
Examining Laser Triangulation System Performance

Using a Software Simulation

A Thesis Presented to The Faculty of the

Fritz J. and Dolores H. Russ College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Master of Science

by

Jeff Collier

June, 1998

OHIO UNIVERSITY
LI A'uV

111

Acknowledgments

Thanks to God for all his blessings. Thanks to Heather, my wife, and my parents,

the prayers of which I am convinced are the most significant factor in any success I have.

Thanks to Dr. Nurre, my advisor, who has been an excellent guide and has given me

many opportunities. Thanks to Erick Lewark, a fellow graduate student.

IV

Table of Contents

List of Tables · · · · · · . · · · . VI

List of Figures VII

I. Introduction 1

A. Introduction 1

B. Overview of laser triangulation 2

C. Problems associated with current systems 3

D. Computer simulation 4

E. Organization of thesis 5

II. Research of errors in laser triangulation systems 6

A. Introduction 6

B. Research relating to laser triangulation systems 7

C. Research of error in a triangulation systems 11

III. Method of software development 18

A. Introduction 18

B. Types of occlusion 18

C. Scan coverage approach 24

D. Method of analyzing results 29

E. Hooks for future work 31

IV. Software implementation 33

A. Introduction 33

B. Overview of the program structure 33

c. Explanation of open inventor 34

v

D. Objects and their capabilities 35

E. Functional description of the simulator 50

V. Results of software use 64

A. Introduction 64

B. Comparison to an actual scanner 65

C. Analysis with cylinders 67

D. Analysis with a human model 74

VI. Discussion 82

References .. 84

Appendix A 86

Appendix B 192

VI

List of Tables

Table 1: Statistics for a two head simulated scanner 70

Table 2: Statistics for a four head simulated scanner 71

Table 3: Statistics for a two head simulated scanner; rotated subject 74

Table 4: Statistics for a precise four head scanner 78

Table 5: Statistics for a low occlusion four head simulated scanner 80

Table 6: Three different camera calibrations 192

VII

List of Figures

Figure 1: Laser triangulation diagram. . 2

Figure 2: A diagram of the Rioux laser triangulation scanner 7

Figure 3: Laser triangulation system with two camera views. . 8

Figure 4: A grid representing projected pixel boundaries 15

Figure 5: The ideal case in measuring a laser triangulated point. . 20

Figure 6: Occlusion caused by the subject blocking the camera 21

Figure 7: Laser plane occluded by the subject 22

Figure 8: Missed surface due to a significantly sloping surface. . 23

Figure 9: An actual laser plane and a plane of vectors 27

Figure 10: Examples of two ways to measure error 30

Figure 11: Open Inventor scene graph node legend 35

Figure 12: C++ class diagram for the simulator 36

Figure 13: Base scene graph for the laser triangulation simulator 37

Figure 14: Open Inventor scene graph for a laser plane 41

Figure 15: Image plane within camera and image plane parameters 43

Figure 16: Open Inventor scene graph for the simulated camera 45

Figure 17: Open Inventor scene graph for a track 47

Figure 18: SimScan window for managing the simulated scanner. . 50

Figure 19: Menus and a description of their functionality 52

Figure 20: UIW in the edit scanner interface mode 53

Figure 21: UIW in the edit track interface mode. . 54

Figure 22: Track before orientation change 55

Figure 23: Track after orientation change 55

Figure 24: SimScan window for managing the simulated scanner 56

Figure 25: Image plane before alterations. . 57

Figure 26: Image plane after alterations 57

Figure 27: UIW in laser plane interface mode 58

Figure 28: A diagram of a scanner configuration. . 60

VIII

Figure 29: Projection grid from a scan head. . 61

Figure 30: Improved projection grid 62

Figure 31: Cyberware WB4 test grid and SimScan test grid points 66

Figure 32: Two cylinders used in SimScan 67

Figure 33: Diagram showing scanner subject orientation 68

Figure 34: Results of a two head scanner simulator 69

Figure 35: Results of a four head scanner simulator 70

Figure 36: Layout diagram showing old and new subject orientation 72

Figure 37: Results of a two head scanner simulator with subject rotated 73

Figure 38: Sam the scan analysis man 75

Figure 39: Sam's orientation relative to the scan heads 76

Figure 38: Results of a precise simulated scan of Sam. . 77

Figure 39: Results of an occlusion preventing simulated scan of Sam 79

Figure 39: Projection grid for a type A camera 193

Figure 40: Projection grid for a type B camera. . 194

Figure 41: Projection grid for a type C camera 195

1

I. Introduction

A. Introduction

The concept of triangulation is very well understood. Starting with the ancient

Greeks [16], triangulation has been used to measure distances. The invention of the laser

diode, the microcomputer and the CCD camera have opened entirely new areas in which

laser triangulation measurement systems (known as scanners) can be used. Current

applications now range from scanners for the insides of old pipes [11] to a vision tool for

the blind [7][8]. As such, it is important that techniques be developed to minimize the

error in laser triangulation measurement systems.

A powerful technique for examining the performance of equipment is computer

simulation. A computer simulation is inexpensive, easy to maintain and highly flexible.

Simulation software can be used to aid the design of scanning equipment and help make

decisions about what triangulation geometry would be best to purchase for a given

application. A simulator can also be used to determine the best orientation for scanning a

particular subject.

The purpose of this work was to create a simulator for a laser triangulation

system. In addition to presenting the simulator itself, this thesis describes and

demonstrates the use of the simulator. A limitless number of laser triangulation systems

can be modeled and most subjects represented in CAD files can be used in the computer

simulation.

B. Overview oflaser triangulation

A brief description of a laser triangulation system will be discussed so that the

terminology used in this thesis can be understood. In a laser triangulation system the

surface of the object being scanned is intersected with a beam of laser light. A position

sensor detects the light and a location in space is calculated based on the location on the

position sensor. Figure 1 shows a diagram of a laser triangulation system.

Position Sensor

a

Figure 1: Laser triangulation diagram.

In Figure 1 the horizontal line represents the laser beam. Point A represents the

intersection of the laser beam and the surface of the object being scanned. Point B is the

position recorded by the position sensor. The distance h is between the center of a

sensing element on the position sensor and the laser plane. The angle a is the angle

between the optical axis of the position sensor and the laser beam.

2

The model described above can be extended by replacing the laser beam with a

laser plane and making the position sensor two dimensional. An additional method of

extending the system to three dimensions is to move the laser beam along a known path.

The following terms can be used to describe aspects of Figure 1 and will be used

throughout this thesis. First, the distance between the laser plane and the position sensor

will be called the baseline. The angle between the laser beam (or plane) and the optical

axis of the position sensor will be called the camera angle because the position sensor

will most often be a CCD camera. Finally, the object to be scanned will be called the

subject.

c. Problems associated with current systems

There are two main problems associated with laser triangulation systems. The

first problem occurs when the laser light is blocked somewhere between the laser and the

position sensor. This problem will be called occlusion. There are many reasons for

occlusion and it will be discussed at length in chapter two. The second problem is the

quality of the measured point is dependent on the ratio of the baseline distance to the

surface point distance.

If a CCD camera is used for a position sensor, the quality of the baseline distance

will be limited by the resolution of the CCD camera. As with any triangulation system,

the precision of the measurement is highest when the baseline distance is equal to the

measured distance. For a laser triangulation system, however, an increase in the baseline

3

distance means an increase in the likelihood of having occlusion problems. Thus as the

quality of the data increases, occlusion also increases.

D. Computer simulation

There are an increasing number of applications for which three-dimensional data

would be useful. With the increase in applications comes an increase in the variety of

subjects. The subject to be scanned is an essential part of how a laser triangulation

system will perform. Therefore, a precise analysis of error within a system should

include a model of the object to be scanned. An analysis of error within a laser

triangulation system should be flexible enough to handle a large variety of subjects.

Due to the nature of a camera lens, points farther from the camera along a laser

beam will be measured with less precision. In addition, the precision does not change

linearly. The nonlinear nature of stereo vision systems is explained by Nurre [12] and

will be discussed more in chapter two.

Due to the nonlinear nature of the problem and the fact that it depends on an ever

changing and vast number of subjects, a computer simulation was written to examine the

trade-offs between occlusion and data quality. A computer simulation allows for a large

amount of flexibility by giving the user the ability to calculate the error for a given

configuration without having to build and test it.

4

E. Organization ofthesis

This thesis is organized into six chapters. Following this introduction is a

discussion of recent research related to errors in a laser triangulation system. Next is a

chapter that covers the specifics of occlusion and describes how they will be represented

by the computer simulation. Chapter four is a discussion of the simulation code itself.

Chapter five will present results generated by the simulator and demonstrate with a

simple example the trade-off between occlusion and data quality. The final chapter is a

discussion of the results of this research.

5

II. Research of errors in laser triangulation systems

A. Introduction

There are many factors that can generate error in a laser triangulation system.

Elements such as the quality of the laser beam and variations in the intensity of light

striking the position sensor can playa role in measurement accuracy [5]. The error

generated due to these factors is reported to be on the order of micrometers. Other

sources of error due to the geometry of the system can be on the order of millimeters.

Because errors due to the geometry of the system can have a much greater impact on

system performance, this work will be limited to the errors due to the geometry of the

system.

Researchers have examined this problem from two angles. Some have looked

strictly at the factors that could cause errors. Others have designed systems from which

errors have been observed and analyzed.

The first part of this chapter contains a summary of research that involves the

observation and analysis of error in actual triangulation systems. Next research that

relates strictly to the analysis of error due to the geometry of the system will be given.

This provides a foundation for creating a tool which can model a laser triangulation

system.

6

7

B. Research relating to laser triangulation systems

Although the baseline is the main geometric parameter of a laser triangulation

system to impact the quality of the data, there are a number of other factors that can have

an effect. Many people have adjusted these factors in an attempt to come up with a better

measurement system. Because the quality of the measurement depends heavily on the

subject and because error within the system cannot be analyzed in a linear fashion [12], a

system has not been created to work optimally for a large variety of different subjects.

One of the first laser triangulation systems described in the literature was created

by Rioux [14]. It uses a rotating mirror to direct a laser beam and camera view across an

object. Figure 2 is a diagram of the system.

M2

Figure 2: A diagram of the Rioux laser
triangulation scanner.

8

In Figure 2 the pyramid mirror MI rotates, and as it does, the laser and the view of

the sensor scan across the subject. A second rotating mirror, M2, directs the laser beam

and camera in another direction, thereby covering the surface of the object.

Rioux divides occlusion, which he calls shadow effect problems, into two

categories. One category is occlusion due to the camera being blocked, and the other is

due to the laser being blocked. In addition to categorizing the errors, the author suggests

scanner configurations that could help reduce the occlusion.

Laser Plane

Figure 3: Laser triangulation
system with two camera views.

The purpose of the research of Saint-Marc, et al. was to examine the capabilities

of a low cost laser triangulation system [15]. Two cameras and a laser plane were used.

The second camera was used to reduce the occlusion problem. Figure 3 diagrams the

configuration of the laser plane and cameras. In Figure 3 the horizontal line represents

the laser beam intersecting the subject at point P. Either or both cameras can record the

position of this point.

The subject to be scanned was set on a rotating table. The system used a vibrating

mirror to create a laser plane to intersect with the subject. The position of points along

the intersection were then calculated based on the two camera views.

9

Some indication of the data quality was given by measuring the resolution of the

scanner. Occlusion was discussed only to demonstrate that for a given object some of the

occlusion was eliminated as a result of having two cameras. No analysis was made of the

trade-offs between the data quality and the occlusion problem.

Dalgish et al. built a laser triangulation system that reduced the hardware burden

of the host CPU [4]. The triangulation system built used a laser plane created by a

cylindrical lens and a baseline of 720 nun. The resources that were devoted to the system

by the controlling computer were drastically reduced. Because they chose a relatively

long baseline, the system was sensitive to occlusion problems.

Two sources of occlusion were identified. The first was due to the laser light

striking the subject's surface at a small angle. A small angle between the laser plane and

the subject's surface will not result in enough diffuse light reflecting back to the camera.

The second identified problem was called "the problem of hidden parts" by Dalgish et al.

The problem of hidden parts is occlusion due to the camera or laser being blocked by an

intervening surface on the subject.

A laser triangulation system was designed to track weld joints [20]. The system

uses a laser plane generated by a cylindrical lens. The subjects for which the system was

designed are relatively flat, so little mention was given to occlusion. The process of

choosing the system geometry was not given in detail. A rough estimate of the resolution

of the scanner was given.

The research by Zeng was based on a laser triangulation system that was unique in

many ways [21]. A scanning laser beam was used instead ofa plane of light. The beam

10

was moved by means of an acousto-optical device. A second laser beam was added to

reduce the occlusion problem.

The improvement that results from having a second laser beam is similar to the

improvement that results from having a second camera. This method is effective for

reducing a particular type of occlusion which is due to the laser beam not being

perpendicular to the subjects surface. A second beam at a large angle to the first increases

the chances that a laser beam will intersect the subjects surface at an extreme angle.

Because there is a higher likelihood that at least one laser will strike the object at an

acceptable angle, the amount of occlusion is reduced. An in depth analysis of how the

geometry of the system effected the amount of occlusion was not given.

Much of the current published research does not address the trade-offs between

the scanning resolution and the amount of occlusion that occurs in a scan. In addition

most of the work does not describe how the geometry of the system was decided upon.

Some research discusses these issues as they relate to an experimental system that has

already been implemented.

All of the systems discussed above would benefit from an analysis of the trade-off

between occlusion and data quality. The weld bead scanner would benefit the least from

this analysis because the subject is known to have a flat geometry with little chance for

occlusion.

11

c. Research oferror in a triangulation systems

One way to examine the trade-offs between occlusion and triangulation error is to

build a scanner with an adjustable baseline. Such a scanner was designed and tested by

Clark [3]. Planar elliptical mirrors allow for the scanner's baseline to be easily adjusted.

With a system that has an adjustable baseline, the geometry can be changed so

that the optimal baseline may be chosen for the subject being scanned. One problem with

the system is that it is very sensitive to calibration and the non-ideal elliptical mirrors can

further aggravate the calibration process. Even so, the system admirably demonstrates the

trade-off between resolution and occlusion.

For most applications, a scanner with an adjustable baseline would be impractical

due to the added cost, complexity and sensitivity to calibration. However, Clark has

shown that given an object, the scanning geometry can be optimized to meet the needs of

the system designer. Clark has also demonstrated that it is important to examine the

trade-offs between occlusion and scanner accuracy.

A analytical presentation of error in a stereo vision system was discussed by Nurre

[12]. This discussion provides a good background for the analysis of error in a laser

triangulation system. Based on a pinhole camera model, the article gives a precise

description of the geometrical aspects of error present in a stereo vision system.

The situation for the laser triangulation system is very similar to that of the stereo

vision system, but one of the cameras is replaced with a plane of laser light. This greatly

reduces the complexity of the system. Consider the situation in which the laser plane of

light is in the x-y plane, and the orientation of the camera can be described by a

12

transformation matrix [9]. Using the pinhole camera model, the following equation

describes the transformation from a world point to an image plane coordinate.

all a l 2 a l 3 a l 4 X W·X ip

a21 a22 a23 a24 y W·Yip

* (1)a3 1 a32 a33 a34 Z W·Zip

a41 a42 a43 a44 W

The point (X, Y, Z) is a point in world space. The vector [w· xip, W • Yip, W· Zip,

w] represents a homogeneous point on the image plane. The values all through a44 define

the transformation matrix. The following equations can be written from equation one.

Because the laser plane is parallel to the X-Y plane, Z is equal to some constant h.

Equations two and three become:

13

If the following assignments are made,

(6)

(7)

(8)

(9)

(lO)

(11)

equations four and five become a set of lines based on ipy and ipx and have the following

form.

A·X+B·Y=C

D·X + E·Y = F

(12)

(13)

If xipand Yip vaiues are chosen that correspond to the boarders of pixels on the

image plane of a CCD camera, equations twelve and thirteen represent two sets of lines in

14

world space that form a grid. This can be thought of as projection of the CCD array

boundaries onto the laser plane. The areas within the projected grid represent all points

that must be represented within the scanner as one discrete point. The area within each

section of the grid represents the resolution of the scanner.

The following example will demonstrate the formation of the line sets. Consider

the situation in which the laser plane is on the X-Y plane. A camera is placed so that it has

a view of the laser plane and the view can be described by the following transformation

matrix:

o 0 04

o -0.5 0.866 -0.693

o -0.866 -0.5 0.4

o -17.321 -10.0 9.0

(14)

Using this matrix in equation one, A, B, C, D, E and F (see equations 6-11) can be

found in terms of xip and Yip. If a set of eleven lines (based on equations twelve and

thirteen) is created using values of x., between -O.025mand O.025m and a set of fifteen

lines is created using values of Yip within the same range as xip, the grid in Figure 6 will be

generated.

15

2

1.8

1.6~ --\--+----\--+----t--l---+--+--I---I---I- _

1.4F-------\--+-----+---+-+---I--I----l---J---I--1-------

1.2
I-----------+-+--+-+--I------+---+---I-.....J--.J-.-I--------

0.8

0.6l....-------'---------.:
-1

Figure 4: A grid representing projected pixel boundaries

In Figure 6 the horizontal lines represent the boundaries between the area of space

seen by each column of pixels on an image plane. The slanted lines represent the

boundaries for the columns of pixels. Thus the area in space measured by any given pixel

can be determined by its corresponding area on the grid. Clearly the more distant areas

represent a greater chance for error.

There are two problems in using the approach discussed above to examine the

trade-offs between occlusion and scanner resolution. First, as described in reference [12]

the equations for error are non-linear. The second problem is that the occlusion of the

object is not taken into consideration. Both of these problems can be dealt with by using

16

a computer simulation. For a given laser triangulation system geometry and for a given

object, the simulation program can decide, first, if a point is occluded and, second, what

value would be generated within the given computer model for the system.

An excellent article by Tasi [16] describes a mathematical camera model. It is

based on a pinhole camera model with some enhancements to make the model more

accurate. One enhancement is the addition of lens distortion. Radial lens distortion in

one direction can be described with the equation [13]:

Xu
X--------

d (1 +K
1
-r 2+K

2
-r 4.. -)

(15)

where the K terms are based on the physical properties of the lens. Xd is the distorted

point on the focal plane and Xu is the undistorted point. The variable r is the distance

between the lens center (C; Cy) on the focal plane and the undistorted point:

(16)

The distortion in the y direction can be found in a similar manor. Tsai states that

based on his experience, a more in-depth lens distortion model would not help and would

cause numerical instability.

Tsai's camera model accommodates a lens that is not centered on the focal plane.

It also accommodates a camera with a different number of sensing elements than pixels.

17

It is clear that building systems and testing them to determine their performance in

terms of occlusion and scanner accuracy is a costly and time consuming process. The

work of Nurre, Tsai, and Clark can be incorporated into a computer simulation for a laser

triangulation system. Such a simulation can provide a means of analysis that is quicker

and flexible for future research.

18

III. Method of software development

A. Introduction

A software simulation of a laser triangulation system can be used as a tool to

examine the trade-offs between occlusion and scanner accuracy. A simulation is

particularly useful because factors such as the cost of the system, the type of object

scanned and the purpose of the scan will make other prototype analysis difficult or

impossible. The flexibility of the simulation software allows for an analysis that is

specific to the needs of a particular system without losing the generality needed to analyze

any system.

In particular the simulator was developed to reveal the presence of occlusion for a

given scanning configuration and subject. There are many causes for occlusion. Priority

should be given to the types of occlusion that are most common and have the greatest

effect on the outcome. Therefore this section will start with a discussion of the types of

occlusion and move to a description of the scan coverage approach. The last section of

this chapter describes the method of obtaining results.

B. Types ofocclusion

A laser triangulation system's performance will depend on the subject being

scanned. Subjects with many deep crevasses or parts that could block a laser or camera

will require a shorter baseline. A subject with no occlusion problems will generate more

accurate results with a longer baseline. Because the subject scanned is a factor in the

optimal scanner configuration, the subject must be considered in the analysis. The

19

geometry of the scanner and the subject are both necessary to consider the amount and

quality of scan coverage. Separating occlusion into several categories will be helpful

when describing the capabilities and limitations of the software.

Six separate cases are used to describe how data is collected or occluded. In some

situations these cases may occur simultaneously. The types of occlusion can be grouped

as follows:

1. The ideal case.
2. The camera occluded by the subject.
3. Laser plane occluded by the subject.
4. Poor vertical resolution.
5. Poor laser angle.
6. Poor laser diffusion.

1. The ideal case

The ideal case occurs when the laser plane intersects the subject and the

intersection is clearly recorded by the camera. This is the most common situation and a

profile of it is shown in Figure 5.

Scan Head
A

Subject

20

Figure 5: The ideal case in measuring a laser
triangulated point.

In Figure 5 the horizontal line represents the laser plane and the jagged surface

represents the surface of the subject. Point A is the point of intersection between the laser

beam and the subject. Point B is the point that would be registered on the focal plane.

Notice that neither the laser plane nor the line of sight of the camera (line AB) is occluded

by the subject.

2. Camera occluded by the subject

When the subject has a very extreme indentation, the camera can become blocked

which results in a void in the data. An example of this situation is a subject wearing

wrinkled clothing. This situation is illustrated in Figure 6.

21

Figure 6: Occlusion caused by the subject blocking
the camera.

In Figure 6 the laser intersects the subject at point A. The data point would have

been collected by the camera's focal plane at point B, but the subject blocks the line of

sight of the camera.

3. Laser plane occluded by the subject

When one part of the subject blocks another part of the subject from being

intersected with the laser plane, data will be missed. This could occur in the armpit area

of a human subject. The arm blocks the torso from receiving laser light. Figure 7

illustrates this type of occlusion.

22

Figure 7: Laser plane occluded by the subject,

In Figure 7 one point on the subject (point A) is captured. Point B is within the

line of sight of the camera. If the arm did not block the laser, point B would have been

captured.

4. Poor horizontal surface coverage

When the surface of the subject is nearly parallel to the laser plane, a great deal of

data can be lost between captured frames. The scanner captures data by taking a picture

at a particular height. When the scan head moves to the next height, it may pass over

much of the surface. This situation occurs in the shoulder area of the human subject. An

example is shown in Figure 8.

Part A Part B

23

Figure 8: Missed surface due to a significantly sloping surface.

In Figure 8, Part A, the measurement ofpoint A is an ideal case. The scanner

moves in the vertical direction and takes its next measurement (Figure 8, Part B). Again

the measurement taken fits into the category of the ideal case. Notice, however, the bold

line between points A and B. This represents the surface area along the subject missed by

the scanner.

5. Poor laser angle

Laser triangulation systems are always limited to subjects with a diffuse

surface [6]. If the laser strikes at an angle nearly parallel to the subject's surface, less

diffuse light can be seen by the camera. If too little light is observed by the camera, it

will not register a point and that point becomes occluded.

6. Poor Laser diffusion

Situations exist in which a subject is made of a material that does not properly

diffuse laser light. This can occur when the subject is too reflective, too transmissive or

24

too absorbtive. A mirror, for example, reflects the laser in such a way that the camera

cannot detect the point at which the laser intersected the mirror. A black carbon object

will absorb most of the laser light, and the camera will not be able to register a point.

Darkly pigmented hair and skin can also cause occlusions in the data due to poor laser

diffusion.

c. Scan coverage approach

This section will give the methodology used to create the simulation by first

discussing the background issues. Next, an overview of the simulation concept will be

given. Finally conceptual details of the simulation will be discussed.

1. Background

All of the types of error described can be improved or made worse by the

configuration of the scanner (with the possible exception of "poor laser diffusion"). The

individual aspects of the configuration affect each type of error differently. In the case for

which error is due to the camera being occluded by the subject (see Figure 8), the most

significant configuration parameter is the baseline distance. When the baseline is small,

most crevasses in the subject will not be narrow enough to occlude the camera. However,

making this distance small reduces the resolution of the scanner and increases the

variance in the error of the captured data.

For the case in which error results due to the subject occluding the laser plane (see

Figure 9), the most significant configuration parameter is the number of scan heads and

25

the position of the scan heads. Having multiple scan heads at a large variety of angles

will reduce the chance that a point on the surface will be missed due to a blocked laser

plane.

For the case in which error is due to poor horizontal surface coverage (see Figure

10), the most significant configuration parameter is the position of the scan heads and the

path they follow. There is also a direct relationship between this type of error and the

distance between each frame.

Although identifying the configuration parameters that affect the scan coverage is

not difficult, it is difficult to decide what the optimal configuration parameters should be.

Different configurations will be optimal for each subject. Therefore a tool that allows a

designer to test designs based on the configuration of the system would be extremely

helpful. This is the purpose of the software simulator.

A software simulator was created which incorporates the essential configuration

parameters as discussed above. In addition a great deal of flexibility regarding the subject

was made available. A few configuration parameters essential to scan coverage issues

are:

• The position of the camera relative to the laser plane (baseline).
• The location of the scan heads.
• The path on which the scan heads travel.
• The number of scan heads.
• The distance covered between frames.

Many other configuration parameters can have an impact on the scan coverage

(such as the camera model parameters). Control has been given to the user to adjust most

of these parameters.

26

2. Simulation Overview

The issues and parameters discussed above were used to create a process that the

simulation software would follow to generate results. The following is an explanation of

that process. First, the intersection of the laser light and the subject's surface is

calculated. When the intersection is found, the surface normal and the properties of the

surface are also obtained. Next, a ray is formed starting from the intersection point and

projecting back through the focal point of the camera. The ray is tested to see if it would

intersect the subject at any point (thereby occluding the camera). If such an intersection

exists, the process is stopped due to camera occlusion. If nothing is blocking the ray, the

intersection point is captured by the camera according to the camera model.

Once the point is captured by the camera there are several techniques for

generating the data point. Since many methods are available and because the methods

themselves can be a source of error, the simulation is set up so that different techniques

could be tied in with the current software. The methods for generating the resulting data

points often rely on a particular scanner geometry. To keep the simulator as generic as

possible, a default method was created. Using the center of the illuminated pixel, a data

point in world space is generated based on the camera model.

The simulation method described allows for a variety of errors to be examined. A

subject with crevasses or appendages that block the camera view will suffer from a lack

of recorded points in this area. This type of subject also increased the chances that a laser

ray will be blocked.

