
SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION

ALGORITHM FOR INTERACTIVE HAPTIC MODELING

A dissertation presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Doctor of Philosophy

Wei Ji

November 2008

© 2008 Wei Ji. All Rights Reserved.

 2

This dissertation titled

SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION

ALGORITHM FOR INTERACTIVE HAPTIC MODELING

by

WEI JI

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Robert L. Williams II

Professor of Mechanical Engineering

Dennis Irwin

Dean, Russ College of Engineering and Technology

 3

Abstract

JI, WEI, Ph.D., November 2008, Computer Science

SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION

ALGORITHM FOR INTERACTIVE HAPTIC MODELING (161 pp.)

Director of Dissertation: Robert L. Williams II

This dissertation focuses on the fast rendering algorithms on real-time 3D

modeling. To improve the computational efficiency, binary space partitioning (BSP) and

octree are implemented on the haptic model. Their features are addressed in detail. Three

methods of triangle assignment with the splitting plane are discussed. The solutions for

optimizing collision detection (CD) are presented and compared. The complexities of

these partition methods are discussed, and recommendation is made. Then the

deformable haptic model is presented. In this research, for the haptic modeling, the

deformation calculation is only related to the graphics process because the haptic

rendering is invisible and non-deformable rendering saves much computation cost. To

achieve the fast deformation computation in the interactive simulation, the functional

shape matched deformation (FSMD) algorithm is proposed for the tangential and normal

components of the surface deformation. The benefit of the octree model is taken for

searching the deformed area. To simplify the boundary of the deformed region, an ellipse

deformation map is created based on the experimental data. The Gaussian radial

 4

interpolation (GRI) is developed for building this map which is pre-computed. The

FSMD algorithm is tested and considered feasible for the virtual haptic back (VHB)

project. Moreover, some recommendations for the future work are suggested.

Approved: ___

Robert L. Williams II

Professor of Mechanical Engineering

 5

Acknowledgments

I would initially like to thank my advisor Dr. Robert Williams for his constant

support and insightful guidance for my master and doctoral studies throughout the past

five years. He has provided me excellent opportunities to work with the virtual haptic

back (VHB) research team. His theoretical knowledge helped me to solve many problems

in my research work. I am deeply impressed by his patience and kindness. I would also

like to express my thanks to Dr. John Howell, my college representative, for his support,

many valuable suggestions on my research and his daily organization on the VHB project.

I love working with him because of his enthusiasm for research and humor.

I would additionally like to thank the members of my committee, Dr. Jundong Liu,

Dr. Chang Liu and Dr. Frank Drews, for their instructions and time on my research. The

knowledge gained from them will be my lifetime fortune. I, of course, am grateful to Dr.

Sergio Lopez-Permouth for accepting to be my college representative and reviewing my

dissertation. Many thanks go to the members of the VHB team: Bob Conatser, Ernur

Karadogan, Meng-Yun Chen, Bajaj Kapil, David Noyes and Dr. Janet Burns.

Finally, I express my deep thanks to my wife, Yan, and my two-year-old daughter,

Eulina, for their love and support. Also I especially thank my parents and my sister for

their encouragements.

 6

Table of Contexts

Abstract ... 3

List of Tables ... 9

List of Figures ... 10

List of Abbreviations... 13

1. Introduction .. 14

1.1 Background of Deformation in Virtual Reality (VR) ... 14

1.2 The Need for Deformation in the Virtual Haptic Back (VHB) Project 16

1.3 Haptic and Graphic Renderings ... 18

1.3.1 Haptic Rendering ... 18

1.3.2 Graphic Rendering ... 21

1.4 Literature Review ... 23

1.4.1 Deformation Algorithms .. 23

1.4.1.1 Shape Interpolation (SI) .. 23

1.4.1.2 Free-Form Deformation (FFD) ... 24

1.4.1.3 Skeleton-Subspace Deformation (SSD) .. 26

1.4.1.4 Mass-Spring Model (MSM) .. 27

1.4.1.5 Finite Element Method (FEM) .. 29

1.4.1.6 Collision Detection (CD) ... 30

1.4.2 Space Partition Methods .. 31

1.4.2.1 Binary Space Partitioning (BSP) ... 31

1.4.2.2 Octree Partition .. 32

1.4.3 Major Area Discussions of Deformation Modeling 32

1.5 Research Objectives ... 37

1.6 Dissertation Organization ... 38

2. Related Research Work .. 41

 7

2.1 Haptic Model, Stiffness Map and Stereo Viewing System 41

2.2 Displacement Driven Force and Proxy Sphere ... 45

2.3 Non Deformable Modeling in Haptic Rendering ... 47

2.4 Friction Effect in Tangential Deformation ... 49

2.5 Utility Libraries and Platform .. 51

3. Spatial Partitioning for Fast Rendering .. 52

3.1 Data Structure of the Haptic Model .. 54

3.2 Rendering Performance Measurement ... 56

3.3 Binary Space Partitioning (BSP) for Haptic Rendering 57

3.3.1 Construction of BSP Tree .. 57

3.3.2 Triangles Distribution .. 62

3.3.3 Haptic Detecting Box (HDB)... 65

3.3.4 Performance and Complexity Analysis .. 70

3.4 Octree for Haptic Rendering .. 75

3.4.1 Haptic Triangles Detection .. 78

3.4.2 Complexity Analysis .. 79

4. Functional Shape Matched Deformation ... 84

4.1 Deformation Shape on Elastic Material ... 85

4.2 Normal Deformation .. 90

4.2.1 Normalized Gaussian Curve Mapping Array ... 94

4.3 Tangential Deformation .. 99

4.4 Point Mapping to Ellipse Plane .. 101

4.5 The Neighbor Nodes Ring Algorithm .. 106

4.6 Maximum Deformation ... 111

4.7 Visualization of Surface Strain ..112

5. Defined Deformation Boundary Shape ...115

5.1 Deformation Shape Study of Human Back and Simplification Method116

 8

5.2 Interpolation of the Deformation Ellipses .. 122

5.2.1 Problem Statement ... 122

5.2.2 Radial Interpolation Based on Gaussian Curve ... 124

5.3 Ellipse Conversion from Deformation Shape Map to 3D Model 138

6. Conclusions and Future Work .. 140

6.1 Summary and Conclusion .. 140

6.2 Recommendations for Future Work ... 142

References ... 143

Appendix A. Models for the Research ... 157

Appendix B. Haptic Rendering Performance in Octree Model 159

Appendix C. Back Deformation Ellipses Measurement Data 160

 9

List of Tables

Table 3.1 Haptic and Graphic Rendering Rates on Different-sized Models ………… 53

Table 3.2 Haptic Rendering Performance of the Binary Tree Model …...…………… 71

Table 3.3 The Worst w Related to the Binary Trees in Different Heights …………… 74

Table 3.4 The Worst w Related to the Octrees in Different Heights ………………… 80

Table 4.1 Features of the Existing Deformation Algorithms ………………………… 85

Table 4.2 Comparison of GC, Cos, and Log Functions ……………………………… 91

Table 5.1 Major Axes of the Ellipses at Key Points ……………………………… 135

 10

List of Figures

Figure 1.1 Virtual Haptic Back (VHB) Project .. 17

Figure 1.2 Haptic and Graphic Renderings .. 19

Figure 1.3 Back Skin Deformation in Cross Section ... 21

Figure 1.4 Shape Interpolation (SI) ... 24

Figure 1.5 Free-Form Deformation (FFD), [Sederberg, 2004] 25

Figure 1.6 Collapsing Joint in SSD [Lewis et al., 2000] ... 27

Figure 1.7 A Portion of a MSM ... 28

Figure 1.8 FEM Applied on a Deformed Metal Part ... 29

Figure 2.1 VHB Models with Skeleton (left) and Skin-Textured (right) 42

Figure 2.2 The Original High Resolution Back Surface Built by 3D Camera 43

Figure 2.3 Statistic Stiffness Map of Human Back .. 44

Figure 2.4 3D Stereo Viewing System for the VHB Project .. 45

Figure 2.5 Force Generation of the Haptic Interface Depends on the Displacement 46

Figure 2.6 Deformation in Haptic Rendering Changes the Stiffness 47

Figure 2.7 Friction Anchor ... 50

Figure 3.1 Plots for Table 3.1 ... 53

Figure 3.2 The Back Mesh ... 55

Figure 3.3 Performance Measurement of the Haptic and Graphic Renderings 57

Figure 3.4 Binary Partition Aligned x, y and z Axes on the Model Mesh 59

Figure 3.5 BSP Tree of the Back Model .. 60

Figure 3.6 Splitting Planes and Leaf Boxes of the BSP Tree .. 62

Figure 3.7 Three Cases of a Splitting Plane Crossing the Triangles 63

Figure 3.8 Leaf Borders of the Case C .. 65

Figure 3.9 Haptic Triangles When the Proxy is Closing to the BSP Bunny 69

 11

Figure 3.10 Plots for Table 3.2 ... 71

Figure 3.11 Traversed Nodes in the Worst Case of w .. 74

Figure 3.12 Octree Partition on the AABB .. 76

Figure 3.13 Leaf Boxes of the Octree on the Haptic Models .. 76

Figure 3.14 Triangles Intersection with Bounding Box of the Node 78

Figure 3.15 HDB is Closing to the Octree Back Mesh, Few Leaves Rendered 79

Figure 3.16 Haptic Triangles Drawing without Haptic APIs Involved 82

Figure 3.17 Haptic Rendering Rate in Untouch Condition .. 82

Figure 3.18 Haptic Rendering Rate in Touch Condition ... 82

Figure 4.1 Deformation Cross Section on Soft Object .. 86

Figure 4.2 Deformation Due to a Finger is Similar to a Round Rigid Object 86

Figure 4.3 Flipped Gaussian Curve in Horizon ... 88

Figure 4.4 Modified Gaussian Curve for Sharp Object ... 88

Figure 4.5 Normal and Tangential Deformation Combination 89

Figure 4.6 Deformation Region and Contact Point ... 92

Figure 4.7 Normal Deformation of Back Mesh Mapping with a Gaussian Curve 94

Figure 4.8 Half Gaussian Curve and Its Storage Array M[i] ... 95

Figure 4.9 Smoothness in Different Array Sizes ... 97

Figure 4.10 Gaussian Curve Array Mapping ... 98

Figure 4.11 Tangential Deformation in the Circle ... 99

Figure 4.12 Tangential Deformation of Back Mesh Mapping on Gaussian Curve 101

Figure 4.13 Point Projection on Deformation Shape Plane ... 102

Figure 4.14 Point Location in Deformation Boundary Ellipse 104

Figure 4.15 Neighbor Nodes Deformation Rings .. 107

Figure 4.16 Deformation Combined with Normal and Tangential Components110

Figure 4.17 Average of the Neighboring Points Color Mapping For Visualization113

Figure 4.18 Strain Visualization of the Surface Deformation114

 12

Figure 5.1 Human Back Muscles and Seven Key Points ..116

Figure 5.2 Two Deformation Contours at P2 ..118

Figure 5.3 The Deformation Ellipses at the Key Points .. 121

Figure 5.4 Key Deformation Ellipses in the Uniform Deformation Area 123

Figure 5.5 Effect Region Circle and Gaussian Decline Trend Curve 126

Figure 5.6 Effect Depending on the Distance .. 127

Figure 5.7 Gaussian Curve Mapping for the Effect Level ... 128

Figure 5.8 Effect Ellipses in a Square Area ... 135

Figure 5.9 Results do not Fit the Key Points ... 136

Figure 5.10 Interpolated Results Satisfies All the Key Points 136

Figure 5.11 Map of Major Axis on Real Back Based on 7 Key Points 137

Figure 5.12 Projection from Model to Deformation Map Plan 139

 13

List of Abbreviations

AABB Axis-Aligned Bounding Box

CD Collision Detection

EA Effect Radius

FEM Finite Element Method

FFD Free-Form Deformation

FPS Frames Per Second

FSMD Functional Shape Matched Deformation

GC Gaussian Curve

GRI Gaussian Radial Interpolation

HDB Haptic Detecting Box

HIP Haptic Interface Point

HT Haptic Triangles

IDSD Interpolation of Defined Shape Deformation

MSM Mass-Spring Model

RBF Radial Basis Function

SI Shape Interpolation

SSD Skeleton-Subspace Deformation

SCP Surface Contact Point

TPS Thin Plate Spline

VHB Virtual Haptic Back

 14

1. Introduction

1.1 Background of Deformation in Virtual Reality (VR)

This research focuses on interactive deformable object modeling in computer

graphics and its implementation in haptics-augmented virtual reality (VR). Deformable

modeling has been widely used in engineering design, medical simulation, animation,

movie special effects, and game design, among other applications. In the real world,

deformation, break, and union are the most common types of change seen daily.

Deformation algorithms in geometry modeling must be developed for improved realism

in VR, although this requires much more computation than animation of rigid objects.

Many deformation algorithms have been developed for different purposes, such as the

key frame interpolation that is used in 3D animation and movie special effects. The finite

element method (FEM) is used in engineering bridge design and dynamic analysis. The

spring mass method is used in surgery simulations. Low resolution modeling is used in

3D games. But so far, there is not a universal method that is suitable for most applications.

Developers have to study the principles and properties of deformable objects in the real

world. Due to the limitations of the computer and interactive devices, deformation

simulation needs to be optimized to get a good balance between computational efficiency

and graphical performance. For example, in engineering design, the user usually pursues

the most accurate results (which requires more computation) more than simple structured

 15

modeling (which would save computation time). So FEM is widely used in engineering

and science. In the movie industry, animators prefer to see the desired postures of the

actors. So they will spend several hours to render only one minute of video by using the

key frame edition method. But for the real-time or interactive applications, the efficiency

of computation is the main factor affecting the final result. The doctor really needs instant

response from the virtual organ he/she interacts with on a simulator. The current main

deformation algorithms will be discussed later.

Haptics is the science of incorporating the sense of touch and control into

computer applications through force (kinesthetic) or tactile (touch) feedback. Haptics is

one of the most important human sensory modes. Special input/output devices called

haptic interfaces are used in haptically-enabled applications. Users can manipulate and

feel virtual 3D objects through haptic interfaces. Including haptic feedback significantly

improves the realism of VR applications, in medical training and in flight simulation for

example. Although the latest haptic hardware in the market has limitations (such as small

work space, small forces, and problems with rigidity) haptics enhances the realism of VR

simulations with graphics. Surgery and injection simulations are example applications of

haptics. The models of these applications are usually based on soft organs which deform

under the touch via the haptic interface. The haptic interface sends its position to

computer and is able to generate the vector forces bound by the capabilities of the device.

 16

The graphical model on the screen presents the deformation, showing how far the haptic

effector pressed or dragged from the model surface.

1.2 The Need for Deformation in the Virtual Haptic Back (VHB) Project

The Virtual Haptic Back (VHB) project at Ohio University [Howell et al., 2007]

is trying to achieve smooth surface deformation graphics with a high resolution haptic

model. The purpose of the VHB project is to develop a realistic haptic/graphical model of

the human back that can be used for palpation (diagnosis though touch) in medical

training at the Ohio University College of Osteopathic Medicine (OUCOM) for doctors

and students. In this haptic application two commercial PHANToM 3.0 haptic interfaces

from SensAble Technologies Inc. are used to send the force feedback to the user,

permitting palpation by force feedback with two fingers of a life-sized virtual human

back (see Figure 1.1). The movement of the back skin, by exertion of palpatory force

from the user should be reflected graphically as a surface deformation. Physical

properties of the back, e.g. spring constants of the surface, were chosen based on

feedback from physicians experienced in palpatory diagnosis and more recently in

physical measurements [Williams et al., 2007]. To get the most realistic simulation, we

are interested in force feedback performance (which depends on 1) the knowledge of the

physical properties of the human soft tissue, which we can obtain, 2) the simulation

methods and 3) the performance of the haptic hardware) on the user’s fingertip and the

 17

3D graphical behavior of the skin model (because the surface is the only visible part).

Figure 1.1 Virtual Haptic Back (VHB) Project

For the haptic model, 3D human models can be built of bones, soft tissue (muscle

layers, connective tissue, and adipose layers), and skin. On the haptic model, model

surface skin deformation should happen via force interaction through the haptic interface.

The action of this deformation also depends on the pose of the skeleton and on the

model’s soft tissue stiffness properties. Several fundamental theories have been

developed for 3D object deformation. Mesh deformation is a popular method for

computer modeling [Watt 2000, Shi et al. 2006]. Many techniques have been developed

to help designers to deform body shapes, such as shape interpolation [Wolberg, 1998],

free-form deformation [Sederberg, 1986], and a skeleton-based method

[Magnenat-Thalmann et al., 1988]. The last one uses a ‘skeleton’, in which two or more

bones meet at each joint, to control shape deformation. This allows for intuitive control,

 18

naturally describing deformation in many objects. However, traditional skeleton-based

methods are often criticized for requiring a more tedious process of weight selection to

obtain satisfactory results. And so far there is no criterion for weight selection suitable for

most cases.

The practical VHB interactive system has been developed using two PHANToM®

3.0 haptic interfaces. The author mostly used a portable haptic device called the Omni

(also from SensAble Technologies Inc.). The results from the Omni can be transferred to

the PHANToM® 3.0, which is bigger and has higher force capacity than the Omni. This

haptic system from SensAble works on a multi-thread platform where haptic rendering

and graphic rendering are executed as individual processes. In each process, the mesh of

the model’s surface is drawn once. The mesh is used for collision detection and force

generation handled by the haptic APIs in haptic rendering. But this rendering is invisible

on the screen. Immediately after that, the whole model is drawn again on the screen in the

graphical rendering process. So, the model is rendered twice in each system loop but only

the graphical process is visually displayed.

1.3 Haptic and Graphic Renderings

1.3.1 Haptic Rendering

A point-based haptic rendering technique is used in which the PHANToM’s stylus

endpoint (haptic interface point, HIP) is modeled as the probing object. During the course

 19

of haptic simulation, a collision detection algorithm checks continuously if the HIP

collides with any virtual objects. For an object modeled with a triangular mesh, the three

vertices of the collided polygon are detected after collision and assigned as the stimulated

nodes for the deformable simulation. To constrain the HIP on the object surface, the

collided polygon is displaced according to the indentation made by the HIP. The

associated reaction force is evaluated by the vector sum of spring forces at the three

stimulated nodes. See Figure 1.2 for an overview of the servo loop of the haptic (force

feedback) and graphic (surface deformation) renderings.

