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Abstract 

JI, WEI, Ph.D., November 2008, Computer Science 

SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION 

ALGORITHM FOR INTERACTIVE HAPTIC MODELING (161 pp.) 

Director of Dissertation: Robert L. Williams II 

  

This dissertation focuses on the fast rendering algorithms on real-time 3D 

modeling. To improve the computational efficiency, binary space partitioning (BSP) and 

octree are implemented on the haptic model. Their features are addressed in detail. Three 

methods of triangle assignment with the splitting plane are discussed. The solutions for 

optimizing collision detection (CD) are presented and compared. The complexities of 

these partition methods are discussed, and recommendation is made.  Then the 

deformable haptic model is presented. In this research, for the haptic modeling, the 

deformation calculation is only related to the graphics process because the haptic 

rendering is invisible and non-deformable rendering saves much computation cost. To 

achieve the fast deformation computation in the interactive simulation, the functional 

shape matched deformation (FSMD) algorithm is proposed for the tangential and normal 

components of the surface deformation. The benefit of the octree model is taken for 

searching the deformed area. To simplify the boundary of the deformed region, an ellipse 

deformation map is created based on the experimental data. The Gaussian radial 
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interpolation (GRI) is developed for building this map which is pre-computed. The 

FSMD algorithm is tested and considered feasible for the virtual haptic back (VHB) 

project. Moreover, some recommendations for the future work are suggested. 
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1.  Introduction 

1.1  Background of Deformation in Virtual Reality (VR) 

This research focuses on interactive deformable object modeling in computer 

graphics and its implementation in haptics-augmented virtual reality (VR). Deformable 

modeling has been widely used in engineering design, medical simulation, animation, 

movie special effects, and game design, among other applications. In the real world, 

deformation, break, and union are the most common types of change seen daily. 

Deformation algorithms in geometry modeling must be developed for improved realism 

in VR, although this requires much more computation than animation of rigid objects. 

Many deformation algorithms have been developed for different purposes, such as the 

key frame interpolation that is used in 3D animation and movie special effects. The finite 

element method (FEM) is used in engineering bridge design and dynamic analysis. The 

spring mass method is used in surgery simulations. Low resolution modeling is used in 

3D games. But so far, there is not a universal method that is suitable for most applications. 

Developers have to study the principles and properties of deformable objects in the real 

world. Due to the limitations of the computer and interactive devices, deformation 

simulation needs to be optimized to get a good balance between computational efficiency 

and graphical performance. For example, in engineering design, the user usually pursues 

the most accurate results (which requires more computation) more than simple structured 
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modeling (which would save computation time). So FEM is widely used in engineering 

and science. In the movie industry, animators prefer to see the desired postures of the 

actors. So they will spend several hours to render only one minute of video by using the 

key frame edition method. But for the real-time or interactive applications, the efficiency 

of computation is the main factor affecting the final result. The doctor really needs instant 

response from the virtual organ he/she interacts with on a simulator. The current main 

deformation algorithms will be discussed later. 

Haptics is the science of incorporating the sense of touch and control into 

computer applications through force (kinesthetic) or tactile (touch) feedback. Haptics is 

one of the most important human sensory modes. Special input/output devices called 

haptic interfaces are used in haptically-enabled applications. Users can manipulate and 

feel virtual 3D objects through haptic interfaces. Including haptic feedback significantly 

improves the realism of VR applications, in medical training and in flight simulation for 

example. Although the latest haptic hardware in the market has limitations (such as small 

work space, small forces, and problems with rigidity) haptics enhances the realism of VR 

simulations with graphics. Surgery and injection simulations are example applications of 

haptics. The models of these applications are usually based on soft organs which deform 

under the touch via the haptic interface. The haptic interface sends its position to 

computer and is able to generate the vector forces bound by the capabilities of the device. 
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The graphical model on the screen presents the deformation, showing how far the haptic 

effector pressed or dragged from the model surface. 

 

1.2  The Need for Deformation in the Virtual Haptic Back (VHB) Project 

The Virtual Haptic Back (VHB) project at Ohio University [Howell et al., 2007] 

is trying to achieve smooth surface deformation graphics with a high resolution haptic 

model. The purpose of the VHB project is to develop a realistic haptic/graphical model of 

the human back that can be used for palpation (diagnosis though touch) in medical 

training at the Ohio University College of Osteopathic Medicine (OUCOM) for doctors 

and students. In this haptic application two commercial PHANToM 3.0 haptic interfaces 

from SensAble Technologies Inc. are used to send the force feedback to the user, 

permitting palpation by force feedback with two fingers of a life-sized virtual human 

back (see Figure 1.1). The movement of the back skin, by exertion of palpatory force 

from the user should be reflected graphically as a surface deformation. Physical 

properties of the back, e.g. spring constants of the surface, were chosen based on 

feedback from physicians experienced in palpatory diagnosis and more recently in 

physical measurements [Williams et al., 2007]. To get the most realistic simulation, we 

are interested in force feedback performance (which depends on 1) the knowledge of the 

physical properties of the human soft tissue, which we can obtain, 2) the simulation 

methods and 3) the performance of the haptic hardware) on the user’s fingertip and the 
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3D graphical behavior of the skin model (because the surface is the only visible part). 

 

 

Figure 1.1  Virtual Haptic Back (VHB) Project 

 

For the haptic model, 3D human models can be built of bones, soft tissue (muscle 

layers, connective tissue, and adipose layers), and skin. On the haptic model, model 

surface skin deformation should happen via force interaction through the haptic interface. 

The action of this deformation also depends on the pose of the skeleton and on the 

model’s soft tissue stiffness properties. Several fundamental theories have been 

developed for 3D object deformation. Mesh deformation is a popular method for 

computer modeling [Watt 2000, Shi et al. 2006]. Many techniques have been developed 

to help designers to deform body shapes, such as shape interpolation [Wolberg, 1998], 

free-form deformation [Sederberg, 1986], and a skeleton-based method 

[Magnenat-Thalmann et al., 1988]. The last one uses a ‘skeleton’, in which two or more 

bones meet at each joint, to control shape deformation. This allows for intuitive control, 
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naturally describing deformation in many objects. However, traditional skeleton-based 

methods are often criticized for requiring a more tedious process of weight selection to 

obtain satisfactory results. And so far there is no criterion for weight selection suitable for 

most cases. 

The practical VHB interactive system has been developed using two PHANToM® 

3.0 haptic interfaces. The author mostly used a portable haptic device called the Omni 

(also from SensAble Technologies Inc.). The results from the Omni can be transferred to 

the PHANToM® 3.0, which is bigger and has higher force capacity than the Omni. This 

haptic system from SensAble works on a multi-thread platform where haptic rendering 

and graphic rendering are executed as individual processes. In each process, the mesh of 

the model’s surface is drawn once. The mesh is used for collision detection and force 

generation handled by the haptic APIs in haptic rendering. But this rendering is invisible 

on the screen. Immediately after that, the whole model is drawn again on the screen in the 

graphical rendering process. So, the model is rendered twice in each system loop but only 

the graphical process is visually displayed. 

 

1.3  Haptic and Graphic Renderings 

1.3.1  Haptic Rendering 

A point-based haptic rendering technique is used in which the PHANToM’s stylus 

endpoint (haptic interface point, HIP) is modeled as the probing object. During the course 
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of haptic simulation, a collision detection algorithm checks continuously if the HIP 

collides with any virtual objects. For an object modeled with a triangular mesh, the three 

vertices of the collided polygon are detected after collision and assigned as the stimulated 

nodes for the deformable simulation. To constrain the HIP on the object surface, the 

collided polygon is displaced according to the indentation made by the HIP. The 

associated reaction force is evaluated by the vector sum of spring forces at the three 

stimulated nodes. See Figure 1.2 for an overview of the servo loop of the haptic (force 

feedback) and graphic (surface deformation) renderings. 

 

Figure 1.2  Haptic and Graphic Renderings 
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Since the VHB is an interactive simulation, the haptic and graphic responses 

become slow with an increase in complexity of the model, such as the increase of number 

of the triangles (or polygons). This performance can be shown by how many frames per 

second (FPS) the computer can render. Although we can use a better computer to improve 

the performance of the system, fast algorithms are always a more practical and reasonable 

solution than updating computer hardware. In haptic rendering, the result is invisible. To 

shorten the rendering time, we considered that only a partial mesh around the HIP is 

drawn instead of the whole model because only the neighboring triangles of the touch 

point are involved in collision detection and force generation. The rendered area becomes 

a small region which contains much fewer triangles than the whole model mesh. Also this 

area can follow the moving of the touch point dynamically. To achieve this goal, the 

model is divided into several small parts by the space partition method. Only the nearest 

parts of the touch point are rendered for the haptic process. Furthermore the nearest node 

to the touch point needs to be identified in the deformation calculation by a distance 

comparison to the touch point position. So the local computation of finding the nearest 

node is much more efficient in the nearest divided space than using global comparison. 

The binary space partition (BSP) and octree is implemented on VHB. These algorithms 

are described later. 
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1.3.2  Graphic Rendering 

The whole model is drawn on the screen in this process for visualization. In the 

palpation simulation, the posture of the model does not change. So when the user presses 

the model at the touch point, only the local mesh deforms under the external force. On the 

VHB model, the deformation is not implemented in haptic rendering that is invisible in 

the simulation. The reason will be detailed later in the related work chapter. Figure 1.3 

shows the deformation under the finger force in the cross section of back skin. This 

research has focused on simulating such deformation. 

 

Figure 1.3  Back Skin Deformation in Cross Section 

 

Many deformation algorithms have been assumed for geometric modeling to date. 

The advantages and drawbacks of them will be discussed in the literature review. In the 

VHB, we do not use a finite element method (FEM), free form deformation (FFD), or 



 22

mass-spring method (MSM) because they are computationally expensive for real-time 

deformable modeling. The functional shaped matched deformation (FSMD) algorithm 

has been established for our haptic model. In this method, we do not need to define the 

complex boundary conditions like the deformation in FFM or MSM. We studied the 

characteristics of deformation on real human backs and use a simplified elliptical shape 

to define the deformation region. The deformation is simulated by combining with two 

components in the normal and tangential directions on the touching surface. A functional 

shape Gaussian curve is used in both of normal and tangential deformations simulation. 

In the graphics rendering, the same intent of saving computation time was 

considered for detecting the deformed vertices. We use a neighbor-expanding algorithm 

to avoid useless computation on the whole model. The deformation calculation is 

executed from the touch point toward the model edges until no position change occurs. 

This algorithm will be described in detail in Chapter 4. 

Living tissues are composed of materials with different physical properties.For 

small deformations, they can be considered as Hookean materials for which linear elastic 

approximation is applicable [Chen et al., 2006]. The MSM and FEM are two common 

physics-based modeling techniques. The discrete MSM requires less computation and has 

easier implementation than FEM. In FEM, rigorous mathematical analysis based on 

continuum mechanics is applied to model the mechanical behaviors, which offers better 

simulation realism than other existing deformation methods. However, the computational 
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complexity of FEM might cause problems to interactive (real-time) VR applications in 

which high refresh rates of 30 Hz and 1000 Hz are demanded for visual and haptic 

renderings, respectively [Choi et al., 2003]. It is therefore critical to maintain a balance 

between the accuracy and computational complexity in improving the level of realism. 

On the other hand, to popularize the usage of VR-based deformable simulation, it is 

advantageous to enable economical and simple implementation in a generic computing 

environment with standardized haptic interfaces. 

 

1.4  Literature Review 

Our deformable haptic model is related to geometry deformation methodologies 

including efficient searching and interpolation algorithms. The following subsections will 

briefly describe the fundamental algorithms of geometric deformation, space partition 

methods, and interpolation algorithms. 

 

1.4.1  Deformation Algorithms 

1.4.1.1  Shape Interpolation (SI) 

Shape Interpolation (SI) is also named shape blending and multi-target morphing. 

It probably is the most widely used method to shape deformation by 3D animator 

[Maestri, 1999]. In this procedure, the user needs to manipulate key poses or shapes (also 
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called key frames), and then an interpolation algorithm (such as scattered data 

interpolation) generates the interval shapes (or frames) automatically (see Figure 1.4). SI 

does not depend on the physical properties of the deformed object. To get smooth and 

detailed deformations, the adjunct key shapes cannot be much different. That means more 

key shapes are need to be edited manually to ensure the interpolation results are closer to 

the realism we desire. In interactive deformation, the motions of the user cannot be 

predicted. So it is a lot of work to make a large number of key shapes to cover the 

possible key frames. 

 

Figure 1.4  Shape Interpolation (SI) 

 

1.4.1.2  Free-Form Deformation (FFD) 

Free-Form Deformation (FFD) is a well known technique for carrying out 

deformation. It has been also widely used in commercial software such as 3D Studio Max 

and Maya. In the classic FFD, a shape is placed in an elastic control lattice space, such as 

a Bezier volume, or a more general lattice, then deforms the volume by moving the 
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control points. As a result, the shape within the lattice space is deformed. This method 

can be used to many different graphical models which contain nodes, polygons, splines, 

and implicit surfaces. Since the 3D FFD is similar to the 2D case, only the 2D case of 

FFD is presented here. 

2D FFD is a map from R2→R2 in mathematics. It defines the new location for 

each point in a predefined region, usually rectangle. Any line or curve in that region is 

then changed. Evaluating the moved point is simply way of solving the Bezier equation 

for the deformed set of control points. In Figure 1.5, the FFD defines nine control points 

in a rectangle. The original shape (the circle) is presented in the left, and the right picture 

shows the moved positions of the control points and the shape change of the circle. The 

grid in the rectangle is drawn for the visualization of the space change. Anything inside of 

the predefined, undeformed region will be distorted with the shape change of the region. 

 

 

Figure 1.5  Free-Form Deformation (FFD), [Sederberg, 2004] 
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If a part of a shape lies inside the FFD region, only this part will deformed 

corresponding to the deformation of the FFD region. The part outside the grid region will 

keep its original shape. 

 

1.4.1.3  Skeleton-Subspace Deformation (SSD) 

Skeleton-Subspace Deformation (SSD) is an important deformation algorithm and 

applied to many interactive applications. It is also standard in video games and virtual 

environments because it produces reasonably good results and is easy to understand and 

computationally efficient to implement. 

The SSD algorithm combines the geometry surfaces or internal vertexes with the 

movable skeleton by assigning a set of bones (and the associated transformation matrices) 

and a weight for each influence to each vertex. The position of a moved vertex is 

obtained by transforming this vertex rigidly related to each of its effect weights and then 

using the weights as coefficients to compute a linear combination of these transformed 

positions as the final position. So all control jobs of the deformation of the linear blend 

surface are the adjustment on the influences and weights of each vertex [Mohr et al., 

2003].  

The SSD has two main limitations [Lewis et al., 2000]. The major one is that the 

deformation is restricted to the defined subspace. If some bones are out of the subspace, 

they cannot affect the deformation although they should do. Figure 1.6 shows the 
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‘collapsing joint’ problem that is an extreme case of simulating the twist of a human 

forearm after a rotation of 180 degrees. The second difficulty with SSD is that, unlike SI, 

it does not allow the user to manipulate points directly. Users have to directly or 

indirectly edit the meshes instead of the weights. 