27

3. Simulation Details

The simulation process described above relies on having an intersection of the

laser plane and the subject. An innovative approach is to model the laser plane as a set of

coplanar rays. The rays start from a common origin and pass through a set of evenly

spaced collinear control points. Figure 9 depicts the laser plane.

laser plane Modeled laser plane

Figure 9: An aduallaser plane and a plane of vectors

The left side of Figure 9 is a picture an actual scan head and laser plane. The right

side shows how a set of rays starting at the origin and passing through a set of control

points may simulate the plane. Using coplanar rays to represent the laser plane has many

advantages. Finding the intersection of a ray with an object is less time consuming and

generates more information than finding the intersection of a plane with the object. For

each intersecting ray the following information is calculated: the intersection point, the

28

surface normal and the surface's material properties at the intersection. It is assumed that

for each ray that intersects the subject, enough diffuse light will be generated to register a

point on the camera focal plane.

For modeling the camera, the widely understood and accepted pin hole camera

model was used. This involves multiplying a homogeneous point by a transformation

matrix and a projection matrix to generate an image plane point. A correction for lens

distortion was added according to the description given by Tsai [13][16].

A laser plane and one or more cameras can be put together to form a scan head.

The data generated by one scan head is in two dimensions because the data must be

entirely in the laser plane. By moving the scan head and thus the laser plane, a third

dimension can be generated. The movement of the scan head is defined by tracks.

Because the camera does not have to move relative to the laser plane, no re-calibration of

the scan head needs to be done.

Like most real-world systems, the simulation software takes advantage of the

linear nature of the tracks. In the simulation, however, the tracks are defined as NURBS.

Therefore the simulation software could be easily adapted if future analysis should ever

require a more complex path for the scan head.

Tracks can be nested so that a scan head moves along a track while the track

moves along another track. This could be used to create a two-dimensional path for the

scan head without the added computational complexity of moving the scan head along a

NURBS.

29

D. Method 0/analyzing results

Occlusion is not easy to quantify. At first glance, finding the total number of

occluded points seems straight forward because the simulator calculates every occluded

point. However, because there are multiple camera views and often multiple scan heads,

it is often possible that a point missed in one camera will be captured in another. The

total number of captured points could be calculated and compared with the number of

points captured by other configurations or some predetermined ideal. However, this has

limited application because a system with many overlapping scan heads could collect

more points and still contain more occlusion.

Qualitatively, however, occlusion is very easy to observe. Occlusion shows up as

gaps in the data. A system suffering from occlusion will have parts of the subject with

sparsely measured data or elements within the subject that are missing altogether. Many

features for observing data are available in the simulator. In fact, software was written to

enhance the ability to make observations of the data. This tool is called the Scan Data

Analysis Tool (SDAT).

The approach used to analyze simulator occlusion is a combination of qualitative

and quantitative measures. The simulator is set up to calculate the total number of points

generated. Therefore, the amount of data generated can be compared between competing

systems. The points are also displayed on the screen so that missing areas may be

identified.

It is important to know the quality of the data generated as well as the amount of

data occluded. Therefore, the simulator was created with the ability to generate statistics

30

relating to the quality of data. The statistics will be based on the error for each generated

data point.

Two distinct ways to measure data can be identified. For discussion purposes they

will be called min (minimum) error and actual error. Min error is the shortest distance

between the value measured by the scanner and the surface of the subject. Actual error is

the distance between the value measured by the scanner and the intersection of the laser

plane. Figure 10 gives an example of these two types of error.

Minimum Er~

Actual Err

Figure 10: Examples of two ways to measure error.

The horizontal line in Figure 10 represents the laser beam. Point A represents the

intersection with the subject and laser beam. Point B represents the value measured by

the scanner. As seen in the figure, the min error and the actual error could be quite

different if the subject has a rapidly sloping surface. Researchers evaluating a laser

triangulation system usually attempt to calculate min error because the actual intersection

point is unknown to them. When the surface of the subject is not sloping significantly,

the actual error and the min error are the same.

31

Only actual error will be calculated and discussed. The reason that only actual

error will be calculate is that the min error is dependent on the geometry of the subject

while the actual error will be a truer reflection of the performance of the system. The

simulator provides an advantage over an actual system because the intersection with the

laser beam and the subject is known. Calculation of error is then just a matter of keeping

a correlation between the intersection and the data point generated by the simulator.

E. Hooks for future work

Not only is the software a useful tool, but it was also written so it could be

extended to be an even more precise model. Several hooks were intentionally left in the

software and a short description will be provided for each of the following:

1. Consideration of subject's surface normals.
2. Consideration of subject's material properties.
3. Consideration of pixel intensity value.

1. Surface normals

When a laser plane strikes the surface of a subject, the amount of light that will be

diffused will depend, in part, on the incident angle of the laser light. The simulation

software was written in such a way that surface normals are available at the time the

intersection is found. This surface normal could be used to calculate the incident angle

and relate that to an amount of diffuse light to be seen by the camera.

32

2. Consideration of the surface materials

Open Inventor objects have a means of defining the object's material properties.

At the time the laser ray intersection with the subject's surface is calculated, the material

properties are available. By extending the software to use the material property

information to determine the intensity of the diffuse light, the precision of the simulation

could be increased.

3. Consideration of the pixel intensity

Currently if a laser ray is found to strike the image plane the pixel is considered

turned on. Each laser ray diffused off the subject will represent an intensity. Therefore,

consideration of this intensity would make the simulator more precise. To this end an

intensity value is kept within the current data structure for each illuminated pixel.

Extending the simulator for this capability would be a matter of putting the appropriate

value in the intensity location and using the value to generate data points.

33

IV. Software implementation

A. Introduction

A simulator was implemented as an addition to a software package called CyScan,

written and distributed by Cyberware Inc. CyScan is used to operate laser triangulation

hardware and process three-dimensional data. The simulator code was mostly isolated

from CyScan and only relied on CyScan to handle small infrastructure requirements.

Simulated data can be imported into CyScan. In this way CyScan's three-dimensional

data processing tools may be used on simulated data.

The simulation code is controlled by a fully functional menu-driven window that

is independent from CyScan's menuing system. It allows for the creation, editing and

saving of basic scanners and an analysis of their abilities. The following sections will

describe the simulation code by first giving an overview of its structure. A brief

explanation of Open Inventor is given to aid in the description of the simulation code

objects and capabilities. Finally a functional description of the code is given.

B. Overview ofthe program structure

The code was written in C++ and a scripting language TCL/TK [17]. A tool kit,

Open Inventor [2, 18, 19], was also used to interface with CyScan and simplify much of

the code that relates to 3D objects. Open Inventor was chosen because there are

converters from a large number of commercial CAD systems to this format. A simulator

user can chose from a vast number of subjects already modeled with CAD software.

34

The program can be broken into two parts. The graphical user interface (GUI) and

the simulator. The GUI was written with TCL/TK and the simulator was written with

c++ and Open Inventor. The names of TCL/TK procedures begin with the letters au

(Ohio University) and the names of C++ classes begin with the letters OUs (Ohio

University scanner).

The interaction between TCL/TK is set up in CyScan and works as follows. The

user interacts with the GUI (written in TCL/TK). When the user requests an action that

requires C++ code such as "scan the subject" the TCL/TK code calls a C++ global

function and passes it a set of strings. The global function contains a pointer to an object

that can operate the scanner simulator. Based on the strings passed to the global function

the appropriate method within the simulator object is called.

The TCL/TK code is best described by giving a functional description of the GUI.

OUsControler is the object that interfaces with the TCL/TK code (although often a

method inherited from OUsSimulator is called directly). This would make the transition

from CyScan to an independent GUI (such as one written in JAVA) simpler.

c. Explanation ofopen inventor

Because the simulator used Open Inventor extensively, it is important to have a

basic understanding of this software package. Open Inventor is a tool kit for

programming with 3D solid modeling objects. It organizes a solid model object in space

onto graphs. These graphs define the object and its relationship with all other objects in

the simulation world space. The graphs contain nodes that represent parts of the object.

35

The following are examples of nodes: point sets, primitive shapes, transformations and

material properties. In the Open Inventor literature, different types of nodes are

represented with icons. The icons can be arranged on a graph to depict how the nodes

would be arranged in the code. Throughout this chapter, the icons used in the Open

Inventor literature will be used for all scene graphs. A legend is given in the next figure.

e Separator: organizes sets of nodes under this node.

~ Switch: orga nizes sets of nodes for wh ich the render of may be turned on a nd off.

• Shape: indicates an object to be rendered such as a primative or a point set.

Materials: defines a set of properties such as color and shininess

cD Transformation: defines a translation, rotation or scaling.

& Metrics: contains infromation such as a set of points.

Figure 11: Open Inventor scene graph node legend.

Figure 11 contains a list of Open Inventor scene graph nodes and a description of

each node. The set is not inclusive of all Open Inventor nodes but contains all that are

used in this chapter. A complete list of the Open Inventor nodes can be found in the

Open Inventor C++ reference manual [2].

D. Objects and their capabilities

The C++ code contains a set of classes. All classes ultimately inherit from

OUsBase. The class OUsControler inherits from OUsSimulator which contains most of

the other higher level classes. Figure 12 shows the class diagram. This section will

highlight the most important elements from the C++ classes. Sometimes simple

36

explanations will suffice, but in other cases the underlying Open Inventor scene graph

will be described.

~ Array of pointers ---. Contains ~ Inherits from

Figure 12: C+ + class diagram for the simulator

In the simulator code, the higher level objects will have ties to Open Inventor. An

attempt was made to isolate most of the Open Inventor functionality into specific classes

designed to handle the Open Inventor aspect of the object. The lower level objects handle

aspects more fundamental to the simulator and therefore do not need solid modeling

capabilities. One exception to this is the foundational class OUsBase.

37

1. OUsBase

This is the base object for all other OUs classes. It contains static pointers to

locations on an Open Inventor scene graph. It also contains a pointer to CyIvState, an

object that is necessary for interacting with CyScan. OUsBase has a limited number of

methods. OUsBase has the ability to do important book keeping tasks such as saving a

scene graph to a file. OUsBase also sets up the scene graph to be used by the simulator

the first time the OUsBase constructor is run. A diagram of the scene graph can be found

in Figure 13.

(5·····································,:.:~

/':':'::...,':...

Scanner Elem ents

• • •

c~· ~::.. c··

Sim ulator Root

Subjects

Default

Primative

Sim ulator Data

Track Sub-Graph Track Sub-Graph

Note: Dash Objects not added by OUsBase constructor.

Figure 13: Base scene graph for the laser triangulation simulator.

In Figure 13 the scene graph has three main branches. The first branch is for the

simulator and is shown under the "scanner elements" separator node. The second branch

is for the subject and is shown under the "subjects" switch node. The last branch is for

data and is shown under the "simulator data" separator node. The track sub-graph

38

represents the Open Inventor graph of a single track and scan head. The simulator starts

with a default primitive object for the subject.

2. OUsXfrmObjs

For each object it was important to be able to transform points and objects from

world space to object space. Therefore all classes except OUsSimulator and

OUsControls inherit from OUsXfrmObjs.

OUsXfrmObjs contains the transformation matrices. OUsXfrmObjs does not

contain the functionality needed to generate the values for these matrices. The reason for

this is twofold. First the class OUsRay that inherits from OUsXfrmObjs does not need to

determine the transformation matrices. It simply needs to link to another object's

matrices. Second, OUsXfrmObjs does not have functionality relating to the Open

Inventor scene graph (except what is inherited from OUsBase). To determine what the

transform matrices should be, the scene graph interaction is essential. Therefore,

establishing the values of the transformation matrices is done with the help of

OUsXfrmObjs, OUsDispObjs and higher lever objects that inherit from OUsDispObjs.

This functionality will be explained further below.

3. OUsRay

The class OUsRay provides a tool for the laser plane class and the camera class.

To find a point of intersection between the laser plane and the subject, the laser plane

uses OUsRay to project a ray into the subject's scene graph and find an intersection.

Similarly, the camera class can use its OUsRay. The camera defines a ray from the

39

intersection point on the subject to the focal point of the camera. An intersection of this

ray and the subject would indicate that the subject is occluding the camera.

4. OUsDispObjs

Objects that inherit from OUsDispObjs can display themselves on the screen and

do all the things that objects represented in an Open Inventor scene graph can do.

OUsDispObjs sets up a path through the scene graph by which the transformation

matrices may be defined. However, finding the transformation matrices themselves

requires that the inherited objects be created. Each object has a unique set of translations,

rotations and scalings.

This is the lowest level class in which the methods setToScan and setToSlice are

defined. These methods prepare all parts of the simulator to perform the simulation

process. These functions are virtual functions that do nothing in OUsDispObjs. Each

object that inherits from OUsDispObjs is expected to use these methods to perform

actions prior to simulation execution.

5. OUsDataSet

There are many occasions when a set of points needs to be handled in the

simulator; therefore, a class was written for this purpose. It creates a place on the scene

graph and adds several Open Inventor nodes so that the points can be displayed in a

variety of ways.

40

The OUsDataSet objects are linked together. Due to this linking, objects that

contain a pointer to a specific set of points can search through all data sets. This is

particularly useful for allowing the laser from one scan head to interact with other scan

heads. The first laser plane object of a particular color adds a data set to the list. All

other laser planes with the same color will find the first data set, and when they generate

intersections, the intersections will be added to this set. The camera is simply looking for

a set of intersections with the correct color.

Data set points are stored in a SoCoordinate3 node and the color is stored in a

SoMaterials node. The materials node allows for several types of color: diffuse color,

ambient color, emissive color, etc. The laser point intersections are the first set of points

on the list with the specified emissive color.

6. OUsLaserPlaneInv and OUsLaserPlane

OUsLaserPlaneInv and OUsLaserPlane work together to implement a laser plane.

OUsLaserPlaneInv handles most of the actions that relate to Open Inventor and

OUsLaserPlane deals with the laser plane on a higher level. Because they are closely

related, both are explained in this section. The Open Inventor graph shown in Figure 14

summarizes the structure of the laser plane.

41

Laser Plane

Position Orientation Focal Point Color Defining
Points

Control
Points

pointset

Displa'

dlsp lo.

Figure 14: Open Inventor scene graph for a laser plane

The nodes "defining points" and "control points" contain the points needed to model the

laser plane. The laser plane is set up in such away that the focal point is the origin of its

object space. Therefore, the focal point is described as a translation relative to the object

that contains the laser plane (usually a track). The Position and Orientation nodes

describe any transformation relative to the containing object that the user might want.

The color node is a SoMaterials node containing the emissive color that all other objects

will look for to deal with a laser beam of this color. The control points define the laser

plane as discussed in chapter three. The "defining points" are a set of four values stored

in an SoCoordinate3 node. The first two values are the distance between adjacent control

points and the distance between the first and last control point. The last two values are

the pitch and tilt of the laser plane. These angles represent a misalignment of the laser

plane and are set to zero for a perfectly true laser plane. The four defining points are used

42

to generate the control points. The display nodes and "pointset" node allow the laser

plane to be rendered, but they are also used by OUsDispObjs to create a transformation

path. The path will include the Position, Orientation and Focal Point nodes. When the

transformation is calculated, the values in these nodes are combined to form one

transformation. Once the transformation is calculated, the member OUsRay (which is not

part of the scene graph) can use these transformations.

7. OUsImagePlane

The class OUslmagePlane uses the Tsai [16] camera model to represent an image

plane. This class does not use the Open Inventor scene graph. It does however, provide

some virtual functionality that will allow the information in this class to be stored on an

Open Inventor scene graph. OUslmagePlane models an image plane as depicted in

Figure 15.

43

dx
-o-

A

dy~

• ~
-,

"- .x y
,,-,~

\"- \
, "'1\
~~

'J ,-I

B

Figure 15: Image plane within camera and image plane
parameters.

In Figure 15 a picture of a camera is depicted in the lower left and a diagram of its

image plane is shown in the upper left. Some of the parameters used in the Tsai camera

model have been labeled. Line AD is a line of sight from a world point (A) to a location

on the image plane. Point B is the location of the focal point of the lens. The following

is a list of camera parameters used by this class. The grid lines represent the distance

from one sensing element to the next.

•
•
•
•
•
•
•
•
•

CX,Cy
cX,cy
dX,dy
Ncx
Nry
Nfx
Sx

k
fl

44

The pixel values of the lens center.
The lens center as given in actual coordinates.
The distance from one sensing element to the next.
The number of sensing elements in a row.
The number of rows of sensing elements
The number of pixels in a row.
Parameter that accounts for timing discrepancies in
the hardware.
The first term of the radial lens distortion.
The focal length of the lens.

The definitions are sufficient explanation for most of the parameters. Sx is a term

that Tsai introduced to take into account the fact that the timing that captured the pixels

was slightly off from the timing that was running the sensing elements. While this is a

problem for physical cameras, it is not a concern for a virtual camera. The parameter

changes the ratio of the x and y values on the image plane just as if an anamorphic lens

had been used. This parameter was left in, despite the fact that there would be no timing

mismatches, so that an anamorphic lens could be used.

The OUsImagePlane class uses these parameters to find the pixel that would be

turned on due to a light source at a point in space. The class also contains a set of points

that represent the illuminated pixels. The points contain a row value, a pixel value along

the row, an intensity value, and a fourth value used as an index that corresponds to the

actual intersection point.

8. OUsCameraInv and OUsCamera

OUsCameraInv and OUsCamera work together to model a camera.

OUsCameraInv handles most of the Open Inventor interaction while OUsCamera handles

45

most of the higher level functions. Both classes inherit methods and members of

OUsImagePlane, but most of the interaction takes place in OUsCameraInv.

An OUsCameraInv object can be constructed from an Open Inventor scene graph.

There is also a constructor that does not require a scene graph. In this case the

constructor creates the scene graph. This graph contains enough information to

completely define the camera and the image plane. Figure 16 depicts the Open Inventor

scene graph of the camera.

~ .Debug Display

Display

dislplay

. Camera Root

Camera Position Camera Rotation

Color Translate IP Scale Sx Image Plane

1m age Points Point Set Focal Point Point Set Pixel

Figure 16: Open Inventor scene graph for the simulated camera.

On the graph in Figure 16 is a translation node (Camera Position) and a rotation

node (Camera Rotation). In addition there are two branches that store information and

help render the virtual camera on the screen. The first is the standard Display branch that

is present in any OUsDispObjs. The second is Debug Display, so named because it can

46

display camera parameters that are not usually visible throughout the simulation process.

When Debug Display is off, the sub-nodes still store the needed information, but it is not

rendered to the screen.

OUsCamera provides the methods for modeling the way a point in space is

captured by the image plane. This class also contains the functions for translating a point

from the image plane back to the world space.

9. OUsContainers

The OUsContainers class was created so that any object derived from

OUsContainers could contain any class derived from OUsDispObjs (including other

OUsContainers objects). To contain another object means that the object is contained in

the C++ class and within the Open Inventor scene graph. Examples of the use of

OUsContainers are tracks that contain scan heads and scan heads that contain cameras

and laser planes. An OUsContainers object can contain other OUsContainers, hence, a

track can contain other tracks providing more complicated movement.

An OUsContainers class contains an array of pointers to OUsDispObjs. Most of

the methods contained in OUsContainers class are methods that need to be executed by

all contained classes. The OUsContainers class calls the method for each contained

object (which usually results in a call to a virtual method) and then calls the method for

itself.

47

10. OUsTrackInv and OUsTrack

OUsTrackInv and OUsTrack are used to model a track in a laser triangulation

system. The functionality of the track is simple. Complexity arises in this object due to

the structure it creates on the Open Inventor scene graph. As a result the OUsTrack

class's main purpose is to provide the scene graph support needed to implement the track.

OUsTrackInv implements scene graph branches upon which the rest of the

simulator can be placed. Figure 17 displays an Open Inventor scene graph for the track.

""'~,

t! Origin

Track Material Track Draw Style

Display

Increment Points

display

Control Points Display Track
(SoNurbsLine)

TrackRoot

; .

····r··

Objects Root

Location On Track

Track Position

Figure 17: Open Inventor scene graph for a track

The first level of the track scene graph (shown in Figure 17) contains two nodes,

one is named Track and the other is named Objects Root. Objects Root represents the

48

scene graph of all objects contained on the track. Because Track is a group node and not

a separator node, the transformation defined for the track will also transform anything

contained in the Objects Root sub-graph.

The origin is a transformation that positions the base of the track. Under the

display branch is the node "Control Points." These are the NURBS control points that

define the path of the track. Other nodes under the display switch are strictly for

rendering the track. The node Increment Points contains information that lets the class

OUsTrackInv know how much to move the objects. For speed, OUsTrackInv contains a

copy of this information in a C++ variable. The primary reason to have the incriment

amount on the scene graph is for saving and loading scanner files. The Track Position

node is a transformation that represents how much the object has moved from the origin

of the track.

11. OUsScanHead

The purpose of the OUsScanHead class is to simplify the simulation process by

collecting a laser plane and two cameras into a unit that can be used to simulate the

scanning process. Although OUsScanHead has a substantial amount of functionality, its

scene graph is quite limited. The scene graph for OUsScanHead is implemented by the

OUsContainer class.

OUsScanHead orchestrates the camera and laser plane methods in the correct

sequence to generate a set of simulated points. It also contains two OUsDataSet objects:

1. the intersections of the laser plane and subject; 2. the corresponding points collected

49

by the simulator. These points represent the points generated by one camera frame and

are referred to as a slice. There is a method for returning the points from each slice so

that the simulator can assemble all the slices.

12. OUsSimulator

The class OUsSimulator contains tracks, scan heads, cameras and laser planes. It

uses OUsScanHead to generate a slice. It uses OUsDataSet objects to keep statistics.

The simulator only scans a single slice, but keeps data for all the slices it has scanned. A

TCL/TK script handles the looping through the slices so that the GUI may update the

progress indicator during the scan.

Besides the methods of performing the simulation, OUsSimulator provides

methods for creating and editing the scanner.

13. OUsControls

The class OUsControls inherits from OUsSimulator and has additional

functionality so that it may be used with TCL/TK. OUsControls main purpose is to

exchange information between TCL/TK and C++ objects. Because the interaction with

the GUI is encapsulated in this one class, the task of creating a stand alone program is

simplified by this design.

50

E. Functional description ofthe simulator

The implementation of the software tool, described in the previous section, was

created within the CyScan framework. It is called the Laser Scanner Simulator or

SimScan for short. A description of the aUI will be given followed by an example of

how SimScan may be used.

1. Description of aUI

The SimScan Control window has three main parts: the main menu, the user

interface window (UIW) and the action buttons. Figure 18 displays the three main parts.

User Interface Window (UIW)

All Editing of the simulator takes place

through this window.

Figure 18: SimScan window for managing the simulated scanner.

51

Each part of the "SimScan: Simulation Control" window, shown in Figure 18,

will be described in a section of this chapter. The UIW changes to accommodate the

interaction needs of the user.

2. SimScan main menus

The menu shown in Figure 18 follows a traditional format. It contains a file, edit,

add item, display and options menu. A picture of each menu and a description of its

functionality is shown in Figure 19. The pull down menus file, edit, add, display are

shown in the figure. The menu options is for future expansion and is not displayed in the

figure.

52

File Menu

Get Subject loads an open inventor subject to be scanned.

Get Scanner loads a scanner configuration that was created and saved.

Save Scanner saves the current scanner.

Save Intersection Points saves points on the subject's surface that would be

created for an ideal scanner at a given resolution.

Save Simulated Points saves the simulated data generated by the simulated

scanner.

Ed it Menu
Edit Scanner allows the user to edit parameters pertaining to the entire

scanner using the UIW.

Edit Track allows the user to edit the track parameters using the UIW.

Edit Camera (Intrinsic) Parameters allows the user to edit the intrinsic

parameters of the camera using the UIW.

Edit Camera (Intrinsic) Parameters allows the user to edit the extrinsic

parameters of the camera using the UIW.

Edit Loser Plane allows the user to edit the laser plane parameters

using the U IW.

Add Menu
Add Scanner adds a track with a scan head to the current scanner.

Add Track adds a track to the current scanner

Add Scan Head adds a scan head to the current track.

Display Menu

This menu has a command, Display Output, and two sets of check buttons.

When the display output command is selected, statistics pertaining to the last

scan are displayed in the UIW. When the first button, Display All, is selected

all other buttons become inactive.

Figure 19: Menus and a description of their functionality

3. SimScan UIW (User interface window)

The UIW is used to edit a scanner or display results. The UIW reduces clutter on

the desktop by using the main window area of the "SimScan: Simulation Control" (see

Figure 20) for all user interface needs. The UIW has six main interface modes. The six

53

modes consist of five editing modes and a mode for output. Each of the editing modes

alters the UIW by placing its interaction controls in the window. To summarize, the

interaction modes are:

a. Edit scanner mode (Figure 20)
b. Edit track mode (Figure 21)
c. Edit camera (intrinsic and extrinsic) mode (Figure 24)
d. Edit laser plane (Figure 27)
e. Output mode

a. Edit scanner mode

When the "SimScan: Simulation Control" window is in the edit scanner mode, the

controls for editing the scanner are placed in the UIW shown in Figure 20.

Figure 20: UIW in the edit scanner interface
mode.

54

The simulator collects data into sets that are based on one frame of a CCD

camera. Each frame of data is called a slice. In this mode, the user may control the

number of slices to be scanned and the distance between each slice. These controls will

impact the time it would take for a real scanner to operate, and the amount of scan

coverage. It does not affect the physical geometry of the scanner itself.

b. Edit track mode

When the "SimScan: Simulation Control" window is in the edit track mode, the

controls for editing the track are placed in the UIW as shown in Figure 21.

Figure 21: UI·W in the edit track interface mode.

The position for the base of the track and the orientation of the track may be

changed through these controls. Consider Figures 22 and 23. The figures depict a

scanner simulator with two tracks and two scan heads. Also present is the subject, a

55

chess piece placed on the table. Using the edit track mode the orientation of the track is

changed. Figure 22 and 23 show the track (in the center of the figures) before and after

the change.

Figure 22: Track before orientation
change.

Figure 23: Track after orientation
change.

c. Edit camera (intrinsic) mode and Edit camera (extrinsic) mode

When the Simulation Control window is in the edit camera modes, the controls

for editing the camera are placed into the UIW as shown in Figure 24.

56

Figure 24: SimScan window for managing the simulated scanner.

These controls allow the user to change all the parameters related to the camera.

Some parameters, such as focal length (fl) and pixel size(dx, dy), are not readily visible in

the display area. However, parameters such as the image plane size and the image plane

orientation are displayed to aid the user, as shown in Figures 25 and 26.

Figure 25: Image plane before
alterations.

57

Figure 26: Image plane after
alterations.

Figure 25 shows a scan head aimed at a subject (the chess piece). In Figure 26 the

orientation and size of the image plane have been changed by using the edit camera mode.

The color of laser plane that can be detected by the camera is set in edit camera (intrinsic)

mode.

d. Edit laser plane mode

The edit laser plane mode allows the user to set specifications related to the laser

plane. In particular the user can define a laser plane using the width, resolution and focal

point. Figure 27 shows the "SimScan: Simulation Control" window in edit laser plane

mode.

