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1. INTRODUCTION

1.1 Scheduling Importance

The ability to produce goods to meet demand is what allows manufacturers to

stay in business. If they cannot produce the required goods within a specified amount of

time the purchasers for those goods will not buy the goods from that manufacturer. From

the manufacturing viewpoint however, the goal is to produce the required goods with as

little cost incurred as possible. This leads the manufacturer to purchase as few resources

as possible to produce the required goods, and thus causes the usage of the resources to

become a very important issue. If the resources are used inefficiently, either more

resources will be required to produce the necessary goods, or the goods will not be

produced on time. For these reasons, several methods of scheduling products through

production facilities have been tried.

Some of the methods aimed at producing efficient schedules try to produce

optimal schedules, while others try to produce good schedules quickly. By creating

efficient schedules, a system's capacity can be increased and the time needed to produce

goods can be decreased. Since this increase in efficiency costs nothing in terms of

machinery or labor (other than the costs of finding the scheduling improvements), this is

an area of concentration which can greatly reduce manufacturing costs without the

amount of capital investment required to procure more production resources.
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1.2 Scheduling in Academia

The methods used by academia to produce schedules are often very different from

those used in the manufacturing environment. In academia, mathematical approaches

such as linear and nonlinear programming are often used to find "optimal" schedules.

The problems with mathematical approaches are that they require a total understanding

of the entire facility and its practices, and a great deal of time is required to formulate the

problems. Another approach used in academia is to either enumerate all possible

solutions for scheduling individual parts, or run a search of the possibilities for individual

routing of each part. While these methods may find optimal or nearly optimal schedules,

they too require immense investments of time and energy into the problem, often far too

much time to allow the schedules to be modified for different sets of inputs.

Operations Research (OR) is used extensively in the academic field, but is seldom

implemented in manufacturing. According to Ackoff (1979) "OR came to be identified

with the use ofmathematical models and algorithms rather than the ability to formulate

management problems, solve them, and implement and maintain their solutions in

turbulent environments.". It is worth noting that OR is not just limited to mathematical

models and algorithms, but it has come to be identified with these things. In many "OR"

departments a much wider range of techniques is seen to fall under the umbrella of what

is considered operations research. These other techniques include genetic algorithms,

tabu search, neural networks, and many other "non-mathematical" techniques

(Technically these methods all depend on mathematics to some degree, but they are not

necessarily based upon an explicit mathematical representation of the system being



4

analyzed.), as well as the application of heuristics to certain types of problems.

Another reason for the lack of application ofOR in industry is that a great deal of

simplification is needed to allow proper formulation of the problems. O'Grady and

Menon (1986) state that "The application of these approaches is dependant on sustaining

the simplifying assumptions which are invoked either to reduce problem complexity to

manageable proportions or to restructure the problem so as to make it compatible with

the format of a general approach, e.g., queuing theory, simulation or mathematical

programming." In many cases the magnitude of simplification required to reduce a

problem to some manageable form makes the results obtained through the use of such a

simplistic model useless. Again this is not to say that OR techniques cannot be used, but

rather that the types of mathematical approaches commonly associated with OR are not

necessarily the best methods for solving these problems.

It is also important to note that out of Operations Research has come the

dispatching rules which are most commonly used in industry. These dispatching rules,

often called heuristics, do not necessarily produce optimal results, but in many cases the

use of these rules allows quick "workable" solutions to be found. It is the selection of

these rules that is the focus of this thesis.

1.3 Scheduling in Industry

In the manufacturing environment, the emphasis is not so much on optimality as

it is on speed and effectiveness. In this setting the "optimum solution" may be made sub­

optimal by something as simple as a machine stopping or a worker showing up late for
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work. This along with the time and effort required to find such schedules causes the

emphasis in manufacturing to shift from optimal to just good-enough. Thus schedules in

manufacturing depend much more heavily on quick and simple approaches to

scheduling, such as using the scheduling rules that come with commercial simulation­

based scheduling packages, and much less on complex mathematical or analytical

approaches.

Discrete-event, simulation-based scheduling packages are widely used in

manufacturing plants around the world. These packages include a large number of

"canned" dispatching rules which will produce schedules for both simple and complex

production environments. Users can extend these rules by adding their own plant­

specific rules. It is important to note that these rules are guaranteed to produce only

feasible schedules. The notion ofoptimality (or near optimality) with respect to one or

more performance measures is typically not considered. In fact, the knowledge about

which rule(s) to use to achieve some desired performance measure(s) must be supplied

by the user or derived from extensive experimentation with the packages.

In many cases the scheduling rules chosen for implementation are not selected

based on any real data, but merely on personal biases, previous practice, and in some

cases rules are used because they are the defaults used by the simulation packages.

These methods of selection are not conducive to the creation of good schedules. Stecke

and Solberg (1981) reported that for one facility, good selections for scheduling rules,

along with other changes, led to an improvement of 25% over the previous rules which

had been selected intuitively. This type of dramatic improvement is possible in many
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situations, but there must be some method available to provide feedback as to which

rules will yield this type of improvement.

Another difficulty encountered with many simulation packages is that

performance measures are often not included in them. Many packages include statistical

analysis and graphical outputs, but the types of performance measures needed are not

readily available. Since the scheduling in a particular facility often is based on a

particular measure, this shortcoming is a very serious one. Any approach which attempts

to address these difficulties must provide a method for dealing with the differing

problems encountered with the use of commercial software packages.

1.4 General Hypothesis

The purpose of this thesis is to design a method through which neural networks

may be used to predict what dispatching rules should be used on a given system for a set

of orders into the system. This will be done by combining the techniques used for

scheduling in academia with the techniques used in manufacturing in order to provide a

quick and effective way to produce near-optimal choices of scheduling rules. This will

allow an industry to increase its efficiency, and thus produce more goods with fewer

resources, without the time-consuming problems involved in many scheduling

algorithms.

The specific problem approached in this thesis is the heterogeneous dispatching

rule problem, in a finite horizon job shop scheduling system, with empty start and finish

conditions. This limits the problem to very specific bounds, but once this research is
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complete, more work can be done to expand the results to other types of problems. The

problem is called a heterogeneous dispatching rule problem because it does not limit the

choice of dispatching rules to a single rule for use in all parts of the system. In many

manufacturing facilities, one dispatching rule is used on every machine, and for this

problem there is little difficulty in determining which rule to use because there are only a

very limited number of choices to be made. In the heterogeneous dispatching rule

problem, however, a different dispatching rule may be used for each machine, making

the problem of solving which dispatching rules to use much more complex and difficult

to solve. The benefit of using the heterogeneous approach is that a better solution can

often be found, allowing the system to operate much more efficiently. The problem is

considered a finite horizon problem due to the fact that a solution is found only for the

orders given at time zero, and no past or future orders will be considered. This

assumption is consistent with a job shop in which orders are received in the morning and

no new orders are obtained until all previous orders are completed. This assumption was

also made to simplify the problem, and allow the neural networks to learn easily. Once

this thesis is completed, further work may be done into the "infinite horizon" or "rolling­

horizon" problems in which new orders are considered as they are received.

In this thesis a new approach is used in which first rule selections are generated

using a genetic algorithm (GA), then a rule-set replacement technique is performed to

reduce the noise present in the GA results, and finally these generated rules are used to

train a neural network to create near optimal schedules. The GA is an optimal search

technique which generates candidate rule selections. Candidate rules are evaluated using
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a commercial, simulation-based scheduling package. The evaluation will predict how

well the system will perform if the resulting rules are implemented. This "generate­

evaluate" loop continues until the optimal rules for a given order are found, or some

threshold limit has been reached. By optimality what is meant is that no further

improvement in the performance measure(s) can be found. Threshold limit is a search

time (such as one second) or a maximum number of candidates (such as 100 sets of

rules) to evaluate. Once this part of the process is completed for a number of different

orders or inputs into the system, the orders and the resultant rule selections are modified

according to the rule-set replacement technique. This technique reads the rules selected

by the GA for one order, and tries these rules on other orders to see if the same rules can

be used successfully in the system for other orders. This allows the neural networks to

learn from the data better by reducing the random variation in the data. Once this step is

completed, each order will have four rules associated with it, one for each machine,

which produce good results when used in the simulation for that order. These order-rule

pairs will then be used to train the neural network with information from the orders as

the inputs into the network, and the four rules as outputs from the network. Once the

network has been trained, it will provide a set of rules to be used for a given order or set

of inputs, that will cause the performance measure(s) to be optimized (or nearly

optimized). A diagram ofthis procedure is shown in Figure 1.1.
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The problems encountered with traditional academic techniques are dealt with in

this methodology. No mathematical models ofa system are needed to utilize this method

due to the fact that it uses only a simulation to obtain knowledge about the facility

modeled. The problem will not need to be simplified beyond what is needed to create a

simulation model of the system environment. The selection of the performance measure

to be used is arbitrary, and while this project will be completed using make-span, this

performance measure may be easily changed in the genetic algorithm's objective

function, allowing the method to be executed using any performance measure desired.

