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ABSTRACT 

MORSE, BRENDAN J., Ph.D., August 2009, Industrial/Organizational Psychology 

Controlling Type I Errors in Moderated Multiple Regression: An Application of Item 

Response Theory for Applied Psychological Research (246 pp.) 

Director of  Dissertation: Rodger W. Griffeth 

 Applied psychologists have long recognized the importance of measurement as a 

key component of research quality, but the use of psychometrically sound measurement 

practices has not kept pace. Recent evidence has emerged to suggest that weak 

measurement practices can have serious implications for the accuracy of parametric 

statistics. Two simulation studies (Embretson, 1996; Kang & Waller, 2005) have 

identified that response score scaling and assessment appropriateness heavily influence 

the Type I error rate for interaction effects in moderated statistical models when simple 

raw scores are used to operationalize a latent construct. However, the use of item 

response theory (IRT) models to rescale the raw data into estimated theta scores was 

found to mitigate these effects. The purpose of this dissertation was to generalize these 

results to polytomous data that is commonly found in applied psychological research 

using a Monte Carlo simulation. Consistent with the previous studies, inflated Type I 

error rates for the interaction effect in a moderated multiple regression model were 

observed when raw scores were used to operationalize a latent construct. In the most 

extreme cases, this inflation approached 85%. Also consistent with previous studies, 

psychometric factors were found to have a greater impact on raw scores than on 

estimated theta scores, and assessment appropriateness was found to be the most 
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influential factor on the empirical Type I error rate. Inconsistent with previous studies, an 

inflated Type I error rate was also observed under some conditions for the estimated theta 

scores suggesting that the graded response model (GRM) may not have provided a 

sufficiently equal-interval metric. Additionally, the expected interaction between 

assessment appropriateness and assessment fidelity was not found to be significant. 

Overall, these results suggest that the IRT-derived scores were more robust to spurious 

interactions than simple raw scores, but may still result in inflated Type I error rates 

under some conditions. The implications of these results are discussed from two 

perspectives. The performance of the GRM under the simulated conditions is emphasized 

for measurement researchers, and the usefulness of model-based measurement practices 

for improving research quality is emphasized for applied psychologists. 

Approved: _____________________________________________________________ 

Rodger W. Griffeth 

Professor of Industrial/Organizational Psychology 
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CHAPTER 1: INTRODUCTION 

  Experimental design and the measurement of psychological constructs represent 

two important facets of the overall quality of research in the behavioral sciences. 

Deficiencies in methodology and/or measurement can result in misleading and inaccurate 

findings with regard to a phenomenon of interest. Most researchers are well aware of the 

consequences of weak experimental design, but there is often a lack of discussion 

regarding the consequences of poor measurement practices. 

Summative reviews have revealed troubling trends for the reporting and 

understanding of psychometric data in applied psychological research. Scandura and 

Williams (2000) found that less than half of the studies conducted in applied psychology 

identified any reliability information for the assessments that were used in the studies. 

Additionally, Podsakoff and Dalton (1987) found that less than four percent report any 

validity information. Perhaps eve more troubling, Cortina (1993) and Phillips and Lord 

(1986) found that many researchers misinterpret the definition and nature of 

psychometric indicators, such as reporting measures of reliability (Cronbach’s alpha) as 

evidence for construct validity or unidimensionality. Finally, Austin, Scherbaum, and 

Mahlman (2002) concluded that regardless of the availability of validated instruments, 

researchers in Industrial and Organizational (I/O) psychology tend to use “garden 

variety” scales that have little if any psychometric evaluation. 

Although the importance of measurement is often deemphasized in the overall 

discussion of experimental quality, the implications of such practices are hardly 

insignificant. Stone-Romero (1994) cogently argued that the use of measures lacking 



   
   

13

psychometric quality is a systemic flaw for the interpretability and applicability of the 

research itself. From a more reflective position, Smith and Stanton (1998) iterated that 

there is a need for a better “measurement culture” in applied psychology. “Perhaps 

journal editors and reviewers could, in greater numbers, join an effort to stop rewarding 

“adhocracy” and start rewarding a deliberate, thoughtful, and long-term approach to 

measurement” (Smith & Stanton, 1998, p. 381). Clearly, there is a need to increase our 

understanding and communication of the quality of our measurement practices. 

 When measurement issues are discussed, the primary emphasis is often on the 

construct validity of a particular assessment. However, the psychometric characteristics 

of an assessment have also been found to influence the results of parametric statistical 

tests (Busemeyer, 1980; Davison & Sharma, 1988; 1990). One such parametric test, the 

identification of a significant interaction effect in analysis of variance (ANOVA) or 

moderated multiple regression (MMR), is a popular analytic procedure in applied 

psychological research (Stone, 1988). In these analyses, the interaction term, or non-

additive moderator, is the effect of one independent variable on a dependent variable that 

varies as a function of (at least) one other independent variable (Aiken & West, 1991). 

Decisions about the statistical significance of these effects are made on a probabilistic 

basis, and it is important for researchers to be aware of the potential decision errors 

associated with null hypothesis statistical testing. 

The decision errors related to evaluations of a null hypothesis come in two forms, 

Type I and Type II errors. A researcher who commits a Type I error erroneously rejects a 

null hypothesis, concluding that a statistically significant effect is present when no effect 
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actually exists at the population level. A researcher who commits a Type II error 

erroneously fails to reject a null hypothesis, concluding that no statistically significant 

effect is present when an effect actually does exist at the population level. Rosenthal and 

Rosnow (2008) cleverly refer to these as errors of gullibility and errors of blindness 

respectively. A commonly held convention in psychological research is that statistical 

significance is determined when effects are observed at an alpha level of p < .05. This 

criterion translates into a 5% probability of committing a Type I error. Therefore, the 

Type I error rate typically refers to the overall accuracy of a test. Likewise, the 

probability of correctly rejecting a false null hypothesis is defined as the statistical power 

of a test. Statistical power is the inverse of Type II errors and refers to the sensitivity of a 

test. Together, these decision errors represent a balancing act that is directly tied to the 

overall quality of our research. 

Often in applied research, the sensitivity of a test for moderators, or the 

prevalence of Type II errors, is the most salient concern. A variety of issues such as the 

relationship between predictors (multicollinearity) and population level effect sizes 

contribute heavily to Type II errors (Aguinis & Stone-Romero, 1997; McClelland & 

Judd, 1993; Stone, 1988; Zedeck, 1971). However, recent theoretical and simulation 

research has found that measurement factors such as assessment appropriateness and 

response score scaling can influence the prevalence of Type I errors for moderator effects 

(Davison & Sharma, 1990; Embretson, 1996; Kang & Waller, 2005; Maxwell & Delaney, 

1985). Kang and Waller (2005) found, in some conditions, that the Type I error rate for 

the moderator term in a moderated multiple regression analysis exceeded 40% depending 
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on various psychometric factors. These findings suggest that understanding the specific 

psychometric qualities of our assessments is also an important aspect of accurate 

statistical decisions.  

An increasingly championed approach for facilitating our understanding of 

psychometric qualities is a modern measurement methodology known as item response 

theory (Embretson & Reise, 2000; Harwell & Gatti, 2001). Item response theory (IRT) is 

an item-level evaluation of the psychometric properties of a latent construct assessment, 

as well as a means of operationalizing the latent construct itself (Drasgow & Hulin, 1990; 

Embretson & Reise, 2000; Zickar, 1998). Derived from the seminal work of Frederick 

Lord (Lord, 1953b; Lord & Novick, 1968), and research conducted in the U.S. Air Force 

during the 1940s and 1950s, IRT has several characteristics that make it unique from 

classical test theory approaches to measurement. Specifically, the invariance of item and 

person parameters, the computation of a variable standard error of measurement, and the 

scaling of the response scores allow IRT models to identify information that is 

inaccessible by other approaches to measurement. These characteristics have also been 

found to have beneficial effects for the accuracy of parametric analyses such as factorial 

ANOVA (Embretson, 1996) and MMR (Kang & Waller, 2005). As a result of these 

advantages, many researchers have advocated that IRT be considered standard 

psychometric procedure in both general and applied psychology (Borsboom, 2008; 

Drasgow & Hulin, 1990; Embretson & Reise, 2000; Thissen & Steinberg, 1988; Zickar, 

1998). 
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My goal for this dissertation will be to extend our understanding of the 

psychometric conditions that may contribute to an increased risk of Type I errors in 

moderated statistical models. A Monte Carlo simulation will be conducted to investigate 

the relationship between response score scaling, assessment appropriateness, and the 

potential for inflated Type I errors for interaction effects in moderated multiple regression 

when a Likert-type scale is used to measure a latent construct. Embretson (1996) and 

Kang and Waller (2005) conducted similar simulation studies and found promising 

results for the benefits of IRT. However, these studies simulated dichotomous response 

data and applied restrictive IRT models, thus reducing their generalizability for general 

and applied psychological research. Simulating latent construct assessments with multi-

category response formats and applying a polytomous IRT model will be an important 

extension of this work. Such scales are more representative of the latent construct 

assessments utilized in general and applied psychological research (Aguinis Pierce, 

Bosco, & Muslin, 2009; Austin, et al., 2002; Fields, 2002), and polytomous IRT models 

are available for these assessments (Embretson & Reise, 2000; Ostini & Nering, 2006). 

An additional goal in this dissertation will be to demonstrate IRT as a data scaling 

technique that has the potential to help increase the accuracy of parametric models in 

applied psychological research. For example, in I/O psychology, the analysis of 

moderators is among the most popular goals of research (Aguinis, 2004; Stone, 1988), 

and self-report scales for latent construct assessments comprise a majority of the data that 

is collected (Aguinis et al., 2009; Austin et al., 2002). Additionally, an overwhelming 

majority of these self-report scales use multi-category, Likert-type response metrics 
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(Fields, 2002) which result in scores with long debated mathematical properties (Stine, 

1989). An obvious aim in this field is to accurately test hypotheses of interaction effects 

with Likert-type data. The unique qualities of IRT can provide methods by which I/O 

psychologists can increase the overall accuracy of their research and practice. 

Specifically, the robustness of IRT scoring procedures to Type I errors in moderated 

analyses could prove to be very beneficial for basic researchers evaluating I/O theory, as 

well as for practitioners making recommendations to organizations and legal entities. 
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CHAPTER 2: LITERATURE REVIEW 

Previous authors in the field of I/O psychology have championed the potential 

benefits of IRT (Drasgow & Hulin, 1990), but it has remained largely underrepresented 

in the applied literature (Aguinis et al., 2009; Austin et al., 2002). In the past 25 years, 

fewer than 50 studies have been published in top I/O research outlets compared to over 

500 in educational research and measurement journals. Embretson and Reise (2000) 

provide a fascinating historical lineage for IRT that explores its largely intradisciplinary 

nature within the field of educational testing. The reasons for this have largely been 

attributed to early barriers of computational complexity and practicality for applied 

research as well as a general lack of interdisciplinary research training. The 

implementation of IRT in future studies in applied psychology will be an important step 

forward for the quality of measurement in our field. 

Researchers that have utilized IRT in I/O psychology often have a very specific 

focus such as using differential item functioning to identify faking motivations in job 

applicants (Zickar, Gibby, & Robie, 2004) or to evaluate the quality of performance 

appraisal raters (Facteau & Craig, 2001). Other studies have used IRT to investigate the 

specific psychometric properties of popular I/O assessments (Hulin & Mayer, 1986; 

Reeve & Smith, 2001; Zagorsek, Stough, & Jaklic, 2006). Although these applications 

are certainly informative, a broader integration of the benefits of IRT in applied 

psychological research may be achieved by widening the net of applicability. Therefore, I 

will aim to demonstrate a capability of IRT as an analytical tool that is generalizable for a 
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diverse range of research in I/O psychology. In accomplishing this goal, a better case can 

be made for the adoption of this useful methodology by researchers in this field. 

Moderator Analyses in Psychological Research 

Moderator variables, or non-additive components of a predictor-criterion 

relationship, have been used substantially throughout the history of psychological 

research (Aguinis, 2004; Aiken & West, 1991). A moderator is typically defined as a 

variable that creates a conditional relationship between a predictor and a criterion. In 

other words, the relationship between the predictor and the criterion depends on the level 

of the moderator variable (Cohen, Cohen, West, & Aiken, 2003; McClelland & Judd, 

1993; Stone, 1988). Two common analytical models for moderator detection are factorial 

analysis of variance (ANOVA) and moderated multiple regression (MMR). Factorial 

ANOVA is an appropriate methodology for manipulated experimental designs in which 

the manipulated conditions represent categorical independent variables, or fixed effects. 

Likewise, MMR is often used in quasi and non-experimental research and can analyze 

categorical independent variables (fixed effects), as well as continuous independent 

variables, or random effects, although this final condition has been met with some debate 

(c.f., Fisicaro & Tisak, 1994; Sockloff, 1976). It is important to note that both types of 

variables (categorical or continuous) can be used in either analysis (ANOVA or MMR), 

but it is considered to be the least desirable to introduce continuous variables as 

independent variables into ANOVA, as some artificial dichotomization must occur such 

as a median split. This practice is often associated with a loss of variance information 

(Aiken & West, 1991; Cohen et al., 2003). 
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Of these two analyses, MMR is perhaps the most common technique in applied 

psychological research (Aguinis, 2004; Aguinis, Beaty, Boik, & Pierce, 2005; Aguinis & 

Stone-Romero, 1997; Stone-Romero, Alliger, & Aguinis, 1994). Aguinis (2004) indicates 

that MMR has existed as an analytic technique for well over 50 years, and has proved to 

be robust to mathematical as well as conceptual shortcomings of alternative procedures 

proposed during that time. In the recent history of applied psychological research, 

Aguinis et al. (2005) indicate that MMR has been used in approximately 20 to 40 articles 

per year in the Journal of Applied Psychology, Academy of Management Journal, and 

Personnel Psychology over the past 30 years. In these studies, MMR has been applied to 

a wide variety of topic areas such as “job performance, job satisfaction, training and 

development, turnover, pre-employment testing, performance appraisal, compensation, 

organizational citizenship behaviors, team effectiveness, perceived fairness of 

organizational practices, self-efficacy, job stress, and career development” (Aguinis et al., 

2005, p. 94). Additionally, MMR can be used in personnel selection, such that the 

existence of significant moderators like minority group status can imply assessment bias 

(Bartlett et al., 1978; Society for Industrial and Organizational Psychology, 1987), and 

these findings are regarded as key indicators in legal challenges to employment policies 

(Cascio & Aguinis, 2005). In fact, Lubinski and Humphreys (1990) attribute this use of 

moderator analyses as the initial impetus for the technique. Indeed, MMR is a pervasive 

and useful procedure for a variety of different types of variables in applied psychological 

research. 
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In MMR, a predictor – criterion relationship is composed of at least two 

independent variables (predictors) that each produce a main effect and collectively 

produce an interaction (moderator) effect on the dependent variable (criterion). One 

independent variable is determined a priori to be the moderator variable upon which the 

relationship between the other independent variable and the dependent variable vary. The 

MMR model is typically expressed in a hierarchical structure such that the first model 

contains the additive main effects of the predictor and the moderator, and the second 

model contains the additive main effects plus the multiplicative interaction effect. This 

relationship can be given in the general form in Equations 1a and 1b. 

 

y = a + b1x + b2z + ε        (1a) 

 

ε+⋅+++= zxbzbxbay 321      (1b) 

 

In the additive model expressed in Equation 1a, y is a dependent variable, x is a predictor 

variable, z is the moderator variable, a is an intercept term, bi are regression weights, and 

ε represents residual error. In a regression model fitting this form, x and z are predicted to 

be both additively related to y and represent the main effects of x and z. In Equation 1b, 

the interaction term zxb ⋅3  has been added to the model to represent the multiplicative 

effect of x and z on y. The key feature of a significant moderator in this form is that the 

relationship between x and y varies as a function of z. The significance and impact of a 

moderator is typically identified by examining the change in the amount of variance 
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accounted for in the criterion (ΔR2) when the interaction term is introduced in the second 

step of the hierarchical model (Aguinis, 2004; Aiken & West, 1991; Cohen et al., 2003). 

Job Satisfaction as an Illustrative Construct 

Job satisfaction is perhaps one of the most commonly researched constructs in 

applied psychology, and it has played a ubiquitous role in theories of organizational 

behavior and in job attitudes measurement initiatives (Smith & Stanton, 1998). As such, 

the measurement and implementation of job satisfaction in applied psychological 

research has several key features that are related to the research goals presented in this 

dissertation. First, job satisfaction is a latent construct that is often assessed with 

multicategory, or polytomous, assessments. Second, job satisfaction has a variety of long-

standing assessments devoted to its measurement that may have psychometric features 

that can influence statistical analyses (c.f., Morse & Griffeth, 2009). Finally, job 

satisfaction is a popular component in a variety of moderated theoretical models and as 

such, it is subject to the aforementioned statistical influences. 

Job satisfaction is typically defined as a cognitive and affective evaluation of an 

individual’s job (Hulin & Judge, 2003). Job satisfaction has been defined as both a global 

and facet construct, with popular assessments designed from each perspective such as the 

Job in General Scale (global measure) and the Job Descriptive Index or the Minnesota 

Satisfaction Questionnaire (facet measures). Hulin and Judge (2003) identify a variety of 

theoretical models of job satisfaction such as the Job Characteristics Model (Hackman & 

Oldham, 1976) in which characteristics of job tasks: task identity, task significance, skill 

variety, autonomy, and feedback, are moderated by an individual construct (growth need 
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strength) to influence various attitudinal outcomes such as motivation and satisfaction. 

This model can be broadly classified into a group of theories known as person by 

environment (PxE) interactions. 

The underlying structure of a person by environment interaction for job attitudes 

such as that seen in the Job Characteristics Model continues to be popular in applied 

psychological research. Indeed, more contemporary theoretical models of job satisfaction 

champion the person–environment fit perspective (Dawis, 1992), in which the focus is on 

fully moderated relationships. However, these complex multivariate models are in need 

of more research (Brief, 1998; Hulin & Judge, 2003). Heeding this call for research is 

essentially asking for a moderation analysis in which job satisfaction is a dependent 

variable that is measured and analyzed as a latent construct. It would be prudent then to 

closely examine the measurement properties of job satisfaction assessments and the 

operationalization of the job satisfaction construct when evaluating theoretical 

frameworks that rely on the existence and interpretation of interactions. 

Research that uses a construct such as job satisfaction as a central theme in a 

larger model is also subject to the effects of measurement artifacts. As an example, 

consider classical and modern theories of voluntary employee turnover. Job satisfaction 

has historically been a central mechanism in models of organizational behavior 

(Brayfield & Crockett, 1955; March & Simon, 1958), and research on employee turnover 

has touted job satisfaction as a key construct (Lee & Mitchell, 1994; Mobley, Griffeth, 

Hand, & Meglino, 1979). Often, job satisfaction is considered to be central (in terms of 

location in a theory/model), such that there are antecedents and consequences of 
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satisfaction that have important implications for predicting behavior. Additionally, many 

of these relationships rely on the moderating effects of various antecedents on constructs 

such as job satisfaction. Understanding the situations in which moderators are assessed 

can lead one to explore the statistical issues in moderator detection. Because inferential 

statistics rely on probability-based decision making, of particular concern are the factors 

that influence the prevalence of Type I and Type II errors related to decisions about the 

null hypothesis for the moderator analysis. 

Statistical Issues in Moderator Detection 

As previously demonstrated, the detection of significant moderators and 

interactions in applied psychology has occupied an important research goal. Aguinis 

(2004) argues further that this technique is only becoming increasingly popular. 

However, the accurate detection of moderators has been fraught with methodological and 

statistical difficulties. A particularly important question in this area has focused on the 

barriers to accurate moderator detection. That is, what predispositions exist that increase 

the likelihood of Type II errors for moderator effects? In response to this general query, a 

variety of simulated (e.g., Monte Carlo) and empirical studies have identified overall 

sample size, the inequality of moderator subgroup sample sizes (for categorical 

variables), multicollinearity of predictors, range restriction, artificial dichotomizations, 

and population level moderator effect sizes as some of the risk factors for Type II errors 

in moderator detection (Aguinis & Stone-Romero, 1997, Stone-Romero et al., 1994; 

Zedeck, 1971). The general consensus has been that any number of the aforementioned 
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factors will result in low statistical power in MMR analyses and increase the likelihood of 

Type II errors for the moderator term. 

A final effect impacting the detection of significant moderator effects that 

warrants mention is the predictive strength of the additive model. Specifically, Rogers 

(2002) identified substantial mathematical constraints imposed by the variance in the 

criterion that is accounted for by the main effects in the model. For example, when the 

independent variables are continuous, the effect size of an interaction varied as a function 

of the strength of the additive model and the correlation between the independent 

variables, or multicollinearity. Ironically, under simulated conditions of no 

multicollinearity which is regarded as methodologically and statistically ideal, the 

maximum effect size of the interaction term was less than .4 for in the strongest additive 

model (R2 = .70). As the predictive ability of the additive model decreased, the 

interaction effect size further plummeted to levels below .15 as the multicollinearity 

approached and exceeded 0. Rogers (2002) concluded his study with a basic, yet 

powerful implication, “Simply stated, to have strong ordinal moderation, there must be a 

strong effect to be moderated” (p. 223). 

These factors are certainly worthy of attention for any researcher interested in 

these analyses, and a large number of publications are available to specify the behavior of 

these statistics (c.f., Aguinis & Stone-Romero, 1997; Aiken & West, 1991 chapter 3; 

Jaccard & Turrisi, 2003 chapter 4; Morris, Sherman, & Mansfield, 1986; Paunonen & 

Jackson, 1988; Stone-Romero et al., 1994; Zedeck, 1971). However, recent studies have 

demonstrated that an inflated Type I error rate for decisions related to moderators is also 
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a concern. Specifically, theoretical elaborations (Davison & Sharma, 1988; 1990; 

Maxwell & Delaney, 1985) and simulation studies (Embretson, 1996; Kang & Waller, 

2005) have demonstrated that the psychometric properties of an assessment used to 

measure latent constructs, and the operationalization of the construct itself can lead to an 

increased risk for spurious interaction effects. 

Specifically, two conditions lend greater opportunity for this effect to occur. First, 

the use of raw scores to quantify the dependent variable may well violate assumptions 

about the scale of measurement on which the latent construct is operationalized. 

Specifically, latent constructs are thought to exist at least at the interval level, but raw 

sum scores calculated under the classical test theory model likely do not exceed ordinal 

level properties (Borsboom, 2008; Harwell & Gatti, 2001; Maxwell & Delaney, 1985). 

Second, when the reliability of the assessment and the distribution of individuals’ 

construct scores are poorly matched, a condition arises known as “assessment 

inappropriateness”. Assessment inappropriateness can be thought of as arising when a 

group of individuals take an assessment that is either very difficult or very easy based on 

their abilities. The results of such an assessment will typically lead to restricted scores 

due to floor and ceiling effects caused by the relative difficulty of the items. Response 

score scaling and assessment inappropriateness have both been demonstrated to heavily 

influence the occurrence of Type I errors in moderator analyses (Embretson, 1996; Kang 

& Waller, 2005). These two conditions will be described in detail below. 
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Response Score Scaling 

A central issue to the identification of spurious interaction effects is the scale of 

measurement on which the observed, or manifest, variable can be classified. Stevens 

(1946) presents the classic scales of measurement in psychological research as nominal, 

ordinal, interval, and ratio. These scales are classified by the assumed relationships 

between the data values as well as the admissible transformations that can be performed 

on the data. Nominal data simply represents group categorizations and allow only one-to-

one transformations. Ordinal data suggests a successive order in group categories, but 

assumes no information about the magnitude of the inter-category differences. Ordinal 

data can be subjected to monotonic transformations that preserve the ordering of the 

categories. Interval data suggests order and meaningful differences between the data 

points, but no true zero point. Interval-level data permits linear, or affine, transformations 

such as in the structure of a linear regression equation with a multiplicative component 

and additive constant. Ratio data has both meaningful intervals and a true zero point that 

allows for similarity transformations. Several authors have advocated that the failure to 

preserve the scale of measurement for a particular variable can result in misleading 

statistical results (Borsboom, 2008; Harwell & Gatti, 2001; Maxwell & Delaney, 1985; 

Stine, 1989; Stevens, 1946). 

Stevens’ (1946) scales of measurement were derived primarily to provide a 

taxonomy of admissible calculations and transformations with regard to psychological 

data. In an influential text approximately twenty years earlier, the physicist N. R. 

Campbell (Campbell, 1928), argued that a numerical structure used to perform 
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mathematical operations must appropriately represent an empirical structure of the 

object(s) under inquiry. Campbell (1928) referred to this process as extensive, or 

fundamental, measurement. Stine (1989) succinctly summarized the basis of fundamental 

measurement in the following passage: 

… a given set of empirical relations could be represented by several equivalent 

sets of numerical relations. Given that each of these numerical representations 

(numerical structures) is of a common empirical structure, they should be related 

to one another. Equivalently, one can convert a given numerical structure into one 

of the other structures without changing the nature of the empirical structure that 

is represented. Certain changes, or transformations, of the numerical structure are, 

therefore, admissible in the sense that the empirical phenomena that are being 

described are invariant with respect to the relationships that define the 

transformation. (Stine, 1989, p. 147) 

The properties and rules surrounding measurement practices specify that the scale of 

measurement and admissible transformations define the appropriateness of the 

mathematical or statistical functions that are used. In parametric statistics, it is assumed 

that the variables being measured attain at least an interval scale of measurement for 

deriving meaningful conclusions. However, raw scores from many psychological 

assessments are thought to be limited to an ordinal scale of measurement (Borsboom, 

2008; Harwell & Gatti, 2001; Maxwell & Delaney, 1985; Stevens, 1946). Other authors 

will slightly relax this distinction and suggest that the majority of measurement in 
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psychological research takes place in a gray area in between the ordinal and interval 

scales (Gardner, 1975; Stine, 1989). 

 In the years since the initial publication of Stevens’ scales, a fervent debate has 

ensued over the validity and importance of measurement scale as well as the appropriate 

statistical procedures that can be applied (Stine, 1989). This debate has primarily 

concentrated on the importance of the distinction between the ordinal and interval scales 

of measurement and the resulting implications for parametric statistics. One solution that 

has been pursued is the development of non-parametric, or distribution-free, statistics 

(Clogg & Shihadeh, 1994; Gibbons, 1993). Non-parametric analogues have been 

developed for nearly all parametric procedures and benefit from relaxing two primary 

assumptions of parametric procedures namely, that the scores in the population are 

normally distributed and the scale of measurement is at least at the interval level. Thus, 

data that are based on scales that are, at best, ordinal levels of measurement can be 

subjected to non-parametric procedures that preserve data rankings and do not violate 

measurement rules (Gibbons, 1993). However, many researchers are reluctant to use non-

parametric techniques, as many parametric statistics have demonstrated adequate 

robustness to violations of these assumptions (Davison & Sharma, 1988), and non-

parametric procedures are often associated with a loss of information pertaining to the 

nature of the variables (Gardner, 1975). One author articulated this point by saying, 

“Consequently, in using a non-parametric method as a short-cut, we are throwing away 

dollars in order to save pennies” (McNemar, 1969, p. 432). It is reasonably clear that 
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regardless of the pragmatic appropriateness of non-parametric tests, the preference for 

parametric statistics is unabashed. 

In a review of the literature addressing the appropriateness of the scale of 

measurement on parametric statistics, Stine (1989) presents a variety of 

counterarguments for the practical importance of Stevens’ scales of measurement. For 

example, some have argued that the statistics that are conducted with the numerical 

representations of psychological variables are “closed systems” (c.f., Anderson, 1961; 

Burke, 1953; Lord, 1953a). Those arguing from this perspective say that the scale of 

measurement is unimportant for the results of statistical analyses, as long as the 

distributional assumptions of the analyses themselves are met. Frederic Lord’s popular 

quip, “The numbers don’t remember where they came from,” (Lord, 1953a, p. 751) 

represents this position. Another primary argument against Stevens are those of Gaito 

(1959; 1960) and Jenson (1980) who assert that a variable that is normally distributed can 

be assumed to have interval properties because the normal distribution can be subdivided 

into equal intervals. Finally, Gardner (1975) and Stine (1989) report the existence of 

simulation evidence pertaining to the invariance of statistical procedures when aspects of 

measurement scales are violated. 

These counterarguments to Stevens (1946) would appear to suggest that the scale 

of measurement issue is of lesser importance than had been initially conceived. However, 

Stine (1989) provides an elegant rebuttal of these positions in terms of Stevens’ original 

assumptions; ultimately concluding that the primary focus for researchers is the 

interpretability of statistical tests and the numerical – empirical structure relationship. 
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The origin of the numbers used in a statistical analysis is central to the 

interpretation of the analysis. For the scientist, what counts is that there is an 

empirical analog to the numerical results, a situation that will occur only when the 

analog is viewed with the appropriate scale (Stine, 1989, p. 153). 

Stevens would certainly agree with Stine’s representation of these arguments, as he 

[Stevens] considered the application of inappropriate statistical procedures as “illegal 

statisticizing” (Stevens, 1946, p. 679). 

At this point, one might ask what are the situations in which the scale of 

measurement of an observed variable at the ordinal level can be demonstrated to have 

misleading results? It appears to depend on the specific procedure. For instance, Davison 

and Sharma (1988) and Maxwell and Delaney (1985) demonstrated through mathematical 

derivations that there is little cause for concern regarding scaling in comparing mean 

group differences in the independent samples t-test. However, in another derivation, 

Davison and Sharma (1990) subsequently demonstrated that scaling-induced spurious 

interaction effects can occur with ordinal-level observed scores in multiple regression 

analyses. 

To test these derivations, Embretson (1996) and Kang and Waller (2005) 

conducted simulation studies to demonstrate that characteristics of the assessment used to 

measure dependent variables can influence the detection of interaction effects in typical 

parametric analyses. Specifically, the researchers investigated whether a significant 

interaction effect would occur in a factorial ANOVA or MMR (respectively) when raw 

scores of a latent construct assessment were entered into the model. The results of these 
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simulations demonstrated that spurious interaction effects were identified at rates above 

the nominal Type I error rate of α = .05 when raw score composites were used to 

operationalize latent variables. As an empirical follow-up to Davison and Sharma (1990), 

Embretson and Kang and Waller also considered these to be scaling-induced interactions. 

The issues of the scaling of latent and manifest variables as well as an interval-level 

rescaling solution will be further discussed in the section on item response theory. 

Assessment Appropriateness 

A second contributing factor to the prevalence of Type I error inflation in 

moderator analyses is the idea of assessment appropriateness. Assessment 

appropriateness refers to the congruence of the reliability of a particular assessment to the 

distribution of the individuals’ construct scores who respond to an assessment. 

Traditional forms of reliability such as Cronbach’s alpha make the assumption that an 

assessment is equally reliable across the entire construct range for the individuals who 

take the assessment (Crocker & Algina, 1986). However, this assumption is a (known) 

oversimplification and is limited to test/scale-level psychometric evaluations, such as 

those found in classical test theory models (Hambleton, Swaminathan, & Rogers, 1991). 

An alternative estimate of reliability can be calculated as a cumulative function of item-

level information curves with modern measurement theory models such as IRT. This 

item-level, variable measure of reliability allows for the possibility that an assessment 

may have peak reliability at one point along the continuum of the construct that is being 

assessed, whereas the distribution of construct scores of the individuals responding to the 

assessment may peak at a different place (see Figure 1). This situation creates assessment 



   
   

33

 
Figure 1. Assessment inappropriateness 
 
 

inappropriateness, and has been shown to drastically inflate the occurrence of Type I 

errors in moderator detection (Embretson, 1996; Kang & Waller, 2005) as well as 

influence the validity of other statistics such as test-retest reliability (Fraley, Waller, & 

Brennan, 2000). To better understand this phenomenon and how to detect when an 

assessment is predisposed to it, it will be necessary to discuss the components of a 

modern measurement theory known as item response theory. 

Item Response Theory 

Item response theory is an item-level approach to the evaluation of the 

psychometric properties of a latent construct assessment, as well as the operationalization 

of the latent construct itself (Drasgow & Hulin, 1990; Embretson & Reise, 2000; 
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Hambleton et al., 1991). Derived from the more general term “latent trait theory” (Lord, 

1953b), item response theory provides several unique and appreciable characteristics as a 

psychometric measurement model (Drasgow & Hulin, 1990; Embretson & DeBoeck, 

1994, Embretson & Reise, 2000; Hambleton et al., 1991). A key feature of all item 

response theory models is the ability to examine item-level information such as the 

probability that an individual will respond in a particular response category for any item 

on an assessment given his or her standing on an underlying, latent construct. This item-

level focus makes IRT conceptually and mathematically unique from the classical test 

theory (CTT) model that has dominated psychometric techniques since the early 20th 

century. The item-level focus of IRT is also beneficial for researchers seeking more 

specificity in their measurement data. In her reflection on 50 years of job attitude 

measurement research, Patricia Smith (Smith & Stanton, 1998) extolled the virtues of 

investigating data at the individual and item level. Although this general piece of advice 

was not specifically in reference to IRT, a measurement model from this perspective 

would likely be a welcomed tool. To fully appreciate the differences between IRT and 

CTT, it will be useful to examine the assumptions and general components that comprise 

most IRT models. 

Latent Constructs 

Item response theory models are particularly suited for evaluating assessments 

designed to measure latent constructs (Embretson & Reise, 2000). Latent constructs are 

unobserved, causal factors of human behavior (Bollen & Lennox, 1991; Borsboom, 2008; 

Maxwell & Delaney, 1985). In other words, the latent construct manifests behaviors that 
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can be measured. For example, an actual behavioral occurrence such as instances of 

inattentiveness in children suffering from attention deficit hyperactive disorder, or 

response patterns on a test such as five out of ten items correct on a math exam, or a 

certain pattern of responses on an attitude assessment are all instances of causal, latent 

constructs. Examples of latent constructs include (but are not limited to) individual 

characteristics such as general cognitive ability, an attitude such as job satisfaction, or a 

personality characteristic dimension such as conscientiousness. A latent construct 

assessment is any method that is used to measure the behavioral manifestations of the 

latent constructs within an individual. As noted above, these methods most commonly 

include ability tests such as a mathematics exam, self-report scales such as a personality 

or attitude inventory, or measures of actual behavioral occurrences. As a point of 

clarification, I will use the term “assessment” as a general reference to any type of 

construct measurement such as a test or scale. Additionally, I will use the term 

“construct” as a general reference to any type of latent characteristic such as an attitude, 

trait, or ability. 

It is always prudent to appropriately specify the relationship between latent 

variables and their observed, or manifest, variables. Maxwell and Delaney (1985) 

describe this connection as a conditional relationship f(Y|θ) where Y represents a 

manifest variable that represents the latent variable theta (θ). Borsboom (2008) provides a 

succinct description of three different types of relationships between latent and manifest 

that specifies the intended scale of measurement for each. Specifically, these can be 

considered latent-continuous, observed-continuous; latent-continuous, observed-
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categorical; and latent-categorical, observed categorical. It is important to note that 

“categorical” in this sense specifically refers to ordered categories. This distinguishes that 

the categorical representations are ordinal rather than nominal in nature. The 

commonality of all latent variable models is that the observed variables can be related to 

the latent construct with an appropriate regression function (Borsboom, 2008). For the 

purposes of CTT models, the appropriate relationship distinction for f(Y|θ) is latent-

continuous, observed-categorical. This specifies that the latent construct exists at an 

interval scale and the observed score exists at an ordinal scale of measurement. In IRT 

models, this relationship is extended such that the manifest variable is measured at an 

ordinal scale but can be rescaled to an interval scale of measurement (Embretson & 

Reise, 2000; Harwell & Gatti, 2001; Reise, Ainsworth, & Haviland, 2005). 

Assumptions 

Item response theory models all assume three primary components that should be 

evaluated in order to achieve accurate results. First, with the exception of 

multidimensional models, IRT models assume that the latent construct is unidimensional 

in nature. Therefore, a priori steps must be taken to either verify that the construct being 

measured is indeed unidimensional, or multidimensional sub-factors must be analyzed 

separately as unidimensional scales (Embretson & Riese, 2000; Reckase, 1997). In early 

IRT work, this created a practical problem of instability in the parameter estimates due to 

dimensions with very few items (Drasgow & Hulin, 1990). Fortunately, improvements in 

the maximum likelihood estimation algorithms such as marginal maximum likelihood 

estimation and the expected a posteriori method allow IRT models to reliably handle 
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scales (or sub-factors) comprised of fewer items, thus enabling the latter strategy 

(Drasgow & Hulin, 1990). Additionally, valid arguments have been posed that question 

the existence of any truly unidimensional constructs (Drasgow & Hulin, 1990; 

Hambleton et al., 1991). It is now generally held that researchers should demonstrate that 

there is a dominant dimension present as evidence of practical unidimensionality. 

There is substantial disagreement among researchers as to the best method of 

verifying the dimensionality of a construct assessment. Hambleton, et al. (1991) and 

Hattie (1985) provide very comprehensive lists of available methods for investigating 

dimensionality, although the authors implore that no single measure is thought to be 

definitive or appropriate for all situations. Additionally, there appears to be increasing 

support for the robustness of IRT models in mild to moderate violations of 

unidimensionality (Embretson & Reise, 2000). As an alternative, several IRT procedures 

currently exist for assessing multidimensional data such as “full-information factor 

analysis” (Reckase, 1997). However these procedures are still considered to be in the 

“infancy” stages of development. Additionally, commercially available software 

packages for these purposes have limited applications such as for dichotomous data only 

(Embretson & Reise, 2000). 

A second component of IRT models related to dimensionality is that of local 

independence. Local independence is an IRT assumption stating that the relationships 

between items should be fully accounted for by the underlying latent construct 

(Embretson & Reise, 2000; Hambleton, et al., 1991). Another way of conceptualizing 

local independence is to say that the partial correlation between items should drop to 
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nearly zero in the presence of the underlying construct. Local independence is related to 

dimensionality such that local independence is obtained when the entire latent space has 

been identified and is accounted for in the model. Therefore, with a unidimensional 

construct, unidimensionality should imply local independence (Hambleton et al., 1991). It 

should be recognized however, that because strict unidimensionality is thought to be 

nonexistent in measures with more than three items (Drasgow & Hulin, 1990) this 

assumption is never explicitly satisfied. Finally, with multidimensional constructs, local 

independence can be obtained when all relevant construct dimensions are identified and 

accounted for. 

One method that is suitable for checking both the dimensionality and the local 

independence of a particular assessment is to examine the item variance-covariance or 

correlation matrix. Specifically, this should be done within several homogenous 

subgroups along the construct continuum in order to partial out the relationships between 

items due to the latent construct. In the case where unidimensionality and local 

independence hold, the off-diagonal covariances or correlations should be very small 

(Hambleton et al., 1991). 

Finally, IRT models are considered strong, or falsifiable, measurement models 

and are thus able to be evaluated for model-data fit. In a similar vein as the 

dimensionality arguments, there is ongoing debate as to the appropriateness of many IRT 

model-fit indices. A primary problem is that most measures of model fit use a chi-square 

based index. Similar to problems with other strong modeling methodologies such as 

structural equation modeling, increases in sample size will almost surely result in 
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rejection of model fit. In IRT, this is an especially strong paradox in that larger sample 

sizes are typically associated with better convergence in maximum likelihood 

estimations, but are also directly linked to a rejection of model fit (Drasgow & Hulin, 

1990; Embretson & Reise, 2000). Currently, there are a variety of new model fit indices 

being evaluated. For example, the S-X2 item fit index for polytomous models has been 

shown to be sufficiently robust to spurious violations of model fit when the an assessment 

has few items (Kang & Chen, 2007). However, most applied researchers will likely have 

to deal with some degree of model misfit. 

The Invariance Property and the Theta Scale 

Two final characteristics that are common to all IRT models are the invariance 

property and the theta scale. The invariance property is considered to be a defining 

feature of IRT that separates it from classical test theory (Drasgow & Hulin, 1990; 

Hambleton et al., 1991; Embretson & Reise, 2000). As a general prologue, the invariance 

property is an extension of the idea of specific objectivity (Rasch, 1977), which specifies 

that, “comparisons between objects must be generalizable beyond the specific conditions 

under which they were observed” (Embretson & Reise, 2000, p. 143). At the conceptual 

level, specific objectivity and invariance are akin to the idea of fundamental measurement 

promoted by Campbell (1928). At the practical level, this tenet of IRT suggests that item 

parameters derived from IRT models should generalize to other populations of 

individuals. However, Rupp and Zumbo (2006) appropriately caution that item invariance 

is often contrived as a “mysterious” property of IRT, justifying parameter appropriateness 

across an infinite range of populations when, in fact, it has defined limits. These limits, 
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primarily the indeterminacy of scale, will be discussed shortly, following the introduction 

of the theta scale. 

  As an example of the difference between IRT and CTT in terms of invariance, 

consider classical test theory approaches to evaluating an individual’s score, item 

difficulty, and item discrimination. Under CTT, an individual’s score is often reported as 

a raw number of correct responses (X) or a transformation of X such as a mean score. 

Further, item difficulty is measured as the proportion passing a particular item, and item 

discrimination is measured as the biserial correlation of each item to total score. These 

values are indelibly confounded in the CTT model such that true score is a function of the 

observed responses to a particular assessment. This creates a limiting factor in CTT of the 

sample used to evaluate the assessment (Embretson & Reise, 2000). 

In IRT models, item parameters and individual construct scores are (nearly) 

invariant. When an IRT model is found to fit the data, a certain level of confidence in the 

invariance of item and person parameters can be achieved. This allows item properties to 

generalize to other populations, and it allows person parameters to be estimated with 

items from different assessments of the same construct that fit the same model 

(Embretson & Reise, 2000; Hambleton et al., 1991; Reise et al., 2005). However, one 

limiting factor is the issue of indeterminacy (Hambleton et al., 1991; Rupp & Zumbo, 

2006). Indeterminacy stems from the fact that there is no “natural” scale for the latent 

construct. Therefore, because both person and item parameters are initially treated as 

unknown values in an IRT model, an arbitrary scale must be set initially in order to solve 

for the parameter estimates. Although indeterminacy is accepted as a conceptually 
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limiting factor of complete invariance (Rupp & Zumbo, 2006), it should be noted that 

mathematical derivations of popular IRT models such as the Rasch model have 

demonstrated the ability to achieve (nearly) fundamental measurement when the model 

fits the data (Embretson & Reise, 2000; Fischer, 1995; Perline, Wright, & Wainer, 1979). 

The theta (θ) scale is the IRT measure of latent construct scores. In more 

technically appropriate terms, the theta scale is the numerical structure representing the 

empirical structure of the latent construct. Theta scores vary along a continuum from -∞ 

to +∞ although they typically fall within the range of -4.0 to 4.0. The theta scale has no 

natural scale, but is typically anchored at zero so as to represent a standardized scale in 

which a score of zero represents a moderate level of the latent construct, negative values 

represent low levels and positive values represent high levels (Hambleton et al., 1991; 

Embretson & Reise, 2000). Additionally, the probability of a particular response for 

person j on item i can be given as Pj(θi). For some IRT models such as the one-parameter 

logistic, or Rasch1 model, the points along the theta scale simply represent a log-odds 

function. This implies that any particular theta value that is twice that of another theta 

value means that one individual is twice as likely to respond correctly (to a 

dichotomously scored item) than the latter individual. This property also holds for items. 

That is, any particular item that is twice as difficult as another item will have half the 

                                                 
1 Georg Rasch (1901-1980) was a Danish statistician whose research is considered to be the seminal work 
for the one-parameter logistic IRT model and the concept of specific objectivity in scientific research (see 
Embretson & Reise, 2000 for a historical account of the influence of Rasch to the field of modern 
psychometrics). Proponents of the Rasch model consider it to be the only true objective measurement 
model, however, it is limited in that it only estimates a single parameter (item difficulty) and is thus too 
restrictive for many types of data.  
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probability of success for the same individual responding to the items (Embretson & 

Reise, 2000; Hambleton, et al., 1991; Reise et al., 2005). 

The invariance property and the scale of measurement for theta are often cited as 

the reason that theta estimates, as an operationalization of the latent construct, are more 

appropriate than raw scores for use in some parametric analyses (Borsboom, 2008; 

Embretson, 1996; Embretson & DeBoeck, 1994; Kang & Waller, 2005; Wainer, 1982). 

