
SIMULINK" MODULES THAT EMULATE DIGITAL CONTROLLERS REALIZED 1.
WITH FIXED-POINT OR FLOATING-POINT ARITHMETIC1

A Thesis Presented to

The Faculty of the Russ College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Edward D. Robe/ -
June, 1994

Acknowledgements

I would like to take this opportunity to thank the many individuals who have

contributed to the development of this research project. In particular, I would like to

thank my thesis advisor, Dr. Dennis Irwin, for his support, technical advice, and guidance.

I would also like to especially thank Dr. Costas Vassiliadis for providing the many

valuable opportunities that greatly enhanced my engineering education. Thanks is also

due to Mr. Russell Glenn for his technical advice and the many discussions that we had

concerning the development of this project. Most importantly, I would like to thank my

parents and family for their encouragement and support.

Table of Contents

Acknowledgements . i

. Table of Contents 11

. List of Figures iv

. Chapter 1: Introduction 1
1.1. Organization of Thesis . 1

. 1.2. Motivation for Simulation Improvements 2
. 1.3. Wordlength and Quantization 3

. . . 1.4. Past Developments on Digital Control System Simulation 5
. 1.5. The Goals of the Imvroved Simulation 6

. Chapter 2: Theory 7
. 2.1. Fixed-Point Arithmetic 7

2.2. Floating-Point Arithmetic . 11
. 2.3. z-Transforms 15

. 2.4. Algorithms for Implementing Dipital Controllers 16
2.5. Stability in the z-Domain . 17

. Chapter 3: Fixed-Point and Floating-point Arithmetic Emulation Code 20
3.1. Fixed-Point Arithmetic Emulation 21
3.2. F1oatin~-Point Arithmetic Emulation 23
3.3. SIMULINK'" and the Development of C MEX-files 27
3.4. SIMULINKT" Modules . 29

. -Chapter 4: Applications and Code Verification 40
4.1. System Model: The Hubble Space Telescope (HST) 40
4.2. Linear Simulations: Using SIMULINK'"'~ "Built-In" Blocks 43
4.3. Nonlinear Simulations: Fixed-Point Arithmetic Emulation . . 49
4.4. Nonlinear Simulations: Floating-point Arithmetic Emulation 57
4.5. Significance of HST Simulations: Linear vs . Nonlinear . . . 65

Chapter 5: Conclusions and Recommendations . 67

. References 69

. Appendix 71
A.1. "ADFIX.C" . 72

"MPUFIX.C" . 78
"DAF1X.C" . 93
"MPUFL.CU . 98
"S1MSUP.H" . 125
"SIMULIN2.H". 127
Compilation Command for C MEX-files 130

List of Figures

. Figure 2.1. Single-Precision Format 14
Figure 2.2. Double-Precision Format . 14

Figure 3.1 :
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.1 1 :

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10:
Figure 4.1 1 :

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

. C Code for quantizing a number
. A SIMULINK'" S-Function Block

. Masking an S-Function Block
. The Fixed-Point Arithmetic Library

. The Floating-Point Arithmetic Library

. The A/D Converter Block (Fixed-Pt.)
. The MPU Block (Fixed-Pt.)

. The D/A Converter Block (Fixed-Pt.)
. The MPU Block (Floating-Pt.)

. Digital Controller (Gc)

. Digital Control System

. The Hubble Space Telescope (HST) 41
. HST Simulation Block Diagram 42

. The SIMULINK'" "Built-In" Discrete State-Space Block 44
. Linear Simulation Block Diagram (Using "Built-In" Blocks) 45

. V. Linear Simulation Using MADCADS Controller 46

. V, Linear Simulation Using MADCADS Controller 46

. V3 Linear Simulation Using MADCADS Controller 47
. V. Linear Simulation Using SAGA-I1 Controller 47
. V2 Linear Simulation Using SAGA-I1 Controller 48
. V3 Linear Simulation Using SAGA-I1 Controller 48

Nonlinear Simulation Block Diagram (Using Fixed-Point Arithmetic
Emulation Blocks) . 51
Vl Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits

. allocated to the right of the radix.point 52
V2 Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits
allocated to the right of the radix.point . 52
V3 Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits
allocated to the right of the radix.point . 53
V. Nonlinear Simulation Using SAGA-I1 Controller: Implements Fixed-
Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated
to the right of the radix.point . 53
V2 Nonlinear Simulation Using SAGA-I1 Controller: Implements Fixed-

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 4.26:

Figure 4.27:

Figure 4.28:

Figure 4.29:

Figure 4.30:

Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated
. to the right of the radix-point. 54

V, Nonlinear Simulation Using SAGA-I1 Controller: Implements Fixed-
Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated
to the right of the radix-point. 54
V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength

. and 13 bits allocated to the right of the radix-point. 55
V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength

. and 13 bits allocated to the right of the radix-point. 55
V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength

. and 13 bits allocated to the right of the radix-point. 56
Nonlinear Simulation Block Diagram (Using the Floating-Point Arithmetic
Emulation Block) . 59
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit .

. exponent. 60
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit

. exponent. 60
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit

. exponent. 61
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 10 bit mantissa and a 5 bit
exponent. 61
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 10 bit mantissa and a 5 bit
exponent. 62
V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 10 bit mantissa and a 5 bit
exponent. 62
V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit
exponent. 63
V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit
exponent. 63
V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit
exponent. 64

Chapter 1: Introduction

With the advent of more powerful and sophisticated computer systems, the

simulations of digital control systems have been greatly improved by ways of speed,

accessibility, complexity, and to some degree, accuracy. However, since digital control

systems have a digital controller, which is typically realized with a rnicroprocessor, and

other associated hardware, there are inherent quantizing effects resulting from such an

implementation. These quantization effects can introduce errors in the system due to the

calculations that are involved with such a digital controller implementation. Thus, if the

simulation of a digital control system does not take into account these effects, then the

results of such a simulation will be inaccurate. Therefore, by emulating the fixed-point

or floating-point arithmetic inherent in a digital controller and its associated hardware,

these quantization effects are accounted for and a more accurate simulation can be

achieved. In this thesis, new developments which have been made to simulate a &gital

control system more accurately with respect to these quantization effects are presented.

-

1.1. Organization of Thesis

This thesis contains five chapters and one appendix. Chapter 1 is the introduction

which provides some background on the quantization problem and explains the motivation

for this work. Chapter 2 presents the different mathematical formats for both fixed-point

and floating-point arithmetic, as well as presenting the theory behind digital control

2

system implementation and analysis. The developed fixed-point and floating-point

arithmetic emulation algorithms are presented in Chapter 3. Sections 3.3 and 3.4 present

the process of integrating these emulation algorithms with that of the SIMuLINKT"

software. Chapter 4 presents a digital control system model which serves as an

application to test the SIMUL1NKT" modules that emulate digital controllers realized with

fixed-point or floating-point arithmetic. Results of these tests or simulations are presented

throughout the various sections in Chapter 4. Finally, Chapter 5 discusses conclusions

and recommendations for future work.

1.2. Motivation for Simulation Improvements

The motivation for simulating both the fixed-point and floating-point arithmetic

processes is that there are certain hardware implementation issues that must be addressed

in order for a digital control system to be emulated accurately. These hardware issues

correspond to a digital control system's analog-to-digital (A D) and digital-to-analog

(D/A) converters, as well as its microprocessor unit (MPU), all of which must be

accounted for in order to simulate a system correctly. Furthermore, the finite wordlength

of each of these hardware devices must be taken into consideration since the wordlength

dictates the amount of precision available in representing various numbers.

In this study, both fixed-point and floating-point number representation formats

are examined with respect to their wordlengths. Furthermore, these two arithmetic

3

schemes are discussed with respect to their role in emulating digital controllers via the

SIMULINK'" software.

SIMULINK'" is a window-based software program that allows for the simulation

of dynamic systems; it is an extension to the MATLABB software. [I , 21 It is the

simulation environment that utilizes the work in this study.

SIMULINK'" is not inherently capable of emulating hgital control systems that

are realized with either fixed-point or floating-point arithmetic; however, it does provide

the capability for incorporating specialized programming routines that do perform such

operations. Therefore, C language-based software programs have been written that

emulate both the fixed-point and floating-point arithmetic processes inherent in digital

control systems and have been integrated into the SIMULINK'" environment.

1.3. Wordlength and 0uanti;ration

In order to simulate a digital control system accurately, the analyst must consider

that the wordlength of the computer performing the simulation is typically longer than

that of each of the wordlengths for the AID, DIA, and MPU, all of which are to be used

in the actual hardware implementation. As stated in [3], this introduces the task of

coercing the computer performing the calculations for a given simulation to generate the

same results as that of the actual A D , D/A, and MPU.

4

Since most computers inherently use floating-point arithmetic, it is vital to the

accuracy of the simulation that special coding be implemented in order to account for the

differences in wordlength and arithmetic format. This is necessary for either emulating

a fixed-point or a floating-point format.

With respect to either of these formats, the wordlength dictates the amount of

precision available for which a number can be represented. In particular, three sources

of errors arise due to the fixed-point calculations inherent in a digital controller and

associated hardware that are realized with fixed-point arithmetic. First, the filter

coefficients are modified or quantized due to the microprocessor's finite number of bits

with which to represent them. Secondly, quantization of the system's inputs and outputs

will result due to the finite wordlengths of the A/D and D/A converters. Thirdly, the

quantization resulting from any arithmetic operations (e.g., additions or multiplications)

performed by the MPU. [3] These same three sources of errors must be taken into

consideration as well for the floating-point arithmetic emulation.

- -

As described in [3], these three errors can be attributed to the finite wordlength

of the system components. Therefore, when simulating a digital control system, whether

it be for a fixed-point or floating-point format, the emulation code must not only account

for these errors, but truncate or round-off numbers appropriately during the calculations

in order to emulate the system correctly.

1.4. Past Developments on Digital Control Svstem Simulation

There has been much study on the topic of quantization with respect to finite

wordlengths of digital controllers. The three sources of errors mentioned earlier are the

basic factors that have prompted the study on this topic. As stated in [3], authors, who

have studied and analyzed this topic, have presented various ways in determining the

degradation in response due to a digital controller that is implemented with a

microprocessor and its associated hardware. [4, 5, 6, 71 To model the effects of

quantization, these authors would introduce noise into the system. As stated in [8], some

authors have proposed that by directly taking into account the round-off errors when

designing a given digital controller, which is implemented with a finite wordlength, will

prove to be an optimal solution in reducing quantization errors.

A software program has been written by Follett, [3], that emulates the fixed-point

arithmetic processes of a digital controller, which can be cast into three different transfer

function filter implementation schemes (e.g., direct, cascade, and parallel). His work

provided much of the logistics in the development of a state-space realization scheme that

implements fixed-point arithmetic emulation, and further served as a basis in the

development of the floating-point arithmetic emulation.

1.5. The Goals of the Improved Simulation

The goals to be achieved in this work correspond to the implementation of both

the fixed-point and floating-point arithmetic emulations within the SIMULINK'"

environment. The integration of both of these arithmetic emulation processes within the

SIMULINK'" environment will provide a means for simulating digital controllers, which

are realized with either fixed-point or floating-point arithmetic, more accurately as well

as providing a work-space that is simple and easy to use. Furthermore, with this type of

graphical user-interface (GUI) environment, the wordlengths pertaining to the

microprocessor and its associated hardware (e.g., A D and DIA) can be easily adjusted

to any given specifications, therefore, allowing for significant versatility for various finite

wordlength emulations.

With this capability, the simulations of digital control systems are greatly enhanced

with respect to the accuracy of their calculations for a given implementation scheme and

its associated finite wordlengths. The accuracy that is obtained will allow the analyst to

better evaluate the various designs on a digital controller within a digital control system.

Chapter 2: Theory

In order to understand the difference between fixed-point and floating-point

arithmetic, it is necessary to examine their respective formats in relation to the

wordlength. Knowledge of the way numbers are represented in a given wordlength and

format will provide a better understanding of the concept of quantization. Furthermore,

since algorithms have been developed that emulate digital controllers realized with fixed-

point or floating-point arithmetic, it is necessary to understand the fundamentals of digital

control system analysis and the effect of quantization on the stability of a digital

controller and the closed loop system. Therefore, the z-domain, which is the transform

domain in which digital control system analysis is performed, will be examined. This

chapter examines both fixed-point and floating-point arithmetic formats, the definition of

the z-transform, the various algorithms for implementing a digital controller, and the

stability requirements of the z-domain.

-2.1. Fixed-Point Arithmetic

The range of numbers that can be represented in a binary form mainly depends

upon the wordlength. The wordlength corresponds to how many bits are allocated to

represent a number; it consists of L+l bits where L bits are used to represent the

numerical value and one bit is used for the sign. Furthermore, in a fixed-point

representation, the binary point or radix-2 point is fixed and therefore affects the range

8

of numbers that can be represented. The binary representation of an unsigned integer can

be expressed as

B-1
n = C n i - 2 ' (2.1)

i = o

where B represents the number of bits in the wordlength and n' = 0 or 1. For example,

the binary number 1101 1 represents the decimal number 27, since

A fixed-point number is essentially separated into three parts: sign, integer, and

fraction. However, depending on the location of the implied radix point, the fixed-point

number may only be divided into two parts; e.g., sign and integer or sign and fraction.

Nonetheless, these three parts are represented within a given wordlength (e.g., 8-bit, 16-

bit, etc.) which has an implied radix point. The general notation format for a fixed-point

number is

. (Int + .F) (2.2)

where s denotes the sign bit (0 = positive, 1 = negative), Int is the integer part, and .F is

the fractional part. As shown in [9], an n-bit Int in binary form can be represented as

Int = b,,-,, 2"-' + bn-2. 2"-2 + + 4- 20 (2.3)

and an m-bit .F can be represented as

where n+m is equal to the wordlength minus one (1 bit is reserved for the sign), and 3's

and bi's are represented by either a 1 or 0.

Using Equation 2.1 it can be seen that the largest integer that can be represented

by a B bit binary number is 2B-1. This representation can be modified in order to

represent fractional numbers. This is done by assuming a fixed scaling by a negative

power of 2 on all numbers (as in Equation 2.4). For example, suppose 10 bits are used

to represent decimal numbers where all numbers are scaled by z5 = 0.03125. Thus, the

largest integer that can be represented is (2'' - 1) * (2-7 = 31, and the smallest fraction

is 0.03125. As stated in [4], this is equivalent to assuming a radix point in the fifth

position to the left of the least significant bit (LSB) and computing the fractional part as

in Equation 2.1 by only using negative powers of 2.

Depending on the way negative numbers are represented, there are three different

forms of fixed-point arithmetic. They are called sign-magnitude, 2's-complement, and

1's-complement representation. The sign-magnitude representation (which is used in the

development of the fixed-point arithmetic emulation algorithms) utilizes the leading bit

in a given wordlength (B) to represent the sign, 0 for positive values and 1 for negative

values, and the remaining (B-1) bits are used to represent the numerical value or

magnitude of a number. With the sign-magnitude form, the number 0 has two

10

representations, +0.0 and -0.0. In binary (assuming B=5 with two places allocated to the

right of the radix point), this representation would be 000.00 and 100.00.

In 2's-complement notation, positive numbers are the same as those of the sign-

magnitude representation. However, the negative of a positive number is obtained by

complementing all the bits and adding 1 in the LSB, e.g.,

Equivalently, a 2's-complement representation of a negative number can be obtained by

taking the absolute value and subtracting it from 2 (This is assuming that all numbers are

scaled by zB which implies that the binary point is positioned to the left of the most

significant bit (MSB) and therefore makes all numbers less than or equal to 1 in

magnitude.). This procedure will result in the first bit always being one. A mathematical

interpretation of the 2's-complement notation can be expressed as

where the sign bit is multiplied by -1. To illustrate, the 2's-complement representation

of -0.375 is obtained by 2 - 0.375 = 1.625, which has a binary representation of 1101.

Using Equation 2.5, the binary number 1101 represents the decimal number

= -0.375

Furthermore, with a 2's-complement representation, zero has only one representation

(0000.-O), and there is one more negative number than there are positive numbers.

The 1's-complement form represents positive numbers the same way the sign-

magnitude and 2's-complement representations do, but negative numbers are obtained by

complementing all the bits of its positive counterpart, e.g.,

With respect to the three different forms for implementing fixed-point arithmetic

that were described above, the location of the radix point is fixed for all numbers, and

therefore it is implied and not physically stored. Consequently, due to the radix point

being fixed, it is evident that a fixed-point arithmetic format has a limited or finite range

for representing numbers.

2.2. Floating-Point Arithmetic

In general, the floating-point representation of a positive number consists of two

fixed-point numbers, the mantissa and the exponent. [5] The floating-point number f is

obtained as the product of the mantissa m with that of a given radix (typically radix-2)

raised to the power of the exponent n, e.g.,

f = m - 2 "

The mantissa is usually normalized and falls within the range

As well, the range of the exponent is limited due to the finite number of bits allocated

for its wordlength.

