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CHAPTER 1

INTRODUCTION

Deadlock is a phenomenon which occurs in Flexible Manufacturing Systems when
multiple processes compete for the use of limited resources. In this research a method for
detection of deadlock and its avoidance has been developed.

Consider the example of a flexible manufacturing workstation consisting of a

Robot and a CNC Mill machine, as shown in Figure 1.1.

v
PARTS IN

HCO wHT»

Figure 1.1. Example of a manufacturing system.

Parts arrive on a conveyor belt (“Parts In””) and are picked up immediately by the robot for
transportation to the Mill. When a part has been processed by the Mill it is transported by
the robot to the exit conveyor (“Parts Out”). Assume now that a part arrives on the
conveyor belt and is picked up and transferred to the Mill. Before this part can be
processed completely in the Mill, another part arrives on the conveyor. The robot picks the
part up and then waits for the Mill to be free. The Mill will eventually complete its

machining operations and the robot will be called upon to transfer the part to the exit



conveyor. However the robot is busy—it has a part which needs to be transferred to the

Mill. The Mill is busy—it needs the robot to transfer a part out. Deadlock has occurred.

1.1 GOALS
In this thesis we seek to develop a theory for the detection and avoidance of

deadlock in a class of manufacturing systems. The thesis has the following goals:

1. To develop formalisms for the detection of deadlock in a class of flexible
manufacturing systems.

2. To develop formalisms for the avoidance of deadlock so as to guarantee a
deadlock-free system.

3. To develop a computer program which implements the deadlock detection and
avoidance method developed.

4. To test the method developed on a number of example systems.

1.2 LITERATURE SEARCH

The problem of deadlock has been addressed by a number of researchers. In this
section a survey of research in the field is presented. A comparison with the method
developed in this thesis is presented for every research paper surveyed.

Wysk, Joshi, Yang [1] have used directed graphs to detect deadlock in Flexible
Manufacturing Systems. In their approach, called a Deadlock Detection Procedure(DDP), a
structure called a Wait Relation Graph(WRG) is used to model part flow and resource-
operation relations. Briefly, a WRG is a directed graph with nodes representing resources
and arcs operations. The WRG is developed at each state and examined for deadlock.

Appropriate avoidance measures are then taken. This thesis develops on the method



presented in this paper, and WRGs are detailed in Chapter 2. The paper identifies two
levels of deadlock. In the first theorem sutficient conditions for the occurrence of first level
deadlock are explained. Briefly these are: the existence of at least one circuit; number of
active jobs in this circuit must equal the number of arcs; the number of resources in the
circuit must equal the number of arcs. The paper contains a detailed description of a matrix
multiplication method used to detect all circuits. The second level deadlock is then
described. This occurs from interaction between circuits. The paper describes a method to
convert a WRG to a second-level graph and detect all second-level circuits.

Cho, Kumaran, Wysk [2] have presented a graph-theoretic deadlock detection and
resolution procedure. A "system status graph" is used to represent part routings of all parts
of the system. It is updated whenever a part movement occurs. The graph is then analyzed
for deadlock. Two types of system deadlocks--part flow deadlock” and "impending part
flow deadlock--are detected using the system status graph. A part flow deadlock is a
situation in which further part movements are impossible. The existence of "a simple
bounded circuit" is "a sufficient and necessary condition for part flow deadlock”. Part flow
deadlock is resolved by moving a part to a temporary storage buffer and then sequentially
moving the other parts. A second scheme of deadlock avoidance can also be employed if
buffers are full or not available. Here the system is checked for part flow deadlock before
the part moves to its next destination. The deadlock causing transition is then inhibited.
No guidelines on when each method would be suitable are presented. The concept of
"nonsimple bounded circuit" is introduced: "a non simple bounded circuit is a necessary
condition for impending part flow deadlock”. Both cases of empty and non-empty
common nodes are considered. A heuristic scheme for analyzing deadlock in nonsimple
bounded circuits is also presented;

Zhou and DiCesare [3] have worked on the shared resource allocation problem.

Two essential resource sharing concepts in the context of Petri Nets are developed. The



tirst is a structure called a Paralle]l Mutual Exclusion (PME) proposed for a resource shared
by different independent processes. It is represented as a tuple that comprises an initially
marked place and a set of transition pairs. The shared resource place models the availability
of the shared resource, and each transition pair defines a process. A theorem on Petri Nets
containing PMEs is presented. Brietly, the net is live, bounded and reversible if the shared
resource is added as a PME. A Sequential Mutual Exclusion (SME) models a resource
shared by sequentially related processes. It can be visualized as a sequential composition of
several PMEs with the same shared resource place. The liveness and reversibility of a net
containing a SME can be affected by an inappropriate distribution of initial tokens. A
concept of token capacity is proposed. A second theorem provides sufficient conditions for
a Petri Net that contains a SME to be live, bounded and reversible. Briefly, the number of
initial tokens should be limited to the token capacity of the SME.

Banaszak and Krogh [4] have developed an algorithm to avoid deadlock in Flexible
Manufacturing Systems. Their Deadlock Avoidance Algorithm (DAA) is a restriction
policy for constraining real-time resource allocation options. Deadlock is identified as
being caused by circular wait relations between resources. The DAA is a feedback policy
that uses the current states of the resources and the known operation sequences for the
active jobs to inhibit requests for resources only when they will potentially lead to deadlock
conditions. DAA partitions the production sequence for a process into subsequences or
zones. Unshared zones correspond to production steps using unshared resources. Shared
zones correspond to production steps using shared resources. Two DAA rules are
presented. Rule DAAL1 allows a token to enter a new zone in the production sequence only
when the capacity in the unshared subzone of the zone exceeds the number of jobs
currently in the zone. Rule DAA2 assures that if a shared resource is being requested by

the job, all of the shared resources in the remainder of the zone are available at that time.



Hsieh and Chang [5] have developed a method to synthesize a deadlock free
controller based on the Petri Net(PN) formalism. They start by constructing independent
PNs to represent the manufacturing processes of individual jobs and individual resources.
These jobs and resource subnets are merged into a Petri Net representing the entire system
and control places added. The deadlock avoidance problem is then formulated as finding a
sequence of transition firings which will keep the Petri Net live and achieve a high resource
utilization. The sequence of transitions is called a control action. A set of theorems which
describe conditions for synthesis of deadlock-free control actions is presented. Concepts
such as "minimum resource requirement” are introduced and used in determining when it is
possible to synthesize a control policy which keeps the net live. In addition to the
dispatching policy, a "Sufficient Validity Test" is introduced. This evaluates in a heuristic
way when a control policy is valid and when it must be replaced. A replacement procedure
to modify an invalid control action and then apply the sufficient validity test is described. A
finite number of such iterations is needed to find a valid, replacement, control policy. The
Deadlock Avoidance Controller(DAC)--consisting of the dispatching policy, sufficient
validity test and replacement procedure--is applied at every state to determine the next valid
state.

On comparing the deadlock detection and avoidance method developed in this thesis
with current research, we found that the method is more reliable and achieves better
resource utilizations compared to PME, SME, DAA and DAC methods. Another
improvement was that all computations for deadlock detection and avoidance are done off-
line. There is no diversion of computation resources for any deadlock related calculations

while the process is running.



1.3 LI F THESI

The next chapters will present the deadlock detection and avoidance theory, the
computer program developed, and iluustrative examples. Chapter 2 presents formalisms
developed for the detection and avoidance of deadlock in manufacturing systems.
Assumptions for the class of manufacturing systems considered, definitions and theorems
are present in this chapter. Chapters 3 through 5 describe the development of a computer
program to detect and avoid deadlock in a FMS. Chapter 3 describes algorithms used in
the creation of the Wait Relation Graph of the system. Chapter 4 describes algorithms
used in detection of primary circuits. The algorithms in Chapter S are used in detection of
higher order circuits. Chapter 6 contains results obtained from using the computer program

to analyze various example FMSs. Conclusions follow in Chapter 7.



CHAPTER 2
THE DEADLOCK FREE SOLUTION

In this chapter a solution to the problem of deadlock in manufacturing systems is
presented. The chapter starts with an illustrative example, one which is representative of
the type of manufacturing systems being modelled in this research. Assumptions regarding
the nature of manufacturing systems being modelled are then presented. After a brief
section on terminology, the Wait Graph Relation(WRG) technique of modelling a
manufacturing system is introduced. Important WRG structures such as paths and circuits
are defined. The occurence of deadlock is illustrated using Wait Relation Graphs. Next,
the formalism proposing the deadlock free solution is presented. The chapter concludes
with a generalized formalism, one which can create the deadlock free solution to any

manufacturing system.

2.1. ILLUSTRATIVE EXAMPLE

In this section, a hypothetical example typical of the manufacturing systems
modelled in this research is presented.

Dies Incorporated is a small company in Athens, Ohio. They manufacture four
different dies for the truck industry; their main customer is Kenworth Truck Company in

Chillicothe, Ohio. The process plan for manufacture of the four dies is as follows:

Die 1 - Robot, Mill, Robot, Lathe, Robot.
Die 2 - Robot, Lathe, Robot.
Die 3 - Robot, Drill, Robot.

Die 4 Robot, Mill, Robot, Drill, Robot.
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Figure 2.1.Dies Incorporated--4 processes sharing 4 resources.



The resources in this system are Robot, Drill, Mill and Lathe. There is one unit of each
type of resource. The manufacture of each of the four dies can proceed concurrently,
sharing the available resources. If a resource required by a specific operation is busy, the
part will wait until the resource is free again. Thus, we can have multiple dies of the same
type being manufactured, and have different dies being manufactured concurrently. This

system is representative of the kinds of manufacturing systems modelled in this research.

2.2. ASSUMPTIONS

The following assumptions are made regarding the nature of the manufacturing

system being modelled:
1. An operation uses just one resource.
2. There is one unit of every resource in the system.
3. There is no branching of operations in a process plan. Any operation is

always preceeded, and/or suceeded by a single operation.

4. An operation can only process one part at any time.
S. All operations take a finite time for completion.
6. There are a finite number of operations in the process plan.

2.3 TERMINOLOGY

The following terminology will be used in this research:

R Set of resources in the system.
o Set of products to be manufactured.

Oper(q) For each product ¢ € Q, the operation sequence

Oper(q) = {74, T'b» Tc» ---» Ym} is an ordered list of resources,
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which defines the order that the resources are required by

process q.

24, RA R FSY

In this research, the Wait Relation Graph technique of modelling manufacturing
systems is adopted. The present section contains a series of definitions introducing Wait
Relation Graphs and related concepts. These are followed by the Wait Relation Graph

representation of the Dies Incorporated system presented in Section 2.1.

2.4.1 DEFINITIONS
Wait Relation Graph

The Wait Relation Graph G = (R, A) is a digraph of vertices and arcs. R is the set
of vertices; A is the set of arcs. Each vertex represents a resource in the system. The arcs
represent the operations in the system. An arc a is drawn between resources r; and rp, if r,

immediately follows r; in at least one operation sequence Oper(g), g € Q.

Head function

Given an arc a € A, head(a) =r, if arc a is directed from resource v to resource 7.

Tail function

Given an arca € A, tail(a) = v, if arc a is directed from resource v to resource r.

Subgraph
A subgraph G;c G is a graph where Ric R, AjC A and tail(a) € Ry, head(a) €
Ri,Vae A
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Path
A path P= (R, A) is a subgraph of G such that all elements of R and A can be
ordered as
r1a\r2azriaz - -anp.1rn,

where r; = tail(a;) and r;,; = head(a;).

Simple Path
A Simple Path P = (R, A) is a path where all the elements in the ordered list are

distinct.

Closed Path
A Closed Path P = (R, A) is a simple path where the ordered elements form a loop.

Arcs and vertices may be traversed more than once in the loop.

Circuit

A circuit is a closed path.

Primary Circuit
A Primary Circuit C= (R, A) is a closed path where each resource can be at the head

or tail of only one arc.

Union of circuits
A union of circuits C; = (R1,41), C2 = (R2,A7) is a single closed path C = (R, A)
where R = (R, UR,)and A = (A, UA,). Cisdenoted as C= C;u(;
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Committed Arc

An arc a is committed if any one operation represented by arc a is processing a part.

Committed Resource

A resource r is committed if any arc a is committed where tail(a) =r.

Free Resource

A resource r is free if it is not committed.

Busy Resource

A resource r is busy if it is processing a part.

Idle Resource

A resource is idle if it is not processing a part.

A distinction exists between committed, free, busy and idle resources. A resource
may be busy and not committed. This distinction arises only for those resources required
at the end of a process. Consider the manufacturing system M whose process plan is as
follows:

Part 1 Rabot Mill Robot

Part 2 Rabot Lathe

The Wait Relation Graph is depicted in Figure 2.2.
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Operation 1

Operation 2

Figure 2.2. Wait Relation Graph for system M.

To illustrate the distinction between committed, free, busy and idle resources,
assume:

1. The Robot is transporting part 1 to the Mill.

2. The Lathe is processing part 2.

3. The Mill is not processing any part.
In this state, the Robot is committed. However the Lathe being the last resource required in
process 2 is not committed to any arc. We say it is free, although it is busy. The
remaining resource--namely the Mill--is not processing any part and is an idle and free

resource.

State of a manufacturing system
The state s of a manufacturing system is the current assignment of operations to

resources.

The set S

S is the set of all admissable states s for the manufacturing system.
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Commitment

The commitment of arc a in state s is defined as

[

if a is a committed arc
0 if a is not a committed arc

Comm(a, s) = {
Commitment of a subgraph

The commitment of a subgraph G; = (R;,A;) in state s is the sum of the

commitment of every arc a € A; and is expressed as

Comm(Gy,s)= ), Comm(a,s). @-1)

aeA
Capacity
Capacity of a subgraph G; = (Ry, A1) is the number of resources or vertices in G.

Capacity of a subgraph is abbreviated Cap(G;). (Note that Cap(G,) = Cardinality(R;).)

Slack
Slack of a circuit C = (R, A) in state s is the difference between the capacity of the

circuit and the commitment of all its arcs in s and is expressed as
Slack(C, s) = Cap(C) - Comm(C, s). (2-2)

Propagation

Propagation is the transfer of a part from one operation to the next. In a
propagation, the operation the part is currently in is completed, the resource occupied is
freed, the part is transfered to the next operation and the next operation is started. The

resource needed by the operation is occupied and busy.
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This concludes the section on defintions. We now consider an example of a

manufacturing system. All circuits in the system will be listed.

