| PEVELOPMENT OF A PRACTICAL

SOFTWARE TOOL FOR THE DESIGN
OF ROLLS FOR NEAR NET SHAPE

PROFILE ROLLING/

A Thesis Presented to
The Faculty of the College of Engineering and Technology

Ohio University

In Partial Fulfillment
of the Requirement for the Degree

Master of Science

by *
Christian E. Fischer/

March, 1994

ITY
10 UNWERS
OH LIBRARY

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jay Gunasekera, for his advice and support

during my work.

I would also like to thank Mr. Rich Diebolt of United Technologies Pratt & Whitney,

the program manager of this project, for his input, suggestions, and comments.

I wish to acknowledge the assistance of Farid Masri, who, with my guidance, wrote
a substantial portion of the actual LISP code. | also wish to acknowledge Anbu
Rathinavel, who assisted me in code development and wrote the menu interfaces

for AutoCAD.

Finally, | offer my greatest thanks to my parents, without whose support and

encouragement | would have never made it this far.

1.0

2.0

3.0

4.0

TABLE OF CONTENTS

INTRODUCTION . . .o e e
11 ROLLCAD ...t e
1.2 Thesis Organization v
1.3 Acknowledgement of Contributors
LITERATURE SURVEY e
PREFORM AND ROLL DESIGN THEORY
3.1 Profile Fill
3.2 Software Tools to Aid in Predicting Roll Fill

3.21 Lateral FlowMapping

3.2.2 Thickness DistributionPlot

3.2.3 Area Mapping and Intermediate Shape Generation

3.3 Other Roll Design Features
3.4 Generating Roll Profiles in AutoCAD
LISP IMPLEMENTATION OF PROCESS DESIGN TOCLS
41 Basic Shape Processing
42 ProcessDesignTools
421 Machining Envelope
422 DraftAngle
423 ThicknessMapping
4.2.4 Lateral Flow Mapping

Table Of Contents (continued)

425 Autolineup 27

4.2.6 Area Mapping and Generate Intermediate Shape 28

4261 AreaMapping 29

426.2 Intermediate Shape 30

427 FilletslEdgeBreaks 30

43 Subroutines 31

5.0 CONCLUSION e e 60
51 Results e €c

52 DiSCUSSION e 60

53 FutureWork 61
REFERENCES 62

AFPENDIX 1: PROCESS DESIGN SECTION FRCOM

ROLLCAD USERS MANUAL 66

PROCESS DESIGN e 67
Machining Envelope 70
AddDraft Angles 71
Thickness Mapping 73
Lateral Flow Mapping 74
Autolineup 74

Table of Contents (continued)

Area Mapping oo e 76
Generate Intermediate Shape 76
Fillet/Edge Breaks, 78
Appendix 2: AutoCAD ENTITY HANDLING AND AutoLISP 79
A21 Entity DataHandling 79

A2.2 Fundamentals of AutoLISP 81
A2.2.1 LISPDataTypes 82

A2.2.2 Evaluation of LISP Functions 84

A2.23 Some Common AutoLISP Functions 86

A2.3 AutoLISP Entity Handling 90
APPENDIX 3: LISPSOURCECODE 95

Vi

LIST OF FIGURES

Figure 1.1 Profilerolling i 1
Figure 1.2 AutoCAD modified menu structure incorporating Process
Design Programs« vt v et e 3
Figure 2.1 Bicycle rim profiles developed by Hutcheon and Hawkyard,
showing material distribution and lateral flow (after [11]) 9
Figure 3.1 Primary flow directions in profile rolling. 14
Figure 3.2 lllustration of incomplete profile fill in section A due to extension
ofthinnersectionB 15
Figure 3.3 Lateral flow plotexample 1 16
Figure 3.4 Lateral Flow Plotexample2 16
Figure 3.5 Thickness distribution plot comparing original preform and
targetshape. 17
Figure 3.6 Thickness distribution plot with improved preform design 17
Figure 3.7 Generation of preform by mapping 18
Figure 3.8 Fit of preform in rolls. Note sharpcorner. 20
Figure 4.1 Typical AutoCAD drawing entities before shape processing ... 21
Figure 4.2 Typical AutoCAD drawing entities after shape processing . 22
Figure 4.3 Hierarchy of LISP modules in the Draft Angle routine 24
Figure 4.4 Modification of AutoCAD line entities by Draft Angle routine . . . 24
Figure 4.5 Hierarchy of LISP modules in Thickmap Routine 25
Figure 4.6 Hierarchy of LISP modules in Lateral Flow Mapping routine . . . 27
Figure 4.7 Hierarchy of LISP modules in Area Mapping and Intermediate
Shaperoutines 28
Figure 4.8 Mapping of segment of blank onto target shape. 29

vii

List of Figures (continued)

Figure 4.9 Generation of preform by mapping 31
Figure 4.10 Generation of preform by mapping 44
Figure 4.11 lllustration of matching area ration as calculated in map 49
Figure 4.14 Using Lateral Flow Mapping to compare preform shapes. 74
Figure A2.1 Sample drawing illustrating entitydata 80

viii

1.0 INTRODUCTION

The desire to reduce material loss and machining costs in manufacturing has led
to increased use of near net shape forming processes. One of these processes
is near net shape rolling, or profile rolling. In profile rolling, a flat strip or a ring is
rolled between two rolls which have the desired resultant profile cut into them (see

figure 1.1).

Figure 1.1: Profile rolling
Profile rolling or ring rolling of arbitrary shapes involves complex metal flow
patterns which are difficult to predict. For various reasons, the profile of the
product will not always match the profile of the rolls. In many cases, it is

necessary to first roll a preformed product with a simpler geometry than the

desired shape, then roll the final shape from that preform. The design of preform
geometries is a difficult task which relies on experience and trial and error.
Several graphical heuristic techniques are used. Until now, these techniques have

not been available in any computerized or automated form.

The purpose of this work was to develop a systematic methodology for the
computer aided design of preforms for profile rolling. The software and application
methods developed were part of a larger project for the design and analysis of rolls
and the rolling process for profile rolling and profile ring rolling of aircraft engine
compressor shrouds. The project was sponsored by United Technologies - Pratt
& Whitney, under the United States Air Force Industrial Modernization Incentive
Program, contract S33657-90-C0014,P00002. For a complete discussion of this

project, refer to [27].

The product of the work was a software package written in AutoLISP and running
in AutoCAD, and a systematic approach to designing and analyzing preform profile
sequences. It forms the Process Design portion of the roll design software
package ROLLCAD, which was developed under the project mentioned above. An
emphasis was placed on development of user-friendly programs. AutoLISP
pregramming allows the newly developed routines to be called from the AutoCAD
editor exactly like any other AutoCAD command. The AutoCAD topline menu was
also modified to include the functions (see figure 1.2). The software includes tools
for geometric manipulations of the shape to either modify the shape in preparation

for rolling or to generate a preform shape based on two existing shapes. It also

includes tools to analyze the shape and assist the user in determining its suitability

for rolling.

Assist Draw Modify Display Settings Options File Solids
ve

Machining Envelope.........
Add Draft Angles...........
Thickness Mapping..........
Auto Lineup................
Lateral Flow Mapping.......
Area Mapping...............
Generate Intermediate Shape
Fillets/Edge Breaks........

et o e 1 e e n |

ROLLING @ ==-=- > s
UCS :
UTILITY
ASHADE
RMAN
BONUS
SAVE:
PLON
[N}
X

Command :

Command :

Command : .

Figure 1.2 AutoCAD modified menu structure incorporating Process Design
programs

When used by an experienced roll designer, these tools will considerably speed
the design process. The analysis tools give the designer an indication of whether
the design will work. Without these tools, experimentation or finite element
analysis must be used. Both of these approaches are expensive and very time
consuming. A single design iteration on part geometry may take several days with
FEM, or considerably longer with experimentation. The tools discussed here allow
several geometric iterations to be performed in a single design session. When

used with the rest of ROLLCAD, it becomes an extremely powerful design tool.

1.1 ROLLCAD

As noted, the software discussed in this thesis is a module in a much larger
software package (ROLLCAD). In order to have a full appreciation of the process
design tools, it is necessary to have an understanding of the complete package.
It runs on a PC in the AutoCAD environment using a modified menu structure.

The primary features of the package are:

. Tools to assist in preform design, including addition of machining
envelopes, draft angles, and fillets and edge breaks, thickness
mapping, lateral flow mapping, and intermediate shape generation

through area mapping.

. Simulation of profile strip rolling, including estimation of roll forces
and torque, machine horsepower requirements, strain in the material,

temperature rise, and length of the resultant part.

. Simulation of profile ring rolling, including ring growth rates, rolling
times, centering forces, rom of the inner roll to avoid slippage, as
well as the machine and material parameters provided for strip

rolling.

. Constant volume calculations for calculating linear growth in strip
rolling, diametric growth in ring rolling, and required strip length for

a given ring diameter.

. Utility to convert two dimensional part and roll geometries to
PATRAN neutral file format for subsequent finite element mesh

generation and analysis.
This thesis is concerned with items listed in the first point.

The AutoCAD user interaction format has been followed wherever possible. For
simulation routines, which are calculation intensive, execution time would be
unacceptably long in AutoCAD. These routines have been written in Fortran, but

are still called from the AutoCAD menu system.
1.2 Thesis Organization

Chapter 2 provides a brief review of literature and other research in the field of
profile rolling and profile ring rolling. The literature is extremely limited, and the
bulk of the work has been experimental. The theory of preform and roll pass
design is discussed in chapter 3. The systematic design methodology developed
in this work is presented in this chapter, and the software tools are introduced.
Chapters 4 and 5 describe the software. Chapter 4 contains an overview oi
AutoLISP and drawing entity handling in AutoCAD. Chapter 5 contains a detailed
discussion of the software, including theory, development, implementation, and the
role of each subroutine. Chapter 6 includes a discussion of results, conclusions,
and recommendations for future work. There are two appendices. The first

contains excerpts from the ROLLCAD users manual for the Process Design

software discussed in this thesis. The second contains the AutoLISP source code

for the Process Design tools.

1.3 Acknowledgement of Contributors

The development of the ROLLCAD package was truly a team effort. Contributions
were made by over a dozen people at Ohio University and Pratt & Whitney. The
author is responsible for the theory behind all of the process design software tools,
(with the exception of the "Add Machining Envelope" routine developed by Anbu
Rathinavel) and for the methodology of their application. However, in order to
meet time constraints on the software delivery, a significant amount of the actual
AutoLISP code writing was done by Farid Masri [26]. Because the work is so
closely integrated, it has all been reported in this thesis. Comments in the source

code in Appendix 2 clearly state who was involved with the writing of each module.

2.0 LITERATURE SURVEY

Rolling of profiled sections is an established practice for common shapes such as
structural shapes and railroad rail. Hot profile ring rolling is used for products as
diverse as pipe weld flanges and aircraft engine casings. Recently, the use of
near net shape rolling and ring rolling has become popular. As with any near net
shape process, material flow and roll fill are important considerations. Predicting
material flow and designing preform shapes to achieve proper fill is more an
experienced based art than a science. However, numerous researchers have
studied the tcopic, both experimentally and theoretically, in an attempt to better

describe the phenomenon.

In his book Fundamentals of Rolling Wusatowski [1] offers empirical equations to
predict elongation and spread in straight sections. These equations are complex
and rely on empirical charts factoring roll diameter and part geometries. The first
references to profile ring rolling in the literature was published by Mamalis, et. al.
[2] in 1975. These authors studied cavity formation in the OD of T-shaped rings
at large reductions of ring wall thickness. In 1979, Hawkyard and Ingham
performed experiments using grooved roils to produce a variety of internal and
external profiles. This work, as well as much of the other early research into the
generai ring rolling process was performed in the late 1960s and 1970s at UMIST
in Manchester, England. A review of this work and other research into ring rolling

was published by Johnson and Mamalis in 1979 [5].

In 1976, Winship [3] published an article discussing near net shape cold ring rolling
of aircraft engine compressor shrouds at General Electric Aircraft Engines. No
details of the design process are given. In an associated interview article, Vern
Fenci of Grotnes Machine Works, noted that roll geometry is the most important
factor in the cold ring rolling process, because it determines how much metal is to
be moved in various stages. However, he observes, there is no formula for

determining this. Instead, it is a trial and error process.

The first analytic work for ring rolling non-rectangular sections was published in
1981 by Yang, et al. [6]. The upper bound analysis technique was applied to
profile ring rolling of | sections. The roll torques were calculated for various

process conditions and verified with experiments on aluminum alloy.

Hutcheon and Hawkyard investigated ring rolling of aluminum cycle wheel rims
[7,11]. The cycle wheels have a complex profile shown in figure 2.1. The goal of
the research was to produce a wheel rim from a rectangular section ring blank in
as few forming stages as possible, while achieving the required crcss section,
diameter, and circuiarity. Figure 2.1a illustrates the profiles of preforms and the
final shape. 2.1b illustrates the material distribution across the preform, and the
lateral displacements required to transform a rectangular section ring biank to the
profile in a single operation. Profile Il in 2.1a is a "splayed-out" version of the final

profiie.

Moussa and Hawkyard [8] published the results of a detailed study of profile

development and roll force in profile ring rolling in 1984. The

IT V

IR¢

11

©
Q

Figure 2.1 Bicycle rim profiles developed by
Hutcheon and Hawkyard, showing material
distribution and lateral flow (after [11])

effects of roll closure rate, lubrication, blank shape, and small variations in
geometry were studied. Many profiles which could not be developed from

rectangular profiles were successfully formed with preforms.

Hirai, et al. [10] described a study of profile fill in T-shaped rings with external
profiles using layered plasticine rings. The rings were sectioned after rolling to
allow the study of flow patterns in the cross section. Eulerian finite element
simulation was also used for comparison. A novel method of resisting
circumfrential growth in the ring by applying a braking force was investigated.

Good results were obtained using plasticine rings in a small laboratory mill.

Recently, several authors have applied computer modeling techniques to ring

rolling. In 1987 Doege and Aboutour [16] derived a general upper-bound model

for both plane and profile ring rolling. In 1991, Hahn and Yang [22] applied the
Upper Bound Elemental technique to predict roll torque and geometry. Roll torque
predictions were in good agreement with experimental results, but geometry
predictions were not as satisfactory. Since that time, several authors [19,21,23]
have developed finite element simulations of the ring rolling process. These

simulations show reasonable results, but are extremely CPU intensive.

Kang and Kobayashi [21] proposed a process of preform design using finite
element analysis. The process uses a backward tracing technique. This backward
tracing scheme has also been applied to preform design axisymmetric and plane
strain forging problems. This is the first extension to a three-dimensional problem.
The theoretical results are good, but the paper does not address the problem of

manufacturing the preform generated by the backward tracing.

Eruc and Shivpuri [24,25] have recently conducted an extensive literature survey
into ring rolling technology, including machines, processes, production lines,
process modeling, simulation, planning, and control. They observe that intricate
profiles and near net shape forming demands make definition of rolling parameters

and analysis of deformation patterns difficult.

In their discussion of profile filling, Eruc and Shivpuri note that a profile of a pass

can be filled easier if:
. the local degrees of deformation do not deviate excessively from the

mean degree of deformation.

10

. the thick walled sections that require less reduction constitute a

greater percentage of the total section,

. the material flow is not hindered by sharp corners, narrow gaps,
friction, etc.
. the blank profile is designed such that lateral flow of material in the

cross section is minimized.

Very little research into preform design is discussed. Researchers in Aachen,
Germany [12,13] are reported to have investigated backward tracing for
rectangular cross sections, but no details are discussed. Rachakonda [20] also
implemented a backward tracing scheme for rectangular profiles. Aside from the
finite element approach noted earlier, the literature makes no mention of preform

design for profiled sections.

11

3.0 PREFORM AND ROLL DESIGN THEORY

This chapter describes an approach for generating roll geometries using the
Process Design tools in ROLLCAD as well as standard AutoCAD functions given
the desired final shape in an AutoCAD drawing file. It is expected that the design
will be completed by an experienced roll designer with a working knowledge of

AutoCAD.
The steps of the design sequence are:
. Obtain AutoCAD drawing of net shape part profile

. Modify part profile, adding machining envelope, draft angles, fillets,

and any other modifications necessary for rolling

. Analyze the shape, select starting stock size, and develop a preform
sequence

. Split the part profiles and generate roll profiles

. Check the fit of each preform in the next roll in the sequence

. Continue with analysis with other ROLLCAD moduies.
This chapter describes the theory of roll profile fill, then describes methods for

using the Process Design tools and existing AutoCAD functions to perform each

step.

12

3.1 Profile Fill

The design of compression rolis for profile rolling presents several
challenges. The primary geal is to design a shape or sequerice of shapas that wili
provide roli fill -- that wiil procduce a part profiie that conforms to the profile cut inic

ne rolis. Once this shape seguence has teen developed, it must be verified that
a suitable grain flow pattern is achieved. A rolling strategy must tiien be
developed considering force and horsepower limits on the rolling miil being used.
and the total reduction between anneals for the material. The Process Design
software assists with the first step -- designing a sequence of preform profiles

which will aitow the desired final profile to he reachieds.

Frofile fill is a funciicn of material fiow in the rol! gap. In the simplified
mcdel. there are two directions for material to be displaced when it undergoes
compression {see Fig. 3.1) The first directicn is longitudinal, or iri the direction of
reaing (A in figure 3.1). The cecond is lateral, or perpendicular to the direction ¢f
roling (& in figure 3.1). In order for a profiled part to be formed from fiat stock,
sutficient izteral material flow must oncur to fil! the thicker sections. Cpposing this
lateral flow is a iendency for thicker sections to be stretched as thickness reduction
and lengitudinal extension occurs in thinner sections. This is illustrated in figurzs
3.2. Ssctions A ard B are criginatly the same length. As section B undergces
greater raducticn, its longitudinal extension is greater than section A. However,
when the sections are joined, section A is stretched along with section B, causing
incomplete fili in section A. This phenocmencn is compensated by first rolling an

easy to form section with a thickness distribution similar to the desired shape.

13

/

5 p—

Figure 3.1 Primary flow directions in profile rolling.

Thus the lateral material flow required to attain roll fill is lower, and underfilling is

less likely.
3.2 Software Tools to Aid in Predicting Roll Fill

ROLLCAD provides three tools for assisting in preform design and analysis.
They are LATERAL FLOW MAPPING, THICKNESS DISTRIBUTION PLOT, and
AREA MAPPING. The first two are analysis tools, and the third is a design tool

14

which generates an intermediate preform when presented with an initial and final

shape.

3.2.1 Lateral Flow Mapping

LATERAL FLOW MAPPING plots a graph of the lateral material movement
required for the indicated shape to fill from the desired preform. The height of the
graph is proportional to the distance material at a particular section of the preform
must move to fill the final shape. A sequence with less lateral flow is more likely
to fill. This is illustrated in figures 3.3 and 3.4. Figure 3.3 shows the lateral
material flow required to fill the target (lower) shape from the proposed preform
(upper) shape. Figure 3.4 shows the lateral material flow for a modified version
of the preform. Note that the peak material flow is much smaller, although there

is still room for improvement. The flow is also much more localized.

NE vy

Figure 3.2 lllustration of incomplete profile fill in section A due to extension of
thinner section B

15

_I"L
obovel flow tg the left

below flow /to the right
1 I

..~.__/"

Figure 3.3 Lateral flow plot example 1

7

..../——‘“—‘_
cbove; flow to the left

Whe right

Figure 3.4: Lateral Flow Plot example 2

3.2.2 Thickness Distribution Plot
The THICKNESS DISTRIBUTION PLQOT displays thickness distribution for complex

shapes, allowing the designer to get a better idea of what thickness distribution is

required in the preform. It may also be used to compare the material distribution

16

of two or more shapes in a sequence by overlapping the plots. This is illustrated

allsnanil

Preform

in figures 3.5 and 3.6.

Target

=ik 5

Thickness Distribution

Figure 3.5: Thickness distribution plot comparing original preform and target

shape.

Preform

EJLJL:T—FE

Target

Sk s

Thickness Distribution

Figure 3.6: Thickness distribution plot with improved preform design

17

3.2.3 Area Mapping and Intermediate Shape Generation

In some complex situations, more than one preform step may be required to

achieve fill. In this situation, AREA MAPPING and INTERMEDIATE SHAPE

GENERATION may be useful in generating an intermediate preform shape.

These functions generate a geometric average of two shapes as illustrated in

figure 3.7.
(irx, iry) iu
1X |
I
/II il
(I
mrx, mr T _
- [___Y_l\ mu [11'
mx I |
ﬁ__ Iy o
| ml
Il
(frx, frjgl) \ //' I
_— fu
fl

Figure 3.7: Generation of preform by mapping

18

3.3 Other Roll Design Features

ROLLCAD contains two other features which are useful for designing rolls. ADD
DRAFT ANGLES allows you to select vertical edges in a part and adjust them to
a specified angle. The FILLETS/EDGE BREAKS function adds fillets and edge

breaks to the entire part or specified corners.

3.4 Generating Roll Profiles in AutoCAD

Once a desired part profile is obtained, the AutoCAD drawing editor can be used
to convert the profile shape to roll profiles. It is assumed that rolling will be done
with a closed pass. The COPY command is used to generate a duplicate part
profile. The MOVE command is then used to separate the upper half of the shape
from the lower half. The LINE command then can be used to draw in the rest of

the upper and lower roll profiles. This is illustrated in figure 3.8.

19

top roll

/note poor fit
——/—

|

S —

bottom roll

Figure 3.8: Fit of preform in rolls. Note sharp corner.

20

4.0 LISP IMPLEMENTATION OF PROCESS DESIGN TOOLS
All process design tools were developed in AutoCAD using AutoLISP. For a brief

discussion of AutoLISP and entity handling in AutoCAD, refer to appendix 2.