The assumptions made in the development of this approach are that: the orders
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into the system. are created randomly, there is no work-in-process in the system at the

start of the simulation, and the performancecan be measured using make-span. The

assumptionthat orders are created randomlyallows the research to avoid data bias to the

results of the system. In an actual production facility the orders would not be created

randomly, but the procedure for creating the orders can easily be changed, or a set of past

orders could be used to train the network. In either case, creating the orders randomly

represents a more difficult learning task than either of the other methods, so this

assumption is considered valid. The assumptionofno work-in-process was made to

reduce the amount of programmingdifficulty; however, the methods used to train the

neural network are immune to these problems. Thus, if the system loading were done as

part of the order creation step, then the approach should still perform well; however, this

assumptionwill require further testing before it can be fully accepted. As was previously

stated, the use ofmake-span is arbitrary, and as long as the systemto be solved is of the

same type, this choice should not be important. Since most commercial scheduling!

simulation packages do not contain performance measures, the choice ofwhich one to

use is purely a programmingissue. Make-span was used in this project due to the

simplicityof programmingthis performancemeasure but due to the fact that only one

module obtains the performance measure, this module could easily be modified to obtain

any performance measure desired.

As was previouslymentioned, the solution methodology used for this problem

included the training of a neural network to produce a good set of dispatching rules to be

used, one for each machine, based on information from the orders into the system. A



11

genetic algorithm was developed to run a simulation in order to create the training data

to be used to train the neural network.

The specific system analyzed contains four machines, eight process plans, and

orders into the system of 20 parts. While this system is small, the assumption was made

that the size of the system was irrelevant and that by increasing the number of orders into

the system the approach used would still perform adequately.

1.5 Affected Fields: Case Studies

The types of facilities and problems which will be the most affected by this

research are those in which there is a wide variation of orders coming into a system. One

such facility is the AMP plant which is beginning production of SEC III and SEC 50 part

lines in the same facility. These parts are connectors which contain different types and

quantities of pins. This facility receives orders which vary significantly on a daily basis.

Currently this plant uses AutoSched for its scheduling operations but they are having

trouble determining which scheduling rules to use to make the facility perform at its

highest efficiency. AutoSched allows the orders to be read into the order file as soon as

they are received. After the orders have been entered, AutoSched uses the scheduling

rules which were set when the simulation was built to create a schedule for producing the

parts ordered for that day.

Since the Sec III and Sec 50 parts use different processes and machines for some

of the processes, yet use the same machines for other processes, there is a significant

problem with interactions among orders which contain large quantities of both parts. For
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this and other reasons, the same set of scheduling rules may not provide satisfactory

results with two different sets of orders. By training a neural network with order-rule

sets, the variations between orders could be recognized and correction made to

accommodate the changes as soon as the order was received in the morning. This

process could be automated so that before the simulation was run and a schedule

produced, the rules in the station file would be changed by the neural network. This

would allow the schedules to be produced on a daily basis without the need for extensive

work on the part of the person in charge of creating the schedule.

This procedure will provide a method by which many different types of problems

may be solved in academia. Many procedures utilize either genetic algorithms or neural

networks, very little has been done in combining the two in order to solve a problem.

This research will provide a step by step method by which problems which cannot

otherwise be solved quickly or accurately, may be solved in real-time. While the specific

target of this research is in scheduling rule selection, the wider task of schedule creation

without scheduling rules may also utilize this procedure, along with problems outside of

the area of scheduling.

1.6 Thesis Structure

This thesis is distributed as follows. The first chapter contains the introduction

and problem statement. The second chapter contains an overview of the literature that

relates to this work. Chapter three contains an explanation of Genetic Algorithms,

Neural Networks, and the Rule-Set Replacement technique to be used in the project.



Chapter four describes the simulation package used, the programs developed, and the

techniques used for the integration of these programs. Chapter five contains findings.

Chapter six contains the conclusions and recommendations.
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2. LITERATURE REVIEW

2.1 Dispatching Rules

Optimization in the production setting is often either too difficult and/or to time

consuming to obtain on a daily basis. This is because the difference in cost between a

"good" solution and the "optimal" solution may be so small that the cost of attaining the

optimal solution is greater than the savings in time or money achieved when the optimal

solution is implemented. Thus in many situations what is needed is some rule of thumb

or heuristic to provide a "good" workable solution with very low cost in time or money.

Some of the most common heuristics are FIFO (First In First Out), LIFO (Last In First

Out) and SPT (Shortest Processing Time). FIFO is often called the waiting line example

because when standing in line, at a supermarket for example, the first person to stand in

line is the first person to check out. LIFO is more like parts in a bin where the last part

put into the bin is on top and so is the first one to be used. SPT looks at the parts in the

queue and takes the one with the shortest processing time and does it first. These

heuristic rules are very easy to conceptualize and so are often used by managers and

others in charge of scheduling in production facilities. Unfortunately these rules, and

others with conceptual appeal are often not the best ones to choose. In fact there is not

any way to determine which scheduling rules are the best for a given situation, without

extensive testing. The following papers focus on some of the most common heuristics

and classify them on the basis of their effectiveness.
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Conway (1965) was one of the first to analyze a large number of scheduling

heuristics and evaluate their performance. He tested the heuristics on a system

containing nine machine groups, each with one machine. He measured the performance

of the different rules with various measures ofWIP inventory and job lateness. For WIP

Conway analyzed 16 rules and determined that the shortest imminent operation time

(SIO) rule outperformed the other rules tested. And while SID also performed well with

average job lateness, the smallest ratio of slack time to the number of remaining

operations (SLACKlRO) was the best due date based rule for due date related

performance measures.

Hershauer and Ebert (1975) also tested multiple heuristic rules. They tested three

due date rules against three processing time-based rules and seven combined rules. They

determined that the SIO rule minimized mean flow time, but that all of the due date

based rules performed better than SIO with respect to cost-per-order, and of the due date

based rules SLACKIRO performed the best.

McCartney and Hinds (1981) examined the priority rules FIFO, SIO, and SLACKIRO.

They tested these rules in an FMS system in which the rules were used to assign pieces to

seven machines through a transportation system. For average tardiness, the study

demonstrated that SLACKIRO performed the best when the due-dates for the pieces were

loose, but when the due-dates were tight the testing concluded that SIO performed the

best.
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Stecke and Solberg (1981) reported on an actual FMS system in which an experiment

was performed. The system examined consisted of a transportation system connecting

nine machines, an inspection station, and a control queuing area. The performance

measure utilized was the number of completed parts. The experiment tested sixteen

scheduling rules on this system and it was determined that the best rule for the system

was the SDT (smallest ratio of imminent operation time to the total processing time)

priority rule.

Blackstone et ale (1982) performed a survey of heuristic rules, and reported that SIO

was the best priority rule when one of the following conditions was met. The shop had

no control over due-dates. The shop had control over due dates and the due-dates were

tight. The shop could control the due-dates, and the due-dates were loose, but there was

a high degree of congestion in the shop.