2.4.2 EXAMPLE
The Wait Relation Graph representation of the manufacturing system at the Dies

Incorporated company is shown in Figure 2.3.

Mill Drill

Figure 2.3.  Wait Relation Graph of Dies Incorporated.

For the Wait Relation Graph, the following sets are defined:
1. R ={ Robot, Drill, Mill, Lathe}.
2. A={ay, a2 a3 a4, as, a6},
There are three primary circuits in the Wait Relation Graph. These are:

1. C1: ({Robot, Drill}, {az , a1}), where the elements are ordered,

Robot g, Drill a; Robot

2. C2: ({Robot, Mill}, {a3 , as}), where the elements are ordered,

Robot a; Mill a4 Robot; and

3. C3: ({Robot, Lathe}, {as , as}), where the elements are ordered,
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Robot as Lathe ag Robot.
The following are unions of the primary circuits:

1. C4:C, v C,, where the elements are ordered,
Robot a; Drill a; Robot a3 Mill a4 Robot;

2. Cs: C; v C3 where the elements are ordered,
Robot a3 Mill a4 Robot as Lathe ag Robot;

3. Ce: C1 v C;3 where the elements are ordered,
Robot a; Drill a; Robot as Lathe ag Robot; and

4. Cq7: C; v Cu(C3 where the elements are ordered,

Robot a; Drill a; Robot a3 Mill a4 Robot as Lathe ag Robot.

2.5. ANALYSIS OF CIRCUITS IN WAIT RELATION GRAPHS

This section presents the formalisms which develop a solution to the problem of
deadlock. The theory first considers structurally simple Wait Relation Graphs. Theorems
1 and 2 consider systems whose WRGs consist of a single circuit. In theorems 3 and 4,
WRGs considered consist of two circuits intersecting in a single vertex and along a simple
path, respectively. Theorems 5 and 6 consider larger systems. Theorem 5 examines the
case where an existing WRG is altered by the addition of a single circuit intersecting the
existing Graph in a vertex. In Theorem 6, the WRG is altered by the addition of a single
circuit intersecting the existing Graph along a simple path. The section concludes with a
final theorem for general systems. Here the deadlock-free solution to a general system is
created using the results presented in the previous six theorems.

The most basic type of deadlock occurs when all the resources on a simple circuit
are committed. Figure 2.4 depicts an example of a primary circuit. }The graph is

representative of the systems considered in Theorems 1 and 2.
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Figure 2.4. System whose WRG is a primary circuit.

Theorem 1 describes the occurence of deadlock in a manufacturing system whose

Wait Relation Graph consists of a single primary circuit.

Theorem 1. Let the Wait Relation Graph G of a manufacturing system consist of a single
primary circuit C = (R, A). C is deadlocked in state s, if

slack(C, s) = 0. (2-3)
Proof. In state s, (2-3) implies Comm(C, s) = Cap(C). Hence, each arc in C is

committed. This means each resource must wait until the next one is free before it can

propagate its part. Hence, propagation is not possible, and state s is deadlocked. |
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One way to prove that a state s is not deadlocked is to determine a series of
propagations which will remove all parts from the system. The following lemmas

formalize this concept, laying the foundation for the proofs.

Lemma 1. Let C be a closed path in a Wait Relation Graph G of a system. Let sq be the

initial state in C. For any state s; reached after a finite number of propagations

slack(C, s;) 2 slack(C, sq).

Proof. As propagation occurs over C, no new parts enter C. The number of committed
arcs in C either decreases--if parts are completed and removed from the system--or is

unchanged. In either case, slack of circuit C cannot increase. |

Lemma 2. Lets; be any state in a system. Let no new parts enter the system. If
deadlock does not exist, parts in the system can be removed in a finite number of

propagations.

Proof. There are a finite number of operations in any process. Assuming there is no
deadlock, after a finite number of propagations a part will complete all operations in its
process plan and exit the system. As no new parts enter the system, the number of parts in
the system will decrease as a part exits the system. After a finite number of operations, all

parts will complete their operations and exit the system. |

The following theorem proposes a deadlock free solution to a system whose Wait

Relation Graph consists of a primary circuit.
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Theorem 2. Let the Wait Relation Graph G of a manufacturing system consist of a

primary circuit C. C is deadlock-free if

slack(C,s)>0,Vse S. (2-4)

Proof. Let slack(C, so) > 0 for some state so € S. In state sg, at least one arc is not
committed, implying there is one free resource r in the system. Propagation can occur,
specifically, on the operation represented by the arc a, where tail(a)=r. Let 51 be the state

of the system after the propagation. By Lemma 1

slack(C, s1) 2 slack(C, sg) > 0.

This process can be repeated until all parts exit the system. |

Theorem 2 is applicable to a system whose Wait Relation Graph consists of a single
circuit. Wait Relation Graphs in general consist of circuits intersecting in one or more
vertices. Henceforth, we will consider such systems. We start by considering the most
basic of such systems--those comprised of the union of two primary circuits. Figure 2.5
depicts the graph of such a system. Here two circuits, C; and C», intersect in a single

vertex v. There is no assumption on the number of vertices and arcs in the circuits.
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Figure 2.5. System of two circuits interacting in a single vertex.

In the next lemma the slack of the union of two circuits interesecting in a single
vertex will be expressed in terms of the slacks of the individual circuits. Figure 2.5 will

serve as a reference for this lemma.

Lemma 3. The slack of a circuit C = C, v C, , where C; ,C5 intersect in a single vertex

v, is given by

slack(Cy U Cy, s) = slack(Cy, s) + slack(Cy, s) - 1.

Proof. As C,,C, intersect in a single vertex,

Cap(C) = Cap(Cy) + Cap(Cr)-1. (2-5)

As there are no common arcs between C; ,Cs,

Comm(C, s) =Comm(Cy, s) + Comm(C», ). (2-6)
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Combining (2-2), (2-5), and (2-6), we get
slack(C, s) = Cap(Cy) + Cap(C3) - 1- Comm(C}, 5) - Comm(Cs,, ),
which simplifies to give
slack(Cy U Gy, s) = slack(Cy, s) + slack(Cy, s) - 1. |

Two circuits could also intersect along a path. Figure 2.6 depicts the WRG of a system of

two circuits interacting along a simple path P. Lemma 4 analyzes the system and presents a

N
N

Figure 2.6.  Two circuits intersecting along a simple path P.

result on the slack.

Lemma 4. The slack of a circuit C = Cy U C;, where C; and C; intersect along a simple

path P which begins at v| and ends at v, is given by

slack(Cy LU C3, s) = slack(Cy, s) + slack(Cy, s) - Cap(P) + Comm(P, s).
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Proof. As C; and C; intersect in a simple path, capacity of the union of C; and C, is
given by

Cap(C) = Cap(C)) + Cap(C3) - Cap(P). (2-7)

As there are common arcs between C; and C; , commitment of the union of C; and C, is

given by

Comm(C, s) = Comm(Cy, s) + Comm(C,, s) - Comm(P,s). (2-8)

Combining (2-2), (2-7), and (2-8), we obtain

slack(Cy U Gy, 5) = slack(C}, s) + slack(Cy, s) - Cap(P) + Comm(P, s). [ |

Lemma 5 considers a system comprising two circuits C; and C, which intersect each other.

A result on the slack of circuit Cs, due to a propagation on circuit C;, is presented.

Lemma S. Let C; and C; be two circuits which intersect each other. In state so, let a part

propagate in C;. Let s; be the state reached after propagation. Then,

slack(C3, s1) 2 slack(C3, sg)-1

Proof. In state so, a part could propagate from C; = (R, A1) to Cz = (R2, A2),
increasing Comm(A,, s1) by 1. Hence, slack(C,, s1) decreases by at most 1. If no
propagation occurs into C3, slack(C», so) is unchanged. In either case the hypotheses is

true. |
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In Lemma 6, a result on commitment of a simple path common to two circuits is presented.

Lemma 6. Let C, and C; be two circuits intersecting along a subgraph G, where G; is

not a closed path. Assume in s¢ a propagation occurs from C, to G;. Then
Comm(Gy, so) < Cap(Gj)-1.

Proof. Since G, is not a closed path, the number of arcs in G, is less than Cap(G)-1;

thus, in general,
Comm(Gy, sg) <Cap(G;) -1 inanystatese S.

For propagation to occur from C; to G, there must be at least one uncommitted arc on G;

in state s¢o. Hence,
Comm(Gy, s¢) < Cap(Gy)-1. n

Theorems 3 and 4 propose deadlock-free solutions to systems whose Wait Relation
Graphs consist of two circuits. Theorem 3 considers two circuits intersecting in a single

vertex, and Theorem 4 considers two circuits intersecting along a subgraph.

Theorem 3. Let Wait Relation Graph model G of a manufacturing system consist of two
simple circuits, C; and C,, which share a single vertex v. Figure 2.5 depicts a typical
example of the system. The system is deadlock free if the following conditions are true:

1. slack(Cy, s) > 0, (2-9a)

2. slack(Cy, s) > 0, and (2-9b)
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3. slack(CiLCs,5)>1,Vs € S. (2-9¢)
Proof. Let the initial state sq satisfy (2-9). Define i andj such that
slack(Cj, so) < slack(C;j, so) .
Let s be the state of the system after parts are propagated on C;.
Case 1. Let

slack(C;, sp) = 1. (2-10)

By application of Lemma 1 to circuit C;, we know that slack(C;, s;) cannot

decrease. Therefore,

slack(C;, s1) 2 slack(C;, sg) > 0. (2-11)

By Lemma 3

slack(C ;v C;j, so) = slack(C;, so) + slack(Cj, so) - 1 > 1.

Using (2-10) this simplifies to

slack(Cj, so) > 1+1-1 = 1. (2-12)

A part could propagate from C; into C;. But by Lemma 5 and (2-11) we obtain
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slack(Cj, s1) > 0. (2-13)

Consider circuit C; U C;. By Lemma 1, slack(C; U C;j, so) cannot increase in subsequent

states. Therefore,

slack(C; v Cj, 51) 2 slack(C; U Cj, so) > 1. (2-14)

From (2-11), (2-13) and (2-14), (2-9) is satisfied in state sy, when slack(C;, sg) = 1.

Case 2. Let
slack(C;, so) > 1. (2-15)

From (2-9) and (2-15) we can conclude that in state s,

slack(C;, sg) > 1, (2-16)
slack(Cj, so) > 1 and 2-17)
slack(C; v Cj, sp) > 1. (2-18)

From Lemma §

slack(C, s1) 2 slack(C, sg) -1 >0

for circuits C; andC; . Lemma 1 shows that the slack(C; U C;j, sp) cannot decrease. Thus

Case 2 is proven.
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The propagation can be repeated to remove all the parts from the system. Hence,

the system is deadlock-free.

Theorem 4 considers two primary circuits intersecting along a subgraph. As the

two circuits share vertices and arcs, the slack conditions required to keep the system

deadlock-free differ from those in Theorem 3.

Theorem 4. Let the Wait Relation Graph model G of a manufacturing system consist of

two simple circuits, C; and C,, which intersect along a subgraph G, which contains more

than one vertex. Figure 2.6 depiE:ts a typical example of the system. Then, a propogation

exists such that relation (2-19) holds before and after.
1. slack(Cy, s) >0,
2. slack(C,, s) >0, and
3. slack(CiuC,, 5) >0, Vse S.

Proof. Let the initial state so satisfy (2-19). Definei andj such that

slack(C;, so) < slack(C;j, so) .

Let 51 be the state of the system after parts are propagated on C;.

Case 1. Let
slack(C;, so) = 1.

(2-19a)
(2-19b)
(2-19c¢)

(2-20)

Applying Lemma 1 to circuit C;, we know that slack(C;, s1) cannot decrease.

Therefore,
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slack(C;, s1) 2 slack(C;, so) > 0. (2-21)

There are three different propagations on C; which affect the slack on Cj:

a. Propagation occurs within G;. Then

slack(Cj, s1) = slack(C;j, so) >0 (2-22)

b. Propagation occurs from G to C;. Then

slack(Cj, s1) = slack(Cj, so)+1> 0. (2-23)

¢. Propagation occurs from the C; to G;. From Lemma 4 and (2-20),

slack(C; U Cj, 5o) = 1 + slack(Cj, s,) - Cap(Gy) + Comm(Gy,s,) > 1,

from which

slack(C;j, s,) > Cap(Gy) - Comm(Gy, so) - 1 (2-24)

follows. From Lemma 6 and (2-24), we obtain

slack(Cj, so) > 1. (2-25)

From Lemma 5 and (2-25), we obtain
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slack(C;, s1) > 0. (2-26)

Consider circuit C; U C;. By Lemma 1, slack(C; L Cj, so) cannot increase in subsequent

states. Therefore,

slack(C; v C;, s1) 2 slack(C; L Cj, so) > 0. (2-27)

From (2-21), (2-22), (2-23), (2-26) and (2-27), slack conditions (2-19) are satisfied in

state 51, when slack(C;, sg) = 1.

Case 2. Let
slack(C;, sg) > 1. (2-28)

From (2-28) and (2-19), we can conclude that in state sg

slack(Cy, sg) > 1, (2-29)
slack(C3, sg) > 1 and (2-30)
slack(Cy v C,, sg) > 1. (2-31)

From Lemma 5,

slack(C, s1) 2 slack(C, sg) -1



29

for all circuits C; andC; . Lemma 1 shows that the slack(C; u Cj, so) cannot decrease.

Thus Case 2 is proven.

Therefore (2-19) holds for S1. [ |

The Wait Relation Graphs considered in Theorems 3 and 4 considered two circuits
interacting in one or more vertices. The remaining theorems consider systems with Wait
Relation Graphs consisting of two or more circuits interacting amongst each other in one or
more vertices. In pursuing the deadlock-free solutions to these larger, less specific
systems, the concept of order is introduced. As we will see, order is closely related to the

deadlock free solutions of systems.