Negative floating-point numbers are typically represented by having the mantissa

serve as a signed fixed-point number. Therefore, the sign of a floating-point number is

obtained from the first bit of the mantissa. The exponent is also a signed fixed-point

number where negative exponents represent numbers with magnitudes less than 0.5.

In contrast, an IEEE standard floating-point number is comprised of three fields:

sign, exponent, and mantissa. As stated in [lo], the only values representable in a given

format are those specified via the following three integer parameters:

p = the number of significand bits (precision)

Em, = the maximum exponent

Em, = the minimum exponent

With this, a number is expressed in the form

(-ly . 2' . (bo . b1b2 ... bp-l) (2.8)

where s is the sign bit, E is any integer between Em, and E ,,,, and b,.b,b, 0-• b,-, is the

mantissa. However, since there are a finite number of bits in the mantissa, the exponent

can be adjusted so that a nonzero real number is normalized (e.g., l .F where F represents

a fraction) and, therefore, assigns a 1 to the b, bit. In other words, all the leading zeros

of a nonzero real number are deleted and not included in the mantissa representation, thus

reducing computer roundoff errors. By normalizing a number, it allows for maximum

precision in representing that number. Furthermore, with a normalized number, there is

no need to physically store the value of the b, bit since it is implied that it is a 1.

As shown in [lo], the IEEE standard on binary floating-point arithmetic supports

two basic formats: single-precision and double-precision. In both formats, numbers are

comprised of the following three fields:

(1) 1-bit sign s

(2) Biased exponent e = E + bias

(3) Fraction f = .b,b, -- b,,

In the single-precision format, a number is represented in a 32-bit wordlength.

The biased exponent e and the fraction f have 8 and 23 bits, respectively, as shown in

Figure 2.1.

I ' msb Isb msb

Figure 2.1: Single-Precision Format

As stated in [lo], the value x of a real number can be determined by its constituent fields

such that:

(1) If e = 255 and f z 0, then x is NaN (Not a Number) regardless of s

(2) I f e = 2 5 5 andf=O, then x = (-1)"-

(3) If 0 < e < 255, then x = (-l)"2e'127(l.f)

(4) If e = 0 and f # 0, then x = (-1)"2-126(0.f) (denormalized numbers)

(5) If e = 0 and f = 0, then x = (-1)"O (zero)

In the double-precision format, a number is represented in a 64-bit wordlength.

The biased exponent e and the fraction f have 11 and 52 bits, respectively, as shown in

-Figure 2.2.

msb Isb msb Isb

Figure 2.2: Double-Precision Format

As stated in [lo], the value x of a real number can be determined by its constituent fields

15

such that:

(1) If e = 2047 and f $0 , then x is NaN (Not a Number) regardless of s

(2) If e = 2047 and f = 0, then x = (-1)" 00

(3) If 0 < e < 2047, then x = (- 1)"2e-1023(1 .f)

(4) If e = 0 and f $ 0, then x = (-1)"2-loZ2(0.f) (denormalized numbers)

(5) If e = 0 and f = 0, then x = (-1)"O (zero)

When studying sampled-data or discrete-time control systems, the analysis of a

system involves the use of the z-transform. The z-transform is defined for any number

sequence e(n), and can be used in the analysis of a system that can be described by linear,

shift-invariant difference equations. The z-transform of the number sequence e(n) is

defined as

where z is a complex variable. The sequence e(n) is generated from a continuous-time

function e(t) by sampling every T seconds, where e(n) is understood to be e(nT). [l l]

Therefore, this definition shows that the quantity z-I is equivalent to a time delay of one

sample period. The z-transform is a useful tool in analyzing the time domain

implementation of a digital controller.

2.4. Algorithms for Implementing Digital Controllers

To implement a digital controller, it is necessary to develop an algorithm that can

be programmed in a digital computer, e.g. a microprocessor. As described in [3], one

such algorithm involves using a recurrence equation. A recurrence equation is obtained

by manipulating the transfer function's output to input relationship, where the present

output is a function of the present and past inputs and past outputs. In [3], this type of

algorithm is outlined in great detail and further discusses the various effects that controller

implementation schemes (e.g., Parallel, Direct, and Cascade) have on the stability of a

system with respect to coefficient quantization.

Another algorithm which can be used to implement a digital controller involves

the use of state-space equations. State-space equations for a linear time-invariant system

are defined as

y(n) = Cx(n) + Du(n) (2.11)

where A, B, C, and D are matrices that constitute a state-space realization, and u(n), x(n),

and y(n) are the system's input, discrete states, and output vectors, respectively. A is an

n x n matrix which contains the coefficients of the system's plant model, where n

corresponds to the number of states. B is an n x r matrix which relates the system's

states to its inputs, where r corresponds to the number of inputs. C is a q x n matrix

17

which relates the system's outputs to its states, where q corresponds to the number of

outputs. Lastly, D is a q x r matrix which relates the system's outputs to its inputs.

With respect to either of these algorithms, a physically realizable linear digital

controller may be written in the following form:

where m and n are positive integers, a, and b, are not both zero, and m is greater than

or equal to n. [12] The expression

represents the transfer function of the controller where C(z) is the output and R(z) is the

input. This expression (Equation 2.13) will be used in the next section for the purpose

of discussing the stability requirements in the z-domain with respect to digital controllers.

2.5. Stability in the z-Domain

To better understand the effects of quantization on a microprocessor realized

digital controller that implements either fued-point or floating-point arithmetic, an

introduction to stability analysis in the z-domain will be presented. A derivation of the

stability requirements in the z-domain will be conducted with respect to the linear digital

controller given by Equations 2.12 and 2.13.

18

Using partial fraction expansion, G,(z)/z can be resolved into a sum of first order

terms such that the following results:

where q, and pi may be positive or negative real numbers, some of which may be

repeated. Multiplying both sides of Equation 2.14 by z gives

Now taking the inverse z-transform of G,(z) yields

I t is evident that as K+-, if any of the pnls are &eater than one in magnitude, the terms

will increase without bound, indicating an unstable response. Furthermore, it can be seen

that if the roots of the denominator have a magnitude greater than one, then the response

of the filter will be unstable. Therefore, the region interior to the unit circle corresponds

to the region of stability in the z-domain.

With respect to the above derivation, it is apparent that the pole locations of a

19

digital filter have a significant effect on the magnitude of its response. Thus, any

quantization of a digital filter's coefficients will alter the response of the filter, and

therefore possibly cause instability.

20

Chapter 3: Fixed-Point and Floating-Point Arithmetic Emulation Code

In the development of control systems, much analysis of the system's performance

is conducted via simulation before the system is actually implemented. These

simulations, however, are typically performed on a digital computer that has a longer

wordlength than that of the hardware (e.g., a microprocessor, A D , DIA) which is to be

used in the actual implementation. Furthermore, another important issue that must be

considered in a simulation is the arithmetic process (e.g., fixed-point or floating-point

arithmetic) which is to be emulated. Therefore, this chapter discusses the task of coercing

the computer performing the simulation to produce the same results as the actual

hardware implementation would.

With the background information on both fixed-point and floating-point arithmetic

as described in Chapter 2, it is now possible to develop the necessary algorithms which

emulate digital controllers realized with either of these two arithmetic processes.

Furthermore, simulation software has been chosen that allows for the implementation of

these emulation algorithms.

Section 3.1 discusses the fixed-point arithmetic emulation code. Section 3.2

covers the floating-point arithmetic emulation code. Section 3.3 provides some insight

on the development of the interfacing code between the emulation algorithms and the

simulation software; the simulation software utilized is called SIMULINK". Finally,

21

section 3.4 discusses the development of the various graphical user-interface (GUI)

blocks, which were created with SIMULINK'"'~ S-Function block, used to emulate the

hardware inherent in a digital control system.

3.1. Fixed-Point Arithmetic Emulation

Fixed-point arithmetic emulation can be accomplished on a computer which uses

floating-point arithmetic by binarily shifting the resultant numbers of each calculation and

then extracting only the integer portion. As stated in [3], this is equivalent to a

microprocessor's calculations (which utilizes fixed-point arithmetic) since it performs all

the calculations in integer arithmetic with an implied radix point. Furthermore, by adding

f 0.5 to the shifted number prior to taking the integer portion, this will round off the

number and, therefore, reduce the quantization error as opposed to simple truncation. As

shown in [3], this procedure can be expressed in equation form as

-

where N(X) is the resultant integer, IP[] is the integer part operator, X is the number to

be 'massaged', p is the number of binary places desired to the right of the radix point,

r is the designation for rounding or truncation (0 for truncation and 0.5 for rounding), and

sgn() is the sign operator.

As an example, suppose the number 8.29 is to be represented as a rounded 16-bit

integer with 5 bits to the right of the radix. Equation 3.1 yields:

In binary, this number is represented as (100001001),. Note that when the radix

point is inserted in the desired position (i.e., p = 9,. the number is (1000.01001), =

(8.28125),,, which is the generated decimal representation of the massaged number.

This method of representing decimal numbers is the process used for emulating

fixed-point arithmetic inherent in a microprocessor. Therefore, the state-space equations

previously discussed must perform its mathematical operations in an appropriate manner

in order to emulate a digital controller realized with a fixed-point arithmetic

microprocessor.

The mathematical operation of addition is simple and does not require any special

handling except in the case of overflow. If the magnitude of the resulting sum exceeds

the microprocessor's useable wordlength (B), where B+l is the total wordlength (one bit

reserved for the sign), then the magnitude is set to 2B-1. As stated in [3], this method of

handling overflows is one that produces the least amount of error.

2 3

When two fixed-point numbers are multiplied, this results in a fixed-point number

that has twice the number of bits to the right of the radix point. The microprocessor,

therefore, binarily shifts the number to the right corresponding to the number of places

specified by p. From [3], this process is expressed in equation form as

M(x) = IP[x . 2 3 + r sgn(x)] (3.2)

where x is the floating-point number resulting from the multiplication of two numbers

which have been operated on by Equation 3.1.

For example, suppose that the two numbers 8.29 and 3.76 are to be multiplied

using 16-bit fixed-point arithmetic with 5 binary places to the right of the radix point.

Using Equation 3.1, the results obtained are N(8.29) = 265 and N(3.76) = 120. When

multiplied, these two integer numbers equate to 31,800. Therefore, this number is

subsequently used in Equation 3.2 which results in M(31,800) = 994. Converting this

number to its decimal equivalent produces the expected result of 31.0625.

Equations 3.1 and 3.2 provide the basis for the C language-based algorithms that

were developed for emulating hgital controllers that are realized with fixed-point

arithmetic. These algorithms are contained within the appendix.

3.2. Floating-Point Arithmetic Emulation

Floating-point arithmetic is similar to fixed-point arithmetic in that the amount of

24

precision available for which a number can be represented is limited to the number of bits

in a given wordlength. Furthermore, as with fixed-point arithmetic, floating-point

arithmetic represents numbers in a binary integer format. However, in contrast to fixed-

point, floating-point arithmetic does not have a fixed radix point (hence the name,

'floating-point') and, therefore, is able to represent a broader range of numbers. Due to

this fact, the special coding that is necessary to perform the floating-point arithmetic

emulation is rather extensive as compared to that of the fixed-point arithmetic emulation.

Since a simulation is conducted on a computer which in most cases uses floating-

point arithmetic, there are no programming concerns with respect to format changes as

is the case with the fixed-point arithmetic emulation described in section 3.1. However,

the floating-point arithmetic emulation must represent numbers as defined by a given

system's specifications (i.e., exponent and mantissa wordlengths). Furthermore, each of

the operations specified in [lo] (except for binaryudecimal conversion) "shall be

performed as if it first produced an intermediate result correct to infinite precision and

with unbounded range, and then coerced this intermediate result to fit in the destination's

format" In other words, the floating-point arithmetic emulation allows for all

mathematical operations to follow this standard and then appropriately quantizes the

results ,of these operations according to a given system's wordlength specifications.

To illustrate the process of representing a floating-point number inclusive of its

exponent and mantissa wordlengths, the following C code (Figure 3.1) represents a

25

sequence of statements and function calls that are carried out in order to quantize a

number.

for (i = 0; i c nstates; i++) (
for U = 0; j < nstates; j++) (

number = apr[i + nstates*j];
extmctexpo(number,&E);
number2int(number,&integraI,&fractional);
convert(nun~ber,E,integrd,fractional,&NUMBER);
number = NUMBER;
roundcheck(iJ,&number,&signalflag);
(checks for "NaN" and "Inf" conditions) .
apr[i + nstates*j] = number;

) /* End "j" loop *!
) I* End "i" loop */

L I

Figure 3.1: C code for quantizing a number

First, the 'number' is passed as an input argument to the extractexpo() function,

which returns the corresponding biased exponent 'E'. Secondly, both the integer and

fractional parts of a number are separated and placed in appropriate variable types.

Thirdly, a call is made to the convert() function which in itself contains several other

calls to functions, which perform the actual bitwise operations and calculations that

generate the equivalent floating-point number representation for a given wordlength and

format.

As an example, suppose the number 45.124 is to be represented in single-precision

format (i.e., 8-bit exponent and 23-bit mantissa). The returned values for E, integral, and

fractional, are 132, 45, and 0.124, respectively. In convert(), the binary representation

of integral is

It is then binarily shifted to delete all leading zeros ('nomzalization') as shown here

Now, the fractional part needs to be scaled accordingly since the bitwise operators of C

only function with integers (i.e., 0.124 x 232 = 532575944). The scaling factor, 232, is

based on a machine-dependent 4 byte unsigned long integer. If fractional parts are less

than (1 1 232), then other scaling factors take place. In binary, the integer number

532575944 is expressed as

This scaled fractional is then binarily shifted to delete all leading zeros as shown here

With the use of counters and bitwise operators, the binary representation of both the

integral and fractional parts together is

10110100 01111110 11111001 11011011 .

Extracting the first twenty-four bits of this number produces

which represents the mantissa. These bit. are then used in a function called 'bit2deci(E1

f, mantissa, tkquantnumber)', which calculates the equivalent decimal representation.

Therefore, the convert() function returns the quantized number 45.1239967346 191406.

The C program which emulates floating-point arithmetic inherent in a digital

controller is contained within the appendix.

3.3. SIMULINK" and the Development of C MEX-files

SIMULINKTM is a graphical-interface software system that allows for the creation

and simulation of dynamic system models; it is an extension to the MATLAB@' software.

In SIMULINK'", a system model is created and stored as an S-Function (for System-

Function), which is the mechanism that defines and characterizes the dynamics of a

system.

There are three different types of S-Functions: graphical, M-file, and MEX-file.

Each of these types has its own interfacing mechanism; the graphical uses the

28

SIMULINK'" block diagrams, the M-file uses the MATLAB@ language, and the MEX-file

(which stands for Matlab Executable-file) uses either the C or Fortran language. As

stated in [I], with respect to either of these types, an S-Function has the calling syntax

sys = mudel(?, x, u, f i g , extraparameters) (3.3)

where model is the model name and flag controls the information returned in sys. For

example, aflag set to 2 returns the discrete states in the variable sys at the operation point

defined by the time t, discrete state vector x, and input vector u. The extraparameters

argument allows for the inclusion of any additional data that is needed to model a system.

When creating a MEX-file, the source code must consist of two distinct portions.

The first is a 'computational routine' that contains the source code for performing the

actual numerical computation that is to be implemented in the MEX-file. The second

portion consists of a 'gateway routine' that interfaces the computational routine with that

of the MATLAB@ / SIMULINK'~ software. [13] The entry point to the gateway routine

must be named 'mexFunction' and have the arguments shown as
-

[a,b,c ,...] = firnction-ruame(d,e f,...) (3.4)

These arguments are representative of the MATLAB@ arguments with which a user

invokes the MEX-function. The a,b,c, ... are lefthand-side (LHS) arguments and the

d,e,f, ... are righthand-side (RHS) arguments. More specifically, the arguments nlhs and

nrhs correspond to the number of LHS and RHS arguments, respectively. 'plhs' is a

pointer to an array of length nlhs, and 'prhs' is a pointer to an array of length nrhs.

29

These arguments and a 'mexFunction' can be found in the 'SIMULIN2.H' header file

contained in the appendix. This header file performs the operation of interfacing the

computational routine with that of the gateway routine. The compilation of these two

routines together comprise an S-Function C MEX-file.

3.4. SIMULINK" Modules

Having created the C programs (MEX-files) which emulate both the fixed-point

and floating-point arithmetic processes, it is now possible to integrate these programs in

the SIMULINK'" environment as S-Functions. Graphical representations of these C

MEX-files, which emulate the A D , D/A, and MPU processes of a digital controller, are

made possible via SIMULINK"'S S-Function block (See Figure 3.2). The S-Function

block has two fields: the first field allows the name of a previously created S-Function

(of any type) to be entered, and the second field allows for the entry of any additional

parameters that are needed for a given system.