Reise et al. (2005) state that, “Trait-level estimates in IRT are superior to raw total scores 

because (a) they are optimal scalings of individual differences (i.e., no scaling can be 

more precise or reliable) and (b) latent-trait scales have relatively better (i.e., closer to 

interval) scaling properties” (p. 98). Reise and Haviland (2005) give an elegant treatment 

to this condition by demonstrating that the relationship between the log-odds of endorsing 

an item and the theta scale form a linearly increasing relationship. Specifically, the rate of 

change on the theta scale is preserved (for all levels of theta) in relation to the log-odds of 

item endorsement. Embretson and DeBoeck (1994) also iterate the position that theta 

scores achieve interval level scale properties when the IRT model adequately fits the 

data. “An interval scale is obtained when the score distances between persons have equal 

meaning for ability differences” (Embretson & DeBoeck, 1994; p. 645). This sentiment 

reflects the congruence of the numerical and empirical structures advocated by Stevens 

(1946) and Stine (1989) that is achieved by IRT scoring. Finally, Perline, Wright, and 

Wainer (1979) elaborated this idea by specifying the one-parameter logistic, or Rasch 

model, as an empirical instantiation of additive conjoint measurement (an analogue to 

fundamental measurement proposed by Campbell (1928)), which justifies the existence 
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of an interval scale of measurement. These properties allow the theta scale to retain 

interval-level scale of measurement characteristics in the Rasch model as well as in more 

complex models. 

An important question to now ask is how to justify when these characteristics 

extend to more complex IRT models such as the two and three parameter logistic models 

(dichotomous models with a discrimination and guessing parameter, respectively) and 

polytomous models. There is substantial agreement among researchers that although the 

non-Rasch models do not retain the property of specific objectivity, the answer to the 

question of whether non-Rasch models achieve interval-level scaling properties is “yes” 

(Embretson & Reise, 2000; Hambleton, et al., 1991; Harwell & Gatti, 2001; Reise et al., 

2005). Harwell and Gatti (2001) conducted a simulation study investigating the 

congruence of estimated construct scores and actual construct scores using a popular 

polytomous IRT model, the graded response model. In this study, the authors posited that 

if the estimated construct scores were sufficiently similar to the actual construct scores 

which have interval-level scaling properties, then the graded response model results in 

theta scores that are sufficiently interval level. The results of their study confirmed this 

relationship, demonstrating that the differences between the estimated and actual 

construct scores were “within a range attributable to sampling error” (Harwell & Gatti, 

2001; p. 126). These preceding arguments and findings lend strong support to the 

interval-level scaling of IRT derived theta scores as estimates of a latent construct. 

Nonetheless, there has traditionally been some question as to the benefit of 

calculating theta scores from IRT models in lieu of simply using raw scores from an 
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assessment. It is typically found that individuals’ raw scores on an assessment and their 

IRT-derived theta estimates are correlated at r = .90 or above (Drasgow & Hulin, 1990). 

Therefore, some would argue that the added complexity of IRT is unnecessary in deriving 

estimates of an individual’s standing on the underlying latent construct. However, 

simulation studies have demonstrated that the primary drawback of raw scores is that 

they do not achieve interval scales of measurement (Embretson, 1996; Harwell & Gatti, 

2001; Kang & Waller, 2005). This level of scaling is technically required for valid 

applications of parametric statistics, although little attention is often given to violations of 

this practice. In some cases, this violation of scaling can increase the likelihood of Type I 

errors beyond the nominal rate of α = .05 for certain analyses. When the conditions 

leading to this possibility are present, an argument can be made for the benefit of using 

theta scores instead of raw scores as the operationalization of a latent construct. 

Estimating Item and Person Parameters in IRT 

The estimation techniques for item and person parameters in IRT are functionally 

unique from other forms of psychometric evaluations (Baker & Kim, 2004). In IRT 

models, item and person parameters are initially unknown values and do not have a 

natural scale. Therefore, to make a particular model identifiable, an anchoring decision 

must be made (Embretson & DeBoeck, 1994; Reise & Haviland, 2005; Rupp & Zumbo, 

2006). In most cases, the estimation procedure begins by anchoring the theta scale at a 

mean of zero and a standard deviation of one. This is considered person-anchoring (Reise 

& Haviland, 2005). A maximum likelihood estimation procedure is then used to estimate 

the item parameters from the initial anchor. The item parameters are then treated as real 
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values and used to re-estimate the person parameters. This process is iterated until a 

reasonable convergence is reached where further iterations do not result in changes in the 

values beyond some specified criterion. The overall goal is to maximize the likelihood 

(L) that an entire set of data of n item responses provided by N individuals was achieved 

given theta and item parameters (Drasgow & Hulin, 1990; Hambleton, et al., 1991; 

Embretson & Reise, 2000). 

In early IRT models, joint maximum likelihood was used for the estimation 

procedure (Drasgow & Hulin, 1990). Joint maximum likelihood assumes consistency 

(convergence), asymptotic efficiency (the consistent estimator has the smallest standard 

error in large samples), and an asymptotic normal distribution. However, joint maximum 

likelihood requires a large sample size and item pool, and there is debate as to whether or 

not the estimates can actually converge (Drasgow & Hulin, 1990). Lord (1968) specified 

that a sample of 1,000 individuals and a pool of 50 items are necessary for convergence 

in joint maximum likelihood, which hampered the widespread development and use of 

IRT until the early 1980s when the estimation methods improved (Embretson & Reise, 

2000). 

Due to advances in computational power, a marginal maximum likelihood 

procedure is now used for most IRT models. In marginal maximum likelihood, values for 

theta are not treated as unknowns. Instead, they are assumed to be sampled from a known 

or specified distribution (Drasgow & Hulin, 1990; Embretson & Reise, 2000). Marginal 

maximum likelihood can still require fairly large sample sizes and item pools, but is often 

preferred because it is more consistent than joint maximum likelihood (i.e., it reaches 
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appropriate convergence). Many advances have been made in the algorithms 

implemented in IRT programs that allow for reasonable estimation with much less 

stringent requirements. Swaminathan and Gifford (1985) found that reasonable 

convergence can be reached with a sample size of 50 and a pool of 15 items, and 

Drasgow (1989) reached convergence with a sample size of 200 and a pool of 5 items. 

Drasgow and Hulin (1990) consider this improvement to be “one of the most successful 

areas of research in psychology in the last few years” (p. 602). Additionally, other 

estimation techniques such as the expected a posteriori (EAP) technique have been 

supported for conditions when assessments have few items (Mislevy & Stocking, 1989). 

Currently, most IRT models implement a marginal maximum likelihood or EAP 

procedure for generating item and person parameter estimates. 

Dichotomous IRT Models 

IRT models can be grouped into classes based on the nature of the assessment that 

they are designed to model. The most basic IRT models are designed for assessments that 

utilize dichotomous response scales. There are three dichotomous IRT models called the 

one- two- and three-parameter logistic models. Equation 2 represents the item response 

function (IRF) for the one-parameter logistic (or Rasch) model. 

 

Pi(θ) =
e(θ −bi )

1+ e(θ −bi )  i = 1, 2, … , n    (2) 

 

Using equation 2, we can identify that Pi(θ) is the probability of a correct 

response on item i given a particular level of theta. The parameter bi represents item 
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difficulty, and e represents a transcendental number with the value of 2.718. This 

equation can be observed graphically in Figure 2 as the nonlinear, monotonic (or ogive) 

IRF predicting an individual’s probability of success on item i given their ability (θ) that 

is asymptotic at 0 and 1. As one would expect, the probability of success increases as  

 

 

 

 

 

 

 

 

 

 

 

 

examinee ability increases or as item difficulty decreases. The reverse is also true. This 

relationship represents the log odds function of item difficulty and examinee ability 

specified in the Rasch model (Embretson & Reise, 2000), as well as the invariance of 

item and person parameters. If the difficulty of this item were to be raised or lowered, the 

IRF would move laterally along the theta scale to the right or left (respectively). 

 
Figure 2. Item response function (IRF) for a one-parameter logistic model 
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The single-parameter logistic model can be expanded to also include a 

discrimination parameter (two-parameter logistic model) that would change the slope of 

the curve to indicate more or less item discrimination, and a guessing parameter (three-

parameter logistic model) that would modify the lower asymptote to account for 

guessing. These models are very useful for assessments of unidimensional constructs 

using dichotomous scoring. Also, as the most basic type of IRT models, they are very 

useful for illustrating the advantageous properties of IRT modeling. 

In psychological research however, many latent constructs include polytomous 

scoring schemes such as a Likert-type scale or a behavioral occurrence scale with three or 

more response categories. Wainer (1982) argued that the very nature of the polytomous 

response format violates assumptions of Gaussian normality, and scores from such 

assessments are likely better suited to be operationalized with latent trait theory models 

such as item response theory. The three aforementioned logistic IRT models can only be 

used with this type of data if the multiple response categories are collapsed into a two-

category solution. However, doing so will result in a severe loss of information, and 

researchers are well advised to avoid this tactic (Embretson & Reise, 2000; Ostini & 

Nering, 2006). Instead, polytomous IRT models have been developed, tested, and are 

available for use in modeling multi-category response data. 

Polytomous IRT Models 

Polytomous IRT models are appropriate for assessing items with more than two 

response categories. A good example of this is a Likert-type scale where we can 

conceptualize the likelihood of endorsing a particular response option as being dependent 
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upon the individual’s standing on the latent construct being measured. A primary 

distinction between dichotomous item responses and polytomous item responses deals 

with the probability of a response at a category boundary versus the probability of a 

response in a particular category. Ostini and Nering (2006) explain that with dichotomous 

responses, the probability of responding positively rather than negatively at a category 

boundary is the same as responding in the positive category. With only two response 

categories, there is only one boundary, and the boundary decision probability equals the 

category decision probability. However, in items that have more than two response 

categories, there is always at least one category that has two distinct boundaries. In this 

case, the probability of responding in a particular category is a cumulative function of the 

adjacent dichotomous category boundary decisions (Embretson & Reise, 2000; Ostini & 

Nering, 2006). The individual category boundary decisions are referred to as category 

boundary response functions (CBRFs), and each item has one less CBRF than it has 

response categories (see Figure 3). 

The CBRFs in polytomous IRT models specify the nature of the decisions that are 

made with regards to that item. However, most researchers are interested in the 

probability of responding in a particular category for various levels of theta. Instead of an 

IRF that was used to model the probability of a response to an item with dichotomous 

scoring, polytomous items utilize category response functions (CRFs; Ostini & Nering, 

2006). CRFs determine the likelihood of endorsing a particular response option given an 

individual’s theta value in a very similar way that the IRF does with the logistic models 

discussed above. Here, θ again represents an individual’s standing on the latent construct  
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Figure 3. Category boundary response functions (CBRFs) for a 5-category 
polytomous model 

 
 

being assessed. However, unlike the dichotomous IRF in which an individual’s 

probability of a correct response (Pi) is indicated by a single ogive function, and the 

probability of an incorrect response is simply the inverse (1 – Pi); polytomous IRT 

models define as many CRFs as there are response options for each item. For example, an 

item rated on a 5-point Likert-type scale will have five CRFs with only the curves for the 

first and last response option represented as monotonically decreasing and increasing 

functions respectively (see Figure 4). 

Polytomous IRT models that are suitable for common latent construct assessments 

can be classified as either divide-by-total or difference models (Ostini & Nering, 2006; 

Thissen & Steinberg, 1986). The primary distinction between the two is how the 

probability of responding in a particular category is operationalized at the category  
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Figure 4. Category response functions (CRFs) for a 5-category polytomous model 

 
 

boundary, or the nature of the CBRFs. In the divide by total family, the CBRFs represent 

the probability of responding positively as opposed to negatively between two adjacent 

categories only. These models are thought to represent category response decisions as a 

localized choice between two adjacent categories (Embretson & Reise, 2000; Ostini & 

Nering, 2006). In the difference family, the CBRFs represent the probability of 

responding above all of the preceding categories and below all of the subsequent 

categories. These models are commonly thought to retain the properties of Thurstone’s 

scaling methods (Thurstone, 1927; 1928) in which an individual is theoretically attracted 

to each category (beginning with the first), and then subsequently attracted to the next 

category. A category is chosen when the attractiveness of the next category does not 

supersede the attractiveness of the current category (Embretson & Reise, 2000; Ostini & 

Nering, 2006). 
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Another important distinction between the divide by total and difference families 

is the manner in which the model was conceptually derived. Specifically, the divide-by-

total models are Rasch-derivatives. In keeping with Rasch’s goal of specific objectivity, 

models in the divide by total family such as the rating scale model (RSM; Andrich, 1978) 

are mathematically decomposable such that items invariance and interval-level scaling 

can be achieved (Embretson & DeBoeck, 1994; Embretson & Reise, 2000; Perline et al., 

1979; Rupp & Zumbo, 2006). However, a drawback of the divide-by-total models is that 

they are considered to be more restrictive in their approach and thus may not be 

appropriate for some applications (Embretson & Reise, 2000). The difference models 

such as the graded response model (GRM; Samejima, 1969; 1996) focus on achieving 

conceptual response appropriateness based on the psychological processes that are likely 

to be at work when responding to an assessment (Embretson & Reise, 2000; Ostini & 

Nering, 2006). The importance of this approach for psychological measurement and 

research is evident in the measurement of job attitudes. Smith and Stanton (1998) 

presented a reflection of the construction of the Job Descriptive Index, a popular job 

satisfaction measure, in which they argued that an important aspect of measurement 

quality is keeping cognitive decision processes in mind during the development and 

validation of the assessment. 

It is also important to note that several authors have advocated for the invariance 

and interval-level scaling properties in the non-Rasch difference models as well 

(Embretson & Reise, 2000). Indeed, Fraley et al. (2000), Harwell and Gatti (2001), and 

Kang and Waller (2005) have all identified simulated and empirical evidence to support 
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these claims. These findings suggest that the difference model family is both 

conceptually and mathematically appealing for use in psychological applications. 

 Reliability in IRT 

A further benefit of IRT measurement models is that they allow researchers to 

calculate a variable standard error of measurement (SEm) and its inverse function, 

information. In CTT, the assumption is made that the SEm for scores on an assessment are 

uniform and restricted to the population that is being measured (Embretson & Reise, 

2000). However, IRT models estimate SEm as an item-level function that is optimally 

minimized when the characteristics of the item (difficulty) match the characteristics of 

the examinee (theta score). Thus, in the application of IRT to psychological assessments, 

we can optimize measurement by addressing the appropriateness of an item for a given 

individual based on their level of the underlying construct. 

The variable SEm property is the basis of item and assessment “information”. In 

both dichotomous and polytomous IRT models, information and SEm curves can be 

calculated for each item on an assessment as well as for the overall assessment. Item 

information is the precision of measurement (assessed as the minimization of the standard 

error of measurement) for item i across the ability continuum. Overall assessment 

information (scale reliability) is simply a cumulative function of the individual item 

information curves (Embretson & Reise, 2000; Ostini & Nering, 2006). This relationship 

between item and assessment information is conceptually and practically beneficial such 

that individual items can be selected that provide maximal information at various points 
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along the theta continuum. Indeed, this is the mechanism that enables computer adaptive 

testing. 

In dichotomous models, item information is highest at the point at which the 

probability of a correct response is .50 (item difficulty matches examinee ability). 

Therefore, item i is most precise in individual’s who have moderate levels of ability on 

this latent construct, but less precise for individuals with exceedingly high or low abilities 

(see Figure 5). Mathematically, item information for dichotomously scored items is  

 

 
Figure 5. Information function 

 
 

calculated as the largest first derivative of the item curve divided by the product of the 

probability of success and failure on that item (Hambleton et al., 1991). 

In polytomous models, calculating information is slightly more complex due to 

the fact that polytomous items have as many CRFs as there are response options. There 
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are three primary methods of calculating information in these cases, namely the 

derivative approach, conditional expectations, or component elements (for a full 

explication of these approaches, see Ostini & Nering, 2006). Although the calculations 

are slightly different, the end result is the same in the polytomous case as in the 

dichotomous case. Item information represents the point along the theta continuum at 

which any particular item has the lowest SEm. Individual items can be additively 

combined to represent an overall assessment information profile. 

This type of estimate of measurement precision is not available with classical 

procedures because of the lack of local independence (Hambleton et al., 1991). Each 

item’s contribution was always relative and a determinate of other items’ contributions to 

overall test or scale quality. Variable item and assessment information can be used as 

useful diagnostic tools when evaluating an assessment for the possibility of measurement 

inappropriateness. Recall that assessment inappropriateness occurs when the peak 

measurement precision of an assessment is poorly matched to the distribution of 

individual construct scores along the theta continuum (Figure 1). This characteristic has 

been found to exacerbate the problem of spurious interaction effects due to the scaling of 

the dependent variable (Embretson, 1996; Kang & Waller, 2005). Although some 

instances of variable measurement precision can be identified in classical approaches, this 

feature of IRT as a central tenet of modern measurement theory is an advantageous 

diagnostic tool. 
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IRT in Parametric Statistics 

 For the purposes of drawing accurate statistical conclusions when collecting data 

based on latent construct assessments, the use of IRT has two primary benefits. First, the 

responses to a latent construct assessment can be operationalized at the interval-scale of 

measurement as theta scores. This is an important improvement over the use of raw score 

composites that typically do not exceed the properties of an ordinal scale of measurement 

(Embretson & DeBoeck, 1994; Harwell & Gatti, 2001). Second, the ability for IRT 

models to generate a variable SEm and, likewise, more precise estimates of reliability is 

an important improvement over classical approaches. Some researchers have advocated 

that this property alone is a crucial mechanism in the appropriate assessment of statistical 

change (Fraley et al., 2000; Mellenbergh, 1999; Reise & Haviland, 2005). For the 

purposes of research in applied psychology, these two aspects of IRT also represent 

improvements in the assessment of moderated relationships. 

 The scale of measurement issue was central to the studies conducted by 

Embretson (1996) and Kang and Waller (2005). These studies successfully identified that 

raw score composites from latent construct assessments resulted in Type I error rates 

inflated above the nominal rate of five percent for moderator terms in both factorial 

ANOVA and MMR. In the Kang and Waller (2005) study, rates as high as 53% were 

observed when raw scores were used to operationalize the latent constructs and 

assessment inappropriateness was present. However, theta estimates from the one- and 

two-parameter logistic models were found to be robust to spurious interaction results in 

most cases. For example, Kang and Waller (2005) reported that the corresponding Type I 
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error rate for estimated theta scores in the condition identified above (with 53% errors) 

was only 9%. Although above the nominal rate of 5%, a researcher would certainly be 

more comfortable with the latter result. These results argue against the position that the 

added complexity of IRT is unnecessary for calculating individual scores. Indeed, if theta 

estimates are resistant to inflated Type I errors in parametric analyses through the 

achievement of interval-level scaling, a promising case can be made for more extensive 

applications. 

 The second benefit of IRT for parametric analyses is the ability to derive more 

specific psychometric information about the assessment that is being utilized. 

Specifically and perhaps most importantly, IRT models do not operate under the 

assumption that an assessment is equally reliable for all members of the population. This 

perspective on variable measurement precision is perhaps one of the most useful features 

of IRT models for applied psychological researchers (Embretson & Reise, 2000). A 

variable reliability (and variable SEm) allows researchers to identify assessments that may 

be more appropriate for particular segments of the population. This is based on the point 

at which the reliability of the assessment peaks along the construct continuum. In cases 

where an assessment that is optimally reliable at one point of the construct continuum and 

the distribution of individual construct scores peaks at another point of the construct 

continuum, degrees of assessment inappropriateness occur. This situation was found by 

both Embretson (1996) and Kang and Waller (2005) to exacerbate the problem of Type I 

errors in moderator detection for raw score composites. However, even in these cases, 

IRT-derived theta scores were more resistant to elevated risks of Type I errors. 
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 In cases where assessment inappropriateness heightens the potential for spurious 

interaction effects, it would seem prudent to reexamine many of our more popular 

construct assessments to see if this is a possibility. Without fitting an appropriate IRT 

model to the data from any such assessment, there is no way to determine if it is 

demonstrating these characteristics. Indeed, Morse and Griffeth (2009) identified that the 

Minnesota Satisfaction Questionnaire short form (MSQ-S; Weiss, Dawis, England, & 

Lofquist, 1967) exhibited this property with reliability peaking near the lower end of the 

construct continuum. This would suggest that the MSQ-S has greater measurement 

precision for those with lower levels of job satisfaction. As the MSQ is a very popular 

assessment of job satisfaction in applied psychology, the risk of Type I errors in 

moderator analyses based on the psychometric properties of this scale may be a salient 

concern. However, without an IRT-based analysis, this useful diagnostic information 

would go unnoticed. 

The Current Study 

 To summarize, the preceding discussion has explored the possibility that the use 

of raw score composites and the specific psychometric properties of a latent construct 

assessment may lead to an elevated risk of spurious moderator detection in factorial 

ANOVA and MMR. Specifically, the scale of measurement of the manifest variable as 

well as the assessment appropriateness of the measure itself was demonstrated to 

influence the results of parametric analyses (Embretson, 1996; Kang & Waller, 2005). 

Further, the use of IRT-based approaches for operationalizing individual construct scores 

has been conceptually, mathematically, and empirically supported to be robust to these 
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effects. This robustness rests on the argument that IRT-derived construct scores are likely 

to achieve, or more closely approximate, an interval-level scale of measurement that is 

appropriate for use in parametric analyses that are popularly employed in applied 

psychological research (Borsboom, 2008; Embretson, 1996; Embretson & DeBoeck, 

1994; Harwell & Gatti, 2001; Kang & Waller, 2005; Reise & Haviland, 2005; Reise et 

al., 2005; Wainer, 1982). 

Currently, simulation data that substantiates these findings have been limited such 

that only dichotomous response format data has been studied (Embretson, 1996; Kang & 

Waller, 2005). Assessments with multi-category or polytomous response formats are 

much more popular in applied psychological research (Aguinis et al., 2009; Austin, et al., 

2002; Fields, 2002). Therefore, the purpose of this dissertation will be to extend our 

knowledge about the influence of response score scaling and the psychometric properties 

of an assessment in moderator analyses using polytomous data and a polytomous IRT 

model. 

Research Questions and Hypotheses 

 The primary research question to be addressed in this dissertation concerns the 

specific psychometric conditions that may create an increased risk for spurious 

interaction effects in moderated multiple regression. Therefore, empirical Type I errors 

are of primary interest. Specifically, these conditions will be explored as they relate to the 

use of latent construct assessments for the measurement of the independent and 

dependent variables that may be utilized in an MMR analysis. As an omnibus exploration 
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of the relationship between methods of operationalization of latent construct scores for a 

polytomous construct assessment, the following hypotheses are posed: 

Hypothesis 1. Under conditions in which no significant interaction is present, the 

use of raw scores to operationalize a latent construct will result in higher Type I 

error rates than the use of actual or estimated theta scores derived using an IRT 

approach. 

Hypothesis 1a. Under conditions of assessment appropriateness, the Type I error 

rates for raw scores, actual, and estimated theta scores will not exceed the 

nominal criterion of α = .05. 

The preceding hypotheses posit that IRT derived construct scores will perform better than 

raw scores in moderated multiple regression analyses. However, based on the results of 

Kang and Waller (2005), it is not likely that the overall Type I error rate for any scoring 

condition will exceed the acceptable p < .05 criterion under circumstances of assessment 

appropriateness. Under conditions of assessment inappropriateness where the reliability 

of the assessment does not match the distribution of construct scores of the measured 

sample, previous research indicates that there is likely to be a divergence in the 

performance of the aforementioned scoring conditions (Embretson, 1996; Kang & 

Waller, 2005). Based on this evidence, the following hypotheses are posed. 

Hypothesis 2. Assessment inappropriateness will influence the prevalence of Type 

I error rates for the interaction term in moderated multiple regression. 
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Hypothesis 2a. Under conditions of assessment inappropriateness, the use of raw 

scores to operationalize a latent construct will result in Type I error rates that 

exceed the nominal criterion of  α = .05. 

Hypothesis 2b. Under conditions of assessment inappropriateness, the use of 

estimated or actual latent trait scores to operationalize a latent construct will not 

result in Type I error rates that exceed the nominal criterion of α = .05. 

The preceding hypotheses posit that assessment inappropriateness will influence the Type 

I error rate for the interaction term in moderated multiple regression when raw scores are 

used to operationalize a latent dependent variable. This effect can also be influenced by 

the degree to which assessment inappropriateness exists. Specifically, Kang and Waller 

(2005) identified that the greater the divergence in appropriateness, the higher the Type I 

error rate for raw score conditions. Based on this evidence, the following hypothesis is 

posed. 

Hypothesis 3. Under conditions of extreme assessment inappropriateness, the use 

of raw scores to operationalize a latent construct will result in the highest 

prevalence of Type I error rates beyond the nominal criterion of α = .05 for the 

interaction term in moderated multiple regression. 

Additionally, Kang and Waller (2005) identified that item discrimination and regression 

coefficients had an impact on the Type I error rate for the interaction term in moderated 

multiple regression when raw scores were used to operationalize a latent dependent 

variable. Specifically, the researchers found that conditions with higher discrimination 
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and stronger regression coefficients resulted in higher occurrences of Type I errors. 

Based on these findings, the following hypotheses are posed. 

Hypothesis 4. Simulated assessments with higher item discrimination scores and 

stronger regression coefficients will result in the highest occurrence of Type I 

errors for the interaction term in moderated multiple regression when raw scores 

are used to operationalize a latent construct. 
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CHAPTER 3: METHODOLOGY 

A particularly useful methodology for addressing this type of research question is 

computational modeling. Among a variety of techniques, one form of computational 

modeling is the creation of purely mathematical “environments” in which parameters can 

be defined and manipulated in order to observe the resulting effect on a statistic of 

interest. Such studies are often referred to as Monte Carlo simulations (Mooney, 1997). 

Although underutilized in industrial and organizational psychology research, 

computational modeling is beginning to gain ground as a useful methodology when time, 

resources, or knowledge of the behavior of a statistic are in low supply (Hulin & Ilgen, 

2000; Zickar & Slaughter, 2002). 

Monte Carlo simulations are a class of (mathematical) computational modeling in 

which the behavior of a statistic is estimated through repeated random trials of a defined 

pseudo population (Harwell, Stone, Hsu, & Kirisci, 1996; Mooney, 1997). Monte Carlo 

simulations are useful for tracking the properties and behavior of a statistic that is poorly 

understood due to factors such as weak theory, inadequate access to sufficient data, 

and/or poorly defined population parameters (such as violations of Gaussian normality). 

As such, simulations can provide a great deal of precision in specifying population 

parameters and manipulations for use in inferential testing. 

 Item response theory researchers have fruitfully used Monte Carlo techniques to 

explore many aspects of the applicability and validity of IRT models for a variety of 

circumstances (Harwell et al., 1996). For example, Harwell and colleagues indicate that a 

majority of Monte Carlo studies in IRT focus on identifying the robustness of parameter 
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recovery and estimation techniques for IRT models when applied with small sample 

sizes, skewed ability distributions, and violations of unidimensionality. The information 

provided by these techniques would be unattainable by other methods due to 

distributional and dimensional assumptions that have to be made. However, by 

implementing a Monte Carlo technique where the nature of these parameters can be 

controlled, the resulting information about the robustness of the IRT model can be much 

better specified. 

The Monte Carlo approach is well suited for the goals specified in this 

dissertation. Specifically, the primary research question pertains to the behavior of a 

statistic when a “true” population condition is known. In addressing the question of the 

prevalence of Type I errors in moderated multiple regression, we must be able to 

determine when an error occurs. The only way of identifying this condition is by 

controlling a set of contrived population parameters and observing the behavior of a 

statistic under varied conditions. The averaged results of multiple iterations can then be 

recommended to other researchers as a reference when conducting future empirical 

studies. 

Although Monte Carlo studies are a useful methodological technique, Harwell et 

al. (1996), Mooney (1997), and other Monte Carlo advocates warn, “the popularity of 

MC studies should not be taken as evidence that these techniques are methodological 

panaceas” (Harwell et al., 1996, p. 103). The design, execution, and verification of a 

Monte Carlo study are paramount to the validity of the results that are obtained. Harwell 

et al. (1996) developed a guide for conducting high quality Monte Carlo studies for IRT 
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research. Specifically, the authors outlined four important steps for successful Monte 

Carlo studies adapted for IRT assessments including “(1) formulating the problem; (2) 

designing the study, which includes specification of the independent and dependent 

variables, the experimental design, the number of replications, and the IRT model; (3) 

writing or identifying and validating computer programs to generate item responses and 

to estimate parameters; and (4) analyzing the results” (p. 105). These four steps will be 

implemented in this dissertation as the (1) introduction, (2) methodology, (3) procedure, 

and (4) results and discussion sections respectively. 

The purpose of the Monte Carlo simulation in this dissertation will be to identify 

the conditions that lead to an elevated risk of Type I errors for interaction effects in 

moderated multiple regression from a psychometric approach. This simulation will be 

structured upon the work of Kang and Waller (2005) who performed a similar study with 

dichotomous response format assessments, and extend the inquiry to polytomous scales 

indicative of those commonly used in applied psychological research. 

 The graded response model (GRM; Samejima, 1969; 1996) was used as the IRT 

model for deriving the raw scores as well as the estimated theta scores. All of the 

simulations for this dissertation were conducted in R (Ihaka & Gentleman, 1996; R 

Development Core Team, 2008). Parameter estimates for the GRM will be derived using 

PARSCALE 4.1 (Muraki & Bock, 2003). 
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IRT Model 

The Graded Response Model 

The GRM is an IRT model suitable for modeling data with ordered categories 

such as Likert-type scales. A primary assumption underlying the GRM is that the 

psychological distance between response categories is consistent within items 

(Embretson & Reise, 2000; Ostini & Nering, 2006). This assumption is usually satisfied 

by requiring the same response scale for all items on an assessment. A benefit of 

choosing the GRM to model polytomous data is that the model was developed 

specifically to represent the processes underlying multi-category decision-making. The 

GRM is in the difference family of models that were developed specifically to model 

psychological processes underlying multi-category responding (Ostini & Nering, 2006). 

Additionally, evidence exists that theta estimates derived using the GRM are able to 

retain interval level scaling properties (Harwell & Gatti, 2001). These characteristics 

make the GRM an attractive model for the purposes of this dissertation. 

The GRM is considered an “indirect” IRT model because an individual’s 

likelihood of responding in a particular category is derived using a two-step process 

(Baker & Kim, 2004; Embretson & Reise, 2000; Ostini & Nering, 2006). First, CBRFs 

are calculated to determine boundary decision probabilities for j-1 categories of each item 

(Figure 3). This is simply an extension of the two-parameter logistic model where an item 

response function is calculated for each category boundary including a discrimination, or 

slope, parameter and a difficulty, or location, parameter. The CBRFs in the GRM can be 

derived with equation 4. 
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Pix * (θ) =
e ai θ −bij( )[ ]

1+ e ai θ −bij( )[ ]       (4) 

 

In Equation 4 (adapted from Embretson & Reise, 2000), Pix*(θ) is the probability 

that an individual with a trait (construct) level θ will respond positively at the boundary 

of category j for item i where x = j = 1…mi. Theta (θ) represents the individual’s trait 

(construct) level, ai represents the item discrimination or slope, and bij represents the 

category location or difficulty parameter with respect to that trait continuum. In this first 

step of the GRM, Equation 4 would be calculated for the number of CBRFs that exist 

which is one fewer than the number of categories in the item. The value of ai will be the 

same for the CBRFs in a particular item. The values of bij will vary depending on the 

particular CBRF being calculated. In well-functioning items, these values should be 

successive integers reflecting increased difficulty in progressing through the response 

options. In other words, the values of bij should indicate that increases in scores on the 

theta continuum are associated with increased probability of responding positively at 

higher category boundaries. Violations of this pattern result in what is known as the 

reversal pattern and indicate that one particular category is never the most likely response 

for any theta level (Embretson & Reise, 2000). 

 Equation 4 determines category boundary decision-making, however, one is often 

more interested in the probability that an individual will respond in a particular category. 

In the second step of the GRM, the category response functions (CRFs) are derived by 
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subtracting Pix*(θ) from the following category (Figure 4). This process is illustrated in 

Equation 5 (adapted from Embretson & Reise, 2000). 

Pix (θ) = Pix * (θ) − Pi(x +1) * (θ)      (5) 

 

Determining the first category is done by simply subtracting Pi1*(θ) from one because the 

probability of responding in the lowest category or above is equal to 1.0.  Determining 

the last category is simply Pim*(θ) because the probability of responding above the final 

category is equal to 0.0. Each intermediate category is defined by Equation 5 (Embretson 

& Reise, 2000). 

It is important to note that for any value of theta, the CRFs for each response 

option will sum to 1.0. Additionally, the CBRFs can be thought of as cumulative 

probabilities representing the probability of responding in or below a particular category. 

The procedure of determining the individual category probabilities that is described 

above reflects this condition such that the probability of a response at or above the first 

category, and at or below the last category is always 100%. If one conceptualizes moving 

along the theta scale from left to right, the probability of responding at or above a 

particular category will decrease from 100% to 0, and the probability of responding at or 

below a particular category will increase from 0 to 100%. The speed at which this change 

happens is related to the difficulty and discrimination of the item. 

Independent Variables 

An important a priori component of successful Monte Carlo studies involves the 

specification of the independent and dependent variables (Harwell et al., 1996). The 
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independent variables are the simulation parameters to be systematically varied. In this 

dissertation, the independent variables were respondent sample size (n: two levels), scale 

length (k: two levels), item discrimination (ai: two levels), item difficulty (bi,1…j-1: three 

levels), scale bandwidth (fidelity: two levels), and the regression coefficients (β1 and β2: 

two levels). The structure of this dissertation was therefore a 2x2x2x3x2x2 design 

comprising 96 conditions. For purposes of clarity, the data was simulated and 

summarized into four tables based on sample size and scale appropriateness (fidelity). 

Therefore, each simulation included 24 separate conditions (see Figure 6). This allowed 

for a more parsimonious summarization and interpretation of the results. 

Sample Size (n) 

Two respondent sample sizes were simulated according to recent evidence of the 

stability of parameter estimates in polytomous IRT and actual sample sizes in MMR 

studies. Ostini and Nering (2006) have reported that stable estimates for polytomous IRT 

models can be obtained with as few as 250 individuals, but that samples between 500 and 

1,000 are still considered to be desirable. Additionally, Aguinis et al. (2005) indicated 

that the average sample size for MMR studies in applied psychological research is 

x n = 272  with an average standard deviation of sn = 434 . These results indicate that the 

simulation outcomes for the n = 250 sample size will be the most relevant for the 

majority of applied psychological research, however, some studies do achieve sample 

sizes upwards of n = 1,000 (see for example, Witt, 1998; n = 979). Therefore, sample size 

included two levels of n = 250 and 750 respondents to maximize the generalizability for 
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the majority of empirical MMR studies in applied psychology (n=250) as well as for 

typical IRT studies (n=750). 
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b1 = N(-1.0,1.0); b2 = N(0.0,1.0); b3 = N(1.0,1.0) 
b4 = N(-1.0,0.5); b5 = N(0.0,0.5); b6 = N(1.0,0.5) 
 
Figure 6. Graphical depiction of the simulation design 
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Scale Length (k) 

In their study of dichotomous assessments, Kang and Waller (2005) utilized two 

levels of scale length at k=20 and 50 items. These two values were chosen to increase 

generalizability to common tests utilized in practice as well as to investigate the effects of 

increasing reliability with increasing assessment length in the classical test theory model. 

For the purposes of this dissertation, scale length was varied with two levels of k=15 and 

30 items. These values served to investigate a similar phenomenon as in the Kang and 

Waller study, but with values that are more reflective of typical polytomous scales 

utilized in applied psychological research (Fields, 2002). Specifically, the summary data 

reported in Table 1 indicate a modal scale length of 15 items with a mean of 15.43 and a 

standard deviation of 10.43 for validated scales in applied psychology. The distribution 

 

Table 1 
 
Summary statistics for validated construct assessments in applied psychology* 

  Item Descriptive Statistics Response Option Descriptive Statistics 

Response 
Category Type n min max mean (s.d.) med mode min max mean (s.d.) med mode 
Likert-type 122 3 56 15.4 (10.4) 14.0 15 3 9 5.8 (1.3) 5.0 5 

Agreement 3 4 72 31.3 (35.9) 18.0 4 3 3 3.0 (0.0) 3.0 3 

Mixed 3 3 21 9.3 (10.1) 4.0 3 - - - - - - - - - - 

0-Polar 2 10 25 17.5 (10.6) 17.5 10 5 7 6.0 (1.4) 6.0 5 

Semantic Diff. 2 14 21 17.5 (4.9) 17.5 14 5 7 6.0 (1.4) 6.0 5 

Q-Sort 1 54 54 54.0 (- -) 54.0 54 - - - - - - - - - - 

True/False 1 7 7 7.0 (- -) 7.0 7 2 2 2.0 (- -) 2.0 2 
* The original source for this data is Fields (2002). The summarization and tabulation was conducted by the 
author of this dissertation.  
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related to these values is also slightly positively skewed indicating the existence of 

several very long scales. Therefore, the scale lengths of k=15 and 30 items will serve to 

satisfy the psychometric interest of the effect of increasing reliability as well as the 

generalizability of the results to applied psychological research. 

Discrimination (ai) 

Discrimination in IRT refers to the extent to which a particular item is able to 

discriminate levels of the latent construct. In polytomous IRT, item discrimination can be 

thought of as a type of factor loading (Embretson & Reise, 2000; Takane & De Leeuw, 

1987) with values ranging from 0.0 to +∞ where higher values indicate better 

discrimination. As in other IRT models, item discrimination in the GRM is indicated by 

the relative steepness of the item curves with steeper curves reflecting higher 

discrimination. There is one item discrimination parameter for each item, denoted as ai. 

There are two approaches to identifying values for item parameters in simulated 

IRT studies. One is to set the item parameters to constants based on theoretically or 

empirically derived values, and the other is to randomly sample values from specified 

distributions (Harwell, 1996). A primary goal of a Monte Carlo simulation is to derive 

results that are generalizable for a variety of research applications. In light of this goal, it 

is advantageous to select item parameter values from specified distributions as opposed to 

using constant values. However, one drawback from this approach is the possibility of an 

uncommon combination of item parameters (Harwell et al, 1996), although a sufficient 

number of replications will adequately control for this problem. For the purposes of the 
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generalizability of this dissertation, all item parameter values will be randomly selected 

from specified distributions. 

Following the structure of Kang and Waller (2005), item discrimination values 

were selected from a uniform distribution between the values of 0.31 to 0.58 for moderate 

discrimination and 0.58 to 1.13 for high discrimination. Estimating discrimination values 

from a uniform distribution has been demonstrated to appropriately represent empirically 

determined item discrimination values (Reise & Waller, 2003), and the particular cut-off 

values of .31, .58, and 1.13 were demonstrated to appropriately represent low, moderate, 

and high factor loadings for items (Kang & Waller, 2005; Takane & De Leeuw, 1987). 

Because the GRM is a polytomous extension of the two-parameter logistic model, these 

values can be deemed appropriate for use in this dissertation. Further, the decision to 

retain the values from the Kang and Waller (2005) study was made to maintain a basis of 

comparison for the extension to polytomous data. 

Item Difficulty (bi,1…j-1) 

Item difficulty in IRT refers to the likelihood that an individual respondent would 

respond positively to a given item based on his or her score on the underlying construct. 

Binary IRT models have a single item difficulty parameter (bi) that represents the point 

along the construct continuum where an individual with a particular θ value has a .5 

probability of success on the item (Hambleton et al., 1991). For example, the item 

response function modeled in Figure 2 would have a difficulty parameter (bi) 

approximately equal to 0.0, as this is the point of inflexion for the item response function. 

However, in polytomous IRT models, item difficulty is expressed as the point along the 
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construct continuum where an individual with a particular θ value has a .5 probability of 

responding positively at a category (j) boundary. Therefore, polytomous items have j-1 

difficulty parameters that represent the category boundaries modeled within the item 

(Embretson & Reise, 2000). In the GRM, this interpretation is a simple extension of the 

item characteristic curve of the two-parameter logistic model. Specifically, there are j-1 

item characteristic curves modeled in the GRM that are each centered at their own 

difficulty value (bi,1…j-1) (see Equation 4). 

An important aspect of the difficulty parameters in polytomous IRT models is that 

the difficulty parameter for each operating characteristic curve is sequentially ordered. 

For example, a polytomous item with five response categories (j = 5) will have four 

category response functions (j-1). These four curves will each have their own difficulty 

parameters (b1,2,3,4). Appropriate modeled curves may have values b1 = -1.5, b2 = -0.5, b3 

= 0.5, and b4 = 1.5. If the sequential order is not preserved, it would suggest a reversal 

pattern in which one category is never the most likely category response for any value of 

θ (Embretson & Reise, 2000). Therefore, difficulty parameters in this dissertation were 

modeled with the sequential ordering restriction imposed. 

The characteristic that dichotomous and polytomous items share is that their 

difficulty parameters represent the point along the construct continuum at which the item 

is centered in difficulty. More difficult items are centered further to the right of the 

construct continuum, which is centered at zero with a standard deviation of one, and less 

difficult items are centered left of zero. The overall interpretation for the difficulty of a 
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polytomous assessment is the level of the underlying construct required to respond to 

higher categories of any particular item. 

In accordance with Kang and Waller (2005), item difficulty values in this 

dissertation were simulated at three levels. The three levels will represent an “easy”, 

“moderate”, and “difficult” assessment by randomly selecting difficulty values from a 

normal distribution with a mean and a standard deviation of N(-1.50, 1.00), N(0.00, 

1.00), and N(1.50, 1.00) respectively. It is important to note that in polytomous models 

such as the GRM, there are j-1 difficulty values for each item representing the relative 

difficulty of responding positively at a category boundary. Therefore, for this dissertation, 

there will be four difficulty values selected for each item. To achieve the appropriate 

ordering, the first difficulty value for the CBRF between options one and two will be 

randomly selected from a N(-2.5, 0.7), N(-1.0, 0.7), or N(0.5, 0.7) distribution for the 

easy, moderate, and difficult assessments respectively. In a similar approach as Meade, 

Lautenschlager, and Johnson (2007), a constant of 0.7 will then be added for the three 

subsequent difficulty parameters. The resulting four difficulty values will reflect random 

selection from approximately normal distributions centered at -1.5, 0, and 1.5 for the 

three levels of simulated difficulty. As with the discrimination parameters, these 

parameter values were chosen to maintain comparison with Kang and Waller (2005). 

Finally, it should be noted that the meaning of the item difficulty values in the 

simulated assessments reflects the amount of the underlying construct that is required to 

respond in higher categories for each item. This also translates to the probability of 

receiving higher total scores on the assessment. However, the difficulty in this case does 
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not refer to the probability of answering an item correctly or incorrectly, although this 

meaning can exist in instances of partial credit models (Ostini & Nering, 2006). 

Therefore, in this study, item difficulty should be thought of as the overall probability of 

agreement with a particular set of items given an individual’s theta score. 

Scale Fidelity 

An assessment’s fidelity is measured as the inverse of variability, or bandwidth, in 

the difficulty of the items (Stocking, 1987). High fidelity assessments sacrifice bandwidth 

such that there is less variability in the item difficulty values. Fidelity contributes to 

assessment appropriateness by either restricting (high fidelity) or expanding (low fidelity) 

the width of the item difficulty distribution. A situation where this would be useful is 

with an assessment meant to provide the highest precision of information at a narrow 

score range such as those developed at or around a cut-off score (Hambleton et al., 1991). 

However, for the purposes of general construct assessment, a scale with high fidelity and 

low bandwidth may be in danger of being narrowly appropriate for particular groups of 

respondents. Assessments with these characteristics that are used for general construct 

measurement may be the most at-risk assessments for spurious interaction effects. This 

condition was simulated in this study by generating a second set of item difficulty values 

from more restricted normal distributions with a mean and standard deviation of N(-1.50, 

0.50) for easy scales, N(0.00, 0.50) for moderate scales, and N(1.50, 0.50) for difficult 

scales. These restricted distributions will create the high fidelity and low bandwidth 

situation in which Kang and Waller (2005) observed the highest prevalence of Type I 

errors. As in the previous difficulty parameter selection, there were four (j-1) difficulty 
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values for each item sampled from within the specified distribution with the sequential 

ordering restriction imposed. To accomplish this in the high fidelity conditions, the first 

difficulty value for the CBRF between options one and two was randomly selected from a 

N(-2.0, 0.35), N(-0.5, 0.35), or N(1.0, 0.35) distribution for the easy, moderate, and 

difficult assessments respectively. A constant of 0.35 was be added for the three 

subsequent difficulty parameters. The resulting four difficulty values will reflect random 

selection from approximately normal distributions centered at -1.5, 0, and 1.5 for the 

three levels of simulated difficulty. 

Regression Weights 

In accordance with Kang and Waller (2005), regression weights were set at a 

value of 0.30 or 0.50 for both β1 and β2. An intercept of zero is used and therefore 

omitted from the regression models. It should be noted that these regression weights are 

fixed only for the purposes of simulating the dependent variables. 