Order
The Order of a closed path is defined to be one less than the number of primary
circuits which lie on the closed path and intersect any other primary circuit on the path at

only one vertex. Order of a circuit C is abbreviated as order(C).

The order of a circuit is related to its structure. Order of a primary circuit is 0. The
system considered in Figure 2.5 contained two circuits. C; and C, are of order 0, and
C, v Cyisof order 1. The system considered in Figure 2.6 contained three circuits--C},
C,, C1 v Cy--all of order 0. Figure 2.7 depicts the Wait Relation Graph of a system. As
an illustration of the definition of order, the order of some of the circuits in the graph is

listed.



Figure 2.7. WRG of system in Example 2.5.1.

Example 2.5.1
The WRG in Figure 2.7 contains the circuit listed in Table 2.1.

30
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C; = ({A, B, D}, {a,d,i})

order(Cy) =0

Cz = ({B, D, C}, {b, c, 1})

order(Cy) =0

C3=({C, E}, {e. f})

order(C3) =0

Cs=(C,F}, {g. h})

order(C4) =0

Cs=Ciuv(Cy order(Cs) =0 C, and C, interesect in multiple
vertices

Cs=C4L C3 order(Ce) = 1 C4 and C3 intersect in vertex C

Csg=CruUCy4 order(Cg) = 1 C;, and C4 intersect in vertex C

C1=CuCs order(C7) =1 C, and C; intersect in vertex C

C9=C1UC2UC4

order(Co) =1

Cm=C1UC2UC3

order(Cio) =1

Cii=CuC3uCy

order(Cy1)=2

C12=C1UC2UC3UC4

order(C, 2_) =2

Table 2.1.

Lemma 7.

Circuits in Figure 2.7.

Let C; and C; be two circuits intersecting each other. If Cy and C; intersect in more than

one vertice,

order(C, U C3) = order(C,) + order(C>).

If C, and C; intersect in a single vertex,

order(C, v Cy) = order(C,) + order(C3) + 1.
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Proof. The proof follows from the definition of order, and by observation in Example

2.5.1.

Theorem 5 considers the effect of altering the Wait Relation Graph of a deadlock-
free system by the addition of a primary circuit, which intersects the graph at a single

vertex. Conditions needed for deadlock-free operation of the new system are derived.

Figure 2.8. Circuit Cp intersects graph G in a single vertex v.

Theorem 5. Let G and H be the WRG of two manufacturing systems with admissable
states Sg and Sy. Assume that H is identical to G, except that H contains an additional

circuit Co which is joined to G at vertex v. Suppose Cg is a set of circuits such that if

slack(C, s) > order(C) V Ce Cgand V s € Sg, (2-32)
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then deadlock will not exist in the manutacturing system represented by G. If

slack(C, s) > order(C) VCe Cyand Vs e Sy (2-33)
where
Cu=Cgu {Cp} UC, (2-34)
and
W={C: C=CouC(C; C;i € Cg,andv € Cji}, (2-35)

then deadlock will not exist in the manufacturing system represented by H. Figure 2.8

depicts the Wait Relation Graphs G and H.

Proof. Let the system represented by the WRG H be in state so. Define C* € Cyto be a

circuit which minimizes the function

space(C, so) = slack(C, so) - order(C).

We will now show that if a part is propagated along circuit C*, resulting in the new state

s1, then

slack(C, s;) > order(C) V C e Cy (2-36)

Case 1. Let
space(C*, sg) = 1 and C* = C. (2-37)
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Combining Lemma 1 and (2-37) we obtain

slack(Co, s1) = slack(Co, so) =1

> order(Cp) =0 (2-38)
Since all circuits C € C, contain Co, Lemma 1 can also be used to conclude
slack(C, s1) = slack(C, sg) > order(C) V Ce C,. (2-39)
Define
C,={Ce Cg:v € C} (2-40)
as the set of all circuits in WRG G containing vertex v. Part propagation on Cp will not
affect any circuit which does not contain v. Hence,

slack(C, s1) = slack(C, sg) > order(C) V Ce Cg-C,. (2-41)

The definition expressed in (2-35) states that for each C; € C, there exists a Cj €

Cu, such that Cj = C; U Cp. Combining Lemma 1 and the definition of order results in
slack(C;j, s1) = slack(Cj, so)
> order(C))
> order(C;)+1. (2-42)

Combining Lemmas 3 and 5 with (2-42), (2-41) and (2-37) results in

slack(C;, s1) = slack(C;, so) -1,
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2 slack(Cj, so) - slack(Co, so) +1 -1,
> order(C;) + 1 - order(Cyp),
> order(C)). (2-43)

Therefore, under the assumptions for Case 1, (2-36) holds for state s;. This concludes

Case 1.

Case 2. Let
space(C*, so) = 1, and C* € Cy - {Cp}. (2-44)

To ensure that the propagation is possible--hence, implying that the system is
deadlock free in state so--we must consider the effect of a propagation in C* on every
circuit Ce Cpy. To organize this task, the set Cy is divided into its constituent sets {Cop},
C,and Cg. A circuit C from each of these sets is then chosen and analysed to study the

effect of the propagation over C*. The proof for Case 2, therefore has three major

subparts:
1. the circuit C = Cy is considered,
2. a circuit C € Cg is considered and
3. a circuit C € C, is considered.
Part 1.

A propagation over C* can effect slack(Co, so) only if C* intersects Cop at vertex v. Using

the definition of order from Lemma 3 and (2-44), we obtain

slack(C* U Cy, s¢) = slack(C*, sg) + slack(Cop, so) - 1
= order(C*)+1+slack(Cy, s0)-1
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= order(C*)+slack(Cy, sg). (2-45)

We know from the definition of order that

slack(C* U Cy, sg) > order(C* U Cy, sg) = order(C*) + 1. (2-46)

Combining (2-45) and (2-46) we obtain

slack(C* U Co, so) = order(C*)+slack(Cy, sg) > order(C*)+1,

from which

slack(Co, s0) > 1 (2-47)

follows. From Lemma 5 and (2-47), we obtain the result

slack(Cy, s1) > 0. (2-48)

This concludes Part 1.

Part 2.

Consider C € Cg. Then both C* and C belong to the set Cg, but we know from (2-32)

that

slack(C, s;) > order(C) V C e Cg. (2-49)
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Propagation on C* can only affect C € C, if they intersect. Then there exists a C;e Cg

,such that C; U Co = C. From Part 2

slack(C;, s1) > order(C;).
From Part 1

slack(Cy, s1) > order(Cy).

Since C; is contained in C, then

slack(C, sy) >order(C) V Ce C,.

From results in (2-48), (2-49) and (2-50)

slack(C, s1) > order(C) V C € Cp.

Therefore, under the assumptions for Case 2, (2-36) holds.

Case 3. space(C*, so)> 1

Hence,

slack(C, sg) > order(C)+1V Ce Cp.

(2-50)

(2-51)

From Lemma 5, it is easy to see that the slack conditions (2-36) are all satisfied for s;.

Hence, all slack conditions are satisfied in state s, and Case 3 is proven.

The propagation can be repeated to remove all the parts from the system.

Hence, the system is deadlock-free.
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Theorem 6 considers the effect of altering the Wait Relation Graph of a deadlock-
free system by the addition of a primary circuit which interesects the graph along a
subgraph G; containing more than 1 vertex. Conditions needed for deadlock-free

operation of the new system are derived. Figure 2.9 depicts a representation of the system.

Figure 2.9.  Circuit Cp intersects graph G in simple path P.

Theorem 6. Let G and H be the WRG of two manufacturing systems with admissable
states Sg and Sy. Assume that H is identical to G, except that H contains an additional
circuit Co which is joined to G along a subgraph G;, where G; contains more than 1

vertex. Suppose Cg is a set of circuits, such that if
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slack(C,s) >order(C) V Ce Cgand V s € Sg, (2-52)

deadlock will not exist in the manufacturing system represented by G. If

slack(C,s) >order(C) VCe CyandV s € Sy (2-53)

where

Cy=Csu {Co} L C, (2-54)

and
C.={C: C=Cou (C;, C;e Cg, and C; contains elements of G; }, (2-55)

then deadlock will not exist in the manufacturing system represented by H. Figure 2.9

depicts the Wait Relation Graphs G and H.

Proof. Let the system represented by the WRG H be in state so. Define C* € Cpy to be a
circuit which minimizes space(C, so). We will now show that if a part is propagated along

circuit C* resulting in the new state s1, then

slack(C, s1) > order(C) V C € Cy. (2-56)

Case 1. Let
space(C*, so) = 1 and C* = C. (2-57)
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Combining Lemma 1 and (2-57), we obtain

slack(Co, s1) = slack(Cy, sg) =1
> order(Cp) =0 (2-58)

Since all circuits C € C, contain Cy, Lemma 1 can also be used to conclude
slack(C, s1) = slack(C, s¢) > order(C) ,V Ce C,. (2-59)
Define,
Cp={C € Cg: C contains elements of G}, (2-60)
as the set of all circuits in WRG G containing at least a portion of G;. Part propagation on
Co will not affect any circuit which is notin Cp, Hence,

slack(C, s1) = slack(C, so) >order(C) V Ce Cg - Cp. (2-61)

The definition expressed in (2-55) states that for each C; € Cp there exists a Cj €

C.. such that Cj = C; U Co. Combining Lemma 1 and the definition of order results in

slack(Cj, s1) 2 slack(Cj, so) > order(C;) = order(Cy). (2-62)

From Lemma 4 and (2-57),

slack(Cj, so) = slack(C;, so) + slack(Co, so) - Cap(G,) + Comm(Gj, so) - 1 (2-63)
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Combining (2-63) and Lemma S,

slack(C;, s1) 2 slack(C;j, so) - slack(Cop, so) + Cap(G) - Comm(G, sg) + 1-1.(2-64)

From (2-62), (2-64), Lemma 6 and substituting slack(Co, so) = 1, we get

slack(C;, s1) > order(C;). (2-65)

From (2-58), (2-59), (2-61) and (2-65), (2-56) holds for state s.

Case 2. Let
space(C*,so)=1and C*e Cy- {Cop}. (2-66)

To ensure that the propagation is possible--implying that the system is deadlock-
free in state so--we must consider the effect of a propagation in C* on every circuit C €
Cph. To organize this task, the set Cy is divided into its constituent sets {Cp}, C, and Cg.
A circuit C from each of these sets is then chosen and analysed to study the effect of the

propagation over C*. The proof for Case 2, therefore, has three major subparts:

1. the circuit C = Cy is considered,

2. a circuit C € Cg is considered, and

3. a circuit C € C, is considered.
Part 1.

A propagation over C* can effect slack(Co, so), only if C* intersects Cp in subgraph Gj.

From Lemma 4 and (2-66), we obtain

slack(C* U Co, so) = slack(C*, so) + slack(Co, so) - Cap(G1) + Comm(G 1, s0)
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= order(C*)+1+slack(Co, so) - Cap(G) + Comm(G, sg). (2-67)

We know from the definition of order that

slack(C* L Cy, s¢) > order(C*). (2-68)

Combining (2-67) and (2-68), we obtain

order(C*) +slack(Co, so) +1 - Cap(G;) + Comm(G,, sg) > order(C*),

giving

slack(Cy, so) > Cap(G;) - Comm(Gjy, so) - 1,

which--using Lemma 6--simplifies to

slack(Co, so) > 1. (2-69)

From Lemma 5 and (2-69),

slack(Cop, s1) = slack(Cop, so)-1,

> 0. | (2-70)

This concludes Part 1.
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Part 2.
Consider C € Cg. Then both C* and C belong to the set Cg, but we know from (2-52)
that

slack(C, s1) > order(C) V C € Cg. 2-71)
Part 3.
Propagation on C* can only affect C € C, if they intersect. Then there exists a C; € Cg,
such that C; u Co = C. From Part 2,

slack(C;, s1) > order(C;).

Since C; is contained in C, then

slack(C, s1) > order(C) V C € Cy. (2-72)

From results in (2-70), (2-73) and (2-72)

slack(C, s1) > order(C) V C € Cy.

Therefore, under the assumptions for Case 2, (2-56) holds.

Case 3. ‘ space(C*, so) > 1. (2-73)

Hence,

slack(C, sg) > order(C)+1 V C e Ch.



From Lemma §, it is easy to see that the slack conditions (2-56) are all satisfied for s;.
Hence, all slack conditions are satisfied in state s, and Case 3 is proven.
The propagation can be repeated to remove all the parts from the system.

Hence, the system is deadlock-free. ||

The following example presents a method for obtaining all the slack conditions for a
manufacturing system represented by a Wait Relation Graph. The Wait Relation Graph is
broken up into primary circuits and paths. Any one simple circuit is chosen and a graph
created. Paths and circuits are then added to the graph. The process of addition of paths
and analysis of the resultant graph is repeated until the original graph is reached. At this
stage, all circuits in the graph are known, and Theorems 5 and 6 can be used to determine

all the slack conditions. An example of this process is given below.

Example 2.5.2

Consider a manufacturing system whose Wait Relation Graph is depicted in Figure 2.10.

Figure 2.10. Wait Relation Graph of system in Example 2.5.2.
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Consider a graph G! consisting of a single primary circuit C;. Figure 2.11 depicts the

situation.

Figure 2.11. Wait Relation Graph G!.

To G! add the path P, = ({ B, C}, {b, c}).
Let G2 be the resultant graph. Figure 2.12 depicts the situation.

Figure 2.12. Wait Relation Graph G2.

Let C2 be the set of all circuits in G2, The set C2={ C, C3, Ci U C3 }
Finally form graph G3 = G by adding path P2 = ({C, D}, {d, e}) to G2.
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Let G3 be the set of all circuits in G3. Theset C3 = { Cy, Cp, C3, C; v C,, C2 L C3, Cy
v G CiuCu Gyl
The resulting slack conditions are:
1. slack(Cy, s) > 0;
slack(C», s5) > 0;
slack(Cs, s) > 0;
slack(Ci v Ca,5)> 1;
slack(C, v C3, 5) > 1;
slack(C, L C3, 5) > 1;
. slack(CiuvCu (s, 5) > 2.

N RN

Theorem formally describes the method of Example 2.5.2.