-

For example, the compiled C program MPUFL.CMEX4, which emulates the

microprocessor implemented digital controller realized with floating-point arithmetic, can

be represented as an S-Function block by inserting the name 'mpufl' and the parameters

'A,B,C,D,XO,MPUSETUP' in the 'Subsystem function name' and 'Function parameters'

fields, respectively. The 'MPUSETUP' parameter contains the system characteristics such

as exponent and mantissa wordlengths. A similar process can be performed for both the

A/D and D/A converters as well. Furthermore, these S-Functio~

customized graphically via a masking mechanism available in SIMULIP

3.3).

The masking mechanism allows a SIMULINK'" graphical block to be redefined

in terms of its dialog box, icon, and initialization commands. In particular, the S-

Function C MEX-files that have been developed which emulate a digital controller's

fixed-point or floating-point arithmetic processes, have been incorporated as S-Function

blocks using this masking capability. With this capability, these masked S-Function

blocks are more 'user-friendly' to the analyst who is simulating various digital controllers

with respect to its wordlength and arithmetic process.

In SIMULINK'", two additional libraries have been created that contain S-Function

blocks representing both fixed-point and floating-point arithmetic implemented hardware

devices (e.g., A/D, D/A, and MPU); these libraries are saved as M-files. The fixed-point

and floating-point arithmetic libraries exist as shown in Figures 3.4 and 3.5, respectively.

With respect to the fixed-point library, the dialog box interfaces for the A D , MPU, and

D/A blocks are as shown in Figures 3.6, 3.7, and 3.8, respectively. For the floating-point

library, the dialog box interface for the MPU block is shown in Figure 3.9. The dialog

prompts for each of these blocks are easily understood and correspond to the required

input parameters needed in order for a given digital controller to be emulated with respect

to a given finite wordlength and arithmetic process.

Figure 3.3: Masking an S-Function Block

Figure 3.4: The Fixed-Point Arithmetic Library

MPU (Floating-Pt) u
MPU

Figure 3.5: The Floating-Point Arithmetic Library

Figure 3.6: The AID Converter Block (Fixed-Pt)

Figure 3.7: The MPU Block (Fixed-Pt.)

Figure 3.8: The DIA Converter Block (Fixed-Pt.)

Figure 3.9: The MPU Block (Floating-Pt.)

A SIMULINK'" graphical representation of a digital controller implemented with

C MEX-file S-Function blocks is shown in Figure 3.10.

Digual Controller (Gc)

MPU: 1

, I

Figure 3.10: Digital Controller (Gc)

Any digital control system (as shown in Figure 3.1 1) realized with either fixed-point or

floating-point arithmetic can, therefore, be emulated accordingly in a given system

simulation via the specialized C programs that are integrated in SIMUL1M("'s S-

Function block.

1 I
Figure 3.11: Digital Control System

Digital Control System

u (t) ww
Commlh

(W

- - cxauawm
-MOM

Cop)

y(tL

Chapter 4: Applications and Code Verification

Chapter 4 presents some results of using the developed algorithms which are

incorporated with the SIMULINK" software as described in Chapter 3. The

SIMULINK" blocks which allow for the emulation of digital controllers realized with

either fixed-point or floating-point arithmetic are tested with respect to a system model.

Section 4.1 describes the system model used in performing the various simulations.

Section 4.2 presents the results of the linear simulations (e.g., nonlinear effects such as

finite wordlength, radix-point position, and arithmetic process are excluded) of the system

model. Sections 4.3 and 4.4 present the results of the nonlinear simulations of the system

model with respect to implementing fixed-point and floating-point arithmetic, respectively.

Finally, Section 4.5 discusses the significance of performing the nonlinear simulations as

opposed to the linear simulations.

4.1. System Model: The Hubble Space Telescope (HST)

The developed SIMULINK" blocks which allow for the emulation of digital

controllers realized with either fixed-point or floating-point arithmetic are tested on the

Hubble Space Telescope (HST) as shown in Figure 4.1 and as described in [14]. The

HST is a multi-input, multi-output (MIMO) system which has three inputs and three

outputs. The HST's axes V,, V,, and V, as shown in Figure 4.1 are the roll, pitch, and

yaw axes, respectively.

RGA I SUPPORT SYSTEMS MODULE STAR TRACKER

Figure 4.1: The Hubble Space Telescope (HST)

The HST has a DF-224 flight computer that implements fixed-point arithmetic

which uses a 24-bit processor with 13 bits allocated to the right of the radix-point and

also performs rounding (as opposed to simple truncation) during its computations. In

addition, the HST has a sampling frequency of 40 Hz, or equivalently, a sampling period

(which is used as a parameter in the simulations) of 0.025 seconds.

I I I I

Flight Data Simulation Data
I I
Figure 4.2: HST Simulation Block Diagram

Figure 4.2 represents the block diagram for the HST simulation. The left part of

the diagram (labeled Flight Data) can be considered to be the HST, where G,, is the

actual in-flight controller (which is a proportional-integral-derivative (PID) controller) and

Y, is the recorded flight data. T, is the disturbance torque input which cannot be

measured. The right part of the diagram (labeled Simulation Data) is the block diagram

which represents the computer simulation under which redesigned controllers are

evaluated. (For a more detailed discussion on the HST and its controller redesign efforts,

_refer to references [14] and [15].)

The simulations performed are based on a method whereby the actual recorded in-

flight vehicle rate data, Y,, is "played back" through the simulation, yielding the vehicle

rate data, Y,, which would result if the controller being simulated had been in the HST

rather than the controller in place when the flight data was recorded. This is true under

the assumption that the plant model, G,, in the simulation exactly emulates the real HST

43

plant. [14] The different controllers that are used in the simulations in Sections 4.2

through 4.4 are as follows:

G,, = PID controller (21 " order)

G,, = MADCADS (30 'h order) and SAGA-I1 (24 'h order)

where the PID is the original HST controller, MADCADS is a redesigned controller

generated by the Model and Data-Oriented Computer-Aided Design System software

(MADCADS) at Ohio University [16], and SAGA-I1 (Solar Array Gain Augmentation-11)

is a controller provided by NASA's Marshall Space Flight Center and Lockheed. [15]

The plant model, G,, is a mathematical model of the real HST plant and is of 126 '
order.

4.2. Linear Simulations: Using SIMULINK"'S "Built-In" Blocks

The linear simulations that were performed on the HST involved the use of the

discrete state-space blocks which are already "built-in" to the SIMULINKN software. The

user interface for this block can be seen in Figure 4.3. The HST linear simulations,
-

which model that of the block diagram as shown in Figure 4.2, were constructed as shown

in Figure 4.4. As mentioned in the previous section, the G,, block corresponds to the PID

controller, and the G,, block corresponds to both the MADCADS and SAGA-I1

controllers. Two different simulations were conducted: the first involved the use of the

MADCADS controller, and the second used the SAGA-I1 controller. The results of these

two simulations can be seen in Figures 4.5 through 4.10. These linear simulations will

provide a baseline for comparison.

Figure 4.3: The SIMULINK" "Built-In" Discrete State-Space Block

MADCADS Controller, 90 DEG SA LINEAR SIM

0 0 3 3

I TIME (SEC)

Figure 4.5: V, Linear Simulation Using MADCADS Controller

MADCADS Controller. 90 DEG SA LINEAR SIM

O 0 1 5 5

-0.015
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.6: V, Linear Simulation Using MADCADS Controller

MADCADS Controller, 90 DEG SA LINEAR SIM

0 ' 0 3 - - - - - - 7

-0.02

-0.03
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.7: V, Linear Simulation Using MADCADS Controller

SAGA-II Controller, 90 DEG SA LINEAR SIM
0.03

-. - .
TIME (SEC)

'igure 4.8: V, Linear Simulation Using SAGA-I1 Controller

SAGA-II Controller, 90 DEG SA LINEAR SIM
0.015

TIME (SEC)

Figure 4.9: V, Linear Simulation Using SAGA-I1 Controller

SAGA-II Controller. 90 DEG SA LINEAR SIM

1 TIME (SEC) 1
Figure 4.10: V, Linear Simulation Using SAGA-I1 Controller

4.3. Nonlinear Simulations: Fixed-Point Arithmetic Emulation

The first set of nonlinear simulations performed on the HST involved the use of

the developed fixed-point arithmetic emulation SIMULINK'" blocks. The user interface

for these blocks (e.g., A/D, MPU, and D/A) are as shown in Figures 3.6 through 3.8. The

HST nonlinear simulations corresponding to modeling the fixed-point arithmetic processes

were constructed as shown in Figure 4.11. The gain blocks that are in place before each

controller are used for the purpose of scaling the input to be within the dynamic range

of the controllers.

Similar to the linear simulations as discussed in Section 4.2, two sets of

simulations were performed for the HST with respect to emulating its nonlinear effects

such as finite wordlength, radix-point, and arithmetic process for the two different

controllers, MADCADS and SAGA-11. For both simulations, the A/D, MPU, and D/A

all implemented the values 24, 13, and 1 for the wordlength, radix-point position, and

rounding method, respectively, as these parameters characterize the HST as outlined in

Section 4.1. The results of these nonlinear simulations can be seen in Figures 4.12

through 4.17. Furthermore, as a comparison, three plots are given as shown in Figures

4.18 through 4.20, which represent the results obtained by the FORTRAN simulations

conducted in the HST's controller redesign effort as described in [14]. These FORTRAN

simulations, which in this particular case implemented the MADCADS controller,

modeled the nonlinear effects such as finite wordlength, radix-point position, and fixed-

50

point arithmetic as well. Therefore, the plots as shown in Figures 4.18 through 4.20 serve

as a verification to the results obtained with the developed SIMULINK'" blocks.

It is apparent by comparing the respective plots as shown in Section 4.2, which

contains the linear simulation plots, with those as shown in this section, there is

significant degradation of performance due to the modeling of the HST's nonlinear effects

as described above.

MADCADS Controller, 90 DEG SA NONLINEAR SIM
0.03

' I

-0.03 1
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.12: V, Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the
right of the radix-point.

MADCADS Controller, 90 DEG SA NONLINEAR SIM
0.015

-0.0151 I
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.13: V, Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the
right of the radix-point.

MADCADS Controller, 90 DEG SA NONLINEAR SIM
0.03

0.02

0.01 -
0
E -
m O
9
3

-0 01

, , ' 1'1' 1.1 1 I , ' I , 1 , ' , ' ! , 1
-0.03

0 20 40 60 80 100 120 140 160 180 200
TIME (SEC)

Figure 4.14: V, Nonlinear Simulation Using MADCADS Controller: Implements
Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the
right of the radix-point.

SAGA-II Controller. 90 DEG SA NONLINEAR SIM
51

I TIME (SEC) I
Figure 4.15: V, Nonlinear Simulation Using SAGA-I1 Controller: Implements Fixed-
Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the right
of the radix-point.

Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the right
of the radix-point.

SAGA-II Controller, 90 DEG SA NONLINEAR SIM

H
2

0.5

S
9

0 .

-0.5

.

0 20 40 60 80 100 120 140 160 180 200
TIME (SEC)

Figure 4.16: V, Nonlinear Simulation Using SAGA-I1 Controller: Implements Fixed-
Point Arithmetic Emulation with a 24 bit wordlength and 13 bits allocated to the right
of the radix-point.

MADCADS Controller, 90 DEG SA FORTRAN NONLINEAR SIM
0.03

-0 0 3 ~ I
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.18: V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits
allocated to the right of the radix-point.

MADCADS Controller, 90 DEG SA FORTRAN NONLINEAR SIM
0.015

0.01

0.005

H e ..-
v, O
9
9
-0.005

4.01

-0.015
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.19: V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits
allocated to the right of the radix-point.

MADCADS Controller. 90 DEG SA FORTRAN NONLINEAR SIM
0.03

I

-0.02 - I 1

-0.03
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.20: V, FORTRAN Nonlinear Simulation Using MADCADS Controller:
Implements Fixed-Point Arithmetic Emulation with a 24 bit wordlength and 13 bits
allocated to the right of the radix-point.

4.4. Nonlinear Simulations: Floating-Point Arithmetic Emulation

The second set of nonlinear simulations performed on the HST involved the use

of the developed floating-point arithmetic emulation SIMULINK'~ block. The user

interface for this block (e.g., MPU) is as shown in Figure 3.9. The interfaces for both the

A/D and D/A are the same as before as shown in Figures 3.6 and 3.8, respectively. The

purpose of these simulations is to demonstrate the benefits of using floating-point

calculations with respect to the HST as opposed to its inherent fixed-point arithmetic as

discussed in Section 4.3. The SIMULINK'" block diagram simulation that was

constructed for this purpose is shown in Figure 4.21.

Using the MADCADS controller, two different simulations were conducted. The

first simulation used a floating-point configuration which assumed that the 24-bit

processor implemented the values 15 and 8 for its mantissa and exponent fields,

respectively. The second simulation, however, implemented the values 10 and 5 for its

mantissa and exponent fields, respectively. For both simulations, the A/D and D/A

converters both implemented the values 24 and 13 for the wordlength and radix-point

position, respectively, as was the case in the fixed-point arithmetic simulations as

described in Section 4.3. The results of these two sets of simulations can be seen in

Figures 4.22 through 4.27.

A third simulation was conducted, with respect to implementing floating-point

58

arithmetic, using the SAGA-I1 controller. This setup assumed that the HST performed

its calculations in double-precision mode (52 bits used for the mantissa and 11 bits used

for the exponent). As can be seen in Figures 4.28 through 4.30, the results obtained in

this simulation closely resemble those obtained in the linear (or un-quantized) simulation

(using SAGA-I1 as G,,) as shown in Figures 4.8 through 4.10. Recall, the nonlinear

simulation involving the SAGA-I1 controller which implemented fixed-point arithmetic

generated an unstable response as shown in Figures 4.15 through 4.17. In essence, this

floating-point arithmetic (e.g., 52/11) simulation produces similar results for the case

where a SUN SPARC-station (or a computer with a similar configuration) is to be

emulated.

MADCADS Controller, 90 DEG SA NONLINEAR SIM (1Y8)
0.03

0.02

F g 0.01 -
u
0 5
u

0
LU
n
3
t
5 -0.01 -
>

-0.02

-0.03
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.22: V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit exponent.

MADCADS Controller, 90 DEG SA NONLINEAR SIM (1518)
0015

0.01

0.005 -
0

"Y

$ -
v, O
3
9

-0.005

-0.01

-0.01 5
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.23: V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit exponent.

MADCADS Controller. 90 DEG SA NONLINEAR SIM (1W8)

0 0 3 3

I TIME (SEC) I
Figure 4.24: V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 15 bit mantissa and an 8 bit exponent.

I MADCADS Controller. 90 DEG SA NONLINEAR SIM il W 5) 1 , ,
003

0.02

0.01

B
-
v, O
9
S
-0.01

-0.02

-0.03
0 20 40 60 80 100 120 140 160

TIME (SEC)

Figure 4.27: V, Nonlinear Simulation Using MADCADS Controller: Implements
Floating-Point Arithmetic Emulation with a 10 bit mantissa and a 5 bit exponent.

SAGA-II Controller. 90 DEG SA NONLINEAR SIM (5211 1)
0.031 1

-0.03~ I
0 20 40 M) 80 100 120 1'40 160 180 200

TIME (SEC)

Figure 4.28: V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit exponent.

--

SAGA-II Controller. 90 DEG SA NONLINEAR SIM (5211 1)

-0.0151 I
0 20 40 60 80 100 120 140 160 180 200

TIME (SEC)

Figure 4.29: V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit exponent.

SAGA-II Controller, 90 DEG SA NONLINEAR SIM (5211 1)

003------7

I -0 .03~ I
0 20 40 60 80 1W 120 140 160 180 200

TIME (SEC)

Figure 4.30: V, Nonlinear Simulation Using SAGA-I1 Controller: Implements
Floating-Point Arithmetic Emulation with a 52 bit mantissa and an 11 bit exponent.

4.5. Significance of HST Simulations: Linear vs. Nonlinear

As a result of emulating the HST's nonlinear effects with respect to finite

wordlength, radix-point, and arithmetic process, it is apparent that there are significant

variations in the output data, Y,, as opposed to the output that would be obtained if a

linear simulation was conducted. By emulating these nonlinear effects inherent in the

HST, a given simulation will produce more accurate results and, more importantly, will

allow the controller redesign effort to be carried out in a much more expedient manner

via the developed SIMULINK~" blocks.

Furthermore, it was shown that the developed fixed-point arithmetic emulation

algorithms were verified by comparing the results obtained with the SIMULINK'" blocks

to those of the FORTRAN simulations conducted in the HST controller redesign effort

as described in [14]. In addition, it must be mentioned that the FORTRAN simulation

which implemented both the SAGA-I1 controller and the same nonlinear effects as

previously mentioned, generated an unstable response as well. Therefore, this further

verifies the arithmetic emulation codes that are integrated with SIMULINK'" via the S-

Function Block.

The floating-point arithmetic emulation algorithm was verified by comparing its

results, which were obtained from a simulation conducted in the double-precision (e.g.,

52/11) mode, to that of the results obtained in the linear simulations which were

66

conducted on a SUN SPARC-station. Also, various simulations were conducted with

respect to the HST that implemented different floating-point arithmetic formats (e.g., 1518

and 10/5), and therefore, further tested and verified the implementation of the floating-

point arithmetic emulation algorithm.