58

Figure 27: UIW in laser plane interface mode.

A laser plane also has a color associated with it. This color can be defined

through the edit laser plane mode. The user may also set a pitch or tilt to examine the

consequences of having the laser plane misaligned.

e. Output mode

The output mode is used to display statistics related to a current scan. In

particular the minimum error, maximum error, mean error, and standard deviation of the

error are given.

59

4. SimScan action buttons

The action buttons are found at the bottom of the simulation control window as

shown in Figure 18. These buttons allow the user to perform a variety of tasks such as

"start the scan" or "make a test grid". The buttons change to reflect the type of input

needed from the user based on the current mode of the UIW.

5. Example of SimScan usage

SimScan is started from the CyScan main menu under an item named au

Research Tools. When SimScan is started, the Simulation Control window appears. The

user creates a virtual scanner by adding and editing tracks and scan heads. The internal

parameters associated with each component can be changed. The following describes the

method for creating a simulated laser triangulation system. Once created, the scanner

model can be saved through the file menu for future use.

The first step is to create tracks on which the scan heads will travel. Tracks can

be added through the add item menu. The position and orientation of each track are set

through the edit track controls that will appear in the UIW as described in the previous

section (see Figure 21). Four tracks are added and a scan head must be attached to each.

To add a scan head, the desired track is selected and the add item menu is used.

Adding a scan head creates two virtual cameras and a virtual laser plane. The scan heads

and tracks can be positioned around the scanning space as shown in Figure 28.

Head 2 Head 1

60

Head 0 Head 3

Figure 28: A diagram of a scanner
configuration.

In Figure 28, the scan heads are depicted as trapezoids with the long base in the

direction in which scanning is performed. The scan heads are labeled head 0, head 1,

head 2 and head 3. In the center of the four scan heads is the scan space. The scan heads

can collect data in this region.

For both a real and a virtual camera, each pixel on the camera's image plane

corresponds to a region of scan space. If these pixels are projected into the scan space

and connected, a grid is formed. The mathematical basis for this grid is discussed in

chapter two. The grid is unique for each scan head of the scanner. SimScan generates a

set of points corresponding to the intersections of these grids.

61

SimScan generates a point corresponding to every tenth pixel on the focal plane.

Using the grids, it is easy to see how the region of scan space is covered by the cameras in

a scan head. Figure 29 shows the projection grid for a scan head.

Figure 29: Projection grid from a scan head.

The points shown are from the SimScan projection of the image plane. The circle

represents the scan space. It is clear that the area closer to the camera is detected by a

larger number of pixels. Therefore the quality of data will decrease as the subject is

moved away from the scan head.

The camera parameters may be adjusted through the edit menu item: Edit Camera.

When the Edit Camera command is chosen, the user may edit camera parameters through

the UIW (see Figure 25). The camera can be adjusted to achieve better coverage of the

scanning space. Figure 30 shows the projection grid after improvements to the scan head

have been made.

62

.
.

Figure 30: Improved projection grid

In Figure 30, the grid from an improved scan head is projected to the scanning

space. We see that the scan head covers more of the scan space and that the space

between grid points is more uniform.

Once a scanner is created, a subject must be placed in the scanning area. By

default a sphere is the assumed subject. To use any other subject, an Open Inventor file

of the subject must be available. The Open Inventor subject can be loaded into SimScan,

using the file menu item: Get Subject.

Once the subject is in place, the user should select the number of slices to be

scanned and the spacing between slices. This is done through the edit menu item: Edit

Scanner. The simulation is activated by the action button labeled Start Scan. Starting at

the base, SimScan scans up the subject.

63

While the simulation takes place, a blue sliding bar shows how much of the scan

has been completed. After the simulation is complete, information about the quality of

data will appear in the UIW. Specifically the minimum, maximum, mean and standard

deviation of the error will be given. The simulated points can be imported to CyScan to

be viewed and manipulated with CyScan tools, just like data collected from hardware.

64

v. Results of software use

A. Introduction

As result of this research, a program can be used to examine the trade-offs

between occlusion and scanner precision. The program that implements the simulator is

given in Appendix A. This chapter will give examples of how the simulator can be used

to observe the trade-offs between data precision and data occlusion. High resolution

cameras are capable of generating enormous amounts of data. When the amount of data

exceeds 10,000 points per scan head images can not be effectively depicted on paper. As

such, the resolution of the cameras used has been kept at a level for which they would

produce a reasonable printed image.

The first example given in this chapter does not involve a simulation but

demonstrates how the simulator may be compared to an actual scanner. Next is a

description of the results of two cylinders measured with the simulator. Cylinders are

used because the data generated is more easily described and understood. Also, due to

the simplicity of the objects, the simulation process was accomplished more rapidly,

allowing for a greater number of tests to be conducted. Cylinders are like many real

world objects such as an arm or torso of a human body. After the cylinders, a human

body model is used in the simulator. The purpose of using the human body is twofold.

First, it demonstrates that the simulator can work for complex real world subjects.

Second, scanner manufacturers such as Cyberware and Textile Clothing Technology

Corporation have an interest in making scanners capable of extracting clothing

measurements from human subjects.

65

B. Comparison to an actual scanner

To validate the simulation software, a comparison with a real laser triangulation

system was made. The laser triangulation system that was used in the comparison was

the Cyberware whole body four head scanner (Cyberware WB4). Two approaches of

comparing the simulator to the Cyberware WB4 were used. One approach was to

compare the resulting data from the hardware and the simulator. While the data sets from

each system look identical, there are a number of issues that prevent quantification in this

approach. Numerical inconsistences in the comparison could be a result of discrepancies

between the computer solid model and the actual object. A far more useful, and less

subjective solution is to compare the test grid generated by the simulator to a similar

pattern generated by the Cyberware WB4.

A test grid represents the configuration of the scanner and can be generated for

the Cyberware WB4. A similar grid can be generated by SimScan. The following figure

shows a comparison of the test grids generated by SimScan and CyScan.

66

Figure 31: Cyberware WB4 test grid and SimScan
test grid points.

In Figure 31 a test grid generated for the Cyberware WB4 is shown with lines.

Test grid points that represent the scanner modeled by SimScan are displayed on top of

the Cyberware WB4 test grid. The test grid generated by CyScan contains five rows of

points (depicted as the intersection of lines) with five points in each row. The points on

the boarder of the grid are on the boarder of the used image plane. This SimScan grid is

generated using every 50th pixel starting with the first point on the image plane. A result

of the test grids being generated in different fashions is that only the first row and column

of points correspond precisely with the Cyberware WB4 grid. However, the overall

pattern of the grids should match. Figure 31 shows that the actual scanner and the

simulated scanner match quite well. The row of points on the bottom and the column of

67

points on the left match precisely. There are discrepancies due to the differences in the

way the grids are generated and slight deviations from the optics of the actual scanner. In

particular, the ratio of focal lengths for the anamorphic lens, the position and orientation

of the lens and image plane center are needed for a precise hardware match. These

specifications were considered proprietary information by the scanner manufacture and

where not made available.

c. Analysis with cylinders

For each of the tests conducted in this section, two cylinders were used. An image

displaying the two cylinders is shown in Figure 32

Figure 32: Two cylinders used in SimScan.

The smaller cylinder had a radius of 0.04 meters and a height of 0.3 meters. The

larger cylinder had a radius of 0.1 meters and a height of 0.3 meters. The cylinders were

68

located on a scanning platform because such a platform, which would exist for a real

scanner, can impact the performance of a scanner.

1. Two head vs. four head

The first issue that was considered was a two head scanner versus a four head

scanner. Figure 33 shows the basic layout of the scanner and the orientation of the

cylinders.

Head 2

Head 0

•

Head 1

Head 3

Figure 33: Diagram showing scanner
subject orientation.

The scan heads are represented with trapezoids with the long base in the direction

in which scanning was performed. They are labeled head 0, head 1, head 2 and head 3.

Scan head 0 and scan head 1 were used for the two head model and all four scan heads

were used for the four head model.

69

All four scan heads used the same basic parameters. The laser plane was parallel

to the x-y plane with no pitch or tilt. The cameras were 0.25 meters from the laser plane

and the camera angle was 45 degrees. A description of the scan heads specifications can

be found in Appendix B under type A scan heads. Both the two and the four head

scanners used two different colored lasers. Using multiple laser colors limits the amount

that one scan head can use the laser plane created by another scan head.

The results of the scans are shown in Figure 34 for the two head scanner and

Figure 35 for the four head scanner.

.:•ffllj~

Figure 34: Results of a two head scanner simulator

70

Figure 35: Results of a four head scanner simulator

Figures 34 and 35 show a rendering of points in 3D space that were generated by

the two and four head scanners respectively. Points generated by each scan head are

depicted in a different color. The figures relating to the accuracy of the data are given in

the following tables.

Table 1: Statistics for a two head simulated scanner

Scan Head 0 Scan Head 1

Number of Points 7,280 6,664

Mean Error .874 mm .996 mm

Min Error .092 mm .062 mm

Max Error 1.74 mm 1.80 mm

Std. Deviation .413 mm .465 mm

71

Table 2: Statistics for a four head simulated scanner

Scan Head 0 Scan Head 1 Scan Head 2 Scan Head 3

Number of 7280 6664 9240 9296
Points

Mean Error .874 mm .996 mm 1.064 mm 1.045 mm

Min Error .092 mm .062 mm .061 mm .052 mm

Max Error 1.74 mm 1.80 mm 2.28 mm 2.21 mm

Std. Deviation .413 mm .465 mm .482 mm .465 mm

As seen in the tables, the accuracy of the data was about the same for the two head

scanner and the four head scanner. However, as seen in Figures 34 and 35, the four head

scanner did not suffer from the occlusion problems present in the two head scanner.

2. Orientation of the subject

To consider what impact the orientation of the subject has on the results, consider

once again the case of the two head scanner. Instead ofcomparing the results to that of a

four head scanner, the two head scanner results were compared to the results of the same

scanner with the subject rotated 90 degrees. The scan head parameters are still of the type

A scanner as given in appendix B. Figure 36 illustrates the layout of the two scanning

simulations that were conducted and compared.

72

Head 1

~

""""-: New Subject
• Orientation

Head 0

Figure 36: Layout diagram showing old and
new subject orientation

In Figure 36 the original cylinder locations are shown with a dashed line (although

the center cylinder is the same in both orientations). The solid objects represent the new

location on which the analysis was performed. Scan head 0 and scan head 1 have not

changed position, but the cylinders have been rotated 90 degrees about the center of the

platform.

The results for the cylinders in their original position have already been given in

Figure 36 and Table 1. The results that are generated after the cylinder is turned 90

degrees is shown in Figure 37 and Table 3.

73

Figure 37: Results of a two head scanner simulator
with subject rotated

In Figure 37 we can see that there was more data between the two cylinders than

the scan in Figure 34. Overall there was significantly less occlusion in the second

orientation than the first.

Because the scan head configuration has not changed at all (we are still using

Type A scan heads) the precision of the data as described by the statistical information

looks very much the same as for the other two head scanner. The statistical information

is given in Table 3.

74

Table 3: Statistics for a two head simulated scanner; rotated subject

Scan Head 0 Scan Head 1

Number of Points 9184 9464

Mean Error 1.08 mm .994 mm

Min Error .068 mm .062 mm

Max Error 2.23 mm 1.87 mm

These tests indicate that the occlusion present in a scan was dependent on the

subject and its orientation as well as the number of scan heads used. They also show that

the data quality is not drastically impacted by the subject or the number of scan heads. In

examples with a human model the dependence of occlusion on scanner geometry will be

further demonstrated.

D. Analysis with a human model

To demonstrate the simulators effectiveness with a more complex real world

object, a human body model was created and named Sam (simulation analysis man). Sam

was created with demo tool called gview that is provided by Silicon Graphics as a

standard software package. Figure 38 shows a picture of Sam.

75

Figure 38: Sam the scan analysis
man.

In Figure 38, Sam is standing in a common anthropometric pose. He is standing

upright with his head facing the same direction as his body. His arms and legs are spread

slightly apart. Sam stands about five feet ten inches tall. He has features and proportions

similar to an actual human body.

Two simulations will be conducted on this subject. In the first, the simulator is set

up to obtain relatively precise results. In the second, the simulator is changed to reduce

76

the amount of occlusion. When the simulator is set up to reduce the amount of occlusion,

a reduction in data quality can also be observed. For both simulations, the scanner will be

in the configuration shown in Figure 39.

Head 2 Head 1

Head 0 Head 3

Figure 39: Sam's orientation relative to
the scan heads.

In this figure the scan heads are shown as trapezoids with the large side facing the

direction of the subject. Sam's head and shoulders are depicted by a circle and ellipse

respectively. Sam is facing in the direction of the ellipse's minor axis.

1. Scan for precision

The scanner set up for precision has a baseline distance between the camera and

laser plane of .6 meters and a camera angle of 60 degrees. For a complete listing of

parameters used for the scan heads see type B scan heads in appendix B. The human

77

body model was positioned in the simulator so that it was facing between scan head 0 and

scan head 3 shown in Figure 39.

Given the resolution of the camera, the results of the scan are very precise.

However, there are portions of the scan that are not covered. Figure 38 shows some of

the results from this scan.

Figure 38: Results of a precise
simulated scan of Sam.

78

There is too much information from all four scan heads to view the results in a

static two dimensional image. Data from the two scan heads covering Sam's back have

been turned off to simplify viewing. We can see where information between the subject's

legs, under the subjects arm pits, and under the subjects chin has been occluded. The

statistics on the error of the points, as summarized in Table 4, also indicate that the

measurement error is very precise.

Table 4: Statistics for a precise four head scanner

Scan Head 0 Scan Head 1 Scan Head 2 Scan Head 3

Number of Points 9987 10121 10139 9993

Mean Error 3.41 mm 3.48 mm 3.62 mm 3.52 mm

Min Error .006 mm .007 mm .019 .007 mm

Max Error 10.1 mm 9.80 mm 9.79 mm 10.1 mm

Std. Deviation 1.50 mm 1.58 mm 1.59 mm 1.53 mm

2. Scan to prevent occlusion

It is clear that the system described above suffers from occlusion problems despite

the fact that four heads are used. To overcome this problem, the baseline will be reduced

from 0.6 meters to 0.1 meters and the camera angle decreased to 25 degrees. The

remaining camera parameters are identical to those in previous section. For complete

details see Appendix B type C.

79

Figure 39: Results of an occlusion
preventing simulated scan of Sam

A scan with the altered system reveals better coverage, but a significant reduction

in data quality. Figure 39 depicts the results of this scan. Compared to the previous

figure, there were no gaps in the data due to occlusion. The obvious gaps in this image

were due to data quality.

80

By observing Sam's head, it is clear that the chin (which was occluded in the

previous scan) has been covered. It is also clear that, due to the poor geometry, the data is

grouped together in what looks like vertical lines. This is due to the camera being at such

an extreme angle that the space covered by a single pixel is quite large.

In addition to the qualitative differences, the statistics show quantitatively that the

type B scanner generates points of a lower resolution. Table 5 presents the statistics.

Table 5: Statistics for a low occlusion four head simulated scanner

Scan Head Scan Head Scan Head Scan Head
0 1 2 3

Number of 11531 12116 12109 11547
Points

Mean Error 7.83 mm 8.06 mm 8.12 mm 7.77 mm

Min Error .037 mm .035 mm .035 mm .037 mm

Max Error 35.2 mm 35.3 mm 35.3 mm 36.6 mm

Std. Deviation 5.24 mm 5.79 mm 5.83 mm 5.21 mm

Notice that not only does the mean error increase, but the variation in the error

also increases. This is expected and can be understood through the mathematical

example given at the end of chapter 2 or through the projection grids in appendix B. The

total number of points increased slightly which could also indicate fewer points were

occluded.

As mentioned at the beginning of this chapter, the resolution of the scan heads

were intentionally designed to produce a limited number of points for demonstrative

81

purposes. The scans of Sam were conducted with cameras having about four times the

resolution. This was accomplished by increasing the resolution of the cameras. The

results were similar with more data (about 120,000 points per scan head) and better

precision. The results for system with a large baseline produced a mean error of about 0.3

mm and the system with a short baseline produced a mean error of about 0.6 mm.

82

VI. Discussion

SimScan, a laser triangulation simulator, is a powerful tool for examining the

performance of various hardware designs. SimScan has many advantages over building

and testing prototype designs which include ease of use and a high degree of flexibility.

SimScan has the ability to test many different designs with many different subjects.

SimScan can be used in the design process of a new piece of scanning equipment

by revealing strengths and weaknesses of particular scanner geometries. SimScan can

help determine if a particular piece of equipment to be purchased will meet the

requirements of a given application. SimScan could also be used to determine the best

orientation for scanning a particular subject.

To develop an accurate simulator, it was important to study the various ways in

which measurement inaccuracy can result. First, an analysis of error in stereo vision

systems by Nurre [12] was extended to describe the sources of error in a laser

triangulation system. Next, the sources of occlusion in a laser triangulation system were

discussed. Finally, the impact of the sources of error and occlusion were incorporated

into computer models that could be implemented through software.

SimScan, written with C++, Open Inventor and TCL/TK, was implemented in an

object oriented fashion. Hooks were left in the software to accommodate future

researchers who wish to use SimScan. A fully functional menu driven GUI was written

using TCL/TK. This makes use of the software simple and intuitive to use. All

information relating to a particular scanner configuration was stored in Open Inventor

83

scene graphs. This allows scanners to be saved and retrieved once they have been

created.

The contribution of this research is simulation software and the underlying laser

plane model. In addition, results were given that demonstrate the effectiveness of certain

scanner configurations. These results address the issue of the number of scan heads, the

orientation of the subject and the length of the baseline distance. The issues were

addressed through several simulations. The simulations generated qualitative results in

the form of a graphical depiction of the simulated data and quantitative results in the form

of statistics relating to the simulated data.

As shown in this thesis, the software simulation of a laser triangulation system is

an effective research tool which is highly adaptable to current and future applications.

84

References

[1] Manual ofPhotogrammetry, 4 ed. Falls Church VA: American Society of
Photogrannnetry, 1980,pp. 117-138

[2] Open Inventor C++ Reference Manual, Reading, MA: Addison-Wesley
Publishing Company, 1994

[3] Clark J., "Variable Resolution Depth Imaging by Using Elliptical Mirrors,"
Applied Optics, vol. 36, no. 7, pp. 1621-1625, Mar. 1997.

[4] Dalgish, R. L. et al., "Hardware Architecture for Real Time Laser-Range Finding
Sensing by Triangulation," Review ofScientific Instruments, vol. 65, pp. 485-491,
Feb. 1994.

[5] Dorsch, R. G. et al., "Laser Triangulation: Fundamental Uncertainty in Distance
Measurement," Applied Optics, vol. 33, no. 7, pp. 1306-1314, Mar. 1994.

[6] Dwulet, R. J., "Cutting Costs With Laser Triangulation," Machine Design, pp.
110-112, Nov. 1994.

[7] Farcy, R. and Damaschini, R., "Triangulation Laser Profilometer As a 3D Space
Perception System for the Blind," Applied Optics, vol. 36, no. 31, pp. 8227-8232,
Nov. 1997.

[8] Farcy, R. and Damaschini, R., "Triangulation Laser Profilometer As a
Navigational Aid for the Blind: Optical Aspects," Applied Optics, vol. 35, no. 7,
pp. 1161-1166, Mar. 1996.

[9] Fu, K. S. et al., Robotics: Control, Sensing, Vision and Intelligence, New York:
McGraw-Hill Book Company, 1987, pp. 304-328

[10] McCullough, R. et al., "Laser-Optical Triangulation Systems Provide New
Capabilities for Remote Inspection of Interior Surfaces," Materials Evaluation,
vol. 53, pp. 1338-1345, Dec. 1995.

[11] Mizunama, M., "A Displacement Measurement Method by Laser Beam Scanning
for Mapping the Interior Geometry of Pipes," Journal ofPressure Vessel
Technology, vol. 16, pp. 188-192, May 1994.

85

[12] Nurre, J. H. and Hall, E. L., "Error Analysis for a Stereo Vision System,"
Conference Proceedings ofSME, pp. 2-33 to 2-52, June 1986.

[13] Reimar K. and Tsai, R. Y., "Techniques for Calibration of the Scale Factor and
Image Center for High Accuracy 3D Machine Vision Metrology," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp.
713-720, Sept. 1988.

[14] Rioux, M., "Laser Range Finder Based on Synchronized Scanners," Applied
Optics, vol. 23, no. 21, pp. 3837-3844, Nov. 1984.

[15] Saint-Marc P. et al., "A Versitile PC Based Range Finding System," IEEE Jounal
ofRobotics and Automation, vol. 7, no. 2, pp. 250-256, Apr. 1991.

[16] Tsai, R. Y., "A Versatile Camera Calibration Technique for High-Accuracy 3D
Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses," IEEE
Jounal ofRobotics and Automation, vol. RA-3, no. 4, pp. 323-344, Aug. 1987.

[17] Welch, B. B., Practical Programming in Tel and Tic, Upper Saddle River, New
Jersey: Prentice Hall PTR, 1995

[18] Wernecke, J., The Inventor Toolmaker, Reading MA: Addison-Wesley
Publishing Company, 1994

[19] Wernecke, J., The Inventor Mentor, Reading MA: Addison-Wesley Publishing
Company, 1994

[20] Wu, J. et al., "Weld Bead Placement System for Multipass Welding," IEEE
Proceedings ofScience Measurement and Technology, vol. 143, pp. 85-90, Mar.
1996.

[21] Zeng, L. et al., "Two-Directional Scanning Method for Reducing the Shadow
Effects in Laser Triangulation," Measurement Science Technology, vol. 8, no. 3,
pp. 262-266, Mar. 1997.

86

Appendix A

On the following pages is a program that implements a laser triangulation system

simulator. The files are given in the following order:

OUsBase.c++
OUsBase.h
OUsCamera.c++
OUsCamera.h
OUsCameraInv.c++
OUsCameraInv.h
OUsContainers.c++
OUsContainers.h
OUsControls.c++
OUsControls.h
OUsDataSet.c++
OUsDataSet.h
OUsDispObjs.c++
OUsDispObjs.h
OUsImagePlane.c++
OUsImagePlane.h
OUsLaserPlane.c++
OUsLaserPlane.h
OUsLaserPlaneInv.c++
OUsLaserPlaneInv.h
OUsRay.c++
OUsRay.h
OUsScanHead.c++
OUsScanHead.h
OUsSimulator.c++
OUsSimulator.h
OUsXfrmObjs.c++
OUsXfrmObjs.h

/**

87

Filename:
Revision:

Date:
Author:

OUsBase.c++
2.00

19 Feb 1998
Jeff Collier

Description: For a description of this class see OUsBase.h

*/

#include "OUsBase.h"
#include <iostream.h>
#include <Inventor/So.h>

/***
Static and Global Declarations
***/
short OUsBase::num_OUsBases = 0;
SoSeparator *OUsBase::simulator_root = NULL;
SoSwitch *OUsBase: :subjects = NULL;
SoSeparator *OUsBase: :scanner_elements = NULL;
SoSeparator *OUsBase: :simulator_data = NULL;
CylvState *OUsBase: :state = NULL;

/***
Constructors - Destructors
***/

/***

Method: Constructor

Remark: Creates a base object for all OU simulator classes. A pointer
to CylvState allows access to all data maintained by CyScan. Pointers
to several important nodes on the simulator scene graph are also
created. The number of OUsBase objects created is kept. All of this
data is stored in static variables so that all derived classes will be
using the same things.

Params: state - The first object should be created from a constructor
in which state is CYlvState * All other call state should be NULL.

*/

/ /Thi s code defi nes two constructors Ousbaset) and OUsBase(CylvState *)
OUsBase: :OUsBase(CylvState *newstate) {

IIInitialization needed for all OUs classes.
if (newstate != NULL) state = newstate:
IISignal Warning if state not intialized.
if(state == NULL) cerr « "Warning -- state never initialized\n":

if(num_OUsBases == 0) {
if «simulator_root != NULL) II

(subjects != NULL) I I
(scanner_elements != NULL))

cerr « "Error -- Simulator Root exists before OUsBase object! !\n":

else {
IICreating the basic graph structure for the simulator
simulator_root = new SOSeparator:
simulator_root->setName(SbName("Simulator_Root")):

scanner_elements = new SoSeparator:
scanner_elements->setName(SbName("Scanner_Elements")):

subjects = new SoSwitch;
subjects->whichChild = SO_SWITCH_ALL:
subjects->setName(SbName(ISubjects")):

simulator_data = new SoSeparator:
simulator_data->setName(tlSimulator_Data tl);

IIInserting the simulator into CyScan's scene graph
state->root->addChild(simulator_root):
simulator_root->addChild(scanner_elements):
simulator_root->addChild(subjects):
simulator_root->addChild(simulator_data):

IICreate a default primative under subjects
I/Sphere
SoSphere *prim = new SoSphere:
prim->radius = .1:

IICylinder
II SoCylinder *prim = new SoCylinder:
II prim->radius = .1:
II prim->height = .1:

IICube
II SoCube *prim = new SoCube:
II prim->width = .1:
II prim->height = .1:
II prim->depth = .1:
subjects->addChild(prim):

}
num QUsBases++;

88

//cerr « "Number of QUsBases: "« num QUsBases « endl:

/***

Method: Destructor

Description: Reduce the number of QUsBase objects until there are none
left. If it is the last QUsBase object clean up scene graph.

*/
QUsBase: :-OUsBase()

//Clean up OUs class
num_OUsBases--:

if (num_OUsBases == 0) {
//All OUsBase objects have been destroyed.
//Remove all inserted nodes from scene graph.
simulator_root->removeAllChildren():
state->root->removeChildCsimulator_root):

simulator_root = NULL:
subjects = NULL:
scanner elements = NULL:

//Debug
//cerr « "Number of QUsBases: "« num QUsBases « endl:

/***

Method: Read File

Description: Any OUs object may need the ability to open a file and read
a scene graph from it.

*/
SoSeparator *OUsBase: :readFile(const char *filename) {

//Open the input file
SoInput scene_input:

if (!scene_input.openFile(filename)) {
cerr « "Cannot open file" « filename « "!\n":
return NULL:

//Read the whole file into the database

89

SoSeparator *graph = SoDB: :readAll(&scene_input);

if (graph == NULL) {
cerr « "Problem reading file\n";

scene_input.closeFile();
return graph;

f***

Method: Write Full Graph

Description: This writes the scene graph created by OUsBase to a file.