Figure 1.2 Haptic and Graphic Renderings

Y

N
 Collision Detection

Draw Model

Force
Generation

Deformation
Calculation

Render Model

Graphic Rendering

Haptic Rendering

Handled by
Haptic APIs

 20

Since the VHB is an interactive simulation, the haptic and graphic responses

become slow with an increase in complexity of the model, such as the increase of number

of the triangles (or polygons). This performance can be shown by how many frames per

second (FPS) the computer can render. Although we can use a better computer to improve

the performance of the system, fast algorithms are always a more practical and reasonable

solution than updating computer hardware. In haptic rendering, the result is invisible. To

shorten the rendering time, we considered that only a partial mesh around the HIP is

drawn instead of the whole model because only the neighboring triangles of the touch

point are involved in collision detection and force generation. The rendered area becomes

a small region which contains much fewer triangles than the whole model mesh. Also this

area can follow the moving of the touch point dynamically. To achieve this goal, the

model is divided into several small parts by the space partition method. Only the nearest

parts of the touch point are rendered for the haptic process. Furthermore the nearest node

to the touch point needs to be identified in the deformation calculation by a distance

comparison to the touch point position. So the local computation of finding the nearest

node is much more efficient in the nearest divided space than using global comparison.

The binary space partition (BSP) and octree is implemented on VHB. These algorithms

are described later.

 21

1.3.2 Graphic Rendering

The whole model is drawn on the screen in this process for visualization. In the

palpation simulation, the posture of the model does not change. So when the user presses

the model at the touch point, only the local mesh deforms under the external force. On the

VHB model, the deformation is not implemented in haptic rendering that is invisible in

the simulation. The reason will be detailed later in the related work chapter. Figure 1.3

shows the deformation under the finger force in the cross section of back skin. This

research has focused on simulating such deformation.

Figure 1.3 Back Skin Deformation in Cross Section

Many deformation algorithms have been assumed for geometric modeling to date.

The advantages and drawbacks of them will be discussed in the literature review. In the

VHB, we do not use a finite element method (FEM), free form deformation (FFD), or

 22

mass-spring method (MSM) because they are computationally expensive for real-time

deformable modeling. The functional shaped matched deformation (FSMD) algorithm

has been established for our haptic model. In this method, we do not need to define the

complex boundary conditions like the deformation in FFM or MSM. We studied the

characteristics of deformation on real human backs and use a simplified elliptical shape

to define the deformation region. The deformation is simulated by combining with two

components in the normal and tangential directions on the touching surface. A functional

shape Gaussian curve is used in both of normal and tangential deformations simulation.

In the graphics rendering, the same intent of saving computation time was

considered for detecting the deformed vertices. We use a neighbor-expanding algorithm

to avoid useless computation on the whole model. The deformation calculation is

executed from the touch point toward the model edges until no position change occurs.

This algorithm will be described in detail in Chapter 4.

Living tissues are composed of materials with different physical properties.For

small deformations, they can be considered as Hookean materials for which linear elastic

approximation is applicable [Chen et al., 2006]. The MSM and FEM are two common

physics-based modeling techniques. The discrete MSM requires less computation and has

easier implementation than FEM. In FEM, rigorous mathematical analysis based on

continuum mechanics is applied to model the mechanical behaviors, which offers better

simulation realism than other existing deformation methods. However, the computational

 23

complexity of FEM might cause problems to interactive (real-time) VR applications in

which high refresh rates of 30 Hz and 1000 Hz are demanded for visual and haptic

renderings, respectively [Choi et al., 2003]. It is therefore critical to maintain a balance

between the accuracy and computational complexity in improving the level of realism.

On the other hand, to popularize the usage of VR-based deformable simulation, it is

advantageous to enable economical and simple implementation in a generic computing

environment with standardized haptic interfaces.

1.4 Literature Review

Our deformable haptic model is related to geometry deformation methodologies

including efficient searching and interpolation algorithms. The following subsections will

briefly describe the fundamental algorithms of geometric deformation, space partition

methods, and interpolation algorithms.

1.4.1 Deformation Algorithms

1.4.1.1 Shape Interpolation (SI)

Shape Interpolation (SI) is also named shape blending and multi-target morphing.

It probably is the most widely used method to shape deformation by 3D animator

[Maestri, 1999]. In this procedure, the user needs to manipulate key poses or shapes (also

 24

called key frames), and then an interpolation algorithm (such as scattered data

interpolation) generates the interval shapes (or frames) automatically (see Figure 1.4). SI

does not depend on the physical properties of the deformed object. To get smooth and

detailed deformations, the adjunct key shapes cannot be much different. That means more

key shapes are need to be edited manually to ensure the interpolation results are closer to

the realism we desire. In interactive deformation, the motions of the user cannot be

predicted. So it is a lot of work to make a large number of key shapes to cover the

possible key frames.

Figure 1.4 Shape Interpolation (SI)

1.4.1.2 Free-Form Deformation (FFD)

Free-Form Deformation (FFD) is a well known technique for carrying out

deformation. It has been also widely used in commercial software such as 3D Studio Max

and Maya. In the classic FFD, a shape is placed in an elastic control lattice space, such as

a Bezier volume, or a more general lattice, then deforms the volume by moving the

Key Frame
Key Frame

4 3

1 2
4

3

2

1

 25

control points. As a result, the shape within the lattice space is deformed. This method

can be used to many different graphical models which contain nodes, polygons, splines,

and implicit surfaces. Since the 3D FFD is similar to the 2D case, only the 2D case of

FFD is presented here.

2D FFD is a map from R2→R2 in mathematics. It defines the new location for

each point in a predefined region, usually rectangle. Any line or curve in that region is

then changed. Evaluating the moved point is simply way of solving the Bezier equation

for the deformed set of control points. In Figure 1.5, the FFD defines nine control points

in a rectangle. The original shape (the circle) is presented in the left, and the right picture

shows the moved positions of the control points and the shape change of the circle. The

grid in the rectangle is drawn for the visualization of the space change. Anything inside of

the predefined, undeformed region will be distorted with the shape change of the region.

Figure 1.5 Free-Form Deformation (FFD), [Sederberg, 2004]

 26

If a part of a shape lies inside the FFD region, only this part will deformed

corresponding to the deformation of the FFD region. The part outside the grid region will

keep its original shape.

1.4.1.3 Skeleton-Subspace Deformation (SSD)

Skeleton-Subspace Deformation (SSD) is an important deformation algorithm and

applied to many interactive applications. It is also standard in video games and virtual

environments because it produces reasonably good results and is easy to understand and

computationally efficient to implement.

The SSD algorithm combines the geometry surfaces or internal vertexes with the

movable skeleton by assigning a set of bones (and the associated transformation matrices)

and a weight for each influence to each vertex. The position of a moved vertex is

obtained by transforming this vertex rigidly related to each of its effect weights and then

using the weights as coefficients to compute a linear combination of these transformed

positions as the final position. So all control jobs of the deformation of the linear blend

surface are the adjustment on the influences and weights of each vertex [Mohr et al.,

2003].

The SSD has two main limitations [Lewis et al., 2000]. The major one is that the

deformation is restricted to the defined subspace. If some bones are out of the subspace,

they cannot affect the deformation although they should do. Figure 1.6 shows the

 27

‘collapsing joint’ problem that is an extreme case of simulating the twist of a human

forearm after a rotation of 180 degrees. The second difficulty with SSD is that, unlike SI,

it does not allow the user to manipulate points directly. Users have to directly or

indirectly edit the meshes instead of the weights.

Figure 1.6 Collapsing Joint in SSD [Lewis et al., 2000]

Skinning techniques have been introduced to solve these problems. Many of them

can be considered as corrections to SSD [Allen, 2002]. One method is combining the

rigid transformation or linear blend with radial basis example interpolation [Hsu, 1992].

The Eigen-Skin method [Kry et al., 2002] presented a different example-driven linear

blend skin correction technique.

1.4.1.4 Mass-Spring Model (MSM)

The Mass-Spring Model (MSM) is a physics-based technique for modeling

deformable objects [Gibson et al., 1997]. In this method, an object is built in a lattice

structure. Each point is assigned a mass and connected with other points by springs (see

 28

Figure 1.7). The spring is massless. k is the spring constant and m is the mass at that

vertex. The spring forces are usually linear via Hooke’s Law, but nonlinear springs or

springs-dampers can be used to simulate soft tissues. In a dynamic system, the movement

of a single mass of this MSM is driven by the connected springs under Newton's Second

Law.

Figure 1.7 A Portion of a MSM

This method has some drawbacks. This is a discrete structure model with

simplified approximation of the true physical properties which occur in a continuous

object. The springs directly affect the vertex movement. But the proper values for the

spring constants are always not easy to be obtained from the desired materials. Moreover,

certain constraints of the springs and points cannot be expressed naturally in the model.

For instance, undeformable objects or thin membranes are difficult to be considered as

 29

MSM. Therefore, additional springs might be added to for adjustment. That will result

in more computational cost.

1.4.1.5 Finite Element Method (FEM)

The Finite Element Method (FEM) is a standard numerical method to solve

partial differential equation problems in many fields. In FEM, the model is divided into

small simple elements (see Figure 1.8). Each element the some equilibrium equations

related to a solution function. The sum of the solutions (approximation) of each element

is evaluated and modified to match the boundary conditions in a defined tolerance. The

result of the point within the element can be obtained by interpolation. The precision of

the result depends on the number of the divided elements and the tolerance.

Figure 1.8 FEM Applied on a Deformed Metal Part

(Picture is from www.e-sac.org)

 30

FEM is widely used in CAD and engineering analysis. In computer graphics,

FEM can be used to find an approximation for a continuous function that satisfies some

equilibrium expressions such as the deformation equations [Gibson et al., 1997].

Normally, FEM is applied to small deformation materials such as metals, concrete, etc.

The max deformation is usually limited to less than 1% of the object dimensions. But in

soft materials such as human tissue, the deformation might be more than 100% of the

object size. In that case, additional deformation assumption needs to be supposed [Bathe,

1996].

In the real-time simulations, the use of FEM has been proved to be limited

because of its expensive computational cost [Blemker et al., 2003].

1.4.1.6 Collision Detection (CD)

Collection detection (CD) has become a fundamental problem in computer

animation, physics-based modeling, geometric modeling and robotics [Lin et al., 1998].

In reality, an object often contacts or detaches from many other types of objects such as

rigid objects, deformable objects, fluids, etc. The intersection problems at the boundaries

where two objects meet affect their shape and movement. Efficient collision detection

algorithms are necessary for deformable objects. Some techniques have taken initial steps

toward solving such problems. However, faster and more feasible algorithms are still

expected for different applications.

 31

In the VHB simulation, the collision thread (haptic API from the manufacturer)

of the haptic device handles collision detection during interactions. This thread is

executed at 100 Hz, less than the force rendering rate of 1000 Hz [SensAble Technologies

Inc., 2005]. We implemented few methods to optimize the computation of CD.

1.4.2 Space Partition Methods

Our haptic model is based on spatial data structures. The data traversal efficiency

significantly affects the performance (FPS) of the renderings. The linear storage method,

such as array or linear link, is not adaptive to the different models and might consume a

lot of memory. Moreover, array is not efficient in spatial data searching. The binary space

partitioning (BSP) tree and octree are two data structures with subdividing the scene to

increase the searching efficiency.

1.4.2.1 Binary Space Partitioning (BSP)

BSP works recursively to split a space into two by the hyperplane until the

partitioning satisfies the user-defined requirements. This method not only can be used in

haptic and graphics renderings but also is a fast algorithm to access a small part of a big

volume mesh in collision detection [Chrysanthou, 1992]. BSP can improve the

complexity from O(n) to O(log n) for touched point detection.

 32

Normally, there two types of BSP, called axis-aligned and polygon-aligned. The

axis-aligned BSP requires less computation than polygon-aligned BSP.

1.4.2.2 Octree Partition

Gervautz and Purgathofer [1988] first proposed the octree for encoding color data.

Then octree has been used widely in geometry modeling and ray tracing. Its structure is

similar to the axis-aligned BSP. Octree subdivides the space in to 2×2×2 boxes

equivalently along the coordinate x, y, and z axes and continues to partition the child node

with the same manner as its parent recursively. So each parent node has 8 child subspaces

with same volume. Yau and Tsou [2006] applied octree to avoid a large number of voxels

to their virtual dental training system with a haptic device. We have built the octree in

haptic modeling and for efficient contact-point detection. More details of this procedure

will be described and discussed in the next chapter.

1.4.3 Major Area Discussions of Deformation Modeling

Many improved deformation algorithms have been presented for various different

purposes related to the human body, organs, muscles, skin or hair. Some articles

discussed local deformations and some focused on full body (global) deformation

behaviors. With the haptic simulation involved in VR, the deformation during the haptic

 33

interaction becomes more complex. The deformation can be driven by internal factors

such as skeleton changes or by the external factors such as the force of touching.

Allen and Curles [2002] introduced a sample-based method to calculate a

skeleton body deformation. Their example data consists of a range scan of the human

body in different poses. They built a mutually-consistent parameterization of all scans

using a possible subdivision surface template and combined the range scans using the

k-nearest neighbors interpolation in pose space. But their method does not encompass

dynamical behaviors or deformation due to collisions.

Magnenat-Thalmann et al. [1988] and Komatsu [1988] presented a human body

deformation method driven by underlying skeletal movement. They defined the size and

shape of deformation for each of these approaches. Magnenat-Thalmann’s work focused

on developing the algorithms for the different joints of the human hand. Komatsu

presented his work on the elbow and explained how the skin wrinkle on the critical side

can be obtained by a proper manipulation of the surface control points. This algorithm did

not cause the phenomenon “collapsing elbow” that happens with the SSD.

Yan et al. [2006] described a mesh deformation method that combines the

skeleton-based method and the simplex transformation method, with two main

differences from traditional skeleton-based methods. First, they used the skeleton to drive

the transformation of simplexes rather than vertices as in previous methods. Second, they

avoid using any weights, yet the approach still gives high-quality results. Their approach

 34

can be applied to 2D or 3D meshes. Their inputs are the initial mesh, the initial skeleton

(a set of straight line segments connected together at joints), and the changed skeleton.

The output is the deformed mesh.

Lewis et al. [2000] developed a pose space deformation algorithm to generalize

and improve both SI and skeleton-driven deformation. In this technique, several

deformation types can be represented as mappings from a pose space, which is specified

by an underlying skeleton or a simple parametrical space system, to new locations in the

model local coordinate space. This algorithm improves the expressive power and allows

user to manipulate directly the model to desired shapes. It can be applied to body

deformation and facial animation for entertainment, 3D games, and other applications

which need direct sculpting deformations or requires interactive synthesis of a deforming

model.

Tagawa [2006] proposed a method to solve the problem of degrees of freedom of

interaction and to apply the record reproduction approach to deforming interaction. In

their approach, the characteristic of deformation was described by a set of data which

they called impulse response deformation model. They assumed that the resulting

deformation has linearity regarding input forces. Hence the deformation is obtained by

computing convolution of the sequence of impulse forces and the impulse response

deformation model. As they described in their paper, that approach enables haptic

 35

interaction with dynamic deformable object model that is too complex to be solved by a

common FEM.

Koruda et al. [2003] demonstrated a simulation of organ-to-organ interaction

which is indispensable for practical and advanced medical VR simulators such as surgery

and indirect palpation. They gave a method to represent interaction between elastic

objects, i.e. organs, in a medical VR simulation. They showed a model defined

displacements of colliding elements based on temporary surface forces caused by the

temporary displacements so that the model produces accurate deformation and force

feedback considering collisions of objects as well as preventing unrealistic overlap of

objects. Their experimental results showed organ-organ interaction in real-time and

produced sensate force feedback.

Chen, Sun, and Jin [2006] developed an interactive haptic deformable modeling

in physical Bezier volume lattice space. Their haptic deformable approach involves the

physical realism of MSM and the flexible control of FFD. Through distributing physical

properties including mass, spring and damping coefficients of the object to bounded

Bezier volume lattice, the deformations of the object in response to the haptic input

follow physical laws and acquires a high deformation working rate. It also was suggested

to be coupled in game design to augment the force feedback of the avatar when dragging

and clashing.

 36

Chen, Barner, and Steiner [2006] showed a displacement-driven spring-net

deformation method for interactive surgery simulation. They built a high resolution

triangular mesh via a 3D spring network consisting of mesh nodes. They assumed that the

velocity of the deformation is low enough and the mesh reaches its equilibrium at each

instant in surgical procedures. So mass was not considered in their method. A deformed

index table was created for each node of the model. Its topology is like concentric circles.

The center is like the node and the circle is treated as the neighbor nodes link. When the

node (the center) is moved by the haptic device, its neighbor nodes (the circles from in to

out) are drawn under Hooke’s law. Its child nodes are always fixed. The movement of the

node on the circle is only affected by its parent. In this way, the deformation boundary is

not specified because they set a displacement threshold to identify the minimum moved

nodes. This deformation algorithm is fast but the shape of the haptic contact area of the

mesh is not adaptable.

J. Noh et al. [2000] proposed a deformation approach with radial basis functions

(RBFs) that is similar to our deformation algorithm. This method was applied to creating

facial expressions in animation design. They specified the feature point (containing

control and anchor points) of their geometry deformation element. The distinction of each

feature point was computed with its BSF system. Hardy multi-quadrics radial basic

function was used in their system. That is a fast method, but if the control point is moved

too far from its original position, large discontinuity occurs around the anchor and no

 37

influence of the control point will propagate through the anchor points. So they assumed

the movement of the control point has to keep within the specified region.

de Boer et al. [2007] developed an interpolation method based on radial basis

functions. That method was applied to their unstructured grid domain such as fluid

translation or rotation. Radial basis functions (RBFs) were used to interpolate the

displacements of the boundary vertices of the mesh to the inner domain. That method

requires solving a small equation system, only involving the nodes on the boundary of the

flow domain. Several RBFs were tested in a variety of cases. However, the performance

depends on the RBFs used. They found a best accuracy RBF with compact support for

their model closely followed by the thin plate spline (TPS).

1.5 Research Objectives

To improve the realism and computation efficiency in haptic modeling with

deformation, we develop some unique deformation methods in graphics and implement

the octree and BSP trees in haptic rendering and touch point detection. Since the haptic

VR application is interactive and real-time, the deformation algorithms need to be

optimized to get efficient computation when it works on a complex (high resolution

surface or complex structure) models. The objectives of this research are:

 38

1. Measure and study the stiffness characteristics of human subject back to

determine experimental models for the deformation.

2. Build BSP and octree haptic models. Compare the computational efficiency of

normal, BSP, and octree methods. Also implement octree in detecting the touch

point. BSP and octree will be used in graphic rendering.

3. Develop the functional shape matched deformation (FSMD) method. This

algorithm is used in normal and tangential deformations. Build an array-map for

the supposed curve. Solve the curve mapping from 2D to 3D surface.

4. Measure the Study the deformation shape of the human back. Develop the

defined-shape tangential deformation algorithm. Create the interpolation

algorithm for the deformation shape map.

1.6 Dissertation Organization

This dissertation is structured as follows:

Chapter 1 introduces the deformable modeling in virtual reality applications,

investigates the main existing deformation algorithms, and discusses the advantages and

limitations of each. The development and application of haptic VR is introduced and then

its characteristics are described. The FSMD algorithms are presented briefly on the VHB

modeling and the spatial partitioning algorithms to improve computational efficiency.

