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CHAPTER 1 

INTRODUCTION 

Deadlock is a phenomenon which occurs in Flexible Manufacturing Systems when 

multiple processes compete for the use of limited resources. In this research a method for 

detection of deadlock ancl its avoidance has been developed. 

Consider the example of a flexible manufacturing workstation consisting of a 

Robot and a CNC Mill machine, as shown in Figure 1.1. 

PARTS 

H.. . - -  
- - - - - - - -  - - - - -  - - - MILL 

--  . 
I . -. - / \ 

/ 

I 

Figure 1.1. Example of a manufacturing system. 

Parts arrive on a conveyor belt ("Parts In") and are picked up immediately by the robot for 

transportation to the Mill. When a part has been processed by the Mill it is transported by 

the robot to the exit conveyor ("Parts Out"). Assume now that a part arrives on the 

conveyor belt and is picked up and transferred to the Mill. Before this part can be 

processed completely in the Mill, another part arrives on the conveyor. The robot picks the 

part up and then waits for the Mill to be free. The Mill will eventually complete its 

machining operations and the robot will be called upon to transfer the part to the exit 



conveyor. However the robot is busy-it has a part which needs to be transferred to the 

Mill. The Mill is busy--it needs the robot to transfer a part out. Deadlock has occurred. 

1 . 1  GOALS 

In this thesis we: seek to develop a theory for the detection and avoidance of 

deadlock in a class of manufacturing systems. The thesis has the following goals: 

1. To develop formalisms for the detection of deadlock in a class of flexible 

manufacturing systems. 

2.  To develop formalisms for the avoidance of deadlock so as to guarantee a 

deadlock-free system. 

3. To develop a computer program which implements the deadlock detection and 

avoidance method developed. 

4. To test the method developed on a number of example systems. 

1.2 LITERATURE SEARCH 

The problem of deadlock has been addressed by a number of researchers. In this 

section a survey of research in the field is presented. A comparison with the method 

developed in this thesis is presented for every research paper surveyed. 

Wysk, Joshi, Yang [I] have used directed graphs to detect deadlock in Flexible 

Manufacturing Systems. In their approach, called a Deadlock Detection Procedure(DDP), a 

structure called a Wait Relation Graph(WRG) is used to model part flow and resource- 

operation relations. Briefly, a WRG is a directed graph with nodes representing resources 

and arcs operations. The WRG is developed at each state and examined for deadlock. 

Appropriate avoidance measures are then taken. This thesis develops on the method 



presented in this paper, and WRGs are detailed in Chapter 2. The paper identifies two 

levels of deadlock. In the first theorem sufticient conditions for the occurrence of first level 

deadlock are explained. Briefly these are: the existence of at least one circuit; number of 

active jobs in this circuit must equal the number of arcs; the number of resources in the 

circuit must equal the number of arcs. The paper contains a detailed description of a matrix 

multiplication method used to detect all circuits. The second level deadlock is then 

described. This occurs from interaction between circuits. The paper describes a method to 

convert a WRG to a second-level graph and detect all second-level circuits. 

Cho, Kumaran, Wysk [2] have presented a graph-theoretic deadlock detection and 

resolution procedure. A "system status graph" is used to represent part routings of all parts 

of the system. It is updated whenever a part movement occurs. The graph is then analyzed 

for deadlock. Two types of system deadlocks--part flow deadlock and "impending part 

flow deadlock--are detected using the system status graph. A part flow deadlock is a 

situation in which further part movements are impossible. The existence of "a simple 

bounded circuit" is "a sufficient and necessary condition for part flow deadlock". Part flow 

deadlock is resolved by moving a part to a temporary storage buffer and then sequentially 

moving the other parts. A second scheme of deadlock avoidance can also be employed if 

buffers are full or not available. Here the system is checked for part flow deadlock before 

the part moves to its next destination. The deadlock causing transition is then inhibited. 

No guidelines on when each method would be suitable are presented. The concept of 

"nonsimple bounded circuit" is introduced: "a non simple bounded circuit is a necessary 

condition for impending part flow deadlock". Both cases of empty and non-empty 

common nodes are considered. A heuristic scheme for analyzing deadlock in nonsimple 

bounded circuits is also presented. 

Zhou and DiCesare [3] have worked on the shared resource allocation problem. 

Two essential resource sharing concepts in the context of Petri Nets are developed. The 



first is a structure called a Parallel Mutual Exclusion (PME) proposed for a resource shared 

by different independent processes. It is represented as a tuple that comprises an initially 

marked place and a set of transition pairs. The shared resource place models the availability 

of the shared resource, and each transition pair defines a process. A theorem on Petri Nets 

containing PMEs is presented. Briefly, the net is live, bounded and reversible if the shared 

resource is added as a PME. A Sequential Mutual Exclusion (SME) models a resource 

shared by sequentially related processes. It can be visualized as a sequential composition of 

several PMEs with the same shared resource place. The liveness and reversibility of a net 

containing a SME can be affected by an inappropriate distribution of initial tokens. A 

concept of token capacity is proposed. A second theorem provides sufficient conditions for 

a Petri Net that contains a SME to be live, bounded and reversible. Briefly, the number of 

initial tokens should be limited to the token capacity of the SME. 

Banaszak and Krogh [4] have developed an algorithm to avoid deadlock in Flexible 

Manufacturing Systems. Their Deadlock Avoidance Algorithm @AA) is a restriction 

policy for constraining real-time resource allocation options. Deadlock is identified as 

being caused by circular wait relations between resources. The DAA is a feedback policy 

that uses the current states of the resources and the known operation sequences for the 

active jobs to inhibit requests for resources only when they will potentially lead to deadlock 

conditions. DAA partitions the production sequence for a process into subsequences or 

zones. Unshared zones correspond to production steps using unshared resources. Shared 

zones correspond to production steps using shared resources. Two DAA rules are 

presented. Rule DAAl allows a token to enter a new zone in the production sequence only 

when the capacity in the unshared subzone of the zone exceeds the number of jobs 

currently in the zone. Rule DAA2 assures that if a shared resource is being requested by 

the job, all of the shared resources in the remainder of the zone are available at that time. 



Hsieh and Chang [5] have developed a method to synthesize a deadlock free 

controller based on the Petri Net(PN) t'ormalism. They start by constructing independent 

PNs to represent the manufacturing processes of individual jobs and individual resources. 

These jobs and resource subnets are merged into a Petri Net representing the entire system 

and control places added. The deadlock avoidance problem is then formulated as finding a 

sequence of transition firings which will keep the Petri Net live and achieve a high resource 

utilization. The sequence of transitions is called a control action. A set of theorems which 

describe conditions for synthesis of deadlock-free control actions is presented. Concepts 

such as "minimum resource requirement" are introduced and used in determining when it is 

possible to synthesize a control policy which keeps the net live. In addition to the 

dispatching policy, a "Sufficient Validity Test" is introduced. This evaluates in a heuristic 

way when a control policy is valid and when it must be replaced. A replacement procedure 

to modify an invalid control action and then apply the sufficient validity test is described. A 

finite number of such iterations is needed to find a valid, replacement, control policy. The 

Deadlock Avoidance Controller(DAC)--consisting of the dispatching policy, sufficient 

validity test and replacement procedure--is applied at every state to determine the next valid 

state. 

On comparing the deadlock detection and avoidance method developed in this thesis 

with current research, we found that the method is more reliable and achieves better 

resource utilizations compared to PME, SME, DAA and DAC methods. Another 

improvement was that all computations for deadlock detection and avoidance are done off- 

line. There is no diversion of computation resources for any deadlock related calculations 

while the process is running. 



1.3 OUTLINE OF THESIS 

The next chapters will present the deadlock detection and avoidance theory, the 

computer program developed, and iluustrative examples. Chapter 2 presents formalisms 

developed for the detection and avoidance of deadlock in manufacturing systems. 

Assumptions for the class of manufacturing systems considered, definitions and theorems 

are present in this chapter. Chapters 3 through 5 describe the development of a computer 

program to detect and avoid deadlock in a FMS. Chapter 3 describes algorithms used in 

the creation of the Wait Relation Graph of the system. Chapter 4 describes algorithms 

used in detection of primary circuits. The algorithms in Chapter 5 are used in detection of 

higher order circuits. Chapter 6 contains results obtained from using the computer program 

to analyze various example FMSs. Conclusions follow in Chapter 7. 



CHAPTER 2 

THE DEADLOCK FREE SOLUTION 

In this chapter a solution to the problem of deadlock in manufacturing systems is 

presented. The chapter starts with an illustmtive example, one which is representative of 

the type of manufacturing systems being modelled in this research. Assumptions regarding 

the n a w  of manufacturing systems being modelled are then presented. After a brief 

section on terminology, the Wait Graph Relation(WRG) technique of modelling a 

manufacturing system is introduced. Important WRG structures such as paths and circuits 

are defined. The occurence of deadlock is illustrated using Wait Relation Graphs. Next, 

the formalism proposing the deadlock free solution is presented. The chapter concludes 

with a generalized formalism, one which can create the deadlock free solution to any 

manufacturing system. 

2.1 .  ILLUSTRATIVE EXAMPLE 

In this section, a hypothetical example typical of the manufacturing systems 

modelled in this research is presented. 

Dies Incorporated is a small company in Athens, Ohio. They manufacture four 

different dies for the truck industry; their main customer is Kenworth Truck Company in 

Chillicothe, Ohio. The process plan for manufacture of the four dies is as follows: 

Die 1 - Robot, Mill, Robo t , Lathe, Robot. 

Die 2 - Robot, Lathe, Robot. 

Die 3 - Robot, Drill, Robot. 

Die 4 - Robot, Mill, Robot, Drill, Robot. 



PART 1 IN PART 2 IN PART 3 IN PART 4 IN 

PART 1 OUT PART 2 OUT PART 3 OUT PART 4 OUT 

Figure 2.1 .Dies Incorporated--4 processes sharing 4 resources. 



The resources in this system are Robot, D~ill ,  Mill and Lathe. There is one unit of each 

type of resource. The manufacture of each of the four dies can proceed concurrently, 

sharing the available resources. If a resource required by a specific operation is busy, the 

part will wait until the resource is free again. Thus, we can have multiple dies of the same 

type being manufactured, and have different dies being manufactured concurrently. This 

system is representative of the kinds of manufacturing systems modelled in this research. 

2.2. ASSUMPTIONS 

The following assumptions are made regarding the nature of the manufacturing 

system being modelled: 

1. An operation uses just one resource. 

2. There is one unit of every resource in the system. 

3. There is no branching of operations in a process plan. Any operation is 

always preceded, andlor suceeded by a single operation. 

4. An operation can only process one part at any time. 

5.  All operations take a finite time for completion. 

6. There are a finite number of operations in the process plan. 

2.3 mRMINOLOGX 

The following terminology will be used in this research: 

R Set of resources in the system. 

Q Set of products to be manufactured. 

oper(q) For each product q E Q, the operation sequence 

Oper(q) = {ray rb, rc, ..., r m }  is an ordered list of resources, 



which defines the order that the resources are required by 

process q. 

2.4. WAIT RELATION GRAPH REPRESENTATION OF SYSTEMS 

In this research, the Wait Relation Graph technique of modelling manufacturing 

systems is adopted. The present section contains a series of definitions introducing Wait 

Relation Graphs and related concepts. These are followed by the Wait Relation Graph 

representation of the Dies Incorporated system presented in Section 2.1. 

2 .4 .1  DEFINITIONS 

Wait Relation Graph 

The Wait Relation Graph G = (R, A )  is a digraph of vertices and arcs. R is the set 

of vertices; A is the set of arcs. Each vei-tex represents a resource in the system. The arcs 

represent the operations in the system. An arc a is drawn between resources rl and r2, if r2 

immediately follows rl in at least one operation sequence Oper(q), q E Q. 

Head function 

Given an arc a E A, head(a) = r, if arc a is directed from resource v to resource r. 

Tail function 

Given an arc a E A,  tail(a) = v, if arc a is directed from resource v to resource r. 

Subg raph 

A subgraph G l c  G is a graph where R l c  R, A l c  A and tail(a) E R1, head(a) E 

R1, V a E A1. 



Path 

A path P= (R, A) is a subgraph of G such that all elements of R and A can be 

ordered as 

rlalr2a2r3ay . .Un-lrn, 

where ri = tail(ai) and ri+l = head(ai). 

Simple Path 

A Simple Path P = (R, A) is a path where all the elements in the ordered list are 

distinct. 

Closed Path 

A Closed Path P = (R, A) is a simple path where the ordered elements form a loop. 

Arcs and vertices may be traversed more than once in the loop. 

Circuit 

A circuit is a closed path. 

Primary Circuit 

A Primary Circuit C= (R, A) is a closed path where each resource can be at the head 

or tail of only one arc. 

Union of circuits 

A union of circuits C1 = (RIA I), C2 = (R2A2) is a single closed path C = ( R, A) 

where R = (R, u R,) and A = (A, u A,). C is denoted as C = C1uC2 



Committed Arc 

An arc a is committed if any one operation represented by arc a is processing a part. 

Committed Resource 

A resource r is committed if any arc a is committed where tail(a) = r. 

Free Resource 

A resource r i spee  if it is not committed. 

Busy Resource 

A resource r is busy if it is processing a part. 

Idle Resource 

A resource is idle if it is not processing a part. 

A distinction exists between committed, free, busy and idle resources. A resource 

may be busy and not committed. This distinction arises only for those resources required 

at the end of a process. Consider the manufacturing system M whose process plan is as 

follows: 

Part1 Rd=ot Mill F&ot 

P a r t 2  Rdmt Lam 

The Wait Relation Graph is depicted in Figure 2.2. 



Operation 2 

Figure 2.2. Wait Relation Graph for system M. 

To illustrate the distinction between committed, free, busy and idle resources, 

assume: 

1 .  The Robot is transporting part 1 to the Mill. 

2. The Lathe is processing part 2. 

3.  The Mill is not processing any part. 

In this state, the Robot is committed. However the Lathe being the last resource required in 

process 2 is not committed to any arc. We say it is free, although it is busy. The 

remaining resource--namely the Mill--is not processing any part and is an idle and free 

resource. 

State of a manufacturing system 

The state s of a manufacturing system is the current assignment of operations to 

resources. 

The set S 

S is the set of all admissable states s for the manufacturing system. 