Fixed Effects 

Item Response Categories (j) 

The number of item response categories for this study was set at five to simulate a 

five-category Likert-type response scale. Fields (2002) identified 134 validated construct 

assessments that are utilized in applied psychological research of which five category 

Likert-type response scales were the most common (n = 57). Full descriptive statistics 

summarizing these 134 assessments can be found in Table 1. 
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Regression Models 

The purpose of this dissertation was to observe the prevalence of Type I errors in 

moderated multiple regression in three different pairs of models. In the first regression 

model pair, actual latent trait scores θ will be analyzed (see Equations 6a and 6b). In the 

second regression model pair, raw scores (X) will be analyzed (see Equations 7a and 7b). 

In the third regression model pair, estimated theta scores ˆ θ  will be analyzed (see 

Equations 8a and 8b). These three model pairs will be expressed in accordance with Kang 

and Waller (2005) as follows: 

 

θ3 = β1θ1 + β2θ2 + ε        (6a) 

 

θ3 = β1θ1 + β2θ2 + β3θ1θ2 + ε       (6b) 

 

X 3 = β1X1 + β2X 2 + ε        (7a) 

 

X 3 = β1X1 + β2X 2 + β3X1X 2 + ε      (7b) 

 

εθβθβθ ++= 22113
ˆˆˆ        (8a) 

 

ˆ θ 3 = β1
ˆ θ 1 + β2

ˆ θ 2 + β3
ˆ θ 1 ˆ θ 2 + ε      (8b) 
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The first model of each pair is the additive model, and the second model in each pair 

contains a multiplicative, or interaction, term. As is typical in moderated multiple 

regression, each model pair will be structured as a hierarchical regression analysis where 

the interaction term is entered at the second step (Aiken & West, 1991; Cohen et al., 

2003). A significant change in variance accounted for (ΔR2) between the first and second 

model will indicate the existence of a spurious interaction effect.  

Regression Main Effects 

Two continuous predictor variables were simulated for each regression model 

specified in Equations 6 through 8. Predictor variables θ1 and θ2 were randomly selected 

for the number of observations (n) from normal distributions with a mean and standard 

deviation equal to N(0.00, 1.00). These variables served as the main effect scores in the 

regression models. It is important to note that θ1 and θ2 were sampled from identical but 

independent distributions, thus there was no correlation between the between the 

predictor variables. As such, no multicollinearity was modeled. 

Regression Criterion Variables 

One continuous criterion variable was calculated for each regression model 

specified in Equations 6 through 8. In accordance with Kang and Waller (2005), the 

general form of the criterion variables is given by the following equation, which 

represents a multiple regression model with two significant main effects and no 

interaction. 

 

εββθβθβθ ×+−++= )(1 2
2

2
122113      (9) 
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In Equation 9, β1 and β2 are the simulated regression weights and ε is an error term. Note 

that the intercept term, β0, was set to equal zero and thus omitted from the model. The 

term 1− β1
2 + β2

2( ) was included to represent an appropriate error variance component 

for each level of β. This term can be derived in the following manner. First, the predictor 

variables θ1 and θ2 and the criterion variable θ3 are normally distributed with a mean and 

standard deviation equal to N(0.00, 1.00). Because the standard deviation is simply the 

square root of the variance, the variance of the predictor and criterion variables is equal to 

one. Given these conditions, the following derivation gives the error term for the 

regression models. 

 

σθ 3

2 = β1
2σθ1

2 + β1
2σθ 2

2 + σ e
2       (10a) 

 

where σθ1

2 , σθ 2

2 , and σθ 3

2  are all equal to 1.00, therefore, 

 

1 = β1
2 + β1

2 + σ e
2        (10b) 

 

1− β1
2 − β1

2 = σ e
2        (10c) 

 

1− β1
2 + β1

2( )= σ e
2       (10d)  
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1− β1
2 + β1

2( )= σ e        (10e) 

 

Finally, given that the two levels of regression weights β1 and β2 were simulated as .3 and 

.5, equation 9 can be further reduced to the following form. 

 

θ3 = .5 θ1( )+ .5 θ2( )+ .7071 ε( )      (11a) 

 

θ3 = .3 θ1( )+ .3 θ2( )+ .9055 ε( )      (11b) 

 

In the simulation, the criterion variable θ3 was operationalized with equations 11a and 

11b for the two levels of the regression weights, .3 and .5, respectively. An alternative 

way of specifying this derivation would be to say that the error associated with each 

regression model is being sampled from a N(0.00, .7071) and N(0.00, .9055) distribution 

for each level of β. 

Raw Scores 

To generate the raw scores, X1, X2, and X3, the values of the previously defined 

construct scores θ1, θ2, and θ3 were entered into the GRM equation (Equations 4 and 5) 

for each simulated participant. It is pertinent to note that because IRT is a strong-

modeling methodology, the responses are being simulated to fit the GRM. This is 

important because good model-data fit is a key assumption to be satisfied when drawing 

results based on IRT models (Embretson & Reise, 2000; Hambleton et al., 1990).  
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A matrix of response scores was generated by reporting the raw score (1, 2, 3, 4, 

or 5) corresponding to the highest category response likelihood for each simulated 

participant on each item. These values were derived using an algorithm written by the 

author based on response probabilities calculated in Equations 4 and 5. Actual raw score 

responses were generated by comparing a randomly selected value from a uniform 

distribution, U(0.0, 1.0), with the relative response probabilities that are generated for 

each level of theta (or individual) and each item. This process can be thought of as 

determining the relative likelihood of a category response given the item and person 

parameters with a realistic level of decision-making error (Kang & Waller, 2005; Stone, 

1992). This integration of response error is important so as to not assume perfect 

responding by simulated individuals. A mean score for X1, X2, and X3 for each simulated 

individual was calculated from the raw score response matrices for analysis in the 

regression models. 

Estimated Theta Scores 

Finally, the estimated theta scores 1̂θ , 2̂θ , and 3̂θ  were simulated using 

PARSCALE 4.1 (Muraki & Bock, 2003). PARSCALE was set to derive the person 

(latent construct scores) and item parameters using the expected a posteriori (EAP) 

method and Bayesian priors. This method calculates 1̂θ , 2̂θ , and 3̂θ  as the modal value of 

the posterior distribution which is the most likely value of theta for the observed response 

pattern (Baker & Kim, 2004), and is a preferred estimation method for assessments that 

are moderate to short in item length (Mislevy & Stocking, 1989). The syntax files for the 

PARSCALE integration can be found in Appendix F. 
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Iterations 

In a Monte Carlo study, the number of iterations, or replications, that the 

simulation conducts is akin to sample size in a traditional, empirical study (Gagne, 

Furlow, & Ross, 2009; Harwell et al., 1996; Mooney, 2007). In IRT Monte Carlo studies, 

item and person parameters can be randomly selected from specified distributions for the 

purposes of generalizability. This sampling leads to the concern of sampling variance 

with regards to the parameters being estimated. A Monte Carlo study conducted with one 

or very few iterations is at serious risk for producing biased estimates, however, 

“aggregating results over replications produces more stable and reliable results” (Harwell 

et al., 1996, p. 110). Indeed, Harwell et al. (1996) indicated that increasing the number of 

iterations in IRT Monte Carlo studies will be a significant step forward and will allow for 

the testing of more complex and informative designs. 

As an analogue for sample size, the number of iterations that are used in a Monte 

Carlo study is directly related to statistical power. Harwell et al. (1996) indicate that well 

developed Monte Carlo studies will use several hundred to several thousand iterations per 

condition, and that studies that exceed several hundred iterations have power approaching 

or equal to 1.0. For the purposes of estimating Type I error rates in Monte Carlo studies, 

Robey and Barcikowski (1992) specify that approximately 1,000 iterations will achieve a 

power equal to .90 when approximating an alpha level of α = .05 and using the interval of 

α ± 1
2α  as a robustness interval. Therefore, 1,000 iterations per condition were 

conducted2. This allowed for adequate reduction in sampling variance for the IRT 

                                                 
2 With 1,000 iterations per condition in a 2x2x2x3x2x2 study, 96,000 cases will be generated for 
aggregation into the final results. 
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parameter estimates (Harwell et al., 1996), achieves a power of .90 around the interval 

.025 ≤α ≤ .075 (Robey & Barcikowski, 1992), and doubles the number of iterations 

utilized by Kang and Waller (2005). 

Simulation Dependent Variables 

Type I Errors 

The primary dependent variable for this study was the empirical Type I error rate 

(π) that is observed for the interaction term of the moderated multiple regression models. 

The specific value of π was identified in a three-step process. In each iteration of the 

simulation, the variance in θ3 accounted for by θ1 and θ2 was recorded as the R2 value for 

the additive and multiplicative regression models specified in Equations 6 through 8.  

Second, the significance of the change in variance accounted for, ΔR2, between the 

respective additive and multiplicative models was tested at an alpha level of p ≤ .05 and 

recorded as 1 for a significant result and 0 for a non-significant result. Finally, the 

empirical alpha level π was recorded as the proportion x
1,000

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  of iterations resulting in a 

significant ΔR2 for the actual latent trait scores θ3, the raw scores X3, and the estimated 

theta scores 3̂θ . 

Procedure 

 The simulation for the current study was conducted in the R environment using a 

mixture of functions written by the author of this dissertation, as well as one external 

program. R (Ihaka & Gentleman, 1996; R Core Development Team, 2008) is an open-

source platform for statistical computing that allows a high degree of flexibility in the 
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design and implementation of a variety of statistical techniques. R is also particularly 

equipped for handling programmed loops and pseudo-random number generation as is 

required by Monte Carlo studies. An external program, PARSCALE 4.1 (Muraki & 

Bock, 2003), was employed as the estimation engine to derive item and person 

parameters based on the GRM. All of these programs were integrated into self-contained 

loops in the R environment for the purposes of automated execution of the Monte Carlo 

simulation.  

For purposes of ease of interpretation, four separate simulations were conducted. 

The syntax for these simulations can be found in Appendices A, B, C, and D. The four 

simulations were separated based on sample size (n=250, 750) and scale fidelity (normal, 

high). In each simulation, the independent variables of scale length, regression weights, 

discrimination, and difficulty will be systematically varied. Therefore, the summary 

statistics for each simulation will be included in four tables, each with 24 rows.  

Each simulation was run in the following process. First, using the pseudo-random 

number generator in R, theta vectors were estimated from a standard normal distribution 

N(0.0, 1.0) for θ1 and θ2. Next, corresponding vectors for θ3 were calculated using 

Equation 9. These vectors were saved as the actual latent construct scores. To calculate 

the raw score matrices, X1, X2, and X3, each of these three score vectors were evaluated 

in an algorithm written by the author (see lines 21-59 & 481-519 of Appendix A, B, C, & 

D) that implements Equation 4 and Equation 5 to determine the probability of a category 

response. Final raw score values were determined by the comparison of a randomly 

selected value from a uniform distribution as previously described. Finally, the estimated 
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theta scores 1̂θ , 2̂θ , and 3̂θ  were derived using PARSCALE 4.1 (Muraki & Bock, 2003). 

To accomplish this task, raw scores matrices were “batched” out to PARSCALE with an 

accompanying syntax file (see Appendix E and Appendix F) following the structure 

identified by Gagne, Furlow, and Ross (2009). The estimated theta scores that are 

returned by PARSCALE were then returned to R as the vectors 1̂θ , 2̂θ , and 3̂θ  (see lines 

161-191 & 621-651 of Appendix A, B, C, & D). 

The reliability of each simulated assessment was calculated (see lines 152-159 & 

612-619 of Appendix A, B, C, & D) using the Cronbach’s alpha function of the Latent 

Trait Modeling package in R (Rizopoulos, 2006). Other summary statistics such as the 

skewness and kurtosis of each simulated assessment were calculated as well as the 

Shapiro-Wilk test for normality (see lines 201-213, 229-237 & 661-673, 689-697 of 

Appendix A, B, C, & D). Finally, the nine score vectors to be entered into the 

corresponding additive and multiplicative regression models specified in Equations 6 

through 8 (see lines 215-227 & 675-687 of Appendix A, B, C, & D), and the change in 

variance accounted for between the two corresponding models was recorded. 

This procedure was repeated for each condition in the study over the total number 

of iterations (see lines 307-471 & 767-931 of Appendix A, B, C, & D). The final 

summary statistics and tables were generated in the R environment using portions of code 

provided, with permission, by Niels Waller and used in the Kang and Waller (2005) study 

(see lines 933-1,083 of Appendix A, B, C, & D). The simulation was conducted on an 

Apple iMac with a 2.80 GHz Intel Core2 Duo processor, 3 gigabytes of RAM, and 
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running Microsoft Windows XP as a native operating system on a harddrive partition. 

The version of R that was used was R 2.9.0. 

Verification 

 An important aspect of any Monte Carlo study is to verify the values that are 

being calculated for the primary purposes of the simulation (Harwell et al., 1996). 

Portions of the code used in this dissertation were modeled off of the code used in the 

Kang and Waller (2005) study. However, the Kang and Waller code was missing 

important details, such as the IRT model estimation engine. Therefore, a pilot study was 

undertaken to replicate and verify the structure of the Kang and Waller simulation code. 

To replace the missing code components, the “irtoys” package (Partchev, 2007) for R 

was used to estimate the latent construct scores for dichotomous data with the two-

parameter logistic model. The overall structure of the code for this simulation was 

verified by a complete replication of the Kang and Waller (2005) study. Table 2 contains 

the results of this replication. All of the values in Table 2 were calculated by the author of 

this dissertation. Some divergence in the results of the estimated theta scores was 

expected due to the differences in the estimation engines, however, the divergence was 

minimal and never exceeded 0.1 for the prevalence of Type I errors based on estimated 

latent construct scoring. In most cases, the divergence between the two studies did not 

exceed .01 – .02 in Type I error rates. Other scoring methods such as actual latent 

construct scores and raw scores, as well as measures of reliability for the raw score 

matrices were replicated to an exact value at two decimal points. This evidence suggests 
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that the overall structure of the simulation code that will be used in this dissertation is 

reliable. 

An additional question of verification comes with the implementation of the 

PARSCALE program to generate parameter estimates. In this dissertation, the estimated 

theta scores were of primary interest. As a commercially published software package, one 

can often rely on the parameter estimation procedures implemented in programs such as 

PARSCALE. However, to satisfy the skeptic, DeMars (2002) and Childs and Chen 

(1999) both conducted parameter recovery studies for the GRM in PARSCALE. In each 



Table 2 

Kang and Waller (2005) Table 1 Replication* 
c bi ai β k πθ πx π ˆ θ 

 p  value KR20 SWθ SWx SW ˆ θ 
 skx ktx sk ˆ θ 

 kt ˆ θ 
 

1 Difficult Low .3 20 0.06 0.06 0.05 0.71(.13) 0.65 0.96 0.06 0.14 0.57 0.02 0.45 0.17
2 Difficult Low .3 50 0.06 0.07 0.05 0.71(.13) 0.83 0.96 0.06 0.70 0.60 0.08 0.27 0.23
3 Difficult Low .5 20 0.06 0.09 0.07 0.71(.13) 0.65 0.96 0.20 0.40 0.56 0.01 0.44 0.18
4 Difficult Low .5 50 0.06 0.13 0.07 0.71(.13) 0.83 0.96 0.27 0.86 0.60 0.08 0.27 0.22
5 Difficult High .3 20 0.06 0.10 0.06 0.79(.16) 0.81 0.96 0.00 0.02 1.07 0.92 0.69 0.01
6 Difficult High .3 50 0.06 0.11 0.06 0.79(.16) 0.92 0.96 0.00 0.16 1.09 0.93 0.46 0.25
7 Difficult High .5 20 0.06 0.27 0.17 0.79(.16) 0.81 0.96 0.02 0.21 1.07 0.91 0.68 0.02
8 Difficult High .5 50 0.06 0.39 0.14 0.79(.16) 0.92 0.96 0.01 0.62 1.09 0.93 0.46 0.26
9 Moderate Low .3 20 0.06 0.04 0.04 0.50(.15) 0.69 0.96 0.79 0.83 0.00 0.49 0.00 0.45
10 Moderate Low .3 50 0.06 0.04 0.05 0.50(.16) 0.85 0.96 0.84 0.95 0.00 0.51 0.00 0.29
11 Moderate Low .5 20 0.06 0.04 0.04 0.50(.15) 0.69 0.96 0.89 0.91 0.00 0.49 0.00 0.45
12 Moderate Low .5 50 0.06 0.04 0.05 0.50(.16) 0.85 0.96 0.93 0.96 0.00 0.51 0.00 0.29
13 Moderate High .3 20 0.06 0.04 0.04 0.50(.22) 0.85 0.96 0.36 0.73 0.00 0.79 0.00 0.61
14 Moderate High .3 50 0.06 0.04 0.05 0.50(.22) 0.94 0.96 0.40 0.90 0.00 0.82 0.00 0.43
15 Moderate High .5 20 0.06 0.02 0.03 0.50(.22) 0.85 0.96 0.82 0.90 0.00 0.79 0.00 0.61
16 Moderate High .5 50 0.06 0.03 0.03 0.50(.22) 0.94 0.96 0.88 0.95 0.00 0.82 0.00 0.44
17 Easy Low .3 20 0.06 0.05 0.04 0.29(.13) 0.66 0.97 0.06 0.16 0.57 0.06 0.45 0.14
18 Easy Low .3 50 0.06 0.05 0.04 0.29(.13) 0.83 0.97 0.04 0.68 0.61 0.11 0.28 0.21
19 Easy Low .5 20 0.06 0.07 0.06 0.29(.13) 0.65 0.97 0.17 0.39 0.57 0.05 0.45 0.15
20 Easy Low .5 50 0.06 0.15 0.07 0.29(.13) 0.83 0.97 0.24 0.85 0.61 0.11 0.28 0.21
21 Easy High .3 20 0.06 0.11 0.09 0.21(.16) 0.81 0.97 0.00 0.02 1.07 0.90 0.68 0.02
22 Easy High .3 50 0.06 0.12 0.06 0.21(.16) 0.92 0.97 0.00 0.17 1.10 0.95 0.46 0.24
23 Easy High .5 20 0.06 0.31 0.20 0.21(.16) 0.81 0.97 0.01 0.19 1.07 0.92 0.68 0.01
24 Easy High .5 50 0.06 0.41 0.15 0.21(.16) 0.92 0.97 0.01 0.61 1.10 0.97 0.47 0.23
*All values in this table were calculated by the author of this dissertation; Iterations per condition = 500 
Table Key: c = condition; bi = item difficulty distribution, Difficult = N(-1.5,1), Moderate = N(0,1), Easy = N(1.5,1); ai = item discrimination distribution, Low = 
U(.31,.58), High = U(.58,1.13); β = regression weight; k = number of items; πθ = empirical Type I error rate for actual theta scores; πx = empirical Type I error 
rate for raw scores; π ˆ θ 

 = empirical Type I error rate for estimated theta scores; p  value = item difficulty mean and standard deviation; KR20 = average internal 
consistency for the simulated raw scores; SWθ = proportion of n.s. Shapiro-Wilk tests for the actual theta scores; SWx = proportion of n.s. Shapiro-Wilk tests for 
the raw scores; SW ˆ θ 

 = proportion of n.s. Shapiro-Wilk tests for the estimated theta scores; skx = skewness for the raw scores; ktx = kurtosis for the raw scores; 
sk ˆ θ 

 = skewness for the estimated theta scores; kt ˆ θ 
 = kurtosis for the estimated theta scores 
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study, the results indicated that the parameter estimates for the GRM in PARSCALE 

were unbiased even when estimated from initially skewed distributions, and the root 

mean square error between the estimated and actual latent construct scores were low (all 

below .70 for the GRM), and comparable with another validated software package, 

MULTILOG. Additionally, Childs and Chen (1999) found parameter estimates between 

the two programs to be correlated at approximately .99. Given these results, the scores 

generated by PARSCALE can be considered accurate estimates of the latent construct 

being assessed. 

Finally, a verification of the simulated raw scores is in order. Recall that the raw 

scores are being calculated using an algorithm derived by the author of this dissertation 

that is modeled from the GRM equations and an appropriately modeled response error 

term. An appropriate method of verification could be an examination of internal 

consistency, or Cronbach’s alpha, for the scores. In his eloquent treatment of the meaning 

of alpha, Cortina (1993) indicates that larger alpha values reflect variance that is 

attributable to general factors and not item-specific variance. As such, one would expect 

item-specific variance to be high in randomly assembled response matrices with no 

underlying structure. However, if the simulated raw scores are indeed reflecting a latent 

construct and the specified model properties, acceptable alpha levels should be observed.  

Results of a single iteration simulation of four different conditions demonstrated that 

acceptable alpha levels were achieved with the raw score algorithm (see Table 3). 
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The preceding evidence lends strong support to the structure and content of the 

simulation that will be employed in this study. In verifying the nature of the programs 

and algorithms used for this simulation, specifying the experimental design and 

 

Table 3 
 
Results of a verification test for the simulated raw scores 
Number of 
Individuals 

Number 
of Items a b theta alpha 

250 15 U(0.31, 0.58) N(0.0, 1.0) N(0.0, 1.0) .729 
250 30 U(0.31, 0.58) N(0.0, 1.0) N(0.0, 1.0) .819 
750 15 U(0.31, 0.58) N(0.0, 1.0) N(0.0, 1.0) .719 
750 30 U(0.31, 0.58) N(0.0, 1.0) N(0.0, 1.0) .814 

 

 

procedure, and conducting 1,000 iterations in each condition, this dissertation satisfied all 

of the aspects of a high quality IRT Monte Carlo study identified by Harwell et al. 

(2002). Self-contained, reproducible code for this simulation is available in Appendices 

A, B, C, D, E, and F (note that the PARSCALE program is required for this code to 

execute successfully). 

Data Analysis Strategy 

Identifying Meaningful Type I Error Rate Inflations 

The central focus of this dissertation is to determine what psychometric 

conditions lead to meaningfully inflated Type I error rates for different scoring 

techniques for a latent construct. Therefore, it will be necessary to specify a criterion to 

determine whether the empirical Type I error rates are a reasonable approximation of the 

nominal Type I error rate, or alpha, of .05.  
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Two criteria were used to determine whether the empirical Type I error rates were 

meaningfully inflated above the nominal alpha level of .05. First, using the criteria 

specified by Bradley (1978) and Robey and Barcikowski (1992), values of π within the 

interval of .025 ≤α ≤ .075 were identified as reasonable approximations of α. Values of 

π larger than .075 were identified as significant departures from α and therefore spurious 

interaction effects. The aforementioned interval was chosen based on Bradley’s (1978) 

liberal interval of α ± 1
2α  for a Type I error rate of .05, and Robey and Barcikowski’s 

(1992) values for achieving a power of .90 with 1,000 iterations in a Monte Carlo study 

with α and π both set to .05. 

Second, a binomial test based on a z-approximation distribution was conducted 

for each condition. The binomial test is a non-parametric procedure for determining 

whether the observed proportions of some event are equal to a known binomial 

distribution. An expected proportion of .05 was specified, and significant departures from 

this proportion were noted. 

Identifying Effects of the Independent Variables 

 To determine which independent variables had the greatest impact on the 

occurrence of a spurious interaction effect, a direct logistic regression analysis was 

conducted for the raw and estimated theta scores. The independent variables were entered 

simultaneously into the model so that the impact of each variable could be evaluated in 

the presence the other variables. This analysis was conducted at the iteration level, and 

the dependent variable was a dichotomous 1,0 variable indicating the presence or absence 

of a significant interaction effect respectively. 
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Testing Hypothesized Interactions 

 Hypotheses 3 and 4 specified interactions between assessment appropriateness 

and fidelity and item discrimination and beta weights respectively. These hypotheses 

were derived from observed results of the Kang and Waller (2005) study. Keeping in 

context with Kang and Waller, hypotheses 3 and 4 were tested at the aggregate level 

using 2x2 factorial ANOVA analyses. The dependent variable in these analyses was the 

empirical Type I error rate for the raw scores.  

 As an additional examination, these hypotheses were also tested at the iteration 

level using a stepwise logistic regression model. The independent variables were entered 

simultaneously at the first step, followed by the interaction term at the second step. The 

dependent variable in these analyses was a dichotomous 1,0 variable indicating the 

presence or absence of a significant interaction effect respectively.  

Assessing Linearity and Interval-Level Scaling 

 Finally, the linearity and interval-level scaling of the dependent variables was 

assessed using a Pearson product-moment correlation and an examination of the scatter 

plots for the relationship between actual theta scores, raw scores, and estimated theta 

scores. Conditions 80, 88, and 96 were chosen from the simulation for the purposes of 

this analysis. Due to the large number of data points (750,000) generated within each of 

these conditions, a random sample of 1,875, or .25%, were selected from each to generate 

the scatter plots. The correlations were calculated based on the full sample. 
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CHAPTER 4: RESULTS 

 Tables 4, 5, 6, and 7 contain the main results of the four simulations that were 

conducted. Each table contains 24 conditions (for a total of 96 conditions) represented in 

rows that vary based on sample size, scale length, item discrimination, item category 

difficulty, and regression (beta) weights. The simulated theta distribution, which 

represents the individuals’ actual latent construct scores, for all of the conditions was 

standard normal N(0, 1). 

The tables are organized into pairs based on scale fidelity. Tables 4 and 5 

represent the normal fidelity conditions, in which the distributions of the difficulty 

parameters had a standard deviation of 1.0. Tables 6 and 7 represent the high fidelity 

conditions in which the distributions for the difficulty parameters had a standard 

deviation of 0.5. This distinction represents the fidelity manipulation, which was 

hypothesized to create conditions of extreme assessment inappropriateness. Within each 

fidelity pair, the tables are distinguished by sample size. Specifically, tables 4 and 6 

represent simulated samples of 250 individuals, and tables 5 and 7 represent simulated 

samples of 750 individuals. Each row in the four tables represents a single condition in 

the simulation, and the individual row entries represent averaged results across the 1,000 

iterations in each condition. 

 In each table, the independent variables that were manipulated in the simulation 

are represented in the columns for sample size (n), item category difficulty (bi,j-1), item 

discrimination (ai), beta weights (β), and the number of items (k). Additionally, it is 

helpful to note that each table can be subdivided into three primary sections based on 



Table 4 

Results of simulation 1 (normal fidelity, distribution of latent construct scores = standard normal N(0,1)) 
c n bi,j-1 ai β k πθ πx π ˆ θ 

 α rmse SWθ SWx SW ˆ θ 
 skx ktx sk ˆ θ 

 kt ˆ θ 
 

1 250 Difficult Low .3 15 0.062 0.055 0.047 0.66 0.86 0.96 0.06 0.78 0.54 0.03 0.23 0.12
2 250 Difficult Low .3 30 0.062 0.068† 0.052 0.80 0.84 0.96 0.06 0.77 0.56 0.02 0.22 0.14
3 250 Difficult Low .5 15 0.062 0.088*,† 0.058 0.66 0.86 0.96 0.23 0.84 0.54 0.03 0.24 0.08
4 250 Difficult Low .5 30 0.062 0.113*,† 0.061 0.80 0.83 0.96 0.30 0.82 0.57 0.02 0.24 0.10
5 250 Difficult High .3 15 0.062 0.055 0.047 0.66 1.44 0.96 0.06 0.78 0.54 0.03 0.23 0.12
6 250 Difficult High .3 30 0.061 0.105*,† 0.082*,† 0.92 1.44 0.96 0.00 0.41 1.01 0.68 0.34 0.13
7 250 Difficult High .5 15 0.061 0.296*,† 0.089*,† 0.86 1.44 0.96 0.01 0.57 0.99 0.64 0.34 0.11
8 250 Difficult High .5 30 0.062 0.372*,† 0.098*,† 0.92 1.44 0.96 0.02 0.61 1.01 0.68 0.34 0.15
9 250 Moderate Low .3 15 0.062 0.046 0.056 0.69 0.70 0.96 0.83 0.86 0.02 0.51 0.01 0.30
10 250 Moderate Low .3 30 0.062 0.042 0.048 0.82 0.70 0.96 0.86 0.86 0.02 0.50 0.02 0.28
11 250 Moderate Low .5 15 0.062 0.041 0.052 0.69 0.70 0.96 0.91 0.86 0.02 0.51 0.02 0.28
12 250 Moderate Low .5 30 0.062 0.037 0.037 0.82 0.70 0.96 0.93 0.86 0.02 0.50 0.03 0.26
13 250 Moderate High .3 15 0.062 0.051 0.047 0.88 0.53 0.96 0.43 0.88 0.04 0.78 0.01 0.22
14 250 Moderate High .3 30 0.062 0.048 0.059 0.94 0.52 0.96 0.50 0.88 0.03 0.79 0.00 0.25
15 250 Moderate High .5 15 0.062 0.041 0.050 0.88 0.53 0.96 0.86 0.91 0.04 0.78 0.00 0.25
16 250 Moderate High .5 30 0.061 0.039 0.055 0.94 0.52 0.96 0.89 0.91 0.03 0.79 0.00 0.24
17 250 Easy Low .3 15 0.061 0.064† 0.053 0.65 0.89 0.96 0.03 0.72 0.58 0.02 0.21 0.19
18 250 Easy Low .3 30 0.061 0.067† 0.052 0.79 0.88 0.96 0.04 0.70 0.60 0.08 0.22 0.20
19 250 Easy Low .5 15 0.061 0.106*,† 0.075† 0.65 0.89 0.96 0.15 0.79 0.58 0.03 0.21 0.21
20 250 Easy Low .5 30 0.061 0.138*,† 0.055 0.79 0.88 0.96 0.23 0.78 0.60 0.08 0.20 0.21
21 250 Easy High .3 15 0.061 0.112*,† 0.098*,† 0.85 1.58 0.96 0.00 0.30 1.06 0.86 0.37 0.10
22 250 Easy High .3 30 0.061 0.123*,† 0.070† 0.92 1.59 0.96 0.00 0.26 1.08 0.88 0.38 0.08
23 250 Easy High .5 15 0.061 0.317*,† 0.120*,† 0.85 1.59 0.96 0.00 0.49 1.06 0.88 0.38 0.09
24 250 Easy High .5 30 0.061 0.386*,† 0.102*,† 0.92 1.59 0.96 0.01 0.47 1.08 0.90 0.38 0.08
* Significant Type I Error rate based on α ± 1

2α ; †Significant Type I Error rate based on the results of a binomial test; Iterations per condition = 1,000 
Table Key: c = condition; n = number of individuals; bi,j-1 = item category difficulty distribution, Difficult = N(-1.5,1), Moderate = N(0,1), Easy = N(1.5,1); ai = 
item discrimination distribution, Low = U(.31,.58), High = U(.58,1.13); β = regression weight; k = number of items; πθ = empirical Type I error rate for actual 
theta scores; πx = empirical Type I error rate for raw scores; π ˆ θ 

 = empirical Type I error rate for estimated theta scores; α = average internal consistency for the 
raw scores; rmse = root mean square error for the estimated theta scores; SWθ = proportion of n.s. Shapiro-Wilk tests for the actual theta scores; SWx = proportion 
of n.s. Shapiro-Wilk tests for the raw scores; SW ˆ θ 

 = proportion of n.s. Shapiro-Wilk tests for the estimated theta scores; skx = |skewness| for the raw scores (abs. 
value); ktx = |kurtosis| for the raw scores; sk ˆ θ 

 = |skewness| for the estimated theta scores; kt ˆ θ 
 = |kurtosis| for the estimated theta scores 
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Table 5 

Results of simulation 2 (normal fidelity, distribution of latent construct scores = standard normal N(0,1)) 
c n bi,j-1 ai β k πθ πx π ˆ θ 

 α rmse SWθ SWx SW ˆ θ 
 skx ktx sk ˆ θ 

 kt ˆ θ 
 

25 750 Difficult Low .3 15 0.049 0.074† 0.056 0.66 0.82 0.95 0.00 0.44 0.55 0.01 0.23 0.12
26 750 Difficult Low .3 30 0.049 0.069† 0.057 0.80 0.84 0.95 0.00 0.45 0.57 0.02 0.24 0.13
27 750 Difficult Low .5 15 0.049 0.167*,† 0.089*,† 0.66 0.82 0.95 0.00 0.65 0.55 0.01 0.22 0.16
28 750 Difficult Low .5 30 0.049 0.222*,† 0.079*,† 0.80 0.84 0.95 0.01 0.66 0.56 0.01 0.24 0.12
29 750 Difficult High .3 15 0.049 0.162*,† 0.084*,† 0.86 1.31 0.95 0.00 0.11 1.00 0.66 0.31 0.20
30 750 Difficult High .3 30 0.049 0.142*,† 0.066† 0.92 1.31 0.95 0.00 0.11 1.01 0.67 0.32 0.19
31 750 Difficult High .5 15 0.049 0.627*,† 0.173*,† 0.86 1.31 0.95 0.00 0.52 1.00 0.66 0.31 0.19
32 750 Difficult High .5 30 0.049 0.710*,† 0.158*,† 0.92 1.31 0.95 0.00 0.52 1.00 0.67 0.32 0.19
33 750 Moderate Low .3 15 0.049 0.056 0.052 0.69 0.68 0.95 0.32 0.76 0.02 0.50 0.01 0.30
34 750 Moderate Low .3 30 0.049 0.046 0.043 0.82 0.66 0.95 0.44 0.77 0.02 0.50 0.02 0.30
35 750 Moderate Low .5 15 0.049 0.046 0.055 0.69 0.68 0.95 0.69 0.82 0.02 0.50 0.02 0.27
36 750 Moderate Low .5 30 0.049 0.043 0.038 0.82 0.66 0.95 0.81 0.82 0.02 0.50 0.02 0.29
37 750 Moderate High .3 15 0.049 0.050 0.053 0.88 0.51 0.95 0.01 0.69 0.03 0.78 0.00 0.24
38 750 Moderate High .3 30 0.049 0.044 0.044 0.94 0.53 0.95 0.01 0.71 0.03 0.79 0.01 0.25
39 750 Moderate High .5 15 0.049 0.065† 0.068† 0.88 0.50 0.95 0.51 0.79 0.03 0.78 0.00 0.23
40 750 Moderate High .5 30 0.049 0.056 0.055 0.94 0.53 0.95 0.67 0.80 0.03 0.79 0.02 0.24
41 750 Easy Low .3 15 0.048 0.075† 0.058 0.66 0.86 0.95 0.00 0.34 0.58 0.06 0.21 0.19
42 750 Easy Low .3 30 0.049 0.081*,† 0.043 0.79 0.87 0.95 0.00 0.36 0.60 0.10 0.20 0.21
43 750 Easy Low .5 15 0.049 0.164*,† 0.075† 0.66 0.86 0.95 0.00 0.56 0.58 0.06 0.18 0.21
44 750 Easy Low .5 30 0.049 0.269*,† 0.059 0.79 0.87 0.95 0.00 0.60 0.60 0.10 0.19 0.19
45 750 Easy High .3 15 0.049 0.159*,† 0.066† 0.85 1.40 0.95 0.00 0.07 1.07 0.91 0.33 0.19
46 750 Easy High .3 30 0.049 0.180*,† 0.065† 0.92 1.41 0.95 0.00 0.07 1.09 0.94 0.33 0.20
47 750 Easy High .5 15 0.049 0.635*,† 0.193*,† 0.85 1.40 0.95 0.00 0.49 1.07 0.90 0.33 0.19
48 750 Easy High .5 30 0.049 0.765*,† 0.192*,† 0.92 1.41 0.95 0.00 0.48 1.09 0.94 0.33 0.20
* Significant Type I Error rate based on α ± 1

2α ; †Significant Type I Error rate based on the results of a binomial test  
Iterations per condition = 1,000 
See Table 4 for key 
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Table 6 

Results of simulation 3 (high fidelity, distribution of latent construct scores = standard normal N(0,1)) 
c n bi,j-1 ai β k πθ πx π ˆ θ 

 α rmse SWθ SWx SW ˆ θ 
 skx ktx sk ˆ θ 

 kt ˆ θ 
 

49 250 Difficult Low .3 15 0.062 0.067† 0.055 0.64 0.7 0.96 0.01 0.78 0.64 0.08 0.23 0.21
50 250 Difficult Low .3 30 0.062 0.078*,† 0.054 0.78 0.69 0.96 0.01 0.75 0.67 0.15 0.24 0.22
51 250 Difficult Low .5 15 0.062 0.099*,† 0.064† 0.64 0.70 0.96 0.10 0.89 0.64 0.09 0.23 0.21
52 250 Difficult Low .5 30 0.062 0.132*,† 0.057 0.78 0.69 0.96 0.15 0.83 0.67 0.15 0.24 0.22
53 250 Difficult High .3 15 0.062 0.128*,† 0.079*,† 0.84 1.57 0.96 0.00 0.03 1.34 1.52 0.76 0.72
54 250 Difficult High .3 30 0.061 0.152*,† 0.085*,† 0.91 1.56 0.96 0.00 0.04 1.38 1.63 0.76 0.70
55 250 Difficult High .5 15 0.061 0.390*,† 0.215*,† 0.84 1.57 0.96 0.00 0.26 1.34 1.53 0.77 0.73
56 250 Difficult High .5 30 0.062 0.467*,† 0.224*,† 0.91 1.56 0.96 0.00 0.27 1.37 1.62 0.76 0.67
57 250 Moderate Low .3 15 0.062 0.047 0.044 0.68 0.56 0.96 0.77 0.96 0.01 0.59 0.00 0.24
58 250 Moderate Low .3 30 0.062 0.044 0.058 0.81 0.56 0.96 0.80 0.97 0.01 0.59 0.00 0.24
59 250 Moderate Low .5 15 0.062 0.041 0.050 0.68 0.56 0.96 0.89 0.97 0.01 0.59 0.00 0.25
60 250 Moderate Low .5 30 0.062 0.040 0.050 0.81 0.56 0.96 0.90 0.96 0.01 0.59 0.00 0.24
61 250 Moderate High .3 15 0.062 0.047 0.056 0.88 0.38 0.96 0.11 0.93 0.02 1.01 0.01 0.44
62 250 Moderate High .3 30 0.062 0.042 0.059 0.93 0.39 0.96 0.14 0.93 0.02 1.02 0.01 0.43
63 250 Moderate High .5 15 0.062 0.031 0.042 0.88 0.38 0.96 0.79 0.95 0.02 1.02 0.01 0.43
64 250 Moderate High .5 30 0.061 0.032 0.054 0.93 0.39 0.96 0.86 0.95 0.02 1.03 0.01 0.43
65 250 Easy Low .3 15 0.061 0.075† 0.050 0.63 0.72 0.96 0.01 0.74 0.66 0.11 0.24 0.23
66 250 Easy Low .3 30 0.061 0.066† 0.049 0.78 0.71 0.96 0.01 0.73 0.69 0.19 0.24 0.22
67 250 Easy Low .5 15 0.061 0.115*,† 0.071† 0.63 0.72 0.96 0.07 0.83 0.66 0.13 0.24 0.21
68 250 Easy Low .5 30 0.061 0.150*,† 0.067† 0.78 0.70 0.96 0.11 0.83 0.69 0.20 0.24 0.22
69 250 Easy High .3 15 0.061 0.141*,† 0.098*,† 0.83 1.65 0.96 0.00 0.03 1.39 1.71 0.80 0.79
70 250 Easy High .3 30 0.061 0.155*,† 0.093*,† 0.91 1.65 0.96 0.00 0.02 1.42 1.81 0.80 0.79
71 250 Easy High .5 15 0.061 0.411*,† 0.246*,† 0.83 1.65 0.96 0.00 0.22 1.40 1.74 0.81 0.84
72 250 Easy High .5 30 0.061 0.488*,† 0.235*,† 0.91 1.65 0.96 0.00 0.24 1.43 1.82 0.81 0.82
* Significant Type I Error rate based on α ± 1

2α ; †Significant Type I Error rate based on the results of a binomial test 
Iterations per condition = 1,000 
See Table 4 for key 
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Table 7 

Results of simulation 4 (high fidelity, distribution of latent construct scores = standard normal N(0,1)) 
c n bi,j-1 ai β k πθ πx π ˆ θ 

 α rmse SWθ SWx SW ˆ θ 
 skx ktx sk ˆ θ 

 kt ˆ θ 
 

73 750 Difficult Low .3 15 0.049 0.086*,† 0.066† 0.64 0.65 0.95 0.00 0.16 0.65 0.10 0.26 0.24
74 750 Difficult Low .3 30 0.049 0.080*,† 0.056 0.78 0.65 0.95 0.00 0.16 0.67 0.16 0.26 0.24
75 750 Difficult Low .5 15 0.049 0.183*,† 0.100*,† 0.64 0.65 0.95 0.00 0.54 0.65 0.10 0.26 0.24
76 750 Difficult Low .5 30 0.049 0.268*,† 0.086*,† 0.78 0.65 0.95 0.00 0.55 0.67 0.15 0.26 0.26
77 750 Difficult High .3 15 0.049 0.216*,† 0.109*,† 0.84 1.36 0.95 0.00 0.00 1.35 1.55 0.62 0.25
78 750 Difficult High .3 30 0.049 0.199*,† 0.095*,† 0.91 1.36 0.95 0.00 0.00 1.38 1.63 0.62 0.24
79 750 Difficult High .5 15 0.049 0.740*,† 0.407*,† 0.84 1.36 0.95 0.00 0.07 1.35 1.56 0.62 0.24
80 750 Difficult High .5 30 0.049 0.842*,† 0.388*,† 0.91 1.35 0.95 0.00 0.08 1.38 1.62 0.62 0.23
81 750 Moderate Low .3 15 0.049 0.047 0.049 0.68 0.56 0.95 0.15 0.90 0.01 0.58 0.00 0.27
82 750 Moderate Low .3 30 0.049 0.045 0.046 0.81 0.56 0.95 0.23 0.89 0.01 0.59 0.00 0.28
83 750 Moderate Low .5 15 0.049 0.043 0.047 0.68 0.56 0.95 0.61 0.93 0.01 0.58 0.00 0.27
84 750 Moderate Low .5 30 0.049 0.046 0.042 0.81 0.56 0.95 0.74 0.94 0.01 0.59 0.00 0.28
85 750 Moderate High .3 15 0.049 0.043 0.049 0.88 0.39 0.95 0.00 0.70 0.02 1.02 0.00 0.44
86 750 Moderate High .3 30 0.049 0.041 0.042 0.93 0.39 0.95 0.00 0.72 0.02 1.03 0.00 0.44
87 750 Moderate High .5 15 0.049 0.045 0.054 0.88 0.39 0.95 0.32 0.92 0.02 1.02 0.00 0.44
88 750 Moderate High .5 30 0.049 0.040 0.047 0.93 0.39 0.95 0.46 0.92 0.02 1.03 0.00 0.42
89 750 Easy Low .3 15 0.048 0.080*,† 0.059 0.64 0.68 0.95 0.00 0.12 0.67 0.15 0.26 0.23
90 750 Easy Low .3 30 0.049 0.094*,† 0.041 0.78 0.67 0.95 0.00 0.12 0.69 0.22 0.26 0.25
91 750 Easy Low .5 15 0.049 0.180*,† 0.094*,† 0.64 0.68 0.95 0.00 0.50 0.67 0.15 0.26 0.23
92 750 Easy Low .5 30 0.049 0.315*,† 0.076*,† 0.78 0.67 0.95 0.00 0.51 0.69 0.22 0.27 0.26
93 750 Easy High .3 15 0.049 0.199*,† 0.106*,† 0.84 1.46 0.95 0.00 0.00 1.40 1.77 0.66 0.38
94 750 Easy High .3 30 0.049 0.236*,† 0.107*,† 0.91 1.46 0.95 0.00 0.00 1.43 1.87 0.65 0.33
95 750 Easy High .5 15 0.049 0.734*,† 0.436*,† 0.84 1.46 0.95 0.00 0.06 1.40 1.77 0.66 0.38
96 750 Easy High .5 30 0.049 0.849*,† 0.404*,† 0.91 1.46 0.95 0.00 0.05 1.43 1.88 0.65 0.36
* Significant Type I Error rate based on α ± 1

2α ; †Significant Type I Error rate based on the results of a binomial test 
Iterations per condition = 1,000 
See Table 4 for key 



   
   

99

item category difficulty. The first eight rows in each table are the “difficult” scales, the 

middle eight rows are the “moderate” scales, and the last eight rows are the “easy” scales. 

The moderate scales represent assessment appropriateness because the distribution of the 

item category difficulty parameters is congruent with the theta distribution. The difficult 

and easy scales represent assessment inappropriateness because the distribution of the 

item category difficulty parameters is either more positive or more negative than the theta 

distribution respectively. The primary dependent variables, empirical Type I error rates 

(π) for the interaction term, are represented in the columns for actual latent construct 

scores ( θπ ), raw scores ( Xπ ), and estimated theta scores (
θπ ˆ ). The values in these 

columns represent the proportion of times that a significant ΔR2 was identified between 

the additive and multiplicative regression models across 1,000 iterations for the 

respective dependent variable. The theoretical alpha level (α) was set at p < .05 for the 

tests of the regression model within each iteration. This proportion represents the 

empirical, or observed, Type I error rate for each score type in each condition. 