 39

Chapter 2 analyzes the main principles and the system rigidity problem of the

VHB and explains the solution of keeping the undeformed model in haptic rendering. The

friction anchor problem is solved and its calculation optimized. The haptic SDK is

explained and the research platform is described. The back stiffness map has been

established and applied to the VHB model. This map can be modified to simulate the

different dysfunctions. Chapter 2 also presents other related works of this dissertation.

Chapter 3 focuses on the BSP and octree implementations on the VHB model. It

describes the method about dividing the model into subspaces and how to traverse BSP

and octree. It gives the solution about the overlap problem during cutting the boundary of

the subspaces. It discusses the computational efficiency of octree related to different sizes

of the minimum defined subspace requirement. In programming, the data structure of

VHB deformable model is described.

Chapter 4 investigates linear and nonlinear elastic deformation in the real world.

It discusses why and how the Gaussian curve is chosen to match the shape of the elastic

deformation. This matching shape is flexible in different conditions based on the variable

materials or constructs. The deformation algorithms in the normal and tangential

directions are described. The functional curve storage array is suggested and its resolution

(size) is compared. The mapping algorithm for deformation curves is then presented. A

visualization method of the deformation strain is presented at the end of Chapter 4.

 40

Chapter 5 studies the deformation shapes of the real human back. Most of them

deform in irregular area in the tangential plane at the touch point. Then a simplified

method using ellipses is proposed and implemented on the VHB. To get a deformation

shape map, a unique accurate interpolation algorithm is developed in this chapter and its

features are discussed. It is also compared with the stacking interpolation algorithm. The

mapping algorithm from 2D plane to 3D model is presented.

Chapter 6 summarizes the major contributions of this dissertation. It gives the

conclusion of this research and proposes suggestions for future work.

 41

2. Related Research Work

Some previous work has been accomplished to improve the VHB modeling and

the realism. The VHB model is a pre-defined stiffness application. That means we need

the physical property data of the human back for the haptic force generation. Since such

physical information of the human back and soft tissue is reported very little so far, we

measured live subjects to obtain the data ourselves (one model from each individual

subject). Some solutions are suggested to overcome the limitations of the current haptic

APIs.

2.1 Haptic Model, Stiffness Map and Stereo Viewing System

Haptic Model: A 3D human virtual haptic back (VHB) model had been

implemented for the VHB project. The surface of this 3D digital upper body model was

obtained from a typical adult male subject by using a 3D camera (the 3D Mega Capturor

from Inspeck Inc., www.inspeck.com) in vivo. Bones of the upper body skeleton are from

an open source of the Visible Female dataset from NIH. The 3D skeleton model in this

research was from the open source on Internet. Because the VHB research is mainly

interested in back diagnoses, the thoracic vertebrae need higher resolution than the other

bones. In Figure 2.1, the left one is the previous VHB model covered with a non-textured

semitransparent skin. In this model, all the ribs, both scapulae and the thoracic vertebrae

 42

T1-T12 are involved. T# denotes the number of the thoracic vertebra and L# denotes the

number of the lumbar vertebra. The right picture shows a textured model for the general

experiments in VHB project development. The texture image is from a real subject’s

back.

Figure 2.1 VHB Models with Skeleton (left) and Skin-Textured (right)

In the haptic interaction of the VHB, two small spheres (blue and red in Figure

2.1, right) are used to present the positions of the user’s two fingers. Blue is left (L) and

red is right (R). When a sphere contacts the back surface, the collision detection APIs will

be called to handle this event to generate the force feedback on the user’s fingertip

through the PHANToM haptic interface, see Figure 1.1. In the VHB project, the haptic

interface works in displacement-based mode. That means the change of force corresponds

to positional movement of the haptic interface tip.

 43

The back model in this dissertation research was implemented in high resolution

polygonal mesh by the 3D camera mentioned earlier (see Figure 2.2). After resolution

conversion, it becomes a triangular mesh and the grid size is about 5×5mm. With

modification on the model such as trimming edges for smoother results, the number of

vertices is slightly decreased. The bounding box of this model is 350×400×120mm

containing 1588 vertices and 2962 triangles.

Figure 2.2 The Original High Resolution Back Surface Built by 3D Camera

Stiffness Map: Our haptic model is based on a predefined surface stiffness. To

get the stiffness of the skin for the back model, we measured the compliance (reciprocal

of stiffness) characteristics on several human subjects in vivo [Williams et al., 2007]. To

build a stiffness map, we defined some key points and measured them on human subject

backs. Several types of continuous stiffness fitting functions were used to match those

 44

measured points (see Figure 2.3 for the resulting stiffness map for one individual).

Furthermore, the stiffness map can be adjusted manually to simulate different somatic

dysfunctions.

Figure 2.3 Statistic Stiffness Map of Human Back

Stereo Viewing System: In the VHB application, the haptic back model has been

modified for stereo viewing on our stereo viewing system (SVS) [Ji et al., 2006]. This

system allows the user to touch the virtual back via the haptic interface, where the haptic

and graphical models are aligned (see Figure 2.4), as opposed to touching the virtual

model some distance (up to a foot) in front of the graphical screen (as in Figure 1.1).

Model data structure was optimized in this application.

 45

Figure 2.4 3D Stereo Viewing System for the VHB Project

2.2 Displacement Driven Force and Proxy Sphere

The PHANToM is used in our haptic applications; it is a displacement-driven

haptic interface. The tip of its arm is the force effector. The user put his/her finger in the

effector and moves it. The force generated by motors is sent to the user through the arm

when the effector is touching the virtual model. In Figure 2.5, the PHANToM touches the

model at the contact point, also called haptic interface point (HIP). Then the PHANToM

penetrates the model surface and moves to a new position. The feedback force is

calculated corresponding to the displacement d relative to the contact point. The force is

 46

F = k * d (Hooke’s law) (2.1)

where k is the spring constant at the contact point of the model.

Figure 2.5 Force Generation of the Haptic Interface Depends on the Displacement

If the PHANToM tip stays at the contact point, no force is generated because zero

displacement means zero force displayed to the user. The force loop is executed at a

consistent 1000Hz rate to keep the feedback stable, continuous feeling, for the user on the

haptic interface. In the haptic loop, the surface is not drawn on the screen, but the model

surface is rendered only in the haptic process for force feedback generation.

In graphics, the position of the effector is presented with a small sphere (see

Figure 2.1). When the PHANToM tip touches the model, the sphere always stays on the

surface of the model even when penetration occurs. The sphere has to remain outside of

the graphical model to avoid confusing the user. The PHANToM penetration is only used

for force feedback generation. That sphere is called the proxy.

Model Surface

PHANToM

New PHANToM Position

Contact Point

Displacement (d)

Force

 47

2.3 Non Deformable Modeling in Haptic Rendering

As the previous chapter discussed, the FEM and MSM have relatively expensive

computational cost and boundary definition problems. They are more suitable for large

deformations. A stiffness map has been measured and used on the VHB because the

principal deformations are in the normal direction of the back and usually in small range

of 0-10mm. The stiffness at a point on the back can be thought of as linear in such

simulation. The force depends on the PHANToM displacement at the contact point and

the local stiffness. In Figure 2.6, a deformable model is assumed and its haptic rendering

is analyzed in the following text.

Figure 2.6 Deformation in Haptic Rendering Changes the Stiffness

Suppose the PHANToM presses the model at contact point P; the force is f and

the stiffness at the contact point is k. We get the deformation a at the contact point by

Hooke’s law.

b

a

Contact Point

Original Surface

Deformed Surface

P1

P2

P

 48

a =
k
f (2.2)

The user can feel the displacement a through the PHANToM. With the

deformable assumption, the model surface needs to deform to P1 as the dashed curve

shows in Figure 2.6. The contact point is changed to P1. The PHANToM has to move to

P2 to get enough penetration b (displacement to the contact point P) to keep the force f

with the same stiffness value. To get the same force, b is equal to a. Finally the

PHANToM actually moved 2a = a + b. The force does not change but the displacement

is doubled. So the final stiffness is changed to half of its original value.

2a =

2
k
f (2.3)

where the denominator in (2.3) is the new stiffness.

For this reason, the user will feel more compliance on such a model than the

non-deformable haptic rendering model. This change is unreasonable and needs to be

corrected. One solution is to double the stiffness, which is based on the original stiffness

map, for the force generation in (2.2). Then the model is deformable in a dynamic haptic

rendering. Because the dynamic (deformable) haptic rendering requires extra processing

in haptic APIs, this method greatly increases the computational cost [pp.6-28, SensAble

2005]. That is why we consider the non-deformable haptic rensering so that the contact

point does not change and (2.2) does not need to be modified. The user will feel the same

stiffness as it is at the contact point.

 49

On the other hand, the graphics rendering model is deformable to present a

visible surface change under touch. This is important to the user to improve the visual

realism.

2.4 Friction Effect in Tangential Deformation

In our method, the final deformation is defined as the combination of normal and

tangential deformations. The penetration depth of the haptic interface at the touch point

can be obtained with calls to the haptic APIs. This depth is the maximum the normal

deformation can reach. The normal deformation calculation is based on the penetration

depth (displacement). After studying the skin deformation shapes on real subject’s backs,

we found that the tangential deformation on the human back is more obvious than the

normal deformation. Also, tangential deformation only happens under the friction effect

between the finger and skin. The behavior of the friction is that the effector of the

PHANToM is dragged back to a static point if the tangential force the user applies is less

than Fn * μ (where Fn is the normal force and the μ is the coefficient of friction). That

static point of friction is called the anchor. The tangential deformation calculation is

based on the PHANToM displacement relative to the friction anchor.

SensAble Technical Inc. (the PHANToM manufacturer) does not currently

provide an API for the anchor position. But their APIs can read the proxy sphere position,

 50

PHANToM tip position, and the force vector. We derived the anchor with existing

variables provided by the haptic APIs.

Figure 2.7 Friction Anchor

Figure 2.7 is a non-deformable model in haptic rendering; the PHANToM moves

from A to D following the applied force from the user. The proxy sphere moves from A to

P to keep P on the normal of the proxy position. Vector F is the force generated by the

haptic interface, counteracting the force that the user applies. But F is not perpendicular

to the surface because it is affected by friction. Its tangential component Fn keeps

dragging the PHANToM back to the friction anchor A, and F is always toward A. In a

critical case, when the friction decreases to zero, A will coincide with P.

Positions P, D and F can be determined in PHANToM API calls. Then A can be

calculated as follows, where all the symbols are vectors.

Proxy Position (P) Friction Anchor (A)

Interface Force (F)

Model Surface

Interface Position (D)

Penetration Depth (Pd)

Tangent Force (Ft)

Normal Force (Fn)

 51

Pd = D - P (2.4)

Since Pd ⊥ (P–A)

We get
PA

Pd

−
 =

t

n

F
F

− (2.5)

=> A = PP
F
F

d
n

t +− (2.6)

So the maximum deformation in tangent direction is corresponding to the

displacement (P–A). This anchor A works well in our applications.

For the VHB, the static coefficient of friction is set to 0.46 and the dynamic

coefficient of friction is set to 0.44 as proposed in [Zhang and Mak, 1999].

2.5 Utility Libraries and Platform

In our applications, the haptic interfaces are from SensAble Technologies Inc.

This company has provided two haptic toolkits, GHOST and OpenHaptics. GHOST

(which supports the PHANToM 3.0) is the older version and easy to implement.

OpenHaptics (which supports the PHANToM and the Omni) is efficient, flexible, and

compatible with most haptic products of SensAble Technologies Inc. This dissertation

work is based on the OpenHaptics SDK.

C++ is the major development platform for our programming. We use

OpenHaptics APIs for the haptics component and OpenGL V2.1 for graphics rendering.

 52

3. Spatial Partitioning for Fast Rendering

In this chapter, two spatial partitioning algorithms based on BSP tree and octree

will be discussed and implemented to the haptic model. The faster method is always of

benefit to realism with an increase in model complexity. In the VHB, the surface of the

model needs to be rendered twice separately for haptics and graphics. In graphics

rendering, all triangles need to be drawn. OpenGL can optimize the shape rendering with

a culling algorithm which only renders the triangles facing the viewer of the visible

region of the model within the viewing frustum. In the haptic process, the OpenHaptics

APIs capture the shape geometries from the OpenGL buffer [SensAble, 2005, pp. 6-5].

Therefore, all shape primitives drawn in the graphics process are rendered in haptics as

well. Touching only happens at a point on the model surface but the whole visible model

has to be rendered for force calculation by haptic APIs without optimization. So we can

decrease the number of the rendered triangles to achieve faster haptic response.

OpenHaptics does not provide the standard library functions to optimize the

haptic rendering area because they considered that the various optimization algorithms

are very dependent on the specific application. So in normal and simple haptic

applications with OpenHaptics, Table 3.1 shows the haptic rendering rates when the

proxy touches the models containing a different numbers of triangles. In these tests, all

the triangles of the model were drawn in the haptic process without any optimization

 53

algorithm. The table also lists the graphic rendering performance (all triangles are

drawn) for reference. The tested models in the first column of Table 3.1 are listed in

Appendix A.

Table 3.1 Haptic and Graphic Rendering Rates on Different-sized Models

Model
Number of
Triangles

Haptic Rendering
(Touch Model)

(FPS)

Graphic Rendering
(FPS)

1 2915 104 198

2 6261 51 92

3 8163 34 65

4 20389 12 25

5 41582 6 11

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45
Num of Triangles (k)

FP
S

Haptic Rendering (Touch)

Graphic Rendering

Figure 3.1 Plots for Table 3.1

In Figure 3.2, the performance of haptic rendering drops significantly with an

increasing number of triangles. The haptic rendering rate is almost half of the graphic

 54

rendering because the haptic rendering does not only draw the model same as graphics

does but also includes the haptic APIs processes, such as collision detection (CD) and

force generation.

Since the haptic rendering is invisible, it is not necessary to draw the whole model

when the haptic device touches the model at a point. The OpenHaptics APIs handle

collision detection involving the rendered triangles in the haptic process. So if only a

small number of triangles around the proxy are involved in the collision detection, the

computation should be faster with rendering fewer triangles. Such region of the haptic

triangles should follow the motion of the proxy dynamically. However, this region cannot

be too small to avoid the proxy going through the model surface. The size of the rendered

region for haptics it important and its solution will be described later.

BSP and octree have been implemented on the VHB model to divide the model

into small subsets so that a certain size 3D space (an axis-aligned cube) can be specified

following the proxy. Any triangles coming into this space should be drawn for haptics.

3.1 Data Structure of the Haptic Model

A few different back models with different resolutions have been created for the

VHB project. The main haptic mesh of this research is shown in Figure 3.2. This back

mesh was originally taken from a real human back by a 3D camera and then was trimmed

 55

and edited in 3D MAX for this research. The final model contains 1588 vertices and

2962 triangles.

Figure 3.2 The Back Mesh

Two vertex structures were defined for haptic and graphic rendering. In the

graphic rendering, since all primitives of the model need to be drawn in the scene, the

triangles and the vertices are stored in a linear link for the most efficient time O(n), where

n is the number of the triangles of the model. Since only the graphic surface deforms,

these vertices are involved the calculation of the deformation algorithm. In haptic

rendering, the triangle structure is stored in the hierarchical binary tree or octree. The

vertices are stored in another linear link. These vertices keep in their original positions

because the haptic surface is static in this deformation simulation. The following are the

descriptions of the vertex and the triangle structures

 56

struct Vertex

{

 double position_xyz[3];

 double normal[3];

 double texture_xy[2];

 list <int> jointVerticesList;

 list <int> jointTrianglesList;

}

struct Triangle

{

 int vertexIndex[3];

 double normal[3];

}

Each vertex contains the lists of its adjacent vertices and triangle. These lists are

pre-computed and static since no topology is changed. The position and normal of each

vertex are dynamically updated for the graphic rendering. Each triangle has a list of its

vertices. Also, the normal of the triangle is computed in real-time corresponding to the

change of its vertices to get the Gouraud shading for smoothing the surface.

3.2 Rendering Performance Measurement

The haptic and graphic renderings are in serial order as shown in Figure 3.3. To

evaluate their performance, the computation time of these two processes are measured

independently with two timers in each system loop (Figure 3.3).

 57

Figure 3.3 Performance Measurement of the Haptic and Graphic Renderings

We mainly measured the haptic and graphic renderings (shown in solid arrows)

but the whole computation time of each system loop was also measured for reference.

3.3 Binary Space Partitioning (BSP) for Haptic Rendering

A BSP tree is an irregular data structure. In theory, the space of the model can be

subdivided by arbitrary planes. In this research, we use axis-aligned planes to build the

BSP tree. The construction time of BSP tree is expensive so it is done as a preprocess.

The topology of the BSP does not change after it is created since the mesh for haptics is

static as discussed before.

3.3.1 Construction of BSP Tree

The partitioning is based on the bounding box of the model. In this BSP algorithm,

Time

Haptic Rendering

Graphic Rendering

Other Processes

 58

the model is divided into hierarchical sub-trees using three types of the planes that are

orthogonal to the x, y and z axes. The boundary box of the whole model is the root space

(root node) of the tree, considered to be level-0. Each node is divided into two child

boxes by a plane. The following is the description of the partitioning steps (see Figure

3.4).

(1) First, split the root space with a plane (green in Figure 3.4) which is

orthogonal to the x-axis and crosses the center of the root space. Two new subspaces

(nodes) are created in level-1.

(2) Then, partition each space (node) in level-1 with a plane (red in Figure 3.4)

which is orthogonal to the y-axis and bisecting the center of this node. Four new

subspaces in level-2 are created.

(3) Use a plane (yellow) that is orthogonal to the z-axis and cross the center of

each box in level-2 to divide each level-2 node continuously.

(4) Repeat step (1), (2) and (3) to partition the nodes from level-2 until the

partitioning stops.

 59

Figure 3.4 Binary Partition Aligned x, y and z Axes on the Model Mesh

The partitioning is executed in a recursive call. A requirement is needed to stop

the recursive subdivision. In this algorithm, the number of triangles, ni, located in the

bounding box of each node is counted during the partitioning process. We set a threshold

t to monitor the number of triangles in each node. If ni of the subspace node is less than t,

the partitioning stops automatically and this node becomes a leaf (end node) that contains

 60

the triangles. Otherwise, the algorithm continues to divide this node into two child

nodes. If the node does not contain any triangle, it is marked as empty (solid circles

shown in Figure 3.5); the partitioning also stops in this case. The nodes in this BSP tree

do not contain any triangles; only leaves do. Further, leaves do not have any children.