Finally, it was also shown that by implementing floating-point arithmetic as

opposed to fixed-point arithmetic in a digital controller, the performance of a digital

control system will increase with respect to quantization errors being significantly

reduced. However, it should be understood that for any given digital control system, the

implementation of a digital controller which utilizes floating-point arithmetic will

naturally increase the execution time, and execution time is of major importance in

implementing real time controllers. Therefore, when using the SIMULINK~" blocks in

a given digital control system simulation, the analyst must have knowledge of the required

performance criteria of the system in order to fully utilize the benefits of these simulation

blocks.

Chapter 5: Conclusions and Recommendations

The developed fixed-point and floating-point arithmetic emulation algorithms that

are integrated with the SIMULINK~" software provide a way to emulate more accurately

a given digital controller with respect to its hardware architecture. The hardware

architecture, of course, refers to a digital controller's analog-to-digital (AD) and digital-

to-analog @/A) converters, as well as its microprocessing unit (MPU). With each of

these devices, there are inherent characteristics such as finite wordlength, arithmetic

process implementation (e.g., fixed-point or floating-point arithmetic), and rounding

method, which all must be taken into consideration in order to emulate a digital controller

more accurately. Furthermore, these SIMULINKTM blocks, as utilized in a given digital

control system simulation, provide a means to test various designed controllers quickly

and efficiently via the graphical user interface (GUI) inherent to this software.

First, the theory behind both fixed-point and floating-point arithmetic, as well as

a discussion on the z-transform and the z-domain's stability requirements, were presented

in Chapter 2. In Chapter 3, the tjxed-point and floating-point arithmetic emulation code

was discussed along with a description of the process of integrating the emulation code

with that of the SIMULINK'" software. Then, in Chapter 4, testing of the developed

SIMULINK~~ blocks, as described above, was performed on the Hubble Space Telescope

(HST) with respect to various controller implementations to verify functionality of the

SIMULINK'" blocks.

Future work on the emulation programs could include the following:

1. The implementation of various fixed-point arithmetic schemes such as 2's-

complement or 1 's-complement arithmetic could be added, which would allow for

a greater variety of digital controllers to be emulated.

2. The addition of SIMULINK'" blocks which would allow for the simulation of

various digital controller realizations. For example, the inclusion of a

SIMULINKTM block(s) which emulates a controller realized with a transfer function

implementation. Also, the creation of blocks which would allow for various

controller state-space realizations to be emulated.

3. Include an input parameter within a SIMULINKT" block(s) which would

implement any necessary scaling of the input of a digital controller that is realized

with fixed-point arithmetic. In other words, the input to a controller is scaled

accordingly such that it falls within the dynamic range of the controller's

wordlength.

References

The MathWorks, Inc. (1992), SIMULINK~~ User's Guide, Natick, MA.

The MathWorks, Inc. (1992), MATLAB@ User's Guide, Natick, MA.

Follett, R.F. (1984), "Emulation and Characterization of Digital Controllers
Realized with Fixed-Point Arithmetic", Master of Science Thesis, Mississippi State
University, Mississippi State, May, 1984.

Peled, A. and Liu, B. (1976), Digital Signal Processing: Theory, Design, and
Implementation, John Wiley & Sons, Inc., New York, NY.

Rabiner, L.R. and Gold, B. (1975), Theory and Application of Digital Signal
Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Katz, Paul (1981), Digital Control Using Microprocessors, Prentice-Hall
International, Inc., London, England.

Jacquot, R.G. (1981), Modern Digital Control Systems, Marcel Dekker, Inc., New
York. NY.

Liu, K., Skelton, R.E., and Grigoriadis, K. (1992), "Optimal Controllers for Finite
Wordlength Implementation", IEEE Transactions on Automatic Control, Vol. 37,
No. 9, pp. 1294-1304, September, 1992.

Liu, Yu-cheng (1991), The M68000 Microprocessor Family: Fundamentals of
Assembly Language Programming & InterSace Design, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

"IEEE Standard for Binary Floating-Point Arithmetic" (1985), Sponsor: Standards
Committee of the IEEE Computer Society, (ANSI/IEEE Std 754- 1985), The IEEE,
Inc., New York, NY.

Nagle, H.T. and Phillips, C.L. (1990), Digital Control System Analysis and
Design, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Kuo, B.C. (1992), Digital Control Systems, Saunders College Publishing, Harcourt
Brace Jovanovich College Publisher, Orlando, FL.

The MathWorks, Inc. (1992), MATLAB@ External In t e~ace Guide, Natick, MA.

14. Irwin, R.D., Glenn, R.D., Frazier, W.G., Lawrence, D.A., and Follett, R.F. (1994),
"Analytically and Numerically Derived H" Controller Designs for the Hubble
Space Telescope", AIAA Journal of Guidance, Control, and Dynamics,
Washington, DC.

15. Sharkey, J.P., Nurre, G.S., Beals, G.A., and Nelson, J.D. (1992), "A Chronology
of the On-Orbit Pointing Control System Changes on the Hubble Space Telescope
and Associated Pointing Improvements", AIAA Guidance, Navigation, and Control
Conference, Hilton Head, SC, August, 1992.

16. Frazier, W.G. (1993), "Search-Based Methods for Computer-Aided Controller
Design Improvement", Doctor of Philosophy Dissertation, Ohio University, June
1993.

Appendix

The fixed-point and floating-point arithmetic emulation algorithms have been

implemented via SIMULINK'"'~ S-Function C MEX-file option. The "adfix.cM emulates

an analog-to-digital converter. 'The "mpufix.~" emulates a microprocessor-based digital

controller realized with fixed-point arithmetic and implements state-space equations. The

"dafix.cM emulates a digital-to-analog converter. The "mpufl.cW emulates a

microprocessor-based digital controller realized with floating-point arithmetic and

implements state-space equations. The "simsup.h" is the header-file which allows for the

inherent sampling rates in digital control systems to be incorporated. Finally, the

"simulin2.h" is the header-file which serves as the gateway routine, or in other words,

allows for the emulation algorithms to be integrated with the SIMULINK'" software.

Sections A.l - A.6 contain, respectively, the source code for the "adfix.cU,

"mpufix.~", "dafix.cl', "mpufl.cU, "simsup.h", and "simulin2.h" files mentioned above.

Furthermore, Section A.7 contains the UNIX command which allows for the compilation

of "C" source files and thus generates the necessary C MEX-files which are to be used

in the SIMULINK'" S-Function Rlock.

/* "C" - code written by Edward D. Robe
Date: May 4, 1994 */
/* Filename: ADF1X.C */

#define MAX 200 P LIMIT UP TO A 200 x 1 INPUT-VECTOR (U) */
#include cmath.h>
#include "matrix.hW
#include "mex.hW

/* GLOBAL VARIABLES */
int ninputs;
int adwl,adrp,round,mputype;
double pbdigital;
long int iovr;
int uinsign[MAX];

I* Define the system sizes global in this function: */
static int NSTATES; /* Number of continuous states */
static int NDSTATES; /* Number of discrete states */
static int NOUTPUTS; /* Number of outputs */
static int NINPUTS; /* Number of inputs */
static int NSING; /* Number of singularities */
static int NEEDINPUTS; /* Has this system got direct-feedthrough */

#define NCOEFFS 6 I* Number of extra parameters passed in*/

#define NSAMPLE 1
static double sample-times[NSAMPLE];
static double offset-times[NSAMPLE] - (0) ;
static double next-hit[NSAMPLE] = (0);
static double sample-hit[NSAMPLE] = { 0 1;

/* Storage for output to maintain outputs */
static double lasty[200] = { 11;

static Matrix *Coeffs[NCOEFFS]; /* Pointer to the matrix parameters */
/* Defines for easy access of the B,ADWL,ADRP,ADROUND,TS,MPUTYPE
parameters which are passed in */
#define B Coeffs [O]
#define ADWL Coeffs[l]
#define ADRP Coeffs[2]
#define ADROUND Coeffs[3]
#define TS Coeffs[4]
#define MPUTYPE Coeffs[S]

/* Function to set up global size information */
static
#ifdef -STDC-

void initialize(void)
#else
void initialize()
#endif P -STDC- */
{

/* Define the Sample Time (TS) */
sample-times[O] = mxGetPr(TS)[O];
offset-times[NSAMPLE] = 0:
next-hit[NSAMPLE] = 0;
sample-hit[NSAMPLE] = 0;

/* Only do size checking in this initialization for efficiency */

adwl = (int) (mxGetPr(ADWL)[O]);
adrp = (int) (mxGetPr(ADRP) [O]);
round = (int) (rnxGetPr(ADROUND)[O]);
mputype = (int) (mxGetPr(MPUTYPE)[O]);

/* ERROR MESSAGES */
if (adwl > 32) (

mexErrMsgTxt("'A/a_wordlength' cannot exceed 32 bits.");
1
if (adrp >= adwl) (

rnexErrMsgTxt("A 'radix-point' cannot be '>=' the wordlength.");
I

pbdigital = pow(2.0,(double) adrp);
/* CALCULATE THE MAXIMUM PERMISSIBLE MJMBER FOR THE A/D */
iovr = (long int) (@ow(2.0,(double) ((adwl - 1)))) - 1.0);

NSTATES = 0;
NDSTATES = 0;
NINPUTS = mxGetN(B);
NOUTPUTS = rnxGetN(B);
NSING = 0;

ninputs = NINPUTS; /* GLOBAL VARIABLES */

) I* END INITIALIZE FUNCTION */

/* ..
...
.................... BEGIN AID FIXED-POINT FUNCTION
...
.. */

/* ADO */

void ad(u)
double *u;

/* LOCAL VARIABLES */
double rnu[MAX];
long int nnu[MAX];

int i;

/* ANALOG-TO-DIGITAL CONVERSION OF VECTOR INPUTS */

for (i = 0; i < ninputs; i++) (
uinsign[i] = 0;

1

/* CHECK TO SEE IF THE INDIVIDUAL ELEMENTS OF A VECTOR ARE NEGATIVE, AND
IF AN ELEMENT IS, TEMPORARILY CHANGE IT TO POSITIVE */

for (i = 0; i < ninputs; i++) {
if (u[i] < 0.0) {

uinsign[i] = 1;
u[i] = -u[i];

1
1

/* CALCULATE THE INTEGER REPRESENTATION OF THE NUMBER USING THE
WORDLENGTH OF THE A/D */

for (i = 0; i < ninputs; i++) {
mu[i] = u[i] * pbdigital;

1

/* PERFORM ROUNDING (TRUNCATION) PROCEDURE */

if (round = 1) {
for (i = 0; i < ninputs; i++) (

mu[i] = mu[i] + 0.5;
1

) /* END IF-CONDITION FOR ROUNDING */

/* TAKE INTEGER PART OF THE REAL NUMBER */

for (i = 0; i < ninputs; i++) {
nnu[i] = (long int) mu[i];

1

/* COMPARE THE INTEGER NUMBER AND THE MAXIMUM, AND USE THE
SMALLER OF THE TWO */

for (i = 0; i < ninputs; i++) {
if (nnu[i] > iovr) (

nnu[i] = ion;
1

1

if (mputype == 1) { /* IMPLEMENTING A 'FIXED-PT.' MPU */
/* ASSIGN INTEGER VALUES BACK TO THE (U) VECTOR */

for (i = 0; i < ninputs; i++) (
u[i] = nnu[i];

I
1

if (mputype == 2) (/* IMPLEMENTING A 'FLOATING-lT.' MPU */
/* ASSIGN VALUES BACK TO THE (U) VECTOR */

for (i = 0; i < ninputs; i++) (
u[il = nnu[i] / pbdigital;

1
1

/* IF THE ELEMENT NUMBER WAS NEGATIVE, CHANGE IT BACK */

for (i = 0; i < ninputs; i++) {
if (uinsign[i] = 1) {

u[i] = -u[i];
1

I

) /* END A/D FIXED-POINT FUNCTION */
/* ...
... */

/* END MAIN */

/* Function to return any initial conditions on the states */
static
#ifdef -S TDC-
void init-conditions(doub1e *xO)
#else
void init-conditions(x0)
double *xO;
#endif /* -STDC- */
{

return; /* NO CALCULATIONS NEEDED */
1

/* Function to return derivatives */
static
#ifdef -STDC-
void derivatives(doub1e t, double *x, double *u, double *dx)
#else
void derivatives(t,x,u,dx)
double t, *x, *u; /* Input variables */
double *dx; P' Output variable */
#endif /* -STDC- */
I

return; /* No continuous states */
1

/* Function to perform discrete state update */
static
#ifdef -STDC-
void dstates(doub1e t, double *x, double *u, double *ds)
#else
void dstates(t,x,u,ds)
double t, *x, *u; I* Input variables */
double *ds; /* Output variable */
#endif /* -STDC- */
I

return; /* No discrete states */
1

/* Function to return outputs */
static
#ifdef -STDC-
void outputs(doub1e t, double *x, double *u, double *y)
#else
void outputs(t,x,u,y)
double t, *x, *u; I* Input variables *I
double *y; r* Output variable */
#endif P -STDC- */
{

/* FUNCTIONS */
void ad();

int i;

ad(u); P' Call to A/D function */

for (i = 0; i < NOUTPUTS; i++) {
y[i] = u[i];
lasty[i] = u[i];

1
) /* END IF-LOOP */

else (
for (i = 0; i < NOUTPUTS; i++) {

y[i] = lasty[i];
)

I

I /* END OUTPUTS FUNCTION */

/* Function to return singularities */
static
#ifdef -STDC-
void singularity(doub1e t, double *x, double *u, double *sing)
#else
void singularity(t,x,u,sing)
double t, *x, *u; I* Input variables */
double *sing; /* Output variable */
#endif /* -STDC- *I
(

return; I* Default is to have no singularity */
1

#include "simulin2.h" /* Include file to perform MEX glue */

/* END 'ADFIX.C' PROGRAM
..
..
*/

/* "C" - code written by Edward D. Robe
Date: May 4, 1994 */
I* Filename: MPUF1X.C */

#define MAX 40000 I* LIMIT UP TO A 200 x 200 MATRIX */
#include <stdio.h>
#include cmath.h>
#include "matrix.hW /* needed for matrix access functions */
#include "mex.hn I* needed mexErrMsgTxt0 prototyping */

/* GLOBAL VARIABLES */
int nstates,noutputs,ninputs;
int mpuwl,mpurp,adrp~ound;
double pbdigitalqbshiftm,rotate;
long int iovr,
int asign[MAX],bsign[MAXl ,csign[MAX],dsign[MAX] ,xOsign[200];

/* Define the system sizes global in this function: */
static int NSTATES; /* Number of continuous states */
static int NDSTATES; /* Number of discrete states */
static int NOUTPUTS; /* Number of outputs */
static int NINPUTS; /* Number of inputs */
static int NSING; /* Number of singularities */
static int NEEDINPUTS; I* Has this system got direct-feedthrough */

#define NCOEFFS 6 /* Number of extra parameters passed in*/

#define NSAMPLE 1
static double sample-times[NSAMPLE];
static double offset-times[NSAMPLE] = (0);
static double next-hitlNSAMPLE] = (0 1;
static double sample-hit[NSAMPLE] = (0);

/* General defines */
#define TRUE 1
#define FALSE 0

static Matrix *Coeffs[NCOEFFS]; /* Pointer to the matrix parameters */
/* Defines for easy access of the A,B,C,D,XO,MPSETUP matrices
which are passed in */
#define A Coeffs[O]
#define B Coeffs[l]
#define C Coeffs[2]
#define D Coeffs[3]
#define XO Coeffs[4]
#define MPSETUP Coeffs[S]

/* Function to set up global size information */

static
#ifdef -STDC-
void initialize(void)
#else
void initialize()
#endif P -STDC- */
(

/* FUNCTIONS */
void main();

double *Mtmp;
long Dm,Dn,Dsize;
int i;

/* Define the Sample Time (TS) */
sample-times[Ol = mxGetPr(MPSETUP)[O];
offset-times[NS AMPLE] = 0:
next-hit[NSAMPLE] = 0;
sample-hit[NSAMPLE] = 0;

I* Only do size checking in this initialization for efficiency */

mpuwl = (int) (mxGetPr(MPSETUP)[l]);
mpurp = (int) (mxGetPr(MPSETUP)[2]);
adrp = (int) (mxGetPr(MPSETUP)[3]);
round = (int) (mxGetPr(MPSETUP)[4]);

/* ERROR MESSAGES */
if (mpuwl > 32) {

mexErrMsgTxt("'MPU_wordlength' cannot exceed 32 bits.");
1
if (mpurp >= mpuwl) {

mexErrMsgTxt("A 'radix-point' cannot be '>=' the wordlength.");
1

pbdigital = pow(2.0,(double) mpurp);
pbshiftm = pow(2.0,(double) ((mpurp - adrp)));
rotate = (1.0 / pbdigital);
/* CALCULATE THE MAXIMUM PERMISSIBLE NUMBER FOR THE MPU */
iow = (long int) ((pow(2.0,(double) ((mpuwl - 1)))) - 1.0);