Theorem 7. Let the Wait Relation Graph model of a manufacturing system consist of a
graph G and a set of admissable states Sg. Then there exists a set of closed paths Cg, such

that G is deadlock-free if

slack(C, s) > order(C) V C € Cg,V s € Sg. (2-74)

Proof Define the set P = {P;: P; is a path (open or closed) in G, only the first and last

vertices in P; may be common to any other path or circuit} and

\UP;=G
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The result is proven inductively. Clearly P can be constructed to contain at least
one circuit. Let C; be any circuitin P. Form a graph G! consisting of C;. By Theorem

2, G is deadlock-free if
slack(C;, s) > 0 = order(C;). (2-75)
Let Cg, = C); hence, the theorem holds for G!. Assume the Graph G’ is deadlock-free,

that is, slack(C, s) > order(C) V Ce Cgi. To form G*1, add a path P; chosen from set

Pto G'. The choice of P; is not arbitrary; P; must intersect G at both endpoints. There
p

are two cases:
1. P; intersects G' in coincident vertices.
2. P; intersects G at two vertices.

Case 1. Here a simple circuit Cp is added to G at vertex v. Applying Theorem 5, G**!
is deadlock-free if

slack(C, s) > order(C) VC € Cg* V s e §,

where Cg1 is the set of all circuits in G+

Case 2. Now, Gi*!is deadlock free if

slack(C, s) > order(C) VC € Cg* Vs e S. (2-76)

where Cg! is the set of all circuits in G**1.
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The proof follows by induction. |

Theorem 7 presented a deadlock-free solution--one that could be applied to any
manufacturing system. The important result was that a manufacturing system is deadlock-

free, if

slack(C, s) > order(C) VCe CgV s € S,

where Cg is constructed as in Theorem 7. Close examination of this construction theorem
shows that Cg is also the set of all closed paths in the Wait Relation Graph G of the
manufacturing system. Finding the deadlock free solution is a two-step process:

1. determining the set Cg--that is all closed paths in G--and

2. applying (2-74) to determine the deadlock free slack conditions.

2.6 EXAMPLES

The theory developed in the previous sections is illustrated in two examples. In the
first example, a small manufacturing system consisting of two processes and three
resources is considered. Deadlock-free slack conditions are derived. The second example
considers a larger system consisting of five resources and two processes. For each
system, the Wait Relation Graph representation is formed and the deadlock-free slack

conditions are derived.
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2.6.1 EXAMPLE 1
Consider an example of a manufacturing system MI where two processes share

two resources. The process plans are shown in Table 2.2.

Process No. Process Plan

Process 1 Operation A processes Part 1 in Machine 1. Operation B transfers the part

via Robot to Machine 2. Operation C processes Part 1 in Machine 2

Process 2 Operation D processes Part 2 in Machine 2. Operation E transfers the part

via Robot to Machine 1. Operation F processes Part 2 in Machine 1

Table 2.2. The Process Plan for Example 1.

The Wait Relation Graph of the system is shown in Figure 2.13.

() Robot Machine2 ()

Figure 2.13. Wait Relation Graph representation of system M;.

In M, the circuits are Cy, C3, C, U C.
The deadlock-free slack conditions are:
1. slack(Cy, s) > 0;
2. slack(C3, s) > 0; and
3. slack(C3, s) > 1.
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The deadlock-free slack conditions can be expressed as follows: only 1 operation from
amongst A, B, C and D can be processing a part. Observance of this rule ensures that the

system is deadlock-free.

2.6.2 EXAMPLE 2
In Example 2 a manufacturing system M,, where two processes share five

resources, is considered. The process plan is shown in Table 2.3

Process No. Process Plan

Process 1 Operation A processes Part 1 in Machine 1. Operation B processes Part 1
in Machine 2. Operation C process Part 1 in Machine 3. Operation D

processes Part 1 in Machine 4. Operation E processes Part 1 in Machine 5.

Process 2 Operation F processes Part 2 in Machine 5. Operation G processes Part 2

in Machine 3. Operation H process Part 2 in Machine 4. Operation I

processes Part 2 in Machine 2. Operation J processes Part 2 in Machine 1.

Table 2.3. The Process Plan for Example 2.

The Wait Relation Graph of the system is shown in Figure 2.14.
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Machine 4

Machine 3

Figure 2.14: Wait Relation Graph representation of system M,

In Figure 2.14 there are three primary circuits--Cy, C,, C3. The rest of the closed paths
are:

Cs=Cr (s

Cs=C,uv(Cyand

Ce=CLvCuUCs.

The deadlock-free slack conditions are:
1. slack(Cy, s) > 0;
2 slack(Cs, s) > 0;
3. slack(C3, s) > 0;
4 slack(Cy, s) > 0;
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5. slack(Cs, s) > 1; and
6. slack(Cg, s) > 1.
The deadlock-free slack conditions can be expressed as a list of rules, which are to be

observed always. These are:

1. Only 1 operation from amongst A and I can be processing a part.

2 Only 2 operation from amongst B, C, G and H can be processing a part.
3. Only 2 operation from amongst D, F, G and C can be processing a part.
4 Only 2 operations from amongst A, B, C, G, H and I can be processing

a part.
S. Only 3 operations from amongst A, B, C, D, E, F, G, H and I can be
processing a part.

Observance of these rules ensures that the system is deadlock-free.

2.7. COMPARISON OF PAST RESEARCH WITH METHOD IN THESIS
The deadlock detection and avoidance method developed in this thesis is more
reliable and achieves better resource utilizations compared to methods in current research.
For instance the Deadlock Detection Procedure(DDP)[1], does not detect all deadlock
states. Consider the WRG in Figure 2.15. Here two processes share 5 resources. In the
state shown, resource A is committed to operation O11 and resource E is committed to

operation O21.
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Figure 2.15. 'WRG of system with two processes and five resources.

The DDP would not identify this state as a deadlock state. However Theorem 7 can be
used to prove it to be a circuit of order 3.

The method developed by Cho et al.[2] is also lacking in detection of higher level
deadlocks. Their method uses buffers to break deadlock, which increase the number of
system resources and at best postpone the occurrence of deadlock. No such buffer
resources are used here. However, like Cho's method, some non-deadlocked states are
incorrectly identified as deadlock. This affects resource utilizations but, more importantly,
does not at all affect our goal, which is the detection of all deadlocks.

The deadlock avoidance algorithm in this thesis develops constraint conditions on
groups of operations to be employed at process-runtime. One condition is developed for
each of the deadlocks detected by the detection algorithm. The conditions allow for a
maximum possible number of operations to be simultaneously active, while avoiding
deadlock. The method has been tested and results compared with past research. Here we
found that resource utilizations were higher than those in existing methods, such as PME's
and DAA methods. Comparing the method of Zhou and DiCesare[3], we observe that
PME's allocate resources to a process at the start of the process and/or release them in a
group at the end of the process. Essentially, there exists some kind of allocation scheme
which avoids free allocation of resources (resources allocated to an operation on demand

and released immediately when the operation is done). However, this allocation scheme
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will hold resources beyond their operation times, resulting in poor resource utilizations. No
such allocation schemes are resorted to here, and resource utilizations are observed to be
higher than PME methods.

For example consider a manufacturing system with three resources—a Mill, a Lathe
and a Drill[8]. Assume three different parts are produced in accordance with the following

process plans:

Part 1: Mill, Lathe.
Part 2: Lathe, Drill.
Part 3: Drill, Mill.

The Wait Relation Graph for the system is shown in Figure 2.16.

Mill
031
Drill Ol11
02 Lathe

Figure 2.16. WRG of system with three processes and three resources.

Using Theorem 1, the system is deadlock free if slack(C, s) > O for all states in the system.
There are however 7 states allowed by the slack condition which use all three resources. If
the method developed by Zhou and Dicesare were used there would be 56 possible PME
structures to model the shared resources. However every PME structure would prevent

some of these 7 states from occurring.



55

Banaszak and Krogh's[4] DAA method requires that all shared resources needed by
a part be allocated to the part at the outset of its entry to a resource zone. This holds
resources longer than their operation times and results in poor utilizations. If DAA were
used to prevent deadlock for the system in Figure 2.16, only one resource would be
allowed into the system. Resources would idle for two-thirds of the operation time and
utilizations would be low.

Hsieh and Chang [5] allow a greater number of resources to be processed
concurrently than DAA, resulting in a higher resource utilization. However, no fixed
guidelines on how the dispatching policy can be implemented are presented. This is
especially true for their "Job Clearing Algorithm", where a choice of four procedures are
presented. Their replacement procedure is search-based and may be unsuitable for real-
time applications, especially in larger systems. The method in this thesis has achieved

higher resource utilization than DAC.
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CHAPTER 3
PROGRAM DEVELOPMENT - FORMATION OF THE WAIT
RELATION GRAPH

Comparing the two examples in Section 2.6, it is apparent that the procedure for the
second example is more involved than the first. There are three circuits in the Wait Relation
Graph for the first example, compared to six for the second. Correspondingly the number
of slack rules to be observed is also greater; three for the first example, compared to six for
the second. It is clear that the deadlock analysis of any larger system would be quite
involved and definitely a lengthy process. However, to determine the efficacy of the
program, testing of a varied selection of systems is desirable. Also, one would like to test
arbitrarily large systems--the ultimate test of the effectiveness of the theory. The process
we have at hand is not adequate for these operations. A faster processing is required. We

decided to write a computer program which would speed up this processing.

3.1 N THE MPUTER PROGRAM
In this section, we examine some of the design issues related to the program. As
we are presently still in a concept-forming stage, the properties of the program are listed.

There is no elaboration at this stage.

1. The computer program would be based on the theories in Chapter 2.

2 An input file would describe the manufacturing system.

3. The output would be a list of slack conditions.

4 The program should be able to process arbitrarily large systems. Here,
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physical limitations of the operating system and platform will effect how
large a system can be processed.

5. The final program will be in the C-language.

6. The program would be developed to run in the SUNOS 4.1 operating

system.

7. The development process must be documented.

The development of the program will be described in the present and the next two
chapters. Each chapter will describe one stage in the process: Chapter 3 will describe the
formation of the Wait Relation Graph; Chapter 4 will describe the detection of all primary
circuits; Chapter 5 will describe the detection of all higher-order circuits; and Chapter 6

will present examples of manufacturing systems to be analyzed using the program.

3.2. PR \% W

The program accepts an input file describing the system. The output is a list of
slack conditions required to keep the system deadlock-free. The program itself is broken
into three segments. Each of these segments performs a well-defined task.

The first segment models the system as a Wait Relation Graph. The program first
reads in a description of the manufacturing system. This information is then processed,
and the Wait Relation Graph representation of the system created. Development of the first
segment is decribed in the present chapter.

The second segment utilizes the Wait Relation Graph, a string multiplication
algorithm and a recursive algorithm to detect all primary circuits. A list storing all primary
circuits is created. Development of this segment is described in Chapter 4.

The third segment utilizes the list of primary circuits to detect all circuits of orders

greater than 0. Unions of primary circuits are formed and their orders determined. Each



58

such union--along with its order--is stored in a list of higher-order circuits. The slack
conditions required to keep each circuit deadlock-free are obtained from the order of the
circuit. Development of this segment is described in Chapter 5.

Development of each segment is done in stages. The first stage--algorithm
development--is optional and reserved for those routines which are sufficiently involved to
merit an initial algorithm design. In the next stage, important data structures are defined.
Following that, pseudo code for all routines is developed. Finally the pseudo code is used
to develop the program source code in the C-language. In each of the chapters, important
data structures and pseudo code descriptions of routines are included. Algorithmic

descriptions of important routines are included. The C-language source code is not listed.

3.3. E E IPTION 1 ERM F T FILE

The program learns of the system description through a file; henceforth called input
file. A file description facilitates a conveninient means of describing the system to the
program. The input file stores names of resources in the system and process plans. It
consists of two distinct sections. The first section lists names of all resources used in the
system. The second section lists the resource sequences for the different part types to be
manufactured. Each resource sequence lists--in order--the names of the resources used by
the operations. As each operation uses one resource, the number of resources in the
process plan equals the number of operations. The exact format of the file is listed in Table

3.1.
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FORMAT OF INPUT FILE EXPLANATION OF INPUT FILE FORMAT (on

a line-by-line basis).

RESOURCES Header indicating that resources declaration follows

<rl> <I2> <I3>.. <IN List of resources in system.

PROCESS 1 Header indicating that operation sequence for
Process 1 follows.

<ra> <rp> <rce... <rr Operation sequence for process 1

PROCESS 2 Header indicating that operation sequence for
Process 2 follows

<Irp> <rgp <IR>... <rp Operation sequence for Process 2

PROCESS M Header indicating that operation sequence for
Process M follows

<I}> <ry> <rz>.. <rg> Operation sequence for Process M

D End of file string. Indicates end of input file.

Table 3.1. Format of Input File.
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Illustrative example

Consider once again the example of 'Dies Incorporated'. The input file for this

system is given in Table 3.2.

RESOURCES

Robot Mill Lathe Drill
PROCESS 1

Robot Mill Robot Lathe Robot
PROCESS 2

Robot Lathe Robot

PROCESS 3

Robot Drill Robot

PROCESS 4

Robot Mill Robot Drill Robot

END

Table 3.2. Input File for Dies Incorporated.

3.4. DATA STRUCTURES

This section defines the major data structures that are used by the first segment of

the program. They are defined using a C-type notation.