*f

int OUsBase: :writeFullGraph(char *filename)

SoOutput *out = new SoOutput;
FILE *output:
output = fopen(fi 1ename, "w"):
out->setFilePointer(output);

SoWriteAction *Write = new SoWriteAction(out);
Write->apply(simulator_root):

fclose (output) :

return (1):

}
f**

90

Filename:
Revision:

OUsBase.h
2.00

Date:
Author:

19 Feb 1998
Jeff Collier

Description: This class is a foundational class for a simulator of
a structured light scanner.

*f
#include ". . f . .fsrcfCyTclKit.h"
#include ". . f . .fsrcfCyScan.h"
#i nc1ude ".. f .. fsrc fCyTc1.h"
#include <iostream.h>

#ifndef OUSBASE
#define =OUSBASE=

class OUsBase

public:
//Constructors -- Destructors
OUsBaseCCylvState *newstate = NULL);
-OUsBase C) ;

SoSeparator *readFileCconst char *filename);
int writeFullGraphCchar *filename = "graph.iv"):

protected:
//Inventer nodes for easy access to scenegraph.
static SoSeparator *simulator_root: //Entire Sim under this node.
static SoSwitch *subjects: //Objects to be scanned by Sim.
static SoSeparator *scanner_elements; //Items that make up the scanner
static SoSeparator *simulator_data; //Points generated by Simulator

91

//Other helpful variables
static CylvState *state:

protected:
static short num_OUsBases;

} ;

//Pointer to CyScan's "state"

//Number of objects instanciated.

#endif
/***

Filename: OUsCamera.c++
Revision: 2.0

Date:
Author:

18 Feb 98
Jeff Collier

Description: See OUsCamera.h for details.

*/
#include "OUsCamera.h"

/***

Method: Constructors

Description: Constructors call method constructCam to keep code together.

*/
OUsCamera: :OUsCameraCOUsDataSet &data) {constructCamCdata):}

OUsCamera: :OUsCamera(OUsDataSet &data, SoSeparator *new_camera):
OUsCameraInv(new_camera) {constructCam(data):}

void OUsCamera: :constructCam(OUsDataSet &data)
camera_points = data.addDataSet():
intersection_points = data.addDataSet():

}
/***
General Functionality
***/

/***

Method: Get Camera Info

Description: This function gets many of the image plane attributes and
passes back values so that they may be used in an interface.

*/
int OUsCamera: :getCameraInfo(int &oCx, int &oCy, float &odx, float &ody,

int &oNcx, int &oNry, int &oNfx, float &oSx,
float &ok, float &fl) {

oCx = Cx: oCy = Cy:
odx = dx: ody = dy:
oNcx = Ncx: oNry = Nry: oNfx = Nfx:
oSx = Sx: ok = k:
fl = getFocalPoint()[2J:

return(l):

/***

Method: Get Camera Pos(ition) -- Set Camera Pos(ition)

Description: These methods make use of Open Inventor data types to pass
back and forth information about the cameras position and orientation
to the interface code.

*/
int OUsCamera: :getCameraPosCSbRotation &rm, SbVec3f &ta)

ta = camera_position->translation.getValue();
rm = camera_rotation->rotation.getValueC):
return(l):

int OUsCamera: :setCameraPosCSbRotation &rm, SbVec3f &ta)
camera_position->translation.setValue(ta);
camera rotation->rotation.setValue(rm);
return(l);

92

}
/***

Method: Capture Frame

Description: Finds out if a set of points (capturepoints) will be seen
by an image plane. If they are the points are turned on in onpixels.

*/
int OUsCamera: :captureFrame()

//Reset image plane for new info.
allPixelsOff():

generateCameraPoints():
distortByLens():
quantizePoints():

return(l):
}

/***

Method: Generate Camera Points -- Generate World Ponts

Description: This method takes a set of points and finds the points that
would be generated on the image plane of the camera. The inverse is to
take a set of points in the camera and find the world points.

*/
int OUsCamera: :generateCameraPoints() {

int j = 0:
SbVec3f tpt:

SoCoordinate3 *laser_points = camera_points->getHead()->
getDataByEmColor(color->emissiveColor[O])->getPoints():

SoCoordinate3 *intersect_pts = intersection_points->getPointsC):
intersect_pts->point.deleteValues(O):
image_points->point.deleteValuesCO):

num_points = laser_points->point.getNumC):

IIMap each point to image plane if it is not ocluded.
for Cint i = 0: i < num_points: i++) {

Illf point falls on plane add to image plane.
if CisOccludedBySubjectClaser_points->point[i]))
}
else {

intersect_pts->point.setlValueCj, laser_points->point[i]);

93

image_points->point.set1ValueCj,capturePointClaser_points->point[i]));
j++;

}
num_points = j;

return(1);

int OUsCamera: :generateWorldPointsCSoCoordinate3 *all_points.
SoCoordinate3 *in_pts) {

directGenerationCall_points, in_pts);
IlinterpolatedGenerationCnew_world_points);

returnt l r:

1***

Method: Distort By Lens -- Undistort By Lens

Description: The purpose of this method is to add in lense distortion as
specified by the camera model. Also an undistort function is present to
undo what this distortion does.

*1
int OUsCamera: :distortByLensC)

SbVec3f *points = image_points->point.startEditingC):

IIDistort each points as specified by the lense.
for Cint i = 0: i < num_points: i++)

distortPointCpoints[i][O], points[i][l]):

image_points->point.finishEditingC):
returnC 1) ;

int OUsCamera: :undistortByLensCSoCoordinate3 *modify_points)

int num_pts = modify_points->point.getNum();
SbVec3f *points = modify_points->point.startEditing();

for (i nt i = 0: i < num_po.i nts: i++)
distortPoint(points[i][O]. points[i][l]. 1):

modify_points->point.finishEditingC);
return(l) ;

94

95

1***

Method: Quantize Points

Description: Puts the points into an array that represents the image
plane of the actual camera.

*1
int OUsCamera: :quantizePoints() {

for (int i = 0: i < num_points: i++) {
turnOnPixel(image_points->point[i], i):

return(l):

1***

Method: Merege With (another camera)

Description: Takes the onpixels in this camera and puts them in another
camera.

*1
int OUsCamera: :mergeWith(OUsCamera &other_camera) {

int num_o = other_camera.RZcoord->point.getNum();

for (int i = 0; i < num_o: i++)
if (other_camera.RZcoord->point[i][l] > 0) {

turnOnPixel(Nry - i, (int)rint(other_camera.RZcoord->point[i][2]),
(int)rint(other_camera.RZcoord->point[i][O]));

II
II
II
II
II }

return(l);

1***

Method: Generate Test Grid

*1
int OUsCamera: :createTestGridCint rhs_nh, int rhs nw)

allPixelsOff():
num_h = rhs_nh;
num_w = rhs_nw;

RZcoord->point.deleteValues(O);
RZcoord->point.set1Value(0,-1,0,0):

return(l);

/***

Method: Direct Generation (of world points)

*/
int OUsCamera: :directGeneration(SoCoordinate3 *all_wp, SoCoordinate3 *in_pts) {

SbVec3f *points;
int tot_RZ = RZcoord->point.getNum();
int tot_int;
int index;
int num_wp = 0;
float x, y:

SoCoordinate3 *intersect_pts = intersection_points->getPoints():
tot_int = intersect_pts->point.getNum():

points = RZcoord->point.startEditing():
index = (int)rint(points[O][O]):

if «index == -1) && (tot_RZ == 1))

float yy = (dy * Nry) / 2.0:
float xx = (dx * Sx * Ncx) / 2.0:
float y = -yy:
float step_x = (dx * Sx * num_w):
float step_y = (dy * num_h):

while(y < yy)
x = -xx:

wh i 1e(x < xx) {
all_wp->point.set1Value(num_wp, frameToWorldPoints(x, y)):
in_pts->point.set1Value(num_wp, frameToWorldPoints(x, y)):
num_wp++;
x = x + step_x:

}

96

else {
forC i nt i = 0; i < tot_RZ; i++) {

ifC Cint)rintCpoints[i][l]) > 0) {
cerr « "r,c,ind: " « i « "," « points[i][2] « « points[i][l]

« endl;
pixelToIPCi, Cint)rintCpoints[i][2]), x, y);
distortPointCx, y, 1);
all_wp->point.set1ValueCnum_wp, frameToWorldPointsCx, y));
index = Cint)rintCpoints[i][O]);
in_pts->point.set1ValueCnum_wp,

intersect_pts->point[index]);

}
RZcoord->point.finishEditing();
return(1);

/***

Method: Interpolated Generation Cof world points)

*/
int OUsCamera: :interpolatedGenerationCSoCoordinate3 *,

SoCoordinate3 *) {

//Should be implimented like CyScan using template grid.
cerr « "Not implimented yet!" « endl;
return(1) ;

/***

97

Filename:
Revision:

Date:
Author:

OUsCamera.h
2.00

17 April 98
Jeff Collier

Description: This class is used to simulate a camera for a structure
light scanner. Much of the functionality of this class
is inherited from OUsCameralnv and OUslmagePlane.

*/
#include "OUsCameralnv.h"
#include "OUsDataSet.h"
#include "OUslmagePlane.h"

#define GRID_SIZE 10

/***

Class: OUsCamera

Description: This class provides high level methods for a set of code
that models a camera.

Super Class: OUsBase -> OUsXfrmObjs -> OUsDispObjs -> OUsImagePlane

Inherited from
OUsXfrmObjs:

//Perform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points)
SbVec3f &transFromWorld(SbVec3f &point)
SoCoordinate3 &transToWorld(SoCoordinate3 *points):
SbVec3f &transToWorld(SbVec3f &point)

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

Inherited from
OUsImagePlane

//Image Plane Functionality
OUsImagePlane &allPixelsOff():
int turnOnPixel(const SbVec3f &point, int ind);
int turnOnPixel(int r, int c, int ind):

SbVec3f capturePointCconst SbVec3f &point);
virtual SbVec3f frameToWorldPointsCfloat x, float y):

int ipToPixelCconst float x, const float y, int &r, int &c);
int pixelToIPCconst int r, const int c, float &x, float &y);

virtual int distortPointCfloat x, float y, int dir = -I);

void setToSliceC){}:
void setToScanC);

//Interface functions
OUsImagePlane &setCenterCint rhsCx. int rhsCy)

98

OUsImagePlane &setPixelDim(float rhsdx, float rhsdy)
OUsImagePlane &setNumberSensors(int rhsNcx, int rhsNry, int rhsNfx)
OUsImagePlane &setSx(float rhsSx)
OUsImagePlane &setDistortion(float rhsk)
OUsImagePlane &setFocalPoint(int rhsCx, int rhsCy, float rhsfl)

Inherited from
OUsCameraInv

int isOccludedBySubject(const SbVec3f &point);

SbVec3f getFocalPoint() {return(focal_point->point[O]);}
OUsCameraInv &setEmissiveColor(SbColor cl)

SbColor getEmissiveColor() {return(color->emissiveColor[O]);}

int setSceneGraph();
int getFromSceneGraph();

*/
class OUsCamera public OUsCameraInv {

public:
//Constructors -- Destructors
OUsCamera(OUsDataSet &data);
OUsCamera(OUsDataSet &data, SoSeparator *new_camera);
-OUsCamera() {camera_points = NULL;}

//General Functionality
int getCameraInfo(int &oCx, int &oCy, float &odx, float &ody, int &oNcx,

int &oNry, int &oNfx, float &oSx, float &ok, float &fl);
int getCameraPos(SbRotation &rm, SbVec3f &ta);
int setCameraPos(SbRotation &rm, SbVec3f &ta);

int captureFrame();
virtual int generateCameraPoints();
virtual int generateWorldPoints(SoCoordinate3 *modify_points,

SoCoordinate3 *in_pts);
virtual int distortByLens();
virtual int undistortByLens(SoCoordinate3 *modify_points);
virtual int quantizePoints();

virtual int mergeWith(OUsCamera &other_camera);

virtual int createTestGrid(int nh = GRID_SIZE, int nw = GRID_SIZE);

int directGenerationCSoCoordinate3 *nw_pts, SoCoordinate3 *in_pts);
int interpolatedGenerationCSoCoordinate3 *nw_pts, SoCoordinate3 *in_pts);

void clearScanC) {
camera_points->clearPoints(); intersection_points->clearPointsC):}

99

private:
void constructCam(OUsDataSet &data):

int num_points:
OUsDataSet *camera_points;
OUsDataSet *intersection_points:
int num_w, num_h:

} :
/***

100

Filename:
Revision:

Date:
Author:

OUsCameralnv.c++
2.00

18 April 98
Jeff Collier

Description: See OUsCameralnv.h for details about the class.

*/
#include "OUsCameralnv.h"

/***
Constructors -- Destructors
***/

/***

Method: Constructor

Description: Creates a new camera and inserts it into the scene graph.

*/
OUsCameralnv::OUsCameralnv()

//Create pixel node
pixel = new SoCube:
pixel->setName("Pixel"):

//Create lense distortion node
lens distort = new SoCoordinate3:
lens distort->setNameCSbName("Lens Distortion"));

//Create focal point node
focal_point = new SoCoordinate3:
focal_point->setNameC"Focal_Point");

//Create node for displaying points on the image plane.
image_points = new SoCoordinate3:
image_points->setNameCSbNameC"Image_Points"));

//Scale image points for debuging
SoScale *simp = new SoScale:
simp->scaleFactor.setValueCIP_SCALE, IP_SCALE, 1):

//Define color of laser.
color = new SoMaterial:
color->setNameC"Color"):
color->emissiveColor = RED_LASER:
color->ambientColor = RED_LASER:
color->diffuseColor = RED_LASER:

/**
Create Debug Display Switch and branch.
**/
SoSwitch *disp_debug = new SoSwitch:
disp_debug->whichChild = DEBUG_DISP:
disp_debug->addChild(color):
disp_debug->addChild(simp):
disp_debug->addChild(image_points):
disp_debug->addChild(new SoPointSet):
disp_debug->addChild(focal_point):
disp_debug->addChild(new SoPointSet):
disp_debug->addChild(pixel):
disp_debug->addChild(lens_distort):
/***/

//Create image plane cube.
image_plane = new SoCube:
image_plane->setName("Image_Plane"):

//Create image plane scale factor Sx.
scale Sx = new SoScale:
scale_Sx->setName("Scale_Sx lf

) ;

//Compensate for the depth of the image_plane.
SoTranslation *translate_ip = new SoTranslation:
translate_ip->translation = SbVec3f(O, 0, -PLANE_WIDTH):

//Create Material style for the image plane
SoMaterial *ip_color = new SoMaterial:
ip_color->ambientColor = IP_AMB_COLOR:
ip_color->diffuseColor = IP_DIF_COLOR:
ip_color->specularColor = IP_SPE_COLOR:
ip_color->shininess = IP_SHINE:

/**
Create Display Switch and branch.
**/
display->addChild(ip_color):
display->addChildCtranslate_ip):
display->addChildCscale_Sx):

101

display->addChildCimage_plane):
/***/

//Each display node must be on a separator named Display.
SoSeparator * disp = new SoSeparator:
disp->setNameCSbNameCIDisplay")):
disp->addChildCdisplay):

//Set up camera rotation.
coop_rotation = new SoRotation:
coop_rotation->setNameCSbNameC"Coop_Rotation")):
coop_rotation->rotation = SbRotation(SbVec3f(0. 1. 0). 0):

//Set up camera position.
camera_position = new SoTranslation:
camera_position->setName(SbName("Camera_Position")):
camera_position->translation = SbVec3f(CAM_DIST, 0. 0):

//Set up camera rotation.
camera_rotation = new SoRotation:
camera_rotation->setName(SbName("Camera_Rotation tl

)) :

camera_rotation->rotation = SbRotation(SbVec3f(0. 1. 0). CAM_ANGLE):

//Set Up Camera Root
root = new SoSeparator:
root->setNameCSbName("Camera_Root")):

/***
Finish creating scene graph.
***/
root->addChild(coop_rotation):
root->addChild(camera_position):
root->addChild(camera_rotation):
root->addChild(disp):
root->addChild(disp_debug):

setSceneGraph():

/***

Method: Constructor

Description: Construct a camera from a given scene graph

*/
OUsCameralnv: :OUsCameralnv(SoSeparator *new_camera):
OUslmagePlaneCnew_camera) {

SoSearchAction *searcher = new SoSearchAction;

102

root = new_camera;

//Camera Location
searcher->setName(SbName("Camera_Position"));
searcher->apply(root);
if (searcher->getPath() == NULL) camera_position = NULL;
camera_position = (SoTranslation *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName("Coop_Rotation"));
searcher->apply(root);
if (searcher->getPath() == NULL) coop_rotation = NULL;
coop_rotation = (SoRotation *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName("Camera_Rotation"));
searcher->apply(root);
if (searcher->getPath() == NULL) camera_rotation = NULL;
camera_rotation = (SoRotation *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName(ltFocal_Point lt));

searcher->apply(root);
if (searcher->getPath() == NULL) focal_point = NULL;
focal_point = (SoCoordinate3 *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName(ltlmage_Plane"));
searcher->apply(root);
if (searcher->getPath() == NULL) image_plane = NULL;
image_plane = (SoCube *)searcher->getPath()->getTail():

searcher->reset();
searcher->setName(SbName(ltPixel lt));

searcher->apply(root);
if (searcher->getPath() == NULL) pixel = NULL:
pixel = (SoCube *)searcher->getPath()->getTail():

searcher->reset():
searcher->setName(SbName("Scale_Sx")):
searcher->apply(root):
if (searcher->getPath() == NULL) scale_Sx = NULL:
scale_Sx = (SoScale *)searcher->getPath()->getTail();

searcher->reset():
searcher->setName(SbName(ltColor"));
searcher->apply(root):
if (searcher->getPath() == NULL) image_points = NULL;
color = (SoMaterial *)searcher->getPath()->getTail():

searcher->reset();

103

searcher->setName(SbName("Image_Points"));
searcher->apply(root);
if (searcher->getPath() == NULL) image_points = NULL;
image_points = (SoCoordinate3 *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName("Lens_Distortion"));
searcher->apply(root):
if (searcher->getPath() == NULL) lens_distort = NULL:
lens_distort = (SoCoordinate3 *)searcher->getPath()->getTail();

searcher->reset():
searcher->setNameCSbName("Displ ay")):
searcher->apply(root):
if (searcher->getPath() == NULL) display = NULL:
SoSeparator *disp = (SoSeparator *)searcher->getPath()->getTail():
display = (SoSwitch *)disp->getChild(O):

if «camera_position == NULL) I I
(coop_rotation == NULL) I I
(camera_rotation == NULL) I I
(focal_point == NULL) I I
(image_plane == NULL) I I
(pixel == NULL) I I
(scale_Sx == NULL) I I
(color == NULL) I I
(image_points == NULL) I I
(lens distort == NULL) II
(display == NULL)) {

cerr « "ERROR -- File not successfully loaded! (Cameralnv Constructor)\n";
cerr « "CyScan must be restarted. II «endl;
exit(l) :

getFromSceneGraph():
setTransformPath();

/***
General Functionality
***/

/***

Method: Is (the point) Occluded by the subject

Description: Determines if the point is occluded by the subject.

104

Return: i nt 1 if subject is occluding camera
o if subject is not occluding the camera

*/
int OUsCameraInv: :isOccludedBySubjectCconst SbVec3f &point)

SbVec3f fp = getFocalPointC);
raY.setRayInternalCtransToWorldCfp), point);

if Cray.fireRayCsubjects) != NULL)
return(1):

return CO):
}

/***

Method: Set Scene Graph -- Get From Scene Graph

Description: These methods take points that are stored in the
OUsImagePlane class and updates the OUsCameraInv class (updating Open
Inventor Nodes) or vise versa.

*/
int OUsCameraInv: :setSceneGraphC)

pixel->height = dy:
pixel->width = dx:
pixel->depth = PLANE_WIDTH:

pixelToIPCCy, Cx, cx, cy):
focal_point->point.setValueCcx, cy, fl):

image_plane->width = Ncx * dx * IP_SCALE:
image_plane->height = Nry * dy * IP_SCALE:
image_plane->depth = PLANE_WIDTH:

scale_Sx->scaleFactor.setValue(l, Sx, 1):

lens_distort->point.setValueCk, 0, 0);

returnCOUsImagePlane: :setSceneGraphC»:

int OUsCameralnv: :getFromSceneGraph()

cx = focal_point->point[O][O];
cy = focal_point->point[O][l];
fl = focal_point->point[0][2]:

dx = pixel->width.getValue();
dy = pixel->height.getValue();
Nfx = (int)rint«image_plane->width.getValue() / IP SCALE) / dx);

105

Nry = (int)rint«image_plane->height.getValue() / IP_SCALE) / dy);
Ncx = Nfx;
setCache() :

ipToPixel(cx, cy, Cy, Cx):

Sx = scale_Sx->scaleFactor.getValue()[lJ:

k = lens_distort->point[OJ[OJ;

return(OUsImagePlane: :getFromSceneGraph());
}
/***

106

Filename:
Revision:

Date:
Author:

OUsCameraInv.h
2.00

18 April 97
Jeff Collier

Description: This class is designed to handle most of the Open
Inventor interface. It is used to simulate a camera.
It derives from OUsImagePlane and contains pointers to
Open Inventor nodes.

*/
#include "OUsDispObjs.h"
#include "OUsImagePlane.h"
#include <Inventor/Xt/SoXtTransformSliderSet.h>
#include <Inventor/Xt/SoXt.h>
#include <Inventor/SoDB.h>
#include <Inventor/Xt/SoXt.h>

#ifndef OU_CAM_INV
#define OU_CAM_INV

/***
Constant Definitions
***/
#define PLANE_WIDTH .001 //Rendered image plane width
#define DEBUG_DISP SO_SWITCH_ALL //Current level of debugging

#define CAM_ANGLE -M_PI_4
#define CAM_DIST .2
#define IP_SCALE 30

//Default Camera angle.
//Default baseline
//Scales the image plane so that it
Ilmay be seen.

canst SbColor IP AMB COLORC.2, .2.. 2):
canst SbColor IP DIF COLORC .6.. 6.. 6);

liThe following definitions are
//used to define the look of the

const SbColor IP_SPE_COLORC.5, .5, .5); //image plane.
const float IP SHINE = .5;

/***

Class: OUsCameraInv

Description: This class provides the open inventor functionality that
bridges the classes OUsImagePlane and OUsCamera. It contains low level
camera operations that rely primaraly on Open Inventor

Super Class: OUsBase -> OUsXfrmObjs -> OUsDispObjs -> OUsImagePlane

Inherited from
OUsXfrmObjs:

//Perform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points)
SbVec3f &transFromWorldCSbVec3f &point)
SoCoordinate3 &transToWorldCSoCoordinate3 *points);
SbVec3f &transToWorldCSbVec3f &point)

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

Inherited from
//Image Plane Functionality
OUsImagePlane &allPixelsOff();
int turnOnPixel(const SbVec3f &point, int ind);
int turnOnPixel(int r, int c, int ind);

SbVec3f capturePoint(const SbVec3f &point);
virtual SbVec3f frameToWorldPoints(float x, float y);

int ipToPixel(const float x, const float y, int &r, int &c);
int pixelToIP(const int r, const int c, float &x, float &y);

virtual int distortPoint(float x, float y, int dir = -I);

void setToSlice(){};
void setToScan();

//Interface functions
OUslmagePlane &setCenter(int rhsCx, int rhsCy)

107

OUslmagePlane &setPixelDimCfloat rhsdx, float rhsdy)
OUslmagePlane &setNumberSensorsCint rhsNcx, int rhsNry, int rhsNfx)
OUslmagePlane &setSxCfloat rhsSx)
OUslmagePlane &setDistortionCfloat rhsk)
OUslmagePlane &setFocalPointCint rhsCx, int rhsCy, float rhsfl)

virtual int setSceneGraph()
virtual int getFromSceneGraph(){return(OUslmagePlane: :setSceneGraph(»

*/
class OUsCameralnv public OUslmagePlane {

public:
//Constructors -- Destructors
OUsCameralnv();
OUsCameralnv(SoSeparator *new_camera);
OUsCameralnv(const OUsCameralnv &rhs) {*this = rhs:}

int isOccludedBySubject(const SbVec3f &point):

SbVec3f getFocalPoint() {returnCfocal_point->point[O]);}
int makeCoopCameraC) {

coop_rotation->rotation = SbRotation(SbVec3fCO, 0, 1), M_PI); return(1):}
OUsCameralnv &setEmissiveColor(SbColor cl) {

color->emissiveColor = c1: return(*this):}
SbColor getEmissiveColor() {return(color->emissiveColor[O]);}

int setSceneGraph():
int getFromSceneGraph():

virtual void c1earScan(){};

protected:
//Scene Graph Pointers
SoTranslation *camera_position:
SoRotation *coop_rotation:
SoRotation *camera_rotation:
SoCoordinate3 *focal_point:
SoCube *image_plane:
SoCube *pixel:
SoScale *scale_Sx:
SoMaterial *color:
SoCoordinate3 *image_points:
SoCoordinate3 *lens_distort:

private:
OUsRay ray:

} :

#endif
/***

108

Filename:
Revision:

OUsContainers.c++
2.00

109

Date:
Author:

19 Feb 1998
Jeff Collier

Description: See OUsContainers.h

*/
#include "OUsContainers.h"

/***

Method: Set Transform Path

*/
int OUsContainers: :setTransformPath()

for (int i = 0; i < num_objs; i++)
objects[i]->setTransformPath();

OUsDispObjs: :setTransformPath();

return(1);

/***

Method: Set Transform

*/
int OUsContainers: :setTransform() {

for (int i = 0; i < num_objs; i++)
objects[iJ->setTransform():

OUsDispObjs: :setTransform():

return (1) :

/***

Method: Set To Scan

*/
void OUsContainers: :setToScan()

for (int i = 0; i < num_objs; i++)

objects[i]->setToScan():

OUsDispObjs: :setToScanC):

/***

Method: Set To Slice

*/
void OUsContainers: :setToSlice()

for (int i = 0: i < num_objs: i++)
objects[i]->setToSlice();

OUsDispObjs: :setToSlice();

/***

Method: Clear Scan

*/
void OUsContainers: :clearScan()

for (int i = 0: i < num_objs: i++)
objects[i]->clearScan();

OUsDispObjs: :clearScan():

/***

Method: Add Object -- Add Object Scene Graph

Description: Adds an object to this objects lists and adds it to the
scene graph. Add Object does the same thing but does not have to and
the item to the scene graph.