Commitment 

The commitment of arc a in state s is defined as 

if a is a committed arc 
if a is not a committed arc 

Commitment of a subgraph 

The commitment of a subgraph G1 = (R1, A 1) in state s is the sum of the 

commitment of every arc a E A 1 and is expressed as 

Comm(Gl, s) = Comrn(a, s). 
a ~ A 1  

Capacity 

Capacity of a subgraph G 1 = (R1, A 1) is the number of resources or vertices in GI.  

Capacity of a subgraph is abbreviated Cap(G1). (Note that Cap(G1) = Cardinality(R1).) 

Slack 

Slack of a circuit C = (R, A) in state s is the difference between the capacity of the 

circuit and the commitment of all its arcs in s and is expressed as 

Slack(C, s) = Cap(C) - Comm(C, s). 

Propagation 

Propagation is the transfer of a part from one operation to the next. In a 

propagation, the operation the part is currently in is completed, the resource occupied is 

freed, the part is transfered to the next operation and the next operation is started. The 

resource needed by the operation is occupied and busy. 



This concludes the section on detintions. We now consider an example of a 

manufacturing system. All circuits in the system will be listed. 

2.4.2  EXAMPLE 

The Wait Relation Graph replwxntation of the manufacturing system at the Dies 

Incorporated company is shown in Figure 2.3. 

Mill Drill 

Figure 2.3. Wait Relation Graph of Dies Incorporated. 

For the Wait Relation Graph, the following sets are defined: 

1. R = { Robot, Drill, Mill, Lathe). 

2. A = Ial, az, as. a 4 ,  as, ' 3 6 ) .  

There are three primary circuits in the Wait Relation Graph. These are: 

1. C1: ((Robot, Drill), (a2 , a1 )), where the elements are ordered, 

Robot a1 Drill a2 Robot 

2. C2: ((Robot, Mill}, (a3 , a4}), where the elements are ~rdered- 

Robot a3 Mill a4 Robot; and 

3. C3: ((Robot, Lathe}, (as , a6}) ,  where the elements are ordered, 



Robot as Lathe a6 Robot. 

The following are unions of the primary circuits: 

1. C4 : C1 v C2, where the elements are ordered, 

Robot a1 Dlill a;! Robot a3 Mill a4 Robot; 

2. Cs: C2 v C3 where the elements are ordered, 

Robot a3 Mill Q Robot as Lathe a6 Robot; 

3. C6: C1 v C3 where the elements are ordered, 

Robot a1 Drill a;! Robot as Lathe a6 Robot; and 

4. C7: C1 v C2vC3 where the elements are ordered, 

Robot a1 Drill a2 Robot a3 Mill a4 Robot as Lathe a6 Robot. 

2.5. A N U S I S  OF CIRCUITS IN WAIT RELATION GRAPHS 

This section presents the formalisms which develop a solution to the problem of 

deadlock. The theory first considers s~ucturally simple Wait Relation Graphs. Theorems 

1 and 2 consider systems whose WRGs consist of a single circuit. In theorems 3 and 4, 

WRGs considered consist of two circuits intersecting in a single vertex and along a simple 

path, respectively. Theorems 5 and 6 consider larger systems. Theorem 5 examines the 

case where an existing WRG is altered by the addition of a single circuit intersecting the 

existing Graph in a vertex. In Theorem 6, the WRG is altered by the addition of a single 

circuit intersecting the existing Graph along a simple path. The section concludes with a 

final theorem for general systems. Here the deadlock-free solution to a general system is 

created using the results presented in the previous six theorems. 

The most basic type of deadlock occurs when all the resources on a simple circuit 

are committed. Figure 2.4 depicts an example of a primary circuit. The graph is 

representative of the systems considered in Theorems 1 and 2. 



Figure 2.4. System whose WRG is a primary circuit. 

Theorem 1 describes the occurence of deadlock in a manufacturing system whose 

Wait Relation Graph consists of a single primary circuit. 

Theorem 1. Let the Wait Relation Graph G of a manufacturing system consist of a single 

primary circuit C = (R, A). C is deadlocked in state s, if 

Proof. In state s, (2-3) implies Comm(C, s) = Cap(C). Hence, each arc in C is 

committed. This means each resource must wait until the next one is free before it can 

propagate its part. Hence, propagation is not possible, and state s is deadlocked. 



One way to prove that a state s is not deadlocked is to determine a series of 

propagations which will remove all parts from the system. The following lemmas 

formalize this concept, laying the foundation for the proofs. 

LemmaL, Let C be a closed path in a Wait Relation Graph G of a system. Let so be the 

initial state in C. For any state si reached after a finite number of propagations 

Proof.  As propagation occurs over C, no new parts enter C. The number of committed 

arcs in C either decreases--if parts are completed and removed from the system--or is 

unchanged. In either case, slack of circuit C cannot increase. 

Lemma. Let Si be any state in a system. Let no new parts enter the system. If 

deadlock does not exist, parts in the system can be removed in a finite number of 

propagations. 

Proof.  There are a finite number of operations in any process. Assuming there is no 

deadlock, after a finite number of propagations a part will complete all operations in its 

process plan and exit the system. As no new parts enter the system, the number of parts in 

the system will decrease as a part exits the system. After a finite number of operations, all 

parts will complete their operations and exit the system. 

The following theorem proposes a deadlock free solution to a system whose Wait 

Relation Graph consists of a prima~y circuit. 



m r e m  2. Let the Wait Relation Graph G of a manufacturing system consist of a 

primary circuit C. C is deadlock-free if 

Emaf. Let slack(C, so) > 0 for some state so E S. In state so, at least one arc is not 

committed, implying there is one free resource r in the system. Propagation can occur, 

specifically, on the operation represented by the arc a, where tail(a)=r. Let sl be the state 

of the system after the propagation. By Lemma 1 

This process can be repeated until all parts exit the system. w 

Theorem 2 is applicable to a system whose Wait Relation Graph consists of a single 

circuit. Wait Relation Graphs in general consist of circuits intersecting in one or more 

vertices. Henceforth, we will consider such systems. We start by considering the most 

basic of such systems--those comprised of the union of two primary circuits. Figure 2.5 

depicts the graph of such a system. Here two circuits, C1 and C2, intersect in a single 

vertex v. There is no assumption on the number of vertices and arcs in the circuits. 



Figure 2.5. System of two circuits interacting in a single vertex. 

In the next lemma the slack of the union of two circuits interesecting in a single 

vertex will be expressed in terms of the slacks of the individual circuits. Figure 2.5 will 

serve as a reference for this lemma. 

Lemma. The slack of a circuit C = C1 u C2 , where C1 ,C2 intersect in a single vertex 

v,  is given by 

Proof. As C1 ,C2 intersect in a single vertex, 

Cap(C) = Cap(C1) + Cap(C2)- 1. 

As there are no common arcs between C1 $2, 

Comm(C, s) = Comm(C1, s) + Comm(C2, s). 



Combining (2-2). (2-5). and (2-6), we get 

which simplifies to give 

Two circuits could also intersect along a path. Figure 2.6 depicts the WRG of a system of 

two circuits interacting along a simple path P. Lemma 4 analyzes the system and presents a 

result on the slack. 

Figure 2.6. Two circuits intersecting along a simple path P. 

Lemma The slack of a circuit C = C1 u C2,  where C1 and C2 intersect along a simple 

path P which begins at vl and ends at v2 is given by 

slack(C1 u C2, S) = slack(C1, s) + slack(C2, s )  - Cap(P) + Comm(P, s). 



p-. As C1 and C2 intersect in a simple path, capacity of the union of C1 and C2 is 

given by 

As there are common arcs between C1 and C2 , commitment of the union of C1 and C2 is 

given by 

Combining (2-2), (2-7), and (2-8), we obtain 

slack(C1 u C2, S) = slack(C1, s) + slack(C2, s) - Cap(P) + Comm(P, s). 

Lemma 5 considers a system comprising two circuits C1 and C2 which intersect each other. 

A result on the slack of circuit C2, due to a propagation on circuit C1, is presented. 

-ma 5. Let C1 and C2 be two circuits which intersect each other. In state so, let a part 

propagate in C1. Let sl be the state reached after propagation. Then, 

Proof. In state so, a part could propagate from C1 = (R 1, A to C2 = (R2, A2), 

increasing Comm(A2, s l )  by 1. Hence, slack(C2, sl) decreases by at most 1. If no 

propagation occurs into C2, slack(C2, so) is unchanged. In either case the hypotheses is 

true. ¤ 



In Lemma 6,  a result on commitment of a simple path common to two circuits is presented. 

Lemma6, Let C1 and C2 be two circuits intersecting along a subgraph G1, where G1 is 

not a closed path. Assume in so a propagation occurs from C1 to G 1. Then 

Proof. Since G1 is not a closed path, the number of arcs in G1 is less than Cap(G1)-1; 

thus, in general, 

Comm(G1, so) I Cap(G1) -1  in any state s E S. 

For propagation to occur from C1 to G 1, there must be at least one uncommitted arc on G 1 

in state so. Hence, 

Theorems 3 and 4 propose deadlock-free solutions to systems whose Wait Relation 

Graphs consist of two circuits. Theorem 3 considers two circuits intersecting in a single 

vertex, and Theorem 4 considers two circuits intersecting along a subgraph. 

meorem 3. Let Wait Relation Graph model G of a manufacturing system consist of two 

simple circuits, C1 and C2, which share a single vertex v. Figure 2.5 depicts a typical 

example of the system. The system is deadlock free if the following conditions are true: 

1. slack(C1, s )  > 0, (2-9a) 

2 .  slack(C2, s )  > 0, and (2-9b) 



Prod. Let the initial state so satisfy (2-9). Define i and j such that 

Let s 1 be the state of the system after parts are propagated on Ci. 

Case 1. Let 

slack(Ci, so) = 1. 

By application of Lemma 1 to circuit Ci, we know that slack(Ci, sl) cannot 

decrease. Therefore, 

By Lemma 3 

slack(C ,U Cj, so) = slack(Ci, so) + slack(Cj, so) - 1 > 1. 

Using (2- 10) this simplifies to 

slack(Cj, so) > 1+ 1- 1 = 1. 

A part could propagate from Ci into Cj. But by Lemma 5 and (2-1 1) we obtain 



Consider circuit Ci u Ci. By Lemma 1, slack(C; u C,, so) cannot increase in subsequent 

states. Therefore, 

From (2-1 I), (2-13) and (2-14), (2-9) is satisfied in state sl ,  when slack(Ci, so) = 1. 

Case 2. Let 

slack(C;, so) > 1. 

From (2-9) and (2-15) we can conclude that in state so, 

slack(Cj, so) > 1 and 

From Lemma 5 

for circuits C1 andCz . Lemma 1 shows that the slack(Ci u Cj, so) cannot decrease. Thus 

Case 2 is proven. 



The propagation can be repeated to remove all the parts from the system. Hence, 

the system is deadlock-free. rn 

Theorem 4 considers two primary circuits intersecting along a subgraph. As the 

two circuits share vertices and arcs, the slack conditions required to keep the system 

deadlock-free differ from those in Theorem 3. 

Theor&. Let the Wait Relation Graph model G of a manufacturing system consist of 

two simple circuits, C1 and C2, which intersect along a subgraph G 1, which contains more 

than one vertex. Figure 2.6 depibts a typical example of the system. Then, a propogation 

exists such that relation (2-19) holds before and after. 

1. slack(C1, s )  > 0, (2-19a) 

2. slack(C2, s )  > 0, and (2- 19b) 

3. slack(CluC2, s) > 0, Vs E S. (2- 19c) 

Proof. Let the initial state so satisfy (2-19). Define i and j such that 

Let s 1 be the state of the system after parts are propagated on C;. 

Case 1. Let 

Applying Lemma 1 to circuit Ci, we know that slack(Ci, s l )  cannot decrease. 

Therefore, 



There are three different propagations on Ci which affect the slack on Cj: 

a. Propagation occurs within G 1. Then 

b. Propagation occurs from G 1 to Ci. Then 

slack(Cj, sl) = slack(Cj, s0)+l> 0. 

c. Propagation occurs from the Ci to G 1. From Lemma 4 and (2-20), 

from which 

slack(Cj, so) > Cap(G1) - Comm(G1, so) - 1 

follows. From Lemma 6 and (2-24), we obtain 

slack(C,, so) > 1. 

From Lemma 5 and (2-25), we obtain 



Consider circuit Ci u C' By Lemma 1 ,  slack(Ci u Cj, so) cannot incl-ease in subsequent 

states. Therefore, 

From (2-21), (2-22), (2-23), (2-26) and (2-27), slack conditions (2-19) are satisfied in 

state s 1, when slack(Ci, so) = 1 .  

Case 2. Let 

slack(Ci, so) > 1. 

From (2-28) and (2-19), we can conclude that in state so 

slack(C1, so) > 1 ,  

slack(C2, so) > 1 and 

From Lemma 5, 



for all circuits C1 andC2 . Lemma 1 shows that the slack(Ci u Cj, so) cannot decrease. 

Thus Case 2 is proven. 

Therefore (2- 19) holds for S 1. w 

The Wait Relation Graphs considered in Theorems 3 and 4 considered two circuits 

interacting in one or more vertices. The remaining theorems consider systems with Wait 

Relation Graphs consisting of two or more circuits interacting amongst each other in one or 

more vertices. In pursuing the deadlock-free solutions to these larger, less specific 

systems, the concept of order is introduced. As we will see, order is closely related to the 

deadlock free solutions of systems. 

Order 

The Order of a closed path is defined to be one less than the number of primary 

circuits which lie on the closed path and intersect any other primary circuit on the path at 

only one vertex. Order of a circuit C is abbreviated as order(C). 

The order of a circuit is related to its structure. Order of a primary circuit is 0. The 

system considered in Figure 2.5 contained two circuits. C1 and C2 are of order 0, and 

C1 u C2 is of order 1. The system considered in Figure 2.6 contained three circuits--C1, 

C2, C1 u C2--all of order 0. Figure 2.7 depicts the Wait Relation Graph of a system. As 

an illustration of the definition of order, the order of some of the circuits in the graph is 

listed. 



Figure 2.7. WRG of system in Example 2.5.1. 

Example 2.5.1 

The WRG in Figure 2.7 contains the circuit listed in Table 2.1. 



Table 2.1. Circuits in Figure 2.7. 

Lemma 7. 

Let C1 and C2 be two circuits intersecting each other. If C1 and C2 intersect in more than 

one vertice, 

If C1 and C2 intersect in a single vertex, 

C1 and C2 inte~csect in multiple 

vertices 

C4 and C3 intersect in vertex C 

C2 and C4 intersect in vertex C 

C2 and C3 intersect in vertex C 

. 