3.4.1. TRANS
This structure stores information about one operation in the system. Every

operation is part of a process plan for some process q. The operation_number of a process
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refers to the order of the operation within the operation sequence Oper(q). The
process_number stores the value of g, the process number. A linked list of trans data
structures stores information on all operations in the system. This data structure also stores
the address of the next element in the linked list.
trans({
short operation number
short process_number

trans *next
}

3.4.2. ARC_INFO

This structure stores information on the operations represented by each arc in the
Wait Relation Graph of the system. The number of operations represented by the arc is
stored. Detailed information on each of the operations is stored in a linked list of #rans data

structures. The memory address of the next element in the linked list is also included.

arc_info{
short number__of_operations
trans *next

}

3.4.3. RESOURCE_DEF
This structure stores the resource name and resource number of a resource in the
system. A linked list of resource_def structures is used to store information on all

resources in the system. The address of the next element in the linked list is also included.

resource_def {
short resource_number
char *resource_name
resource_def *next
}
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3.4.4. RESOURCES
This is a linked list of resource_def data structures. It stores information on all
resources in the system. The address of the first element in linked list is stored.

resource def *resources

3.4.5. WAIT GRAPH MATRIX

This array of arc_info data structures stores information on all arcs in the Wait
Relation Graph of the system. The array is two-dimensional square. Size of the array is N
x N, where N is the number of resources in the system. If an arc exists between vertices i
and j in the Wait Relation Graph--the ijth element of the wait graph--then the array contains
an arc info element; otherwise, it is NULL.

arc-info wait_graph matrix[N] [N]

3.4.6. NUMBER OF RESOURCES
This global variable stores the number of resources in the system.

short number._of_resources

3.4.7. NUMBER OF PROCESSES
This global variable stores the number of processes in the system.

short number of_processes

3.5 ROUTINES
In this section, pseudo code descriptions of all routines are included. The data

structures described in previous sections are used in the pseudo code.
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3.5.1. READ_RESOURCES_INFORMATION_FROM_INPUT_FILE
This routine extracts information on the resources in the system from the input file.
The routine reads only the first two lines of the input file; the second lists the names of all
resources in the system. Each of the resource names are extracted from the second line.
Numbers are assigned to each resource, and this information is stored in a resource_def
data structure. Each such structure is added to the resources linked list. The number of
resources are counted and stored in the number_of_resources global variable. The routine

returns a pointer to the resources linked list.

read_resources_information from input_file(input file)
start routine
read second line fram input file and store it in variable Line
do{
read next word in Line
if (word is not NULL)
increment number. of_resources
store word and number. of_resources in a resource def data
structure
add resource def data structure to resources linked list
end if
while (word is not NULL)
return resources linked list
end routine

3.5.2. MAP_A_RESOURCE_NAME_TO_ITS_NUMBER

This routine accepts a name of a resource from the calling function. It then scans
the resources linked list to isolate the resource number of the resource with the name. The
resource number is returned to the calling function( Refer to section 3.4.3. for a declaration

of the resource_def data structure.)
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map_resource_name_to_number (name)
start routine
for every element in resources linked list
if ( name matches resource name field of linked list element)
return resource number field of linked list element
end if
end for
print error message and quit

end routine

3.5.3. INITIALIZE THE ARC ARRAY

This routine creates the Wait Graph matrix from the information stored in the input
file. The input file is read one-line-at-a time starting from the third line. The line read
could contain either a process name, an operation sequence for a process or the end of file
string. The lines storing process names are skipped, but each line storing an Operation
Sequence is further analysed. The names of resources in each Operation sequence are
extracted. Two variables--resourcel, resource2 --are maintained in this process. The first
stores the resource number of the present resource, and the second the resource number of
the last resource extracted. A Wait Relation exists for every such pair of resources.
Information on the operation is stored in the linked list of operations associated with the arc
from resource 1 to resource 2 in the Wait Graph matrix. The process is repeated for every
operation sequence. The routine stops when the end of file string (END string) is
encountered. The number of processes in the system is counted by keeping account on the
number of operation sequences analysed. The address of the newly created Wait Graph

matrix is returned to the calling routine.
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initialize_ arc_array(input file)
start routine
consider the second line in input file
walt_graph = allocate (N x N units of arc_info, where N =
Number._of_Resources)
do{
Line = next line in iInput file
if ( Line does not contain "PROCESS" or is not equal to "END") then
increment number. of. processes
operation _number=0
dof
read next word in Line
increment operation number
if (word read is first in Line) then
map word to its corresponding resource number in the
resources list by calling the
map_resource name to number function. Store this in
variable resource?
else
resourcel = resource?
map word to its corresponding resource number in the
resources list by calling the
map_resource_name_to_number function. Store this in
variable resource2?
ptr = allocate(l unit of trans)
ptr.process_number = number. Of_processes
ptr.operation number = operation number
ptr.next = wait_graph|resourcel] [resourcel] . trans
walt_graph[resourcel] [resource?] . trans = ptr

end if
while ( word is not NULL)
erd if

while ( Line is not END)
close imput_file



return walt_graph
end routine

66
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CHAPTER 4
PROGRAM DEVELOPMENT - PRIMARY CIRCUIT
DETECTION

The present chapter explains the development of the second segment of the
program; namely, the detection of all primary circuits in the Wait Relation Graph. The
chapter is divided into two parts. In the first part, the theory of string multiplication, matrix
multiplication and circuit extraction is described. Section 4.1 explains the theory of string
multiplication, and Section 4.2 explains circuit extraction. In the second part of the
chapter, the implementation of the theory is explained. Section 4.3 consists of data

structure declarations. Section 4.4 contains the pseudo code descriptions of the routines.

4.1 STRING MULTIPLICATION THEORY

A string multiplication algorithm contained in the paper, "Detection of deadlocks in
Flexible Manufacturing Cells", by Wysk, Joshi and Yang [1], is used to identify all
primary circuits in the Wait Relation Graph. First, a symbol matrix S is defined from the

Wait Relation Graph G of the system.

Definition: Symbol matrix S is a matrix of order N x N, where

Sij = I, if an arc exists between vertices i and j in the Wait Relation Graph;
otherwise,
5ij=0

and N is the Number of Resources in the system.
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The string multiplication technique applies to any two strings of symbols. Let uv
and vw be two strings of symbols that start and end with v, respectively. Let * denote the

string multiplication symbol. Then,
u *0=0*u=0. 4-1)

The product of the strings uv and vw is formed by concatenating uv with the string that

results from vw by removing the first symbol v in vw. Hence,
uv * vw = uvw. (4-2)

The result can be extended to sums of strings by defining,

Z uyv* 2 ij=2 Z uyv*vw; . 4-3)
i j i

For example,
(av + bv) * (vc + vd) = av* vc + av* vd + bv * vc + bv * vd,

= avc+avd+bvc+bvd.

The next issue deals with matrix multiplication involving symbol matrix S and
powers of S. The string multiplication technique described is used to form the product of

individual strings. The product of S with itself is defined as

N
[S2y = D, 5 ik* Sk (4-4)
k=1

where [S] ; denotes the ij element of the matrix enclosed in the brackets.
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Example 4.1 LetS be the symbol matrix tor a Wait Relation Graph G of the system

represented in Figure 4.1.

Figure 4.1.  Wait Relation Graph G of System in Example 4.1.
B ]
0 12 0 14
S = 21 0 0 24
31 32 0 0
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Using (4-4) the matrix S? is obtained:

121 0 143 124

§? = 0 212 243 214
321 312 0 3144324
| 431 432 0 0o

The matrix S2 contains redundant diagonal strings. For example, [S2];; = [S%]25.
These redundancies arise, because a circuit can be expressed in various equivalent forms.
Consider a circuit between three nodes--1, 2 and 3. This circuit could be expressed as
1231, 2312 or 3123. One way of eliminating these redundancies is to choose the string
with the lowest starting index--in this case 1231--and eliminate the rest.

In order to eleminate redundancies in the manner described, the formulation used in

calculating S™ is changed as follows:

Sh=8§mi*§ (4-5)

where

S4 is the upper triangular matrix of S.

As a result of (4-5), the numerical value of the first symbol in any string will always be less
than that of the remaining symbols. Hence duplications are avoided within the symbol
matrix.

Equation (4-5) can be expressed in a form more suitable to computation, as follows:
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N
[S"y = X, [Slik* [S™ (4-6)
k=i+1

There are three other steps that can be taken to avoid calculating unnecessary paths:

1.

To eliminate calculating paths that circle the same circuit multiple times, the diagonal
elements are removed from S™ before calculating S™*'.

Since the first element of a circuit must be less than all the other elements, then
circuits starting with 1 can contain all N nodes, but circuits starting with node m can
contain at most N-m+1 nodes. (Recall we are trying to find all the primary circuits;
therefore, a node can appear at most once.) Because of this observation, there is no
need to calculate the last m-1 diagonal elements of S™.

Finally, since the first element of every circuit must be less than all the other nodes,
there is no reason to retain any path that has a node less than the first node.
Therefore, in row m of S™ the off-diagonal paths cannot be any longer than N-m
nodes long. Thus, in S none of the off-diagonal elements in the last N-m rows

need to be calculated.

Example 4.2 Using (4-6) and symbol matrix S as defined in Example 4.1, matrix S2is

recalculated as

121 0 143 124
S2= 0 0 243 0
0 0 0 0
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It is interesting to note that the element [Sz]ij is comprised of strings which
represent paths with two arcs between nodes i and j. The diagonal elements [S?];;
represent all closed paths with two arcs which include node i. Hence two arc circuits are
in the diagonal elements of S2, three arc circuits are in the diagonal elements of S3 and so

on, as described below.

For S3
1431 1432 1243 0
S3 = 2431 2432 0 0
0 0 0 0
o 0 0 o _
For S*
14321+ 12431 12432 0 14324
S4 = 0 0 0 0
0 0 0 0
i 0 0 0 0o |

4.2 EMENTATION 1 E

In this section, implementation issues which arise in the identification of circuits
using the string multiplication algorithm in Section 4.1 are examined.
In the symbol matrix, each symbol in a string represents a node in the Wait Relation

Graph. The string ijk represents a path from vertex i to j to k. The present implementation
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is fine provided there are enough unique symbols to represent nodes. In the case of large
systems, this issue can be a problem. Consider a graph comprising 100 nodes. If the
nodes are numbered from 1 to 100, a string 123 could represent a path from node 1 to 2 to
3 or a path from node 12 to 3 or a path from node 1 to 23. Alphabetical symbols assigned
to represent nodes do not work any better. There is a finite set of such alphabets--and no
matter how many--these are inadequate to represent a general system. One solution is to
use parantheses. The path from 1 to 2 to 3 is represented as 1(2(3)). The next section

develops this idea and presents a modified string multiplication algorithm.

4.2.1. RULES FOR STRING MULTIPLICATION

Let u(v) and v(w) be two strings of symbols that end and start with symbol v,
respectively. Symbols # andw can themselves be single symbols or strings of symbols.
Symbol v, is however, a single symbol. Let * denote the string multiplication symbol.

Then

u()*0=0*u@)=0. 4-7)

The product of u(v) and v(w), u(v) * v(w) is formed in these steps:

1. Strip the trailing parantheses from u(v), to give u(v.

2. Strip the leading symbol from v(w) to give (w).

3. Concatenate the u(v with (w) to give u(v(w).

4. Add a trailing paranthesis to u(v(w) to give the final product string, u(v(w)).

Steps 1 to 4 can be summarized by the equation

u() * v(w) = u(v(w)). (4-8)
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Equation (4-8) can be extended to

1. products of sums of strings, as
2 ui) * X vw) = ¥ wv(w)) and (4-9)
i J i
2. sums of products of strings, as
2 V) * u(w) = v, u; (W), (4-10)
i i

Example 4.3 The product of the two sums of strings,

(@) + b(v)) * (v(c) + v(d))

is formed using (4-9).

(a(v) + b(v)) * (V(c) + v(d)) = a(v) * v(c) + a(v) * v(d) + b(v) * v(c) + b(v) * v(d)
= a(v(c)) + a(v(d)) + b(\(c)) + b(v(d)).

Example 4.4. The sum of the two products of strings,

a(v) * v(d) + a(w) * w(d),

is formed using (4-10).
a) *v(b) + alw) * w(d) = a((v+w)d).
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4.2.2. REDEFINITION OF THE S MATRIX
In order to use equations (3-7), (4-8), (4-9) and (4-10), the elements of the S matrix

should be in a form required by these equations. The S matrix is now formed as

() if an arc exists between nodes i and j in the Wait Relation Graph

ij=

otherwise.

The products of S are formed using (4-6), where string multiplication is defined as

in (4-7), (4-8), (4-9) and (4-10).

Example 4.5. The symbol matrix in Example 4.1 is formed using the representation

presented in this section. Hence,

0 1(2) 0 1(4)

S = 2(1) 0 0 2(4)

3(1)  3(2) 0 0
0 0 4(3) 0

Using equations (4-6) to (4-10), the matrix S is obtained as

12(1)) 0 1(43))  12@4)
S2= 0 0 2(4(3)) 0
0 0 0 0

0 0 0 0
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In Example 4.5, primary circuits with two arcs occur along the diagonal of matrix

S2. The circuit from node 1to node 2 to node 1 is an example. The matrices S and S* are

also evaluated.
1(4(3(1))) 1(4(3(2))) 1(2(4(3))) 0
S3= | 2(4(3(1)) 2(4(3(2)) 0 0
0 0 0 0
| 0 0 0 0 _
— —_
1((43(2)+2(4(3)N1) 1(2(4(3(2))) 0 0
S4 = 0 0 0 0
0 0 0 0
| 0 0 0 0 _
Finally, all the circuits are,

121, 1431, 2432, 14321and1243 1.



Example 4.6. Let S be the symbol matrix of a Wait Relation Graph G depicted in
Figure 4.2.

Figure 4.2.  The Wait Relation Graph of the system in Example 4.6

0 1(2) 0 1(4)

S = 0 0 2(3) 0

3(1) 0 0 0
0 0 4(3) 0

Using equations (4-6) to (4-10),

0 0 1(2+43) 12@) )
$2= 0 0 0 0
0 0 0 0

o 0 0 0 _
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and

1(((2+4)3)1) 0 0 0
s3 = 0 0 0 0
0 0 0 0

0 0 0 o _

In Example 4.6, primary circuits with 3 arcs occur along the diagonal elements of
matrix S3. Hence, the element [S3]1; = 1(((2+4)3)]) represents a circuit string, although
this is not immediately apparent. Recall that the motivation for the current representation
was to unambiguously represent a string. Although this issue is solved, a new--

issue,namely that of extracting the circuit string--remains to be solved.

4.2.3. THE EXTRACTION OF ALL CIRCUITS

From Example 4.6 consider once again the string [S3111 = 1(((2+4)3)1). Being a
diagonal element, this represents a circuit with three arcs, including node 1. The two
primary circuits are 1(2(3(1))) and 1(4(3(1))). This information is in the string and needs
to be extracted. In this section, an algorithm which extracts primary circuits from each

diagonal element is explained. The algorithm is recursive in nature.

