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Chapter 1: Introduction 

Today, the design of linear control systems is very advanced. But in the 

real world, most control problems involve nonlinear plants where a linear control 

system will not give desired performance. Thus nonlinear control systems are 

needed. There are several methods used to design nonlinear control systems such 

as the linearization approach, robust control, adaptive control, deconlposition of 

nonlinear systems, exact linearization via feedback, etc. However, they all hzve 

their limitations and may not be suitable for controlling system behavior over a 

wide operating range. 

Gain scheduling, which originated in the design of flight control systems, is a 

commonly practiced nonlinear design method. The basic idea in gain scheduling is 

to extend the validity of the linearization approach to a range of constant 

operating points. When a nonlinear plant can be modeled in such a way that the 

operating points are parameterized by several scheduling variables, a gain 

scheduling controller can be designed by linearizing the nonlinear plant at several 

constant operating points, designing a linear feedback controller at each point, 

and implementing the resulting family of linear controllers as a single controller 

whose parameters are changed by monitoring the scheduling variables. Gain 

scheduling technique has been applied to many applications, especially in flight 
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control problems [Z] , [3], [5] - [7], [9], [12] and [15]. The theoretical studies of 

gain scheduling have mainly focused on two aspects. In [ l l ] ,  the interpolation of 

linear controllers which led to linear parameter-varying controllers was given. In 

[8], linear parameter-varying controllers by optimization methods were designed. 

In [13], the properties of linear parameter-varying systems were analyzed. 

Additional esort is related to the nonlinear aspect. In [14], 'schedule on a slow 

variable' for certain classes of nonlinear problems was established. In [lo], 

implementation of gain scheduling static state feedback laws was analyzed. 

A recently developed framework for gain scheduled controller design is 

proposed in [4] and is listed here: 

Compute a nonlinear plant's family of constant operating points, 

parameterized by a set of scheduling variables. Construct the 

corresponding family of linearized plants. 

For this family of linearized plants, design a family of linear controllers 

to meet specific design goals at each constant operating points 

throughout the operating range. 

Construct a gain scheduled controller that linearizes to the 

corresponding linear controller at each constant operating point. 

Check nordocal performance of the resulting nonlinear control system. 

The performance of such a nonlinear controller in a region close to any constant 

operating point is similar to the performance of the corresponding linear 

controller. In 1161, a pitch-axis missile autopilot is designed by applying the 



above gain scheduling method. In this methodology, the third step is critical. A 

particular gain scheduled controller is constructed in [4] and the existence 

conditions of such a nonlinear controller is also addressed. 

This thesis describes the application of the above gain scheduling technique to 

the design of nonlinear feedback controllers for a nonlinear tracking problem and 

a nonlinear reduced-order observer. The existence conditions for each problem 

will be addressed. It also will be proven that they can be designed separately. 

An autopilot for the missile pitch-axis model described in [16] will be designed 

as an example of utilizing the nonlinear feedback controller and the nonlinear 

reduced-order observer. This is a reduced-order nonlinear gain scheduling system 

design as opposed to the full-order nonlinear gain scheduling system design of 

Cl51. 

The following summarizes the notation and definitions used in this thesis. 

Matrices and sub-matrices will be denoted by capital letters, e.g. A 

denotes a matrix, while A,, denotes the upper left sub-matrix of A .  

Vectors will be denoted by lower case letters, e.g, x  

Constant operating points are denoted with superscript " , e.g. x O .  

Vector of scheduling variables is denoted by a .  

A matrix that is a fbnction of the scheduling variables a is denoted 

by, for example, A ( a )  . 
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Constant operating points that are a function of the scheduling 

variables a are denoted with a in parenthesis, e.g. xO(a) .  

"J The Jacobian matrix is defined as follows: If f:Rn + Rm, then - 
%€ 

denotes the m x n Jacobian matrix whose (i, j )  -entry is the partial 

Variations about constant operating point are denoted with 6-subscript, 

e.g. x,. 



Chapter 2: Nonlinear Feed back Controller 

2.1 Introduction 

There are many control tasks such as stabilization, tracking, disturbance 

rejection, etc. which require the use of feedback control. In these control 

problems, there may be additional goals for the design, like meeting certain 

requirements on the transient response. The design technique of such feedback 

controllers is highly advanced for linear systems. Thus it is advantageous to use 

the design procedures already developed for linear systems to design nonlinear 

feedback controllers for nonlinear systems. The nonlinear feedback controller must 

be able to perform well over a wide range and not just near some constant 

operating points. 

2.2 Problem Description 

Consider an m-input, p-output, n-dimensional nonlinear plant of the form 



where f (.;) and h(.) are smooth functions, x(t)  is the state vector, u(t )  is the 

control input vector and y( t )  is the measured output available for various 

purposes. Assume there is a parameterized family of constant operating points 

defined by smooth functions [ x O ( a ) , u O ( a ) , y O ( a ) ] ,  a E T ,  where I' is an open 

set containing the origin in 93' and a depends on u(t), x(t)  and y(t)  . That is, 

Given any a E r , the corresponding linearization of the nonlinear plant (2.1) 

can be written as 

where the deviation variables are defined by 

x, ( t )  = x( t )  - xO (a )  

u,. ( t )  = u( t )  - u O ( a )  a E T  

Y,(O = ~ ( t )  - y O ( a )  

The coefficients in (2.3) are given by the partial derivative calculation on (2.1), 

47 A(a)  = - (xO ( a ) ,  u" (a))  a 
ef B(a j = - (xO (a) ,  u0 (a) )  a 
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Assume that at each a E r , the linearization satisfies the following conditions: 

1. The pair [A(a),B(a)] of (2.3) is controllable in the sense of linear 

systems. 

2. A ( a )  is nonsingular. 

A(a) B ( a )  
3 .  [C(a) 

] has full row rank. 