4.1 Basic Shape Processing

All process design routines work on existing shapes. There are basic steps that

all of the routines use to begin processing shapes. Figure A2.1 is repeated here

as figure 4.1 for reference.

cen ea 0

6 1

0

’ c

Figure 4.1 Typical AutoCAD drawing entities before shape processing

1. When a routine is called, all environment variables, such as current
layer, current color, object snap mode, etc. are stored so they can

be reset at the conclusion of the routine.

2. A shape selection routine (SHAPESEL) is called. This routine
prompts the user to window a shape, then joins the shape into a

polyline and re-explodes it. The new elements resulting from an

21

exploded polyline are arranged in consecutive order in the data file.
The names of these new elements are passed back to the calling
routine. Area and Lateral Flow Mapping call this routine twice (ie,

they process two shapes). All other routines call it once.

3. The list returned from SHAPESEL containing entity names is passed
to ARC2LINE. ARC2LINE converts all arcs to straight line
approximations. Arcs are broken into segrments of maximum 20°
included angle. The chord of each of these line segments is drawn.
This provides a reasonable approximation of the arcs, and greatly
simplifies shape processing. ARC2LINE returns a modified entity

name list to the calling routine.

Figure 4.2 shows the same shape as illustrated in figure 4.1 after it has undergone

standard processing.

8 1

1 7 0

Figure 4.2 Typical AutoCAD drawing entities after shape processing

At this point, the main calling routine continues with its specified tack.

22

4.2 Process Design Tools

All Process Design programs use hierarchical programming techniques, where
utility subroutines are called by a main routine. The general theory behind each

tool is discussed here. A detailed description is included in section 4.3.

4.2.1 Machining Envelope

Machining envelope utilizes the AutoCAD offset command. The desired shape is
selected. The user is prompted for an offset distance. The shape and offset
distance are then passed to the offset command using the AutoLISP command

function to invoke AutoCAD commands.

4.2.2 Draft Angle

The calling order of routines is shown in figure 4.3. A shape is selected, and the
arc to line conversion is performed as described above. A preliminary default draft
angle of 5° is set. The program then enters a continuous loop which is exited

when the user types <ENTER>.

Inside the loop, the user is prompted to select the entity to be modified, then the
endpoint about which that entity is to be pivoted (the stationary endpoint.) The
user is given the opportunity to modify the default draft angle. If this is done, the

new angle becomes the default for the remainder of the executions. The user is

23

C:DA

SHAPESEL
ARC2LINE ~ —7b—

PT=
REMOVE
MOD

PTONARC
PT=

Figure 4.3 Hierarchy of LISP modules in the Draft Angle routine

Select -—/ ’

this entity /
7

p—

Figure 4.4 Modification of AutoCAD line entities by Draft Angle routine

then asked to indicate the offset direction with a point.

Through a complex

sequence of steps, the endpoint of selected entity is modified, the proper endpoint

of the entity which it intersects is modified, and any entities which now lie entirely

within the shape are erased.

The effect of adding draft angles is shown in figure 4.4.

24

4.2.3 Thickness Mapping

The calling order of thickness mapping routines is illustrated in figure 4.5. A single
shape is selected, and standard processing is performed. The shape is then
scanned left to right. Each time an entity endpoint is encountered, the thickness
of the part is calculated at that x position. The thickness is then plotted against

a horizontal line.

C:THICKMAP SHAPESEL
———— ARCZLINE ———— PTONARC
— PT=

——— X-MIN
L X-MAX
——— Y-MIN
—— Y-MAX
——— LINTER ———— MIDENTS

Figure 4.5 Hierarchy of LISP modules in Thickmap Routine

25

4.2.4 Lateral Flow Mapping

L.ateral flow mapping calculates the theoretical lateral material flow required if the
target shape is to be rolled from the preform shape. Axial flow is assumed to be
uniform. Hence, ail area calculations for the second (target) shape are scaled by

the ratio of the initial area to the target area.

The equation for lateral flow is

Flow(x) = [o” T, (x)dx - gzl fo" T, (x) dx (4.1)

The plot of flow(x) vs. x is displayed by the function. It is assumed that the shapes
are aligned properly in the drawing, thus x refers to the same absolute x measure
on each shape, and is not relative to the left end of the shape being considered.
The height of the plot is an indication of the relative material motion at that point.
The points at which the plot crosses the horizontal axis indicate flow toundaries,
where there is theoretically no movement in the material at that point other than

uniaxial compression.

The calling order of lateral flow mapping routines is illustrated in figure 4.6. Two
shapes are selected by the user. Both undergo standard processing. The area
of each shape is obtained, and the area ratio is calculated. Referring to equation
1, the height of the lateral flow plot at a given x position is based on the area of

the shape (the integral of the thickness distribution) to the left of the x position.

26

C:LATERAL ———— SHAPESEL
—— ARC2LINE ———7— PTONARC
— PT=
———— STARTWITH
L X-MIN
——— X—-MAX
——— LATCALC DT ———— IDENTS

—— AREALEFT

Figure 4.6 Hierarchy of LISP modules in Lateral Flow Mapping routine

The shapes are divided into a number of uniform intervals as specified by the user.
The area to the left of each interval is obtained using the AREALEFT function, and

the scaled difference in the areas is calculated.

4.2.5 Autolineup

Autolineup is used to align shapes before lateral flow mapping. The shapes are
aligned based on their geometric centers (the midpoint between the maximum and

minimum x values.)

27

4.2.6 Area Mapping and Generate Intermediate Shape

C:MAP ———— SHAPE SELECT —— REORDER
+—— ARCZLINE PTONARC
—E PT=
—— FIND-MINPT
—— FIND-YMAX
I—— STARTWITH
L—— SETMAP —— CALLMAP FINDXMAX
T IDENTS
F AREALEFT
— MAP READELEM
—E AREALEFT —— READELEM
MATCHAREA IDENTS
—E AREALEFT
C:IS —————=— INTERSHP — IDENTS
“!:- READELEM
— SCRT2

Figure 4.7 Hierarchy of LISP modules in Area Mapping and Intermediate
Shape routines

Area mapping is used to generate intermediate preform shapes between an initial
preform and a target shape. The area mapping process involves two separate
user cailed functions. The first, C:MAP, generates a list of coordinates on each
of the two shapes. The second, C:IS (generate |ntermediate Shape), uses the list
generated by area mapping, as well as the data from both shapes, to draw the

intermediate shape. The calling order of both routines is illustrated in figure 4.7.

28

42.6.1 Area Mapping

Area Mapping prompts the user to window two shapes. Both shapes undergo
standard processing. The shapes are then reordered so that the starting endpoint
of the first entity in each shape is at the lower left corner of the shape. Control is
then transferred to the CALLMAP routine, which first maps the initial shape onto
the final shape, then maps the final shape to the initial shape. The actual mapping

is performed by the routine MAP.

Map scans the first shape from left to right. Each time an entity endpoint is
encountered, is encountered, the x coordinate of this endpoint is stored. The area
to the left of a line through this point is calculated. This area is scaled by the area
ratio of the two shapes, and a line is located on the second shape with a
corresponding area to the left. The x position of this line is also stored (see figure

4.8).

— L —_

2
VAN

Figure 4.8 Mapping of segment of blank onto target shape.

29

After both shapes have been mapped onto each other, the x coordinate lists are
combined into a single list with duplicate points removed. This data is stored in

the variable MLIST, to be called by the intermediate shape routine.

4.2.6.2 Intermediate Shape

The routine INTERSHP is called after area mapping has been run. It uses the
shape lists and mapping data generated by C:MAP. The vertical lines specified
by the coordinates in MLIST are reconstructed. The points where the line intersect
the top and bottom of each shape are identified. A weighted average of the
corresponding coordinates is calculated using a user-supplied weighting factor.
The calculated coordinates are linked with line segments, yielding the mapped

intermediate shape. (see figure 4.9).

m, =i, + K(f, - i) @.2)
m, =i, + K(f, - f) (4.3)
my = iy + K(f, - i) @.9)

4.2.7 Fillets/Edge Breaks

The AutoCAD fillet/edge break command is repeated in the Process Design

menu for convenience.

30

(irx, iry) i
1X |
|
T
/) 1l
[
e e e
mx / |
| e
f -
J| ml
I
Il
(frx, fry) I | \
fx !fu |
fl

Figure 4.9 Generation of preform by mapping

4.3 Subroutines

As noted the LISP programs are all modular. Many subroutines are utilized
by more than one program. For file management purposes, the subroutines
are stored in six separate files. The file ALLUTIL.LSP contains utility
subroutines that are used by all of the Process Design programs. The file
LMUTIL.LSP contains utility subroutines used by Lateral Flow Mapping and
Area Mapping. The other four files contain subroutines used only by the
respective Process Design tools. All of the AutoLISP files are loaded when

ROLLCAD is started. Table 4.1 lists the routines contained in each file. A

31

detailed description of each subroutine follows. The complete source code

is in appendix 3.

MAP ALLUTIL LMUTIL
CALLMAP ARC2LINE AREALEFT
FINDMAX INT FIND-MINPT
C:IS MOD IDENTS
MAP PT= READELEM
MATCHAREA PTONARC STARTWITH
REORDER SHAPESEL FINDYMAX
C:MAP X-MAX

SETMAP X-MIN

SHAPE-SELECT Y-MAX
SORT2 Y-MIN
INTER-SHP

LATERAL
LATCALC
C:LATERAL
SHAPESEL2
DT
C:AUTOLINEUP
LINEUP

DI

DRAFTANG THICKMAP
C:DA LINTER
REMOVE MIDENTS
SORT C:THICKMAP
INSERT

Table 4.1: Process Design Files and Programs

arealeft

File:
Purpose:

Called By:
Calls:

Arguments:

LMUTIL.LSP

Calculates the area of the shape defined by the

entities in entlist to the left of the x coordinate

specified in the parameter XPOINT.

dt, callmap, matcharea

readelem

entlist, iupperent, ilowerent, xpoint

32

Data returned: area (real number)

The shape is passed to the program in the parameter entlist which
is a list of the entity names of the entities in the shape, sorted as described
in section 4.1. iupperent and ilowerent contain the position index of the
entities intersected by a vertical line through xpoint. These values were
previously determined by the routine idents.

The endpoints of the upper and lower entities are extracted (ulend,
urend, llend, Irend for upper left, upper right, lower left, and lower right
endpoints, respectively.) The intersections between the entities and a
vertical line through xpoint are identified (uipt, lipt for upper intersection
point, lower intersection point.) Lines are constructed from ulend to uipt,
from uipt to lipt, and from lipt to llend. These entities, and all entities
with indices less than iupperent or greater than ilowerent are made into
a polyline. The AutoCAD area command is used to find the area of this
region. The process is then undone using undo, and the area value larea

is returned.

arc2line
File: ALLUTIL.LSP
Purpose: Approximates arcs as a series of line segments.
Called by: c:da, c:thickmap, c:lateral, c:map
Calls: pt=. ptonarc
Arguments: entlist

33

Data Returned: new list of entity names, included line segment

entities created to replace arcs.

The basic principle of arc2line is simple. The arc angle dalpha is

divided into a number of segments nsegs by the command

(setq nsegs (int (+ (/ dalpha maxdel) 1))

which insures that the angle of each of the segments will be less than the
maximum defined included angle maxdel. Each segment angle del is then

defined by the statement

(setq del (/ dalpha nsegs))

which breaks the angle into uniform increments. The endpoints of each of

these arc segments is connected by a straight line, and the arc is erased.

Implementation becomes more difficult, because the endpoints of the
adjacent segments must remain connected. Much of the program is
devoted to insuring proper connectivity. The arc is always defined
counterclockwise from the start angle to the end angle. The endpoint of the
segments connecting the arc are used as the endpoints for the first and last

line segments drawn.

34

c:autolineup

File:

Purpose:

Called by:
Calls:
Arguments:

Data Returned:

LATERAL.LSP

Lines up two shapes vertically according to their
vertical centers before running lateral flow
mapping.

Process Design Menu, AutoCAD command line
shapesel, arc2line, x-max, X-min, y-max, y-min
none

nore

C:autolineup is defined as an AutoCAD command. It prompts the user to

select two shapes, then finds the point midway between the largest and

smallest x coordinate of each of these shapes. The AutoCAD move

command is then used to align the midpoint of the second shape with the

midpoint of the first.

callmap

File:

Purpose:

Called By:
Calls:

MAP.LSP

Calls the mapping routine to map the initial shape
to the final shape, then the final shape to the
initial shape.

setmap

findxmax, idents, arealeft, map

35

Arguments: initshp, finlshp, initarea, finlarea
Data Returned: a list of the form ((ml nl) (m2 n2) (m3 n3) ...)
where mi and ni are x coordinates of vertical lines

through the first and second shape.

This subroutine compiles the list of x coordinates which is used to generate
the intermediate shape mapped from two shapes. The lists of entity names
in the first and second shape are passed to callmap by setmap. They
undergo standard processing, then the map routine is called. Map returns
a list of x coordinate pairs defining vertical lines through the first and
second shape, respectively. Map is called a second time, with the second
shape given first, and the first shape given second. This generates a second
coordinate list. Callmap assembles the two lists into a single list, and

eliminates duplicate data points, and returns this list to the calling

program.
c:da
File: DRAFTANG.LSP
Purpose: Change the angle of drawing entities and modify
or erase adjacent entities to create draft angles on
part profiles.
Called by: Process Design Menu, AutoCAD command line.
Calls: shapesel, arc2line, pt=, remove, mod
Arguments: none

36

Data Returned: none

C:da is defined as an AutoCAD command. It may be invoked from the
AutoCAD command line or from the Process Design menu. The user is
prompted to select a shape. The subroutine shapesel obtains the shape
data from the screen and returns it to the variable entlist, which then
undergoes standard processing. The draft angle variable dangle is set to
a default value of 5°. The user is then prompted to select the first drawing
entity to be modified (vertent), and then select one of the endpoints on that
entity (endpoint). The user is given the opportunity to modify the default
draft angle, or leave it at its previous value. Then a direction is indicated
with a point on either side of the entity (side). The program identifies
whether the starting or ending endpoint of the entity was selected. It then
identifies the side of the entity on which the point side was selected. A long
vector is created starting at endpoint at an angle dangle to the same side
of the existing entity as side. The point pt2 is identified 100 drawing units
in this direction. No line entity is created, since the AutoCAD intersection

command uses only points.

The program steps through entlist (forward or backward, depending on
whether the point selected was the starting or ending endpoint of the entity)
until an intersecting entity is found. If no intersecting entity (other than
the immediately prior entity in entlist) is found, then the intersection with

the next entity in entlist is calculated. The intersection point becomes the

37

new endpoint for both entities. If any entities are between vertent and the

intersected entity, they are deleted by the function remove.

The program repeats until terminated by the user.

di

File: LATERAL.LSP

Purpose: Prompts the user for two points and returns the

distance between them.

Called by: c:lineup

Calls: none

Arguments: none

Returns: list containing (x.,y,z) coordinates of second point

relative to first.

The program simply uses the AutoLISP getpoint command twice.
The second time it is calied, the first point is given as an argument, and the

value returned is a relative value.

dt

File: LATERAL.LSP
Purpose: Calculates the lateral flow function at the given x
position.

38

Called by: latcalc

Calls: idents, arealeft
Arguments: entlistl, entlist2, xpos, xmax-1, xmax-2
Returns real value of lateral flow graph at given x position.

The value of the lateral flow function is given by the equation

Flow(x) = [* T, (x)dx - .2— [Ta(x)ax (4.5)

In this program, the first integral is calculated by the function
(arealeft entlistl u 1l xpos)

and the second integral is calculated by the function
(arealeft entlist2 u 1l xpos)

where entlist1 and entlist2 are lists of entity names of the first and second

A
shape, respectively. The area ratio aratio, -Z! , is a global variable.

findxmax
File: MAP.LSP
Purpose: Returns the largest x coordinate in the shape
Called by: callmap
Calls: none
Arguments: entlist

39

Returns: real x coordinate

Scans the x coordinate of the starting endpoint of every entity in entlist

and returns the largest value found.

find-minpt
File: LMUTIL.LSP
Purpose: Identifies the entity with the smallest x coordinate
of its starting endpoint.
Called by: c:map
Calls: none
Arguments: entlist

Data Returned: list of entities with smallest x coordinate.
Scans the x coordinate of the starting endpoint of every entity in entlist

and returns the name of the entity with the smallest coordinate. If more

than one entity is found, all are returned.

40

findymax

File:

Purpose:

Called by:
Calls:
Arguments:

Data returned:

LMUTIL.LSP
Identifies the entity in a list of entities with the

largest y coordinate as a starting endpoint.
c:map

none

entlist

entity with largest y coordinate.

Scans the y coordinates of the entities in the list returned by find-minpt,

and returns the entity with the largest value. When used with find-minpt

this function identifies the left top corner of the shape, with the horizontal

position taking precedence over the vertical position.

idents

File:

Purpose:

Called by:
Calls:

Arguments:

LMUTIL.LSP

Identifies the lower and upper entities intersecting
a vertical line through a point of a given x
coordinate.

dt, callmap, matcharea, intershp

none

entlist, xpoint

41

Data Returned: list of 2 entity names identifying the first and last
entity in entlist which intersect a vertical line

through xpoint. nil if no intersection is found.

Starting with the first entity in entlist, the x coordinates are checked to
ensure that they are not close together but non-vertical
(and (< (abs (- x1 x2) 5.0E-4) (/= x1 x2)).

Lines that are close to vertical will cause problems with the AutoLISP
intersection function. If any entities which meet this criteria are found, the
x coordinate of the first endpoint is replaced with the x coordinate of the
second endpoint, and the second endpoint of the connecting endpoint is
adjusted similarly.

The entity is not vertical, it is tested for intersection with a vertical line
through xpoint. If an intersection is found, the entity is added to the list
ents. After all entities in entlist have been tested, the first and last entities

in ents are returned to the calling program.

42

inter-shp

File: MAP.LSP
Purpose: Generates the intermediate shape from a list of

corresponding points on the initial and final

shapes.
Called By: c:is
Calls: idents, readelem, sort2
Arguments: initshp, finlshp, maplist

Data returned: none

The function uses the data returned by callmap to generate the
intermediate shape. Reference points are identified on the left end of the
initial and final shapes, and the user supplies a reference point for the left
end of the mapped shape. The data in maplist is the corresponding x
coordinates of vertical lines through the initial and final shapes. The
coordinates are global. The coordinates of the shapes are all converted to
local with the reference point of each shape as the origin. The
corresponding coordinates for the initial and final shapes are identified. A
weighted average of the corresponding coordinates is calculated using a
user-supplied weighting factor. (equations 4.7, 4.8, and 4.9) The calculated
coordinates are linked with line segments, yielding the mapped

intermediate shape. (see figure 4.10).

43

i+ K(F, - i) @.7)

m, =
m, =i, + K(f, - f) (4.8)
(irx, iry) iu
1X | ;
|
|
II I
i 11
([
mrx, mr [l -
‘mu
mry), T
mx / !
i [-
; -
| ml
Il
[[
(frx, fry) ,/] __
fu 1
fx =]
fl
Figure 4.10: Generation of preform by mapping
c:is
File: MAP.LSP
Purpose: Call the intermediate shape function
Called by: Process Design Menu, AutoCAD command line.

44

Calls: inter-shp
Arguments: none

Data Returned: none

This function is defined as an AutoCAD command. Its sole purpose is to

invoke the AutoLISP defined function intershp.

latcalc
File: LATERAL.LSP
Purpose: Calls dt to calculate the lateral flow, and plots the
lateral flow map.
Called by: lateral
Calls: dt
Arguments: 11, 12, scaley, res

Data Returned: none
This function calculates the increments at which lateral flow is to be

calculated. It then calls dt top perform the lateral flow calculations at each

of these points, and draws the lateral flow graph based on these results.

45

c:lateral

File:

Purpose:

Called By:
Calls:
Arguments:

Data returned:

LATERAL.LSP

AutoCAD command to initiate lateral flow
mapping and control user interaction.

Process Design Menu, AutoCAD command line.
shapesel, are2line, startwith, x-min x-max, latcalc
none

none

This AutoCAD command prompts the user to select two shapes. The

shapes undergo standard processing. The width of the two shapes is

calculated, and the width of the lateral flow plot is set to the wider shape.

The ordinate line of the graph is drawn, then latcalc is called to draw the

graph. The text is scaled and drawn in.

lineup

File:
Purpose:
Called By:
Calls:

Arguments:

Data returned:

LATERAL.LSP

Lines up one shape with respect to another shape.
user

di

none

none

46

The user selects two shapes. The function di is called to obtain the offset

distance, and the AutoCAD move command is used to shift the shape.

linter

File:

Purpose:

Called By:
Calls:
Arguments:

Data returned:

THICKMAP.LSP

Returns the intersection points of a vertical line at
a given x position and the entities that it
intersects.

c:thickmap

midents

Xp

intersection points

The function midents is called to identify the entities intersected by a

vertical line through xp. The intersection points are then identified using

the AutoLISP inters function.

map

File:

Purpose:

MAP.LSP

Given an initial and final shape, map scans the
starting shape from left to right. Each time an
entity endpoint is encountered, the area to the left

of a vertical line through that point is calculated.

47

The x position of a vertical line through the final
shape is then calculated so the area ratios to the
left of the lines are equal to the area ratio of the

total shapes.

Called by: callmap
Calls: readelem, arealeft, matcharea.
Arguments: startshp, endshp, startarea, endarea

Data returned: list containing two lists. The first is a list of x
coordinates of vertical lines. The second is a list
of x coordinates of corresponding vertical lines in

the final shape.