Figure 3.5 BSP Tree of the Back Model

In Figure 3.5, for example, the threshold t is set as 1024. Each leaf of the tree

contains fewer than 1024 triangles. t is an important factor that affects the complexity of

the BSP tree. Smaller t leads to larger tree height and traversing the tree becomes more

complex. Larger t causes less partition benefits. Finally, 1024 was proved as the best

value in our experiments. The pseudocode for the BSP is as follows:

Level-0

Level-1

Level-2

Level-3 373 Tris

629 Tris

20 Tris

580 Tris

850 Tris 902 Tris

725 TrisLevel-4

 61
1: HapticBSP(node, level, threshold)

2: IF node = “empty” THEN

3: RETURN

4: ENDIF

5:

6: IF node->triangleNum > threshold THEN

7: CASE mod(level/3) OF

8: 0: CALL PartitionNode(node, x_axisPlane)

9: 1: CALL PartitionNode(node, y_axisPlane)

10: 2: CALL PartitionNode(node, z_axisPlane)

11: ENDCASE

12:

13: IF node->child1->triangleNum = 0 THEN

14: node->child1 = “empty”

15: ENDIF

16:

17: IF node->child2->triangleNum = 0 THEN

18: node->child2 = “empty”

19: ENDIF

20:

21: CALL HapticBSP(node->child1, node->child1->level, threshold)

22: CALL HapticBSP(node->child2, node->child2->level, threshold)

23: ELSE

24: CALL BuildLeafNode(node)

25: ENDIF

Partitioning from the x-axis to the z-axis is a cycle. After z-axis partitioning, start

x-axis partitioning again. During each subdivision, check the number of the triangles

inside the subspace (triangles on the space border should be counted). The BSP result is

shown in Figure 3.6.

 62

Figure 3.6 Splitting Planes and Leaf Boxes of the BSP Tree

The leaf spaces bounding of the binary tree are presented in blue wireframe boxes

in the right portion of Figure 3.6. The green, red, and yellow rectangles indicate the x, y

and z axis-orthogonal splitting planes. At the right top corner of the partition wireframe

space, there is no blue wireframe box which means that there is no triangle in that space.

That node is empty and no leaf is there.

3.3.2 Triangles Distribution

When the partition plane cuts the space of the node, in most cases, the plane has

to pass through some of the triangles that are close to it. Since the triangles need to be

 63

assigned in two groups logically but not physically (the triangle position does not

change), the intersected triangles need to be allocated by some means as to which group

(child) they will belong to. Figure 3.7 shows three cases about the partition on crossed

triangles.

Figure 3.7 Three Cases of a Splitting Plane Crossing the Triangles

Case A: The plane cuts the intersected triangle and subdivides it into three small

triangles located in child1 (upper) and child2 (lower). The edge of the cut triangles is

Splitting Plane

A
B C

Child 1

Child 2

Child 1 Child 1

Child 2
Child 2

 64

straight. This method causes the number of the triangles to be increased (topology

changed) and needs additional computation to handle the subdivision.

Case B: If any vertex of the triangle lies on one side of the plane, the triangle is

assigned to the child of this side. In this case, any triangle crossing the plane will be owed

by the both child spaces. The leaf is the minimum unit of haptic rendering and all the

triangles in the leaf should be drawn. Therefore, the intersected triangles will be drawn

twice if both children need to be rendered. This leads to overlapping and a waste of

rendering steps and computation time. The edge of the triangles of the child is still

smooth (maybe not straight).

Case C: The triangle can only belong to one side of the splitting plane. If there

are two or three vertices of the triangle on the same side of the plane, the triangle is

assigned to the child of this side. Otherwise this triangle belongs to another child space.

Such a rule can avoid the overlap in rendering problem. In Figure 3.7, the edges of the

triangles are aliasing. Since the haptic rendering is invisible and the BSP tree is for haptic

rendering only, the alias-edge does not appear in graphics. This method is feasible and the

most efficient for rendering.

Although the partitioning is performed as a pre-computation (non-real-time),

cases A and B affect the complexity of the model significantly when the threshold t is set

to a small value. Case A increases the number of the triangles and case B increases

overlapping rendering and requires more computation time. We use the method of case C

 65

in the BSP tree construction. The haptic triangles are visualized for convenience in

green in Figure 3.8. The boundary of the haptic region looks like saw teeth.

Figure 3.8 Leaf Borders of the Case C

The green region includes few leaf nodes and no overlapping rendering occurs.

Each leaf contains a set of triangles. In that case, the proxy touches on the model and

only a few leaves are rendered for haptic APIs. The method will be presented in the next

section.

3.3.3 Haptic Detecting Box (HDB)

The model is subdivided into small parts by BSP. When the proxy is close to or

touching on the model, we take the advantage of the BSP to determine which parts should

 66

be rendered for collision detection and force generation for haptics. To achieve this goal,

an axis-aligned cube is defined to follow the proxy. This cube center is always coincident

to the proxy. When the cube is intersected with any leaf, this leaf should be drawn in

haptic rendering because it is close to the proxy so that it has a high possibility to be

touched by the proxy. All the leaves nearby the proxy are picked up and rendered during

traversing of the tree. This procedure is recursive also. The algorithm is presented in the

following pseudocode.

1: traverseWithHDB(node, HDB)

2: IF node = “empty” THEN

3: RETURN

4: ENDIF

5:

6: IF node is leaf THEN

7: Draw this leaf for haptics

8: ELSE

9: Determine which child the HDB intersects with

10: IF Child 1 intersects with HDB THEN

11: traverseWithHDB(child1, HDB)

12: ELSEIF Child2 intersects with HDB THEN

13: traverseWithHDB(child2, HDB)

14: ELSE

15: traverseWithHDB(child1, HDB)

16: traverseWithHDB(child2, HDB)

17: ENDIF

18: ENDIF

When a node is not empty, its two child spaces need to be checked if any of them

is intersected with HDB (line 9 in above pseudocode). To do that, if any of the eight

 67

vertices of the HDB is on one side of the node-splitting plane, this side child has an

overlap volume with the HDB. If each side contains at least one vertex of the HDB, the

both children intersect with the HDB. That means the plane cuts through the HDB. The

Hessian Normal Form [Gellert et al., 1998] is employed to determine the distance

between a vertex of the HDB and the plane. The sign of the result S indicates the side of

the vertex location since we do not care about the exact distance between the vertex and

the partitioning plane. (3.1) is simplified from Hessian Normal Form.

S = dNV +• (3.1)

where V is the vector of the vertex, N is the normal (normalized) of the partition

plane, and d is the last parameter of the plane equation 0=+++ dczbyax . If S≥0, it

means the vertex is in the same side of the positive normal (for left child rendering) of the

plane. And S<0 means the vertex is in another half space of negative normal of the plane.

When the HDB is far from the model and in the empty node space, the HDB

sometimes does not have any intersection with the model. Therefore, in the haptic

rendering, no triangle is rendered. The resulting efficiency is very fast. In some tested

cases, the rate of haptic rendering reached over 955 FPS.

The size of the HDB is critical to computation efficiency. Small cubes mean few

leaves will be included. But the size cannot be too small (say the edge length of the HDB

is 1/10 of the max length edge of the axis-aligned bounding box (AABB) of the whole

model). Otherwise the proxy might get through the model surface frequently when the

 68

proxy moves quickly on the model. That is because the collision detection finishes a

little later after the proxy position update. If the proxy moves quickly, the rendered leaves

close to the proxy may be not able to follow it in time. Then a delay results in collision

detection involving the current proxy and the previous rendered leaves. So the proxy

might be already out of the previous haptic region and puncture through the surface of the

model abnormally. On the other hand, if the HDB is very big, say 1/2 (or more) of the

max edge of the AABB of the haptic model, the collision detection delay would not result

in puncture. But the more leaves intersected with the HDB, the more rendering time is

required. We finally define the HDB in 1/4 size of the AABB of the model after several

experiments (see Figure 3.8). This HDB works well on the VHB models.

The triangles rendering area (green in Figure 3.9) in haptic rendering when the

proxy is moving close to a bunny mesh is visualized. The green area is getting big when

the proxy is closing to the surface mesh. In picture 1, there are only 35 triangles are

rendered (in green) in the haptic process, a very small percentage of the total triangles. So

the haptic rendering efficiency is relatively fast, 955 FPS. In picture 4, 650 triangles are

rendered in 49 FPS. This rate is better than the 28 FPS recorded on the model without

BSP applied (in that situation, the whole model is green).

 69

Figure 3.9 Haptic Triangles When the Proxy is Closing to the BSP Bunny

It can be noticed in picture 1 that the proxy is far from the model but a few

triangles are still rendered. The reason is as follows. These triangles are usually lying

outer which are opposite to the inner triangles, and the model structure is like that

combined with few leaf layers. Each layer contains some leaves and is not overlapped

with other layers, like an onion. In the intersection detection between the HDB and the

leaf, the leaf has the half infinite space divided by the plane of its parent node. So if the

proxy is in this half space and even is far from the triangles of the leaf, the proxy still has

intersection with this half space of the leaf. So this leaf, say leaf 1, is still rendered. If

there is another leaf, say leaf 2, between leaf 1 and the HDB, the intersection detection

2

3 4

1

 70

should find that leaf 2 intersects with HDB instead of leaf 1. The case of picture 1

happens only on the outer leaves. Only when the dynamic HDB locates completely in an

outer empty node, there is not any rendered triangle.

The rendering efficiency in picture 1 is still quick enough although a few leaves

might be rendered needlessly. The intersection detection method is quick for the binary

tree. We used another intersection detection algorithm in the octree with the HDB and a

finite box space of the leaf.

3.3.4 Performance and Complexity Analysis

Optimization of the haptic rendering with the spatial partitioning algorithms has

two benefits on saving the computational cost.

Performance: Just a small region of the model is drawn in the haptic process. In

the worst case, the proxy is touching the model, 1/3 triangles (tested in experiments) in

the leaves intersected with the HDB are rendered. So 2/3 of the time is saved in the

triangle drawing. Use tr to denote the time ratio of the BSP triangle rendering over the

traditional triangles rendering (draw the whole model). So tr=1/3. This benefit is not only

in drawing triangles but also in the related haptic APIs which handle the collision

detection and force generation. Table 3.2 shows the rendering rates of the triangle

drawing, touch and untouch haptic renderings in the haptic process.

 71

Table 3.2 Haptic Rendering Performance of the Binary Tree Model

No Haptic API
(Triangle Drawing)

Untouch
(Triangle Drawing,
Collision Detection)

Touch
(Triangle Drawing,
Collision Detection,
Force Generation)

of Rendered
Triangles

Time
(ms)

FPS
of Rendered

Triangles
Time
(ms)

FPS
of Rendered

Triangles
Time
(ms)

FPS

1387 2.6 378 1357 7.6 132 1671 11.0 91

3503 4.9 204 3620 18.5 54 3284 21.7 46

6541 8.1 124 6688 33.3 30 6688 43.5 23

8944 11.6 86 8679 47.6 21 9138 66.7 15

10134 13.2 76 10488 58.8 17 10347 71.4 14

13171 16.4 61 13354 76.9 13 13530 111.1 9

14722 17.2 58 14478 90.9 11 14842 142.9 7

0
10

20
30

40
50

60

70

80

90

100
110

120
130

140

150

0 5000 10000 15000
Rendered Triangles

Ti
m

e
(m

s)

No Haptic API

Untouch

Touch

0

50

100

150

200

250

300

350

400

0 5000 10000 15000
Rendered Triangles

FP
S

No Haptic API

Untouch

Touch

Figure 3.10 Plots for Table 3.2

 72

The data are obtained from experiments on a 41.6k triangles BSP model. All the

FPS were recorded for the haptic rendering process. The first row of Table 3.2 indicates

what types of operations are included in each test. For example, the “untouch” test only

involves the triangles drawing and collision detection. The right chart of Figure 3.10

presents the reciprocal results (FPS) from the data (time) of the left chart. The triangles

drawing time (blue polyline) without haptic APIs (mainly contain collision detection and

force generation) involved is significantly faster than the other two cases (red and green

polylines) which involve haptic APIs. Even when 14000 triangles are drawn, it still

achieves a rate of 58 FPS and does not delay the system loop significantly. But haptic

APIs have to handle a number of triangles in rate 7 FPS such that the decrease in system

speed is obvious. Although current graphics hardware can draw millions of triangles per

second and hardly affect the system efficiency on such haptic models, the decreased

number of the triangles for the haptic APIs noticeably improves the haptic response time.

Complexity: To determine the leaves intersection with the HDB, first, assuming

that the model is divided into subsets stored in a linear link, the searching time on this

structure is O(n), where n is the number of the leaves. Let’s see the situation on the BSP

model in the worst case (complete binary tree). The height of the complete binary tree is

hBin = log2(n) (3.1)

Then the number of the total nodes nnode of the binary tree is:

nBin =
12

12 1

−
−+Binh

 = 12 1)(log2 −+n = 2n-1 (3.2)

 73

As we set the edge of the HDB to 1/4 of the maximum edge of the model

bounding box, the volume of the HDB including the intersected leaves is in the range [0.1,

0.02] of the model bounding space. 0.1 is the worst case because the larger value means

more leaves need to be detected and rendered.

Denote m as the number of the rendered leaves and r as the ratio of the rendered

leaves over the total leaves (r=
n
m). We can consider the maximum r is 0.1. Then, at

most r*n leaves will be found intersected with HDB. In this search process, we wonder

how many nodes of the tree, denote as cBin, are traversed. Then cBin is the time cost of the

intersection detection. Let’s denote the ratio rBin.

rBin =
Bin

Bin

n
c

 (3.3)

 => cBin = rBin nBin (3.4)

What is the worst case of rBin relative to r? Denote w=
r

rBin . The worst case

happens in the complete tree because all leaves are located at the bottom of the tree and

the search for the leaves has to get through the whole height of the tree. It leads the

maximum cBin. The worst case of w (maximum value) is in the minimum leaves of the rn ,

where rn should be at least one leaf. The reason is that the search for only one leaf passes

the whole height of the tree (see Figure 3.11). Table 3.3 presents the worst w on the BSP

trees in the different heights.

 74

Figure 3.11 Traversed Nodes in the Worst Case of w

Table 3.3 The Worst w Related to the Trees in Different Heights

Tree Height 3 4 5 6 7 8 9 10

r 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

rBin 4/15 5/31 6/63 7/127 8/255 9/511 10/1023 11/2047

w 2.13 2.58 3.04 3.53 4.02 4.51 5.01 5.50

Usually the number of the triangles of the haptic model does not exceed 100k so

that the height of the BSP tree in this research is no more than 7. The worst w can be

chosen as 4.02 from Table 3.3. We get the complexity of the intersection detection in the

worst case as follows:

cBin = rBin nBin = r * w* (2n-1)

 = 0.1*4.02*(2n-1

= 0.8n (3.5)

 75

The result of (3.5) is better than n of linear searching. And in the practical

applications with the BSP models, the intersection detections are mostly executed much

more efficiently than the worst case.

Also compare Tables 3.1 and 3.2. The model used in Table 3.2 is the same as the

model 5 of Table 3.1. In Table 3.1, the rate of the haptic rendering in touching is 6 FPS.

In Table 3.2, most cases of column “Touch” are much better than 6 FPS (from 7 to 91). It

tells that on the same model, the BSP structure improves the haptic rendering rate

significantly.

3.4 Octree for Haptic Rendering

Octree is another method we have implemented to partition the model. It is

similar to the axis-aligned BSP tree. But each node of octree has 8 child nodes (octants).

The AABB of the model is subdivided simultaneously along the x, y, and z axes, and the

split point must be the center of the box. This creates eight new child boxes (see Figure

3.12). The subdivision is recursive. Such partition makes the structure regular, and some

queries may become more efficient because of this. Octree can be used in the same

manner as the axis-aligned BSP tree.

 76

Figure 3.12 Octree Partition on the AABB

(Picture is from en.wikipedia.org)

We set the same threshold as BSP for the octree subdivision. The partition will be

stopped if the number of the triangles in the node is less than the threshold. Only the leaf

nodes store triangles. The octree algorithm splits the node into eight finite smaller boxes.

The bounding box of each node is recorded in the struct of itself. Figure 3.13 shows the

leaf boxes (wire framed) of the octrees on the models of the bunny and back.

Figure 3.13 Leaf Boxes of the Octree on the Haptic Models

 77

Some nodes of the tree are empty (no triangles), so there are no wire frame

boxes there. The bunny has 2915 triangles without separated parts. The back model has

20389 triangles which contain the back skin, the ribs, scapulae and most vertebrae. The

construction of the octree is described in the following pseudocode:

1: HapticOctree(node, threshold)

2: IF node = “empty” THEN

3: RETURN

4: ENDIF

5:

6: IF node->triangleNum > threshold THEN

7: BuildChildNodes(node)

8:

9: AssignTrianglesToChild(node)

10:

11: FOR child1 TO child8

12: IF node->child#->triangleNum = 0 THEN

13: node->child# = “empty”

14: ENDIF

15:

16: HapticOctree(node->child#, threshold)

17: ENDFOR

18: ELSE

19: BuildLeafNode(node)

20: ENDIF

Line 7 is to build eight child subspaces by three axis-aligned planes. In the

triangles distribution, we use a similar method of case C in the BSP to allocate the

triangles to certain child nodes. The difference is that the node of octree has a finite

bounding box. If at least two vertices of the triangle lie in this child box, this triangle

 78

should belong to this child node (see Figure 3.14). Line 9 handles this job. And also, the

partition is pre-computed and the topology of the octree is static after creation.

Figure 3.14 Triangles Intersection with Bounding Box of the Node

3.4.1 Haptic Triangles Detection

A sphere can be used to define a space to detect the intersected leaves around the

proxy instead of a box. The proxy is the center of the sphere. If any of the eight vertices

of the node (leaf) bounding box is in the sphere, the node is intersected with the proxy

sphere. But computing the distances between the proxy and the eight vertices of the node

box is inefficient. However, for the cube (HDB), the AABB/AABB intersection [Akenine,

2002, pp.600] is employed to detect the intersection. In this way, there are only six

Boolean operations needed.

Figure 3.15 shows the situations of the haptic triangles rendering when the proxy

is in different positions. There are no triangles drawn when the HDB of the proxy does

 79

not touch the model, meaning no haptic API is involved. Only if the proxy is very close

to or touching the model, few leaves are rendered for haptics.

Figure 3.15 HDB is Closing to the Octree Back Mesh, Few Leaves Rendered

The haptic performance on the octree model is much better than on the model

without partition as well as BSP.

3.4.2 Complexity Analysis

Let’s set hOct as the height of the octree. The triangles lie in the space without an

obvious density change so that the leaf boxes are in similar size in the octree. Normally,

the height is not more than 3 because if the leaves are too many, as we can see in the last

two columns in Table 3.2, the complexity in the worst case might be over O(n). The

threshold needs to be adjusted according to the number of the triangles of the model to

keep the leaves in a reasonable range.

1 2 3

 80

hOct = log8(n) (3.6)

where n is the number of the leaves. The number of the total nodes of the

complete octree is denoted as nOct. Then,

nOct =
18

18 1

−
−+Octh

 =
7

18 1)(log8 −+n

 =
7

18 −n (3.7)

The discussion about the HDB of the octree model is similar to the BSP. Denote

cOct as the number of the nodes during the searching for the intersected leaves. So cOct is

also the time cost of the intersection detection in the octree. Denote the ratio rOct.

rOct =
Oct

Oct

n
c

 (3.8)

Tables 3.4 The Worst w Related to the Octrees in Different Heights

Octree Height 2 3 4

r 1/64 1/512 1/4096

rOct 3/73 4/585 5/4681

w 2.63 3.50 4.38

Since in the octree of the haptic models in this research, its height is no more than

3, the worst w is 3.50 from Table 3.4. The time cost of the intersection detection in the

worst case can be written as follow:

cOct = rOct * nOct = r * w*
7

18 −n

 81

 = 0.1*3.5*
7

18 −n

 = 0.4n (3.9)

0.4n is better than 0.8n of the binary tree in the worst case. Tests concerning the

rendering rates of 3 cases (non-haptic API, untouch and touch) on the octree model were

done. The same model as Table 3.2, 41.6k triangles, was used in this test. The original

measured data is attached in Appendix B. The comparisons to the BSP are shown in the

following charts.