 

Figure 1.6  Collapsing Joint in SSD [Lewis et al., 2000] 

 

Skinning techniques have been introduced to solve these problems. Many of them 

can be considered as corrections to SSD [Allen, 2002]. One method is combining the 

rigid transformation or linear blend with radial basis example interpolation [Hsu, 1992]. 

The Eigen-Skin method [Kry et al., 2002] presented a different example-driven linear 

blend skin correction technique. 

  

1.4.1.4  Mass-Spring Model (MSM) 

The Mass-Spring Model (MSM) is a physics-based technique for modeling 

deformable objects [Gibson et al., 1997]. In this method, an object is built in a lattice 

structure. Each point is assigned a mass and connected with other points by springs (see 
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Figure 1.7). The spring is massless. k is the spring constant and m is the mass at that 

vertex. The spring forces are usually linear via Hooke’s Law, but nonlinear springs or 

springs-dampers can be used to simulate soft tissues. In a dynamic system, the movement 

of a single mass of this MSM is driven by the connected springs under Newton's Second 

Law.  

 

          

Figure 1.7  A Portion of a MSM 

 

This method has some drawbacks. This is a discrete structure model with 

simplified approximation of the true physical properties which occur in a continuous 

object. The springs directly affect the vertex movement. But the proper values for the 

spring constants are always not easy to be obtained from the desired materials. Moreover, 

certain constraints of the springs and points cannot be expressed naturally in the model. 

For instance, undeformable objects or thin membranes are difficult to be considered as 
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MSM. Therefore, additional springs might be added to for adjustment. That will result 

in more computational cost. 

 

1.4.1.5  Finite Element Method (FEM) 

The Finite Element Method (FEM) is a standard numerical method to solve 

partial differential equation problems in many fields. In FEM, the model is divided into 

small simple elements (see Figure 1.8). Each element the some equilibrium equations 

related to a solution function. The sum of the solutions (approximation) of each element 

is evaluated and modified to match the boundary conditions in a defined tolerance. The 

result of the point within the element can be obtained by interpolation. The precision of 

the result depends on the number of the divided elements and the tolerance.  

 

 

Figure 1.8  FEM Applied on a Deformed Metal Part 

(Picture is from www.e-sac.org) 
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FEM is widely used in CAD and engineering analysis. In computer graphics, 

FEM can be used to find an approximation for a continuous function that satisfies some 

equilibrium expressions such as the deformation equations [Gibson et al., 1997]. 

Normally, FEM is applied to small deformation materials such as metals, concrete, etc. 

The max deformation is usually limited to less than 1% of the object dimensions. But in 

soft materials such as human tissue, the deformation might be more than 100% of the 

object size. In that case, additional deformation assumption needs to be supposed [Bathe, 

1996]. 

In the real-time simulations, the use of FEM has been proved to be limited 

because of its expensive computational cost [Blemker et al., 2003]. 

 

1.4.1.6  Collision Detection (CD) 

Collection detection (CD) has become a fundamental problem in computer 

animation, physics-based modeling, geometric modeling and robotics [Lin et al., 1998]. 

In reality, an object often contacts or detaches from many other types of objects such as 

rigid objects, deformable objects, fluids, etc. The intersection problems at the boundaries 

where two objects meet affect their shape and movement. Efficient collision detection 

algorithms are necessary for deformable objects. Some techniques have taken initial steps 

toward solving such problems. However, faster and more feasible algorithms are still 

expected for different applications.  
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In the VHB simulation, the collision thread (haptic API from the manufacturer) 

of the haptic device handles collision detection during interactions. This thread is 

executed at 100 Hz, less than the force rendering rate of 1000 Hz [SensAble Technologies 

Inc., 2005]. We implemented few methods to optimize the computation of CD. 

 

1.4.2  Space Partition Methods 

Our haptic model is based on spatial data structures. The data traversal efficiency 

significantly affects the performance (FPS) of the renderings. The linear storage method, 

such as array or linear link, is not adaptive to the different models and might consume a 

lot of memory. Moreover, array is not efficient in spatial data searching. The binary space 

partitioning (BSP) tree and octree are two data structures with subdividing the scene to 

increase the searching efficiency. 

 

1.4.2.1  Binary Space Partitioning (BSP) 

BSP works recursively to split a space into two by the hyperplane until the 

partitioning satisfies the user-defined requirements. This method not only can be used in 

haptic and graphics renderings but also is a fast algorithm to access a small part of a big 

volume mesh in collision detection [Chrysanthou, 1992]. BSP can improve the 

complexity from O(n) to O(log n) for touched point detection. 
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Normally, there two types of BSP, called axis-aligned and polygon-aligned. The 

axis-aligned BSP requires less computation than polygon-aligned BSP. 

 

1.4.2.2  Octree Partition 

Gervautz and Purgathofer [1988] first proposed the octree for encoding color data. 

Then octree has been used widely in geometry modeling and ray tracing. Its structure is 

similar to the axis-aligned BSP. Octree subdivides the space in to 2×2×2 boxes 

equivalently along the coordinate x, y, and z axes and continues to partition the child node 

with the same manner as its parent recursively. So each parent node has 8 child subspaces 

with same volume. Yau and Tsou [2006] applied octree to avoid a large number of voxels 

to their virtual dental training system with a haptic device. We have built the octree in 

haptic modeling and for efficient contact-point detection. More details of this procedure 

will be described and discussed in the next chapter. 

 

1.4.3  Major Area Discussions of Deformation Modeling 

Many improved deformation algorithms have been presented for various different 

purposes related to the human body, organs, muscles, skin or hair. Some articles 

discussed local deformations and some focused on full body (global) deformation 

behaviors. With the haptic simulation involved in VR, the deformation during the haptic 



 33

interaction becomes more complex. The deformation can be driven by internal factors 

such as skeleton changes or by the external factors such as the force of touching. 

Allen and Curles [2002] introduced a sample-based method to calculate a 

skeleton body deformation. Their example data consists of a range scan of the human 

body in different poses. They built a mutually-consistent parameterization of all scans 

using a possible subdivision surface template and combined the range scans using the 

k-nearest neighbors interpolation in pose space. But their method does not encompass 

dynamical behaviors or deformation due to collisions. 

Magnenat-Thalmann et al. [1988] and Komatsu [1988] presented a human body 

deformation method driven by underlying skeletal movement. They defined the size and 

shape of deformation for each of these approaches. Magnenat-Thalmann’s work focused 

on developing the algorithms for the different joints of the human hand. Komatsu 

presented his work on the elbow and explained how the skin wrinkle on the critical side 

can be obtained by a proper manipulation of the surface control points. This algorithm did 

not cause the phenomenon “collapsing elbow” that happens with the SSD. 

Yan et al. [2006] described a mesh deformation method that combines the 

skeleton-based method and the simplex transformation method, with two main 

differences from traditional skeleton-based methods. First, they used the skeleton to drive 

the transformation of simplexes rather than vertices as in previous methods. Second, they 

avoid using any weights, yet the approach still gives high-quality results. Their approach 
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can be applied to 2D or 3D meshes. Their inputs are the initial mesh, the initial skeleton 

(a set of straight line segments connected together at joints), and the changed skeleton. 

The output is the deformed mesh. 

Lewis et al. [2000] developed a pose space deformation algorithm to generalize 

and improve both SI and skeleton-driven deformation. In this technique, several 

deformation types can be represented as mappings from a pose space, which is specified 

by an underlying skeleton or a simple parametrical space system, to new locations in the 

model local coordinate space. This algorithm improves the expressive power and allows 

user to manipulate directly the model to desired shapes. It can be applied to body 

deformation and facial animation for entertainment, 3D games, and other applications 

which need direct sculpting deformations or requires interactive synthesis of a deforming 

model. 

Tagawa [2006] proposed a method to solve the problem of degrees of freedom of 

interaction and to apply the record reproduction approach to deforming interaction. In 

their approach, the characteristic of deformation was described by a set of data which 

they called impulse response deformation model. They assumed that the resulting 

deformation has linearity regarding input forces. Hence the deformation is obtained by 

computing convolution of the sequence of impulse forces and the impulse response 

deformation model. As they described in their paper, that approach enables haptic 
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interaction with dynamic deformable object model that is too complex to be solved by a 

common FEM. 

Koruda et al. [2003] demonstrated a simulation of organ-to-organ interaction 

which is indispensable for practical and advanced medical VR simulators such as surgery 

and indirect palpation. They gave a method to represent interaction between elastic 

objects, i.e. organs, in a medical VR simulation. They showed a model defined 

displacements of colliding elements based on temporary surface forces caused by the 

temporary displacements so that the model produces accurate deformation and force 

feedback considering collisions of objects as well as preventing unrealistic overlap of 

objects. Their experimental results showed organ-organ interaction in real-time and 

produced sensate force feedback. 

Chen, Sun, and Jin [2006] developed an interactive haptic deformable modeling 

in physical Bezier volume lattice space. Their haptic deformable approach involves the 

physical realism of MSM and the flexible control of FFD. Through distributing physical 

properties including mass, spring and damping coefficients of the object to bounded 

Bezier volume lattice, the deformations of the object in response to the haptic input 

follow physical laws and acquires a high deformation working rate. It also was suggested 

to be coupled in game design to augment the force feedback of the avatar when dragging 

and clashing. 
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Chen, Barner, and Steiner [2006] showed a displacement-driven spring-net 

deformation method for interactive surgery simulation. They built a high resolution 

triangular mesh via a 3D spring network consisting of mesh nodes. They assumed that the 

velocity of the deformation is low enough and the mesh reaches its equilibrium at each 

instant in surgical procedures. So mass was not considered in their method. A deformed 

index table was created for each node of the model. Its topology is like concentric circles. 

The center is like the node and the circle is treated as the neighbor nodes link. When the 

node (the center) is moved by the haptic device, its neighbor nodes (the circles from in to 

out) are drawn under Hooke’s law. Its child nodes are always fixed. The movement of the 

node on the circle is only affected by its parent. In this way, the deformation boundary is 

not specified because they set a displacement threshold to identify the minimum moved 

nodes. This deformation algorithm is fast but the shape of the haptic contact area of the 

mesh is not adaptable. 

J. Noh et al. [2000] proposed a deformation approach with radial basis functions 

(RBFs) that is similar to our deformation algorithm. This method was applied to creating 

facial expressions in animation design. They specified the feature point (containing 

control and anchor points) of their geometry deformation element. The distinction of each 

feature point was computed with its BSF system. Hardy multi-quadrics radial basic 

function was used in their system. That is a fast method, but if the control point is moved 

too far from its original position, large discontinuity occurs around the anchor and no 
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influence of the control point will propagate through the anchor points. So they assumed 

the movement of the control point has to keep within the specified region.  

de Boer et al. [2007] developed an interpolation method based on radial basis 

functions. That method was applied to their unstructured grid domain such as fluid 

translation or rotation. Radial basis functions (RBFs) were used to interpolate the 

displacements of the boundary vertices of the mesh to the inner domain. That method 

requires solving a small equation system, only involving the nodes on the boundary of the 

flow domain. Several RBFs were tested in a variety of cases. However, the performance 

depends on the RBFs used. They found a best accuracy RBF with compact support for 

their model closely followed by the thin plate spline (TPS). 

 

1.5  Research Objectives 

To improve the realism and computation efficiency in haptic modeling with 

deformation, we develop some unique deformation methods in graphics and implement 

the octree and BSP trees in haptic rendering and touch point detection. Since the haptic 

VR application is interactive and real-time, the deformation algorithms need to be 

optimized to get efficient computation when it works on a complex (high resolution 

surface or complex structure) models. The objectives of this research are: 
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1. Measure and study the stiffness characteristics of human subject back to 

determine experimental models for the deformation. 

2. Build BSP and octree haptic models. Compare the computational efficiency of 

normal, BSP, and octree methods. Also implement octree in detecting the touch 

point. BSP and octree will be used in graphic rendering.  

3. Develop the functional shape matched deformation (FSMD) method. This 

algorithm is used in normal and tangential deformations. Build an array-map for 

the supposed curve. Solve the curve mapping from 2D to 3D surface. 

4. Measure the Study the deformation shape of the human back. Develop the 

defined-shape tangential deformation algorithm. Create the interpolation 

algorithm for the deformation shape map. 

 

1.6  Dissertation Organization 

This dissertation is structured as follows: 

Chapter 1 introduces the deformable modeling in virtual reality applications, 

investigates the main existing deformation algorithms, and discusses the advantages and 

limitations of each. The development and application of haptic VR is introduced and then 

its characteristics are described. The FSMD algorithms are presented briefly on the VHB 

modeling and the spatial partitioning algorithms to improve computational efficiency. 
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Chapter 2 analyzes the main principles and the system rigidity problem of the 

VHB and explains the solution of keeping the undeformed model in haptic rendering. The 

friction anchor problem is solved and its calculation optimized. The haptic SDK is 

explained and the research platform is described. The back stiffness map has been 

established and applied to the VHB model. This map can be modified to simulate the 

different dysfunctions. Chapter 2 also presents other related works of this dissertation. 

Chapter 3 focuses on the BSP and octree implementations on the VHB model. It 

describes the method about dividing the model into subspaces and how to traverse BSP 

and octree. It gives the solution about the overlap problem during cutting the boundary of 

the subspaces. It discusses the computational efficiency of octree related to different sizes 

of the minimum defined subspace requirement. In programming, the data structure of 

VHB deformable model is described.   

Chapter 4 investigates linear and nonlinear elastic deformation in the real world. 

It discusses why and how the Gaussian curve is chosen to match the shape of the elastic 

deformation. This matching shape is flexible in different conditions based on the variable 

materials or constructs. The deformation algorithms in the normal and tangential 

directions are described. The functional curve storage array is suggested and its resolution 

(size) is compared. The mapping algorithm for deformation curves is then presented. A 

visualization method of the deformation strain is presented at the end of Chapter 4. 
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Chapter 5 studies the deformation shapes of the real human back. Most of them 

deform in irregular area in the tangential plane at the touch point. Then a simplified 

method using ellipses is proposed and implemented on the VHB. To get a deformation 

shape map, a unique accurate interpolation algorithm is developed in this chapter and its 

features are discussed. It is also compared with the stacking interpolation algorithm. The 

mapping algorithm from 2D plane to 3D model is presented.  

Chapter 6 summarizes the major contributions of this dissertation. It gives the 

conclusion of this research and proposes suggestions for future work. 
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2.  Related Research Work 

Some previous work has been accomplished to improve the VHB modeling and 

the realism. The VHB model is a pre-defined stiffness application. That means we need 

the physical property data of the human back for the haptic force generation. Since such 

physical information of the human back and soft tissue is reported very little so far, we 

measured live subjects to obtain the data ourselves (one model from each individual 

subject). Some solutions are suggested to overcome the limitations of the current haptic 

APIs. 