NSTATES = 0;
NDSTATES = mxGetM(A);
NINPUTS = mxGetN(B);
NOUTPUTS = mxGetM(C);
NSING = 0;

nstates = NDSTATES;
noutputs = NOUTPUTS; /* GLOBAL VARIABLES *I
ninputs = NINPUTS;

if (mxGetN(A) != NDSTATES) {
mexErrMsgTxt("A matrix must be square");

1
if (mxGetM(B) != NDSTATES) {

mexErrMsgTxt("B matrix not dimensioned correctly");
I
if (mxGetN(C) != NDSTATES) (

mexEnMsgTxt("C matrix not dimensioned correctly");
I
if (mxGetM(D) != NOUTPUTS II mxGetN(D) != NINPUTS) {

mexErrMsgTxt("D matrix not dimensioned correctly");
I
if (mxGetM(X0) != 0 && mxGetM(X0) != NDSTATES) {

mexErrMsgTxt("X0 matrix not dimensioned correctly");
)

/* Check for direct feedthrough (i.e., non-zero D matrix) */
/* An alternative method is to use mexCallMatlab to do the check */

Mtmp = mxGetPr(D);
Dm = mxGetM(D);
Dn = mxGetN(D);
Dsize = Dm * Dn:

NEEDINPUTS = FALSE;
for (i = 0; i < Dsize; i++) {

if (MUnp[i] != 0) {
NEEDINPUTS = TRUE,
break;

I
I

main(); /* Call to MAIN function for quantizing coefficients of
the state-space realization */

J I* END INITIALIZE FUNCTION */

/* BEGIN MAIN */
void main()
1

I* FUNCTION */
void state-space();

/* CALL TO FUNCTION TO PERFORM QUANTIZATION */

} /* END MAIN */

/* ...
..
################ BEGIN STATE-SPACE FIXED-POINT FUNCTION #################
...
... */

void state-space()

/* LOCAL VARIABLES */
double ma[MAXl~nb[MAX]~nc[MAX],md[MAX],mx0[200];
long int nna[MAX],nnb[MAX],nnc[MAXl,nnd[MAXl,nnx0[200];

int i j;
double *apr, *bpr, *cpr, *dpr, *xopr;

apr = (double *)mxGetPr(A);
bpr = (double *)mxGetPr(B);
cpr = (double *)rnxGetPr(C);
dpr = (double *)mxGetPr(D);
xopr = (double *)rnxGetPr(XO);

/* STATE-SPACE QUANT CONVERSION */

/* INITIALIZATION OF '*SIGN [I' *I

for (i = 0; i < nstates; i u) {
for Cj = 0; j < nstates; j u) {

asign[i + nstatesej] = 0;
1

I

for (i = 0; i < nstates; i++){
for (j = 0; j < ninputs; j++)(

bsign[i + nstates*j] = 0;
1

1

for (i .= 0; i < noutputs; i++){
for (j = 0; j < nstates; j++)(

csign[i + noutputs*j] = 0;
I

1

for (i = 0; i < noutputs; i++){
for Cj = 0; j < ninputs; j++)(

for (i = 0; i < nstates; i++)(
xOsign[il = 0;

1

/* CHECK TO SEE IF THE INDIVIDUAL ELEMENTS OF A MATRIX ARE NEGATIVE, AND
IF AN ELEMENT IS, TEMPORARILY CHANGE IT TO POSITIVE */

for (i = 0; i < nstates; i++)(
for (i = 0; j < nstates; j++)(

if (apr[i + nstates*j] < O.O)(
asign[i + nstates*j] = 1;
apr[i + nstates*j] = -apr[i + nstates*j];

I
1

I

for (i = 0; i < nstates; i++)(
for ti = 0; j < ninputs; j++)(

if (bpr[i + nstates*j] < 0.0){
bsign[i + nstates*j] = 1;
bpr[i + nstates*j] = -bpr[i + nstates*j];

1
1

1

for (i = 0; i < noutputs; i++){
for ti = 0; j c nstates; j++){

if (cpr[i + noutputs*j] < 0.0)(
csign[i + noutputs*j] = 1;
cpr[i + noutputs*j] = -cpr[i + noutputs*j];

1
I

1

for (i = 0; i < noutputs; i++){
for Cj = 0; j < ninputs; j++){

if (dpr[i + noutputs*j] < 0.0){
dsign[i + noutputs*j] = 1;
dpr[i + noutputs*j] = -dpr[i + noutputs*j];

I
1

1

for (i = 0; i < nstates; i t t) (
if (xopr[i] < O.O)(

xOsign[i] = 1;
xopr[i] = -xopr[i];

/* CALCULATE THE INTEGER REPRESENTATION OF THE NUMBER USING THE
WORDLENGTH OF THE MPU */

for (i = 0; i < nstates; i u) {
for (j = 0; j < nstates; j++)(

ma[i + nstates*j] = apr[i + nstates*j] * pbdigital;
1

1
for (i = 0; i < nstates; i u) {

for (j = 0; j < ninputs; j++){
mb[i + nstates*j] = bpr[i + nstates*j] * pbdigital;

1
I

for (i = 0; i < noutputs; i++)(
for (j = 0; j < nstates; j++){

mc[i + noutputs*j] = cpr[i + noutputs*j] * pbdigital;
I

1

for (i = 0; i < noutputs; i u) {
for (j = 0; j < ninputs; j++){

md[i + noutputs*j] = dpr[i + noutputs*jl * pbdigital;
}

1

for (i = 0; i < nstates; i++){
mxO[i] = xopr[i] * pbdigital;

1

/* PERFORM ROUNDING (TRUNCATION) PROCEDURE */

if (round = 1)(-

for (i = 0; i < nstates; i++){
for (j = 0; j < nstates; j u) {

ma[i + nstates*j] = ma[i + nstates*jl + 0.5;
I

1

for (i = 0; i < nstates; i u) (
for (j = 0; j < ninputs; j++){

mb[i + nstates*j] = mb[i + nstates*j] + 0.5;
I

I

for (i = 0; i c noutputs; i++)(
for (j = 0; j < nstates; j++){

for (i = 0; i < noutputs; i++){
for (j = 0; j < ninputs; j++)(

md[i + noutputs*j] = md[i + noutputs'j] + 0.5;
I

I

for (i = 0; i < nstates; i++)(
mxO[i] = mxO[i] + 0.5;

1

} /* END IF-CONDITION FOR ROUNDING */

/* TAKE INTEGER PART OF THE REAL NUMBER */

for (i = 0; i < nstates; i++)(
for (i = 0; j < nstates; j++){

nna[i + nstates*j] = (long int) ma[i + nstates*j];
I

1

for (i = 0; i < nstates; i u) (
for (i = 0; j < ninputs; j++)(

nnb[i + nstates*j] = (long int) mb[i + nstates*j];
I

I

for (i = 0; i < noutputs; i++){
for (i = 0; j < nstates; j++){

nnc[i + noutputs*j] = (long int) mc[i + noutputs*j];
I

1

for (i = 0; i < noutputs; i++)(
for (i = 0; j < ninputs; j++)(

nnd[i + noutputs*j] = (long int) md[i + noutputs*j];
1

1 '

for (i = 0; i < nstates; i++)(
nnxO[i] = (long int) mxO[i];

I

/* COMPARE THE INTEGER NUMBER AND THE MAXIMUM, AND USE THE
SMALLER OF THE TWO */

for (i = 0; i < nstates; i++){
for (j = 0; j < nstates; j++){

if (nna[i + nstates*j] > iovr){
nna[i + nstates*j] = iovr;

I
1

1

for (i = 0; i < nstates; it+)(
for Cj = 0; j < ninputs: j++){

if (nnb[i + nstates*j] > iovr){
nnb[i + nstates*j] = iovr;

1
1

I

for (i = 0: i < noutputs; i u) {
for Cj = 0; j < nstates; j u) {

if (nnc[i + noutputs*j] > iovr){
nnc[i + noutputs*j] = iovr;

I

for (i = 0; i < noutputs; i u) {
for Cj = 0; j < ninputs; j++){

if (nnd[i + noutputs*j] > iovr){
nnd[i + noutputs*j] = iovr;

I
I

1

for (i = 0; i < nstates: i u) {
if (nnxO[i] > iovr){

nnxO[i] = iovr:
I

I

/* ASSIGN INTEGER VALUES BACK TO THE (A,B,C,D,XO) MATRICES */

for (i = 0; i < nstates; i u) {
for Cj = 0; j < nstates; j u) {

apr[i + nstates*j] = nna[i + nstates*j];
I

1

for (i = 0; i c nstates; i u) {
for Cj = 0; j < ninputs; j++)(

bpr[i + nstates*j] = nnb[i + nstates*j];
1

I

for (i = 0; i < noutputs; i u) {

for Cj = 0; j < nstates; j++)(
cpr[i + noutputs*j] = nnc[i + noutputs*j];

)
1

for (i = 0; i < noutputs; i++){
for Cj = 0; j < ninputs; j++){

dpr[i + noutputs*j] = nnd[i + noutputs*j];
I

1

for (i = 0; i < nstates; i u) {
xopr[i] = nnxO[i];

1

I* IF THE ELEMENT NUMBER WAS NEGATIVE, CHANGE IT BACK */

for (i = 0; i < nstates; i u) {
for Cj = 0; j < nstates; j u) (

if (asign[i + nstates*j] == 1){
apr[i + nstates*j] = -apr[i + nstates*j];

1
I

1

for (i = 0; i < nstates; i++)(
for (j = 0; j < ninputs; j++){

if (bsign[i + nstates*j] = 1){
bpr[i + nstates*j] = -bpr[i + nstates*j];

I
1

I

for (i = 0; i < noutputs; i++){
for Cj = 0; j < nstates; j++)(

if (csign[i + noutputs*j] == 1){
cpr[i + noutputs*j] = -cpr[i + noutputs*j];

I
I

I

for (i = 0; i < noutputs; i++){
for (j = 0; j < ninputs; j++){

if (dsign[i + noutputs*j] = 1)(
dpr[i + noutputs*j] = -dpr[i + noutputs*j];

1
I

I

for (i = 0; i < nstates; i++){
if (xOsign[i] == 1)(

) /* END STATE-SPACE FIXED-POINT FUNCTION */
/* ..
... */

/* ...
..
################# BEGIN MPU_INPUTS FIXED-POINT FUNCTION ##################
..
. */

void mpuinputs(u)
double *u:

/* LOCAL VARIABLES */
int i;

/* NOW CONVERTING THE INPUTS (U) TO THE WORDLENGTH OF THE
MICROPROCESSOR (MPU) BY SHIFTING THE RADIX POINT */

for (i = 0; i < ninputs; i++) {
u[i] = u[i] * pbshiftm;

1

) /* END MPU-INPUTS FIXED-POINT FUNCTION */
/* ...
. */

/* ...
..
################### BEGIN ROTFUNC FIXED-POINT FUNCTION ###################
...
... */

void rotfunc(x)
double *x:

/* LOCAL VARIABLES */
int xsign;

I* THIS FUNCTION ACCEPTS THE RESULT OF AN INTEGER MULTIPLICATION
(WITH AN IMPLIED RADIX POINT) AND ADJUSTS THE NUMBER TO GET IT
BACK IN THE SAME FORM AS THE ORIGINAL NUMBERS (E.G., THE SAME
NUMBER OF PLACES TO THE RIGHT OF THE RADIX POINT). */

xsign = 0;
if ((*x) < 0.0) {

xsign = 1;
(*x) = -(*x);

1

(*x) = (*x) * rotate;

if (round = 1) {
(*x) = (long int) (((*x) + 0.5));

1

if ((*x) > ((double) iovr)) (
(*x) = iovr;

1

if (xsign == 1) (
(*x) = -(*x);

1

) /* END ROTFUNC FIXED-POINT FUNCTION */
/* ...
. */

/* ...
..
################# BEGIN CHECKLIMIT FIXED-POINT FUNCTION ##################
...
. */

void checklimit(xx)
double *xx;

/* LOCAL VARIABLES */
int xxsign;

I* THIS FUNCTION CHECKS FOR OVERFLOW. */

xxsign = 0;
if ((*xx) < 0.0) {

xxsign = 1;
(*xx) = -(*xx);

if ((*xx) > ((double) iovr)) {
(*xx) = iovr;

1

if (xxsign == 1) {
(*xx) = -(*xx);

1

) /* END CHECKLIMIT FIXED-POINT FUNCTION */
I* ...
. */

/* Function to return any initial conditions on the states */
static
#ifdef -STDC-
void init-conditions(double *xO)
#else
void init-conditions(x0)
double *xO;
#endif P -STDC- */
I

int i;
double *pr;

pr = (double *)rnxGetPr(XO);
for (i=mxGetM(XO); i; i--) {

*xO++ = *pr++;
1

1

/* Function to return derivatives */
static
#ifdef -STDC-
void derivatives(doub1e t, double *x, double *u, double *dx)
#else
void derivatives(t,x,u,dx)
double t, *x, *u; I* Input variables */
double *dx; /* Output variable */
#endif /* -STDC- */
t

return; /* No continuous states */
I

/* Function to perfom discrete state update */
static
#ifdef -STDC-
void dstates(doub1e t, double *x, double *u, double *ds)
#else
void dstates(t,x,u,ds)

double t, *x, *u; /* Input variables */
double *ds; /* Output variable */
#endif P -STDC- */
1

/* FUNCTIONS */
void mpuinputs();
void rotfunc();
void checklimit();

/* LOCAL VARIABLES */
int i j;
double accum,temp;
double *apr, *bpr,

apr = (double *)mxGetPr(A);
bpr = (double *)mxGetPr(B);

/* Matrix Multiply x(n+l) = Ax(n) + Bu(n) */

/* Update discrete states on a sample hit */

mpuinputs(u); /* Adjust inputs to MPU */

for (i = 0; i < NDSTATES; i++) {
accum = 0.0;
temp = 0.0;

/* Ax(n) */
for Q = 0; j < NDSTATES; j++) (

temp = apr[i + NDSTATES*j] * xu];
rotfunc(&temp);
accum = accum + temp;

1
/* Bu(n) */

for Q = 0; j < NINPUTS; j++) (
temp = bpr[i + NDSTATES*j] * uu];
rotfunc(&ternp);
accum = accum + temp;

1
checklimit(&accum);
ds[i] = accum;

1'
} /* END IF-LOOP */

1 /* END DSTATES FUNCTION */

/* Function to return outputs */
static
#ifdef -STDC-

void outputs(doub1e t, double *x, double *u, double *y)
#else
void outputs(t,x,u,y)
double t, *x, *u; /* Input variables */
double *y; P Output variable */
#endif P -STDC- */
I

/* FUNCTIONS */
void mpuinputs();
void rotfunc();
void checklimit();

/* LOCAL VARIABLES */
int i j;
double accum,temp;
double *cpr, *dpr;

cpr = (double *)mxGetPr(C);
dpr = (double *)mxGetPr(D);

/* Matrix Multiply y(n) = Cx(n) + Du(n) */

mpuinputs(u); /* Adjust inputs to MPU */

for (i = 0; i < NOUTPUTS; i++) (
accum = 0.0;
temp = 0.0;

/* Cx(n) */
for (j = 0; j < NDSTATES; j++) (

temp = cpr[i + NOUTPUTS*j] * xu];
rotfunc(&temp);
accum = accum + temp;

1
/* Du(n) *I

for (j = 0; j < NINPUTS; j++) (
temp = dpr[i + NOUTPUTS*j] * uu];
rotfunc(&temp);
accum = accum + temp;

1
checklimit(&accum);
y[il = accum;

1

) /* END OUTPUTS FUNCTION */

/* Function to return singularities */
static
#ifdef -S TDC-
void singularity(doub1e t, double *x, double *u, double *sing)
#else

void singularity(t,x,u,sing)
double t, *x, *u; /* Input variables */
double *sing; /* Output variable */
#endif P -STDC- */

return; /* Default is to have no singularity */
1

#include "simulin2.h" /* Include file to perform MEX glue */

/* END 'MPUF1X.C' PROGRAM
..
...
*I

I* "C" - code written by Edward D. Robe
Date: May 4, 1994 */
/* Filename: DAF1X.C */

#define MAX 200 I* LIMIT UP TO A 200 x 1 OUTPUT-VECTOR (Y) */
#include <math.h>
#include "matrix.h"
#include "mex.hV

I* GLOBAL VARIABLES */
int noutputs;
int mpurp,dawl,darp;
long int iovr,
double pbshiftd, pbanalog;
int youtsign[MAX];

/* Define the system sizes global in this function: */
static int NSTATES; /* Number of continuous states */
static int NDSTATES; /* Number of discrete states */
static int NOUTPUTS; I* Number of outputs */
static int NINPUTS; I* Number of inputs */
static int NSING; I* Number of singularities */
static int NEEDINPUTS; /* Has this system got direct-feedthrough */