 82

0

100

200

300

400

0 5000 10000 15000
Rendered Triangles

FP
S

Binary Treel

Octree

Figure 3.16 Haptic Triangles Drawing without Haptic APIs Involved

0

50

100

150

200

0 5000 10000 15000
Rendered Triangles

FP
S

Binary Tree

Octree

Figure 3.17 Haptic Rendering Rate in Untouch Condition

0

20

40

60

80

100

120

0 5000 10000 15000
Rendered Triangles

FP
S

Binary Tree

Octree

Figure 3.18 Haptic Rendering Rate in Touch Condition

 83

The haptic triangles drawing of the octree model is almost same as the binary

tree model in the Figure 3.16. It indicates that the intersection detection between the HDB

and the leaves of the octree is as fast as a binary tree. But in Figure 3.17 and 3.18, we can

see that the rendering performances of the API in the octree are slightly better (10%-20%)

than the binary tree. The haptic rendering performance is much improved with octree

spatial partition on the model. So we use the octree partition in the deformation algorithm

of this dissertation.

 84

4. Functional Shape Matched Deformation

In this chapter, the focus is on the surface deformation algorithm for haptic

models with human-like tissue. When haptic simulation is applied to soft objects, the

deformable model is desired to enhance the graphical and haptic realism. The VHB is

such a project, based on human back modeling. In general, the purpose of the VHB is to

diagnose back somatic dysfunctions concerning the vertebrae, muscles, and other soft

tissue. The deformation of soft tissue under external forces is presented on the back.

The goal of this chapter is to simulate the deformation of the back skin.

In the literature review, several deformation algorithms were discussed. Table 4.1

summaries the features of the current popular deformation methods.

 85

Table 4.1 Features of the Existing Deformation Algorithms

Method Advantages Disadvantages

Finite Element Method
Most accurate, Physical

based

Very expensive computation cost,
need the accurate physical

parameters, Complex boundary
condition definition.

Mass-Spring Model Fast, Physical model
Linear simulation, boundary

condition definition.

Free Form Deformation Fast Not accurate, need manipulation

Shape Interpolation Simple algorithm
Expensive computation cost, much

manipulation work

Skeleton Driven
Deformation

For deformation without
external force, good for

global deformation.

Much work of manipulation, not
flexible

The most accurate approach is Finite Element Method (FEM). Both FEM and

Mass-Spring Model are based on accurate, well studied properties of the material. But the

soft tissue and the muscles are nonlinear in most cases. Their characteristics vary on

different subjects. We use a predefined curve to simulate the shape of deformation on the

VHB model. The curve can be from math functions or be defined by user for the desired

shape.

4.1 Deformation Shape on Elastic Material

The deformation of elastic object surfaces such as skin, rubber, or sponge looks

 86

like the shape in Figure 4.1. That is a sharp rigid object pressed on the surface of a soft

object. This deformed surface can restore completely when the external force is removed.

On the human skin, the mass of the deformed part is small so that the damping can be

ignored. The deformation is activated immediately corresponding to the pressing force

without delay.

Figure 4.1 Deformation Cross Section on Soft Object

In the haptic simulation of palpation, the user usually touches the virtual patient

by fingers. In Figure 4.2, the rigid touching object is a ball. The right picture shows the

finger pushing on the soft surface. Because of the round shape of the finger, the skin

deformation shape under the finger is similar to the left one. The shape of finger-induced

deformation is considered to be symmetric about the y-axis (vertical axis) under the force

perpendicular to the model surface.

Figure 4.2 Deformation Due to a Finger is Similar to a Round Rigid Object

 87

The properties of the homogenous isotropic elastic objects were discussed by

[Luo and Xiao, 2006]. They derived certain geometric properties from physical properties

of the contact between a rigid object and an elastic object that affect the shape change of

the elastic object under deformation. Some typical deformation cross sections of the

elastic object were presented. For homogenous elastic objects, the deformation is

maximum at the contact point. The displacement of the surface is decreasing with

increasing distance to the contact point. The contour of the deformation is a circle. The

boundary of the deformation (zero displacement) is a circle too.

The human back is composed of some different types of elastic tissues and rigid

bones in layers. The back surface is an even area of the human body. There are few

bumps on it. The skin and the muscle are the main factors affecting the elastic properties

of the back. The elasticity of the back is considered as a normal elastic material in this

haptic application. Since the VHB group already measured the stiffness of human backs

[Wlliams, 2007], the force generation in haptic simulation depends on an

experimentally-derived linear stiffness map. To simplify the calculation, the maximum

deformation at the contact point is assumed to be linear according to the relative

displacement of the proxy and using Hooke’s Law.

In the deformation area, all the deformed points follow the movement of the

contact point. The cross section of the deformation can be fitted to some predefined

shapes such as a Gaussian Curve, etc. Such curves are expressed in algebraic functions

 88

and can be modified for different materials based on the study of the specific materials.

Figure 4.3 shows a standard Gaussian Curve (flipped in horizon) which is suitable for the

deformation under the round rigid object.

Figure 4.3 Flipped Gaussian Curve in Horizon

Figure 4.4 presents a method for the deformation under a sharp rigid object

pressure by a modified Gaussian Curve. For the sharp applied object, the first order of the

surface of the deformed object from the contact point should be monotonic decreasing. In

the instance of the Gaussian Curve, the part between its two inflection points can be

removed. Then join the rest of the two curves to get the picture to the right of Figure 4.4.

Figure 4.4 Modified Gaussian Curve for Sharp Object

Since the back muscles pennate in different directions in the tangent of the back

surface, this affects the deformation shape such that it is not a regular circle. The

 89

deformation boundary will be discussed in Chapter 5.

In real palpatory diagnosis, the operator usually pushes his/her fingers on the

patient and moves on the skin to feel the shape and stiffness changes of the bone or soft

tissues. The deformation caused by this action of the operator can be considered

combining with two components in the normal and tangential directions to the body

surface.

Figure 4.5 Normal and Tangential Deformation Combination

The tangential deformation of the skin is driven by the friction under the finger.

The left picture in Figure 4.5 is the deformation only in the normal direction. The right

one is the deformation when the finger moves on the skin. The tangential deformation is

perpendicular to the normal direction. In the experimental measurement of back

deformation, we found that the maximum normal deformation (at the contact point) is

around 10 mm and the maximum of the tangential deformation is around 20 mm. So the

tangential deformation is more obvious than normal deformation during palpation. We

apply predefined shape matching to both the normal and tangential deformations.

Normal Deformation Final
Deformation

Tangential
Deformation

Normal
Deformation

 90

4.2 Normal Deformation

Most elastic material and soft tissues are continuous in physical properties. Thus

physical changes, like deformation on the surface, are also gradually continuous. The

physical properties of human soft tissue are mostly anisotropic and nonlinear. When the

surface is deformed by an external force applied at a contact point, the surface

deformation is significant near the point and attenuates gradually with the distance

increasing to the contact point. To achieve faster deformation computation, we choose

some algebraic functions to simulate the change. After investigation in the most familiar

algebraic functions, we found that the Gaussian Curve (GC) has some similar features

like the gradual change properties of soft tissue. Table 4.2 shows the reasons why the GC

is better than others. They are not full comparisons of every algebraic curve, but some

typical curves.

 91

Table 4.2 Comparison of GC, Cos, and Log Functions

Shape Function
First-order
derivative
at the ends

Non-Symmetry

Gaussian Curve
(half)

0, 0 Yes

Cos
(half period)

0, 0 No

Log +∞, 0 Yes

In this table, only three curves are listed since they are more similar to the

deformation cross-section than others. The first-order derivative at the end of the curve

indicates if the deformation is smooth at the contact point and at the deformation

boundary. Zero derivative is reasonable at the both ends of the deformation curve for the

round applied rigid object in the palpation simulation. The non-symmetry indicates if the

curve has any symmetrical or similar part itself. Since the deformation from the contact

point should be a decreasing curve, the shape should not have similar properties. So the

non-symmetry is good for the deformation. From Table 4.2, we can see that the half

Gaussian Curve has the best features in those three shapes. Also, it is suitable for the

sharp object in the previous discussion. Equation (4.1) is the Gaussian Curve function

with zero offset.

 92

dn = 2

2

2

2
1 σ

πσ

r

e
−

 (4.1)

where dn is the displacement of a point on the surface in the normal direction. In

Figure 4.6, r=OD is the distance from the original position of the deformed point D to the

contact point O. At the contact point, the user pushes the haptic device and penetrates the

haptic surface to get the force feedback according to the stiffness at that point. The depth

of the penetration can be computed by the subtracting the current position of haptic

device from the proxy position. The maximum normal deformation is at the contact point,

see dmax in Figure 4.6.

Figure 4.6 Deformation Region and Contact Point

In this method, the deformation boundary is supposed as a regular shape such as a

circle or ellipse. The center of this shape is the contact point. The size of the deformation

area is variable depending dynamically on changes in the applied force. The force change

 r

dn
C

dmax

O D

Deformation Boundary

Contact Point

 93

is related to the penetration depth of the proxy. In the programming, the size of the

normal deformation boundary is a linear function of the penetration depth Pn which is in

normal direction. Pn is also the maximum displacement in the normal direction. To get

the normal displacement dn of a point D (in Figure 4.6), which is within the boundary, in

efficient computation, we do not calculate the Gaussian function for each point but use an

array to store the Gaussian Curve and map the D to the array. The ratio q=
OC
OD is used

for this mapping. Following are the steps to compute the normal deformation at any point

in the deformation boundary.

1: NormalDeformation(point, Pn)

2: IF point is out of the boundary THEN

3: RETURN 0

4: ENDIF

5:

6: compute locationRatio q

7: map the point on Gaussian Curve

In the case of a circular deformation boundary, q=
usCircleRadi

OD . But in other

cases, r is derived in a different way. The above derivation is based on a planar surface.

However, the surface of the haptic back model is not planar, but 3D. The deformation

shape is defined in a plane that is perpendicular to the normal of surface. So the point on

the model needs to be projected on the deformation shape plane of the contact point first.

D is the projected point on the deformation shape plane. Then transform the Gaussian

Curve displacement mapping to the normal plane. Figure 4.7 shows the deformation cross

 94

section in the normal direction.

Figure 4.7 Normal Deformation of Back Mesh Mapping with a Gaussian Curve

The top picture is the cross section of the original back mesh without touching.

The bottom one is the cross section of the deformed mesh in the normal direction

matched on Gaussian Curve.

4.2.1 Normalized Gaussian Curve Mapping Array

Since the Gaussian Curve is predefined for the deformation shape, to save

computation time, the GC is stored in an array. For each point within the deformation

boundary, its distance ratio is mapped to the index of the array to get the deformation

value.

The standard Gaussian Curve is expressed in (4.2).

 95

y = 2

2

2
)(

2
1 σ

μ

πσ

−
−

x

e (4.2)

In the normal deformation, the position change of each point on the surface

should not exceed the change range of the contact point. The level of deformation is

corresponding to the GC. So GC needs to be normalized to present the change from the

maximum (100%) to minimum (0%). Since the minimum of GC is zero, the maximum

value is only to be normalized.

The GC is symmetrical about the y-axis. Therefore the half GC in the positive

x–axis only needs to be computed when the offset is μ = 0.

Set y = 1,

when x = 0 and μ = 0 in (4.2), we get σ2 = 0.1592 and σ = 0.4.

And when x=1.4, y=0.0021. y is around 1/500 of the maximum. We can consider

that it is close to zero to be the minimum of the GC, see the left curve in Figure 4.8.

Figure 4.8 Half Gaussian Curve and Its Storage Array M[i]

The right picture in Figure 4.8 presents the mapping of the storage array M[i].

 96

The horizontal axis indicates the index of the array. The vertical axis is the normalized

GC. The size of the array affects the smoothness of the resulting shape. Figure 4.9 shows

the final smoothness of an array with a size of 20, 130, and 700. Case (a) is significantly

different from (b). But (b) is not obviously different from (c). (c) is slightly better than (b).

A higher resolution than 700 is not necessary. We choose 700 as the resolution of the

Gaussian Curve map.

 (a) Array Size:20

 97

 (b) Array Size:130

 (c) Array Size:700

Figure 4.9 Smoothness in Different Array Sizes

 98

The range of the array is [0, 1.0] according to its index from 0 to 699. The index

i is mapped linearly on the x-axis within [0, 1.4]. Using a nearest interpolation to get i

then locate the M[i].

 dn = ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

OC
ODroundM 699 *Pn (4.3)

Figure 4.10 shows the mapping which is from the deformation plane to the

Gaussian Curve array. Point C is the intersection of the deformation boundary and the

extended line of OD. It is the minimum deformation of the Gaussian Curve since it is on

the boundary. The GC presents the trend of the displacement along OC from minimum to

maximum. The Gaussian Curve and array mapping is also used in the tangential

deformation.

Figure 4.10 Gaussian Curve Array Mapping

O

C

D

 99

4.3 Tangential Deformation

This is another deformation component, perpendicular to the normal deformation.

The tangential deformation of the surface is caused by the friction and the movement of

the palpating object. We again use the Gaussian Curve to calculate the tangential

displacement of the moved point according to the distance from its original location to

the contact point in the tangential plane.

OpenHaptics does not provide the API for obtaining the original contact point

position, also called the friction anchor, in the condition of the friction defined. But it has

been derived in Chapter 2 (see point A in Figure 4.11).

Figure 4.11 Tangential Deformation in the Circle

The blue-dashed-line mesh is the original model. Black-solid-line is the deformed

mesh. Pt is the tangent vector of the external force. In this case, the boundary of the

A

A’

Pt

 100

deformation is a circle (dashed red). A is the friction anchor and the center of the

deformation area. A’ is the new position of the moved point A. The displacement vector

AA’ is the maximum tangential displacement of the surface under the friction effect since

A is the contact point in this case. The friction Pt at contact point is given as follow,

Pt= Pn* μ (4.4)

where μ is the coefficient of friction mentioned in Section 2.5, and Pn is the force

in the normal direction at the contact point. The tangential displacement vector at any

point on the surface is denoted as dt. It is always in the same direction of Pt. Dividing the

distance, which is from this point to A, by the radius of the circle leads to the location

ratio for the Gaussian Curve array. We can get the following,

dt = M[point location ratio]*Pt (4.5)

The tangential deformation is computed individually without the effect from the

normal deformation because all the calculations are based on a static model. The results

of the displacements in the x, y, and z axes of the normal and tangential directions can be

vectorially added to the original position.

The above tangential deformation method is discussed based on the same stiffness

character as the normal. For variable type subjects or models, the stiffness in the

tangential direction might be different than the normal direction. In such cases, an

adjustment factor fadj (depending on the measurement results) can be included in (4.4) by

multiplication to change the tangential stiffness.

 101

Pt= Pn* u* fadj (4.6)

For example, loose skin generally moves in a larger range than tight skin. fadj can

be set as 1.3 for loose skin and 0.7 for tight skin. Figure 4.12 shows the tangential

deformation on the back mesh.

Figure 4.12 Tangential Deformation of Back Mesh Mapping on Gaussian Curve

The left picture of Figurer 4.12 is a part of the back mesh without deformation.

The right one is the tangential deformation of the back mesh from the viewing direction

perpendicular to the model surface.

4.4 Point Mapping to Ellipse Plane

When the deformation shape is assumed as a circle, the location ratio of the point,

 102

which is on the surface, for the Gaussian Curve array mapping can be obtained by

computing the distance to the contact point. But for other deformation boundary shapes,

we need to predefine the shape plane and project the point from the model surface on that

plane. Then the location ratio will be computed on this shape plane. The plane is

perpendicular to the normal of any point on the surface and passes the point. Because we

will use an ellipse to define the deformation boundary, the conversion from the original

mesh node onto the deformation shape defined plane is based on an ellipse. It is the same

manner of the conversion for other shapes on the deformation shape plane.

Each vertex (point) on the surface and in the ellipse is deformed under an external

force. In Figure 4.13, J is a vertex on the model surface. The contact point is O. Its

normal is ON and it is normalized already.

Figure 4.13 Point Projection on Deformation Shape Plane

The ellipse is dashed and the plane is perpendicular to the normal ON. O is the

A

N

 J

D

Model
Surface

Ellipse Shape

O

B

 103

origin of the ellipse. Each vertex on the deformable surface has a predefined ellipse. If

the contact point is not exact at a vertex, its deformation shape ellipse should be obtained

by the interpolation of its surrounding ellipses. The normal at this point is also computed

by the interpolation of its neighboring normals. D is the projection of point J on the

ellipse plane. We need to get D for the Gaussian Curve mapping. This is an intersection

problem of a line (containing J) and a plane (containing O). Refer to the method by

[Bourke, 1991].

Denote m as the factor for the line JD. Since |ON| = 1,

D = J + m * ON (4.7)

where m is a real number. D, J and ON are all vectors.

Solving for m gives

 m =
ONON

JOON
•

−•)(=
1

)(JOON −• =)(JOON −• (4.8)

Substituting (4.8) in (4.7) gives

D = J + [)(JOON −•] * ON (4.9)

At this time, we do not know if D is in the ellipse or not by just calculating |OD|.

If D is out of the ellipse, it does not deform. Mapping it to Gaussian Curve can tell us

how much displacement is associated with it.

The ellipse is defined with its major axis a and the ratio t to the minor axis. Figure

4.14 shows the projected point D in the deformation ellipse.

 104

Figure 4.14 Point Location in Deformation Boundary Ellipse

Major axis: a = |OA| and Minor axis: b = |OB|

The ratio of the x and y axes is t.

t =
a
b

The ellipse equation is below:

x = a * cos β

y = b * sin β = a * t * sin β

To calculate the ratio of the deformation related to the Gaussian Curve, denote it

as following,

qe =
||
||

OC
OD

This ratio is for an ellipse. Deriving the right expression with the ellipse equations

gives the following.

