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ABSTRACT 

SMEARCHECK, MARK A., M.S., June 2008, Electrical Engineering 

Investigation of Dual Airborne Laser Scanners for Detection and State Estimation of 

Mobile Obstacles in an Aircraft External Hazard Monitor (124 pp.) 

Director of Thesis: Maarten Uijt de Haag 

 To ensure aircraft safety during precision approach procedures detailed 

information pertaining to hazards located on the runway and surroundings area must be 

known. In order to identify possible safety threats, aircraft could be equipped with 

sensors capable of detecting all significant hazards in a variety of weather conditions and 

landing scenarios. An analysis of potential hazards and sensor capabilities serves as the 

basis of this research. One such hazard monitoring implementation is proposed that 

makes use of two airborne laser scanners, GPS, and an inertial measurement unit. The 

goal of this implementation is to detect a ground vehicle driving on the runway during 

aircraft precision approach. Capabilities of the system include accurate geo-referencing 

of laser footprints, hazard detection and classification, and hazard state estimation. These 

goals are accomplished with digital surface modeling using sensor and navigation 

information, a measurement classification method using a windowed weighted least 

squares algorithm, and unsupervised clustering. Experimental flight-testing has been 

performed to collect aircraft navigation data, laser measurements of a vehicle in motion 

on the runway, and vehicle position truth data. Results indicate geo-referencing accuracy 

of approximately 2 m in most cases, along with successful hazard classification, and 

hazard velocity estimates accurate to within 2.8 m/s. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Problem Statement 

 
During aircraft precision approach pilots are faced with the danger of having limited or 

zero knowledge of hazards located on or near the runway that may interfere with safe 

landing operations. Obstacles posing a potential threat to safety include ground vehicles, 

other aircraft, pedestrians, wildlife, buildings and towers, signs and markers, debris, and 

even weather. The location and possibly the existence of these hazards are often 

unknown, resulting in reduced pilot situation awareness and an increase in the likelihood 

of aircraft to hazard collisions. 

 

Current systems such as Automatic Dependent Surveillance-Broadcast (ADS-B) [1], 

Traffic Collision Avoidance System (TCAS) [2], and Airport Movement Area Safety 

System (AMASS) [3], have been developed to provide limited hazard alerting. These 

technologies rely on systems external to the aircraft to supply information to the pilot 

pertaining to the location of other cooperative aircraft and vehicles that are similarly 

equipped with this system. With the exception of the ground radar based AMASS, the 

aforementioned hazard alerting techniques contribute to landing safety by identifying 

threats posed by participants in the alerting system, though they do not incorporate non-

cooperative hazards that lack alerting devices. The absence of non-cooperative hazard 

identification is a severe limitation to the safety systems. Knowledge of stationary 

hazards such as buildings, towers, signs and markers, and possibly foliage may reside in 
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an onboard database; however, the location and state of hazards such as pedestrians, 

wildlife, construction equipment, debris, and possibly vehicles are unknown to each of 

these systems. A method for detecting, classifying, and estimating the state of all possible 

hazards is required to ensure complete runway safety.  

 

The National Aeronautics and Space Administration (NASA) has acknowledged the 

problem of runway hazard detection and made it a key component of the Next Generation 

Air Transportation System (NGATS), a system designed to improve flight robustness, 

management, and safety through advanced automation, sensing, and communication [4]. 

Hazard detection in the NASA concept of NGATS will be realized via the Intelligent 

Integrated Flight Deck (IIFD), a flight deck containing displays capable of providing vast 

amount of flight critical information to the pilot in an efficient and effective manner. 

Much of this flight critical information will come from sensors internal to the aircraft.  

 

For detection, classification, and state estimation of hazards to prove successful the 

system must first have detailed knowledge of the types of objects that may serve as 

hazards. This knowledge includes physical properties such as size, shape, motion, 

cooperation, and threat level. Once the hazards and their properties are defined, an 

appropriate sensor suite can be selected that detects all potential hazards, takes advantage 

of the hazard properties, and performs effectively in a multitude of weather conditions.  
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This work is an investigation into one such sensing suite and is performed in conjunction 

with NASA’s NGATS research. Light detection and ranging (LIDAR) coupled with a 

precise navigation solution is utilized for detection and tracking of vehicles in motion on 

the runway and nearby airport surfaces, which may become a potential threat to aircraft 

landing safety.  

 

1.2 Proposed Solution 

 

Mobile hazards are identified and classified using measurements from dual airborne laser 

scanners (ALS) and aircraft navigation systems. The laser footprints are first geo-

referenced by use of direction cosine matrices (DCMs) for coordinate system 

transformation and rotation, accurate instrument and sensor lever-arm measurements, and 

kinematic differential Global Positioning System (DGPS) data. The accuracy of these 

measurements is determined by use of truth data acquired from a (Global Positioning 

System) GPS receiver onboard the hazard vehicle and comparison of geo-location results 

between ALSs using a similar point on the runway determined by the laser intensity 

values. Laser measurement points are classified as terrain or non-terrain using a 

windowed weighted least squares method that examines residuals calculated by fitting a 

plane through a small window of 3-D point cloud data. All non-terrain points are grouped 

into clusters representing potential hazards using the k-means clustering algorithm. 

Finally the hazard states are estimated by determining the velocity of the hazard through 

use of geo-referenced information from both ALSs. Note that in an operational 
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environment, the ALS systems would have to point forward to cover the runway and 

anticipate the hazards, instead of pointing only slightly forward and downward. 

 
1.3 Contributions 

 

Portions of this research have been previously presented and discussed in various 

conference papers and were written in conjunction with the research performed for this 

thesis. A majority of Sections 2.1, 2.3, and 2.4 of this thesis appear in the following 

publication: 

 

M. Smearcheck, A. Vadlamani, and M. Uijt de Haag, “Sensor classification and obstacle 

detection for aircraft external hazard monitoring,” in Proceedings of SPIE Vol. 6957, 

Enhanced and Synthetic Vision 2008, 2008. [5] 

 

The foundation for ALS hazard detection used in this thesis was previously discussed in 

the following publication.  

 

A. Vadlamani, M. Smearcheck, M. Uijt de Haag, “Preliminary design and analysis of a 

LIDAR based obstacle detection system,” in Proceedings of The 24th Digital Avionics 

Systems Conference, 2005, pp. 6.B.2-61-14. [6] 

 

Ideas presented by authors of the following papers have also served as a basis for this 

work. 
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A. Vadlamani and M. Uijt de Haag, “Arial vehicle navigation over unknown terrain using 

inertial measurements and dual airborne laser scanners or flash ladar,” in Proceedings of 

SPIE Vol. 6550, Laser Radar Technology and Applications XII, 2007. [7] 

 

D. Venable, J. Campbell, and M. Uijt de Haag, “Feature extraction and separation in 

airborne laser scanner terrain integrity monitors,” in Proceedings of The 24th Digital 

Avionics Systems Conference, 2005, pp. 4.E.3-41-11. [8] 

 

1.4 Overview of Thesis 

 

This thesis is arranged into six chapters. Chapter 1, the introduction, presents the problem 

and proposed solution along with a discussion of contributions to this work. The next two 

chapters provide background and mathematical theory used to support the proposed 

method of hazard detection and tracking. Landing safety statistics, particulars of runway 

hazards, classification of aircraft sensors, current hazard alerting systems, and ongoing 

research in this area are discussed as the background in Chapter 2. Chapter 3 presents the 

mathematically theory; specifically techniques for geo-referencing of the LIDAR data, 

object detection using LIDAR, and state estimation. The experimental methodology 

including specifics of sensors, navigation instruments, the ground vehicle hazard, the data 

collection procedure, and detection algorithms is explained in Chapter 4. Detailed results 
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of the proposed solution are presented in Chapter 5. Finally, Chapter 6 provides 

conclusions and discusses challenges and suggestions for future research in this area.  
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CHAPTER 2: BACKGROUND 

 
2.1 Runway Safety 

 
Risk is always involved during aircraft operations on or in the vicinity of the runway. The 

potential for collisions with nearby aircraft, ground vehicles, pedestrians, wildlife, 

buildings, debris, and other hazards poses a significant threat to safety. The realization of 

such risk during takeoff, taxiing, and landing is classified as a runway incursion. The 

Federal Aviation Administration (FAA) defines a runway incursion as “any occurrence 

in the airport runway environment involving an aircraft, vehicle, person, or object on the 

ground that creates a collision hazard or results in a loss of required separation with an 

aircraft taking off, intending to take off, landing, or intending to land [9][10].” Runway 

incursions are divided into separate categories based on the cause and severity of the 

incident. The categories of incursion severity along with their recent occurrence rates are 

provided in Table 2.1.  
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Table 2.1 

 
Severity Categories of Runway Incursions [9] 
Incursion 
Category 

Description Number of 
Occurrences 
2003 - 2006 

D Little or no chance of collision but meets the 
definition of a runway incursion. 

768 

C Separation decreases but there is ample time and 
distance to avoid a potential collision. 

400 

B Separation decreases and there is a significant 
potential for a collision.  

60 

A Separation decreases and participants take extreme 
action to narrowly avoid a collision, or the event 
results in a collision. 

60 

 
 

With nearly 1280 runway incursions occurring over a four year period, as shown in Table 

2.1, it is clear that further safety measures must be put into place to avoid dangerous and 

possibly fatal situations.  Before new safety systems can be implemented, the various 

causes of aircraft to hazard collisions and near-collisions must be examined. The FAA 

has designated three primary factors as key attributers to runway incursions [11].  

 

• Operational errors and deviations 

• Pilot deviations 

• Vehicle and pedestrian deviations 

 

Operational errors and deviations can be mainly attributed to air traffic control (ATC); an 

air traffic controller directs the aircraft into a previously occupied area. Insufficient air 

traffic controller tower height and lack of radar surveillance in some airports can cause 
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controllers to completely lose visual contact with ground traffic resulting in operational 

“lack of situational awareness” and deviations [11]. A hazard detection system internal to 

the aircraft could reduce these incidences by providing an immediate warning to the 

flight crew, regardless of the instructions of the air traffic controller. Pilot deviations 

caused by noncompliance with FAA regulations such as hold commands and lack of 

authorization to enter an area of the runway or taxiway also lead to severe incursions, 

potentially causing a collision with another aircraft [9]. The final factor attributing to 

runway incursions involves vehicle and pedestrian deviations. Vehicles and pedestrians 

entering the runway without proper ATC authorization immediately become hazards 

interfering with safe aircraft operations [10]. Insufficient security, absence of signs and 

markers, and easy access to surrounding roads is often the cause of pedestrians and 

vehicles unknowingly entering runways, taxiways, and the surrounding area [11]. Table 

2.2, provided by an FAA Runway Safety Report, is a summary of causes of runway 

incursions from 2003-2006. 

 

Table 2.2 

 
Breakdown of Runway Incursions by Deviation Type [9] 

Deviation Total Deviations 2003-2006 

Pilot Deviation 706 

Operational Errors/Deviations 380 

Vehicle Errors/Deviations 220 
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Organizations responsible for maintaining and improving runway safety such as the 

National Transportation Safety Board (NTSB), the FAA, and NASA are aware of the 

current safety risks created by objects unknowingly entering the airport movement areas. 

The NTSB has made the design of a direct notification system for pilots, warning of 

runway hazards and incursions, a primary objective in their “Most Wanted Safety 

Improvements” plan for 2007 [12]. NASA and the FAA also have similar intentions with 

the development of the IIFD [4]. 

 

2.2 Runway Safety Technologies 

 
Multiple runway safety and monitoring systems are currently in place or under 

development to help prevent runway incursions. The Runways Incursion Prevention 

System (RIPS) makes use of ADS-B to broadcast ownship information, provided by GPS 

possibly often supplemented by other systems such as the Local Area Augmentation 

System (LAAS) and inertial data, to all other vehicles in the area equipped with an ADS-

B transponder. [13] suggests using only raw GPS measurements (i.e. psuedoranges) for 

positioning in ADS-B to allow for aircraft and vehicles that are not capable of making 

LAAS or differential based GPS measurements to participate in the system. A backup to 

GPS that currently must be considered is eLoran. The transponders receive updates on the 

positions of other system participants via a data link such as the very high frequency data 

link (VDL)-Mode 2. Traffic information from ADS-B is provided to the pilot on an 

electronic moving map display located in the flight deck [1]. RIPS relies on ground 

surveillance radar such as the third generation Airport Surface Detection Equipment 
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(ASDE-3) to detect objects on runway surfaces. This radar system is capable of detecting 

large targets with a cross section greater than 3 m2 at a range resolution of 40 ft and an 

azimuth resolution of 80 ft. ASDE-3’s radars are located on ATC towers and can be 

placed at a height of 50 ft to 300 ft [17]. 