C, = ({A, B, D}, {a, d, i]) 

, C2 = ({B, D, C}, {b, c, i))  

C3 = ({C, El, {e, f ) )  

C4 = ({C, F), {p, h ) )  

Cs = Cl u C2 

c6=c4uc3 
C s = C 2 u C 4  

C7 = C2 u C3 

C9 = C1 u C2 u C4 
v 

C l 0 = C 1 u C 2 u C 3  

C 1 1 = C 2 u C 3 u C 4  

C 1 2 = C 1 u C 2 u C 3 u C 4  

order(C1) = 0 

order(C2) = 0 

order(C3) = 0 

order(C4) = 0 

order(C5) = 0 

order(C6) = 1 

order(Cs) = 1 

order(C7) = 1 

order(C9) = 1 

order(Cl 0) = 1 

order(C1 2 

. order(Cl 2) = 2 



Proof. The proof follows from the definition of order, and by observation in Example 

2.5.1. 

Theorem 5 considers the effect of altering the Wait Relation Graph of a deadlock- 

free system by the addition of a primary circuit, which intersects the graph at a single 

vertex. Conditions needed for deadlock-free operation of the new system are derived. 

Figure 2.8. Circuit Co intersects graph G in a single vertex v. 

T h e o r e .  Let G and H be the WRG of two manufacturing systems with admissable 

states SG and SH. Assume that H is identical to G, except that H contains an additional 

circuit Co which is joined to G at vertex v. Suppose CG is a set of circuits such that if 

slack(C, s) > order(C) V C E Cc and Q s E SG, (2-32) 



then deadlock will not exist in the manufactu~ing system represented by G. If 

slack(C, s) > order(C) V C E C H  and V s E SH 

where 

and 

then deadlock will not exist in the manufacturing system represented by H. Figure 2.8 

depicts the Wait Relation Graphs G and H. 

proof. Let the system represented by the WRG H be in state so. Define C* E CH to be a 

circuit which minimizes the function 

We will now show that if a part is propagated along circuit C*, resulting in the new state 

s l ,  then 

Case 1. Let 

space(C*, so) = 1 and C* = Co. 



Combining Lemma 1 and (2-37) we obtain 

Since all circuits C E CU contain Co, Lemma 1 can also be used to conclude 

slack(C, s l )  2 slack(C, so) > order(C) V C E C,. (2-39) 

Define 

C, = { C E  CG: v E C} 

as the set of all circuits in WRG G containing vertex v. Part propagation on Co will not 

affect any circuit which does not contain v. Hence, 

slack(C, sl)  = slack(C, so) > order(C) V C E CG - C,. (2-41) 

The definition expressed in (2-35) states that for each Ci E C, there exists a Cj E 

C,, such that Cj = Ci u Co. Combining Lemma 1 and the definition of order results in 

Combining Lemmas 3 and 5 with (2-42), (2-41) and (2-37) results in 



2 slack(C,, so) - slack(Co, so) +1 -1, 

> order(Ci) + 1 - order(Co), 

> order(Ci). (2-43) 

Therefore, under the assumptions for Case 1, (2-36) holds for state s l .  This concludes 

Case 1. 

Case 2. Let 

space(C*, so) = 1, and C* E CH - { Co} . (2-44) 

To ensure that the propagation is possible--hence, implying that the system is 

deadlock free in state so--we must consider the effect of a propagation in C* on every 

circuit C E CH. To organize this task, the set CH is divided into its constituent sets {Co), 

Cu and CG. A circuit C from each of these sets is then chosen and analysed to study the 

effect of the propagation over C*. The proof for Case 2, therefore has three major 

subparts: 

1 .  the circuit C = Co is considered, 

2. a circuit C E CG is considered and 

3. a circuit C E CU is considered. 

Part 1. 

A propagation over C* can effect slack(Co, so) only if C* intersects Co at vertex v. Using 

the definition of order from Lemma 3 and (2-44), we obtain 



= order(C*)+slack(Co, so). 

We know from the definition of order that 

slack(C* u Co, so) > order(C* u Co, so) = order(C*) + 1. 

Combining (2-45) and (2-46) we obtain 

slack(C* u Co, so) = order(C*)+slack(Co, so) > order(C*)+l, 

from which 

slack(Co, so) > 1 

follows. From Lemma 5 and (2-47), we obtain the result 

This concludes Part 1. 

Part 2. 

Consider C E CG. Then both C* and C belong to the set CG, but we know from (2-32) 

that 



Part 3. 

Propagation on C* can only affect C E C ,  if they intersect. Then these exists a Ci E CG 

,such that Ci u Co = C. From Part 2 

slack(Ci, s i )  > order(Ci). 

From Part 1 

slack(Co, s 1) > order(Co) . 
Since Ci is contained in C, then 

slack(C, s l )  > order(C) V C E C,. 

From results in (2-48), (2-49) and (2-50) 

Therefore, under the assumptions for Case 2, (2-36) holds. 

Case 3. space(C*, so)> 1 

Hence, 

slack(C, so) > order(C)+l V C E CH. 

From Lemma 5, it is easy to see that the slack conditions (2-36) are all satisfied for sl. 

Hence, all slack conditions are satisfied in state s 1, and Case 3 is proven. 

The propagation can be repeated to remove all the parts from the system. 

Hence, the system is deadlock-free. 



Theorem 6 considers the effect of altering the Wait Relation Graph of a deadlock- 

free system by the addition of a piimary circuit which interesects the graph along a 

subgraph G l  containing more than 1 vertex. Conditions needed for deadlock-free 

operation of the new system are derived. Figure 2.9 depicts a representation of the system. 

Figure 2.9. Circuit Co intersects graph G in simple path P. 

Theor&. Let G and H be the WRG of two manufacturing systems with admissable 

states SG and SH. Assume that H is identical to G, except that H contains an additional 

circuit Co which is joined to G along a subgraph GI ,  where GI contains more than 1 

vertex. Suppose CG is a set of circuits, such that if 



slack(C, s) > order(C) V C E CG and V s s SG, 

deadlock will not exist in the manufacturing system represented by G. If 

slack(C, s) > order(C) 'd C E CH and V s E SH 

where 

and 

C, = {C: C = Co u Ci, Ci E CG, and Ci contains elements of G 1 } , (2-55) 

then deadlock will not exist in the manufacturing system represented by H. Figure 2.9 

depicts the Wait Relation Graphs G and H. 

proof. Let the system represented by the WRG H be in state so. Define C* s CH to be a 

circuit which minimizes space(C, so). We will now show that if a part is propagated along 

circuit C* resulting in the new state s 1, then 

Case 1. Let 

space(C*, so) = 1 and C* = Co. 



Combining Lemma 1 and (2-57), we obtain 

slack(Co, s l)  2 slack(Co, so) = 1 

> order(Co) = 0 

Since all circuits C E C,, contain Co, Lemma 1 can also be used to conclude 

slack(C, s l )  2 slack(C, so) > order(C) ,V C E C,. 

Define, 

Cp = { C E CG: C contains elements of G 1 ) , (2-60) 

as the set of all circuits in WRG G containing at least a portion of G 1. Part propagation on 

Co will not affect any circuit which is not in Cp. Hence, 

The definition expressed in (2-55) states that for each Ci E Cp there exists a Cj E 

C,, such that Cj = Ci u Co. Combining Lemma 1 and the definition of order results in 

From Lemma 4 and (2-57), 

slack(Cj, so) = slack(Ci, so) + slack(Co, so) - Cap(G1) + Comm(G1, so) - 1 (2-63) 



Combining (2-63) and Lemma 5, 

slack(Ci, sl) 2 slack(Cj, so) - slack(C0, so) + Cap(G - Comm(G 1, so) + 1 - 1 .(2-64) 

From (2-62), (2-64), Lemma 6 and substituting slack(Co, so) = I ,  we get 

From (2-58), (2-59), (2-61) and (2-65), (2-56) holds for state sl. 

Case 2. Let 

space(C*, so) = 1 and C* E CH - {Co) . (2-66) 

To ensure that the propagation is possible--implying that the system is deadlock- 

free in state so--we must consider the effect of a propagation in C* on every circuit C E 

CH. To organize this task, the set CH is divided into its constituent sets { Co}, C, and CG. 

A circuit C from each of these sets is then chosen and analysed to study the effect of the 

propagation over C*. The proof for Case 2, therefore, has three major subpa-ts: 

1 .  the circuit C = Co is considered, 

2. a circuit C E CG is considered, and 

3.  a circuit C E C,, is considered. 

Part 1. 

A propagation over C* can effect slack(Co, so), only if C* intersects Co in subgraph GI. 

From Lemma 4 and (2-66), we obtain 

slack(Cc u Co, so) = slack(C*, so) + slack(Co, so) - Cap(G1) + Comm(G1, so) 
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= order(C*)+l+slack(Co, so) - Cap(G + Comm(G 1, so). (2-67) 

We know from the definition of order that 

slack(C* u Co, so) > order(C*). 

Combining (2-67) and (2-68), we obtain 

order(C*) +slack(Co, so) +1 - Cap(G 1) + Comm(G 1, so) > order(C*), 

giving 

slack(Co, so) > Cap(G 1) - Comm(G 1, so) - 1, 

which--using Lemma 6--simplifies to 

slack(Co, so) > 1. 

From Lemma 5 and (2-69), 

This concludes Part 1. 



Part 2. 

Consider C E CG. Then both C* and C belong to the set CG, but we know from (2-52) 

that 

Part 3. 

Propagation on C* can only affect C E C, if they intersect. Then there exists a Ci E CG, 

such that Ci u Co = C. From Part 2, 

slack(Ci, s 1 ) > order(Ci). 

Since Ci is contained in C, then 

slack(C, s l )  > order(C) V C c CH. 

From results in (2-70), (2-73) and (2-72) 

Therefore, under the assumptions for Case 2, (2-56) holds. 

Case 3. space(C*, so) > 1. 

Hence, 

slack(C, so) > order(C)+l V C E CH. 



From Lemma 5, it is easy to see that the slack conditions (2-56) are all satisfied for sl. 

Hence, all slack conditions are satisfied in state sl, and Case 3 is proven. 

The propagation can be repeated to remove all the pasts from the system. 

Hence, the system is deadlock-free. 

The following example presents a method for obtaining all the slack conditions for a 

manufacturing system represented by a Wait Relation Graph. The Wait Relation Graph is 

broken up into primary circuits and paths. Any one simple circuit is chosen and a graph 

created. Paths and circuits are then added to the graph. The process of addition of paths 

and analysis of the resultant graph is repeated until the o~iginal graph is reached. At this 

stage, all circuits in the graph are known, and Theol-ems 5 and 6 can be used to determine 

all the slack conditions. An example of this process is given below. 

Example 2.5.2 

Consider a manufacturing system whose Wait Relation Graph is depicted in Figure 2.10. 

Figure 2.10. Wait Relation Graph of system in Example 2.5.2. 



Consider a graph GI consisting of a single primary circuit C1. Figure 2.1 1 depicts the 

situation. 

Figure 2.1 1. Wait Relation Graph GI. 

To GI add the path PI  = ({B, C}, (b ,  c}). 

Let @ be the resultant graph. Figure 2.12 depicts the situation. 

Figure 2.12. Wait Relation Graph @. 

Let C2 be the set of all circuits in G2. The set 0 = { C1, C2, C1 v C2 ) 

Finally form graph G3 = G by adding path P2 = ({C, D), {d, e}) to G2. 



Let G3 be the set of all circuits in G3 . The set C3 = ( C1, C2, C3 , C1 u C2, C2 u C3, C1 

uC3 ,C1  u C 2 u C 3 ) .  

The resulting slack conditions are: 

1. slack(C1, s )  > 0; 

2. slack(C2, s )  > 0; 

3. slack(C3, s )  > 0; 

4. slack(Cl u C2, s )  > 1; 

5. slack(Cl u C3, S )  > 1; 

6. slack(C2 u C3 , S) > 1; 

7. slack(C1 u C2 u Cg , S) > 2. 

Theorem formally describes the method of Example 2.5.2. 

-ern 7. Let the Wait Relation Graph model of a manufacturing system consist of a 

graph G and a set of admissable states SG. Then there exists a set of closed paths CG, such 

that G is deadlock-free if 

Proof. Define the set P = { P i :  Pi is a path (open or closed) in G, only the first and last 

vertices in Pi may be common to any other path or circuit} and 



The result is proven inductively. Clearly P can be constructed to contain at least 

one circuit. Let C1 be any circuit in P. Form a graph G consisting of C1. By Theorem 

2. G is deadlock-free if 

Let CGI = C1; hence, the theorem holds for G '. Assume the Graph G i  is deadlock-free, 

that is, slack(C, s) > order(C) V C E CGi. TO form Gi+l ,  add a path Pi chosen from set 

P to Gi. The choice of Pi is not arbitrary; Pi must intersect G i  at both endpoints. There 

are two cases: 

1 .  Pi intersects G' in coincident vertices. 

2. Pi intersects G i  at two vertices. 

Case 1. Here a simple circuit Co is added to G i  at vertex v. Applying Theorem 5, Gi+' 

is deadlock-free if 

where CGi+l is the set of all circuits in Gi+'. 

Case 2. Now, Gi+ is deadlock free if 

where CGi+l is the set of all circuits in Gi+'. 



The proof follows by induction. 

Theorem 7 presented a deadlock-free solution--one that could be applied to any 

manufacturing system. The important result was that a manufacturing system is deadlock- 

free, if 

where CG is constructed as in Theorem 7. Close examination of this construction theorem 

shows that CG is also the set of all closed paths in the Wait Relation Graph G of the 

manufacturing system. Finding the deadlock free solution is a two-step process: 

1. determining the set CG--that is all closed paths in G--and 

2. applying (2-74) to determine the deadlock free slack conditions. 

2.6 EXAMPLES 

The theory developed in the previous sections is illustrated in two examples. In the 

first example, a small manufacturing system consisting of two processes and three 

resources is considered. Deadlock-free slack conditions ale derived. The second example 

considers a larger system consisting of five resources and two processes. For each 

system, the Wait Relation Graph representation is formed and the deadlock-free slack 

conditions are derived. 



2.6.1 EXAMPLE 1 

Consider an example of a manufacturing system MI where two processes share 

two resources. The process plans are shown in Table 2.2. 

Table 2.2. The Process Plan for Example 1. 