4.2.3.1. DEFINITIONS
Before explaining the algorithms, a few concepts needed by the routine are

described.
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String pointer

A string pointer is an operator associated with a symbol string. Its value indicates
the position in the symbol string at which the next character to be read is located. For any
string, the string pointer has its lowest value when it refers to the first character in the
string, and its highest value at the last character in the string. Initially, the string pointer
has its lowest value. Incrementing the string pointer moves it one position to the right in

the string.

Level

Level is an attribute of a string pointer. Level is assigned a value equal to the
number of (" symbols less the number of ')’ symbols which are present below the current
location of the string pointer. A string pointer is said to advance a level when it moves past
a "('symbol. It decrements a level when it moves past a ')’ symbol. The level attribute is
very useful in extracting circuits when there are multiple circuits present in the symbol

string. Itis also useful as an end-of-string indicator.

A note on representation

In all algorithms, henceforth, circuits will be stored as a sequence of node numbers
separated by spaces. The nodes are arranged in the string in the order in which they occur
in the circuit. The circuit string " a b c ...k a " represents a circuit from node a to b to ¢
and so on, finally including node k and back to node a. This circuit would have been

represented in the earlier representation as "a(b(c(...(k(a))...)))".

4.2.3.2. ALGORITHM
This section introduces the algorithm used to extract all primary circuits from a

symbol string. The algorithm is recursive.
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INPUTS TO ALGORITHM

a. A symbol string in the form obtained fram the string
multiplication routine; e.g. 1(((2+4)3)1).

b. The location of the string pointer--initially at the start of the
symbol string.
c. The current list of circuits extracted fram the symbol string,

henceforth called circuit list. As new circuits are extracted
they are added to this list.
d. The current value of the level attribute.

INITIAL SETUP

Move the string pointer along the symbol string updating the level
attribute at each step. Stop at the first numeric character in the

symbol string.

Create a blank string, and store the numeric symbol in it. This string
is, henceforth, called circuit_string.

Call the recursive algorithm. To it pass the symbol string, current
string pointer location, current circuit list and current value of the
level attribute.

RECURSIVE ALGORITHM

Position the string pointer at its location within the symbol string.

Move the string pointer to the next symbol in the input string.

Based on the nature of the current symbol, various actions are
performed:

If symbol is '(':
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Increment level attribute.
Call the recursive algorithm with the current values of
string ptr, level, circuit_string, circuit_list and the

symbol string.

If symbol is ') ':
Decreament the level attribute.
Return fram algorithm.

If symbol is a numeric character:
Add the symbol to circuit_string.

If symbol is '+':
Store values of circuit string, string pointer and level in
temporary variables.
Move the string pointer along the symbol string updating
level attribute at every step.
Stop at the first ')' symbol at which the level attribute
is one less than the earlier stored value of level.
Call the recursive algorithm with appropriate parameters.
On returning fram the algorithm, restore the earlier stored
values to level, string pointer and circuit_string.

If symbol is the end of string marker:
The string pointer has reached the end of the string. Return
fram the algorithm

If level attains a value of zero, it implies that the string
pointer has reached the last ) in the string. This
autamatically implies that a circuit has been extracted fram the
symbol string. Now add the string stored in circuit_string to

circuit_list.
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OUTPUTS FROM ALGORITHM

When the final circuit has been extracted, circuit_list will contain a list of all circuits
extracted from the symbol string. These circuits will be stored in the form described above
(Section 4.2.3.1); e.g.,, 123 1and 143 1.

The next section contains an example based on the algorithm.

4.2.3.3. ILLUSTRATIVE EXAMPLE
The method used to extract all circuits will be illustrated with the detailed
explanation of the extraction of all circuits from a symbol string.

Consider the following example of a typical symbol string:

1((4(3(2))+2(4(3)))1)
The position of the string pointer is indicated by a '". A few variables which help us track
our location in the recursions are also reported. The first of these is recursion number. It is
incremented when the recursive algorithm is called, decremented on return from the

recursive algorithm. The current value of level is also reported.

1. Current symbol is '1'. Store it in circuit_string C; =" 1". Level is 0, recursion number

is 1. Call the recursive algorithm.

1((4(3(2))+2(4(3)))1)

A

2. Move the string pointer to the next character. Current symbol is ‘(. Levelis 1,

recursion number is 1. Call the recursive algorithm.
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. Move the string pointer is moved to the next character. Current symbol is '(. Level

is 2, recursion number is 2. Call the recursive algorithm.
1((4(3(2))+2(4(3)))1)
. Move the string pointer to the next character. Current symbol is '4'. It is added to

circuit_string C; ="14". Level is 2, recursion number is 3.
1((4(3(2))+2(4(3)))1)
. Move the string pointer to the next character. Current symbol is '(". Level is 3,

recursion number is 3. Call the recursive algorithm.
1((4(3(2))+2(4(3)))1)
. Move the string pointer to the next character. Current symbol is '3". It is added to

circuit_string to give C; =" 14 3". Level is 3, recursion number is 4.
1((4(3(2))+2(4(3)))1)
. Move the string pointer to the next character. Current symbol is '(. Level is 4,

recursion number is 4. Call the recursive algorithm.

1((4(3(2))+2(4(3)))1)

N

. Move the string pointer to the next character. Current symbol is 2'. It is added to

circuit_string to give C; =" 143 2". Level s 4, recursion number is 5.
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1((4(3(2))+2(4(3)))1)
9. Move the string pointer to the next character. Current symbol is ). Level is

decremented to 3, recursion number is decremented to 4. Return from the algorithm.
1((4(3(2))+2(4(3)))1)
10. Move the string pointer to the next character. Current symbol is ). Level is

decremented to 2, recursion number is decremented to 3. Return from the algorithm.
1((4(3(2))+2(4(3)))1)
11. Move the string pointer to the next character. Current symbol is '+'. Store the present
values of circuit_string, level, and string_pointer in temporary variables temp1, temp2,

temp3, respectively. Level is 2, recursion number is 3.
1((4(3(2))+2(4(3)))1)
12. Move the string pointer forward updating level at each step. Stop at the )’ symbol

at which level is one less than the stored value temp2. Level is 1, recursion number 3.

1((4(3(2))+2(4(3)))1)

N

13. Call the recursive algorithm. Level is 1, recursion number is 4.

14. Move the string pointer to the next character. Current symbol is '1". It is added to

circuit_string to giveC; =" 1432 1". Level is 1, recursion number is 4.

1((4(3(2))+2(4(3)))1)

N
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16.
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18.

19.

20.
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Move the string pointer to the next character. Current symbol is ')'. Level is
decremented to 0, recursion number is decremented to 3. Return from the
algorithm. Final circuit string C; ="14321".
1((4(3(2))+2(4(3)))1)
The program execution now returns to recursion 3. Earlier stored values of
string_pointer (temp3) and circuit_string(temp1) are restored. The string pointer is
now at symbol '+'. This indicates a multiple circuit exists. Now create a new circuit
string C; and add to it the symbols in circuit_string. Hence, Co =" 1".
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is '2'. It is added to

circuit_string C; =" 12". Level is 2, recursion number is 3.
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is '(. Level is 3,

recursion number is 3. Call the recursive algorithm.
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is '4". It is added to

circuit_string to give C; =" 12 4". Level is 3, recursion number is 4.

1((4(3(2))+2(4(3)))1)

N

Move the string pointer to the next character. Current symbol is '(. Level is 4,

recursion number is 4. Call the recursive algorithm.
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23.

22.

23.

24.
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1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is '3'. It is added to
circuit_string to give C; =" 12 43". Level is 4, recursion number is 5.
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is ')'. Level is

decremented to 3, recursion number is decremented to 4. Return from the algorithm.
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is ')'. Level is

decremented to 2, recursion number is decremented to 3. Return from the algorithm.

1((4(3(2))+2(4(3)))1)

A

Move the string pointer to the next character. Current symbol is ')'. Level is

decremented to 1, recursion number is decremented to 2. Return from the algorithm.
1((4(3(2))+2(4(3)))1)
Move the string pointer to the next character. Current symbol is '1". It is added to

circuit_string to giveC; ="1243 1". Level is 1, recursion number is 2.

1((4(3(2))+2(4(3)))1)

A

Move the string pointer to the next character. Current symbol is ')'. Level is

decremented to 0, recursion number is decremented to 1. Return from the
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algorithm. Final circuit string C; =" 1243 1".
1((4(3(2))+2(4(3)))1)
25. Move the string pointer to the next character. Current symbol is \0'. Level is 0,
recursion number is decremented to (). Return from the recursive algorithm to the

parent routine.
1((4(3(2))+2(4(3)))1)
26. The final circuitsare C; =" 1432 1", and C, ="12431". The process is

complete.

Sections 4.1 and 4.2 explained the theory and implementation issues in the
extraction of all primary circuits from the Symbol matrix. The next section contains pseudo
code descriptions for the routines which implement the extraction. The routines are based
on the string multiplication and circuit extraction algorithms described in the past two

sections.

4.3. A STRUCTURE

This section declares constants and data structures used in the program

4.3.1. CONSTANTS
The following constants are used in this section of the program.
NEXT_TERM =0
END_EXPRESSION =1
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4.3.2. DATA STRUCTURES
This section defines the major data structures that are used by the routine. They are

defined using a C type notation.

4.3.2.1. S_ELEMENT
This structure stores information on paths between a pair of nodes in the Wait
Relation Graph. The source and sink vertex numbers are stored. The directed arc present
between these two vertices is also stored in initial_string. In case this arc is absent, the null
string is stored in its place. Recall the s-matrix multiplication formula, S ‘= S4* Si-1. The
s-element structure stores those symbol strings in the S*"! and S ¢ matrix, which represent
paths between the source and sink vertex. The symbol string in the S*"! matrix is stored in
string2, and the symbol string in the S ‘ matrix is stored in stringl.
s_element {
short source vertex;
short sink vertex;
char initial_string;

char stringl;
char string2;

}

(Note : In the implementation of this data structure in the program, the two strings storing
the most recent and currently calculated symbol string are included in a single two

dimensional array.)

4.3.2.2. S-MATRIX
This array of s-element data structures stores information required, and results
produced by the string multiplication algorithm. The array is two-dimensional square, with

subscript equal to the number of resources in the system.
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s-elament s_matrix[number of resources] [number of resources];

4.3.2.3. CIRCUIT INFO
This structure stores information on a circuit. The circuit string is stored is stored
in circuit_string. The format of this string is defined in Section 4.3.2.1. The unique
identification number for every circuit is stored in circuit_number. The order of the circuit
is stored in order. A linked list of circuit_info data structures stores information on all
circuits which occur in the Wait Relation Graph. The data structure stores the address of
the next element in the linked list.
circuit_info
char circuit_string;
short circuit_mumber;
short order;

circuit_info*next;

}

4.3.2.4. PRIMARY CIRCUIT LIST
This data structure is a linked list of circuit_info structures. It stores details on all
primary circuits occurring in the Wait Relation Graph

circuit_info * primary circuits;

4.3.2.5. NUMBER OF CIRCUITS
This global variable stores the number of primary circuits occurring in the Wait
Relation Graph.

short nuber._of _circuits;
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4.4. ROUTINES
This section develops each ot the algorithms into pseudo code. This is the second
stage in the development of the program. The order of the routines follows the order of the

algorithms

4.4.1. INITIALIZE_S_MATRIX

This routine creates the S-matrix data structure and initializes each element in the S-
matrix. (For a declaration of S-matrix data structure, refer to Section 4.3.2.1.) If a
directed arc exists from vertex i to vertex j, the initial string field in the ijth element of the S-
matrix is initialized to "i (j)"; otherwise, the initial string field of the ijth element is

initialized to NULL.

initialize s_matrix(wait_graph matrix)
start routine
s-matrix = allocate(N x N units of s-element), where N is the number
of resources in system
For every ijth element in wait_graph matrix
s-matrix[i] [J].source vertex = i
s-matrix(1i] [J] .sink vertex= j
s-matrix([i] [7].stringl = allocate space
s-matrix[i] [7].string2 = allocate space
if ( Wait_graph(i] [J].number: of arcs > 0) then

s-matrix(i]) [j].initial string = " 1i(j)"
else
s-matrix([i] [j].initial string = NULL
end if
end for

return address of s-matrix array to calling routine

end routine
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4.4.2. FORM_S_MATRIX

This routine is called by the determination_of_all_primary_circuits routine. It
forms a symbol matrix S ” of order i. Equations (6) to (10) are used to form S ”* from S
and S ™1, Recall the declarations of s-element and s-matrix. The ith element of the S ™!
matrix is stored in s-matrix[i][k].stringl. The kjth element of the S matrix is stored in s-
matrix{k][jl.initial string.  The ijth element of the S " matrix is stored in s-

matrix{i][j].string2.

form s matrix(s-matrix, n)
start routine

copy s-matrix[i] [j].string to s-matrix([i] [j].stringl, for every
element s-matrix(i] (7]
set all diagonal terms in matrix S*'to null.