 O

A

B

C

D

β

a

b

 105

||
||

OC
OD =

22)sin()cos(
||

ββ ba
OD
+

=
ββ 22222 sincos

||
taa

OD
+

 =
)cos1(cos

||
22222 ββ −+ taa

OD

 =
22222 cos)1(

||
tata

OD
+− β

 =
2222222

2

||cos)1(||
||

taODtaOD
OD

+− β
 (4.10)

Since

OAOD • = |OD| * |OA| * cos β

 = |OD| * a* cos β (4.11)

We get

 (OAOD •)2 = |OD|2 * a2 * cos2 β (4.12)

Substituting (4.12) in (4.10) gives

 qe =
||
||

OC
OD =

22222

2

||)1()(
||

taODtOAOD
OD

+−•
 (4.13)

The location ratio qe indicates where the point is in the deformation area. If qe is

equal to or great than 1.0, the point is on the boundary of the deformation area or out of

the area. That means no deformation happens at this point. If qe is less than 1.0, this point

 106

is in the deformation area and needs to be involved in a deformation calculation.

qe ≥ 1: on boundary or out of deformation area

qe < 1: in deformation area

Since the user can drive the haptic device to slide on the model surface freely, the

contact point O (see Figure 4.13) may be at an arbitrary position on the surface. But J

must be one of the vertices of the surface.

4.5 The Neighbor Nodes Ring Algorithm

In the defined deformation shape method, only the vertices that are in the

deformation boundary need to be involved in the deformation calculations. The

deformation region at any position covers a small part of the whole model surface. It is a

benefit to computational efficiency to just check the vertices around the contact point in a

small range (not all the vertices of the model). The searching algorithm is based on the

expanding nodes ring enclosing the contact point (see Figure 4.15).

(4.14)

 107

Figure 4.15 Neighbor Nodes Deformation Rings

The red dot O is the center of the ellipse (dashed red) which is the deformation

boundary. To determine which vertices are in the ellipse, we build node rings with the

same “center” O. As we know that O is the friction anchor, the method of intersection of

line and triangle [Sunday, 2003] is employed to find which triangle O lies on. In Figure

4.13, O is on the triangle with vertices A1, A2, and A3. So the three black round nodes A1,

A2 and A3 () are treated as the first ring surrounding O. The nodes on this ring should

be the most possible enclosed in the ellipse than other nodes. The location ratio qe is

computed for each node of the ring to determine if these nodes are in the deformation

area. Then create the second node ring surrounding the first ring. Each node of the second

 108

ring is adjacent to the first ring. B1-B9, the blue triangles (), are treated as the

second ring. We can see that some nodes of this ring, B3, B6 and B7, are not in the ellipse.

Continue to construct the expanded rings until no nodes of the ring is in the ellipse.

Same thing happens on the third ring C1-C15 () that few nodes are enclosed in the

ellipse. But D1-D13 () is such ring that does not has any node in the ellipse. So the

deformation calculation stops. This algorithm is summarized in pseudocode as follows.

1: SearchNodesInEllipse(frictionAnchor, ellipse)

2: Determine the triangle ring[1] which the frictionAnchor lies on

3: WHILE (true)

4: WHILE traverse ring[i]

5: qe = calculateLocationRatio(node, ellipse)

6: IF qe < 1 THEN // in the ellipse

7: CALL calculateNormalDeformation(node, qe)

8: CALL calculateTangentDeformation(node, qe)

9: ENDIF

10: ENDWHILE

11:

12: IF all qe >= 1 THEN // none node of ring[i] is in the ellipse

13: RETURN // stop searching the nodes enclosed by the ellipse

14: ELSE

15: Construct the next expended ring[i=i+1]

16: ENDIF

17: ENDWHILE

This procedure is traversing the rings from the inner ring to outside. Line 7 and 8

are the main deformation calculation processes. The normal and tangential deformations

at the vertex (node) are calculated separately and without affecting each other. The

construction of the node ring, line 15, is computationally costly. In this algorithm, a new

 109

vertices list containing all the vertices is created, any vertex has been assigned to the

ring should be marked and will not be checked for the new ring. Once the traverse of a

ring finishes, the next ring is created. The rings are stored in a link and the vertex indices

are stored in a link of the ring.

The mesh in Figure 4.15 is simple with not many vertices since it is for explaining

the concept only. The real surface of the model contains a large number of vertices so that

most of the nodes of the model will be detected not in the deformation area and thus save

much computational time.

To get a smooth looking surface of the haptic model, the normal of each vertex is

pre-computed by averaging the normals of its adjacent triangles. If any triangle is

changed, the normals of its vertices should be recalculated. A changed triangle list is

created dynamically to handle the normal recalculation.

Figure 4.16 presents the deformation on the textured back model. An

undeformable hand model is used instead of the proxy sphere. This hand model was

created by MakeHuman and edited by 3DS Max. It has 1418 vertices and 2814 faces

(triangles).

 110

Figure 4.16 Deformation Combined with Normal and Tangential Components

 111

The normal and tangential deformations are calculated separately and combined

together vectorially. The tip of the index finger (the proxy position) is kept on the

deformed surface

4.6 Maximum Deformation

Because of the displacement-driven force generation of the haptic interface, the

haptic tip can be moved a significant displacement (say 20 mm) under a significant force

(say 5 N) from the user when the proxy is touching the model. It is not realistic if the

contact point always follows the position of the haptic tip. So the maximum displacement

of the deformation is defined as follows.

Denote mn-device to be the displacement of the haptic interface relative to the

friction anchor in the normal direction (penetration depth). As mentioned in Section 4.1,

the maximum deformation in the normal direction dn-max is defined as:

dn-max = 10 mm (4.15)

When mn-device is less than dn-max, the displacement of the contact point in the

normal direction is changed linearly corresponding to the penetration depth of the haptic

tip. If mn-device is greater than or equal to dn-max, the displacement of the contact point in

the normal direction is equal to 10 mm.

 dn= mn-device if mn-device < dn-max
(4.16)

 112

dn= dn-max if mn-device ≥ dn-max

The maximum tangential deformation dt-max, is similar to the maximum normal

deformation. We set it as follows.

dt-max = 20 mm (4.17)

and

 dt= mt-device if mt-device < dt-max

dt= dt-max if mt-device ≥ dt-max

4.7 Visualization of Surface Strain

On the haptic model, color mapping is used to visualize the strain of the deformed

surface. In Figure 4.17, the original mesh is presented in black solid lines. The mesh

deforms as driven by the haptic interface. The blue vectors (arrows) present the

displacements of each vertex. So the strain of point E can be calculated by averaging the

strains of its neighboring points.

(4.18)

 113

Figure 4.17 Average of the Neighboring Points Color Mapping For Visualization

E has 6 neighboring points A, B, D, F, H, and I. Red lines show all the joint points

of E. SE denotes the final strain at E. SAE denotes the strain at E in the AE direction.

SAE =
||

|||| 11

AE
AEEA −

 (4.19)

Then SBE, SDE, SFE, SHE, SIE can be derived in the same manner as (4.19).

SE = Average(SAE, SBE, SDE, SFE, SHE, SIE) (4.20)

The color at vertex E is updated dynamically. SE is mapped to a red-blue color

diagram. The screen shot of the strain visualization is shown in Figure 4.18. The red area

presents the part of the surface under tension and the intensity of the color indicates the

intensity of the strain of this area. The blue area indicates the part of the surface under

compression and the intensity of the strain.

A

A1

D

D1

B

B1

C

F

I
H G

E

E1

G1 H1 I1

F1

C1

 114

Figure 4.18 Strain Visualization of the Surface Deformation

 115

5. Defined Deformation Boundary Shape

In the previous chapter, the curve matched deformation is defined continuously

between the maximum and minimum deformed points. For standard elastic materials

(linear or nonlinear), it is reasonable to set the maximum deformed point always at the

contact point and the minimum deformed point is always on the boundary of the

deformation (zero displacement). For materials with uniform properties and only normal

external forces, the displacement contours on the surface should be concentric circles

because the deformation is the same mapping on the deformation curve when the distance

to the center (the contact point) is the same. So the deformation boundary is a circular

contour with zero displacement.

On the human body, the skin is relatively thin and can be treated as an isotropic

elastic membrane. Under the skin, the muscles and the bones are the main structures that

affect the deformation. Muscle is a very elastic soft tissue [McKinley, 2005]. Because the

lay of muscle (including tendon) is between the skin and the bone, and it is much thicker

than skin, it is much more important part involved in the deformation than bone. In the

anatomy picture of the human back (Figure 5.1) the muscles on the back are not isotropic

and are located in different directions. The deformation contour on the muscle is not

circle for this reason.

 116

Figure 5.1 Human Back Muscles and Seven Key Points

(Back Muscle Picture is from www.dkimages.com)

In order to calculate the deformation with the shape matched algorithm, the

deformation boundary needs to be predefined. The deformation boundaries vary at

different points on the back depending on the muscle directions. So a boundary shape

map has been created for each vertex of the haptic back model.

5.1 Deformation Shape Study of Human Back and Simplification Method

In deformation experiments with human subjects, we found that the shape of

P1

P2

P3

P5

P4 10 cm P6

P7

Thoracic

Cervical

Lumbar

Sacral &
Coccygeal

T5

T10

L2

10 cm

 117

tangential deformation on the skin under friction is irregular, not a circle or other regular

shape. Few reports about the deformation characters of the soft tissue can be found in the

literature. The physical properties of soft tissue and muscle vary and are dependent on

gender, age, and body type, etc. When we studied the deformation on the human back, an

obvious phenomenon of the deformation shape was observed: the deformation region

along the direction of the muscle is usually greater than in other directions. So this feature

can be considered as an ellipse instead of a circle because an ellipse has a major axis

which is longer than the minor axis. The average data from several subjects are used for

this research. The data can be adjusted or re-measured depending on the user’s needs and

the specified part of the human body. We measured the back deformations on five

subjects.

Figure 5.1 shows the locations and the directions of the back muscles. It also

shows the key points that are chosen for the measurement of the deformation shape.

The external back muscles mainly includes the trapezius (on both sides of back

points P1P2, see Figure 5.1), teres minor, teres major (around P4 and P6), and latissimus

dorsi (around P5 and P7) [McKinley, 2005]. The trapezius and latissimus dorsi cover

about 3/4 of the back. So, in Figure 5.1, P1, P2, P3, P5, and P7 are marked as five typical

deformation points. P1, P2 and P3 are on the mid line. They are located at thoracic

vertebrae T5 and T10 and lumbar vertebra L2. P5 and P7 are on the perpendicular bisector

of P2P3 and 10 cm from P2P3. However, teres minor and teres major are small and

 118

complex muscles. So P4 and P6 are marked in this area on both sides of the back. They

are on the perpendicular bisector of P1P2 and 10 cm from P1P2. Since P4, P6 and P5, P7

are two pairs of symmetrical points, they have similar deformation shape properties.

Therefore, only five points P1, P2, P3, P4 and P5 were measured.

Figure 5.2 presents the measurement method and the back deformation contours

on a subject.

Figure 5.2 Two Deformation Contours at P2

In this experiment, the subject was prone on a firm table. A fixed camera took

pictures of the back from the top. The back of the subject was marked in red dots with a

grid size of 3×3 cm. A stick (left picture) with a round tip, which is about the size of a

finger, was used to apply the force to the back to avoid blocking the red dots from the

camera. Two static pictures were taken separately, before and after the force was applied.

 119

During this time, the subject was asked to hold his breath for about 5-10 seconds to

keep the whole body steady under the force. After taking the first picture, the force was

applied at the key point on the subject’s back using the stick in 45 degrees to horizontal

and towards the shoulder. The force direction is shown as a small light blue arrow in the

right picture of Figure 5.2. The force execution was stopped until the stick could not

move the skin at which time the second picture was taken. The experiment was repeated

on the same subject, with the applied force in the opposite direction (toward the waist).

To view the displacement of each dot, these two pictures were compared by

overlapping the dots of the second picture (only pick the red dots from the second picture)

on the first picture. The black dots in the right of the Figure 5.2 are from the second

picture. These dots were red originally and were changed to black to distinguish from the

dots in the first picture. We identified the dots with the same displacements and

connected them to be a displacement contour. All dots of the red contour represent 2 mm

displacement. The blue contour is for reference, presenting the deformation shape around

the contact point.

It is difficult to find the zero displacement contour because, in some cases, almost

all points on the back skin were moved, even points far from the contact point. Therefore,

when the zero-displacement points were connected by lines, the shape is not an ellipse

but some irregular shape whose border may cross the neck, shoulder and waist. So we set

a threshold, 2 mm, of the displacement to be considered as a zero deformation boundary.

 120

The red polyline in Figure 5.2 is such a zero-deformation contour. The long axis of this

shape was measured to be the major axis of the deformation ellipse, and the major axis

direction was also recorded. The short axis perpendicular to the long axis was measured

as the minor axis of the ellipse. Each ellipse is described such that the major axis is

upward, within ±90º to the positive y-axis. The minor axis is within ±90º to the positive

x-axis. The definition of the deformation ellipse at the key point, named Pi, is presented

in the following format.

KeyEllipse[Pi] { x, y, z, ri, ti, di} (5.1)

where

x, y, z: Location of Pi, center of the ellipse

ri: Half length of major axis

ti: Ratio of major axis over minor axis

di: Direction (in degrees) of the major axis to the positive x-axis

The experimental human back deformation data is attached in Appendix C. The

results of the deformation ellipses at P1, P2, P3, P4, and P5 are shown in Figure 5.3. They

were computed by averaging the results of the measured data at each key point.

 121

Figure 5.3 The Deformation Ellipses at the Key Points

(Back Muscle Picture is from www.dkimages.com)

The ellipses of P6 and P7 are assumed to be symmetrical to P4 and P5. They were

not tested so they are not presented in Figure 5.3. The deformation ellipses at the seven

key points lie far from each other. When the deformation is at any point except key points,

the ellipse has to be obtained by interpolation. Because the contact point must locate on a

triangle combined with three vertices and the triangle size is very small (the edge is

around 5 mm), the deformation ellipse at the contact point is considered equal to its

nearest vertex. An ellipse map has been built for each vertex of the back mesh based on

P1

P2

P3

P4

P5

2li

(cm)
ri

di
(°)

P1 35.8 1.13 90.0

P2 29.8 1.05 90.0

P3 26.6 1.23 180.0

P4 35.8 1.36 99.4

P5 28.4 1.31 121.0

 122

the seven key points. Therefore each vertex of the back model has a deformation ellipse

definition stored in the vertex struct. This map is created in pre-processing.

5.2 Interpolation of the Deformation Ellipses

The contact point is computed dynamically on the octree model. The deformation

ellipse at the contact point should change during the movement of the haptic device.

Since the neighboring vertices are already stored, the ellipse can be determined quickly

by obtaining directly from its nearest vertex. The ellipse of each vertex is determined by

the seven key points. The Gaussian Radial Interpolation (GRI) algorithm is developed to

calculate the parameters of the deformation ellipse at each vertex of the back model. If no

key points are defined in advance, the deformation boundary is always assumed as a

circle.

5.2.1 Problem Statement

We have assumed that the physical changes are continuous on the haptic back

model. So the changes of the deformation shapes are continuous and gradual. In the

definition of the deformation ellipse (5.1), the length of major axis (r), ratio (t) and

direction (d) are the three variables of the ellipse according to its location (x, y, z). All the

ellipses are defined and computed in a 2D plane. They will be mapped on the 3D haptic

 123

model at each vertex. Since few key points have been measured, the deformation

ellipses in other locations need to be generated by GRI.

Before the interpolation, a uniform back with a constant deformation circular

shape was assumed because we assume that the ellipses at the key points are the effect

factors to a normal material with homogenous physical properties. Put the key ellipses on

the uniform back (basic deformation map); the final ellipse at any point on the new map

is then generated by the interpolation algorithm with the constant circle and the key

(affecting) ellipses.

Figure 5.4 Key Deformation Ellipses in the Uniform Deformation Area

For example, in Figure 5.4, the blue circle with center C is the constant basic

circle of the map. This pre-defined deformation circle (deformation shape base) is same

and everywhere in the basic map. To get the new deformation shape at point C, we need

C

A1

C0

Basic Circle

B

B1

A

 124

to calculate the shape change of the blue circle under the effects by ellipses A and B.

AA1 and BB1 are the vectors indicating the half major axis of ellipses A and B.

Assume that the measured ellipses at the key points are the true deformation

boundaries. The new (final) deformation shape map should satisfy the following

conditions.

1) The shapes at the key points are the same as the measured ellipses.

2) A key point affects other points only when they are in a certain range around

the key point. The effects of the different key points can be stacked.

3) The effect level of the key point is from maximum to zero in a gradual

decline trend in its range.

4) The shape at a point without any effect of the key point is the basic circle.

5.2.2 Radial Interpolation Based on Gaussian Curve

The definition of the circle C is similar to the deformation ellipse (5.1). The

differences of circle C are that its ratio is always 1.0 and major axis direction is always

90º (upright, see vector CC0 in Figure 5.4). The basic circle is expressed as follows.

BasicCircle { x, y, z, rc, tc, dc} (5.2)

where

x, y, z : Position of the point (vertex of the model)

rc : Radius of the basic circle

 125

tc : 1.0

dc : 90º

The deformation shape definition at any desired point is similar to the key ellipse

and presented in the following.

DeformationShape { x, y, z, R, T, D} (5.3)

In the interpolation method, the effect of the key point is from maximum to zero,

restricted in a limit range when the effect declines with increasing distance. In Figure 5.5,

suppose that A and B are two key points that have been measured for the deformation

boundary ellipses. C is a vertex of the back model. The interpolation algorithm will

generate a new ellipse at C. Ellipse A is close to point C so that it affects C. But ellipse B

is further from C, say somewhere outside of a circular range (the dashed green), so that

the deformation shape at C should not be affected by the ellipse B. Let’s define a circle

with radius e to be the boundary of the effect region. e is constant on the haptic back

model. It is an estimated value from the experiments.

 126

Figure 5.5 Effect Region Circle and Gaussian Decline Trend Curve

The blue (solid) circle at center C is the basic circle. The shape at this point

becomes the red ellipse, the new deformation shape with major axis (half) CC1, under the

effects of ellipses A and B. Because we can notice that ellipse B is out of the effect region,

it should not affect the shape at C. But ellipse A is in the effect region and affects C. So

the red final ellipse at center C is similar to ellipse A in size and direction. Since r, t and d

are the individual parameters in the deformation shape definition, they are computed

separately by the same interpolation algorithm.

A1

C

A

C1

C0

Effect Region

Basic Circle

B

B1

e

rc

 127

To get smooth interpolation, a Gaussian Curve is used again to be the

attenuation trend for the effect level of the key ellipse (see Figure 5.6).

Figure 5.6 Effect Depending on the Distance

A Gaussian curve is drawn in solid from the center to the border of the effect

region circle. P1 and P2 are in the effect region of center P so that they affect P. And P is

closer to P1 than P2. So P1 affects P more than P2 does; a1=0.1 and a2=0.5 indicate the

effect levels. Since P3 is out of the range, it does not affect P and a3 is zero.

Figure 5.7 shows the Gaussian mapping within the effect range in Figure 5.6.

Gaussian curve array is used again. The ratio of the distance over the effect radius is

mapped to the index of the array to get the effect level.