The Wait Relation Graph of the system is shown in Figure 2.13. 

Process No. 

Process 1 

Process 2 

B 

Robot Machine 2 

D 

Process Plan 

Operation A processes Part 1 in Machine 1. Operation B transfers the part 

via Robot to Machine 2. Operation C processes Part 1 in Machine 2 

Operation D processes Part 2 in Machine 2. Operation E transfers the part 

via Robot to Machine 1. Operation F processes Part 2 in Machine 1 

Figure 2.13. Wait Relation Graph representation of system MI. 

In MI the circuits are C1, C2, C1 v C2. 

The deadlock-free slack conditions are: 

1 .  slack(C1,s)>O; 

2. slack(C2, s) > 0; and 

3. slack(C3, s) > 1. 



The deadlock-free slack conditions can be expressed as follows: only 1 operation from 

amongst A, B, C and D can be processing a part. Observance of this rule ensures that the 

system is deadlock-free. 

2.6.2 EXAMPLE 2 

In Example 2 a manufacturing system M2, where two processes share five 

resources, is considered. The process plan is shown in Table 2.3 

Table 2.3. The Process Plan for Example 2. 

The Wait Relation Graph of the system is shown in Figure 2.14. 

Process No. 

Process 1 

Process 2 

Process Plan 

Operation A processes Part 1 in Machine 1. Operation B processes Part 1 

in Machine 2. Operation C process Part 1 in Machine 3. Operation D 

processes Part 1 in Machine 4. Operation E processes Pan 1 in Machine 5. 

Operation F processes Part 2 in Machine 5. Operation G processes Part 2 

in Machine 3. Operation H process Part 2 in Machine 4. Operation I 

processes Part 2 in Machine 2. Operation J processes Part 2 in Machine 1. 



Machine 4 

Machine 3 

Figure 2.14: Wait Relation Graph representation of system M2. 

In Figure 2.14 there are three primary circuits--CI, C2, C3. The rest of the closed paths 

are: 

C4 = C2 V C3; 

C5 = C1 u C2; and 

c6 = c1 v C 2 v c 3 .  

The deadlock-free slack conditions are: 

1. slack(C1, s )  > 0; 

2. slack(C2, s )  > 0; 

3 .  slack(C3, s )  > 0; 

4. slack(C4, s )  > 0; 



5 .  slack(C5, s)  > 1 ; and 

6. slack(C6, s )  > 1. 

The deadlock-free slack conditions can be expressed as a list of rules, which are to be 

observed always. These are: 

1. Only 1 operation from amongst A and I can be processing a part. 

2. Only 2 operation from amongst B, C, G and H can be processing a part. 

3. Only 2 operation from amongst D, F, G and C can be processing a part. 

4. Only 2 operations from amongst A, B, C, G, H and I can be processing 

a part. 

5.  Only 3 operations from amongst A, B, C, D, E, F, G ,  H and I can be 

processing a part. 

Observance of these rules ensures that the system is deadlock-free. 

2.7. COMP-ON OF PAST RESEARCH WITH METHOD IN THESIS 

The deadlock detection and avoidance method developed in this thesis is more 

reliable and achieves better resource utilizations compared to methods in current research. 

For instance the Deadlock Detection Procedure(DDP) [I], does not detect all deadlock 

states. Consider the WRG in Figure 2.15. Here two processes share 5 resources. In the 

state shown, resource A is committed to operation 0 1 1  and resource E is committed to 

operation 0 2  1. 



Figure 2.15. WRG of system with two processes and five resources. 

The DDP would not identify this state as a deadlock state. However Theot-em 7 can be 

used to prove it to be a circuit of order 3. 

The method developed by Cho et al.[2] is also lacking in detection of higher level 

deadlocks. Their method uses buffers to break deadlock, which increase the number of 

system resources and at best postpone the occurrence of deadlock. No such buffer 

resources axe used here. However, like Cho's method, some non-deadlocked states are 

incorrectly identified as deadlock. This affects resource utilizations but, more importantly, 

does not at all affect our goal, which is the detection of all deadlocks. 

The deadlock avoidance algoiithm in this thesis develops constraint conditions on 

groups of operations to be employed at process-runtime. One condition is developed for 

each of the deadlocks detected by the detection algorithm. The conditions allow for a 

maximum possible number of operations to be simultaneously active, while avoiding 

deadlock. The method has been tested and results compared with past research. Here we 

found that resource utilizations were higher than those in existing methods, such as PME's 

and DAA methods. Comparing the method of Zhou and DiCesare[3], we observe that 

PME's allocate resources to a process at the start of the process andlor release them in a 

group at the end of the process. Essentially, there exists some kind of allocation scheme 

which avoids free allocation of resources (resources allocated to an operation on demand 

and released immediately when the operation is done). However, this allocation scheme 



will hold resources beyond their operation times, resulting in poor resource utilizations. No 

such allocation schemes are resorted to here, and resource utilizations are observed to be 

higher than PME methods. 

For example consider a manufacturing system with three resources-a Mill, a Lathe 

and a Drill[8]. Assume three different parts ai-e produced in accordance with the following 

process plans: 

Part 1: Mill, Lathe. 

Part 2: Lathel Drill. 

Part 3: Drill, Mill. 

The Wait Relation Graph for the system is shown in Figure 2.16. 

Figure 2.16. WRG of system with three processes and three resources. 

Using Theorem 1, the system is deadlock fitx if slack(C, s) > 0 for all states in the system. 

There are however 7 states allowed by the slack condition which use all thi-ee resources. If 

the method developed by Zhou and Dicesa~ were used there would be 56 possible PME 

structures to model the shared resources. However every PME structure would prevent 

some of these 7 states from occu~ling. 



Banaszak and Krogh1s[4] DAA method requires that all shared resources needed by 

a part be allocated to the part at the outset of its enhy to a resource zone. This holds 

resources longer than their operation times and results in poor utilizations. If DAA were 

used to prevent deadlock for the system in Figure 2.16, only one resource would be 

allowed into the system. Resources would idle for two-thirds of the operation time and 

utilizations would be low. 

Hsieh and Chang [5] allow a greater number of resources to be processed 

concurrently than DAA, resulting in a higher resource utilization. However, no fixed 

guidelines on how the dispatching policy can be implemented are presented. This is 

especially true for their "Job Clearing Algorithm", where a choice of four procedures a~c 

presented. Their replacement procedure is search-based and may be unsuitable for real- 

time applications, especially in larger systems. The method in this thesis has achieved 

higher resource utilization than DAC. 



CHAPTER 3 

PROGRAM DEVELOPMENT - FORMATION OF THE WAIT 

RELATION GRAPH 

Comparing the two examples in Section 2.6, it is apparent that the procedure for the 

second example is more involved than the first. There are three circuits in the Wait Relation 

Graph for the first example, compared to six for the second. Correspondingly the number 

of slack rules to be observed is also greater; three for the first example, compared to six for 

the second. It is clear that the deadlock analysis of any larger system would be quite 

involved and definitely a lengthy process. However, to determine the efficacy of the 

program, testing of a varied selection of systems is desirable. Also, one would like to test 

arbitrarily large systems--the ultimate test of the effectiveness of the theory. The process 

we have at hand is not adequate for these operations. A faster processing is required. We 

decided to write a computer program which would speed up this processing. 

3 .1  DESIGN ISSUES IN THE COMPUTER PROGRAM 

In this section, we examine some of the design issues related to the program. As 

we are presently still in a concept-forming stage, the properties of the program are listed. 

There is no elaboration at this stage. 

1. The computer program would be based on the theories in Chapter 2. 

2.  An input file would describe the manufacturing system. 

3.  The output would be a list of slack conditions. 

4. The program should be able to process arbitrarily large systems. Here, 



physical limitations of the operating system and platform will effect how 

large a system can be processed. 

5 .  The final program will be in the C-language. 

6 .  The program would be developed to run in the SUNOS 4.1 operating 

system. 

7 .  The development process must be documented. 

The development of the program will be described in the present and the next two 

chapters. Each chapter will describe one stage in the process: Chapter 3 will describe the 

formation of the Wait Relation Graph; Chapter 4 will describe the detection of all primary 

circuits; Chapter 5 will describe the detection of all higher-order circuits; and Chapter 6 

will present examples of manufacturing systems to be analyzed using the program. 

3 .2 .  PROGRAM OVERVIEW 

The program accepts an input file describing the system. The output is a list of 

slack conditions required to keep the system deadlock-free. The program itself is broken 

into three segments. Each of these segments performs a well-defined task. 

The first segment models the system as a Wait Relation Graph. The program first 

reads in a description of the manufacturing system. This information is then processed, 

and the Wait Relation Graph representation of the system created. Development of the first 

segment is decribed in the present chapter. 

The second segment utilizes the Wait Relation Graph, a string multiplication 

algorithm and a recursive algorithm to detect all primary circuits. A list storing all primary 

circuits is created. Development of this segment is described in Chapter 4. 

The third segment utilizes the list of primary circuits to detect all circuits of orders 

greater than 0. Unions of primary circuits are formed and their orders determined. Each 



such union--along with its order--is stored in a list of higher-order circuits. The slack 

conditions required to keep each circuit deadlock-free are obtained from the order of the 

circuit. Development of this segment is described in Chapter 5. 

Development of each segment is done in stages. The first stage--algorithm 

development--is optional and reserved for those routines which are sufficiently involved to 

merit an initial algorithm design. In the next stage, important data structures are defined. 

Following that, pseudo code for all routines is developed. Finally the pseudo code is used 

to develop the program source code in the C-language. In each of the chapters, important 

data structures and pseudo code descriptions of routines are included. Algorithmic 

descriptions of important routines are included. The C-language source code is not listed. 

3 . 3 .  SYSTEM DESCRIPTION IN TERMS OF INPUT FILE 

The program learns of the system description through a file; henceforth called input 

file. A file description facilitates a conveninient means of describing the system to the 

program. The input file stores names of resources in the system and process plans. It 

consists of two distinct sections. The first section lists names of all resources used in the 

system. The second section lists the resource sequences for the different part types to be 

manufactured. Each resource sequence lists--in order--the names of the resources used by 

the operations. As each operation uses one resource, the number of resources in the 

process plan equals the number of operations. The exact format of the file is listed in Table 

3.1. 



Table 3.1. Format of Input File. 

FORMAT OF INPUT FILE 

RESOURCES 

<rl> <a> <q>. . <qp 

PFCaSS 1 

< r ~ >  <qp <re.. . <rp 
PW=CESS 2 

<rp <r(p <r71>. . . <rp 
. . . 

PRCCESS M 

<rx, <rp <rp. . < x p  

E m  

EXPLANATION OF INPUT FILE FORMAT (on 

a line-by-line basis). 

Header indicating that resources declaration follows 

List of resources in system. 

Header indicating that operation sequence for 

Process 1 follows. 

Operation sequence for process 1 

Header indicating that operation sequence for 

Process 2 follows 

Operation sequence for Process 2 

. . . 
Header indicating that operation sequence for 

Process M follows 

Operation sequence for Process M 

End of file string. Indicates end of input file. 



Illustrative example 

Consider once again the example of 'Dies Incorporated'. The input file for this 

system is given in Table 3.2. 

RESOURCIS 

R o b t  Mill Lathe Drill 

PRCCESS 1 

R o b o t  Mill R o b o t  L a t h e  R o b o t  

~ S S  2 

R o b t  Lathe Robot 

PRCCESS 3 

R o b t  Drill Robot 

PRCCESS4 

R o b o t  Mill R o b o t  Drill Robot 

Em 

Table 3.2. Input File for Dies Incorporated. 

3 .4 .  DATA STRUCTURES 

This section defines the major data structures that are used by the first segment of 

the program. They are defined using a C-type notation. 

3 .4 .1 .  TRANS 

This structure stores information about one operation in the system. Every 

operation is part of a process plan for some process q. The operation-number of a process 



refers to the order of the operation within the operation sequence Oper(q). The 

process-number stores the value of q, the process number. A linked list of trans data 

structures stores information on all operations in the system. This data structure also stores 

the address of the next element in the linked list. 

t rans { 
sbrt operat ion.n&r 
short process-ndxr 
trans *next 
1 

3 . 4 . 2 .  ARC-INFO 

This structure stores information on the operations represented by each arc in the 

Wait Relation Graph of the system. The number of operations represented by the arc is 

stored. Detailed information on each of the operations is stored in a linked list of trm data 

structures. The memory address of the next element in the linked list is also included. 

arc-info { 
short nmhr-ofoperations 
trans *next 
1 

3 .4 .3 .  RESOURCE-DEF 

This structure stores the resource name and resource number of a resource in the 

system. A linked list of resource-def structures is used to store information on all 

resources in the system. The address of the next element in the linked List is also included. 

resource-&£{ 
short resourcenmkr  
char *resourcename 
resource-def *next 
1 



3 . 4 . 4 .  RESOURCES 

This is a linked list of resource-def data structures. It stores information on all 

resources in the system. The address of the first element in linked list is stored. 

resourcedef *resources 

3.4.5. WAIT GRAPH MATRIX 

This array of arc-info data structures stores information on all arcs in the Wait 

Relation Graph of the system. The array is two-dimensional square. Size of the array is N 

x N, where N is the number of resources in the system. If an arc exists between vertices i 

and j in the Wait Relation Graph--the ijth element of the wait graph--then the array contains 

an arc info element; otherwise, it is NULL. 

arc-inf o wai  tgraph-mt rix [N] [N] 

3 . 4 . 6 .  NUMBER OF RESOURCES 

This global variable stores the number of resources in the system. 

short nuxt-kr-ofresources 

3 . 4 . 7 .  NUMBER OF PROCESSES 

This global variable stores the number of processes in the system. 

short nurtker-ofr>messes 

3 . 5  ROUTINES 

In this section, pseudo code descriptions of all routines are included. The data 

structures described in previous sections are used in the pseudo code. 



This routine extracts information on the resources in the system from the input file. 

The routine reads only the first two lines of the input file; the second lists the names of all 

resources in the system. Each of the resource names are extracted from the second line. 