The arguments startshp and endshp are a list of entity names of the lines
in the initial and final shapes, respectively. The area ratio of the final area
to the initial area is calculated (ratio). The lists have already been sorted
so the starting endpoint of the first entity is at the left end of the shape.
The name of the first entity in the list is assigned to entlo and the name of
the last entity in the list is assigned to enthi. The rightmost endpoint of
each of these entities is found, and the smaller one is used for area the area
calculation. The area calculation in performed by arealeft. The second area
is calculated from the first, and matcharea is called with this area as a
parameter to find the position of a vertical line through the second shape
with this area. The x values are appended to their respective lists, and the
process repeats with the next entity. The process is illustrated in figure

4.11.

48

Figure 4.11 Illlustration of matching area ration as calculated in map

The entity endpoints are used as calculation points because area variaticn

between these points is necessarily linear.

c:map

File:

Purpose:

Called by:
Calls:

Arguments:

Data returned:

MAP.LSP

AutoCAD command to initiate mapping. Performs
user interaction, then transfers control to setmap.
Process Design Menu, AutoCAD command line.
shape-select, arc2line, find-minpt, find-ymax,
startwith, setmap

none

none

49

The user is prompted to select an initial and final shape for mapping. The
shapes undergo standard processing and the setmap function is called.

This program calls callmap, which controls the mapping procedure.

matcharea
File: MAP.LSP
Purpose: Finds the x position of a vertical line with the
specified area to the left of it.
Called by: map
Calls: idents, arealeft
Arguments: shape, targetarea, arealeft

Data returned: real x position of vertical line through shape.

The function utilizes an iterative approach to find the position of the line in
the shape. The position of x is estimated from three global variables which
are set by the function, but are not lost between consecutive calls of the
function. oldx stores the previous x value calculated by the function.
oldarea stores the previous area which was associated with oldx. dxda is
the incremental increase in x divided by the incremental increase in
targetarea over the last two steps. Default values are set for the first

execution of this function. The new x position is estimated by the formula

Xoow = Xog + E’f(areao,d - area
da

new O

(4.10)

target)

50

The area to the left of this x is calculated using arealeft. If the areas are

not within an acceptable tolerance, a new dxda is calculated by the formula

_(2(. - (Xoow = xold) @.11)
da (area,,, - area,)

The process is repeated until an two consecutive steps yield results equal

within an acceptable tolerance.

midents
File: THICKMAP.LSP
Purpose: Identify the indices of lower and upper entities
intersected by a vertical line through xpoint.
Called by: thickmap, linter
Calls: none
Arguments: Xp

Data returned: list of two entities intersected by a vertical line

through xp.
Midents is an improved version of idents. The entities are scanned both

from the top and bottom of the shape. The left most entities intersected by

the line are returned if more than two are identified.

51

pt=

File: ALLUTIL.LSP

Purpose: Tests two points for equality within 0.0005"
Called By: c:da, arc2line

Calls: none

Arguments: pointl, point2

Data returned: logical True or nil

The function tests the equality of the x and y coordinates of the points.
Both the x and y coordinates are equal within 0.0005, the function returns

true.

ptonarc

File: ALLUTIL.LSP
Purpose: Finds the coordinates of a point on an arc in the
xy plane given the center, radius, and angle on

the arc from the positive x axis.

52

Called by: arc2line

Calls: none

Arguments: center, radius, angle

Data returned: list containing x and y coordinates of the point on

the arc with the specified polar coordinates.

The coordinates are calculated using the sine and cosine functions.

readelem
File: LMUTIL.LSP
Purpose: Reads an element from a list "I" which is the
"index" member of the list.
Called by: map, arealeft
Calls: none
Arguments: 1, index

Data returned: value of the specified element in the list.

The function sets a counter, and steps through the list until the given index

is reached.

reorder

File: MAP.LSP

53

Purpose:

Called By:
Calls:
Arguments:

Data returned:

Reorders the entities in shape into consecutive
order.

Shape-Select

none

shape, layername, layn

sorted list, and area of the shape.

The shape is made into a polyline and then exploded. The entities resulting

are assembled into the list to be passed to the next routine.

remove

File:

Purpose:

Called by:
Calls:
Arguments:

Data returned:

DRAFTANG.LSP

removes the specified element from the list, and
reassembles the list.

c:da

none

X, entlist

list with the specified element removed.

The function steps through the list. At each step, the index of the entity is

checked. If the index does not match x, the entity is removed from entlist

and appended to templist. If the index does match, the entity is ignored,

and the process continues to the next entity.

54

setmap

File:

Purpose:

Called by:
Calls:
Arguments:

Data returned:

MAP.LSP

calls the function callmap, which controls the
mapping process.

c:map

callmap

none

none

This is simply a calling routine. It was implemented to bypass a minor

glitch in the software which would not allow the other functions to be called

directly.

shapesel

File:

Purpose:

Called by:
Calls:
Arguments:

Data returned:

ALLUTIL.LSP

Prompt the user to window the shape, then return
and ordered list of the windowed shape.

c:da, c:thickmap, c:lateral

none

none
list of entity names of the entities in the shape,

the name of the selection set chosen.

55

After the calling program prompts the user to select the shape, this
function performs the window operations and returns a selection set. The
program stores information regarding the color, layer, and other attributes
of the shape. It then checks to ensure that the entity selected is not a
circle or a polyline. The shape is moved to a temporary layer for easier
manipulation. The shape is converted to a polyline, then exploded. The
new elements are appended to pshape. The original attributes are reset

and pshape is returned.

sort2
File: MAP.LSP
Purpose: sort two values in ascending order
Called by: intershp
Calls: none
Arguments: i,j

Data returned: i and j sorted in ascending order.
The function checks for j < 1. If this is true, they are swapped and returned

to the calling program. Otherwise they are returned directly to the calling

program.

56

startwith

File:

Purpose:

Called by:
Calls:
Arguments:

Data returned:

LMUTIL.LSP

Receives a list of entity names in a shape sorted
into consecutive order, and the name of the entity
to start the output list. Shifts the list to start with
the specified entity.

c:map, c:lateral

none

entlist, entname

list containing the same elements in entlist,

starting with entname.

The function takes elements one by one from the beginning of entlist,

checks it against entname, and if it does not match, appends it to the

temporary listb. When entname is found, listb is appended to the end of

the remainder of entlist.

c:thickmap

File:

Purpose:

Called by:

THICKMAP.LSP
AutoCAD command to plot the thickness profile of
a shape.

Process Design Menu, AutoCAD command line.

57

Calls: shapesel, arc2line, x-min, Xx-max, y-min, y-max,
linter
Arguments: none

Data returned: none

The function prompts the user to window a shape, which undergoes
standard processing. the minimum and maximum coordinates are
identified. The user is prompted for a starting point of the thickness map,

and a baseline is drawn from this point.

The shape is scanned from left to right. At each endpoint, the vertical
distance from that endpoint to the line segment directly above or below it
is calculated. This distance is then used to plot the thickness curve above

the baseline.

58

X-max, x-min, y-max, y-min

File:

Purpose:
shape

Called by:

Calls:

Arguments:

Data returned:

ALLUTIL.LSP

Determine the extreme x and y coordinates of a

c:thickmap, c:lateral

none

entlist

real number x or y coordinate of the maximum or
minimum point, as described by the function

name.

The operation of these functions is identical except for the coordinate tested

and the "greater than" or "less than" test condition. The starting endpoint

of the first entity in the list is initially assigned to the variable xmax, xmin,

ymax or ymin. The starting endpoint of each successive entity is tested

against this value. If it is larger (for max functions) or smaller (for min

functions) than the previous value, the value is replaced. After all entities

are tested, the extreme value is returned.

59

5.0 CONCLUSION

5.1 Results

The goal of this work was to develop software tools to assist the roll
designer in designing and evaluating a rolling sequence for complex
profiles. Tools were developed to automatically add a machining envelope
and draft angles, and to generate an intermediate preform from a starting
and final shape. Evaluation tools developed in this project will display the
thickness distribution of a part and map the lateral material movement

required to roll a target shape from a given profile.

The software developed is currently in use in industry. There has been a
good correlation between results obtained from finite element analysis and
experimentation, and the results expected from using the evaluation tools.
In most cases, it was possible to attain satisfactory roll fill in the first run.
In almost all cases where fill was not achieved, the region which did not fill

was identified as questionable in the preliminary design stage.

5.2 Discussion

The software models, while useful, still require a skilled and experienced
roll designer to evaluate their output. The information presented by

thickness mapping and lateral flow mapping is accurate, but its effect on

60

roll fill is strictly qualitative. There is no known way to quantify the effect
of increased lateral flow or the amount of thickness variation. These effects

are relative, and simply provide another tool which, with experience, will

become increasingly useful to the designer.

5.3 Future Work

As noted, at this time there is no quantifiable relationship between lateral
flow or thickness distribution and profile fill. A study relating various
shape factors with the evaluation tools would be useful. Clearly, the
relationships exist. We now have the tools to observe the relationships, but

cannot yet predict them.

An improved quantitative understanding of the relationship between profile
fill and such characteristics as lateral flow and thickness mapping may lead
to further automation of the design process by defining limits of lateral flow,

using these limits to develop new shapes.

61

REFERENCES

1.

Z. Wusatowski, Fundamentals of Rolling Pergamon Press, Oxford.
1969.

A.G. Mamalis, J.B. Hawkyard and W. Johnson, "Cavity Formation in
Profiled Ring Rolling", International Journal of Mechanical Sciences,
1975 vol 17. pp. 669-672.

J.T. Winship, "Cold Ring Rolling Warms Up", American Machinist,
January, 1976.

J.B. Hawkyard and P.M. Ingham, "An Investigation into Profile Ring
Rolling", Proceedings of the Ist International Conference on Rotary
Metal-working Processes, London, UK, November 20-22, 1979, pp.
309-320.

W. Johnson and A.G. Mamalis, "Rolling of Rings", International
Metals Review, 1976, Vol.4 pp. 137-148.

D.Y. Yang, J.S. Ryoo, J.C. Choi, and W. Johnson, "Analysis of Roll
Torque in Profile Ring Rolling of L-Sections", Proceedings of the 21st
International Machine Tool Design and Research Conference, 1981,
pp. 69-74.

K.F. Hutcheon and J.B. Hawkyard, "Production of Jointless Light
Aluminum Cycle Wheel Rims by Ring Rolling", Proceedings of the
24th International Machine Toll Design and Research Conference,

1983, pp. 13-18.

62

10.

11.

12.

13.

14.

G. Moussa and J.B. Hawkyard, "Studies of Profile Development and
Roll Force in Profile Ring Rolling", Proceedings of the 3rd
International Conference on Metal Working Processes, Kyoto 1984.
M.M. Vyas, C.J. Romberger, "Development of Roll Passes for Special
Structural Sections Using Computer-Aided Design Techniques. 2nd
International Conference on Steel Rolling. Duesseldorf, Germany.
1984.

T. Hirai, T. Katayama, S. Kusada and J.B. Hawkyard, "Design
Concept of Projection Forming in Profile Ring Rolling." original source
unknown.

G. Moussa and J.B. Hawkyard, "Investigation into the Multi-stage
Ring Rolling of Alloy Bicycle Wheel Rims", International Journal of
Mechanical Sciences, 1986, vol 28, pp. 841-851.

U. Koppers, H. Wiegels, P. Dreinhoff, J. Henkel, and R. Kopp,
"Methods Applied to Reduce Material and Energy Expenditures in
Ring Rolling", Stahl U. Eisen, 106, July 1986, pp. 789-795.

P. Drienhoff and R. Kopp, "Methods for Economic Use of Material and
Energy in Ring Rolling", Institut fuer Bildsame Formaeburg, RWTH,
Aachen, Germany.

P. Boucly, J. Oudin and Y. Ravalard "New Approach for Predicting
Ring Rolling Procedure", Proceedings of the 2nd International
Conference on Technology of Plasticity, Advanced Technology of
Plasticity, 1987, vol. 11.

63

15.

16.

17.

18.

19.

20.

21.

F. Burnett, "Ring Rolled Technology for Aircraft Engine Parts",
Proceedings of the 1st International Conference on Ring Rolling, Ohio
University, 1987, Athens, Ohio.

E. Doege and M. Aboutour, "Simulation of Ring Rolling Process",
Proceedings of the 2nd International Conference on Technology of
Plasticity, Advanced Technology of Plasticity, 1987, vol. 11.

D.W. Kim and H.Y. Kim, "Preform Design for Axisymmetric Closed-
Die Forging by the Upper Bound Elemental Technique (UBET)",
Computer Modeling and Simulation of Manufacturing Processes.
Winter Annual Meeting of the American Society of Mechanical
Engineers. pp. 155-164, 1990.

Y-K. Hu and W.K. Liu, "Simulation of Ring rolling Process By
Arbitrary Lagrangian Eulerian Finite Element Method." Computer
Modeling and Simulation of Manufacturing Processes. Winter Annual
Meeting of the American Society of Mechanical Engineers. pp. 225-
240. 1990

N. Kim, S Machida, S. Kobayashi, "Ring Rolling Process Simulation
by the Three Dimensional Finite Element Method" International
Journal of Machine Tools and Manufacture v30 n4 pp569-577, 1990.
V.B.S. Rachakonda, "Computer Aided Design of Ring Rolling
Process", Masters Thesis, Ohio University, Athens, OH. 1990.

B.S. Kang, S. Kobayashi, "Preform design in Ring Rolling Process by
the Three Dimensional Finite Element Method." International Journal

of Machine Tools and Manufacturing v.31 n.1 pp 139-151, 1991.

64

22.

23.

24.

25.

26.

27.

Y.H. Hahn and D.Y. Yang, "UBET Analysis of Roll Torque and Profile
Formation During the Profile Ring-Rolling of Rings Having
Rectangular Protrusions." Journal of Materials Processing Technology
v26, n3 pp267-280, 1991.

S.G. Xu, J.C. Lian, J.B. Hawkyard, "Simulation of Ring Rolling using
a Rigid-Plastic Finite Element Model." International Journal of
Mechanical Sciences v33 n5 1991 pp 393-401. 1991.

E. Eruk and R. Shivpuri, "A Summary of Ring Rolling Technology--I.
Recent Trends in Machines, Processes, and Production Lines,
International Journal of Machine Tools and Manufacturing. v32 n3
p379-398, 1992.

E. Eruk and R. Shivpuri, "A Summary of Ring Rolling Technology--1.
Recent trends in Process Modeling, Simulation, Planning, and
Control, International Journal of Machine Tools and Manufacturing.
v32 n3 p 399-413, 1992.

F. Masri, Using AutoCAD in the Analysis and Design of Rolls. Masters
Project Report. Ohio University, Athens, OH, 1992.

J.S. Gunasekera, A.F. Ali, A. Rathinavel, C.E. Fischer, The
Development of a Computer Model to Assist in the Design of
Compression Rolls. Final Report to United Technologies, Pratt &
Whitney. Ohio University. 1993

65

APPENDIX 1: PROCESS DESIGN SECTION FROM
ROLLCAD USERS MANUAL

The following pages are taken directly from the ROLLCAD version 3.01
user’s manual. They describe the procedure for running all of the process

design programs described in this thesis. Execution is within the AutoCAD

drawing editor.

66

PROCESS DESIGN

Selecting PROCESS DESIGN from the ROLLING menu accesses the
level 2 PROCESS DESIGN menu. The options in this file are geometric
manipulation and analysis tools provided for assisting in the development
of roll designs. The options in this file are:

Machining Envelope

Add Draft Angles

Thickness Mapping

Auto Lineup

Lateral Flow Mapping

Area Mapping

Generate Intermediate Shape

Fillet / Edge Break

The purpose and use of each of these options is described in the following
sections. They should be used after the desired part profile is drawn.

The recommended procedure for designing rolls with ROLLCAD is:

Draw the desired final part profile in AutoCAD
Add the machining envelope to the part
Add draft angles to the part

If the profile is complex, run thickness mapping to get a
better idea of the required thickness distribution in the part.

Develop a plan for rolling the part. This may include one or
more preforms, bending, or a welded assembly as discussed in
the introduction. For simple profiles, it may be possible to
form the part directly from rectangular stock

67

PROCESS DESIGN Introduction

6 - Using the thickness map as a guide, draw a preform shape
with a similar thickness distribution, but with smooth
transitions which will fill more readily than sharp corners.

7 - Use lateral flow mapping to gauge the quality of the preform.
You may wish to experiment with several different preforms to
minimize the peaks in the lateral flow graph.

8 - Ifone preform does not prove adequate, a second preform may
be generated using area mapping and generate intermediate
shape. After this shape has been generated, lateral flow
mapping can once again be used to gauge preform quality.
The intermediate shape can be modified using the stretch
command from the AutoCAD Modify menu.

9 - After suitable shapes have been drawn, add fillets and edge
breaks to all the shapes.

10 - Draw the roll profiles using the shapes generated.

11 - Create a PATRAN input file and analyze the roll sequence
using a finite element analysis package such as ANTARES.

Notes on Program Execution

For these options to run properly, the shape must be drawn in the XY
plane (Z = 0 at a!l points). All line elements must be connected. (Segments
whose endpcints are close but not identicai may cause problem with some
modules.) The best way to achieve this is to draw line segments one after
another as a chain, or to use endpoint snaps when constiucting the profile.

In all of these options, arcs are approximated as a series of line
segments determined by chords of the arc. The arc length of the chord is
less than 20°.

If a program does not run the first time on a selected shape, try again

making sure to select the shape properly - i.e. make sure to enclose all the
elements of the desired shape within the window.

68

PROCESS DESIGN Introduction

Some of the programs do not run properly if the shape selected is a
polyline. If this happens, the program will stop, and you will see this
message:

Close/Join/Width/Edit vertex/Fit curve/Spline
curve/Decurve/Undo/eXit<x>:

Press <enter> to eXit the polyline option, then explode both shapes and try
the command again.

If a program does not seem to do anything for a few minutes, chances
are that it hung-up. To interrupt the program, just type <ctrl-c> and start
over. Note that if you press any key other than <ctrl-c>, the computer
hangs-up and the only way to regain control is to reboot the computer.

If you suspect a bug in the program, immediately save the current
drawing file, and send it, with a detailed description of the problem
encountered and the circumstances under which it arose.

Any shape generated by a process design program will be drawn on
the current layer. If you want to place the generated drawing on a
separate layer, make that layer the current layer before running the
particular program.

Throughout ROLLCAD several layers are created for temporary use.
All layers begin with the letters OU. You should avoid drawing anything on
these layers.

69

PROCESS DESIGN Machining envelope

Machining Envelope

Rolling does not necessarily offer the degree of precision and
tolerance control necessary for the final product. Thus, the goal of profile
rolling is to form a near net shape part which will undergo machining
operations after rolling is completed. To ensure that enough material exists
outside the net shape part profile, a machining envelope is added around
the part. The Machining Envelope command utilizes the AutoCAD
"OFFSET" command to ease modification of the previously drawn part
profile. Machining Envelope is selected from the PROCESS DESIGN
menu. Execution proceeds as follows:

Pick a point on the ObjCCt: AN ARBITRARY POINT ON THE PROFILE TO IDENTIFY THE SHAPE
Enclose the object with a window: winbow mobpE I1s SELECTED AUTOMATICALLY

Enter the desired machining envelope in inches: nie mopimed proFiLE wiLL Be
DRAWN.
IF IT IS ACCEPTABLE, YOU SHOVULD ERASE THE
INITIAL PROFILE, IF NOT. ERASE THE NEW
PROFILE AND 7TRY AGAIN WITH A NEW
ENVELOPE DIME'SION.

70

PROCESS DESIGN Add draft angles

Add Draft Angles

In any roll design, vertical surfaces in the roll gap must have a slight
relief angle to keep the part being rolled from jamming in the roll. These
relief angles are referred to as draft angles. The Add Draft Angles utility
has been developed to ease the modification of part profile drawings to
include draft angles. Since draft angles may significantly increase the cross
sectional area of a profile, they should be added before any analysis
routines are run on the shape.

Add Draft Angles may be selected from the PROCESS DESIGN
menu, or by typing
Command: da

P i I e —

L4

L Select shape with 2. Select entity to 3. Select stationary 4, Indicate offset 5, Result
window be modified encpoint drection

Select the desired shape with a window: WINDOW THE SHAPE TO BE MODIFIED.
WINDOW MODE IS SELECTED AUTOMATICALLY

Select the entity to be modiﬁed, or ENTER to quit: PICK A POINT ON THE VERTICAL
EDGE TO
BE MOVED. PRESS ENTER OR THE RIGHT
MOUSE BUTTON TO EXIT THE UTILITY

Select the stationary endpoint: SELECT ONE OF THE ENDPOINTS OF THE ENTITY JUST SELECTED
ENDPOINT SNAP MODE IS AUTOMATICALLY
SELECTED. IF THE POINT SELECTED IS NOT
ON THE ENTITY. AN ERROR MESSAGE WILL
RESULT. BE SURE THAT YOU ARE SELECTING
A SINGLE LINE AND NOT TWO CONNECTED
LINES.

Enter the angle (degrees), or press ENTER or the right mouse button

to accept default <default angle> ! THE DRAFT ANGLE IS SPECIFIED FROM VERTICAL, NOT FROM
THE CURRENT ENTITY ANGLE. THE DEFAULT
ANGLE IS THE LAST ANGLE USED. OR 5.0 FOR
THE FIRST RUN.

71

PROCESS DESIGN Add draft angles

Indicate the offset direction with a point left or right of the line :

DRAWING WILL BE
MODIFIED. AND THE SEQUENCE REPEATS.