Under these assumptions, a nonlinear feedback controller, which forms a servo 

system together with (2.1) to track input r ( t ) ,  

will be built such that the corresponding linearization of (2.6) is a linear 

feedback controller of (2.3) such that the closed-loop system tracks step input 

r,(t) at any a E r . It also will be shown that the nonlinear controller (2.6) 

does not always exist. There are other conditions that must be satisfied. 

2.3 Parameterized Family of Linear Feedback Controller 

In this section, a parameterized family of linear feedback tracking controllers 

for the linearization family (2.3) will be constructed. 
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The design goal of the parameterized family of linear feedback controller is to 

get a family of closed-loop systems with zero steady state error response for 

step reference inputs and to provide acceptable transient response characteristics. 

This design involves designing controller and feedback law that yield a stable 

closed-loop system capable of tracking step reference inputs with zero error. To 

obtain zero error for step inputs, an integrator will be added to obtain a Type I 

system. Thus, the parameterized linear feedback controller for (2.3) is 

a t )  = ra(t)-y*(t)  

~8 ( t )  = F(a)x ,  (f) + K, (a)& ( t )  

where m x 11 smooth function F ( a )  and m x p  smooth hnction K, ( a )  are to 

be determined to stabilize the system and satisfjr the required transient response 

specifications at each constant operating point. The block diagram of the 

parameterized linear closed-loop system is shown in Figure 2.1 



Figure 2.1 Parameterized Linear Closed-Loop System 



The expression of the parameterized linear closed-loop system is 

That is 

where I ,  is a p x p identity matrix. 

Assumption 1 and 2 implies that is controllable at 
- C ( a )  0 

any a E I-. Thus [F(a) ,K,  (a) ] can be chosen to arbitrarily locate the n + p  

eigenvalues of 

which governs the stability and dynamic characteristics of the parameterized linear 

closed-loop system (2.9). To get a stable system, the eigenvalues must be placed 

in the open left half of the s-plane. The position of these eigenvalues in the s- 

plane determines the transient response of (2.9) at each a E T . 



2.4 Nonlinear Feedback Controller 

Now a nonlinear feedback controller of the form (2.6), which has a 

parameterized family of linearization (2.7), will be constructed. 

For such a nonlinear feedback controller (2.6) to exist, there must be a 

smooth fbnction r ( a ) ,  a E r , such that at my constant operating point the 

following must be satisfied 

Furthermore, the controller (2.6) should linearize to (2.7) at each constant 

operating point, while allowing for variations in all variables, including variations 

in the parameter variables a due to variations in the variables 

u(t), x ( t )  and y(t) . That is, 

Construct a nonlinear feedback controller of the form (2.6) by 



It is obvious that this controller satisfies requirements (2.11). This form of the 

nonlinear feedback controller is not unique, though it is quite reasonable in that 

the coefficients of the parameterized family of linear feedback controllers appear 

directly, and the deviation variables are included. In general (2.13) is nonlinear in 

u(t), x(t) and y(t),  since a depends on these variables. Note that the constant 

operating point function r ( a ) ,  a E r is not specified, the selection of which 

plays an important role. 

Linearization of (2.13) according to the parameterized family of constant 

operating points gives 

Comparing (2.14) with (2.7) shows that there are extra hidden coupling terms in 

the parameterized linearization (2.14) which are not accounted for in the design 

of parameterized linear feedback controller (2.7). If the square-bracketed 

coefficients in (2.14) vanish, that is, 



then these extra terms will be gone and (2.13) will be a desired nonlinear 

feedback controller. 

The requirement (2.15) can be satisfied by choosing 

r0  (a) = yo ( a )  

2.5 Revised Nonlinear Feedback Controller 

Though there are instances where the configuration of the linear feedback 

controller family is such that the solution to (2.16) is apparent, generally, it is 

very hard to find a solution to (2.16). In fact, in most cases a solution to 

(2.16) does not exist. Thus controller (2.13) will not be the desired nonlinear 

feedback controller because its linearization family will exhibit additional terms of 

the type shown in square brackets in (2.14) that are not accounted for in the 

linear design process. 

To solve this problem, an alternate feedback controller will be constructed 

based on the above design. 



2.5.1 Revised Parameterized Family of Linear Feedback Controller 

The block diagram of the parameterized linear feedback controller (2.7) is 

shown in Figure 2.2. 

Figure 2.2 Block Diagram of Parameterized Linear Controller (2.7) 

This block diagram can be redrawn as shown in Figure 2.3 using the rules for 

linear block diagram manipulation and the relationship x6 ( t  ) = j*6 (1)dt 



Figure 2.3 Equivalent Block Diagram of Figure 2.2 

The expression of the block diagram in Figure 2.3 is 

Substituting (2.3) into (2.18) yields 

Thus (2.18) is a parameterized linear feedback controller which is equivalent to 

(2.7) from a linear system's viewpoint. 



2.5.2 Revised Nonlinear Feedback Controller 

Rewrite (2.19) with &(I) replacing p,(t) 

Now the existence of a nonlinear feedback controller of the form (2.6), which 

has a parameterized family of linearization (2.20) will be investigated. 

For such nonlinear feedback controller (2.6) to exist, there must be a smooth 

function c ( a ) ,  a E r , such that at any constant operating point (2.11) holds. 

Furthermore, the controller (2.6) should linearize to (2.20) at each constant 

operating point, while allowing for variations in all variables, including variations 

in the parameter variables a due to variations in the variables 

u(t), x(t) and y( t )  . That is, 

a 
- ( c  (a), xO (a)) = 0 a 

From the second equation of (2.20), it is reasonable to choose 



{ " ( a )  = u0 ( a )  

Consider a nonlinear feedback controller of the form (2.6) given by 

It is obvious that this nonlinear feedback controller satisfies requirements (2.11). 