 

2.1  Haptic Model, Stiffness Map and Stereo Viewing System 

Haptic Model: A 3D human virtual haptic back (VHB) model had been 

implemented for the VHB project. The surface of this 3D digital upper body model was 

obtained from a typical adult male subject by using a 3D camera (the 3D Mega Capturor 

from Inspeck Inc., www.inspeck.com) in vivo. Bones of the upper body skeleton are from 

an open source of the Visible Female dataset from NIH. The 3D skeleton model in this 

research was from the open source on Internet. Because the VHB research is mainly 

interested in back diagnoses, the thoracic vertebrae need higher resolution than the other 

bones. In Figure 2.1, the left one is the previous VHB model covered with a non-textured 

semitransparent skin. In this model, all the ribs, both scapulae and the thoracic vertebrae 



 42

T1-T12 are involved. T# denotes the number of the thoracic vertebra and L# denotes the 

number of the lumbar vertebra. The right picture shows a textured model for the general 

experiments in VHB project development. The texture image is from a real subject’s 

back. 

 

    

Figure 2.1  VHB Models with Skeleton (left) and Skin-Textured (right) 

 

In the haptic interaction of the VHB, two small spheres (blue and red in Figure 

2.1, right) are used to present the positions of the user’s two fingers. Blue is left (L) and 

red is right (R). When a sphere contacts the back surface, the collision detection APIs will 

be called to handle this event to generate the force feedback on the user’s fingertip 

through the PHANToM haptic interface, see Figure 1.1. In the VHB project, the haptic 

interface works in displacement-based mode. That means the change of force corresponds 

to positional movement of the haptic interface tip.  
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The back model in this dissertation research was implemented in high resolution 

polygonal mesh by the 3D camera mentioned earlier (see Figure 2.2). After resolution 

conversion, it becomes a triangular mesh and the grid size is about 5×5mm. With 

modification on the model such as trimming edges for smoother results, the number of 

vertices is slightly decreased. The bounding box of this model is 350×400×120mm 

containing 1588 vertices and 2962 triangles. 

 

 

Figure 2.2  The Original High Resolution Back Surface Built by 3D Camera 

 

Stiffness Map: Our haptic model is based on a predefined surface stiffness. To 

get the stiffness of the skin for the back model, we measured the compliance (reciprocal 

of stiffness) characteristics on several human subjects in vivo [Williams et al., 2007]. To 

build a stiffness map, we defined some key points and measured them on human subject 

backs. Several types of continuous stiffness fitting functions were used to match those 
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measured points (see Figure 2.3 for the resulting stiffness map for one individual). 

Furthermore, the stiffness map can be adjusted manually to simulate different somatic 

dysfunctions. 

 

      

Figure 2.3  Statistic Stiffness Map of Human Back 

 

Stereo Viewing System: In the VHB application, the haptic back model has been 

modified for stereo viewing on our stereo viewing system (SVS) [Ji et al., 2006]. This 

system allows the user to touch the virtual back via the haptic interface, where the haptic 

and graphical models are aligned (see Figure 2.4), as opposed to touching the virtual 

model some distance (up to a foot) in front of the graphical screen (as in Figure 1.1). 

Model data structure was optimized in this application. 
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Figure 2.4  3D Stereo Viewing System for the VHB Project 

 

2.2  Displacement Driven Force and Proxy Sphere 

The PHANToM is used in our haptic applications; it is a displacement-driven 

haptic interface. The tip of its arm is the force effector. The user put his/her finger in the 

effector and moves it. The force generated by motors is sent to the user through the arm 

when the effector is touching the virtual model. In Figure 2.5, the PHANToM touches the 

model at the contact point, also called haptic interface point (HIP). Then the PHANToM 

penetrates the model surface and moves to a new position. The feedback force is 

calculated corresponding to the displacement d relative to the contact point. The force is 
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F = k * d      (Hooke’s law)        (2.1) 

where k is the spring constant at the contact point of the model. 

 

 

Figure 2.5  Force Generation of the Haptic Interface Depends on the Displacement 

 

If the PHANToM tip stays at the contact point, no force is generated because zero 

displacement means zero force displayed to the user. The force loop is executed at a 

consistent 1000Hz rate to keep the feedback stable, continuous feeling, for the user on the 

haptic interface. In the haptic loop, the surface is not drawn on the screen, but the model 

surface is rendered only in the haptic process for force feedback generation. 

In graphics, the position of the effector is presented with a small sphere (see 

Figure 2.1). When the PHANToM tip touches the model, the sphere always stays on the 

surface of the model even when penetration occurs. The sphere has to remain outside of 

the graphical model to avoid confusing the user. The PHANToM penetration is only used 

for force feedback generation. That sphere is called the proxy.   

Model Surface 

PHANToM 

New PHANToM Position

Contact Point

Displacement (d ) 

Force
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2.3  Non Deformable Modeling in Haptic Rendering 

As the previous chapter discussed, the FEM and MSM have relatively expensive 

computational cost and boundary definition problems. They are more suitable for large 

deformations. A stiffness map has been measured and used on the VHB because the 

principal deformations are in the normal direction of the back and usually in small range 

of 0-10mm. The stiffness at a point on the back can be thought of as linear in such 

simulation. The force depends on the PHANToM displacement at the contact point and 

the local stiffness. In Figure 2.6, a deformable model is assumed and its haptic rendering 

is analyzed in the following text. 

 

 

Figure 2.6  Deformation in Haptic Rendering Changes the Stiffness 

 

Suppose the PHANToM presses the model at contact point P; the force is f and 

the stiffness at the contact point is k. We get the deformation a at the contact point by 

Hooke’s law.  

b 
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a = 
k
f                (2.2) 

The user can feel the displacement a through the PHANToM. With the 

deformable assumption, the model surface needs to deform to P1 as the dashed curve 

shows in Figure 2.6. The contact point is changed to P1. The PHANToM has to move to 

P2 to get enough penetration b (displacement to the contact point P) to keep the force f 

with the same stiffness value. To get the same force, b is equal to a. Finally the 

PHANToM actually moved 2a = a + b. The force does not change but the displacement 

is doubled. So the final stiffness is changed to half of its original value. 

2a = 

2
k
f                (2.3) 

where the denominator in (2.3) is the new stiffness. 

For this reason, the user will feel more compliance on such a model than the 

non-deformable haptic rendering model. This change is unreasonable and needs to be 

corrected. One solution is to double the stiffness, which is based on the original stiffness 

map, for the force generation in (2.2). Then the model is deformable in a dynamic haptic 

rendering. Because the dynamic (deformable) haptic rendering requires extra processing 

in haptic APIs, this method greatly increases the computational cost [pp.6-28, SensAble 

2005]. That is why we consider the non-deformable haptic rensering so that the contact 

point does not change and (2.2) does not need to be modified. The user will feel the same 

stiffness as it is at the contact point. 
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On the other hand, the graphics rendering model is deformable to present a 

visible surface change under touch. This is important to the user to improve the visual 

realism. 

 

2.4  Friction Effect in Tangential Deformation 

In our method, the final deformation is defined as the combination of normal and 

tangential deformations. The penetration depth of the haptic interface at the touch point 

can be obtained with calls to the haptic APIs. This depth is the maximum the normal 

deformation can reach. The normal deformation calculation is based on the penetration 

depth (displacement). After studying the skin deformation shapes on real subject’s backs, 

we found that the tangential deformation on the human back is more obvious than the 

normal deformation. Also, tangential deformation only happens under the friction effect 

between the finger and skin. The behavior of the friction is that the effector of the 

PHANToM is dragged back to a static point if the tangential force the user applies is less 

than Fn * μ (where Fn is the normal force and the μ is the coefficient of friction). That 

static point of friction is called the anchor. The tangential deformation calculation is 

based on the PHANToM displacement relative to the friction anchor. 

SensAble Technical Inc. (the PHANToM manufacturer) does not currently 

provide an API for the anchor position. But their APIs can read the proxy sphere position, 
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PHANToM tip position, and the force vector. We derived the anchor with existing 

variables provided by the haptic APIs. 

 

Figure 2.7  Friction Anchor 

 

Figure 2.7 is a non-deformable model in haptic rendering; the PHANToM moves 

from A to D following the applied force from the user. The proxy sphere moves from A to 

P to keep P on the normal of the proxy position. Vector F is the force generated by the 

haptic interface, counteracting the force that the user applies. But F is not perpendicular 

to the surface because it is affected by friction. Its tangential component Fn keeps 

dragging the PHANToM back to the friction anchor A, and F is always toward A. In a 

critical case, when the friction decreases to zero, A will coincide with P. 

Positions P, D and F can be determined in PHANToM API calls. Then A can be 

calculated as follows, where all the symbols are vectors. 
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Pd = D - P                (2.4) 

Since  Pd ⊥ (P–A) 

We get  
PA

Pd

−
 = 

t

n

F
F

−             (2.5) 

=>  A = PP
F
F

d
n

t +−             (2.6) 

So the maximum deformation in tangent direction is corresponding to the 

displacement (P–A). This anchor A works well in our applications.  

For the VHB, the static coefficient of friction is set to 0.46 and the dynamic 

coefficient of friction is set to 0.44 as proposed in [Zhang and Mak, 1999]. 

 

2.5  Utility Libraries and Platform 

In our applications, the haptic interfaces are from SensAble Technologies Inc. 

This company has provided two haptic toolkits, GHOST and OpenHaptics. GHOST 

(which supports the PHANToM 3.0) is the older version and easy to implement. 

OpenHaptics (which supports the PHANToM and the Omni) is efficient, flexible, and 

compatible with most haptic products of SensAble Technologies Inc. This dissertation 

work is based on the OpenHaptics SDK. 

C++ is the major development platform for our programming. We use 

OpenHaptics APIs for the haptics component and OpenGL V2.1 for graphics rendering. 
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3.  Spatial Partitioning for Fast Rendering 

In this chapter, two spatial partitioning algorithms based on BSP tree and octree 

will be discussed and implemented to the haptic model. The faster method is always of 

benefit to realism with an increase in model complexity. In the VHB, the surface of the 

model needs to be rendered twice separately for haptics and graphics. In graphics 

rendering, all triangles need to be drawn. OpenGL can optimize the shape rendering with 

a culling algorithm which only renders the triangles facing the viewer of the visible 

region of the model within the viewing frustum. In the haptic process, the OpenHaptics 

APIs capture the shape geometries from the OpenGL buffer [SensAble, 2005, pp. 6-5]. 

Therefore, all shape primitives drawn in the graphics process are rendered in haptics as 

well. Touching only happens at a point on the model surface but the whole visible model 

has to be rendered for force calculation by haptic APIs without optimization. So we can 

decrease the number of the rendered triangles to achieve faster haptic response. 

OpenHaptics does not provide the standard library functions to optimize the 

haptic rendering area because they considered that the various optimization algorithms 

are very dependent on the specific application. So in normal and simple haptic 

applications with OpenHaptics, Table 3.1 shows the haptic rendering rates when the 

proxy touches the models containing a different numbers of triangles. In these tests, all 

the triangles of the model were drawn in the haptic process without any optimization 
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algorithm. The table also lists the graphic rendering performance (all triangles are 

drawn) for reference. The tested models in the first column of Table 3.1 are listed in 

Appendix A. 

Table 3.1  Haptic and Graphic Rendering Rates on Different-sized Models 

Model 
Number of 
Triangles  

Haptic Rendering 
(Touch Model) 

(FPS) 

Graphic Rendering 
(FPS) 

1 2915 104 198 

2 6261 51 92 

3 8163 34 65 

4 20389 12 25 

5 41582 6 11 
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Figure 3.1  Plots for Table 3.1 

 

In Figure 3.2, the performance of haptic rendering drops significantly with an 

increasing number of triangles. The haptic rendering rate is almost half of the graphic 
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rendering because the haptic rendering does not only draw the model same as graphics 

does but also includes the haptic APIs processes, such as collision detection (CD) and 

force generation. 

Since the haptic rendering is invisible, it is not necessary to draw the whole model 

when the haptic device touches the model at a point. The OpenHaptics APIs handle 

collision detection involving the rendered triangles in the haptic process. So if only a 

small number of triangles around the proxy are involved in the collision detection, the 

computation should be faster with rendering fewer triangles. Such region of the haptic 

triangles should follow the motion of the proxy dynamically. However, this region cannot 

be too small to avoid the proxy going through the model surface. The size of the rendered 

region for haptics it important and its solution will be described later.   

BSP and octree have been implemented on the VHB model to divide the model 

into small subsets so that a certain size 3D space (an axis-aligned cube) can be specified 

following the proxy. Any triangles coming into this space should be drawn for haptics.  

 

3.1  Data Structure of the Haptic Model 

A few different back models with different resolutions have been created for the 

VHB project. The main haptic mesh of this research is shown in Figure 3.2. This back 

mesh was originally taken from a real human back by a 3D camera and then was trimmed 



 55

and edited in 3D MAX for this research. The final model contains 1588 vertices and 

2962 triangles.  

     

Figure 3.2  The Back Mesh 

 

Two vertex structures were defined for haptic and graphic rendering. In the 

graphic rendering, since all primitives of the model need to be drawn in the scene, the 

triangles and the vertices are stored in a linear link for the most efficient time O(n), where 

n is the number of the triangles of the model. Since only the graphic surface deforms, 

these vertices are involved the calculation of the deformation algorithm. In haptic 

rendering, the triangle structure is stored in the hierarchical binary tree or octree. The 

vertices are stored in another linear link. These vertices keep in their original positions 

because the haptic surface is static in this deformation simulation. The following are the 

descriptions of the vertex and the triangle structures 
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struct Vertex 

{ 

  double position_xyz[3]; 

   double normal[3]; 

  double texture_xy[2]; 

  

  list <int> jointVerticesList; 

  list <int> jointTrianglesList;  

} 

 

struct Triangle 

{ 

    int vertexIndex[3]; 

    double normal[3]; 

}  

Each vertex contains the lists of its adjacent vertices and triangle. These lists are 

pre-computed and static since no topology is changed. The position and normal of each 

vertex are dynamically updated for the graphic rendering. Each triangle has a list of its 

vertices. Also, the normal of the triangle is computed in real-time corresponding to the 

change of its vertices to get the Gouraud shading for smoothing the surface. 

 

3.2  Rendering Performance Measurement 

The haptic and graphic renderings are in serial order as shown in Figure 3.3. To 

evaluate their performance, the computation time of these two processes are measured 

independently with two timers in each system loop (Figure 3.3).  
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Figure 3.3  Performance Measurement of the Haptic and Graphic Renderings 

 

We mainly measured the haptic and graphic renderings (shown in solid arrows) 

but the whole computation time of each system loop was also measured for reference. 

 

3.3  Binary Space Partitioning (BSP) for Haptic Rendering 

A BSP tree is an irregular data structure. In theory, the space of the model can be 

subdivided by arbitrary planes. In this research, we use axis-aligned planes to build the 

BSP tree. The construction time of BSP tree is expensive so it is done as a preprocess. 

The topology of the BSP does not change after it is created since the mesh for haptics is 

static as discussed before. 

 

3.3.1  Construction of BSP Tree 

The partitioning is based on the bounding box of the model. In this BSP algorithm, 

Time 

Haptic Rendering 

Graphic Rendering 

Other Processes 
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the model is divided into hierarchical sub-trees using three types of the planes that are 

orthogonal to the x, y and z axes. The boundary box of the whole model is the root space 

(root node) of the tree, considered to be level-0. Each node is divided into two child 

boxes by a plane. The following is the description of the partitioning steps (see Figure 

3.4). 

(1) First, split the root space with a plane (green in Figure 3.4) which is 

orthogonal to the x-axis and crosses the center of the root space. Two new subspaces 

(nodes) are created in level-1. 