*/
OUsContainers &QUsContainers: :addObjectCOUsDispObjs * obj_to_add)

objects[num_objsJ = obj_to_add:
root->addChildCobj_to_add->getRootC)):
num_objs++:

returnC*this):

110

OUsContainers &OUsContainers: :addObjectSGCOUsDispObjs * obj_to_add)

objects[num_objs] obj_to_add;
num_objs++;

returnC*this);

/***

Method: show

*/
OUsDispObjs &OUsContainers: :showC) {

for Cint i = 0; i < num_objs; i++)
objects[i]->showC);

returnCOUsDispObjs: :show(»;
}

/***

Method: hide

*/
OUsDispObjs &OUsContainers::hide()

for (int i = 0; i< num_objs; i++)
objects[i]->hide();

return(OUsDispObjs: :hide(»;
}
/***

111

Filename:
Revision:

OUsContainers.h
2.00

Date: 19 March 1998
Author: Jeff Collier

*/

#ifndef CONTAINS
#define =CONTAINS=

#include lOUsDispObjs.h"

/***

Definitions
***/
#define NUM_CONT_OBJS 100

/***

Class: OUsContainers

Description: This provides the functionality for adding objects as part
of the inherited object. This allows the inherited object the ability
to contain an object of OUsDispObj type.

Superclass: OUsBase -> OUsXfrmObjects -> OUsDispObjs

Inherited from
OUsXfrmObjects:

int copyMatrix(const SbMatrix *to_world, const SbMatrix *from_world);
int linkMatrix(SbMatrix *to_world, SbMatrix *from_world);
SbMatrix *getTransToWorld() {return trans_to_world;}
SbMatrix *getTransFromWorld() {return trans_from_world;}
void displayMatrix();

//Perform Transforms
SoCoordinate3 &transFromWorld(SoCoordinate3 *points);
SbVec3f &transFromWorld(SbVec3f &point);
SoCoordinate3 &transToWorld(SoCoordinate3 *points);
SbVec3f &transToWorld(SbVec3f &point);

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//Initialization Methods
virtual void setToScan(){};
virtual void setToSlice(){};

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs & hide()

//Interaction methods
SoSeparator *getRoot() {return(root);}

*/
class OUsContainers public OUsDispObjs {

public:
OUsContainers() {num_objs = D;}

112

OUsContainers(SoSeparator *root_node): OUsDispObjs(root_node) {
num objs = 0; }

-OUsContainers() {delete [] objects;}

virtual int setTransformPath();
virtual int setTransform();

virtual void setToScan();
virtual void setToSlice();
virtual void clearScan();

int getNumObjects() {returnCnum_objs):}
OUsContainers &addObjectSGCOUsDispObjs * obj_to_add);
OUsContainers &addObjectCOUsDispObjs * obj_to_add);
OUsDispObjs * getObjectCint ind) {returnCobjects[ind]);}

OUsDispObjs &showC);
OUsDispObjs &hideC);

protected:
int num_objs;
OUsDispObjs *objects[NUM_CONT_OBJS];

} ;

#endif
/***

113

Filename:
Revision:

OUsControls.c++
2.00

Date: 15 March 1998
Author: Jeff Collier

Description: For Details see OUsControls.h

*/
#include <iostream.h>
#include <stdio.h>
#include <string.h>
#include "OUsBase.h"
#include "OUsControls.h"
#include "OUsTrack.h"

/***
File Menu
***/

/**********~**

Method: Get Subject

Description: Get an Open Inventor File to use as a scanning object.

*/
SbBool OUsControls: :getSubject(char *filename, Tcl_Interp *tcl_string)

SoSeparator *new_subject = readFile(filename);

if (new subject == NUll) {
tcl string->result = "GetSubject: No valid subject in this file!";
cerr « "GetSubject: No valid subject in this file!" « endl;
return TCl ERROR;

subjects->removeAllChildren();
subjects->addChild(new_subject);
return TCl_OK;

/***

Method: Get Scanner

Description: Get a scanner that has been saved in an Open Inventor format.

*/
SbBool OUsControls: :getScanner(char *filename, Tcl_Interp *tcl_string){

if(filename == NUll) return TCl_OK;
SoSeparator *new_scanner = readFile(filename);

if (new_scanner == NUll) {
tcl_string->result = "GetScanner: No valid scanner in this file!\n";

cerr « "GetScanner: No valid scanner in this file!\n" « endl;
return TCl_ERROR;

insertScanner(new_scanner);
return TCl_OK;

/***

Method: Save Scanner

Description: Saves the Inventor graph describing the scanner in an
Inventor file format.

*/
int OUsControls: :saveScanner(char *filename. Tcl_Interp *tcl_string)

114

if (writeToFile(filename))
return TCl_OK:

tcl string->result = "saveScanner: Unable to write scanner to file!":
cerr« "SaveScanner: Unable to write scanner to file!" «endl:
return TCl ERROR:

int OUsControls: :saveGraph(char *filename, Tcl_Interp *tcl_string) {

if (writeFullGraph(filename))
return TCl_OK:

tcl string->result = "saveGraph: Unable to write scanner to file!":
cerr « "saveGraph: Unable to write scanner to file!" «endl:
return TCl ERROR:

}
/***

Methods: Save Actual Points and Save Scanned Points

Description: Not yet implemented.

*/
SbBool OUsControls: :saveActual PointsCTcl_Interp *tcl_string) {

tcl_string->result = "-- SaveActualPoints --\nNot yet implimented!\n":
cerr « "-- SaveActualPoints --\nNot yet implimented!\n" « endl:
return TCl_ERROR:

}
SbBool OUsControls: :saveScannedPointsCTcl_Interp *tcl_string){

tcl_string->result = "-- SaveScannedPoints --\nNot yet implimented!\n";
cerr « "-- SaveScannedPoints --\nNot yet implimented!\n" « endl:
return TCl ERROR;

/***
Interaction Methods
***/

int OUsControls: :getNumScanheadsCTcl_Interp *tcl_string)
sprintfCtcl_string->result. "%d". num_scanheads):
return TCl_OK;

}
int OUsControls: :getNumTracksCTcl_Interp *tcl_string)

sprintfCtcl_string->result. "%d". nun tracks) :
return TCl OK:

}
int OUsControls: :getNumCamerasCTcl_Interp *tcl_string)

spri ntfCtcl_stri ng->result. "%d". num_cameras):
return TCl OK;

115

/***

Method: Edit Scanner

Description: Records the number of slices and the spacing between slices
with each track.

*/
int OUsControls: :setScannerInfo(float step_size, int steps) {

for (int i = 0; i < num_tracks: i++) {
track[i]->setIncriment(step_size);
track[i]->setTotalInc(steps):

}
return TCl_OK:

/***

Method: Get Scanner Info

Description: Method to return to number of slices and spacing between
slices to TCl.

*/
int OUsControls: :getScannerInfo(Tcl_Interp *tcl_string)

if (num_tracks < 1) {
tcl_string->result = "getScannerInfo:\nNo Scanner for parameters":
return TCl ERROR:

float inc = track[OJ->getIncriment();
float tot = track[OJ->getTotallnc():

sprintf(tcl_string->result, "%.9f %.9f", inc, tot):

return TCl_OK:

int OUsControls: :setCameralnfo(Tcl_Interp *tcl_string, int scanhead_num,
int Cx, int Cy, float dx, float dy, int Ncx,
int Nry, int Nfx, float Sx, float k, float fl,
float r, float g, float b) {

if«scanhead_num < 0) I I (scanhead_num >= num_scanheads)) {
tcl_string->result = "setCameralnfo:\nscanhead_num out of range!":
return TCl ERROR;

116

}
scanhead[scanhead_numJ->getTopCameraC)->setFocalPointCCx, Cy, fl);
scanhead[scanhead_num]->getTopCameraC)->setPixelDimCdx, dy);
scanhead[scanhead_num]->getTopCameraC)->setNumberSensorsCNcx, Nry, Nfx);
scanhead[scanhead_num]->getTopCameraC)->setSxCSx);
scanhead[scanhead_numJ->getTopCameraC)->setDistortionCk);
scanhead[scanhead_num]->getTopCameraC)->setEmissiveColorCSbColorCr, g, b»;

scanhead[scanhead_num]->getBottomCameraC)->setFocalPointCCx, Cy, fl);
scanhead[scanhead_num]->getBottomCameraC)->setPixelDimCdx, dy);
scanhead[scanhead_num]->getBottomCameraC)->setNumberSensorsCNcx, Nry, Nfx);
scanhead[scanhead_num]->getBottomCameraC)->setSxCSx);
scanhead[scanhead_num]->getBottomCameraC)->setDistortion(k);
scanhead[scanhead_num]->getBottomCameraC)->setEmissiveColor(SbColorCr, g, b»;
return TCl_OK;

int OUsControls: :getCameralnfoCTcl_Interp *tcl_string, int scanhead_num) {

int Cx, Cy, Ncx, Nry, Nfx:
float dx, dy, Sx, k, fl;
SbColor color:

if Cscanhead_num < num_scanheads) {
scanhead[scanhead_num]->getTopCamera()->getCameralnfoCCx, Cy, dx, dy, Ncx,

Nry, Nfx, Sx, k, fl);
color = scanhead[scanhead_num]->getTopCameraC)->getEmissiveColorC);

sprintf(tcl_string->result,"%d %d %.9f %.9f %d %d %d %.9f %.9f %.9f %.9f %.9f
%.9f" ,

Cx, Cy, dx, dy, Ncx, Nry, Nfx, Sx, k, fl,
color[O], color[l], color[2]):

}
else

sprintfCtcl_string->result," -- -- -- -- -- -- -- -- --");

return TCl OK;

int OUsControls: :setCameraPosCTcl_Interp *tcl_string, int scanhead_num,
float X, float Y, float Z, float i, float j,
float k, float ang) {

ifC(scanhead_num < 0) I I Cscanhead_num >= num_scanheads» {
tcl_string->result = "setCameraPos:\nlnvalid scanhead number";
return TCl ERROR;

}
SbRotation rtCSbVec3fCi ,j,k), ang);
SbRotation rbCSbVec3fC-i ,j,-k), ang);

117

SbVec3f pt(X, Y, Z);
SbVec3f pb(X, -V, Z);

scanhead[scanhead_num]->getTopCameraC)->setCameraPosCrt, pt);
scanhead[scanhead_num]->getBottomCameraC)->setCameraPoserb, pb):

return TCl_OK:

int OUsControls: :getCameraPosCTcl_Interp *tcl_string, int scanhead_num)

SbRotation rm;
SbVec3f ta, temp:
float x, y, z, i, j, k, ang;

if Cscanhead_num < num_scanheads) {
scanhead[scanhead_num]->getTopCamera()->getCameraPosCrm, ta);
x = taCO]: y = ta[l]; Z = ta[2];
rm.getValue(temp, ang); i = temp[O]; j = temp[l]; k = temp[2]:

sprintfCtcl_string->result, "%.9f %.9f %.9f %.9f %.9f %.9f %.9f lf

,

x, y, z, i, j, k, ang):
}
else

sprintfCtcl_string->result, " If):

return TCl_OK:

int OUsControls: :setCameraPosMatCTcl_Interp *tcl_string, int scanhead_num,
float X, float Y, float Z,
float all, float a12, float a13, float a14,
float a21, float a22, float a23, float a24,
float a31, float a32, float a33, float a34,
float a41, float a42, float a43, float a44) {

float i, j, k, ang:
SbVec3f temp, ptCX, Y, Z), pb(X, -V, Z):
SbMatrix mCall, a12, a13, a14,

a21, a22, a23, a24,
a31, a32, a33, a34,
a41, a42, a43, a44):

SbRotation r(m);

ifCCscanhead_num < 0) I I (scanhead_num >= num_scanheads)) {
tcl_string->result = "setCameraPos:\nlnvalid scanhead number":
return TCl ERROR:

scanhead[scanhead_num]->getTopCameraC)->setCameraPos(r, pt):

118

r.getValueCtemp, ang):
temp.getValueCi, j, k);
temp.setValueC-i, j, -k);

scanhead[scanhead_num]->getBottomCameraC)->
setCameraPosCSbRotationCtemp, ang), pb);

return TCl_OK:
}
int OUsControls: :getCameraPosMatCTcl_Interp *tcl_string, int scanhead_num)

SbRotation rm;
SbMatrix m:
SbVec3f ta, temp;
float x, y, z;

if Cscanhead_num < num_scanheads) {
scanhead[scanhead_num]->getTopCameraC)->getCameraPosCrm, ta);
x = taCO]; y = ta[l]: z = ta[2]:
rm. getVa1ueCm) ;

sprintfCtcl_string->result,
"%.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f

%.9f %. 9f %. 9f %. 9f %. 9f" ,
x, y, z, m[O][O], m[O][l], m[O][2], m[O][3],
m[l][O], m[l][l], m[1][2], m[1][3],
m[2][O], m[2][1], m[2][2], m[2][3],
m[3][O], m[3][1], m[3][2], m[3][3]):

119

}
else

sprintfCtcl_string->result,
"

return TCl_OK;

-- -- -- -- -- -- -- -- -- -- -- __ "):

/***

Method: Set Track Position

Description: Moves the base of the track to a new location

*/
int OUsControls: :setTrackPosCTcl_Interp *tcl_string, int track_num,

float x, float y, float z,
float i. float j, float k, float angle) {

if CCtrack_num >= 0) && Ctrack_num < num_tracks» {
track[track_num]->setRotationCSbRotationCSbVec3fCi, j, k), angle»:
track[track_num]->setOriginCSbVec3fCx. y. z»:

else {
tcl_string->result = "setTrackPos: track number out of range!":
return TCl_ERROR:

return Tel_OK:

int OUsControls: :getTrackPos(Tcl_Interp *tcl_string, int track num) {

SbVec3f temp:
SbRotation rm:
float x, y, Z, angle:

if (track num < num tracks) {- -
track[track_num]->getOrigin(x, y, z):
track[track_num]->getRotation(rm):
rm.getValue(temp, angle):

sprintf(tcl_string->result, U%.9f %.9f %.9f %.9f %.9f %.9f %.9f",
x, y, Z, temp[O], temp[l], temp[2], angle):

}
else

sprintf(tcl_string->result, " -- -- -- -- -- --"):

return TCl_OK:

int OUsControls: :setlaserPlanelnfo(Tcl_Interp *tcl_string, const int sh_num,
const float resolution, const float width,
const float pitch, const float tilt,
const float r, const float g, const float b,
const float fl){

if«sh_num < 0) I I (sh_num >= num_scanheads)) {
tcl_string->result = "setlaserPlanelnfo:\nlnvalid scanhead number":
cerr « "_- setlaserPlanelnfo:\nlnvalid scanhead number\n" « endl:
return TCl ERROR:

scanhead[sh_num]->getlaserPlane()->
setDefiningPoints(resolution, width, pitch, tilt):

scanhead[sh_num]->getlaserPlane()->setColorCSbColorCr, g, b)):
scanhead[sh_num]->getlaserPlaneC)->setFocallengthCfl):

return TCl OK:

120

int OUsControls: :getlaserPlanelnfoCTcl_Interp *tcl_string,
const int scanhead num) {

SbColor color:

float res = 0, wid = 0, pitch = 0, tilt = 0, fl:

if Cscanhead_num < num_scanheads) {
scanhead[scanhead_numJ->getLaserPlane()->

getDefiningPointsCres, wid, pitch, tilt):

fl = scanhead[scanhead_num]->getlaserPlaneC)->getFocallengthC):
color = scanhead[scanhead_num]->getlaserPlaneC)->getEmissiveColorC):

sprintfCtcl_string->result, "%.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f",
res, wid, pitch, tilt, color[O], color[l], color[2], fl);

}
else

sprintfCtcl_string->result, " -- -- -- -- -- __ ");

return TCl_OK:

int OUsControls: :getOutputCTcl_Interp *tcl_string, int scanhead num)

int num_points;
float min, max, mean, sv;

if Cscanhead_num < num_scanheads) {
scanhead[scanhead_num]->getNumScannedPointsCnum_points);
scanhead[scanhead_num]->getStatsCmin, max, mean, SV);

sprintfCtcl_string->result, "%d %.9f %.9f %.9f %.9f",
num_points. min, max, mean, SV);

}
else

sprintfCtcl_string->result, "--");

return TCl_OK;

//==== Display Menu ===\\

SbBool OUsControls: :displayCint trackon, int scanheadon,
int objecton. int dataon) {

//Show/Hide Object
if (objecton) subjects->whichChild = SO_SWITCH_All:
else subjects->whichChild = SO_SWITCH_NONE;

//Show/Hide Track

121

if Ctrackon)
for (int i = 0: i < num_tracks: i++)

track[i]->showC);
else

for Cint i = 0: i < num_tracks: i++)
track[i]->hide():

//Show/Hide Scanhead
if (scanheadon)

for (int i = 0: i < num_scanheads: i++)
scanhead[i]->show();

else
for (int i = 0: i < num_scanheads; i++)

scanhead[i]->hideC):

//Show/Hide Data
if(dataon)

data_sets.showAll();
else

data_sets.hideAll():

return TCl_OK:

int OUsControls: :dataToCyScanC) {

for (int i = 0: i < num_scanheads; i++)
scanhead[i]->dataToCyScan(i);

return(l);

/***
TCl Interface
***/

/***

Function: Cmd SC control

Description: This function provides the interface for interaction with
the class OUsControl object.

*/
int CmdSCcontrolCClientData clientData, Tcl_Interp *tcl_string,

int argc, char *argv[J) {

CYlvState * state = CCYlvState *) clientData;
OUsControls *menu = COUsControls *)state->ResearchClass;

//If now argument is passed then control object should be created.

122

i f (arge == 1) {
state->ResearehClass = new OUsControls(state);
return TCl_OK:

}
if (menu == NUll) {

tel_string->result = "state->ResearehClass should not contain a NULL pointer":
return TCl_ERROR:

}
i fCstrempCargv[l], "delete") == 0)

delete menu:
state->ResearehClass = NUll:
return TCl_OK:

}
//File Menu to Control Class.
i f(strcmpCargv[l], "getsubjeet") == 0) {

return(menu->getSubjeet(argv[2], tel_string)):
}
i f(stremp(argv[l], "getseanner") == 0) {

return(menu->getSeanner(argv[2], tel_string));
}
i f(stremp(argv[l], "seveqraph") == 0) {

return(menu->saveGraph(argv[2], tel_string)):
}
i f(strempCargv[l], "saveseanner") == 0) {

returnCmenu->saveSeanner(argv[2], tel_string)):
}
if(strempCargv[lJ, "saveaetualpoints") == 0) {

return(menu->saveAetualPointsCtel_string)):
}
if(stremp(argv[l], "saveseannedpoints") == 0) {

return(menu->saveSeannedPoints(tel_string)):
}
//Info Exchange Methods
i f(stremp(argv[lJ, "getnumseanheads") == 0)

return menu->getNumSeanheadsCtel_string):
}
if(stremp(argv[l], "getnumtraeks") == 0) {

return menu->getNumTraeksCtel_string):
}
i fCstremp(argv[l], "getnumcameras") == 0) {

return menu->getNumCamerasCtel_string):
}
i fCstrcmpCargv[lJ, "setscannerinfo") == 0) {

return (menu->setScannerlnfoCatof(argv[2]), atoiCargv[3]))):
}
ifCstremp(argv[lJ, "getseannerinfo") == 0) {

returnCmenu->getSeannerlnfoCtel_string)):
}
i fCstrcmp(argv[lJ, "seteamerai nfo") == 0) {

returnCmenu->setCameralnfoCtcl_string, atoiCargv[2]), atoi(argv[3]),
atoi(argv[4]), atof(argv[5]), atof(argv[6]),

123

atoi(argv[7]), atoi(argv[B]), atoi(argv[9]),
atof(argv[lO]), atof(argv[ll]), atof(argv[12]),
atof(argv[13]), atof(argv[14]), atof(argv[15]»);

}
i f(strcmp(argv[l], "getcamerai nfo") == 0) {

return menu->getCameralnfo(tcl_string, atoi(argv[2]»;
}
i f(strcmp(argv[l], "setcamerapos") == 0) {

return(menu->setCameraPos(tcl_string, atoi(argv[2]), atof(argv[3]),
atof(argv[4]), atof(argv[5]), atof(argv[6]),
atof(argv[7]), atof(argv[B]), atof(argv[9]»):

}
i f(strcmp(argv[l], "getcamerapos") == 0) {

return menu->getCameraPosCtcl_string, atoi(argv[2]»:
}
i f(strcmp(argv[l], "setcameraposmat") == 0) {

return(menu->setCameraPosMatCtcl_string, atoi(argv[2]), atofCargv[3]),
atof(argv[4]), atof(argv[5]), atof(argv[6]),
atof(argv[7]), atof(argv[8]), atof(argv[9]),
atof(argv[lO]), atof(argv[ll]), atof(argv[12]),
atof(argv[13]), atof(argv[14]), atof(argv[15]),
atof(argv[16]), atof(argv[17]), atof(argv[18]),
atof(argv[19]), atof(argv[20]), atof(argv[21]»);

}
i f(strcmp(argv[l], "getcameraposmat") == 0) {

return menu->getCameraPosMat(tcl_string, atoi(argv[2]»;
}
i f(strcmpCargv[l], "settrackpos") == 0) {

return menu->setTrackPos(tcl_string, atoi(argv[2]),
atof(argv[3]), atof(argv[4]), atof(argv[5]),
atof(argv[6]), atof(argv[7]), atof(argv[B]),
atof(argv[9]»:

}
if(strcmpCargv[l], "gettrackpos") == 0) {

menu->getTrackPos(tcl_string, atoiCargv[2]»:
return Tel OK:

}
ifCstrcmpCargv[l] , "setlaserplaneinfo") == 0) {

return(menu->setlaserPlanelnfoCtcl_string, atoi(argv[2]), atof(argv[3]),
atof(argv[4]), atof(argv[5]), atofCargv[6]),
atofCargv[7]), atofCargv[B]), atof(argv[9]),
atofCargv[lO]»):

}
if(strcmp(argv[l], "getlaserplaneinfo") == 0) {

return menu->getLaserPlanelnfoCtcl_string, atoiCargv[2]»:

//Add Menu
i fCstrcmpCargv[l], "addtrack") == 0) {

return menu->addTrackCnew QUsTrack(»);

124

i f(strcmp(argv[l], "addscanhead") == 0) {
return menu->addScanHeadCatoiCargv[2])):

}
i f(strcmp(argv[l], "addscanner") == 0) {

return (menu->addScannerC)):
}
//Display Menu
i fCstrcmpCargv[l], "getoutput") == 0) {

return menu->getOutputCtcl_string, atoiCargv[2])):
}
i f (st rcmp Cargv[1], "display") == 0) {

return menu->displayCatoiCargv[2]),atoiCargv[3]),
atoiCargv[4]),atoiCargv[5])):

//Action Buttons
i f(strcmpCargv[IJ, "datatocyscan") == 0) {

ifCmenu->dataToCyScanC)) return TCl_OK:
}
i fCstrcmpCargv[I], "scanslice") == 0) {

if(menu->scanSliceC)) return TCl_OK:
}
i f(strcmp(argv[l], "reset") == 0)

menu->setToScan():
return TCl_OK:

}
ifCstrcmpCargv[l], "setgrid") == 0) {

ifCmenu->createTestGrid()) return TCl OK:
tcl_string->result = "Could not create test grid!":
return TCl_ERROR:

}
ifCstrcmp(argv[l], "clear") == 0) {

ifCmenu->clearScannedPointsC)) return TCl_OK:
tcl_string->result = "Could not clear scanned points!":
return TCl_ERROR:

}
sprintfCtcl_string->result, "%s does not exist for OUSC", argv[l]):
return TCl ERROR:

void CreateTclOUsScannerCCylvState *state)

125

TClCMD("OUSC" , CmdSCcont ro1) ;

}
/***

Filename: OUsControls.h
Revision: 2.00

Date: 7 March 1998

Author: Jeff Collier

Description: Maintains the interface between the simulator code and the
GUIs that control it. In this case the GUI is created with TCl/TK.

*/

#ifndef OU CONTROLS
#define OU=CONTROLS

/***
Include Files
***/
#include "OUsBase.h"
#include "OUsSimulator.h"

/***

Class: OUsControls

Description: This class is used to control the interface between the GUIs
and the simulator.

Superclasses: ResearchBase, OUsSimulator

Inherited From
ResearchBase: Nothing.

Inherited From
OUsSimulator: int removeSimulator();

//Add Functions
int addTrack(OUsTrack *new_track)
OUslaserPlane &addlaser():
OUsCamera &addCamera();
int addScanHead(short track_num = -1,
OUsScanHead *new scanhead);

//Simulator Functions
int scanSlice();
int setTestGrid();
int resetScanner():
int clearScannedPointsC);

//File Functions
int replaceScannerCSoSeparator *scanner):
int insertScannerCSoSeparator *scanner):
int writeToFile(char *filename = "scanner.iv");

*/
class QUsControls public ResearchBase. public OUsSimulator {

126

public:
//Constructors -- Destructors
OUsControlsCCylvState *state = NULL):

OUsSimulator(state) {};

//File Menu
int getSubjectCchar *filename, Tcl_Interp *tcl_string):
int getScannerCchar *filename, Tcl_Interp *tcl_string);
int saveScannerCchar *filename, Tcl Interp *tcl string);
int saveGraphCchar *filename, Tcl Interp *tcl string):
int saveActualPointsCTcl_Interp *tcl_string);-
int saveScannedPointsCTcl_Interp *tcl_string);

//Info Exchange Methods
int getNumScanheadsCTcl_Interp *tcl_string);
int getNumTracksCTcl_Interp *tcl_string);
int getNumCamerasCTcl_Interp *tcl_string);

int setScannerlnfo(float stepsize, int steps);
int getScannerlnfoCTcl_Interp *interp);

int setCameralnfoCTcl_Interp *tcl_string, int scanhead_num,
int Cx, int Cy, float dx, float dy, int Ncx,
int Nry, int Nfx, float Sx, float k, float fl,
float r, float g, float b):

int getCameralnfoCTcl_Interp *interp, int scanhead_num);

int setCameraPosCTcl_Interp *tcl_string, int scanhead_num,
float X, float Y, float Z, float i, float j,
float k, float ang);

int getCameraPosCTcl_Interp *interp, int scanhead_num):

int setCameraPosMatCTcl_Interp *tcl_string, int scanhead_num,
float X, float Y, float Z,
float all, float a12, float a13, float a14,
float a21, float a22, float a23, float a24,
float a31, float a32, float a33, float a34,
float a41, float a42, float a43, float a44):

int getCameraPosMatCTcl_Interp *tcl_string, int scanhead_num);

int setTrackPosCTcl_Interp *tcl_string, int track_num,
float x, float y, float z,
float i, float j, float k, float angle);

int getTrackPosCTcl_Interp *tcl_string, int track_num);

int setLaserPlanelnfoCTcl_Interp *tcl_string, const int sh_num,
const float resolution, const float width,
const float pitch, const float tilt,
const float r, const float g, const float b,
const float fl);

127

int getLaserPlaneInfo(Tcl_Interp *tcl_string, const int scanhead_num);

//Add Menu
int addScanner() {addScanHeadCaddTrackCnew OUsTrackC))): return TCl_OK:}

//Display Menu
int getOutput(Tcl_Interp *tcl_string, int scanhead_num);
int display(int track, int headscan, int object, int data):

//Action Buttons
int dataToCyScan();

} :

/***
TCl Interface Global Functions
***/
void CreateTclOUsScanner(CylvState *state):

#endif
/***

128

Filename:
Revision:

OUsDataSet.c++
2.00

Date: 7 March 1998
Author: Jeff Collier

Description: See OUsDataSet.h

*/
#include "OUsDataSet.h"

/***
Static member declarations
***/
OUsDataSet *OUsDataSet: :head = NULL:

/***

Method: Constructor

Description: Creates a new Data set and stores it on the scene graph.