There is still one more requirement that (2.23) must be met. The linearization 

family of (2.23) according to the parameterized family of constant operating 

points with (2.17) 

must be the same as (2.20), which means that the square-bracketed coefficients 

in (2.24) must vanish. But from (2.2) and (2.5) it is known that 

Along with (2.22), it yields 

Thus, (2.23) with (2.17) and (2.22) is a desired nonlinear feedback controller. 



Chapter 3: Nonlinear Reduced-Order Observer 

3.1 Introduction 

The state variables are often required to be available for various purposes 

such as feedback control. But in most cases, it is not possible to directly 

measure all the state variables. So an observer, which is a dynamic system 

whose state variables approach those of the actual system, is constructed. A full 

order observer has the same order as the actual system no matter how many 

observed outputs the actual system produces. From the fact that if all the state 

variables can be measured, then a dynamic observer is not needed, it is 

reasonable and possible to construct an observer with a lower order depending 

on the outputs of the actual system. Such a device is called a reduced-order 

observer. For a nonlinear system, the observer must be able to estimate the 

states of actual system over a wide range, not just near some constant operating 

points, 



3.2 Problem Description 

Consider a nonlinear plant described in Section 2.2. Assume that for each 

a E r , the linearization (2.3) satisfies 

rankC(a)  = p and p < rr (3 .1)  

rrrnk a0 ( a )  = rank +" ( a )  
da 

= I  
d a  

and further, the pair [ C ( a ) ,  A ( a ) ]  of (2.3) is observable in the sense of linear 

systems at each a E r . 

Under these assumptions, a nonlinear observer of (3.1) with dynamic order 

n - P  

i ( t )  = ~ ( t ( t ) , . Y ( l ) ,  u ( t ) )  
(3 .3)  

i ( t )  = b(=(t),  .Y(t))  

will be constructed such that (3.3) has a parameterized family of constant 

operating points satisfying ?" (a )  = x O ( a )  and the corresponding linearization of 

(3.3) is a linear reduced-order observer of the linearization (2.3) at any a E T .  

It also will be shown that the nonlinear observer (3.3) does not always exist, 

there are other conditions that must be satisfied. 



3.3 Parameterized Family of Linear Reduced-Order Observer 

In this section, a parameterized family of linear reduced-order observers for 

the linearization family (2 .3)  will be constructed. The development here closely 

follows the constructions derived in [ l ]  for linear time-invariant systems. 

From linear theory, a full-order parameterized observer for (2.3) is 

where L ( a )  is a gain matrix to be selected to place the eigenvalues of 

First, suppose that the state variables of (2.3) can be grouped into two sets: 

those that can be measured directly and those that depend indirectly on the 

former. That is: 

Then (2.3) can be rewritten as following: 

where Cl ( a )  is a nonsingular matrix at each a E T . Also (3.4) can be rewritten 

as following: 



But since x , , ( t )  can be solved directly from ( 3 . 9 ,  there is no need to 

implement the observer equation for & ( t )  and 

Hence the parameterized observer (3 .6)  becomes 

which is a dynamic system of the same order as the number of state variables 

that cannot be measured directly. The eigenvalues of A 2 2 ( a )  govern the dynamic 

behavior of the parameterized linear reduced-order observer (3.8). Since the 

eigenvalues of A,,(a)  are not assured to be suitable for (3 .8 )  to be a 

satisfactory observer, a more suitable general parameterized linear reduced- 

observer for (2.3) is built in the following way: 

where 

and the matrix L ( u )  is to be selected to place the eigenvalues of G ( a ) .  The 
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eigenvalues of G ( a )  can be placed anywhere because pair [ C, ( a )  A,, ( a ) ,  A,, ( a )  1 

is observable if the pair [ C ( a ) ,  A ( a ) ]  is observable, a fact that has been proven 

by Luenberger [ I ] .  

To investigate the error between the outputs of this parameterized linear 

reduced-order observer and the real state variables, define the estimation error 

Fa ( t )  = x, ( t )  - ( t )  = [x, ,( t)- f , , ( t)]  = [Z,,(t)] 
x 8 2 ( t ) - f , , ( t )  F,,(t) 

From (3.9) 

F6, ( 1 )  = x8, ( t )  - ?,, ( t )  = 0 

Thus only FJ2(t)  need be considered. From (3.11) 

Substituting (3.5) and (3.9) into (3.13) yields 

But, fiom (3.5) and (3.9) 

Y&) = C 1 ( a ) % l ( t )  = C,(a)(A, ,(a)x, ,( t)  + AI2(a)x,,(t) + B,(a)tr,(t)) (3.15) 

And from (3.9) and (3.11) 

Hence (3.14) becomes 



With the definition of G ( a ) ,  K ( a )  and H ( a )  in (3. lo), (3.17) can be simplified 

The dynamic error response (3.18) is governed by the eigenvalues of G ( a )  

which are determined by the choice of L ( a ) .  In particular, if L ( a )  is chosen to 

yield the eigenvalues of G ( a )  lying in the open left half of the s -plane, then 

Ta, ( 2 )  + 0 as t -+ 0 which implies that the fJ, ( t )  will exponentially approach 

x,,(t) . Moreover, the fbrther into the left-half of the s -plane, the observer 

poles are placed, the faster 2,,(t) will approach x6,(t) 

The parameterized linear reduced-order observer (3.9) is for the case in which 

the state variables of (2.3) can be divided in a way that allows x,,(t) to be 

solved. When this is not true, a more general parameterized linear reduced-order 

observer is needed. 