(2) Then, partition each space (node) in level-1 with a plane (red in Figure 3.4) 

which is orthogonal to the y-axis and bisecting the center of this node.  Four new 

subspaces in level-2 are created. 

(3) Use a plane (yellow) that is orthogonal to the z-axis and cross the center of 

each box in level-2 to divide each level-2 node continuously.  

(4) Repeat step (1), (2) and (3) to partition the nodes from level-2 until the 

partitioning stops. 
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Figure 3.4  Binary Partition Aligned x, y and z Axes on the Model Mesh 

 

The partitioning is executed in a recursive call. A requirement is needed to stop 

the recursive subdivision. In this algorithm, the number of triangles, ni, located in the 

bounding box of each node is counted during the partitioning process. We set a threshold 

t to monitor the number of triangles in each node. If ni of the subspace node is less than t, 

the partitioning stops automatically and this node becomes a leaf (end node) that contains 
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the triangles. Otherwise, the algorithm continues to divide this node into two child 

nodes. If the node does not contain any triangle, it is marked as empty (solid circles 

shown in Figure 3.5); the partitioning also stops in this case. The nodes in this BSP tree 

do not contain any triangles; only leaves do. Further, leaves do not have any children. 

 

Figure 3.5  BSP Tree of the Back Model 

 

In Figure 3.5, for example, the threshold t is set as 1024. Each leaf of the tree 

contains fewer than 1024 triangles. t is an important factor that affects the complexity of 

the BSP tree. Smaller t leads to larger tree height and traversing the tree becomes more 

complex. Larger t causes less partition benefits. Finally, 1024 was proved as the best 

value in our experiments. The pseudocode for the BSP is as follows: 

Level-0 

Level-1 

Level-2 

Level-3 373 Tris

629 Tris

20 Tris

580 Tris

850 Tris 902 Tris 

725 TrisLevel-4 
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1:  HapticBSP(node, level, threshold) 

2:  IF node = “empty” THEN 

3:   RETURN 

4:  ENDIF 

5: 

6:  IF node->triangleNum > threshold THEN 

7:   CASE mod(level/3) OF 

8:    0: CALL PartitionNode(node, x_axisPlane) 

9:    1: CALL PartitionNode(node, y_axisPlane) 

10:    2: CALL PartitionNode(node, z_axisPlane) 

11:   ENDCASE 

12:  

13:   IF node->child1->triangleNum = 0 THEN 

14:    node->child1 = “empty” 

15:   ENDIF 

16:  

17:   IF node->child2->triangleNum = 0 THEN 

18:    node->child2 = “empty” 

19:   ENDIF 

20: 

21:   CALL HapticBSP(node->child1, node->child1->level, threshold) 

22:   CALL HapticBSP(node->child2, node->child2->level, threshold) 

23:   ELSE 

24:   CALL BuildLeafNode(node) 

25:   ENDIF 

 

Partitioning from the x-axis to the z-axis is a cycle. After z-axis partitioning, start 

x-axis partitioning again. During each subdivision, check the number of the triangles 

inside the subspace (triangles on the space border should be counted). The BSP result is 

shown in Figure 3.6. 
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Figure 3.6  Splitting Planes and Leaf Boxes of the BSP Tree 

 

The leaf spaces bounding of the binary tree are presented in blue wireframe boxes 

in the right portion of Figure 3.6.  The green, red, and yellow rectangles indicate the x, y 

and z axis-orthogonal splitting planes. At the right top corner of the partition wireframe 

space, there is no blue wireframe box which means that there is no triangle in that space. 

That node is empty and no leaf is there. 

 

3.3.2  Triangles Distribution 

When the partition plane cuts the space of the node, in most cases, the plane has 

to pass through some of the triangles that are close to it. Since the triangles need to be 
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assigned in two groups logically but not physically (the triangle position does not 

change), the intersected triangles need to be allocated by some means as to which group 

(child) they will belong to. Figure 3.7 shows three cases about the partition on crossed 

triangles.  

 

Figure 3.7  Three Cases of a Splitting Plane Crossing the Triangles 

 

Case A:  The plane cuts the intersected triangle and subdivides it into three small 

triangles located in child1 (upper) and child2 (lower).  The edge of the cut triangles is 

Splitting Plane 

A 
B C 

Child 1 

Child 2 

Child 1 Child 1 

Child 2 
Child 2 
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straight. This method causes the number of the triangles to be increased (topology 

changed) and needs additional computation to handle the subdivision. 

Case B: If any vertex of the triangle lies on one side of the plane, the triangle is 

assigned to the child of this side. In this case, any triangle crossing the plane will be owed 

by the both child spaces. The leaf is the minimum unit of haptic rendering and all the 

triangles in the leaf should be drawn. Therefore, the intersected triangles will be drawn 

twice if both children need to be rendered. This leads to overlapping and a waste of 

rendering steps and computation time. The edge of the triangles of the child is still 

smooth (maybe not straight). 

Case C:  The triangle can only belong to one side of the splitting plane. If there 

are two or three vertices of the triangle on the same side of the plane, the triangle is 

assigned to the child of this side. Otherwise this triangle belongs to another child space. 

Such a rule can avoid the overlap in rendering problem. In Figure 3.7, the edges of the 

triangles are aliasing. Since the haptic rendering is invisible and the BSP tree is for haptic 

rendering only, the alias-edge does not appear in graphics. This method is feasible and the 

most efficient for rendering. 

Although the partitioning is performed as a pre-computation (non-real-time), 

cases A and B affect the complexity of the model significantly when the threshold t is set 

to a small value. Case A increases the number of the triangles and case B increases 

overlapping rendering and requires more computation time. We use the method of case C 
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in the BSP tree construction. The haptic triangles are visualized for convenience in 

green in Figure 3.8. The boundary of the haptic region looks like saw teeth. 

 

   

Figure 3.8  Leaf Borders of the Case C 

 

The green region includes few leaf nodes and no overlapping rendering occurs. 

Each leaf contains a set of triangles. In that case, the proxy touches on the model and 

only a few leaves are rendered for haptic APIs. The method will be presented in the next 

section. 

 

3.3.3  Haptic Detecting Box (HDB) 

The model is subdivided into small parts by BSP. When the proxy is close to or 

touching on the model, we take the advantage of the BSP to determine which parts should 
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be rendered for collision detection and force generation for haptics. To achieve this goal, 

an axis-aligned cube is defined to follow the proxy. This cube center is always coincident 

to the proxy. When the cube is intersected with any leaf, this leaf should be drawn in 

haptic rendering because it is close to the proxy so that it has a high possibility to be 

touched by the proxy. All the leaves nearby the proxy are picked up and rendered during 

traversing of the tree. This procedure is recursive also. The algorithm is presented in the 

following pseudocode. 

 

1: traverseWithHDB(node, HDB) 

2:  IF node = “empty” THEN 

3:    RETURN 

4:   ENDIF 

5:    

6:   IF node is leaf THEN 

7:    Draw this leaf for haptics 

8:   ELSE 

9:    Determine which child the HDB intersects with 

10:    IF Child 1 intersects with HDB THEN 

11:     traverseWithHDB(child1, HDB) 

12:    ELSEIF Child2 intersects with HDB THEN 

13:     traverseWithHDB(child2, HDB) 

14:    ELSE 

15:     traverseWithHDB(child1, HDB) 

16:     traverseWithHDB(child2, HDB) 

17:    ENDIF 

18:   ENDIF 

 

When a node is not empty, its two child spaces need to be checked if any of them 

is intersected with HDB (line 9 in above pseudocode). To do that, if any of the eight 



 67

vertices of the HDB is on one side of the node-splitting plane, this side child has an 

overlap volume with the HDB. If each side contains at least one vertex of the HDB, the 

both children intersect with the HDB. That means the plane cuts through the HDB. The 

Hessian Normal Form [Gellert et al., 1998] is employed to determine the distance 

between a vertex of the HDB and the plane. The sign of the result S indicates the side of 

the vertex location since we do not care about the exact distance between the vertex and 

the partitioning plane. (3.1) is simplified from Hessian Normal Form. 

S = dNV +•              (3.1) 

where V is the vector of the vertex, N is the normal (normalized) of the partition 

plane, and d is the last parameter of the plane equation 0=+++ dczbyax . If S≥0, it 

means the vertex is in the same side of the positive normal (for left child rendering) of the 

plane. And S<0 means the vertex is in another half space of negative normal of the plane. 

When the HDB is far from the model and in the empty node space, the HDB 

sometimes does not have any intersection with the model. Therefore, in the haptic 

rendering, no triangle is rendered. The resulting efficiency is very fast. In some tested 

cases, the rate of haptic rendering reached over 955 FPS. 

The size of the HDB is critical to computation efficiency. Small cubes mean few 

leaves will be included. But the size cannot be too small (say the edge length of the HDB 

is 1/10 of the max length edge of the axis-aligned bounding box (AABB) of the whole 

model). Otherwise the proxy might get through the model surface frequently when the 
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proxy moves quickly on the model. That is because the collision detection finishes a 

little later after the proxy position update. If the proxy moves quickly, the rendered leaves 

close to the proxy may be not able to follow it in time. Then a delay results in collision 

detection involving the current proxy and the previous rendered leaves. So the proxy 

might be already out of the previous haptic region and puncture through the surface of the 

model abnormally. On the other hand, if the HDB is very big, say 1/2 (or more) of the 

max edge of the AABB of the haptic model, the collision detection delay would not result 

in puncture. But the more leaves intersected with the HDB, the more rendering time is 

required. We finally define the HDB in 1/4 size of the AABB of the model after several 

experiments (see Figure 3.8). This HDB works well on the VHB models. 

The triangles rendering area (green in Figure 3.9) in haptic rendering when the 

proxy is moving close to a bunny mesh is visualized. The green area is getting big when 

the proxy is closing to the surface mesh. In picture 1, there are only 35 triangles are 

rendered (in green) in the haptic process, a very small percentage of the total triangles. So 

the haptic rendering efficiency is relatively fast, 955 FPS. In picture 4, 650 triangles are 

rendered in 49 FPS. This rate is better than the 28 FPS recorded on the model without 

BSP applied (in that situation, the whole model is green). 
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Figure 3.9  Haptic Triangles When the Proxy is Closing to the BSP Bunny 

 

It can be noticed in picture 1 that the proxy is far from the model but a few 

triangles are still rendered. The reason is as follows. These triangles are usually lying 

outer which are opposite to the inner triangles, and the model structure is like that 

combined with few leaf layers. Each layer contains some leaves and is not overlapped 

with other layers, like an onion. In the intersection detection between the HDB and the 

leaf, the leaf has the half infinite space divided by the plane of its parent node. So if the 

proxy is in this half space and even is far from the triangles of the leaf, the proxy still has 

intersection with this half space of the leaf. So this leaf, say leaf 1, is still rendered. If 

there is another leaf, say leaf 2, between leaf 1 and the HDB, the intersection detection 

2 

3 4 

1 
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should find that leaf 2 intersects with HDB instead of leaf 1. The case of picture 1 

happens only on the outer leaves. Only when the dynamic HDB locates completely in an 

outer empty node, there is not any rendered triangle.  

The rendering efficiency in picture 1 is still quick enough although a few leaves 

might be rendered needlessly. The intersection detection method is quick for the binary 

tree. We used another intersection detection algorithm in the octree with the HDB and a 

finite box space of the leaf. 

 

3.3.4  Performance and Complexity Analysis 

Optimization of the haptic rendering with the spatial partitioning algorithms has 

two benefits on saving the computational cost. 

Performance: Just a small region of the model is drawn in the haptic process. In 

the worst case, the proxy is touching the model, 1/3 triangles (tested in experiments) in 

the leaves intersected with the HDB are rendered. So 2/3 of the time is saved in the 

triangle drawing. Use tr to denote the time ratio of the BSP triangle rendering over the 

traditional triangles rendering (draw the whole model). So tr=1/3. This benefit is not only 

in drawing triangles but also in the related haptic APIs which handle the collision 

detection and force generation. Table 3.2 shows the rendering rates of the triangle 

drawing, touch and untouch haptic renderings in the haptic process. 
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Table 3.2  Haptic Rendering Performance of the Binary Tree Model 

No Haptic API 
( Triangle Drawing ) 

Untouch 
( Triangle Drawing, 
Collision Detection ) 

Touch 
( Triangle Drawing, 
Collision Detection, 
Force Generation ) 

# of Rendered 
Triangles 

Time 
(ms) 

FPS 
# of Rendered 

Triangles 
Time 
(ms) 

FPS 
# of Rendered 

Triangles 
Time 
(ms) 

FPS 

1387 2.6  378 1357 7.6  132 1671 11.0 91 

3503 4.9  204 3620 18.5 54 3284 21.7 46 

6541 8.1  124 6688 33.3 30 6688 43.5 23 

8944 11.6  86 8679 47.6 21 9138 66.7 15 

10134 13.2  76 10488 58.8 17 10347 71.4 14 

13171 16.4  61 13354 76.9 13 13530 111.1 9 

14722 17.2  58 14478 90.9 11 14842 142.9 7 
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Figure 3.10  Plots for Table 3.2 
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The data are obtained from experiments on a 41.6k triangles BSP model. All the 

FPS were recorded for the haptic rendering process. The first row of Table 3.2 indicates 

what types of operations are included in each test. For example, the “untouch” test only 

involves the triangles drawing and collision detection. The right chart of Figure 3.10 

presents the reciprocal results (FPS) from the data (time) of the left chart. The triangles 

drawing time (blue polyline) without haptic APIs (mainly contain collision detection and 

force generation) involved is significantly faster than the other two cases (red and green 

polylines) which involve haptic APIs. Even when 14000 triangles are drawn, it still 

achieves a rate of 58 FPS and does not delay the system loop significantly. But haptic 

APIs have to handle a number of triangles in rate 7 FPS such that the decrease in system 

speed is obvious. Although current graphics hardware can draw millions of triangles per 

second and hardly affect the system efficiency on such haptic models, the decreased 

number of the triangles for the haptic APIs noticeably improves the haptic response time.  

Complexity: To determine the leaves intersection with the HDB, first, assuming 

that the model is divided into subsets stored in a linear link, the searching time on this 

structure is O(n), where n is the number of the leaves. Let’s see the situation on the BSP 

model in the worst case (complete binary tree). The height of the complete binary tree is  

hBin = log2(n)              (3.1) 

Then the number of the total nodes nnode of the binary tree is: 

nBin = 
12

12 1

−
−+Binh

 = 12 1)(log2 −+n  = 2n-1      (3.2) 
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As we set the edge of the HDB to 1/4 of the maximum edge of the model 

bounding box, the volume of the HDB including the intersected leaves is in the range [0.1, 

0.02] of the model bounding space.  0.1 is the worst case because the larger value means 

more leaves need to be detected and rendered. 