 

Another system that makes use of ground surveillance systems, is the Airport Movement 

Area Safety System, AMASS. Similar to RIPS, AMASS uses ASDE-3 radar technology 

to provide potential runway collision information, however, this information is displayed 

to the controller, who is then required to resolve the collision and provide pilots of the 

incoming aircraft with warnings [3]. The drawback of indirect communication between 

AMASS and pilots causes significant delay and though it was declared fit to detect 

runway collisions by he NTSB, it was deemed unfit to detect runway incursions [16]. 

 

Less common runway safety systems include Inductive Loop Technology and the 

PathProx System. Inductive Loop Technology relies on the placement of sensors inside 

the runway surface to detect and classify aircraft and ground vehicles. Loop sensors 

generate unique inductive signals based on weight and movement signatures as objects 

pass over wire loops embedded in airport surfaces. This information is then relayed 

though a wired data link to ATC where it is shown on continuously updating displays 

[18]. Advantages of such a system include the ability to detect vehicles located in 

surveillance blind spots that are not covered by radar systems such as ASDE-3, 

independence of interference susceptible radio frequency (RF) communication, the ability 
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to classify vehicles and aircraft, and the capability to track these objects. Another 

alternative runway safety monitor is PathProx developed by the Rannoch Corporation. 

Similar to RIPS, PathPox relies on ADS-B to acquire positions of other aircraft in the 

area. It makes use of GPS to determine ownship information. Data from the PathProx 

system is sent to the aircraft and made available to the pilot in real time on a flight deck 

display [19].  

 

2.3 Runway Hazards 

 
A prerequisite for the detection of obstacles on the runway is a general understanding of 

the types and characteristics of hazards an aircraft may encounter. Without this 

knowledge, selection of an appropriate onboard sensor or sensors is difficult. Key hazard 

characteristics such as size, shape, velocity, reflectivity, and thermal signature lend 

themselves better to specific sensors.  Designation of a runway hazard is not 

straightforward in all cases. Factors such as the aircraft operation [14] and potential risk 

presented by the object influence the classification and severity of an object as a collision 

hazard. One such example of objects becoming hazards in varying scenarios involves 

controlled flight into terrain (CFIT), in which the flight crew unknowingly flies into an 

obstacle or terrain. In this case, all ground features become hazards as opposed to 

standard operating conditions where only obstacles on or near the approach vector and 

touchdown area serve as hazards.  
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Since all hazards cannot be defined in the same manner and often do not share similar 

properties, potential hazards have been broken down into three unique categories. 

Included in the list of hazard categories are stationary hazards, mobile hazards, and 

weather and environmental hazards.  

 

Stationary hazards are comprised of objects such as buildings, trees, and terrain. 

Identification of stationary hazards is often easier than identifying mobile objects, 

weather, and environmental hazards because once they have been detected their location 

can be stored in database similar to those used in synthetic vision systems (SVS) [15] or 

relayed to ATC. While collision with a stationary object is an unlikely scenario, it is still 

of concern. Listed in Table 2.3 are some of the most safety critical stationary hazards.  

 

Table 2.3 

 
Identification of Important Stationary Safety Hazards 

Stationary Hazards 

Towers Signs and Markers 

Buildings Terrain 

Construction Equipment Foliage 

Power Lines Foreign Object Debris 

Closed Runway Water 
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As evident from the table above, many stationary hazards have similar physical 

characteristics. Man-made stationary hazards such as buildings, towers, construction 

equipment, and signs and markers are highly reflective and their thermal signature varies 

with the temperature of the environment. Terrain and foliage can be classified as 

stationary objects that share similar properties. These objects possess low reflectivity 

values and often contain large amounts of sloped and jagged edges leading to scattered 

signal returns. For all of the similar properties that are a part of the stationary hazard list, 

size is not one of them. While large hazards such as buildings are simple to detect with 

almost any sensor, power lines, foreign object debris, and signs will likely be small and 

cannot be detected by low-resolution sensors. 

 

The complexity of identifying objects as hazards can be inferred from Table 2.3. Even 

stationary hazards have specific properties that vary from one object to the next. This 

makes selection of a single sensor capable of detecting all of these objects difficult. The 

detection of mobile obstacles is even more challenging since the obstacle sensing 

equipment must now be able to determine if an object is moving, requiring a significant 

amount of additional processing equipment. In order to track an object the detection 

system must be able to resolve the object’s velocity and attitude information from the 

sensor. This would require the sensor to have a built-in capability to determine velocity 

and attitude accurately and would likely rely on information from the aircraft’s 

navigation instruments. The mobile hazard list in Table 2.4 presents common mobile 

runway hazards along with typical maximum velocities that the hazards may achieve. 
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Table 2.4 

 
Identification of Dynamic runway hazards 

Mobile Hazards 

Hazard Estimated Maximum Speed (km/h) 

Aircraft 300 km/h 

Ground Vehicle 70 km/h 

Wildlife 25 km/h 

Pedestrian 12 km/h 

 
 

While much work has been conducted for the detection of aircraft through systems such 

as ADS-B, ASDE, and TCAS [1][17][20], few studies have been conducted for other 

mobile hazards. Ground vehicles including baggage carts and snow plows are not 

equipped with instruments to allow them to participate in ADS-B making them currently 

unmonitored hazards. While the dangers created by avian life have been studied [21], few 

solutions exist to detect wildlife and pedestrians on or near runway surfaces. As with any 

living hazard, a detection system involving a sensitive enough infrared (IR) may provide 

a simple solution under the right weather conditions.  

 

The third category of runway hazards is comprised of weather conditions within the 

environment along the aircraft path. For precision approach procedures, the weather 

conditions determine the visibility conditions at the decision height and thus the aircraft 
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approach Category (I, II, IIIa, b, c) [59]. These conditions, therefore, drive the equipment 

that must be onboard the aircraft to proceed with the landing at the decision height. 

During en-route procedures, weather conditions may directly affect the safety of the 

aircraft if not avoided. In case of weather avoidance, a precise location of the weather 

itself may be useful to minimize the impact of the weather on aircraft operations. Table 

2.5 presents a list of common weather and environmental hazards posing a risk to flight 

safety. 

 

Table 2.5 

 
Identification of Weather and Environmental Hazards 
Weather and Environmental Hazards 

Rain Wake Vortex 

Snow Volcanic Ash 

Fog Wind Shear 

Ice Darkness 

 
 

2.4 Sensor Characteristics and Applications 

 
Selection of an appropriate sensor or set of sensors for airborne hazard detection and state 

estimation, must be driven by both the properties of the hazards and the performance 

characteristics of the sensors. This section provides an overview of potential sensors 

suitable to detect obstacles in the case of a hazard monitor by examining various 
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capabilities of sensors in addition to a discussion of current research efforts that make use 

of these devices.  

 

2.4.1 Forward-Looking Infrared 

 
The first sensing technology to be examined is forward-looking infrared (FLIR), a 

passive sensor used to determine the relative temperature of objects in a scene [22]. 

Various IR frequencies lend themselves to specific applications. For instance, shortwave 

infrared (SWIR), operating at wavelengths of 1.4 μm to 3 μm, is most effective for 

sensing runway lighting and performs well in fog [23]. Long wave infrared (LWIR) is 

useful for providing a thermal image of a scene and distinguishing objects from the 

background. It performs well in low visibility scenarios and can often detect partially 

hidden targets [24]. 

 

FLIR has been used extensively for vision and object detection and tracking in area of 

avionics and has applications wherever thermal radiance of objects and environments can 

be used. Current aircraft may be equipped with a synthetic vision system (SVS) or 

enhanced vision system (EVS) [25] [26] consisting of a visible light, LWIR, and/or 

SWIR cameras. Methods for detection and tracking include the use of techniques such as 

fuzzy clustering [27] and Bayesian based jump-diffusion [28]. In addition to airborne 

applications IR has found its way into surveillance in the areas of pedestrian and vehicle 

tracking. Further information on current FLIR research can be found in Table A.1 located 

in Appendix A of this document. 
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2.4.2 Millimeter Wave Radar 

 
Another airborne sensor that has proven effective for object detection is millimeter wave 

radar (MMWR). Operating in the range from 40 GHz to 300 GHz, with optimal 

frequencies of 35 GHz, 95 GHz, 140 GHz, and 220 GHz, MMWR can provide images of 

moderate resolution in a variety of weather and environmental conditions [29]. In 

addition to being a somewhat weather invariant system, partial penetration of objects 

such as foliage is possible [30]. Both active and passive MMWRs exist, however, the 

latter is prevalent among airborne sensors and relies on the blackbody radiation produced 

by the objects.  Applications of MMWR include detection of roads and vehicles [30], 

targets blocked by foliage [30], power lines [33], and even airborne particles such as 

chemicals or moisture [32] [34]. MMWR have also been evaluated for use in SVS and 

especially, EVS systems. Table A.2 of Appendix A provides an in-depth look at current 

research in the area of millimeter wave imaging. 

 

2.4.3 Vision Cameras 

 
Another proven and well-researched sensing technology is the use of vision cameras. 

Operating in the visible light band of the electromagnetic spectrum, these cameras have 

been used extensively in the areas of surveillance, mapping, navigation, and tracking. 

Performance of traditional vision systems often decreases in the presence of weather and 

is unusable in low and zero light scenarios. Fusion of such cameras with sensors and 

instruments such as LIDAR [35], ultraviolet (UV) [36], IR [37], and other multispectral 



  32 
   
and hyper spectral devices can be used to compensate for environmental factors. For 

navigation and guidance applications a stereo pair of vision cameras can be used to 

provide range information [38]. Algorithms such as simultaneous localization and 

mapping (SLAM) [39], used for navigation, and scale-invariant feature transform (SIFT) 

[40], often used for tracking, have proven effective and lend themselves well to aircraft 

external hazard monitors. Current research applicable to hazard monitoring and 

navigation is examined in Table A.3 of Appendix A. 

 

2.4.4 Flash LIDAR 

 
3-D ranging cameras, often known as Flash LIDAR, are an emerging sensing technology 

that has shown promise in the areas of facial recognition, navigation, and tracking. Flash 

LIDAR operates on the principle of detection of a pulsed or modulated laser signal via a 

focal plane array (FPA). Making use of time-of-flight measurements from a pulsed laser, 

a 3-D range image of a scene (which can easily be converted to a 3D point cloud) can be 

captured at rates of up to 30 Hz and resolutions upwards of 150 by 150 pixels. Ranging 

information provided by these devices is extremely precise, with a depth accuracy of 

better than 20 mm [41]. Low cost 3-D range cameras have proven a viable option for 

indoor navigation and machine vision [42] while offering a non-ambiguity range on the 

order of five to ten meters [41]. Current research into uses of such cameras includes IMU 

drift compensation using flash LIDAR for navigation [43], terrain mapping [44], and 

autonomous spacecraft rendezvous and docking [45]. Further applications and additional 
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flash LIDAR research efforts are provided in Table A.4 of Appendix A. As the resolution 

and range of these sensors increase, they become more viable options for hazard airborne 

monitoring solutions. The objectives of the research presented in this thesis could be 

achieved using a long range, high-resolution 3-D imager. Currently, sensors like these are 

available but are very costly. For example, Advanced Scientific Concepts does sell a 

sensor with a range up to 5000 ft, a resolution of 128x128, and a field of view of 9°. An 

advantage of laser imaging as opposed to current laser scanning techniques is the fact that 

all range measurements in one frame correspond to the same time epoch and the fact that 

multiple observations can be made of the same object enabling the estimation of motion 

from a sequence of images 

 

2.4.5 Airborne Laser Scanner 

 
Airborne laser scanning, a sensing method employing time-of-flight information from a 

short wave laser, is used to make range measurements to distant objects such as terrain 

and targets. The ALS scanning mechanism, typically a rotating polygon mirror, allows 

for a linear sweep pattern of the laser with measurements being made at increments as 

small as 0.001°. High measurement rates in excess of 100 kHz lead to the creation of 

high point density maps that have range accuracies at the sub-centimeter level [67]. 

Traditional long range LIDAR systems have the advantage over vision and FLIR sensors 

in that they not only yield 3-D data, but are less vulnerable to the amount of background 

light and/or temperature of the surrounding environment. Some ALS systems possess the 
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capability to measure the returned amplitude (or intensity) of the laser pulses, resulting in 

a non-equidistant gridded IR image and thus providing clues to the types of surfaces that 

are being scanned. Advanced ALS sensor models are furthermore capable of returning 

multiple pulse echoes from a single scan point, yielding information regarding the bare 

Earth, foliages, and possible obstacles. A drawback of ALS is its susceptibility to dense 

fog and other high precipitation scenarios [46], however, research is underway to design 

LIDAR sensors capable of handling such conditions [47].  