Calculate every element s;jy7 in the first (N - n) rows of
matrix [S "];;

N
s-matrix{i][j].string2 = Z s-matrix[i][k].stringl * s-matrix[k][j].initial_string
k=i+1

end for
Calculate the N-n+lth diagonal element (i= N-n+l) in S? as,

N
s-matrix[i][i].string2 = 2 s-matrix[i][k]).string1 * s-matrix[k}[i].initial_string

k=i+1
return
end routine
4.4.3. END_EXPRESSION

This function advances the string pointer until it reaches the first ')’ character at the

same level in the string.

end_expression(string pointer)
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start routine
do
increment string pointer
if current symbol is ' ('
Call function end expression(string pointer)
end if
if current symbol is ')
return from algorithm
end if
if current symbol is '+' or numeric symool
do nothing
end if
if current symbol is 'end of string'
print ERROR MESSAGE and exit from program
end if
end do
return

end routine

4.4.4. GET_NEXT_TERM

This function advances the string pointer to the first character past the first
occurence of the '+' symbol, ')’ symbol or the 'end of string' symbol, all of which must
occur at the same level. The function is recursive. In the event of a further branch in ‘thc

string indicated by a '(' symbol, the algorithm is called again.

get_next_term(string pointer)
start routine
do
increment string pointer
if current symbol is ' ('
end expression(string pointer)
end if
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if current symbol is ')
quit and return status
end if
if current symbol is '+'
quit and return status
end if
if current symbol is 'end of string character'
quit and return status = END EXPRESSION;
end if
while(current symbol is not ')', '+' or 'end of string' character)
return value of status

END EXPRESSION

NEXT TERM

end routine

4.4.5. GET_CIRCUIT

This function is called by the determination_of_all_primary_ circuits routine. The
function extracts all primary circuits in the string passed to it, adds these circuits to the
primary circuits linked list and returns the updated list to the calling function. The function

implements the algorithm described in Section 4.2.2.2.

get_circuit: (string, circuit_string, primary. circuit)
start routine
initialize string pointer
do
increment string pointer
if current symbol is ' ('

consider the portion of string which lies between string pointer
and the end. Call this rest_line

do
get circuit (rest_line, circuit_string, primary. circuit)
while (return value of get next term(rest_line) is NEXT TERM )
add circuit string to primary circuit linked list
end if
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if current symbol is '+

consider the portion of string which lies between string pointer
and the end. Call this rest_line

advance to ')' symbol by calling end expression(rest_line)
function

call function get_circuit (rest_line, circuilt_string,
primary. circuit)
add circuit string to primary circuit linked list
end if
if current symbol is 'end of string' character
add circuit_string to primary circuit linked list
end if
if current symbol is a numeric character
add symbol to circuit_string
end if
while (current symbol is not 'end of string' character)
add circuit string to primary circuit linked list

end routine

4.4.6. EXTRACT CIRCUITS FROM DIAGONAL ELEMENTS IN S-
MATRIX |

This routine is called by the determination_of_all_primary_circuits routine. The
diagonal elements of the symbol matrix S " of order i are analyzed to extract all primary
circuits with i arcs. The primary circuits extracted are added to the linked list of primary
circuits and returned to the calling routine.

In accordance with (10), only the first N-m+1 diagonal elements of matrix S are
analyzed. In this function, the extraction of circuits is done by the get_circuit function.
s[k][k].string2 stores the most recently calculated element of a matrix S . This is the
string passed to the get_circuit function. The routine returns the primary circuits linked list

to the calling routine.
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extract_circuits_from diagonal_elements (s-matrix, primary circuits, n)
start routine
For the first N~-m+l diagonal elements

extract all primary circuits fram the diagonal elements of the
S matrix using the get_circuit routine.

end for
returm address of primary circuits linked list

end routine

4.4.7. DETERMINATION_OF_ALL_PRIMARY_CIRCUITS

This is the highest routine in the second program segment. It is in charge of
identification and extraction of all primary circuits in the Wait Relation Graph of the
system. Hence, the role of this function is that of an overseer calling the appropriate
functions in order. The final result is a linked list of all primary circuits occurring in the
Wait Relation Graph.

The routine first allocates memory for and initializes the S-matrix array. It then
creates the primary_circuitlinked list. In a Wait Relation Graph with N nodes, the
maximum number of arcs that can occur in any path is N. Hence the largest order symbol
matrix to be computed is of order N. The routine computes symbol matrices up to order N.
For symbol matrix S *, it calls the matrix multiplication and circuit extraction routines.
These functions detect all primary circuits with i arcs. The primary_circuits linked list is

returned to the calling routine.

determination_of_all primary circuits(wait graph matrix)
start routine;
s matrix = initialize s_matrix( walt_graph matrix);
create primary circuit linked list.
for every symbol matrix of order fram 2 to N

form s matrix( s matrix, n)
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extract_circuits_fram diagonal_elements (s matrix, primary circuit,
n)

end for
return address of primary circuit linked list to calling routine
end routine
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CHAPTER 5§
PROGRAM DEVELOPMENT - EXTRACTION OF HIGHER
ORDER CIRCUITS

The present chapter explains the development of the third segment in the program--
namely, the detection of all higher order circuits in the Wait Relation Graph. This is the
third and final segment in the program. The results of the previous chapters, i.e., the list
primary_circuits and the number of primary circuits, are used in this segment. The chapter
starts by describing the theory used in the detection of all higher order circuits. Important
data structures are described in Section 5.2. The last section contains the pseudo code

descriptions of all routines.

5.1 D ION - BACK D
This chapter explains the theory used in the detection of all higher order circuits. It
starts by reviewing the definition of order. Next the development of the algorithm is

explained.

5.1.1 ORDER

By definition, order is defined to be one less than the number of simple circuits in
the closed loop, where each of the simple circuits contributing to the order must intersect
any other simple circuit in the closed loop in only one vertex.

Consider the Wait Relation Graph G formed by adding a primary circuit Cp to a
higher order circuit C. Let C' = C U Cp. By lemma 7, order(C’)=order(C)+a, where a = 1

if C and Cy intersect in a single vertex and a = 0 if C and Cy intersect in a path.
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5.1.2 THEORY OF HIGHER ORDER CIRCUIT DETECTION

From the theorems in Chapter 2, a manufacturing system is deadlock free if

slack(C, s) > order(C) VC e CgVseS

The order of the circuit is obtained by applying the definition of order to its structure.
Knowing every element C € Cg and its order we can form the deadlock-free slack
conditions. Hence, knowing the elements in set Cs is an important step in obtaining the

deadlock free solution to a system.

Definition.

The set C is defined as

CL = {C: order(C)=i, and C € Cg}.
C% is called the set of order i.
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Example 5.1. Figure 5.1 depicts the Wait Relation Graph G of a manufacturing system.

Figure 5.1. The Wait Relation Graph in Example 5.1.

For G we can define the following sets.
The set of order 0, C?; ={Cy, C3, C3}.
The set of order 1, C¢ = {C1 U C2, C2 U C3, C1 L C3}.
The set of order 2, C2 = {C; U C; U C3}.
C; would be obtained as,
Cc =Cductudcy

={C1, C2, C3, C1UCy, C2UC5, CLuC3, CLuCruCsl.

Given any graph G, the set C¢ can be expressed as,

n-1

Cs=U uCé; , n = number of resources in system. (5-1)
i=0
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Equation 1 is the basis of an alternate algorithm for deriving Cs. As in (1), Cg is
formed by a union of all sets Cf;, where 0 <i <n. Each set Cé; is formed recursively from
the elements in Cél and C2. The algorithm is based on the material in Section 2.6 and is
used in the detection of all higher order circuits. The starting inputs for the algorithm is
Cg. This is formed from the primary circuits detected by the routines described in Chapter

4. A description of the algorithm follows.

Step 1. Seti=0.
Step 2. Consider an element C* € CL.
Step 3. Form the union of C* with a circuit C € CZ which does not occur in C*.

Remember that C* itself can be comprised of multiple primary circuits. The
circuit C e C2 should not be one of the circuits in C*.
Step 4. If C intersects C* in a single vertex, order(C U C*)=i+1. Add Cu C*to

CE1. IfC intersects C* along a path, order(C U C*) =i. Add CUC* to

CL.
Step 5. Repeat steps 3 and 4 for every circuit C in C.
Step 6 Repeat step 2,3 and 4 forevery C* € CL.
Step 7. Increment i. If i < n repeat steps 2, 3 and 4.

In the proof of Theorem 7(refer to Chapter 2), we know that a Wait Relation Graph
can be anaylzed by breaking it up into its primary circuits and simple paths. The graph is
then reassembled by adding one element at a time. The above method of building the set
Cc from the union of all sets of orders of orders 0, 1, 2,... n-1 works as well as the
method of building the graph by adding simple paths to it, and this is the method adopted

in this program.
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5.2. DATA STRUCTURES

This section defines the major data structures that are used by the program. They

are defined using a C-type notation.

5.2.1. CIRCUIT_INTERSECTION
This structure stores information on the intersection between two circuits. Pertinent
information--such as circuit numbers of the two circuits, number of circuit intersections,

and any one common vertex (first_common_vertex)--are stored.

circuit_intersection{

short circuitl number
short circuit2_number
short nunber_of_cammon_vertices
short first_cammon vertex
}
5.2.2. INTERSECTION

This is an array of circuit_intersection data structures. The array is of size N¢ x
N¢, where Nc is equal to the number of primary circuits. The ijth element of the array

stores the information on intersections between primary circuits i and j.

circuit_intersection intersection[N¢][Nc]

5.2.3. HIGHER_ORDER_CIRCUITS

This data structure is a linked list of circuit info structures. It stores details on
circuits of all orders greater than 0.

circuit_info * higher order_circuits
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5.2.4. HIGHEST ORDER CIRCUITS

This data structure is a linked list of circuit_info structures. It stores details on

those circuits which are of highest order.

circuit_info * highest_order_circuits

5.2.5. CURRENT_CIRCUITS
This is a temporary linked list of circuit_info data structures.

circuit_info * current_circuits

5.2.6. NUMBER OF CIRCUITS
This global variable stores the number of primary circuits.

short number._of_circuits

5.3. I - PART 1, FORMATI F "INTERSECTION'" AR

The pseudo code implementation is done in two layers. At the lowest layer is a set
of utilities which construct the intersection array. This section describes this set. Routines
are described in a bottom up approach. The last routine uses all the routines described prior

to it.

5.3.1. GET_CIRCUIT_STRING
This routine accepts as a function parameter a circuit number. It then scans the
linked list of circuits and returns the circuit string corresponding to this number.(Refer to

Section 4.3.2.3 for a declaration of the circuit_info data structure.)
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get_circuit_string(number, primary circuits)
start routine
for every circuit in list primary circuits
if ( number equals circuit_number field)
return circuit_string
end if
end for
return

end routine

5.3.2. ACT_ON_STRING

This routine performs a variety of operations on a string. These include extraction
of the first node in the string, and advancing the string pointer to first node beyond the
next white space. The routine returns a string containing the result of these operations. In
case the end of string is encountered, the routine returns the NULL string. The notion of a
string pointer is similar as in Chapter 4. The string pointer stores the location within the
string where the next string will be extracted. The action to be performed is included in a

parameter action_code passed down by the calling function.

act_on_string(ckt_string, action code, string pointer)
start routine
if (action _code = move string pointer to first node after the next
whitespace in ckt_string)
increment string pointer till it is beyond the first ' ' character

Consider the part of the string which lies between the
string pointer location and the end of the ckt string.
Update ckt_string to be this string

if (there are no ' ' characters in ckt_string)
return NULL string

else
returm ckt_string
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end if
end if
if (action code = get next node in ckt_string)
if (there are no ' ' characters in ckt_string)
print error message and exit program

else

increment string pointer till it is beyond the first '
character

return first node in ckt_string (this will be the string
which lies between the whitespace just passed and the next
whitespace) .

end if

end if

return NULL string
end routine

5.3.3. CREATE_INTERSECTION_ARRAY

This routine creates the intersection array. For every ij th element in the array, the
routine calculates the number of circuit intersections. It does this by extracting each vertex
in circuit 7 and checking for its occurrence in circuit j. The number of such occurrences is
counted and stored in the circuit intersection data structure corresponding to the ijth element

of the intersection array. The pseudo code description follows.

create_intersection_array( primary circuits)
start routine
initialize every element in the intersection array
for every pair of primary circuits
Call the pair ( A, B) where A and B are primary circuits

Determine the nurber of camon vertices between A and B. Use
function act_on string to determine the vertices for each
circuit

Store this information in the ijth element of the intersection
array
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end for
return

end routine

5.4. ROUTINES -PART 2, DETECTION OF HIGHER-ORDER
CIRCUITS

This section contains the pseudo code descriptions for two routines, which together
detect all higher-order circuits. The first routine detects all circuits of order 1. The next
routine detects all circuits of orders greater than 1. Both routines rely on the intersection
array as the source of information on primary circuit intersections. The description of these

routines concludes this chapter, as well as the description of the program.

5.4.1. DETECTION_OF_1ST_ORDER_CIRCUITS

This routine detect all 1st order circuits. The intersection array is examined to
obtain all pairs of circuits intersecting in a single vertex. A union of every such pair of
circuits is formed. From the definition of order, this union represents a circuit of order 1.
A list higher-order circuits, consisting of all circuits of order 1, is formed. The pseudo

code description follows.

detection_of_lst_order. circuits(intersection, primary. circuits)
start routine
for every pair of primary circuits
Call the pair ( A, B) where A and B are primary circuits

if ( the pair of circuits intersects in a single vertex - this
information is obtained fram the intersection array) then form a
circuit C = A B

Add C to the list higher order circuits
end if
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end for
return address of higher: order circuits
end routine

5.4.2. DETECTION_OF_ALL_HIGHER_ORDER_CIRCUITS

This routine detects all circuits of order greater than 1. The routine is based on the
algorithm described in Section 5.1. First define a variable order_of highest_circuit and
initialize it to 1. Choose an element A from the highest_order_circuits list(initially this
equals the list of first order circuits). Next, choose an element B from the list of primary
circuits. If B intersects A, a new circuit C = A UB is formed. By the definition of order, it
is known that when a primary circuit intersects another circuit in a single vertex, a circuit of
1 higher order is created. By the same definition, when the circuit intersects another circuit
in a path, the order of the resultant circuit does not increase. The order of C is determined
by applying these rules. The circuit C is added to a list current_circuits.

The entire process outlined in the previous paragraph is repeated once again for
every pair of circuits (A, B), where A is from the highest_order_circuits list and B is from
the list of primary circuits. The list of current_circuits is appended to two existing lists.
The first is the list higher_order_circuits. The next is the list highest_order_circuits. The
highest_order_circuits list is examined; all circuits of order lower than
order_of highest_circuit-1 are deleted. The list current_circuits is cleared to prepare for a
new set of circuits.