*/
GUsDataSet: :OUsDataSetC)

ifChead == NULL) head = this:

//Set Up Display Root

root = new SoSeparator;
root->setNameCSbNameC"DataSet_Root"));

//Each display node must be on a separator named Display.
SoSeparator *disp = new SoSeparator:
disp->setNameCSbNameC"Display"));
disp->addChildCdisplay);
root->addChildCdisp):

color = new SoMaterial:
color->setNameCSbNameC"Color"));
display->addChildCcolor);

data_points = new SoCoordinate3:
data_points->setNameCSbNameC"Data_Points"));
data_points->point.deleteValuesCO);
display->addChildCdata_points);

mat_binding = new SoMaterialBinding:
//mat binding->value = SoMaterialBinding: :PER PART INDEXED;
mat_b'inding->setNameCSbNameC"Material_Binding";)): ­
display->addChildCmat_binding):

draw_properties = new SoDrawStyle:
draw_properties->pointSize = 2;
display->addChildCdraw_properties);
display->addChildCnew SoPointSet);

simulator data->addChildCroot):

next = NULL;

/***

Method: Show Allm -- Hide All

Description: Moves through the entire list and sets all the data to show
itself or sets it to hide itself

*/
QUsDataSet &QUsDataSet: :showAll()

QUsDataSet *cur = getHead():
whileCcur != NULL) {

cur->show():
cur = cur->next:

}
return (*thi s) :

129

OUsDataSet &DUsDataSet: :hideAll()

QUsDataSet *cur = getHead();
while(cur != NULL) {

cur->hide();
cur = cur->next;

}
return (*this):

/***

Method: Add Data Set

Description: Adds a data set to the end of the linked list. It then
returns the pointer to that list.

*/
QUsDataSet * OUsDataSet: :addDataSet()

DUsDataSet *cur = getHead():
if (cur == NULL) return(new OUsDataSet):
while(cur->next != NULL) {

cur = cur->next:

returnCcur->next = new OUsDataSet):

/***

Method: Get Data Set By Emissive Color

Description: Finds the first data set that has the specified color. If
no such data set exists, one is created.

130

Params: SbColor rhs color
be found if posible.

rhs color is the color of the data that should

Return: Reference to the data set of the correct color.

*/
QUsDataSet *DUsDataSet: :getDataByEmColor(const SbColor &rhs_color)

OUsDataSet *current = getHead():
SoMaterial *test_color:

int i = 0:

}

while(current != NULL) {
test_color = current->getColorC);

ifCtest_color->emissiveColor[OJ
return(current);

}
current = current->next;

OUsDataSet *tmp = addDataSetC);
tmp->setEmColorCrhs_color);

return(tmp);

rhs color)

131

/***

Method: Add Points

Description: Adds a set of points to the points already in the data set

Params: SoCoordinate3* pts -- The points to add to the data set.

*/
OUsDataSet &OUsDataSet: :addPointsCSoCoordinate3 *pts)

int num_add = pts->point.getNumC);
int num_tot = data_points->point.getNumC);

data_points->point.setValuesCnum_tot, num add, pts->point.getValuesCO));

return (*this);

/***

Method: Set Color

Description: Sets the color for the data set on the Open Inventor scene
graph.

*/
OUsDataSet &OUsDataSet: :setDifColorCconst SbColor &rhs_color)

color->diffuseColor = rhs_color;

returnC*this);

QUsDataSet &QUsDataSet: :setEmColor(const SbColor &rhs color)

color->emissiveColor = rhs_color:

return(*this):

/***

Method: Place In CyScan

Description: Places the data in the node into the CyScan scene graph so
that testing may be done on the node.

*/
QUsDataSet &QUsDataSet: :placeInCyScan(int graph)

//Get an empty SoCoordinate3 node for CyScan XYZ and FRZ
SoCoordinate3 *XYZCoords, *FRZCoords:
XYZCoords = state->scan[graph]->XYZCoordsNode:

ifCXYZCoords == NULL) {
cerr « "No XYZ coord without file" «endl:
exit (1) :

}
XYZCoords->point.deleteValues(O):
FRZCoords = state->scan[graph]->FRZCoordsNode:
FRZCoords->point.deleteValuesCO):

cerr « "Inserting simulated data into CyScan" « endl:
XYlCoords->point.setValues(O, data_points->point.getNum(),

data_points->point.getValues(O)):

int num_pt = XYlCoords->point.getNumC):
FRlCoords->point.deleteValuesCO):
FRZCoords->point.setNum(num_pt):

float last_F = XYZCoords->point[O][O]:
float Z:
int num = 0, F = 1, R = 0:

for(int j = 0: j < num_pt: j++) {
if«(last F + .002) > XYZCoords->point[j][O]) &&

(Clast=F - .002) < XYZCoords->point[j][O])){
//Same frame value
R++;

}
else {

//New Frame
F++:
last_F = XYZCoords->point[j][OJ:
R = 0;

132

Z = XYZCoords->point[j][2];
FRZCoords->point.set1ValueCj, F, R, Z);

return C*thi s) ;
}

/***

133

Filename:
Revision:

OUsDataSet.h
2.00

Date: 9 Dec 1997
Author: Jeff Collier

Description:
simulator.
itself.

*/
#ifndef OU DSET
#define OU=DSET

This class helps keep track of data generated by a scanner
It is stored on a scenegraph and has a means of displaying

#include "OUsDispObjs.h"
#include "Inventor/nodes/SoMaterial.h"

/***
Constant Definition
***/
#define HEADO_COLOR SbColorC1, 1, 0)
#define HEAD1_COLOR SbColorC1, 0, 1)
#define HEAD2 COLOR SbColorCO, 1, 1)
#define HEAD3=COLOR SbColorC1, 0, 0)
const SbColor DEF_DIFC. 7, .1, .7);

/***

Class: OUsDataSet.h

Description: This class stores data on a scene graph. There are many
methods to make the objects here render themselves in a helpful way.

Superclass: OUsBase -> OUsXfrmObjs -> OUsDispObjs

Inherited from
OUsBase:

SoSeparator *ReadFileCconst char *filename)
int writeFullGraphCchar *filename = "graph.iv")

Inherited from
OUsXfrmObjects:

int copyMatrixCconst SbMatrix *to_world, const SbMatrix *from_world);
int linkMatrixCSbMatrix *to_world, SbMatrix *from_world)
SbMatrix *getTransToWorldC) {return trans_to_world;}
SbMatrix *getTransFromWorldC) {return trans_from_world;}
void displayMatrix()

//Perform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points)
SbVec3f &transFromWorld(SbVec3f &point)
SoCoordinate3 &transToWorldCSoCoordinate3 *points);
SbVec3f &transToWorldCSbVec3f &point)

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//Initialization Methods
virtual void setToScanC){}
virtual void setToSlice(){}

//show/hide objects on the scene graph
virtual OUsDispObjs &showC)
virtual OUsDispObjs &hide()

//Interaction methods
SoSeparator *getRootC) {return(root);}

*/
class OUsDataSet : public OUsDispObjs

public:
//Constructors -- Destructors
QUsDataSet();
-QUsDataSet() {

ifCnext != NULL) delete next;}

//Methods affecting entire class
QUsDataSet &showAll();
QUsDataSet &hideAll();
QUsDataSet &clearPointsC) {

data_points->point.deleteValuesCO); return C*this);}

//Linked list operations
OUsDataSet *getHead() {return(head);}

134

OUsDataSet *addDataSetC):
OUsDataSet *getDataByEmColorCconst SbColor &color);

//Dealing with objects points
OUsDataSet &addPointsCSoCoordinate3 *pts);
OUsDataSet &setPointCint index, SbVec3f &pt);
SoCoordinate3 *getPointsC) {returnCdata_points);}

//Other ojbect functionality
OUsDataSet &setDifColorCconst SbColor &color = DEF DIF);
OUsDataSet &setEmColorCconst SbColor &color = RED LASER):
SoMaterial *getColorC) {returnCcolor);} -
SoMFColor *getDiffuseColorC) {returnC&color->diffuseColor):}
OUsDataSet &placelnCyScanCint graph);

private:
OUsDataSet * next:
static OUsDataSet * head:

SoCoordinate3 *data_points;
SoDrawStyle *draw_properties:
SoMaterialBinding *mat_binding:
SoMaterial *color:

} :

#endif
/***

135

Filename:
Revision:

Date:
Author:

OUsDispObjs.c++
2.00

14 Feb 98
Jeff Collier

Description: For details see OUsDispObjs.h

*/
#include IOUsDispObjs.h"

/***

Method: Default Constructor

*/
OUsDispObjs: :OUsDispObjsCSoSeparator *disp_obj_root)

SoSearchAction *searcher = new SoSearchAction:
root = disp_obj_root;

if (root != NULL) {

searcher->setNameCSbNameC"Display"));
searcher->applyCroot);

ifCsearcher->getPathC) == NULL) {
cerr « "OUsDispObjs: :Constructor: Problem with scene graph!"

«" Bad scanner file. II « endl;
exitCl) ;

}
else {

SoSeparator *disp = CSoSeparator *)searcher->getPathC)->getTailC);
display = CSoSwitch *)disp->getChildCO);

}
else display = new SoSwitch;
display->refC);

sprintfCdisplay_name, "display-%d", num_OUsBases);
display->setNameCSbNameCdisplay_name));

display->whichChild = SO_SWITCH_ALL;

/***
Transfromation Methods
***/

/***

Method: Set Transform Path

Description: Defines a path on the scene graph so that a transformation
Through that path can be found.

*/
int OUsDispObjs: :setTransformPathC)

SbViewportRegion vr;
SoGetMatrixAction *matrix = new SoGetMatrixActionCvr):

SoSearchAction *search_path = new SoSearchAction;

search_path->setNameCSbNameCdisplay_name));
search_path->setSearchingAllCFALSE);
search_path->setlnterestCSoSearchAction: :FIRST);
search_path->apply(scanner_elements):

//Get transform path, transform path should not change.
transform_path = search_path->getPathC):

136

if Ctransform_path == NULL) {
cerr « "problem with transfrom path" « endl:
exitCl):

returnC 1) :

/***

Method: Set Transforms

137

Discription:
conversion.

This sets the transforms for world to object space
The transformation is based on the objects display node.

*/
int OUsDispObjs: :setTransformC)

SbViewportRegion vr:
SoGetMatrixAction *matrix = new SoGetMatrixActionCvr):

matrix->applyCtransform_path):
copyMatrix C&matrix->getMatrixC), &matrix->getInverseC)):

returnC 1) :
}
/***

Filename:
Revision:

Date:
Author:

OUsDispObjs.h
2.00

08 April 98
Jeff Collier

*/
#ifndef OUSELEM
#define =OUSELEM

/***
Include files
***/
#include IOUsRay.h"
#include "OUsXfrmObjs.h"
#include <Inventor/So.h>
#include <Inventor/SbViewportRegion.h>
#include <Inventor/actions/SoGetMatrixAction.h>
#include <iostream.h>

/***

Definitions
***/
#define DISP LINE WIDTH 3
#define DISP=POINT_SIZE 5
#define DISP_NAME_SIZE 20

const SbColor RED_LASERC1, .65, .65);
const SbColor INFRARED_LASERC.65, 1, 1);

/***

Class OUsDispObjs

Description: This class is a foundational class for all scanning
DispObjs simulated by this program. It inherits from
OUsBase.

It contains transformations of the objects to and from
worldspace. It also provides the functionality of
placing objects on a track. An OUsRay is contained and
can be used to find the intersection of objects and
rays from a point through a focal point.

Pointers to XYZCoord nodes are included so Captured
points may be displayed

Superclass: OUsBase -> OUsXfrmObjects

Inherited from
OUsBase:

SoSeparator *ReadFileCconst char *filename)
int writeFullGraph(char *filename = "graph.iv")

Inherited from
OUsXfrmObjects:

int copyMatrixCconst SbMatrix *to_world, const SbMatrix *from_world):
int linkMatrix(SbMatrix *to_world, SbMatrix *from_world):
SbMatrix *getTransToWorldC) {return trans_to_world:}
SbMatrix *getTransFromWorldC) {return trans_from_world:}
void displayMatrix();

//Perform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points):
SbVec3f &transFromWorldCSbVec3f &point);
SoCoordinate3 &transToWorldCSoCoordinate3 *points):
SbVec3f &transToWorldCSbVec3f &point):

*/
class OUsDispObjs public OUsXfrmObjs {

138

public:
//Constructors -- Destructors
OUsDispObjs(SoSeparator *disp_obj_root NULL);
-OUsDispObjs(){}

//Transformation functions
virtual int setTransformPath();
virtual int setTransform():

//Initialization Methods
virtual void setToScan(){};
virtual void setToSlice(){}:
virtual void clearScan(){};

//show/hide objects on the scene graph
virtual OUsDispObjs &show() {

display->whichChild = SO_SWITCH_ALL; return(*this);}
virtual OUsDispObjs &hide() {

display->whichChild = SO_SWITCH_NONE; return(*this);}

//Interaction methods
SoSeparator *getRoot() {return(root);}

private:
char display_name[DISP_NAME_SIZE]; //Name given to the display node

protected:
SoSeparator *root;
SoSwitch *display;
SoPath *transform_path;

} ;

#endif
/***

139

Filename:
Revision:

Date:
Author:

OUslmagePlane.c++
2.00

11 March 1998
Jeff Collier

Description: See OUslmagePlane.h for details.

*/
#include "OUslmagePlane.h"

/***
Constructors -- Destructors
***/

/***

Method: Constructor

Description: This method constructs an image plane from a list of image
plane paramters. See OUslmagePlane.h for info on paramters.

*/
OUslmagePlane: :OUslmagePlane():
Cx (DEF_CX) ,
Cy(DEF_CY),
dx(DEF_OX),
dy(DEF_OY) ,
Ncx(DEF_NCX),
Nry(DEF_NRY),
Nfx(DEF_NFX),
fl(OEF_CAM_FL),
k(OEF_K) ,
Sx(OEF_SX) {

construct () :
} :

OUslmagePlane: :OUslmagePlane(SoSeparator *rt):
OUsDi spObj s(rt) ,
Cy(OEF_CY) ,
dx(OEF_OX),
dy(OEF_OY),
Ncx(OEF_NCX) ,
Nry(OEF_NRY) ,
Nfx(OEF_NFX),
fl(OEF_CAM_FL),
k(OEF_K),
Sx(OEF_SX) {

construct () :
}:

void OUslmagePlane: :construct()
setCache():
RZcoord = new SoCoordinate3:
RZcoord->ref();
allPixelsOff():

/***
Image Plane Functionality
***/

/***

Method: All Pixels Off

Description: Sets the array that contains information about pixels so
that all the values are -1 which indicates an "off" value.

140

*1

OUslmagePlane &OUslmagePlane: :allPixelsOffC)

RZcoord->point.deleteValuesCO);
RZcoord->point.setNum(Nry);
SbVec3f *pt = RZcoord->point.startEditing();
for (int i = 0: i < Nry: i++)

pt[i].setValueCO, 0, 0);

RZcoord->point.finishEditingC);
num_on = 0:

return (*this);

1***

Method: Turn On Pixel

Description: Takes a point on the image plane and finds the corresponding
pixel that should be turned on.

*1
int OUslmagePlane: :turnOnPixelCconst SbVec3f &point, int ind) {

IIPoints converted to image plane space.
int r, c:

if(ipToPixel(point[O], point[l], r, c)) {
returnCturnOnPixel(r, c, ind));

}
returneD):

int OUslmagePlane: :turnOnPixelCint r, int c, int ind) {

int in = Cint)rint(RZcoord->point[r][l]);

if (in> 0) returnCO);
II {

II if (c > RZcoord->pointCr]C2])
II return(O):
II num_on--;
II }

num_on++;
in++:
RZcoord->point.setlValueCr, ind, in, c);
returnCl);

141

/***

Method: Capture Point

Description: Takes a point and multiplies it by the appropriate
transformation matrix so that the point is captured by the image plane.

*1
SbVec3f OUslmagePlane::capturePoint(const SbVec3f &point)

SbVec3f dst, src:
src = point:
src = transFromWorld(src):

projection_matrix.multVecMatrix(src, dst):

return(dst) :

/***

Method: Frame To World Points

Description: This method takes the points stored in the frame buffer and
converts them to coordinates in world space.

*/
SbVec3f OUslmagePlane::frameToWorldPoints(float x, float y) {

SbVec3f nw_pt<O,O,O):
float z:

//This equation uses the transformation matrix of the camera and the
//distance of the camera from the laser plane to determin a depth so
//that the point may be converted back to a world location.

Z = «x * proj_to_world[O][O] + y * proj_to_world[l][O] +
proj_to_world[3][0]) I (-1.0 * proj_to_world[2][0]»:

142

IINote:
II
II

The above equation has been simplified by omiting terms that
will because the camera is always in the same place relative
to the laser plane.

proj_to_world.multVecMatrix(SbVec3f(x, y, z), nw_pt):

ifCnw_pt.length() > 1) cerr « "Problem point" « endl:

return (nw_pt) :

1***

Method: IP to Pixel -- Pixel to IP

Description: This function does and undoes the quantization that occurs
with a CCD image plane device. If a point on the image plane was
converted with IP to pixel it would give the pixel value of the
position. If that pixel value was used to generate the IP value (using
Pixel to IP the original point would not be recovered, instead the
center of the pixel would be returned.

*1
int OUsImagePlane: :ipToPixel(const float x, const float y, int &r, int &c) {

float rr, cc:

IIConversion of x
if(x> cen_x) return(O):
cc = cen_x + x:
if(cc < 0) returneD):

IIConversion of y
if(y> cen_y) return(O):
rr = cen_y - y:
if(rr < 0) return(O):

c = (int)rint(cc/(dx * Sx)):
r = (int)rint(rr/dy):
return(l):

int OUsImagePlane: :pixelToIP(const int r, const int c, float &x, float &y) {

x = c * dx * Sx - cen_x:
y = cen_y - (r * dy):

return(l):

1***

Method: Distort Point

Description: Used Tsai 's method for determining lens distortion.
The function uses real image point values not pixel values.

*/
int OUsImagePlane: :distortPoint(float x, float y, int dir) {

float kp:

143

if(dir> 0) dir = 1;
else dir = -1:

x = cx - x;
y = cy - y;
kp = 1 + k * (x * x + Y * y);

x = cx + dir * x/kp;
y = cy + dir * y/kp:

return(1) :

/***

Method: Set To Scan

Description: Creates a matrix that can project a point from the image
plane back into the scene graph. This should only done once per scan
because only coordinate that changes is an offset in X.

*/
void OUslmagePlane: :setToScan()

setTransformPath():
setTransform() ;

proj_to_world = *getTransToWorld():
proj_to_world.multLeft(inv_projection_matrix):

} :

int OUslmagePlane: :setSceneGraph(){

setCache() :

projection_matrix.makeldentity():
projection_matrix[2][3] = -l/fl:
inv_projection_matrix.makeldentity():
inv_projection_matrix[2][3] = l/fl:

return(l);

/***

144

Filename:
Revision:

Date:

QUslmagePlane.h
2.00

21 March 1998

//Focal center on imageplane.

//Number of pixels in a row.
//Parameter relates the ratio of x/yo

//Distance from one pixel to the next.
//Number of sensing elements in a row.

Author: Jeff Collier

*/

#ifndef IMAGE PLANE
#define IMAGE=PLANE

/***
Include Files
***/
#include "OUsDispObjs.h"
#include <Inventor/Sb.h>
#include <Inventor/So.h>
#include <Inventor/fields/SoMFVec3f.h>
#include <math.h>

/***
Define constants
***/
#define MAX_NUM_ROWS 300
#define DEF CX 300
#define DEF=CY 120
#define DEF OX .000007
#define DEF-DY .000019
#define DEF=NCX 680
#define DEF NRY 240
#define DEF=NFX 100
#define DEF SX .87
#define DEF-K .01
#define DEF=CAM_FL .002

/***

Class:

Description: This class keeps track of image plane information and
functionality as it relates to the pixels on the image
plane.
It inherits from OUsBasic and contains Open Inventor
classes.

Super Class: OUsBase -> OUsXfrmObjs -> OUsDispObjs

Inherited from
OUsBase:

SoSeparator *ReadFileCconst char *filename)
int writeFullGraphCchar *filename = "graph.iv")

Inherited from
OUsXfrmObjs:

145

int copyMatrix(const SbMatrix *to world, const SbMatrix *from world):
int linkMatrix(SbMatrix *to world~ SbMatrix *from world) -
SbMatrix *getTransToWorld()-{return trans_to_world:}
SbMatrix *getTransFromWorld() {return trans_from_world:}
void displayMatrix()

//Perform Transforms
SoCoordinate3 &transFromWorld(SoCoordinate3 *points)
SbVec3f &transFromWorldCSbVec3f &point)
SoCoordinate3 &transToWorldCSoCoordinate3 *points):
SbVec3f &transToWorldCSbVec3f &point)

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPathC)
virtual int setTransformC)

//Initialization Methods
virtual void setToScan(){}
virtual void setToSlice(){}

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

//Interaction methods
SoSeparator *getRoot() {returnCroot):}

*/
class OUslmagePlane : public OUsDispObjs {

public:
//Constructors -- Destructors
OUslmagePlane();
OUslmagePlane(SoSeparator *rt);
-OUsImagePlane() {RZcoord->unrefC);}

//Image Plane Functionality
OUsImagePlane &allPixelsOffC);
int turnOnPixelCconst SbVec3f &point, int ind):
int turnOnPixelCint r, int c, int ind):

SbVec3f capturePoint(const SbVec3f &point):
virtual SbVec3f frameToWorldPointsCfloat x, float y):

int ipToPixelCconst float x. const float y, int &r. int &c):
int pixelToIP(const int r, const int c. float &x, float &y):

virtual int distortPointCfloat x. float y. int dir = ~l):

146

void setToSlice(){};
void setToScan();
virtual void clearScanC){}:

//Interface functions
OUslmagePlane &setCenterCint rhsCx, int rhsCy) {

Cx = rhsCx; Cy = rhsCy; setSceneGraph(); returnC*this):}
OUslmagePlane &setPixelDim(float rhsdx, float rhsdy) {

dx = rhsdx; dy = rhsdy; setSceneGraph(); return(*this);}
OUslmagePlane &setNumberSensors(int rhsNcx, int rhsNry, int rhsNfx) {

Ncx = rhsNcx; Nry = rhsNry; Nfx = rhsNfx; setSceneGraph(); returnC*this);}
OUslmagePlane &setSx(float rhsSx) {

Sx = rhsSx; setSceneGraph(); return(*this);}
OUslmagePlane &setDistortionCfloat rhsk) {

k = rhsk; setSceneGraphC); return(*this);}
OUslmagePlane &setFocalPointCint rhsCx, int rhsCy, float rhsfl) {

Cx = rhsCx: Cy = rhsCy; fl = rhsfl: setSceneGraph(): return(*this):}

OUslmagePlane &setCache() {
cen_x = Cdx*Sx*Ncx)/2: cen_y = Cdy*Nry)/2: return(*this);}

virtual int setSceneGraph();
virtual int getFromSceneGraphC){returnCOUslmagePlane: :setSceneGraphC));}

protected:
//Image plane and camera specifications.
int Cx, Cy; //Focal center on imageplane in pixels.
float ex, cy: /IFocal center of imageplane in actual coordinates
float dx, dy; IIDistance from one sensing element to the next.
int Ncx: IINumber of sensing elements in a row.
int Nry; IINumber of rows of sensing elements
int Nfx; /INumber of pixels in a row.
float Sx; //Parameter relates the ratio of x/yo
float k: /IFirst term of lens distortion
float fl: /IFocal length of the image plane lens

I/Data capture on the image plane.
SoCoordinate3 *RZcoord: /IRow is index, 0 undefined, 1 intensity,

112 is column
int num_on; /IIndicates the number of pixels turned on.
SbMatrix projection_matrix; IIMatrices used to speed up the process
SbMatrix inv_projection_matrix: Ilof projecting a set of points back and
SbMatrix proj_to_world: Ilforth from world space.

147

private:
void constructC):

IIInformation cached
float cen_x:
float cen_y:

IIFunction used by the constructors

} ;

#endif
/***

148

Filename:
Revision:

Date:
Author:

OUsLaserPlane.c++
2.00

15 April 97
Jeff Collier

Description:

*/
#include "OUsLaserPlane.h"
#include <iostream.h>

/***

Method: Constructor -- Destructor

Description: The constructor methods call a method called construct
because the cod is the same but the method needed to take different
arguments for the base class.

*/
OUsLaserPlane: :OUsLaserPlane(OUsDataSet &data):

intersect_points(NULL), OUsLaserPlanelnv() {
construct(data);

OUsLaserPlane: :OUsLaserPlane(OUsDataSet &data, SoSeparator *new_plane):
intersect_points(NULL), OUsLaserPlanelnv(new_plane) {

construct(data);

void OUsLaserPlane: :construct(OUsDataSet &data) {
intersect_paints = data.getDataByEmColor(color->emissiveColor[O]);
laserbeam.linkMatrix(getTransToWorld(), getTransFromWorld());

/***
General Functionality
***/

/***

Method: Activate Plane

Description: Returns a set of points that represent the points on the
object intersected by the laser plane.