P

P1

P2
P3

a2=0.1

a1=0.5

a3 =0

R(P)=?

e

 128

Figure 5.7 Gaussian Curve Mapping for the Effect Level

Denotations:

a1 = g(P1) Effect level from P1 at P according to the distance of PP1 mapped

on the Gaussian curve

a2 = g(P2) Effect level from P2 at P according to the distance of PP2 mapped

on the Gaussian curve

 rc Radius of the basic circle (constant)

 ri = r(Pi) Half length of the major axis of the ellipse at the key point Pi

 Vi Half length of the major axis at P only affected by key point Pi

R(P) : Final result of the half length of the major axis at P under the

effects of the all key points (P1, P2, P3 ……)

The major axis interpolation is derived as follow.

To get the result V1 at point P with the effect from P1, between two points, the

linear interpolation is suitable for this situation. The distance between P and P1 is the

P

1

e P1 P2

g(P1)

g(P2)

g(x) Gaussian Curve

a1

a2

0

 129

effect factor and be mapped to the normalized Gaussian curve.

If |PP1| > e (effect radius), P1 does not affect P.

If |PP1| ≤ e, P1 affects P corresponding to the Gaussian curve show in Figure 5.7.

The linear interpolation is written as follow.

V1= 111)1(ararc +− (5.4)

In this case, there is only one effect point locating in the deformation effect circle.

When there are more than one effect points, the final value V is a combination of all the

effect points depending on the effect weight of each point. Apply the linear interpolation

again to compute the final major axis:

R(P)= V1
naaa

a
+++ ...21

1 + V2
naaa

a
+++ ...21

2 + … + Vn
n

n

aaa
a

+++ ...21

 (5.5)

For example, in Figure 5.6, there are two deformation ellipses P1 and P2 in the

deformation effect circle P and one deformation ellipse P3 is out of this circle. The half

length of the major axis of final deformation shape (ellipse) is obtained as follows.

 R(P) = []
21

1
111)1(

aa
a

ararc +
+− + []

21

2
222)1(

aa
a

ararc +
+−

 = []2
22

2
22

2
11

2
11

21

)()(1 araararaar
aa cc +−++−

+

= []{ }2
22

2
11

2
2

2
121

21

)(1 araraaaar
aa c +++−+

+
 (5.6)

The above derivation just involves two ellipses. For an arbitrary case with any

number (n) of points, R is:

 130

R(P) = []∑
∑=

= ⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
n

i
n

j
j

i
iiic

a

a
arar

1

1

)1((5.7)

Or = ⎥
⎦

⎤
⎢
⎣

⎡
+− ∑∑∑

∑ ===

=

n

j
jj

n

j
j

n

j
jcn

i
i

araar
a 1

2

1

2

1

1

)()(1 (5.8)

Substituting g(Pi) for ia in (5.7) gives:

R(P) = []∑
∑=

= ⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
n

i
n

j
j

i
iiic

Pg

Pg
PgrPgr

1

1

)(

)(
)())(1((5.9)

Substituting r(Pi) for ri in (5.9), we get:

R(P) = []∑
∑=

= ⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
n

i
n

j
j

i
iiic

Pg

Pg
PgPrPgr

1

1

)(

)(
)()())(1((5.10)

This is the result about the half major axis of the effected ellipse at the desired

point P. But for efficient computation, the equation is chosen by the previous one (5.9).

A problem was found in this algorithm. The result at the key point is not equal to

its original values (key ellipse). For instance, at P1, its original length of the half major

axis is 120. The effect level from P1 (itself) is 1.0 because effect distance is 0. And then,

at this point, we expect the result 120. But the equation (5.10) gives 112. That is not

correct because in the satisfied conditions of the interpolation, the key point should keep

its original value. In this case, the effect from P1 is full effect to itself. The effects from P2

 131

(say, effect level = 0.26) and P3 (say, effect level = 0.18) should affect P1. The previous

method needs to be adjusted.

When the effect factor of P1 is 1, the effects from other points should be 0. But

the sum of the effects should be still 1. To achieve this goal, some correction factors are

added to each element of the numerator and denominator in (5.5); see the following

derivation.

V1
naaa

a
+++ ...21

1 is modified to

V1
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

321

−−−−++−−−+−−−
−−−

nnnn

n

aaaaaaaaaaaa
aaaa (5.11)

and V2
naaa

a
+++ ...21

2 is modified to

V2
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

212

−−−−++−−−+−−−
−−−

nnnn

n

aaaaaaaaaaaa
aaaa (5.12)

……

and Vn
n

n

aaa
a

+++ ...21

 is modified to

Vn
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

121

−

−

−−−++−−−+−−−
−−−

nnnn

nn

aaaaaaaaaaaa
aaaa (5.13)

All the denominators in (5.11), (5.12), and (5.13) are same. Only their numerators

are different. The sum of the fractions is equal to 1.

In (5.11), at point Pn, the numerator is 0 because the last element)1(na− is 0. So

the result of (5.11) is zero. In the same manner, (5.12) gives zero too. But in (5.13), the

 132

numerator is non-zero and the denominator just has the same thing left as the numerator

(the other elements are 0 in the manner described). So the fraction in (5.13) is 1. The

result about (5.11) and (5.12) all give 0. Only in (5.13) is Vn*1=Vn. This way guarantees

the interpolation result at the specified point keeping to its original value and reducing the

effects from other point to zero.

Use a denotation to simplify the expression of the element in the former

equations:

∏
≠=

−
n

ijj
ja

;1

)1(=)1)...(1)(1)...(1)(1(1121 njj aaaaa −−−−− +− (5.14)

where i∈[1, n],

This denotes a continuous multiplication operation without including the ith

element. For example,

∏
≠=

−
n

jj
jaa

1;1
1)1(=)1)...(1)(1(321 naaaa −−−

∏
≠=

−
n

jj
jaa

2;1
2)1(=)1)...(1)(1(312 naaaa −−−

∏
≠=

−
n

njj
jn aa

;1

)1(=)1)...(1)(1(121 −−−− nn aaaa

So (5.11) can be modified to:

 133

R(P) =

V1
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

321

−−−−++−−−+−−−
−−−

nnnn

n

aaaaaaaaaaaa
aaaa +

V2
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

212

−−−−++−−−+−−−
−−−

nnnn

n

aaaaaaaaaaaa
aaaa +…+

Vn
)1)...(1)(1(...)1)...(1)(1()1)...(1)(1(

)1)...(1)(1(

121312321

121

−

−

−−−++−−−+−−−
−−−

nnnn

nn

aaaaaaaaaaaa
aaaa

 = V1

∏∏

∏

≠=≠=

≠=

−++−

−

n

njj
jn

n

jj
j

n

jj
j

aaaa

aa

;11;1
1

1;1
1

)1(...)1(

)1(
+ … +Vn

∏∏

∏

≠=≠=

≠=

−++−

−

n

njj
jn

n

jj
j

n

jj
jn

aaaa

aa

;11;1
1

1;1

)1(...)1(

)1(

= ∑
∏∏

∏
=

≠=≠=

≠=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−++−

−
n

i
n

njj
jn

n

jj
j

n

jj
ji

i

aaaa

aa
V

1

;11;1
1

1;1

)1(...)1(

)1(
 (5.15)

Substituting []iiic arar +−)1(for Vi in (5.15) gives

R(P) = []∑
∏∏

∏
=

≠=≠=

≠=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−++−

−
+−

n

i
n

njj
jn

n

jj
j

n

jj
ji

iiic

aaaa

aa
arar

1

;11;1
1

1;1

)1(...)1(

)1(
)1((5.16)

Substitute g(Pi) for ia in (5.16), we get

 134

R(P) = []
()

()
∑

∑ ∏

∏
=

= ≠=

≠=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+−

n

i
n

k

n

kjj
jk

n

ijj
ji

iiic

PgPg

PgPg
PgrPgr

1

1 ;1

;1

)(1)(

)(1)(
)())(1((5.17)

The following example uses (5.7) and (5.16) for the interpolations. The results are

compared. In Figures 5.8, in a square area with size 500×500 mm, there are three

deformation boundary shape ellipses E1, E2 and E3 at key points O1, O2 and O3 on the

y-axis. And the z-axis (outward from the paper, not presented in the figure) indicates the

length of half the major axis of the deformation ellipse. As we assumed before, in this

square, it is a uniform base initialized with a constant deformation circle. In this example,

the value of the basic circle radius is presented in z-axis. In the same manner, the lengths

of major-axis of the ellipses are presented in z-axis also

 135

Figure 5.8 Effect Ellipses in a Square Area

Table 5.1 list the locations and the lengths of the major-axis of the ellipses in

Figure 5.8.

Table 5.1 Major Axes of the Ellipses at Key Points

Ellipse Center (x, y) Half Major Axis (z)

E1 O1 (0, 150) 120

E2 O2 (0, 60) 120

E3 O3 (0, -30) 120

Suppose that the radius of the basic circle is 90 and the effect region radius is 400.

rc=90, e=400

0 -250 250

250

-250

E1

E2

E3

 O3
x

y

 O2

 O1

 136

Use the method of (5.7) to interpolate with these three key ellipses in the

uniform 500×500 mm area; we got the result shown in Figure 5.9. The value in the z-axis

indicates the result of the half major axis value in this square area. The right picture is the

view seen along x-axis (projected on y-z plane). We can see that R(E1)=115, but it should

be 120 as its original value. And R(E2)=112, but it should be 120 also.

Figure 5.9 Results do not Fit the Key Points

Figure 5.10 Interpolated Results Satisfies All the Key Points

E1
E2

E3

E1 E2 E3

 137

Figure 5.10 shows the results after using the interpolation of (5.16). The results

at E1, E2, and E3 are 120 and all keep their original values at the key points. This

interpolation can generate the map with accurate match at the key points and continuous

gradient of z.

The algorithm of (5.16) is applied to the deformation simulation in this

dissertation research. Figure 5.11 presents a map of the length of the half major axis of

the deformation shape on a real back. It is based on seven key measured points. Red area

indicates that the half major axis is greater than the normal value (base value), and the

blue area around the waist means that the major axis is less than the base value.

Figure 5.11 Map of Major Axis on Real Back Based on 7 Key Points

Since the last three components (r, t, and d) of the deformation shape are defined

separately, the maps of ratio (t) and direction (d) are created separately too. These maps

 138

are pre-computed and static in the haptic simulation. Each vertex of the model contains

the deformation ellipse information converted from these maps.

5.3 Ellipse Conversion from Deformation Shape Map to 3D Model

The deformation ellipse at each vertex of the model is converted from the

deformation ellipse map and stored. At the vertex, the ellipse plane is perpendicular to the

normal as presented in Figure 4.13. The ellipse is stored in the following format.

EllipseAtVertex{Position, Normal, HalfMajorAxis, Ratio} (5.17)

where

Position: Vertex location (x, y, z)

Normal: Normalized normal vector (3D) at the vertex

HalfMajorAxis: Half major axis vector (3D) of the ellipse

Ratio: Major axis over minor axis of the ellipse, real number

Since the deformation ellipse map is created in 2D plane, the ellipse at 3D

vertices needs to be converted from the map. In the ellipse definition (5.17), Ratio is a

real number so that it can be used directly, only HalfMajorAxis (OA in Figure 4.13 of the

ellipse needs to be converted from the map. Figure 5.12 shows the projection

relationship between the model and the deformation shape map.

 139

Figure 5.12 Projection from Model to Deformation Map Plan

The right image of Figure 5.12 is the deformation shape map which is

perpendicular to the z-axis. The ellipse conversion procedure is model→map→model.

First, a vertex Vm of the model is projected, along the positive z-axis, on the map

named Pe. And then the ellipse, defined in (5.1), at Pe is calculated on the map by using

the GRI algorithm discussed before.

Second, calculate the vector HalfMajorAxis of (5.17) by using the half length

major axis and direction of (5.1). This is a conversion from the 2D map to a 3D model.

The half major axis of the ellipse on the map can also be expressed as a vector. Project

this vector, along the negative z-axis, on the tangent plane at Vm of the model. The new

vector on the tangent plane is considered as HalfMajorAxis.

 140

6. Conclusions and Future Work

6.1 Summary and Conclusion

In this dissertation, the current deformation algorithms in graphics modeling are

summarized. We then present a new algorithm FSMD about the deformation modeling

for haptic applications. The computation of deformation is always based on the

movement of the contact point when the haptic interface touches the model. Since the

haptic modeling requires real-time response, to achieve faster interaction, BSP and octree

have been implemented to divide the model into subspaces. The performances of both

partitioning methods were analyzed and compared. In the haptic rendering and contact

point detection, octree performs better in time complexity than BSP so that it is

considered best to be applied to the VHB project. Then a fast search algorithm is

described with HDB to find the contact point based on the octree model. So The octree

optimizes the data structure of the haptic model and increases the haptic rendering

performance significantly.

To develop a new deformation method on the haptic model, the deformation

characteristics of the human back were measured and analyzed. Since the Gaussian curve

has some features that are similar to the deformation of a continuous elastic material, it is

employed for the FSMD and the deformation shape map generation. FSMD is discussed

in details of normal and tangential deformations. The displacement of each deformed

 141

vertex is along the direction of the haptic interface penetration. The mapping method on

the predefined deformation curve is simplified. We explained the anisotropic

characteristics of the back model because of the different directions of back muscles. So

an elliptical deformation boundary is proposed. The distance ratio to the contact point is

then used to map on a Gaussian curve. The vertex of the 3D model needs to be projected

on its deformation ellipse plane. The projection result of the derivation from the vertex

location to the Gaussian Curve is not complicated. Finally, the computation time is

satisfied on VHB. The haptic rendering rate on the model with 20389 triangles was

recorded as 26 FPS on average (the program was executed on a desktop with a P4

3.4GHz CPU, 2GB Memory, and GeForece6500 256MB video card). For the

pre-computed deformation map, an accurate interpolation algorithm was suggested. We

defined and measured seven key points on human backs to generate a big map with the

deformation ellipse of each vertex of the model. This interpolation method can guarantee

that the map passes every key point and changes in a smooth gradient. This deformation

algorithm is based on some simplified algorithms and the measured data from real

subjects. The deformation boundary shape and the deformation curve can be specified on

different part of the body depending on the measurement results. The advantages of

FSMD are fast, measurement data based, and adaptable. Disadvantages are linear

elasticity simulation, no affections from bones.

 142

6.2 Recommendations for Future Work

A few possible goals are suggested for future work.

1) The deformation curve can be mapped combined with skin and contour lines

of the bones because the bones might affect the deformation cross-section when the

surface is close to bone. We found that the normal deformation boundary is smaller than

the tangential deformation boundary. For the normal deformation computation, the ellipse

size can be reduced. That also decreases the number of the vertices involved in the

deformation ellipse and saves computation time.

2) Since human tissue displacement is nonlinear, nonlinear stiffness should be

used. A Gaussian Curve might be used to present the trend of the stiffness change from

zero to maximum displacement at the contact point.

3) The deformation boundary shape is defined as an ellipse in this dissertation.

It is a regular shape. But the real boundary is dependant on the shoulders, arms, neck, and

waist because the skin is easily moved under the palpation forces even when the touch

point is far from the deformation area of interest. The deformation shape map should

include these effects. At each vertex the deformation boundary may be irregular. A new

projection method is needed to convert the deformation shape from the map to the vertex.

4) The efficiency of haptic rendering might be improved if a linear link to save

the triangles intersected with the HDB is added. A hybrid octree can be considered for

this.

 143

References

T. Akenine-M’oller and E. Haines, Real-Time Rendering, Second Edition, A K Peters,

Ltd., pp. 662-664, 2002.

A. Al-lhalifah and D. Roberts, “Survey of Modeling Approaches for Medical Simulators”,

5th Intl. Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, 2004.

B. Allen, B. Curless, and Z. Popovic, “Articulated body deformation from range scan

data”, Transactions on Graphics, SIGGRAPH 2002, pp. 612-619.

E. Angel, Interactive Computer Graphics, Fourth Edition, Addison-Wesley, 2005, pp.

541-545.

O.R. Astley and V. Hayward, “Design Constraints for Haptic Surgery Simulation”, Proc.

IEEE Int'l Conf. Robotics & Automation, April 2000.

Y. Bando, T.i Kuratate, and T. Nishita, “A Simple Method for Modeling Wrinkles on

Human Skin”, Pacific Conference on Computer Graphics and Applications 2002,

pp.166-175.

K-J. Bathe, Finite Element Proceedures, Prentice Hall, Englewood Cliffs, 1996.

J. Barbic and D. James, “Real-Time Subspace Integration for St.Venant-Kirchhoff

Deformable Models”, ACM SIGGRAPH 2005, Volume 24, Issue 3, July 2005,

pp.982-990.

 144

M. d. Berg, M. v. Krefeld, M. Overmars and O. Schwarzkopf, Computational Geometry:

Algorithms and Applications, Second Edition, Springer, pp. 256-262, 2000.

A. de Boer, M. S. van der Schoot and H. Bijl, "Mesh deformation based on radial basis

function interpolation", Computers and Structures, Volume 85, Issue 11-14,

pp.784-795, 2007.

J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis,

Cambridge University, 1997.

P. Borrel, A. Rappoport, "Simple Constrained Deformations for Geometric Modeling and

Interactive Design", ACM Transactions on Graphics, 13(2), pp. 137-155, April 1994.

R. Bridson, R. Fedkiw, and J. Anderson, "Robust treatment of collisions, contact and

friction for cloth animation," Proc. of SIGGRAPH'02, San Antonio, pp. 594-603.

M. Bro-Nielsen, “Finite Element Modeling in Surgery Simulation”, Proceedings of the

IEEE, Vol.86, No.3, pp. 490-503, 1998.

P. Bourke, "Intersection of a plane and a line",

http://ozviz.wasp.uwa.edu.au/~pbourke/geometry/planeline/, 1999.

S. R. Buss, 3-D Computer Graphics-A Mathematical Introduction with OpenGL,

Cambridge University Press, 2003.

S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovi, “Interactive Skeleton-Driven

 145

Dynamic Deformations”, SIGGRAPH 2002, July.

H. Chen, H. Sun, and X. Jin, "Interactive Haptic Deformation of Dynamic Soft Objects",

ACM International Conference on VRCIA, pp. 255-261, 2006.

H. Chen, W. Wu, H. Sun, and P. Heng, "Dynamic touch-enabled virtual palpation",

Computer Animation and Virtual Worlds, Volume 18, Numbers 4-5, pp. 339-348,

September 2007.

M.-Y. Chen, R.L. Williams II, R.R. Conatser Jr and J.N. Howell, “The Virtual Movable

Human Upper Body for Palpatory Diagnostic Training”, SAE Digital Human

Modeling Conference, July 2006.

N. Chin, and S. Feiner, "Near Real-Time Shadow Generation Using BSP Trees",

Computer Graphics (SIGGRAPH '89 Proceedings), 23(3), pp. 99-106, July 1989.

K. S. Choi, H. Sun, and P. A. Heng, "Interactive Deformation of Soft Tissues with Haptic

Feedback for Medical Learning", IEEE Transactions on Information Technology in

Biomedicine, Vol.7, No.4, pp. 358-363, December 2003.

Y. Chrysanthou and M. Slater, "Computing Dynamic Changes to BSP trees", Computer

Graphics Forum (EUROGRAPHICS '92 Proceedings), 11(3), pp.321-332, Sep 1992.