To assess the occurrence of spurious interaction effects, one would want to 

determine whether the empirical Type I error rate, π, reasonably approximates the 

conventional theoretical Type I error rate, α, of 5%. However, rather than treating π and 

α as point estimates, an interval approach has been suggested to account for sampling 

error that is inherent in simulation studies. Using the Bradley (1978) and Robey and 

Barcikowski (1992) criteria for a liberal interval with a power of .90 at 1,000 iterations, 

the interval of α ± 1
2α  or .025 ≤α ≤ .075 was used to determine whether π was a 

reasonable approximation of α. Therefore, columns θπ , Xπ , and 
θπ ˆ  in Tables 4, 5, 6, 
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and 7 are marked with an asterisk (*) to indicate significant departures of π from α for the 

actual theta scores, raw scores, and estimated theta scores respectively. Additionally, a 

binomial test was conducted for each iteration to determine whether the observed 

proportion of Type I errors was significantly different from .05. Columns θπ , Xπ , and 
θπ ˆ  

in Tables 4, 5, 6, and 7 are marked with a dagger (†) to indicate significant departures of π 

from α for the actual theta scores, raw scores, and estimated theta scores respectively. 

The average internal consistency of the raw score matrices for the two simulated 

independent variables, X1 and X2, and the one simulated dependent variable, X3, is 

represented in the column for Cronbach’s alpha (α). The average root mean squared error 

(rmse) is reported to represent the estimated theta parameter recovery. Root mean 

squared error is regarded as an appropriate statistic representing the congruence of the 

estimated parameters with the actual parameters in an IRT Monte Carlo study with 

multiple iterations (Harwell et al., 1996). The result of the Shapiro-Wilk tests are 

represented in the columns labeled SWθ, SWX, and SW ˆ θ 
for the actual latent construct 

scores, raw scores, and estimated theta scores respectively. The Shapiro-Wilk test 

evaluates the assumption that the residuals in the regression model are normally 

distributed (Shapiro & Wilk, 1965). The values in these columns represent the proportion 

of times that the Shapiro-Wilk test was non-significant across 1,000 iterations for the 

respective dependent variables, indicating violations of the residual normality 

assumption. Finally, the average skewness and kurtosis for the raw scores are represented 

in the columns denoted as skx and ktx respectively. The average skewness and kurtosis for 

the estimated theta scores are represented in the columns denoted as 
θ̂sk  and 
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θ̂kt respectively. Note that the values represented in these four columns are all absolute 

values. 

Simulation Checks 

 A series of simulation checks were conducted by observing the values reported in 

Tables 4, 5, 6, and 7. First, the results of the average internal consistency, Cronbach’s 

alpha, for the raw score matrices are an indication that the simulated scores are indeed 

following a pattern indicative of a general, underlying latent structure. As indicated by 

Cortina (1993), acceptable levels of internal consistency will be observed when a general, 

latent factor better accounts for the variance in responses than individual item effects. 

Although there is debate regarding an “appropriate” criterion for alpha, it is generally 

accepted that alpha levels of .60 to .70 and above represent adequate to good internal 

consistency3. Across Tables 4, 5, 6, and 7, the internal consistency values range between 

.63 and .94. In general, these scores represent appropriate levels of internal consistency, 

and are an indication that the variance in the simulated raw scores are indeed reflecting a 

general, latent construct rather than individual item effects. 

Differences in the values of alpha can be easily understood by examining the 

respective levels of the independent variables. Specifically, the lowest alpha levels are 

observed in conditions with shorter scale lengths and smaller item discrimination values. 

Each of these factors plays an important role for internal consistency. Specifically, alpha 

                                                 
3 Cortina (1993) addresses this debate by arguing that the .70 criterion for alpha is often invoked as a 
measure of unidimensionality. Although the .70 level does represent an adequate degree of internal 
consistency, it is not a measure of unidimensionality. Cortina cogently demonstrates that assessments with 
very low inter-item correlations can still result in alpha levels at or above the .70 criterion, and researchers 
interested in assessing unidimensionality must also evaluate the inter-item correlation matrix to verify 
unidimensional consistency. 
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tends to increase as assessment length increases (Crocker & Algina, 1986), as well as in 

assessments with highly discriminating items (Ostini & Nering, 2006). The influence of 

item discrimination on internal consistency with polytomous items is such that item 

discrimination can be thought of as a type of factor loading representing the ability of an 

item to differentiate individuals with varying construct scores (Ostini & Nering, 2006). 

Therefore, all other factors held constant, alpha should be larger in the highly 

discriminating scales with 30 items. Indeed, this pattern is realized across all simulation 

conditions. 

 Additionally, the distributional characteristics and the result of the Shapiro-Wilk 

test have important implications for the results of the simulations. First, higher degrees of 

nonnormality were observed in the raw scores than in the estimated theta scores. A 

common assumption stipulates that latent constructs are normally distributed (Embretson 

& Reise, 2000), and the actual theta scores in these simulations were drawn from a 

standard normal distribution. However, Maxwell and Delaney (1985) demonstrated that, 

when measuring a latent construct, the shape of the raw score distribution is often 

skewed. This condition was observed in these simulations, such that the skewness of the 

raw scores was always greater than the skewness of the estimated theta scores. Further, 

Maxwell and Delaney (1985) found that skewness is exacerbated in assessments with 

highly discriminating items and under conditions of assessment inappropriateness. This 

effect was also observed in the simulations, such that the skewness of the raw scores 

increased with higher discrimination values and under conditions of assessment 

inappropriateness. This suggests that the distributions of the estimated theta scores were 
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more representative of the actual latent construct than the distributions of the raw scores, 

and certain psychometric conditions only exacerbated these differences. 

 The second implication related to the score distributions pertains to the 

relationship between nonnormality and the Type I error rate. Across all simulated 

conditions, significant positive correlations between the empirical Type I error rate and 

the average absolute value of the skewness of the raw score distributions, r = .665, p < 

.001, and the estimated theta score distributions, r = .637, p < .001 were observed. It 

should be noted, however, that although these relationships are very similar in magnitude 

and direction, the actual values for the raw scores exceeded the values of the estimated 

theta scores in every condition (see Tables 4, 5, 6, and 7). These results indicate that there 

may be an effect of nonnormality on the robustness of the MMR models that were 

evaluated in these simulations. Additionally, significant negative correlations between the 

results of the Shapiro-Wilk tests and the empirical Type I error rates were observed for 

the raw scores, r = -.512, p < .001, and the estimated theta scores, r = -.405, p < .001. 

These results indicate that as the empirical Type I error rate increased, the number of 

non-significant Shapiro-Wilk tests decreased. These violations of the normality of the 

errors in the MMR models may have also contributed to the respective empirical Type I 

error rates. However, in these simulations, no conclusions about causality can be drawn 

for these factors. Kang and Waller (2005) also reported similar findings in their 

investigation of dichotomous data. 
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Omnibus Impact on Empirical Type I Error Rates 

As a test of the influence of all of the manipulated factors on the occurrence of 

Type I errors in this simulation, a direct logistic regression analysis was conducted in 

which all of the independent variables were entered into the model simultaneously as 

categorical predictors. This method is preferable for assessing multiple independent 

variables in an exploratory and comparative manner (Tabachnick & Fidell, 2007). This 

analysis was conducted at the individual iteration level, not the aggregated condition 

level. This strategy allows an examination of the likelihood of a Type I error with the 

same criteria that was used to establish the empirical Type I error rates reported in Tables 

4, 5, 6, and 7. The dependent variable in this analysis was the occurrence of a Type I 

error, and was coded as a 1 if the ΔR2 between the additive and multiplicative model was 

significant at the theoretical alpha level (α) of p < .05 or a 0 if it was not significant. The 

result of this analysis is presented in Table 8 for the raw scores and Table 9 for the 

estimated theta scores. For both dependent variables, the full models were significant 

when compared to the constant-only models, and each independent variable reliably 

predicted the respective dependent variable. 

Several important findings can be identified from these results. First, the 

psychometric characteristics that were manipulated in this simulation had a stronger 

overall effect on Type I errors when the variables were operationalized as raw scores 

when compared to estimated theta scores. These results suggest that raw scores are more 

sensitive to measurement effects in parametric analyses than are IRT-derived theta 

estimates. For both dependent variables, assessment appropriateness was the most 
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Table 8 
 
Direct logistic regression for raw score Type I errors 

Omnibus full model, χ2 (1, N = 96,000) = 17,157.51, p < .001, R2 = .27 

 Wald χ2 df B OR◊ 
 Appropriateness (difficulty) 5,008.55*** 1 2.096 8.13 
 Beta Weights 4,876.13*** 1 1.417 4.12 
 Discrimination 4,437.19*** 1 1.339 3.82 
 Fidelity 165.42*** 1 0.242 1.27 
 Sample size 154.09*** 1 0.234 1.26 
 Items 154.09*** 1 0.234 1.26 
***p < .001 
◊ In each case, the odds ratio (OR) reported corresponds to increases in the predictor variable (e.g., 
increased assessment inappropriateness results in higher likelihoods of Type I errors, increases in 
discrimination results in higher likelihoods of Type I errors, etc.). 
 

 

Table 9 
 
Direct logistic regression for estimated theta score Type I errors 

Omnibus full model, χ2 (1, N = 96,000) = 3,571.47, p < .001, R2 = .08 

 Wald χ2 df B OR◊ 
 Appropriateness (difficulty) 918.15*** 1 0.875 2.40 
 Discrimination 1,185.01*** 1 0.836 2.30 
 Beta Weights 881.98*** 1 0.710 2.03 
 Fidelity 364.77*** 1 0.446 1.56 
 Sample size 9.93*** 1 0.073 1.08 
 Items 9.93*** 1 0.073 1.08 
***p < .001 
◊ In each case, the odds ratio (OR) reported corresponds to increases in the predictor variable (e.g., 
increased assessment inappropriateness results in higher likelihoods of Type I errors, increases in 
discrimination results in higher likelihoods of Type I errors, etc.).  
 
 
 

impactful predictor of Type I errors, followed by item discrimination and regression 

weights. This result replicates the effects of assessment appropriateness identified by 

Kang and Waller (2005), as well as arguments raised by Busemeyer (1980) on the role of 
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assessment difficulty in parametric statistics. Finally, the finding that stronger regression 

weights resulted in a higher likelihood of Type I errors in both raw scores (OR = 4.12) 

and estimated theta scores (OR = 2.03) corroborates arguments raised by Rogers (2002). 

Specifically, Rogers (2002) found that the strength of the main effects in MMR is directly 

related to the likelihood of identifying an interaction effect and that an effect-size ceiling 

is placed on the interaction term as the main effects decrease in strength. This effect 

appears to be at least partially supported by these results. Further implications of the 

individual variables included in these analyses will be discussed as they relate to specific 

hypotheses. 

General Findings and Hypothesis Tests 

There were several findings in the simulation results that are important to 

emphasize in light of the hypothesis tests. First, descriptive statistics were calculated for 

the empirical Type I error rates in each scoring condition collapsing across each 

independent variable (see Table 10). A general pattern can be identified in these results 

such that higher empirical Type I error rates were observed for the stronger level of each 

independent variable. This pattern would indicate that each psychometric characteristic 

that was varied in the simulations had an overall effect on the empirical Type I error rates 

for the interaction terms. However, it should be noted that this effect was limited to the 

raw score and estimated theta scoring techniques.  

Hypothesis 1 

Hypothesis 1 stated that, under conditions in which no significant interaction is 

present, the use of raw scores to operationalize a latent construct will result in higher  
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Table 10 
 
Mean empirical Type I error rates across the independent variables 
  Mean (s.d.) 
  πθ πX θπ ˆ  

Appropriate 0.06 (.229) 0.04 (.306) 0.05 (.218) Appropriateness 
(difficulty) Inappropriate 0.06 (.228) 0.24 (.417) 0.11 (.313) 

Low 0.06 (.229) 0.10 (.294) 0.06 (.234) 
Discrimination 

High 0.06 (.228) 0.25 (.435) 0.12 (.327) 

250 0.06 (.228) 0.16 (.368) 0.09 (.290) 
Sample Size 

750 0.06 (.228) 0.19 (.391) 0.09 (.282) 

Normal 0.06 (.228) 0.16 (.367) 0.07 (.259) 
Fidelity 

High 0.06 (.228) 0.19 (.392) 0.11 (.310) 

15 0.06 (.228) 0.16 (.368) 0.09 (.290) 
Items 

30 0.06 (.228) 0.19 (.391) 0.09 (.282) 

.3 0.06 (.228) 0.09 (.288) 0.06 (.242) 
Beta Weights 

.5 0.06 (.228) 0.26 (.438) 0.12 (.322) 
 

 

Type I error rates than the use of actual or estimated theta scores derived using an IRT 

approach. Partial support was found for hypothesis 1. The empirical Type I error rate for 

the raw scores was higher than the empirical Type I error rate of the actual theta scores in 

66 of 96 conditions (69%), as well as the estimated theta scores in 71 of 96 conditions 

(74%). However, in some conditions the empirical Type I error rate for the raw scores 

was actually lower than the empirical Type I error rate for the actual and/or estimated 

theta scores. Although unexpected, it is important to note that the difference between the 

empirical Type I error rates in these conditions was never greater than 3.2%. This 
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suggests that although the raw scores did perform better than the actual and/or estimated 

theta scores in some conditions, the performance differences in these conditions were not 

substantial. 

The preceding results are an indication of the relative performance of the three 

scoring techniques, although they do not make any distinction as to meaningfully inflated 

Type I error rates. Recall that the interval of α ± 1
2α , or .025 ≤α ≤ .075, was one 

criterion that was used to determine whether π was a reasonable approximation of α for 

each scoring technique, and that values of π greater than .075 represent meaningfully 

inflated Type I error rates. Using this criterion, the results indicated meaningfully inflated 

Type I error rates in 53 of 96 conditions (55%) when raw scores were used to 

operationalize the latent constructs. These conditions are marked with an asterisk under 

the column labeled πX in Tables 4, 5, 6, and 7. The results also indicated meaningfully 

inflated Type I error rates in 33 of 96 conditions (34%) when estimated theta scores were 

used to operationalize the latent constructs. These conditions are marked with an asterisk 

under the column labeled 
θπ ˆ  in Tables 4, 5, 6, and 7. 

The second criterion for identifying meaningfully inflated Type I error rates was 

the result of a binomial test for the proportion of significant interactions in each 

condition. This test was slightly more conservative than the approximation interval. 

Using this criterion, the results indicated meaningfully inflated Type I error rates in 63 of 

96 conditions (66%) when raw scores were used to operationalize the latent constructs. 

These conditions are marked with a dagger under the column labeled πX in Tables 4, 5, 6, 

and 7. The results also indicated meaningfully inflated Type I error rates in 44 of 96 
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conditions (46%) when estimated theta scores were used to operationalize the latent 

constructs. These conditions are marked with a dagger under the column labeled 
θπ ˆ  in 

Tables 4, 5, 6, and 7. 

An important finding to highlight here is that, of the conditions with meaningfully 

inflated Type I error rates for the estimated theta scores, none were unique with regard to 

the raw scores using either criteria. In other words, no meaningful inflations existed for 

the estimated theta scores that did not also exist for the raw scores. This finding was true 

regardless of the criteria used to determine a meaningful inflation of the Type I error rate. 

This suggests that there were no unique conditions in which the raw scores performed 

practically better than the estimated theta scores. This finding gives better insight into the 

previously reported result that the empirical Type I error rate for raw scores was actually 

lower than the empirical Type I error rate of the actual and/or estimated theta scores in 

some conditions. Specifically, these differences were always observed in conditions in 

which the theoretical alpha level was well approximated by all three scoring techniques 

and therefore do not suggest any noteworthy advantages for the raw scores. 

Hypothesis 1a 

Hypothesis 1a stated that, under conditions of assessment appropriateness, the 

Type I error rates for raw scores, actual, and estimated theta scores will not exceed the 

nominal criterion of α = .05. Full support was found for hypothesis 1a. Under conditions 

of assessment appropriateness there were no significant departures from the acceptable 

interval of α ± 1
2α  for any of the scoring methods or other simulated factors (see rows 9-

16 in table 4, 33-40 in table 5, 57-64 in table 6, and 81-88 in table 7). This suggests that 



   
   

110

when assessment difficulty and the distribution of construct scores are reasonably 

matched, there is little concern for an increased risk of Type I errors for any scoring 

technique. Indeed, this pattern was also realized by Kang and Waller (2005) in their 

investigation of dichotomous data. These results are also meaningful in the interpretation 

of hypothesis 2. 

Hypothesis 2 

Hypothesis 2 stated that, assessment inappropriateness will influence the 

prevalence of Type I error rates for the interaction term in moderated multiple regression. 

Support was identified for Hypothesis 2 such that all of the meaningfully inflated Type I 

error rates were observed when assessment inappropriateness was present. These results 

imply that the risk of spurious interactions is only a concern when the difficulty of the 

assessment is poorly matched to the construct levels of the individuals. A further 

examination of this trend reveals support for Hypothesis 2a. 

Hypothesis 2a 

Hypothesis 2a stated that, under conditions of assessment inappropriateness, the 

use of raw scores to operationalize a latent construct will result in Type I error rates that 

exceed the nominal criterion of α = .05. Specifically, raw scores resulted in empirical 

Type I error rates that were above the acceptable interval in 53 of 64 (83%) conditions in 

which assessment inappropriateness was present. A direct logistic regression analysis that 

included all of the simulated independent variables was conducted to test the impact of 

assessment inappropriateness on Type I errors for the raw scores. According to the Wald 

criterion, assessment appropriateness reliably predicted a Type I error for the raw scores, 
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χ2(1, N = 96,000) = 5,008.55, p < .001, OR = 8.13. This result suggests that, in the 

presence of the other predictors, the likelihood of committing a Type I error is 8.13 times 

higher under conditions of assessment inappropriateness than under conditions of 

assessment appropriateness when raw scores are used to operationalize the variables. 

Additionally, Figure 7 represents the descriptive statistics for the empirical Type I 

error rates for the raw scores and estimated theta scores. For the raw scores, these data 

indicate a positively skewed distribution (skew = 2.04), with a mean empirical Type I 

error rate of 17.5%, median of 8.7%, and a standard deviation of 20%. Finally, the values 

range from 3.1% to 84.9%. If we were to only examine those values outside of the 

acceptable interval for alpha (greater than .075), the mean empirical Type I error rate was 

27.6%, with values ranging from 7.8% to 84.9%. 
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Figure 7. Distribution of spurious interactions for raw scores and estimated theta scores
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Hypothesis 2b 

Hypothesis 2b stated that, under conditions of assessment inappropriateness, the 

use of estimated or actual latent trait scores to operationalize a latent construct will not 

result in Type I error rates that exceed the nominal criterion of α = .05. Hypothesis 2b 

was supported for the actual theta scores, but not for the estimated theta scores. For the 

estimated theta scores, meaningfully inflated Type I error rates were identified in 33 of 

64 (51%) inappropriate assessment conditions. A direct logistic regression analysis that 

included all of the simulated independent variables was conducted to test the impact of 

assessment inappropriateness on Type I errors for the estimated theta scores. According 

to the Wald criterion, assessment appropriateness reliably predicted a Type I error for the 

estimated theta scores, χ2(1, N = 96,000) = 918.15, p < .001, OR = 2.40. This result 

suggests that, in the presence of the other predictors, the likelihood of committing a Type 

I error is 2.4 times higher under conditions of assessment inappropriateness than under 

conditions of assessment appropriateness when estimated theta scores are used to 

operationalize the variables. The descriptive statistics for the estimated theta score 

distribution also indicate a positively skewed distribution (skew = 2.97), with a mean 

empirical Type I error rate of 9.0%, median of 5.9%, and a standard deviation of 8.0% 

(see Figure 7). Finally, the values range from 3.7% to 43.6%. If we were to only examine 

those values outside of the acceptable interval for alpha (greater than .075), the mean 

empirical Type I error rate was 15.9%, with values ranging from 7.6% to 43.6%. 



   
   

113

Although Hypothesis 2b was not directly supported, the estimated theta scores did 

fare substantially better with regards to spurious interaction effects when compared to the 

raw scores. An examination of Figure 7 clearly illustrates a more troubling picture for 

raw scores than for estimated theta scores. Specifically, the empirical Type I error rates 

for raw scores that were beyond the acceptable interval ranged from slightly above the 

interval at 7.8% to an extremely high rate of 84.9% observed in condition 96. However, 

the empirical Type I error rates for estimated theta scores that were beyond the acceptable 

interval ranged from slightly above the interval at 7.6% to a moderately high rate of 

43.6%. In most cases of empirical Type I error rate divergence, the rate for the raw scores 

was substantially higher than the corresponding rate for the estimated theta scores. 

One reason that Hypothesis 2b was not fully supported may be that the estimated 

theta scores were less accurate in conditions of assessment inappropriateness. This 

reduction in parameter accuracy would be expected given the score attenuation that is 

present in exceedingly easy or difficult assessments (Busemeyer, 1980; Embretson & 

Reise, 2000; Hambleton et al., 1991). An indication that this trend is present is observable 

in the root mean squared error (rmse) values in Tables 4, 5, 6, and 7. In these simulations, 

the root mean squared error is an estimate of parameter recovery, or the congruence 

between the estimated and actual theta scores. Larger values of rmse suggest greater 

differences between the actual and estimated theta scores. To test the differences in the 

rmse values between the appropriate and inappropriate assessment conditions, an 

independent samples t-test was conducted. The results indicated a significant difference, 

t(94) = 8.74, p < .001, such that the rmse in the inappropriate assessment conditions was 
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significantly larger (M = 1.12, sd = 0.37) than the rmse in the appropriate assessment 

conditions (M = 0.54, sd = 0.11). This finding could provide some indication as to the 

meaningfully inflated Type I error rates for the estimated theta scores under conditions of 

assessment inappropriateness. 

Hypothesis 3 

Hypothesis 3 stated that, under conditions of extreme assessment 

inappropriateness, the use of raw scores to operationalize a latent construct will result in 

the highest prevalence of Type I error rates beyond the nominal criterion of α = .05 for 

the interaction term in moderated multiple regression. The results did not support this 

Hypothesis. Hypothesis 3 was tested using a 2x2 between subjects analysis of variance. 

The full model included the main effects of fidelity and assessment appropriateness and 

the interaction between fidelity and appropriateness. The dependent variable in this 

analysis was the empirical Type I error rate for the raw scores. As a follow-up to Kang 

and Waller (2005), this analysis served to assess the prediction that the interaction of 

appropriateness and fidelity would create conditions of extreme assessment 

inappropriateness, and result in a high rate of Type I errors when raw scores are used to 

operationalize a latent construct. The interaction between fidelity and assessment 

appropriateness was not significant, F(1, 92) = .417, p = .520, η2 = .005. 

To further examine this result, a test of the model that included only the main 

effects of fidelity and assessment appropriateness was conducted. These results indicated 

that assessment appropriateness was the only significant predictor of differences in the 

empirical Type I error rate for raw scores, F(1, 93) = 25.65, p < .001, η2 = .216, such that 
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inappropriate assessments were associated with significantly higher empirical Type I 

error rates than appropriate assessments. The means plots presented in Figure 8 confirms 

that there is a strong main effect of assessment appropriateness, but no effects of fidelity 

or the interaction between the two variables. These results suggest that assessments with 

 

 
Figure 8. Interaction of fidelity and assessment appropriateness on the 
empirical Type I error rate for raw scores 

 

 

high fidelity, or highly “peaked” tests, do not necessarily contribute to spurious 

interaction effects above and beyond the effect of assessment appropriateness. In other 

words, the effect of assessment appropriateness was the dominant factor in the omnibus 

model. 
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 As an additional test of this Hypothesis, a stepwise logistic regression model was 

created to examine the interaction of assessment appropriateness and fidelity at the 

iteration level. The first step of this model included the main effects of appropriateness 

and fidelity, and the second step introduced the interaction between appropriateness and 

fidelity. The results of this analysis indicated that the main effects model was significant 

when compared to the constant-only model, χ2 (2, N = 96,000) = 6,955.77, p < .001, R2 = 

.1156, and that the model including the interaction between appropriateness and fidelity 

was also significant when compared to the main effects only model, χ2 (3, N = 96,000) = 

6,995.58, p < .001, R2 = .1163. According to the Wald criterion, the interaction between 

assessment appropriateness and fidelity reliably predicted a Type I error for the estimated 

theta scores, χ2(1, N = 96,000) = 39.75, p < .001, OR = 1.44. This result indicates that the 

likelihood of a spurious interaction effect is 1.44 times greater for high fidelity 

assessments when compared to low fidelity assessments under conditions of assessment 

inappropriateness. Although this result contradicts the results of the ANOVA conducted 

at the aggregate level, it should be noted that the significance observed here is likely due 

to the large sample size. An examination of the change in the amount of variance that is 

accounted for by the interaction term reveals that the interaction between assessment 

appropriateness and fidelity only accounts for an additional .07% of the variance in 

spurious interaction effects. 

Hypothesis 4 

Hypothesis 4 stated that, simulated assessments with higher item discrimination 

scores and stronger regression coefficients will result in the highest occurrence of Type I 
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errors for the interaction term in moderated multiple regression when raw scores are used 

to operationalize a latent construct. The results supported this Hypothesis. Hypothesis 4 

was tested using a 2x2 between subjects analysis of variance. The full model included the 

main effects of item discrimination and regression weights and the interaction between 

discrimination and regression weights. The dependent variable in this analysis was the 

empirical Type I error rate for the raw scores. As a follow-up to Kang and Waller (2005), 

this analysis served to assess the prediction that the interaction of item discrimination and 

regression weights would create conditions with a high rate of Type I errors when raw 

scores are used to operationalize a latent construct. The interaction between 

discrimination and regression weights was significant, F(1, 92) = 10.83, p = .01, η2 = 

.105. An examination of the means plots presented in Figure 9 suggests that there are 

significant differences in the empirical Type I error rate for raw scores due to 

discrimination and regression weights, and the effect of regression weights is greatest at 

high levels of item discrimination. 

As an additional test of this Hypothesis, a stepwise logistic regression model was 

created to examine the interaction of item discrimination and regression weights at the 

iteration level. The first step of this model included the main effects of item 

discrimination and regression weights, and the second step introduced the interaction 

between item discrimination and regression weights. The results of this analysis indicated 

that the main effects model was significant when compared to the constant-only model, χ2 

(2, N = 96,000) = 9,354.15, p < .001, R2 = .154, and that the model including the 

interaction between item discrimination and regression weights was also significant when  
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Figure 9. Interaction of item discrimination and regression weights on 
the empirical Type I error rate for raw scores 

 

 

compared to the main effects only model, χ2 (3, N = 96,000) = 9,759.19, p < .001, R2 = 

.160. According to the Wald criterion, the interaction between item discrimination and 

regression weights reliably predicted a Type I error for the estimated theta scores, χ2(1, N 

= 96,000) = 416.59, p < .001, OR = 2.29. This result indicates that the likelihood of a 

spurious interaction effect is 2.29 times greater with strong regression weights when 

compared to weaker regression weights when assessments have highly discriminating 

items. An examination of the change in the amount of variance that is accounted for by 

the interaction term reveals that the interaction between item discrimination and 

regression weights accounted for an additional .6% of the variance in spurious interaction 

effects. 
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Scale of Measurement and Linearity of Raw Scores and Estimated Theta Scores 

Previous research has advanced the idea that a primary mechanism underlying 

spurious interaction effects is the scale of measurement on which various scores can be 

classified. Specifically, data that fails to achieve interval level scaling can be predisposed 

to an increased risk for Type I errors in moderated statistical models (Davison & Sharma, 

1990; Embretson, 1996; Kang & Waller, 2005). It is often considered that the raw scores 

that are generated from latent construct assessments under the classical test theory 

framework achieve ordinal scales of measurement at best, but that theta estimates derived 

from IRT models can achieve interval or nearly interval level scaling. (Borsboom, 2008; 

Embretson, 1996; Embretson & DeBoeck, 1994; Harwell & Gatti, 2001; Kang & Waller, 

2005; Perline et al., 1979; Reise & Haviland, 2005; Reise et al., 2005; Rupp & Zumbo, 

2006; Wainer, 1982). Measurement researchers have appeared to reach a general 

consensus that the Rasch model and the scores that are derived from it can fully achieve 

interval level scaling, and other IRT models can achieve a scale closer to interval level 

than simple raw scores (Embretson, 2006). Reise and Haviland (2005) reflect this 

principle by referring to IRT-derived theta estimates as being optimally scaled. So far, 

only one study has been located that directly assessed the degree to which multicategory 

response data and a polytomous IRT model achieve interval-level scaling. Harwell and 

Gatti (2001) provided some evidence that scores generated using the graded response 

model (GRM) can achieve interval, or nearly interval-level scaling. The authors tested 

this assumption by generating distributions of the residuals between the estimated theta 
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scores and the actual theta scores, and concluded that the residuals were within a range 

attributable to sampling error. However, Harwell and Gatti cautioned that their results 

were preliminary and that more research on these relationships is needed. 

Similar to Harwell and Gatti (2001), the root mean squared error (rmse) was 

averaged over all of the iterations in each condition of this dissertation. These data are 

presented in the column labeled rmse in Tables 4, 5, 6, and 7. A trend is observable in the 

rmse values in Tables 4, 5, 6, and 7 such that larger rmse’s are typically associated with 

larger empirical Type I error rates. This would provide initial evidence that the estimated 

theta scores are more poorly approximating the actual theta scores as the empirical Type I 

error rate increases. To the extent that the actual theta scores achieve an interval scale, 

these results would lend support to Harwell and Gatti’s (2001) findings. 

 A more compelling argument can possibly be made for the interval-level scaling 

of the data that was generated in this dissertation by assessing the linearity of the data. 

One of the qualities of scale of measurement classifications is that they provide us with 

admissible transformations for the data (Stevens, 1946; Stine, 1989). Linear 

transformations are needed for interval level data, but not for ordinal level data. 

Therefore, tests of linear associations, such as the Pearson product-moment correlation, 

should reasonably differentiate between interval and ordinal data. As an example, the 

actual theta scores, estimated theta scores, and raw scores that were generated in 

conditions 80, 88, and 96 were correlated within each iteration. In condition 80, an 

average correlation over all of the iterations in this condition revealed that actual theta 

scores were correlated with raw scores, r = .882, p < .001, and with estimated theta 
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scores, r = .925, p < .001. In condition 88, an average correlation over all of the iterations 

in this condition revealed that actual theta scores were correlated with raw scores, r = 

.953, p < .001, and with estimated theta scores, r = .962, p < .001. In condition 96, an 

average correlation over all of the iterations in this condition revealed that actual theta 

scores were correlated with raw scores, r = .877, p < .001, and with estimated theta 

scores, r = .941, p < .001. 

When data meet the linearity assumption, differences in correlations are due to the 

magnitude of the covariance between the variables. However, nonlinearity can attenuate 

correlations as well. An examination of the scatter plots from 1,875 randomly selected 

data points in conditions 80, 88, and 96 reveals that the nonlinearity in the raw score – 

theta score relationship is likely to be the attenuating factor in the differences between the 

aforementioned correlation coefficients (see Figure 10). Additionally, a ceiling and floor 

effect can be observed in conditions 80 and 88 respectively due to the relative item 

category difficulty parameters in each condition. These conditions also reflect the effects 

of assessment inappropriateness on the relationships between the scores and the actual 

latent construct.  

These results would appear to indicate that there is a stronger linear relationship 

between estimated theta scores and actual theta scores than there is between raw scores 

and actual theta scores. Although this may provide some indication of the interval-level 

scaling of the estimated theta scores, it is always tempered by the extent to which the 

actual theta scores are at an interval scale themselves. Recall that earlier work has 

indicated that the only IRT model that is thought to be theoretically capable of achieving  
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Figure 10. Linearity of the relationships between actual theta scores, 
raw scores, and estimated theta scores from three simulation conditions 
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interval scales is the Rasch model (Embretson, 2006; Embretson & DeBoeck, 1994; 

Perline et al., 1979; Reise & Haviland, 2005; Reise et al., 2005; Rupp & Zumbo, 2006; 

Wainer, 1982). Thus, data that is generated using alternative IRT models may not 

perfectly achieve interval scales of measurement. This evidence provides some support 

for the interval scale argument for polytomous models, but further research into these 

relationships is certainly needed. 
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CHAPTER 5: DISCUSSION 

General Discussion 

The Monte Carlo simulation that was conducted in this dissertation was designed 

to investigate the effects of the psychometric characteristics of a latent construct 

assessment and scoring techniques on the empirical Type I error rate for the interaction 

term of a moderated multiple regression model. This simulation was a direct extension of 

the simulation conducted by Kang and Waller (2005). The Kang and Waller study 

investigated the relative performance of raw scores and estimated theta scores with 

regards to Type I error rates in MMR using dichotomous data and the two-parameter 

logistic IRT model. The simulation conducted in this dissertation modeled multi-

category, Likert-type data, and applied a polytomous IRT model, the graded response 

model. Additionally, this simulation was designed to reflect common scale characteristics 

in applied psychology to enhance the generalizability of the findings to this field. This 

simulation was also designed to achieve a higher degree of experimental rigor such that 

the number of iterations per condition was increased from 500 in Kang and Waller’s 

study to 1,000. These characteristics are important for the generalizability of the results 

when sampling from a pseudo-random population in a simulation study (Harwell et al., 

1996). Finally, an approximation interval for the empirical Type I error rate was 

established using Robey and Barcikowski’s (1992) recommendations and a binomial test 

was conducted for the purposes of identifying meaningfully inflated Type I errors. 

This dissertation was conducted to address two primary research goals. 

Theoretical and empirical evidence have emerged to suggest that using IRT to 
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operationalize an individual’s standing on a latent construct has important measurement 

implications over the use of raw scores (Borsboom, 2008; Embretson, 1996; Embretson, 

2006; Embretson & DeBoeck, 1994; Harwell & Gatti, 2001; Kang & Waller, 2005; 

Perline et al., 1979; Reise & Haviland, 2005; Reise et al., 2005; Rupp & Zumbo, 2006; 

Wainer, 1982). Specifically, IRT-derived theta scores have been demonstrated to be 

resistant to inflated Type I error rates in moderated statistical models due to achieving an 

interval, or nearly interval, scale of measurement (Embretson, 1996; Kang & Waller, 

2005). This previous work, although highly illuminating, has been limited to applications 

of dichotomous data and restrictive IRT models. Therefore, my first goal in this 

dissertation was to extend our understanding of these potentially beneficial measurement 

properties by modeling multicategory data and implementing a polytomous IRT model. 

 The second goal was to generalize these findings to the applied psychological 

literature with the purpose of promoting IRT as a useful statistical tool. Although many 

researchers in this area have called attention to the importance of measurement (Austin et 

al., 2002; Cortina, 1993; Phillips & Lord, 1986; Podsakoff & Dalton, 1987; Scandura & 

Williams, 2000; Smith & Stanton, 1998; Stone-Romero, 1994), and the usefulness of IRT 

(Hulin & Ilgen, 1990; Zickar, 1998), summative evidence suggests that few are 

embracing their calls. However, due to the prevalence of polytomous data (Aguinis et al., 

2009; Austin, et al., 2002; Fields, 2002), and the popularity of moderated statistical 

models (Aguinis, 2004; Aguinis, et al., 2005; Aguinis & Stone-Romero, 1997; Stone-

Romero et al., 1994; Bartlett et al., 1978; Lubinski & Humphreys, 1990), a strong case 

can be made for adding IRT to the general statistical repertoire of applied psychological 
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researchers. The contribution of IRT being represented here is a scoring technique that, in 

certain contexts, can result in better accuracy for parametric analyses. 

Among several important findings to address, it is imperative to point out that 

under certain conditions, the meaningfully inflated Type I error rates were observed for 

both the estimated theta scores and the raw scores. This result for the raw scores was 

expected, however, this result for the estimated theta scores was somewhat unexpected. 

This finding should caution researchers that a perfectly functioning metric was not 

identified in this dissertation for the graded response model. However, it was often the 

case that the Type I error rate of the raw scores far exceeded that of the estimated theta 

scores. This finding provided some support for Hypothesis 1, which stated, “Under 

conditions in which no significant interaction is present, the use of raw scores to 

operationalize a latent construct will result in higher Type I error rates than the use of 

actual or estimated latent trait scores derived using an IRT approach”. For example, in 

conditions 7, 8, 23, and 24 in Table 4, the Type I error rates for the raw scores ranged 

from .296 to .386 whereas the respective Type I error rates for the estimated theta scores 

ranged from .089 to .120. Clearly, given the alternative, the estimated theta scores would 

be more attractive to researchers in these conditions. Additionally, cases in which the 

Type I error rates were grossly inflated such as conditions 31, 32, 47, and 48 in Table 5 

and 79, 80, 95, and 96 in Table 7, the Type I error rate for the raw scores was 

approximately 200% to 450% higher than the Type I error rate for the estimated theta 

scores. An examination of Figure 7 clearly reveals these disparities between the raw 

scores and estimated theta scores. Again, although the estimated theta scores did not 
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perform perfectly within the acceptable limits, these results demonstrate a clear 

preference for their use in applied research when certain psychometric conditions exist. 

Another prominent result was that of the role of assessment appropriateness on 

Type I error rates for both raw scores and estimated theta scores. Assessment 

appropriateness is defined as the congruence between the reliability of an assessment and 

the latent construct distribution of the individuals responding to an assessment. In IRT, an 

assessment’s reliability is variable and linked to item difficulty. Peak item reliability 

occurs at the point along the construct continuum at which the individuals have a fifty 

percent chance of responding correctly, or positively, to an item. Peak assessment 

reliability is a cumulative function of item reliability, and hence, item difficulty 

(Embretson & Reise, 2000; Hambleton et al., 1991). Inappropriate assessments are 

defined as those that violate this congruence, such that they are either too “easy” or too 

“difficult” for the individuals. The results of this simulation demonstrated that, under 

conditions of assessment appropriateness, there is no concern as to unacceptable Type I 

error rates for any psychometric condition or scoring technique. This finding provided 

full support for Hypothesis 1a, which stated, “Under conditions of assessment 

appropriateness, the Type I error rates for raw scores, actual, and estimated latent 

construct scores will not exceed the nominal criterion of α = .05”. 

The complimentary result, that spurious interactions were only observed under 

some conditions of assessment inappropriateness, was also true. These results were not 

unexpected and supported Hypothesis 2, which stated, “Assessment inappropriateness 

will influence the prevalence of Type I error rates for the interaction term in moderated 
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multiple regression”. Embretson (1996) and Kang and Waller (2005) also identified 

assessment appropriateness and inappropriateness as the primary factor in their 

simulations of spurious interaction effects. Embretson (1996) determined that the degree 

and direction of the inappropriateness fully accounted for the nature of the interaction 

with regard to treatment groups in a simulated factorial ANOVA. Prior to these studies, 

Maxwell and Delaney (1985) cogently demonstrated how various distributional shapes of 

latent constructs can interact with assessment difficulty (appropriateness) to result in 

artificial group mean differences when the observed scores and latent scores were related 

through a non-linear, monotonic relationship. These relationships were also reflected in 

the findings in this dissertation. Full support was identified for Hypothesis 2a, which 

stated, “Under conditions of assessment inappropriateness, the use of raw scores to 

operationalize a latent construct will result in Type I error rates that exceed the nominal 

criterion of α = .05”. However, the prediction that this effect would not occur when using 

estimated theta scores was not fully supported. Indeed, Hypothesis 2b, which stated, 

“Under conditions of assessment inappropriateness, the use of estimated or actual latent 

trait scores to operationalize a latent construct will not result in Type I error rates that 

exceed the nominal criterion of α = .05” was not fully supported. This finding suggests 

that certain conditions may reduce the level of linearity in the theta – estimated theta 

relationship. Specifically, an examination of the rmse values in these conditions indicates 

less precise parameter recovery. This would suggest that the degree of congruence 

between the actual and estimated theta scores was being eroded in exceedingly easy or 

difficult assessments. 
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Other findings were also very similar to previous investigations. Both Embretson 

(1996) and Kang and Waller (2005) found little effect of assessment length on Type I 

error rates for any scoring condition. This result was also replicated in this dissertation. 

Other factors being held constant, the Type I error rates for the 15 and 30 item 

assessments were reasonably similar. Under classical test theory, increasing scale length 

is one method of increasing the reliability of an assessment. However, these results 

suggest that this approach would not help increase the accuracy of statistical analyses. 

Kang and Waller (2005) also found that item discrimination and regression coefficients to 

be influential factors for spurious interaction effects. Indeed, this result was replicated 

here by finding support for Hypothesis 4, which stated, “Simulated assessments with 

higher item discrimination scores and stronger regression coefficients will result in the 

highest occurrence of Type I errors for the interaction term in moderated multiple 

regression when raw scores are used to operationalize a latent construct”. 

One expected result from previous research was not supported. Specifically, 

Hypothesis 3, which stated, “Under conditions of extreme assessment inappropriateness, 

the use of raw scores to operationalize a latent construct will result in the highest 

prevalence of Type I error rates beyond the nominal criterion of α = .05 for the 

interaction term in moderated multiple regression” was not supported. Extreme 

assessment inappropriateness was defined as assessment inappropriateness combined 

with a high fidelity assessment. This would create peaked tests that are either too easy or 

too difficult for the individuals answering the items. In the context of attitude-based 

assessments such as those modeled here, this can be thought of as creating assessments to 
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which most individuals fully agreed or fully disagreed with the majority of the items. The 

findings in this dissertation did not support the hypothesized interaction between 

appropriateness and fidelity. Instead, the results appeared to suggest that fidelity had a 

very small effect on the empirical Type I error rate, and assessment appropriateness 

dominated the relationship. 

Finally, it is important to highlight the distributional characteristics of the 

dependent variables and the tests of a key assumption in MMR analyses that are included 

in Tables 4, 5, 6, and 7. Specifically, the average skewness and kurtosis of the 

distribution of the variables was significantly positively correlated with the empirical 

Type I error rate for both the raw scores and the estimated theta scores. These 

characteristics can have implications for the robustness of parametric analyses (Bradley, 

1982; 1984). The same pattern was observed by Kang and Waller (2005) in their 

simulation involving dichotomous data. The researchers speculated that correcting this 

non-normality in the raw scores with the Box-Cox transformation (Box & Cox, 1964) 

may help to attenuate the empirical Type I error rate for the raw scores to a level similar 

to that of the estimated theta scores. If successful, this may provide researchers with 

another method of operationalizing their data that does not involve fitting an IRT model. 

In a brief empirical treatment, Kang and Waller (2005) concluded that this process does 

work in some cases, but not in others. Specifically, moderate empirical Type I error rates, 

such as π = .15, responded well to this correction and were reduced to approximately .05, 

but high rates of π =.40 and π =.53 were only reduced to .19 and .31 respectively. Given 

that the most extreme empirical Type I error rates that were observed in this dissertation 
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exceeded values of .60 and .80, this correction may be of lesser value. A more thorough 

examination of alternative score transformations such as the Box-Cox transformation 

would certainly be of interest. 

Implications for Measurement 

 A primary impetus for conducting this simulation was to extend the results of 

Embretson (1996) and Kang and Waller (2005). Building upon theoretical arguments 

posed during the 1980’s (Busemeyer, 1980; Davison & Sharma, 1990; Maxwell & 

Delaney, 1985), Embretson (1996) found that actual theta scores were resistant to both 

Type I and Type II errors in factorial ANOVA whereas raw scores were not. Kang and 

Waller (2005) extended this work to find that estimated theta scores from the two-

parameter logistic IRT model were also resistant to Type I errors in MMR analyses. 

Finally, the results of the simulation conducted in this dissertation suggest that estimated 

theta scores from the GRM were also more resistant to Type I errors in MMR than were 

raw scores. These studies represent a generalizability trend such that each successive 

study branched further away from the measurement ideal and into the realities of 

psychological data. This dissertation represents a major step in this area as it was the first 

study to investigate these effects using polytomous data. 