#define NCOEFFS 6 /* Number of extra parameters passed in*/

#define NSAMPLE 1
static double sample-timesBSAMPLE];
static double offset-times[NSAMPLE] = (0 j;
static double next-hit[NSAMPLE] = { 0);
static double sample-hit[NSAMPLE] = { 0);

/* Storage for output to maintain outputs */
static double lasty[200] = { 1) ;

static Matrix *Coeffs[NCOEFFS]; /* Pointer to the matrix parameters */
/* Defines for easy access of the B,C,MPURP,DAWL,DARP,TS parameters
which are passed in */
#define B Coeffs[Ol
#define C Coeffs[1]
#define W U R P Coeffs[2]
#define DAWL Coeffs[3]
#define DARP Coeffs[41
#define TS Coeffs[51

/* Function to set up global size information */
static
#ifdef -STDC-

void initialize(void)
#else
void initialize()
#endif /* -STDC- */
1

/* Define the Sample Time (TS) */
sample-times[O] = mxGetFY(TS) [O];
offset-times[NSAMPLE] = 0;
next-hitWSAMPLE] = 0;
sample-hil[NSAMPLE] = 0;

/* Only do size checking in this initialization for efficiency */

mpurp = (int) (mxGetPr(MPURP)[O]);
dawl = (int) (mxGetPr(DAWL)[O]);
darp = (int) (mxGetPr(DARP)[O]);

/* ERROR MESSAGES */
if (dawl > 32) (

mexErrMsgTxt("'D/A~wordlength' cannot exceed 32 bits.");
I
if (darp >= dawl) (

mexErrMsgTxt("A 'radix-point' cannot be '>=' the wordlength.");
I

pbshiftd = pow(2.0,(double) ((mpurp - darp)));
pbanalog = pow(2.0,(double) darp);
/* CALCULATE THE MAXIMUM PERMISSIBLE NUMBER FOR THE A/D */
iovr = (long int) (@ow(2.0,(double) ((dawl - 1)))) - 1.0);

NSTATES = 0;
NDSTATES = 0;
NINPUTS = mxGetN(B);
NOUTPUTS = mxGetM(C);
NSING = 0; -

noutputs = NOUTPUTS; /* GLOBAL VARIABLES */

) /* END INITIALIZE FUNCTION */

/* ...
..
..................... BEGIN D/A FIXED-POINT FUNCTION
...
. */

void da(u)
double *u:

/* LOCAL VARIABLES */
int i;

/* DIGITAL-TO-ANALOG CONVERSION OF VECTOR OUTPUTS */

/* INITIALIZATION OF '*SIGN[]' */

for (i = 0; i < noutputs; i++) {
youtsign[il = 0;

1

I* CHECK TO SEE IF THE INDIVIDUAL ELEMENTS OF A VECTOR ARE NEGATIVE, AND
IF AN ELEMENT IS, TEMPORARILY CHANGE IT TO POSITIVE */

for (i = 0; i < noutputs; i++) {
if (u[il < 0.0) {

youtsign[i] = 1;
u[i] = -u[i];

1
}

/* NOW CONVERT THE OUTPUTS (Y) TO THE WORDLENGTH OF THE D/A
BY SHIFTING THE RADIX POINT */

for (i = 0; i < noutputs; i u) {
u[i] = u[i] / pbshiftd;

1

/* NOW MAKE THE D/A CONVERSlON */

for (i = 0; i < noutputs; i u) {
u[i] = u[il / pbanalog;

1

/* COMPARE THE NUMBER AND THE MAXIMUM, AND USE THE
SMALLER OF THE TWO */

for (i = 0; i < noutputs; i u) (
if (u[i] > (double) ion) (

u[i] = ion;
1

1

/* IF THE ELEMENT NUMBER WAS NEGATIVE, CHANGE IT BACK */

for (i = 0; i < noutputs; i u) {
if (youtsign[i] == 1) (

u[i] = -u[i];
1

1

) /* END D/A FIXED-POINT FUNCTION */
/* ..
. */

/* END MAIN */

/* Function to return any initial conditions on the states */
static
#i fdef -S TDC-
void init-conditions(doub1e *xO)
#else
void init-conditions(x0)
double *xO;
#endif /* -STDC- */
(

return; /* NO CALCULATIONS NEEDED */
1

/* Function to return derivatives */
static
#ifdef -STDC-
void derivatives(doub1e t, double *x, double *u, double *dx)
#else
void derivatives(t,x,u,dx)
double t, *x, *u; /* Input variables */
double *dx; /* Output variable */
#endif /* -STDC- */
(

return; /* No continuous states */
)

/* Function to perform discrete state update */
static
#ifdef -STDC-
void dstates(doub1e t, double *x, double *u, double *ds)
#else
void dstates(t,x,u,ds)
double t, *x, *u; I* Input variables */
double *ds; /* Output variable */
#endif /* -STDC- */
(

return; /* No discrete states */
1

/* Function to return outputs */

static
#ifdef -STDC-
void outputs(doub1e t, double *x, double *u, double *y)
#else
void outputs(t,x,u,y)
double t, *x, *u; /* Input variables */
double *y; /* Output variable */
#endif P -STDC- */
{

/* FUNCTIONS */
void da();

int i;

da(u); /* Call to D/A function */

for (i = 0; i < NOUTPUTS; i++) {
y[i] = u[i];
lasty[i] = u[i];

) /* END IF-LOOP */
else {

for (i = 0; i < NOUTPUTS; i++) {
y[i] = lasty[i];

) /* END O W U T S FUNCTION */

/* Function to return singularities */
static
#ifdef -STDC-
void singularity(doub1e t, double *x, double *u, double *sing) -
#else
void singularity(t,x,u,sing)
double t, *x, *u; /* Input variables */
double *sing; /* Output variable */
#endif P -STDC- */
I

return; I* Default is to have no singularity */
1

#include "simulin2.h" P Include file to perform MEX glue */

/* END 'DAFIX.C' PROGRAM
..
...
*/

/* "C" - code written by Edward D. Robe
Date: May 4, 1994 */
/* Filename: MPUFL.C */

#define MAX 40000 /* LIMIT UP TO A 200 x 200 MATRIX */
#define MAXSTRING 54 /* LIMIT TO 54 BITS IN MANTISSA WORDLENGTH */
#include <math.h>
#include "matrix.hM /* needed for matrix access functions */
#include "mex.h" /* needed mexErrMsgTxt0 prototyping */

/* STRUCTURE TYPES: ASSIGN INTEGER WORDS TO '8' BYTES */
struct Integer8 {

unsigned long int upperJower;
1;

typedef struct Integer8 Integer8;

/* GLOBAL VARIABLES */
int nstates,noutputs,ninputs,expox,mantx~oundx,matrixstar;
int bound,biaslimit,darp;
int mw,mx,mz;
unsigned long int my;
double infinityy,nearzero,pbda;
double shiftpointl,shiftpoint2,shiftpoinW,shiftpoint4;
double shiftpoint5,shiftpoint6;
double invshiftptl,invshiftpt2,invshiftpW,invshiftpt4;
double invshiftpt5;
double LFN,MNFN;
int asign[MAX] ,bsign[MAX],csign[MAX],dsign[MAX] ,xOsign[200];
int uinsign[200],quantsign[l];
int signalflag;

/* Define the system sizes global in this function: */
static int NSTATES; /* Number of continuous states *I
static int NDSTATES; /* Number of discrete states */
static int NOUTPUTS; /* Number of outputs */
static int NINPUTS; /* Number of inputs */
static int NSING; /* Number of singularities */
static int NEEDINPUTS; /* Has this system got direct-feedthrough */

#define NCOEFFS 6 /* Number of extra parameters passed in*/

#define NSAMPLE 1
static double samplefimes[NS AMPLE] ;
static double offset-timesWSAMPLE] = { 0);
static double next-hit[NSAMPLE] = (0);
static double sample-hit[NSAMPLE] = { 0);

/* General defines */
#define TRUE 1
#define FALSE 0

static Matrix *Coeffs[NCOEFFS]; /* Pointer to the matrix parameters */
/* Defines for easy access of the A,B,C,D,XO,MPSETUP matrices
which are passed in */
#define A Coeffs[O]
#define B Coeffs[l]
#define C Coeffs[2]
#define D Coeffs[3]
#define XO Coeffs[4]
#define MPSETUP Coeffs[S]

I* Function to set up global size information */
static
#ifdef -STDC-
void initialize(void)
#else
void initialize()
#endif /* -STDC- */
(

/* FUNCTIONS */
void main();

double *Mtmp;
long Dm,Dn,Dsize;

int i;
unsigned long int temp = 1:
double templ,temp2,max:

/* Define the Sample Time (TS) */
sample-times[Ol = mxGetPr(MPSETUP)[O] ;
offset-times[NSAMPLE] = 0;
next-hit[NSAMPLE] = 0;
sample-hit[NS AMPLE] = 0;

/* Only do size checking in this initialization for efficiency */

expox = (int) (mxGetPr(MPSETUP)[l]);
mantx = (int) (mxGetPr(MPSETUP)[2]);
roundx = (int) (mxGetPr(MPSETUP)[3]);
darp = (int) (mxGeth(MPSETUP) [4]);

/* ERROR MESSAGES */
if ((expox + mantx + 1) > 64) {

mexErrMsgTxt("'MPU~word1ength' cannot exceed 64 bits.");
1

NSTATES = 0;
NDSTATES = mxGetM(A);
NINPUTS = mxGetN(B);
NOUTPUTS = mxGetM(C);
NSING = 0;

nstates = NDSTATES;
noutputs = NOUTPUTS; /* GLOBAL VARIABLES */
ninputs = NINPUTS;

if (mxGetN(A) != NDSTATES) {
mexErrMsgTxt("A matrix must be square");

1
if (mxGetM(B) != NDSTATES) {

mexErrMsgTxt("B matrix not dimensioned correctly");
I
if (mxGetN(C) != NDSTATES) (

mexErrMsgTxt("C matrix not dimensioned correctly");
I
if (mxGetM(D) != NOUTPUTS II mxGetN(D) != NINPUTS) {

mexErrMsgTxt("D matrix not dimensioned correctly");
1
if (mxGetM(X0) != 0 && mxGetM(X0) != NDSTATES) {

mexErrMsgTxt("X0 matrix not dimensioned correctly");
I

/* Check for direct feedthrough (i.e., non-zero D matrix) */
/* An alternative method is to use mexCallMatlab to do the check */

Mtmp = mxGetPr(D);
Dm = mxGetM(D);
Dn = mxGetN(D);
Dsize = Dm * Dn;

NEEDINPUTS = FALSE;
for (i = 0; i < Dsize; i++) {

if (Mtmp[i] != 0) {
NEEDINPUTS = TRUE;
break;

I
1

/* DETERMINE THE 'INTEGER' WORDLENGTH OF THE MACHINE */
mx = sizeof(temp); /* Returns # of bytes for an 'unsigned long int' */
mz = mx * 8; /* Determines # of bits based on 8 bits per 1 byte */
mw = mz - 1;
my = (unsigned long int) @ow(2.0,(double) mw));

/* DETERMINE 'EXPONENT' BOUNDS AND LIMITS */
temp2 = pow(2.0,(double) expox);
bound = (int) (temp2 - 1.0);

temp2 = temp2 / 2.0;
biaslimit = (int) (temp2 - 1.0);
infinityy = pow(2.0,(double) (biaslimit + 1));
nearzero = pow(2,0,(double) (-(biaslimit - 1)));

/* CALCULATE FOR THE FORMAT'S LARGEST FINITE NUMBER */
max = 0.0;
templ = 0.0;
LFN = 0.0;
for (i = (biaslimit - mantx); i c= biaslimit; i++)(

templ = pow(2,0,(double) i);
max = max + templ;

I
LFN = max;
MNFN = LFN; /* without (-) sign */

/* USED IN THE 'CALCFRACTION' AND 'NUMBER2INT' FUNCTIONS: */
/* USED FOR SCALING DUE TO MACHINE LIMITATIONS FOR REPRESENTLNG INTEGERS,
AND FOR TRANSFORMING FRACTIONAL NUMBERS INTO INTEGER NUMBERS WHICH THEN
CAN BE MANIPULATED BY THE 'BITWISE OPERATORS' */
shiftpointl = pow(2.0,(double) mz);
shiftpoint2 = pow(2.0,(double) ((2'mz)));
shiftpoint3 = pow(2.0,(double) ((4*mz))); /* Covers to Single Prec. */
shiftpoint4 = pow(2.0,(double) ((8*mz)));
shiftpoint5 = pow(2.0,(double) ((16*mz)));
shiftpoint6 = pow(2.0,(double) ((32*mz))); I* Covers to Double Prec. */

/* and Single Extended */
invshiftptl = (1.0 / shiftpointl);
invshiftpt2 = (1.0 / shiftpoint2);
invshiftpt3 = (1.0 / shiftpoint3);
invshiftpt4 = (1.0 / shiftpoint4);
invshiftpt5 = (1.0 / shiftpoint5);

pbda = pow(2.0,(double) darp);

main(); P Call to MAIN function for quantizing coefficients of
the state-space realization */

} /* END INITIALIZE FUNCTION */

/* BEGIN MAIN */
void main()
{

/* FUNCTION */
void state-space();

/* CALL TO FUNCTION TO PERFORM STATE-SPACE QUANTIZATION */

state-space();

) /* END MAIN */

/* ...
..
#I############### BEGIN STATE-SPACE FLOATING-POINT FUNCTION ###############
..
. */

void state-space()

/* FUNCTIONS */
void extractexpo();
double number;
int E;

void numbedint();
Integer8 integral;
double fractional;

void convert();
double NUMBER;

void roundcheck();

/* LOCAL VARIABLES */
int i j;
double *apr, *bpr, *cpr, *dpr, *xopr;

apr = (double *)mxGePr(A);
bpr = (double *)mxGetPr(B);
cpr = (double *)mxGePr(C);
dpr = (double *)mxGetPr(D);
xopr = (double *)mxGetPr(XO);

/* QUANT CONVERSION FOR THE STATE-SPACE: */

I* INITIALIZATION OF '*SIGN[]' */

for (i = 0; i < nstates; i++){
for (j = 0; j < nstates; j++)(

asign[i + nstates*j] = 0;
1

for (i = 0; i < nstates; i++)(
for Cj = 0; j < ninputs; j++)(

bsign[i + nstates*j] = 0;
I

I

for (i = 0; i < noutputs; i++)(
for (i = 0; j c nstates; j u) (

csign[i + noutputs*j] = 0;
1

)

for (i = 0; i < noutputs; i++)(
for Cj = 0; j < ninputs; j++){

dsign[i + noutputs*j] = 0;
I

1

for (i = 0; i < nstates; i u) {
xOsign[i] = 0;

I

/* CHECK TO SEE IF THE INDIVIDUAL ELEMENTS OF A MATRIX ARE NEGATIVE, AND
IF AN ELEMENT IS, TEMPORARILY CHANGE IT TO POSITIVE */

for (i = 0; i < nstates; i u) (
for Cj = 0; j < nstates; j u) {

if (apr[i + nstates*j] < 0.0)(
asign[i + nstates*j] = 1;
apr[i + nstates*j] = -apr[i + nstates*j];

1
I

I

for (i = 0; i < nstates; i++){
for Cj = 0; j < ninputs; j++){

if (bpr[i + nstates*j] < 0.0){
bsign[i + nstates*j] = 1;
bpr[i + nstates*j] = -bpr[i + nstates*j];

I

for (i = 0; i < noutputs; i u) {
for Cj = 0; j < nstates; j u) (

if (cpr[i + noutputs*j] < 0.0){
csign[i + noutputs*j] = 1;
cpr[i + noutputs*j] = -cpr[i + noutputs*j];

I

for (i = 0; i c noutputs; i u) (
for (i = 0; j < ninputs; j++){

if (dpr[i + noutputs*j] < 0.0)(
dsign[i + noutputs*j] = 1;
dpr[i + noutputs*jl = -dpr[i + noutputs*j];

1

for (i = 0; i < nstates; i u) {
if (xopr[i] < 0.0) (

xOsign[i] = 1;
xopr[i] = -xopr[i];

1
I

/* CALCULATE THE FLOATING-POINT REPRESENTATION OF THE NUMBER
USING BOTH THE EXPONENT AND MANTISSA WORDLENGTHS OF THE MPU */

matrixstar = 0;

/* CONVERT 'A' MATRIX: */

for (i = 0; i < nstates; i u) (
for (j = 0; j < nstates; j u) (

matrixstar = 1;
signalflag = 0;
number = apr[i + nstates*j];
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,in tegral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag = 1) {

printf('lnThe A[%d][%d] element is: %s \nW,i,j,"NaN");)
if (signalflag = 2) {

printf('lnThe A[%d][%d] element is: %s \nW,i,j,"Inf');)
apr[i + nstates*j] = number;