Denote m as the number of the rendered leaves and r as the ratio of the rendered 

leaves over the total leaves (r=
n
m ).  We can consider the maximum r is 0.1. Then, at 

most r*n leaves will be found intersected with HDB. In this search process, we wonder 

how many nodes of the tree, denote as cBin, are traversed. Then cBin is the time cost of the 

intersection detection. Let’s denote the ratio rBin. 

rBin = 
Bin

Bin

n
c

              (3.3) 

 =>  cBin = rBin nBin            (3.4) 

What is the worst case of rBin relative to r? Denote w=
r

rBin . The worst case 

happens in the complete tree because all leaves are located at the bottom of the tree and 

the search for the leaves has to get through the whole height of the tree. It leads the 

maximum cBin. The worst case of w (maximum value) is in the minimum leaves of the rn , 

where rn should be at least one leaf. The reason is that the search for only one leaf passes 

the whole height of the tree (see Figure 3.11). Table 3.3 presents the worst w on the BSP 

trees in the different heights. 
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Figure 3.11  Traversed Nodes in the Worst Case of w 

 

Table 3.3  The Worst w Related to the Trees in Different Heights 

Tree Height 3 4 5 6 7 8 9 10 

r 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 

rBin 4/15 5/31 6/63 7/127 8/255 9/511 10/1023 11/2047 

w 2.13 2.58 3.04 3.53 4.02 4.51 5.01 5.50 

 

Usually the number of the triangles of the haptic model does not exceed 100k so 

that the height of the BSP tree in this research is no more than 7. The worst w can be 

chosen as 4.02 from Table 3.3. We get the complexity of the intersection detection in the 

worst case as follows: 

cBin = rBin nBin = r * w* (2n-1)    

          = 0.1*4.02*(2n-1       

= 0.8n                                        (3.5) 
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The result of (3.5) is better than n of linear searching. And in the practical 

applications with the BSP models, the intersection detections are mostly executed much 

more efficiently than the worst case. 

Also compare Tables 3.1 and 3.2. The model used in Table 3.2 is the same as the 

model 5 of Table 3.1. In Table 3.1, the rate of the haptic rendering in touching is 6 FPS. 

In Table 3.2, most cases of column “Touch” are much better than 6 FPS (from 7 to 91). It 

tells that on the same model, the BSP structure improves the haptic rendering rate 

significantly. 

 

3.4  Octree for Haptic Rendering 

Octree is another method we have implemented to partition the model. It is 

similar to the axis-aligned BSP tree. But each node of octree has 8 child nodes (octants). 

The AABB of the model is subdivided simultaneously along the x, y, and z axes, and the 

split point must be the center of the box. This creates eight new child boxes (see Figure 

3.12). The subdivision is recursive. Such partition makes the structure regular, and some 

queries may become more efficient because of this. Octree can be used in the same 

manner as the axis-aligned BSP tree. 
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Figure 3.12  Octree Partition on the AABB 

(Picture is from en.wikipedia.org) 

 

We set the same threshold as BSP for the octree subdivision. The partition will be 

stopped if the number of the triangles in the node is less than the threshold. Only the leaf 

nodes store triangles. The octree algorithm splits the node into eight finite smaller boxes. 

The bounding box of each node is recorded in the struct of itself. Figure 3.13 shows the 

leaf boxes (wire framed) of the octrees on the models of the bunny and back. 

             

Figure 3.13  Leaf Boxes of the Octree on the Haptic Models 
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Some nodes of the tree are empty (no triangles), so there are no wire frame 

boxes there. The bunny has 2915 triangles without separated parts. The back model has 

20389 triangles which contain the back skin, the ribs, scapulae and most vertebrae. The 

construction of the octree is described in the following pseudocode: 

 

1: HapticOctree(node, threshold) 

2:   IF node = “empty” THEN 

3:    RETURN 

4:   ENDIF 

5:    

6:   IF node->triangleNum > threshold THEN 

7:    BuildChildNodes(node) 

8:     

9:    AssignTrianglesToChild(node) 

10:     

11:      FOR child1 TO child8 

12:     IF node->child#->triangleNum = 0 THEN 

13:      node->child# = “empty” 

14:     ENDIF 

15:    

16:     HapticOctree(node->child#, threshold) 

17:    ENDFOR  

18:   ELSE 

19:    BuildLeafNode(node) 

20:   ENDIF 

 

Line 7 is to build eight child subspaces by three axis-aligned planes. In the 

triangles distribution, we use a similar method of case C in the BSP to allocate the 

triangles to certain child nodes. The difference is that the node of octree has a finite 

bounding box. If at least two vertices of the triangle lie in this child box, this triangle 
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should belong to this child node (see Figure 3.14). Line 9 handles this job. And also, the 

partition is pre-computed and the topology of the octree is static after creation. 

 

 

Figure 3.14  Triangles Intersection with Bounding Box of the Node 

 

3.4.1  Haptic Triangles Detection  

A sphere can be used to define a space to detect the intersected leaves around the 

proxy instead of a box. The proxy is the center of the sphere. If any of the eight vertices 

of the node (leaf) bounding box is in the sphere, the node is intersected with the proxy 

sphere. But computing the distances between the proxy and the eight vertices of the node 

box is inefficient. However, for the cube (HDB), the AABB/AABB intersection [Akenine, 

2002, pp.600] is employed to detect the intersection. In this way, there are only six 

Boolean operations needed. 

Figure 3.15 shows the situations of the haptic triangles rendering when the proxy 

is in different positions. There are no triangles drawn when the HDB of the proxy does 
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not touch the model, meaning no haptic API is involved. Only if the proxy is very close 

to or touching the model, few leaves are rendered for haptics. 

 

   

Figure 3.15  HDB is Closing to the Octree Back Mesh, Few Leaves Rendered 

 

The haptic performance on the octree model is much better than on the model 

without partition as well as BSP. 

 

3.4.2  Complexity Analysis 

Let’s set hOct as the height of the octree. The triangles lie in the space without an 

obvious density change so that the leaf boxes are in similar size in the octree. Normally, 

the height is not more than 3 because if the leaves are too many, as we can see in the last 

two columns in Table 3.2, the complexity in the worst case might be over O(n). The 

threshold needs to be adjusted according to the number of the triangles of the model to 

keep the leaves in a reasonable range. 

1 2 3
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hOct = log8(n)             (3.6) 

where n is the number of the leaves. The number of the total nodes of the 

complete octree is denoted as nOct. Then, 

nOct =
18

18 1

−
−+Octh

 = 
7

18 1)(log8 −+n

 = 
7

18 −n        (3.7) 

The discussion about the HDB of the octree model is similar to the BSP. Denote 

cOct as the number of the nodes during the searching for the intersected leaves. So cOct is 

also the time cost of the intersection detection in the octree. Denote the ratio rOct.  

rOct =
Oct

Oct

n
c

              (3.8) 

 
 

Tables 3.4  The Worst w Related to the Octrees in Different Heights 

Octree Height 2 3 4 

r 1/64 1/512 1/4096 

rOct 3/73 4/585 5/4681 

w 2.63 3.50 4.38 

 

Since in the octree of the haptic models in this research, its height is no more than 

3, the worst w is 3.50 from Table 3.4. The time cost of the intersection detection in the 

worst case can be written as follow: 

 

cOct = rOct * nOct = r * w*
7

18 −n   
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         = 0.1*3.5*
7

18 −n   

  = 0.4n                (3.9) 

 

0.4n is better than 0.8n of the binary tree in the worst case. Tests concerning the 

rendering rates of 3 cases (non-haptic API, untouch and touch) on the octree model were 

done. The same model as Table 3.2, 41.6k triangles, was used in this test. The original 

measured data is attached in Appendix B. The comparisons to the BSP are shown in the 

following charts. 
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Figure 3.16  Haptic Triangles Drawing without Haptic APIs Involved 
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Figure 3.17  Haptic Rendering Rate in Untouch Condition 
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Figure 3.18  Haptic Rendering Rate in Touch Condition 
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The haptic triangles drawing of the octree model is almost same as the binary 

tree model in the Figure 3.16. It indicates that the intersection detection between the HDB 

and the leaves of the octree is as fast as a binary tree. But in Figure 3.17 and 3.18, we can 

see that the rendering performances of the API in the octree are slightly better (10%-20%) 

than the binary tree. The haptic rendering performance is much improved with octree 

spatial partition on the model. So we use the octree partition in the deformation algorithm 

of this dissertation. 

 

 



 84

4.  Functional Shape Matched Deformation 

In this chapter, the focus is on the surface deformation algorithm for haptic 

models with human-like tissue. When haptic simulation is applied to soft objects, the 

deformable model is desired to enhance the graphical and haptic realism. The VHB is 

such a project, based on human back modeling. In general, the purpose of the VHB is to 

diagnose back somatic dysfunctions concerning the vertebrae, muscles, and other soft 

tissue. The deformation of soft tissue under external forces is presented on the back.  

The goal of this chapter is to simulate the deformation of the back skin. 

In the literature review, several deformation algorithms were discussed. Table 4.1 

summaries the features of the current popular deformation methods. 
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Table 4.1  Features of the Existing Deformation Algorithms 

Method Advantages Disadvantages 

Finite Element Method 
Most accurate, Physical 

based 

Very expensive computation cost, 
need the accurate physical 

parameters, Complex boundary 
condition definition. 

Mass-Spring Model Fast, Physical model 
Linear simulation, boundary 

condition definition. 

Free Form Deformation Fast Not accurate, need manipulation 

Shape Interpolation Simple algorithm 
Expensive computation cost, much 

manipulation work 

Skeleton Driven 
Deformation 

For deformation without 
external force, good for 

global deformation. 

Much work of manipulation, not 
flexible 

 

The most accurate approach is Finite Element Method (FEM). Both FEM and 

Mass-Spring Model are based on accurate, well studied properties of the material. But the 

soft tissue and the muscles are nonlinear in most cases. Their characteristics vary on 

different subjects. We use a predefined curve to simulate the shape of deformation on the 

VHB model. The curve can be from math functions or be defined by user for the desired 

shape. 

 

4.1  Deformation Shape on Elastic Material 

The deformation of elastic object surfaces such as skin, rubber, or sponge looks 
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like the shape in Figure 4.1. That is a sharp rigid object pressed on the surface of a soft 

object. This deformed surface can restore completely when the external force is removed. 

On the human skin, the mass of the deformed part is small so that the damping can be 

ignored. The deformation is activated immediately corresponding to the pressing force 

without delay.  

  

Figure 4.1  Deformation Cross Section on Soft Object 

 

In the haptic simulation of palpation, the user usually touches the virtual patient 

by fingers. In Figure 4.2, the rigid touching object is a ball. The right picture shows the 

finger pushing on the soft surface. Because of the round shape of the finger, the skin 

deformation shape under the finger is similar to the left one. The shape of finger-induced 

deformation is considered to be symmetric about the y-axis (vertical axis) under the force 

perpendicular to the model surface. 

 

Figure 4.2  Deformation Due to a Finger is Similar to a Round Rigid Object 
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The properties of the homogenous isotropic elastic objects were discussed by 

[Luo and Xiao, 2006]. They derived certain geometric properties from physical properties 

of the contact between a rigid object and an elastic object that affect the shape change of 

the elastic object under deformation. Some typical deformation cross sections of the 

elastic object were presented. For homogenous elastic objects, the deformation is 

maximum at the contact point. The displacement of the surface is decreasing with 

increasing distance to the contact point. The contour of the deformation is a circle. The 

boundary of the deformation (zero displacement) is a circle too. 

The human back is composed of some different types of elastic tissues and rigid 

bones in layers. The back surface is an even area of the human body. There are few 

bumps on it. The skin and the muscle are the main factors affecting the elastic properties 

of the back. The elasticity of the back is considered as a normal elastic material in this 

haptic application. Since the VHB group already measured the stiffness of human backs 

[Wlliams, 2007], the force generation in haptic simulation depends on an 

experimentally-derived linear stiffness map. To simplify the calculation, the maximum 

deformation at the contact point is assumed to be linear according to the relative 

displacement of the proxy and using Hooke’s Law. 

In the deformation area, all the deformed points follow the movement of the 

contact point. The cross section of the deformation can be fitted to some predefined 

shapes such as a Gaussian Curve, etc. Such curves are expressed in algebraic functions 
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and can be modified for different materials based on the study of the specific materials. 

Figure 4.3 shows a standard Gaussian Curve (flipped in horizon) which is suitable for the 

deformation under the round rigid object. 

    

Figure 4.3  Flipped Gaussian Curve in Horizon 

 

Figure 4.4 presents a method for the deformation under a sharp rigid object 

pressure by a modified Gaussian Curve. For the sharp applied object, the first order of the 

surface of the deformed object from the contact point should be monotonic decreasing. In 

the instance of the Gaussian Curve, the part between its two inflection points can be 

removed. Then join the rest of the two curves to get the picture to the right of Figure 4.4.  

 

Figure 4.4  Modified Gaussian Curve for Sharp Object 

 

Since the back muscles pennate in different directions in the tangent of the back 

surface, this affects the deformation shape such that it is not a regular circle. The 
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deformation boundary will be discussed in Chapter 5. 

In real palpatory diagnosis, the operator usually pushes his/her fingers on the 

patient and moves on the skin to feel the shape and stiffness changes of the bone or soft 

tissues. The deformation caused by this action of the operator can be considered 

combining with two components in the normal and tangential directions to the body 

surface.  

 

Figure 4.5  Normal and Tangential Deformation Combination 

 

The tangential deformation of the skin is driven by the friction under the finger. 

The left picture in Figure 4.5 is the deformation only in the normal direction. The right 

one is the deformation when the finger moves on the skin. The tangential deformation is 

perpendicular to the normal direction. In the experimental measurement of back 

deformation, we found that the maximum normal deformation (at the contact point) is 

around 10 mm and the maximum of the tangential deformation is around 20 mm. So the 

tangential deformation is more obvious than normal deformation during palpation. We 

apply predefined shape matching to both the normal and tangential deformations. 

Normal Deformation Final
Deformation 

Tangential
Deformation

Normal  
Deformation 
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4.2  Normal Deformation 

Most elastic material and soft tissues are continuous in physical properties. Thus 

physical changes, like deformation on the surface, are also gradually continuous. The 

physical properties of human soft tissue are mostly anisotropic and nonlinear. When the 

surface is deformed by an external force applied at a contact point, the surface 

deformation is significant near the point and attenuates gradually with the distance 

increasing to the contact point. To achieve faster deformation computation, we choose 

some algebraic functions to simulate the change. After investigation in the most familiar 

algebraic functions, we found that the Gaussian Curve (GC) has some similar features 

like the gradual change properties of soft tissue. Table 4.2 shows the reasons why the GC 

is better than others. They are not full comparisons of every algebraic curve, but some 

typical curves. 
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Table 4.2  Comparison of GC, Cos, and Log Functions 

Shape Function 
First-order 
derivative 
at the ends 

Non-Symmetry 

 

Gaussian Curve 
(half) 

0, 0 Yes 

 

Cos 
( half period) 

0, 0 No 

 

Log +∞, 0 Yes 

 

In this table, only three curves are listed since they are more similar to the 

deformation cross-section than others. The first-order derivative at the end of the curve 

indicates if the deformation is smooth at the contact point and at the deformation 

boundary. Zero derivative is reasonable at the both ends of the deformation curve for the 

round applied rigid object in the palpation simulation. The non-symmetry indicates if the 

curve has any symmetrical or similar part itself. Since the deformation from the contact 

point should be a decreasing curve, the shape should not have similar properties. So the 

non-symmetry is good for the deformation. From Table 4.2, we can see that the half 

Gaussian Curve has the best features in those three shapes. Also, it is suitable for the 

sharp object in the previous discussion. Equation (4.1) is the Gaussian Curve function 

with zero offset. 
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where dn is the displacement of a point on the surface in the normal direction. In 

Figure 4.6, r=OD is the distance from the original position of the deformed point D to the 

contact point O. At the contact point, the user pushes the haptic device and penetrates the 

haptic surface to get the force feedback according to the stiffness at that point. The depth 

of the penetration can be computed by the subtracting the current position of haptic 

device from the proxy position. The maximum normal deformation is at the contact point, 

see dmax in Figure 4.6.  

