of 

RBFCCNs against other outlier diagnostic techniques, such as one-class SVM.   

Chapters 3 and 4 demonstrate applications of chemometrics, especially 

multivariate classification techniques, in the fields of chromatography and 

spectroscopy.  In Chapter 3, the biomarker candidate of ESI-MS bacteria is 

obtained through the FuRES–MoWeD pipeline.  This technique is 

demonstrated with the biomarker candidate discovery study on the strain 

identification of Salmonella enterica.  The data processing speed is an order 

of magnitude faster than other comparing methods.  The project is of great 
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importance in food safety monitoring because some specific bacteria strains 

could be life-threatening pathogens.  The experiment investigates the 

possibility to combine pattern classification to other processing methods, in 

this case charge state deconvolution.   

The concept of the hyphenated processing approach has great 

potential in a wide area of proteomics.  Specifically, database searches on 

the discriminants would potentially be useful when dealing with protein digest 

samples, for which small peptide peaks are present.  Future studies will be to 

apply the discriminant to a proteomic database search routine when 

processing LC–MS and LC–MS/MS data.  Additionally, the proposed FuRES–

MoWeD pipeline will be compared to clustering methods, which is a widely 

used unsupervised classifier in proteomics and bioinformatics to find 

biomarkers.   

In Chapter 4, individual gasoline and kerosene samples are identified, 

which is more specific than the current identification techniques that 

characterize different types of ignitable liquids.  The proposed classification 

method generates the results based on an entire set of experiment that 

consists of many samples.  This project is important in the forensic 

investigation of arson cases because the identification result was reported in 

an average classification rate with statistical measure of confidence, which is 

more specific than the commonly used pair-wise comparison in standard 

forensic procedures.  The result indicates the potential use of chemometric 

modeling techniques towards the evidence investigation of ignitable liquids.  
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In addition, PDR mapping is proposed as a convenient data visualization 

technique for characterizing complex data sets.  The PDR mapping technique 

presented the separation between classes, which is consistent with the 

classification results.   

The future studies of the chemometric characterization of ignitable 

liquids will be focused on the development of instrumentations, because 

intelligent instrumentations can be greatly benefitted from the chemometric 

classification techniques developed in Chapter 4.  In field applications such as 

industrial quality assurance of refinery product or forensic analysis to study 

the identification of fuel residues from fire debris, it is desirable to apply 

easy-to-use portable analytical instruments.  With the recent developments 

of GC/MS miniaturization, some commercialized portable GC/MS models are 

available nowadays.  The chemometric model developed in Chapter 4 can be 

programmed into microchips installed in a portable GC/MS so as to obtain an 

intelligent instrument for rapid on-site characterization of ignitable liquids.   
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