 

Current uses of ALS include map building, surveillance, vehicle and pedestrian 

detection, vegetation measurement, weather and particle detection, spacecraft landing, 

and aircraft and indoor navigation. Digital terrain models (DTM), accurately depicting 

topographic information of an area in the form of a digital bare Earth model are often 

constructed by remote sensing techniques such as LIDAR. First a digital surface model 

(DSM) containing terrain plus non-terrain features is formed and these features are 

subsequently removed using filtering techniques such as the ones found in [48] and [49]. 

Surveillance applications of LIDAR are broad in scope. Traffic monitoring [50], forest 

fire sensing [51], and target detection, similar to the concept being proposed in this 

research, are all topics of current interest. Investigations into using ALS for navigation 

purposes are also being preformed. The dual LIDAR based hazard monitor concept 

presented in this thesis is intended to serve as an extension of a dead-reckoning 

navigation system employing dual ALS sensors and an IMU. In this system, a forward-

looking ALS scans the ground in an unknown environment to build a map of the terrain. 
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A downward looking ALS then scans that same region of terrain and uses the 

measurement differences to correct for drift errors present in the IMU [7]. The integration 

of LIDAR with an IMU is used for indoor navigation of autonomous robots. [53] uses a 

Kalman filtering solution to estimate velocity and heading information, while making use 

of wall corners as points of interest to determine lateral position inside a hallway.  

Appendix A, Table A.5 provides further discussion of ALS research topics.  

 

2.4.6 Sensor Assessment 

 
Presented in this section are the physical characteristics and limitations of various sensors 

that could be integrated into an aircraft external hazard monitor. The parameters and 

specifications presented in Table 2.6 are based on state of the art commercially available 

sensors, however, devices with increased capabilities that are in early research and 

development stages may exist. 



 
 

Table 2.6 
 
Sensor Characteristics and Specifications for Potential Use in an Aircraft External Hazard Monitor 

Sensor Measurement 
Type 

Spectral 
Range Range 

Typical  
Image 

Resolution 
Scan Rate Scan 

Width Field of View Source 

Airborne 
Laser 
Scanner 

Azimuth, 
Range, 
Intensity 

0.75 μm 
to 1.4 μm 

500 m to 
1.8 km NA 160 Hz 2.5° to 60° 0.06° to 0.17° 

(Single Pulse) 

[54] 

Flash 
LIDAR 

Azimuth, 
Elevation, 
Range, 
Intensity 

850 nm 9 m to 1.5 
km 128x128 10 Hz NA 1° to 9° 

[55] 

Vision 
Camera 

Azimuth, 
Elevation, Red, 
Green, Blue 

400 nm 
to 

700 nm 
NA 1024x1024 7 Hz to 

120 Hz NA Varies 
[56] 

FLIR 
Azimuth, 
Elevation, 
Temperature 

750 nm 
to  

1 nm 
NA 720x756, 

648x486 
50 Hz to 

60 Hz NA Varies 
[57] 

Millimeter 
Wave 
Radar 

Azimuth, 
Elevation, 
Intensity 

35 GHz, 
77 GHz, 
94 GHz 

12 km NA 
sec

120o

 180° 0.1° 
(Instantaneous) 

[58] 

 



 
A factor that has not been previously discussed but provides a major source of 

background noise is sunlight. Vision and IR systems, and potentially flash LIDAR, all 

suffer from the effects of sunlight. Images appear washed out when they are over 

saturated, making features difficult to detect and distinguish from background in the 

presence of too much light. Now that sensor characteristics and properties have been 

examined along with current research into applications of these devices, an assessment 

can be made, using the knowledge from Section 2.3, on which sensors are capable of 

detecting particular hazards. Represented in Table 2.7 is a matrix of sensor / hazard 

capabilities. It should be noted that as sensor technology advances their capabilities to 

detect the hazards listed in this table will likely increase.  
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Table 2.7 

 
Hazards Detectable with Specific Sensors [26][29][31][33][34][40][44][49] 

Hazard MMWR ALS 
Flash 

LIDAR FLIR Vision WxR 
Towers X X X X X  
Buildings X X X X X  
Construction 
Equipment X X X X X  
Power Lines X      
Runway X X X X X  
Foreign Object 
Debris  X X X X X  
Signs and Markers X X X X X  
Terrain  X X X X X 
Trees / Foliage X X X  X  
Aircraft X X X X X  
Ground Vehicle X X X X X  
Significant 
Wildlife  X X X X  
Pedestrians   X X X X  
Ice  X    X 
Snow     X X 
Rain     X X 
Fog     X X 
Wake Vortex  X     
Volcanic Ash     X  
Wind Shear  X    X 

 
 

Based on the information presented in this chapter, LIDAR appears to be an appropriate 

sensor for vehicle detection in an aircraft hazard monitoring system. The ability to 

produce high resolution and extremely accurate 3-D scene representations in a variety of 

environmental conditions makes it a viable solution. Integrating measurements from a 

dual ALS implementation provides an increased ability to detect the same target multiple 

times, adding a rudimentary capability for tracking. The amplitude of the reflected laser 
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pulses, correlated to material of a target, may provide further scene information. The next 

chapter will provide the necessary background to perform the hazard detection and geo-

referencing operations.  
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CHAPTER 3: THEORY 

 
3.1 Theoretical Applications 

 
In order to detect, geo-reference, and estimate the velocity of a hazard in LIDAR data the 

information presented in this chapter is necessary to provide a basic understanding of the 

mathematical techniques used in the processes. Coordinate frame transformation and 

rotation along with linear interpolation are required for LIDAR footprint geo-referencing. 

Plane fitting in three dimensions, the weighted least squares method, and k-means 

clustering are used in hazard detection.  

 

3.2 Coordinate Frame Transformation and Rotation 

 
Rotation from one coordinate frame to another is accomplished though the use of 

direction cosine matrices (DCM). The transformation from ALS range and angle 

measurements to geo-referenced laser footprints, used in this research to extract objects 

of interest, requires various coordinate frame rotations. The method for rotation from the 

aircraft body frame to the navigation frame and the rotation from the navigation frame to 

the Earth frame are presented in this section.  

 

The body frame of an aircraft is defined as a right-handed coordinate system in which all 

axes are orthogonal. The positive x-axis extends from the origin, the center of mass of the 

aircraft, out through the nose of the aircraft. The positive y-axis is defined out of the right 

wing and the positive z-axis is pointed down. The navigation frame is a local-level frame 
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with the origin residing at the center of the navigation instrument or instruments. Similar 

to the z-axis of the body frame, the positive z-axis of the navigation frame also points 

directly down. The positive x-axis points north and the positive y-axis points east [52].  

 

Three successive rotations are required to construct a DCM used to rotate from one 

coordinate frame to the other. In the case of a body frame to navigation frame rotation, a 

rotation must first be performed about the yaw angle, ψ (z-axis), followed by a rotation 

about the pitch angle, θ (y-axis), and finally about the roll angle, φ  (x-axis). The product 

of these three rotations is known as a DCM, which can be used for coordinate frame 

rotation about a single axis. This nine-element square matrix is used in the body-to-

navigation frame rotation. The derivation of each successive rotation is detailed in 

Equation 3.1 through Equation 3.5 [52].  

 

The first rotation about the z-axis, shown in Figure 3.1, is composed of the following x 

and y components. 
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Figure 3.1: Rotation about the z-axis in the body frame to navigation frame rotation 



  42 
   
 

ψψ sincos ,,, xnxnxb vvv +=                                                                                             (3.1) 

 

ψψ cossin ,,, ynynyb vvv +−=                                                                                          (3.2) 

 

The formation of Equation 3.1 and Equation 3.2 into a matrix forms the yaw angle 

rotation as shown in Equation 3.3  
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The equivalent rotations about the pitch and roll angles are derived in a manner similar to 

the yaw angle rotation, and are defined respectively as 
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The body frame to navigation frame DCM of Equation 3.6 can be expressed as a product 

of the rotations in Equation 3.3 through Equation 3.5 

 

Cb
n =

cosθ cosψ −cosθ sinψ + sinφ sinθ cosψ sinφ sinψ + cosφ sinθ cosψ
cosθ sinψ cosφ cosψ + sinφ sinθ sinψ −sinφ cosψ + cosφ sinθ sinψ

−sinθ sinφ cosθ cosφ cosθ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

(3.6) 
 

Similar to the body-to-navigation frame rotation is the navigation frame to Earth frame 

rotation. The Earth frame’s origin resides at the planet’s center and its principle axes are 

fixed to the Earth and rotate along with it. In this frame, the positive z-axis extends 

through the North Pole, while the x-axis is aligned with the intersection of the prime 

meridian and the equator. The y-axis is orthogonal to the aforementioned axes, and obeys 

the right-hand rule [59]. Equation 3.7, derived in a similar manner to the body frame to 

navigation frame DCM, is used for the navigation frame to Earth frame rotation.  

 

Cn
e =

−cosw sinLcosλ + sinw sinλ −sinw sin Lcosλ − cosw sin λ −cosLcosλ
−cosw sinLsin λ − sin wcosλ −sinw sin Lsinλ + coswcosλ −cosLsinλ

coswcosL sinw cosL −sinL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

(3.7) 
 

The DCM provided above requires the longitude, L, and latitude, λ, of the aircraft in 

addition to the angle between north and x-axis of the wander frame, known as the wander 

angle, w [59]. The concept for wander angle is used to compensate for heading being 

undefined at the Earth’s Pole.  
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3.3 Linear Interpolation 

 
The sensor data collected onboard Ohio University’s DC-3 are collected at different rates 

for different sensors. As a result, the measurements from remote sensors and navigation 

sensors are valid at different times. However, since these measurements are properly time 

tagged with GPS timestamps, interpolation can be used for rate adjustment and 

synchronization. Linear interpolation is performed between point a and point b via 

Equation 3.8 

 

ab

ab
aa xx

yy
xxyy

−
−

−+= )(                                                                                                (3.8) 

where xa and ya are the coordinates of point a, xb and yb are the coordinates of point b, 

and x and y are the coordinates of the interpolation results.   

 

3.4 3-D Plane Fitting 

 
A three dimensional point cloud is made up of a collection of vertices expressed as an 

ordered triple in X, Y, and Z coordinates. Sets of points within the cloud may describe the 

surface of an object or the surfaces of many objects in a single scene. Approximations of 

flat surfaces can often be computed by fitting a plane through the point cloud, while 

taking all vertices into consideration. This surface representation is known as a best-fit 

plane. The method used in this research for terrain modeling and extraction from ALS 

data, that requires calculation of best-fit planes, is described in Equation 3.9 to Equation 

3.16 and is based on the method developed in [60].  
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One possible equation used to describe a plane is given by Equation 3.9. 

 

CByAxz ++=                                                                                                              (3.9) 

 

In Equation 3.9, A, B, and C are constants determined by minimizing the sum of the 

squared errors between each vertices’ z-component, zi, and the planar representation of 

Equation 3.10.  

 

CByAx ii ++                                                                                                                (3.10) 

 

The sum of squares error function is formulated in Equation 3.11 
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and can be solved by setting the gradient of the error to zero, as in Equation 3.12. 
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The solution of Equation 3.12 can be expressed as a system of linear equations, in which 

the constants A, B, and C are unknown. Equation 3.13 formulates that solution and is 

equivalent to the least squares solution of the minimization of E(A,B,C). The 

mathematical process of least squares is described in Section 3.4.  
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3.5 Weighted Least Squares Algorithm 

 
The method of weighted least squares is used to optimize the fitting of a model to a set of 

data. In the case of this research, a weighted least squares approach is used to optimize 

the best-fit plane detailed in Section 3.3, which is used to distinguish LIDAR points 

belong to terrain from points belonging to features. The least squares regression method 

along with the following equations is described in [61][62]. The basic formulation of a 

least squares problem is given as, 

 

Y = HX                                                                                                                        (3.14) 

 

and can be solved in the weighted sense using 

 

WY = WHX                                                                                                                (3.15) 

 

to obtain the following solution for X, as in Equation 3.16. 
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X = (HT WH)−1 (HT WY)                                                                                              (3.16) 

 

The weight matrix used in Equation 3.15 and Equation 3.16 is a diagonal matrix 

composed of weights corresponding to each measurement in the Y vector and H matrix. 

 

3.6 K-means Clustering 

 
In this research, recognition of features within ALS data is accomplished via clustering, 

using an unsupervised pattern recognition method. Clustering techniques are used to 

group individual items of a set into smaller subsets based on specific measures of either 

similarity or dissimilarity. In the case of 3-D point clouds, an appropriate metric used to 

determine dissimilarity is the point-to-point Euclidean distance. The k-means algorithm, 

described in this section and [63], is used as the clustering technique for recognizing 

features, specifically ground vehicles, in this research.  