Assumption (3.1) implies that there is a smooth full column rank n x ( n  - p )  

matrix function Q ( a )  that is a basis for the null space of C ( a )  at each 

a ~ r .  From the second equation of (2.2) and ( 2 . 5 ) ,  it follows that 



The rank assumption in (3.2) gives 

which implies that there exists a smooth ( n  - p) x n  matrix function M ( a )  with 

full row rank at each a E 1- satisfying 

a" (a )  
~ c a ) [ a c a )  ,] = [I.-, ~ ( a ) ]  

where I is an (17-p) x (11 - p )  identity matrix and R ( a )  is an arbitrary 

smooth ( n  - p) x 1 matrix function. The existence of such an M ( a )  can be seen 

is contained in the null from the fact that the null space of 

space of [I,-, ~ ( a ) ]  at each a c T because &"(a)  [ a  ] has full column 

rank. 

Define a parameterized linear transformation matrix as follows 

The choice of M ( a )  from (3.21) guarantees that T ( a )  is invertible at each 

a E r . Denote its inverse by 
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r l ( a )  = [ p ( a )  ~ ( a ) ]  (3.23) 

where P ( a )  is rt x p  and @a) is r7 x (11-p) .  Note that Q ( a )  defined here is 

the same as that in (3.21). By construction, the following relations must hold 

among C ( a ) ,  M ( a ) ,  P ( a )  and Q ( a )  

and 

where I, is a k x k identity matrix. 

Define a new state vector 141,(t) by 

and divide it into two parts 

where w,,(t) is p x rt and wg2 ( t )  is ( n  - p )  x n . From (3.22), (3.26) and 

(3.27), it follows 

Applying the parameterized linear transformation (3.26) to (2.3) yields 



Rewrite (3.29) with (3.22),  (3.23),  (3 .27)  and (3.28): 

where 

The reason for the choice of the parameterized linear transformation (3.26)  is 

now very clear: the output y 6 ( t )  is a direct measurement of w , , ( t ) ,  which 

allows the previous parameterized linear reduced-order observer derived for (3.9)  

to be used here for (3.30).  After obtaining the estimates . r i$ , ( t )  and G J 2 ( [ )  , 

(3.23), (3.26) and (3.27) can be used to get 2 , ( t ) ,  that is, 

According to (3.9),  the parameterized linear reduced-order observer for (3.30) 

is as follows 



where 

G ( a )  = ( a )  - L ( a ) & ( a )  

K ( a )  = &, ( a )  - L ( a ) X ,  ( a )  + G ( a )  L ( a )  

H ( a )  = & ( a ) -  ~ ( a ) q ( a )  

'Note that observability of the pair [ C ( a ) , A ( a ) ]  is equivalent to the observability 

of the pair [C(a) ,  z ( a ) ]  at each a ~ r ,  which implies that the pair 

[;i12(a), S 2 ( a ) ]  is observable at each a ET. Thus, L ( a )  can be chosen to 

place the eigenvalues of G ( a )  so that (3.33) can have desirable dynamic 

behavior. 

Finally, combine (3 .32)  with (3.33) to yield 

Hence, (3.34) and (3.35) describe a parameterized family of linear reduced-order 

observers for (2.3). 

3.4 Nonlinear Reduced-Order Observer 

Now a nonlinear reduced-order observer of the form (3.3) ,  which has a 

parameterized family of linearization (3 .34)  and ( 3 . 3 9 ,  will be constructed. 
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For such nonlinear reduced-order observer (3.3) to exist, there must be 

smooth functions z O ( a ) ,  a E r , where r is the same open set as before, such 

that 

Furthermore, the observer (3.3) should linearize to (3.34) and (3.35) at each 

constant operating point, while allowing for variations in all variables, including 

variations in the scheduling variables a due to variations in the variables u(t) ,  

x( t)  and y ( t ) .  Thus, it is required that 

dl 
- (zO (a) ,  y0  (a) ,  uO (a) )  = K ( a )  
4) 
th. 
-- (zO (a),  yo  (a) ,  uO (a ) )  = H ( a )  al 
a 
- (zO(a), yO(a))  = Q<a> d! 
a 
- - ( ~ O ( ~ ) , Y O ( ~ ) )  = P ( a )  + Q(a)L(a)  8 

Consider a nonlinear reduced-order observer of the form (3.3) by 

It is obvious that this observer (3.38) satisfies requirements (3.36). This form for 

the nonlinear reduced-order observer is not unique, though it is quite reasonable 



in that the coefficients of the parameterized family of linear reduced-order 

observers appear directly, and the deviation variables are included. In general 

(3.43) is nonlinear in u(t),  x(t) and y(t)  , since a depends on these variables. 

Note that the constant operating point fbnction zO(a) ,  a E T is not specified, 

the selection of which plays an important role. 

Linearization of (3.38) about the parameterized family of constant operating 

points gives 

a" ( a )  ( a )  
- [(?a) 7 + &a)  7 + H(a)  - da I 

Comparing (3.39) with (3.34) and (3.35), there are extra terms in the 

parameterized linearization (3.39) which are not accounted for in the design of 

parameterized linear reduced-order observer (3.34) and (3.3 5). If the square- 

bracketed coefficients in (3.39) vanish, that is, 



then these extra terms will be gone and (3.38) will be the desired nonlinear 

reduced-order observer. Requirements (3.40) can be rewritten as 

a" (a )  @"(a> &"(a )  
Q(a) 7 + [ P ( a )  + Q ( a )  L ( a ) ]  aa - - = 0 2a 

Multiply both sides of (3.42) by M ( a )  and use relationships (3.19) and (3.24) 

to obtain 

a0 ( a )  -- a" (4 
d a  

- [ M ( a )  - L(a)C(a)l-  d a  

On the other hand, multiply both sides of (3.43) by Q ( a )  and use relationships 

(3.19) and (3.25) to obtain (3.42). So requirement (3.42) is equivalent to (3.43). 