Note: Due to the way arcs are handled internally, attempts to modify
a line which intersects an arc may produce unexpected results. If this
occurs, exit the utility and use the U (undo) command to step back through
the modification.

72

PROCESS DESIGN Thickness mapping

Thickness Mapping

As noted above, a profile has the best chance of filling if the material
distribution in the preform closely matches the material distribution in the
final shape. In some parts with complex profiles, the thickness distribution
may not immediately be apparent. For these situations, a thickness
mapping utility has been developed to plot the material distribution across
the part profile.

Thickness Mapping is selected from the PROCESS DESIGN menu.
Execution then proceeds as follows:

Select the desired shape with a window: WINDOW THE SHAPE TO BE MODIFIED.

WINDOW MODE IS SELECTED AUTOMATICALLY

Select starting point of thickness map: sware wiLL Be brAWN 10 THE RIGHT OF THE
INDICATED POINT. THE MAPPED SECTION WILL
BE THE SAME WIDTH AS THE PART.

AN

73

PROCESS DESIGN Lateral flow mapping

Lateral Flow Mapping and Autolineup

While thickness mapping provides a tool for analyzing the material
distribution of a single part, Lateral Flow Mapping provides a tool for
comparing the material distribution of consecutive shapes. Specifically, the
graph produced gives a relative indication of the lateral flow required to
form the second shape from the first shape. The height of the graph at
each section indicates how far material from that section in the first shape
must move laterally to form the second shape. Thus, a sequence of shapes
which produces a flatter curve is more likely to fill than one with higher
peaks in the graph.

It is important to note that this is only a preliminary analysis tool.
It must be weighted against other factors affecting lateral flow, which must
be determined by experience. It is most useful in fine tuning preforms to
optimize thickness and height of certain sections. This is illustrated in
figure 14 where it may be seen that preform 2 requires less lateral flow
than preform 1 to fill the desired profile.

I —

Target Shape

Dabove 1 flow fo fhe left

Preform 1 below 1+ flow to the right

above ' flow to the left

below '+ flow to the right
Preform 2

Figure 4.14 Using Lateral Flow Mapping
to compare preform shapes.

Since the material flow in the roll gap varies with the position of the
preform as it is inserted, Lateral flow mapping must account for this
positioning. Hence, the positioning of the two shapes relative to each other

74

PROCESS DESIGN

Lateral flow mapping

is important in this utility. For symmetric shapes, a utility named
Autolineup has been provided to insure this positioning is correct. For
non-symmetric shapes, you must carefully locate the shapes above and

below each other.

If you are using symmetric shapes, you

should run Autolineup

before Lateral flow mapping. It is called from the PROCESS DESIGN

menu, and runs as follows:

Select the shape to be moved with a window: THE CENTER OF THIS SHAPE WILL

Select the reference shape with a window:

BE LINED UP WITH THE CENTER OF
THE NEXT SHAPE SELECTED (THE
REFERENCE SHAPE).

AFTER THIS SHAPE IS SELECTED. THE FIRST
SHAPE IS ALIGNED, AND THE UTILITY IS
EXITED. YOU MAY NOW PROCEED TO LATERAL
FLOW MAPPING

Lateral Flow Mapping is selected from the PROCESS DESIGN menu,

or by typing
Command: lateral

Execution proceeds as follows:

Select the initial shape with a window: winpow THE DESIRED PREFORM SHAPE. WINDOW

MODE IS SELECTED AUTOMATICALLY

Select the final shape with a window: winbow THE DESIRED TARGET SHAPE

Type in the y coordinate scaling factor of the graph <10>: ror mostpLots.

THE GRAPH IS VERY FLAT. IT IS NECESSARY
TO MAGNIFY THE Y SCALE OF THE GRAPH TO
OBTAIN USEABLE RESULTS

Type in the graph resolution (10 - 30) <20 default>: caicutations are mapE T

75

UNIFORM INTERVALS ALONG THE SHAPES.
MORE INTERVALS PROVIDE INCREASED
ACCURACY BUT INCREASE EXECUTION TIME.
20 IS SUITABLE FOR MOST SHAPES. PLOTS
WHICH APPEAR AS JAGGED LINES INSTEAD OF
SMOOTH CURVES MAY BENEFIT FROM MORE
CALCULATION INCREMENTS.

PROCESS DESIGN Area mapping

Area Mapping
and
Generate Intermediate Shape

In some situations involving complex shapes, the difference between
the preform and the final shape may be too great to obtain fill even with
proper material distribution in the preform. For these cases, you may find
it helpful to first form a shape which is between the preform and final
shape. Area Mapping performs a mathematical analysis of the preform
and final shape you select and stores the data. Generate Intermediate
Shape uses the data generated in Area Mapping to produce an average of
the two shapes. You specify the weighing of each shape as the mapping
ratio factor, with O being the initial shape and 1 being the final shape. Thus
0.5 is half way between the two shapes.

Area Mapping must be executed once before Generate Intermediate
Shape. After that, Generate Intermediate Shape may be called repeatedly
to generate shapes with different mapping ratios. To work with different
preform or final shapes, execute Area Mapping again.

IMPORTANT NOTE : Area Mapping processes a large number of elements,
and execution time may be very slow. Due to the nature of the AutoCAD
database, it is necessary to delete all "undo" information while running
Area Mapping. This means that changes to the drawing made before Area
Mapping runs cannot be changed using the undo command afterwards.
Also, execution time may be significantly enhanced by ending the drawing
and re-entering it immediately before executing Area Mapping. This is
especially true if the computer you are using begins near continuous hard
disk access during execution. If this occurs, execution time may well jump
from a matter of minutes to a matter of hours. The only practical solution
is to press <ctrl-c>, end the drawing, and start over.

Both Area Mapping and Generate Intermediate Shape are accessed
from the PROCESS DESIGN menu. Execution Proceeds as follows:

SELECT AREA MAPPING

Select initial shape : WINDOW THE PREFORM SHAPE. WINDOW MODE IS SELECTED AUTOMATICALLY

Select final shape : WINDOW THE FINAL SHAPE. AGAIN, WINDOW MODE IS SELECTED
AUTOMATICALLY.

76

PROCESS DESIGN Area mapping

THE PROGRAM WILL NOW RUN FOR ANYWHERE FROM A FEW SECONDS TO AROUND 10 OR 15 MINUTES.
DEPENDING ON THE COMPLEXITY OF THE SHAPE AND THE SPEED OF THE COMPUTER BEING USED. IT MAY BE
INTERRUPTED AT ANY TIME BY PRESSING <CTRL-C>. IF THE DRAWING IS ALTERED. IT MAY BE CORRECTED BY USING

UNDO BACK.

SELECT GENERATE INTERMEDIATE SHAPE

Enter the mapping ratio factor (O to 1) AS DISCUSSED ABOVE. NUMBERS OUTSIDE

THE RANGE ARE NOT ACCEPTED.

77

PROCESS DESIGN Fillets/edge breaks

Fillet / Edge Breaks

The Fillet / Edge Breaks command is identical to the AutoCAD
Fillet command found under the Modify menu. It is included here for
convenience. You may refer to the AutoCAD reference manual for a
detailed description of the function. The command is invoked by selecting
Fillet / Edge Breaks from the PROCESS DESIGN menu, or Fillet from the
Modify menu, or by typing fillet at the Command: prompt. AutoCAD first
responds with three options:

Polyline/Radius/<Select two objects>:

If no other option is specified, AutoCAD expects you to point to two lines or
arcs, which it will connect with a smoothly fitted arc of the specified radius.
To specify this radius,

type "r" at the Polyline/Radius/<Select two objects>: prompt. AutoCAD
then prompts:

Enter fillet radius <current>:

You may press <enter> to maintain the current radius, or specify a new
one.

You also have the option of filleting an entire polyline at once. First,
join the desired shape using the EDIT POLYLINE command. Then execute
the following sequence:

Command: fillet

Polyline /Radius /<Select two objects>: p
Select 2D polyline: PICK A POINT ON THE POLYLINE. THE SHAPE WILL BE FILLETED.

78

Appendix 2: AutoCAD ENTITY HANDLING AND AutoLISP

The ROLLCAD process design routines were written in AutoLISP, which is
AutoCAD'’s implementation of the LISP programming language. AutoLISP
is an integral part of the AutoCAD package, and includes commands to
manipulate the AutoCAD drawing database. This chapter provides a
synopsis of how AutoCAD stores entity data in the drawing database, the
fundamentals of LISP programming, and techniques for manipulating the
AutoCAD drawing database with AutoLISP. For a complete discussion of
AutoLISP, refer to the AutoLISP® Programmer’s Reference Manual.

A2.1 Entity Data Handling

As drawing entities are created in AutoCAD, they are stored in the drawing
database file. Each drawing entity entry in the database has associated
data which defines the entity. The data is sorted by group codes which
indicates the type of data in the group (line type data, coordinates, layer
data, etc). The codes are the same as those used by the DXF (ascii Drawing
eXchange File) format. For more information, refer to the AutoCAD
Customization Manual. The entity data groups and associated group codes

for groups used in the process design software are:

79

0 Entity Type

5 Entity Handle

6 Line Type

8 Layer Name

10 Primary Coordinate (start point of line, center of arc.)
11 End Point of Line

40 Arc or Circle Radius

50 Start Angle of Arc

51 End Angle of Arc

Table A2.1 Entity Data Group Codes

These values may be accessed and modified using AutoLISP functions

which will be described later in this chapter.

e e
6
(3,27
(1,2> D s o
4
S S
(L, » 1 © O

Figure A2.1 Sample drawing illustrating entity data

A simple drawing is shown in figure A2.1 to illustrate these codes. The

drawing data will be represented as follows:

80

Entity 1:

-1 | <6000001> 8 Digit entity name assigned by AutoCAD

O | LINE Entity type

6 Blank line type indicates default for line type

8 | PREFORM Layer name

10 | 1.0, 1.0, 0.0 x,y,z coordinates of start point (marked 's’)

11 |5.0, 1.0,0.0 x,y,z coordinates of end point (marked 'e’)
Entity 6:

- <6000024> 8 Digit Hex entity name assigned by AutoCAD

ARC Entity type

8 | PREFORM Layer name

10 | 8.0, 3.0, 0.0 X,y,z coordinate of center

40 |1 1.0 radius of arc

50 | 270 start angle of arc (cw from positive x axis)

5110 end angle of arc

This drawing will be used later to illustrate entity manipulations in

AutoLISP and ROLLCAD.

A2.2 Fundamentals of AutoLISP

LISP (for LISt Processor) is a programming language developed for artificial

intelligence programming. A LISP program is made up of a sequence of

expressions. Each expression is a list with the form

(function-name [argument] [argument] ...).

81

Each expression begins with a left parenthesis and consists of a function
name and an optional list of arguments to that function. Every expression
returns a value that can be used by a surrounding expression. Hence LISP
functions can be (and frequently are) nested.

A2.2.1 LISP Data Types

Arguments which are not functions must be data of some type. The data

types are

. Symbols or Variables

. Lists

. Strings

. Integers

. Real Numbers

. File descriptors

. AutoCAD entity names

. AutoCAD selection sets (described later).
Symbols or Variables
Like most programming languages, variables (or symbols, the terms are
used interchangeably) may be assigned values using an assignment
statement. This value can be any other valid AutoLISP data type.

Lists

82

Lists are the fundamental data form in LISP. A list is a set of data enclosed
in parenthesis. The elements of a list can be any combination of valid
AutoLISP data types, including integers, strings, entity names, or other
lists.

Strings, Integers, Real Numbers

Strings, Integers, and Real Numbers are common to all programming

languages. No description is necessary here.

File Descriptors

File descriptors are alphanumeric labels assigned to files opened by
AutoLISP. This descriptor is assigned when the file is opened, and
referenced any time the file is accessed (for reading or writing.)

Entity Names

An entity name is a numeric label assigned to entities in a drawing. This

label is referenced by AutoLISP to allow selection of entities for processing.

Selection Sets

Selection sets are groups of one or more entities. They are returned by any

AutoCAD entity selection function (pick point, window, crossing, etc.) or by

83

AutoLISP filters (all entities on a certain layer, all entities with a given color,

all arcs, etc).

A2.2.2 Evaluation of LISP Functions
The AutoLISP interpreter is an integral part of AutoCAD. The interpreter

evaluates LISP expressions in sequential order. Nested expressions are

evaluated from the inside out. As noted, all LISP expressions are lists with

the form

(function-name [argument] [argument] ...).
where the arguments are any valid AutoLISP data type or expression, and
are separated by spaces. The specified function acts on the arguments.
For example, a simple addition would take the form

(+34)

which would return the value 7. In cases where the order of the arguments
is important, the arguments are treated in the order in which they appear.
For example, the subtraction statement

(-34)

returns the value -1, while the statement

84

(-4 3)

returns the value 1.

Nested expressions are evaluated from the inside out. The expression

(+5(*43)

returns the value 17.

Variables are assigned values using the setq command, which has the form

(setq varl exprl [var2 expr2]...).

The statement

(setq a 5.0)

assigns the value 5.0 to the variable a. The statement

(setg b (/ 20 5))

assigns the value 4 to the variable b.

85

Any variable which has not explicitly been assigned a value has the value
nil. This is the equivalent of a logical FALSE. A variable may also be
explicitly assigned the value nil. LISP contains logical functions (and, or,
not, etc) which evaluate to T (logical TRUE). However, any expression with
a non-nil value evaluates to T for purposes of logical testing. For example,

using the if function on the following case.

(setq a 3)
(setq b 4)
(if (+ a b)

would evaluate to true, and the if condition would be executed. However

(ifc....

whcre ¢ has not been previously defined, would evaluate false, and the if
condition would not be executed.

£2.2.3 Some Comnon AutoLISP Functions

The operation of many LISP functions (if, open, read, print} should be
apparent to anyone with programming experience. However, LISP also
contains many functions which are unique to LISP or AutoLISP. A brief
introduction to these functions is included here. For a complete

discussion, refer to a text on LISP.

86

(append expr ...)

This takes any number of lists and combines them into one list. For

example:

(append ’(a b) '(c d)) returns (a b cd).

(assoc item assoc-list)

The function searches the association list assoc-list for item and returns

the entry. For example, assuming the association list arcl is defined as

((name arc) (radius 1.5) (center (3.2 2.5 0.0)) (start_ang 23) (end_ang 56))

then

(assoc 'center arcl) returns (center (3.2 2.5 0.0)).

(cons new-first-element list)

This adds a new first element to the specified list. For example:

(cons ’a’(b c d)) returns (abcd).

(list expr ...)

87

This functions assembles any number of expressions (expr) and assembles

them into a list. For example:

(list’a’b 'c) returns (abc)
(list’a’(b c) ’'d) returns (a (b c)d).
(car list)

This function returns the first element of list. If list is empty, it returns nil.

For example:

(car '(a b c)) returns a
(car '((a b) c)) returns (a b)
(cdr list)

This functions returns a list containing all but the first element of list. If

list is empty, it returns nil

(cadr list), (cddr list), (caddr list), etc.

car and cdr may be chained up to 4 levels. For example, given the list x

with the value

((ab)cd)

88

(caar x) is equivalent to (car (car x)) and returns a

(cdar x) is equivalent to (cdr (car x)) and returns (b).

In AutoLISP, car, cadr, and caddr return the first, second, and third
element of a list, respectively. Thus, they may be used to obtain the X, Y,

and Z coordinates of a point. For example:

(setq ptl (3.2 4.2 0.0))

then
(car ptl) returns 3.2 which is the X coordinate
(cadr ptl) returns 4.2 which is the Y coordinate
(caddr ptl) returns 0.0 which is the Z coordinate.

(nth n list)

This function returns the nth element of list, where n is the number of the

element to return (zero is the first element). For example:

(nth 3’(abcde)) returns d.

(defun function-name argument-list expression)

89

The defun function defines a function with the name function-name.
Following the function name is a list of arguments (possibly empty), and the

sequence of expressions to be evaluated. For example:

(defun add10 (x)
(+ 10 x)
)

then
(add10 5) returns 15.

Adding c: to the beginning of the function name defines the function as an

AutoCAD command. Thus the expression

(defun c:pmake())

defines an AutoCAD command pmake with no arguments.

A2.3 AutoLISP Entity Handling
AutoLISP provides access to the entity data in the drawing database.
Functions are included for processing both single entities and selection sets

of several entities. A discussion of entity processing functions follows.

(ssget [mode] [pt1 [pt2]])

90

The ssget function returns a selection set, which is a group of several
entities selected by the user or through an attribute filter. If no arguments
are present, ssget prompts the user through standard object selection to
select objects. The user may then use any standard selection method (ie

window, crossing, pick point, with or without snap.)

Several mode options are available. Two which are significant for ROLLCAD

are "w" and "x."

(ssget "w" ptl pt2) selects all entities inside the

window from ptl to pt2.

(ssget "w" (setq crnr (getpoint)) (getcorner crnr))
accepts two input points from the
user and draws an "elastic" window

box around the selected elements.

(ssget "X" filter-list) returns all entities matching
the condition specified in the
filter list.

A filter-list is an association list which specifies which property (or

properties) of the entities are to be checked, and what values constitute a

match. For example:

91

returns a selection-set containing all circles in the drawing (recall group

code O is the entity type.)

(entget ename)

This function retrieves the entity whose name is ename from the database,
and returns a list containing the entity definition data. The data is coded
as a LISP association list, from which items may be extracted by means of
the assoc function. Thus, referring to figure A2.1, the following statement

retrieves the entity data for entity 1.

(entget entityl) returns ((-1 . <Entity name: 60000001>)
(O . "LINE")
(8 . "PREFORM)

(10 1.0 1.0 0.0)
(115.01.01.0)

The statement

(setq pt3 (cdr (assoc 10 (entget entityl))))

assigns the coordinates of the starting endpoint of entity 1 to the variable

pt3.

92

(entmod elist)

entmod updates the drawing database by replacing the entity whose name
is specified in the -1 group in elist. This allows LISP to modify a drawing

entity directly. For example:

(setq new-entl (subst '(10 1.0 1.5 0.0)
(assoc 10 (entget entityl))
entityl)

)

(entmod new-entl)

changes the Y coordinate of the starting endpoint of entityl to 1.5, and
then replaces the old entity data with the new data in the drawing

database.

(entnext [ename])

If called with no arguments, entnext returns the entity name of the first
nondeleted entity in the database. If entnext is called with an entity name

argument, it returns the entity name of the first nondeleted entity following

ename in the database. If there is no next entity, nil is returned.

(entlast)

93

This function returns the name of the last entry in the drawing database.
This function can be used to mark the endpoint of the database before new

entities are created so that the new entities can be accessed using entnext.

94

APPENDIX 3: LISP SOURCE CODE

The LISP source code for the process design routines is given on the
following pages. The programs are grouped by the file in which they are
contained. There are six program files:

. ALLUTIL.LSP

. DRAFTANG.LSP

. LATERAL.LSP

. LMUTIL.LSP

. MAP.LSP

. THICKMAP.LSP

The programs are discussed in chapter 5.