) /* THE OUTER 'j' INDICE LOOP */
1 /* THE OUTER 'i' INDICE LOOP */

I* CONVERT 'B' MATRIX: */

for (i = 0; i < nstates; i u) (
for (j = 0; j < ninputs; j++)(

matrixstar = 2;
signalflag = 0;
number = bpr[i + nstates*j];

extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,integral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag = 1) (

printf('lnThe B[%dl[%dl element is: %s h", i j,"NaNU);)
if (signalflag = 2) {

printf('lnThe B[%d][%d] element is: %s hU, i j,"Inf');)
bpr[i + nstates*j] = number;

) I* THE OUTER 'j' INDICE LOOP */
) /* THE OUTER 'i' INDICE LOOP */

/* CONVERT 'C' MATRIX: */

for (i = 0; i < noutputs; i++)(
for (j = 0; j < nstates; j++)(

matrixstar = 3;
signalflag = 0;
number = cpr[i + noutputs*j];
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,integral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag = 1) {

printf('lnThe C[%d][%d] element is: %s \nW,ij,"NaN");)
if (signalflag = 2) {

printf('lnThe C[%d][%d] element is: %s \n",ij,"Inf');)
cpr[i + noutputs*j] = number;

) /* THE OUTER 'j' INDICE LOOP */
) I* THE OUTER 'i' INDICE LOOP */

I* CONVERT 'D' MATRIX: */

for (i = 0; i < noutputs; i++){
for (j = 0; j < ninputs; j++)(

matrixstar = 4;
signalflag = 0;
number = dpr[i + noutputs*j];
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,integral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag = 1) (

printf('lnThe D[%dl[%d] element is: %s \n",ij,"NaN");)
if (signalflag = 2) {

printf('lnThe D[%dl[%d] element is: %s \n",i,j,"lnfl);)
dpr[i + noutputs*j] = number;

) I* THE OUTER 'j' INDICE LOOP */

) /* THE OUTER 'i' INDICE LOOP */

/* CONVERT 'XO' MATRIX: */

for (i = 0; i < nstates; i++)(
j = 0;
mabixstar = 5;
signalflag = 0;
number = xopr[i];
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,integral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag = 1) (

printf('lnThe XO[%d][%d] element is: %s h",ij,"NaNW);)
if (signalflag = 2) (

printf('lnThe XO[%d][%d] element is: %s hU, i j,"Inft);)
xopr[i] = number;

) /* THE OUTER 'i' INDICE LOOP */

I* IF THE ELEMENT WAS NEGATIVE, CHANGE IT BACK */

for (i = 0; i < nstates; i++)(
for Cj = 0; j < nstates; j++)(

if (asign[i + nstatesfj] == 1)(
apr[i + nstates*j] = -apr[i + nstates*j];

1
1

1

for (i = 0; i < nstates; ii+){
for Cj = 0; j < ninputs; j++){

if (bsign[i + nstates*jl = 1)(
bpr[i + nstates*j] = -bpr[i + nstates*j];

1
1

1

for (i = 0; i < noutputs; i++)(
for ti = 0; j < nstates; j++)(

if (csign[i + noutputs*j] == 1)(
cpr[i + noutputs*j] = -cpr[i + noutputs*j];

1
1

1

for (i = 0; i < noutputs; i++)(
for Cj = 0; j < ninputs; j++)(

if (dsign[i + noutputs*j] == 1){
dpr[i + noutputs*j] = -dpr[i + noutputs*j];

/* CHECK TO SEE IF THE INDIVIDUAL ELEMENTS OF A VECTOR ARE NEGATIVE, AND
IF AN ELEMENT IS, TEMPORARILY CHANGE IT TO POSITIVE */

for (i = 0; i < ninputs; i++){
if (u[i] < O.O){

uinsign[i] = 1;
u[i] = -u[i];

1
1

/* CALCULATE THE FLOATING-POINT REPRESENTATION OF THE NUMBER USING BOTH THE
EXPONENT AND MANTISSA WORDLENGTHS OF THE MPU */

/* CONVERT 'U' VECTOR: */

for (i = 0; i < ninputs; i++)(
j = 0;
matrixstar = 6;
signalflag = 0;
number = u[i];
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E,integral,fractional,&NUMBER);
number = NUMBER;
roundcheck(i j,&number,&signalflag);
if (signalflag == 1) {

printf('lnThe U[%d][%d] element is: %s hW,i,j,"NaN"); }
if (signalflag = 2) (

printf('lnThe U[%d][%d] element is: %s hM,ij,"Inf'); }
u[i] = number;

) /* THE OUTER 'i' INDICE LOOP */

/* IF THE ELEMENT WAS NEGATIVE, CHANGE IT BACK */
-
for (i = 0; i < ninputs; i++)(

if (uinsign[i] = 1){
u[i] = -u[i];

1
1

} /* END MPU-INPUTS FLOATING-POINT FUNCTION */
/* ..
. */

/* ...
..
###########I####### BEGIN QUANT FLOATING-POINT RJNCTION ##################
..
. */

void quant(type,i,temp)
int type; P Determines either 'dstates' or 'outputs' function call */
int i;
double *temp;

I* FUNCTIONS */
void extractexpo();
double number;
int E;

void number2int();
Integer8 integral;
double fractional:

void convert();
double NUMBER;

void roundcheck();

/* LOCAL VARIABLES */
int j;

/* NOW QUANTIZING THE NUMBER (*TEMP) TO THE WORDLENGTH OF THE
MICROPROCESSOR (MPU) */

I* CHECK TO SEE IF THE NUMBER IS NEGATIVE, AND IF IT IS, TEMPORARILY
CHANGE IT TO POSITIVE */

I* CALCULATE THE FLOATING-POINT REPRESENTATION OF THE NUMBER USING BOTH THE
EXPONENT AND MANTISSA WORDLENGTHS OF THE MPU */
j = 0;
I* QUANTIZE THE NUMBER: */
matrixstar = 7;
signalflag = 0;
number = (*temp);
extractexpo(number,&E);
number2int(number,&integral,&fractional);
convert(number,E.integral,fractional,&NUMBER);
number = NUMBER;

roundcheck(i j,&number,&signalflag);
if (type == 1) {

if (signalflag = 1) {
printf('lnThe ds[%dl[%dl element is: %s \n",ij,"NaNw); }
if (signalflag == 2) {
printf('lnThe ds[%d][%d] element is: %s \n",i,j,"Inf");)

I
if (type == 2) (

if (signalflag = 1) {
printf('kThe y[%dl[%d] element is: %s h",i j,"NaNW);)
if (signalflag = 2) {
printf('kThe y[%d][%d] element is: %s h",i j,"Inf'); }

1

(*temp) = number;

/* IF THE NUMBER WAS NEGATIVE, CHANGE IT BACK */

} /* END QUANT FLOATING-POINT FUNCTION */
/* ..
... */

void extractexpo(num ber,E)

I* INPUT ARGUMENTS */
double number;

/* OUTPUT ARGUMENTS */
int *E;

/* LOCAL VARIABLES */
static double lower,upper;
static int i,xx,yy,flagl;

/* EiXTRACr EXPONENT Q */
*E = 0;
flag1 = 0;

if (number < nearzero) {
*E = 0;
return;

1
if (number >= infinityy) (

*E = bound;
return;

1

if (number >= 1.0) (
for (i = biaslimit; i <= bound; i++)(/* BEGIN FOR-LOOP */

xx = i - biaslimit;
lower = pow(2.0,(double) xx);
yy = (i + 1) - biaslimit;
upper = pow(2.0,(double) yy);

if ((number >= lower) && (number < upper))(
*E = i;
flagl = 1;

1
if (flagl == 1)(

break;
1

) /* END FOR-LOOP */
) /* END IF-LOOP */

if ((number >= nearzero) && (number < 1.0)) (
for (i = (biaslimit - 1); i >= 0; i--)(P BEGIN FOR-LOOP */

xx = i - biaslimit;
lower = pow(2.0,(double) xx);
yy = (i + 1) - biaslimit;
upper = pow(2.0,(double) yy);

if ((number >= lower) && (number < upper))(
*E = i;
flagl = 1;

I
if (flagl == 1)(

- break;
I

) /* END FOR-LOOP */
} /* END IF-LOOP */

) /* END 'EXTRACTEXPO' FUNCTION */
/* ...
. */

void number2int(number,integral,fractional)

/* INPUT ARGUMENTS */

double number;

/* OUTPUT ARGUMENTS */
Integer8 *integral;
double *fractional;

/* FUNCTION */
void calcshiftpt();
double shiftpoint;

I* LOCAL VARIABLES */
static double temp,templower,integraltemp;

/* THIS FUNCTION ASSIGNS THE INPUTED 'DOUBLE' NUMBER TO AN 8-BYTE
'INTEGER' NUMBER; THIS 'INTEGER' NUMBER IS STORED IN TWO SEPARATE
'UNSIGNED LONG INT' VARIABLES CALLED 'UPPER' ANb 'LOWER'. */

shiftpoint = 1.0;
calcshiftpt(number,&shiftpoint);
if (number < shiftpoint6) {

temp = (number / shiftpoint);
(*integral).upper = (unsigned long int) temp;
templower = temp - ((double) (*integral).upper);
if (number < shiftpointl) {

integraltemp = 0.0;
(*integral).lower = 0;)

else (
integraltemp = (templower * shiftpoint);
temp = (templower * shiftpointl);
(*integral).lower = (unsigned long int) (temp);

I
temp = ((double) (*integral).upper) * shiftpoint;
temp = (temp + integraltemp);
*fractional = (double) (number - temp); 1

else (
(*integral).upper = (unsigned long int) (shiftpointl - 1.0);
(*integral).lower = (*integral).upper;
*fractional = 0.0;

1

} /* END 'NUMBER2INT' FUNCTION */
/* ..
... */

void calcshiftpt(number,shiftpoint)

/* INPUT ARGUMENTS */
double number;

/* OUTPUT ARGUMENTS */
double *shiftpoint;

/* DETERMINE APPROPRIATE 'SHIFTPOINT' FOR THE 'NUMBER21NT' FUNCTION */
/* THESE ARE 'SCALING' FACTORS FOR MACHINE DEPENDENT INTEGER WORDLENGTH */

if ((number >= shiftpoint5) && (number < shiftpoint6)) (
*shiftpoint = shiftpoint5;)

else if ((number >= shiftpoint4) && (number < shiftpoint5)) (
*shiftpoint = shiftpoint4;)

else if ((number >= shiftpoino) && (number < shiftpoint4)) (
*shiftpoint = shiftpoint3;)

else if ((number >= shiftpoint2) && (number < shiftpoino)) (
*shiftpoint = shiftpoint2; }

else if ((number >= shiftpointl) && (number < shiftpoint2)) (
*shiftpoint = shiftpointl;]

else if ((number >= 0.0) && (number < shiftpointl)) (
shiftpoint = 1.0;] / NO SHIFT (SCALING) NECESSARY */

else (
shiftpoint = shiftpoint6; / THE 'NUMBER' IS TOO LARGE. */

1

) /* END 'CALCSKIFrFT' FUNCTION *I
/* ...
.. */

***********************BEGIN 'CONVERT' FUNCTION***************************
... */

void convert(number,E,integral,fractional,NUMBER)

I* INPUT ARGUMENTS */
double number;
int E;
Integer8 integral;
double fractional;

/* OUTPUT ARGUMENTS */
double *NUMBER:

/* FUNCTIONS */
void calcfraction();
double fractionalx;

Integer8 mantfrac;
int counta:

void extractbit();
Integer8 mant;
char mantissa[MAXSTRING];
int f;

void bit2deci0;
double quantnumber;

/* LOCAL VARIABLES */
Integer8 integralx,mantintegral,integralxx;
static unsigned long int maskl,mask2,tempint,bitl;
Integer8 shiftmantfrac;
static int i,countupper,countlower;
static int bitstakenupper,bitstakenlower,bitstaken;

/* RE-ASSIGN THE INTEGER AND FRACTION PARTS TO NEW VARIABLES */
integralx.upper = integral.upper;
integralx.lower = integra1,lower;
fractionalx = fractional;

maskl = my; I* HAS A '1' IN THE HIGH ORDER BIT */
mask2 = 1; /* USED FOR SHIFTING OPERATIONS FROM '*.LOWER' TO '*.UPPER1 */
countupper = 0;
countlower = 0;

/* CONVERT DECIMAL-INTEGER-PART AND DECIMAL-FRACTIONAL-PART SEPARATELY,
TO BINARY EQUIVALENT */

if (integralx.upper = 0)(
calcfraction(fractionalx,&mantfrac,&counta);
mant.upper = mantfrac.upper;
mant.lower = mantfrac.lower;
/* EXTRACT BIT-BY-BIT FROM MANTISSA AND ASSIGN TO A 'STRING' */
extractbit(mant,mantissa,&f);)

else (
while (integralx.upper < my) {

integralx.upper <<= 1;
countupper = countupper + 1;
tempint = maskl & integdx.lower;
tempint >>= (mz - 1);
tempint = tempint & mask2;
integnlx.upper = integralx.upper I tempint;
integralx.lower <<= 1;

1
mantintegral.upper = integralx.upper;
mantintegral.lower = integralx.lower;
integralxx.lower = integralx.lower:

for (i = 0; i < mz; i++) {
bitl = integralxx.lower & mask2;
if (bitl == 0) {

countlower = countlower + 1;
integralxx.lower >>= 1;)

else {
break;

1
) /* END FOR-LOOP */

if (number >= ((shiftpoint2 - 1.0))) (
bitstaken = (2*mz); }

else if (number >= ((shiftpointl - 1.0))) {
bitstakenupper = mz;
bitstakenlower = (mz - countlower);
bitstaken = (bitstakenupper + bitstakenlower);)

else (
bitstaken = (mz - countupper);

) /* END IF */

if (bitstaken >= (mantx + 1)) (
mantintegral.upper = integralx.upper;
mantintegral.lower = integralx.lower;
mantfrac.upper = 0;
mantfrac.lower = 0;
counta = 0;)

else (
calcfraction(fractionalx,&mantfrac,&counta);

) /* END IF */

/* SHIFT FRACTIONAL-PART TO RIGHT, WILL APPEND TO INTEGRAL-PART */
for (i = 0; i < (bitstaken + counta); i++) (

tempint = mask2 & mantfrac.upper;
tempint <<= (mz - 1);
mantfrac.lower >>= 1;
mantfrac.lower = rnantfrac.lower I tempint;
mantfrac.upper >>= 1;

) /* END FOR-LOOP */

if (number >= ((shiftpointl - 1.0))) (
mant.upper = mantintegral.upper;
mant.lower = mantintegral.lower I shiftmantfrac.upper;)

else (
mant.upper = mantintegral.upper I shiftmantfrac.upper;
mant.lower = shiftmantfrac.lower;

}
/* EXTRACT BIT-BY-BIT FROM MANTISSA AND ASSIGN TO A STRING */
extractbit(mant,mantissa,&f);

) /* END 'ELSE' CONDITION */

*NUMBER = quantnumber;

) I* END 'CONVERT' FUNCTION */
/* ..
. */

void calcfraction(fractionalx,mantfrac,counta)

/* INPUT ARGUMENTS */
double fractionalx;

/* OUTPUT ARGUMENTS */
Integer8 *mantfrac;
int *counts:

I* FUNCTION */
void frac2intO;

/* LOCAL VARIABLES */
static unsigned long int maskl,mask2,tempint;

mask1 = my; /* HAS A '1' IN THE HIGH ORDER BIT */
mask2 = 1; /* USED FOR SHIFTING OPERATIONS FROM '*.LOWER' TO '*.UPPER' */

/* MAKE 'FRACTION' INTO A MACHINE DEPENDENT BIT-INTEGER REPRESENTATION *I
(*mantfrac).upper = 0;
(*rnantfrac).lower = 0;
*counts = 0;

if (fractionalx < invshiftpd) {
frac2int(fractionalx,shiftpoint6,mantfrac);)

else if (fractionalx < invshiftpt4) {
frac2int(fractionalx,shiftpoind,mantfrac); }

else if (fractionalx < invshiftpt3) {
frac2int(fractionalx,shiftpoint4,mantfrac);)

else if (fractionalx < invshiftpt2) (
frac2int(fractionalx,shiftpoint3,mantfrac);)

else if (fractionalx < invshiftptl) {
frac2int(fractionalx,shiftpoint2,mantfrac);)

else (
frac2int(fractionalx,shiftpointl ,mantfrac);

if ((*mantfrac).upper != 0) {
while ((*mantfrac).upper c my) {

(*mantfrac).upper <<= 1;
*counts = *counts + 1;
tempint = mask1 & (*mantfrac).lower;
tempint >>= (mz - 1);
tempint = tempint & mask2;
(*mantfrac).upper = (*man tfrac).upper I tempint;
(*mantfrac).lower <<= 1;

) /* END 'WHILE' LOOP */) /* END 'IF' LOOP */
else (

(*mantfrac).upper = 0;
(*mantfrac).lower = 0;
*counts = 0;

1

) I* END 'CALCFRACTION' FUNCTION */
/* ...
... */

void frac2int(fractionalx,shiftpointx,mantfrac)

/* INPUT ARGUMENTS */
double fractionalx,shiftpointx;