 

Figure 4.6  Deformation Region and Contact Point 

 

In this method, the deformation boundary is supposed as a regular shape such as a 

circle or ellipse. The center of this shape is the contact point. The size of the deformation 

area is variable depending dynamically on changes in the applied force. The force change 
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is related to the penetration depth of the proxy. In the programming, the size of the 

normal deformation boundary is a linear function of the penetration depth Pn which is in 

normal direction. Pn is also the maximum displacement in the normal direction. To get 

the normal displacement dn of a point D (in Figure 4.6), which is within the boundary, in 

efficient computation, we do not calculate the Gaussian function for each point but use an 

array to store the Gaussian Curve and map the D to the array. The ratio q=
OC
OD  is used 

for this mapping. Following are the steps to compute the normal deformation at any point 

in the deformation boundary. 

 

1: NormalDeformation(point, Pn) 

2:   IF point is out of the boundary THEN 

3:    RETURN 0 

4:   ENDIF 

5:  

6:  compute locationRatio q   

7:   map the point on Gaussian Curve 

 

In the case of a circular deformation boundary, q=
usCircleRadi

OD . But in other 

cases, r is derived in a different way. The above derivation is based on a planar surface. 

However, the surface of the haptic back model is not planar, but 3D. The deformation 

shape is defined in a plane that is perpendicular to the normal of surface. So the point on 

the model needs to be projected on the deformation shape plane of the contact point first. 

D is the projected point on the deformation shape plane. Then transform the Gaussian 

Curve displacement mapping to the normal plane. Figure 4.7 shows the deformation cross 
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section in the normal direction. 

 

 

 

Figure 4.7  Normal Deformation of Back Mesh Mapping with a Gaussian Curve 

 

The top picture is the cross section of the original back mesh without touching. 

The bottom one is the cross section of the deformed mesh in the normal direction 

matched on Gaussian Curve. 

 

4.2.1  Normalized Gaussian Curve Mapping Array 

Since the Gaussian Curve is predefined for the deformation shape, to save 

computation time, the GC is stored in an array. For each point within the deformation 

boundary, its distance ratio is mapped to the index of the array to get the deformation 

value. 

The standard Gaussian Curve is expressed in (4.2). 
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In the normal deformation, the position change of each point on the surface 

should not exceed the change range of the contact point. The level of deformation is 

corresponding to the GC. So GC needs to be normalized to present the change from the 

maximum (100%) to minimum (0%). Since the minimum of GC is zero, the maximum 

value is only to be normalized. 

The GC is symmetrical about the y-axis. Therefore the half GC in the positive 

x–axis only needs to be computed when the offset is μ = 0.  

Set  y = 1, 

when x = 0 and μ = 0 in (4.2), we get σ2 = 0.1592 and σ = 0.4. 

And when x=1.4, y=0.0021. y is around 1/500 of the maximum. We can consider 

that it is close to zero to be the minimum of the GC, see the left curve in Figure 4.8. 

 

    

Figure 4.8  Half Gaussian Curve and Its Storage Array M[i] 

 

The right picture in Figure 4.8 presents the mapping of the storage array M[i]. 
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The horizontal axis indicates the index of the array. The vertical axis is the normalized 

GC. The size of the array affects the smoothness of the resulting shape. Figure 4.9 shows 

the final smoothness of an array with a size of 20, 130, and 700. Case (a) is significantly 

different from (b). But (b) is not obviously different from (c). (c) is slightly better than (b). 

A higher resolution than 700 is not necessary. We choose 700 as the resolution of the 

Gaussian Curve map. 

 

 (a) Array Size:20 
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   (b) Array Size:130 

 (c) Array Size:700 

Figure 4.9  Smoothness in Different Array Sizes  
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The range of the array is [0, 1.0] according to its index from 0 to 699. The index 

i is mapped linearly on the x-axis within [0, 1.4]. Using a nearest interpolation to get i 

then locate the M[i]. 

   dn = ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

OC
ODroundM 699 *Pn         (4.3) 

Figure 4.10 shows the mapping which is from the deformation plane to the 

Gaussian Curve array. Point C is the intersection of the deformation boundary and the 

extended line of OD. It is the minimum deformation of the Gaussian Curve since it is on 

the boundary. The GC presents the trend of the displacement along OC from minimum to 

maximum. The Gaussian Curve and array mapping is also used in the tangential 

deformation. 

 

Figure 4.10  Gaussian Curve Array Mapping 

O
 

C

D
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4.3  Tangential Deformation 

This is another deformation component, perpendicular to the normal deformation. 

The tangential deformation of the surface is caused by the friction and the movement of 

the palpating object. We again use the Gaussian Curve to calculate the tangential 

displacement of the moved point according to the distance from its original location to 

the contact point in the tangential plane.  

OpenHaptics does not provide the API for obtaining the original contact point 

position, also called the friction anchor, in the condition of the friction defined. But it has 

been derived in Chapter 2 (see point A in Figure 4.11). 

 

 

Figure 4.11  Tangential Deformation in the Circle 

 

The blue-dashed-line mesh is the original model. Black-solid-line is the deformed 

mesh. Pt is the tangent vector of the external force. In this case, the boundary of the 

 

A 

A’ 

Pt 
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deformation is a circle (dashed red). A is the friction anchor and the center of the 

deformation area. A’ is the new position of the moved point A. The displacement vector 

AA’ is the maximum tangential displacement of the surface under the friction effect since 

A is the contact point in this case. The friction Pt at contact point is given as follow, 

Pt= Pn* μ             (4.4) 

where μ is the coefficient of friction mentioned in Section 2.5, and Pn is the force 

in the normal direction at the contact point. The tangential displacement vector at any 

point on the surface is denoted as dt. It is always in the same direction of Pt. Dividing the 

distance, which is from this point to A, by the radius of the circle leads to the location 

ratio for the Gaussian Curve array. We can get the following,  

dt = M[point location ratio]*Pt          (4.5) 

The tangential deformation is computed individually without the effect from the 

normal deformation because all the calculations are based on a static model. The results 

of the displacements in the x, y, and z axes of the normal and tangential directions can be 

vectorially added to the original position. 

The above tangential deformation method is discussed based on the same stiffness 

character as the normal. For variable type subjects or models, the stiffness in the 

tangential direction might be different than the normal direction. In such cases, an 

adjustment factor fadj (depending on the measurement results) can be included in (4.4) by 

multiplication to change the tangential stiffness. 
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Pt= Pn* u* fadj              (4.6) 

For example, loose skin generally moves in a larger range than tight skin. fadj can 

be set as 1.3 for loose skin and 0.7 for tight skin. Figure 4.12 shows the tangential 

deformation on the back mesh. 

 

        

Figure 4.12  Tangential Deformation of Back Mesh Mapping on Gaussian Curve 

 

The left picture of Figurer 4.12 is a part of the back mesh without deformation. 

The right one is the tangential deformation of the back mesh from the viewing direction 

perpendicular to the model surface. 

 

4.4  Point Mapping to Ellipse Plane 

When the deformation shape is assumed as a circle, the location ratio of the point, 
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which is on the surface, for the Gaussian Curve array mapping can be obtained by 

computing the distance to the contact point. But for other deformation boundary shapes, 

we need to predefine the shape plane and project the point from the model surface on that 

plane. Then the location ratio will be computed on this shape plane. The plane is 

perpendicular to the normal of any point on the surface and passes the point. Because we 

will use an ellipse to define the deformation boundary, the conversion from the original 

mesh node onto the deformation shape defined plane is based on an ellipse. It is the same 

manner of the conversion for other shapes on the deformation shape plane. 

Each vertex (point) on the surface and in the ellipse is deformed under an external 

force. In Figure 4.13, J is a vertex on the model surface. The contact point is O. Its 

normal is ON and it is normalized already. 

 

Figure 4.13  Point Projection on Deformation Shape Plane  

 

The ellipse is dashed and the plane is perpendicular to the normal ON. O is the 
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origin of the ellipse. Each vertex on the deformable surface has a predefined ellipse. If 

the contact point is not exact at a vertex, its deformation shape ellipse should be obtained 

by the interpolation of its surrounding ellipses. The normal at this point is also computed 

by the interpolation of its neighboring normals. D is the projection of point J on the 

ellipse plane. We need to get D for the Gaussian Curve mapping. This is an intersection 

problem of a line (containing J) and a plane (containing O). Refer to the method by 

[Bourke, 1991]. 

Denote m as the factor for the line JD. Since |ON| = 1, 

D = J + m * ON             (4.7) 

where m is a real number. D, J and ON are all vectors. 

Solving for m gives 

 m = 
ONON

JOON
•

−• )(  = 
1

)( JOON −•  = )( JOON −•     (4.8) 

Substituting (4.8) in (4.7) gives 

D = J + [ )( JOON −• ] * ON          (4.9) 

At this time, we do not know if D is in the ellipse or not by just calculating |OD|. 

If D is out of the ellipse, it does not deform. Mapping it to Gaussian Curve can tell us 

how much displacement is associated with it. 

The ellipse is defined with its major axis a and the ratio t to the minor axis. Figure 

4.14 shows the projected point D in the deformation ellipse. 
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Figure 4.14  Point Location in Deformation Boundary Ellipse 

 

Major axis: a = |OA|     and     Minor axis: b = |OB|   

The ratio of the x and y axes is t. 

t = 
a
b     

The ellipse equation is below: 

x = a * cos β 

y = b * sin β = a * t * sin β 

To calculate the ratio of the deformation related to the Gaussian Curve, denote it 

as following, 

qe = 
||
||

OC
OD  

This ratio is for an ellipse. Deriving the right expression with the ellipse equations 

gives the following. 
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+− β
        (4.10) 

 

Since 

OAOD •  = |OD| * |OA| * cos β  

     = |OD| * a* cos β          (4.11) 

We get 

  ( OAOD • )2 = |OD|2 * a2 * cos2 β         (4.12) 

 

Substituting (4.12) in (4.10) gives  

     qe = 
||
||

OC
OD  = 

22222

2

||)1()(
||

taODtOAOD
OD

+−•
     (4.13) 

The location ratio qe indicates where the point is in the deformation area. If qe is 

equal to or great than 1.0, the point is on the boundary of the deformation area or out of 

the area. That means no deformation happens at this point. If qe is less than 1.0, this point 
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is in the deformation area and needs to be involved in a deformation calculation. 

qe ≥ 1: on boundary or out of deformation area 

qe < 1: in deformation area 

Since the user can drive the haptic device to slide on the model surface freely, the 

contact point O (see Figure 4.13) may be at an arbitrary position on the surface. But J 

must be one of the vertices of the surface. 

 

4.5  The Neighbor Nodes Ring Algorithm 

In the defined deformation shape method, only the vertices that are in the 

deformation boundary need to be involved in the deformation calculations. The 

deformation region at any position covers a small part of the whole model surface. It is a 

benefit to computational efficiency to just check the vertices around the contact point in a 

small range (not all the vertices of the model). The searching algorithm is based on the 

expanding nodes ring enclosing the contact point (see Figure 4.15). 

 

(4.14) 
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Figure 4.15  Neighbor Nodes Deformation Rings 

 

The red dot O is the center of the ellipse (dashed red) which is the deformation 

boundary. To determine which vertices are in the ellipse, we build node rings with the 

same “center” O. As we know that O is the friction anchor, the method of intersection of 

line and triangle [Sunday, 2003] is employed to find which triangle O lies on. In Figure 

4.13, O is on the triangle with vertices A1, A2, and A3. So the three black round nodes A1, 

A2 and A3 (  ) are treated as the first ring surrounding O. The nodes on this ring should 

be the most possible enclosed in the ellipse than other nodes. The location ratio qe is 

computed for each node of the ring to determine if these nodes are in the deformation 

area. Then create the second node ring surrounding the first ring. Each node of the second 
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ring is adjacent to the first ring. B1-B9, the blue triangles (  ), are treated as the 

second ring. We can see that some nodes of this ring, B3, B6 and B7, are not in the ellipse. 

Continue to construct the expanded rings until no nodes of the ring is in the ellipse.  

Same thing happens on the third ring C1-C15 (  ) that few nodes are enclosed in the 

ellipse. But D1-D13 (  ) is such ring that does not has any node in the ellipse. So the 

deformation calculation stops. This algorithm is summarized in pseudocode as follows. 

 

1:  SearchNodesInEllipse(frictionAnchor, ellipse) 

2:   Determine the triangle ring[1] which the frictionAnchor lies on 

3:   WHILE (true) 

4:    WHILE traverse ring[i] 

5:     qe = calculateLocationRatio(node, ellipse) 

6:     IF qe < 1 THEN   // in the ellipse 

7:      CALL calculateNormalDeformation(node, qe) 

8:      CALL calculateTangentDeformation(node, qe) 

9:     ENDIF 

10:    ENDWHILE 

11:     

12:    IF all qe >= 1 THEN // none node of ring[i] is in the ellipse 

13:     RETURN  // stop searching the nodes enclosed by the ellipse 

14:    ELSE 

15:     Construct the next expended ring[i=i+1] 

16:    ENDIF 

17:    ENDWHILE  

  

This procedure is traversing the rings from the inner ring to outside. Line 7 and 8 

are the main deformation calculation processes. The normal and tangential deformations 

at the vertex (node) are calculated separately and without affecting each other. The 

construction of the node ring, line 15, is computationally costly. In this algorithm, a new 
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vertices list containing all the vertices is created, any vertex has been assigned to the 

ring should be marked and will not be checked for the new ring. Once the traverse of a 

ring finishes, the next ring is created. The rings are stored in a link and the vertex indices 

are stored in a link of the ring. 

The mesh in Figure 4.15 is simple with not many vertices since it is for explaining 

the concept only. The real surface of the model contains a large number of vertices so that 

most of the nodes of the model will be detected not in the deformation area and thus save 

much computational time. 

To get a smooth looking surface of the haptic model, the normal of each vertex is 

pre-computed by averaging the normals of its adjacent triangles. If any triangle is 

changed, the normals of its vertices should be recalculated. A changed triangle list is 

created dynamically to handle the normal recalculation. 

Figure 4.16 presents the deformation on the textured back model. An 

undeformable hand model is used instead of the proxy sphere. This hand model was 

created by MakeHuman and edited by 3DS Max. It has 1418 vertices and 2814 faces 

(triangles). 
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Figure 4.16  Deformation Combined with Normal and Tangential Components 
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The normal and tangential deformations are calculated separately and combined 

together vectorially. The tip of the index finger (the proxy position) is kept on the 

deformed surface 

 

4.6  Maximum Deformation 

Because of the displacement-driven force generation of the haptic interface, the 

haptic tip can be moved a significant displacement (say 20 mm) under a significant force 

(say 5 N) from the user when the proxy is touching the model. It is not realistic if the 

contact point always follows the position of the haptic tip. So the maximum displacement 

of the deformation is defined as follows.  