Substituting (3.43) into (3.41) and using (3.34), the other requirement becomes 

ad0 ( a )  - 0 + [B, ( a )  - L(a)B1 (a)]  7 - 

Using (3.25) and (3.31), the requirement (3.44) can be fbrther simplified as 

following 



+ B ( a )  
L%" (a )  

[ M ( a )  - L ( a ) C ( a ) l [ A ( a ) r  da ]=  0  

But from ( 2 . 2 )  and ( 2 . 5 )  

which means that requirement (3 .45 )  is always satisfied. Therefore, requirement 

(3 .40)  is equivalent to (3 .43 ) .  

Separate z O ( a )  into two parts by 

Z" ( a )  = zr ( a )  - z i  ( a )  (3 .47 )  

such that requirement (3 .43 )  along with (3 .19 )  and (3 .21 )  becomes 

and 

There will be a solution to (3 .48 )  if R ( a )  is appropriately chosen. For example, 

if R(a) = 0  is chosen, then z p ( a )  = 0 is a solution to (3 .48) .  Thus the 

requirement ( 3 . 4 3 )  can be simplified to (3 .49 ) .  

Therefore, when choosing z ; ( a ) ,  a E T that satisfies (3 .49) ,  system ( 3 . 3 )  

with (3 .38 )  is the desired nonlinear reduced-order observer which has a 

parameterized family of linearization ( 3 . 3 4 )  and (3 .3  5) .  



3.5 A Special Case 

Generally, it is hard to find a z,"(a) that satisfies requirement (3.49). A 

solution may even not exist. In most cases the existence of a solution to (3.49) 

is a restrictive condition, as can be seen by considering the standard mixed 

partial derivative characterization for the existence of solutions to a total 

differential equation, and the fact that (3.49) is an implicit total differential 

equation (Hartman, 1982; Wang and Rugh, 1987). This means that the observer 

of the form (3.3) with (3.38) will typically not be the desired nonlinear reduced- 

order observer. It is parameterized family of linearizations will have extra terms 

of the type shown in square brackets in (3.39) that do not appear in the design 

of the parameterized family of linear reduced-order observers. However, there are 

situations that the existence of a solution to (3.49) is obvious. In this section, a 

special case for which (3.49) has an obvious solution will be discussed. 

There are instances where x22 (a )  = M ( a ) A ( a ) Q ( a )  , a E r has suitable 

eigenvalues so that they need not be relocated via L ( a ) .  Thus 

L ( a )  = 0 a E T  

Then (3.33) and (3.35) become 

where 



In this situation, 

is a solution to (3.49). 

3.6 Separation Property 

In the previous chapter and this chapter, a nonlinear reduced-order observer 

and a nonlinear feedback controller are constructed separately. Now a nonlinear 

controller that combines these constructions will be investigated. There are two 

ways to build such a nonlinear controller. One way is to combine a nonlinear 

reduced-order observer and a nonlinear feedback controller directly to form a 

nonlinear controller. Another way is to design a parameterized linear controller by 

combining a parameterized linear reduced-order observer and a parameterized 

linear feedback controller, then construct a nonlinear controller based on the 

parameterized linear controller. It will be shown that the results of these two 

methods are the same which implies that nonlinear reduced-order observer and 

feedback controller of a nonlinear controller can be designed separately as in the 

linear case. 
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Consider the nonlinear plant described in Section 3.2. Assume that for each 

a E r , the linearization (2.3) also satisfies the three assumptions in Section 2.2. 

3.6.1 Nonlinear Controller by Serializing Nonlinear Reduced-Order 

Observer and Nonlinear Feedback Controller 

With the Assumptions 1, 2 and 3 in Section 2 2, a nonlinear feedback 

controller can be constructed as shown in Chapter 2. That is, 

where $ ( a )  must satisfy 

r ( a )  = uo(a)  

And F(a),  K,(a) are chosen as indicated in Section 2.3. 

In the cases that the state vector x(t)  of (2.1) is not measurable, the 

outputs :(I) of the nonlinear reduced-order observer (3.3) with (3.38) will be 

used to estimate the state vector x(t) in (3.53). Thus, combining (3.3), (3.38) 



and (3.53), replacing x(t) in (3.53) by i ( t )  in (3.3) with (3.38), yields 

The system (3.55), assumed to satisfjl the conditions (3.49) and (3.54), is the 

desired nonlinear controller. 

3.6.2 Nonlinear Controller Based on Parameterized Linear Controller with 

Parameterized Linear Reduced-Order Observer 

In this section, a parameterized linear controller will be designed by combining 

a parameterized linear reduced-order observer and a parameterized linear feedback 

controller, then a nonlinear controller will be constructed based on the 

parameterized linear controller. A condition under which this nonlinear controller 

exists will also be given. 



3.6.2.1 Parameterized Linear Controller 

From Chapter 2, a parameterized linear feedback controller can be designed as 

follows under the Assumptions 1, 2  and 3  in Section 2.2: 

where { F ( a ) , K , ( a )  ) are chosen as indicated in Section 2 . 3 .  

In the cases that the state vector x ( t )  of ( 2 . 1 )  is not measurable, the state 

vector x, ( t )  of ( 2 . 3 )  is not measurable and the outputs ? , ( r )  of the 

parameterized linear reduced-order observer ( 3 . 3 3 )  with ( 3 . 3  5 )  will be used to 

estimate x , ( t )  . Thus the combination of ( 3 . 3 3 ) ,  ( 3 . 3 5 )  and ( 3 . 5 6 )  with 2, ( t )  

replacing x , ( t )  yields a parameterized linear controller for ( 2 . 3 )  as following: 



3.6.2.2 Nonlinear Controller 

Now a nonlinear controller of the form 

which has a parameterized family of linearization (3.57) will be constructed. For 

such nonlinear controller (3.58) to exist, there must exist smooth functions 

[zO(a),  r ( a ) ] ,  a E T , such that 

Furthermore, the nonlinear controller (3.58) should linearize to (3.57) at each 

constant operating point, while allowing for variations in all variables, including 

variations in the parameter variables a due to variations in the variables u(t) ,  

x ( t )  and y( t ) .  Thus at each a E T it is required 



a 
--(T"(a>?:"(a>,uo(cr>> = 1, 
% 
t5 
--(~O(a),:O(a),yO (a ) )  = 0 a 
a 
--(T"(a>,z0 (a),  yo (a) )  = 0 
@ 

Consider a nonlinear controller of the form (3.58) defined by 

It is obvious that this controller (3.6 1) satisfies requirements (3 .59 )  by choosing 



c ( a )  satisfying (3 .54)  and r O ( a )  = y O ( a )  for any a E r . Note that the 

constant operating point hnction z O ( a )  hasn't been specified, the selection of 

which plays an important role. 