Dar-EI and Wysk (1982)used ajob shop and two performance measures to test six

heuristic rules. The performance measures used were mean tardiness, and root mean

square (RMS) tardiness. When overall ranking was considered, SIO and WINQ (work in

next queue) were superior to the other four rules.

Elmaraghy (1982) tested four heuristic rules (SIO, FIFO, RANDOM, FRO) using a

system consisting of five machines, one load/unload station, and two material handling

devices. SIO yielded the highest production rate in terms of the total number of parts
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produced, and also in terms of the total processing time at the stations. SIG was also

better at reducing the average flow time than the other rules tested.

Ballakur and Steudel (1984) performed a review ofjob shop control systems. When

they compared several heuristic rules they found the following. The SIO rule produced

the best results when the due-dates were loose and machine utilization was moderate.

Most researchers found SLACK/RO to be consistently better than other due date based

rules. Combined rules such as SLACK and SIG seem to have the most potential for

further research.

Kim (1990) examined eight heuristic rules in ajob shop environment with multiple

identical jobs and alternative routings. These specific circumstances caused the problem

to impose precedence relationships between the operations, and caused MDD (modified

due date) to be the most effective of the rules studied.

Montazeri and Wassenhove (1990) tested fourteen heuristic rules in an FMS

environment and found that the rule selected as the best greatly depended on the

performance criteria utilized in the examination. When the criteria used was the average

part waiting time, the SMT (smallest value obtained by the product of the imminent

operation time and the total processing time), a rule not often tested, produced the

minimum value of the rules tested, but it also produced a high value for the variance of

part waiting. SPT had the overall lowest average buffer and shuttle utilization times. In
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general they found that the SPT based rules minimized average waiting times and the

LPT (longest total processing time) based rule maximized machine utilization.

2.2 Learning and Scheduling

Many approaches to scheduling have been tried. Some involve performing a search

of possible solutions using genetic algorithms, others use neural networks, and some use

combinations of these and other techniques. The following literature contains the work

which is the closest to the research done for this paper.

Minagawa and Yukinori (1992) used genetic algorithms combined with other

techniques, to solve a flow-shop scheduling problem. In the experiment they modeled a

system which had multiple resources at each stage of production and the purpose of the

genetic algorithm was to determine the best choice of resources at each point along

production.

Caskey (1993) attempted to apply genetic algorithms and neural networks to

manufacturing scheduling. He used a genetic algorithm to search for the best scheduling

rules to use based on three factors: factory flow type, due date tightness, and machine

utilization levels. The results from the genetic algorithm were then used to train the

neural network. Due to the fact that the simulator used required approximately five

minutes per simulation, only 150 runs were performed with the genetic algorithm. This

small number ofruns, along with the fact that binary strings were used in the GA, created
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several significant problems. First, the speed of the simulator prohibited him from

performing any design ofexperiments of the genetic algorithm. Second, the genetic

algorithm used a binary string for the chromosome which not only complicated the

programming of the GA, but also significantly inhibited the ability of his neural network

to learn from the resulting data. Third, the 150 runs did not provide a large enough data

sample to properly train the neural network. And fourth, different types of inputs were

not tried when training the neural network, so that the importance of different types of

inputs was not observed. In his conclusion he suggested that as many as 500 to 1000

training samples may be required to sufficiently train the neural network.

Rabelo, Yih, Jones, and Tsai (1993) used a system which integrated neural networks,

parallel monte-carlo simulation, genetic algorithms, and machine learning to solve a

flexible manufacturing system scheduling problem. In this case the output from the

Monte Carlo simulation was used to determine the best results, and then the genetic

algorithm was used to combine the two best solutions into a single best choice, at which

time another iteration was performed by the system.

Chiu (1994) proposed a learning based methodology that was successfully used for

dynamic scheduling in a distributed manufacturing system. He trained neural networks

(in a decision tree format) to schedule jobs through machines on a one-at-a-time basis.

Genetic algorithms were used in this technique to generate samples which were used to

train the neural networks. Significant improvements over static schedules were achieved
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by implementing this technique at the machine level, allowing the entire process to

proceed without a "master schedule" to follow.

Sittisathanchai (1994) used GA's to optimize ajob shop scheduling problem. When

implementing the problem he had to come up with a technique that would allow the

genetic algorithm to be unconstrained because a genetic algorithm works based on

"probabilistic transition rules, not deterministic." (Goldberg, 1989). The techniques used

to overcome this limitation were order-based crossover and order-based mutation; this

allowed the functions of the genetic algorithm to continue while not limiting its ability to

reproduce. In his research, Sittisathanchai used a chromosome in which the genes

represented jobs to be done, so that the entire chromosome represented a single schedule.

He tested the genetic algorithm scheme against several heuristic algorithms and found

the genetic algorithms to perform better on small, medium, and large problems, and he

even used a problem submitted from an actual factory in order to verify his results.

2.3 Summary and Justification

While work has been done in the areas of schedule creation using GAts and Neural

Networks, simulation has not been used to the extent possible, and nobody has attempted

to model experimentation in their procedures. One reason that simulation has not been

used to the extent it will be in this project is that the time to simulate has previously been

far too long. The work which most closely resembles this was done by Caskey in 1993.

The simulation used by Caskey required approximately five minutes to run each time.
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The simulation time for this project is only 0.9 seconds, allowing the large number of

data-sets needed to train a neural network to be created in a relatively short period of

time. This work will provide a method for experimentation which will not only use GA's

and Neural Networks, but will provide a model through which the two may be fully

integrated, varied, and tested to provide successful results.
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3. GENETIC ALGORITHMS, NEURAL NETWORKS, RULE SET REPLACEMENT

3.1 Genetic Algorithms

Genetic algorithms (GA's) provide a method for quickly finding near-optimal

solutions to problems in a small amount of time. Due to the way GA's work, they are

less likely than other methods to find only local optima, which makes them extremely

useful in solving many types of problems.

Genetic Algorithms were developed by John Holland at the University of Michigan

(Goldberg, 1989). Genetic algorithms are based on the theory of evolution. This theory

is that if a particular individual is more fit for its environment than its counterparts, it

will be more successful and reproduce more often than its less fit siblings. As time

progresses mutations will occur which mayor may not create more fit individuals than

those that the mutated ones came from. If this mutation does create a more fit individual

then its genes will slowly take over. This mutation operation keeps the GA from getting

"stuck" in a local maximum or minimum by randomly changing one of the genes so that

a different point in space is tried. This allows the entire realm of possibilities to be

examined for possible solutions in the search space, making GA's a very powerful tool.

Davis (1991) explains the basic principles of genetic algorithms. He explains that

the basic unit of a genetic algorithm is the gene and that a string of genes linked together

form a chromosome which represents a single solution to the problem being modeled.

The ability to design problem-specific genes and chromosomes allows genetic algorithms

to be applied to almost any problem, as long as the chromosome contains information

which represents a distinct solution to the problem being analyzed. He also discusses
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several methods for combining the chromosomes through crossover to produce offspring,

much as the genes of two parents combine to produce a child. This may be achieved

through several different methods depending on what aspects of the chromosome are

important. A crossover method may be based on position in the string, relative order in

the string, absolute order in the string, or some other criteria.

Yamamura et al. (1994) states that crossover is the most characteristic of all the

techniques utilized in genetic algorithms. In their paper they start with a two bit

chromosome (the minimum chromosome length possible in a genetic algorithm), and

utilizes the genetic algorithm to converge on the optimal point in a theoretical square,

where each corner of the square has a different fitness value. Next they chose a large

chromosome to analyze deference equations and again demonstrated that crossover

allowed the genetic algorithm to converge optimally on the solution.

The number of chromosomes, or sets of genes, in a particular GA is called the

population of that GA. Each chromosome represents a unique solution to the problem

being solved, thus the larger the population size used in the GA, the more solutions are

tried in a single generation. By having a large population the variation among the

chromosomes will also be higher and the GA will not tend to converge as quickly. In

problems where there are a significant number of local minima the population size must

be higher in order to keep the GA from converging until the global minimum is found.