Denote mn-device to be the displacement of the haptic interface relative to the 

friction anchor in the normal direction (penetration depth). As mentioned in Section 4.1, 

the maximum deformation in the normal direction dn-max is defined as: 

dn-max = 10 mm              (4.15) 

When mn-device is less than dn-max, the displacement of the contact point in the 

normal direction is changed linearly corresponding to the penetration depth of the haptic 

tip. If mn-device is greater than or equal to dn-max, the displacement of the contact point in 

the normal direction is equal to 10 mm. 

 

  dn= mn-device   if  mn-device < dn-max 
(4.16) 
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dn= dn-max   if  mn-device ≥ dn-max 

The maximum tangential deformation dt-max, is similar to the maximum normal 

deformation. We set it as follows. 

dt-max = 20 mm             (4.17) 

and 

  dt= mt-device   if  mt-device < dt-max 

dt= dt-max   if  mt-device ≥ dt-max 

 

4.7  Visualization of Surface Strain 

On the haptic model, color mapping is used to visualize the strain of the deformed 

surface. In Figure 4.17, the original mesh is presented in black solid lines. The mesh 

deforms as driven by the haptic interface. The blue vectors (arrows) present the 

displacements of each vertex. So the strain of point E can be calculated by averaging the 

strains of its neighboring points.  

 

 

(4.18) 
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Figure 4.17  Average of the Neighboring Points Color Mapping For Visualization 

 

E has 6 neighboring points A, B, D, F, H, and I. Red lines show all the joint points 

of E. SE denotes the final strain at E. SAE denotes the strain at E in the AE direction. 

SAE = 
||

|||| 11

AE
AEEA −

            (4.19) 

Then SBE, SDE, SFE, SHE, SIE can be derived in the same manner as (4.19). 

SE = Average( SAE, SBE, SDE, SFE, SHE, SIE )       (4.20) 

The color at vertex E is updated dynamically. SE is mapped to a red-blue color 

diagram. The screen shot of the strain visualization is shown in Figure 4.18. The red area 

presents the part of the surface under tension and the intensity of the color indicates the 

intensity of the strain of this area. The blue area indicates the part of the surface under 

compression and the intensity of the strain. 
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Figure 4.18  Strain Visualization of the Surface Deformation 
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5.  Defined Deformation Boundary Shape 

In the previous chapter, the curve matched deformation is defined continuously 

between the maximum and minimum deformed points. For standard elastic materials 

(linear or nonlinear), it is reasonable to set the maximum deformed point always at the 

contact point and the minimum deformed point is always on the boundary of the 

deformation (zero displacement). For materials with uniform properties and only normal 

external forces, the displacement contours on the surface should be concentric circles 

because the deformation is the same mapping on the deformation curve when the distance 

to the center (the contact point) is the same. So the deformation boundary is a circular 

contour with zero displacement. 

On the human body, the skin is relatively thin and can be treated as an isotropic 

elastic membrane. Under the skin, the muscles and the bones are the main structures that 

affect the deformation. Muscle is a very elastic soft tissue [McKinley, 2005]. Because the 

lay of muscle (including tendon) is between the skin and the bone, and it is much thicker 

than skin, it is much more important part involved in the deformation than bone. In the 

anatomy picture of the human back (Figure 5.1) the muscles on the back are not isotropic 

and are located in different directions. The deformation contour on the muscle is not 

circle for this reason. 
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Figure 5.1  Human Back Muscles and Seven Key Points 

(Back Muscle Picture is from www.dkimages.com) 

 

In order to calculate the deformation with the shape matched algorithm, the 

deformation boundary needs to be predefined. The deformation boundaries vary at 

different points on the back depending on the muscle directions. So a boundary shape 

map has been created for each vertex of the haptic back model.    

 

5.1  Deformation Shape Study of Human Back and Simplification Method 

In deformation experiments with human subjects, we found that the shape of 
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tangential deformation on the skin under friction is irregular, not a circle or other regular 

shape. Few reports about the deformation characters of the soft tissue can be found in the 

literature. The physical properties of soft tissue and muscle vary and are dependent on 

gender, age, and body type, etc. When we studied the deformation on the human back, an 

obvious phenomenon of the deformation shape was observed: the deformation region 

along the direction of the muscle is usually greater than in other directions. So this feature 

can be considered as an ellipse instead of a circle because an ellipse has a major axis 

which is longer than the minor axis. The average data from several subjects are used for 

this research. The data can be adjusted or re-measured depending on the user’s needs and 

the specified part of the human body. We measured the back deformations on five 

subjects. 

Figure 5.1 shows the locations and the directions of the back muscles. It also 

shows the key points that are chosen for the measurement of the deformation shape. 

The external back muscles mainly includes the trapezius (on both sides of back 

points P1P2, see Figure 5.1), teres minor, teres major (around P4 and P6), and latissimus 

dorsi (around P5 and P7) [McKinley, 2005]. The trapezius and latissimus dorsi cover 

about 3/4 of the back. So, in Figure 5.1, P1, P2, P3, P5, and P7 are marked as five typical 

deformation points. P1, P2 and P3 are on the mid line. They are located at thoracic 

vertebrae T5 and T10 and lumbar vertebra L2. P5 and P7 are on the perpendicular bisector 

of P2P3 and 10 cm from P2P3. However, teres minor and teres major are small and 
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complex muscles. So P4 and P6 are marked in this area on both sides of the back. They 

are on the perpendicular bisector of P1P2 and 10 cm from P1P2. Since P4, P6 and P5, P7 

are two pairs of symmetrical points, they have similar deformation shape properties. 

Therefore, only five points P1, P2, P3, P4 and P5 were measured. 

Figure 5.2 presents the measurement method and the back deformation contours 

on a subject. 

 

         

Figure 5.2  Two Deformation Contours at P2 

 

In this experiment, the subject was prone on a firm table. A fixed camera took 

pictures of the back from the top. The back of the subject was marked in red dots with a 

grid size of 3×3 cm. A stick (left picture) with a round tip, which is about the size of a 

finger, was used to apply the force to the back to avoid blocking the red dots from the 

camera. Two static pictures were taken separately, before and after the force was applied. 
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During this time, the subject was asked to hold his breath for about 5-10 seconds to 

keep the whole body steady under the force. After taking the first picture, the force was 

applied at the key point on the subject’s back using the stick in 45 degrees to horizontal 

and towards the shoulder. The force direction is shown as a small light blue arrow in the 

right picture of Figure 5.2. The force execution was stopped until the stick could not 

move the skin at which time the second picture was taken. The experiment was repeated 

on the same subject, with the applied force in the opposite direction (toward the waist). 

To view the displacement of each dot, these two pictures were compared by 

overlapping the dots of the second picture (only pick the red dots from the second picture) 

on the first picture. The black dots in the right of the Figure 5.2 are from the second 

picture. These dots were red originally and were changed to black to distinguish from the 

dots in the first picture. We identified the dots with the same displacements and 

connected them to be a displacement contour. All dots of the red contour represent 2 mm 

displacement. The blue contour is for reference, presenting the deformation shape around 

the contact point. 

It is difficult to find the zero displacement contour because, in some cases, almost 

all points on the back skin were moved, even points far from the contact point. Therefore, 

when the zero-displacement points were connected by lines, the shape is not an ellipse 

but some irregular shape whose border may cross the neck, shoulder and waist. So we set 

a threshold, 2 mm, of the displacement to be considered as a zero deformation boundary. 
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The red polyline in Figure 5.2 is such a zero-deformation contour. The long axis of this 

shape was measured to be the major axis of the deformation ellipse, and the major axis 

direction was also recorded. The short axis perpendicular to the long axis was measured 

as the minor axis of the ellipse. Each ellipse is described such that the major axis is 

upward, within ±90º to the positive y-axis. The minor axis is within ±90º to the positive 

x-axis. The definition of the deformation ellipse at the key point, named Pi, is presented 

in the following format. 

KeyEllipse[Pi] { x, y, z, ri, ti, di}          (5.1) 

where  

x, y, z:  Location of Pi, center of the ellipse 

ri:   Half length of major axis  

ti:   Ratio of major axis over minor axis 

di:   Direction (in degrees) of the major axis to the positive x-axis 

 

The experimental human back deformation data is attached in Appendix C. The 

results of the deformation ellipses at P1, P2, P3, P4, and P5 are shown in Figure 5.3. They 

were computed by averaging the results of the measured data at each key point. 
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Figure 5.3  The Deformation Ellipses at the Key Points 

(Back Muscle Picture is from www.dkimages.com) 

 

The ellipses of P6 and P7 are assumed to be symmetrical to P4 and P5. They were 

not tested so they are not presented in Figure 5.3. The deformation ellipses at the seven 

key points lie far from each other. When the deformation is at any point except key points, 

the ellipse has to be obtained by interpolation. Because the contact point must locate on a 

triangle combined with three vertices and the triangle size is very small (the edge is 

around 5 mm), the deformation ellipse at the contact point is considered equal to its 

nearest vertex. An ellipse map has been built for each vertex of the back mesh based on 
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P1 35.8 1.13 90.0 

P2 29.8 1.05 90.0 

P3 26.6 1.23 180.0 

P4 35.8 1.36 99.4 

P5 28.4 1.31 121.0 
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the seven key points. Therefore each vertex of the back model has a deformation ellipse 

definition stored in the vertex struct. This map is created in pre-processing. 

5.2  Interpolation of the Deformation Ellipses 

The contact point is computed dynamically on the octree model. The deformation 

ellipse at the contact point should change during the movement of the haptic device. 

Since the neighboring vertices are already stored, the ellipse can be determined quickly 

by obtaining directly from its nearest vertex. The ellipse of each vertex is determined by 

the seven key points. The Gaussian Radial Interpolation (GRI) algorithm is developed to 

calculate the parameters of the deformation ellipse at each vertex of the back model. If no 

key points are defined in advance, the deformation boundary is always assumed as a 

circle. 

 

5.2.1  Problem Statement 

We have assumed that the physical changes are continuous on the haptic back 

model. So the changes of the deformation shapes are continuous and gradual. In the 

definition of the deformation ellipse (5.1), the length of major axis (r), ratio (t) and 

direction (d) are the three variables of the ellipse according to its location (x, y, z). All the 

ellipses are defined and computed in a 2D plane. They will be mapped on the 3D haptic  
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model at each vertex. Since few key points have been measured, the deformation 

ellipses in other locations need to be generated by GRI. 

Before the interpolation, a uniform back with a constant deformation circular 

shape was assumed because we assume that the ellipses at the key points are the effect 

factors to a normal material with homogenous physical properties. Put the key ellipses on 

the uniform back (basic deformation map); the final ellipse at any point on the new map 

is then generated by the interpolation algorithm with the constant circle and the key 

(affecting) ellipses. 

 

Figure 5.4  Key Deformation Ellipses in the Uniform Deformation Area 

 

For example, in Figure 5.4, the blue circle with center C is the constant basic 

circle of the map. This pre-defined deformation circle (deformation shape base) is same 

and everywhere in the basic map. To get the new deformation shape at point C, we need 
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to calculate the shape change of the blue circle under the effects by ellipses A and B. 

AA1 and BB1 are the vectors indicating the half major axis of ellipses A and B. 

Assume that the measured ellipses at the key points are the true deformation 

boundaries. The new (final) deformation shape map should satisfy the following 

conditions. 

1) The shapes at the key points are the same as the measured ellipses. 

2) A key point affects other points only when they are in a certain range around 

the key point. The effects of the different key points can be stacked. 

3) The effect level of the key point is from maximum to zero in a gradual 

decline trend in its range. 

4) The shape at a point without any effect of the key point is the basic circle. 

 

5.2.2  Radial Interpolation Based on Gaussian Curve 

The definition of the circle C is similar to the deformation ellipse (5.1). The 

differences of circle C are that its ratio is always 1.0 and major axis direction is always 

90º (upright, see vector CC0 in Figure 5.4). The basic circle is expressed as follows. 

BasicCircle { x, y, z, rc, tc, dc}           (5.2) 

where 

x, y, z : Position of the point (vertex of the model) 

rc :   Radius of the basic circle 
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tc :   1.0 

dc :   90º 

The deformation shape definition at any desired point is similar to the key ellipse 

and presented in the following. 

DeformationShape { x, y, z, R, T, D}          (5.3) 

In the interpolation method, the effect of the key point is from maximum to zero, 

restricted in a limit range when the effect declines with increasing distance. In Figure 5.5, 

suppose that A and B are two key points that have been measured for the deformation 

boundary ellipses. C is a vertex of the back model. The interpolation algorithm will 

generate a new ellipse at C. Ellipse A is close to point C so that it affects C. But ellipse B 

is further from C, say somewhere outside of a circular range (the dashed green), so that 

the deformation shape at C should not be affected by the ellipse B. Let’s define a circle 

with radius e to be the boundary of the effect region. e is constant on the haptic back 

model. It is an estimated value from the experiments. 
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Figure 5.5  Effect Region Circle and Gaussian Decline Trend Curve 

 

The blue (solid) circle at center C is the basic circle. The shape at this point 

becomes the red ellipse, the new deformation shape with major axis (half) CC1, under the 

effects of ellipses A and B. Because we can notice that ellipse B is out of the effect region, 

it should not affect the shape at C. But ellipse A is in the effect region and affects C. So 

the red final ellipse at center C is similar to ellipse A in size and direction. Since r, t and d 

are the individual parameters in the deformation shape definition, they are computed 

separately by the same interpolation algorithm. 
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To get smooth interpolation, a Gaussian Curve is used again to be the 

attenuation trend for the effect level of the key ellipse (see Figure 5.6). 

 

Figure 5.6  Effect Depending on the Distance 

 

A Gaussian curve is drawn in solid from the center to the border of the effect 

region circle. P1 and P2 are in the effect region of center P so that they affect P. And P is 

closer to P1 than P2. So P1 affects P more than P2 does; a1=0.1 and a2=0.5 indicate the 

effect levels. Since P3 is out of the range, it does not affect P and a3 is zero. 

Figure 5.7 shows the Gaussian mapping within the effect range in Figure 5.6. 

Gaussian curve array is used again. The ratio of the distance over the effect radius is 

mapped to the index of the array to get the effect level. 
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Figure 5.7  Gaussian Curve Mapping for the Effect Level 

 

Denotations: 

a1 = g(P1) Effect level from P1 at P according to the distance of PP1 mapped 

on the Gaussian curve 

a2 = g(P2)  Effect level from P2 at P according to the distance of PP2 mapped 

on the Gaussian curve 

  rc    Radius of the basic circle (constant) 

 ri = r(Pi) Half length of the major axis of the ellipse at the key point Pi 

 Vi    Half length of the major axis at P only affected by key point Pi 

R(P) : Final result of the half length of the major axis at P under the 

effects of the all key points (P1, P2, P3 ……) 

The major axis interpolation is derived as follow.  

To get the result V1 at point P with the effect from P1, between two points, the 

linear interpolation is suitable for this situation. The distance between P and P1 is the 
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effect factor and be mapped to the normalized Gaussian curve.  