Lir~earization of (3.61) about the parameterized family of constant operating 

points gives 

is ( t )  = H ( a ) &  ( t )  + G ( a ) z ,  ( t  ) + K(a)y, ( t )  

Comparing (3 .62)  with (3.57),  there are extra hidden coupling terms in the 

parameterized linearization (3 .62)  lvhich are not accounted for in the design of 

parameterized linear controller (3 .57) .  If the square-bracketed coefficients in (3 .62)  

vanish, that is 



aro (a) a0 (a) 
F(a)B(a) 7 + F(a)A(a)O(a) 7 

Using the relationship (3.19), (3.25) and (3.46), (3.64) can be simplified as 

which will hold when (3.49) holds for any a E T . I11 Section 3.4, it has been 

show11 that (3.64) is also equivalent to (3.49). 

Thus, a nonlinear controller that linearizes to (3.57) at each a ET exists 

under the conditions (3.49) and (3.54). If a nonlinear controller exists, then 

(3.58) with (3.61) defines one possible choice. 

3.6.3 Conclusion 

It can be seen that nonlinear controller (3.55) is the same as nonlinear 

controller (3.58) with (3.61). Furthemlore, these two nonlinear controller must 

satisfir the same conditions. Thus the methods described in Section 3.6.1 and 

3.6.2 give the same results, which means that nonlinear reduced-order observer 

and feedback controller of a nonlinear controller can be designed independently as 

in the linear case. 



Chapter 4: Missile Autopilot Design Example 

4.1 Introduction 

In this chapter, a nonlinear autopilot will be designed for a pitch-axis missile 

model, which utilizes the nonlinear feedback controller and the nonlinear reduced- 

order observer described in previous chapters. The objective is to design the 

nonlinear autopilot in such a way that it generates a control signal so that the 

missile tracks a normal acceleration command over a wide operating range of 

mach number and angle of attack. From the design procedure it shows that the 

nonlinear autopilot can achieve various requirements by designing a suitable 

parameterized family of linear controllers for the parameterized family of 

linearizations of the nonlinear plant. 

4.2 Pitch-Axis Missile Model 

Figure 4.1 illustrates the pitch-axis missile model and the essential variables. 

The missile's pitch-axis behavior [5] is characterized by the following variables: 

vm missile speed in feel,/sec 



Normal 
acceleration 77, 

Angle 
of 

Center of mass attack 

Center of pressure 

Velocity V, 

Tail lift 

Figure 4.1 Pitch-axis missile 



a speed of sound in feet/sec 

a, angle-of-attack in radiaizs 

4 pitch rate in radians/sec 

6 tail fin deflection in radiails 

0 pitch attitude angle in radians 

7' normal acceleration in gees 

h a!titude in feet 

v m  ML-- mach number (unitless) 
a 

The short-period longitudinal aerodynamics of the missile are described by 

- paMs 8 a = -- [C, cos a, - CA sin a,] + - cos(6 - ao)  + q 
" 2m ah4 

and the remaining longitudinal aerodynamics are described by 

where a is the speed of sound Cfeet/sec) which is given by 

and p is the air density ( Ib-  sec2/ft4) which is given by 



with atmospheric constants listed in Table 4.1. 

Table 4.1 Atmospheric Constants 

The tail fin actuator is modeled by 

Atmospheric Constants 

where 4 is the commanded tail fin deflection in radians. Additional missile and 

actuator parameters are listed in Table 4.2. 

The ncrmal acceleration is given by 

a,, = 0.0023 77 Ih - sec2 1 fr4 
KPs, = -0.000033 6 174 1 / J 

a,, = 11 16.4 ft I sec 

K, = 0.004 10833 1 1 ft 

a,, = 0.00708554 Ih - sec31 fr4 
K,, = -0.0000480377 1 1 fr 
a ,  = 968.1 ft 1 sec 
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The aerodynamic coefficients C,, C, and CM characterize the aerodynamic axial 

force, normal force and pitching moment, respectively, of the missile. For the 

particular missile model used here, these aerodynamic coefficients are given by 

c,, = a, 

with polynomial coefficient values listed in Table 4.3 [16]. 

Table 4.2 Missile and Actuator Parameters 

Symbol 

S 

rn 

g 
d 

IY 
6 
a a  

Description 

surface area 

mass 

acceleration due to gravity 

reference length 

pitch moment of inertia 

actuator damping ratio 

actuator natural frequency 

Value 

0.44 fi2 
13.98 slug 

32.2 fi I sec2 

0.75 fi 
182.5 slug- ft2 
0.7 

1 50 radians 1 sec 



Table 4.3 Aerodynamic Coefficient Parameters 

4.3 Parameterized Family sf Constant Operating Points 

Axial Force Coefficient 

a, = -0.300 

L 

Calculating the missile's parameterized fdmily of constant operating points 

meets an immediate difficulty in that true constant operating points cannot exist 

for a ballistic missile because there is no thrust to maintain the condition V, = 0 .  