 The investigation of the performance of polytomous IRT models in a variety of 

contexts is still an important avenue of measurement research. Much attention has been 

paid to the mathematical benefits of the Rasch model for dichotomous data with regard to 

measurement scale (Embretson & Reise, 2000; Fischer, 1995; Perline et al., 1979) and 

parametric analyses (Fraley et al., 2000; Reise & Haviland, 2005). However, much less 
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attention has been paid to polytomous IRT models. Therefore, research that directly 

evaluates the performance of polytomous IRT models in a variety of measurement and 

statistical contexts is of significant importance. In their examination of the scale of 

measurement of the data generated with the GRM, Harwell and Gatti (2001) indicated 

that more research is needed to understand the properties of estimated theta scores from 

more complex IRT models such as the GRM. Specifically, the authors call for careful 

examinations of a variety of item and scale properties that can influence the data that is 

generated with these models. The simulations conducted in this dissertation represent an 

important step forward in filling these requests. 

Implications for Applied Psychology 

 In addressing the implications of this dissertation in applied psychology, we must 

return to a discussion of the current state of measurement and psychometrics in the field. 

Although measurement is recognized as a key feature of research quality in applied 

psychology, it is often relegated to a brief mention of reliability (Podsakoff & Dalton, 

1987; Scandura & Williams, 2000), an afterthought (Austin et al., 2002; Stone-Romero, 

1994), or worse yet, a blatant misinterpretation of psychometric indicators (Phillips & 

Lord, 1986; Cortina, 1993). However, as Schriesheim, Powers, Scandura, Gardiner, and 

Lankau (1993) as well as Schoenfeldt (1984) indicated, the validity of applied 

psychological research is wholly dependent on the quality of our measurement. Indeed, 

this sentiment holds true for any research area that relies heavily on the assessment of 

latent constructs as a primary data collection methodology. 



   
   

133

 Compounding the aforementioned factors is the overwhelming reliance on 

classical test theory approaches to psychometric evaluation in applied psychology. The 

availability and utility of modern test theory approaches, such as IRT, can improve the 

quality of our measurement practices if they are adopted. The results of this dissertation 

provide two arguments for integrating modern measurement theory into applied 

psychological research. The first argument is related to a general shift towards modern 

measurement practices in applied psychology for scale evaluation. The second argument 

is related to the use of IRT as a scoring method to increase the quality of parametric 

analyses. These two arguments are presented in detail below.  

IRT for Scale Evaluation 

In their seminal chapter in the Handbook of Industrial and Organizational 

Psychology, Drasgow and Hulin (1990) made a general call to applied psychological 

researchers for the use of IRT for scale development, maintenance, and evaluation. Since 

this time, IRT has had trouble gaining ground with psychometric research in applied 

psychology (Austin et al., 2002). However, a clear demonstration of the unique benefits 

of IRT over classical test theory methods may provide a stronger case for IRT as a 

psychometric methodology.  

The identification of assessment appropriateness using variable reliability 

estimates is an example of a unique quality of IRT that was found to be the most 

impactful factor on differences in empirical Type I error rates. However, due to the 

invariance problem, assessment appropriateness is more difficult to determine using 

classical test theory approaches. Assessment appropriateness is a function of the variable 
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reliability estimates that are possible with IRT (Embretson & Reise, 2000; Hambleton et 

al., 1991), and assessment information curves that can be derived in all IRT models 

provide a very useful way to observe these properties. Therefore, the most serious 

concern identified in this dissertation and in two prior simulations (Embretson, 1996; 

Kang & Waller, 2005) for spurious interaction effects is more accessible using IRT for 

the evaluation of our scales. To date, only one study has specifically examined this 

property for a commonly used assessment in applied psychology. Morse and Griffeth 

(2009) found peaked information curves for the MSQ short form at the lower end of the 

construct continuum suggesting possible assessment inappropriateness if the respondents 

are of moderate or high job satisfaction. Due to the influence of assessment 

appropriateness on spurious interaction effects, there is clearly a need to examine other 

assessments for these characteristics. 

Very few commonly used scales in applied psychology have been assessed using 

IRT models (c.f. Hulin & Mayer, 1986; Reeve & Smith, 2001; Zagorsek et al., 2006), but 

the tools and expertise are available to expand the application of model-based 

measurement in applied psychological research. Researchers and practitioners in this area 

wishing to utilize IRT models to evaluate existing assessments for these characteristics 

could follow these five steps. First, sufficient data must be collected for the purposes of 

fitting the IRT model. Recent research has indicated that sample sizes of at least 250 

individuals are preferable for fitting polytomous IRT models (Ostini & Nering, 2006). 

Second, the dimensionality of the construct assessment must be determined. This 

information can often be assessed using previous research related to the development and 
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validation of the assessment. For most IRT models, unidimensionality must be obtained 

either by verifying that the assessment has a single, dominant factor or by separating the 

assessment into its unidimensional sub-scales (Hulin & Ilgen, 1990). Third, an IRT 

model must be chosen to apply to the data. Currently, there are several polytomous IRT 

models that are readily available for use and the interested reader can reference Ostini 

and Nering (2006) for a full treatment of the similarities and differences between them. 

However, given its conceptual appeal as a difference family model, the widespread 

availability of software that includes it, and the existing simulation information related to 

Type I errors, Samejima’s graded response model (GRM) is a reasonable choice for many 

applications in applied psychology. Fourth, the scale response data must be fit to the 

model using an IRT software package. Currently, there are several free packages 

available in the R environment such as the latent trait model package (Rizopoulos, 2005), 

as well as commercially available software such as PARSCALE (Muraki & Bock, 2003) 

that can appropriately handle polytomous IRT models including the GRM. Finally, 

assessment information curves can be generated from the software that will indicate 

where the reliability of the assessment is highest and lowest. These curves can give the 

researcher an indication of whether assessment appropriateness is likely to be fulfilled 

based on whether and where the reliability peaks in relation to the latent construct 

continuum. Additional information such as item discrimination and item difficulty can 

also be generated for the purposes of referencing the tables presented in this dissertation 

as an approximate estimate of the Type I error risk. Interested readers can also reference 
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Harwell and Gatti (2001) for a similar step-wise treatment for rescaling ordinal data with 

IRT for use in parametric analyses.  

As an example of this process, a recent study was conducted to investigate the 

psychometric properties of a popular job satisfaction measure, the MSQ short form, using 

a polytomous IRT model. Morse and Griffeth (2009) subjected the MSQ to an IRT 

analysis based on a recent debate regarding the item structure of its two dominant factors, 

intrinsic and extrinsic satisfaction. The results of their analysis suggested that the MSQ 

had peak reliability at the lower end of the construct continuum. This would indicate that 

this measure of job satisfaction may be predisposed to assessment inappropriateness if the 

individuals responding to it were not primarily low-satisfaction employees. Given other 

characteristics that were identified in the Morse and Griffeth study, such as the average 

item discrimination (.638 and .682 for the two sub-scales) and the number of items in the 

scale, we could reference conditions 5, 7, 29, or 31 in Tables 4 and 5 as possible Type I 

error rates (note that the possible conditions are reflecting unknown sample sizes and 

regression coefficients in a hypothetical MMR analysis). For raw scores, all of these 

conditions except for condition 5 would result in higher than acceptable Type I error rates 

for the MSQ. 

Rescaling Data with IRT 

The second argument for implementing IRT in applied psychology deals with our 

treatment of raw data from polytomous latent construct assessments. The results of this 

dissertation overwhelmingly indicate that estimated theta scores from the GRM resulted 

in better overall accuracy than raw scores in MMR models. Although there were some 
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cases in which the empirical Type I error rate for the estimated theta scores exceeded the 

acceptable interval, these rates were always a magnitude of order smaller than those for 

the raw scores.  

These results also suggest that there is a more complex relationship underlying 

data structures and the assessment of moderators in MMR analyses than perhaps 

previously thought. Paunonen and Jackson (1988) conducted a simulation in which Type 

I error rates were compared between ordinary least squares regression (OLS) and 

principle components regression (PCR) in relation to the multicollinearity of the 

predictors. Their results indicated that OLS performed much better than PCR with regard 

to accurate moderator detection, and that linear transformations of the data had little 

effect on the Type I error rates for either procedure. In their study, the researchers 

simulated random effects data from normal distributions just as in this dissertation, but 

did not investigate any influences of psychometric characteristics on the data (i.e., 

difficulty, discrimination, assessment appropriateness, etc.). Conceptually, Paunonen and 

Jackson (1988) generated data as if they were able to collect actual theta scores. It is not 

surprising, therefore, that their results were well within the normal Type I error rate for 

MMR. An examination of the empirical Type I error rates for the actual theta scores in 

Tables 4, 5, 6, and 7 replicate these findings. The generalizability of the results from 

Paunonen and Jackson’s simulation are severely restricted, and the results of this 

dissertation indicate that there is a more complex story to tell. Specifically, psychometric 

characteristics such as assessment appropriateness appear to have a significant influence 

on the performance of MMR analyses based on how the data is operationalized.  
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Given these results, researchers in applied psychology can use IRT models to 

more appropriately operationalize latent construct assessments and to increase the 

accuracy of parametric analyses. IRT models, therefore, can be used as a data 

management tool as well as a psychometric evaluation technique. Past research that has 

incorporated IRT into applied psychological research has often focused on narrow 

measurement applications (c.f., Facteau & Craig, 2001; Zickar et al., 2004). However, the 

results reported in this dissertation provide some support for a more generalized 

application of IRT. Specifically, under certain conditions such as assessment 

inappropriateness, strong regression weights, and high item discrimination, estimated 

theta scores were found to be better approximations of a latent construct than raw scores. 

The use of IRT as a “rescaling technique” in these conditions would be an advantage for 

researchers. However, based on the results identified in this dissertation, using an IRT 

model to rescale raw data is not necessary under conditions of assessment 

appropriateness. This finding provides researchers with the option, in some cases, to use 

raw scores with little or no consequences to the results of a moderated statistical analysis. 

Given the relative ease of generating raw scores compared to estimated theta scores, this 

result is noteworthy in terms of the balance between research quality and practicality. 

Limitations and Future Research 

 Several limitations were present in this dissertation. First, the simulation that was 

conducted was designed to investigate the prevalence of Type I error rates for the 

interaction term in a moderated multiple regression analysis. A Type I error occurs when 

a researcher erroneously rejects a null Hypothesis, and is possible due to probability-
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based statistical decision-making. A related problem is a Type II error, or failing to reject 

a null Hypothesis when a difference actually exists. There is ongoing debate as to the 

relative importance of these errors. Some argue that scientists in general have been more 

concerned with Type I errors for fear of appearing too “loose” with the conclusions that 

are drawn and presented to the general public (Rosenthal & Rosnow, 2008). Thus, for the 

purposes of protecting the integrity of our work, we may want to be overly cautious. 

However, especially in applied psychology, many researchers focus predominantly on 

Type II errors because of statistical artifacts that can preclude the detection of significant 

results (Aguinis & Stone-Romero, 1997; McClelland & Judd, 1993; Rogers, 2002; Stone, 

1988; Zedeck, 1971). In investigations of moderators, this position has been especially 

salient due to the historical difficulty of identifying interaction effects that were strongly 

theorized to exist. Due to the design of this simulation, it was not possible to investigate 

the relationships between response score scaling and psychometric characteristics on 

Type II errors.  

 However, one study has provided some evidence related to the question of Type II 

errors. In her investigation of measurement effects on interactions in factorial ANOVA, 

Embretson (1996) found that the same conditions that give rise to Type I errors contribute 

similarly to Type II errors. Therefore, psychometric characteristics can give rise to a 

sensitivity effect (Type I errors) as well as a dampening effect (Type II errors) with 

regard to statistical decisions about interactions. Limitations in Embretson’s study such as 

the application of the most restrictive IRT model, the Rasch model, to dichotomously 

scored data reduces the generalizability of these results. A possible avenue for future 
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research may include attempting to replicate these results in alternative analyses, such as 

MMR, with more complex IRT models, such as the two-parameter logistic model and the 

GRM. These models have been found, in many cases, to be more widely applicable to 

real data due to the inclusion of discrimination paramters and polytomous response 

categories respectively (Embretson & Reise, 2000). Together, the popularity of MMR, 

the heavy reliance on latent construct assessment data, and the strong concerns for Type 

II errors for interaction effects is sufficient cause to warrant this investigation. 

 The influence of distributional non-normality is also an issue that raises 

interesting follow-up possibilities. A common assumption of parametric statistical tests is 

that data is normally distributed around the mean of a particular variable (Rosenthal & 

Rosnow, 2008; Tabachnick & Fidell, 2007). Most statistics textbooks will provide a 

proof related to the central limit theorem assuring researchers that, regardless of the true 

shape of the parent population distribution, the sampling distribution of some statistic 

(usually the mean) will approach normality as sample size increases. Violations of 

normality can, in some cases, cause problems for the conclusions that are drawn from 

parametric tests because the critical distribution regions associated with Hypothesis 

evaluation are modeled from normally distributed data. In this dissertation, as well as in 

the Kang and Waller (2005) study, non-normality was observed in the simulated 

variables, and departures from normality were observed in a consistent, positive manner 

with the empirical Type I error rate. Additionally, the results of the Shapiro-Wilk test for 

the normality of the residuals, an assumption of MMR, indicated that cases of residual 

non-normality also increased with the empirical Type I error rate. These findings create a 
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potential confound such that the Type I error rate may be partially related to these 

violations of normality, which were observed as a result of the simulation rather than a 

controlled factor. As a future study, it may be helpful to manipulate these conditions to 

determine their causal impact.  

Kang and Waller (2005) briefly delved into possible transformations for non-

normality (e.g., the Box-Cox transformation) that could help attenuate the empirical Type 

I error rate, but their treatment of this issue was very preliminary. Given that similar 

patterns in the data emerged in this study, a more rigorous simulation could be conducted 

in this area. Specifically, it would be helpful to compare various methods of data 

transformations in situations where inflated Type I error rates are known to exist. The 

information from these studies could arm researchers with varying techniques, including 

IRT scaling that have known efficacies for preventing unreasonably high Type I error 

rates in defined contexts. 

Another methodological limitation that could be raised for the simulations that 

were conducted in this dissertation relates to the use of the GRM to generate raw scores 

and to derive estimated theta scores. Recall that the simulated raw score matrices were 

derived using the GRM to impose particular psychometric factors and reflect responses to 

a Likert-type scale. The GRM was then invoked using PARSCALE to derive the 

estimated theta values from the raw score matrices. This approach is often taken in IRT 

Monte Carlo studies to increase the likelihood of model fit (Harwell et al., 1996). 

However, interesting follow-up studies may include using different models to generate 

and fit the data. Indeed, this approach may provide more insight into the degree to which 
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various IRT models reach interval scales of measurement. If the data are generated with 

the Rasch model (which is thought to best achieve interval-level scaling) and fitted with a 

more complex model, the degree of model fit could be another metric of interval-level 

scaling. This seems to be a particularly interesting avenue of future research. 

Finally, two limitations were present in relation to the simulated variables in this 

dissertation. Recall that the two main effects in the simulated regression models were 

randomly selected from a standard normal distribution. Conceptually, this creates a 

regression model using continuous variables as the predictors. These are also referred to 

as random-effects, because the values are assumed to be randomly sampled from some 

larger distribution (Cohen et al., 2003). Examples of random-effects variables can include 

latent constructs such as intelligence or job-satisfaction in which each individual has a 

construct score and is assumed to be a member of a larger population. Another type of 

variable that can be included in an MMR analysis is a fixed-effect, or a discreet condition 

that is set in the model. Fixed-effects can also be thought of as categorical predictors such 

as manipulated treatment conditions. A primary distinction between the two types of 

variables is that random-effects make assumptions about parent distributions for both the 

variable and its associated error, whereas fixed-effects do not (Fisicaro & Tisak, 1994). 

The decision to simulate random-effects in this dissertation was made to retain as much 

comparability with the Kang and Waller (2005) study as possible. However, to increase 

the generalizability of these findings, it would be useful to also investigate fixed-effects 

due to the popularity of categorical variables in MMR in applied psychological research 

(Aguinis, 2004; Aguinis et al., 2005).  
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A more obscure but perhaps noteworthy concern related to the random/fixed-

effects variable structure arises in relation to testing interaction terms in MMR. In two 

mathematical elaborations, Fisicaro and Tisak (1994) and Sockloff (1976) argued that 

random effects predictors are mathematically constrained such that an interaction effect 

cannot be computed. Therefore, they concluded that all significant interactions arising 

from random effects are Type I errors. Based on this logic, the results of this dissertation 

would not be meaningful due to this constraint. However, little follow-up evidence has 

been offered to further justify these claims, and seminal references such as the Cohen et 

al. (2003) regression text devote entire chapters to random effects and interactions 

between random effects predictors. Although important to note as a possible point of 

future study, it appears that the popular applied consensus has not placed much weight on 

this issue.  

Conclusion 

Overall, the results of this dissertation provide some support for the use of model-

based measurement techniques for both general scale evaluation and the 

operationalization of latent constructs. However, this support is not ubiquitous and, in 

deference to parsimony, the generation of estimated theta scores should not be taken as 

the default data-handling method in all situations. Specifically, although there was some 

evidence for the influence of all of the manipulated psychometric characteristics in this 

dissertation, it is clear that assessment appropriateness is the most important factor. If a 

researcher can justify that the reliability of the assessment and the distribution of 

construct scores for the individuals are reasonably matched, there is no evidence here that 
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the Type I error rate will be inflated to an unacceptable level for any scoring technique. 

Although software packages developed to generate IRT-derived theta scores have greatly 

reduced the computational complexity that has long restricted their use, the use of simple 

raw scores is still more straightforward and sufficient in these cases. 

The finding that assessment appropriateness was the most impactful psychometric 

factor for spurious interaction effects again raises the need for more widespread use of 

model-based measurement practices in applied psychology. Specifically, the generation 

of scale information curves that can clearly depict the reliability profile of an assessment 

is a key factor in fulfilling this need. However, only one study has examined a commonly 

used latent construct assessment in applied psychology for these properties (c.f., Morse & 

Griffeth, 2009). Based on the results of this dissertation, the need for further inquiry into 

this area is undeniable. 

Finally, it was clear from the results of these simulations that the GRM was not 

fully resistant to inflated Type I error rates. In some cases, the empirical Type I error 

rates that were observed in this dissertation were inflated above the acceptable criterion 

for the estimated theta scores. This also suggests that the GRM may not have fully 

achieved interval-level scaling. However, it is important to remember that the estimated 

theta scores performed consistently better than the raw scores in every condition with an 

unacceptably high Type I error rate. In many cases, this performance difference was 

substantial. Therefore, although not perfect, the GRM did produce scores that were more 

robust than the raw scores for use in moderated multiple regression models.  
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Perhaps the most general message being promoted through the research in this 

dissertation is that we cannot lose sight of the importance and concrete implications of 

good measurement practices in psychological research. One would be hard-pressed to 

find a psychological researcher who disagrees with this sentiment in principle, but the 

published track record tells a different tale. It is therefore important to maintain the 

visibility of the importance and applicability of modern measurement theory and research 

in psychology and psychology-related fields. Embretson (2006) illustrated this position 

very effectively by stating, 

Applications of model-based measurement are rapidly increasing in the testing 

industry, but applications to psychological research are lagging. Although a wide 

variety of models with explanatory potential are now available and accessible 

through popular software, they will not be applied effectively unless 

psychologists are better prepared in measurement and statistics. Meeting this 

challenge will require a refocusing of efforts on several levels in the training of 

psychological researchers (p. 54). 

The results of this dissertation provide a very specific indicator of the costs of 

measurement ambivalence on popularly used parametric analyses. Given that 

psychometric quality has been found to extend beyond the question of construct 

definitions and into the accuracy of parametric analyses, the need for increased attention 

to measurement seems especially salient. Hopefully, further research and exposure in 

fields like applied psychology will help elucidate these issues and improve the overall 

quality of behavioral research. 
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APPENDIX A: R CODE FOR SIMULATION 1 

1: #Morse Dissertation Table 1 (n=250, normal) 
2: 
3: #Load latent trait model library 
4: library("ltm") 
5: 
6: #Set number of iterations per condition 
7: n.it<-1000 
8: 
9: #Individual Monte Carlo loop structure 
10: study1<-function(seednum, numSubj=numSubj, Numiter=n.it, 
11: b.mean, b.sd, a.low, a.high, w1, w2, numItem, results.file) 
12: 
13: #=================================================================# 
14: #Simulation loops for spurious interactions (n=250, k=15, normal) # 
15: #=================================================================# 
16: 
17: { 
18: 
19: setwd("C:/Program Files/PARSCALE4") 
20: 
21: #Generate raw response matrix for IV1, IV2, and DV 
22: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score,theta) 
23: { 
24: b1<-b 
25: b2<-b1+.70 
26: b3<-b2+.70 
27: b4<-b3+.70 
28: 
29: for(i in 1:numItem){ 
30: 
31: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
32: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
33: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
34: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
35: 
36: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
37: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
38: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
39: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
40: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
41: 
42: #Generating a response matrix by comparing a random value from a 
43: #uniform distribution U(0,1) to the relative score categories 
44: r<-runif(numSubj) 
45: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
46: response2[,i]<-ifelse(r < Ptheta1a[,i] + Ptheta2b[,i] & r >= 
47: Ptheta1a[,i],2,0) 
48: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r >= 
49: Ptheta1a[,i]+Ptheta2b[,i],3,0) 
50: response4[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
51: Ptheta4d[,i] & r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
52: response5[,i]<-ifelse(r >=Ptheta1a[,i]+Ptheta2b[,i]+ Ptheta3c[,i] + 
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53: Ptheta4d[,i],5,0) 
54: 
55: #Compiling the response matrix to object 'score' 
56: score<-response1+response2+response3+response4+response5 
57: } 
58: return(score) 
59: } 
60: 
61: #Function to calculate skewness 
62: skew <- function (x) 
63: { 
64: sk <- function(xx) { 
65: n <- length(xx) 
66: mn <- mean(xx) 
67: dif.x <- xx - mn 
68: m2 <- sum(dif.x^2)/n 
69: m3 <- sum(dif.x^3)/n 
70: m3/(m2^(3/2)) 
71: } 
72: if (ncol(x) == 1 || is.null(dim(x))) 
73: return(sk(x)) 
74: else return(apply(x, 2, sk)) 
75: } 
76: 
77: #Function to calculate kurtosis 
78: kurtosis <-function (x) 
79: { 
80: kt <- function(xx) { 
81: n <- length(xx) 
82: mn <- mean(xx) 
83: dif.x <- xx - mn 
84: m2 <- sum(dif.x^2)/n 
85: m4 <- sum(dif.x^4)/n 
86: (m4/m2^2) - 3 
87: } 
88: if (ncol(x) == 1 || is.null(dim(x))) 
89: return(kt(x)) 
90: else return(apply(x, 2, kt)) 
91: } 
92: 
93: #------------------- fixed conditions ----------------------------# 
94: 
95: result <- matrix(0, nrow = Numiter, ncol = 9) 
96: 
97: #------------------- starting for-loop ---------------------------# 
98: 
99: iter<-0 
100: good.iter<-1 
101: while(good.iter <= Numiter) { 
102: 
103: iter<-iter+1 
104: set.seed(seednum+iter) 
105: 
106: #----------------- initializing values --------------------------# 
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107: 
108: #Create a person by item matrix for the scores of CBRF 1 through 4 
109: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
110: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
111: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
112: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
113: 
114: #Create a person x item matrix for the scores of CRF 1 through 5 
115: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
116: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
117: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
118: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
119: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
120: 
121: #Create a person x item matrix for raw scores of cat 1 through 5 
122: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
123: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
124: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
125: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
126: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
127: 
128: #Create the final person by item matrix of raw responses 
129: score <- matrix(0, nrow = numSubj, ncol = numItem) 
130: 
131: #---------------- Generating IV1, IV2, and DV -------------------# 
132: 
133: theta1<-scale(rnorm(numSubj)) 
134: theta2<-scale(rnorm(numSubj)) 
135: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
136: 
137: #--------------- Specifying item parameters ---------------------# 
138: 
139: a1 <- runif(numItem, a.low, a.high) 
140: a2 <- runif(numItem, a.low, a.high) 
141: a3 <- runif(numItem, a.low, a.high) 
142: b1a <- rnorm(numItem, b.mean, b.sd) 
143: b2a <- rnorm(numItem, b.mean, b.sd) 
144: b3a <- rnorm(numItem, b.mean, b.sd) 
145: 
146: #--------------- Generating reponse patterns --------------------# 
147: 
148: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score, theta1) 
149: score2<-score.item.prg(numItem,numSubj,Ptheta1,a2,b2a,score, theta2) 
150: score3<-score.item.prg(numItem,numSubj,Ptheta1,a3,b3a,score, theta3) 
151: 
152: #-------- Compute Cronbach's Alpha for reliability --------------# 
153: 
154: alpha1<-cronbach.alpha(score1) 
155: alpha2<-cronbach.alpha(score2) 
156: alpha3<-cronbach.alpha(score3) 
157: alpha.score1<-alpha1$alpha 
158: alpha.score2<-alpha2$alpha 
159: alpha.score3<-alpha3$alpha 
160: 
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161: #--------- Estimating parameters using PARSCALE4.1 --------------# 
162: 
163: #Command to invoke PARSCALE to generate theta estimates 
164: #Note that all files must be located in the PARSCALE directory 
165: 
166: #-------------------------n=250, k=15----------------------------# 
167: #--------------------------score 1-------------------------------# 
168: score1psl<-data.frame(1001:1250,score1) 
169: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_15-250.dat", 
170: sep="",row.names=FALSE,col.names=FALSE) 
171: system("score15-250.bat",show.output.on.console = FALSE) 
172: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
173: head=F,fill=T)[(1:250)*2,7] 
174: theta.ab1<-as.matrix(theta.ab1) 
175: #--------------------------score 2-------------------------------# 
176: score2psl<-data.frame(1001:1250,score2) 
177: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_15-250.dat", 
178: sep="",row.names=FALSE,col.names=FALSE) 
179: system("score15-250.bat",show.output.on.console = FALSE) 
180: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
181: head=F,fill=T)[(1:250)*2,7] 
182: theta.ab2<-as.matrix(theta.ab2) 
183: #-------------------------score 3-------------------------------# 
184: score3psl<-data.frame(1001:1250,score3) 
185: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_15-
250.dat", 
186: sep="",row.names=FALSE,col.names=FALSE) 
187: system("score15-250.bat",show.output.on.console = FALSE) 
188: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
189: head=F,fill=T)[(1:250)*2,7] 
190: theta.ab3<-as.matrix(theta.ab3) 
191: #----------------------------------------------------------------# 
192: 
193: #-- Computing the rmsq, total scores, skew and kurtosis----------# 
194: 
195: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
196: 
197: score1 <- apply(score1, 1, mean) 
198: score2 <- apply(score2, 1, mean) 
199: score3 <- apply(score3, 1, mean) 
200: 
201: score1.skew<-skew(score1) 
202: score1.kurtosis<-kurtosis(score1) 
203: score2.skew<-skew(score2) 
204: score2.kurtosis<-kurtosis(score2) 
205: score3.skew<-skew(score3) 
206: score3.kurtosis<-kurtosis(score3) 
207: 
208: theta.ab1skew<-skew(theta.ab1) 
209: theta.ab1kurtosis<-kurtosis(theta.ab1) 
210: theta.ab2skew<-skew(theta.ab2) 
211: theta.ab2kurtosis<-kurtosis(theta.ab2) 
212: theta.ab3skew<-skew(theta.ab3) 
213: theta.ab3kurtosis<-kurtosis(theta.ab3) 
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214: 
215: #--- Applying additive and multiplicative regression models -----# 
216: 
217: #Actual theta scores 
218: theta.add<-lm(theta3~theta1+theta2) 
219: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
220: 
221: #Raw scores 
222: sum.add<-lm(score3~score1+score2) 
223: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
224: 
225: #Estimated theta scores 
226: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
227: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
228: 
229: #-------- Shapiro-Wilk test for checking normality --------------# 
230: 
231: theta.orderres <- summary(theta.add)$res 
232: sum.orderres <- summary(sum.add)$res 
233: thetahat.orderres <- summary(theta.ab.add)$res 
234: 
235: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
236: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
237: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
238: 
239: #report r-square, r-square change sig., and rm squared deviations# 
240: 
241: cat("Working on sample",seednum,"iteration",iter,good.iter, "\n") 
242: theta.add.rsq <- summary(theta.add)$r.squared 
243: theta.mul.rsq <- summary(theta.mul)$r.squared 
244: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
245: theta.p[is.na(theta.p)] <- 1.00 
246: 
247: sum.add.rsq <- summary(sum.add)$r.squared 
248: sum.mul.rsq <- summary(sum.mul)$r.squared 
249: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
250: sum.p[is.na(sum.p)] <- 1.00 
251: 
252: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
253: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
254: theta.ab.p<-round(anova(theta.ab.add, theta.ab.mul)$"Pr(>F)"[2], 
4) 
255: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
256: 
257: #--------- Summarize results of each loop -----------------------# 
258: 
259: iter.results<-as.vector(c(iter, 
260: seednum, 
261: numItem, 
262: a.low, 
263: a.high, 
264: b.mean, 
265: b.sd, 
266: w1, 
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267: w2, 
268: theta.add.rsq, 
269: theta.mul.rsq, 
270: theta.p, 
271: sum.add.rsq, 
272: sum.mul.rsq, 
273: sum.p, 
274: theta.ab.add.rsq, 
275: theta.ab.mul.rsq, 
276: theta.ab.p, 
277: rmsq, 
278: alpha.score1, 
279: alpha.score2, 
280: alpha.score3, 
281: swtheta.p, 
282: swsum.p, 
283: swthetahat.p, 
284: score1.skew, 
285: score2.skew, 
286: score3.skew, 
287: score1.kurtosis, 
288: score2.kurtosis, 
289: score3.kurtosis, 
290: theta.ab1skew, 
291: theta.ab2skew, 
292: theta.ab3skew, 
293: theta.ab1kurtosis, 
294: theta.ab2kurtosis, 
295: theta.ab3kurtosis)) 
296: 
297: names(iter.results)<-NULL 
298: sink(results.file,append=TRUE) 
299: print(iter.results,digits=4,quote=FALSE) 
300: sink() 
301: good.iter<-good.iter+1 
302: } 
303: 
304: } 
305: #-------------------- End loop structure ------------------------# 
306: 
307: #================================================================# 
308: # Begin looping individual conditions # 
309: #================================================================# 
310: 
311: options(width=2000) 
312: 
313: { 
314: 
315: results.file1<-"C:/Documents and Settings/Admin/Desktop/DissModel/C1.txt" 
316: study1(seednum = 1, 
317: numSubj = 250, 
318: Numiter = n.it, 
319: b.mean = -2.5, 
320: b.sd = 0.7, 
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321: a.low = .31, 
322: a.high = .58, 
323: w1 = .3, 
324: w2 = .3, 
325: numItem = 15, 
326: results.file = results.file1) 
327: 
328: results.file3<-"C:/Documents and Settings/Admin/Desktop/DissModel/C3.txt" 
329: study1(seednum = 3, 
330: numSubj = 250, 
331: Numiter = n.it, 
332: b.mean = -2.5, 
333: b.sd = 0.7, 
334: a.low = .31, 
335: a.high = .58, 
336: w1 = .5, 
337: w2 = .5, 
338: numItem = 15, 
339: results.file = results.file3) 
340: 
341: results.file5<-"C:/Documents and Settings/Admin/Desktop/DissModel/C5.txt" 
342: study1(seednum = 5, 
343: numSubj = 250, 
344: Numiter = n.it, 
345: b.mean = -2.5, 
346: b.sd = 0.7, 
347: a.low = .58, 
348: a.high = 1.13, 
349: w1 = .3, 
350: w2 = .3, 
351: numItem = 15, 
352: results.file = results.file5) 
353: 
354: results.file7 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C7.txt" 
355: study1(seednum = 7, 
356: numSubj = 250, 
357: Numiter = n.it, 
358: b.mean = -2.5, 
359: b.sd = 0.7, 
360: a.low = .58, 
361: a.high = 1.13, 
362: w1 = .5, 
363: w2 = .5, 
364: numItem = 15, 
365: results.file = results.file7) 
366: 
367: results.file9 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C9.txt" 
368: study1(seednum = 9, 
369: numSubj = 250, 
370: Numiter = n.it, 
371: b.mean = -1.0, 
372: b.sd = 0.7, 
373: a.low = .31, 
374: a.high = .58, 
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375: w1 = .3, 
376: w2 = .3, 
377: numItem = 15, 
378: results.file = results.file9) 
379: 
380: results.file11<-"C:/Documents and Settings/Admin/Desktop/DissModel/C11.txt" 
381: study1(seednum = 11, 
382: numSubj = 250, 
383: Numiter = n.it, 
384: b.mean = -1.0, 
385: b.sd = 0.7, 
386: a.low = .31, 
387: a.high = .58, 
388: w1 = .5, 
389: w2 = .5, 
390: numItem = 15, 
391: results.file = results.file11) 
392: 
393: results.file13<-"C:/Documents and Settings/Admin/Desktop/DissModel/C13.txt" 
394: study1(seednum = 13, 
395: numSubj = 250, 
396: Numiter = n.it, 
397: b.mean = -1.0, 
398: b.sd = 0.7, 
399: a.low = .58, 
400: a.high = 1.13, 
401: w1 = .3, 
402: w2 = .3, 
403: numItem = 15, 
404: results.file = results.file13) 
405: 
406: results.file15 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C15.txt" 
407: study1(seednum = 15, 
408: numSubj = 250, 
409: Numiter = n.it, 
410: b.mean = -1.0, 
411: b.sd = 0.7, 
412: a.low = .58, 
413: a.high = 1.13, 
414: w1 = .5, 
415: w2 = .5, 
416: numItem = 15, 
417: results.file = results.file15) 
418: 
419: results.file17 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C17.txt" 
420: study1(seednum = 17, 
421: numSubj = 250, 
422: Numiter = n.it, 
423: b.mean = 0.5, 
424: b.sd = 0.7, 
425: a.low = .31, 
426: a.high = .58, 
427: w1 = .3, 
428: w2 = .3, 
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429: numItem = 15, 
430: results.file = results.file17) 
431: 
432: results.file19 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C19.txt" 
433: study1(seednum = 19, 
434: numSubj = 250, 
435: Numiter = n.it, 
436: b.mean = 0.5, 
437: b.sd = 0.7, 
438: a.low = .31, 
439: a.high = .58, 
440: w1 = .5, 
441: w2 = .5, 
442: numItem = 15, 
443: results.file = results.file19) 
444: 
445: results.file21 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C21.txt" 
446: study1(seednum = 21, 
447: numSubj = 250, 
448: Numiter = n.it, 
449: b.mean = 0.5, 
450: b.sd = 0.7, 
451: a.low = .58, 
452: a.high = 1.13, 
453: w1 = .3, 
454: w2 = .3, 
455: numItem = 15, 
456: results.file = results.file21) 
457: 
458: results.file23 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C23.txt" 
459: study1(seednum = 23, 
460: numSubj = 250, 
461: Numiter = n.it, 
462: b.mean = 0.5, 
463: b.sd = 0.7, 
464: a.low = .58, 
465: a.high = 1.13, 
466: w1 = .5, 
467: w2 = .5, 
468: numItem = 15, 
469: results.file = results.file23) 
470: 
471: } 
472: 
473: 
#=====================================================================# 
474: #Simulation loops for spurious interactions (n=250,k=30,normal)# 
475: 
#=====================================================================# 
476: 
477: { 
478: 
479: setwd("C:/Program Files/PARSCALE4") 
480: 
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481: #Generate raw response matrix for IV1, IV2, and DV 
482: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score,theta) 
483: { 
484: b1<-b 
485: b2<-b1+.70 
486: b3<-b2+.70 
487: b4<-b3+.70 
488: 
489: for(i in 1:numItem){ 
490: 
491: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
492: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
493: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
494: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
495: 
496: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
497: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
498: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
499: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
500: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
501: 
502: #Generating a response matrix by comparing a random value from a 
503: #uniform distribution U(0,1) to the relative score categories 
504: r<-runif(numSubj) 
505: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
506: response2[,i]<-ifelse(r < Ptheta1a[,i]+Ptheta2b[,i] & r >= 
507: Ptheta1a[,i],2,0) 
508: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r >= 
509: Ptheta1a[,i] + Ptheta2b[,i],3,0) 
510: response4[,i]<-ifelse(r < Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i]+ 
511: Ptheta4d[,i] & r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
512: response5[,i]<-ifelse(r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i] + 
513: Ptheta4d[,i],5,0) 
514: 
515: #Compiling the response matrix to object 'score' 
516: score<-response1+response2+response3+response4+response5 
517: } 
518: return(score) 
519: } 
520: 
521: #Function to calculate skewness 
522: skew <- function (x) 
523: { 
524: sk <- function(xx) { 
525: n <- length(xx) 
526: mn <- mean(xx) 
527: dif.x <- xx - mn 
528: m2 <- sum(dif.x^2)/n 
529: m3 <- sum(dif.x^3)/n 
530: m3/(m2^(3/2)) 
531: } 
532: if (ncol(x) == 1 || is.null(dim(x))) 
533: return(sk(x)) 
534: else return(apply(x, 2, sk)) 
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535: } 
536: 
537: #Function to calculate kurtosis 
538: kurtosis <-function (x) 
539: { 
540: kt <- function(xx) { 
541: n <- length(xx) 
542: mn <- mean(xx) 
543: dif.x <- xx - mn 
544: m2 <- sum(dif.x^2)/n 
545: m4 <- sum(dif.x^4)/n 
546: (m4/m2^2) - 3 
547: } 
548: if (ncol(x) == 1 || is.null(dim(x))) 
549: return(kt(x)) 
550: else return(apply(x, 2, kt)) 
551: } 
552: 
553: #--------------------- fixed conditions -------------------------# 
554: 
555: result <- matrix(0, nrow = Numiter, ncol = 9) 
556: 
557: #-------------------- starting for-loop -------------------------# 
558: 
559: iter<-0 
560: good.iter<-1 
561: while(good.iter <= Numiter) { 
562: 
563: iter<-iter+1 
564: set.seed(seednum+iter) 
565: 
566: #------------------- initializing values ------------------------# 
567: 
568: #Create a person by item matrix for the scores of CBRF 1 through 4 
569: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
570: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
571: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
572: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
573: 
574: #Create a person x item matrix for the scores of CRF 1 through 5 
575: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
576: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
577: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
578: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
579: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
580: 
581: #Create a person x item matrix for raw scores of cat 1 through 5 
582: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
583: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
584: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
585: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
586: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
587: 
588: #Create the final person by item matrix of raw responses 
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589: score <- matrix(0, nrow = numSubj, ncol = numItem) 
590: 
591: #------------- Generating IV1, IV2, and DV ----------------------# 
592: 
593: theta1<-scale(rnorm(numSubj)) 
594: theta2<-scale(rnorm(numSubj)) 
595: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
596: 
597: #----------- Specifying item parameters -------------------------# 
598: 
599: a1 <- runif(numItem, a.low, a.high) 
600: a2 <- runif(numItem, a.low, a.high) 
601: a3 <- runif(numItem, a.low, a.high) 
602: b1a <- rnorm(numItem, b.mean, b.sd) 
603: b2a <- rnorm(numItem, b.mean, b.sd) 
604: b3a <- rnorm(numItem, b.mean, b.sd) 
605: 
606: #----------- Generating reponse patterns ------------------------# 
607: 
608: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score,theta1) 
609: score2<-score.item.prg(numItem,numSubj, Ptheta1, a2, b2a, score, theta2) 
610: score3<-score.item.prg(numItem,numSubj, Ptheta1, a3, b3a, score, theta3) 
611: 
612: #--------- Compute Cronbach's Alpha for reliability -------------# 
613: 
614: alpha1<-cronbach.alpha(score1) 
615: alpha2<-cronbach.alpha(score2) 
616: alpha3<-cronbach.alpha(score3) 
617: alpha.score1<-alpha1$alpha 
618: alpha.score2<-alpha2$alpha 
619: alpha.score3<-alpha3$alpha 
620: 
621: #---------- Estimating parameters using PARSCALE4.1 -------------# 
622: 
623: #Command to invoke PARSCALE to generate theta estimates 
624: #Note that all files must be located in the PARSCALE directory 
625: 
626: #-------------------------n=250, k=30----------------------------# 
627: #---------------------------score 1------------------------------# 
628: score1psl<-data.frame(1001:1250,score1) 
629: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
630: sep="",row.names=FALSE,col.names=FALSE) 
631: system("score30-250.bat",show.output.on.console = FALSE) 
632: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
633: head=F,fill=T)[(1:250)*2,7] 
634: theta.ab1<-as.matrix(theta.ab1) 
635: #---------------------------score 2------------------------------# 
636: score2psl<-data.frame(1001:1250,score2) 
637: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
638: sep="",row.names=FALSE,col.names=FALSE) 
639: system("score30-250.bat",show.output.on.console = FALSE) 
640: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
641: head=F,fill=T)[(1:250)*2,7] 
642: theta.ab2<-as.matrix(theta.ab2) 
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643: #---------------------------score 3------------------------------# 
644: score3psl<-data.frame(1001:1250,score3) 
645: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
646: sep="",row.names=FALSE,col.names=FALSE) 
647: system("score30-250.bat",show.output.on.console = FALSE) 
648: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
649: head=F,fill=T)[(1:250)*2,7] 
650: theta.ab3<-as.matrix(theta.ab3) 
651: #----------------------------------------------------------------# 
652: 
653: #--- Computing the rmsq, total scores, skew and kurtosis --------# 
654: 
655: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
656: 
657: score1 <- apply(score1, 1, mean) 
658: score2 <- apply(score2, 1, mean) 
659: score3 <- apply(score3, 1, mean) 
660: 
661: score1.skew<-skew(score1) 
662: score1.kurtosis<-kurtosis(score1) 
663: score2.skew<-skew(score2) 
664: score2.kurtosis<-kurtosis(score2) 
665: score3.skew<-skew(score3) 
666: score3.kurtosis<-kurtosis(score3) 
667: 
668: theta.ab1skew<-skew(theta.ab1) 
669: theta.ab1kurtosis<-kurtosis(theta.ab1) 
670: theta.ab2skew<-skew(theta.ab2) 
671: theta.ab2kurtosis<-kurtosis(theta.ab2) 
672: theta.ab3skew<-skew(theta.ab3) 
673: theta.ab3kurtosis<-kurtosis(theta.ab3) 
674: 
675: #-- Applying additive and multiplicative regression models ------# 
676: 
677: #Actual theta scores 
678: theta.add<-lm(theta3~theta1+theta2) 
679: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
680: 
681: #Raw scores 
682: sum.add<-lm(score3~score1+score2) 
683: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
684: 
685: #Estimated theta scores 
686: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
687: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
688: 
689: #-------- Shapiro-Wilk test for checking normality --------------# 
690: 
691: theta.orderres <- summary(theta.add)$res 
692: sum.orderres <- summary(sum.add)$res 
693: thetahat.orderres <- summary(theta.ab.add)$res 
694: 
695: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
696: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
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697: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
698: 
699: #report r-square, r-square change sig., and rm squared deviations# 
700: 
701: cat("Working on sample", seednum,"iteration",iter,good.iter, "\n") 
702: theta.add.rsq <- summary(theta.add)$r.squared 
703: theta.mul.rsq <- summary(theta.mul)$r.squared 
704: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
705: theta.p[is.na(theta.p)] <- 1.00 
706: 
707: sum.add.rsq <- summary(sum.add)$r.squared 
708: sum.mul.rsq <- summary(sum.mul)$r.squared 
709: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
710: sum.p[is.na(sum.p)] <- 1.00 
711: 
712: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
713: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
714: theta.ab.p<-round(anova(theta.ab.add, theta.ab.mul)$"Pr(>F)"[2], 
4) 
715: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
716: 
717: #------------ Summarize results of each loop --------------------# 
718: 
719: iter.results<-as.vector(c(iter, 
720: seednum, 
721: numItem, 
722: a.low, 
723: a.high, 
724: b.mean, 
725: b.sd, 
726: w1, 
727: w2, 
728: theta.add.rsq, 
729: theta.mul.rsq, 
730: theta.p, 
731: sum.add.rsq, 
732: sum.mul.rsq, 
733: sum.p, 
734: theta.ab.add.rsq, 
735: theta.ab.mul.rsq, 
736: theta.ab.p, 
737: rmsq, 
738: alpha.score1, 
739: alpha.score2, 
740: alpha.score3, 
741: swtheta.p, 
742: swsum.p, 
743: swthetahat.p, 
744: score1.skew, 
745: score2.skew, 
746: score3.skew, 
747: score1.kurtosis, 
748: score2.kurtosis, 
749: score3.kurtosis, 
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750: theta.ab1skew, 
751: theta.ab2skew, 
752: theta.ab3skew, 
753: theta.ab1kurtosis, 
754: theta.ab2kurtosis, 
755: theta.ab3kurtosis)) 
756: 
757: names(iter.results)<-NULL 
758: sink(results.file,append=TRUE) 
759: print(iter.results,digits=4,quote=FALSE) 
760: sink() 
761: good.iter<-good.iter+1 
762: } 
763: 
764: } 
765: #-------------------- End loop structure ------------------------# 
766: 
767: #================================================================# 
768: # Begin looping individual conditions # 
769: #================================================================# 
770: 
771: options(width=2000) 
772: 
773: { 
774: 
775: results.file2<-"C:/Documents and Settings/Admin/Desktop/DissModel/C2.txt" 
776: study1(seednum = 2, 
777: numSubj = 250, 
778: Numiter = n.it, 
779: b.mean = -2.5, 
780: b.sd = 0.7, 
781: a.low = .31, 
782: a.high = .58, 
783: w1 = .3, 
784: w2 = .3, 
785: numItem = 30, 
786: results.file = results.file2) 
787: 
788: results.file4<-"C:/Documents and Settings/Admin/Desktop/DissModel/C4.txt" 
789: study1(seednum = 4, 
790: numSubj = 250, 
791: Numiter = n.it, 
792: b.mean = -2.5, 
793: b.sd = 0.7, 
794: a.low = .31, 
795: a.high = .58, 
796: w1 = .5, 
797: w2 = .5, 
798: numItem = 30, 
799: results.file = results.file4) 
800: 
801: results.file6 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C6.txt" 
802: study1(seednum = 6, 
803: numSubj = 250, 
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804: Numiter = n.it, 
805: b.mean = -2.5, 
806: b.sd = 0.7, 
807: a.low = .58, 
808: a.high = 1.13, 
809: w1 = .3, 
810: w2 = .3, 
811: numItem = 30, 
812: results.file = results.file6) 
813: 
814: results.file8 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C8.txt" 
815: study1(seednum = 8, 
816: numSubj = 250, 
817: Numiter = n.it, 
818: b.mean = -2.5, 
819: b.sd = 0.7, 
820: a.low = .58, 
821: a.high = 1.13, 
822: w1 = .5, 
823: w2 = .5, 
824: numItem = 30, 
825: results.file = results.file8) 
826: 
827: results.file10<-"C:/Documents and Settings/Admin/Desktop/DissModel/C10.txt" 
828: study1(seednum = 10, 
829: numSubj = 250, 
830: Numiter = n.it, 
831: b.mean = -1.0, 
832: b.sd = 0.7, 
833: a.low = .31, 
834: a.high = .58, 
835: w1 = .3, 
836: w2 = .3, 
837: numItem = 30, 
838: results.file = results.file10) 
839: 
840: results.file12 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C12.txt" 
841: study1(seednum = 12, 
842: numSubj = 250, 
843: Numiter = n.it, 
844: b.mean = -1.0, 
845: b.sd = 0.7, 
846: a.low = .31, 
847: a.high = .58, 
848: w1 = .5, 
849: w2 = .5, 
850: numItem = 30, 
851: results.file = results.file12) 
852: 
853: results.file14<-"C:/Documents and Settings/Admin/Desktop/DissModel/C14.txt" 
854: study1(seednum = 14, 
855: numSubj = 250, 
856: Numiter = n.it, 
857: b.mean = -1.0, 
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858: b.sd = 0.7, 
859: a.low = .58, 
860: a.high = 1.13, 
861: w1 = .3, 
862: w2 = .3, 
863: numItem = 30, 
864: results.file = results.file14) 
865: 
866: results.file16 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C16.txt" 
867: study1(seednum = 16, 
868: numSubj = 250, 
869: Numiter = n.it, 
870: b.mean = -1.0, 
871: b.sd = 0.7, 
872: a.low = .58, 
873: a.high = 1.13, 
874: w1 = .5, 
875: w2 = .5, 
876: numItem = 30, 
877: results.file = results.file16) 
878: 
879: results.file18 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C18.txt" 
880: study1(seednum = 18, 
881: numSubj = 250, 
882: Numiter = n.it, 
883: b.mean = 0.5, 
884: b.sd = 0.7, 
885: a.low = .31, 
886: a.high = .58, 
887: w1 = .3, 
888: w2 = .3, 
889: numItem = 30, 
890: results.file = results.file18) 
891: 
892: results.file20<-"C:/Documents and Settings/Admin/Desktop/DissModel/C20.txt" 
893: study1(seednum = 20, 
894: numSubj = 250, 
895: Numiter = n.it, 
896: b.mean = 0.5, 
897: b.sd = 0.7, 
898: a.low = .31, 
899: a.high = .58, 
900: w1 = .5, 
901: w2 = .5, 
902: numItem = 30, 
903: results.file = results.file20) 
904: 
905: results.file22 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C22.txt" 
906: study1(seednum = 22, 
907: numSubj = 250, 
908: Numiter = n.it, 
909: b.mean = 0.5, 
910: b.sd = 0.7, 
911: a.low = .58, 
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912: a.high = 1.13, 
913: w1 = .3, 
914: w2 = .3, 
915: numItem = 30, 
916: results.file = results.file22) 
917: 
918: results.file24 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C24.txt" 
919: study1(seednum = 24, 
920: numSubj = 250, 
921: Numiter = n.it, 
922: b.mean = 0.5, 
923: b.sd = 0.7, 
924: a.low = .58, 
925: a.high = 1.13, 
926: w1 = .5, 
927: w2 = .5, 
928: numItem = 30, 
929: results.file = results.file24) 
930: 
931: } 
932: 
933: #================================================================# 
934: # Summarize Results for Table 1 (n=250, normal) # 
935: #================================================================# 
936: 
937: n.it<-1000 
938: 
939: results.list<-paste("C:/Documents and Settings/Admin/Desktop/DissModel/C", 
940: 1:24,sep="") 
941: results.list<-paste(results.list,".txt",sep="") 
942: 
943: type1.theta<-rep(0,24) 
944: type1.sum <- rep(0,24) 
945: type1.thetahat <- rep(0,24) 
946: rdiff.theta <- rep(0,24) 
947: rdiff.sum <- rep(0,24) 
948: rdiff.thetahat <- rep(0,24) 
949: mn.rmsq<-rep(0,24) 
950: pvalue.score1.mn<-rep(0,24) 
951: pvalue.score2.mn<-rep(0,24) 
952: pvalue.score3.mn<-rep(0,24) 
953: pvalue.score1.sd<-rep(0,24) 
954: pvalue.score2.sd<-rep(0,24) 
955: pvalue.score3.sd<-rep(0,24) 
956: alpha.score1<-rep(0,24) 
957: alpha.score2<-rep(0,24) 
958: alpha.score3<-rep(0,24) 
959: sw.theta.p<-rep(0,24) 
960: sw.sum.p<-rep(0,24) 
961: sw.thetahat.p<-rep(0,24) 
962: 
963: skew.score1<-rep(0,24) 
964: skew.score2<-rep(0,24) 
965: skew.score3<-rep(0,24) 
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966: 
967: kurtosis.score1<-rep(0,24) 
968: kurtosis.score2<-rep(0,24) 
969: kurtosis.score3<-rep(0,24) 
970: 
971: skew.theta.ab1<-rep(0,24) 
972: skew.theta.ab2<-rep(0,24) 
973: skew.theta.ab3<-rep(0,24) 
974: 
975: kurtosis.theta.ab1<-rep(0,24) 
976: kurtosis.theta.ab2<-rep(0,24) 
977: kurtosis.theta.ab3<-rep(0,24) 
978: 
979: for(i in 1:24) { 
980: infile <- read.table(results.list[[i]], header=FALSE) 
981: infile<- infile[,2:ncol(infile)] 
982: names(infile)<-list( "iter", 
983: "seednum", 
984: "numItem", 
985: "a.low", 
986: "a.high", 
987: "b.mean", 
988: "b.sd", 
989: "w1", 
990: "w2", 
991: "theta.add.rsq", 
992: "theta.mul.rsq", 
993: "theta.p", 
994: "sum.add.rsq", 
995: "sum.mul.rsq", 
996: "sum.p", 
997: "theta.ab.add.rsq", 
998: "theta.ab.mul.rsq", 
999: "theta.ab.p", 
1000: "rmsq", 
1001: "alpha.score1", 
1002: "alpha.score2", 
1003: "alpha.score3", 
1004: "swtheta.p", 
1005: "swsum.p", 
1006: "swthetahat.p", 
1007: "skew.score1", 
1008: "skew.score2", 
1009: "skew.score3", 
1010: "kurtosis.score1", 
1011: "kurtosis.score2", 
1012: "kurtosis.score3", 
1013: "skew.theta.ab1", 
1014: "skew.theta.ab2", 
1015: "skew.theta.ab3", 
1016: "kurtosis.theta.ab1", 
1017: "kurtosis.theta.ab2", 
1018: "kurtosis.theta.ab3") 
1019: 
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1020: write.table(infile, 
1021: "C:/Documents and Settings/Admin/Desktop/DissModel/norm 250 full.txt") 
1022: 
1023: type1.theta[i]<-sum(infile["theta.p"] <= .05)/n.it 
1024: type1.sum[i]<-sum(infile["sum.p"] <=.05)/n.it 
1025: type1.thetahat[i]<-sum(infile["theta.ab.p"] <=.05)/n.it 
1026: 
1027: rdiff.theta[i]<-round(sum(infile["theta.mul.rsq"]-infile["theta.add.rsq"])/ 
1028: n.it,2) 
1029: rdiff.sum[i]<-round(sum(infile["sum.mul.rsq"]-infile["sum.add.rsq"])/n.it,2) 
1030: rdiff.thetahat[i]<-round(sum(infile["theta.ab.mul.rsq"] - 
1031: infile["theta.ab.add.rsq"])/n.it,2) 
1032: mn.rmsq[i]<-round(mean(infile["rmsq"]),2) 
1033: alpha.score1[i]<-round(mean(infile["alpha.score1"]),2) 
1034: alpha.score2[i]<-round(mean(infile["alpha.score2"]),2) 
1035: alpha.score3[i]<-round(mean(infile["alpha.score3"]),2) 
1036: 
1037: sw.theta.p[i]<-round(sum(infile["swtheta.p"] > .05)/n.it,5) 
1038: sw.sum.p[i]<-round(sum(infile["swsum.p"] > .05)/n.it,5) 
1039: sw.thetahat.p[i]<-round(sum(infile["swthetahat.p"] > .05)/n.it,5) 
1040: 
1041: skew.score1[i]<-round(mean(infile["skew.score1"]),5) 
1042: skew.score2[i]<-round(mean(infile["skew.score2"]),5) 
1043: skew.score3[i]<-round(mean(infile["skew.score3"]),5) 
1044: kurtosis.score1[i]<-round(mean(infile["kurtosis.score1"]),5) 
1045: kurtosis.score2[i]<-round(mean(infile["kurtosis.score2"]),5) 
1046: kurtosis.score3[i]<-round(mean(infile["kurtosis.score3"]),5) 
1047: skew.theta.ab1[i]<-round(mean(infile["skew.theta.ab1"]),5) 
1048: skew.theta.ab2[i]<-round(mean(infile["skew.theta.ab2"]),5) 
1049: skew.theta.ab3[i]<-round(mean(infile["skew.theta.ab3"],na.rm=TRUE),5) 
1050: kurtosis.theta.ab1[i]<-round(mean(infile["kurtosis.theta.ab1"]),5) 
1051: kurtosis.theta.ab2[i]<-round(mean(infile["kurtosis.theta.ab2"]),5) 
1052: kurtosis.theta.ab3[i]<-round(mean(infile["kurtosis.theta.ab3"],na.rm=TRUE),5) 
1053: 
1054: } 
1055: 
1056: n <- c(rep(250,24)) 
1057: b <- c(rep("N(-1.5,1.0)",8),rep("N(0,1)",8),rep("N(1.5,1.0)",8)) 
1058: a <- c(rep("U(0.31, 0.58)",4),rep("U(0.58, 1.13)",4)) 
1059: a <- rep(a,3) 
1060: B1B2 <- rep(c(.3,.3,.5,.5),6) 
1061: Items<-rep(c(15,30),12) 
1062: 
1063: mean.alpha<-round(apply(cbind(alpha.score1,alpha.score2,alpha.score3), 
1064: 1,mean),2) 
1065: 
1066: type1.theta<-round(type1.theta,2) 
1067: type1.sum<-round(type1.sum,2) 
1068: type1.thetahat<-round(type1.thetahat,2) 
1069: 
1070: sw.theta.p<-round(sw.theta.p,2) 
1071: sw.sum.p<-round(sw.sum.p,2) 
1072: sw.thetahat<-round(sw.thetahat.p,2) 
1073: 
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1074: sktab1<-round(data.frame(skew.score3, kurtosis.score3, skew.theta.ab3, 
1075: kurtosis.theta.ab3),2) 
1076: 
1077: table1<-data.frame(n,b,a,B1B2,Items,type1.theta,type1.sum,type1.thetahat, 
1078: mean.alpha,sw.theta.p,sw.sum.p,sw.thetahat,sktab1) 
1079: 
1080: print(table1) 
1081: write.table(table1, 
1082: "C:/Documents and Settings/Admin/Desktop/DissModel/Table1 norm 250.txt") 
1083: #=======End simulation for Table 1 (n=250, normal)=============# 
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APPENDIX B: R CODE FOR SIMULATION 2 