 

The k-means algorithm first chooses n cluster center estimates, where n is a 

predetermined number of clusters.  These centers are often chosen randomly, however, 

the algorithm’s performance improves as the accuracy of the initial center estimation 

increases [64]. Once the cluster centers have been estimated, the dissimilarity metric is 

applied to assign all non-center points to a specific cluster. After this has been 

accomplished the process undergoes another iteration, this time choosing a cluster center 

based on the resultant cluster from the previous iteration. This algorithm continues until 

convergence is reached when cluster centers no longer change location specifically 
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during consecutive iterations. The outcome of this process yields well-defined clusters 

representing features within the point cloud. One major disadvantage of this method is 

that the number of clusters must be known a priori.  

 

 

Figure 3.2: k-means clustering flowchart 

 



  49 
   

CHAPTER 4: METHODOLOGY 

 
4.1 Concept 

 
The goal of this research is to detect mobile obstacles, such as a vehicle, that may prove 

to be a safety hazard during approach and landing procedures. This is accomplished using 

two ALS sensors along with inertial and GPS navigation information. Each ALS scans 

the runway and then uses the processing techniques described in this chapter to search for 

any measurement that likely does not belong to terrain and can be considered a scene 

feature. These scene feature measurements are then grouped into sets of 3D points each 

composing a potential hazard. Since two ALS sensors are used each hazard is detected at 

two different times and locations. The dual detection can be used to form a linear velocity 

estimate of the hazard. 

 

4.2 Experiment Overview 

 
LIDAR data of an obstacle in motion along a runway was collected via flight tests 

performed at the Ohio University Airport (KUNI) in Albany, Ohio. Ohio University’s 

1943 Douglas DC-3 Flying Laboratory experimental aircraft is equipped with GPS, a 

navigation grade Inertial Reference Unit (IRU), a CCD camera, and two airborne laser 

scanners. This sensor suite was used to scan the runway for hazards while flying an 

aircraft approach for landing. A conversion van approximately 2 m in height and 5.5 

meters in length was driven on the runway during aircraft fly-over, serving as a mobile 

runway hazard. The van was equipped with a GPS receiver in order to verify the precise 
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location of the vehicle during the experiment. In this experiment, the ALSs were mounted 

in a downward looking manner resulting in hazard detection and state estimation when 

the aircraft is located directly over the hazard. For an actual hazard detection system both 

ALSs must be pointed forward so hazards can be anticipated before they become a safety 

risk.  

 
4.3 Vehicle Hazard 

 
The mobile hazard used in flight experimentation was a conversion van capable of 

housing data collection equipment. Mounted on top of the van, approximately 0.5 meters 

above the roof was a NovAtel pinwheel GPS antenna. This antenna was used in 

conjunction with a NovAtel OEM4 GPS receiver. Logging of the navigation data from 

the receiver was performed with GPS Data Logger 3.17, a software package from 

Waypoint Consulting. An image of the van hazard is provided in Figure 4.1. 
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Figure 4.1: The mobile hazard used for data collection 

 

4.4 System Configuration 

 
Resolving the precise location of the ALS footprints requires the aircraft’s navigation 

solution. A NovAtel OEM4 L1/L2/WAAS GPS receiver and a Honeywell HG1150 IRU 

were used to capture and subsequently process the aircraft position and attitude 

information. The GPS receiver also functioned as a time reference used to time-tag all 

measurements made by the hazard monitor’s instruments and sensors with the GPS week 

number and time of week. Section 4.4.1 and Section 4.4.2 provide detailed technical 

specifications of the IMU and GPS receiver, respectively. Each of the devices described 

above rely on the navigation computer for reading, time tagging, and storing data in an 

utilizable format.  
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LIDAR measurements were performed with Riegl’s LMS-Q140i Airborne Laser Scanner 

and LMS-Q280i Airborne Laser Scanner. These sensors capture time-of-flight  

data, which are then converted into range measurements, along with the corresponding 

scan angles from the laser’s linear scanning pattern. Recording of ALS data was 

accomplished with a data collection computer, communicating with the laser scanners via 

Ethernet and parallel port interfaces. During the capture of each laser point, the data 

collection computer, using the precision timing measurements output by the GPS 

receiver, performed time tagging. Further technical details on each ALS are provided in 

Section 4.4.3. In addition to laser information, the data collection computer was 

responsible for the storage and time tagging of still images captured by the Prosilica 

GC1350C CCD (Charge Coupled Device) camera, described in further detail in Section 

4.4.4. The images were encoded in an 8-bit Bayer pattern and later decoded into an RGB 

image during post-processing. An overview of the instruments, sensors, and their 

measurements used in the hazard monitoring system is provided in Figure 4.2.  

 



  53 
   

 

Figure 4.2: System components diagram 

 

4.5 System Components  

 
4.5.1 Inertial Measurement Unit 

 
Aircraft attitude measurements were obtained with a Honeywell HG1150 IRU. This rack-

mounted device consists of Ring Laser Gyros (RLG) and accelerometers capable of 

providing attitude, velocity, and position data. Attitude information from the HG1150 
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was used to compensate ALS measurements for the orientation of the aircraft when geo-

referencing the laser footprints. Technical specification of the Honeywell HG1150 IRU 

are provided in Table 4.1  

 

Table 4.1 

 
IMU Technical Specifications [65] 

Inertial Measurement Unit 
Specification Value 

Model Honeywell HG1150DB02 Navigation 
Grade Inertial Reference Unit 

Type Ring Laser Gyro (RLG) 
Position Drift 1 nmi / hour 
Data Rates Horizontal Velocity – 20 Hz 

Vertical Velocity – 25 Hz 
Pitch – 50 Hz 
Roll – 50 Hz 
Heading – 20 Hz 

Data Bandwidth Horizontal Velocity – 2 Hz 
Vertical Velocity – 8 Hz 
Pitch – 8 Hz 
Roll – 8 Hz 
Heading – 2 Hz 

Interface ARINC-29 
 
 

4.5.2 GPS Receiver 

 
The external hazard monitor uses a NovAtel OEM4 L1/L2/WAAS GPS receiver to 

provide aircraft positioning information and perform the precision time keeping 

functionality necessary for time synchronization of measurements from other onboard 

sensors. NovAtel’s OEM4 receiver is capable of outputting position rates at up to 20 Hz 

with a circular error probable of 0.8 m when making use of the L1, L2, and WAAS 
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channels [66]. A kinematic differential positioning solution is obtained via post 

processing of the data using GrafNav, a software package available from Waypoint 

Products Group. Table 4.2 details the technical specifications of this unit.  

 

Table 4.2 

 
Onboard GPS Technical Specifications [66] 

Onboard GPS 
Specification Value 

Model NovAtel OEM4 
Channels L1 

L2 
WAAS 

Measurement Rate 20 Hz 
Position Rate 20 Hz 
Time Accuracy 20 ns RMS 
Circular Error Probable (CEP) L1 – 1.8 m 

L1/L2 – 1.5 m 
L1/WAAS – 1.2 m 
L1/L2/WAAS – 0.8 m 

Interface Serial RS-232 
 
 

4.5.3 Airborne Laser Scanners 

 
The dual ALS system is made up of a Riegl LMS-Q140i Airborne Laser Scanner and a 

Riegl LMS-Q280i Airborne Laser Scanner. Both 2D scanners perform terrain 

measurements via pulsed laser at a wavelength of 0.9 μm. The gating mechanism is 

controlled by a rotating polygon mirror and is located inside the ALS housing [67][68].  

The rotation of the multifaceted mirrors allow angle and range measurements to be 
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acquired in a raster pattern. Two-dimensional laser data obtains a third dimension when 

the laser in put into motion during scanning.  

 

There is a significant difference in the maximum range, accuracy, and angular resolution 

between the two laser scanners. High costs associated with such instruments has lead to 

limitations of the breath of testing performed with the lasers, however, experimentation in 

this research has been specifically designed to compensate for many differences. Detailed 

technical specifications of both ALSs are displayed in Table 4.3. In this table, the 

variable ρ represents the reflectance of the imaged surface. 
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Table 4.3 

 
ALS Technical Specifications [67][68] 

Airborne Laser Scanners 
Specification Riegl LMS-Q280i ALS Riegl LMS-Q140i ALS 

Scanning Mechanism Rotating Polygon Mirror Rotating Polygon Mirror 
Number of Mirror 
Facets  

4 3 

Maximum Range 850 m for ρ ≥ 20% 
1500 m for ρ ≥ 80% 
2000 m maximum 

150 m for ρ ≥ 10% 
450 m for ρ ≥ 80% 
700 m maximum 

Minimum Range 30 m 2 m 
Measurement 
Accuracy 

±20 mm ±5 cm 

Wavelength 1 μm Near Infrared 0.9 μm Near Infrared 
Pulse Repetition Rate 24 kHz 30 kHz 
Scan Angle 45° at 100% Range or 

60° at 90% Range 
80° 

Angular Resolution 0.0025° 0.036° 
Laser Beam 
Divergence 

0.5 mrad 3.0 mrad 

Interface Serial RS-232 
Parallel ECP 
Ethernet TCP/IP 
 

Parallel ECP 
 

Eye Safety Class 1 (Eye Safe) Class 1 (Eye Safe) 
 
 

4.5.4 Camera 

A downward-looking Prosilica GC1350C CCD camera was used to capture terrain 

images containing potential runway hazards in the visible light spectrum of 400 nm to 

1000nm. Using 8-bit Bayer encoding, the camera was able to achieve an image resolution 

of 1360-by-1024 pixels [69]. Further post processing of the Bayer pattern data was 

performed to obtain an RGB image. Table 4.4 provides detailed specifications of the 

camera. CCD exposure time was automatically adjusted by the camera based on the 
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amount of light in the scene. The program driver, responsible for operating the camera 

and storing images used software based triggering for image acquisition. Once the 

previous image was written to memory in the data collection computer the next image 

was captured. Due to the processing load on the data collection computer, the software-

triggered camera was only able to achieve frame rates in the range of 2 Hz to 7 Hz. An 

image displaying the installation of the GC1350C camera in the fuselage’s hazard 

monitor bay of the aircraft is provided in Figure 4.3.  

 

Table 4.4 

 
Camera Technical Specifications [69] 

CCD Camera 
Specification Value 

Model Prosilica GC1350C 
Sensor Sony ICX205 ½” CCD, Super HAD 

Progressive Scan 
Resolution 1360x1024 
Spectral Range 400 nm – 1000nm 
Maximum Frame Rate 20 FPS 
Exposure Range 20 μsec – 60 μsec 
Gain 0 dB – 22 dB 
Imaging Modes External Trigger 

Fixed Frame Rate 
Software Trigger 

Color Modes Bayer8, Bayer16,  
RGB24, BGR24, RGBA24, BGRA24,  
YUV411, YUV422, YUV444 

Interface 802.3 IEEE 1000baseT Ethernet  
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Figure 4.3: GC1350C CCD camera installation 

 

Like all other components of the hazard monitor, camera data was time tagged with GPS 

time of week information immediately proceeding acquisition. Time-tagged camera data 

is used in this experiment to assist with manually parsing flight data relevant to the 

experiment, although with further uses and integration techniques are discussed in 

Section 6.3. 

 

4.6 Experimental Procedure 

 
With the configuration of the two laser scanners onboard the DC-3, it is possible to sense 

a runway hazard at time, t, by ALS1, and again at time t+1, by ALS2. The optimal 

location of these sensors on the aircraft is in the nose of the plane, with both ALS1 and 

ALS2 looking forward at separate pointing angles. Since this particular configuration was 
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not available at the time of the experiment and is cost prohibitive at the current time, the 

laser scanner configuration used for terrain navigation was used to evaluate the concepts 

described in this thesis. The LMS-Q140i ALS was mounted as a downward-looking 

sensor at an angle of 0° from the Z-axis of the aircraft body frame. The longer range 

LMS-Q280i was mounted at a forward-looking angle of 30.5° from the aircraft body 

frame’s Z-axis. The laser installation and hazard monitor bay are shown in Figure 4.4 

 

  

Figure 4.4: The hazard monitor bay including the dual ALS installation 

 
Selection of proper laser scanner parameters is integral to the hazard monitor’s ability to 

detect specific hazards. When measuring hazards as small as a van or other similar 

ground vehicles, a high laser point density is necessary, while a large field of view is less 

important. Both laser scanners were set to perform measurements at a rate of 30 scan 

lines per second at a pulse repetition rate of 24 kHz. The field of view of the LMS-Q280i 

was set at 45°, while the LMS-Q140i was set at 60°.  
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ALS data were collected on three similar aircraft fly-overs, with the motion of the mobile 

van hazard varying on each approach. During fly-over experiment number one, the van 

was driving along the centerline of the runway, moving in the same direction as the 

aircraft, while being scanned by the onboard lasers of the overhead aircraft. The second 

experiment was performed similar to the first, however, in this scenario, the van was 

driving along the centerline of the runway in the opposite direction of the aircraft motion. 