Even if this is ignored and constant airspeed is assumed, the normal acceleration 

values corresponding to achievable constant operating points for the remaining 

variables are small, which is not desirable since it will cause large deviations 

from such constant operating points to track relatively large normal acceleration 

commands such that the underlying assumption upon which a linear approximation 

is based will not be satisfied. As an alternative, only the short-period longitudinal 

Normal Force Coefficient 

an = 19.373 

b, = -3 1.023 

cn = -9.717 

dn = -1.948 

Pitch Moment Coefficient 

a, = 40.440 

b, = -64.01 5 

c,,, = 2.922 

dm = -1 1.803 

em = -1.719 



aerodynamics of the missile will be considered here. Variables V, , 0 and h in 

the short-period longitudinal aerodynamics (4.1) will be regarded as constant 

parameters. 

There is one control input 6, and two measurable outputs q and r7, of this 

nonlinear missile plant. The missile autopilot will be designed for h = 30,000 fr 

and 8 = 0 radians 

Define 

Then the missile model described above can be written in the following form: 

'For constant operating points, set x ( t )  = 0.  Choose parameter vector 

a=[aa,M],  a ~r where r =  ((a,,M) 1 -4S05a, 54S0 ,  l i  M 5 3 1 ,  then the 

parameterized family of constant operating points is 

xO(a) = [a, qO(a) 6O(tr) OIT 

uO ( a )  = 6" (a )  

rO(a> = h(xO(a)) = [qO(a) v:Oo(a>lT 

where qO(a) and S"(a) are calculated from a, = q = 0:  



prMs 0  = - g [Ci cos a, - C, sin a,] + - cos(8 - a , )  + q O ( a )  
2m aM 

pa Ad' Sd o =  
21, 

Along with (4 .7) ,  it yields 

4.4 Parameterized Family of Linearizations 

Define 

x, (2)  = x( t  ) - xO ( a )  

us ( t  ) = u ( f  ) - uO ( a )  

r , ( t )  = r ( t )  - y o ( @  

Then the parameterized family of linearizations of the missile model ( 4 . 9 )  is 

with 



Gf A ( a )  = - (xO ( a ) ,  uO (a ) )  a 
PaMSd 

dn cosa, 
2m 
p 2 ~ 2 ~ d  

2 4  
d m  

0 

- 0; 

where 

pclMs 
uI1 = - (Ciaa cos a, - C i  sin a, - C, cos a,) +-sin(@- g ao) 2m aM 

It is easy to verify that at any a E T, linearization (4.12) satisfies 

I .  C ( a )  has h!l row rank. 

3.  the pair [ C ( a ) ,  A ( a ) ]  is observable in the sense of linear systems. 

4. the pair [ A(a) ,  B ( a ) ]  is controllable in the sense of linear systems. 

5. A ( a )  is nonsingular. 

0) B ( a )  

6. [C(a)  
] has full row rank. 



4.5 Missile Autopilot 

The control problem of a pitch-axis missile involves determining a tail fin 

deflection that will generate the proper corrnal acceleration vector to track 

the commanded normal acceleration qc. Thus, it has 

r ( t )  = % ( I )  (4.1 7) 

In Chapter 3, it has been shown that there are two ways to design such a 

missile autopilot leading to the same result. Here, the first method will be used. 

That is, the missile autopilot will be constructed by combining a nonlinear 

feedback controller and a nonlinear reduced-order observer, which are designed 

separately. For consistency with the assumptions in the autopilot design process, 

all simulation results presented in the remainder of this chapter correspond to 

coristant V,, 8 and h as opposed to the aerodynamics given by (4.2). 

4.5.1 Nonlinear Feedback Controller 

Since the parameterized linearization family (4.14) of the pitch-axis missile 

model (4.10) satisfies all the requirements stated in Chapter 2, the parameterized 

linear feedback controller designed in Chapter 2 can be used here to let the 

systern track the given normal acceleration q .  Since there are two outputs of 
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the parameterized linearization family (4 .14)  and only one input q to be tracked, 

an adjusted output of (4 .14)  is defined as 

Y ~ r d  (1) = Cadys ( f (4.1 8 )  

where C, = [0 1) for any a c T. Thus the parameterized linear feedback 

controller is 

where F ( a )  and K , ( a )  are chosen to place the poles of the linear closed-loop 

system of (4 .14)  and (4 .19)  

The poles of the tail fin actuator ( 4 . 4 )  are 

p , ,  = (-<t 4c2 - l)w, = -105.00k 107.12j 

which are also poles of the parameterized linearization family (4 .14) .  Since they 

are suitable in this case, only other three poles need to be placed so that the 

linear closed-loop system (4 .20)  has acceptable rise time, settling time and no 

significant overshoot for a step input, the other three poles are chosen to be 

placed at 



with w, = 10. Note that the poles are chosen to be placed at the same location 

for all a E r 

Figure 4.2 shows the unit step response of the linear closed-loop system 

(4.20) under these configurations. 

Then the nonlinear feedback controller can be constructed as in Chapter 2 

where 

(a )  = riO(a) = &'(a) (4.24) 

Figure 4.3 shows the response of the nonlinear closed-loop system to track a 

77, = -30g step input when the system is initially in a steady state corresponding 

a, = 0 radians 

M = 2.5 

which gives the initial conditions for Figure 4.3 as follows: 

a, (0) = 0 radians 

q(0) = -0.0 1 2 1 radians l sec 

{(O) = ~ ( 0 )  = 0.0018 radialis 

~ ~ ( 0 )  = 0.9326 gees 

r(0) = 0.9326 gees 
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Figure 4.4 shows the response of the system with a linear feedback controller 

designed at above constant operating point to track a 77, = -30g step input with 

same initial conditions. 