95

FILE ALLUTIL.LSP

R R R R R RS S R R R RSS2 Rt Rt AR R R RS RER R R R

’
: function arc2line by Chris Fischer
IR R E RS R R RS R R SRR RS R R RS RS RE R R R RS

’
; Modified by Farid Masri
’
; approximates arcs as a series of line segments. the arc is
; divided into equal segments of maximum angle maxdel. the endpoints of
; each of these segments is joined with straight line.
’
H alpha0 : starting arc angle w.r.t. x axis
; alphaf : end arc angle w.r.t. x axis
; dalpha : included angle of arc
: del : segment angle
: nsegs : number of segments
’ ’
(defun arc2line (entlist / retlist)
H (setq rotdir rd)
(setq ccolor (getvar "cecolor")); get current default color
(setqg retlist nil)
(setq maxdel 0.3490658) ; radians, or 20.0 degrees

(while (setq current (car entlist))
(setq entlist (cdr entlist))
(setq enttype (read (cdr (assoc 0 (entget current)))))
(1f (= enttype ‘line)
(setq retlist (append retlist (list current)))
) : end if {enttype = line}
(if (= enttype ‘arc) (progn
; find the original color of the current arc
(setq arccol (cdr (assoc 62 (entget current))))
(setqg arclayer (cdr (assoc 8 (entget current)))
(if arccol
(command "color" arccol)
;else
(progn
(setqg layinfo (tblsearch "layer" arclayer)); if entity color does
(setq arccol (cdr (assoc 62 layinfo))); not exist, get layer color
(command "color" arccol)
) ;end progn
y; end if {arcol}

)

;find the center, radius, start and end angles, and endpoints
;of the arc.
(setq cen (cdr (assoc 10 (entget current))))
(setg rad (cdr (assoc 40 (entget current))))
(setq alpha0 (cdr (assoc 50 (entget current)
(setq alphal (cdr (assoc 51 (entget current)

(if (> alphaO alphal)
(setq alphal (+ alphal (* 2 pi)))
) ; endif {> alpha0 alphal}
(setq apt0 (ptonarc cen rad alpha0))
(setq aptl (ptonarc cen rad alphal))

;identify the endpoints of the arc from the endpoints of the
;adjoining entities

(if retlist
(setq lastendpt (cdr (assoc 11 (entget (last retlist)))))
;else
(progn
;****************begin copy blOCk
(setqg lastent (last entlist))
(setq lasttype (read (cdr (assoc 0 (entget lastent)))))

(if (= lasttype ‘arc)(progn

96

;identify the endpoints

(setq ncenter (cdr (assoc 10 (entget lastent))))
(setq nradius (cdr (assoc 40 (entget lastent))))
(setq nalpha0 (cdr (assoc 50 (entget lastent))))
(setq nalphal (cdr (assoc 51 (entget lastent))))
(setq lastendptO0 (ptonarc ncenter nradius nalpha0))
(setq lastendptl (ptonarc ncenter nradius nalphal))

(if (or (pt= lastendpt0 apt0) (pt= lastendptl apt0)) ; aptO
(if (pt= lastendpt0 apt0) ;coincides with
(setq lastendpt lastendptO) ;lastendpt
;else {pt= lastendptl apto0}
(setq lastendpt lastendptl)
) ; endif {pt= lastendptO apto0}
;else
(1f (pt= lastendptO0 aptl)
(setq lastendpt lastendptO)
;else {pt= lastendptl aptl}
(setq lastendpt lastendptl)
) ;endif {pt= lastendptO aptl}
) ;endif {or (pt= lastendptO ...}
) ; end progn
;else {= lasttype line}
(setq lastendpt (cdr (assoc 11 (entget lastent))))
) : end if {= lasttype ‘arc}

;****************end copy block

)) : end progn, endif {retlist}
(setq nextent (car entlist))

(if (not nextent) ;if current is the last entity, select the
(setq nextent (car retlist)) ;first entity in the shape
) ; endif {not nextent}

(setq nexttype (read (cdr (assoc 0 (entget nextent)))))
(if (= nexttype ‘line)

(setq nextendpt (cdr (assoc 10 (entget nextent))))

) : endif {nexttype = line}

; 1f the entity is an arc, find the first endpoint

(if (= nexttype ‘arc) (progn
;identify the endpoints
(setq ncenter (cdr (assoc 10 (entget nextent)))
(setq nradius (cdr (assoc 40 (entget nextent)))
(setq nalpha0 (cdr (assoc 50 (entget nextent)))
(setq nalphal (cdr (assoc 51 (entget nextent)))
(setq nextendptO (ptonarc ncenter nradius nalph
(setq nextendptl (ptonarc ncenter nradius nalph

)
)
)
)
a0))
al))

(if (pt= lastendpt apt0) ;identifies aptl of current arc as
;second endpoint
(if (pt= nextendptO aptl)
(setq nextendpt nextendptO)
;else
(setq nextendpt nextendptl)
) :endif {pt= nextendptO aptl}
;else {pt= lastendpt aptl}
(if (pt= nextendptO apto0)
(setq nextendpt nextendptO)
;else
(setq nextendpt nextendptl)
) ;endif {pt= nextendptO aptO}
) :endif {pt= lastendpt apt0}
)) : end progn end if {= nexttype ’arc}

97

; find all the points on the arc, and draw the line segments

(setq dalpha (- alphal alpha0))

(setq nsegs (int (+ (/ dalpha maxdel) 1))) ; int (dalpha/maxdel) + 1
(setq del (/ dalpha nsegs))
(if (pt= aptO0 lastendpt) (progn ;pt= compares x & y coords

;returns t if within 0.0005"
(setq alpha (+ alpha0 del))
(while (< alpha (- alphal del))
;insure that angle is not close to but less than alphal
;due to roundoff errors
(setq endpt (ptonarc cen rad alpha))
(command "line" lastendpt endpt ""
(setq retlist (append retlist (list (entlast))))
(setq lastendpt endpt)
(setq alpha (+ alpha del))
) : end while
(setq endpt (ptonarc cen rad alpha))
(setq tlength (distance endpt nextendpt))
(if (> tlength 0.0005) (progn
(command "line" lastendpt endpt
(setq retlist (append retlist (list (entlast))))
(command "line" endpt nextendpt ""));end progn
; else
(command "line" lastendpt nextendpt "")
); end if
(setq retlist (append retlist (list (entlast))))
) ; end progn
; else {= rd cw}
(progn
(setqg alpha (- alphal del))
(while (> alpha (+ alpha0 del))
(setq endpt (ptonarc cen rad alpha))
(command "line" lastendpt endpt ""
(setq retlist (append retlist (list(entlast))))
(setqg lastendpt endpt)
(setq alpha (- alpha del))
) ; end while
(setq endpt (ptonarc cen rad alpha))
(setq tlength (distance endpt nextendpt))
(if (> tlength 0.0005) (progn
(command "line" lastendpt endpt "")
(setq retlist (append retlist (list (entlast))))
(command "line" endpt nextendpt ""));end progn
; else
(command "line" lastendpt nextendpt "")
); end if
(setq retlist (append retlist (list (entlast})))
)) ; end progn, end if {= rd ccw}
serase the original arc
(command "erase" current "")
)) : end progn, end if {= enttype arc}

(if (= enttype ‘circle) (progn

; find the original color of the current arc

(setqg arccol (cdr (assoc 62 (entget current))))

(setq arclayer (cdr (assoc 8 (entget current))))

(if arccol
(command "color" arccol)

;else
(progn
(setq layinfo (tblsearch "layer" arclayer)); if entity color does
(setq arccol (cdr (assoc 62 layinfo))); not exist, get layer color
(command "color" arccol)
) ;end progn

); end if {arcol}

(setq cen (cdr (assoc 10 (entget current))))
(setq rad (cdr (assoc 40 (entget current))))

98

(setq del maxdel)

(setq alpha del)

(setq lastendpt (ptonarc cen rad 0.0))

(setq firstendpt lastendpt)

(while (< alpha (- (* 2 pi) del))
(setq endpt (ptonarc cen rad alpha))
(command "line" lastendpt endpt ""
(setq retlist (append retlist (list(entlast))))
(setq lastendpt endpt)

(setqg alpha (+ alpha del))
) ; end while

(command "line" lastendpt firstendpt "")
(setqg retlist (append retlist (list(entlast))))
(command "erase" current "")
)) ; end progn, end if { = enttype circle}
) :end while
(redraw)

(command "color" ccolor); restor default color
(setq return retlist)

) ;end function

;*****************'k*'k**'k******

; FUNCTIONS INT and MOD

;'k****'k*******************'k************************* Kk dek ok ok ok ok ko dkk kok ok ok ok ok ok ok ok k

(defun int(x / ans um)
(setq um (getvar "unitmode"))
(setq ans (read (rtos x 5 2)))
(setvar "unitmode" um)
(setq return ans)

)

(defun mod(x y / a)
; returns the remainder of x / y
(setq a (int (/ x y)))
(setq b (* y a))
(setqg return (- x b))
)

LA SR SRR REE SRR RS RRRRRRRERERRREREs Rt Rttt Rt RR R R EE S

FUNCTION PTONARC

LR SRS R R REEEE SRS RERSRERREE RSttt RR RS RS REEERERRRR R R SRR

Finds the coordinates of a point on an arc in the xy plane given
the center, radius, and angle on the arc from the positive x axis.

defun ptonarc (center radius angle / xc yc xp yp)
(setq xc (car center))
(setq yc (cadr center))
(setq xp (+ xc (* radius (cos angle))
(setqg yp (+ yc (* radius (sin angle))
(setq return (list xp yp))
)

AR EEREEEEEEEE SRS RS R R SRS E s E R R E R R R R S R R R R R RS R R R R R ER R

FUNCTION PT=

ek KAk kA Ak A Ak kA AR AT A AR AR AR A AR IR AR A AR AR AR AR A RAA AR AR A A A A Ak hkhkhkkhkhkhkhk ok ko kk kk

.
’
.
’
.
’
’
’
.
’
-
’

))
))

: Tests two points for equality within 0.0005
(defun pt= (pointl point2 / x1 x2 yl y2)

(setq x1 (car pointl))

(setq x2 (car point2))

(setq yl (cadr pointl))

(setq y2 (cadr point2))

99

(setq return (and (< (abs (- x1 x2)) 0.0005) (< (abs (- yl1 y2)) 0.0005)))
) ; end function

;***
e A KA A KA A A AR AR A A AA AR A AR AR AAA AR A RAA A AR A A A A A A AR A A A AAA A A A A AR A A AR Ak Ak kkkkokkhhkkok

the following 4 functions obtain xmax, xmin, ymax, and ymin
points of the original shape. this porgram requires an entity
list of the the shape. by Farid Masri
AA A KA AAA A A A AL AR A A AR AR AAAAAKRAAAAA KR AR AR AR AAAA AR AR AR AA AR AR A ko k ok kkkkkdkhkok
(defun x-min (entlist)
(setq templ (car entlist))
(setq xmin (cadr (assoc 10 (entget templ))))
(setq templist (cdr entlist))
(while (car templist)
(setq temp2 (car templist))
(setq xtemp (cadr (assoc 10 (entget temp2))))
(if (< xtemp xmin)
(progn
(setq templist (cdr templist))
(setq xmin xtemp)
(setq templ temp2)
) ;end progn
(setq templist (cdr templist))
); end if
);end while
; (setq entminx templ)
; (setq yminx (caddr (assoc 10 (entget entminx))))
(setq return xmin)

); end function
;**

;**

(defun x-max (entlist)
(setq templ (car entlist))
(setqg xmax (cadr (assoc 10 (entget templ))))
(setq templist (cdr entlist))
(while (car templist)
(setq temp2 (car templist))
(setq xtemp (cadr (assoc 10 (entget temp2))))
(if (> xtemp xmax)
(progn
(setq templist (cdr templist))
(setq xmax xtemp)
(setq templ temp2)
) ;end progn
(setq templist (cdr templist))
); end if
y;end while
; (setqg entmaxx templ)
(setq return xmax)

); end function
HRAEAKR AR AR A AR KR AR KA A AR AR AR AR AR AR AR A A AR A A A A A A AR A A Ak Ak hhkhk ook kkkkkk kkkhkk

Se Se Ne N s

function y-min
this function returns the entity name with the min y-coordinate

e Ne e ~o

(defun y-min (entlist)
(setq templ (car entlist))
(setq ymin (caddr (assoc 10 (entget templ))))
(setq templist (cdr entlist))
(while (car templist)
(setq temp2 (car templist))
(setq ytemp (caddr (assoc 10 (entget temp2))))
(i1f (< ytemp ymin)
(progn
(setq templist (cdr templist))
(setq ymin ytemp)
(setq templ temp2)
) ;end progn
(setq templist (cdr templist))
); end if

100

):;end while
(setq entminy templ)
(setq return ymin)
):; end function

IEEZ RS SRS ESS SRR RS2 R R R RERERERERRRSS Rl RS REEREREREREEEEREEEERS]

~e ~o Se

~e ~eo

function y-max
this function returns the entity name with the max y coordinate

(defun y-max (entlist)
(setq templ (car entlist))
(setq ymax (caddr (assoc 10 (entget templ))))
(setq templist (cdr entlist))
(while (car templist)
(setq temp2 (car templist))
(setq ytemp (caddr (assoc 10 (entget temp2))))
(if (> ytemp ymax)
(progn
(setq templist (cdr templist))
(setq ymax ytemp)
(setq templ temp2)
) ;end progn
(setq templist (cdr templist))
y; end if
);end while
(setq entmaxy templ)
(setqg return ymax)
):; end function

AAKAA KA AR A AR AA A AR A A A AR AR AR AR A A KA AR AR AKRAAAAAAAAAARAR A A A A A A AR Ak khkk ko dkkk ko

A A KA A AAAKR A A AAAA A A AR AAAANAA KA AN AR KRR AR A AR AR A A AR AT AR ARk hhk ok kdkkkhkkk ok kkhkkkhkk

e Ne Ne Ne Ne e se Ne N we e we e e =

KAA KKK A AR AKA AR AR AR A AR AR A AR AR A A A AR A AR AR AR KR AR AN AN AR AR A AR A A Ak khhkkkhkhkhkkh dk kk
KA A A A A A A AT A AA R A A AR AR A A A A AL KRN AAA KR AA KT AAAAA A AR AAARAAAR AR AR AR AN A A Ak k ok kk

porgram shape select

by Farid Masri
modified version of the porgram shape-select originally
written by chris fischer and anbu rathinavel

this program prompts the user to select the required shape
with a window. program will return an orderd list of
the shape components in consecutive order.

(defun shapesel ()

; (prompt "\nselect the desired shape with a window")
; (princ "\n \n") (princ)
(setq shape (ssget "w" (setq crnr (getpoint))(getcorner crnr)))
(setq nshape shape)
(command "undo" "control"” "all")
(command "undo" "mark")
(command "undo" "group")
(setq first (entget (ssname shape 0))); get first entity of selection
(setq currentl (cdr (assoc 8 first))); get layer of selected
;shape.
; find the original color of the current shape
(setq shapecol (cdr (assoc 62 first)))
(setq shapelayer (cdr (assoc 8 first)))
(if shapecol
(command "color" shapecol)
selse

(progn

(setq layinfo (tblsearch "layer" shapelayer)); if entity color does
(setq shapecol (cdr (assoc 62 layinfo))); not exist, get layer color

(command "color" shapecol)
) ;end progn
):; end if {shapecol}

101

(setq index 0)
(setq pline nil)
(setq circl nil)
(while (and (< index (sslength shape)) (/= pline 1))
(setq etype (cdr (assoc 0 (entget (ssname shape index)))))
(if (= etype "CIRCLE")
(setq circl 'T)
); end {if = etype circle}
(1f (= etype “"POLYLINE")
(setqg pline 1)
); end if
(setq index (+ 1 index))
); end while

(setq org-layer (getvar “clayer")); store current layer and
;move selected object to new layer for easier manipulation.

(command "layer" "make" "ounlayer" "")
(command "layer" "set" org-layer "")
(command "change" shape "" "prop" "layer" "ounlayer" "")

;reorder the elements so that they are in consecutive order
(setqg elast (entlast))
(if circl
(progn
(setq shape (ssget "x" (list (cons 8 "ounlayer"))))
(setq pshape nil)
(SETQ INDEX 0)
(setq temp nil)
(WHILE (< INDEX (SSLENGTH SHAPE))
(setq etype (cdr (assoc 0 (entget (ssname shape index)))))
(if (= etype "CIRCLE")
(PROGN
(SETQ TEMP (SSNAME SHAPE INDEX))
(SETQ PSHAFE (LIST TEMP))
(SETQ INDEX (1+ INDEX))
) ; END PROGN
): end {if = etype circle}
); END WHILE

; (setqg temp elast)
; (while (setq temp (entnext temp))
B (setq pshape (append pshape (list temp)))
:); end while
): end progn
;else
(progn
(if (> (sslength shape) 1)
(progn
(if (= pline 1)

(command "pedit"” shape "j" shape "" "x")

;else

(command "pedit" shape "y" "j" shape "" "x")
; end if

)
); end progn
); end if { > sslength..}
(setq pshape (ssget "x" (list (cons 8 "ounlayer"))))
; (command "area" "entity" pshape)
; (setqg shparea (getvar "area"))
(command "explode" pshape)
(setq shape (ssget "x" (list (cons 8 "ounlayer"))))
(setq pshape nil)
(setq temp elast)
(while (setq temp (entnext temp))
(setq pshape (append pshape (list temp)))
); end while
) ;end progn
ysend if {circl}

.
’
I’

102

"o

(command "change" shape "prop" "layer" currentl ""); return

; shape to its original layer
(setqg return (list pshape nshape))

); end program

103

FILE DRAFTANG.LSP

(defun c:1lda() (load "draftang"))

AKX A A KA KRARK KA AR KA A AR AR AR A A AR AKN AR AR AR A A A A A A A AR AR Ak kA Ak kA Ak hkhkhhhhhkhhkhhkhkhkhkkhkkxk

; FUNCTION DRAFTANGLE

P R R R A A AR LR AR R
THIS FUNCTION MODIFIES A PART DRAWING, ADDING DRAFT ANGLES TO VERTICAL

SURFACES SPECIFIED BY THE USER. THE USER IS PROMPTED FOR THE SHAPE,

THE ENTITY IN THE SHAPE, THE ENDPOINT OF THE ENTITY WHICH IS TO REMAIN

FIXED, AND THE DIRECTION TO ROTATE THE ENTITY

(defun c:da()
(setq oldcmdecho (getvar "cmdecho"))
(setvar "cmdecho” 0)
; (selectlshape)
(prompt "\nSelect the desired shape with a window:")
(princ "\n \n")
(princ)
(setg entlist (car (shapesel)))
(command "undo" "end")
; (textscr)
(setg entlist (arc2line entlist))
(setq dangle 5.0) ;Default ANGLE
(while {setq vertent (car (entsel "\nSelect the entity tc be modified, or ENTER
to quit ")))
(setq oldosmode (getvar "osmode"))
(setvar "osmode" 1)
(princ "\nSelect the stationary endpoint ")
(princ "\n \n")
(princ)

(setq endpt (getpoint))

(princ "\n\nEnter the angle (degrees), or press ENTER or the right \n")

{(princ "mouse button to accept default <")

(princ dangle) (princ "> ")

{setg ang nil)

(setq ang (read (getstring)))

(if ang (setg dangle ang))

(sefvar "osmode" 0)

(setqg side (getpoint "\nIndicate offset direction with a point left or right
of the line "))

Identify index of selected entity in ENTLIST

~e

setqg picpt nil)
tg index 0)
ile (and (< index (length entlist)) (not (eq vertent {(nth index

)
(setqg index (14 index))
y ;end while

Identify which endpoint of the selected entity was selected

~e ~e ~e

(1f (pt= endpt (cdr (assoc 10 (entget vertent)))) (progn
(setq picpt 10)
(setq otherendpt (cdr (assoc 11 (entget vertent))))
) :end progn
else if
(if (pt= endpt (cdr (assoc 11 (entget vertent)))) (progn
(setq picpt 11)
(setq otherendpt (cdr (assoc 10 (entget vertent))))
) :end progn
;. else

~

104

(princ "\nERROR ENCOUNTERED: Endpoint selected is not on entity

selected.")
) ; end if
) ;end if

generate a long vector in the specified direction

~e Se ~e

(if (> (car side) (car endpt))
(setq theta (list (- 90 dangle) (+ 270 dangle)))
selse
(setq theta (list (+ 90 dangle) (- 270 dangle)))
)y ; end if

(if (> (cadr endpt) (cadr otherendpt))
(setq theta (cadr theta))
;else
(setq theta (car theta))
) ; end if
(setq pt2 (list (+ (car endpt) (* 100 (cos (* theta 0.06174533))))
(+ (cadr endpt) (* 100 (sin (* theta 0.0174533))))
‘0.0
))

0.0174533 is deg to rad conversion

.
’

Identify the entity intersected by the new vector

(setq entnum index)
(if (= picpt 10) (progn
(setq pointer 1)
(setq ipt nil)
(while (and (not ipt)
(/= entnum (mod (+ index (- (length entlist) 2)) (length
entlist)))
) ; end and
;while loop conditions:
=> (1) 1Intersection has not been found (not ipt)
=> (2) The entity being tested is not the entity
immediately preceeding index

Note: entnum is calculated at beginning of loop
pointer is incremented at end, thus the value of
entnum being tested here is one less than will be
used for calculations in the current iteration.