1: #Morse Dissertation Table 2 (n=750, normal) 
2: 
3: #Load latent trait model library 
4: library("ltm") 
5: 
6: #Set number of iterations per condition 
7: n.it<-1000 
8: 
9: #Individual Monte Carlo loop structure 
10: study1<-function(seednum, numSubj=numSubj, Numiter=n.it, 
11: b.mean, b.sd, a.low, a.high, w1, w2, numItem, results.file) 
12: 
13: #=================================================================# 
14: #Simulation loops for spurious interactions (n=750,k=15, normal)# 
15: #=================================================================# 
16: 
17: { 
18: 
19: setwd("C:/Program Files/PARSCALE4") 
20: 
21: #Generate raw response matrix for IV1, IV2, and DV 
22: score.item.prg<-function(numItem, numSubj,Ptheta,a,b,score, theta) 
23: { 
24: b1<-b 
25: b2<-b1+.70 
26: b3<-b2+.70 
27: b4<-b3+.70 
28: 
29: for(i in 1:numItem){ 
30: 
31: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
32: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
33: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
34: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
35: 
36: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
37: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
38: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
39: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
40: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
41: 
42: #Generating a response matrix by comparing a random value from a 
43: #uniform distribution U(0,1) to the relative score categories 
44: r<-runif(numSubj) 
45: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
46: response2[,i]<-ifelse(r < Ptheta1a[,i] + Ptheta2b[,i] & r >= 
47: Ptheta1a[,i],2,0) 
48: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r >= 
49: Ptheta1a[,i]+Ptheta2b[,i],3,0) 
50: response4[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
51: Ptheta4d[,i] & r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
52: response5[,i]<-ifelse(r>=Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
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53: Ptheta4d[,i],5,0) 
54: 
55: #Compiling the response matrix to object 'score' 
56: score<-response1+response2+response3+response4+response5 
57: } 
58: return(score) 
59: } 
60: 
61: #Function to calculate skewness 
62: skew <- function (x) 
63: { 
64: sk <- function(xx) { 
65: n <- length(xx) 
66: mn <- mean(xx) 
67: dif.x <- xx - mn 
68: m2 <- sum(dif.x^2)/n 
69: m3 <- sum(dif.x^3)/n 
70: m3/(m2^(3/2)) 
71: } 
72: if (ncol(x) == 1 || is.null(dim(x))) 
73: return(sk(x)) 
74: else return(apply(x, 2, sk)) 
75: } 
76: 
77: #Function to calculate kurtosis 
78: kurtosis <-function (x) 
79: { 
80: kt <- function(xx) { 
81: n <- length(xx) 
82: mn <- mean(xx) 
83: dif.x <- xx - mn 
84: m2 <- sum(dif.x^2)/n 
85: m4 <- sum(dif.x^4)/n 
86: (m4/m2^2) - 3 
87: } 
88: if (ncol(x) == 1 || is.null(dim(x))) 
89: return(kt(x)) 
90: else return(apply(x, 2, kt)) 
91: } 
92: 
93: #---------------------- fixed conditions -------------------------# 
94: 
95: result <- matrix(0, nrow = Numiter, ncol = 9) 
96: 
97: #---------------------- starting for-loop ------------------------# 
98: 
99: iter<-0 
100: good.iter<-1 
101: while(good.iter <= Numiter) { 
102: 
103: iter<-iter+1 
104: set.seed(seednum+iter) 
105: 
106: #-------------------- initializing values -----------------------# 
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107: 
108: #Create a person by item matrix for the scores of CBRF 1 through 4 
109: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
110: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
111: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
112: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
113: 
114: #Create a person x item matrix for the scores of CRF 1 through 5 
115: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
116: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
117: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
118: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
119: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
120: 
121: #Create a person by item matrix for raw scores of cat 1 through 5 
122: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
123: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
124: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
125: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
126: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
127: 
128: #Create the final person by item matrix of raw responses 
129: score <- matrix(0, nrow = numSubj, ncol = numItem) 
130: 
131: #------------- Generating IV1, IV2, and DV ----------------------# 
132: 
133: theta1<-scale(rnorm(numSubj)) 
134: theta2<-scale(rnorm(numSubj)) 
135: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
136: 
137: #------------ Specifying item parameters ------------------------# 
138: 
139: a1 <- runif(numItem, a.low, a.high) 
140: a2 <- runif(numItem, a.low, a.high) 
141: a3 <- runif(numItem, a.low, a.high) 
142: b1a <- rnorm(numItem, b.mean, b.sd) 
143: b2a <- rnorm(numItem, b.mean, b.sd) 
144: b3a <- rnorm(numItem, b.mean, b.sd) 
145: 
146: #------------ Generating response patterns ----------------------# 
147: 
148: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score, theta1) 
149: score2<-score.item.prg(numItem,numSubj, Ptheta1, a2, b2a, score, theta2) 
150: score3<-score.item.prg(numItem,numSubj, Ptheta1, a3, b3a, score, theta3) 
151: 
152: #--------- Compute Cronbach's Alpha for reliability -------------# 
153: 
154: alpha1<-cronbach.alpha(score1) 
155: alpha2<-cronbach.alpha(score2) 
156: alpha3<-cronbach.alpha(score3) 
157: alpha.score1<-alpha1$alpha 
158: alpha.score2<-alpha2$alpha 
159: alpha.score3<-alpha3$alpha 
160: 
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161: #---------- Estimating parameters using PARSCALE4.1 -------------# 
162: 
163: #Command to invoke PARSCALE to generate theta estimates 
164: #Note that all files must be located in the PARSCALE directory 
165: 
166: #-------------------------n=750, k=15----------------------------# 
167: #---------------------------score 1------------------------------# 
168: score1psl<-data.frame(1001:1750,score1) 
169: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
170: sep="",row.names=FALSE,col.names=FALSE) 
171: system("score15-750.bat",show.output.on.console = FALSE) 
172: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
173: head=F,fill=T)[(1:750)*2,7] 
174: theta.ab1<-as.matrix(theta.ab1) 
175: #--------------------------score 2-------------------------------# 
176: score2psl<-data.frame(1001:1750,score2) 
177: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
178: sep="",row.names=FALSE,col.names=FALSE) 
179: system("score15-750.bat",show.output.on.console = FALSE) 
180: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
181: head=F,fill=T)[(1:750)*2,7] 
182: theta.ab2<-as.matrix(theta.ab2) 
183: #--------------------------score 3-------------------------------# 
184: score3psl<-data.frame(1001:1750,score3) 
185: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
186: sep="",row.names=FALSE,col.names=FALSE) 
187: system("score15-750.bat",show.output.on.console = FALSE) 
188: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
189: head=F,fill=T)[(1:750)*2,7] 
190: theta.ab3<-as.matrix(theta.ab3) 
191: #----------------------------------------------------------------# 
192: 
193: #-- Computing the rmsq, total scores, skew and kurtosis----------# 
194: 
195: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
196: 
197: score1 <- apply(score1, 1, mean) 
198: score2 <- apply(score2, 1, mean) 
199: score3 <- apply(score3, 1, mean) 
200: 
201: score1.skew<-skew(score1) 
202: score1.kurtosis<-kurtosis(score1) 
203: score2.skew<-skew(score2) 
204: score2.kurtosis<-kurtosis(score2) 
205: score3.skew<-skew(score3) 
206: score3.kurtosis<-kurtosis(score3) 
207: 
208: theta.ab1skew<-skew(theta.ab1) 
209: theta.ab1kurtosis<-kurtosis(theta.ab1) 
210: theta.ab2skew<-skew(theta.ab2) 
211: theta.ab2kurtosis<-kurtosis(theta.ab2) 
212: theta.ab3skew<-skew(theta.ab3) 
213: theta.ab3kurtosis<-kurtosis(theta.ab3) 
214: 
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215: #-- Applying additive and multiplicative regression models ------# 
216: 
217: #Actual theta scores 
218: theta.add<-lm(theta3~theta1+theta2) 
219: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
220: 
221: #Raw scores 
222: sum.add<-lm(score3~score1+score2) 
223: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
224: 
225: #Estimated theta scores 
226: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
227: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
228: 
229: #-------- Shapiro-Wilk test for checking normality --------------# 
230: 
231: theta.orderres <- summary(theta.add)$res 
232: sum.orderres <- summary(sum.add)$res 
233: thetahat.orderres <- summary(theta.ab.add)$res 
234: 
235: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
236: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
237: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
238: 
239: #report r-square, r-square change sig., and rm squared deviations# 
240: 
241: cat("Working on sample",seednum,"iteration",iter,good.iter, "\n") 
242: theta.add.rsq <- summary(theta.add)$r.squared 
243: theta.mul.rsq <- summary(theta.mul)$r.squared 
244: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
245: theta.p[is.na(theta.p)] <- 1.00 
246: 
247: sum.add.rsq <- summary(sum.add)$r.squared 
248: sum.mul.rsq <- summary(sum.mul)$r.squared 
249: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
250: sum.p[is.na(sum.p)] <- 1.00 
251: 
252: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
253: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
254: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
255: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
256: 
257: #----------- Summarize results of each loop ---------------------# 
258: 
259: iter.results<-as.vector(c(iter, 
260: seednum, 
261: numItem, 
262: a.low, 
263: a.high, 
264: b.mean, 
265: b.sd, 
266: w1, 
267: w2, 
268: theta.add.rsq, 
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269: theta.mul.rsq, 
270: theta.p, 
271: sum.add.rsq, 
272: sum.mul.rsq, 
273: sum.p, 
274: theta.ab.add.rsq, 
275: theta.ab.mul.rsq, 
276: theta.ab.p, 
277: rmsq, 
278: alpha.score1, 
279: alpha.score2, 
280: alpha.score3, 
281: swtheta.p, 
282: swsum.p, 
283: swthetahat.p, 
284: score1.skew, 
285: score2.skew, 
286: score3.skew, 
287: score1.kurtosis, 
288: score2.kurtosis, 
289: score3.kurtosis, 
290: theta.ab1skew, 
291: theta.ab2skew, 
292: theta.ab3skew, 
293: theta.ab1kurtosis, 
294: theta.ab2kurtosis, 
295: theta.ab3kurtosis)) 
296: 
297: names(iter.results)<-NULL 
298: sink(results.file,append=TRUE) 
299: print(iter.results,digits=4,quote=FALSE) 
300: sink() 
301: good.iter<-good.iter+1 
302: } 
303: 
304: } 
305: #-------------------- End loop structure ------------------------# 
306: 
307: #================================================================# 
308: # Begin looping individual conditions # 
309: #================================================================# 
310: 
311: options(width=2000) 
312: 
313: { 
314: 
315: results.file25<-"C:/Documents and Settings/Admin/Desktop/DissModel/C25.txt" 
316: study1(seednum = 25, 
317: numSubj = 750, 
318: Numiter = n.it, 
319: b.mean = -2.5, 
320: b.sd = 0.70, 
321: a.low = .31, 
322: a.high = .58, 
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323: w1 = .3, 
324: w2 = .3, 
325: numItem = 15, 
326: results.file = results.file25) 
327: 
328: results.file27<-"C:/Documents and Settings/Admin/Desktop/DissModel/C27.txt" 
329: study1(seednum = 27, 
330: numSubj = 750, 
331: Numiter = n.it, 
332: b.mean = -2.5, 
333: b.sd = 0.70, 
334: a.low = .31, 
335: a.high = .58, 
336: w1 = .5, 
337: w2 = .5, 
338: numItem = 15, 
339: results.file = results.file27) 
340: 
341: results.file29<-"C:/Documents and Settings/Admin/Desktop/DissModel/C29.txt" 
342: study1(seednum = 29, 
343: numSubj = 750, 
344: Numiter = n.it, 
345: b.mean = -2.5, 
346: b.sd = 0.70, 
347: a.low = .58, 
348: a.high = 1.13, 
349: w1 = .3, 
350: w2 = .3, 
351: numItem = 15, 
352: results.file = results.file29) 
353: 
354: results.file31 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C31.txt" 
355: study1(seednum = 31, 
356: numSubj = 750, 
357: Numiter = n.it, 
358: b.mean = -2.5, 
359: b.sd = 0.70, 
360: a.low = .58, 
361: a.high = 1.13, 
362: w1 = .5, 
363: w2 = .5, 
364: numItem = 15, 
365: results.file = results.file31) 
366: 
367: results.file33 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C33.txt" 
368: study1(seednum = 33, 
369: numSubj = 750, 
370: Numiter = n.it, 
371: b.mean = -1.0, 
372: b.sd = 0.70, 
373: a.low = .31, 
374: a.high = .58, 
375: w1 = .3, 
376: w2 = .3, 
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377: numItem = 15, 
378: results.file = results.file33) 
379: 
380: results.file35 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C35.txt" 
381: study1(seednum = 35, 
382: numSubj = 750, 
383: Numiter = n.it, 
384: b.mean = -1.0, 
385: b.sd = 0.70, 
386: a.low = .31, 
387: a.high = .58, 
388: w1 = .5, 
389: w2 = .5, 
390: numItem = 15, 
391: results.file = results.file35) 
392: 
393: results.file37<-"C:/Documents and Settings/Admin/Desktop/DissModel/C37.txt" 
394: study1(seednum = 37, 
395: numSubj = 750, 
396: Numiter = n.it, 
397: b.mean = -1.0, 
398: b.sd = 0.70, 
399: a.low = .58, 
400: a.high = 1.13, 
401: w1 = .3, 
402: w2 = .3, 
403: numItem = 15, 
404: results.file = results.file37) 
405: 
406: results.file39 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C39.txt" 
407: study1(seednum = 39, 
408: numSubj = 750, 
409: Numiter = n.it, 
410: b.mean = -1.0, 
411: b.sd = 0.70, 
412: a.low = .58, 
413: a.high = 1.13, 
414: w1 = .5, 
415: w2 = .5, 
416: numItem = 15, 
417: results.file = results.file39) 
418: 
419: results.file41 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C41.txt" 
420: study1(seednum = 41, 
421: numSubj = 750, 
422: Numiter = n.it, 
423: b.mean = 0.5, 
424: b.sd = 0.70, 
425: a.low = .31, 
426: a.high = .58, 
427: w1 = .3, 
428: w2 = .3, 
429: numItem = 15, 
430: results.file = results.file41) 
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431: 
432: results.file43 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C43.txt" 
433: study1(seednum = 43, 
434: numSubj = 750, 
435: Numiter = n.it, 
436: b.mean = 0.5, 
437: b.sd = 0.70, 
438: a.low = .31, 
439: a.high = .58, 
440: w1 = .5, 
441: w2 = .5, 
442: numItem = 15, 
443: results.file = results.file43) 
444: 
445: results.file45 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C45.txt" 
446: study1(seednum = 45, 
447: numSubj = 750, 
448: Numiter = n.it, 
449: b.mean = 0.5, 
450: b.sd = 0.70, 
451: a.low = .58, 
452: a.high = 1.13, 
453: w1 = .3, 
454: w2 = .3, 
455: numItem = 15, 
456: results.file = results.file45) 
457: 
458: results.file47 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C47.txt" 
459: study1(seednum = 47, 
460: numSubj = 750, 
461: Numiter = n.it, 
462: b.mean = 0.5, 
463: b.sd = 0.70, 
464: a.low = .58, 
465: a.high = 1.13, 
466: w1 = .5, 
467: w2 = .5, 
468: numItem = 15, 
469: results.file = results.file47) 
470: 
471: } 
472: 
473: #================================================================# 
474: #Simulation loops for spurious interactions (n=750,k=30, normal)# 
475: #================================================================# 
476: 
477: { 
478: 
479: setwd("C:/Program Files/PARSCALE4") 
480: 
481: #Generate raw response matrix for IV1, IV2, and DV 
482: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score,theta) 
483: { 
484: b1<-b 
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485: b2<-b1+.70 
486: b3<-b2+.70 
487: b4<-b3+.70 
488: 
489: for(i in 1:numItem){ 
490: 
491: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
492: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
493: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
494: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
495: 
496: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
497: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
498: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
499: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
500: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
501: 
502: #Generating a response matrix by comparing a random value from a 
503: #uniform distribution U(0,1) to the relative score categories 
504: r<-runif(numSubj) 
505: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
506: response2[,i]<-ifelse(r < Ptheta1a[,i]+Ptheta2b[,i] & r >= 
507: Ptheta1a[,i],2,0) 
508: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r>= 
509: Ptheta1a[,i] + Ptheta2b[,i],3,0) 
510: response4[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
511: Ptheta4d[,i]&r>=Ptheta1a[,i]+ Ptheta2b[,i] + Ptheta3c[,i],4,0) 
512: response5[,i]<-ifelse(r>=Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i] + 
513: Ptheta4d[,i],5,0) 
514: 
515: #Compiling the response matrix to object 'score' 
516: score<-response1+response2+response3+response4+response5 
517: } 
518: return(score) 
519: } 
520: 
521: #Function to calculate skewness 
522: skew <- function (x) 
523: { 
524: sk <- function(xx) { 
525: n <- length(xx) 
526: mn <- mean(xx) 
527: dif.x <- xx - mn 
528: m2 <- sum(dif.x^2)/n 
529: m3 <- sum(dif.x^3)/n 
530: m3/(m2^(3/2)) 
531: } 
532: if (ncol(x) == 1 || is.null(dim(x))) 
533: return(sk(x)) 
534: else return(apply(x, 2, sk)) 
535: } 
536: 
537: #Function to calculate kurtosis 
538: kurtosis <-function (x) 
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539: { 
540: kt <- function(xx) { 
541: n <- length(xx) 
542: mn <- mean(xx) 
543: dif.x <- xx - mn 
544: m2 <- sum(dif.x^2)/n 
545: m4 <- sum(dif.x^4)/n 
546: (m4/m2^2) - 3 
547: } 
548: if (ncol(x) == 1 || is.null(dim(x))) 
549: return(kt(x)) 
550: else return(apply(x, 2, kt)) 
551: } 
552: 
553: #------------------ fixed conditions -------------------------# 
554: 
555: result <- matrix(0, nrow = Numiter, ncol = 9) 
556: 
557: #--------------------- starting for-loop ------------------------# 
558: 
559: iter<-0 
560: good.iter<-1 
561: while(good.iter <= Numiter) { 
562: 
563: iter<-iter+1 
564: set.seed(seednum+iter) 
565: 
566: #------------------- initializing values ------------------------# 
567: 
568: #Create a person by item matrix for the scores of CBRF 1 through 4 
569: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
570: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
571: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
572: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
573: 
574: #Create a person x item matrix for the scores of CRF 1 through 5 
575: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
576: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
577: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
578: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
579: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
580: 
581: #Create a person x item matrix for raw scores of cat 1 through 5 
582: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
583: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
584: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
585: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
586: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
587: 
588: #Create the final person by item matrix of raw responses 
589: score <- matrix(0, nrow = numSubj, ncol = numItem) 
590: 
591: #------------- Generating IV1, IV2, and DV ----------------------# 
592: 
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593: theta1<-scale(rnorm(numSubj)) 
594: theta2<-scale(rnorm(numSubj)) 
595: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
596: 
597: #------------ Specifying item parameters ------------------------# 
598: 
599: a1 <- runif(numItem, a.low, a.high) 
600: a2 <- runif(numItem, a.low, a.high) 
601: a3 <- runif(numItem, a.low, a.high) 
602: b1a <- rnorm(numItem, b.mean, b.sd) 
603: b2a <- rnorm(numItem, b.mean, b.sd) 
604: b3a <- rnorm(numItem, b.mean, b.sd) 
605: 
606: #------------ Generating reponse patterns -----------------------# 
607: 
608: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score,theta1) 
609: score2<-score.item.prg(numItem,numSubj,Ptheta1,a2,b2a,score, theta2) 
610: score3<-score.item.prg(numItem,numSubj,Ptheta1,a3,b3a,score, theta3) 
611: 
612: #--------- Compute Cronbach's Alpha for reliability -------------# 
613: 
614: alpha1<-cronbach.alpha(score1) 
615: alpha2<-cronbach.alpha(score2) 
616: alpha3<-cronbach.alpha(score3) 
617: alpha.score1<-alpha1$alpha 
618: alpha.score2<-alpha2$alpha 
619: alpha.score3<-alpha3$alpha 
620: 
621: #---------- Estimating parameters using PARSCALE4.1 -------------# 
622: 
623: #Command to invoke PARSCALE to generate theta estimates 
624: #Note that all files must be located in the PARSCALE directory 
625: 
626: #-------------------------n=750, k=30----------------------------# 
627: #---------------------------score 1------------------------------# 
628: score1psl<-data.frame(1001:1750,score1) 
629: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
630: sep="",row.names=FALSE,col.names=FALSE) 
631: system("score30-750.bat",show.output.on.console = FALSE) 
632: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
633: head=F,fill=T)[(1:750)*2,7] 
634: theta.ab1<-as.matrix(theta.ab1) 
635: #---------------------------score 2------------------------------# 
636: score2psl<-data.frame(1001:1750,score2) 
637: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
638: sep="",row.names=FALSE,col.names=FALSE) 
639: system("score30-750.bat",show.output.on.console = FALSE) 
640: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
641: head=F,fill=T)[(1:750)*2,7] 
642: theta.ab2<-as.matrix(theta.ab2) 
643: #---------------------------score 3------------------------------# 
644: score3psl<-data.frame(1001:1750,score3) 
645: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
646: sep="",row.names=FALSE,col.names=FALSE) 
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647: system("score30-750.bat",show.output.on.console = FALSE) 
648: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
649: head=F,fill=T)[(1:750)*2,7] 
650: theta.ab3<-as.matrix(theta.ab3) 
651: #----------------------------------------------------------------# 
652: 
653: # Computing the rmsq, total scores, skew and kurtosis -----------# 
654: 
655: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
656: 
657: score1 <- apply(score1, 1, mean) 
658: score2 <- apply(score2, 1, mean) 
659: score3 <- apply(score3, 1, mean) 
660: 
661: score1.skew<-skew(score1) 
662: score1.kurtosis<-kurtosis(score1) 
663: score2.skew<-skew(score2) 
664: score2.kurtosis<-kurtosis(score2) 
665: score3.skew<-skew(score3) 
666: score3.kurtosis<-kurtosis(score3) 
667: 
668: theta.ab1skew<-skew(theta.ab1) 
669: theta.ab1kurtosis<-kurtosis(theta.ab1) 
670: theta.ab2skew<-skew(theta.ab2) 
671: theta.ab2kurtosis<-kurtosis(theta.ab2) 
672: theta.ab3skew<-skew(theta.ab3) 
673: theta.ab3kurtosis<-kurtosis(theta.ab3) 
674: 
675: #-- Applying additive and multiplicative regression models ------# 
676: 
677: #Actual theta scores 
678: theta.add<-lm(theta3~theta1+theta2) 
679: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
680: 
681: #Raw scores 
682: sum.add<-lm(score3~score1+score2) 
683: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
684: 
685: #Estimated theta scores 
686: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
687: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
688: 
689: #-------- Shapiro-Wilk test for checking normality --------------# 
690: 
691: theta.orderres <- summary(theta.add)$res 
692: sum.orderres <- summary(sum.add)$res 
693: thetahat.orderres <- summary(theta.ab.add)$res 
694: 
695: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
696: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
697: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
698: 
699: #report r-square, r-square change sig., & rm squared deviations # 
700: 
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701: cat("Working on sample",seednum,"iteration",iter,good.iter, "\n") 
702: theta.add.rsq <- summary(theta.add)$r.squared 
703: theta.mul.rsq <- summary(theta.mul)$r.squared 
704: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
705: theta.p[is.na(theta.p)] <- 1.00 
706: 
707: sum.add.rsq <- summary(sum.add)$r.squared 
708: sum.mul.rsq <- summary(sum.mul)$r.squared 
709: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
710: sum.p[is.na(sum.p)] <- 1.00 
711: 
712: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
713: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
714: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
715: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
716: 
717: #------------ Summarize results of each loop --------------------# 
718: 
719: iter.results<-as.vector(c(iter, 
720: seednum, 
721: numItem, 
722: a.low, 
723: a.high, 
724: b.mean, 
725: b.sd, 
726: w1, 
727: w2, 
728: theta.add.rsq, 
729: theta.mul.rsq, 
730: theta.p, 
731: sum.add.rsq, 
732: sum.mul.rsq, 
733: sum.p, 
734: theta.ab.add.rsq, 
735: theta.ab.mul.rsq, 
736: theta.ab.p, 
737: rmsq, 
738: alpha.score1, 
739: alpha.score2, 
740: alpha.score3, 
741: swtheta.p, 
742: swsum.p, 
743: swthetahat.p, 
744: score1.skew, 
745: score2.skew, 
746: score3.skew, 
747: score1.kurtosis, 
748: score2.kurtosis, 
749: score3.kurtosis, 
750: theta.ab1skew, 
751: theta.ab2skew, 
752: theta.ab3skew, 
753: theta.ab1kurtosis, 
754: theta.ab2kurtosis, 
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755: theta.ab3kurtosis)) 
756: 
757: names(iter.results)<-NULL 
758: sink(results.file,append=TRUE) 
759: print(iter.results,digits=4,quote=FALSE) 
760: sink() 
761: good.iter<-good.iter+1 
762: } 
763: 
764: } 
765: #-------------------- End loop structure ------------------------# 
766: 
767: #================================================================# 
768: # Begin looping individual conditions # 
769: #================================================================# 
770: 
771: options(width=2000) 
772: 
773: { 
774: 
775: results.file26<-"C:/Documents and Settings/Admin/Desktop/DissModel/C26.txt" 
776: study1(seednum = 26, 
777: numSubj = 750, 
778: Numiter = n.it, 
779: b.mean = -2.5, 
780: b.sd = 0.7, 
781: a.low = .31, 
782: a.high = .58, 
783: w1 = .3, 
784: w2 = .3, 
785: numItem = 30, 
786: results.file = results.file26) 
787: 
788: results.file28<-"C:/Documents and Settings/Admin/Desktop/DissModel/C28.txt" 
789: study1(seednum = 28, 
790: numSubj = 750, 
791: Numiter = n.it, 
792: b.mean = -2.5, 
793: b.sd = 0.7, 
794: a.low = .31, 
795: a.high = .58, 
796: w1 = .5, 
797: w2 = .5, 
798: numItem = 30, 
799: results.file = results.file28) 
800: 
801: results.file30 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C30.txt" 
802: study1(seednum = 30, 
803: numSubj = 750, 
804: Numiter = n.it, 
805: b.mean = -2.5, 
806: b.sd = 0.7, 
807: a.low = .58, 
808: a.high = 1.13, 
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809: w1 = .3, 
810: w2 = .3, 
811: numItem = 30, 
812: results.file = results.file30) 
813: 
814: results.file32 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C32.txt" 
815: study1(seednum = 32, 
816: numSubj = 750, 
817: Numiter = n.it, 
818: b.mean = -2.5, 
819: b.sd = 0.7, 
820: a.low = .58, 
821: a.high = 1.13, 
822: w1 = .5, 
823: w2 = .5, 
824: numItem = 30, 
825: results.file = results.file32) 
826: 
827: results.file34<-"C:/Documents and Settings/Admin/Desktop/DissModel/C34.txt" 
828: study1(seednum = 34, 
829: numSubj = 750, 
830: Numiter = n.it, 
831: b.mean = -1.0, 
832: b.sd = 0.7, 
833: a.low = .31, 
834: a.high = .58, 
835: w1 = .3, 
836: w2 = .3, 
837: numItem = 30, 
838: results.file = results.file34) 
839: 
840: results.file36 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C36.txt" 
841: study1(seednum = 36, 
842: numSubj = 750, 
843: Numiter = n.it, 
844: b.mean = -1.0, 
845: b.sd = 0.7, 
846: a.low = .31, 
847: a.high = .58, 
848: w1 = .5, 
849: w2 = .5, 
850: numItem = 30, 
851: results.file = results.file36) 
852: 
853: results.file38<-"C:/Documents and Settings/Admin/Desktop/DissModel/C38.txt" 
854: study1(seednum = 38, 
855: numSubj = 750, 
856: Numiter = n.it, 
857: b.mean = -1.0, 
858: b.sd = 0.7, 
859: a.low = .58, 
860: a.high = 1.13, 
861: w1 = .3, 
862: w2 = .3, 
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863: numItem = 30, 
864: results.file = results.file38) 
865: 
866: results.file40 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C40.txt" 
867: study1(seednum = 40, 
868: numSubj = 750, 
869: Numiter = n.it, 
870: b.mean = -1.0, 
871: b.sd = 0.7, 
872: a.low = .58, 
873: a.high = 1.13, 
874: w1 = .5, 
875: w2 = .5, 
876: numItem = 30, 
877: results.file = results.file40) 
878: 
879: results.file42 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C42.txt" 
880: study1(seednum = 42, 
881: numSubj = 750, 
882: Numiter = n.it, 
883: b.mean = 0.5, 
884: b.sd = 0.7, 
885: a.low = .31, 
886: a.high = .58, 
887: w1 = .3, 
888: w2 = .3, 
889: numItem = 30, 
890: results.file = results.file42) 
891: 
892: results.file44<-"C:/Documents and Settings/Admin/Desktop/DissModel/C44.txt" 
893: study1(seednum = 44, 
894: numSubj = 750, 
895: Numiter = n.it, 
896: b.mean = 0.5, 
897: b.sd = 0.7, 
898: a.low = .31, 
899: a.high = .58, 
900: w1 = .5, 
901: w2 = .5, 
902: numItem = 30, 
903: results.file = results.file44) 
904: 
905: results.file46 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C46.txt" 
906: study1(seednum = 46, 
907: numSubj = 750, 
908: Numiter = n.it, 
909: b.mean = 0.5, 
910: b.sd = 0.7, 
911: a.low = .58, 
912: a.high = 1.13, 
913: w1 = .3, 
914: w2 = .3, 
915: numItem = 30, 
916: results.file = results.file46) 
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917: 
918: results.file48 <-"C:/Documents and Settings/Admin/Desktop/DissModel/C48.txt" 
919: study1(seednum = 48, 
920: numSubj = 750, 
921: Numiter = n.it, 
922: b.mean = 0.5, 
923: b.sd = 0.7, 
924: a.low = .58, 
925: a.high = 1.13, 
926: w1 = .5, 
927: w2 = .5, 
928: numItem = 30, 
929: results.file = results.file48) 
930: 
931: } 
932: 
933: #================================================================# 
934: # Summarize Results for Table 2 (n=250, normal) # 
935: #================================================================# 
936: 
937: n.it<-1000 
938: 
939: results.list<-paste("C:/Documents and Settings/Admin/Desktop/DissModel/C", 
940: 25:48,sep="") 
941: results.list<-paste(results.list,".txt",sep="") 
942: 
943: type1.theta<-rep(0,24) 
944: type1.sum <- rep(0,24) 
945: type1.thetahat <- rep(0,24) 
946: rdiff.theta <- rep(0,24) 
947: rdiff.sum <- rep(0,24) 
948: rdiff.thetahat <- rep(0,24) 
949: mn.rmsq<-rep(0,24) 
950: pvalue.score1.mn<-rep(0,24) 
951: pvalue.score2.mn<-rep(0,24) 
952: pvalue.score3.mn<-rep(0,24) 
953: pvalue.score1.sd<-rep(0,24) 
954: pvalue.score2.sd<-rep(0,24) 
955: pvalue.score3.sd<-rep(0,24) 
956: alpha.score1<-rep(0,24) 
957: alpha.score2<-rep(0,24) 
958: alpha.score3<-rep(0,24) 
959: sw.theta.p<-rep(0,24) 
960: sw.sum.p<-rep(0,24) 
961: sw.thetahat.p<-rep(0,24) 
962: 
963: skew.score1<-rep(0,24) 
964: skew.score2<-rep(0,24) 
965: skew.score3<-rep(0,24) 
966: 
967: kurtosis.score1<-rep(0,24) 
968: kurtosis.score2<-rep(0,24) 
969: kurtosis.score3<-rep(0,24) 
970: 
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971: skew.theta.ab1<-rep(0,24) 
972: skew.theta.ab2<-rep(0,24) 
973: skew.theta.ab3<-rep(0,24) 
974: 
975: kurtosis.theta.ab1<-rep(0,24) 
976: kurtosis.theta.ab2<-rep(0,24) 
977: kurtosis.theta.ab3<-rep(0,24) 
978: 
979: for(i in 1:24) { 
980: infile <- read.table(results.list[[i]], header=FALSE) 
981: infile<- infile[,2:ncol(infile)] 
982: names(infile)<-list( "iter", 
983: "seednum", 
984: "numItem", 
985: "a.low", 
986: "a.high", 
987: "b.mean", 
988: "b.sd", 
989: "w1", 
990: "w2", 
991: "theta.add.rsq", 
992: "theta.mul.rsq", 
993: "theta.p", 
994: "sum.add.rsq", 
995: "sum.mul.rsq", 
996: "sum.p", 
997: "theta.ab.add.rsq", 
998: "theta.ab.mul.rsq", 
999: "theta.ab.p", 
1000: "rmsq", 
1001: "alpha.score1", 
1002: "alpha.score2", 
1003: "alpha.score3", 
1004: "swtheta.p", 
1005: "swsum.p", 
1006: "swthetahat.p", 
1007: "skew.score1", 
1008: "skew.score2", 
1009: "skew.score3", 
1010: "kurtosis.score1", 
1011: "kurtosis.score2", 
1012: "kurtosis.score3", 
1013: "skew.theta.ab1", 
1014: "skew.theta.ab2", 
1015: "skew.theta.ab3", 
1016: "kurtosis.theta.ab1", 
1017: "kurtosis.theta.ab2", 
1018: "kurtosis.theta.ab3") 
1019: 
1020: write.table(infile, 
1021: "C:/Documents and Settings/Admin/Desktop/DissModel/norm 750 full.txt") 
1022: 
1023: type1.theta[i]<-sum(infile["theta.p"] <= .05)/n.it 
1024: type1.sum[i]<-sum(infile["sum.p"] <=.05)/n.it 
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1025: type1.thetahat[i]<-sum(infile["theta.ab.p"] <=.05)/n.it 
1026: 
1027: rdiff.theta[i]<-round(sum(infile["theta.mul.rsq"]-infile["theta.add.rsq"])/ 
1028: n.it,2) 
1029: rdiff.sum[i]<-round(sum(infile["sum.mul.rsq"]-infile["sum.add.rsq"])/n.it,2) 
1030: rdiff.thetahat[i]<-round(sum(infile["theta.ab.mul.rsq"] - 
1031: infile["theta.ab.add.rsq"])/n.it,2) 
1032: mn.rmsq[i]<-round(mean(infile["rmsq"]),2) 
1033: alpha.score1[i]<-round(mean(infile["alpha.score1"]),2) 
1034: alpha.score2[i]<-round(mean(infile["alpha.score2"]),2) 
1035: alpha.score3[i]<-round(mean(infile["alpha.score3"]),2) 
1036: 
1037: sw.theta.p[i]<-round(sum(infile["swtheta.p"] > .05)/n.it,5) 
1038: sw.sum.p[i]<-round(sum(infile["swsum.p"] > .05)/n.it,5) 
1039: sw.thetahat.p[i]<-round(sum(infile["swthetahat.p"] > .05)/n.it,5) 
1040: 
1041: skew.score1[i]<-round(mean(infile["skew.score1"]),5) 
1042: skew.score2[i]<-round(mean(infile["skew.score2"]),5) 
1043: skew.score3[i]<-round(mean(infile["skew.score3"]),5) 
1044: kurtosis.score1[i]<-round(mean(infile["kurtosis.score1"]),5) 
1045: kurtosis.score2[i]<-round(mean(infile["kurtosis.score2"]),5) 
1046: kurtosis.score3[i]<-round(mean(infile["kurtosis.score3"]),5) 
1047: skew.theta.ab1[i]<-round(mean(infile["skew.theta.ab1"]),5) 
1048: skew.theta.ab2[i]<-round(mean(infile["skew.theta.ab2"]),5) 
1049: skew.theta.ab3[i]<-round(mean(infile["skew.theta.ab3"],na.rm=TRUE),5) 
1050: kurtosis.theta.ab1[i]<-round(mean(infile["kurtosis.theta.ab1"]),5) 
1051: kurtosis.theta.ab2[i]<-round(mean(infile["kurtosis.theta.ab2"]),5) 
1052: kurtosis.theta.ab3[i]<-round(mean(infile["kurtosis.theta.ab3"],na.rm=TRUE),5) 
1053: 
1054: } 
1055: 
1056: n <- c(rep(750,24)) 
1057: b <- c(rep("N(-1.5,1.0)",8),rep("N(0,1)",8),rep("N(1.5,1.0)",8)) 
1058: a <- c(rep("U(0.31, 0.58)",4),rep("U(0.58, 1.13)",4)) 
1059: a <- rep(a,3) 
1060: B1B2 <- rep(c(.3,.3,.5,.5),6) 
1061: Items<-rep(c(15,30),12) 
1062: 
1063: mean.alpha<-round(apply(cbind(alpha.score1,alpha.score2,alpha.score3), 
1064: 1,mean),2) 
1065: 
1066: type1.theta<-round(type1.theta,2) 
1067: type1.sum<-round(type1.sum,2) 
1068: type1.thetahat<-round(type1.thetahat,2) 
1069: 
1070: sw.theta.p<-round(sw.theta.p,2) 
1071: sw.sum.p<-round(sw.sum.p,2) 
1072: sw.thetahat<-round(sw.thetahat.p,2) 
1073: 
1074: sktab1<-round(data.frame(skew.score3, kurtosis.score3, skew.theta.ab3, 
1075: kurtosis.theta.ab3),2) 
1076: 
1077: table2<-data.frame(n,b,a,B1B2,Items,type1.theta,type1.sum,type1.thetahat, 
1078: mean.alpha,sw.theta.p,sw.sum.p,sw.thetahat,sktab1) 
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1079: 
1080: print(table2) 
1081: write.table(table2, 
1082: "C:/Documents and Settings/Admin/Desktop/DissModel/Table2 norm 750.txt") 
1083: #======End simulation for Table 2 (n=750, normal)===============# 
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APPENDIX C: R CODE FOR SIMULATION 3 