The number ofgenerations for the GA is the number of times that the crossover,

mutation, and ranking operators are performed. These correspond roughly with the

number of generations in a biological system, where the children of one generation are
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considered the next generation. The number of actual solutions searched depends on

both the population and the number of generations, since the larger the population size,

the more solutions are tried in one generation, and the more generations are run the more

total solutions are tried.

In order for any genetic algorithm to work, there must be some sort of feedback

function which, when given a specific chromosome, returns some value corresponding to

the fitness of that chromosome. This fitness function may be anything which can yield a

result; this may be a person expressing personal bias concerning the solution proposed by

each chromosome, a mathematical function performing an operation on the chromosome,

or a simulation which uses the chromosome to set some system parameters needed for

the simulation to run. If possible, the feedback function needs to run quickly, since GA's

by definition need to be able to process many possible solutions quickly.

As an illustration of a genetic algorithm, suppose a GA was to be used to find the

values which optimized some unknown mathematical function which had four variables.

First a chromosome containing four genes would be created, one for each variable. Each

gene would then be initialized at a level within the boundaries for its respective variable,

say [0,1,2,3,4,5] for each variable. Once all the chromosomes in the population were

initialized, the chromosomes would be entered one at a time into the fitness function.

Assuming the fitness function was X, + X2 + X3 + X4, (this function would actually be

hidden from the GA, only the results ofa chromosome would be seen), the best

chromosomes would be those which had the highcat numbers in each of their genes. A

chromosome of [1,0,2,3] would receive a fitness value of six, while a chromosome of
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[3,5,4,2] would receive a value of 14.

Once all of the chromosomes were tested through the function, they would then be

ranked according to their respective fitness values, and then the crossover function would

be performed. Assuming that I-point crossover was specified, and that the population

size was four, the top two solutions would be mated.

If the total population was: [1,0,2,3]

The resulting fitnesses would be: 6

[3,5,4,4]

16

[4,3,5,1]

13

[0,5,3,1]

9

After Ranking: [3,5,4,4] [4,3,5,1] [0,5,3,1] [1,0,2,3]

If the crossover point selected was two, the top two chromosomes would be split

between the second and third genes and the genes to the right of the split would be

exchanged.

Parents:

Children:

[3,5,14,4]

[3,5,1 5,1]

[4,3,15,1]

[4,3,14,4]

After the crossover function was completed, the mutation operator would be

executed. For each gene of the children chromosomes, there would be a probability of

mutation, such as .01, or 1%. If a gene was selected for mutation, it would be replaced

by a random value from within its range. If for instance the third gene of the first child
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was selected, the five would be changed to another value, such as two.

The Population would now be: [3,5,4,4]

The resulting fitnesses would be: 16

[4,3,5,1]

13

[3,5,2,1]

11

[4,3,4,4]

15

After Ranking [3,5,4,4] [4,3,4,4] [4,3,5,1] [3,5,2,1]

This process would be repeated until the specified number of generations was

completed, or until some specified amount of time has passed. The genes used here were

the actual numbers used in the function, but this is not necessary. In some cases a gene

may be a letter, number, or even a description. The only requirement is that no matter

what the gene structure is, the chromosome represents a unique solution to the problem

being solved, and the method used to give a fitness value must be able to interpret the

solution that the chromosome represents.

The procedure used by genetic algorithms is shown in Figure 3.1.
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Figure 3.1

3.2 Neural Networks

For the past thirty-five years neural networks have been used to find relationships

among data. The key to their success is that neural networks learn directly from data.

Thus, no previous knowledge on the part of the user of the network is needed to make the

network perform well. This vastly increases the power of neural networks because in

many instances the relationships between the inputs and outputs are either totally or

partially unknown prior to the implementation of the neural networks.

An artificial neural network is a set of interconnected computational elements. Each

node is a computational element which receives data via input links, modifies the data



according to some function, and sends the data out through an output link(s). "-1-.-._

then modified in the link itself when the data is multiplied by a weight assigned to that

specific link. This modified data is then fed into another node where it is further

modified along with data from several other links. Through the interconnection of nodes

and links, the network is able to process massive amounts ofdata at once. By modifying

the weights for each link during the process of training, the network is able to find

relationships among data and thus it "learns" from the data.

A typical neural network consists of three types of layers, the input layer, the hidden

layer(s), and the output layer. Each of these layers is made up of nodes which perform

different functions and purposes. The nodes in the "input layer" take the inputs to the

system and send these inputs along several links to nodes in the hidden layer. These

nodes usually have a simple transfer function so that the outputs equal the inputs into the

node. The nodes in the hidden layer perform most of the operations on the data. There

may be from zero to many hidden layers in a network. This layer is called the "hidden"

layer because these nodes cannot be accessed directly from outside of the system, and

thus the data they process is not seen as input or output from the system. The final layer

is the output layer. This layer contains classification nodes which classify the data and

present it in an understandable manner as output from the system. See Figure 3.2.
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Just as genetic algorithms are based on a biological process, so are neural networks.

Artificial neural networks are based on the neurons in the brain. In the brain information

is fed into a node along "synapsis" or connections between nodes. The connections

which are fired more often in the brain change to allow these firings to occur more

easily. These processes correspond to the processes of a neural network. The nodes in a

neural network have functions which allow them to process data using simple

mathematical formulas. The nodes of the neural network are connected by weighted

connections which represent the synapsis of the brain. In the brain, a synapse fires easier

the more often it is fired, while the neural network changes the weights in the

connections to provide an increase or decrease in the magnitude of the messages sent

along the connections. In the brain the signals coming into a node are processed

according to a function which closely resembles the sigmoid function. Because of this,
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many neural networks also make use of the sigmoid function for the processing elements

(nodes) of the network.

There are several methods for training neural networks. Some of these methods, such

as backpropogation, change the weights of the interconnections between the nodes, while

other methods change both the weights and the architecture of the network itself Each

method has its own benefits and drawbacks, and different methods are obviously better

suited to different types of tasks.

The main strength ofneural networks is also the cause of their main weakness.

Neural networks can perform pattern recognition on incomplete or imperfect data, unlike

other techniques which require full and accurate definitions of the data. The way neural

networks do this is not totally understood, making a network seem like a black-box

which magically produces results. This allows neural networks to be used in situations

far beyond the capabilities of other methods, but it also creates a major weakness. Since

the reasoning behind why a neural network chooses a particular solution is unknown, the

result may be totally incorrect, but there is no way of knowing unless either the solution

is already known, or the solution produced by the network is implemented and the actual

results are checked. One way around this difficulty is to test the network with a

significant number of cases where the solution is already known in order to see how

reliable the network is at predicting results. This "known" data is referred to as a test set,

and by running a network on a test set, the ability of the network to accurately predict

results can be tested. Obviously the size of the test set is determined by the amount of

time needed to create the set, and the importance and/or consequences that will result
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from an inaccurate prediction on the part of the network.

Due to the fact that a network learns from the data used as inputs into the system, it is

very important to choose inputs which contain data critical to the decision process. If a

network were to be trained to decide if a person was male or female, the inputs should

not be the color of the person's eyes or the number of fingers he or she has, since this

data would contain no information concerning the person's gender. In many cases it is

not easy to determine which inputs will be the most effective without trying different

combinations and observing the results of these selections.

3.3 Rule Set Replacement Technique

When the data collected from the enumerations of the 10 orders was analyzed, it

became obvious that there were several sets of rules which would yield the same results

for a given order. This meant that along with learnable variations of rule-sets due to

different orders, there was also a significant amount of noise in the data. This noise is

present in the data due to the fact that the genetic algorithm will return a rule-set that

yields the best result, and if there are several rule-sets which produce the best result the

genetic algorithm will choose one at random. This randomness in the data creates noise

which makes the task of the neural network much more difficult.

In order to reduce the amount of noise present in the data, it was decided that a

procedure must be developed to at least reduce this noise, if not totally eliminate it. The

technique decided upon is one in which each of the first 100 order-rule set choices will

be tested with every rule-set chosen by the GA for these 100 orders. This means that the
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rule-set chosen by the GA for the first order, will be tried on each of the first 100 orders,

and the number of times it produces as good as or better results than the rule-set chosen

for each order by the GA, will be tallied.