*1
OUsLaserPlane &OUsLaserPlane: :activatePlane()

int num_points = control_points->point.getNum():
SoPickedPoint *picked_point:
SbVec3f t_cp, t_o:
t_o = origin;
transToWorld(t_o);

SoCoordinate3 *intersects = intersect_points->getPoints();
int num_intersects = intersects->point.getNum():

IIStart with 1 because first point is origin
for (int i = I; i < num_points; i++) {

t_cp = control_points->point[iJ:
transToWorldCt_cp):
IISet up laser beam and find intersecting point.
laserbeam.setRayExternalCt_cp,t_o):
picked_point = laserbeam.fireRayCsubjects);

IIIf intersection exists save point.
if (picked_point != NULL) {

intersects->point.set1ValueCnum_intersects,
picked_point->getPoint().getValueC));

num_intersects++;

}
returnC*this):

/***

149

Filename:
Revision:

Date:
Author:

QUsLaserPlane.h
2.00

11 April 1998
Jeff Collier

Description:

*/
#include "OUsLaserPlanelnv.h"
#include "OUsDataSet.h"

/***

Class: OUsLaserPlane

Description: This class models a laser plane of light used in a laser

triangulation system.

Super Class: OUsBase -> OUsXfrmObjs -> OUsDispObjs -> OUsLaserPlaneInv

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//Initialization Methods
virtual void setToScan(){}
virtual void setToSlice(){}

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

Inherited from
OUsLaserPlane:

//Interaction methods
SoSeparator *getRoot() {return(root);}

//Interaction Methods
int setDefiningPoints(const float resolution = LP_RESOLUTION,

const float width = LP_WIDTH,
const float pitch = LP_PITCH,

const float tilt = LP_TILT);
int getDefiningPoints(float &resolution, float &width,

float &pitch, float &tilt);
int setControlPoints():

void setFocalLength(const float fl = -LP FOCAL)
float getFocalLength()

OUsLaserPlanelnv &setEmissiveColor(SbColor cl)
SbColor getEmissiveColor() {return(color->emissiveColor[O]):}

*/
class OUsLaserPlane : public OUsLaserPlaneInv {

public:
OUsLaserPlane(OUsDataSet &data):
OUsLaserPlane(OUsDataSet &data, SoSeparator *new_plane):
-OUsLaserPlane() {intersect_points = NULL:}

virtual OUsLaserPlane &activatePlane():
virtual void setToSlice() {intersect_points->clearPoints():}:
virtual void clearScan() {intersect_points->clearPoints();}

150

int checkPlane(); //Not yet implimented

151

void setColor(SbColor cl) {
setEmissiveColor(cl);
intersect_points = intersect_points->getDataByEmColor(color->emissiveColoreO]);

private:
void construct(OUsDataSet &data);

OUsDataSet *intersect_points;
OUsRay laserbeam;

} ;

/***

Filename:
Revision:

Date:
Author:

OUsLaserPlanelnv.c++
2.00

25 July 97
Jeff Collier

Description: This file impliements the code for the class OUsLaserPlane.

*/
#include <iostream.h>
#include "OUsLaserPlanelnv.h"

/***
Constructors -- Destructors
***/

/***

Method: Default Constructor

*/
OUsLaserPlanelnv: :OUsLaserPlanelnv()

//Create new nodes for all of the classes pointers.
root = new SoSeparator;
root->setNameCSbNameC"Laser_Plane_Roottl));

position = new SoTranslation;
position->setName(SbName("Position"));

orientation = new SoRotation;
orientation->setName(SbName("Orientation"));

control_points = new SoCoordinate3;
control_points->setName(SbName("Control_Points"));

defining_points = new SoCoordinate3;
defining_points->setName(SbName(tlDefining_Points tl));

focal_point = new SoTranslation;
focal_point->setName(SbName("Focal_Point"));

SoSeparator *disp = new SoSeparator;
disp->setNameCSbNameC"Display"));

//Define color of laser.
color = new SoMaterial;
color->setName(SbName("LP_Color"));
color->ambientColor = RED_LASER;
color->diffuseColor = RED_LASER;
color->emissiveColor = RED_LASER;

display->addChild(new SoPointSet);
disp->addChildCdisplay);

//Insert the classes onto a scenegraph.
root->addChildCposition);
root->addChild(orientation);
root->addChild(focal_point);
root->addChild(color);
root->addChildCdefining_points);
root->addChild(control_points);
root->addChild(disp);

setDefiningPointsC);
setFocalLength();

/***

Method: Constructor based on scene graph.

Description: Construct a laser plane from a given scene graph

*/
OUsLaserPlanelnv: :OUsLaserPlanelnvCSoSeparator *new_laserplane):
OUsDispObjsCnew laserplane) {

//Debug
//cerr « "0UsLaserPlanelnv: :Scene graph constructor" « endl;

SoSearchAction *searcher = new SoSearchAction;
root = new_laserplane;

searcher->setNameCSbNameC"Position"));
searcher->applyCroot);
if Csearcher->getPath() == NULL) {

cerr « "File type incorrect(Position). CyScan must be restarted." « endl;
exitCl);

152

153

}
position = CSoTranslation *)searcher->getPathC)->getTail():

searcher->resetC):
searcher->setNameCSbName("Orientation")):
searcher->applYCroot);
if Csearcher->getPathC) == NULL) {

cerr « "File type incorrectCOrientation). CyScan must be restarted. II « endl:
exrtt l):

}
orientation = CSoRotation *)searcher->getPath()->getTailC);

searcher->resetC):
searcher->setNameCSbNameCIControl_Points")):
searcher->applYCroot):
if Csearcher->getPathC) == NULL) {

cerr « "File type incorrectCControl_Points). CyScan must be restarted. II «
endl :

exitCl) :
}
control_paints = CSoCoordinate3 *)searcher->getPathC)->getTailC):

searcher->resetC):
searcher->setNameCSbNameC"Focal_Point")):
searcher->applYCroot):
if Csearcher->getPathC) == NULL) {

cerr « "File type incorrectCFocal_Point). CyScan must be restarted. II « endl;
exitCl) ;

}
focal_point = CSoTranslation *)searcher->getPathC)->getTail();

searcher->resetC):
searcher->setNameCSbNameC"LP_Color"));
searcher->applYCroot);
if Csearcher->getPathC) == NULL) {

cerr « "File type incorrectCColor). CyScan must be restarted. II « endl:
exit(l) :

}
color = (SoMaterial *)searcher->getPath()->getTail();

searcher->reset():
searcher->setNameCSbNameC"Defining_Points")):
searcher->applYCroot):
if Csearcher->getPath() == NULL) {

cerr « "File type incorrectCDefining_Points). CyScan must be restarted. II «
endl :

exit(l) :
}
defining_points = (SoCoordinate3 *)searcher->getPath()->getTail():

setControlPoints();

/***

Method: Set Defining Points -- Get Defining Points

Description: A small set of points can be used to generate the control
points that describe the laser plane. This method sets and gets those
defining points.

*/
int OUsLaserPlanelnv: :setDefiningPoints(const float resolution,

const float width,
const float pitch, const float tilt)

defining_points->point.setlValue(O, resolution, width, 0):
defining_points->point.setlValue(l, pitch, tilt, 0):
setControlPoints();

return(l);

int OUsLaserPlanelnv: :getDefiningPoints(float &resolution, float &width,
float &pitch, float &tilt) {

resolution = defining_points->point[O][O]:
width = defining_points->point[O][l]:
pitch = defining_points->point[l][O]:
tilt = defining_points->point[l][l]:

return(l):

/***

Method: Set Control Points

Description: Sets the points that define the laser plane. The plane is
defined as a set of rays from the origin (in the laser plane space)
through each control point.

Params: float lp_resolution -- space between control points.
float lp_width -- the width of the plane emiter.

*/
int OUsLaserPlanelnv: :setControlPoints()

float d, h;

154

float lp_resolution = defining_points->point[O][O]:
float lp_width = defining_points->point[O][I]:
float lp_pitch = defining_points->point[I][O]:
float lp_tilt = defining_points->point[I][I]:

float count = -lp_width:
int index = 0:

d = focal_point->translation.getValueC)[2] * tanClp_pitch):

control_points->point.deleteValuesCO):
control_points->point.setlValueCindex++, 0, 0, d):
while Ccount <= lp_width) {

/IList of points that represent the direction of a laserbeam
h = count * tanClp_tilt):
control_points->point.setlValueCindex, h, count,

-focal_point->translation.getValueC)[2]):
index++:
count += lp_resolution:

}
return(1) :

}

1***

155

Filename:
Revision:

Date:
Author:

OUsLaserPlanelnv.h
2.00

23 July 97
Jeff Collier

#define LP RESOLUTION .01
#define LP-TILT 0
#define LP=PITCH 0

Description:

*1
#include lOUsDispObjs.h"
#include IOUsDataSet.h"

1***
Constants related to laser plane Call values in meters).
***1
#define LP_FOCAL 5 IILaser plane focal length.
#define LP_WIDTH .15 IIHalf the width of the laser plane

Ilat scanhead.
IISpacing between beams on the plane.
IITilt of the laser plane
IIPitch of the laser plane

1***

Class: OUsLaserPlaneInv

Description: Simulates a laser plane. One point (called the focal point
not to be confused the focal point of a camera) is taken to be the
origin for all the rays. A set of points (called control points)
indicates a path through which the rays pass. If the points are co­
linear the laser plane is a plane that looks like a fan.

The purpose of this class is to implement the aspects of the laser
plane that deal with Open Inventor

Superclass: OUsBase -> OUsXfrmObjs -> OUsDispObjs
Inherited from

OUsBase:
SoSeparator *ReadFile(const char *filename)

int writeFullGraph(char *filename = "graph.iv")

Inherited from
OUsXfrmObjects:

int copyMatrix(const SbMatrix *to_world, const SbMatrix *from_world):
int linkMatrix(SbMatrix *to_world, SbMatrix *from_world)
SbMatrix *getTransToWorld() {return trans_to_world:}
SbMatrix *getTransFromWorld() {return trans_from_world:}
void displayMatrix()

//Perform Transforms
SoCoordinate3 &transFromWorld(SoCoordinate3 *points)
SbVec3f &transFromWorld(SbVec3f &point)
SoCoordinate3 &transToWorld(SoCoordinate3 *points):
SbVec3f &transToWorld(SbVec3f &point)

Inherited from
OUsDispObjs:

//Transformation functions
virtual int setTransformPath()
virtual int setTransform()

//Initialization Methods
virtual void setToScan(){}
virtual void setToSlice(){}

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

//Interaction methods
SoSeparator *getRoot() {return(root):}

*/
class OUsLaserPlaneInv public OUsDispObjs {

public:

156

//Constructors -- Destructors
OUsLaserPlanelnvC):
OUsLaserPlanelnvCSoSeparator *newlaserplane):

//Interaction Methods
int setDefiningPointsCconst float resolution = LP_RESOLUTION,

const float width = LP_WIDTH,
const float pitch = LP_PITCH,
const float tilt = LP_TILT):

int getDefiningPointsCfloat &resolution, float &width,
float &pitch, float &tilt):

int setControlPointsC);

void setFocalLengthCconst float fl = -LP_FOCAL) {
focal_point->translation = SbVec3fCO, 0, fl): setControlPointsC):}

float getFoca1LengthC) {
returnCfocal_point->translation.getValueC)[2]):}

OUsLaserPlanelnv &setEmissiveColorCSbColor cl) {
co1or->emissiveColor = c1: return(*this):}

SbColor getEmiss;veColor() {return(color->emissiveColor[O]):}

virtual void clearScan() {}

protected:

SoTranslation *position:
SoTranslation *focal_point:
SoRotation *orientation:
SoCoordinate3 *control_points:
SoMaterial *color:
SoCoordinate3 *defining_points: //First resolution and width

//Second point is pitch and tilt
}:
/***

157

Filename:
Revision:

Date:
Author:

OUsRay.c++
2.20

16 Dec 97
Jeff Collier

Description: See QUsRay.h for details.

*/
#include "OUsRay.h"

/***

Method: Constructor

Description: Set up to make Fire Ray a little faster.

*/
OUsRay: :OUsRay()

SbViewportRegion vr:
laseraction = new SoRayPickAction(vr):

/***

Method: Set Ray Internal -- Set Ray External

Description: A ray is defined from two points. First the direction
is established by subtracting the two points. Next the starting point
is defined. For an internal ray the starting point is defined so that
the ray starts at a point and passes through the other. For external
the ray starts at the point for which the ray would travel away from
the other point.

*/
OUsRay &OUsRay: :setRayInternal(const SbVec3f pI, const SbVec3f pO) {

dir = pI - pO:
startpoint = pO:
laseraction->setRay(startpoint, dir, RAY_RANGE, 1):

return(*this):

OUsRay &OUsRay: :setRayExternal(const SbVec3f pI, const SbVec3f pO) {

dir = pI - pO:
startpoint = pI:
laseraction->setRay(startpoint, dir):

return(*this):

/***

Method: Fire Ray

Description: This applies the defined ray to a portion of an Open
Inventor scene graph. The result is returned through an SoPickedPoint
object.

*/
SoPickedPoint *OUsRay: :fireRay(SoGroup *graph)

158

IIRay fired at object or entire scene
if (graph == NULL) {

graph = subjects:

laseraction->apply(graph):

return(laseraction->getPickedPoint()):

1***

Filname: OUsRay.h
Revision: 2.0

159

Date:
Author:

16 Dec 97
Jeff Collier

Description: This class handles all intersecting rays needed by the
simulator. The rays are primarily used by the laser
plane but are also used by the camera

*1
#ifndef OUSRAY
#define =OUSRAY

1***
Include Files
***1
#include "OUsBase.h"
#include "OUsXfrmObjs.h"
#include <InventorISb.h>
#include <InventorISo.h>
#include <InventorISoPickedPoint.h>

1***
Constant and macro definition
***1
#define RAY_RANGE .001 IIRestricts the distance for ray

II intersection.

const SbVec3f originCO,O,O): //Defines the origin for use as a

II default value.

1***

Class: OUsRay

Description: Simulates a ray from a laser. It is used to select a point
on an object.

Superclass: OUsBase -> OUsXfrmObjs

Inherited from
OUsBase:

SoSeparator *ReadFileCconst char *filename)
int writeFullGraphCchar *filename = "graph.iv")

Inherited from
OUsXfrmObjects:

int copyMatrixCconst SbMatrix *to_world, const SbMatrix *from_world);
int linkMatrixCSbMatrix *to_world, SbMatrix *from_world);
SbMatrix *getTransToWorldC) {return trans_to_world;}
SbMatrix *getTransFromWorldC) {return trans_from_world:}
void displayMatrixC);

IIPerform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points);
SbVec3f &transFromWorldCSbVec3f &point):
SoCoordinate3 &transToWorldCSoCoordinate3 *points);
SbVec3f &transToWorldCSbVec3f &point);

*1
class OUsRay public OUsXfrmObjs {

public:
IIConstructor
OUsRayC) ;

IIPick Ray Set Up
OUsRay &setRayInternalCconst SbVec3f pl. const SbVec3f pO = origin):
OUsRay &setRayExternalCconst SbVec3f pl. const SbVec3f pO = origin):

IIRay Execution
SoPickedPoint * fireRayCSoGroup *graph = NULL):

private:
I/Information related to the direction placement of the ray.
SbVec3f startpoint:
SbVec3f dir:

//Helpful object for Fire Ray

160

SoRayPickAction *laseraction:
} :

#endif
/***

161

Filename:
Revision:

Date:
Author:

OUsScanHead.c++
2.00

19 Feb 1998
Jeff

Description: See OUsScanhead.h for details.

*/
#include <iostream.h>
#include IOUsScanHead.h"
#include <math.h>

int OUsScanHead: :sh_num = 0:

/***
Constructors -- Destructors
***/

/***

Method: Constructor

Description:

*/
OUsScanHead: :OUsScanHead(OUsDataSet &data, SoSeparator *new_scanhead):
mi n(0) ,
max(0) ,

mean(O),
sv(O) {

scan data = data.addDataSet();
intersect data = data.addDataSet();

setColor();

if (new scanhead == NULL)
//New Scanhead.
root = new SoSeparator:
root->setName(SbName("Scanhead_Root"));
addObject(new OUsCamera(data)):
addObject(new OUsLaserPlane(data)):
addObject(new OUsCamera(data));

top_camera = (OUsCamera *)getObject(O):
bottom_camera = (OUsCamera *)getObject(2):
laser_plane = (OUsLaserPlane *)getObject(l):

connectCameras():
else {

//Scanhead from graph.
if(new_scanhead->getName() != SbName("Scanhead_Root")) {

cerr « "Error -- File type incorrect, no scanhead found\n":
exi tt l) :

/***

Method: Activate Cameras

*/
OUsScanHead &OUsScanHead: :activateCameras()

//Capture Points with cameras.
top_camera->captureFrame():
bottom_camera->captureFrame():
top_camera->mergeWith(*bottom_camera):

return (*this):
}

/***

Method: Connect Cameras

Description: This causes two cameras to be linked together to work as a
pair. So that only one camera needs to be considered by the designer
and the second follows the first.

*/
OUsScanHead & OUsScanHead: :connectCameras()

bottom_camera->makeCoopCameraC):
returnC*thi s) ;

/***

162

Method: Recover Points

Description: This gets the points from the main camera and determines
which world points correspond.

*/
OUsScanHead &OUsScanHead: :recoverPointsCfloat track tran)

SoCoordinate3 *new_data = new SoCoordinate3:
SoCoordinate3 *new_intersects = new SoCoordinate3:

new_data->point.deleteValuesCO):
new_intersects->point.deleteValuesCO):

top_camera->generateWorldPointsCnew_data, new_intersects):
adjustForTrackCnew_data, track_tran):

scan_data->addPointsCnew_data):
intersect_data->addPointsCnew_intersects):

return C*this):
}

/***

Method: Create Test Grid

Description: Uses the camera's ability to create a test grid based on the
position of the camera.

*/
OUsScanHead &OUsScanHead: :createTestGridC)

clearScanC):
top_camera->createTestGridC);
recoverPointsCO):

return C*this);

/***

Method: Clear Scan

Description: Clears out all scanned data relating to a particular scan.

*/
void OUsScanHead: :clearScan()

163

scan_data->clearPointsC):
intersect_data->clearPoints();

OUsContainers: :clearScan():

/***

Method: Set color.

Description: Simple little scheme that alters the color for the data
for the first four scan heads created.

*/
void OUsScanHead: :setColorC)

switch Csh_num) {
case 0: scan_data->setDifColorCHEADO_COLOR):

break:
case 1: scan_data->setDifColorCHEAD1_COLOR);

break:
case 2: scan_data->setDifColorCHEAD2_COLOR):

break:
case 3: scan_data->setDifColorCHEAD3_COLOR):

break;

/***

Method: Adjust for track

Description: The scan head only generates a Z-Y coordinate as though the
scan head is not moving. This method adds the offset of the position
on the track

*/
OUsScanHead &OUsScanHead: :adjustForTrack(SoCoordinate3 * new_data,

float track_tran) {

int num = new_data->point.getNum();
SbVec3f* points;

points = new_data->point.startEditing();

for(int i = 0: i < num: i++)
points[i][O] = track_tran:

new_data->point.finishEditing();

164

return (*this):
}

/***

Method: Set Transform Path

*/
int OUsScanHead: :setTransformPath() {

for (int i = 0: i < num_objs: i++)
objects[i]->setTransformPath():

return(l):

/***

Method: Set Transform

*/
int OUsScanHead: :setTransform()

for (int i = 0: i < num_objs: i++)
objects[i]->setTransform():

return(l):

/***

Method: Get Stats

Description: This method calculates the statistics on a set of point that
have been simulated so the designer can get a feel for the amount of
precision in the data.

*/
OUsScanHead &OUsScanHead: :getStats(float &rhs_min, float &rhs_max,

float &rhs mean, float &rhs_sv) {

getStats():

rhs min = min:
rhs_max = max;
rhs mean = mean;
rhs sv = sv;

165

return (*thi s) :

OUsScanHead &OUsScanHead: :getStats()

float *dif, tot, range:
SbVec3f dif_vec:
float d2 = 0, Ex2 = 0:
int i = 0;
int num = intersect_data->getPoints()->point.getNum();
int num_p = scan_data->getPoints()->point.getNum():
dif = new float[numJ:

if(num != num_p) cerr « "number intersects, points" « endl;
if«num> 0) && (num_p > 0) && (num == num_p)) {

SbVec3f *in_pts = intersect_data->getPoints()->point.startEditing();
SbVec3f *scan_pts = scan_data->getPoints()->point.startEditing():

dif_vec = scan_pts[iJ - in_pts[iJ;
dif[iJ = dif_vec.length();
tot = min = max = dif[iJ:

for(i = 1; i < rum: i++) {
dif_vec = scan_pts[iJ - in_pts[iJ:
dif[iJ = dif_vec.length():

if (dif[i] > max) max = dif[iJ:
if (dif[iJ < min) min = dif[iJ:

d2 = (dif[iJ * dif[iJ):
Ex2 += d2:
tot += dif[iJ:

float Sxx = Ex2 - «tot * tot) / num):
sv = sqrt(Sxx / (num - 1)):

i f(i != 0) mean = tot / (num - 1):
range = max - min:

intersect_data->getPoints()->point.finishEditing():
scan_data->getPoints()->point.finishEditing():

scan data->setDifColor(SbColor(l,O,O)):
SoMFColor *color_map = scan_data->getDiffuseColor();
float hue:

for (i = 0; i < num: i ++) {

166

hue = (sv - dif[i]) * (.75 / sv);
if(hue = 0) hue = I;
color_map->setlHSVValue(i, hue, 1, I);

intersect_data->hide();
return(*this);

}
/***

167

Filename:
Revision:

Date:
Author:

OUsScanHead.h
2.00

19 Feb 1998
Jeff Collier

Description: This class simulates a scanhead which is a collection of
a laserplane and cameras.

*/
#include lOUsContainers.h"
#include lOUsDataSet.h"
#include "OUsLaserPlane.h"
#include lOUsCamera.h"

/***

Method: OUsScanHead

Description: This class models a scan head witch contains two cameras
and a laser plane. It helps collect the functionality of these devices
so that simulation data may be collected more efficiently.

Superclass: OUsBase -> OUsXfrmObjects -> OUsDispObjs -> OUsContainers

Inherited from
OUsXfrmObjects:

int copyMatrix(const SbMatrix *to_world, const SbMatrix *from_world);
int linkMatrix(SbMatrix *to_world, SbMatrix *from_world);
SbMatrix *getTransToWorld() {return trans_to_world:}
SbMatrix *getTransFromWorld() {return trans_from_world:}
void displayMatrix();

//Perform Transforms
SoCoordinate3 &transFromWorld(SoCoordinate3 *points);
SbVec3f &transFromWorld(SbVec3f &point):
SoCoordinate3 &transToWorld(SoCoordinate3 *points):
SbVec3f &transToWorld(SbVec3f &point):

Inherited from
OUsDispObjs:

//Transformation functions
//Initialization Methods

virtual void setToScan(){}:
virtual void setToSlice(){}:

//show/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

//Interaction methods
SoSeparator *getRoot() {return(root):}

Inherited from
OUsDispObjs:

virtual int setTransformPath():
virtual int setTransform():

virtual void setToScan():
virtual void setToSlice():

int getNumObjects() {return(num_objs):}
OUsContainers &addObjectSG(OUsDispObjs * obj_to_add);
OUsContainers &addObject(OUsDispObjs * obj_to_add);
OUsDispObjs *getObject(int ind) {return(objects[ind]):}

OUsDispObjs &show():
OUsDispObjs &hide();

*/
class OUsScanHead : public OUsContainers

public:
//Constructors -- Destructors
OUsScanHead(OUsDataSet &data, SoSeparator *scanhead = NULL):
-OUsScanHead() {scan_data = NULL:}

//Camera Functionality
OUsScanHead &activateCameras():
OUsScanHead &connectCameras():
OUsScanHead &recoverPoints(float track tran):
OUsScanHead &createTestGrid():

//Genera Functionality
void clearScan():
void setColor():
OUsScanHead &dataToCyScan(int gr_num) {

scan_data->placeInCyScan(gr_num); return(*this):}

OUsScanHead &adjustForTrack(SoCoordinate3 * new_data. float track_tran);

168

int setTransformC):
int setTransformPathC);

//Interface functions
OUsCamera *getTopCamera() {

returnCtop_camera = (OUsCamera *)getObjectCO)):}
OUsCamera *getBottomCamera() {

returnCbottom_camera = COUsCamera *)getObjectC2»:}
OUsLaserPlane *getLaserPlaneC) {

returnClaser_plane = COUsLaserPlane *)getObjectCl)):}
OUsScanHead &getStats(float &rhs_min, float &rhs_max,

float &rhs_mean, float &rhs_sv):
OUsScanHead &getNumScannedPointsCint &n) {

n = scan_data->getPointsC)->point.getNumC): return C*this):}

private:
OUsScanHead &getStatsC):

OUsCamera *top_camera:
OUsCamera *bottom_camera:
OUsLaserPlane *laser_plane:

OUsDataSet *scan_data:
OUsDataSet *intersect_data:
static int sh_num:
SoCoordinate3 *FRZcoord:

float min, max, mean, sv:
} :
/***

169

Filename:
Revision:

Date:
Author:

OUsSimulator.c++
2.00

08 Aug 97
Jeff Collier

Description: For details see OUsSimulator.h

*/
#include "OUsSimulator.h"

/***
Constructors -- Destructors
***/

/***

Method: Constructor based on CylvState *

Description: Constructs a Simulator

*/
OUsSimulator: :OUsSimulator(CylvState *state)
OUsBase(state) ,
num_tracks(O) ,
num lasers(O),
num cameras(O) ,
num scanheads(O) ,
num_slices(TOTAL_INC) {}

/***

Method: Remove Scanner

Description: Removes all the scan heads and tracks and sets the numbers
of each to 0

*/
int OUsSimulator: :removeSimulator()

num_lasers--:
while (num_lasers >= 0) {

delete laser[num_lasersJ:
laser[num_lasersJ = NULL:
num lasers--:

}
num lasers = 0:

num_cameras--:
while (num_cameras >= 0) {

delete camera[num_camerasJ:
camera[num_camerasJ = NULL:
num cameras--:

}
num cameras = 0:

num scanheads--:
while (num_scanheads >=0) {

delete scanhead[num_scanheadsJ:
scanhead[num_scanheadsJ = NULL:
num scanheads--:

}
num scanheads = 0:

num tracks--:
while (num_tracks >= 0) {

delete track[num_tracksJ:
track[num_tracksJ = NULL:
num tracks--:

}
num tracks = 0;

170

simulator_root->removeChild(O);
return(l);

1***
Add Functions
1***1

1***

Method: Add Scan Head

Description: Adds a scanhead to a track specified by tracknum. A new
ScanHead is created.

Params: tracknum -- The number of the track to insert the scan head.
This paramerter defaults to -1 which indicates that
the last track added shouls be used.

171

newscanhead The root of a scenegraph that defines a scanhead.
default value is NUll.

Return: TCl OK -- if track is added.
TCl ERROR -- if track number out of range.