1: #Morse Dissertation Table 3 (n=250, restricted) 
2: 
3: #Load latent trait model library 
4: library("ltm") 
5: 
6: #Set number of iterations per condition 
7: n.it<-1000 
8: 
9: #Individual Monte Carlo loop structure 
10: study1<-function(seednum, numSubj=numSubj, Numiter=n.it, 
11: b.mean, b.sd, a.low, a.high, w1, w2, numItem, results.file) 
12: 
13: #=================================================================# 
14: #Simulation loops for spurious interactions (n=250, k=15, restr.)# 
15: #=================================================================# 
16: 
17: { 
18: 
19: setwd("C:/Program Files/PARSCALE4") 
20: 
21: #Generate raw response matrix for IV1, IV2, and DV 
22: score.item.prg<-function(numItem,numSubj,Ptheta,a, b, score, theta) 
23: { 
24: b1<-b 
25: b2<-b1+.35 
26: b3<-b2+.35 
27: b4<-b3+.35 
28: 
29: for(i in 1:numItem){ 
30: 
31: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
32: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
33: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
34: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
35: 
36: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
37: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
38: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
39: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
40: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
41: 
42: #Generating a response matrix by comparing a random value from a 
43: #uniform distribution U(0,1) to the relative score categories 
44: r<-runif(numSubj) 
45: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
46: response2[,i]<-ifelse(r < Ptheta1a[,i] + Ptheta2b[,i] & r >= 
47: Ptheta1a[,i],2,0) 
48: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r >= 
49: Ptheta1a[,i]+Ptheta2b[,i],3,0) 
50: response4[,i]<-ifelse(r < Ptheta1a[,i]+Ptheta2b[,i]+ Ptheta3c[,i] + 
51: Ptheta4d[,i] & r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
52: response5[,i]<-ifelse(r >= Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i] + 
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53: Ptheta4d[,i],5,0) 
54: 
55: #Compiling the response matrix to object 'score' 
56: score<-response1+response2+response3+response4+response5 
57: } 
58: return(score) 
59: } 
60: 
61: #Function to calculate skewness 
62: skew <- function (x) 
63: { 
64: sk <- function(xx) { 
65: n <- length(xx) 
66: mn <- mean(xx) 
67: dif.x <- xx - mn 
68: m2 <- sum(dif.x^2)/n 
69: m3 <- sum(dif.x^3)/n 
70: m3/(m2^(3/2)) 
71: } 
72: if (ncol(x) == 1 || is.null(dim(x))) 
73: return(sk(x)) 
74: else return(apply(x, 2, sk)) 
75: } 
76: 
77: #Function to calculate kurtosis 
78: kurtosis <-function (x) 
79: { 
80: kt <- function(xx) { 
81: n <- length(xx) 
82: mn <- mean(xx) 
83: dif.x <- xx - mn 
84: m2 <- sum(dif.x^2)/n 
85: m4 <- sum(dif.x^4)/n 
86: (m4/m2^2) - 3 
87: } 
88: if (ncol(x) == 1 || is.null(dim(x))) 
89: return(kt(x)) 
90: else return(apply(x, 2, kt)) 
91: } 
92: 
93: #---------------------- fixed conditions -------------------------# 
94: 
95: result <- matrix(0, nrow = Numiter, ncol = 9) 
96: 
97: #---------------------- starting for-loop ------------------------# 
98: 
99: iter<-0 
100: good.iter<-1 
101: while(good.iter <= Numiter) { 
102: 
103: iter<-iter+1 
104: set.seed(seednum+iter) 
105: 
106: #-------------------- initializing values -----------------------# 
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107: 
108: #Create a person by item matrix for the scores of CBRF 1 through 4 
109: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
110: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
111: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
112: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
113: 
114: #Create a person x item matrix for the scores of CRF 1 through 5 
115: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
116: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
117: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
118: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
119: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
120: 
121: #Create a person x item matrix for raw scores of cat 1 through 5 
122: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
123: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
124: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
125: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
126: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
127: 
128: #Create the final person by item matrix of raw responses 
129: score <- matrix(0, nrow = numSubj, ncol = numItem) 
130: 
131: #------------- Generating IV1, IV2, and DV ----------------------# 
132: 
133: theta1<-scale(rnorm(numSubj)) 
134: theta2<-scale(rnorm(numSubj)) 
135: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
136: 
137: #------------ Specifying item parameters ------------------------# 
138: 
139: a1 <- runif(numItem, a.low, a.high) 
140: a2 <- runif(numItem, a.low, a.high) 
141: a3 <- runif(numItem, a.low, a.high) 
142: b1a <- rnorm(numItem, b.mean, b.sd) 
143: b2a <- rnorm(numItem, b.mean, b.sd) 
144: b3a <- rnorm(numItem, b.mean, b.sd) 
145: 
146: #------------ Generating reponse patterns -----------------------# 
147: 
148: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score, theta1) 
149: score2<-score.item.prg(numItem,numSubj, Ptheta1, a2, b2a, score, theta2) 
150: score3<-score.item.prg(numItem,numSubj, Ptheta1, a3, b3a, score, theta3) 
151: 
152: #-------- Compute Cronbach's Alpha for reliability --------------# 
153: 
154: alpha1<-cronbach.alpha(score1) 
155: alpha2<-cronbach.alpha(score2) 
156: alpha3<-cronbach.alpha(score3) 
157: alpha.score1<-alpha1$alpha 
158: alpha.score2<-alpha2$alpha 
159: alpha.score3<-alpha3$alpha 
160: 
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161: #---------- Estimating parameters using PARSCALE4.1 -------------# 
162: 
163: #Command to invoke PARSCALE to generate theta estimates 
164: #Note that all files must be located in the PARSCALE directory 
165: 
166: #-------------------------n=250, k=15----------------------------# 
167: #---------------------------score 1------------------------------# 
168: score1psl<-data.frame(1001:1250,score1) 
169: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_15-250.dat", 
170: sep="",row.names=FALSE,col.names=FALSE) 
171: system("score15-250.bat",show.output.on.console = FALSE) 
172: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
173: head=F,fill=T)[(1:250)*2,7] 
174: theta.ab1<-as.matrix(theta.ab1) 
175: #--------------------------score 2------------------------------# 
176: score2psl<-data.frame(1001:1250,score2) 
177: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_15-250.dat", 
178: sep="",row.names=FALSE,col.names=FALSE) 
179: system("score15-250.bat",show.output.on.console = FALSE) 
180: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
181: head=F,fill=T)[(1:250)*2,7] 
182: theta.ab2<-as.matrix(theta.ab2) 
183: #--------------------------score 3-------------------------------# 
184: score3psl<-data.frame(1001:1250,score3) 
185: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_15-250.dat", 
186: sep="",row.names=FALSE,col.names=FALSE) 
187: system("score15-250.bat",show.output.on.console = FALSE) 
188: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-250.SCO", 
189: head=F,fill=T)[(1:250)*2,7] 
190: theta.ab3<-as.matrix(theta.ab3) 
191: #----------------------------------------------------------------# 
192: 
193: #-- Computing the rmsq, total scores, skew and kurtosis----------# 
194: 
195: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
196: 
197: score1 <- apply(score1, 1, mean) 
198: score2 <- apply(score2, 1, mean) 
199: score3 <- apply(score3, 1, mean) 
200: 
201: score1.skew<-skew(score1) 
202: score1.kurtosis<-kurtosis(score1) 
203: score2.skew<-skew(score2) 
204: score2.kurtosis<-kurtosis(score2) 
205: score3.skew<-skew(score3) 
206: score3.kurtosis<-kurtosis(score3) 
207: 
208: theta.ab1skew<-skew(theta.ab1) 
209: theta.ab1kurtosis<-kurtosis(theta.ab1) 
210: theta.ab2skew<-skew(theta.ab2) 
211: theta.ab2kurtosis<-kurtosis(theta.ab2) 
212: theta.ab3skew<-skew(theta.ab3) 
213: theta.ab3kurtosis<-kurtosis(theta.ab3) 
214: 
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215: #-- Applying additive and multiplicative regression models ------# 
216: 
217: #Actual theta scores 
218: theta.add<-lm(theta3~theta1+theta2) 
219: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
220: 
221: #Raw scores 
222: sum.add<-lm(score3~score1+score2) 
223: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
224: 
225: #Estimated theta scores 
226: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
227: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
228: 
229: #-------- Shapiro-Wilk test for checking normality --------------# 
230: 
231: theta.orderres <- summary(theta.add)$res 
232: sum.orderres <- summary(sum.add)$res 
233: thetahat.orderres <- summary(theta.ab.add)$res 
234: 
235: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
236: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
237: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
238: 
239: #report r-square, r-square change sig., and rm squared deviations# 
240: 
241: cat("Working on sample",seednum,"iteration",iter, good.iter, "\n") 
242: theta.add.rsq <- summary(theta.add)$r.squared 
243: theta.mul.rsq <- summary(theta.mul)$r.squared 
244: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
245: theta.p[is.na(theta.p)] <- 1.00 
246: 
247: sum.add.rsq <- summary(sum.add)$r.squared 
248: sum.mul.rsq <- summary(sum.mul)$r.squared 
249: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
250: sum.p[is.na(sum.p)] <- 1.00 
251: 
252: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
253: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
254: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
255: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
256: 
257: #------------ Summarize results of each loop --------------------# 
258: 
259: iter.results<-as.vector(c(iter, 
260: seednum, 
261: numItem, 
262: a.low, 
263: a.high, 
264: b.mean, 
265: b.sd, 
266: w1, 
267: w2, 
268: theta.add.rsq, 
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269: theta.mul.rsq, 
270: theta.p, 
271: sum.add.rsq, 
272: sum.mul.rsq, 
273: sum.p, 
274: theta.ab.add.rsq, 
275: theta.ab.mul.rsq, 
276: theta.ab.p, 
277: rmsq, 
278: alpha.score1, 
279: alpha.score2, 
280: alpha.score3, 
281: swtheta.p, 
282: swsum.p, 
283: swthetahat.p, 
284: score1.skew, 
285: score2.skew, 
286: score3.skew, 
287: score1.kurtosis, 
288: score2.kurtosis, 
289: score3.kurtosis, 
290: theta.ab1skew, 
291: theta.ab2skew, 
292: theta.ab3skew, 
293: theta.ab1kurtosis, 
294: theta.ab2kurtosis, 
295: theta.ab3kurtosis)) 
296: 
297: names(iter.results)<-NULL 
298: sink(results.file,append=TRUE) 
299: print(iter.results,digits=4,quote=FALSE) 
300: sink() 
301: good.iter<-good.iter+1 
302: } 
303: 
304: } 
305: #-------------------- End loop structure ------------------------# 
306: 
307: #================================================================# 
308: # Begin looping individual conditions # 
309: #================================================================# 
310: 
311: options(width=2000) 
312: 
313: { 
314: 
315: results.file1<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C1.txt" 
316: study1(seednum = 1, 
317: numSubj = 250, 
318: Numiter = n.it, 
319: b.mean = -2.0, 
320: b.sd = 0.35, 
321: a.low = .31, 
322: a.high = .58, 
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323: w1 = .3, 
324: w2 = .3, 
325: numItem = 15, 
326: results.file = results.file1) 
327: 
328: results.file3<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C3.txt" 
329: study1(seednum = 3, 
330: numSubj = 250, 
331: Numiter = n.it, 
332: b.mean = -2.0, 
333: b.sd = 0.35, 
334: a.low = .31, 
335: a.high = .58, 
336: w1 = .5, 
337: w2 = .5, 
338: numItem = 15, 
339: results.file = results.file3) 
340: 
341: results.file5<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C5.txt" 
342: study1(seednum = 5, 
343: numSubj = 250, 
344: Numiter = n.it, 
345: b.mean = -2.0, 
346: b.sd = 0.35, 
347: a.low = .58, 
348: a.high = 1.13, 
349: w1 = .3, 
350: w2 = .3, 
351: numItem = 15, 
352: results.file = results.file5) 
353: 
354: results.file7 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C7.txt" 
355: study1(seednum = 7, 
356: numSubj = 250, 
357: Numiter = n.it, 
358: b.mean = -2.0, 
359: b.sd = 0.35, 
360: a.low = .58, 
361: a.high = 1.13, 
362: w1 = .5, 
363: w2 = .5, 
364: numItem = 15, 
365: results.file = results.file7) 
366: 
367: results.file9 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C9.txt" 
368: study1(seednum = 9, 
369: numSubj = 250, 
370: Numiter = n.it, 
371: b.mean = -0.5, 
372: b.sd = 0.35, 
373: a.low = .31, 
374: a.high = .58, 
375: w1 = .3, 
376: w2 = .3, 
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377: numItem = 15, 
378: results.file = results.file9) 
379: 
380: results.file11 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C11.txt" 
381: study1(seednum = 11, 
382: numSubj = 250, 
383: Numiter = n.it, 
384: b.mean = -0.5, 
385: b.sd = 0.35, 
386: a.low = .31, 
387: a.high = .58, 
388: w1 = .5, 
389: w2 = .5, 
390: numItem = 15, 
391: results.file = results.file11) 
392: 
393: results.file13<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C13.txt" 
394: study1(seednum = 13, 
395: numSubj = 250, 
396: Numiter = n.it, 
397: b.mean = -0.5, 
398: b.sd = 0.35, 
399: a.low = .58, 
400: a.high = 1.13, 
401: w1 = .3, 
402: w2 = .3, 
403: numItem = 15, 
404: results.file = results.file13) 
405: 
406: results.file15 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C15.txt" 
407: study1(seednum = 15, 
408: numSubj = 250, 
409: Numiter = n.it, 
410: b.mean = -0.5, 
411: b.sd = 0.35, 
412: a.low = .58, 
413: a.high = 1.13, 
414: w1 = .5, 
415: w2 = .5, 
416: numItem = 15, 
417: results.file = results.file15) 
418: 
419: results.file17 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C17.txt" 
420: study1(seednum = 17, 
421: numSubj = 250, 
422: Numiter = n.it, 
423: b.mean = 1.0, 
424: b.sd = 0.35, 
425: a.low = .31, 
426: a.high = .58, 
427: w1 = .3, 
428: w2 = .3, 
429: numItem = 15, 
430: results.file = results.file17) 
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431: 
432: results.file19 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C19.txt" 
433: study1(seednum = 19, 
434: numSubj = 250, 
435: Numiter = n.it, 
436: b.mean = 1.0, 
437: b.sd = 0.35, 
438: a.low = .31, 
439: a.high = .58, 
440: w1 = .5, 
441: w2 = .5, 
442: numItem = 15, 
443: results.file = results.file19) 
444: 
445: results.file21 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C21.txt" 
446: study1(seednum = 21, 
447: numSubj = 250, 
448: Numiter = n.it, 
449: b.mean = 1.0, 
450: b.sd = 0.35, 
451: a.low = .58, 
452: a.high = 1.13, 
453: w1 = .3, 
454: w2 = .3, 
455: numItem = 15, 
456: results.file = results.file21) 
457: 
458: results.file23 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C23.txt" 
459: study1(seednum = 23, 
460: numSubj = 250, 
461: Numiter = n.it, 
462: b.mean = 1.0, 
463: b.sd = 0.35, 
464: a.low = .58, 
465: a.high = 1.13, 
466: w1 = .5, 
467: w2 = .5, 
468: numItem = 15, 
469: results.file = results.file23) 
470: 
471: } 
472: 
473: #================================================================# 
474: #Simulation loops for spurious interactions (n=250,k=30,restr.)# 
475: #================================================================# 
476: 
477: { 
478: 
479: setwd("C:/Program Files/PARSCALE4") 
480: 
481: #Generate raw response matrix for IV1, IV2, and DV 
482: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score, theta) 
483: { 
484: b1<-b 
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485: b2<-b1+.35 
486: b3<-b2+.35 
487: b4<-b3+.35 
488: 
489: for(i in 1:numItem){ 
490: 
491: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
492: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
493: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
494: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
495: 
496: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
497: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
498: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
499: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
500: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
501: 
502: #Generating a response matrix by comparing a random value from a 
503: #uniform distribution U(0,1) to the relative score categories 
504: r<-runif(numSubj) 
505: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
506: response2[,i]<-ifelse(r < Ptheta1a[,i]+Ptheta2b[,i] & r >= 
507: Ptheta1a[,i],2,0) 
508: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r>= 
509: Ptheta1a[,i] + Ptheta2b[,i],3,0) 
510: response4[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
511: Ptheta4d[,i]&r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
512: response5[,i]<-ifelse(r>=Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i] + 
513: Ptheta4d[,i],5,0) 
514: 
515: #Compiling the response matrix to object 'score' 
516: score<-response1+response2+response3+response4+response5 
517: } 
518: return(score) 
519: } 
520: 
521: #Function to calculate skewness 
522: skew <- function (x) 
523: { 
524: sk <- function(xx) { 
525: n <- length(xx) 
526: mn <- mean(xx) 
527: dif.x <- xx - mn 
528: m2 <- sum(dif.x^2)/n 
529: m3 <- sum(dif.x^3)/n 
530: m3/(m2^(3/2)) 
531: } 
532: if (ncol(x) == 1 || is.null(dim(x))) 
533: return(sk(x)) 
534: else return(apply(x, 2, sk)) 
535: } 
536: 
537: #Function to calculate kurtosis 
538: kurtosis <-function (x) 
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539: { 
540: kt <- function(xx) { 
541: n <- length(xx) 
542: mn <- mean(xx) 
543: dif.x <- xx - mn 
544: m2 <- sum(dif.x^2)/n 
545: m4 <- sum(dif.x^4)/n 
546: (m4/m2^2) - 3 
547: } 
548: if (ncol(x) == 1 || is.null(dim(x))) 
549: return(kt(x)) 
550: else return(apply(x, 2, kt)) 
551: } 
552: 
553: #--------------------- fixed conditions -------------------------# 
554: 
555: result <- matrix(0, nrow = Numiter, ncol = 9) 
556: 
557: #--------------------- starting for-loop ------------------------# 
558: 
559: iter<-0 
560: good.iter<-1 
561: while(good.iter <= Numiter) { 
562: 
563: iter<-iter+1 
564: set.seed(seednum+iter) 
565: 
566: #------------------- initializing values ------------------------# 
567: 
568: #Create a person by item matrix for the scores of CBRF 1 through 4 
569: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
570: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
571: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
572: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
573: 
574: #Create a person x item matrix for the scores of CRF 1 through 5 
575: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
576: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
577: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
578: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
579: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
580: 
581: #Create a person x item matrix for raw scores of cat 1 through 5 
582: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
583: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
584: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
585: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
586: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
587: 
588: #Create the final person by item matrix of raw responses 
589: score <- matrix(0, nrow = numSubj, ncol = numItem) 
590: 
591: #------------- Generating IV1, IV2, and DV ----------------------# 
592: 
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593: theta1<-scale(rnorm(numSubj)) 
594: theta2<-scale(rnorm(numSubj)) 
595: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
596: 
597: #------------ Specifying item parameters ------------------------# 
598: 
599: a1 <- runif(numItem, a.low, a.high) 
600: a2 <- runif(numItem, a.low, a.high) 
601: a3 <- runif(numItem, a.low, a.high) 
602: b1a <- rnorm(numItem, b.mean, b.sd) 
603: b2a <- rnorm(numItem, b.mean, b.sd) 
604: b3a <- rnorm(numItem, b.mean, b.sd) 
605: 
606: #--------- Generating reponse patterns --------------------------# 
607: 
608: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a,score, theta1) 
609: score2<-score.item.prg(numItem,numSubj,Ptheta1,a2,b2a,score, theta2) 
610: score3<-score.item.prg(numItem,numSubj,Ptheta1,a3,b3a,score, theta3) 
611: 
612: #------ Compute Cronbach's Alpha for reliability ----------------# 
613: 
614: alpha1<-cronbach.alpha(score1) 
615: alpha2<-cronbach.alpha(score2) 
616: alpha3<-cronbach.alpha(score3) 
617: alpha.score1<-alpha1$alpha 
618: alpha.score2<-alpha2$alpha 
619: alpha.score3<-alpha3$alpha 
620: 
621: #------------- Estimating parameters using PARSCALE4.1 -----------
-----# 
622: 
623: #Command to invoke PARSCALE to generate theta estimates 
624: #Note that all files must be located in the PARSCALE directory 
625: 
626: #----------------------n=250, k=30-------------------------------# 
627: #------------------------score 1---------------------------------# 
628: score1psl<-data.frame(1001:1250,score1) 
629: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
630: sep="",row.names=FALSE,col.names=FALSE) 
631: system("score30-250.bat",show.output.on.console = FALSE) 
632: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
633: head=F,fill=T)[(1:250)*2,7] 
634: theta.ab1<-as.matrix(theta.ab1) 
635: #------------------------score 2---------------------------------# 
636: score2psl<-data.frame(1001:1250,score2) 
637: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
638: sep="",row.names=FALSE,col.names=FALSE) 
639: system("score30-250.bat",show.output.on.console = FALSE) 
640: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
641: head=F,fill=T)[(1:250)*2,7] 
642: theta.ab2<-as.matrix(theta.ab2) 
643: #------------------------score 3---------------------------------# 
644: score3psl<-data.frame(1001:1250,score3) 
645: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_30-250.dat", 
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646: sep="",row.names=FALSE,col.names=FALSE) 
647: system("score30-250.bat",show.output.on.console = FALSE) 
648: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-250.SCO", 
649: head=F,fill=T)[(1:250)*2,7] 
650: theta.ab3<-as.matrix(theta.ab3) 
651: #----------------------------------------------------------------# 
652: 
653: #- Computing the rmsq, total scores, skew and kurtosis ----------# 
654: 
655: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
656: 
657: score1 <- apply(score1, 1, mean) 
658: score2 <- apply(score2, 1, mean) 
659: score3 <- apply(score3, 1, mean) 
660: 
661: score1.skew<-skew(score1) 
662: score1.kurtosis<-kurtosis(score1) 
663: score2.skew<-skew(score2) 
664: score2.kurtosis<-kurtosis(score2) 
665: score3.skew<-skew(score3) 
666: score3.kurtosis<-kurtosis(score3) 
667: 
668: theta.ab1skew<-skew(theta.ab1) 
669: theta.ab1kurtosis<-kurtosis(theta.ab1) 
670: theta.ab2skew<-skew(theta.ab2) 
671: theta.ab2kurtosis<-kurtosis(theta.ab2) 
672: theta.ab3skew<-skew(theta.ab3) 
673: theta.ab3kurtosis<-kurtosis(theta.ab3) 
674: 
675: #-- Applying additive and multiplicative regression models ------# 
676: 
677: #Actual theta scores 
678: theta.add<-lm(theta3~theta1+theta2) 
679: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
680: 
681: #Raw scores 
682: sum.add<-lm(score3~score1+score2) 
683: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
684: 
685: #Estimated theta scores 
686: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
687: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
688: 
689: #-------- Shapiro-Wilk test for checking normality --------------# 
690: 
691: theta.orderres <- summary(theta.add)$res 
692: sum.orderres <- summary(sum.add)$res 
693: thetahat.orderres <- summary(theta.ab.add)$res 
694: 
695: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
696: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
697: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
698: 
699: #report r-square, r-square change sig., & rm squared deviations # 
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700: 
701: cat("Working on sample", seednum,"iteration",iter,good.iter, "\n") 
702: theta.add.rsq <- summary(theta.add)$r.squared 
703: theta.mul.rsq <- summary(theta.mul)$r.squared 
704: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
705: theta.p[is.na(theta.p)] <- 1.00 
706: 
707: sum.add.rsq <- summary(sum.add)$r.squared 
708: sum.mul.rsq <- summary(sum.mul)$r.squared 
709: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
710: sum.p[is.na(sum.p)] <- 1.00 
711: 
712: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
713: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
714: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
715: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
716: 
717: #------------ Summarize results of each loop --------------------# 
718: 
719: iter.results<-as.vector(c(iter, 
720: seednum, 
721: numItem, 
722: a.low, 
723: a.high, 
724: b.mean, 
725: b.sd, 
726: w1, 
727: w2, 
728: theta.add.rsq, 
729: theta.mul.rsq, 
730: theta.p, 
731: sum.add.rsq, 
732: sum.mul.rsq, 
733: sum.p, 
734: theta.ab.add.rsq, 
735: theta.ab.mul.rsq, 
736: theta.ab.p, 
737: rmsq, 
738: alpha.score1, 
739: alpha.score2, 
740: alpha.score3, 
741: swtheta.p, 
742: swsum.p, 
743: swthetahat.p, 
744: score1.skew, 
745: score2.skew, 
746: score3.skew, 
747: score1.kurtosis, 
748: score2.kurtosis, 
749: score3.kurtosis, 
750: theta.ab1skew, 
751: theta.ab2skew, 
752: theta.ab3skew, 
753: theta.ab1kurtosis, 
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754: theta.ab2kurtosis, 
755: theta.ab3kurtosis)) 
756: 
757: names(iter.results)<-NULL 
758: sink(results.file,append=TRUE) 
759: print(iter.results,digits=4,quote=FALSE) 
760: sink() 
761: good.iter<-good.iter+1 
762: } 
763: 
764: } 
765: #-------------------- End loop structure ------------------------# 
766: 
767: #================================================================# 
768: # Begin looping individual conditions # 
769: #================================================================# 
770: 
771: options(width=2000) 
772: 
773: { 
774: 
775: results.file2<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C2.txt" 
776: study1(seednum = 2, 
777: numSubj = 250, 
778: Numiter = n.it, 
779: b.mean = -2.0, 
780: b.sd = 0.35, 
781: a.low = .31, 
782: a.high = .58, 
783: w1 = .3, 
784: w2 = .3, 
785: numItem = 30, 
786: results.file = results.file2) 
787: 
788: results.file4<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C4.txt" 
789: study1(seednum = 4, 
790: numSubj = 250, 
791: Numiter = n.it, 
792: b.mean = -2.0, 
793: b.sd = 0.35, 
794: a.low = .31, 
795: a.high = .58, 
796: w1 = .5, 
797: w2 = .5, 
798: numItem = 30, 
799: results.file = results.file4) 
800: 
801: results.file6 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C6.txt" 
802: study1(seednum = 6, 
803: numSubj = 250, 
804: Numiter = n.it, 
805: b.mean = -2.0, 
806: b.sd = 0.35, 
807: a.low = .58, 
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808: a.high = 1.13, 
809: w1 = .3, 
810: w2 = .3, 
811: numItem = 30, 
812: results.file = results.file6) 
813: 
814: results.file8 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C8.txt" 
815: study1(seednum = 8, 
816: numSubj = 250, 
817: Numiter = n.it, 
818: b.mean = -2.0, 
819: b.sd = 0.35, 
820: a.low = .58, 
821: a.high = 1.13, 
822: w1 = .5, 
823: w2 = .5, 
824: numItem = 30, 
825: results.file = results.file8) 
826: 
827: results.file10<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C10.txt" 
828: study1(seednum = 10, 
829: numSubj = 250, 
830: Numiter = n.it, 
831: b.mean = -0.5, 
832: b.sd = 0.35, 
833: a.low = .31, 
834: a.high = .58, 
835: w1 = .3, 
836: w2 = .3, 
837: numItem = 30, 
838: results.file = results.file10) 
839: 
840: results.file12 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C12.txt" 
841: study1(seednum = 12, 
842: numSubj = 250, 
843: Numiter = n.it, 
844: b.mean = -0.5, 
845: b.sd = 0.35, 
846: a.low = .31, 
847: a.high = .58, 
848: w1 = .5, 
849: w2 = .5, 
850: numItem = 30, 
851: results.file = results.file12) 
852: 
853: results.file14<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C14.txt" 
854: study1(seednum = 14, 
855: numSubj = 250, 
856: Numiter = n.it, 
857: b.mean = -0.5, 
858: b.sd = 0.35, 
859: a.low = .58, 
860: a.high = 1.13, 
861: w1 = .3, 
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862: w2 = .3, 
863: numItem = 30, 
864: results.file = results.file14) 
865: 
866: results.file16 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C16.txt" 
867: study1(seednum = 16, 
868: numSubj = 250, 
869: Numiter = n.it, 
870: b.mean = -0.5, 
871: b.sd = 0.35, 
872: a.low = .58, 
873: a.high = 1.13, 
874: w1 = .5, 
875: w2 = .5, 
876: numItem = 30, 
877: results.file = results.file16) 
878: 
879: results.file18 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C18.txt" 
880: study1(seednum = 18, 
881: numSubj = 250, 
882: Numiter = n.it, 
883: b.mean = 1.0, 
884: b.sd = 0.35, 
885: a.low = .31, 
886: a.high = .58, 
887: w1 = .3, 
888: w2 = .3, 
889: numItem = 30, 
890: results.file = results.file18) 
891: 
892: results.file20<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C20.txt" 
893: study1(seednum = 20, 
894: numSubj = 250, 
895: Numiter = n.it, 
896: b.mean = 1.0, 
897: b.sd = 0.35, 
898: a.low = .31, 
899: a.high = .58, 
900: w1 = .5, 
901: w2 = .5, 
902: numItem = 30, 
903: results.file = results.file20) 
904: 
905: results.file22 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C22.txt" 
906: study1(seednum = 22, 
907: numSubj = 250, 
908: Numiter = n.it, 
909: b.mean = 1.0, 
910: b.sd = 0.35, 
911: a.low = .58, 
912: a.high = 1.13, 
913: w1 = .3, 
914: w2 = .3, 
915: numItem = 30, 
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916: results.file = results.file22) 
917: 
918: results.file24 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C24.txt" 
919: study1(seednum = 24, 
920: numSubj = 250, 
921: Numiter = n.it, 
922: b.mean = 1.0, 
923: b.sd = 0.35, 
924: a.low = .58, 
925: a.high = 1.13, 
926: w1 = .5, 
927: w2 = .5, 
928: numItem = 30, 
929: results.file = results.file24) 
930: 
931: } 
932: 
933: #================================================================# 
934: # Summarize Results for Table 3 (n=250, restricted) # 
935: #================================================================# 
936: 
937: n.it<-1000 
938: 
939: results.list<-paste("C:/Documents and Settings/Admin/Desktop/DissModel2/C", 
940: 1:24,sep="") 
941: results.list<-paste(results.list,".txt",sep="") 
942: 
943: type1.theta<-rep(0,24) 
944: type1.sum <- rep(0,24) 
945: type1.thetahat <- rep(0,24) 
946: rdiff.theta <- rep(0,24) 
947: rdiff.sum <- rep(0,24) 
948: rdiff.thetahat <- rep(0,24) 
949: mn.rmsq<-rep(0,24) 
950: pvalue.score1.mn<-rep(0,24) 
951: pvalue.score2.mn<-rep(0,24) 
952: pvalue.score3.mn<-rep(0,24) 
953: pvalue.score1.sd<-rep(0,24) 
954: pvalue.score2.sd<-rep(0,24) 
955: pvalue.score3.sd<-rep(0,24) 
956: alpha.score1<-rep(0,24) 
957: alpha.score2<-rep(0,24) 
958: alpha.score3<-rep(0,24) 
959: sw.theta.p<-rep(0,24) 
960: sw.sum.p<-rep(0,24) 
961: sw.thetahat.p<-rep(0,24) 
962: 
963: skew.score1<-rep(0,24) 
964: skew.score2<-rep(0,24) 
965: skew.score3<-rep(0,24) 
966: 
967: kurtosis.score1<-rep(0,24) 
968: kurtosis.score2<-rep(0,24) 
969: kurtosis.score3<-rep(0,24) 
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970: 
971: skew.theta.ab1<-rep(0,24) 
972: skew.theta.ab2<-rep(0,24) 
973: skew.theta.ab3<-rep(0,24) 
974: 
975: kurtosis.theta.ab1<-rep(0,24) 
976: kurtosis.theta.ab2<-rep(0,24) 
977: kurtosis.theta.ab3<-rep(0,24) 
978: 
979: for(i in 1:24) { 
980: infile <- read.table(results.list[[i]], header=FALSE) 
981: infile<- infile[,2:ncol(infile)] 
982: names(infile)<-list( "iter", 
983: "seednum", 
984: "numItem", 
985: "a.low", 
986: "a.high", 
987: "b.mean", 
988: "b.sd", 
989: "w1", 
990: "w2", 
991: "theta.add.rsq", 
992: "theta.mul.rsq", 
993: "theta.p", 
994: "sum.add.rsq", 
995: "sum.mul.rsq", 
996: "sum.p", 
997: "theta.ab.add.rsq", 
998: "theta.ab.mul.rsq", 
999: "theta.ab.p", 
1000: "rmsq", 
1001: "alpha.score1", 
1002: "alpha.score2", 
1003: "alpha.score3", 
1004: "swtheta.p", 
1005: "swsum.p", 
1006: "swthetahat.p", 
1007: "skew.score1", 
1008: "skew.score2", 
1009: "skew.score3", 
1010: "kurtosis.score1", 
1011: "kurtosis.score2", 
1012: "kurtosis.score3", 
1013: "skew.theta.ab1", 
1014: "skew.theta.ab2", 
1015: "skew.theta.ab3", 
1016: "kurtosis.theta.ab1", 
1017: "kurtosis.theta.ab2", 
1018: "kurtosis.theta.ab3") 
1019: 
1020: write.table(infile, 
1021: "C:/Documents and Settings/Admin/Desktop/DissModel2/restr 250 full.txt") 
1022: 
1023: type1.theta[i]<-sum(infile["theta.p"] <= .05)/n.it 
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1024: type1.sum[i]<-sum(infile["sum.p"] <=.05)/n.it 
1025: type1.thetahat[i]<-sum(infile["theta.ab.p"] <=.05)/n.it 
1026: 
1027: rdiff.theta[i]<-round(sum(infile["theta.mul.rsq"]-infile["theta.add.rsq"])/ 
1028: n.it,2) 
1029: rdiff.sum[i]<-round(sum(infile["sum.mul.rsq"]-infile["sum.add.rsq"])/n.it,2) 
1030: rdiff.thetahat[i]<-round(sum(infile["theta.ab.mul.rsq"] - 
1031: infile["theta.ab.add.rsq"])/n.it,2) 
1032: mn.rmsq[i]<-round(mean(infile["rmsq"]),2) 
1033: alpha.score1[i]<-round(mean(infile["alpha.score1"]),2) 
1034: alpha.score2[i]<-round(mean(infile["alpha.score2"]),2) 
1035: alpha.score3[i]<-round(mean(infile["alpha.score3"]),2) 
1036: 
1037: sw.theta.p[i]<-round(sum(infile["swtheta.p"] > .05)/n.it,5) 
1038: sw.sum.p[i]<-round(sum(infile["swsum.p"] > .05)/n.it,5) 
1039: sw.thetahat.p[i]<-round(sum(infile["swthetahat.p"] > .05)/n.it,5) 
1040: 
1041: skew.score1[i]<-round(mean(infile["skew.score1"]),5) 
1042: skew.score2[i]<-round(mean(infile["skew.score2"]),5) 
1043: skew.score3[i]<-round(mean(infile["skew.score3"]),5) 
1044: kurtosis.score1[i]<-round(mean(infile["kurtosis.score1"]),5) 
1045: kurtosis.score2[i]<-round(mean(infile["kurtosis.score2"]),5) 
1046: kurtosis.score3[i]<-round(mean(infile["kurtosis.score3"]),5) 
1047: skew.theta.ab1[i]<-round(mean(infile["skew.theta.ab1"]),5) 
1048: skew.theta.ab2[i]<-round(mean(infile["skew.theta.ab2"]),5) 
1049: skew.theta.ab3[i]<-round(mean(infile["skew.theta.ab3"],na.rm=TRUE),5) 
1050: kurtosis.theta.ab1[i]<-round(mean(infile["kurtosis.theta.ab1"]),5) 
1051: kurtosis.theta.ab2[i]<-round(mean(infile["kurtosis.theta.ab2"]),5) 
1052: kurtosis.theta.ab3[i]<-round(mean(infile["kurtosis.theta.ab3"],na.rm=TRUE),5) 
1053: 
1054: } 
1055: 
1056: n <- c(rep(250,24)) 
1057: b <- c(rep("N(-1.5,1.0)",8),rep("N(0,1)",8),rep("N(1.5,1.0)",8)) 
1058: a <- c(rep("U(0.31, 0.58)",4),rep("U(0.58, 1.13)",4)) 
1059: a <- rep(a,3) 
1060: B1B2 <- rep(c(.3,.3,.5,.5),6) 
1061: Items<-rep(c(15,30),12) 
1062: 
1063: mean.alpha<-round(apply(cbind(alpha.score1,alpha.score2,alpha.score3), 
1064: 1,mean),2) 
1065: 
1066: type1.theta<-round(type1.theta,2) 
1067: type1.sum<-round(type1.sum,2) 
1068: type1.thetahat<-round(type1.thetahat,2) 
1069: 
1070: sw.theta.p<-round(sw.theta.p,2) 
1071: sw.sum.p<-round(sw.sum.p,2) 
1072: sw.thetahat<-round(sw.thetahat.p,2) 
1073: 
1074: sktab1<-round(data.frame(skew.score3, kurtosis.score3, skew.theta.ab3, 
1075: kurtosis.theta.ab3),2) 
1076: 
1077: table3<-data.frame(n,b,a,B1B2,Items,type1.theta,type1.sum,type1.thetahat, 
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1078: mean.alpha,sw.theta.p,sw.sum.p,sw.thetahat,sktab1) 
1079: 
1080: print(table3) 
1081: write.table(table3, 
1082: "C:/Documents and Settings/Admin/Desktop/DissModel2/Table3 restr 250.txt") 
1083: #======End simulation for Table 3 (n=250, restricted)==========# 
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APPENDIX D: R CODE FOR SIMULATION 4 