Ne Ne Se Se Se Se we e

(setq entnum (mod (+ index pointer) (length entlist)))
(setq intent (nth entnum entlist))
(setq pt3 (cdr (assoc 10 (entget intent))))
(setq pt4 (cdr (assoc 11 (entget intent))))
(setq ipt (inters endpt pt2 pt3 pt4 ‘T))
(setq pointer (1+ pointer))
) :;end while
;If an intersection was found, erase the entities between vertent
sand intent, and remove them from entlist.
(if ipt (progn
(setg remlist nil)
(setq i (-~ pointer 2))
(while (> i 0)
(setq entnum (mod (+ index i) (length entlist)))
(command "erase" (nth entnum entlist) "")
(setq remlist (append remlist (list entnum)))
(setq 1 (1- 1i))
) ; end while

(setqg remlist (sort remlist))

(while (setq i (car remlist))
(setq remlist (cdr remlist))
(setq entlist (remove i entlist))

105

) : end while
)) ; end progn, endif {ipt}

;if no intersection was found on any entity, find the intersection
;with the extension of the first entity after index

(if (not ipt) (progn

(if (/= index (1- (length entlist))) ; =>last element in list
(setq intent (nth (1+ index) entlist))

;else
(setq intent (car entlist))
) send if

(setq pt3 (cdr (assoc 10 (entget intent
(setq pt4 (cdr (assoc 11 (entget intent
(setq ipt (inters endpt pt2 pt3 pt4 nil
)) ; end progn, end if

~ —~—
~—~— ~—

;modify the endpoints of the selected and intersected entities
(setq entdata (entget vertent))
(setq entdata (subst (cons 11 ipt)
(assoc 11 entdata)
entdata

))

(entmod entdata)

(setqg entdata (entget intent))

(setq entdata (subst (cons 10 ipt)
(assoc 10 entdata)
entdata

(entmod entdata)

)) :end progn, endif {= picpt 10}

(if (= picpt 11) (progn
(setq pointer (1- (length entlist)))
(setq ipt nil)
(while (and (not ipt)
(/= entnum (mod (+ index (+ (length entlist) 2)) (length
entlist)))
) ; end and
;while loop conditions:
=> (1) Intersection has not been found (not ipt)
=> (2) The entity being tested is not the entity
immediately following index
see note in while loop for (= picpt 10) above

~e e ~e we

(setq entnum (mod (+ index pointer) (length entlist)))
(setq intent (nth entnum entlist))

(setq pt3 (cdr (assoc 10 (entget intent))))

(setq pt4 (cdr (assoc 11 (entget intent))))

(setq ipt (inters endpt pt2 pt3 pt4 'T))

(setq pointer (1~ pointer))

) :end while

;If an intersection was found, erase the entities between vertent
;and intent, and remove them from entlist.
(if ipt (progn
(setq remlist nil)
(setq i (+ pointer 2))
(while (< i (length entlist))
(setq entnum2 (mod (+ index i) (length entlist)))
(command "erase" (nth entnum2 entlist) "")
(setqg remlist (append remlist (list entnum2)))
(setqg i (1+ 1))
) ; end while

106

(setq remlist (sort remlist))
(while (setqg i (car remlist))
(setq remlist (cdr remlist))
(setq entlist (remove i entlist))
) : end while
)) ; end progn, endif {ipt}

;if no intersection was found on any entity, find the intersection
;with the extension of the first entity after index

(if (not ipt) (progn
(if (/= index 0) ; => first element in list
(setq intent (nth (1- index) entlist))
;else
(setqg intent (last entlist))
) :end if
(setq pt3 (cdr (assoc 10 (entget intent))
(setq pt4 (cdr (assoc 11 (entget intent))
(setq ipt (inters endpt pt2 pt3 pt4 nil))
)) ; end progn, end if

))
))

;modify the endpoints of the selected and intersected entities
(setqg entdata (entget vertent))
(setq entdata (subst (cons 10 ipt)
(assoc 10 entdata)
entdata

))

(entmod entdata)

(setq entdata (entget intent))

(setqg entdata (subst (cons 11 ipt)
(assoc 11 entdata)
entdata

(entmod entdata)

)) :;end progn, endif {= picpt 11}

) ;end while
(setvar "cmdecho" oldcmdecho)
(princ)
) :;end function

@ Kk ok ks ok ko Kk sk sk ok e ok ok ke K sk sk ke ok ke ke sk ok ke ko ke ok e sk sk ok sk e ek ke ke ke e ok ok ke ok sk ok ke ke ke ke ke sk sk ok ke ke ek ko ok ok ke ok ke ok

’
; FUNCTION REMOVE

;***

; removes the specified element from the list. 0 is the first element

(defun remove (x entlist / i templist x temp)
(setq i 0)
(setq templist nil)
(while (< i (length entlist))
(if (/= i x) (progn
(setq temp (nth i entlist))
(setq templist (append templist (list temp)))
)) : end progn, end if
(setg i (1+ 1i))
) ; end while
(setq return templist)
) ;end function

;***

H FUNCTION SORT

107

;***

(defun sort (lis)
;from J.R. ANDERSON, ET AL, ESSENTIAL LISP
(cond ((null lis) nil)
(t (insert (car lis) (sort (cdr lis))))))

(defun insert (item lis)
(cond ((null lis) (list item))
((< item (car lis)) (cons item lis))
(t (cons (car lis)(insert item (cdr 1lis))))))

;***
;***
sk hkhkhhhkhkhkhkhkhkhkkhhkhkhkhkhhkhhhbhkhhkhhkh kA rhhhkkhkhkhkhkkhkdhhkhhkhkhdhkhhkhhkhhhkhdkhdkhkhkhkhkik

~

H PORGRAM SHAPE SELECT
H BY FARID MASRI
H MODIFIED VERSION OF THE PORGRAM SHAPE-SELECT ORIGINALLY
; WRITTEN BY CHRIS FISCHER AND ANBU RATHINAVEL
H THIS PROGRAM PROMPTS THE USER TO SELECT THE REQUIRED SHAPE
H WITH A WINDOW. PROGRAM WILL RETURN AN ORDERD LIST OF
H THE SHAPE COMPONENTS IN CONSECUTIVE ORDER.
(DEFUN selectlshape ()
(prompt "\n ")
(prompt "\n")

(PROMPT "\nSelect the desired shape with a window")
(SETQ SHAPE (SSGET "W" (SETQ CRNR (GETPOINT)) (GETCORNER CRNR)))
: PROMPT USER FOR TO SELECT SHAPE WITH A WINDOW.

(SETQ ORG-LAYER (GETVAR "CLAYER")); STORE CURRENT LAYER AND
;MOVE SELECTED OBJECT TO NEW LAYER FOR EASIER MANIPULATION.

.

’

{COMMAND "LAYER" "MAKE" "NLAYER" "")

(COMMAND "LAYER" "SET" ORG-LAYER "")

(COMMAND "CHANGE" SHAPE "" "PROP" "LAYER" "NLAYER" "")

’
; REORDER THE ELEMENTS SO THAT THEY ARE IN CONSECUTIVE ORDER
(SETQ ELAST (ENTLAST))
(COMMAND "PEDIT" SHAPE "Y" "J" SHAPE "" "X")
(SETQ PSHAPE (SSGET "X" (LIST (CONS 8 "NLAYER"))))
; (COMMAND "AREA" "ENTITY" PSHAPE)
: (SETQ SHPAREA (GETVAR "AREA"))
(COMMAND "EXPLODE" PSHAPE)
(SETQ PSHAPE NIL)
(SET) TEMP ELAST)
(WHILE (SETQ TEMP (ENTNEXT TEMP))
(SETQ PSHAPE (APPEND PSHAPE (LIST TEMP)))
); END WHILE
(SETQ entlist PSHAPE)
); END PROGRAM

108

FILE LATERAL.LSP

~

ehkhkhkhkhhhkhhkhkhdhhhhhhhdhhhkhhkdkhkhkhkhkdhdkhkhkd ko khkdkkdhkhkhkkdkdhkkdkhkkdhdkkhkhkdhdkkhkdhkhkkhkkhdkdhkkhkkkhkkk

;lateral flow diagram by farid masri

;**
This function draws a graph of the metal lateral flow. It requires

the user to select the initial shape to be rolled and the final shape.

Note that the shapes should be aligned one underneath the other befor running

the program. This alignment should be similar to the relative positions

that the actual shapes assume when enetering and leaving the rolling mill.

Then the program asks for the maginification of the yaxis and the resolution

of the graph. the resolution means the number of segments that the shapes

are divided into in order to draw the graph (this is also the number of
lines used to draw the graph).

defun c:lateral (/ xstart xbegin xend xpos)

Ne mi N6 N6 Ne N6 Ne No Ne Ne N o

;get current snap and color settings and save them. these variables are
;changed during execution and will be restored at the end of the progarm:

(setq org-color (getvar "cecolor")); get original color.
(setq org-osnap (getvar "osmode"))

(setq org-snap (getvar "snapmode"))

(setq org-cmdecho (getvar "cmdecho"))

’

(setvar "cmdecho" 0); switch off command echo for faster execution
(command "“osnap" "none"); turn off all snap modes for proper execution
(command “snap" "off")

;

.
’

;get current layer

(setq cl (getvar "clayer"))

; check to see if layer ouarea already exists

; if it does then swith to that layer (this will make execution faster)

(setq chk (tblsearch "layer" "ouarea"))

(if (/= chk nil)
(command “layer”

)y; end if

(princ "\n \n") (princ)

(prompt "\nselect the initial shape with a window")

(princ "\n \n") (princ)

"

set" "ouarea" " n)

Zsetq entlistl (shapesel2))

(setq shpareal (cadr entlistl))

(setqg entlistl (car entlistl))

(prompt "\nselect the final shape with a window")
(princ "\n \n") (princ)

(setq entlist2 (shapesel2))

(setq shparea2 (cadr entlist2))

(setq entlist2 (car entlist2))

(princ "\n \n") (princ)

(prompt "\ntype in the y coordinate scaling factor of the graph <10> ")
(princ "\n \n") (princ)

(setq scal (read (read-line)));

(prompt "\ntype in the graph resolution (10 - 30) <20 default> ")
(princ "\n \n") (princ)
(setq ress (read (read-line)))

(princ "\n \n")(princ)
(prompt "\nselect the starting point of the lateral-flow graph")
(princ "\n \n") (princ)

(setq xbegin (getpoint)); get starting point of graph

(setq entlistl (arc2line entlistl))
(setq entlist2 (arc2line entlist2))

109

~e

reorder the entity list to start with the leftmost one

(setq initminpt (find-minpt entlistl))
(if (> (length initminpt) 1)

(setq initminpt (find-ymax initminpt))

) ;endif
(setq entlistl (startwith entlistl initminpt))

re-order finlshp to start with standard point

(setq finlminpt (find-minpt entlist2))
(if (> (length finlminpt) 1
(setq finlminpt (find-ymax finlminpt))
) endif
(setq entlist2 (startwith entlist2 finlminpt))
; set y scaling factor if different from default
(setq scaley 10); default scale factor
(if (/= scal nil)
(setq scaley scal)
); end if

set the resolution of the graph
(setq res 25)
(if (/= ress nil)
(setq res ress)
):;end if

Zsetq aratio (/ shparea2 shpareal)); find area ratio of shapes

find minimum and maximum x coordinates
for the two shapes.

(setq xmin-1 (x-min entlistl));
(setq xmax-1 (x-max entlistl));
(setq xmin-2 (x-min entlist2))
(setqgq xmax-2 (x-max entlist2))

;find graph length by setting it equal to the widest of the two shapes.

Esetq 11 (- xmax-1 xmin-1))
(setq 12 (- xmax-2 xmin-2))
(setq graphlength 11)

(if (> 12 11)
(setq graphlength 12)
); end if

find the endpoint of the graph
setq gendpoint (list (+ (car xbegin) graphlergth) (cadr xbeqgin)))

(
H
;divide shape into equal intervals
(setq deltax (/ graphlength res))
Zsetq xstart xmin-1); starting point of mapping
(if (< xmin-2 xmin-1)
(setq xstart xmin-2)

); end if
(command “"color” "5"); set color blue
(command "line" xbegin gendpoint ""); draw ordinate line of graph
(setq tempp (entlast))

(command "color" "9") ; set color dark red
Zlatcalc entlistl entlist2 scaley res);
hatching the graph

(command "color" "1")
(command "hatch" "ansi37" "0.06" "0" graph "")

put text on the graph

Ne e Ne Se Se Ne Se S

110

e 66 Ne Ne Ne Se we e

Ne ~ Ne e Ne no o

(command "color" "11")
(setq xtext (list (- (car xbegin) 1.0)(+ (cadr xbegin) 0.35)))

(command "text" "s" "standard" xtext "0.15" "0" "above; flow to the left")
(ssadd (entlast) graph)

(setq xtext (list (- (car gendpoint) 2.25) (- (cadr xbegin) 0.35)))

(command "text" "s" "standard" xtext "0.15" "0" " below; flow to the right")

(ssadd (entlast) graph)

; move graph to its own layer

; (command "layer" "make" "oulateral" "")

; (command "change" graph "" "prop" "layer" "oulateral" "")
; (command "layer" "off" "ounlayer" "")

;

restore original settings
(command "layer" "set" cl ""); restore current layer to original layer
(command "redraw") ; clean up the window
(setvar "osmode" org-osnap); restore original osnap mode
(setvar "snapmode" org-snap); restore snap mode
(command "color" org-color); restore original color
(setvar "cmdecho" org-cmdecho)
(prompt "\n done")
(princ "\n \n")
(princ)
7
); end of function lateral

AAA KA A AR A A A A AR AR AR A AR AR AR AR AR AR AR AR A A A AR A AR AR AR AR AR AR A A Ak kh kA kkkdhk ok k

porgram shape select

by farid masri
modified version of the porgram shape-select originally
written by chris fischer and anbu rathinavel

this program prompts the user to select the required shape
with a window. program will return an orderd list of
the shape components in consecutive order.

defun shapesel2 ()
(prompt "\nselect the desired shape with a window")

(setq shape (ssget "w" (setq crnr (getpoint))(getcorner crnr)))
(setq first (entget (ssname shape 0))); get first entity of selection
(setq currentl (cdr (assoc 8 first))); get layer of selected

;shape.

(setq index 0)
(setq pline nil)
(while (and (< index (sslength shape)) (/= pline 1))
(setqg etype (cdr (assoc 0 (entget (ssname shape index)))))
(if (= etype "POLYLINE")
(setq pline 1)
); end if
(setq index (1+ index))
); end while
(setq org-layer (getvar "clayer")); store current layer and
;move selected object to new layer for easier manipulation.

(command "layer" "make" "ounlayer" "")
(command "layer" "set" org-layer "")
(command "change" shape "" "prop" "layer" "ounlayer" "")

.
’

;reorder the elements so that they are in consecutive order
(setq elast (entlast))
(if (> (sslength shape) 1)

(progn

(if (= pline 1)

(command "pedit" shape "j" shape "" "x")
;else
(command "pedit” shape "y" "j" shape "" “x")

111

); end if
); end progn
); end if
(setq pshape (ssget "x" (list (cons 8 "ounlayer"))))
(command "area" "entity" pshape)
(setq shparea (getvar "area"))
(command "explode" pshape)
(setq shape (ssget "x" (list (cons 8 "ounlayer"))))
(setq pshape nil)
(setq temp elast)
(while (setq temp (entnext temp))
(setq pshape (append pshape (list temp)))
):; end while
(command "change" shape "" "prop" "layer" currentl ""); return shape
; to its original layer
(setq return (list pshape shparea))
;s end function
AhAAAA A A A A A A A A A AR A A A A A AR AR AR A AR A AR AR A A A kA Ak h ok k ok h ok ko k ok ok kd ko ek dedke ko &k kokkk ok

function: lateralcalc by farid masri
KA A IA AR AR AR AR AR A A AR A A AR AR AR AR AR A A AAAA AR AR A AT A A A A AR A Ak hhhkhkhhokkdhkk kkkk ok

this function does all lateral flow calculations and mapping.
the function uses the function dt to obtain delta t and then
the results are plotted on the screen.

Ne Se Se Ne Se Ne ~—

(defun latcalc (11 12 scaley res)
(setq pointl xbegin)
(setq graph (ssadd))
(ssadd tempp graph)
(setq xpos (+ xstart deltax))

(while (<= xpos (+ graphlength xstart))
(setq deltat (dt entlistl entlist2 xpos xmax-1 xmax-2))
(setq deltat (* deltat scaley)); scale the output in the y direction

; graphing the points
H

(setq point2 (list (+ (car pointl) deltax) (+ (cadr xbegin) deltat)))
(command "line" pointl point2 "")
(setq tempp (entlast))
(ssadd tempp graph)
(setq pointl point2)
(setq xpos (+ xpos deltax))
); end while
(command “line" pointl gendpoint ""); draw last line to close graph
(setq tempp (entlast))
(ssadd tempp graph)
); end function
;*******t**************************************t**************************

; function dt by farid masri

;**********************************t********t*****************************

; this function calculates delta t (thickness) for two shapes as used
; in determining lateral flow. it needs the entity lists of both shapes
; and the current x-position and the maximum x coordinate of each shape
(defun dt (entlistl entlist2 xpos xmax-1 xmax-2 / deltt templist areai areaf)
(setq templist (idents entlistl xpos))
(setq areai 0)
(if (and (= templist nil) (> xpos xmax-1))
(setg areai shpareal)
; else
(if (/= templist nil)
(progn
(setq 1 (car templist))
(setq u (cadr templist))
(setq areai (arealeft entlistl u 1 xpos));find initial area at interval
) ;end progn
)ys;end if
); end if
(setq templist (idents entlist2 xpos))

112

)

(setq areaf 0)
(if (and (= templist nil) (> xpos xmax-2))
(setq areaf shparea?)
; else
(if (/= templist nil)
(progn
(setq 1 (car templist))
(setq u (cadr templist))
(setq areaf (arealeft entlist2 u 1 xpos)); find final area at interval
); end progn
ysend if
); end if
(setq deltt (- areaf (* aratio areai)))
(setq return deltt)

end function dt

shhh Ak kA Ak Ak A A A A A A A A AR AR A AR A AR AR AR AR A A AR AR AR AR A A KRR R AA KRR A A AR R A AR AR A Ak h ok hh

’
’
’
’
.
’
.
’
(

function autolineup by farid masri

sh A Ak A A A A A A A AR A KA AR A AR A AR AR KRR AR AR AR A AR AR AR AAA R AR A A A A A A A AR AR hh Kk kK

this function lines up two shapes vertically according to their geometric
centers.

defun c:autolineup ()

(setq org-osnap (getvar "osmode"))
(setq org-ortho (getvar "orthomode"))
(setq org-cmdecho (getvar "cmdecho"))
(setvar "cmdecho" 0)
(command "osnap" "none")
; (command "ortho" "on")
; (command "undo" "control")
(prompt "\n select the shape to align with a window")

.
’

(princ "\n \n") (princ)
(setq entlist (shapesel))
(setq entlist2 (car entlist))
(setq shape2 (cadr entlist))
(setq nshape2 shape2)
(prompt "\n select reference shape with a window")
(princ "\n \n")(princ)
(setg entlist (shapesel))
(setq entlistl (car entlist))
(setq shapel (cadr entlist))
(setq entlist nil)
; (setq shapel (ssget "w" (setq crnr (getpoint))(getcorner crnr)))
(prompt "\nrunning........please wait")
(princ “\n \n") (princ)
(command “"undo" "mark")
(setq index 0)
(setq entlistl nil)
(while (< index (sslength shapel))
(setq entlistl (cons (ssname shapel index) entlistl))
(setq index (1+ index))
); end while

~e

~e

Ne e Se Se we

(setq entlistl (arc2line entlistl))
(setq lastent (entlast))

(setq entlist2 (arc2line entlist2))
(while (entnext lastent) ; add the lines generated by arc2line
(setq temp (entnext lastent)); to the shape
(ssadd temp shape2)
(setq lastent temp)
); end while

~e Se Se Se S

(setq centl (/ (+ (x-max entlistl) (x-min entlistl)) 2))

113

(setq cent2 (/ (+ (x-max entlist2) (x-min entlist2)) 2))

(setqg cent2 (list cent2 (y-min entlist2))); center point of shape2
(setq refpoint (list centl (y-min entlist2)))

(command "undo" "end")

(command “"undo" "back")
; (command "undo" "end")

(command "undo" "mark")

(command "move" nshape2 "" cent2 refpoint)
(command "redraw")

(setvar "osmode" org-osnap)
; (setvar "orthomode"” org-ortho)

(setvar "cmdecho" org-cmdecho)

(princ "\n \n") (princ)

); end function autolineup

;***t*****************
ek khkhkhhkhkhkhkhkhkhk kA kA kA A AR A A A A A AR AR AKR AR A AR AR A AR AR AR A Ak kA bk kA kA hkhkhhhkhhkkhkkk

’
function lineup by FARID MASRI

hhkhkhkhkhkhk Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhhkkhhkhhkhkhhkhkrhkhkrhkhkhkhkkhkkhkhkhkkhkhkhkhkhkkhkhkhk khkkkkkkk

this function lines up a shape in reference of another shape

.
’
.
’
.
’

(defun c:lineup (/ dist basepnt shape)
(setq org-osnap (getvar "osmode"))
(setq org-ortho (getvar "orthomode"))
(setq org-cmdecho (getvar "cmdecho"))
(setvar "cmdecho" 0)
(command "osnap" "end")
(command "ortho" "on")
(prompt "\n select the shape to be moved with a window")
(princ "\n \n") (princ)
(setq shape (ssget "w" (setq crnr (getpoint))(getcorner crnr)))
(princ "\n \n pick a reference point on the shape to be moved ")
(princ "“\n \n") (princ)
(setq basepnt (getpoint))
(prompt "\nrunning........ please wait")
(princ "\n \n") (princ)

(setq dist (di))

(command "move" shape "" basepnt dist)
(command “"redraw")

(setvar "osmode" org-osnap)

(setvar "orthomode" org-ortho)

(setvar "cmdecho" org-cmdecho)

(princ "\n \n")(princ)

): end function lineup

(defun di (/ b)
(princ "\n pick a reference point on reference shape: ")
(princ "\n \n") (princ)
(setg b (getpoint))
(princ "\n enter point of new location of shape: ")
(princ "\n \n") (princ)
(getpoint b)

); end function di

114

FILE LMUTIL.LSP

dok de e deodk ok ek ke ke ko sk ke dk kk e ok sk ok ok ke ek dk ke ke ke ke ok ke ke ok ko ok ke ke k ke ke ok ok k ke ke ko ok ko ke ke ok ok ke ok ok ok ok

FUNCTION FIND-MINPT

AAhkhkhkkhkhhkhhkhkhhhhkhhkhh kA hhkhhkk Ak hkhkhkrkhkhkhkkhkkkAdhkhkhkkkkhkhkhhkkhkhhkhhkkhkhkhkkkkk

By Chris Fischer

Finds and returns the entity in a list of entities (a shape) with
the smallest x coordinate of its starting endpoint.
I1f there is more than one endpoint with equal x values, all are returned
in a list,.

~ N6 Ne N6 Ne Ne Ne Ne Ne Ne o e

defun find-minpt (entlist)

(setq minpt (list (car entlist))) ;minpt is the entity whose first
(setq entlist (cdr entlist)) ;endpoint has the smallest value
;so far

(setq xmin (cadr (assoc 10 (entget (car minpt))))) ;entget returns the
;attribute list for the entity
;as a series of dotted pairs.
sassoc 10 returns the first endpt
;and cadr gets the second atom in
;the list, which is the x coord.

(while (setq temp (car entlist))
(setq entlist (cdr entlist))
(setq xtemp (cadr (assoc 10 (entget temp))))

(if (< xtemp xmin) (progn
(setq minpt (list temp))
(setq xmin xtemp)

)) :;end progn, endif

(if (= xtemp xmin)
(setq minpt (append minpt (list temp)))
) :endif
) ;end while
(setg return minpt)
) ;end function

ok vk ok vk de ok sk A ek e sk sk e ek ok ek sk ok ke ek ke ok sk ok e sk e e ke e ok ke ke ok sk ke ke kb ke ok kb ok e ok ok ok ke ke ke ke ok ok ok ok ke ok

FUNCTION FIND-YMAX

Fokhk Kk hkk hh gk ko kkkok ko dk dok ko ok ok ko Ak ok ok ok ke ok ok ok ok ok ke sk dk ok ke dk ke ke ke ok ek ke ke sk ok ek ek ok ke ok ok ok ok ke ok

By Chris Fischer

Finds and returns the entity in a list of entities with
the largest y coordinate of its starting endpoint.