Numbers are assigned to each resource, and this information is stored in a resource-def 

data structure. Each such structure is added to the resources linked list. The number of 

resources are counted and stored in the number-of-resources global variable. The routine 

returns a pointer to the resources linked list. 

read-res~urces~infomtion-£ramamin- file) 

start routine 

read second line frcxn input file and store it in variable Line 

read next mrd in Line 

if (mrd is not NULL) 

increrent nmber-of-resources 

store mrd and nmkr-of-resources in a resource-def data 

structure 

add resource-def data structure to resources linked list 

end if 

file ( m r d  is not NULL) 

return resources linked list 

end routine 

3 . 5 . 2 .  MAP-A-RESOURCE-NAME-TO-ITS-NUMBER 

This routine accepts a name of a resource from the calling function. It then scans 

the resources linked list to isolate the resource number of the resource with the name. The 

resource number is returned to the calling function( Refer to section 3.4.3. for a declaration 

of the resource-de f data structure.) 



-resource---to-n&r(name) 

start routine 

for every e l m t  in  resources linked list 

i f  ( name mtches resource-nam f ield of linked list e l m t  ) 

return resource-number f ie ld  of linked list e l m t  

end i f  

end for 

print  error mssage and quit 

end routine 

3.5.3. INITIALIZE THE ARC ARRAY 

This routine creates the Wait Graph matrix from the information stored in the input 

file. The input file is read one-line-at-a time starting from the third line. The line read 

could contain either a process name, an operation sequence for a process or the end of file 

string. The lines storing process names are skipped, but each line storing an Operation 

Sequence is further analysed. The names of resources in each Operation sequence are 

extracted. Two variables--resourcel, resource2 --are maintained in this process. The first 

stores the resource number of the present resource, and the second the resource number of 

the last resource extracted. A Wait Relation exists for every such pair of resources. 

Information on the operation is stored in the linked list of operations associated with the an 

from resource 1 to resource 2 in the Wait Graph matrix. The process is repeated for every 

operation sequence. The routine stops when the end of file string (END string) is 

encountered. The number of processes in the system is counted by keeping account on the 

number of operation sequences analysed. The address of the newly created Wait Graph 

matrix is returned to the calling routine. 



init ialize-arc-array ( input f i le)  

start routine 

consider the second line in input f i le  

waitgraph = allocate (N x N units of arcinf o, here N = 

lVudxx,-ofResources ) 

do{ 

Line = next line in input f i le  

if ( Line &es not contain "PRCCESS" or is not equal to "END") then 
incrmt n--of_pnxesses 

operat ion-nmk-0 

read next m r d  in Line 

increment cpe.m tion-nznnber 

if (mrd read is first in Line) then 

map mrdto its corresponding resource nurrber in the 

resources list by calling the 

map-resource-name-to-nmkr function. Store this in 

variable resource2 

else 

resource1 = resource2 

map mrdto its corresponding resource nmbr in the 

resources list by calling the 

~~p_resource-mto-nmber function. Store this in 

variable resource2 

p t r  = allocate (1 unit of trans) 

ptr .  process-nmkr = n--of-pmcesses 

ptr .  operation-number = cpe.mtion-number 

ptr .  next = mi tgraph [resourcel I [resource21 . trans 

mitgraph [resourcel] [resource21 . trans = @r 

esld if 
while ( mrd is not NULL) 

end if 

while ( Line is not END) 

close input-fil e 



return Atgraph 

end routine 



CHAPTER 4 

PROGRAM DEVELOPMENT - PRIMARY CIRCUIT 

DETECTION 

The present chapter explains the development of the second segment of the 

program; namely, the detection of all primary circuits in the Wait Relation Graph. The 

chapter is divided into two parts. In the iirst part, the theory of string multiplication, matrix 

multiplication and circuit extraction is described. Section 4.1 explains the theory of string 

multiplication, and Section 4.2 explains circuit extraction. In the second part of the 

chapter, the implementation of the theory is explained. Section 4.3 consists of data 

structure declarations. Section 4.4 contains the pseudo code descriptions of the routines. 

4 . 1  STRING MULTIPLICATION THEORY 

A string multiplication algorithm contained in the paper, "Detection of deadlocks in 

Flexible Manufacturing Cells", by Wysk, Joshi and Yang [I], is used to identify all 

primary circuits in the Wait Relation Graph. First, a symbol matrix S is defined from the 

Wait Relation Graph G of the system. 

Definition: Symbol matrix S is a matrix of order N x N, where 
. . 

sv = ZJ, if an arc exists between vertices i and j in the Wait Relation Graph; 

otherwise, 

S,j  = 0 

and N is the Number of Resources in the system. 



The string multiplication technique applies to any two strings of symbols. Let uv 

and vw be two strings of symbols that start and end with v, respectively. Let * denote the 

string multiplication symbol. Then, 

The product of the strings uv and vw is formed by concatenating uv with the string that 

results from vw by removing the first symbol v in vw. Hence, 

UV * VW = UVW. 

The result can be extended to sums of strings by defining, 

C uiv * vwj = C C uiv * vwj . 

For example, 

(av + bv) * (vc + vd) = av* vc + av* vd + bv * vc + bv * vd, 

= avc+avd+bvc+bvd. 

The next issue deals with matrix multiplication involving symbol matrix S and 

powers of S. The string multiplication technique described is used to form the product of 

individual strings. The product of S with itself is defined as 

where [S] ij denotes the ij element of the matrix enclosed in the brackets. 



m l e  4.1. Let S be the symbol matrix for a Wait Relation Graph G of the system 

represented in Figure 4.1. 

Figure 4.1. Wait Relation Graph G of System in Example 4.1. 



Using (4-4) the matrix S is obtained: 

The matrix S2 contains redundant diagonal strings. For example, [S2I1 1 = [S2122. 

These redundancies arise, because a circuit can be expressed in various equivalent forms. 

Consider a circuit between three nodes-- 1, 2 and 3. This circuit could be expressed as 

123 1,2312 or 3123. One way of eliminating these redundancies is to choose the string 

with the lowest starting index--in this case 1231--and eliminate the rest. 

In order to eleminate redundancies in the manner described, the formulation used in 

calculating S is changed as follows: 

where 

SA is the upper triangular matrix of S. 

As a result of (4-5), the numerical value of the first symbol in any string will always be less 

than that of the remaining symbols. Hence duplications are avoided within the symbol 

matrix. 

Equation (4-5) can be expressed in a form more suitable to computation, as follows: 



There are three other steps that can be taken to avoid calculating unnecessary paths: 

1. To eliminate calculating paths that circle the same circuit multiple times, the diagonal 

elements are removed from Sm before calculating Sm+'. 

2 .  Since the first element of a circuit must be less than all the other elements, then 

circuits starting with 1 can contain all N nodes, but circuits starting with node m can 

contain at most N-m+l nodes. (Recall we are trying to find all the primary circuits; 

therefore, a node can appear at most once.) Because of this observation, there is no 

need to calculate the last m-1 diagonal elements of Sm. 

3. Finally, since the first element of every circuit must be less than all the other nodes, 

there is no reason to retain any path that has a node less than the first node. 

Therefore, in row m of Sm the off-diagonal paths cannot be any longer than N-m 

nodes long. Thus, in Srn none of the off-diagonal elements in the last N-m rows 

need to be calculated. 

Exam~le  4.2. Using (4-6) and symbol matrix S as defined in Example 4.1, matrix s2 is 

recalculated as 



It is interesting to note that the element [S21ij is comprised of strings which 

represent paths with two arcs between nodes i and j. The diagonal elements [S2Iii 

represent all closed paths with two arcs which include node i. Hence two arc circuits are 

in the diagonal elements of S 2 ,  three arc circuits are in the diagonal elements of S and so 

on, as described below. 

For S3 

For s4 

4 . 2  IMPLEMENTATION ISSUES 

In this section, implementation issues which arise in the identification of circuits 

using the string multiplication algorithm in Section 4.1 are examined. 

In the symbol matrix, each symbol in a string represents a node in the Wait Relation 

Graph. The string ijk represents a path from vertex i to j to k. The present implementation 



is fine provided there are enough unique symbols to represent nodes. In the case of large 

systems, thls issue can be a problem. Consider a graph comprising 100 nodes. If the 

nodes are numbered from 1 to 100, a string 123 could represent a path from node 1 to 2 to 

3 or a path from node 12 to 3 or a path from node 1 to 23. Alphabetical symbols assigned 

to represent nodes do not work any better. There is a finite set of such alphabets--and no 

matter how many--these are inadequate to represent a general system. One solution is to 

use parantheses. The path from 1 to 2 to 3 is represented as 1(2(3)). The next section 

develops this idea and presents a modified string multiplication algorithm. 

4 .2 .1 .  RULES FOR STRING MULTIPLICATION 

Let u(v) and v(w) be two strings of symbols that end and start with symbol v, 

respectively. Symbols u andw can themselves be single symbols or strings of symbols. 

Symbol v ,  is  however, a single symbol. Let * denote the string multiplication symbol. 

Then 

The product of u(v) and v(w), u(v) * v(w) is formed in these steps: 

1. Strip the trailing parantheses from u(v), to give u(v. 

2. Strip the leading symbol from v(w) to give (w). 

3. Concatenate the u(v with (w) to give u(v(w). 

4. Add a trailing paranthesis to u(v(w) to give the final product string, u(v(w)). 

Steps 1 to 4 can be summarized by the equation 



Equation (4-8) can be extended to 

1. products of sums of strings, as 

2 .  sums of products of strings, as 

Example 4 . 5  The product of the two sums of strings, 

is formed using (4-9). 

Example 4.4. The sum of the two products of strings, 

is formed using (4- 10). 

a(v)  * v(b) + a(w) * w(d) = a((v+w)d). 



4.2 .2 .  REDEFINITION OF THE S MATRIX 

In order to use equations (3-7), (4-8), (4-9) and (4-lo), the elements of the S matrix 

should be in a form required by these equations. The S matrix is now formed as 

( i j )  if an arc exists between nodes i and j in the Wait Relation Graph 

s . .  = 
V 

otherwise. 

The products of S are formed using (4-6), where string multiplication is defined as 

in (4-71, (4-8), (4-9) and (4- 10). 

Example 4.5. The symbol matrix in Example 4.1 is formed using the representation 

presented in this section. Hence, 

Using equations (4-6) to (4-lo), the matrix s2 is obtained as 



In Example 4.5, primary circuits with two arcs occur along the diagonal of matrix 

S 2. The circuit from node 1 to node 2 to node 1 is an example. The matrices S and s are 

also evaluated. 

Finally, all the circuits are, 

1 2 1 ,  1431 ,  2 4 3 2 ,  1 4 3 2 1 a n d 1 2 4 3 1 .  



Example 4.6. Let S be the symbol matrix of a Wait Relation Graph G depicted in 

Figure 4.2. 

Figure 4.2. The Wait Relation Graph of the system in Example 

Using equations (4-6) to (4- lo), 



and 

In Example 4.6, primary circuits with 3 arcs occur along the diagonal elements of 

matrix s3. Hence, the element [s3]  1 = 1(((2+4)3) 1) represents a circuit string, although 

this is not immediately apparent. Recall that the motivation for the current representation 

was to unambiguously represent a string. Although this issue is solved, a new-- 

issue,narnely that of extracting the circuit string--remains to be solved. 

4.2.3. THE EXTRACTION OF ALL CIRCUITS 

From Example 4.6 consider once again the string [s3] 1 = 1(((2+4)3) 1). Being a 

diagonal element, this represents a circuit with three arcs, including node 1. The two 

primary circuits are 1(2(3(1))) and 1(4(3(1))). This information is in the string and needs 

to be extracted. In this section, an algorithm which extracts primary circuits from each 

diagonal element is explained. The algorithm is recursive in nature. 

4.2.3.1. DEFINITIONS 

Before explaining the algorithms, a few concepts needed by the routine are 

described. 



String pointer 

A string pointer is an operator associated with a symbol string. Its value indicates 

the position in the symbol string at which the next character to be read is located. For any 

string, the string pointer has its lowest value when it refers to the first character in the 

string, and its highest value at the last character in the string. Initially, the string pointer 

has its lowest value. Incrementing the string pointer moves it one position to the right in 

the string. 

Level 

Level is an attribute of a string pointer. Level is assigned a value equal to the 

number of I(' symbols less the number of ')' symbols which are present below the current 

location of the string pointer. A string pointer is said to advance a level when it moves past 

a '(I symbol. It decrements a level when it moves past a ')' symbol. The level attribute is 

very useful in extracting circuits when there are multiple circuits present in the symbol 

string. It is also useful as an end-of-string indicator. 

A note on representation 

In all algorithms, henceforth, circuits will be stored as a sequence of node numbers 

separated by spaces. The nodes are arranged in the string in the order in which they occur 

in the circuit. The circuit string " a b c ... k a " represents a circuit from node a to b to c 

and so on, finally including node k and back to node a. This circuit would have been 

represented in the earlier representation as "a(b(c(. . .(k(a)). ..)))". 

4.2.3.2. ALGORITHM 

This section introduces the algorithm used to extract all primary circuits from a 

symbol string. The algorithm is recursive. 



INPUTS TO ALGORITHM 

a. A SyTr3301 string in the form obtained frm the string 

mltiplication routine; e.g. 1( ((2+4)3)1). 

b. Tne location of the string pointer--initially at the start of the 

s y b l  string. 

c. Tne current list of circuits extracted frm the symbol string, 

henceforth called circuitlist. As new circuits are extracted 

they are added to this list. 

d. Tne current value of the level attribute. 

INITIAL SETUP 

m e  the string pointer along the sgrbl string qdating the level 

attrhte at each stq. Stop at the first nurreric character in the 

qkol string. 

Create a blank string, and store the nmric -1 in it. W s  string 

is, henceforth, called circui t-string. 

Call the recursive algorithm. Tb it pass the sydml string, current 

string pointer location, m e n t  circuitlist and current value of the 

level attribute. 

RECURSIVE ALGORITHM 

Position the string pointer at its location within the -1 string. 

W e  the string pointer to the next symbol in the input string. 

Based m the nature of the current qn-iml, various actions are 

p e r f o d :  

If syrrbl is ' ( ' : 



Increment level attribute. 

Call the recursive algorithm with the current values of 

string ptr, level, circuit-string, circuitlist and the 

syrrbol string. 

If syrbl is ' )  : 

Decrement the level attribute. 

Return f m  algorith. 

If syrrkol is a numeric character: 

Add the symbol to circuit-string 

If syrrhl is ' + I  : 

Store values of circuit string, strin-inter and level in 

taprary variables. 

Wve the string pointer along the symbol string updating 

level attribute at every step. 

Stop at the first ' 1 '  spbl at which the level attribute 
is one less than the earlier stored value of level. 

Call the recursive algorithm with appropriate pararwters. 

On returning frm the algorithm, restore the earlier stored 

values to level, string-inter and circuitstring. 