Once the rule-sets for each order in the first 100 have been tried on all of the other 99

orders, the rule-set with the most successes will be used to replace the rule-sets in each of

the 1000 orders where the new rule-set performs as good as or better than the rule-set

chosen for the order by the GA. In this manner we hope to reduce the amount ofnoise in

the data and allow the neural network to learn from the data and not from the noise in the

data.
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4. RESEARCH AND SOFTWARE ENVIRONMENT

Due to the varied nature of the types of programs needed to complete this project,

different methods were used for these different parts. All of the software used was run

on a Pentium-75 MHz IBM-based personal computer. For the enumerations, Genetic

Algorithms, information extraction, and the Rule-Set Replacement tasks, C++ programs

were written so that these tasks could be executed quickly and efficiently. For the

simulation itself, AutoSched was used, running in ASAP mode. This section describes

the creation and integration of these different programs.

4.1 AutoSched

As previously stated, the simulation of the job-shop was created using AutoSched.

This package uses data from different text files in order to run the simulation. Much of

the information in these text files can be modified without entering the program itself,

and the simulation can be re-executed without recompilation the simulation. Once the

simulation executes, AutoSched creates an output file which may be read from outside

the simulator.

The files used by the simulator to execute the simulation include: an order file,

station file, product file, routing file, and others. The order file contains the data

regarding the parts ordered, the arrival and due dates of the parts ordered, and the

quantity of each part ordered. The station file contains data concerning each of the

machines including the machine type and the rules used by each machine. The product

file includes information for each part type including the part name and the name of the
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routing for each part. The routing file contains a routing for each part specified. This

routing includes the order of the processes for the parts and the amount of time spent at

each machine for processing.

Many output files may be specified when using AutoSched, and many different

measurements may be taken. For this project, the only output file utilized was the file

lotrep, or lot report file. This file contained the completion dates/times for each of the

lots in the order file, in the order in which the lots were completed.

4.2 Module Creation

Once the simulation itself was completed, modules were created to control each of

the functions required to run the simulation from within another program. These

procedures were done in modules so that they could be used over-and-over in the

different programs without the need to rework the process each time.

The first module created was one to automatically create a new order file randomly.

Each order created contains 20 lots, and each lot is an order for one of the 8 parts at a

quantity of 10 parts. This process was done by accessing the 'order. txt' file and

modifying the data within the file using C++.

The second module created accesses the station file and changes the scheduling rules

for each machine. AutoSched contains 16 different scheduling rules, and each of these

rules was input into an array. When the module is called, it receives an array of four

integers which represent the rules required for the next run. The corresponding rules

from the rule-array are then used to replace the previous rules in the station file.
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The last two modules created run the simulation and get the results. The module to

run the simulation automatically moves to the correct directory and runs the simulation

through a system command. The final module accesses the output file lotrep, reads the

data in it, converts the data into minutes for the make-span, and returns this time as a

float to the referencing function.

4.3 Genetic Algorithm Development

In order to find optimal, or near optimal solutions to the system quickly, a genetic

algorithm was used to perform a search of the space of all possible rule selections given a

set of inputs. Since there were sixteen rules in the simulation package used (there were

actually many more but the rest were just special case variations on the 16 standard

rules), and four machines, a chromosome containing four genes was chosen. This

allowed each gene to represent the scheduling rule for its respective machine. The genes

could each contain 1 number from 0 to 15 which represented the actual rule used. The

rules that were available for testing were:

- CR (Critical Ratio)

- EDD (Earliest Due Date)

- FIFO (First In First Out)

- HP (Highest Priority)

- HV (Highest Value)

- HXT (Highest XTheoretical)

- LBA (Least Balance Ahead)
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- LLA (Least Lots Ahead)

- LP (Lowest Priority)

- LPA (Least Pieces Ahead)

- LPR (Least Percentage of processing time Remaining)

- LTR (Least processing Time Remaining)

- LV (Lowest Value)

- LXT (Lowest XTheoretical)

- SPT (Shortest Processing Time)

- SSU (Same SetUp)

The genetic algorithm first creates a population of chromosomes by assigning a

random integer from 0 to 15 to each gene of each chromosome in the population. The

number in a specific gene represents which scheduling rule of the 16 is to be used by the

respective machine in the simulation. Each chromosome is then used to set the rules in

the file which stores the simulation data on which rules are used by which machines, and

the simulation is run. Once the run is complete, the performance criteria of the

simulation is retrieved by the program and assigned to the chromosome containing that

specific set of rules. The process is then repeated for every chromosome in the set. Once

all of the chromosomes have been used to run the simulation, they are ranked according

to their "fitness value" or performance criteria measure.

Once the chromosomes are ranked according to how well they performed in the

simulation, the top half of the chromosomes are mated among each other and the
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offspring replace the lower half of the chromosomes. The crossover operators tested

were 1 and 2-point crossover. In this type ofcrossover, the mating genes are split in

identical locations along the chromosomes of the two genes, and the gene sequences to

the right of (or between) the split(s) are traded. This process yields two offspring per

crossover, and thus when the first half of the chromosomes are mated (after they have

been ordered according to rank), the top half of the chromosomes are mated. This means

that the crossover function occurs between the 1->2, 3->4, ... n/2-1->n/2 chromosomes.

The choice of whether to use 1 or 2-point crossover will be decided through the design of

experiments for the GA.

The mutation operators used in this genetic algorithm will be tested originally at rates

of .01, .05, .1, and .5. This operation is only performed on the second half of the

population since it is desirable to retain the top half of the chromosomes and not risk

"throwing away" a good set of genes on mutation. In the second half of the population

however, if a gene is selected for mutation the number in that gene is replaced with a

random number from 0 to 15. In this manner a mutation will randomly change the

scheduling rule used in that specific gene to some other rule. Once mutation is complete,

the new set of chromosomes continues to cycle through testing, ranking, crossover, and

mutation until either the maximum number of generations (iterations) is met or some

predefined performance level is achieved. The choice of the final mutation rate will

depend on the results of the design of experiments for the GA.

The population used in the GA will be tested at levels of 12, 25, and 50. This

population is the total number of chromosomes kept for testing. Once the set of
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chromosomes have been ranked according to their fitness, the top half of the

chromosomes will be mated with each other via the crossover operator discussed above,

and the resulting children (the lower half of the population), will then be tested and the

entire population will again be ranked according to the fitness. The population size will

be finalized based on the results of the design of experiments for the GA.

The number of generations for the GA will be tested at levels of 50, 100, and 150.

The number of generations is the number of times the crossover, mutation, and ranking

operators will be performed in the GA. The final population size will also be determined

from the results of the design ofexperiments for the genetic algorithm.

GA Design ofExperiments

Factors
Mutation Rate
Population
Generations
Crossover Points

Levels
.01 t .05, .1, .5
12,25,50
50,100,150
1, 2

Total Number ofRuns = 72

Figure 4.1
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4.4 Rule Set Replacement Development

After the GA has found solutions for 1000 orders, the rule-set replacement technique

described in chapter 3 will be performed on the data to determine which rules may be

replaced by which other rules to help reduce the noise present in the data. This will be

done by utilizing the rule-change and run-simulation modules from within a C++

program.

4.5 Neural Network Development

Once the data has been obtained and modified via the previous methods, data will be

extracted from the order files which will be used to train the networks. The data that will

be used to train the network will be created by integrating the data in the order files with

the data from the process steps used to create the simulation. The different sets of data

which will be used to train the networks will include:

N*P

M

NM

LLT..
. O' 0 lJ1= IJ =

INPUT1=--
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Where.Tj, == process time of order I on machine m

L == number of orders

M == total number ofmachines

N == total number of orders

P == number oftasks to be performed

i=O

M

N (DueDate[i] - ~ Tij)
~ j=O

M

~T..
. 0 lJJ=

P
INPU12=-------

M

(DueDate[i] - ~ Tij)
INPU13=STDDEV( j=O )

M

~T ..
. 0 1JJ=
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N

~T..
i=1 lJ

M

~-----
·0 NJ= •
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lJ
INPUT4= i=1

M

N

~T..
i=1 lJ

N

~T..
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INPUT6.=--
} N M

~~T..
. o· 0 lJ1= 1)=

NOTE: Input 6 is machine specific (thus the subscript).
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4.6 Testing Procedure

Once each of the different inputs has been used to train their respective networks, the

networks will be tested to see which input configuration is the most successful at

predicting good rule choices. The method for testing the network will not be the

traditional technique, where the network is run on an order file for which the solution is

known. While this would work for most situations, it will not work in this one for the

same reason that the rule-set replacement technique was used on the data before training.