I* OUTPUT ARGUMENTS */
Integer8 *mantfrac;

/* LOCAL VARIABLES */
static double temp,templower,shiftpoint;

/* THIS FUNCTION SCALES THE 'FRACTIONAL'-PART OF A NUMBER TO AN 8-BYTE
'INTEGER' NUMBER; THIS 'INTEGER' NUMBER IS STORED IN TWO SEPARATE
'UNSIGNED LONG INT' VARIABLES CALLED 'UPPER' AND 'LOWER'. */

shiftpoint = shiftpointx;
if (fractionalx >= invshiftpt5) (

temp = (fractionalx * shiftpoint);
(*mantfrac).upper = (unsigned long int) temp;
templower = temp - ((double) (*mantfrac).upper);
(*mantfrac).lower = (unsigned long int) (templower * shiftpoint);)

else {
(*mantfrac).upper = 0;

) /* END 'FRAC2INT' FUNCTION */
/* ..
. */

void extractbit(mant,mantissa,f)

/* INPUT ARGUMENTS */
Integer8 mant;

/* OUTPUT ARGUMENTS */
char mantissa[MAXSTRING]:
int *f:

/* LOCAL VARIABLES */
static int i;
static unsigned long int mask,mask2,tempint;

/* EXTRACT BITS FROM BIT-INTEGER AND ASSIGN TO A CHARACTER STRING */
mask = my; I* MASK HAS A '1' IN THE HIGH ORDER BIT */
mask2 = 1; I* USED FOR SHIFTING OPERATIONS FROM '*.LOWER' TO '*.UPPER' */
*f = 0;

for (i = 0; i <= mantx; i++)(
tempint = mant.upper & mask:
tempint >>= (mz - 1);
if (tempint) (

mantissa[i] = '1';)
else {

mantissa[i] = '0';
1
*f = *f + (mantissa[i] - '0');
mant.upper <<= 1;
tempint = mask & mant.lower;
tempint >>= (mz-1);
tempint = tempint & mask2;
mant.upper = mant.upper I tempint;
mant.lower <<= 1;

1

) /* END 'EXTRACTBIT' FUNCTION */
/* ...
. */

void bit2deci@,f,mantissa,quantnumber)

/* INPUT ARGUMENTS */
int E,f;
char mantissa[MAXSTRING];

/* OUTPUT ARGUMENTS */
double *quantnumber;

/* LOCAL VARIABLES */
static int i;
static double pp,power.factor,temp;
static int shift;

/* QUANTIZE NUMBER INTO FLOATING-POINT FORMAT AS SPECIFIED BY THE
USER */
*quantnumber = 0.0;
temp = 0.0;
factor = 0.0;
shift = E - biaslimit;

if ((E = 0) && (f != 0)) (/* FOR 'VERY-SMALL' NUMBERS */
for (i = 0; i < mantx; i++) (

pp = (double) (shift - i);
power = pow(2.0qp);
factor = ((double) ((mantissa[i] - '0'))) * power;
temp = temp + factor;

1 /* END 'FOR' LOOP */) /* END 'IF' LOOP */
else (

for (i = 0; i <= mantx; i++) (
pp = (double) (shift - i);
power = pow(2.Oqp);
factor = ((double) ((mantissa[i] - '0'))) * power;
temp = temp + factor;

1
) /* END 'ELSE' CONDITION */

*quantnumber = temp;

) /* END 'BIT2DECI' FUNCTION */
/* ..
. */

void roundcheck(i,j,number,signalflag)

/* INPUT ARGUMENTS *I
int i j ;

/* OUTPUT ARGUMENTS */
double *number;
int *signalflag;

/* LOCAL VARIABLES */
int ii = i;
int jj = j;
int starsign[l];

/* CHECK FOR THE ROUNDING METHOD CHOSEN, THEN PERFORM APPROPRIATE
OPERATIONS */

if (matrixstar = 1){
starsign[Ol = asign[ii + nstates*jj];)

else if (matrixstar == 2){
starsign[Ol = bsign[ii + nstates*jj]; 1

else if (matrixstar == 3){
starsign[O] = csign[ii + noutputs*jj];)

else if (matrixstar == 4){
starsign[O] = dsign[ii + noutpu~s*jj];)

else if (matrixstar == 5){
starsign[O] = xOsign[ii + nstates*jj];)

else if (matrixstar == 6)(
starsign[O] = uinsign[ii + ninputs*j];)

else if (matrixstar == 7){
starsign[O] = quantsign[O]; 1

if (roundx = 1){ /* ROUND TO +Inf */
if (((*number) > LFN) && (starsign[O] == 1)) (

*number = MNFN; }
else {

*number = *number;
1

I
else if (roundx == 2){ /* ROUND TO Zero */

if ((*number) > LFN) {
*number = LFN;)

else {
*number = *number;

1
1
else if (roundx == 3){ /* ROUND TO -1nf */

if (((*number) > LFN) && (starsign[O] == 0))(
*number = LFN;)

else {
*number = *number;

1
I
else (

*number = *number; /* No 'other' rounding method
chosen, therefore, return the default mode (e.g., R2Nearest),
which returns infinitely precise value as determined by
the given destination format. */
)

if ((*number) > infinityy) (
signalflag = 1;) / 'NaN' */

if ((*number) == infinityy) {
signalflag = 2; } / 'Inf' */

) /* END 'ROUNDCHECK' FUNCTION */
/* ...
... */

/* Function to return any initial conditions on the states */
static
#ifdef -STDC-
void init-conditions(doub1e *xO)
#else
void init-conditions(x0)
double *xO;
#endif /* -STDC- */
{

int i;
double *pr;

pr = (double *)mxGetPr(XO);
for (i=mxGetM(XO); i; i--) (

*xO++ = *pr++;
1

1

/* Function to return derivatives */
static
#ifdef -STDC-
void derivatives(doub1e t, double *x, double *u, double *dx)
#else
void derivatives(t,x,u,dx)
double t, *x, *u; /* Input variables */
double *dx; P' Output variable */
#endif /* -STDC- */
I

return; /* No continuous states */

/* Function to perform discrete state update */
static
#ifdef -STDC-
void dstates(doub1e t, double *x, double *u, double *ds)
#else
void dstates(t,x,u,ds)
double t, *x, *u; /* Input variables */
double *ds; I* Output variable */
#endif /* -STDC- */
I

/* FUNCTIONS */
void mpuinputs();
void quant();

I* LOCAL VARIABLES */
int i j;
double accum;
double *apr, *bpr;

apr = (double *)mxGetPr(A);
bpr = (double *)mxGetPr(B);

/* Matrix Multiply x(n+l) = Ax(n) + Bu(n) */

I* Update discrete states on a sample hit */

mpuinputs(u); I* Adjusts inputs to MPU */

for (i = 0; i < NDSTATES; i++) {
accum = 0.0;

- /* Ax@) */
for Cj = 0; j < NDSTATES; j++) {

accum = accum + apr[i + NDSTATES*j] * xu];
I

/* Bu(n) */
for Cj = 0; j < NINPUTS; j++) (

accum = accum + bpr[i + NDSTATES*j] * uu];
1
quant(1 ,i,&accum); P QUANTIZE NUMBER */
ds[i] = accum;

1
) /* END IF-LOOP */

] /* END DSTATES FUNCTION */

/* Function to return outputs */

static
#ifdef -STDC-
void outputs(doub1e t, double *x, double *u, double *y)
#else
void outputs(t,x,u,y)
double t, *x, *u; I* Input variables */
double *y; I* Output variable */
#endif P -STDC- */
1

/* FUNCTIONS */
void mpuinputs();
void quant();

/* LOCAL VARIABLES */
int i j;
double accum;
double *cpr, *dpr,

cpr = (double *)mxGetPr(C);
dpr = (double *)mxGetPr(D);

P Matrix Multiply y(n) = Cx(n) + Du(n) */

mpuinputs(u); I* Adjusts inputs to MPU */

for (i = 0; i < NOUTPUTS; i++) {
accum = 0.0;

I* Cx(n) */
for (j = 0; j < NDSTATES; j++) (

accum = accum + cpr[i + NOUTPUTS*j] * xu];
1

I* Du(n) */
for = 0; j < NINPUTS; j++) {

accum = accum + dpr[i + NOUTPUTS*j] * ulj];
1
quant(2,i,&accum); /* QUANTIZE NUMBER */
accum = accum * pbda;
y [i] = accum;

1

) /* END OUTPUTS FUNCTION */

/* Function to return singularities */
static
#ifdef -S TDC-
void singularity(doub1e t, double *x, double *u, double *sing)
#else
void singularity(t,x,u,sing)
double t, *x, *u; /* Input variables */
double *sing; /* Output variable */

#endif /* -STDC- */
1

return; P Default is to have no singularity */
I

#include "simulin2.h" /* Include file to perform MEX glue */

I* END 'h4PUFL.C' PROGRAM
...
...
*I

/* Filename: S1MSUP.H */
/* Date: May 4, 1994 */
/* Header file for discrete-time hits. */
/* This code was provided by The Mathworks, Inc. */

#include <math.h> /* needed for floor() prototyping */

#ifdef NSAMPLE

static
#ifdef -STDC-
double next-hit-ftn(doub1e ts, double offset, double t)
#else
double next-hit-ftn(ts, offset, t)
double ts, offset, t;
#endif I* -STDC- */
(

double nosamples, tnext;

nosamples = (t-offset)/ts;
tnext = offset + (1 + floor(nosamp1es + le-13*(1 + nosamples))) * ts;
retum(tnext);

1

/* - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - */
/* code-tnext-ftn - works out the next sample hits for */
/* sampled data blocks. */
/* .. * 1
static
#ifdef -STDC-
void code-tnext-ftn(double t,double *OffsetTimes,double *SampleTimes,double *SampleHit,double
*NextHit,double *tnext)

-#else
code-tnext-ftn(t, OffsetTimes, SampleTimes, SampleHit, NextHit, tnext)
double t, *OffsetTimes, *SampleTimes; P Input variables */
double *SampleHit, *NextHit, *tnext; /* Output variables */
#endif P S T D C - */
(

int i;
static double Neareps = le-13;
double nearest-next-hit, b-next;

/* Loop through sample times working out when the next sample hit is for
all of the sample times store this in the vector 'next-hit' and return
the nearest one to the present time, t. */

for (i=O; icNSAMPLE; i++) {

I* On the first iteration the sample times are set to -1e30 */
if (SampleHit[i] == -1e30) (

/* First update */
SampleHit[il = next-hit-ftn(SarnpleTimes[i], OffsetTimes[i], t - SampleTimes[i]);
b-next = next-hit-ftn(SampleTimes[i], OffsetTimes[i], t);

I
else (

I* Next scheduled sample hit is stored in next-hit */
b-next = NextHit[i];

SampleHit[i] = b-next;

I* If the next hit has been overtaken then calculate another one */
if (b-next <= t)
b-next = next-hit-ftn(SampleTimes[i], OffsetTimes[i], t);

1

I* Calculate nearest hit to the present time */

/* On the first iteration set this to be the first one */
if (i == 0)

nearest-next-hi t = b-next;

else if (fabs(nearest-next-hit - b-next) < Neareps) {

I* Attempt to correct sample clash problem for clashing sample hits
i.e. set near sarnple hits to the same time */

b-next = nearest-next-hit;

I
else (

if (b-next < nearest-next-hit)
nearest-next-hit = b-next;

1

NextHit[i] = b-next;

tnext[Ol = nearest-next-hit;

I* END 'S1MSUP.H' HEADER-FILE */

I* Filename: SIMULIN2.H */
/* Date: May 4, 1994 */
/* Header file for interfacing C source code (e.g., Computational Routine) with that of MATLAB /
SIMULINK code (e.g., Gateway Routine). */

I* SIMULIN2.H - Include file for making MEX-file systems and blocks
* with variables passed down from the workspace.
*
* This file should be included at the end of a MEX-file system.
* It performs an interface to the MEX-file mechanism which allows
* blocks and systems to be entered only as their corresponding
* mathematical functions.
*
* This template performs all checks for sizes of parameters.
* With this include file you can pass down parameters from the
* workspace to the system. (See for example stspace.c).
*

* Syntax of MEX-file S-function:
*
* [sys, xO] = filename(t,x,u,flag)
*
* Andrew Grace Oct 11, 1990
* Copyright (c) 1990-93 The Mathworks, Inc.
* All Rights Reserved
*/

/* Discrete-time Code */

#include "simsup.hM /* Header file for discrete-time hits. */

/* Input arguments */
#define T-IN ~rhs[o]
#define X-IN ~ r h s [l l
#define U-IN prhs[21
#define FLAG-IN p M 3 1

#ifdef NO-COEFF
/* NCOEFFS now replaces the number of external parameters in simulin2.h */
#define NCOEFFS NO-COEFF
#endif

I* Output Arguments */

#ifdef -STDC-
void mexFunction(int nlhs, Matrix *plhs[], int nrhs, Matrix *prhs[])
#else
mexFunction(nlhs, plhs, nrhs, prhs)
int nlhs, nrhs; Matrix *plhs[], *prhs[];
#endif /* -STDC- */
I

int flag, i;
double *pr;

/* Check validity of arguments */

if (nlhs > 2 11 nrhs != 4 + NCOEFFS) (
mexErrMsgTxt("System MEX file called with wrong number of arguments. ");

1
if (mxGetM(FLAG-IN) != 1 II mxGetN(FLAG-IN) != 1) (

mexErrMsgTxt("FLAG must be a scalar in System MEX file.");
1
flag = (int) mxGetPr(FLAG-IN)[O];

/* Load coefficients into global matrix structure */
for (i=O; i<NCOEFFS: i++) (

Coeffs[i] = prhs[4+i];
1

/* Special case FLAG=O return sizes and initial conditions */
if (flag=&) {

initialize();
SYS-OUT = mxCreateFull(6, 1, REAL);
pr = (double *)mxGetPr(SYS-OUT);
pr[O] = NSTATES;
pr[l] = NDSTATES;
pr[2] = NOUTPUTS;
pr[3] = NINPUTS;
pr[4] = NSING;
pr[5] = NEEDINPUTS;
if (nlhs >1) (

XO-OUT = mxCreateFull(NSTATES + NDSTATES, 1, REAL);
init~conditions(mxGetPrO(0~0UT));

I
return;

I
if (nlhs >= 0) {

if (nlhs > 1) (
mexErrMsgTxt("System MEX file called with wrong number of output arguments.");

I
/* Error checking - ommitted for speed

- but may cuase segmentation faults if
called with the wrong sizes of arguments */

if (mxGetM(X-IN)*mxGetN(X-IN) != NSTATES + NDSTATES) {
mexErrMsgTxt("State vector X wrong size in System MEX file.");

I
if (mxGetM(U-IN)*mxGetN(U-IN) != NINPUTS) (

mexErrMsgTxt("1nput vector U wrong size in System MEX file.");
I
if (mxGetM(T-IN) != 1 I1 mxGetN(T-IN) != 1) {

mexErrMsgTxt("T must be a scalar in System MEX file.");
I

I
switch (flag) {
case 1:
case -1:

if (nlhs >= 0)
SYS-OUT = mxCreateFull(NSTATES, 1, REAL);

derivatives(*mxGetPr(T-IN), mxGetPr(X-IN), rnxGetPr(U-IN), mxGetPr(SYS-OUT));
break;

case 2:
case -2:

if (nlhs >= 0)
SYS-OUT = mxCreateFull(NDSTATES, 1, REAL);

dstates(*mxGetPr(T-IN), mxGetPr(X-IN), mxGetPr(U-IN), mxGetPr(SYS-OUT));
break;

case 3:
if (nlhs >= 0)

SYS-OUT = mxCreateFull(NOUTPUTS, 1, REAL);
outputs(*mxGetPr(T-IN), mxGetPr(X-IN), mxGetPr(U-IN), mxGetPr(SY S-OUT));
break:

case 4:
if (nlhs >= 0) (

SYS-OUT = mxCreateFull(1, 1, REAL);
mxGetPr(SYS-OUT) = le30; / Defaults to very large number */

I
mxGetPr(SYS-OUT) = le30; / Defaults to very large number */

code-tnext-ftn(*mxGetPr(T-IN), offset-times, sample-times, sample-hit, next-hit,
mxGetPr(SY S-OUT));

break;

case 5:
if (nlhs >= 0)

SY S-OUT = mxCreateFull(NSING, 1, REAL);
singularity(*mxGetPr(T-IN), mxGetPr(X-IN), mxGetPr(U_IN), mxGetPr(SYS-OUT));
break:

default:
mexErrMsgTxt("Not a valid flag number for MEX System.");
break;

I
1

/* END 'SIMULIN2.H' HEADER-FILE */

A.7. Compilation Command for C MEX-files

The following UNIX command allows for the compilation of a given "C" source file (e.g., "mpufl.~"), and
therefore creates the necessary "*.CMEX4 (or equivalent)" executable file. This executable file's filename
(e.g., "mpufl") is to be used in a given S-Function Block.

Example:

The UNIX command is:

Note: '-lm' links the math library.