If syrrkol is the end of string mrker: 

The string pointer has reached the end of the string. Return 

frm the algorithm 

If level attains a value of zero, it inplies that the string 

pointer has reached the last ' ) '  in the string. ?his 

autmtically inplies that a circuit has been extracted £ram the 

symbol string. Now add the string stored in circuitstring to 

circuitlist. 



OUTPUTS FROM ALGORITHM 

When the final circuit has been extracted, circuit-list will contain a list of all circuits 

extracted from the symbol string. These circuits will be stored in the form described above 

(Section4.2.3.1); e.g., 1 2  3 1 and 1 4 3  1. 

The next section contains an example based on the algorithm. 

4.2.3.3. ILLUSTRATIVE EXAMPLE 

The method used to extract all circuits will be illustrated with the detailed 

explanation of the extraction of all circuits from a symbol string. 

Consider the following example of a typical symbol string: 

The position of the string pointer is indicated by a '"I. A few variables which help us track 

our location in the recursions are also reported. The first of these is recursion number. It is 

incremented when the recursive algorithm is called, decremented on return from the 

recursive algorithm. The current value of level is also reported. 

1. Current symbol is '1'. Store it in circuit-string C1 = " 1". Level is 0, recursion number 

is 1. Call the recursive algorithm. 

1((4(3(2))+2(4(3)))1) 
A 

2. Move the string pointer to the next character. Current symbol is '(I. Level is 1, 

recursion number is 1. Call the recursive algorithm. 



3. Move the string pointer is moved to the next character. Current symbol is '(I. Level 

is 2, recursion number is 2. Call the recursive algorithm. 

1( (4(3(2) )+2(4(3) ) >I) 
A 

4. Move the string pointer to the next character. Cunent symbol is '4'. It is added to 

circuit-string C1 = " 1 4". Level is 2, recursion number is 3. 

1( (4(3 (2) )+2(4(3)) >I) 
A 

5. Move the string pointer to the next character. Current symbol is '(I. Level is 3, 

recursion number is 3. Call the recursive algorithm. 

1( (4(3(2>)+2(4(3) >>I) 
A 

6. Move the string pointer to the next character. Current symbol is '3'. It is added to 

circuit-string to give C1 = " 1 4 3". Level is 3, recursion number is 4. 

1 ( (4(3 ( 2 )  )+2 (4(3) ) >I) 
A 

7. Move the string pointer to the next character. Current symbol is '(I .  Level is 4, 

recursion number is 4. Call the recursive algorithm. 

1((4(3(2>>+2(4(3))>1) 
A 

8. Move the string pointer to the next character. Current symbol is '2'. It is added to 

circuit-string to give C1 = " 1 4 3 2". Level is 4, recursion number is 5. 



9. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 3, recursion number is decremented to 4. Return from the algorithm. 

1( (4(3(2))+2(4(3)) 
A 

10. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 2, recursion number is decremented to 3. Return from the algorithm. 

11. Move the string pointer to the next character. Current symbol is '+I. Store the present 

values of circuit-string, level, and s t r i n~po in t e r  in temporary variables templ, temp2, 

temp3, respectively. Level is 2, recursion number is 3. 

(4(3(2))+2(4(3)) 11) 
A 

12. Move the string pointer forward updating level at each step. Stop at the ')' symbol 

at which level is one less than the stored value temp2. Level is 1, recursion number 3. 

(4(3 (2) )+2(4(3)) 
A 

13. Call the recursive algorithm. Level is 1, recursion number is 4. 

14. Move the string pointer to the next character. Current symbol is '1'. It is added to 

circuit-string to giveCl = " 1 4 3 2 1 ". Level is 1, recursion number is 4. 

1( (4(3 (2) )+2(4(3)) 
A 



15. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 0, recursion number is decremented to 3. Return from the 

algorithm. Final circuit string CI = " 1 4 3 2 1 ". 

1( (4(3(2)>+2(4(3)) 
A 

16. The program execution now returns to recursion 3. Earlier stored values of 

stringpointer (temp3) and circuit-string(temp1) are restored. The string pointer is 

now at symbol '+I. This indicates a multiple circuit exists. Now create a new circuit 

string C2 and add to it the symbols in circuit-string. Hence, C2 = " 1". 

1( (4(3(2))+2(4(3) ) 
A 

17. Move the string pointer to the next character. Current symbol is '2'. It is added to 

circuit-string C2 = " 1 2". Level is 2, recursion number is 3. 

1( (4(3(2)>+2(4(3>>>1> 
A 

18. Move the string pointer to the next character. Current symbol is '(I. Level is 3, 

recursion number is 3. Call the recursive algorithm. 

1( ( 4 ( 3 ( 2 )  >+2(4(3) ) >I) 
A 

19. Move the string pointer to the next character. Current symbol is '4'. It is added to 

circuit-string to give C2 = 'I 1 2 4". Level is 3, recursion number is 4. 

1( (4(3(2>>+2(4(3>>>1) 
A 

20. Move the string pointer to the next charrrcter. Current symbol is '(I. Level is 4, 

recursion number is 4. Call the recursive algorithm. 



21. Move the string pointer to the next character. Current symbol is '3'. It is added to 

circuit-string to give C2 = " 1 2 4 3". Level is 4, recursion number is 5. 

1((4(3(2>)+2(4(3)>)1) 
A 

22. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 3, recursion number is decremented to 4. Return from the algorithm. 

1( (4(3(2) )+2(4(3> > 
A 

23. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 2, recursion number is decremented to 3. Return from the algorithm. 

1( (4(3(2)  >+2(4(3) > 
A 

22. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 1, recursion number is decremented to 2. Return from the algorithm. 

1((4(3(2) )+2(4(3)))1) 
A 

23. Move the string pointer to the next character. Current symbol is '1'. It is added to 

circuit-string to giveC2 = " 1 2 4 3 1 ". Level is 1, recursion number is 2. 

1( (4(3(2> )+2(4(3) > >I> 
A 

24. Move the string pointer to the next character. Current symbol is I)'. Level is 

decremented to 0, recursion number is decremented to 1. Return from the 



algorithm. Final circuit string CI = " 1 2 4 3 1" .  

1( (4(3 (2) )+2 (4(3) ) )I) 
A 

25. Move the string pointer to the next character. Cu~rent  symbol is 70'. Level is 0, 

recursion number is decremented to 0. Return from the recursive algorithm to the 

parent routine. 

1( (4(3(2)>+2(4(3) )>I) 
A 

26. The final circuits are C1 = " 1 4 3 2 1 ", and C2 = I' 1 2 4 3 1 ". The process is 

complete. 

Sections 4.1 and 4.2 explained the theory and implementation issues in the 

extraction of all primary circuits from the Symbol matrix. The next section contains pseudo 

code descriptions for the routines which implement the extraction. The routines are based 

on the string multiplication and circuit extraction algorithms described in the past two 

sections. 

4.3. CONSTANTS AND DATA STRUCTURES 

This section declares constants and data structures used in the program 

4.3.1. CONSTANTS 

The following constants are used in this section of the program. 

NEXT-TERM = 0 

END-EXPRESSION = 1 



4.3.2. DATA STRUCTURES 

This section defines the major data structures that are used by the routine. They are 

defined using a C type notation. 

4 . 3 . 2 . 1 .  S-ELEMENT 

This structure stores information on paths between a pair of nodes in the Wait 

Relation Graph. The source and sink vertex numbers are stored. The directed arc present 

between these two vertices is also stored in initial-string. In case this arc is absent, the null 

string is stored in its place. Recall the s-matrix multiplication formula, S '= sA*  si'l. The 

s-element structure stores those symbol strings in the Si-' and S ' matrix, which represent 

paths between the source and sink vertex. The symbol string in the Si-I matrix is stored in 

string2, and the symbol string in the S ' matrix is stored in stringl. 

s-el-t { 
short source-vertex; 
short sink-vertex; 
char initial-string; 
char stringl; 
char string2; 

(Note : In the implementation of this data structure in the program, the two strings storing 

the most recent and currently calculated symbol string are included in a single two 

dimensional array.) 

4 . 3 . 2 . 2 .  S-MATRIX 

This array of s-element data stnictures stores information required, and results 

produced by the string multiplication algorithm. The asray is two-dimensional square, with 

subscript equal to the number of resources in the system. 
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s - e l m t  s-mtrix [n&r of resources] [n&r of resources] ; 

4 . 3 . 2 . 3 .  CIRCUIT INFO 

This structure stores information on a circuit. The circuit string is stored is stored 

in circuit-string. The format of this string is defined in Section 4.3.2.1. The unique 

identfication number for every circuit is stored in circuit-number. The order of the circuit 

is stored in order. A linked list of circuit-in@ data structures stores information on all 

circuits which occur in the Wait Relation Graph. The data structure stores the address of 

the next element in the linked list. 

circui t i n £  o 
char c ircui ts t r ing;  
short circuit-nmkr ; 
short order; 
circuitinfo*next; 
1 

4 . 3 . 2 . 4 .  PRIMARY CIRCUIT LIST 

This data structure is a linked list of circuit-info structures. It stores details on all 

primary circuits occurring in the Wait Relation Graph 

circuit-info * prirrary-circuits; 

4 . 3 . 2 . 5 .  NUMBER OF CIRCUITS 

This global variable stores the number of primary circuits occurring in the Wait 

Relation Graph. 

sb?rt numker-of-circuits; 



4 . 4 .  ROUTINES 

This section develops each of the algorithms into pseudo code. This is the second 

stage in the development of the program. The order of the routines follows the order of the 

algorithms 

4 .4 .1 .  I N I T I A L I Z E - S - M A T R I X  

This routine creates the S-matrix data structure and initializes each element in the S- 

matrix. (For a declaration of S-matrix data structure, refer to Section 4.3.2.1.) If a 

directed arc exists from vertex i to vertex,], the initial string field in the 0th element of the S- 

matrix is initialized to "i 0"; otherwise, the initial string field of the ijth element is 

initialized to NULL. 

initialize-s-mtrix(mitgraph-mtrix) 

start routine 

s-matrix = allocate (N x N units of s-e1-t) , where N is the n d r  

of resources in system 

For every ijth e l m t  in wait-graph-mtrix 

s-mtrix[i] [j] .source-vertex = i 

s-mtrix[i] [j] .sink-vertex= j 

s-mtrix[i] [ j] . string1 = allocate space 

s-mtrix[i] [ j] . string2 = allocate space 

if ( Witgraph[i] [j] .nur&er-of-arcs > 0)  then 

s-mtrix[i] [ j ] . ini tialstring = I' i (j) I1 

else 

S-mtriX[i] [ j] . ini tial-string = NULL 

end if 

end for 

return address of s-mtrix array to calling routine 

end routine 



4 . 4 . 2 .  FORM-S-MATRIX 

This routine is called by the determination-of'all-primary-circuits routine. It 

forms a symbol matrix S " of order i. Equations (6) to (10) are used to form S from S 

and S "-I. Recall the declarations of s-element and s-matrix. The ith element of the S "-I 

matrix is stored in s-matrix[i][k].stringl. The kjth element of the S matrix is stored in s- 

matrix[k][l].initiul string. The ijth element of the S " matrix is stored in s- 

start routine 

copy s-mtrix[i] [j] .s t r ing t o  s-mtrix[il [ j ]  . s t r ingl ,  for every 
e l m t  s-mtrix[i] [ j] 
set a l l  diagonal terms i n  matrix F 1 t o  null .  
Calculate every e l m t  sijn i n  the first (N - n) ram of 
m t r i x  [ S  "Iij 

N 
s-matrix[i] m.sning2 = s-mutrix[i] [k] .string 1 * s-matrix[k](il .initidstring 

k=i+ 1 

end for 

Calculate the Wn+lth diagonal element ( i= Wn+l) in  9 as, 

N 
s-matrix[i] [i].sning2 = s-matrix[i] [k] .string 1 * s-matrix[k] [ r ]  .initial-string 

k=i+ l  

return 

end routine 

4 . 4 . 3 .  END-EXPRESSION 

This function advances the string pointer until it reaches the first I)' character at the 

same level in the string. 

end-egression ( strin-inter) 



start routine 

i n c r m t  strin-inter 

i f  current symbol is ' ( ' 

Call function end-expression(stringlpointer) 

end i f  

i f  current symbol is ' ) ' 
return £ram a l g o r i t h  

end i f  

i f  current symbol is ' + '  or n m r i c  symbol 

cb nothing 

end i f  

i f  current s y n b l  is 'end of str ing'  

print  ERROR MESSAGE and exit  £ram program 

end i f  

end do 

return 

end routine 

4 . 4 . 4 .  GET-NEXT-TERM 

This function advances the string pointer to the first character past the first 

occurence of the '+' symbol, ')' symbol or the 'end of string' symbol, all of which must 

occur at the same level. The function is recursive. In the event of a further branch in the 

string indicated by a '(I symbol, the algorithm is called again. 

getnsct- t  e m  ( s trin-int er) 

start routine 

do 

incrgnent strinqpoint er 

i f  current symbol is ' ( ' 

end expression(string_pointer) 

end i f  



if current symbol is ' ) ' 

quit and return status = END MPRESSION 

end if 

if current symbol is I + '  

quit and return status = NEXT TERM 

end if 

if current symbol is 'end of string character' 

quit and return status = END EXPRESSION; 

end if 

while(current symbol is not ' )  ' ,  ' + I  or 'end of string1 character) 

return value of status 

end routine 

4.4.5. GET-CIRCUIT 

This function is called by the determination-of-all-primary- circuits routine. The 

function extracts all primary circuits in the string passed to it, adds these circuits to the 

primary circuits linked list and returns the updated list to the calling function. The function 

implements the algorithm described in Section 4.2.2.2. 

getcircui t ( string, circui t-string, prw-circui t ) 

start rmtine 

initialize strin~inter 

incrmt string_pointer 

if current symbol is ' ( ' 

consider the portion of string which lies between strinwinter 
and the end. Call this rest-line 

get circuit ( res t-1 ine, circui t-st ring, prw-circui t 

while(return value of get next term(rest-line) is ) 

add circuit string to primry-circuit linked list 

end if 



current 

consider the portion of string which lies between string~pointer 
and the end. Call this rest-line 

advance to ' 1  ' symbol by calling end expression(rest-line) 
function 

call function get-circui t ( rest-1 ine, circui t-string, 
prhxy-circui t ) 

add circuit string to prirrary-circui t linked list 

end if 

if current symbol is 'end of string' character 

add circui t-string to prm-circui t linked list 

end if 

if current symbol is a numeric character 

add symbol to circuit-string 

end if 

while (current symbol is not 'end of string' character) 

add circuit st ring to p r w - c i  rcui t linked list 

end routine 

4 . 4 . 6 .  EXTRACT CIRCUITS FROM DIAGONAL ELEMENTS IN S - 
MATRIX 

This routine is called by the determination-of-all-primary-circuits routine. The 

diagonal elements of the symbol matrix S of order i are analyzed to extract all primary 

circuits with i arcs. The primary circuits extracted are added to the linked list of primary 

circuits and returned to the calling routine. 