At this stage circuits of order = order_of _highest_circuit have been detected. The
variable order_of_highest_circuit is incremented and the procedure repeated. The process
is repeated until all circuits of order = number of resources - 1 have been detected. At this

stage the list higher_order_circuits contains all circuits C € Cg, order(C)>1. The pseudo

code description of the routine follows.
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detection of_all higher order_circuits (higher. order circuits,
primary. circuits)
start routine
Set tl}e l.ist highest_order. circuits to equal list of first order
circuits
Set variable order: of highest_circuit to 1

while order: of highest_circuit is less than the value of
number. of_resources -1, repeat the steps below

for every circuit in the list highest_order circuits
Call this circuit, A
for every circuit in the list primary circuits
Call this circuit, B
if( A intersects any circuit in B - determine this
information from the intersection array)
Ccreate a new circuit C = A B
if( A intersects B in a single vertex -
determine this information from the intersection
array)
order C = order A + 1

else
order C = order A
end if
add C to the list current_circuits
end if
end for
end for

Add all circuits in list current_circuits to higher. order. circuits

Add all circuits in list current circuits to
highest_order: circuits

Clear list current circuits
For every circuit C in list highest_order. circuits
if (order of circuit C < order. of highest_circuit-1)
delete circuit C from list highest_order: circuits
end if
end for
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increment variable order. of highest_circuit
end while loop
return list higher. order. circuits to calling routine
end routine

5.4.3. PRINT_SLACK_CONDITIONS
This routine analyzes the primary_circuits and higher_order_circuits linked lists,

extracting the slack conditions from the information stored within. This extraction is done

in two parts:

1. The primary circuits slack conditions are extracted from the information stored in
primary_circuits linked list. From each linked list element (refer to Section
4.3.2.3), the circuit string(C) and its order are extracted. The slack condition is
determined from the relation

slack(C, s) < order.

The circuit C is analysed and every node in it extracted. Express these nodes as

N{,Na,--+, Np.

2. The higher-order slack conditions are extracted from the information stored in
higher_order_circuits linked list. From each linked list element, the circuit
string(C) and its order are extracted. The circuit C is itself a union of primary

circuits. These are extracted and expressed as

C=C1UC2---UCn.
The slack condition is

slack(C, s) < order.



print_slack_conditions (primary circuits, higher- order circuits)
start routine
for every element in primary circuits
Extract every node in circuit string
print circuit and order as described above
end for
for every element in higher. order. circuits
print circuit and order as described above
end for
end routine

109
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CHAPTER 6
ANALYSIS OF CIRCUITS USING THE PROGRAM

In this chapter, the program will be used to analyse a series of examples and results
will be presented. The program developed is named thesis and resides on SUN
workstation phoenix.ent.ohiou.edu. The file system.dat contains a description of the
manufacturing system in the prescribed format. For each example, the Wait Relation
Graph of the system, the system.dat file and the program output--consisting of a list of
circuits with corresponding slack conditions--are preseénted. The chapter will conclude

with a section on how to use the program.

6.1. EXAMPLES

The program is used to analyse a series of examples.

6.1.1 EXAMPLE 1
This example is identical to the one in Section 2.6.1. The process plan is shown in Table

6.1.

Process No. Process Plan

Process 1 Operation A processes Part 1 in Machinel. Operation B transfers the part

via Robot to Machine2. Operation C processes Part 1 in Machine2.

Process 2 Operation D processes Part 2 in Machine2. Operation E transfers the part

via Robot to Machinel. Operation F processes Part 2 in Machinel.

Table 6.1. Process Plan of Example 1.



The Wait Relation Graph is shown in Figure 6.1.

Figure 6.1. Wait Relation Graph of Example 1.

The file system. dat is shown in Table 6.2.
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RESOURCES

Machine 1 Machine2 Robot
PROCESS1

Machinel Robot Machine2

PROCESS2

Machine2 Robot Machinel

END

Table 6.2. system. dat File for Example 1.

The program output is shown in Table 6.3.
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Slack Rule 1 allows atmost 1 operation to be simulaneocusly active.
The operations are: E, A.
Slack Rule 2 allows atmost 1 operation to be simulanecusly active.
The operations are: B, D.

Slack Rule 3 allows atmost 1 operation to be simuilanecusly active.

The operations are: A, B, D, E.

Table 6.3. Output from Program for Example 1.

6.1.2. EXAMPLE 2
This example is identical to the one in Section 2.6.2.

The process plan is shown in Table 6.4.

Process No. Process Plan

Process 1 Operation A processes Partl in Machinel. Operation B processes Partl in
Machine2. Operation C processes Partl in Machine3. OperationD

processes Part1 in Machine4. Operation E processes Partl in Machine5

Process 2 Operation F processes Part2 in MachineS5. Operation G processes Part2 in
Machine3. Operation H processes Part2 in Machine4. Operation I

processes Part2 in Machine2. Operation J processes Partl in Machinel.

Table 6.4. Process Plan of Example 2.

The Wait Relation Graph is shown in Figure 6.2.
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Machine 3

Figure 6.2 Wait Relation Graph of Example 2.

The file system. dat is shown in Table 6.5.

RESOURCES

Machinel Machine2 Machine3 Machine4 Machine5
PROCESS1

Machinel Machine2 Machine3 Machine4 Machine5
PROCESS?2

Machine$S Machine3 Machine4 Machine2 Machinel

END

Table 6.5. system. dat File for Example 2.
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The program ouptut is shown in Table 6.6.

Slack Rule 1 allows atmost 1 operation to be simulaneously active.
The operations are: A, I.

Slack Rule 2 allows atmost 2 operations to be simulaneously active.
The operations are: B, C, G, H.

Slack Rule 3 allows atmost 2 operations to be simulanecusly active.
The operations are: C, D, F, G.

Slack Rule 4 allows atmost 3 operations to be simulanecusly active.
The operations are: B, C, D, F, G, H.

Slack Rule 5 allows atmost 2 operations to be simulaneously active.
The operations are: A, B, C, G, H, I.

Slack Rule 6 allows atmost 3 operations to be simulaneously active.

The operations are: A, B, C, D, F, G, H, I.

Table 6.6. Output from Program for Example 2.
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6.1.3. EXAMPLE 3
The system consists of four processes sharing five resources, and is more involved than

those of previous examples. The process plan is shown in Table 6.7.

Process No. Process Plan

Process 1 Resource A process Partl in Operation O11. Resource E process Partl in

Operation O12. Resource B process Partl in Operation O13.

Process 2 Resource B process Part2 in Operation O21. Resource E process Part2 in

Operation 022. Resource C process Part2 in Operation 023.

Process 3 Resource C process Part3 in Operation O31. Resource E process Part3 in

Operation 032. Resource D process Part3 in Operation O33.

Process 4 Resource D process Part4 in Operation O41. Resource E process Part4 in

Operation 042. Resource A process Part4 in Operation O43.

Table 6.7. Process Plan of Example 3.

The Wait Relation Graph is shown in Figure 6.3.
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Figure 6.3. Wait Relation Graph of Example 3.



The file system. dat is shown in Table 6.8.
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RESOURCES
ABCDE
PROCESS!1
AEB
PROCESS2
BEC
PROCESS3
CED
PROCESS4
DEA

END

Table 6.8. system. dat File for Example 3.



The program output is shown in Table 6.9.
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Slack Rule 1 allows atmost 1 operations
The operations are: 011, 042.

Slack Rule 2 allows atmost 1 operations
The operations are: 012, O21.

Slack Rule 3 allows atmost 1 operations
The operations are: 022, O31.

Slack Rule 4 allows atmost 1 operations
The operations are: 032, O41.

Slack Rule 5 allows atmost 1 operations
The operations are: Oll, 012, 021, 0O42.
Slack Rule 6 allows atmost 1 operations
The operations are: 011, 022, 031, 042.
Slack Rule 7 allows atmost 1 operations
The operations are: 011, 032, 041, 0O42.
Slack Rule 8 allows atmost 1 operations
The operations are: 012, 021, 022, O31.
Slack Rule 9 allows atmost 1 operations

The operations are: 012, 021, 032, O41.

to

to

to

to

to

to

to

to

to

simulaneously

simulanecusly

similaneocusly

simulaneocusly

similaneously

similanecusly

simulaneously

similaneously

simulaneously

Slack Rule 10 allows atmost 1 operations to ke similaneocusly

The operations are: 031, 022, 032, O41.

Slack Rule 11 allows atmost 2 operations to be simulaneously

The operations are: Ol1l, 012, 021, 022, 031, 0O42.

active.

active.

active.

active.

active.

active.

active.

active.

active.

active.

active.
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Slack Rule 11
The operations
Slack Rule 12
The operations
Slack Rule 13
The operations
Slack Rule 14
The operations
Slack Rule 15

The operations

allows atmost 2 operations to be
are: 011, 012, 021, 022, 031, 0O42.
allows atmost 2 operations to be
are: 011, 012, 021, 032, 041, O42.
allows atmost 2 operations to be
are: 012, O21, 022, 031, 032, O41.
allows atmost 2 operations to be
are: 022, 031, 032, 041, 042, Ol11.

allows atmost 3 operations to be

simulanecusly

simulanecusly

simulaneously

similanecusly

similanecusly

are: 011, 012, 021, 022, 031, 032, O41, O42.

active.

active.

active.

active.

active.

6.2

Table 6.9.

USING THE PROGRAM thesis

Output from Program for Example 3.

Using the program to analyse manufacturing systems for deadlock is a two step

process: preparing the system.dat file and running the program. In the first step the

systan.dat file is prepared with a system description. This description is in the format

explained in Section 3.1. In the next step, the command thesis terminated with a carriage

return is typed on the command line. The program executes, printing a list of circuits and

corresponding slack conditions.
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CHAPTER 7

CONCLUSIONS

In this chapter, goals realized in this thesis and suggestions for future research will

be presented.

71 CONCLUDING REMARKS AND OBSERVATIONS

In conclusion, formalisms for deadlock avoidance and detection were developed.
Theorems 1 to 6 identified deadlock structures, such as circuits and union of circuits.
Theorem 7 presented a method to detect deadlock in an arbitrary system based on the
results proven in earlier theorems. The concept of slack was introduced. Theorems 2 to 6
used the idea of slack to present a set of conditions which would guarantee a deadlock-free
system. Theorem 7 applied the ideas in earlier theorems to an arbitrary system, developing
a set of slack conditions for its deadlock-free operation. To test the method developed on a
larger variety of manufacturing systems, a computer program was developed. The
program was tested on a number of manufacturing systems. Results obtained were
consistent with theory.

On comparing the deadlock detection and avoidance method with current research,
we found that resource utilizations were higher than PME[3], SME[3], DAA[4] and
DACI5] methods. All deadlock states were correctly identified, when compared to the
DDP[1] which ignored some higher-order deadlocks. The deadlock avoidance method
developed constraint conditions on groups of operations. These would ensure deadlock-
free operation. No buffer resources were used to break deadlock and this was an

improvement over Cho’s method[2]. However, some non-deadlocked states were
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considered deadlocked. The computer program developed for deadlock analysis was
entirely offline. No computing resources were diverted for deadlock calculations while the

process was running.

7.2 FUTURE RESEARCH

This research provides a reliable base to which many improvements can be made.
Each of the suggested improvements are broadly in two categories: those in the first
category will enhance performance of the deadlock-free system, while the second will

extend the theory to a wider class of systems.

7.2.1 INCORPORATION OF PROCESS PLAN INFORMATION

So far in this research we have ignored all information on specific part flow. In the
Wait Relation Graph we were only concerned with the presence or absence of an arc
between two nodes. The specific process to which the operation represented belonged was
not needed. However, as we will shortly present, this information is useful in eliminating
some slack conditions which would otherwise restrict the system and reduce resource

utilizations.
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Consider once again a two-process, three resource system:
Process 1  Mill Robot Lathe

Process 2 Lathe Mill Robot

The Wait Relation Graph for this system is shown in Figure 7.1.

Figure 7.1. ' WRG for a two-process three-resource FMS.

The following slack conditions are needed for deadlock-free operation:

slack(O11, 022) >0

slack(021, 012) > 0

slack(O11, 012, 021, 022) > 1
Now let us closely examine the states of the system eliminated by these slack conditions.
This can be best done by listing all possible states row-wise in a table. In Table 7.1
operations are contained in columns with rows depicting states. Each non-zero cell in the
table represents an active operation in the corresponding state. The resource used in the
operation is entered. A remark is made for each state on whether this state is allowed in the
deadlock-free system. For every state disallowed, a remark is then made on whether this is

truly a deadlocked state.
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Number Oll1 | O12 | O13 | 021 022 | 023 | Remark ﬁcally
Deadlocked?
1 M 0 0 0 0 0 Yes
2 0 R 0 0 0 0 Yes
3 0 0 L 0 0 0 Yes
4 0 0 0 L 0 0 Yes
5 0 0 0 0 R 0 Yes
6 0 0 0 0 0 M Yes
7 M 0 0 L 0 0 No Yes
8 M 0 0 0 R 0 No Yes
9 0 R 0 L 0 0 No Yes
10 0 R 0 0 0 M Yes
11 0 0 L 0 R 0 Yes
12 0 0 L 0 0 M Yes
13 M R 0 0 0 0 No No
14 M R 0 L 0 0 No Yes
15 M R L 0 0 0 No No
16 0 R L 0 0 0 Yes
17 0 R L 0 0 M No No
18 0 0 0 L R 0 No No
19 M 0 0 L R 0 No Yes
20 0 0 0 L R M No No
21 0 0 0 0 R M Yes
22 0 0 L 0 R M No No
23 M 0 L 0 R 0 No Yes
24 0 R 0 L 0 M No Yes
Table 7.1 All Possible States in System oij@ureﬁ.

From Table 7.1 we can draw the following conclusions:

All deadlock states were eliminated.
Some non-deadlocked states were also eliminated.
The states allowed in the system were all non-deadlocked.

Of a total of 24 states, 11 were allowed.
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e Of a total of 13 disallowed states, 6 were erroneously eliminated

One way to reduce the number of erroneously eliminated states is to include
process flow information. For instance, in states 13, 15, 18 and 20 deadlock will not
occur, as all processed parts are in only one of the two processes. In states 17 and 22, two
parts are either in one of two processes, and a third part is in the last operation in a process.

These ideas could be developed and formalized in further research.

7.2.2 ELIMINATION OF ASSUMPTIONS
In Chapter 2 we made the following assumptions on the class of manufacturing

systems considered in this research:
e An operation uses just one resource.
e There is one unit of every resource in the system.

e There is no branching of operations in a process plan. Any operation is always

preceded/succeeded by a single operation.

e An operation can only process one part at any time.

Elimination of each of these assumptions could be a topic of further research. This will

extend the theory to a wider class of manufacturing systems.
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