NS¢ Ne Ne Ne Ne e Ne Ne e ~e

defun find-ymax (entlist)

(setq ymax (list (car entlist))) ;ymax is the entity whose first
(setqg entlist (cdr entlist)) sendpoint has the largest value
;so far

(setq maxval (caddr (assoc 10 (entget (car ymax))))) ;entget returns the
;attribute list for the entity
;as a series of dotted pairs.
;assoc 10 returns the first endpt
;and caddr gets the third atom in
;the list, which is the y coord.

(while (setq temp (car entlist))
(setq entlist (cdr entlist))
(setq ytemp (caddr (assoc 10 (entget temp))))

(if (> ytemp maxval) (progn
(setq ymax (list temp))
(setq maxval ytemp)

)) :end progn, endif

115

;end while
(setq return ymax)
) ;end function

dhkhkhkhhkhk Ak hA Ak Ak rAhhk kA r A AR A AR A A AR AR A A A A A Ak h Ak Ak bk bk hkhkhkhhkkhkkdkdkdk kkhkkkhkhhkkkkk

FUNCTION STARTWITH

KA A KR I A IA A A A A A KR KR AA AR AAA A AAA A AR AA AR KR AAA AR AA AR AN AR AR KR AR A AR AR Ak ok ok kk kk kokkok

Receives a list of the entity names in a shape (in consecutive order)

and the name of the entity to start the output list, and returns a list
in the same sequence with the specified name starting.

~ Ne Ne Ne Se Ne S S

defun startwith (entlist entname)
(if (not (atom entname)) (setq entname (car entname)))
sendif
(setq listb nil)
(while (setq temp (car entlist))
(if (= temp entname) (progn
(setq retlist (append entlist listb))
(setq entlist nil)
)) :end progn end if
(setq listb (append listb (list temp)))
(setq entlist (cdr entlist))
) : end while
(setq return retlist)
) ; end function

KA A AAAKA AL A A KA AAAIAALAAAAAA KR AAKRAAR A A A AR ARAA KRR AAAA R A AR AR AR A Ak Ak hkdkkkhkkkk

FUNCTION READELEM

KhAK A KA IAA AR KA A A A A KA AR AR A AA AR A AR KRAA A A A AAA AN A AAAAA R AAA A A AR AR A A A A A Ak hkhk kK

Returns an arbitrary element specified by "index" from a list "1."

~~ Ne Ne e e Ne e

defun readelem (1 index)

(setq pointer 1) ;pointer is used to keep
B track of the current
H position in the array
(while (< pointer index) ;Index through the array,
(setq 1 gcdr 1))] ; removing each element from
(setqg pointer (1+ pointer)) ; the front of the array.

) ;send while

(setq return (car 1)) ;return desired value
) ;end function

IhA A A A A KA KA IA A AR KR A AR AR A AR KR AAN KA AARA AR A AR AR AA KA NA AR A AR R A A AR AR AR A A kA kK

FUNCTION AREALEFT

KAKAK AR KA AK A AR R A A AR AR AR A AA A AR A KA A AN AR A AR A AR AR A A A AR AR KAk hk ok okkkok ok k dok kok ok

Returns the area of the shape defined by the entities in entlist
to the left of the x coordinate specified in the parameter XPOINT.

The entities intersected by this point are UPPERENTity and LOWERENTity,
where upper and lower refer to the entity indices, and not necessarily
their physical orientation.

The right endpoints of the entities specified are passed in the
parameters UpperEND and LowerEND. (One of these parameters will be 10,
and the other 11, refering to "assoc 10" and "assoc 11" -- specifications
of the starting or ending endpoints of the element.

The parameters IUPPERENT and ILOWERENT are the indices of the
respective indices.

= NS Se NE e Ne NE N NE NE N6 Ne Ne we me e we

defun arealeft (entlist iupperent ilowerent xpoint / index)
(if (not areacount) (setqg areacount 0)) ;initialize areacount if it is nil
(setq areacount (1+ areacount))

; for timed execution: start timer every 25th execution

(if (= (mod areacount 25) 0)
(command "time" "reset" "
) :endif

on

)

116

r

.
‘

.
’

(setqg e entlist)

(setq u iupperent)

(setqg 1 ilowerent)

(setqg x xpoint)

(command "undo" "control" "none")

(command “undo" "all")

(command "undo" "mark")

(command "undo" "mark") ;extra mark prevents "this will undo
; everything" query

(command “"undo" "group")

readelem returns the
;entity name from entlist

~e

(setq upperent (readelem entlist iupperent))

(setq lowerent (readelem entlist ilowerent))

(setq ulend (cdr (assoc 11 (entget upperent)))) ; UpperLeftEND

(setqg urend (cdr (assoc 10 (entget upperent)))) ; UpperRightEND

(setqg llend (cdr (assoc 10 (entget lowerent)))) ; LowerLeftEND

(setq lrend (cdr (assoc 11 (entget lowerent)))) ; LowerRightEND

(setq pntl (list xpoint 0 0))

(setq pnt2 (list xpoint 1 0))

(setq uipt (inters pntl pnt2 ulend urend nil)) ; Returns the

(setq lipt (inters pntl pnt2 llend lrend nil)) ;intersection between

;infinite extensions of the line

;defined by pntl, pnt2 and the

;upper or lower entity, respectively
If an entity lies vertically in line with XPOINT, set the intersetction
point equal to the "right" endpoint of the entity in question.

(if (= xpoint (car ulend) (car urend))
(setq uipt urend)) ;endif

(if (= xpoint (car llend) (car lrend))
(setq lipt lrend)) ;endif

Read all entities to the left of the intersected entities

(setq selset nil)

(setq index 1)

(setq selset (ssadd))

(while (< index ilowerent)
(setq selset (ssadd (readelem entlist index) selset))
(setq index (1+ index))
) : end while

(setq index (1+ iupperent))

(while (<= index (length entlist))
(setq selset (ssadd (readelem entlist index) selset))
(setq index (1+ index))
) ; end while

Create a polyline from the selection set plus the lines from ulend
to uipt, from uipt to lipt, and from lipt to llend

(command "line" ulend uipt ""

(setq selset (ssadd (entlast) selset))
(command "line" uipt lipt ""

(setq selset (ssadd (entlast) selset))
(command "line" lipt llend "")

(setq selset (ssadd (entlast) selset))

(command "layer" "make" "ouarea" "")

(command “"change" selset "" "prop" "layer" "ouarea" "")
(command "pedit" selset "y" "j" selset "" "x")

(setq pshape (ssget "x" (list (cons 8 "ouarea"))))
(command "area" "entity" pshape)

(setq larea (getvar "area"))

(command "undo" "back")

117

(command "undo" "end")
(command "undo" "back")
(command "redraw")

~e

for debug, stop timer if it was started, and write result to list
(if (= (mod areacount 25) 0) (progn

(command "time" "off" "")

(setq timer (getvar "tdusrtimer"))

(setq timelist (append timelist (list timer)))

)) ;end progn end if

~e

(setg return larea)
) ; end function

KAKAK KA AAAEAAAA KA AA KRR AR AR AAAA A A AA A A A A AT A A A ARk A A Ak kA Ak Ak kA hkhkk ok hhhkkkhkhkhkkk

PROGRAM IDENTS

ek A A A K AKA A KA K AA A A AR AAA A AT A A AA AR A A A AR AR A A A kA Ak A d bk khkhkdkkhkkhkhhkhhkkhhkhkhhdkhkhkhkhk

;
H
’
i
; IDentify ENTitieS: Identify indices of lower and upper entities

; intersecting a vertical line through XPOINT. Returns nil if xpoint
H is outside of the shape. Not valid for arcs

H

(

defun idents (entlist xpoint / index)
(setq ents nil)
(setq index 1)
(while (<= index (length entlist))
(setq temp (readelem entlist index))
(setq x1 (cadr (assoc 10 {entget temp))))
(setq x2 (cadr (assoc 11 (entget temp))))

;sort x1 and x2
(if (< x2 x1) (progn
(setq t x2)
(setqg x2 x1)
(setg x1 t)
)) ; end progn, endif

;if the entity is very nearly vertical (within 5.0E-4), adjust it to vertical
;so it will not cause problems with the intersection function

(if (and (< (abs (- x1 x2)) 5.0E-4) (/= x1 x2))(progn
;update assoc 10 of the entity
(setq entdata (entget temp))
(setq pl (cdr (assoc 10 entdata)))
(setq pl (cons x1 (cdr pl)))
(setg entdata (subst (cons 10 pl)
(assoc 10 entdata)
entdata

(entmod entdata)
;uptade assoc 11 of the previous entity
(if (/= index 1) (progn
(setq temp (readelem entlist (1- index)))
(setq entdata (entget temp))
(setq pl (cdr (assoc 11 entdata)))
(setq pl (cons x1 (cdr pl)))
(setq entdata (subst (cons 11 pl)
(assoc 11 entdata)
entdata
))
) ;end progn
;else
(progn
(setq temp (readelem entlist (length entlist)))
(setq entdata (entget temp))
(setq pl (cdr (assoc 11 entdata)))
(setq pl (cons x1 (cdr pl)))
(setq entdata (subst (cons 11 pl)
(assoc 11 entdata)

118

entdata

))
)) ;end progn, end if {/= index 1}
)) :;end progn, endif { abs (- x1 x2) < 5.0e-4}1
(entmod entdata)

;test if xpoint is between the endpoints of the entity
;and be sure the entity is not vertical
(if (and (<= x1 xpoint x2) (/= x1 x2))
(setg ents (append ents (list index)))
) : end if
(setq index (1+ index))
) ;end while

;select the first and last entities in the list

(setq ents (list (car ents) (last ents)))
(if (/= (car ents) nil)

(setqg return ents)

; else

(setq return nil)

) ;endif
) ;end function

119

FILE MAP.LSP
(defun c:1m () (load "map")) ;utility to reload program after editing

Khkhkhhhhhhkhkhkhkhhhkhkhkhkhkhhkhhhkhkhhkhkhkhkhhkrhhhkhkhkhkhhhhkkhkhkhkhhkhhhkhhkhdddhhdhhhhdhhkhkkhkkk

PROGRAM C:MAP

;
i
;***
; calling routine for mapping functions
H

defun c:map ()
(prompt “\n")
(prompt "\n")
(prompt "NOTE: THIS PROGRAM HAS A KNOWN BUG GENERATING INTERMEDIATE SHAPES")
bug corrected -- caused by snap
(setg pt (ssget "x" (list (cons 0 "point"))))
(command "erase" pt)

Ne we we ~eo

; (load "centroid")

; (command "reset")

(setq ce (getvar "cmdecho"))

(setvar "cmdecho" 0)

(command "snap" "off")

(COMMAND "OSNAP" "NONE")

(setq a (shape-select))

(setq initshp (car a))

(setq initarea (car (cadr a)))

(setq finlshp (caddr a))

(setq finlarea (car (cadddr a)))
(setqg initrot (rot-dir initshp))
(setq finlrot (rot-dir finlshp))

re-order initshp to start with standard point (left-top)

we we we

(setq initminpt (find-minpt initshp))

(if (> (length initminpt) 1)
(setq initminpt (find-ymax initminpt))
) ;endif

(setq initshp (startwith initshp initminpt))

; re-order finlshp to start with standard point

(setq finlminpt (find-minpt finlshp))
(if (> (length finlminpt) 1)
(setq finlminpt (find-ymax finlminpt))
) :endif
(setq finlshp (startwith finlshp finlminpt))
(setq initshp (arc2line initshp))
(setq finlshp (arc2line finlshp))
(setmap)
(setvar "cmdecho" ce)
(command "redraw")
) ;end program

(defun setmap()
(setq mlist (callmap initshp finlshp initarea finlarea))

) :end program

;-***
; PROGRAM SHAPE-SELECT
;***
i
: By: Chris Fischer

: (based in part on a similar program by Anbu Rathinavel)
; Prompts user to select initial and final shapes for mapping and slab
analysis routines, calculates the area of the shapes, and returns a list
of the component elements in consecutive order. The format of the list

I
.
’
’

120

.
’
.
’

is ((list of entity names in starting shape) (area of starting shape)
(list of entity names in final shape) (area of final shape))

(defun shape-select ())
Prompt the user to select the initial and final shapes with a window

(prompt "\nSelect the starting shape with a window ")

4

~e ~eo

~e ~e

.
4

;exploded

(setq

initshp (ssget "w" (setq crnr (getpoint)) (getcorner crnr)))

(prompt "\nSelect the final shape with a window ")
(setq finlshp (ssget "w" (setq crnr (getpoint)) (getcorner crnr)))

’

;get original layer names of the shapes:

(setq
(setq
(setq
(setq

first (entget (ssname initshp 0))); get first entity of initshp
layl (cdr (assoc 8 first))); get current layer name of initshp
first (entget (ssname finlshp 0))); get first entity of finlshp
lay2 (cdr (assoc 8 first))); get current layer name of finlshap

Store the current layer, then move the selected shapes to new layers
for easier manipulation

(setqg

orig-layer (getvar "clayer"))

(command "layer" "make" "ouinit" "make" "oufinl" "")
(command "layer" "set" orig-layer "")

(command "change" initshp
(command "change" finlshp

wn "

"prop" "layer" "ouinit"
"prop" "layer® "oufinl" "")

Re-order the elements so they are in consecutive order. Calculate
the area of the shape at the same time.

(setqg
(setq
(setqg

(setg
(setq
(setq

’

(setqg

ret-list (re-order initshp "ouinit" layl))
initshp (car ret-list))
initarea (cdr ret-list))

ret-list (re-order finlshp "oufinl" lay2))

finlshp (car ret-list))

finlarea (cdr ret-list))

Assemble the values into a list and return them to the calling routine

return (list initshp initarea finlshp finlarea))

;end program

KAAAK AR KA KRR AA I A AR AR AR AR A AR AR KR AR AR AR AR AR A AR AR A A AR AR AR ARk kA bk ok k ok ok kk kk

PROGRAM RE-ORDER

LEA RS AR EREE S SRR RERER SRR ERRRRERRRRRRRRSERt RS SStERR SRR SSREREREREREES S

Called by select; into consecutive order.

(setq

(setq

defun re-order (shape layername layn)

s shape 1 layername) ;for tracing variables during debug

elast (entlast)) ;stores the name of the current last
;element in the database. Elements
;generated in this routine will be added
;at the end of the database, so this
;provides a starting point for accesing
;them.

Converting the element to a polyline allows the area to be calculated,
;and ensures that the elements will be in consecutive order when it is

(setq

index 0)

(setq pline nil)

(while (and (< index (sslength shape)) (/= pline 'T))
(setq etype (cdr (assoc 0 (entget (ssname shape index)))))
(if (= etype "POLYLINE")

(setq pline 'T)
) ; endif

(setq index (1+ index))

)

;end while

(if pline

121

(command "pedit" shape "3j" shape "" "x")
;else
(command "pedit” shape "y" "j" shape "" "x")

) ;endif

(setq pshape (ssget "x" (list (cons 8 layername)))) ;this is done in 2
(command "area" "entity" pshape) ;lines to keep the code simple.
(setq shparea (getvar "area"))
(command "explode" pshape)
(setq pshape (ssget "x" (list (cons 8 layername))))
(setq shape nil)
(setqg temp elast)
(while (setq temp (entnext temp))
; (command "change" temp "" “prop" "layer" (read (getvar "clayer")) "")
(setq shape (append shape (list temp)))
) ;end while
(command "change" pshape "" "prop" "layer" layn ""); return shape to its
;original layer
(setqg return (list shape shparea))

) ;end program

ek khhkhkhkhkhkhhhhkhkhhhhhhhhkhhkhhhhhhhhhk kb kkrhkhkrkhhkrhkkhkhkhhkhkkkhkhkkhkhkdkhhkkokdkhkhkdkhk

’

’

PROGRAM ROT-DIR

R R R R R R R R RS RS SRS R RS E R SS R R RS R R R R R R EREEEEEES]

’
’
.
’
’
.
’
.
’

BY Chris Fischer Jan 31, 1992
Detrmines rotation direction of consecutive elements in an exploded
polyline

defun rot-dir (entlist)

select the shape in the layer "layername”
(setqg intlist nil)
(setq layername (cdr (assoc 8 (entget (car entlist)))))
(setq selset (ssget "x" (list (cons 8 layername))))
(setqg centr (centroid selset))
(command "layer" "on" "*" "")
(setq p2 (list (car centr) (+ (cadr centr) 50))) ; a point directly
; above the centroid
(while (setq current (car entlist))
(setq entlist (cdr entlist))
(setqgq p3 (cdr (assoc 10 (entget current))))
(setqg p4 (cdr (assoc 11 (entget current))))
(setqg intr (inters centr p2 p3 p4))
(if intr
(setq intlist (append intlist (list current intr)))
) : end if
) ;end while

(if (> (length intlist) 2)
(progn
(setq yl1 (cadr (cadr intlist)))
(setqg y2 (cadr (cadddr intlist)))
(if (> yl1l y2)
(setq ent (car intlist))
(setq ent (caddr intlist))

) ; end if
) ;end progn
(setq ent (car intlist))
; end if

(setq pl (cadr (assoc 10 (entget ent))))
(setq p2 (cadr (assoc 11 (entget ent))))
(if (> pl p2)

(setq dir ’ccw)

(setq dir ’cw)

) send if
) ;end function

122

kA hkk kA Ak A A A A kA kA AR AR AR AR AR A A A A I Ak Ak hkkkhkhhkhhkhkkhkkhhkhhkhkhkhkhkhkhkhkhhkhkrhhkhhkhkhkkk

FUNCTION CALLMAP

ek ke hkhhkdhhkhhhr A h Ak Ak kA Ak khkhkhhhhhhkhkhhhhkhkhhhkhkhhkhkhkhkhhhkhhkhhhkhhkhkkhkkhkk

~e ~e

Calls the mapping routine to map the initial shape to the final §hape,
then the final shape to the initial shape. Returns a list of associated
initial and final x coordinates of vertical lines for mapping.

~e Ne So ~o s

(defun callmap (initshp finlshp initarea finlarea)

.
’

(setq cecho (getvar "cmdecho"))
(setvar "cmdecho" 0)

; For debug: open a file to write execution time data
(setq fp (open "timedata" "w"))

Recalculate initial and final areas after straight line approximation
; of arcs.
(setqg initxmax (findxmax initshp))
(setq finlxmax (findxmax finlshp))
; (textscr)
(setq ents (idents initshp initxmax))
(setq initarea (arealeft initshp (cadr ents) (car ents) initxmax))
(setq ents (idents finlshp finlxmax))
(setq finlarea (arealeft finlshp (cadr ents) (car ents) finlxmax))

~e

(setqg listl nil)
(setqg list2 nil)

Map the initial shape to the final shape. Returns two lists. The
first contains the vertical line divisions in the initial shape. The
second contains the vertical line divisions in the final shape.

Ne Se Ne o

;first, reset global variables used in matcharea function
(setg oldx nil)

(setqg oldarea nil)

(setq dxda nil)

;continue with mapping function
(setq ret-list (map initshp finlshp initarea finlarea))
(setq initlist (car ret-list))
(setq finllist (cadr ret-list))
(while (setq initx (car initlist))
(setq finlx (car finllist))
(setq listl (append listl (list (list initx finlx))))
(setq initlist (cdr initlist))
(setqg finllist (cdr finllist))
) : end while

Map the final shape to the initial shape. 1In this case, the first
list contains the divisions of the final shape, and the second contains
the division of the initial shape. They are reversed, then assembled.

~e e e

;reset global variables
(setq oldx nil)

(setq oldarea nil)
(setq dxda nil)

;continue with mapping
(setq ret-list (map finlshp initshp finlarea initarea))

(setq initlist (cadr ret-list)) ;note these two lines are the
(setq finllist (car ret-list)) ;reverse of those in the above
(while (setq initx (car initlist)) ;block

(setq finlx (car finllist))

(setq list2 (append list2 (list (list initx finlx))))
(setq initlist (cdr initlist))

(setq finllist (cdr finllist))

) ;s end while

listl and list2 are assembled into a single list, and returned to the

~e

123

; calling program.

(setqg assembly (list (list (cadr (assoc 10 (entget (car 1pltshp))))
(cadr (assoc 10 (entget (car finlshp))))
))) ;start with the first x point in

;each list

(while (or (setq x1 (car listl)) (car list2))
(setq x2 (car list2)) ;repeated because the second item in
;an or list may not be evaluated
(if (and (or (< (car x1) (car x2)) (not x2)) x1) (progn
;IN ENGLISH: [(x1 < x2) or (not x2)] and x1

(setq assembly (append assembly (list x1)))
(setq listl (cdr listl))
)):;end progn, end if
;else
(if (and (or (> (car x1) (car x2)) (not x1)) x2) (progn
; [(x1 > x2) or (not x1)] and x2
(setq assembly (append assembly (list x2)))
(setq list2 (cdr list2))
)) :;end progn, end if
;else {if they are equal, dump the element from the first list

; and continue with the next element from each list}

(if (= (car x1) (car x2))
(setq listl (cdr listl))
) end if

) :;end while

(setvar "cmdecho" cecho)
(setq return assembly)
) ;end function

ek hkhkhkhkkhkhhkdkhkhkhkhkhkhkhkhkdhkhkhkdkdkdhkdhhhkhkhdkkodhhkhkhdkdhkhhkdhkdhhdkkhkkkhkkkhkkhkkkkkkkkkhkhkkkk

FUNCTION MAP

LSRR RS RS SRR RS Rttt il i s sttt R RRtREERRRRRR SRS

’
i
’
H This function is called with a starting and ending shape. The
; starting shape is scanned left to right. Each time an entity endpoint
;s 1s encountered, a vertical line is drawn, and the area to the left of
; that line is calculated. A vertical line is then located on the
; final shape partitioning an area of equivalent ratio. These x
; coordinates are stored in listl and list2, and returned to the
; calling routine.