In accordance with (lo), only the iirst N-m+l diagonal elements of matrix Sm are 

analyzed. In this function, the extraction of circuits is done by the get-circuit function. 

s[k][k].string2 stores the most recently calculated element of a matrix S This is the 

string passed to the get-circuit function. The routine returns the primary circuits h k e d  list 

to the calling routine. 



extract-circuits-£ramamdiagonal-elements (s-mtrix, primry-circuits, n) 

start routine 

For the first N-n+l diagonal elerrents 

extract all prhry circuits £ran the diagonal e l m t s  of the 
9 mtrix using the get-circuit routine. 

end for 

return address of prkrmp-circuits linked list 

end routine 

4.4.7. DETERMINATION-OF-ALL-PRIMARY-CIRCUITS 

This is the highest routine in the second program segment. It is in charge of 

identification and extraction of all primaty circuits in the Wait Relation Graph of the 

system. Hence, the role of this function is that of an overseer c&g the appropriate 

functions in order. The final result is a linked list of all primary circuits occurring in the 

Wait Relation Graph. 

The routine first allocates memory for and initializes the S-matrix array. It then 

creates the primary-circuitlinked list. In a Wait Relation Graph with N nodes, the 

maximum number of arcs that can occur in any path is N. Hence the largest order symbol 

matrix to be computed is of order N. The routine computes symbol matrices up to order N. 

For symbol matrix S ", it calls the matrix multiplication and circuit extraction routines. 

These functions detect all primary circuits with i arcs. The primary-circuits linked list is 

returned to the calling routine. 

determination-of-all_prhry_circuits(h.ait~aph-mtrix) 

start routine; 

S-mtrix = initializes-.trix( mitsaph-mtrix); 

create prinnry-circuit linked list. 

for every symbol mtrix of order f ram 2 to N 

£om-s-mtrix( s-mtrix, n) 



ext ract-circui ts-f rmCBndiagonaldiel~t s ( s-mtrix, pr*-circui t , 
n 

end for 

return address of primuy-circui t linked list to calling routine 

end routine 



CHAPTER 5 

PROGRAM DEVELOPMENT - EXTRACTION OF HIGHER 

ORDER CIRCUITS 

The present chapter explains the development of the third segment in the program-- 

namely, the detection of all higher order circuits in the Wait Relation Graph. This is the 

third and final segment in the program. The results of the previous chapters, i.e., the list 

primary-circuits and the number of primary circuits, are used in this segment. The chapter 

starts by describing the theory used in the detection of all higher order circuits. Important 

data structures are described in Section 5.2. The last section contains the pseudo code 

descriptions of all routines. 

5 . 1  HIGHER ORDER CIRCUIT DETECTION - BACKGROUND 

This chapter explains the theory used in the detection of all higher order circuits. It 

starts by reviewing the definition of order. Next the development of the algorithm is 

explained. 

5 . 1 . 1  ORDER 

By definition, order is defined to be one less than the number of simple circuits in 

the closed loop, where each of the simple circuits contributing to the order must intersect 

any other simple circuit in the closed loop in only one vertex. 

Consider the Wait Relation Graph G formed by adding a primary circuit Co to a 

higher order circuit C. Let C' = C u Co. By lemma 7, order(C')=order(C)+a, where a = 1 

if C and Co intersect in a single vertex and a = 0 if C and Co intersect in a path. 



5.1.2 THEORY OF HIGHER ORDER CIRCUIT DETECTION 

From the theorems in Chapter 2, a manufacturing system is deadlock free if 

The order of the circuit is obtained by applying the definition of order to its structure. 

Knowing every element C E CG and its order we can form the deadlock-free slack 

conditions. Hence, knowing the elements in set CG is an important step in obtaining the 

deadlock free solution to a system. 

Definition. 

The set C& is defined as 

C& = {C: order(C)=i, and C E CG) . 

C; is called the set of order i. 



Example 5.1. Figure 5.1 depicts the Wait Relation Graph G of a manufacturing system. 

Figure 5.1. The Wait Relation Graph in Example 5.1. 

For G we can define the following sets. 

The set of order 0, C: = {Cl, C2, C3}. 

The set of order 1, C& = {c1 v c2,  C2 v C3, Cl v C3}. 

 hes set of order 2, C; = {c* u cz u c,}. 

CG would be obtained as, 

cG =C:UC~VC& 

= {Cl, C2, C3, C1 u c2, C2 v C3, c1 u C3, C1 V C2 u C3). 

Given any graph G, the set CG can be expressed as, 

n- l 

CG = V VCL, n = number of resources in system. (5-1) 
i= 0 



Equation 1 is the basis of an alternate algorithm for deriving CG. AS in (I), CG is 

formed by a union of all sets c&. where 0 5 i < n. Each set ck is formed recursively from 

the elements in ckl and c:. The algorithm is based on the material in Section 2.6 and is 

used in the detection of all higher order circuits. The starting inputs for the algorithm is 

c:. This is formed from the primary circuits detected by the routines described in Chapter 

4. A description of the algorithm follows. 

Step 1 .  Set i = 0. 

Step 2.  Consider an element C* E cL. 
Step 3. Form the union of C* with a circuit C E C: which does not occur in C*. 

Remember that C* itself can be comprised of multiple primary circuits. The 

circuit C E C: should not be one of the circuits in C*. 

Step 4. If C intersects C* in a single vertex, order(C u C*)=i+l. Add C u C* to 

cgl. IfC intersects C* along a path, order(C u C*) = i. Add CuC* to 

Ck. 

Step 5. Repeat steps 3 and 4 for every circuit C in C; 

Step 6 Repeat step 2 , 3  and 4 for every C* E Ck. 

Step 7. Increment i. If i < n repeat steps 2, 3 and 4. 

In the proof of Theorem 7(refer to Chapter 2), we know that a Wait Relation Graph 

can be anaylzed by breaking it up into its primary circuits and simple paths. The graph is 

then reassembled by adding one element at a time. The above method of building the set 

CG from the union of all sets of orders of orders 0, 1, 2, ... n-1 works as well as the 

method of building the graph by adding simple paths to it, and this is the method adopted 

in this program. 



5 . 2 .  DATA STRUCTURES 

This section defines the major data structures that are used by the program. They 

are defined using a C-type notation. 

5 . 2 . 1 .  CIRCUIT-INTERSECTION 

This structure stores information on the intersection between two circuits. Pertinent 

inforrnation--such as circuit numbers of the two circuits, number of circuit intersections, 

and any one common vertex Frst-common-vertex)--are stored. 

circuit-intersection{ 
short circuitlnm-kr 
short circuit2-n&r 
short nmbr-of-cm-vertices 
short first-cmnnvertex 
1 

5 . 2 . 2 .  INTERSECTION 

This is an array of circuit-intersection data structures. The array is of size Nc  x 

Nc, where Nc is equal to the number of primary circuits. The ijth element of the array 

stores the information on intersections between primary circuits i and j. 

circuitintersection intersection[Nc][Nc] 

5 . 2 . 3 .  HIGHER-ORDER-CIRCUITS 

This data structure is a linked list of circuit info structures. It stores details on 

circuits of all orders greater than 0. 



5 . 2 . 4 .  HIGHEST ORDER CIRCUITS 

This data structure is a linked list of circuit-info structures. It stores details on 

those circuits which are of highest order. 

c i rcu i t info  * highest-ordercircuits 

5 . 2 . 5 .  CURRENT-CIRCUITS 

This is a temporary linked list of circuit-info data structures. 

circuit-info * current-circuits 

5 . 2 . 6 .  NUMBER OF CIRCUITS 

This global variable stores the number of primary circuits. 

&rt nmkr-ofcircuits 

5 . 3 .  ROUTINES - PART 1. FORMATION OF "INTERSECTION" ARRAY 

The pseudo code implementation is done in two layers. At the lowest layer is a set 

of utilities which construct the intersection array. This section describes this set. Routines 

are described in a bottom up approach. The last routine uses all the routines described prior 

to it. 

5.3.1. GET-CIRCUIT-STRING 

This routine accepts as a function parameter a circuit number. It then scans the 

linked list of circuits and returns the circuit string corresponding to this number.(Refer to 

Section 4.3.2.3 for a declaration of the circuit-info data structure.) 



get-circuit-string(n&r, prin-aty-circuits) 

start routine 

for every c i rcui t  i n  list primry-circuits 

i f  ( n m k r  equals circuitnumber field) 

return circui t-string 

end i f  

end for 

return 

end routine 

ACT-ON-STRING 

This routine performs a variety of operations on a string. These include extraction 

of the first node in the string, and advancing the string pointer to first node beyond the 

next white space. The routine returns a string containing the result of these operations. In 

case the end of string is encountered, the routine returns the NULL string. The notion of a 

string pointer is similar as in Chapter 4. The string pointer stores the location within the 

string where the next string will be extracted. The action to be performed is included in a 

parameter action-code passed down by the calling function. 

ac t-on-s t ring ( ckt-s tring, act i on-code, s t r i n w i n t  er) 

start routine 

i f  (action-code = mve str ing pointer t o  f i r s t  node a f t e r  the next 

w h i  tespace in ckt-string) 

increnwt s t r i n w i n t e r  till it is beyond the f i r s t  ' ' character 

Consider the part of the s t r ing which l i e s  bet- the 
s t r i n w i n t e r  location and the end of the ckt-string. 
Update ckt-string t o  he th is  string 

i f  (there are no ' ' characters i n  ckt-string) 

return NULL string 

else 

return &string 



end if 

end if 

if ( a c t i m c d e  = get next ncde in ckt-string) 

if (there are no ' ' characters in ckt-string) 

print error message and exit progam 

else 
incrmt stringsinter till it is beyond the first ' 

character 

return first ncde in ckt-string (this will be the string 

which lies between the wi?itespace just passed and the next 

whitespace) . 
end if 

end if 

return NULL string 

end routine 

5.3 .3 .  CREATE-INTERSECTION-ARRAY 

This routine creates the intersection array. For every ij th element in the array, the 

routine calculates the number of circuit intersections. It does this by extracting each vertex 

in circuit I and checking for its occurrence in circuit j. The number of such occurrences is 

counted and stored in the circuit intersection data structure corresponding to the ijth element 

of the intersection array. The pseudo code description follows. 

creat e-intersect ion-array ( prinmp-circui t s ) 

start rautine 

initialize every e l m t  in the intersection array 
for every pair of primary circuits 

Call the pair ( A, B) where A and B are prhwy circuits 

Determine the number of c m n  vertices between A and B. Use 
function actonstring to determine the vertices for each 
circuit 

Store this infomtion in the ijth elaent of the intersection 



end for 

return 

end routine 

5.4 .  ROUTINES -PART 2. DETECTION OF HIGHER-ORDER 

CIRCUITS 

This section contains the pseudo code descriptions for two routines, which together 

detect all higher-order circuits. The first routine detects all circuits of order 1. The next 

routine detects all circuits of orders greater than 1. Both routines rely on the intersection 

array as the source of information on primary circuit intersections. The description of these 

routines concludes this chapter, as well as the description of the program. 

5.4.1. DETECTION-OF-1ST-ORDER-CIRCUITS 

This routine detect all 1st order circuits. The intersection array is examined to 

obtain all pairs of circuits intersecting in a single vertex. A union of every such pair of 

circuits is formed. From the definition of order, this union represents a circuit of order 1. 

A list higher-order circuits, consisting of all circuits of order 1, is formed. The pseudo 

code description follows. 

detect ion-o f-l s t o r d e r c i r c u i  t s ( intersection, prw-circui  ts ) 

start rautine 

for every pair of p rhmy circuits 

Call the pair ( A, B) where A and B are pr- circuits 

i f  ( the pair of circuits intersects in  a single vertex - this 
infomt ion  is obtained £ram the intersection array) then form a 
circuit  C = A B 

Add C t o  the list higher order circuits 

end i f  



end for 

return address of higher-order-circui t s 

end routine 

5.4.2.  DETECTION-OF-ALL-HIGHER-ORDERRCIRCUITS 

This routine detects all circuits of order greater than 1. The routine is based on the 

algorithm described in Section 5.1. First define a variable order-of-highest-circuit and 

initialize it to 1. Choose an element A from the highest-order-circuits list(initia1ly this 

equals the list of first order circuits). Next, choose an element B from the list of primary 

circuits. If B intersects A, a new circuit C = A u B  is formed. By the definition of order, it 

is known that when a primary circuit intersects another circuit in a single vertex, a circuit of 

1 higher order is created. By the same definition, when the circuit intersects another circuit 

in a path, the order of the resultant circuit does not increase. The order of C is determined 

by applying these rules. The circuit C i s  added to a list current-circuits. 

The entire process outlined in the previous paragraph is repeated once again for 

every pair of circuits (A, B), where A is from the highest-order-circuits list and B is from 

the list of primary circuits. The list of currerzt-circuits is appended to two existing lists. 

The first is the list higher-order-circuits. The next is the list highest-order-circuits. The 

highest-order-circuits list is examined; all circuits of order lower than 

order-of-highest-circuit-1 are deleted. The list current-circuits is cleared to prepare for a 

new set of circuits. 

