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Chapter One 

Introduction 

The normal force response of a 2D NACA 0015 airfoil 

experiencing small and rapid step changes in angle of attack by 

rotation about the quarter chord has been measured recently in the 

Ohio University tow tank [ I ] .  The motivation for these experiments 

was to study nonlinear airfoil behavior as defined in the theory of 

nonlinear mathematical modeling for aerodynamic systems [2]. In 

this theory, nonlinear airfoil behavior is predicted by using indicial 

response functional method in conjunction with nonlinear 

superposition. The superposition process can be performed using 

DuHamel integral [3] by considering the motion of an airfoil to be 

comprised of a series of small steps. Interesting results have been 

obtained by using this method [4, 6-91. Knowledge of the loading for 

each step, is referred to as the indicial response, and remains a 

central issue in the model. 

Recent experiments in a tow tank at O.U. have involved strain 

gauge load cell measurements of the transient normal force loading 

on an airfoil undergoing a step change in angle of attack of 

approximately Aa=+lo at a reduced pitch rate (ab/U, b=semichord) 

near 0.3. The angle of attack before the step onset (a,) was steady 

and was varied over the range 2" < a, < 60" In these experiments the 

test rig experiences high levels of inertial, as well as aerodynamic 

loading due to the rapid starting and stopping required to impart the 

step. Therefore, an important issue is the degree to which 
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aeroelastic reactions deform the structure and thereby influence the 

output of the strain gauge bridge. Knowledge of these reactions is 

essential in comparing these strain gauge data with classical 

indicia1 responses such as Wagner's function [ I  01. The present 

analysis is an effort to extract the pure aerodynamic part from the 

output data of the strain gauge bridge including aeroelastic effects. 

The present study describes an aeroelastic model of the O.U. tow 

tank load cell/airfoil test rig. The model is based on the mode 

superposition method for structural systems and classical linear 

airfoil theory. 

1.2 Ohio Universitv Tow Tank 

A schematic of the O.U. tow tank is shown in Figure 1.1. The 

facility consists of a large tank with a six inch chord NACA 0015 

airfoil suspended vertically in the water with a submerged length of 

42.0 inches. The tank is 30 feet long, 12 feet wide and 4 feet deep. 

A carriage moves in translation along roller bearings fixed to I- 

beams spanning the tank at a speed of 2 ft/s, giving a Reynolds 

number near 95,000. The airfoil is driven in rotation via a drive 

shaft fixed to the airfoil quarter chord at one end, and coupled to a 

3.5 hp stepper motorlgear box apparatus at the other end. Figure 1.2 

is a schematic showing details of the drive shaft and airfoil. Shown 

here are dimensions in inches, and a numbering scheme (1 through 

17) defined for the purpose of discretizing the mass of the structure 

which will be discussed in detail in a latter section. The drive shaft 

has several variations in cross section over the length of the shaft 

which must be considered in modeling the aeroelastic response of 
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Figure 1 . I  Ohio University Tow Tank Facility 



Figure 1.2 Details of the Drive Shaft and Airfoil 
(Dimensions are in inches. Drawing is not to scale.) 
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the structure. Near the middle of the drive shaft is a machined 

rectangular section upon which strain gauges are mounted. The load 

cell is discretized into mass elements 5 through 9. The strain gauge 

circuit is electrically compensated to be sensitive to chord normal 

forces only. The upper most mass element 1 is made of steel while 

all other parts are aluminum. The mass of the airfoil per unit length 

is measured to be 0.1598 Ibmlin. The moment of inertia of the 

airfoil about the quarter chord and polar moment of inertia of the 

airfoil about the pitch axis are calculated to be 0.12 in4 and 5.39 in4 

respectively. 

The center of mass of the airfoil is calculated to be located 

1.27 inches aft of the pitch axis which is at the quarter chord. 

Following material properties are taken for later calculation: 

Young's modulus of elasticity of steel: 30x106 psi, Young's modulus 

of elasticity of aluminum: 7.0x106 psi, density of steel: 0.282 

I b m/ i  n3, density of aluminum: 0.098 Ibm/in3. 