Finally, in experiment 3, the van is moving in a zigzag pattern across the runway. Figure 

4.5 details the position of the van during each trial, while Figure 4.6 and Figure 4.7 are 

plots of the aircraft’s flight path during data collection.  
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Figure 4.5: Van position during all three fly-overs 
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Figure 4.6: Aircraft flight profile – latitude and longitude 
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Figure 4.7: Aircraft flight profile – height 
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4.7 Geo-referencing of Laser Footprints 

 
Upon collection of all navigation and sensor measurements, the following procedure is 

used to detect, geo-reference, and estimate the state of runway hazards. Geo-referencing 

of the ALS footprints is defined as the estimation of the precise location of all laser scan 

points in a rotating frame fixed to the Earth. In order to accomplish this task, the position 

and orientation of the measurement platform, the aircraft in this case, must be known in 

addition to any lever-arm or orientation offsets caused by placing the sensors at different 

locations and mounting angles. Not all data from the flight test were collected at the same 

frequency so it must be synchronized, providing a GPS position, an IMU orientation, and 

a time measurement for each laser footprint. To accomplish synchronization, 

interpolation of position and orientation angles at each measurement point was performed 

using the linear interpolation method described in Section 3.2. The geo-referencing of the 

now synchronized data is accomplished in a manner similar to that discussed in [7]. 

 

The first step in the geo-referencing process involves expressing the LIDAR range and 

angle measurements in a reference frame relative to the orientation of the ALS. A DCM 

is used in the following equation to perform a single coordinate rotation from the laser 

measurement frame, XLM, to the laser body frame, XALS  

 

xLaser = CLM
Laser (fi ,qi ,yi ) ⋅

0
0
ri

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                                                                                            (4.1) 
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where ir  is the range from the ALS to the ground as measured by the laser and 

CLM
Laser (fi ,qi ,yi )  is the DCM used to convert from xLM to xLaser . In this scenario the 

mounting angle of the laser can be expressed as the pitch, θL. The pitch in the case of the 

downward looking LMS-Q140i is 0°. The LMS-Q280i is pointed at a forward angle of 

30.5° from the vertical axis, resulting in a 30.5° pitch.  The scanning angle of the laser 

can be expressed as roll, φL, about the bore-sight axis of the laser.  No information is 

required to represent the difference in heading, ψL, since the laser measurement data and 

the laser frame are aligned. Equation 4.2 is a representation of the DCM, CLM
Laser (fi ,qi ,yi )  

 

CLM
Laser =

cosθL cosψL −cosθ sinψ + sinφL sinθL cosψL sinφL sinψL + cosφL sinθL cosψL

cosθL sinψL cosθL cosψL + sinφL sinθL sinψL −sinφL sinψL + cosφL sinθL sinψL

−sinθL sinφL cosθL cosφL cosθL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

(4.2) 
 

Once the measurement frame’s heading alignment with the ALS has been taken into 

account the DCM of Equation 4.2 simplifies into Equation 4.3. 

 

CLM
Laser =

cosφL sinθL

sinφL

cosφL cosθL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                                                                                                    (4.3) 

 

The rotation into the ALS body frame, XALS, from Equation 4.1 can now simply be 

expressed as 
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xLM
Laser =

cosφL sinθL

sinφL

cosφL cosθL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

0
0
ri

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
                                                                                                (4.4) 

 

The next step in the geo-referencing process requires a conversion from the laser body 

frame, XALS, to the aircraft body frame, XB. This is performed with a DCM similar to 

Equation 4.2 to compensate for the misorientation created by the mounting angles of the 

IMU. It must also take into account the lever arm offset created by the placement of the 

craft’s GPS antenna. The lever arm measured from the GPS antenna to the ALS inside 

the aircraft was measured using the centerline of the aircraft as a reference point. The 

IMU misorientation was not measured, however, it is assumed to be small, at an angle of 

less than 2° along each axis. For this research, zero misorientation was assumed since 

measurement proved difficult due to lack of measuring devices. Equation 4.5 now 

becomes simplified, since no rotation is required. Taking the preceding instrument and 

sensor location and orientation into account the conversion to the aircraft body frame is 

completed using the following 

 

XB = LGPS→ALS + XALS                                                                                                     (4.5) 

 

All ALS footprints are now expressed in the body frame of the aircraft. The next step 

requires a rotation to the navigation frame, where the axes are aligned with the north, 

east, and down directions. Equation 4.6 represents this rotation and makes use of the 

DCM of Equation 4.7 that is proposed in Section 3.6.  
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XN = CB
NXB                                                                                                                     (4.6) 

 

where 

 

CB
N =

cosθ cosψ −cosθ sinψ + sinφ sinθ cosψ sinφ sinψ + cosφ sinθ cosψ
cosθ sinψ cosφ cosψ + sinφ sinθ sinψ −sinφ cosψ + cosφ sinθ sinψ

−sinθ sinφ cosθ cosφ cosθ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  

(4.7) 

The final step of the geo-referencing process is conversion into the Earth frame. This 

requires the aircraft position, XCraft, plus a DCM making use of the craft latitude, L, the 

longitude, λ, and the wander angle, w. This translation and rotation is shown in Equation 

4.8 and 4.9 

 

XE = XCraft + CN
EXN                                                                                                        (4.8) 

 

where 

 

Cn
e =

−cosw sinLcosλ + sinw sinλ −sinw sin Lcosλ − cosw sin λ −cosLcosλ
−cosw sinLsin λ − sin wcosλ −sinw sin Lsinλ + coswcosλ −cosLsinλ

coswcosL sinw cosL −sinL

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  

(4.9) 

 

An overview of the geo-referencing method used in this thesis is given in Figure 4.8. 
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Figure 4.8: Geo-referencing of ALS footprints flow chart 

 

4.8 Windowed Weighted Least Squares Terrain Estimation 

 
After all laser footprints have been geo-referenced, the next step in the process is to 

separate measurements belonging to the terrain and measurements that are considered to 

be features of the scene. Any identified scene feature LIDAR footprint will initially be 
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considered a hazard. Since the hazard detection used in this research is intended for 

runway landings, it is possible to take advantage of the flat surface geometry of runways 

and taxiways. This allows for laser footprints residing above an empirically determined 

surface estimate to be considered part of a scene feature and thus a hazard. The method 

discussed in this section is derived from the method used in [8] and [70]. 

 

The feature separation algorithm begins by converting all geo-referenced measurements 

from an ECEF system into a local-level coordinate system, expressed in North-East-

Down (NED) coordinates. This allows for more intuitive representation of the scene and 

has the added benefit of defining laser points with respect to a reference point, in this 

case a point located on the runway. Next, all erroneous ALS measurements are filtered 

out of the data. These erroneous data points likely originate from measurement errors 

within the ALS and appear as points residing at an unrealistic location above a threshold 

of 100 m from the runway surface. Further filtering of the data then occurs to eliminate 

measurements located too far away, in a lateral sense, from the runway surface area. The 

distance of these points from the region of interest, the runway, makes them unnecessary 

in monitoring scenarios and has the disadvantage of increased computation time and 

poorer algorithm performance by possibly including terrain with steep gradients. 

Elimination is performed by truncating the ALS measurements to only include a laser 

sweep angle of 5° from nadir in both directions. This angle takes into account the altitude 

of the aircraft and the width of the runway and would be required to expand if the craft’s 

altitude decreases. 
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Now that all unnecessary data has been eliminated, the measurements are broken up into 

small regions, or windows, each representing 0.5 sec of data. Windowing of data allows 

the weighted least squares terrain estimation algorithm to operate over a small region, 

likely consisting of a single smooth surface. Non-linear variations in the terrain such as 

gradients and hills should not occur in such a small window, thus increasing algorithm 

performance. The choice of 0.5 sec as the window size was determined experimentally 

and appears to yield acceptable results. 

 

Each 3-D point cloud window is now operated on individually. First a best-fit plane is 

constructed through the ALS point cloud window, as described in Section 3.3 to solve for 

the coefficients of Equation 4.10.  

 

z = Ax + By + C                                                                                                             (4.10) 

 

Now that the best-fit plane has been obtained, the next step in the algorithm is to decide 

whether ALS points belong to terrain or to features. This is done by assigning weights to 

points based on an estimate as to whether they belong in the set of terrain points or 

feature points. The point weights are continuously reassigned as the windowed weighted 

least squares algorithm iterates before converging on a solution. In the solution, all points 

have been assigned a weight of zero (terrain) or one (feature). Eventually all non-terrain 

points will be removed from the data, as they are assigned a weight of zero. 
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In order to determine the point weights, the height residuals between the actual ALS 

measurements and the points of the best-fit plane first need to be calculated. Equation 

4.11 describes this process.  

 

Ri = zp − zi                                                                                                       (4.11) 

 

The height residual values were then put into a histogram. The bins of the histogram are 

made up of a small range of the height residual from Equation 4.11. The bin of the largest 

magnitude, containing the most values in its residual range, is selected to provide 

information to the weighting function, which is used to assign the point weights 

mentioned above. The center value of the histogram’s largest bin was selected as the 

weighting parameter, g. The definition of this weight function given in [70] is expressed 

in Equation 4.12. 

 

wi =

1
1

1+ α(Ri − g)β

0

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

  
Ri < g

g < Ri < g + M
g + M < Ri

                                                                           (4.12) 

 

In the above equation wi is the weight of the ALS measurement, g is the weighting 

parameter, and σRi is the value of the largest bin of the height residual histogram. M, α, 

and β are constants that were determined experimentally in [70] where 
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M= 0.9 

α=1 

β=4 

 

A visualization of this weighting function can be found in Figure 4.9. In essence, this 

method is based on the fact that a majority of the scanned points belong to the terrain and 

will have a smaller residual value since they are closer to the planar surface. Points above 

the planar surface (i.e. belonging to a feature) will have larger residual values and will be 

assigned a smaller weight during the next iteration of the planar fit. 

 

 

Figure 4.9: Weight function used to determine terrain points from non-terrain [70] 

 

Once Equation 4.12 has been used to assign new weights to all ALS points, these weight 

values are fed into the best-fit plane calculation to determine a new best-weighted least 

squares fit plane following Equation 4.13 
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                                                        (4.13) 

 

The height residuals are then recalculated and the weighting process is repeated. This 

process continues until all points have been classified with a weight of zero or one and 

the algorithm converges. All windows of ALS measurements undergo this same process 

resulting in two sets of points, one consisting of terrain and the other consisting of non-

terrain features. An overview of this method is given below in Figure 4.10. 
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Figure 4.10: ALS point classification flow chart 

 

4.9 Hazard Candidate Clustering 

 
All points have now been classified into sets designating either terrain or scene features, 

but, with this information it is not possible to assess which points belong to which 

features. To resolve this problem, the k-means clustering algorithm is applied to the 
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points now residing in the feature set. This method automatically assigns a cluster or 

grouping index to all points based on a specific metric and indicates the center location of 

each cluster. The metric used in this thesis is a measure of dissimilarity based on the 

Euclidian distance from the centroid, [xc,yc,zc] as given in Equation 4.14.  

 

d = (xi − xc )2 + (yi − yc )2 + (zi − zc )2                                                             Equation 4.14 

 

Since this method is unsupervised, it assumes that a priori knowledge of the data exists, 

in this case the number of clusters appearing in the scene, which was determined 

experimentally via visual inspection of the data. While this may be seen as a weakness of 

k-means clustering, modifications of k-means clustering may be considered that evaluate 

the clustering results for a finite set of possible values of ‘k’. However, that investigation 

is outside the scope of this thesis. 

 

4.10 Hazard State Estimation 

 
State estimation of a hazard entails approximating the hazard cluster’s linear velocity 

vector. This is accomplished using data from both ALSs that will likely contain the same 

mobile hazard seen at two different times and two different locations. To accomplish this, 

the centroid of the vehicle clusters, Cf and Cd from the forward-looking ALS and the 

downward-looking ALS are both extracted from the k-means clustering results. Using the 

time tag information from each data point, provided by GPS, the time of the cluster 

measurement is determined. The time of occurrence of the point residing closest to the 
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center is selected as the hazard time, tF or tD, depending on which laser is sensing the 

hazard. A velocity estimate is now obtained using this information. With only two scene 

frames available, it is not possible to create an accurate velocity estimate if the hazard is 

not moving in a linear manner, however, if the hazard is stationary or moving linearly 

then the simple method of Equation 4.15 can be used to resolve velocity, vh.  