1: #Morse Dissertation Table 4 (n=750, restricted) 
2: 
3: #Load latent trait model library 
4: library("ltm") 
5: 
6: #Set number of iterations per condition 
7: n.it<-1000 
8: 
9: #Individual Monte Carlo loop structure 
10: study1<-function(seednum, numSubj=numSubj, Numiter=n.it, 
11: b.mean, b.sd, a.low, a.high, w1, w2, numItem, results.file) 
12: 
13: #=================================================================# 
14: #Simulation loops for spurious interactions (n=750, k=15, restr.)# 
15: #=================================================================# 
16: 
17: { 
18: 
19: setwd("C:/Program Files/PARSCALE4") 
20: 
21: #Generate raw response matrix for IV1, IV2, and DV 
22: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score, theta) 
23: { 
24: b1<-b 
25: b2<-b1+.35 
26: b3<-b2+.35 
27: b4<-b3+.35 
28: 
29: for(i in 1:numItem){ 
30: 
31: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
32: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
33: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
34: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
35: 
36: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
37: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
38: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
39: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
40: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
41: 
42: #Generating a response matrix by comparing a random value from a 
43: #uniform distribution U(0,1) to the relative score categories 
44: r<-runif(numSubj) 
45: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
46: response2[,i]<-ifelse(r < Ptheta1a[,i] + Ptheta2b[,i] & r >= 
47: Ptheta1a[,i],2,0) 
48: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r >= 
49: Ptheta1a[,i]+Ptheta2b[,i],3,0) 
50: response4[,i]<-ifelse(r<Ptheta1a[,i]+ Ptheta2b[,i] + Ptheta3c[,i] + 
51: Ptheta4d[,i] & r >= Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
52: response5[,i]<-ifelse(r >=Ptheta1a[,i]+Ptheta2b[,i]+ Ptheta3c[,i] + 
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53: Ptheta4d[,i],5,0) 
54: 
55: #Compiling the response matrix to object 'score' 
56: score<-response1+response2+response3+response4+response5 
57: } 
58: return(score) 
59: } 
60: 
61: #Function to calculate skewness 
62: skew <- function (x) 
63: { 
64: sk <- function(xx) { 
65: n <- length(xx) 
66: mn <- mean(xx) 
67: dif.x <- xx - mn 
68: m2 <- sum(dif.x^2)/n 
69: m3 <- sum(dif.x^3)/n 
70: m3/(m2^(3/2)) 
71: } 
72: if (ncol(x) == 1 || is.null(dim(x))) 
73: return(sk(x)) 
74: else return(apply(x, 2, sk)) 
75: } 
76: 
77: #Function to calculate kurtosis 
78: kurtosis <-function (x) 
79: { 
80: kt <- function(xx) { 
81: n <- length(xx) 
82: mn <- mean(xx) 
83: dif.x <- xx - mn 
84: m2 <- sum(dif.x^2)/n 
85: m4 <- sum(dif.x^4)/n 
86: (m4/m2^2) - 3 
87: } 
88: if (ncol(x) == 1 || is.null(dim(x))) 
89: return(kt(x)) 
90: else return(apply(x, 2, kt)) 
91: } 
92: 
93: #---------------------- fixed conditions -------------------------# 
94: 
95: result <- matrix(0, nrow = Numiter, ncol = 9) 
96: 
97: #---------------------- starting for-loop ------------------------# 
98: 
99: iter<-0 
100: good.iter<-1 
101: while(good.iter <= Numiter) { 
102: 
103: iter<-iter+1 
104: set.seed(seednum+iter) 
105: 
106: #-------------------- initializing values -----------------------# 
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107: 
108: #Create a person by item matrix for the scores of CBRF 1 through 4 
109: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
110: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
111: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
112: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
113: 
114: #Create a person x item matrix for the scores of CRF 1 through 5 
115: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
116: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
117: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
118: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
119: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
120: 
121: #Create a person x item matrix for raw scores of cat 1 through 5 
122: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
123: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
124: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
125: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
126: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
127: 
128: #Create the final person by item matrix of raw responses 
129: score <- matrix(0, nrow = numSubj, ncol = numItem) 
130: 
131: #------------- Generating IV1, IV2, and DV ---------------------# 
132: 
133: theta1<-scale(rnorm(numSubj)) 
134: theta2<-scale(rnorm(numSubj)) 
135: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
136: 
137: #--------------- Specifying item parameters ---------------------# 
138: 
139: a1 <- runif(numItem, a.low, a.high) 
140: a2 <- runif(numItem, a.low, a.high) 
141: a3 <- runif(numItem, a.low, a.high) 
142: b1a <- rnorm(numItem, b.mean, b.sd) 
143: b2a <- rnorm(numItem, b.mean, b.sd) 
144: b3a <- rnorm(numItem, b.mean, b.sd) 
145: 
146: #--------- Generating reponse patterns --------------------------# 
147: 
148: score1<-score.item.prg(numItem,numSubj, Ptheta1, a1, b1a, score, theta1) 
149: score2<-score.item.prg(numItem,numSubj, Ptheta1, a2, b2a, score, theta2) 
150: score3<-score.item.prg(numItem,numSubj, Ptheta1, a3, b3a, score, theta3) 
151: 
152: #------ Compute Cronbach's Alpha for reliability ----------------# 
153: 
154: alpha1<-cronbach.alpha(score1) 
155: alpha2<-cronbach.alpha(score2) 
156: alpha3<-cronbach.alpha(score3) 
157: alpha.score1<-alpha1$alpha 
158: alpha.score2<-alpha2$alpha 
159: alpha.score3<-alpha3$alpha 
160: 
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161: #---------- Estimating parameters using PARSCALE4.1 -------------# 
162: 
163: #Command to invoke PARSCALE to generate theta estimates 
164: #Note that all files must be located in the PARSCALE directory 
165: 
166: #----------------------n=750, k=15-------------------------------# 
167: #------------------------score 1---------------------------------# 
168: score1psl<-data.frame(1001:1750,score1) 
169: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
170: sep="",row.names=FALSE,col.names=FALSE) 
171: system("score15-750.bat",show.output.on.console = FALSE) 
172: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
173: head=F,fill=T)[(1:750)*2,7] 
174: theta.ab1<-as.matrix(theta.ab1) 
175: #-----------------------score 2----------------------------------# 
176: score2psl<-data.frame(1001:1750,score2) 
177: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
178: sep="",row.names=FALSE,col.names=FALSE) 
179: system("score15-750.bat",show.output.on.console = FALSE) 
180: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
181: head=F,fill=T)[(1:750)*2,7] 
182: theta.ab2<-as.matrix(theta.ab2) 
183: #-----------------------score 3----------------------------------# 
184: score3psl<-data.frame(1001:1750,score3) 
185: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_15-750.dat", 
186: sep="",row.names=FALSE,col.names=FALSE) 
187: system("score15-750.bat",show.output.on.console = FALSE) 
188: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore15-750.SCO", 
189: head=F,fill=T)[(1:750)*2,7] 
190: theta.ab3<-as.matrix(theta.ab3) 
191: #----------------------------------------------------------------# 
192: 
193: # Computing the rmsq, total scores, skew and kurtosis------------# 
194: 
195: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
196: 
197: score1 <- apply(score1, 1, mean) 
198: score2 <- apply(score2, 1, mean) 
199: score3 <- apply(score3, 1, mean) 
200: 
201: score1.skew<-skew(score1) 
202: score1.kurtosis<-kurtosis(score1) 
203: score2.skew<-skew(score2) 
204: score2.kurtosis<-kurtosis(score2) 
205: score3.skew<-skew(score3) 
206: score3.kurtosis<-kurtosis(score3) 
207: 
208: theta.ab1skew<-skew(theta.ab1) 
209: theta.ab1kurtosis<-kurtosis(theta.ab1) 
210: theta.ab2skew<-skew(theta.ab2) 
211: theta.ab2kurtosis<-kurtosis(theta.ab2) 
212: theta.ab3skew<-skew(theta.ab3) 
213: theta.ab3kurtosis<-kurtosis(theta.ab3) 
214: 
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215: #-- Applying additive and multiplicative regression models ------# 
216: 
217: #Actual theta scores 
218: theta.add<-lm(theta3~theta1+theta2) 
219: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
220: 
221: #Raw scores 
222: sum.add<-lm(score3~score1+score2) 
223: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
224: 
225: #Estimated theta scores 
226: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
227: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
228: 
229: #-------- Shapiro-Wilk test for checking normality --------------# 
230: 
231: theta.orderres <- summary(theta.add)$res 
232: sum.orderres <- summary(sum.add)$res 
233: thetahat.orderres <- summary(theta.ab.add)$res 
234: 
235: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
236: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
237: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
238: 
239: #report r-square, r-square change sig., and rm squared deviations# 
240: 
241: cat("Working on sample",seednum,"iteration",iter, good.iter, "\n") 
242: theta.add.rsq <- summary(theta.add)$r.squared 
243: theta.mul.rsq <- summary(theta.mul)$r.squared 
244: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
245: theta.p[is.na(theta.p)] <- 1.00 
246: 
247: sum.add.rsq <- summary(sum.add)$r.squared 
248: sum.mul.rsq <- summary(sum.mul)$r.squared 
249: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
250: sum.p[is.na(sum.p)] <- 1.00 
251: 
252: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
253: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
254: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
255: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
256: 
257: #------------ Summarize results of each loop --------------------# 
258: 
259: iter.results<-as.vector(c(iter, 
260: seednum, 
261: numItem, 
262: a.low, 
263: a.high, 
264: b.mean, 
265: b.sd, 
266: w1, 
267: w2, 
268: theta.add.rsq, 
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269: theta.mul.rsq, 
270: theta.p, 
271: sum.add.rsq, 
272: sum.mul.rsq, 
273: sum.p, 
274: theta.ab.add.rsq, 
275: theta.ab.mul.rsq, 
276: theta.ab.p, 
277: rmsq, 
278: alpha.score1, 
279: alpha.score2, 
280: alpha.score3, 
281: swtheta.p, 
282: swsum.p, 
283: swthetahat.p, 
284: score1.skew, 
285: score2.skew, 
286: score3.skew, 
287: score1.kurtosis, 
288: score2.kurtosis, 
289: score3.kurtosis, 
290: theta.ab1skew, 
291: theta.ab2skew, 
292: theta.ab3skew, 
293: theta.ab1kurtosis, 
294: theta.ab2kurtosis, 
295: theta.ab3kurtosis)) 
296: 
297: names(iter.results)<-NULL 
298: sink(results.file,append=TRUE) 
299: print(iter.results,digits=4,quote=FALSE) 
300: sink() 
301: good.iter<-good.iter+1 
302: } 
303: 
304: } 
305: #-------------------- End loop structure ------------------------# 
306: 
307: #================================================================# 
308: # Begin looping individual conditions # 
309: #================================================================# 
310: 
311: options(width=2000) 
312: 
313: { 
314: 
315: results.file25<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C25.txt" 
316: study1(seednum = 25, 
317: numSubj = 750, 
318: Numiter = n.it, 
319: b.mean = -2.0, 
320: b.sd = 0.35, 
321: a.low = .31, 
322: a.high = .58, 
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323: w1 = .3, 
324: w2 = .3, 
325: numItem = 15, 
326: results.file = results.file25) 
327: 
328: results.file27<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C27.txt" 
329: study1(seednum = 27, 
330: numSubj = 750, 
331: Numiter = n.it, 
332: b.mean = -2.0, 
333: b.sd = 0.35, 
334: a.low = .31, 
335: a.high = .58, 
336: w1 = .5, 
337: w2 = .5, 
338: numItem = 15, 
339: results.file = results.file27) 
340: 
341: results.file29<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C29.txt" 
342: study1(seednum = 29, 
343: numSubj = 750, 
344: Numiter = n.it, 
345: b.mean = -2.0, 
346: b.sd = 0.35, 
347: a.low = .58, 
348: a.high = 1.13, 
349: w1 = .3, 
350: w2 = .3, 
351: numItem = 15, 
352: results.file = results.file29) 
353: 
354: results.file31 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C31.txt" 
355: study1(seednum = 31, 
356: numSubj = 750, 
357: Numiter = n.it, 
358: b.mean = -2.0, 
359: b.sd = 0.35, 
360: a.low = .58, 
361: a.high = 1.13, 
362: w1 = .5, 
363: w2 = .5, 
364: numItem = 15, 
365: results.file = results.file31) 
366: 
367: results.file33 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C33.txt" 
368: study1(seednum = 33, 
369: numSubj = 750, 
370: Numiter = n.it, 
371: b.mean = -0.5, 
372: b.sd = 0.35, 
373: a.low = .31, 
374: a.high = .58, 
375: w1 = .3, 
376: w2 = .3, 
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377: numItem = 15, 
378: results.file = results.file33) 
379: 
380: results.file35 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C35.txt" 
381: study1(seednum = 35, 
382: numSubj = 750, 
383: Numiter = n.it, 
384: b.mean = -0.5, 
385: b.sd = 0.35, 
386: a.low = .31, 
387: a.high = .58, 
388: w1 = .5, 
389: w2 = .5, 
390: numItem = 15, 
391: results.file = results.file35) 
392: 
393: results.file37<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C37.txt" 
394: study1(seednum = 37, 
395: numSubj = 750, 
396: Numiter = n.it, 
397: b.mean = -0.5, 
398: b.sd = 0.35, 
399: a.low = .58, 
400: a.high = 1.13, 
401: w1 = .3, 
402: w2 = .3, 
403: numItem = 15, 
404: results.file = results.file37) 
405: 
406: results.file39 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C39.txt" 
407: study1(seednum = 39, 
408: numSubj = 750, 
409: Numiter = n.it, 
410: b.mean = -0.5, 
411: b.sd = 0.35, 
412: a.low = .58, 
413: a.high = 1.13, 
414: w1 = .5, 
415: w2 = .5, 
416: numItem = 15, 
417: results.file = results.file39) 
418: 
419: results.file41 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C41.txt" 
420: study1(seednum = 41, 
421: numSubj = 750, 
422: Numiter = n.it, 
423: b.mean = 1.0, 
424: b.sd = 0.35, 
425: a.low = .31, 
426: a.high = .58, 
427: w1 = .3, 
428: w2 = .3, 
429: numItem = 15, 
430: results.file = results.file41) 
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431: 
432: results.file43 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C43.txt" 
433: study1(seednum = 43, 
434: numSubj = 750, 
435: Numiter = n.it, 
436: b.mean = 1.0, 
437: b.sd = 0.35, 
438: a.low = .31, 
439: a.high = .58, 
440: w1 = .5, 
441: w2 = .5, 
442: numItem = 15, 
443: results.file = results.file43) 
444: 
445: results.file45 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C45.txt" 
446: study1(seednum = 45, 
447: numSubj = 750, 
448: Numiter = n.it, 
449: b.mean = 1.0, 
450: b.sd = 0.35, 
451: a.low = .58, 
452: a.high = 1.13, 
453: w1 = .3, 
454: w2 = .3, 
455: numItem = 15, 
456: results.file = results.file45) 
457: 
458: results.file47 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C47.txt" 
459: study1(seednum = 47, 
460: numSubj = 750, 
461: Numiter = n.it, 
462: b.mean = 1.0, 
463: b.sd = 0.35, 
464: a.low = .58, 
465: a.high = 1.13, 
466: w1 = .5, 
467: w2 = .5, 
468: numItem = 15, 
469: results.file = results.file47) 
470: 
471: } 
472: 
473: #================================================================# 
474: #Simulation loops for spurious interactions (n=750,k=30, restr.)# 
475: #================================================================# 
476: 
477: { 
478: 
479: setwd("C:/Program Files/PARSCALE4") 
480: 
481: #Generate raw response matrix for IV1, IV2, and DV 
482: score.item.prg<-function(numItem,numSubj,Ptheta,a,b,score,theta) 
483: { 
484: b1<-b 
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485: b2<-b1+.35 
486: b3<-b2+.35 
487: b4<-b3+.35 
488: 
489: for(i in 1:numItem){ 
490: 
491: Ptheta1[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b1[i]))) #CBRF 1 
492: Ptheta2[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b2[i]))) #CBRF 2 
493: Ptheta3[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b3[i]))) #CBRF 3 
494: Ptheta4[, i]<-1/(1 + exp(-1.702 * a[i] * (theta - b4[i]))) #CBRF 4 
495: 
496: Ptheta1a[, i]<-1.0 - Ptheta1[, i] #CRF for option 1 
497: Ptheta2b[, i]<-Ptheta1[, i] - Ptheta2[, i] #CRF for option 2 
498: Ptheta3c[, i]<-Ptheta2[, i] - Ptheta3[, i] #CRF for option 3 
499: Ptheta4d[, i]<-Ptheta3[, i] - Ptheta4[, i] #CRF for option 4 
500: Ptheta5e[, i]<-Ptheta4[, i] #CRF for option 5 
501: 
502: #Generating a response matrix by comparing a random value from a 
503: #uniform distribution U(0,1) to the relative score categories 
504: r<-runif(numSubj) 
505: response1[,i]<-ifelse(r < Ptheta1a[,i],1,0) 
506: response2[,i]<-ifelse(r < Ptheta1a[,i]+Ptheta2b[,i] & r >= 
507: Ptheta1a[,i],2,0) 
508: response3[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i]&r>= 
509: Ptheta1a[,i] + Ptheta2b[,i],3,0) 
510: response4[,i]<-ifelse(r<Ptheta1a[,i]+Ptheta2b[,i] + Ptheta3c[,i] + 
511: Ptheta4d[,i]&r>=Ptheta1a[,i] + Ptheta2b[,i] + Ptheta3c[,i],4,0) 
512: response5[,i]<-ifelse(r>=Ptheta1a[,i]+Ptheta2b[,i]+Ptheta3c[,i] + 
513: Ptheta4d[,i],5,0) 
514: 
515: #Compiling the response matrix to object 'score' 
516: score<-response1+response2+response3+response4+response5 
517: } 
518: return(score) 
519: } 
520: 
521: #Function to calculate skewness 
522: skew <- function (x) 
523: { 
524: sk <- function(xx) { 
525: n <- length(xx) 
526: mn <- mean(xx) 
527: dif.x <- xx - mn 
528: m2 <- sum(dif.x^2)/n 
529: m3 <- sum(dif.x^3)/n 
530: m3/(m2^(3/2)) 
531: } 
532: if (ncol(x) == 1 || is.null(dim(x))) 
533: return(sk(x)) 
534: else return(apply(x, 2, sk)) 
535: } 
536: 
537: #Function to calculate kurtosis 
538: kurtosis <-function (x) 
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539: { 
540: kt <- function(xx) { 
541: n <- length(xx) 
542: mn <- mean(xx) 
543: dif.x <- xx - mn 
544: m2 <- sum(dif.x^2)/n 
545: m4 <- sum(dif.x^4)/n 
546: (m4/m2^2) - 3 
547: } 
548: if (ncol(x) == 1 || is.null(dim(x))) 
549: return(kt(x)) 
550: else return(apply(x, 2, kt)) 
551: } 
552: 
553: #--------------------- fixed conditions -------------------------# 
554: 
555: result <- matrix(0, nrow = Numiter, ncol = 9) 
556: 
557: #--------------------- starting for-loop ------------------------# 
558: 
559: iter<-0 
560: good.iter<-1 
561: while(good.iter <= Numiter) { 
562: 
563: iter<-iter+1 
564: set.seed(seednum+iter) 
565: 
566: #------------------- initializing values ------------------------# 
567: 
568: #Create a person by item matrix for the scores of CBRF 1 through 4 
569: Ptheta1 <- matrix(0, nrow = numSubj, ncol = numItem) 
570: Ptheta2 <- matrix(0, nrow = numSubj, ncol = numItem) 
571: Ptheta3 <- matrix(0, nrow = numSubj, ncol = numItem) 
572: Ptheta4 <- matrix(0, nrow = numSubj, ncol = numItem) 
573: 
574: #Create a person x item matrix for the scores of CRF 1 through 5 
575: Ptheta1a <- matrix(0, nrow = numSubj, ncol = numItem) 
576: Ptheta2b <- matrix(0, nrow = numSubj, ncol = numItem) 
577: Ptheta3c <- matrix(0, nrow = numSubj, ncol = numItem) 
578: Ptheta4d <- matrix(0, nrow = numSubj, ncol = numItem) 
579: Ptheta5e <- matrix(0, nrow = numSubj, ncol = numItem) 
580: 
581: #Create a person x item matrix for raw scores of cat 1 through 5 
582: response1 <- matrix(0, nrow = numSubj, ncol = numItem) 
583: response2 <- matrix(0, nrow = numSubj, ncol = numItem) 
584: response3 <- matrix(0, nrow = numSubj, ncol = numItem) 
585: response4 <- matrix(0, nrow = numSubj, ncol = numItem) 
586: response5 <- matrix(0, nrow = numSubj, ncol = numItem) 
587: 
588: #Create the final person by item matrix of raw responses 
589: score <- matrix(0, nrow = numSubj, ncol = numItem) 
590: 
591: #------------- Generating IV1, IV2, and DV ----------------------# 
592: 
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593: theta1<-scale(rnorm(numSubj)) 
594: theta2<-scale(rnorm(numSubj)) 
595: theta3<-scale(w1*theta1+w2*theta2+sqrt(1-(w1^2+w2^2))*scale(rnorm(numSubj))) 
596: 
597: #------------ Specifying item parameters ------------------------# 
598: 
599: a1 <- runif(numItem, a.low, a.high) 
600: a2 <- runif(numItem, a.low, a.high) 
601: a3 <- runif(numItem, a.low, a.high) 
602: b1a <- rnorm(numItem, b.mean, b.sd) 
603: b2a <- rnorm(numItem, b.mean, b.sd) 
604: b3a <- rnorm(numItem, b.mean, b.sd) 
605: 
606: #------------ Generating reponse patterns -----------------------# 
607: 
608: score1<-score.item.prg(numItem,numSubj,Ptheta1,a1,b1a, score, theta1) 
609: score2<-score.item.prg(numItem,numSubj,Ptheta1,a2,b2a, score, theta2) 
610: score3<-score.item.prg(numItem,numSubj,Ptheta1,a3,b3a, score, theta3) 
611: 
612: #--------- Compute Cronbach's Alpha for reliability -------------# 
613: 
614: alpha1<-cronbach.alpha(score1) 
615: alpha2<-cronbach.alpha(score2) 
616: alpha3<-cronbach.alpha(score3) 
617: alpha.score1<-alpha1$alpha 
618: alpha.score2<-alpha2$alpha 
619: alpha.score3<-alpha3$alpha 
620: 
621: #---------- Estimating parameters using PARSCALE4.1 -------------# 
622: 
623: #Command to invoke PARSCALE to generate theta estimates 
624: #Note that all files must be located in the PARSCALE directory 
625: 
626: #-------------------------n=750, k=30----------------------------# 
627: #---------------------------score 1------------------------------# 
628: score1psl<-data.frame(1001:1750,score1) 
629: write.table(score1psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
630: sep="",row.names=FALSE,col.names=FALSE) 
631: system("score30-750.bat",show.output.on.console = FALSE) 
632: theta.ab1<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
633: head=F,fill=T)[(1:750)*2,7] 
634: theta.ab1<-as.matrix(theta.ab1) 
635: #---------------------------score 2------------------------------# 
636: score2psl<-data.frame(1001:1750,score2) 
637: write.table(score2psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
638: sep="",row.names=FALSE,col.names=FALSE) 
639: system("score30-750.bat",show.output.on.console = FALSE) 
640: theta.ab2<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
641: head=F,fill=T)[(1:750)*2,7] 
642: theta.ab2<-as.matrix(theta.ab2) 
643: #---------------------------score 3------------------------------# 
644: score3psl<-data.frame(1001:1750,score3) 
645: write.table(score3psl,"C:\\Program Files\\PARSCALE4\\testscore_30-750.dat", 
646: sep="",row.names=FALSE,col.names=FALSE) 
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647: system("score30-750.bat",show.output.on.console = FALSE) 
648: theta.ab3<-read.table("C:\\Program Files\\PARSCALE4\\testscore30-750.SCO", 
649: head=F,fill=T)[(1:750)*2,7] 
650: theta.ab3<-as.matrix(theta.ab3) 
651: #----------------------------------------------------------------# 
652: 
653: #- Computing the rmsq, total scores, skew and kurtosis ----------# 
654: 
655: rmsq<- sqrt( mean( (theta1 - theta.ab1)^2 ) ) 
656: 
657: score1 <- apply(score1, 1, mean) 
658: score2 <- apply(score2, 1, mean) 
659: score3 <- apply(score3, 1, mean) 
660: 
661: score1.skew<-skew(score1) 
662: score1.kurtosis<-kurtosis(score1) 
663: score2.skew<-skew(score2) 
664: score2.kurtosis<-kurtosis(score2) 
665: score3.skew<-skew(score3) 
666: score3.kurtosis<-kurtosis(score3) 
667: 
668: theta.ab1skew<-skew(theta.ab1) 
669: theta.ab1kurtosis<-kurtosis(theta.ab1) 
670: theta.ab2skew<-skew(theta.ab2) 
671: theta.ab2kurtosis<-kurtosis(theta.ab2) 
672: theta.ab3skew<-skew(theta.ab3) 
673: theta.ab3kurtosis<-kurtosis(theta.ab3) 
674: 
675: #-- Applying additive and multiplicative regression models ------# 
676: 
677: #Actual theta scores 
678: theta.add<-lm(theta3~theta1+theta2) 
679: theta.mul<-lm(theta3~theta1+theta2+I(theta1*theta2)) 
680: 
681: #Raw scores 
682: sum.add<-lm(score3~score1+score2) 
683: sum.mul<-lm(score3~score1+score2+I(score1*score2)) 
684: 
685: #Estimated theta scores 
686: theta.ab.add<-lm(theta.ab3~theta.ab1+theta.ab2) 
687: theta.ab.mul<-lm(theta.ab3~theta.ab1+theta.ab2+I(theta.ab1*theta.ab2)) 
688: 
689: #-------- Shapiro-Wilk test for checking normality --------------# 
690: 
691: theta.orderres <- summary(theta.add)$res 
692: sum.orderres <- summary(sum.add)$res 
693: thetahat.orderres <- summary(theta.ab.add)$res 
694: 
695: swtheta.p <- round(shapiro.test(theta.orderres)$p,5) 
696: swsum.p <- round(shapiro.test(sum.orderres)$p,5) 
697: swthetahat.p <- round(shapiro.test(thetahat.orderres)$p,5) 
698: 
699: #report r-square, r-square change sig., & rm squared deviations # 
700: 
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701: cat("Working on sample",seednum,"iteration",iter, good.iter, "\n") 
702: theta.add.rsq <- summary(theta.add)$r.squared 
703: theta.mul.rsq <- summary(theta.mul)$r.squared 
704: theta.p <- anova(theta.add, theta.mul)$"Pr(>F)"[2] 
705: theta.p[is.na(theta.p)] <- 1.00 
706: 
707: sum.add.rsq <- summary(sum.add)$r.squared 
708: sum.mul.rsq <- summary(sum.mul)$r.squared 
709: sum.p <- round(anova(sum.add, sum.mul)$"Pr(>F)"[2], 4) 
710: sum.p[is.na(sum.p)] <- 1.00 
711: 
712: theta.ab.add.rsq <- summary(theta.ab.add)$r.squared 
713: theta.ab.mul.rsq <- summary(theta.ab.mul)$r.squared 
714: theta.ab.p<-round(anova(theta.ab.add,theta.ab.mul)$"Pr(>F)"[2], 4) 
715: theta.ab.p[is.na(theta.ab.p)] <- 1.00 
716: 
717: #------------ Summarize results of each loop --------------------# 
718: 
719: iter.results<-as.vector(c(iter, 
720: seednum, 
721: numItem, 
722: a.low, 
723: a.high, 
724: b.mean, 
725: b.sd, 
726: w1, 
727: w2, 
728: theta.add.rsq, 
729: theta.mul.rsq, 
730: theta.p, 
731: sum.add.rsq, 
732: sum.mul.rsq, 
733: sum.p, 
734: theta.ab.add.rsq, 
735: theta.ab.mul.rsq, 
736: theta.ab.p, 
737: rmsq, 
738: alpha.score1, 
739: alpha.score2, 
740: alpha.score3, 
741: swtheta.p, 
742: swsum.p, 
743: swthetahat.p, 
744: score1.skew, 
745: score2.skew, 
746: score3.skew, 
747: score1.kurtosis, 
748: score2.kurtosis, 
749: score3.kurtosis, 
750: theta.ab1skew, 
751: theta.ab2skew, 
752: theta.ab3skew, 
753: theta.ab1kurtosis, 
754: theta.ab2kurtosis, 
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755: theta.ab3kurtosis)) 
756: 
757: names(iter.results)<-NULL 
758: sink(results.file,append=TRUE) 
759: print(iter.results,digits=4,quote=FALSE) 
760: sink() 
761: good.iter<-good.iter+1 
762: } 
763: 
764: } 
765: #-------------------- End loop structure ------------------------# 
766: 
767: #================================================================# 
768: # Begin looping individual conditions # 
769: #================================================================# 
770: 
771: options(width=2000) 
772: 
773: { 
774: 
775: results.file26<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C26.txt" 
776: study1(seednum = 26, 
777: numSubj = 750, 
778: Numiter = n.it, 
779: b.mean = -2.0, 
780: b.sd = 0.35, 
781: a.low = .31, 
782: a.high = .58, 
783: w1 = .3, 
784: w2 = .3, 
785: numItem = 30, 
786: results.file = results.file26) 
787: 
788: results.file28<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C28.txt" 
789: study1(seednum = 28, 
790: numSubj = 750, 
791: Numiter = n.it, 
792: b.mean = -2.0, 
793: b.sd = 0.35, 
794: a.low = .31, 
795: a.high = .58, 
796: w1 = .5, 
797: w2 = .5, 
798: numItem = 30, 
799: results.file = results.file28) 
800: 
801: results.file30 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C30.txt" 
802: study1(seednum = 30, 
803: numSubj = 750, 
804: Numiter = n.it, 
805: b.mean = -2.0, 
806: b.sd = 0.35, 
807: a.low = .58, 
808: a.high = 1.13, 
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809: w1 = .3, 
810: w2 = .3, 
811: numItem = 30, 
812: results.file = results.file30) 
813: 
814: results.file32 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C32.txt" 
815: study1(seednum = 32, 
816: numSubj = 750, 
817: Numiter = n.it, 
818: b.mean = -2.0, 
819: b.sd = 0.35, 
820: a.low = .58, 
821: a.high = 1.13, 
822: w1 = .5, 
823: w2 = .5, 
824: numItem = 30, 
825: results.file = results.file32) 
826: 
827: results.file34<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C34.txt" 
828: study1(seednum = 34, 
829: numSubj = 750, 
830: Numiter = n.it, 
831: b.mean = -0.5, 
832: b.sd = 0.35, 
833: a.low = .31, 
834: a.high = .58, 
835: w1 = .3, 
836: w2 = .3, 
837: numItem = 30, 
838: results.file = results.file34) 
839: 
840: results.file36 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C36.txt" 
841: study1(seednum = 36, 
842: numSubj = 750, 
843: Numiter = n.it, 
844: b.mean = -0.5, 
845: b.sd = 0.35, 
846: a.low = .31, 
847: a.high = .58, 
848: w1 = .5, 
849: w2 = .5, 
850: numItem = 30, 
851: results.file = results.file36) 
852: 
853: results.file38<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C38.txt" 
854: study1(seednum = 38, 
855: numSubj = 750, 
856: Numiter = n.it, 
857: b.mean = -0.5, 
858: b.sd = 0.35, 
859: a.low = .58, 
860: a.high = 1.13, 
861: w1 = .3, 
862: w2 = .3, 
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863: numItem = 30, 
864: results.file = results.file38) 
865: 
866: results.file40 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C40.txt" 
867: study1(seednum = 40, 
868: numSubj = 750, 
869: Numiter = n.it, 
870: b.mean = -0.5, 
871: b.sd = 0.35, 
872: a.low = .58, 
873: a.high = 1.13, 
874: w1 = .5, 
875: w2 = .5, 
876: numItem = 30, 
877: results.file = results.file40) 
878: 
879: results.file42 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C42.txt" 
880: study1(seednum = 42, 
881: numSubj = 750, 
882: Numiter = n.it, 
883: b.mean = 1.0, 
884: b.sd = 0.35, 
885: a.low = .31, 
886: a.high = .58, 
887: w1 = .3, 
888: w2 = .3, 
889: numItem = 30, 
890: results.file = results.file42) 
891: 
892: results.file44<-"C:/Documents and Settings/Admin/Desktop/DissModel2/C44.txt" 
893: study1(seednum = 44, 
894: numSubj = 750, 
895: Numiter = n.it, 
896: b.mean = 1.0, 
897: b.sd = 0.35, 
898: a.low = .31, 
899: a.high = .58, 
900: w1 = .5, 
901: w2 = .5, 
902: numItem = 30, 
903: results.file = results.file44) 
904: 
905: results.file46 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C46.txt" 
906: study1(seednum = 46, 
907: numSubj = 750, 
908: Numiter = n.it, 
909: b.mean = 1.0, 
910: b.sd = 0.35, 
911: a.low = .58, 
912: a.high = 1.13, 
913: w1 = .3, 
914: w2 = .3, 
915: numItem = 30, 
916: results.file = results.file46) 
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917: 
918: results.file48 <-"C:/Documents and Settings/Admin/Desktop/DissModel2/C48.txt" 
919: study1(seednum = 48, 
920: numSubj = 750, 
921: Numiter = n.it, 
922: b.mean = 1.0, 
923: b.sd = 0.35, 
924: a.low = .58, 
925: a.high = 1.13, 
926: w1 = .5, 
927: w2 = .5, 
928: numItem = 30, 
929: results.file = results.file48) 
930: 
931: } 
932: 
933: #================================================================# 
934: # Summarize Results for Table 4 (n=750, restricted) # 
935: #================================================================# 
936: 
937: n.it<-1000 
938: 
939: results.list<-paste("C:/Documents and Settings/Admin/Desktop/DissModel2/C", 
940: 25:48,sep="") 
941: results.list<-paste(results.list,".txt",sep="") 
942: 
943: type1.theta<-rep(0,24) 
944: type1.sum <- rep(0,24) 
945: type1.thetahat <- rep(0,24) 
946: rdiff.theta <- rep(0,24) 
947: rdiff.sum <- rep(0,24) 
948: rdiff.thetahat <- rep(0,24) 
949: mn.rmsq<-rep(0,24) 
950: pvalue.score1.mn<-rep(0,24) 
951: pvalue.score2.mn<-rep(0,24) 
952: pvalue.score3.mn<-rep(0,24) 
953: pvalue.score1.sd<-rep(0,24) 
954: pvalue.score2.sd<-rep(0,24) 
955: pvalue.score3.sd<-rep(0,24) 
956: alpha.score1<-rep(0,24) 
957: alpha.score2<-rep(0,24) 
958: alpha.score3<-rep(0,24) 
959: sw.theta.p<-rep(0,24) 
960: sw.sum.p<-rep(0,24) 
961: sw.thetahat.p<-rep(0,24) 
962: 
963: skew.score1<-rep(0,24) 
964: skew.score2<-rep(0,24) 
965: skew.score3<-rep(0,24) 
966: 
967: kurtosis.score1<-rep(0,24) 
968: kurtosis.score2<-rep(0,24) 
969: kurtosis.score3<-rep(0,24) 
970: 
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971: skew.theta.ab1<-rep(0,24) 
972: skew.theta.ab2<-rep(0,24) 
973: skew.theta.ab3<-rep(0,24) 
974: 
975: kurtosis.theta.ab1<-rep(0,24) 
976: kurtosis.theta.ab2<-rep(0,24) 
977: kurtosis.theta.ab3<-rep(0,24) 
978: 
979: for(i in 1:24) { 
980: infile <- read.table(results.list[[i]], header=FALSE) 
981: infile<- infile[,2:ncol(infile)] 
982: names(infile)<-list( "iter", 
983: "seednum", 
984: "numItem", 
985: "a.low", 
986: "a.high", 
987: "b.mean", 
988: "b.sd", 
989: "w1", 
990: "w2", 
991: "theta.add.rsq", 
992: "theta.mul.rsq", 
993: "theta.p", 
994: "sum.add.rsq", 
995: "sum.mul.rsq", 
996: "sum.p", 
997: "theta.ab.add.rsq", 
998: "theta.ab.mul.rsq", 
999: "theta.ab.p", 
1000: "rmsq", 
1001: "alpha.score1", 
1002: "alpha.score2", 
1003: "alpha.score3", 
1004: "swtheta.p", 
1005: "swsum.p", 
1006: "swthetahat.p", 
1007: "skew.score1", 
1008: "skew.score2", 
1009: "skew.score3", 
1010: "kurtosis.score1", 
1011: "kurtosis.score2", 
1012: "kurtosis.score3", 
1013: "skew.theta.ab1", 
1014: "skew.theta.ab2", 
1015: "skew.theta.ab3", 
1016: "kurtosis.theta.ab1", 
1017: "kurtosis.theta.ab2", 
1018: "kurtosis.theta.ab3") 
1019: 
1020: write.table(infile, 
1021: "C:/Documents and Settings/Admin/Desktop/DissModel2/restr 750 full.txt") 
1022: 
1023: type1.theta[i]<-sum(infile["theta.p"] <= .05)/n.it 
1024: type1.sum[i]<-sum(infile["sum.p"] <=.05)/n.it 
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1025: type1.thetahat[i]<-sum(infile["theta.ab.p"] <=.05)/n.it 
1026: 
1027: rdiff.theta[i]<-round(sum(infile["theta.mul.rsq"]-infile["theta.add.rsq"])/ 
1028: n.it,2) 
1029: rdiff.sum[i]<-round(sum(infile["sum.mul.rsq"]-infile["sum.add.rsq"])/n.it,2) 
1030: rdiff.thetahat[i]<-round(sum(infile["theta.ab.mul.rsq"] - 
1031: infile["theta.ab.add.rsq"])/n.it,2) 
1032: mn.rmsq[i]<-round(mean(infile["rmsq"]),2) 
1033: alpha.score1[i]<-round(mean(infile["alpha.score1"]),2) 
1034: alpha.score2[i]<-round(mean(infile["alpha.score2"]),2) 
1035: alpha.score3[i]<-round(mean(infile["alpha.score3"]),2) 
1036: 
1037: sw.theta.p[i]<-round(sum(infile["swtheta.p"] > .05)/n.it,5) 
1038: sw.sum.p[i]<-round(sum(infile["swsum.p"] > .05)/n.it,5) 
1039: sw.thetahat.p[i]<-round(sum(infile["swthetahat.p"] > .05)/n.it,5) 
1040: 
1041: skew.score1[i]<-round(mean(infile["skew.score1"]),5) 
1042: skew.score2[i]<-round(mean(infile["skew.score2"]),5) 
1043: skew.score3[i]<-round(mean(infile["skew.score3"]),5) 
1044: kurtosis.score1[i]<-round(mean(infile["kurtosis.score1"]),5) 
1045: kurtosis.score2[i]<-round(mean(infile["kurtosis.score2"]),5) 
1046: kurtosis.score3[i]<-round(mean(infile["kurtosis.score3"]),5) 
1047: skew.theta.ab1[i]<-round(mean(infile["skew.theta.ab1"]),5) 
1048: skew.theta.ab2[i]<-round(mean(infile["skew.theta.ab2"]),5) 
1049: skew.theta.ab3[i]<-round(mean(infile["skew.theta.ab3"],na.rm=TRUE),5) 
1050: kurtosis.theta.ab1[i]<-round(mean(infile["kurtosis.theta.ab1"]),5) 
1051: kurtosis.theta.ab2[i]<-round(mean(infile["kurtosis.theta.ab2"]),5) 
1052: kurtosis.theta.ab3[i]<-round(mean(infile["kurtosis.theta.ab3"],na.rm=TRUE),5) 
1053: 
1054: } 
1055: 
1056: n <- c(rep(750,24)) 
1057: b <- c(rep("N(-1.5,1.0)",8),rep("N(0,1)",8),rep("N(1.5,1.0)",8)) 
1058: a <- c(rep("U(0.31, 0.58)",4),rep("U(0.58, 1.13)",4)) 
1059: a <- rep(a,3) 
1060: B1B2 <- rep(c(.3,.3,.5,.5),6) 
1061: Items<-rep(c(15,30),12) 
1062: 
1063: mean.alpha<-round(apply(cbind(alpha.score1,alpha.score2,alpha.score3), 
1064: 1,mean),2) 
1065: 
1066: type1.theta<-round(type1.theta,2) 
1067: type1.sum<-round(type1.sum,2) 
1068: type1.thetahat<-round(type1.thetahat,2) 
1069: 
1070: sw.theta.p<-round(sw.theta.p,2) 
1071: sw.sum.p<-round(sw.sum.p,2) 
1072: sw.thetahat<-round(sw.thetahat.p,2) 
1073: 
1074: sktab1<-round(data.frame(skew.score3, kurtosis.score3, skew.theta.ab3, 
1075: kurtosis.theta.ab3),2) 
1076: 
1077: table4<-data.frame(n,b,a,B1B2,Items,type1.theta,type1.sum,type1.thetahat, 
1078: mean.alpha,sw.theta.p,sw.sum.p,sw.thetahat,sktab1) 
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1079: 
1080: print(table4) 
1081: write.table(table4, 
1082: "C:/Documents and Settings/Admin/Desktop/DissModel2/Table4 restr 750.txt") 
1083: #======End simulation for Table 4 (n=750, restricted)==========# 
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APPENDIX E: BATCH FILES FOR PARSCALE INTEGRATION 

Filename: testscore_15-250.bat 
1: C:\Program Files\PARSCALE4 
2: psl0 testscore_15-250 
3: psl1 testscore_15-250 
4: psl2 testscore_15-250 
5: psl3 testscore_15-250 
6: exit 
 
 
Filename: testscore_30-250.bat 
1: C:\Program Files\PARSCALE4 
2: psl0 testscore_30-250 
3: psl1 testscore_30-250 
4: psl2 testscore_30-250 
5: psl3 testscore_30-250 
6: exit 
 
 
Filename: testscore_15-750.bat 
1: C:\Program Files\PARSCALE4 
2: psl0 testscore_15-750 
3: psl1 testscore_15-750 
4: psl2 testscore_15-750 
5: psl3 testscore_15-750 
6: exit 
 
 
Filename: testscore_30-750.bat 
1: C:\Program Files\PARSCALE4 
2: psl0 testscore_30-750 
3: psl1 testscore_30-750 
4: psl2 testscore_30-750 
5: psl3 testscore_30-750 
6: exit 
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APPENDIX F: SYNTAX FILES FOR PARSCALE INTEGRATION 

Filename: testscore_15-250.PSL 
1: >COMMENT batch run (n=250, k=15) 
2: >FILES DFNAME='testscore_15-250.dat',SAVE; 
3: >SAVE  SCORE='testscore15-250.SCO'; 
4: >INPUT NTEST=1, NIDCH=4, NTOTAL=15, LENGTH=15; 
5: (4A1,15A1) 
6: >SCALE1 ITEM=(1(1)15), NBLOCK=1; 
7: >BLOCKS NITEMS=15, NCAT=5, ORIGINAL=(1,2,3,4,5); 
8: >CALIB GRADED,NORMAL,SPRIOR,TPRIOR,ITEMFIT=20; 
9: >SCORE EAP,DIST=2,ITERATION=(0.001,50); 
 
 
Filename: testscore_30-250.PSL 
1: >COMMENT batch run (k=30, n=250) 
2: >FILES DFNAME='testscore_30-250.dat',SAVE; 
3: >SAVE  SCORE='testscore30-250.SCO'; 
4: >INPUT NTEST=1, NIDCH=4, NTOTAL=30, LENGTH=30; 
5: (4A1,30A1) 
6: >SCALE1 ITEM=(1(1)30), NBLOCK=1; 
7: >BLOCKS NITEMS=30, NCAT=5, ORIGINAL=(1,2,3,4,5); 
8: >CALIB GRADED,NORMAL,SPRIOR,TPRIOR,ITEMFIT=20; 
9: >SCORE EAP,DIST=2,ITERATION=(0.001,50); 
 
 
Filename: testscore_15-750.PSL 
1: >COMMENT batch run (k=15, n=750) 
2: >FILES DFNAME='testscore_15-750.dat',SAVE; 
3: >SAVE  SCORE='testscore15-750.SCO'; 
4: >INPUT NTEST=1, NIDCH=4, NTOTAL=15, LENGTH=15; 
5: (4A1,15A1) 
6: >SCALE1 ITEM=(1(1)15), NBLOCK=1; 
7: >BLOCKS NITEMS=15, NCAT=5, ORIGINAL=(1,2,3,4,5); 
8: >CALIB GRADED,NORMAL,SPRIOR,TPRIOR,ITEMFIT=20; 
9: >SCORE EAP,DIST=2,ITERATION=(0.001,50); 
 
 
Filename: testscore_30-750.PSL 
1: >COMMENT batch run (k=30, n=250) 
2: >FILES DFNAME='testscore_30-750.dat',SAVE; 
3: >SAVE  SCORE='testscore30-750.SCO'; 
4: >INPUT NTEST=1, NIDCH=4, NTOTAL=30, LENGTH=30; 
5: (4A1,30A1) 
6: >SCALE1 ITEM=(1(1)30), NBLOCK=1; 
7: >BLOCKS NITEMS=30, NCAT=5, ORIGINAL=(1,2,3,4,5); 
8: >CALIB GRADED,NORMAL,SPRIOR,TPRIOR,ITEMFIT=20; 
9: >SCORE EAP,DIST=2,ITERATION=(0.001,50); 
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