Since there is no unique solution which produces the best result in the data, the result of

the network may work just as well as the solution found by the genetic algorithm.

Because of this the neural network will not be tested on its ability to regurgitate rules,

it will be tested on its ability to present rule choices which will perform well in the

simulation. When the GA is used to find good rule choices for each order, it will record

the solution found and the value of the performance measure tested (in this case the

Make-Span for the rule-set chosen). In the testing phase of the project the neural

network will be given inputs from an order file for which a good value of the

performance measure is known. The rule-set which the neural network produces will

then be used to run the simulation and the resulting value of the performance measure

will be checked against the value found to be "good" by the GA. For each instance in the

test set when the rule-set produced by the neural network results in a value as good as or

better than the value found by the GA the ranking for that particular network will be

incremented. Once each of the networks has been tested on the test sets in this manner,

the network which has the highest number of successes will be selected as the best



network and the inputs used to train it will be determined to be the best.
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5. EXPERIMENTATION- AND RESULTS

5.1 Order Generation

The first step in the experiment was to create the simulation of the system to be used

for experimentation. This system consisted of the four machines previously defined with

the eight process plans representing eight different parts to be produced. The order file

used by the simulation was created using a C++ program which randomly created 20 lots

in the order file. Each lot consisted of an order of 10 pieces of a specified part. Thus, an

entire order contained 20X10 or 200 parts. Once this step was completed, the output of

the simulation was set to the finish time of each of the lots in the order file. In this way

the response function module could enter the output file and retrieve the largest time,

which represented the makespan of the lots produced. A sample order is shown in Figure

5.1. A sample output file is shown in Figure 5.2.



Sample Order File

ORDER LOT PART PIECES START DUE TRACE
1 1 P2 10 1/1/96 8:0:0 1/1/96 11:38:0 3
2 2 PI 10 1/1/96 8:0:0 1/1/96 9:57:0 3
3 3 P2 10 1/1/96 8:0:0 1/1/96 12:6:0 3
4 4 P5 10 1/1/96 8:0:0 1/1/96 10:25:0 3
5 5 P5 10 1/1/96 8:0:0 1/1/96 10:33:0 3
6 6 P4 10 1/1/96 8:0:0 1/1/96 11:19:0 3
7 7 P7 10 1/1/96 8:0:0 1/1/96 10:40:0 3
8 8 P4 10 1/1/96 8:0:0 1/1/96 11:8:0 3
9 9 P5 10 1/1/96 8:0:0 1/1/96 10:54:0 3
10 10 P4 10 1/1/96 8:0:0 1/1/96 11:16:0 3
11 11 P4 10 1/1/96 8:0:0 1/1/96 11:20:0 3
12 12 P3 10 1/1/96 8:0:0 1/1/96 12:24:0 3
13 13 P6 10 1/1/96 8:0:0 1/1/96 12:35:0 3
14 14 P6 10 1/1/96 8:0:0 1/1/96 11:57:0 3
15 15 P8 10 1/1/96 8:0:0 1/1/96 13:15:0 3
16 16 P8 10 1/1/96 8:0:0 1/1/96 13:8:0 3
17 17 P2 10 1/1/96 8:0:0 1/1/96 11:42:0 3
18 18 P2 10 1/1/96 8:0:0 1/1/96 11:40:0 3
19 19 P3 10 1/1/96 8:0:0 1/1/96 12:55:0 3
20 20 P5 10 1/1/96 8:0:0 1/1/96 10:42:0 3

Figure 5.1
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Sample Output File

-Report time: 01/01/96 23:20:00.
00:15:20:00
00:21:20:00
01:00:40:00
01:03:50:00
01:05:10:00
01:06:40:00
01:07:10:00
01:08:00:00
01:08:30:00
01:09:20:00
01:10:30:00
01:12:00:00
01:14:40:00
01:15:10:00
01: 18:30:00
01:19:50:00
01:21:50:00
01:23:10:00
02:05:10:00
02:05:10:00

5.2 Enumeration Results

Once the simulation was completed, enumerations of ten order files were performed.

The enumerations consisted of first setting the orders in the order file, and then running

every combination of rules on the four machines. Since each simulation call required

approximately 0.9 seconds, this procedure took about 18 hours per enumeration to

complete. These enumerations were performed so that the GA and the neural networks
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could be tested to see whether the solutions obtained were actually the best possible or

not. Each enumeration consisted of 65536 rule-sets, where each rule-set is a unique set

of four dispatching rules, one for each machine. Each of the enumeration files was then

analyzed in order to determine which of the enumerations would be the hardest for a GA

to solve.

After each of the ten enumerations were completed, the data was sorted into bins of

100 (ie 2000-2100 min., 2100-2200 min., etc.) for each enumeration and this data was

graphed. The extra sorting step was required due to the fact that the file was otherwise

too large to be read by any of the commercial graphing packages available. The resulting

graphs are in the appendix.

With the graphs of the ten enumerations completed, the sixth order file was

determined, by visual inspection, to be the best enumeration to use to test the genetic

algorithm. The sixth enumeration was chosen due to the fact that it contained the

smallest set of solutions which yielded the optimum result of the shortest make-span.

The graph of that enumeration is shown in Figure 5.3. AIIIO enumeration graphs are

shown in the Appendix.
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5.3 Genetic Algorithms Results

The genetic algorithm was tested by running a design of experiments (DOE) with the

GA, using enumeration number six as the testing problem. This enumeration was chosen

because it had the smallest number of "optimal" solutions. The independent variables of

the GA (population size, number ofgenerations, number ofcrossover points, and

mutation rate) were set to the different levels defined in the DOE, and the dependant

variable (makespan) was used to determine which levels of the independent variables

produced the best results. When the design ofexperiments was performed on the

Genetic Algorithm using enumeration six, the only significant source of variation found

was between a mutation rate of .01 and .1, with .01 showing the best results. This led to

further experimentation in which the mutation rate was changed in .01 increments from

.01 to .15 with all other variable held at the lowest level. This process was repeated four

times to reduce the random noise due to the genetic algorithm, and the results showed .01
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and .12 to be the best choices. Of these two .12 was selected because it reflected a better

rate for mutation to actually be performed, a factor which has repeatedly been stressed as

necessary for genetic algorithms to work effectively in varied environments.

With this step completed the GA was then used to find solutions for 1000 orders.

This process involved randomly creating the lots in the order file used by the simulation,

and then running the GA on the simulation. The GA program stored the order file along

with the best result obtained and the set of four rules used to create the best result. This

process required approximately 4 days ofcomputing time to complete.

5.4 Rule Set Replacement Results

Once the GA step was complete, the resulting rule choices were tested and modified

using the Rule-Set Replacement technique described in Chapter 4. This briefly consists

of trying each set of rules selected for the first 100 orders, on all of the other first 100

orders. The set of four rules which produces a result which is 'just as good" as the result

obtained using the rules selected by the GA in the most cases, was used to replace the

rules for every order in which these "just as good" results are achieved. In this manner

the orders for which the choice of rules is not very critical will all use the same set of

rules, while the orders for which the rule selection is more critical will keep their original

rules. This allowed the neural network to learn variations among the more critical

orders, while not being hindered by as much noise from the non-critical differences.
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5.5 Neural Networks Results

Two approaches were tried for the neural network. The first approach was to use one

very large network which would predict the rules for all the machines at the same time.