Figure 4.5 shows the response of the nonlinear closed-loop system for the 

following initial condition 

a, (0) = 0 radians 

q(0) - 1 radjatzs / sec 

c(0) = u(0) = 0 radians 

6(0)  = 0.5 rudimls 

r(0) = 0.9326 gees 

which dose not initially correspond to a short-period equilibrium. 



Figure 4.2 Linear Closed-Loop Unit Step Response 



Figure 4.3 Response of Nonlinear Closed-Loop 
System with State-Feedback Controller to 

-30g Normal Acceleration Command 



Time (sec) 

Figure 4.4 Response of the System with 
Linear State-Feedback Controller to 
-30g Normal Acceleration Command 



4.5.2 Nonlinear Reduced-Order Observer 

Since the parameterized linearization family (4.14) of pitch-axis missile model 

(4.10) satisfies all the requirements stated in Chapter 3, the following 

parameterized linear reduced-order observer can be constructed for (4.14) 

where 

G ( a )  = &2 ( a )  - L(a)&: (a )  
K ( a )  = &, (a )  - L ( a ) 4 ,  ( a )  -t. G ( a )  L ( a )  

H ( a )  = & (a )  - ~ ( a ) &  ( a )  

Choose R ( a )  in (3.26) to be 

then 

is a solution to (3.26). la is easy to compute that Q ( a )  in (3.28) is 



Figure 4.5 Response of the Nonlinear Closed-loop 
System to the disturbance of the states 



Thus & ( a )  in (4 .26)  will be 

which has the same eigenvalues as the tail fin actuator and is suitable for the 

parameterized linear reduced-order observer (4 .25) .  Thus, L ( a )  in (4 .25)  is set 

Therefore, the parameterized linear reduced-order observer (4 .25)  becomes 

where 

And the corresponding nonlinear reduced-order observer is 



4.5.3 Missile Autopilot 

The missile autopilot is formed by combining the nonlinear feedback controller 

(4.23) and the nonlinear reduced-order observer (4.32) to obtain 

where z O ( a )  satisfies (4.33). 

Figwe 4.6 shows the response of the nonlinear closed-loop system with 

missile autopilot to track 77, = -30g step input when the system is initially in a 

steady state corresponding to 

a, = 0 radians 

M = 2.5 

which gives the initial conditions for Figure 4.6 as follows: 

a, (0)  = 0 radians 

q(0) = -0.0 1 2 1 radians l sec 

0.0018 radials 
z(0) = 1 

0 radians I sec 1 

8(0) = 0 radians 1 sec 

~ ~ ( 0 )  = 0.9326 gees 

r(0) 5: 0.9326 gees 

Figure 4.7, 4.8 and 4.9 show the error dynamics of the nonlinear closed-loop 

system due to the mismatch between the initial value of states of the reduced- 



order observer and the actual states of the plant. The initial conditions for these 

figures are 

a, (0) = O radiaia 

q(0) = -0.0121 radini~slsec 

[ 0.1 radians 
z(0) = 

LO.1 radianslsec 

c(0) = S(0) = 0.00 1 8 radians 

B'(0) = 0 radians ! sec 

r(0) = 0.9326 gees 



Figure 4.6 Response of Nonlinear Closed-Loop 
System with Observer-Based Controller to 

-30g Normal Acceleration Command 



Figure 4.7 Response of Nonlinear Closed-Loop System 
with Observer-Based Controller to Disturbance 

in the Reduced-Order Observer States 



-0.02 ' I I 1 I I I I P 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Time (sec) 

i 

O.OR 

Figure 4.8 Response of the Fin Deflection and 
its Estimation due to the Disturbance in the 

Reduced-Order Observer States 

Solid line: Estimation of 
fin deflection 

Dashdot line: Actual fin 
deflection ! 



fin deflection rate 

Dashdot line: Actual fin 
deflection rate 

-8 I I 1 I I I I I 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 18 0.2 

Time (sec) 

Figure 4.9 Response of the Fin Deflection Rate 
and its Estimation due to the Disturbance in 

the Reduced-Order Observer States 



Chapter 5: Conclusions 

In this thesis a nonlinear feedback controller and a nonlinear reduced-order 

observer were designed for a nonlinear plant in the form of (2.1). As an 

example, an autopilot for pitch-axis missile model utilizing them was developed. 

In Chapter 2, a nonlinear feedback controller was constructed and corresponding 

requirements that must be met were also addressed. Since in most cases the 

requirements are very hard to be satisfied, a revised nonlinear feedback controller 

was built to avoid the difficulties. In Chapter 3,  a nonlinear reduced-order 

observer with certain requirements was constructed. A nonlinear controller was 

built by combining the nonlinear feedback controller and the nonlinear reduced- 

order observer. A separation property has been proven to ensure that these two 

parts can be designed separately. In Chapter 4, a pitch-axis missile model was 

introduced. Then a nonlinear missile autopilot was designed based on the 

previous two chapters. This involves the following steps: 

Select scheduling variables and calculate the parameterized family of 

constant operating points, construct corresponding parameterized family 

of linearized plants 

Set performance goals and design corresponding parameterized family 

sf  linear feedback controllers and reduced-order observers 
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Build nonlinear feedback controller and reduced-order observer and 

combine them to form a nonlinear missile autopilot 

* Check the performance of resulting nonlinear control system. 

Simulations of the linear feedback controller, nonlinear feedback controller and 

missile autopilot showed that the performance of the missile autopilot reflected 

the performance of the parameterized family of linear feedback controllers and 

was desirable. 

Further research is necessary to improve the method proposed in this thesis. 

Generally, a solution to (3.49) is hard to get and even may not exist. Thus 

hrther study is needed to solve this difficulty. Another area that needs hrther 

work is the incorporation of more sophisticated linear design techniques, as 

opposed to simple pole placement, into the gain scheduling framework described 

in this thesis. 
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