 

vh =
(XF − XD ) + (YF −YD ) + (ZF − ZD )

tF − tD

                                                        Equation 4.15 

 

In the above equation, XF, YF, and ZF are the coordinates of the hazard as seen by the 

forward-looking laser, and XD, YD, and ZD are hazard coordinates from the downward-

looking laser. Note that the use of flash LIDAR sensor could help to achieve a better 

observability of the velocity since no time uncertainty does exist and the target will be 

observable in multiple frames. 

 

The result of the algorithm described in Section 4.6 though Section 4.9 yields accurately 

geo-referenced scene maps capable of identifying potential landing safety hazards and 

estimating the linear velocity of those hazards. 
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CHAPTER 5: RESULTS 

 
5.1 Footprint Geo-referencing 

 
Geo-referencing of laser measurements has yielded promising results that appear 

accurate. Determining a metric to assess geo-referencing accuracy is difficult, since there 

is no way to guarantee that the ALS beam will strike the exact location of the surveyed 

point. The method used in this thesis to determine accuracy makes use of the van position 

truth information provided by post-processed kinematic DGPS. This reference point can 

then be compared temporally and spatially to the ALS measurement point residing closest 

in time and location. Various error sources can be attributed to this method including 

errors in the kinematic DGPS truth data and the position and time offset of the 

measurement point located closest to the reference point. It should be noted that in a real-

time solution to the hazard-monitoring problem kinematic DGPS would not be available, 

and would be replaced with either GPS or WASS. An error is introduced by the vertical 

lever arm between the roof of the van and the GPS antenna, since it is mounted 

approximately 0.5 m above the van. Geo-referencing accuracy can only be assessed 

within the performance specified in Equation 5.1 

 

EA = (EDGPSX
)2 + (EDGPSY

)2 + (EDGPSz
)2 + ZA

2 + (ETX
)2 + (ETy )2 + (ETz)

2         Equation 5.1 

 

where EDGPS is the error due to kinematic differential GPS performance, ZA is the vertical 

lever arm between the van and the antenna, and ET is the error due to the laser footprint 
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not directly striking the reference point. EDGPS can be modeled via information output 

from the post-processed GPS data. When averaged over the entire data set, a north error 

of 0.0201 m, an east error of 0.0121 m, and an up error of 0.0322 m are present. When 

coupled with the lever arm error, the geo-referencing error grows to 0.5644 m, however, 

there is still the uncertainty introduced by the laser footprint and truth reference point not 

residing at the same location. Unaccounted for is the low data rate of 1 Hz for the 

kinematic DGPS truth data resulting in a limited number of data truth points. 

Interpolation could possibly be used to upscale the truth data to eliminate some of this 

error caused by a low data rate. Results of geo-referencing, including error sources on the 

truth data are given in Table 5.1. Figure 5.1 demonstrates both geo-referencing accuracy 

and error sources associated with evaluating such accuracy, such as the frequency of the 

truth data and the spacing between the truth data and the ALS measurements.



 
Table 5.1 
 
ALS Footprint Geo-referencing Accuracy Estimation 

ALS Footprint Geo-referencing Accuracy 

Runway 
Fly-over 
Number  

ALS 

Lever Arm 
+ DGPS 
Error 

(meters) 

Truth/ 
Measured 
Footprint 
Alignment 

Error 

Time of 
Truth 

Reference
(seconds) 

Time of 
Measured 
Footprint 
(seconds) 

Location of 
Truth 

Reference 
(meters) 

Location of 
Measured 
Footprint 
(meters) 

Geo-
referencing 
Best Error 
Estimate  
(meters) 

1 Fore 0.5644 m Unknown 423800 423800.1 N=45.0958 
E=69.9020 
U=0.2780 

N=44.7938 
E=70.4727 
U=-0.5858 

1.0785 

1 Down 0.5644 m Unknown 423803 423802.6 N=23.2863 
E=30.9030 
U=0.1169 

N=24.4904 
E=32.3063 
U=-1.0371 

2.1796 

2 Fore 0.5644 m Unknown 424133 424132.6 E=244.9281 
N=339.9178 
U=-0.04530 

E=240.7657 
N=333.1888 
U=-0.8868 

7.9569 

2 Down 0.5644 m Unknown 424134 424133.8 N=255.8571 
E=359.2763 
U=-0.0526 

N=254.7611 
E=355.2587 
U=-0.5584 

4.1950 

3 Fore 0.5644 m Unknown 424574 424574.1 N=-91.3641 
E=-218.1012 
U=0.4169 

N=-91.7913 
E=-218.0127 
U=-0.8884 

1.5704 

3 Down 0.5644 m Unknown 424576 424576.2 N=-91.1722 
E=-238.1872 
U=0.2909 

N=-92.0408 
E=-239.1089 
U=-0.0288 

1.3062 

 
 



 

 

Figure 5.1: Geo-referencing Accuracy Estimation Difficulties Example 
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Another method used to evaluate the geo-referencing performance uses a comparison of 

measurements between ALS sensors looking at the same location. By making use of the 

returned signal intensity value from the laser, it is possible to distinguish unique locations 

on the runway. The numbers painted on the runway return a unique signal amplitude that 

can be seen in the surface maps generated by the ALS. The coordinates of the upper right 

most point of the number seven painted on the runway serves as the reference point for 

this research. This method still suffers from errors since there is no way to guarantee that 

the ALS will strike the exact same location on the runway. Table 5.2 details precision 

results using this method, while Figure 5.2 illustrates the reference point. 

 

 

Figure 5.2: Truth reference point used to evaluate geo-referencing precision 



  81 
   
 

Table 5.2 

 
Geo-referencing Precision using ALS Amplitude on Runway Number Truth Reference 
Point 

Fly-over 
Number 

Forward ALS 
Footprint (ECEF)

Downward ALS 
Footprint (ECEF)

Footprint 
Location 

Difference 
Forward to 
Downward 

(meters) 

Footprint 
Standard 
Deviation 
using All 

Measurements

1 
X=668699.3344 
Y=-4903409.0721 
Z=4010506.4050 

X=668698.1651 
Y=-4903408.7078 
Z=4010507.7131 

1.4237 

0.5414 2 
X=668698.1031 
Y=-4903409.3740 
Z=4010506.2792 

X=668697.5442 
Y=-4903409.0643 
Z=4010507.4294 

1.3158 

3 
X=66899.5592 
Y=-4903409.4760 
Z=4010505.8402 

X=668697.7974 
Y=-4903409.6281 
Z=4010506.8052 

2.0145 

 
 

5.2 Hazard Detection 

 
The windowed weighted least squares algorithm used for classification of terrain and 

non-terrain points as well as the k-means clustering performs very well over the runway 

surface. The method used to evaluate the accuracy of such a procedure is accomplished 

by plotting the kinematic DGPS of the van position on top of the scene maps created by 

the ALS. A visual inspection of the data is then preformed along the DGPS van path, in 

search for a grouping of points residing above the runway surface. Once the hazard 

candidate is found in the point cloud, the time tag information of the suspected ALS 
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points is compared with the time-tag of the DGPS van position. The hazard candidate is 

verified to be the van if the time data coincides. 

 

When examining the results of the weighted least squares algorithm on each window of 

data, it is important to examine the intermediate steps of the algorithm. Figure 5.3 and 

Figure 5.4 demonstrate the results of the initial best fit of a 3-D plane though the window, 

the determination of the standard deviation of the height residuals, the calculation of the 

standard deviation of the residual histogram, and the result of the terrain and non-terrain 

point classification.  
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Figure 5.3: Intermediate steps of the weighted least squares algorithm - data window 4 in 

the forward-looking ALS during fly-over 1 – no hazard present 
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Figure 5.4: Intermediate steps of the weighted least squares algorithm - data window 12 

in the forward-looking ALS during fly-over 1 – hazard present 

 

The point cloud window of Figure 5.3 shows that no hazard candidates are present. This 

is expected since the standard deviation of the residual heights from the best–fit plane 

fitting are consistent, as can be seen from the shape of the histogram. Window statistics 

of this realization indicate that no non-terrain points are present, and thus no hazards. 

Figure 5.4 shows just the opposite. There is a variation in the residual heights as apparent 

in the regional histogram, implying the existence of a hazard. Figure 5.5 through Figure 
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5.10 show the results of the algorithm applied over the entire scene map made up of all 

windows created during each fly-over.  

 

 

Figure 5.5: Point classification results – fly-over 1 – forward-looking ALS  
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Figure 5.6: Point classification results – fly-over 1 – downward-looking ALS 

 

 

  

Figure 5.7: Point classification results – fly-over 2 – forward-looking ALS 
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Figure 5.8: Point classification results – fly-over 2 – downward-looking ALS 

 

 

 

Figure 5.9: Point classification results – fly-over 3 – forward-looking ALS 
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Figure 5.10: Point classification results – fly-over 3 – downward-looking ALS 

 

The above figures illustrate the windowed weighted least squares point classification 

algorithm’s performs reliably over the runway. In five of the six data sets there are no 

false detections and the van is detected correctly each time. There is a false detection in 

Figure 5.5 of the forward-looking ALS data of fly-over one, however, the false detection 

does not occur on the smooth runway surface, it occurs on the rough terrain encountered 

before the start of the runway. This false detection is expected due to the planar fitting 

techniques used in this algorithm.  

 

After non-terrain points have been identified they are clustered into sets of points likely 

belonging to the same feature. Clustering becomes necessary in multiple-hazard scenarios 

to distinguish individual scene features from one another. It is also useful when 
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determining the size of a non-terrain feature. A cluster consisting of only one or two 

points may be an artifact or a negligible feature that does not pose a threat to the safety of 

the aircraft. Figure 5.11 shows the results of clustering the non-terrain points into a single 

hazard, while Figure 5.12 shows the identification of multiple hazard clusters in a single 

scene. 

 

  

Figure 5.11: Hazard clustering results for the downward-looking ALS of fly-over 3 
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Figure 5.12: Hazard clustering results of multiple hazards for the forward-looking ALS 

of fly-over 1 

 

Integration of data from both ALS systems after application of the k-means clustering 

algorithm of each fly-over is provided in Figure 5.13 through Figure 5.15. The forward-

looking LMS-Q280i ALS yields a larger number of measurements per hazard due 

increased measurement density caused by the 15° smaller scan width of the LMS-Q280i 

ALS at a pulse repetition rate identical to that of the LMS-Q140i.  
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Figure 5.13: Integration of dual ALS data and cluster identification – fly-over 1 

 

 

 

Figure 5.14: Integration of dual ALS data and cluster identification – fly-over 2 
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Figure 5.15: Integration of dual ALS data and cluster identification – fly-over 3 

 

5.3 Hazard State Estimation 

 
Upon completion of footprint geo-referencing, point classification, and hazard 

clustering, the velocity state of the hazard can be calculated. Table 5.3 details all 

information necessary to estimate hazard average velocity along with the results of such a 

procedure. As expected, the linear motion of the hazards during fly-over one and two was 

estimated to within 1.1 m/s of the true van average velocity provided by the kinematic 

DGPS receiver located inside the van. That error could likely be further improved if there 

was a method to guarantee that the van remained at a constant speed during the fly-over, 

however, there were likely small variations in the van’s velocity. The non-linear motion 

of the van on the runway during fly-over three leads to less accurate velocity estimates 
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since the algorithm used herein relies on the assumption of linear motion. Even in the 

presence of non-linear motion the results are promising, providing an average velocity 

estimate accurate to within 2.84 m/s. The oblong shape of the runway provides an 

advantage in a non-linear motion state since non-linear motion of the van is bounded by 

the short distance between runway edge lines.  

 

Table 5.3 

 
Hazard Velocity State Estimation Results 

Hazard State Estimation Results 
Fly-
over 

Time ALSD 
(GPS Time 
of Week) 

Cluster Center ALSD 
(ECEF) 

Time ALSF 
(GPS Time of 

Week) 

Cluster Center ALSF 
(ECEF) 

1 423802.689 
X=669148.02 

Y=-4903176.53 
Z=4010718.59 

423800.072 
X=6691824.89 
Y=-4903159.77 
Z=401732.91 

2 424133.771 
X=424133.77 

Y=-4902945.17 
Z=4010925.90 

424132.576 
X=669575.39 

Y=-4902956.37 
Z=4010914.96 

3 424576.166 
X=669149.05 
Y=-4903172 

Z=4010723.53 
424574.106 

X=669170.97 
Y=-4903169.26 
Z=4010722.32 

Fly-
over 

Distance 
(m) 

Estimated Van Speed
(m/s) 

True Van 
Speed (m/s) 

Error 
(m/s) 

1 40.91 15.63 14.52 1.11 
2 26.20 21.92 21.77 0.15 
3 22.13 10.75 7.91 2.84 

 



  94 
   
 

CHAPTER 6: CONCLUSIONS 

6.1 Summary 

The methods and experimental procedure used to detect mobile runway hazards in this 

research have resulted in a successful proof-of-concept for a system such as NASA’s 

IIFD external hazard monitor. Laser footprint geo-referencing has been proven accurate 

to within approximately 2 m in most cases. This accuracy is likely much better than the 

numbers indicated in the results, however, acquisition of truth data and development of 

precise methods to assess performance has proven difficult. It has been shown that geo-

referencing accuracy can only be evaluated to within an unknown tolerance greater than 

0.5 m due to factors such as instrument accuracy, lever arm length, and ability of the ALS 

to directly strike the reference location. Geo-referencing measurement precision of better 

than 1.5 m in two of the three runway fly-overs provides further assurance that the 

procedure is more accurate than the results indicate. Hazard identification is near perfect, 

with only a single false detection, which is the result of jagged terrain located in front of 

the runway, among all data. Average velocity estimation results of the van are also 

promising. During linear van motion the velocity is successfully estimated to within 1.2 

m/s. Even when the van is driving in a non-linear zigzag pattern, the velocity is 

calculated to within 2.9 m/s of the truth-value.  