T. H. Cormen, C. E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to

Algorithms, Second Edition, MIT Press, 2001.

S. Cotin, H. Delingette, and N. Ayache, "Real-Time Elastic Deformations of Soft Tissues

 146

for Surgery Simulation",IEEE Transactions on Visualization and Computer

Graphics, 1999.

A. de Boer, M. S. van der Schoot, and H. Bijl, "Mesh deformation based on radial basis

function interpolation", Computers and Structures, Volume 85, Issue 11-14,

pp.84-795, June 2007.

F. Dachille, H. Qin, and A. Kaufman, “A Novel Haptics-Based Interface and Sculpting

System for Physics-Based Geometric Design”, Computer-Aided Design, pp. 403-420,

2001.

F. Dong, G. J. Clapworthy, M. A. Krokos, and J. Yao, "An Anatomy-Based Approach to

Human Muscle Modeling and Deformation", Visualization and Computer Graphics,

Volume 8, Issue 2, pp. 154-170, 2002.

C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, "Realistic haptic rendering of

interacting deformable objects in virtual environments", IEEE Transactions on

Visualization and Computer Graphics, 12(1), pp. 36-47, 2006.

D. H. Eberly, 3D Game Engine Design: A Practical Approach to Real-Time Computer

Graphics, Second Edition, Morgan Kaufmann, 2006, pp. 479-481.

S. R. Eskola, “Binary Space Partioning Trees and Polygon Removal in Real Time 3D

Rendering”, Uppsala University, Thesis, 2001.

L. V. Fausett, Numerical Methods: Algorithms and Applications, Prentice Hall, pp.68-310,

2002.

 147

S. F. Frisken and R. N. Perry, "Simple and Efficient Traversal Methods for Quadtrees and

Octrees". Journal of Graphics Tools, 7(3), 2002.

N. Galoppo, S. Tekin, M.A. Otaduy, M. Gross, and M. C. Lin, “Interactive Haptic

Rendering of High-Resolution Deformable Objects”, Virtual Reality, pp. 215-223,

August 2007.

W. Gellert, S. Gottwald, M. Hellwich, H. Kastner and H. Kunstner, VNR Concise

Encyclopedia of Mathematics, 2nd ed, New York: Van Nostrand Reinhold,

pp.539-543, 1989.

 Or refer http://mathworld.wolfram.com/HessianNormalForm.html.

M. Gervautz and W. Purgathofer, "A Simple Method for Color Quantization: Octree

Quantization," in Magenat-Thalmann and Thalmann, pp. 219-231, 1988.

S. F. Gibson, B. Mirtich, "A survey of deformable models in computer graphics",

Technical Report TR-97-19, MERL, Cambridge, MA, 1997.

X. Guo, H. Qin, "Real-time Meshless Deformation", Computer Animation and Virtual

Worlds, Vol. 16, No. 3-4, pp. 189-200, 2005.

A. Gregory, M. C. Lin, S. Gottschalk, and R. Taylor, "A Framework for Fast and Accurate

Collision Detection for Haptic Interaction", IEEE Virtual Reality Conference,

pp.38-45, 1999.

J. Griessmair and W. Purgathofer, “Deformation of Solids With Trivariate B-splines”,

 148

Eurographics, pp. 137-148, 1989.

M. Hauth, J. Gross, W. Straber, and G. F. Buess, "Soft Tissue Simulation Based on

Measured Data", Medical Image Computing and Computer Aided Intervention,

pp.262-270, 2003.

G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, "An Implicit Finite Element Method

for Elastic Solids in Contact", Computer Animation, 2001.

J. N. Howell, R. R. Conatser Jr., R. L. Williams II, J. M. Burns, and D. C. Eland, “The

Virtual Haptic Back (VHB): A Teaching Tool for Palpatory Diagnosis”, FASEB

Journal, 21 (5 – part 1): A594, 2007.

J. N. Howell, R. L. Williams, R. R. Conatser, J. M. Burns, and D. C. Eland, “Training for

Palpatory Diagnosis on the Virtual Haptic Back: Performance Improvement and User

Evaluations”, The Journal of the American Osteopathic Association, (AOA) 2007.

W. M. Hsu, J. F. Hughes, and H. Kaufman, "Direct manipulation of free-form

deformations", SIGGRAPH 1992, v26, pp. 177-184.

G. Irving, J. Teran and R. Fedkiw, “Invertible Finite Elements for Robust Simulation of

Large Deformation”, ACM SIGGRAPH/Eurographics Symposium on Computer

Animation (SCA), pp. 131-140, 2004.

C. L. Jackins and S. L. Tanimoto, "Oct-trees and Their Use in Representing Three

Dimensional Objects", Computer Graphics and Image Processing, 14(3), pp.249-270,

1980.

 149

D. L. James and K. Fatahalian, “Precomputing interactive dynamic deformable scenes”,

Proc. ACM SIGGRAPH 2003, pp. 879-887.

D. L. James and D. K. Pai, “ArtDefo, Accurate Real Time Deformable Objects”,

Computer Graphics (ACM SIGGRAPH 99 Conference Proceedings), pp. 65-72,

August 1999.

W. Ji, R. L. Williams II, J. N. Howell and R. R. Conatser, "3D Stereo Viewing Evaluation

for the Virtual Haptic Back Project", Proceedings of the Symposium on Haptic

Interfaces for Virtual Environment, 2006.

P. Jimenez, F. Thomas, and C. Torras, “3D Collision Detection - A Survey”, Computers

and Graphics, 25(2), 2001.

P. G. Kry, D. L. James, and D. K. Pai, "Eigenskin: Real time large deformation character

skinning in hardware", ACM SIGGRAPH 2002 Symposium on Computer Animation,

pp. 153-160.

L. Kavan, J. Zara, “A Real-Time Deformation of Articulated Models”, Symposium on

Interactive 3D Graphics and Games, 9-16, 2005.

J. P. Kim and J. Ryu, "Hardware Based 2.5D Haptic Rendering Algorithm using

Localized Occupancy Map Instance", ICAT, pp. 132-137, 2004.

A. Knoll, "A Survey of Octree Volume Rendering Methods", Scientific Computing and

Imaging Institute, University of Utah, 2006.

 150

K. Komatsu, “Human Skin Model Capable of Natural Shape Variation,” The Visual

Computer, vol. 4, no. 3, pp. 265-271, 1988.

Y. Kuroda, M. Nakao, T. Kuroda, H. Oyama, M. Komori, and T. Matsuda, "Interaction

Model between Elastic Objects for Accurate Haptic Display", Proceedings of 13th

International Conference on Artificial Reality and Telexistence, pp. 148-153,

December 2003.

J. P. Lewis, M. Cordner, and N. Fong. “Pose Space Deformations: A Unified Approach to

Shape Interpolation and Skeleton-Driven Deformation”, ACM SIGGRAPH 2000,

July.

D. Libs, "Modeling Dynamic Surfaces with Octrees", Computers & Graphics, Pergamon

Press, Vol.15, No. 3, 1991.

M. Lin and S. Gottschalk, “Collision detection between geometric models: A survey”,

Proc. of IMA Conference on Mathematics of Surfaces, pp. 37–56, 1998.

Q. Luo and J. Xiao, "Geometric Properties of Contacts Involving a Deformable Object",

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems

(HAPTICS'06), pp. 533-538, 2006.

G. Maestri, "Digital Character Animation 2", Vol 1. New Rider, Indianapolis, 1999.

N. Magnenat-Thalmann, R. Laperriere, and D, Thalmann. “Joint-dependent local

deformations for hand animation and object grasping”, In Proceedings of Graphics

 151

Interface, pp. 26-33, June 1988.

N. Magnenat-Thalmann, H. Seo, and F. Cordier, “Automatic Modeling of Virtual Humans

and Body Clothing”, Special issue on computer graphics and computer-aided design,

Volume 19, Issue 5, September 2004.

D. Marchal, F. Aubert and C. Chaillou, “Collision between Deformable Objects Using

Fast Matching on Tetrahedral Models”, SIGGRAPH Symposium on Computer

Animation, 2004.

M. Matthias, L. McMillan, J. Dorsey, and R. Jagnow, "Real-Time Simulation of

Deformation and Fracture of Stiff Materials," Eurographics CAS, Computer

Animation and Simulation 2001, pp. 113-124.

M. McKinley and V. Loughlin, Human Anatomy, McGraw-Hill, 2005.

A. Mohr, L. Tokheim, and M. Gleicher, "Direct Manipulation of Interactive Character

Skins", Symposium on Interactive 3D Graphics, 2003.

M. Muller, J. Dorsey, L. McMillan, R, Jagnow, and B. Cutler, "Stable Real-Time

Deformations", ACM SIGGRAPH/Eurographics symposium on Computer animation,

pp. 49-54, 2002.

M. Muller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless Deformation Based

on Shape Matching", ACM Trans. Graph., 24-3, 2005.

M. Muller, L. McMillan, J. Dorsey, and R. Jagnow, "Real-Time Simulation of

 152

Deformation and Fracture of Stiff Materials", Eurographic Workshop on Computer

Animation and Simulation, pp. 113-124, 2001.

J. Noh, D. Fidaleo and U. Neumann, "Animated Deformations with Radial Basis

Functions", Proceedings of the ACM symposium on Virtual reality software and

technology, pp. 166-174, 2000.

M.A. Otaduy, and M.C. Lin, "Sensation Preserving Simplification for Haptic Rendering",

ACM SIGGRAPH 2003, pp. 543-553.

S. Park and J. K. Hodgins, “Capturing and Animating Skin Deformation in Human

Motion”, SIGGRAPH 2006, 25(3), pp. 881-889.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, "Interactive Ray Tracing. In

Proceedings of Interactive 3D Graphics, pp. 119-126, 1999.

J-P. Pernot, B. Falcidieno, F. Giannini, S. Guillet, and J-C. Léon, "Modelling Free-Form

Surfaces using a Feature-Based Approach", Proceedings of the eighth ACM

symposium on Solid modeling and applications, pp. 270-273, 2003.

G. Picinbono, H. Delingette, and N. Ayache, "Non-linear and Anisotropic Elastic Soft

Tissue Models for Medical Simulation", Robotics and Automation, ICRA,

pp.1370-1375, 2001.

G. Picinbono, J-C. Lombardo, H. Delingette, and N. Ayache, "IImproving Realism of a

Surgery Simulator: Linear Anisotropic Elasticity, Complex Interactions and Force

Extrapolation", Visualization and Computer Animation, 13(3), pp. 147-167, 2002.

 153

D. Rose and T. Ertl, “Haptic Modeling of Finite Element Surfaces”, Vision Modeling and

Visualization (VMV), Germany, pp. 123-130, Nov 2005.

H. Samet, "Implementing Ray Tracing with Octrees and Neighbor Finding", Computers

and Graphics, 13(4), 1989.

H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990.

W. Schroeder, K. Martin, B. Lorensen,, Visualization Toolkit, Third edition, Kitware Inc.,

2004.

T. W. Sederberg, "Class Notes of Computer Aided Geometric Design", 2004,

http://cagd.cs.byu.edu/~557/.

T. W. Sederberg and S. R. Parry, “Free-Form Deformation of Solid Geometric Models”,

SIGGRAPH 1986, pp. 151-159.

SensAble Technologies Inc., Openhaptic Toolkit Programmer’s Guide, SensAble

Technologies Inc., 2005.

L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A Fast Multigrid Algorithm for Mesh

Deformation”, SIGGRAPH 2006.

D. Sunday, "Intersections of Rays, Segments, Planes and Triangles in 3D",

http://www.softsurfer.com/Archive/algorithm_0105/, 2003

 154

R. Szeliski, S. Lavallee, "Matching 3-D anatomical surfaces with non-rigid

deformations usingoctree-splines", Biomedical Image Analysis, Proceedings of the

IEEE Workshop, June 1994.

K. Tagawa, K. Hirota, and M. Hirose, "Impulse Response Deformation Model: an

Approach to Haptic Interaction with Dynamically Deformable Object", IEEE Virtual

Reality Conference, 2006.

J. Teran, S. Blemker, V.Ng. Thow Hign, and R. Fedkiw, “Finite volume method for the

simulation of skeletal muscle”. SIGGRAPH/Eurographics Symp. on Computer

Animation 2003, pp. 68-74.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust Quasistatic Finite Elements and

Flesh Simulation”, Symposium on Computer Animation, July 2005.

D. Terzopoulos and A. Witkin, “Physically Based Model with Rigid and Deformable

Components”, IEEE Computer Graphics & Applications, pp. 41-51, 1988.

T. Vassilev, "Simulation of a Deformable Human Body for Virtual Try-on", Proceedings

of the 2007 international conference on Computer systems and technologies.

F. Velasco and J. C. Torres, "Cell Octree: A New Data Structure for Volume Modeling and

Visualization", VI Fall Workshop on Vision, Modeling and Visualization, 2001.

A. Watt, 3D computer Graphics, Third Edition, Addison-Wesley, 2000.

J. Weber, Run-Time Skin Deformation, Intel Architecture Labs, 2000.

 155

G. Wolberg, "Image Morphing Survey", The Visual Computer, 14, 8/9, 1998.

J. Wilhelms and A. V. Gelder, "Octrees for faster isosurface generation", ACM

Transactions of Graphics, 11(3), pp. 201-227, July 1992.

R. L. Williams II, W. Ji, J. N. Howell, and R. R. Conatser Jr, “Device for Measurement of

Human Tissue Properties In Vivo”, ASME Journal of Medical Devices, 1(3),

pp.97-205, 2007.

R. S. Wright and B.n Lipchak, OpenGL SuperBible, Third Edition,SAMS, 2004.

H. B. Yan, S. M. Hu, and R. Martin, “Skeleton-Based Shape Deformation Using Simplex

Transformations”, Computer Graphics International 2006, pp. 66-77.

H. T. Yau, L. S. Tsou, and M.J. Tsai, “Octree-based Virtual Dental Training System with a

Haptic Device”, Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, pp 15-424,

2006.

L. Zhang, Y. Kim, and D. Manocha, “A Fast and Practical Algorithm for Generalized

Penetration Depth Computation”, Robotics: Science and Systems Conference

(RSS07), 2007.

M. Zhang and A.F. Mak, “In Vivo Friction Properties of Human Skin”, Prosthet Orthot

Int, 1999 Aug; 23(2): pp. 135-41.

Y. Zhong, B. Shirinzadeh, G. Alici, and, J. Smith, “Haptic Deformation Modelling

 156

Through Cellular Neural Network”,

Q. Zhu, Y. Chen and A. Kaufman, “Real-time Biomechanically-Based Muscle Volume

Deformation Using FEM”, Computer Graphics Forum, 190-3, pp. 285-284, 1998.

 157

Appendix A. Models for the Research

These models are used in this research to test the BSP and octree algorithms. The

numbers of the vertices (ver) and triangles (tri) of each are listed.

ver:1494 tri:2915 ver:1588 tri:2962 ver:3245 tri:6261

ver:4164 tri:8163 ver:10303 tri:20389 ver:21082 tri:41582

 158

ver:1418 tri:2818 ver:1401 tri:2786

 159

Appendix B. Haptic Rendering Performance in Octree Model

In the haptic process of the octree partitioned model, the triangles drawing,

untouched and touched haptic renderings were measured. The original data are attached

here.

No Haptic API
(Triangle Drawing)

Untouched
(Triangle Drawing,
Collision Detection)

Touched
(Triangle Drawing,
Collision Detection,
Force Generation)

of Rendered

Triangles

Time

(ms)
FPS

of Rendered

Triangles

Time

(ms)
FPS

of Rendered

Triangles

Time

(ms)
FPS

1373 2.6 385 1373 6.3 160 1696 9.5 105

3507 5.4 184 3675 13.9 72 3552 15.6 64

6580 9.6 104 6466 24.4 41 6488 30.3 33

8415 11.8 85 8550 35.7 28 8482 40.0 25

10830 14.9 67 10928 43.5 23 10464 55.6 18

12987 17.9 56 13219 55.6 18 12788 71.4 14

14481 19.2 52 14615 62.5 16 13981 83.3 12

0

50

100

150

200

250

300

350

400

0 5000 10000 15000
Rendered Triangles

FP
S

No Haptic API (Oct)

Untouch (Oct)

Touch (Oct)

0

10

20

30

40

50

60

70

80

90

0 5000 10000 15000

Rendered Triangles

Ti
m

e
(m

s)

No Haptic API (Oct)

Untouch (Oct)

Touch (Oct)

 160

Appendix C. Back Deformation Ellipses Measurement Data

The data were obtained from the measurement about the zero-deformation

contour at five of the seven key points. The experiments were taken on five subjects.

Force
Direction Point Subject Major Axis

(cm)
Minor Axis

(cm)
Ratio

(Major/Minor)

Degree
(Major Axis

to x-axis)

Up

1

1 42 32 1.313 90

2 35 33 1.061 90

3 34 32 1.063 90

4 36 33 1.091 90

5 32 28 1.143 90

Ave 35.8 31.6 1.134 90.0

2

1 33 27 1.222 90

2 28 28 1.000 90

3 23 28 0.821 90

4 35 31 1.129 90

5 30 28 1.071 90

Ave 29.8 28.4 1.049 90.0

3

1 26 18 1.444 180

2 28 28 1.000 180

3 29 21 1.381 180

4 26 21 1.238 180

5 24 22 1.091 180

Ave 26.6 22.0 1.231 180.0

4

1 36 25 1.440 95

2 35 29 1.207 87

3 41 29 1.414 135

4 38 27 1.407 90

5 29 22 1.318 90

Ave 35.8 26.4 1.357 99.4

5

1 26 20 1.300 145

2 30 24 1.250 90

3 34 24 1.417 140

4 27 20 1.350 155

5 25 20 1.250 75

Ave 28.4 21.6 1.313 121.0

 161

Force
Direction

Point Subject
Major Axis

(cm)
Minor Axis

(cm)
Ratio

(Major/Minor)

Degree
(Major Axis

to x-axis)

Down

1

3 27 28 0.964 90

4 32 28 1.143 90

5 23 25 0.920 90

Ave 27.3 27.0 1.009 90.0

2

3 39 31 1.258 90

4 36 31 1.161 90

5 33 26 1.269 90

Ave 36.0 29.3 1.230 90.0

3

3 28 21 1.333 180

4 31 32 0.969 180

5 25 25 1.000 180

Ave 28.0 26.0 1.101 180.0

4

3 35 27 1.296 60

4 38 30 1.267 45

5 32 25 1.280 100

Ave 35.0 27.3 1.281 68.3

5

3 33 33 1.000 90

4 46 34 1.353 85

5 37 24 1.542 90

Ave 38.7 30.3 1.298 88.3

The final results are obtained from the averages in the table of the up force

direction because it is typical and similar to down.

 P1 P2 P3 P4 P5

Major
Axis (mm)

358 298 266 358 284

Ratio 1.134 1.049 1.231 1.357 1.313
Degree 90.0 90.0 180.0 99.4 121.0