If |PP1| > e (effect radius), P1 does not affect P.  

If |PP1| ≤ e, P1 affects P corresponding to the Gaussian curve show in Figure 5.7. 

The linear interpolation is written as follow. 

V1= 111 )1( ararc +−              (5.4) 

In this case, there is only one effect point locating in the deformation effect circle. 

When there are more than one effect points, the final value V is a combination of all the 

effect points depending on the effect weight of each point. Apply the linear interpolation 

again to compute the final major axis: 

R(P)= V1
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a
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   (5.5) 

For example, in Figure 5.6, there are two deformation ellipses P1 and P2 in the 

deformation effect circle P and one deformation ellipse P3 is out of this circle. The half 

length of the major axis of final deformation shape (ellipse) is obtained as follows. 
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The above derivation just involves two ellipses. For an arbitrary case with any 

number (n) of points, R is: 
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Substituting g(Pi) for ia  in (5.7) gives: 

R(P) = [ ]∑
∑=

= ⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
n

i
n

j
j

i
iiic

Pg

Pg
PgrPgr

1

1

)(

)(
)())(1(       (5.9) 

Substituting r(Pi) for ri in (5.9), we get: 
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This is the result about the half major axis of the effected ellipse at the desired 

point P. But for efficient computation, the equation is chosen by the previous one (5.9).  

A problem was found in this algorithm. The result at the key point is not equal to 

its original values (key ellipse). For instance, at P1, its original length of the half major 

axis is 120. The effect level from P1 (itself) is 1.0 because effect distance is 0. And then, 

at this point, we expect the result 120. But the equation (5.10) gives 112. That is not 

correct because in the satisfied conditions of the interpolation, the key point should keep 

its original value. In this case, the effect from P1 is full effect to itself. The effects from P2 
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(say, effect level = 0.26) and P3 (say, effect level = 0.18) should affect P1. The previous 

method needs to be adjusted. 

When the effect factor of P1 is 1, the effects from other points should be 0. But 

the sum of the effects should be still 1. To achieve this goal, some correction factors are 

added to each element of the numerator and denominator in (5.5); see the following 

derivation. 
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All the denominators in (5.11), (5.12), and (5.13) are same. Only their numerators 

are different. The sum of the fractions is equal to 1. 

In (5.11), at point Pn, the numerator is 0 because the last element )1( na−  is 0. So 

the result of (5.11) is zero. In the same manner, (5.12) gives zero too. But in (5.13), the 
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numerator is non-zero and the denominator just has the same thing left as the numerator 

(the other elements are 0 in the manner described). So the fraction in (5.13) is 1. The 

result about (5.11) and (5.12) all give 0. Only in (5.13) is Vn*1=Vn. This way guarantees 

the interpolation result at the specified point keeping to its original value and reducing the 

effects from other point to zero. 

Use a denotation to simplify the expression of the element in the former 

equations: 
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where  i∈[1, n], 

This denotes a continuous multiplication operation without including the ith 

element. For example, 
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So (5.11) can be modified to: 
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Substituting [ ]iiic arar +− )1(  for Vi in (5.15) gives 
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Substitute g(Pi) for ia  in (5.16), we get 
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The following example uses (5.7) and (5.16) for the interpolations. The results are 

compared. In Figures 5.8, in a square area with size 500×500 mm, there are three 

deformation boundary shape ellipses E1, E2 and E3 at key points O1, O2 and O3 on the 

y-axis. And the z-axis (outward from the paper, not presented in the figure) indicates the 

length of half the major axis of the deformation ellipse. As we assumed before, in this 

square, it is a uniform base initialized with a constant deformation circle. In this example, 

the value of the basic circle radius is presented in z-axis. In the same manner, the lengths 

of major-axis of the ellipses are presented in z-axis also 
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Figure 5.8  Effect Ellipses in a Square Area  

 

Table 5.1 list the locations and the lengths of the major-axis of the ellipses in 

Figure 5.8. 

Table 5.1  Major Axes of the Ellipses at Key Points 

Ellipse Center (x, y) Half Major Axis (z) 

E1 O1 (0, 150) 120 

E2 O2 (0, 60) 120 

E3 O3 (0, -30) 120 

 

Suppose that the radius of the basic circle is 90 and the effect region radius is 400. 

rc=90,  e=400 
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Use the method of (5.7) to interpolate with these three key ellipses in the 

uniform 500×500 mm area; we got the result shown in Figure 5.9. The value in the z-axis 

indicates the result of the half major axis value in this square area. The right picture is the 

view seen along x-axis (projected on y-z plane). We can see that R( E1)=115, but it should 

be 120 as its original value. And R( E2)=112, but it should be 120 also. 

 

    

Figure 5.9  Results do not Fit the Key Points 

 

     

Figure 5.10  Interpolated Results Satisfies All the Key Points 
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Figure 5.10 shows the results after using the interpolation of (5.16). The results 

at E1, E2, and E3 are 120 and all keep their original values at the key points. This 

interpolation can generate the map with accurate match at the key points and continuous 

gradient of z. 

The algorithm of (5.16) is applied to the deformation simulation in this 

dissertation research. Figure 5.11 presents a map of the length of the half major axis of 

the deformation shape on a real back. It is based on seven key measured points. Red area 

indicates that the half major axis is greater than the normal value (base value), and the 

blue area around the waist means that the major axis is less than the base value. 

 

 

Figure 5.11  Map of Major Axis on Real Back Based on 7 Key Points 

 

Since the last three components (r, t, and d) of the deformation shape are defined 

separately, the maps of ratio (t) and direction (d) are created separately too. These maps 
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are pre-computed and static in the haptic simulation. Each vertex of the model contains 

the deformation ellipse information converted from these maps.  

 

5.3  Ellipse Conversion from Deformation Shape Map to 3D Model 

The deformation ellipse at each vertex of the model is converted from the 

deformation ellipse map and stored. At the vertex, the ellipse plane is perpendicular to the 

normal as presented in Figure 4.13. The ellipse is stored in the following format. 

EllipseAtVertex{Position, Normal, HalfMajorAxis, Ratio}     (5.17) 

where 

Position:  Vertex location (x, y, z) 

Normal:   Normalized normal vector (3D) at the vertex 

HalfMajorAxis: Half major axis vector (3D) of the ellipse 

Ratio:   Major axis over minor axis of the ellipse, real number 

Since the deformation ellipse map is created in 2D plane, the ellipse at 3D 

vertices needs to be converted from the map. In the ellipse definition (5.17), Ratio is a 

real number so that it can be used directly, only HalfMajorAxis (OA in Figure 4.13 of the 

ellipse needs to be converted from the map. Figure 5.12 shows the projection 

relationship between the model and the deformation shape map. 
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Figure 5.12  Projection from Model to Deformation Map Plan 

 

The right image of Figure 5.12 is the deformation shape map which is 

perpendicular to the z-axis. The ellipse conversion procedure is model→map→model. 

First, a vertex Vm of the model is projected, along the positive z-axis, on the map 

named Pe. And then the ellipse, defined in (5.1), at Pe is calculated on the map by using 

the GRI algorithm discussed before. 

Second, calculate the vector HalfMajorAxis of (5.17) by using the half length 

major axis and direction of (5.1). This is a conversion from the 2D map to a 3D model. 

The half major axis of the ellipse on the map can also be expressed as a vector. Project 

this vector, along the negative z-axis, on the tangent plane at Vm of the model. The new 

vector on the tangent plane is considered as HalfMajorAxis. 
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6.  Conclusions and Future Work 

6.1  Summary and Conclusion 

In this dissertation, the current deformation algorithms in graphics modeling are 

summarized. We then present a new algorithm FSMD about the deformation modeling 

for haptic applications. The computation of deformation is always based on the 

movement of the contact point when the haptic interface touches the model. Since the 

haptic modeling requires real-time response, to achieve faster interaction, BSP and octree 

have been implemented to divide the model into subspaces. The performances of both 

partitioning methods were analyzed and compared. In the haptic rendering and contact 

point detection, octree performs better in time complexity than BSP so that it is 

considered best to be applied to the VHB project. Then a fast search algorithm is 

described with HDB to find the contact point based on the octree model. So The octree 

optimizes the data structure of the haptic model and increases the haptic rendering 

performance significantly. 

To develop a new deformation method on the haptic model, the deformation 

characteristics of the human back were measured and analyzed. Since the Gaussian curve 

has some features that are similar to the deformation of a continuous elastic material, it is 

employed for the FSMD and the deformation shape map generation. FSMD is discussed 

in details of normal and tangential deformations. The displacement of each deformed 



 141

vertex is along the direction of the haptic interface penetration. The mapping method on 

the predefined deformation curve is simplified. We explained the anisotropic 

characteristics of the back model because of the different directions of back muscles. So 

an elliptical deformation boundary is proposed. The distance ratio to the contact point is 

then used to map on a Gaussian curve. The vertex of the 3D model needs to be projected 

on its deformation ellipse plane. The projection result of the derivation from the vertex 

location to the Gaussian Curve is not complicated. Finally, the computation time is 

satisfied on VHB. The haptic rendering rate on the model with 20389 triangles was 

recorded as 26 FPS on average (the program was executed on a desktop with a P4 

3.4GHz CPU, 2GB Memory, and GeForece6500 256MB video card). For the 

pre-computed deformation map, an accurate interpolation algorithm was suggested. We 

defined and measured seven key points on human backs to generate a big map with the 

deformation ellipse of each vertex of the model. This interpolation method can guarantee 

that the map passes every key point and changes in a smooth gradient. This deformation 

algorithm is based on some simplified algorithms and the measured data from real 

subjects. The deformation boundary shape and the deformation curve can be specified on 

different part of the body depending on the measurement results. The advantages of 

FSMD are fast, measurement data based, and adaptable. Disadvantages are linear 

elasticity simulation, no affections from bones. 
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6.2  Recommendations for Future Work 

A few possible goals are suggested for future work. 

1) The deformation curve can be mapped combined with skin and contour lines 

of the bones because the bones might affect the deformation cross-section when the 

surface is close to bone. We found that the normal deformation boundary is smaller than 

the tangential deformation boundary. For the normal deformation computation, the ellipse 

size can be reduced. That also decreases the number of the vertices involved in the 

deformation ellipse and saves computation time. 

2) Since human tissue displacement is nonlinear, nonlinear stiffness should be 

used. A Gaussian Curve might be used to present the trend of the stiffness change from 

zero to maximum displacement at the contact point. 

3) The deformation boundary shape is defined as an ellipse in this dissertation. 

It is a regular shape. But the real boundary is dependant on the shoulders, arms, neck, and 

waist because the skin is easily moved under the palpation forces even when the touch 

point is far from the deformation area of interest. The deformation shape map should 

include these effects. At each vertex the deformation boundary may be irregular. A new 

projection method is needed to convert the deformation shape from the map to the vertex. 

4) The efficiency of haptic rendering might be improved if a linear link to save 

the triangles intersected with the HDB is added. A hybrid octree can be considered for 

this.  
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Appendix A.  Models for the Research 

These models are used in this research to test the BSP and octree algorithms. The 

numbers of the vertices (ver) and triangles (tri) of each are listed. 

 

       

ver:1494 tri:2915    ver:1588 tri:2962   ver:3245  tri:6261 

 

     

ver:4164 tri:8163    ver:10303 tri:20389  ver:21082 tri:41582 
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ver:1418 tri:2818       ver:1401 tri:2786 
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Appendix B.  Haptic Rendering Performance in Octree Model 

In the haptic process of the octree partitioned model, the triangles drawing, 

untouched and touched haptic renderings were measured. The original data are attached 

here. 

No Haptic API 
( Triangle Drawing ) 

Untouched 
( Triangle Drawing, 
Collision Detection ) 

Touched 
( Triangle Drawing, 
Collision Detection, 
Force Generation ) 

# of Rendered 

Triangles 

Time 

(ms) 
FPS 

# of Rendered 

Triangles 

Time 

(ms) 
FPS 

# of Rendered 

Triangles 

Time 

(ms) 
FPS 

1373 2.6 385 1373 6.3 160 1696 9.5 105 

3507 5.4 184 3675 13.9 72 3552 15.6 64 

6580 9.6 104 6466 24.4 41 6488 30.3 33 

8415 11.8 85 8550 35.7 28 8482 40.0 25 

10830 14.9 67 10928 43.5 23 10464 55.6 18 

12987 17.9 56 13219 55.6 18 12788 71.4 14 

14481 19.2 52 14615 62.5 16 13981 83.3 12 
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Appendix C.  Back Deformation Ellipses Measurement Data 

The data were obtained from the measurement about the zero-deformation 

contour at five of the seven key points. The experiments were taken on five subjects. 

Force 
Direction Point  Subject Major Axis 

(cm) 
Minor Axis 

(cm) 
Ratio 

(Major/Minor) 

Degree 
(Major Axis 

to x-axis) 

 

Up 

1 

1 42 32 1.313 90 

2 35 33 1.061 90 

3 34 32 1.063 90 

4 36 33 1.091 90 

5 32 28 1.143 90 

Ave 35.8 31.6 1.134 90.0 

2 

1 33 27 1.222 90 

2 28 28 1.000 90 

3 23 28 0.821 90 

4 35 31 1.129 90 

5 30 28 1.071 90 

Ave 29.8 28.4 1.049 90.0 

3 

1 26 18 1.444 180 

2 28 28 1.000 180 

3 29 21 1.381 180 

4 26 21 1.238 180 

5 24 22 1.091 180 

Ave 26.6 22.0 1.231 180.0 

4 

1 36 25 1.440 95 

2 35 29 1.207 87 

3 41 29 1.414 135 

4 38 27 1.407 90 

5 29 22 1.318 90 

Ave 35.8 26.4 1.357 99.4 

5 

1 26 20 1.300 145 

2 30 24 1.250 90 

3 34 24 1.417 140 

4 27 20 1.350 155 

5 25 20 1.250 75 

Ave 28.4 21.6 1.313 121.0 
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Force 
Direction 

Point  Subject 
Major Axis 

(cm) 
Minor Axis 

(cm) 
Ratio 

(Major/Minor) 

Degree 
(Major Axis 

to x-axis) 

Down 

1 

3 27 28 0.964 90 

4 32 28 1.143 90 

5 23 25 0.920 90 

Ave 27.3 27.0 1.009 90.0 

2  

3 39 31 1.258 90 

4 36 31 1.161 90 

5 33 26 1.269 90 

Ave 36.0 29.3 1.230 90.0 

3  

3 28 21 1.333 180 

4 31 32 0.969 180 

5 25 25 1.000 180 

Ave 28.0 26.0 1.101 180.0 

4  

3 35 27 1.296 60 

4 38 30 1.267 45 

5 32 25 1.280 100 

Ave 35.0 27.3 1.281 68.3 

5  

3 33 33 1.000 90 

4 46 34 1.353 85 

5 37 24 1.542 90 

Ave 38.7 30.3 1.298 88.3 

 

The final results are obtained from the averages in the table of the up force 

direction because it is typical and similar to down. 

  P1 P2 P3 P4 P5 

Major 
Axis (mm) 

358 298 266 358 284 

Ratio 1.134 1.049 1.231 1.357 1.313 
Degree 90.0 90.0 180.0 99.4 121.0 

 