At this stage circuits of order = order-of-highest-circuit have been detected. The 

variable order-of-highest-circuit is incremented and the procedure repeated. The process 

is repeated until all circuits of order = nc~rnber of resocirces - 1 have been detected. At this 

stage the list higher-order-circuits contains all circuits C E CG, order(C)>l. The pseudo 

code description of the routine follows. 



detect ion-o f-a1 1-higher-order-circui t s ( higher-order-circui t s, 

prim.i-y-ci rcui t s ) 

start routine 

Set the list highest-order-circuits to equal list of first order 
circuits 

Set variable ordcof-highes t-circui t to 1 

while order-of-highest-circui t is less than the value of 
number-of-resources -1, repeat the steps belm 

for every circuit in the list highest-order-circuits 

Call this circuit, A 

for every circuit in the list prw-circuits 

Call this circuit, B 

if( A intersects ary circuit in B - determine this 

infomtion frcan the intersection array) 

create a new circuit C = A B 

if( A intersects B in a single vertex - 

determine this infomtion £ran the intersection 

a m )  
order C = order A + 1 

else 

order C = order A 

end if 

add C to the list current-circuits 

end if 

end for 

end for 

Add all circuits in list axrent-circui ts to higher-order-circuits 

Add all circuits in list axrent-circuits to 
hi ghes torder-ci rcui t s 

Clear list current-circuits 

For every circuit C in list highest-order-circui ts 

if (order of circuit C < order-of-highest-circui t-1) 

delete circuit C £ran list highestordercircuits 

end if 

end for 



i n c r m t  variable order-of-highes t-circui t 

end while loop 

return 1 is t higher-order-ci rcui t s t o  call ing routine 

end routine 

5.4.3.  P R I N T - S L A C K - C O N D I T I O N S  

This routine analyzes the pri1nar-y-circuits and higher-order-circuits linked lists, 

extracting the slack conditions from the information stored within. This extraction is done 

in two parts: 

1. The primary circuits slack conditions are extracted from the information stored in 

primary-circuits linked list. From each linked list element (refer to Section 

4.3.2.3), the circuit string(C) and its order are extracted. The slack condition is 

determined from the relation 

slack(C, s) < order. 

The circuit C is analysed and every node in it extracted. Express these nodes as 

N1,  N 2 ,  ' ' ' 9  N,. 

2. The higher-order slack conditions are extracted from the information stored in 

higher-order-circuits linked list. From each linked list element, the circuit 

string(C) and its order are extracted. The circuit C is itself a union of primary 

circuits. These are extracted and expressed as 

C = C 1 u C 2 . . . u C ,  . 

The slack condition is 

slack(C, s) < order. 



printslack-condi t ions (prinaq-circui t s , higher-order-circui ts ) 

start routine 

for wery e l m t  in  primry-circui ts 

Ektract wery node i n  circuit string 

print circuit and order as described above 

end for 

for wery e l m t  in  higher-order-circui ts 

print circuit and order as described above 

end for 

end routine 



CHAPTER 6 

ANALYSIS OF CIRCUITS USING THE PROGRAM 

In this chapter, the program will be used to analyse a series of examples and results 

will be presented. The program developed is named thesis and resides on SUN 

workstation phoenix.ent.ohiou.edu. The file system. dat contains a description of the 

manufacturing system in the prescribed format. For each example, the Wait Relation 

Graph of the system, the system.dat file and the program output--consisting of a list of 

circuits with corresponding slack conditions--are presented. The chapter will conclude 

with a section on how to use the program. 

6.1. EXAMPLES 

The program is used to analyse a series of examples. 

6.1.1 EXAMPLE 1 

This example is identical to the one in Section 2.6.1. The process plan is shown in Table 

6.1. 

Table 6.1. Process Plan of Example 1. 

Process No. 

Process 1 

Process 2 

Process Plan 

Operation A processes Part 1 in Machinel. Operation B transfers the part 

via Robot to Machine2. Operation C processes Part 1 in Machine2. 

Operation D processes Part 2 in Machine2. Operation E transfers the part 

via Robot to Machine 1. Operation F processes Part 2 in Machinel. 



The Wait Relation Graph is shown in Figure 6.1. 

Figure 6.1. Wait Relation Graph of Example 1. 

The file sys tern. dat is shown in Table 6.2. 

RESOURCES 

Machine 1 Machine2 Robot 

PROCESS 1 

Machine 1 Robot Machine2 

PROCESS2 

Machine2 Robot Machine 1 

END 

Table6.2. system.datFileforExample1. 

The program output is shown in Table 6.3. 



Slack Rule 1 allm atrrost 1 operation to be sinudaneously active. 

The operations are: E, A. 

Slack mile 2 allm atrrost 1 operation to be sinudaneously active. 

The operations are: B, D. 

Slack Rule 3 allaws atrrost 1 operation to be simdaneously active. 

,The operations are: A, B, D, E. 

Table 6.3. Output from Program for Example 1 

6.1.2. EXAMPLE 2 

This example is identical to the one in Section 2.6.2. 

The process plan is shown in Table 6.4. 

Table 6.4. Process Plan of Example 2. 

Process No. 

Process 1 

Process 2 

The Wait Relation Graph is shown in Figure 6.2. 

Process Plan 

Operation A processes Partl in Machinel. Operation B processes Partl in 

Machine2. Operation C processes Partl in Machine3. OperationD 

processes Partl in Machine4. Operation E processes Part1 in Machine5 

Operation F processes Part2 in Machine5. Operation G processes Part2 in 

Machine3. Operation H processes Part2 in Machine4. Operation I 

processes Part2 in Machine2. Operation J processes Partl in Machinel. 



Machine 3 

Figure 6.2 Wait Relation Graph of Example 2. 

The file system. dat is shown in Table 6.5. 

L 

RESOURCES 

Machine1 Machine2 Machine3 Machine4 Machine5 

PROCESS 1 

Machine 1 Machine2 Machine3 Machine4 Machine5 

PROCESS2 

Machine5 Machine3 Machine4 Machine2 Machine 1 

END 

Table 6.5. system. dat File for Example 2. 



The program ouptut is shown in Table 6.6. 

Slack Rule 1 allam abst 1 operation to 332 sirroilaneously active. 

The qxrations are: A, I. 

Slack Rule 2 all- atrrost 2 operations to be si..rmlaneously active. 

The operations are: B, C, G, H. 

Slack Rule 3 all- amst 2 operations to be sirroilaneously active. 

The aperations are: C, Dl F, G. 

Slack Rule 4 allas atrrost 3 operations to be si..rmlaneously active. 

The operations are: B, C, D, F, G, H. 

Slack Rule 5 all- atrrost 2 operations to be si..rmlaneously active. 

The operations are: A, B, C, G, HI I. 

Slack Rule 6 all- atrrost 3 operations to 332 sirra_ilaneously active. 

_?he operations are: A, B, C, D, F, G, H, I. 

Table 6.6. Output from Program for Example 2. 



6 . 1 . 3 .  EXAMPLE 3 

The system consists of four processes sharing iive resources, and is more involved than 

those of previous examples. The process plan is shown in Table 6.7. 

Table 6.7. Process Plan of Example 3. 

The Wait Relation Graph is shown in Figure 6.3. 

Process No. 

Process 1 

Process 2 

Process 3 

Process 4 

i 

Process Plan 

Resource A process Partl in Operation 0 1  1. Resource E process Partl in 

Operation 012. Resource B process Partl in Operation 013. 

Resource B process Part2 in Operation 0 2  1. Resource E process Part2 in 

Operation 022. Resource C process Part2 in Operation 023. 

Resource C process Part3 in Operation 031. Resource E process Part3 in 

Operation 032. Resource D process Part3 in Operation 033. 

Resource D process Part4 in Operation 041. Resource E process Part4 in 

Operation 042. Resource A process Part4 in Operation 043. 



Figure 6.3. Wait Relation Graph of Example 3. 



The file system. dat is shown in Table 6.8. 

RESOURCES 

A B C D E  

PROCESS 1 

A E B  

PROCESS2 

B E C  

PROCESS3 

C E D  

PROCESS4 

D E A  

END 

Table 6.8. system. dat File for Example 3. 



The program output is shown in Table 6.9. 

Slack Rule 1 allows amst 1 operations to l=e sirmlaneously active. 

?he operations are: 011, 042. 

Slack Rule 2 allows amst 1 operations to k sirmlaneously active. 

The operati- are: 012, 021. 

Slack Rule 3 allows atrrost 1 operations to I=e sirmlaneously active. 

The operations are: 022, 031. 

Slack Rule 4 allows amst 1 operations to l=e sina_llaneously active. 

The operations are: 032, 041. 

Slack Rule 5 allows amst 1 operations to k sirmlaneously active. 

The operations are: 011, 012, 021, 042. 

Slack Rule 6 allows atrrost 1 operations to be sirmlaneously active. 

The operations are: 011, 022, 031, 042. 

Slack F3d.e 7 allows atrrost 1 operations to k sirmlaneously active. 

The operations are: 011, 032, 041, 042. 

Slack Rule 8 allm atrrost 1 operations to ke sirmlaneously active. 

The aperations are: 012, 021, 022, 031. 

Slack Rule 9 allows atmst 1 operations to ke sirmlaneously active. 

The operations are: 012, 021, 032, 041. 

Slack Rule 10 allows amst 1 aperations to be sirmlaneously active. 

The operations are: 031, 022, 032, 041. 

Slack F3d.e 11 allows amst 2 operations to ke sirmlaneously active. 

The operations are: 011, 012, 021, 022, 031, 042. 



Slack Rde 11 allam atrrost 2 operations to ke sirmlaneously active. 

The operations are: 011, 012, 021, 022, 031, 042. 

Slack Rde 12 allm atrrost 2 operations to be sirmlaneously active. 

The operations are: 011, 012, 021, 032, 041, 042. 

Slack Rde 13 all- atrrost 2 operations to be sirmlaneously active. 

The operations are: 012, 021, 022, 031, 032, 041. 

Slack Iiule 14 allanls atrrost 2 operations to ke sirmlaneously active. 

The operations are: 022, 031, 032, 041, 042, 011. 

Slack Rule 15 all- atrrost 3 operations to be sirmlaneously active. 

The operations are: 011, 012, 021, 022, 031, 032, 041, 042. 

Table 6.9. Output from Program for Example 3. 

6.2 IJSING THE PROGRAM thesis 

Using the program to analyse manufacturing systems for deadlock is a two step 

process: preparing the system.dat file and running the program. In the first step the 

system.dat fde is prepared with a system description. This description is in the format 

explained in Section 3.1. In the next step, the command thes i s terminated with a carriage 

return is typed on the command line. The program executes, printing a list of circuits and 

corresponding slack conditions. 



CHAPTER 7 

CONCLUSIONS 

In this chapter, goals realized in this thesis and suggestions for future research will 

be presented. 

7.1 CONCLUDING REMARKS AND OBSERVATIONS 

In conclusion, formalisms for deadlock avoidance and detection were developed. 

Theorems 1 to 6 identified deadlock structures, such as circuits and union of circuits. 

Theorem 7 presented a method to detect deadlock in an arbitrary system based on the 

results proven in earlier theorems. The concept of slack was introduced. Theorems 2 to 6 

used the idea of slack to present a set of conditions which would guarantee a deadlock-free 

system. Theorem 7 applied the ideas in earlier theorems to an arbitrary system, developing 

a set of slack conditions for its deadlock-free operation. To test the method developed on a 

larger variety of manufacturing systems, a computer program was developed. The 

program was tested on a number of manufacturing systems. Results obtained were 

consistent with theory. 

On comparing the deadlock detection and avoidance method with current research, 

we found that resource utilizations were higher than PME[3], SME[3], DAA[4] and 

DAC[5] methods. All deadlock states were correctly identified, when compared to the 

DDP[l] which ignored some higher-order deadlocks. The deadlock avoidance method 

developed constraint conditions on groups of operations. These would ensure deadlock- 

free operation. No buffer resources were used to break deadlock and this was an 

improvement over Cho's method[2]. However, some non-deadlocked states were 



considered deadlocked. The computer program developed for deadlock analysis was 

entirely offline. No computing resources were diverted for deadlock calculations while the 

process was running. 

7 . 2  FIJTURE RESEARCH 

This research provides a reliable base to which many improvements can be made. 

Each of the suggested improvements are broadly in two categories: those in the first 

category will enhance performance of the deadlock-free system, while the second will 

extend the theory to a wider class of systems. 

7.2.1 INCORPORATION OF PROCESS PLAN INFORMATION 

So far in this research we have ignored all information on specific part flow. In the 

Wait Relation Graph we were only concerned with the presence or absence of an arc 

between two nodes. The specific process to which the operation represented belonged was 

not needed. However, as we will shortly present, this information is useful in eliminating 

some slack conditions which would otherwise restrict the system and reduce resource 

utilizations. 



Consider once again a two-process, three resource system: 

Process 1 Mill R o b o t  Lathe 

Process 2 Lathe Mill R o b o t  

The Wait Relation Graph for this system is shown in Figure 7.1 

Figure 7.1. WRG for a two-process three-resource FMS. 

The following slack conditions are needed for deadlock-free operation: 

s lack(Oll ,022) > 0 

slack(02 1 , O  12) > 0 

slack(0 1 1 , 0  1 2 , 0 2  1 ,022)  > 1 

Now let us closely examine the states of the system eliminated by these slack conditions. 

This can be best done by listing all possible states row-wise in a table. In Table 7.1 

operations are contained in columns with rows depicting states. Each non-zero cell in the 

table represents an active operation in the corresponding state. The resource used in the 

operation is entered. A remark is made for each state on whether this state is allowed in the 

deadlock-free system. For every state disallowed, a remark is then made on whether this is 

truly a deadlocked state. 



From Table 7.1 we can draw the following conclusions: 

All deadlock states were eliminated. 

Really 

Deadlocked? 

Some non-deadlocked states were also eliminated. 

The states allowed in the system were all non-deadlocked. 

0 2 3  

0 
0 
0 

0 2 2  

0 
0 
0 

Of a total of 24 states, 11 were allowed. 

Remark 

Yes 
Yes 
Yes 

0 1 3  

0 
0 
L 

0 1 2  

0 
R 
0 

Number 

1 
2 
3 

0 2 1  

0 
0 
0 

0 1 1  

M 
0 
0 



Of a total of 13 disallowed states, 6 were erroneously eliminated 

One way to reduce the number of erroneously eliminated states is to include 

process flow information. For instance, in states 13, 15, 18 and 20 deadlock will not 

occur, as all processed parts are in only one of the two processes. In states 17 and 22, two 

parts are either in one of two processes, and a third part is in the last operation in a process. 

These ideas could be developed and formalized in further research. 

7 .2 .2  ELIMINATION OF ASSUMPTIONS 

In Chapter 2 we made the following assumptions on the class of manufacturing 

systems considered in this research: 

An operation uses just one resource. 

There is one unit of every resource in the system. 

There is no branching of operations in a process plan. Any operation is always 

precededlsucceeded by a single operation. 

An operation can only process one part at any time. 

Elimination of each of these assumptions could be a topic of further research. This will 

extend the theory to a wider class of manufacturing systems. 
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