The reason this large network was used was in case there was information on the

interactions among the four machines that was important in determining which

dispatching rules should be used for a given order. The second approach involved using

four separate networks for the prediction. In this approach each network was assigned to

a specific machine and was used only to predict the rule for that machine. The inputs for

this network consist ofeach of the inputs described in chapter 4 including all four of the

machine specific inputs described.

The outputs from both networks were in a decision tree format. This means that

rather than training the network to give an "average" rule as output, each rule receives a

certain amount ofvalue. This allows giving a fitness of each rule to be used on the

problem rather than try to select an "average" rule (The "averaging" phenomenon occurs

when only one output node is present, in which case if certain factors indicated using rule

1, and other factors indicated rule 15, then rule 8 would be selected rather than either of

the rules desired.). For each machine modeled, this type of architecture leads to sixteen

output nodes.

The first approach utilized a relatively large network. This network contained 9 input

nodes, each of which corresponded to order-specific data, and 4 of which corresponded

to data on the four machines separately. The number of hidden layers selected was 2,

with 16 nodes in each layer. The number of layers and the number of nodes used was
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determined by searching across the possibilities until a suitable solution was found.

Since the outputs were in a tree format, and all four machine rules were represented in

the output of this network, there were 64 output nodes in this network.

Each of the networks used in the second approach contained 6 input nodes and 16

output nodes. The number and size of the hidden layers were varied until a network

containing 2 hidden layers, with 8 nodes in each layer, were selected as providing the

best results. This size allowed for several degrees of freedom while not producing a

network which was too large to be able to learn well.

5.6 Neural Networks Testing

The data obtained from the 1000 GA runs was separated as follows. The first 500

were used to train/test the neural network. Of this first 500, 375 were used to train the

network, and the other 125 were used to test the neural network. The other 500

order/rule pairs were broken into sets of 100. Each set of 100 was used to further test the

generalization capabilities of the networks.

The actual procedure for testing the neural networks consisted of using the network

to predict a good set of rules for the order, then running the selected rules in the

simulation using the order file for which the rules were selected. The simulation then

provides the value of the performance measure when the selected rules are implemented

on the system with the given order. Once this was done, the resulting value for the

performance measure was tested against the performance measure found by the GA for

the order used. If the network produced a set of rules which performed as good as or



better than the rules selected by the GA, then the network was counted successful for that

order. Once this was completed for each order in the test set for each network trained,

the network type which predicted a good solution in the most cases was selected as the

best network.

5.7 Results

When the networks were tested to evaluate their effectiveness, both types performed

at nearly the same level. The success rate of the network evaluated is the percentage of

cases in which the solution output by the neural network performs at least as good as the

solution found by the genetic algorithm, in terms of the specific performance measure

chosen, when the genetic algorithm was executed on the specific set of orders into the

proposed system. The data generated by the genetic algorithm was separated into several

groups for training and testing. The first 500 data points were separated into two

groups, one consisting of375 points (75% of the first 500) and 125 (25% of the first

500). This 75-25% setup was determined to produce the best ratio for training the

network. While training the network, the 375 data points were used to train the network

and the 125 data points were used during the training session to ensure that the network

was not "learning" the noise present in the first 375 data points. This was achieved using

a "test-for-best" setup in which every 1000 iterations of the network was tested on the

125 data points to see if any real improvements were being achieved.

The second five hundred data sets were separated into five groups. These five groups

of 100 points were used to test the actual capabilities of the network to perform the
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prediction task adequately. When evaluated in reference to these criteria, both of the

networks performed at approximately the same level of accuracy.

The configuration consisting ofa separate network for each machine in the system

provided rule selections which performed as good as those determined by the genetic

algorithm in 55.6 percent of the test cases. Evaluating each of the test groups of 100 as a

"batch" gave a standard deviation of 18.3 across the five groups. When a 95 percent

confidence interval was computed using these values, a half width of 5.31 was found

yielding a confidence interval of [50.29, 60.91]. These values can be considered as

percentages or actual values since the test groups were of size 100.

The configuration consisting of one large network for the entire system yielded a

slightly higher average of 56.6 percent. It also had a slightly higher standard deviation of

4.83. Due to the higher standard deviation the half width of the 95 percent confidence

interval was 5.99. This yielded a confidence interval of[50.61, 62.59].

From this data no inference can be made concerning which configuration is better at

determining scheduling rules, because the confidence intervals on each of the

configurations overlap. This means that with this level of information the true mean

success rates for the two configurations may be the same, or either one's true mean

success rate may be greater than or less than the other's.

When the two types of networks were executed on the enumerated data files, the

following results were obtained. These results were found by comparing the makespan

value produced by the simulation when the four rules selected by the respective networks

were implemented, with the results obtained when all possible rule combinations were
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tested on the ten cases. With the single network configuration the neural network found

the optimal solution in four of the ten cases. In the other six cases the network provided

a set of rules that produced the second-best results in the enumeration of all possible sets.

The configuration containing four separate networks produced optimal rule choices in

three of the ten test cases, and next to optimal results in the remaining seven cases.

5.8 Order Size Testing

Once this testing was completed, further testing of the small order size assumption

was performed. In the process of performing the prescribed methodology for solving the

problem, enumerations of all possible assignments of dispatching rules to machines were

completed for ten different orders. For each of these enumerations, an order file was

created containing 20 parts, and then a C++ program was written to run the simulation

using the order file with every possible rule combination. Since the simulation package

used contained 16 different dispatching rules, this meant that the simulation had to be

called 65,536 times, or 416 times. After each simulation run, the resulting makespan time

for that order and specific choice of rules was recorded in a file.

These enumerations were initially run to allow the genetic algorithm and neural

networks to be tested on problems with known answers. By having a certain number of

solutions with known results, the effectiveness of the final results could be validated.

When the enumerations were completed and analyzed, however, certain assumptions

which were made in the formulation of the solution were brought into question. The

enumeration files contained a limited number of unique solutions for many of the order
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files used. This means that while there were 65,536 times recorded in the enumeration

file, thousands of them were the exact same number. Originally the data in the

enumeration files was grouped into "bins" of size 100, and the number of times which

fell into each of these bins were graphed to show the resulting patterns. The number of

unique solutions found using this technique varied from 2 to 6, and the question was

raised as to whether this limited number of results was due in part to the small order

used.

To determine whether the order size and number of solutions gained by varying the

dispatching rules were linked, it was decided that enumerations of the system utilizing

orders containing more parts would be performed, and the resulting data again analyzed.

The order sizes selected for further testing were 40 parts, 60 parts, and 80 parts per order,

along with one of the original enumerations on the system with an order containing 20

parts.

In order to run the simulation using larger order sizes, the length of run of the

simulation was increased to accommodate the longer running times. Next the order

creation program was modified to create three different order files: one containing 40

parts, one containing 60 parts, and one containing 80 parts. These files were placed into

the simulation one at a time and an enumeration ofall possible combinations of rules on

the four machines was run for each file. The results of each of the rule combinations for

each order size were placed into three different files. Once these enumerations were

completed, a program was written to read the file created by the enumeration and

produce a file which contained each unique time in the enumeration file along with the
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number of occurrences of that specific time in the enumeration file. This program was

then executed on the data files created by the enumeration program. In order to maintain

continuity in the analyzation of the data, this "sorting" program was also run on one of

the original ten data files containing data from the enumeration ofan order file which

contained only 20 parts.

Once the enumerations of all possible dispatching rule choices were completed for

orders of40, 60, and 80 parts per order, the data was analyzed using the program

described above. The resulting data contains specific makespan values, along with the

number of times these times occurred in the course of the enumeration. This data was

then sorted by time and the following are these sorted values. Note that the number of

distinct solutions varies with order sizes.