 

The advantages of the proposed system include, high resolution geo-referenced 3-D scene 

imagery, the ability to detect non-cooperative targets including wildlife, pedestrians, 

debris, and some ground vehicles, and direct pilot notification of hazards that is 
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independent of intermediate parties such as ATC. Replacing GPS with a navigation 

system completely internal to the aircraft such as the dual ALS aided inertial system 

proposed in [7] would eliminate reliance on any external device, resulting in a hazard 

monitor capable of operating in environments experiencing RF interference or little or no 

GPS signal availability. Such a system is more cost feasible to include on an aircraft if 

the sensors are being used for other flight critical systems as in the dual ALS aided 

inertial navigation system mentioned above. 

 

6.2 Challenges 

The promising performance of the proposed aircraft external hazard monitor 

demonstrates the effectiveness of this proof-of-concept implementation, however, various 

factors limiting the system design and flight test experiments have room for improvement 

that may lead to increased overall system accuracy. The mounting angles and location of 

both ALSs, selected based on installation cost, were not ideal. Moving the sensors to the 

nose of the aircraft and pointing both of them forward at different angles would allow the 

system to detect hazards well before the aircraft flies over them. Increasing the 30.5° 

separation angle of the lasers would allow for more time between ALS hazard detection, 

yielding a better average velocity estimate. Another significant improvement to the 

accuracy of the system, excluded due to measurement cost, would be compensation for 

the orientation offset between the IMU and each ALS. While this offset is small, it can 

still lead to considerable footprint geo-referencing errors since ALS range measurements 

are so large. Increased point density of the downward-looking LMS-Q140i ALS is also 
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desirable, since as little as four laser pulses struck the van hazard during fly-over two. 

Decreasing the sweep angle of the ALS could provide a simple fix to this problem; 

however, replacing the LMS-Q140i with a more advanced ALS such as the LMS-Q280i 

would be a more effective solution. A final challenge of this research, again limited by 

cost, was the low number of data collection trials and scenarios. An ideal experiment 

would include more trials with the van moving in different patterns and directions, such 

as laterally or stopping and starting. Also included would be a fly-over of the van while it 

remains stationary with various surveyed reference points along the roof and sides. This 

would allow for better accuracy assessment. Finally adding a system integrity 

component, currently missing for this research, would increase both confidence and 

usefulness with regards to the hazard monitor.   

 
6.3 Looking Forward 

This section provides recommendations for future improvements and research pertaining 

to the dual ALS aircraft external hazard monitor. 

• Integration of the returned LIDAR signal’s amplitude into the classification and 

detection algorithms may be used to provide more advanced hazard classification 

and eliminate false detections. Results from this research indicate that even slight 

variations in materials comprising scene feature yields unique amplitude 

signatures that may be integrated into classification data.  

• An under utilized sensor included in the initial design of the hazard monitor is the 

RGB camera. The time-tagged camera data may be fused with the ALS, GPS, and 

IMU data to provide more integrity to hazard detection and classification. 
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Segmentation of camera images though image enhancement and edge detection 

could possibly be used to calculate a heading estimate of the hazard by analyzing 

the hazard’s orientation between the runway edge lines. While vulnerable to 

darkness, this sensor could be used to provide integrity in numerous landing 

scenarios. 

• An investigation into multiple mobile hazard scenarios to guarantee that each 

ALS is detecting and estimating the state of the same hazard would prove useful. 

This could be accomplished by looking for a specific hazard in only a certain area 

of the scene determined by the location of the hazard in the forward most looking 

ALS and the aircraft dynamics. 

• A final improvement to the research would be further flight-testing to analyze 

more mobile hazards scenarios. These may include different driving patterns of 

the van as well as the inclusion of other mobile hazards on the runway such as 

debris, wildlife, pedestrians, and other aircraft.  

• Evaluation of other sensors for external hazard monitoring such as flash LIDAR, 

and gimbaled ALS sensors. 
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APPENDIX A: CURRENT RESEARCH AND APPLICATIONS OF AIRBORNE 

SENSORS 

Table A.1 

 
Current Research and Applications of IR 

Title Primary 
Author/ 

Organization 

Application Objects 
Detected or 

Tracked 

Conclusions Ref. 
Num. 

Automatic target 
detection and 
tracking in 
forward-looking 
infrared image 
sequences using 
morphological 
connected 
operators 

U. Braga-Neto 
 
University of 
Texas 

Detection of 
targets in IR 
video  

Any potential 
target 

Detects 
temperature 
invariant targets 
and removes 
clutter using 
morphological 
operators 

[71] 

Flight test of IR 
sensors on NASA 
757 at Newport 
News / 
Williamsburg 
International 
Airport (PHF) 

D.P. Chi 
Nguyen 
 
RTI 
International  

Uses both 
SWIR and 
LWIR in 
Enhanced 
Vision System 

Entire Scene Operation 
parameters and 
performance of IR 
for sensing of 
airport surfaces 
have been 
analyzed  

[26] 

Moving object 
detection on a 
runway prior to 
landing using an 
onboard infrared 
camera 

C. Pai 
 
University of 
Southern 
California 

Identify 
features by 
normalizing 
images and 
then removing 
the 
background 

Moving 
objects on 
runway 

Poor detection of 
fast moving 
objects and added 
noise with large 
objects 

[72] 

Target tracking in 
airborne forward 
looking infrared 
imagery 

A. Yilmaz 
 
University of 
Central Florida 

Ego-motion 
compensated 
detection and 
tracking 
targets using 
fuzzy 
clustering and 
edge fusion  

Targets with 
known 
parameters 

Must know 
position and size 
of target.  
 
Uses texture 
information to 
identify targets 
 
Tracking from 
target center using 
standard deviation 
distribution 
 
 
 
 
 
 

[27] 
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Target tracking in 
FLIR imagery 
using mean-shift 
and global motion 
compensation 

A. Yilmaz 
 
University of 
Central Florid 

Tracking using 
target intensity 
Gabor 
response under 
sensor ego-
motion 

Any object of 
with a priori 
position 
information 

Functions for fast 
moving objects  
 
Able to track only 
one target 

[73] 

Detection and 
tracking dim 
moving point 
target in IR image 
sequence 

F.  Zhang 
 
Wuham 
University 

Variation of 
the track 
before detect 
method  

Any target 
with low 
SNR 

Requires pre-
processing and 
linear position 
vector of object. 
 
 

[74] 

Automatic target 
recognition via the 
simulation of 
infrared scenes 

A. Lanterman 
 
Washington 
University 

Use sensor 
statistics and 
emissive 
values of 
targets for data 
simulation 

Vehicles Assumes a priori 
target intensity. 
 
Does not function 
with complex 
natural 
backgrounds. 

[28] 

Adaptive 
sequential 
algorithms for 
detecting targets in 
a heavy IR clutter 

A. Tartakovsky 
 
University of 
Southern 
California 

Detection and 
tracking of 
targets and 
target 
disappearance 
using the track 
before detect 
method  

Primarily 
missiles, but 
applicable to 
most targets 

Performs well for 
low SNR.  
 
Maximum of one 
false alarm per 
minute. 
 
Initial detection 
requires 20 
seconds. 

[75] 

Differentiation and 
localization of 
targets using 
infrared sensors 

T. Aytac 
 
Bilkent 
University 

Identifies 
targets and 
determines 
position with 
respect to 
indoor 
environment 

Indoor targets 
corridor 
corners, 
planes, and 
edges 

Successful 
classification rate 
of 97%. 
 
Localization of 
targets to within 
0.8 cm of range 
and 1.6° of 
azimuth. 

[76] 

Infrared target 
detection with 
probability density 
functions of 
wavelet transform 
subbands 

F.A. Sadjadi 
 
Lockheed 
Martin 
Corporation 

Target 
detection 
method makes 
use of texture 
information, 
probability 
density 
function, and 
wavelet 
decomposition 

General 
targets 

Targets are 
differentiated 
from background 
using clustering of 
probability 
density function 
moments. 
 
Performance 
models of such a 
system are 
developed based 
on scene specific 
parameters. 

[77] 
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Pedestrian 
detection and 
tracking with night 
vision 

F. Xu 
 
Leica 
Geosystem 

Pedestrian 
detection via 
support vector 
machine and 
tracking with a 
Kalman filter 
and mean shift 
tracking 

Pedestrians Does not 
guarantee 
detection in all 
video frames. 
 
 

[78] 

Probabilistic 
template based 
pedestrian 
detection in 
infrared videos 

H. Nanha 
 
University of 
Maryland 

Uses a Baysian 
classifier to 
determine 
regions of 
interest then it 
performs 
template 
matching to 
detect 
pedestrians. 
 
 
Templates do 
not include 
limbs of 
pedestrians. 

Pedestrians Successful 
detection rates 
between 75% and 
90%. 
 
Detection 
algorithm requires 
training. 
 
 

[79] 

Integrated 
detection, tracking 
and recognition for 
IR video-based 
vehicle 
classification 

X. Mei 
 
University of 
Maryland 

Vehicles are 
detected based 
on temporal 
variance 
analysis and 
then tracked 
and classified 
with 
probabilistic 
principle 
component 
analysis.  

Vehicles Recognition 
accuracy near 
90%. 

[80] 
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Table A.2  

 
Current Research and Applications of MMWR 

Title Primary Author/ 
Organization 

Application Objects 
Detected 

Conclusions Ref. 
Num. 

Advances in 
millimeter-wave 
imaging 
technology for 
enhanced vision 
systems 

C. Martin 
 
Trex Enterprises  

Passive MMW 
radar for 
enhanced 
vision systems 

Scenes 
when 
landing and 
taxing  

Development of 
higher resolution 
and broader field 
of view flat-panel 
filled array 
antenna.  

[81] 

An algorithm for 
detecting roads 
and obstacles in 
radar images 

K. Kaliyaperumal 
 
Motorola 

Detects and 
classifies roads 
and obstacles 
in all-weather 
conditions 

Roads and 
Obstacles 

Successful 
algorithm based 
on template 
matching and the 
Metropolis 
algorithm.  

[31] 

Detection of 
stationary 
foliage-obscured 
targets by 
polarimetric 
millimeter-wave 
radar 

A.Y. Nashashibi 
 
University of 
Michigan 

Detection 
techniques of 
distorted and 
backscattered 
targets in 
foliage 

Ground 
targets 

Distortion 
reduction and 
attenuation 
estimation of 
signal through 
foliage using 
multiple scans of 
a target proves for 
successful 
detection.  

[30] 

Radar synthetic 
vision system for 
adverse weather 
aircraft landing 

F. Sadjadi 
 
Lockheed Martin 
Corp. 

Algorithms for 
processing of 
MMW radar 
and FLIR data 
in zero 
visibility 
conditions 

Runway 
scenes 

Demonstration of 
35 GHz radar in a 
SVS for safe 
landing.   

[82] 

High-resolution 
millimeter-wave 
radar systems for 
visualization of 
unstructured 
outdoor 
environments 

G. Brooker 
 
University of 
Sydney 

Path planning 
and navigation 
techniques 
with MMW 
radar 

Terrain Presents results of 
various MMW 
radars’ 
performance 
characteristics 
over terrain. 

[83] 

MMW-scanning 
radar for descent 
guidance and 
landing 
safeguard 

A. Foessel-
Bunting 
 
Carnegie Mellon 
University 

Use of MMW 
radar for 
landing of a 
spacecraft 

Terrain Provides analysis 
of spacecraft 
landing scenarios 
and requirements 
of a MMW radar 
for this 
application. 
 
 
 

[84] 
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Next generation 
millimeter-wave 
radar for safe 
planetary 
landing 

B.D. Pollard 
 
Jet Propulsion 
Laboratory  

Use of G-band 
imager for 
hazard 
avoidance in 
unknown 
environments 

Unknown 
terrain 

Design 
specifications 
based on 
planetary landing 
are provided. 