(defun map (startshp endshp startarea endarea)
(setq startlist nil)
(setq endlist nil)

;+ calculate area ratio
(setq ratio (/ endarea startarea))

(setq nents (length startshp))

(setq loindex 1)

(setq hiindex nents)

(setq entmin (readelem startshp 1))

(setq xmin (cadr (assoc 10 (entget entmin))))

(while (/= loindex hiindex)
(setq entlo (readelem startshp loindex)) ;entlo and enthi are the low
(setq enthi (readelem startshp hiindex)) ;and high entities, respectively
(setq xlo (cadr (assoc 11 (entget entlo))))
(setq xhi (cadr (assoc 10 (entget enthi))))
(if (< xlo xhi) (progn
(if (/= xlo xmin) (progn

(setq areal (arealeft startshp hiindex loindex x1lo))

(setq area2 (* areal ratio))

(setq endx (matcharea endshp area2))

124

(setq startlist (append startlist (list xlo)))
(setq endlist (append endlist (list endx)))
)) ;end progn, endif {/= xlo}
(setq loindex (1+ loindex))
) : end progn
;else
(progn
(if (/= xhi xmin) (progn
(setq areal (arealeft startshp hiindex loindex xhi))
(setq area2 (* areal ratio))
(setq endx (matcharea endshp area2))
(setq startlist (append startlist (list xhi)))
(setq endlist (append endlist (list endx)))
: end progn, endif {/= xhi}
(setg hiindex (1~ hiindex))
) : end progn
y ; end if

) ;end while

(setq return (list startlist endlist))
) ;end function

ek KA I A KA KA I A K kA A Ak A A A Ak A A A A A AR AR A A AR AR R A AR A AR A AR A kA AR kA hhkhkhhdkk khkkkdhhh

’
.
’
’
’
’
’
’
.
’
.
’
.

(

FUNCTION MATCHAREA

R R R R R R R R R R R R SR RS SRS SRR RS RS EEEE EERREEE R RS

Iterates on shape to find the x position of a vertical line with the
specified area to the left of it.

New version of the function, uses faster iteration scheme and values
stored in global variables to achieve faster convergence

Global variables: OLDX, OLDAREA, DXDA

defun matcharea (shape targetarea)

(setqg sh shape)

(setq xmax (findxmax shape))

(setq xmin (cadr (assoc 10 (entget (car shape)))))
(if (not oldx) (setq oldx xmin))

(if (not oldarea) (setq oldarea 0.0))

(if (not dxda) (setq dxda 1.0))

(setq newx oldx)

(while (> (abs (- oldarea targetarea)) 0.001)
(setq newx (+ (* (- targetarea oldarea) dxda) oldx))
(if (> newx xmax) (setq newx xmax))

(1f (< newx xmin) (setq newx xmin))
(setq ents (idents shape newx))
(setq currentarea (arealeft shape (cadr ents) (car ents) newx))
(if (> (abs (- currentarea oldarea)) 0.001)
(setq dxda (/ (- newx oldx) (- currentarea oldarea))))
(setq oldarea currentarea)
(setq oldx newx)
) :end while
(setq return newx)
) :;end progn

ek A A A A KA A A AAA A AR AL A A AR AAAAAA AR AR AR A A A A AR A A kA kA A A Ak Ak Ak hkhkhkhhkhhhkhhhhkhhkhkkhhkhk

’
.
’

FUNCTION OLDMATCHAREA

@ F d Kk d vk ke k Kk k sk ok ok ok k ko ek ok ok ek ke kg e gk sk ok Sk ok ke ke ke ok ke e ok g ke e ok ek ok e e ok sk e ke sk ek ke ke ke ke ok ok ke ok ke ok

’
.
’
.
’
.
’
‘
.
’

Iterates on shape to find the x position of a vertical line with the
specified area to the left of it.

This function is renamed from matcharea, and is not called. It is
an old version of the program

; (defun matcharea (shape area)
(defun oldmatcharea (shape area)

(setq ar area)
;find minimum x value of the shape

125

(command "undo" "mark")
(command "undo" "mark")
(setq x (cadr (assoc 10 (entget (car shape))))) . .
;find approx area of vertical line by incrementing 1 inch at a time
;to the right
(setq calcarea 0)
(setq ents 't)
(while (and (> (- area calcarea) 0.0005) ents)
(setg x (1+ x))

(setq ents (idents shape X)) ;identify the entities at the specified
(if ents (progn
(setq entlo (car ents)) ;x coordinate

(setq enthi (cadr ents))
(setq calcarea (arealeft shape enthi entlo x))
)); end progn, end if

) :end while

(setq delarea (abs (- calcarea area)))

(setqg delx 1.0)

(prompt "\n(starting second phase of matcharea”)
;iterate: calculate area, compare to target area, and narrow the window
;by 1/2 for each step.

(while (> delarea 0.0005)

(setq delx (/ delx 2.0))
(setq ents (idents shape x))
(if ents (progn
(setq entlo (car ents))
(setq enthi (cadr ents))
(setq calcarea (arealeft shape enthi entlo x))
(setq delarea (abs (- calcarea area)))
(if (> delarea 0.0005) (progn
(if (< calcarea area)
(setq x (+ x delx))
;else {calcarea}
(setq x (- x delx))
) ;end if {calcarea}
)) ;end progn, end if {delarea}
) ;end progn
;else {ents}

(setq x (- x delx))
) :end if {ents}
) :;end while

(prompt “\nexiting second phase of matcharea")

(command "undo" "end")

(command "undo" "back")
(command "redraw")

(setq return x)

) :;end function

EAAAR I I A A A A A AR AR AR A A AT AR A A A AR KRR AR AR AR KRR KA AR I AAAAAAAR A A A Ak A Ak k kA kkhk

FUNCTION INTER-SHP

sk Ak A A kAR A A A AR A A AR AR R A A A A A AR AR AR KRR AR AR AR A AT AR AR R AR Ak kA hkh kA AR Ak hkrkhkkhkdk kk

’
’
’
; Generates the intermediate shape from a list of coresponding
; points on the initial and final shapes.
(defun inter-shp (initshp finlshp maplist)
Define reference points for the initial, final, and mapped shapes.
Initial and final reference points are the first endpoint of the
first entity in the list. The reference point for the mapped shape
is selected by the user

.
7
.
7
.
7
’

(prompt "\nSelect the location for the left end of the mapped product”)

(setq mref (getpoint)) ;Mapped shape REFerence point
(setq mrefx (car mref)) ;Mapped shape REFerence point X coord
(setq mrefy (cadr mref)) ;Mapped shape REFerence point Y coord

(setq iref (cdr (assoc 10 (entget (car initshp)))));Initial shape REFerence

126

(setq fref (cdr (assoc 10 (entget (car finlshp)))));Final shape REFerence

(setq irefx (car iref)) ;Initial REFerence X coord
(setqg irefy (cadr iref)) ;Initial REFerence Y coord
(setq frefx (car fref)) ;Final REFerence X coord
(setq frefy (cadr fref)) ;Final REFernece Y coord

;***********************DEBUG
(prompt "\nEnter the mapping ratio factor (0 to 1)")
(while (or (< (setq n (getreal)) 0) (> n 1))
(prompt "\nThe value must be between 0 and 1. Reenter.")
) ;end while

(graphscr)
;In a loop, read each pair of points, then generate the mapped shape

(setq npts (length maplist))
(setq count 1)
;*********************************DEBUG
(while (<= count npts)
; (while (<= count 2)
;************************************
(setq temp (car maplist))
(setq maplist (cdr maplist))
(setqg ix (car temp)) ; initial x map point (local coords)
(setq fx (cadr temp)) ; final x map point (local coords)

;initial shape

(setq ients (idents initshp ix)) ; idents uses global coords
; lower entity index

(setq iloent (car ients))

(setq workent (readelem initshp iloent))

(setq ptl (cdr (assoc 10 (entget workent))))

(setqg pt2 (cdr (assoc 11 (entget workent))))

(setg xptl (list ix ‘0)) ; these two points form a vertical

(setq xpt2 (list ix ‘1)) ;line through the x map point

(setq ilo (inters ptl pt2 xptl xpt2 nil))

(setq iloy (cadr ilo))

;higher entity index
(setq ihient (cadr ients))
(setq workent (readelem initshp ihient))
(setq ptl (cdr (assoc 10 (entget workent))))
(setq pt2 (cdr (assoc 11 (entget workent))))
(setq ihi (inters ptl pt2 xptl xpt2 nil))
(setq ihiy (cadr ihi))

;final shape
(setq fents (idents finlshp fx))

;s lower entity index
(setq floent (car fents))
(setq workent (readelem finlshp floent))
(setq ptl (cdr (assoc 10 (entget workent))))
(setq pt2 (cdr (assoc 11 (entget workent))))
(setq xptl (list fx '0))
(setg xpt2 (list fx 1))
(setq flo (inters ptl pt2 xptl xpt2 nil))
(setq floy (cadr flo))

;higher entity index
(setq fhient (cadr fents))
(setq workent (readelem finlshp fhient))
(setg ptl (cdr (assoc 10 (entget workent))))
(setqg pt2 (cdr (assoc 11 (entget workent))))
(setq fhi (inters ptl pt2 xptl xpt2 nil))
(setqg fhiy (cadr fhi))

;sort hi and lo y values

(setq ylist (sort2 floy fhiy))
(setq floy (car ylist))

127

(setq fhiy (cadr ylist))
(setq ylist (sort2 iloy ihiy))
(setq iloy (car ylist))
(setq ihiy (cadr ylist))

;calculate mapped points

; calculate the distance from the initial and final reference points to

; the current points.
(setq dix (- ix irefx)) ; Delta I X -- distance from IX to IREFX
(setq dfx (- fx frefx)) ; Delta F X -- distance from FX to FREFX

(setq diloy (- iloy irefy))
(setq dihiy (- ihiy irefy))
(setq dfloy (- floy frefy))
(setq dfhiy (- fhiy frefy))

calculate mapped points as a scaled ratio of Deltal and DeltaF for each
; point.

(setq dmx (+ (* (- 1 n) (- dix dfx)) dfx)) ; dm = (1l-n)(di - df) + df
(setq mx (+ dmx mrefx))

(setq dmloy (+ (* (- 1 n) (- diloy dfloy)) dfloy))

(setq dmhiy (+ (* (- 1 n) (- dihiy dfhiy)) dfhiy))

(setq mloy (+ dmloy mrefy))

(setq mhiy (+ dmhiy mrefy))

(setq mlo (list mx mloy))

(setq mhi (list mx mhiy))

; Now draw the lines.

(if (= count 1)
(progn
(command "line" mlo mhi "")
(setq oldmlo mlo)
(setq oldmhi mhi)
) ; end progn

selse
(progn
(if (not (pt= oldmlo mlo))
(progn
(command "line" oldmlo mlo "")

(setq oldmlo mlo)

)) ; end progn, endif {not pt= oldmlo}
(if (not (pt= oldmhi mhi))

(progn

(command "line" oldmbi mhi "")

(setq oldmhi mhi)

)) : end progn, endif {not pt= oldmhi}
)) :end progn end if

(it (= count npts)
(command "line" mlo mhi "")
) ;end if
(SETQ OL OLDMLO)
(SETQ OH OLDMHT)
(setq count (1+ count))
pREKX A KA KAk * kA Kkx kXX *WHILE LOOP COMMENTED OUT FOR DEBUGGING
) :end while
) :end function

KA AAK KK AR AR AR AR KA AR AR KA KAAA KRR A I AR AR AR A A A A AR A A AR A Ak A Ak kA A Ak Ak khkkkkkk*

function SORT2

ek KA I A KA A A AR A A A AR AR A A A A AR AR A AR A A A A A A A Ak A Ak kb khkdkhhk kkhkkkkkhk khkhkkkhki
sorts two values, and returns a list containing the lower one first

~e ~o

~. ~

(defun sort2 (i j)
(if (< J 1)
(progn

(setq t J)

128

(setq j 1)

(setq i t)

)) :end progn, end if
(setq return (list i 3j))
) ;end function

(defun c:is() (inter-shp initshp finlshp mlist))

AKX AA A KA AAKRAA A AAAAA A A AAAAAAAAAR A A AR AR A AR A AR AR A Ak kb hk Ak kA hkkk kkhkkhkkkkhkkk ki

FUNCTION FINDXMAX

A A A A A A A A A A A A A A AR AR AR AR AAA KA AA AR AR AA AR AR AAAR A A AR AR A A AR khkhkkkhkkkkk kokkh ki

;
; returns the largest x coordinate found in ENTLIST
(

defun findxmax (entlist)
(setq xmax -1.0el0)
(while (setq temp (car entlist))
(setq entlist (cdr entlist))
(setq xtemp (cadr (assoc 10 (entget temp))))

(1f (> xtemp xmax)
(setq xmax xtemp)
) ;end if
) ;end while
(setqg return xmax)
) ; end function

129

Ne Ne Ne Ne e Ne Ne Se Se Se Se Se we ~e

~e Se Se Se ~o

~e

~e ~e

~e

Jede g dododeodk kok ok ok ok ok kok Ak sk dk ko k ke k kA sk ke sk ok bk ok sk ke ke ke ek sk sk ke ek gk sk e gk e sk ok sk ok ke ok ok 3k ok ok ok ok ke ke b ok ok ok ok ok ok ok

THICKNESS MAPPING PROGRAM by Farid Masri

e de kK ok dk de de ok deodk sk K de gk sk de gk b sk de gk ke ks e gk sk e e ok e ok ke ke ke g e ok sk ke e ok ok e ok e e ok ok ke ok ok ke ok ke ok e e ke ok ok ek ke ok ok ok ok ok

this program will map a selected shape and draw thickness profile

of it. the program is first loaded by using the autocad "load" command
(load "thickmap"), then it can be used as an autocad command

("thickmap"). the progarm will then ask the user to select

the desired shape with a window. after the selection, the progarm

will then ask the user for a point on the screen; this will be the
starting point of the new drawing that’s generated by the porgram.

% de de kKoK gk gk Kok de g gk gk ok ke ke dk ok ok ok e ok ek e ke T ok e ok de A ke ok sk sk e ok e sk e ok ke ke e sk ke ke ke ke ok Tk ke gk sk ke ok ke ke gk ke ok ke e ke ke ok ok ke ke ok
d ok de g A gk ke sk e ek ke Kk kg de ke gk dk e ke e ke ok ke ke gk ek ok e ke ke ok e e ok ok ok b ek ok dk ke ke e ok ke e ke ek ek ke ok ok ok ke ok ok ok ke ok ok

(defun c:thickmap ()

e de ke ke de ko gk kb sk sk sk sk ke e gk sk ke kb sk ke ke gk sk b ke ok e ok e ok b ok sk ke b e e ok ok ke sk gk g b sk ke ke ok ok ok ok gk sk ke ok ek ok ok ok ok ok ok ok ok ok ke ok

get current snap and color settings and save them. these variables are
changed during execution and will be restored at the end of the progarm:

(setq org-color (getvar "cecolor")); get original color.
(setq org-osnap (getvar "osmode"))

(setq org-snap (getvar "snapmode"))

(setq org-cmdecho (getvar "cmdecho"))

(setq cl (getvar "celayer"))

(setvar "cmdecho" 0); switch off command echc for faster execution
(command "osnap" "none"); turn off all snap modes for proper execution
(command "snap" "off")

(prompt "\nselect the desired shape to be mapped with a window")

(princ "\n \n ") (princ)

(setq entlist (car (shapesel)))

(command "undo" "end")

(prompt "\nselect starting point of mapped shape")

(princ "\n \n") (princ)

(setq xstart (getpoint))

(prompt "\nrunning...... please wait"})

{princ "\n \n") (princ)

(setg entlist (arc2line entlist)); convert arcs in shape to line segments
(setq xmin (x-min entlist)) ; fin minimum and maximum cordinates of shape
(setq xmax (x-max entlist))

(setq ymin (y-min entlist))

(setq ymax (y-max entlist))

(setqg xstart (list (car xstart)(cadr xstart)));

(setq xend (list (+ (- xmax xmin)(car xstart)) (car (cdr xstart))))
(command "line" xstart xend ""); draw baseline of thikness profile
(setq xpos (+ xmin 0.005)); shift the current position pointer slightly
(setq tempp xstart)

(setq tmplist entlist); tmplist is used by midents

(linter xpos)

(setq ylength (abs (- (cadr intersl) (cadr inters2))))

(setq npoint (list (+ (car xstart) (- x1 xmin)) (+ (cadr xstart) ylength)))
(command "line" tempp npoint "")

(setq tempp npoint)

(while (<= xpos xmax)
(linter xpos)
(setq ylength (abs (- (cadr inters3)(cadr inters4))))
(setq npoint (list (+ (car xstart) (- x2 xmin)) (+ (cadr xstart) ylength)))
(command "line" tempp npoint "")
(setq xpos (+ x2 0.005))
(setq tempp npoint)
): end while
(command "line" npoint xend ""); join the last point with the base line

130

~e

~e

~e

Ne Ne Se Ne Ne e e Se

~e e

~e

e we Ne ne Ne Ne Ne

(command “"redraw") ; clean up the window

(setq tmplist nil entlist nil shape nil pshape nil)
restore original settings

(setvar "osmode" org-osnap)

(setvar "snapmode" org-snap)

(command "color" org-color)

(command "layer" "set" cl "")

(setvar "cmdecho" org-cmdecho)

(princ "\n \n")

(princ)

); end program thickmap

KAk hkhhk kA AR ARAKR R KA AR Ak kA kA Ak hkhhhkkkhkhk kb khkhhkkkhkhk kA hkkkh kA hhkhkhk kA rkhkkkkhkkhkkkdhkhk

program midents by Farid Masri
Ahhhhhhkhhkhkhkhk kA hAA A Ak hkhk kA Ahkkhk Ak hkhkhk kA hhhkhkhkhkhkkhkAr kA hhhkhkhkkhkhkhkhkrhrkhhkhhkhhxhk
modified version of program idents by chris fischer
identify entities: identify indices of lower and upper entities
intersecting a vertical line through xpoint. returns nil if xpoint
is outside of the shape.
by chris fischer.
(defun midents (tmplist xpoint)
(setqg ents nil)
(setq index 1)
(while (< (length ents) 2)
(setq temp (car tmplist))
(setqg tmplist (cdr tmplist))
(setq x1 (cadr (assoc 10 (entget temp))))
(setq x2 (cadr (assoc 11 (entget temp))))

ssort x1 and x2
(if (< x2 x1) (progn
(setg t x2)
(setq x2 x1)
(setqg x1 t)
)) ; end progn, endif

test if xpoint is between the endpoints of the entity
and be sure the entity is not vertical and is not a duplicate.

(if (and (<= x1 xpoint x2) (/= x1 x2) (/= temp (car ents)))
(setq ents (append ents (list temp)))
)y; end if

(setq tmplist (append tmplist (list temp)));
) :;end while
select the first and last entities in the list
(if (/= (car ents) nil)
(setq return ents)
; else
(setq return nil)
) ;endif
) ;end function
hhkhkhkhkhkhkhkhkkAkhkrk Ak AAhkhhkhkhhkhkhkhA bk hrkhr Ak bk hk Ak hkhkkhkrkhhhhkhkhAhkhkkhkhkhkrhkrhkhrhkhkhkhkhkhkhkhk

function linter (line intersection) by Farid Masri

this function reurns the intersection points of a vertical line
at a given x position and the entities that it intersects.

AR KA AR A A AR AR KA AR AR ARA AR AR A A A AR A AAKR AR AKRAKRAKRAA A AR AR Rk Ak A A khhkhkhkhkkkkhkkkk

(defun linter (xp / xpo ptl pt2 pt3 pt4 pt5 pté pttemp)

131

(setq
(setqg
(setq
(setq

7

(setq
(setqg
(setqg
(setqg

(i

.
’

):

Xpo Xp)

xp (midents tmplist xp))
a (car ents))

b (cadr ents))

ptl (list (cadr(assoc 10 (entget a))) (caddr (assoc
pt2 (list (cadr(assoc 11 (entget a)))(caddr (assoc
pt3 (list (cadr(assoc 10 (entget b))) (caddr (assoc

pt4 (list (cadr(assoc 11 (entget b))) (caddr

(assoc

f (< (car pt2) (car ptl)); if pt2 is less than ptl
them in order to find the minimum x-coord. of the line

(progn
(setq pttemp ptl)
(setq ptl pt2)
(setq pt2 pttemp)
): end progn
end if

10 (entget a)
11 (entget a)
10 (entget b)
11 (entget b)
then exchange

)
)
)
)

2if (< (car pt4) (car pt3)); if pt4 is less than pt3 then exchange them

)¢
(s
(s
(i

)i
(if

): e
(setq
(setq
(setq
(setq
(setq
(setq
(setq
(setq
): en

(progn
(setq pttemp pt3)
(setq pt3 pt4)
(setq pt4 pttemp)
); end progn
end if
etq x1 (car ptl))
etq x2 (car pt2))

f (< (car ptl) (car pt3))

(setqg x1 (car pt3))
end if

(< (car pt4) (car pt2))
(setg x2 (car pt4))
nd if

pt5 (list x1 ymin))

pté (list x1 ymax))

intersl (inters ptl pt2 pt5 pté nil))
inters2 (inters pt3 pt4 pt5 pté nil))

pt5 (list x2 ymin))
pté (list x2 ymax))

inters3 (inters ptl pt2 pt5 pté nil))
inters4 (inters pt3 pt4 pt5 pté nil))

d function

132