Table 5.1 Results of Order Size Tests

Results of Enumeration for20 Parts in the Order File
MakeSpan (minutes) Frequencyof Occurrence

2880 1
2898 1246
3130 5765
3140 99
3160 30415
3180 4554
3190 18
3200 668
3220 733
3240 1082
3260 212
3280 565
3300 18290
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Results of Enumeration for 40 Parts in the Order File
MakeSpan (minutes) Frequency of Occurrence

5778 19807
6130 4432
6140 28
6160 35003
6170 136
6180 3949
6190 16
6200 1076
6220 1087
6360 2

Results of Enumeration for 60 Parts in the Order File
MakeSpan (minutes) Frequency of Occurrence

9330 4962
9340 25
9360 47086
9380 225
9400 64
9420 917
9440 66
9460 4740
9480 706
9500 6669
9520 35
9560 41

Results of Enumeration for 80 Parts in the Order File
MakeSpan (minutes) Frequency of Occurrence

3859 1
4819 65533

26003 2

The enumeration on the order file containing 20 parts resulted in 15 distinct

makespan times. The enumeration on the file containing 40 parts resulted in 10 distinct



makespan values. The enumeration on the order containing 60 parts yielded 12 unique

makespan values. Finally the enumeration on the order of 80 parts showed only 3

different makespan values. Therefore the order size did not appear to influence the

complexity of results obtained.

The results are discussed in Chapter 6.

58
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6. CONCLUSIONSIR.ECOMMENDATIONS

The work in this thesis has provided a great deal of insight into the problems

associated with using GA's and Neural Networks to select dispatching rules. In this

section the results of the project are reviewed, and possibilities for further refinement,

improvement, and adaptation into other areas are presented in order to allow this work to

be extended and applied to a broader range of problems.

6.1 Conclusions

This thesis applied genetic algorithms and artificial neural networks to the problem

of scheduling parts through a job shop system. The approach first used genetic

algorithms to select the best dispatching rules to use for different combinations of orders

into the system. Second a noise reduction technique was used to reduce the randomness

present in the data. Finally a portion of the data was used to train two neural networks.

Once this procedure was completed the neural network was tested using the rest of the

data. The following conclusions were drawn from information obtained during the

different steps.

The genetic algorithm allowed results to be obtained quickly, and provided the

necessary data very quickly. When the Rule Set Replacement Technique was executed

however, there were a few cases (5 to 10 per hundred) in which a set of rules was found

which produced a result better than the one found by the genetic algorithm. This implies

that the GA was not finding the optimal solution in these cases, so in further research a

more extensive designing of the genetic algorithm is suggested in which the GA is
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executed on two or three problems with known solutions in order to prove optimality.

While the neural networks had some difficulty in learning to predict scheduling rule

choices, the rule selection technique used allowed the networks to learn a great deal from

the inputs given. This technique removed a significant amount ofnoise by consolidating

many of the solutions into one solution. This allowed the network to learn better from

the data presented. However, it also tended to make the network biased toward the

solution found by the Rule Set Replacement Technique. Methods for

reducing/eliminating this difficulty are discussed in the recommendations section.

The neural networks predicted equally well on the problem whether in a single or

multiple network configuration. This result may have been influenced to a small degree

by the problem resulting from the Rule Set Replacement Technique mentioned above,

but in any case this implies that further research should concentrate more on inputs

selected than on the specific architecture used, unless of course other factors lend

themselves to this choice as is mentioned in the recommendations section.

The testing to determine whether the small order size affected the simplicity of the

results obtained, was performed as described in Chapter five. The results indicate that

the size of the order file has little influence on the number of makespan times recorded;

thus the results obtained from this procedure can be applied to larger orders than those

used for this specific system. It is important to note that while only 3 distinct makespan

values were found when using the order containing 80 parts, this does not necessarily

indicate that larger orders are more likely to have a smaller number of times. In fact

when enumerations were completed on ten different orders which contained 20 parts
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each, the number of distinct values varied from 2 to 15. Thus while there is evidence to

support the conclusion that there is a large amount ofvariation among individual order

sizes, no conclusions should be drawn about any linking of order size and number of

unique resulting times.

What this means in terms of this thesis is that the results of this thesis can be applied

to problems containing larger order sizes than were used in the thesis itself. This

generalization capability greatly increases the effectiveness of this work and will permit

further work to be done in the way of applying this work to problems of other sizes and

types.

6.2 Recommendations

This project has provided a good deal of information which will allow further

research/implementation to be successfully completed. Several recommendations are

made in this section and while they may not provide perfect solutions, they should allow

more accurate results to be obtained in this and a variety of problems.

In order to further assist the networks in learning from the supplied data, the Rule Set

Replacement Technique should be extended to perform second and third iterations. In

order to do this, the data would need to first be obtained using a genetic algorithm or

other information generation technique. Next the rule selections could be tried on the

other cases as described earlier and the cases in which the result was within an

acceptable error value €, then that set of rules would be used to replace the original set.

This error value E would allow selections which were not quite as good, but within a



close enough range as to be acceptable, to be chosen in order to reduce the amount of

learning necessary for the neural network to successfully solve the problem. Next the

remaining data points would be tested again among each other and the set of rules which

produced acceptable values in the most cases would be used to replace the rules in those

cases. This procedure could continue on the remaining populations until there were no

more cases left in the unmodified set of points. This procedure is shown in the following

figure. This procedure would be time consuming but should further allow the noise in a

given problem to be reduced, thus allowing the neural network to learn much more easily

and successfully.

Expanded Rule Set Replacement Technique

I GENERATE DATA

2 TEST RULE SETS ON ALL OTHER CASES

3 CHOOSE SET OF RULES wmcn PRODUCES
ACCEPTABLE RESULTS IN THE MOST CASES

4 REPLACE SET OF RULES IN ACCEPTABLE CASES

5 PERFORM STEPS 3,4,5 ON UNCHANGED CASES UNTIL
NO SET OF RULES IN THE UNCHANGED SET PRODUCES
ACCEPTABLE RESULIS IN ANY OF THE OTHER UNCHANGED
CASES

Figure 6.1



63

Another possibility which would allow the problem to be implemented into industry

more effectively would be to add on a real-time training module which would begin

training the network as soon as data was reviewed, and would continuously improve

itselfby predicting and learning from these predictions on a day-to-day basis. In an

actual manufacturing environment this would allow the network to learn over time and

continuously improve its predictive capabilities using the actual results ofusing its

selections to train itself

In order to allow the research to be implemented into other types of facilities, further

research is needed in rolling horizon problems, perhaps using some type of internal

feedback network such as those used to learn pieces ofmusic. By using this type of

network in a continuously changing environment, the network may be able to learn to

include possible future inputs in its decision making process. This will require

significantly more time to perform however, due to the fact that the procedure for

obtaining training data will be much more difficult.

The system described did not include prior loading of the machines in order to keep

the programming to a minimum. This could also be done using a random assignment or

some other technique to load the system before running a set of orders through the

'system. If this is done, information concerning these loadings must be included in some

form as inputs into the system. 'This will allow the network to include this information in

its selection of dispatching rules.

In problems containing a greater number of machines than this system contained, one

single network may become too large to train effectively. In a situation where several
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computers may be run in parallel, the multiple network configuration would allow the

different networks to be trained at the same time. In the case of a single computer, the

larger single-network configuration may work better due to the simplicity in setting it up,

and the fact that it would take less time to train one large network than several

marginally smaller ones.

Performance measures other than makespan should be simple to use given the

procedure used in this thesis. The difficulty will come in implementing any performance

measure in a rolling horizon, continuous problem. For these problems make-span is

probably not the best choice since it works the best in a fixed horizon, empty start and

finish, problem. So long as the same performance measure is used throughout however,

the choice of performance measure should have little bearing on the effectiveness of the

network.

In order to apply this technique to the rolling horizon problem, certain

modifications would be necessary. These modifications would be needed

because in the rolling horizon problem, a new set of rules would need to be

used each time the orders into the system changed. One possibility would be

to generate orders with time lags placed in the order file so that all of the

orders do not arrive at the same time. In this manner the same inputs could

be used to train the network, perhaps with additional ones to compensate for

the time differences. If this approach were to be used, the network would

need to be executed every time a new order was placed into the system, thus
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allowing the dispatching rules to change with the orders.

In order to fully implement his type of solution, machine loading prior to

system startup would need to be considered. Ifparts were allowed to be

partially completed before the system started, then the simulation would

reflect the non-terminating nature of the system, and the GA would be forced

to account for this in its selection of dispatching rules.
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