*1
int OUsSimulator: :addScanHead(short track_num, OUsScanHead *new_scanhead)

IIIf track not specified use the latest track.
if (track_num == -1) track_num = num_tracks - 1;

if (track_num < num_tracks) {
if (new scanhead == NUll)

new scanhead = new OUsScanHead(data sets);

track[track_num]->addObject(new_scanhead);
scanhead[num_scanheads++] = new_scanhead;
camera[num_cameras++] = new_scanhead->getTopCamera();
camera[num_cameras++] = new_scanhead->getBottomCamera();
laser[num_lasers++] new_scanhead->getlaserPlane();

}
else {

return(O);

return(l);

/***

Method: Add Scan Head

Description: Adds a scan head based on an open inventor description of one.
*/

OUsScanHead * OUsSimulator: :addScanHeadCSoSeparator *sr)

SoSeparator *rt:
scanhead[num_scanheads++] = new OUsScanHeadCdata_sets, sr):
int cur_sh_num = num_scanheads - 1:

rt = CSoSeparator *)sr->getChildCO):
i fC rt ->getNameC) != SbNameC "Camera_Root")) {

cerr « "Error -- File type incorrect, first cammera not found\n":
exitt l) :

}
scanhead[cur_sh_num]->addObjectSG(addCameraCrt)):
scanhead[cur_sh_num]->getTopCamera():

rt = (SoSeparator *)sr->getChild(l):
i f(rt ->getName() != SbName(" Laser_Pl ane_Root")) {

cerr « "Error -- File type incorrect, first cammera not found\n":
exit(1):

}
scanhead[cur_sh_num]->addObjectSGCaddLaserPlaneCrt)):
scanhead[cur_sh_num]->getLaserPlane():

rt = CSoSeparator *)sr->getChild(2):
i f(rt ->getName() != SbNameC "Camera_Root")) {

cerr « "Error -- File type incorrect. first cammera not found\n":
exit(1):

}
scanhead[cur_sh_num]->addObjectSGCaddCameraCrt)):
scanhead[cur_sh_num]->getBottomCamera():

return scanhead[cur_sh_num]:

/***

Method: Add Track

Description: Adds a track based on an open inventor scene graph description
of a track. This may require a recursive call because a track can
contain a track.

*/
int OUsSimulator: :addTrackCSoSeparator *tr)

track[num_tracks++J = new OUsTrackCtr):

172

SoSearchAction *searcher = new SoSearchAction:

//Add a scanhead if present
searcher->setNameCSbNameCIScanhead_Root"»:
searcher->applyCtr):
if (searcher->getPath() != NULL) {

SoSeparator *sh_root = (SoSeparator *)searcher->getPath()->getTail():
track[num_tracks - l]->addObjectSGCaddScanHeadCsh_root»;

//Search children for tracks. If found add.
int nodes = tr->getNumChildrenC);
for (int i = 0: i < nodes: i++) {

searcher->reset():
searcher->setName(SbName("Track Root"»;
searcher->apply(tr->getChildCi»;

if (searcher->getPath() != NULL) {
SoSeparator *t_root = (SoSeparator *)searcher->getPathC)->getTailC);
addTrackCt_root);
cerr « "Found nested tracks!" « endl;

return(1);

/***

Method: Add Laser Plane -- Add Camera

Description: These methods return pointers to a camera or laserplane that
was created from an Open Inventor scene graph.

*/
OUsLaserPlane * OUsSimulator: :addLaserPlaneCSoSeparator *lr) {

return Claser[num_lasers++] = new OUsLaserPlaneCdata_sets, lr»;

OUsCamera * OUsSimulator: :addCameraCSoSeparator *cr) {
return (camera[num_cameras++] = new OUsCameraCdata_sets, cr»:

/***

Method: Scan Slice

Description: Gets the current position of the track, Scans a slice at
that position, increments the position on the track.

173

*/
int OUsSimulator: :scanSlice()

int i:

for (i = 0: i < num_tracks: i++)
track[i]->setToSlice():

float offset:
//Fire each laser plane.
for (i = 0: i < num_lasers: i++)

laser[i]->activatePlane():

//Activate each camera
for (i = 0: i < num_scanheads: i++) {

scanhead[i]->activateCameras():
offset = track[iJ->getTranslation():
scanhead[iJ->recoverPoints(offset);

//Update each track
for (i = 0: i < num_tracks: i++)

track[i]->incriment();

return(l);

/***

Method: Create Test Grid

Description: Causes a test grid, relative to the scanners current
position to be created. The test grid should coraspond to the grid in
the template file.

*/
int OUsSimulator: :createTestGrid()

//Set the transforms to match the new position.
for (int i = 0; i < num_scanheads; i++)

scanhead[iJ->createTestGrid():

return(l);

/***

Method: Set to scan

174

Description: Initializes each track to the starting position.

*/
int OUsSimulator: :setToScan() {

//Reset the position for the scanheads on each track.
for Cint i = 0: i < num tracks: i++) {

track[i]->setToScan():
track[i]->setToSlice():

return(l):

/***

Method: Clear Scanned Points

Description: Clears all points that have been created by the simulator
These points could be simulated or test grid points.

*/
int OUsSimulator: :clearScannedPoints() {

//Set the transforms to match the new position.

for (int i = 0: i < num_scanheads: i++) {
scanhead[i]->clearScan():

return(l):

/***
File Functions
***/

/***

Method: Replace Scanner

Description: Takes a scanner in scene graph form and creates a scanner
from it. The old scanner is replaced by the one on the new scene graph

*/
int OUsSimulator: :replaceScanner(SoSeparator *scanner)

SoSearchAction *searcher = new SoSearchAction:
//Set up track_root and check to make sure tt exists.

175

scanner_elements = scanner;

searcher->setNameCSbNameC"Track_Root")):
searcher->setlnterestCSoSearchAction: :ALL):
searcher->applyCscanner_elements):

SoPathList pl:
pl = searcher->getPathsC):
int tracks = pl.getLengthC);

if Ctracks < 1) {
cerr « "No scanner elements found on this scenegraph!\n":
return CO):

//Remove old scanner from the scene graph and insert a new one.
removeSimulatorC):
simulator_root->insertChildCscanner_elements, 0):

for Ci nt i = 0; i < t racks: i++) {

SoSeparator *tr = CSoSeparator *)searcher->getPaths()[i]->getTail();
addTrackCtr) :

setToScanC):
return (1):

/***

Method: Write To File

Description: Writes the scene graph to an open inventor file.

*/
int OUsSimulator: :writeToFileCchar *filename)

setToScan():

SoOutput *out = new SoOutput:
FILE *output;
output = fopen Cfi 1ename, "w");
out->setFilePointerCoutput):

SoWriteAction *Write = new SoWriteActionCout):
Write->applyCscanner_elements):

fcloseCoutput) :

return (1);

176

}
/***

177

Filename:
Revision:

Date:
Author:

OUsSimulator.h
2.00

18 April 1998
Jeff Collier

Description: This class is the main simulator.

*/
#ifndef OU SIMULATE
#define =OU=SIMULATE

/**
Header Files
**/
#include "0UsTrack.h"
#include "0UsScanHead.h"
#include <stdio.h>
#include <iostream.h>

#define NUM GRAPH 6
#define NUM=ITEMS 16

/***

Class: OUsSimulator

Description: This class impliments a laser light simulator. It contains
an arrays of pointers for OUsCameras OUsLaserPlanes OUsScanHeads and
OUsDataSets.

Superclass: OUsBase

Inherited From
OUsBase:

SoSeparator *ReadFile(const char *filename)
int writeFullGraph(char *filename = "graph.iv")

*/
class OUsSimulator public QUsBase {

public:
//Constructor -- Destructors
OUsSimulator(CyIvState *state):
-QUsSimulator() {removeSimulator():}

int removeSimulator():

//Add Functions
int addTrackCOUsTrack *new_track) {

track[num_tracks++) = new_track: returnCnum_tracks - I):}
int addScanHeadCshort track_num = -1, OUsScanHead *new_scanhead = NULL):

//Add based on scene graph
OUsScanHead *addScanHeadCSoSeparator *sr):
int addTrackCSoSeparator *tr):
OUsLaserPlane *addLaserPlane(SoSeparator *lr):
OUsCamera *addCameraCSoSeparator *cr):

//Simulator Functions
int scanSliceC):
int setToScan():
int createTestGridC):
int clearScannedPoints():

//File Functions
int replaceScannerCSoSeparator *scanner):
int insertScanner(SoSeparator *scanner) {return(replaceScanner(scanner)):}
int writeToFile(char *filename = "scanner.iv"):

protected:

OUsTrack *track[NUM_ITEMS):
OUsLaserPlane *laser[NUM_ITEMSJ:
OUsCamera *camera[NUM_ITEMS):
OUsScanHead *scanhead[NUM_ITEMS):
OUsDataSet data sets:

short num tracks:
short num_lasers:
short num_cameras:
short num_scanheads:

int num slices:
}:

#endif
/***

Method: QUsTrack.c++
Revision: 1.15

178

Date:
Author:

23 July 97
Jeff Collier

Description: For a description of this class see QUsTrack.h

*/

#include "OUsTrack.h"
#include <iostream.h>
/***

Method: OUsTrack.h
Revision: 1.15

179

Date:
Author:

23 July 97
Jeff Collier

Description: Class OUsTrack represents the track of a laser light
plane body scanner. The details of the track are stored
on an Open Inventor scene graph so that the information
may be used to simulate a scan.

*/
#ifndef _OU_TRACK
#define _OU_TRACK

/***
Include Files
***/
#include IOUsTrackInv.h"
#include <Inventor/nodes/SoTranslation.h>
#include <Inventor/nodes/SoRotation.h>
#include <Inventor/So.h>

class OUsTrack : public OUsTracklnv {
public:

OUsTrack() {}
OUsTrack(SoSeparator *tr): OUsTracklnv(tr) {}

} :

#endif
/***

Method: QUsTracklnv.c++
Revision: 1.15

Date:
Author:

23 July 97
Jeff Collier

Description: For a description of this class see OUsTracklnv.h

*/
#include "0UsTrackInv.h"

#include <iostream.h>

/***
Static and Global Declarations
***/
float DEF_KNOT_PTS[8] = {O, 0, 0, 0, 3, 3, 3, 3};
float DEF_CONT_PTS[4][3] = {

{ 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0 },
{ 2.0, 0.0, 0.0 },
{ 2.0, 0.0, 0.0 }}:

/***
Constructors -- Destructors
***/

/***

Method: Default Constructor

Description: Construct a completely new track or constructs a track from
a scene graph of a track. The constructor needs a pointer the
trackroot of the scenegraph.

*/
OUsTracklnv: :OUsTracklnvC):
inc_valCINC_VAL),
total_incCTOTAL_INC) {

//Create all nodes on the scene graph Cmembers of class)
root = new SoSeparator:
root->setName(SbName(t1Track_Root"»:

origin = new SoTranslation:
origin->setName(SbName(IOrigin"»:
origin->translation = (SbVec3fCO, 0, TRACK_XPOS»:

control_points = new SoCoordinate3:
control_points->setNameCSbNameCtlControl_Points"»:

track rotation = new SoRotation;
track_rotation->setName(SbNameC"Track_Rotation"»;
track rotation->rotation = SbRotationCSbVec3fCO, 1, 0), 0):

track_position = new SoTranslation:
track_position->setName(SbNameCITrack_Position"»:
track_position->translation = CSbVec3fCO, 0, 0»;

inc_point = new SoCoordinate3;
inc_point->setNameCSbNameC"lncriment Point"»;

180

inc_point->point.setValueCinc_val, total_inc, 0);

//Create all nodes on the scene graph Cnon-members of class)
SoGroup *track = new SoGroup;
SoMaterial *track_material = new SoMaterial;
SoDrawStyle *track_drawstyle = new SoDrawStyle;
SoNurbsCurve *display_track = new SoNurbsCurve;

//Set up to display the default track
SoDrawStyle *track_draw_style = new SoDrawStyle:
track_draw_style->lineWidth = DISP_LINE_WIDTH;
track_draw_style->pointSize = DISP_POINT_SIZE:
control_points->point.setValuesCO, NUM_CONT_PTS, DEF_CONT_PTS);
display_track->numControlPoints = NUM_CONT_PTS;
display_track->knotVector.setValuesCO, NUM_KNOT_PTS, DEF_KNOT_PTS);

SoSeparator * disp = new SoSeparator;
disp->setNameCSbNameC"Display"));
disp->addChildCdisplay):
display->whichChild = SO_SWITCH_ALL:

//Create Graph Clevel 1)
root->addChildCtrack):

//Create Graph Clevel 2)
track->addChildCorigin);
track->addChildCdisp);
track->addChildCinc_point):
track->addChildCtrack_rotation);
track->addChildCtrack_position);

//Create Graph Clevel 3)
display->addChildCtrack_material):
display->addChildCtrack_draw_style):
display->addChildCcontrol_points):
display->addChildCdisplay_track);

//Put graph on simulator scene graph.
scanner_elements->addChildCroot):

OUsTracklnv: :OUsTracklnv(SoSeparator *new_track_root):
OUsContainers(new_track_root),
origin(NULL),
track_positionCNULL),
track_rotationCNULL),
control_pointsCNULL),
inc_pointCNULL) {

SoSearchAction *searcher = new SoSearchAction;

181

#ifdef DEBUG_TRACKINV
if(root == NULL) {

cerr « "Error! scene graph NULL in construct from scene graph"
« endl;

exit (1) ;
}

#endif

searcher->setName(SbName("Origin"));
searcher->apply(root);
if(searcher->getPath() == NULL) origin = NULL;
else origin = (SoTranslation *)searcher->getPath()->getTail();

searcher->reset();
searcher->setName(SbName(tfControl_Points"));
searcher->apply(root);
if(searcher->getPath() == NULL) control_points = NULL;
else control_points = (SoCoordinate3 *)searcher->getPath()->getTail():

searcher->reset():
searcher->setName(SbName("Track_Rotation"));
searcher->apply(root):
if(searcher->getPath() == NULL) track_rotation = NULL:
track_rotation = (SoRotation *)searcher->getPath()->getTail():

searcher->reset():
searcher->setName(SbName("Track_Position")):
searcher->apply(root):
if(searcher->getPath() == NULL) track_position = NULL:
track_position = (SoTranslation *)searcher->getPath()->getTail():

searcher->reset():
searcher->setName(SbName("Incriment Point")):
searcher->applYCroot):
if(searcher->getPath() == NULL) inc_point = NULL:
inc_point = (SoCoordinate3 *)searcher->getPath()->getTail();

if CCroot == NULL) I I
(track rotation == NULL) I I
(track_position == NULL) I I
(origin == NULL) I I
(control_points == NULL) I I
(inc point == NULL)) {

cerr « "ERROR -- File not successfully loaded! (track constructor)\n":
cerr « "Root: " « root «"\ntrack_position: "« track_position

« "\ntrack rotation" « track rotation- -
«"\norigin: "« origin « "\ncontrol points: "« control_points
«"\ninc_point: "« inc_point « endl;

exit(l):

182

inc_val = inc_point->point[O][O];
total_inc = Cint)rintCinc_point->point[O][l]):

/***
General Functionality
***/

/***

Method: Get Origin

Description: This method puts the origin of a track into three floats
to be altered in the calling program

Params: float x, y, z -- variables to be altered to contain data from
translation of the origin.

*/
OUsTracklnv &OUsTracklnv: :getOriginCfloat &x, float &y, float &z) {

x = origin->translation.getValueC)[O]:
y = origin->translation.getValueC)[l];
z = origin->translation.getValue()[2];
returnC*this);

/***

Method: Incriment Scan Head

Description: This translates the position of scanhead along the track.

*/
OUsTracklnv &OUsTracklnv: :incriment()

SbVec3f temp;

temp = track_position->translation.getValue();
temp[O] += inc_val;
track_position->translation = temp;

returnC*this);

/***

183

Method: Set To Scan

Description: This method prepares a track to scan an entire subject.
The track position is set to the starting point and the transform path
is created.

*1
void OUsTrackInv: :setToScan()

IIHome track
SbVec3f temp(O,O,O);
track_position->translation = temp;

setTransformPath();
OUsContainers: :setToScan();

}
1***

Method: OUsTrackInv.h
Revision: 2.00

184

Date:
Author:

3 Dec 97
Jeff Collier

Description: Class OUsTrackInv represents the track of a laser light
plane body scanner. The details of the track are stored
on an Open Inventor scene graph so that the information
may be used to simulate a scan.

*1
#ifndef OU TRACK INV
#define -OU-TRACK-INV
#define DEBUG_TRACKINV

1***
Include Files
************************~**1

#include "OUsContainers.h"
#include <Inventor/nodes/SoTranslation.h>
#include <Inventor/nodes/SoRotation.h>
#include <InventorISo.h>

1***
Definitions
***1
#define INC_VAL .002 IIDefault distance to incriment.
#define TOTAL_INC 50 IITotal num of slices to incriment.
#define LINE W3 IIHow the line should be displayed.
#define POINT_S 5 II
#define NUM_KNOT_PTS 8 I/Number of points for NURBS

#define NUM CONT PTS 4
#define TRACK_XPOS -0.75
#define NUM_TEST_POINTS 10

II
IIDefault location for a track.
IIDemension of the test grid.

185

1***

Class OUsTracklnv

Description: This class handles the open inventor functionality of a class
that represents a track in a structured light scanner

Superclass: OUsBase -> OUsXfrmObjects -> OUsDispObjs -> OUsContainers

Inherited from
OUsXfrmObjects:

int copyMatrix(const SbMatrix *to_world, canst SbMatrix *from_world):
int linkMatrix(SbMatrix *to_world, SbMatrix *from_world):
SbMatrix *getTransToWorld() {return trans_to_world:}
SbMatrix *getTransFromWorld() {return trans_from_world:}
void displayMatrix():

IIPerform Transforms
SoCoordinate3 &transFromWorld(SoCoordinate3 *points):
SbVec3f &transFromWorld(SbVec3f &point):
SoCoordinate3 &transToWorld(SoCoordinate3 *points):
SbVec3f &transToWorld(SbVec3f &point):

Inherited from
OUsDispObjs:

IITransformation functions
IIInitialization Methods

virtual void setToScan(){}:
virtual void setToSlice(){}:

Iishow/hide objects on the scene graph
virtual OUsDispObjs &show()
virtual OUsDispObjs &hide()

IIInteraction methods
SoSeparator *getRoot() {return(root);}

Inherited from
OUsDispObjs:

virtual int setTransformPath();
virtual int setTransform();

virtual void setToScan():
virtual void setToSlice():

int getNumObjects() {return(num_objs);}

OUsContainers &addObjectSGCOUsDispObjs * obj to add):
OUsContainers &addObjectCOUsDispObjs * obj to add):
OUsDispObjs *getObject(int ind) {return(ob}ects[ind]):}

OUsDispObjs &show():
OUsDispObjs &hide():

*/
class OUsTracklnv public OUsContainers {

public:
//Constructors -- Destructors
OUsTracklnv():
OUsTracklnv(SoSeparator *new_track_root):

//General Functionality
OUsTracklnv &setOrigin(SbVec3f or) {

origin->translation = or: return(*this):}
OUsTracklnv &getOrigin(float &x, float &y, float &z):
OUsTracklnv &getRotationCSbRotation &rm) {

rm = track_rotation->rotation.getValue(): return C*this):}
OUsTracklnv &incriment():

//Interface Functions
OUsTracklnv &setRotation(SbRotation rm) {

track_rotation->rotation = rm: return(*this):}
float getTranslationC) {return(track_position->translation.getValueC)[O]):}
OUsTracklnv &setlncriment(float inc) {

inc_point->point.setValue(inc,total_inc,O): inc_val=inc: return(*this):}
float getlncriment() {return(inc_val):}
OUsTracklnv &setTotallncCint tin) {

inc_point->point.setValueCinc_val,tin,O): total_inc=tin: returnC*this):}
float getTotallncC) {returnCtotal_inc):}

void setToSlice() {setTransform(): OUsContainers: :setToSlice():}
void setToScan():

private:
float inc_val:
int total_inc:

SoTranslation *origin:
SoTranslation *track_position:
SoRotation *track_rotation:
SoCoordinate3 *control_points:
SoCoordinate3 *inc_point:

}:

#endif

186

/***

187

Filename:
Revision:

Date:
Author:

OUsXfrmObjs.c++
2.00

04 Dec 97
Jeff Collier

Description: See OUsBasic.h for details.

*/
#include IOUsXfrmObjs.h"

/***

Method: Constructor -- Destructor

*/
OUsXfrmObjs: :OUsXfrmObjs() {

trans_to_world = new SbMatrix:
trans_from_world = new SbMatrix;

OUsXfrmObjs: :-OUsXfrmObjs()

delete trans_to_world:
delete trans_from_world:

/***

Method: Copy Matrix -- Link Matrix

Description: These methods explictly set the transformation matrices.
For copy the matrices are copied from the matrices passed. For link
The matrices are made to point to the matrices passed.

Params: SbMatrix * -- to_world, from world: These are the matrices to
be copied from or linked to.

*/
int OUsXfrmObjs: :copyMatrix(const SbMatrix *to_world,

canst SbMatrix *from_world) {

*trans to world = *to world;- - -
*trans_from_world = *from_world;

return(1);

int OUsXfrmObjs: :linkMatrix(SbMatrix *to_world, SbMatrix *from_world)

delete trans_to_world;
delete trans_from_world;

trans_to_world = to_world;
trans_from_world = from_world;

return(l):

/***

Method: Transform from World Space to Object Space

Description: These methods transform a point or set of points from world
space to object space. Both of these functions alter the information
passed to them. They also return references to the objects passed to
them so that this method may be nested inside another.

*/
SoCoordinate3 &OUsXfrmObjs: :transFromWorld(SoCoordinate3 *points){

int num = points->point.getNum():
SbVec3f *arr_points;
arr_points = points->point.startEditing();

for (int i = 0; i < num: i++)
transFromWorld(arr_points[i]);

points->point.finishEditing();
return (*points);

SbVec3f &OUsXfrmObjs: :transFromWorld(SbVec3f &point)

trans_from_world->multVecMatrix(point, point);
return point:

/***

Method: Transform from Object Space to World Space

Description: These methods work exactly the same way the transform from
world to object methods do but in reverse order. See Transform from
World Space to Object space for more details.

*/

188

SoCoordinate3 &OUsXfrmObjs: :transToWorld(SoCoordinate3 *points){

int num = points->point.getNum():
SbVec3f *arr_points:
arr_points = points->point.startEditing():

for (int i = 0: i < num: i++)
transToWorld(arr_points[i]):

points->point.finishEditing():
return (*points);

SbVec3f &OUsXfrmObjs: :transToWorld(SbVec3f &point)

trans_to_world->multVecMatrix(point, point):
return point:

/***

Method: Display Matrix

Description: This method prints to cerr the matrices in this object.

*/

void OUsXfrmObjs: :displayMatrix()

i nt t . J:

cerr « "Marix trans to world:" « endl;
for (i = 0: i < 4: i++) {

for(j = 0: j < 4: j++)
cerr « *trans_to_world[i][j] « "\t";

cerr « endl:

cerr « "Marix trans from world:" « endl;
for (i = 0; i < 4; i++) {

for(j = 0: j < 4; j++)
cerr « *trans_from_world[i][j] « "\t";

cerr « endl ;

/***

189

Filename:
Revision:

OUsXfrmObjects.h
2.00

Date:
Author:

04 Dec 97
Jeff Collier

190

Description: This class is a foundational class for all basic
elements used in the simulation of a structured light
scanner.

This object contains transformation matrices to and
from object space to world space.

*/

#ifndef OU XFRM
#define OU=XFRM

#include IOUsBase.h"

/***
Constant Definitions
***/
canst SbMatrix empty_mCO,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O):

/***

Class: OUsXfrmObjs

Description: This is an abstract class to give all inherited classes
the ability to keep track of world space and object space.

Superclass:

Inherited
Methods:

OUsBase

SoSeparator *ReadFileCconst char *filename)
int writeFullGraphCchar *filename = "graph.iv")

*/
class OUsXfrmObjs . public OUsBase {

public:
OUsXfrmObj s() :
-OUsXfrmObjs();

int copyMatrix(const SbMatrix *to_world, const SbMatrix *from_world):
int linkMatrixCSbMatrix *to_world, SbMatrix *from_world):
SbMatrix *getTransToWorld() {return trans_to_world:}
SbMatrix *getTransFromWorld() {return trans_from_world:}
void displayMatrix();

//Perform Transforms
SoCoordinate3 &transFromWorldCSoCoordinate3 *points);

SbVec3f &transFromWorld(SbVec3f &point):
SoCoordinate3 &transToWorld(SoCoordinate3 *points):
SbVec3f &transToWorld(SbVec3f &point):

private:
//Matrices to keep a translation to and from worldspace.
SbMatrix *trans_to_world;
SbMatrix *trans from world:- -

} :

#endif

191

192

Appendix B

A camera's calibration will be a major factor in the quality of a laser triangulation

system. Among the most important parameters are baseline distance (the distance

between the camera and the laser plane) and the camera angle (the angle between the

optical axis of the camera and the laser plane). This appendix will define three sets of

scan heads based on the camera's parameters. The three sets will be called type A, type B

and type C. A projection grid of each camera is provided as an indication of the

resolution of the scan head.

Table 6: Three different camera calibrations

Calibration Type A TypeB TypeC
Parameter

baseline 0.25 meters 0.6 meters 0.1 meters

camera angle 45 degrees 60 degrees 25 degrees

CX,Cy 256,256 256, 128 256, 128

dX,dy 10 urn, 10 urn 10 urn, 10 urn 10 urn, 10 urn

Ncx 512 512 512

Nry 512 256 256

Nfx 512 512 512

Sx 1 0.5 0.5

K 0 0 0

f1 3.5mm 1.4mm 1.4mm

As seen in the table the only difference between a type B scan head and a type C

scan head is the baseline distance and the camera angle. However a there is a substantial

193

difference in the resolution of the scan head. The figures below are the projection grids

of the three types of scan heads.

\\ .

..
'",- .

'~:~~ttt.@~i~\~~~~l~j!~~t~i~11ii/:·
·'~i..f~:

Figure 39: Projection grid for a type A camera.

Figure 39 is a projection grid for a type A camera. The circle represents the

desired scanning space. While the resolution is good, parts of the scanning space are

missed.

.
.....·· .· .

194

Figure 40: Projection grid for a type B camera.

In figure 40 the resolution of the camera has been reduced. However the longer

base line improves the coverage of the scanned area. In addition there is less variation in

resolution throughout the scanning space.

195

.............

Figure 41: Projection grid for a type C camera.

In figure 41 the baseline has been reduced. The figure shows that the coverage of

the scanner is not as good as a type A or type B scan head.