1.3 Classical Linear Normal Force Res~onse 

In an incompressible flow, the theoretical linear normal force 

coefficient response of a flat plate airfoil given an instantaneous 

step change in angle of attack by rotation about the quarter chord 

can be shown to be [3,4]: 
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where CN, is the initial normal force, A a  is the step amplitude, and 

is the time derivative of the Dirac delta function 6 [ I  21. The first 

two terms in brackets in Equation 1.1 are generalized functions [12] 

which describe the noncirculatory component of the loading, while 

the last group of terms is the circulatory component. The 

exponential terms arise from a two pole curve fit to Wagner's 

function [3,10]. Equation 1.1 is referred to as the indicia1 response 

(actually, the derivative of Eqn. 1.1 w.r.t. a ) and is important in the 

convolution integral formulation for the loading on an airfoil in 

arbitrary motion. 

Transient normal force responses of a NACA 0015 airfoil 

undergoing rapid small amplitude changes in angle of attack by 

rotation have been measured in the O.U. tow tank. Figure 1.3a shows 

angle of attack data for a typical run (small spikes are electrical 

noise). The onset angle is 2.09" and the step amplitude is 

approximately +1.3". The motion resembles, to a reasonable 

approximation, a small amplitude ramp at a reduced rate near 0.3. 

Figure 1.3b is a comparison of the experimental normal force 

response to Equation 1.1. To facilitate the comparison, the 

coefficient 27t (for a flat plate airfoil) on the circulatory part in 

Equation 1.1 has been replaced by the experimentally measured local 

static normal force curve slope (for the present NACA 0015) 

measured at the onset angle in an independent test [ I ] .  This 

substitution is necessary for the response of Equation 1.1 to 

approach the same steady state response as the experimental 

response. The analysis which follows is designed to study the 

effects of aeroelasticity on the comparison of the experimental and 

theoretical responses of Figure 1.3b. 
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Figure 1.3a Angle of Attack Data for Indicia1 Response Test 
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Figure 1.3b Comparison of Normal Force Coefficient Data with 

Theoretical Response. 



Chapter Two 

Aerodynamic of 2D Airfoil 

2.1 Steady Aerodynamic Forces on an Airfoil in an Ideal Fluid 

In the theory of potential flow, the lift force acting on the 

airfoil is determined by the circulation around the airfoil. This 

circulation arises from the Kutta condition which may be stated as 

follows: for bodies with sharp trailing edges which are at small 

angles of attack to the free stream, the flow will adjust itself in 

such a way that the rear stagnation point coincides with the trailing 

edge. The normal force on a flat-plate airfoil is given by [13]: 

~ = 2 n ~ ~ * b s i n  u (2.1 ) 

where N is the normal force, p is the density of the fluid, U is the 

velocity of free stream, b is semichord length, and a is the angle of 

attack. Then the value of the lift coefficient (CN=N/pU2bl) for the 

flat-plate airfoil is: 

2.2 Unsteady Aerodynamic Forces on an Airfoil in an lncom~ressible 

Fluid 

The unsteady aerodynamic force acting on a thin airfoil in 
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unsteady motion in a two-dimensional incompressible fluid was 

obtained by Wagner, Kussner, Von Karman and Sears, and others. Let 

the chord of the airfoil be 2b, and the angle of attack (assumed 

infinitesimal) be a. Consider the increase of circulation around the 

airfoil which starts impulsively from rest to a uniform velocity U. 

Let the impulsive motion occur at the origin when z=0. The vertical 

velocity component of the fluid, the so-called upwash, is w=Usina on 

the airfoil, since the flow must be tangent to the airfoil. Based on 

the physical assumption that the velocity at the trailing edge must 

be finite, the lift due to circulation acting on a strip of unit span 

can be derived as a function of time [ I  I ] :  

where ~ = U t / b  is the nondimensional time based on semichord. 