[85] 

A radar cross-
section model 
for power lines 
at millimeter-
wave 
frequencies 

K. Sarabandi 
 
Raytheon 

Analysis of 
radar return 
characteristics 
on various 
power lines  

Power lines Details scattering 
properties and 
sensitivity 
analysis at 94 
GHz. 

[33] 

Millimeter-wave 
radar sensing of 
airborne 
chemicals 

N. Gopalsami 
 
Argonne National 
Laboratory 

Design of 
MMW radar 
for chemical 
detection in 
220-350 GHz 
range 

Airborne 
Chemicals 

Successful testing 
and model 
development of 
sensor.  
 
Preliminary 
results 
demonstrate 
effective detection 
capabilities. 

[32] 
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Table A.3  

 
Current Research and Applications of Video 

Title Primary Author/ 
Organization 

Application Objects 
Detected 

or Tracked 

Conclusions Ref. 
Num. 

Runway obstacle 
detection by 
controlled 
spatiotemporal 
image flow 
disparity 

S. Sull 
 
Korea University, 
Seoul 
(Korea) 

Bare runway is 
estimated using 
a model flow 
field. The 
residual flow 
of the sensed 
runway is used 
to detect 
hazards.  

Objects 
located on 
runway 

While not very 
accurate and 
computational-
ly expensive, 
the method is 
effective. 
 
Can also be 
used with 
ground 
vehicles. 

[86] 

A method to 
recognize and 
track runway in the 
image sequences 
based on template 
matching 

D. Meng 
 
University of 
Aeronautics and 
Astronautics 
(China) 

Application of 
basic image 
processing 
techniques for 
detection of 
runways for 
UAVs 

Runways Algorithm is 
implemented 
in real-time 
and uses little 
information. 
 
Method is 
simple, but 
does not 
appear very 
reliable. 

[87] 

Real-time 
implementation of 
airborne inertial-
SLAM 

J. Kim 
 
The Australian 
National 
University 
(Australia)  

Use of 
simultaneous 
localization 
and mapping 
for UAV 
guidance.  

Terrain 
features 

Attitude errors 
from the IMU 
have a large 
effect on 
algorithms 
performance. 
Adding 
velocity 
estimates will 
likely reduce 
errors.  
 
 

 

[39] 

Fusion of lidar 
data and optical 
imagery for 
building modeling 

L. Chen 
 
National Central 
University 
(Taiwan) 

Uses lidar data 
to model 
buildings and 
augments the 
process with 
edge 
information 
from optical 
images. 

Buildings Successful 
detection of 
%81 of 
buildings and 
sub-meter 
accuracy when 
using a stereo 
pair of 
cameras.  

[35] 
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Vision-based 
target tracking 
with adaptive 
target state 
estimator 

R. Sattigeri 
 
Georgia Institute 
of Technology 

An algorithm 
using a 
Kalman filter 
based neural 
network for 
tracking 
aircraft in 
images. 

Aircraft Developed a 
simulator that 
yields 
promising 
results.  

[88] 

Stereo analysis for 
vision-based 
guidance and 
control of aircraft 
landing 

P. Trisiropisal 
 
Virginia Tech 

Landing 
without a 
priori runway 
information by 
estimating 
runway edges 
and range 
using a stereo 
pair of 
cameras. 

Runways Accurate 
performance 
for runway 
landings.  
 
Runways with 
fading paint 
decreased 
performance.  

[38] 

Rectification, 
georeferencing, 
and mosaicking of 
images acquired 
with remotely 
operated aerial 
platforms  

G. Ladd 
 
University of 
Maryland 

Aerial mapping 
and 
surveillance of 
fields for 
farming 

Terrain and 
fields 

Images are 
adjusted 
combined and 
the pixels are 
geo-
referenced. 
Individual 
fields are also 
detected.  

[89] 

 
 



  120 
   
Table A.4 

 
Current Research and Applications of flash LIDAR 

Title Primary Author/ 
Organization 

Application Objects 
Detected 

Conclusions Ref. 
Num. 

Design of lidar-
based sensors and 
algorithms for 
determining the 
relative motion of 
an impaired 
spacecraft 

R. Fenton 
 
Utah State 
University 

Relative 
position and 
attitude 
determination 
for spacecraft 
docking  

Spacecraft Successful 
simulation of 
relative 
positioning using 
the Iterative 
Closest Point 
algorithm.  
 
Alignment 
initialization of the 
algorithm is yet to 
be implemented.   

[90] 

Flash-LADAR 
Inertial 
Navigation 
Aiding 

J. Campbell 
 
Air Force 
Research Labs 

Navigation Corridors, 
building 
walls 

Integration with 
IMU to determine 
the difference of 
common features 
in two successive 
scenes is a reliable 
method for indoor 
navigation.  

[43] 

Flash LiDAR 
based on 
multiple-slit 
streak tube 
imaging LiDAR 

A. Gelbart 
 
Areté Associates 

Design and 
field testing of a 
flash LiDAR 

Vehicle 
hidden in 
foliage, 
underwate
r mines 

Able to achieve 
frame rates of 100 
Hz and range 
accuracies near 
2.5% of the total 
range.   

[91] 

Wide-area terrain 
mapping by 
registration of 
flash LiDAR 
imagery 

B. Hanna 
 
Sarnof Corp. 

Coupling with 
GPS/INS and 
RGB camera 
for mapping 

Terrain Deals with large 
files sizes of 
DEM, overlapping 
flights, and 
combination of 
data sets. 

[44] 

Rapid and 
scalable 3D 
object recognition 
using LiDAR 
data 

B. Matei 
 
Sarnof Corp.  

Feature 
recognition in 
3-D laser data 
by matching 
with model 
database 

General 
features 
 

Recognizes 94% 
of targets. Creation 
of large model 
database.  

[92] 

Urban 
reconnaissance 
with an airborne 
laser radar 

R. Morrison 
 
Geospatial 
Technologies 

Sensor 
characteristics, 
data processing, 
and geo-
referencing in 
reconnaissance 
using UAVs  

Features 
of interest 

An overview of 
flash LiDAR 
sensors and 
processing 
techniques 
associated 
reconnaissance 
 

[93] 
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Advanced 3D 
polarmetric flash 
lidar imaging 
through foliage 

J. Murray 
 
Lite Cycles, Inc. 

Imaging 
through foliage  

Tanks Preliminary work.  
 
Has various 
environmental 
factors that are not 
considered, but 
suggested. 

[94] 

A state-of-the-art 
sensor for robotic 
navigation 

J.W. Weingarten 
 
Swiss Federal 
Institute of 
Technology 

Navigation and 
obstacle 
avoidance with 
flash-LiDAR 

Corridors, 
indoor 
hazards 

Results show that 
the Swiss Ranger 
Flash LiDAR is 
well suited for 
collision 
avoidance and 
path planning in 
robots.  

[95] 
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Table A.5 

 
Current Research and Applications of ALS 

Title Primary Author/ 
Organization 

Application Objects 
Detected 

Conclusions Ref. 
Num. 

Automated 3-
D feature 
extraction from 
terrestrial and 
airborne 
LIDAR 
 

D. W. Opitz 
 
VLS Systems Inc. 

Developed 
commercial 
software for 
rapid 3D 
feature 
extraction in 
urban areas. 
 

Buildings, 
Roads, 
Airport 
Features, 
Trees 

Software 
extracts over 
1,000 buildings 
per minute with 
greater than 
95% accuracy.  
 
Bare Earth 
model 
generation with 
almost all of the 
error attributed 
to the sensor 
itself. 

[96] 

Automatic 
extraction of 
buildings from 
LIDAR data 
and aerial 
images  
 

F. Rottensteiner 
 
Vienna University 
of Technology 
(Austria) 

Building 
extraction 
from point 
cloud data. 

 

Buildings Combining 
visible light 
imagery with 
LIDAR data to 
create building 
models. 
Extraction 
performance 
metrics have 
also been 
developed. 

[49] 

The automatic 
extraction of 
roads from 
LIDAR data 
 

S. Clode  
 
The University of 
Queensland 
(Australia) 

Road 
extraction via 
airborne laser 
range and 
intensity data. 

Roads Makes the 
assumption that 
roads lie close 
to self 
generated DTM 
values. The 
DTM is a 
product of the 
filtered DSM.  
 
Difficulties 
when the roads 
contain cars. 

[97] 

Multiscale 
isotropic 
matched 
filtering for 
individual tree 
detection in 
LIDAR images 
 

R. M. Palenichka 
 
Université du 
Québec 
(Canada) 

Tree detection 
and extraction. 

Trees Method does 
not depend on 
tree crown 
height, image 
resolution, tree 
density, or 
external DTMs. 

[98] 
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A progressive 
morphological 
filter for 
removing 
nonground 
measurements 
from 
airborne 
LIDAR data 
 

K. Zhang 
 
Florida 
International 
University 
 

Detection, 
classification, 
and removal of 
features using 
elevation 
difference 
threshold for 
DTM 
generation. 

Buildings, 
Vehicles, 
Vegetatio
n 

97% success 
rate when 
removing 
features. Works 
in both urban 
and 
mountainous 
areas. 

[48] 

Lidar-based 
Hazard 
Avoidance for 
Safe Landing 
on Mars 
 

A. Johnson 
 

Jet Propulsion 
Laboratory 

Hazard 
detection and 
avoidance for 
landing using 
the slope and 
terrain 
variation in 
LIDAR data as 
metric for 
landing safety. 
 

Terrain, 
Rocks, 
Craters  

Sensor 
requirements 
and successful 
simulation of 
landing on 
Martian surface. 

[99] 

Precise vehicle 
topology and 
road surface 
modeling 
derived from 
airborne 
LIDAR data 
 

C. K. Toth 
 
The Ohio State 
University 

Traffic 
monitoring, 
using 
extraction, 
classification, 
and velocity 
estimation of 
vehicles. 
 

Vehicles, 
Roads 

Vehicles are 
extracted and 
modeled to 
carry out the 
flow estimation.  

[50] 

Analysis of 
airborne laser-
scanning 
system 
configurations 
for detecting 
airport 
obstructions 
 

C. E. Parrish 
 
University of 
Florida 

Study of ALS 
parameters for 
detection of 
small airport 
hazards.  
 
Extraction and 
classification 
of 
obstructions. 
 

Small 
stationary 
objects 
such as 
signs and 
antennas.  

An ALS title 
angle of no 
more than 20° 
and a flying 
height of 750m 
yields optimal 
detection.  

[100] 

Aerial Vehicle 
Navigation 

over Unknown 
Terrain 

Environments 
using Inertial 

Measurements 
and Dual 

Airborne Laser 
Scanners or 

Flash LADAR 
  

A. Vadlamani 
 
Ohio University 

Terrain 
referenced 
navigation 
using two 
airborne laser 
scanners 

N/A Successful 
navigation 
using two ALS 
to estimate and 
correct IMU 
errors such as 
drift. 

[13] 
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Preliminary 
Design and 
Analysis of a 
LIDAR Based 
Obstacle 
Detection 
System  

A. Vadlamani 
 
Ohio University 

Method for 
ALS object 
detection and 
simulation.  

Terrain 
features, 
airport 
obstructio
ns 

Optimal ALS 
parameters such 
as mounting 
angle, point 
density, and 
scanning speed 
have been 
analyzed.  
 
A simulator has 
been developed 
for LIDAR 
object detection 
on precision 
approach. 

[6] 

Applications of 
the robust 
interpolation 
from DTM 
determination 

C. Briese 
 
Vienna University 
of Technology 
(Austria) 

Algorithms for 
DTM 
generation 
with point 
cloud data. 

Terrain Successful 
elimination of 
non-terrain 
points from 
laser data. 

[101] 

Use of Large-
Footprint 
Scanning 
Airborne 
LIDAR to 
Estimate 
Forest Stand 
Characteristics 
in the Western 
Cascades of 
Oregon 

J. Means 
 
Oregon State 
University 

Estimation of 
forest 
properties such 
as height, area, 
total biomass, 
and leaf 
biomass. 

Forest, 
Trees 

Detection of 
trees on steep 
slopes is 
difficult due to 
laser scatter. 

[102] 

Corridor 
navigation 
with a 
LIDAR/INS 
Kalman 
filter solution 
 

W. Travis 
 
Auburn University 
 
 

Navigation 
using data 
from low cost 
sensors in a 
Kalman filter.  

Corridor 
walls 

Successful 
navigation 
technique using 
post processing. 

[53] 

DTM 
extraction of 
LIDAR returns 
via 
adaptive 
processing 
 

H. Lee 
 
Mississippi State 
University 
 

Measuring 
terrain with 
removal of 
vegetation for 
DTM 
generation. 

Terrain Technique 
offers improved 
performance 
when 
measuring areas 
with steep 
slopes. 

[103] 
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