Subscript cir denotes the lift arises from circulation. The function 

T(T) is called Wagner's function. The exact form of T(z) is [3]: 

where KO, K,, I,, I, are modified Bessel functions of the second and 

first kind, respectively, with argument x implied. A two pole curve 

fit to Wagner's function is given by: 
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Figure 2.1 shows the Wagner function. It is seen that half of the 

final lift is assumed at once and that the lift approaches 

asymptotically its steady-state value 2nbpUw when z goes to 

infinity. The center of pressure of this lift (due to circulation) is at 

the quarter-chord point behind the leading edge. 

time (semichords) 

Figure 2.1 Wagner Function 

Now we consider a more general type of motion. Let the airfoil have 

two degrees of freedom: a vertical (normal) translation h measured 

at the pitch axis, called plunge, positive upward, and a rotation a, 

called pitching, positive nose up, about an axis located at a distance 

ahb from the mid-chord point, ah being positive toward the trailing 

edge (Figure 2.2). The flow is assumed to be two dimensional, h and 
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a are infinitesimal, and the free flow speed U is a constant. In this 

case part of the lift arises from circulation due to boundary 

vorticity, and part from noncirculatory flow due to a source-sink 

distribution origin. 

Pitch axis 

- - 
Mean position 

2b 

Figure 2.2 Notations. 

Wagner's function gives the increase of circulation around the 

airfoil due to  a sudden increase of downwash due t o  plunge. For a 

general motion having two degrees of freedom h aad the 

downwash over the airfoil is not uniform. In the theory of harmonic 

oscillation airfoils, it can be shown that for plunging and pitching 

oscillations the circulation about the airfoil is determined by the 

downwash velocity at the 314-chord point from the leading edge of 

the airfoil (see reference 11, Chapter 13). By a reciprocal relation 

between the harmonic oscillations and the response to unit-step 

functions (reference 11, Chapter 15), and the principle of 

superposition, this result holds also for arbitrary plunging and 
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pitching motions. Therefore, if we replace w in Equation 2.3 by the 

increment of downwash at the 314-chord point, the circulatory lift 

can be obtained. 

The downwash at the 3/4-chord point due to h and a degrees of 

freedom comes from three sources: (1) a uniform downwash due to a 

pitching angle a, w=Usina, (2) a uniform downwash due to vertical 

translation h, which can be written as -dh/dt=-(dhldz) (dt/dz)=-U h'/b 

where a prime denotes a differentiation with respect to the 

nondimensional time z, and a dot denotes a differentiation with 

respect to physical time t, (3) a nonuniform downwash due to a', its 

value at the 314-chord being (0.5-ah)b(daldt) or (0,5-ah)Ual. 

Summing up, we get: 

In the time interval (20,  zo+d.cg), the downwash w(r,) increases by an 

amount dw(zo). If dzo is sufficiently small, this can be regarded as 

an impulsive increment and the corresponding circulatory lift per 

unit span is: 

When the w is small, the principle of superposition holds. 

Thus we may apply DuHamel's integral to get the circulatory lift per 

unit span for arbitrary time history of w: 



where the lower limit is taken as minus infinity, meaning before the 

very beginning of motion. If the motion starts at time z=0, and w=O 

for r<0, Equation 2.8 reduces to: 

where wo is the limiting value of w when r approaches zero from the 

positive side. Combine Equations 2.6 and 2.8: 

where superscript prime denotes differentiation with respect to the 

nondimensional time z, and dot denotes differentiation with respect 

to the physical time t. The center of pressure of this circulatory 

lift is at the quarter-chord point behind the leading edge. 

The derivation of the noncirculatory lift and moment is 

presented in reference [I I]. The results are as follows: 

1. The apparent mass term which is equal to the apparent mass 7cpb2 

times the vertical acceleration at the mid-chord point: 

~ , ~ ~ = - r c p b ~ ( h + a ~ b & ) = - n ~ ~ ~ ( h ' + a ~ b a ' )  (2.1 1) 
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The center of pressure of this force is at the mid-chord point. 

2. The centrifugal force which is equal to the apparent mass times 

Uci: 

The center of pressure of this centrifugal force is at the 314-chord 

point behind the leading edge. 

3. A nose down couple which is equal to the apparent moment of 

inertia npb2(b2/8) times the angular acceleration: 

As a result, the total lift per unit span is: 

N=Ncir+Napp+Ncen (2.14) 

The total moment per unit span about the elastic axis is: 

Equations 2.14 and 2.15 give the total lift and moment when 

the airfoil undergoes a motion with two degrees of freedom: bending 

and pitching. They are valid only for incompressible fluid and small 



angle of attack. 



Chapter Three 

Aeroelast ic Analysis 

The present analysis is based on a combination of the mode 

superposition method [14] for dynamic structural response to forced 

vibration, and linear airfoil theory formulated in terms of the 

convolution integral representation of the loading on an airfoil in 

arbitrary motion. 

3.1 Lum~ed Mass Method 

In the dynamic system of Fig. 3.1, the analysis obviously is 

greatly complicated by the fact that the inertia forces result from 

structural displacements which in turn are influenced by the 

magnitudes of inertia forces. This closed cycle of cause and effect 

can be attacked directly only by formulating the problem in terms of 

differential equations. Furthermore, because the mass of the beam 

is distributed continuously along its length, the displacements and 

accelerations must be defined for each point along the axis if the 

inertia forces are to be completely defined. In this case, the 

analysis must be formulated in terms of partial differential 

equations because the position along the span as well as the time 

must be taken as independent variables. 

On the other hand, if the mass of the beam were concentrated 

on a series of discrete points or lumps, as shown in Fig. 3.2, the 

analytical problem would be greatly simplified because inertia 



Fig. 3.1 A cantilever beam 

Fig. 3.2 Lumped-mass idealization of a cantilever beam 
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forces could be developed only at these mass points. In this case it 

is necessary to define the displacements and accelerations only at 

these discrete points. 

The number of displacement components that must be 

considered in order to represent the effects of all significant 

inertia forces of a structure may be termed the number of dynamic 

degrees of freedom of the structure. For example, if the system of 

Fig. 4b were constrained so that the three mass points could move 

only in a vertical direction, this would be called a three-degree-of- 

freedom (3 DOF) system. On the other hand, if these masses were 

not concentrated in points but had finite rotational inertia, the 

rotational displacements of the three points would also have to be 

considered and the system would have 6 DOF. 

3.2 Generalized Dis~lacement .Method 

In the case where the mass of the system is quite uniformly 

distributed throughout, however, an alternative approach to limiting 

the degrees of freedom may be preferable. This procedure is based 

on the assumption that the deflected shape of the structure can be 

expressed as the sum of a series of specified displacement patterns, 

these patterns then become the displacement coordinates of the 

structure. In general, any shapes f ,(x) which are compatible with 

the prescribed geometric-support conditions and which maintain the 

necessary continuity of internal displacements may be used as the 

displacement patterns. Thus a generalized expression for the 

displacements of any one-dimensional structure might be written 

as: 



For any assumed set of displacement functions f,(x), the 

resulting shape of the structure depends upon the amplitude terms 

zn, which is referred to as generalized coordinates. The number of 

assumed shape patterns represents the number of DOF considered in 

this form of idealization. 

3.3 System Representation 

As illustrated in Fig. 1.2, the structure under consideration has 

been discretized into 17 mass elements that are considered to be 

concentrated at the centroid of each element. The lowest three 

masses (15-17) represent the submerged portion of the airfoil, and 

masses 5 through 9 correspond to the rectangular cross section load 

cell. Masses are concentrated on the load cell to obtain good 

resolution of the deformation there, from which the "sensible" 

strain may be computed from the beam curvature. 

Both normal and torsional vibration degrees of freedom are 

considered here, because the pitch axis does not coincide with the 

center of mass of the lower part of the structure (mass elements 

13-17). For the normal degree of freedom (NDOF), each mass 

element communicates with neighboring masses through NDOF 

stiffness elements. For the torsional degree of freedom (TDOF), the 

structure is discretized in the same way as the NDOF for elements 1 

through 12, however elements 13 through 17 are lumped into a 

single inertia element giving a total of 13 inertia elements. The 
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reduction in elements in the TDOF is based on the fact that the 

torsional stiffness of both the mounting block (element 13) and the 

airfoil are much larger than the drive shaft, and consequently the 

mounting block and entire airfoil experience nearly the same TDOF 

deflection. 

The resulting discretized structure may be described 

mathematically in terms of a diagonal mass matrix [MI ( 1 7 ~ 1 7 ) ~  a 

symmetric NDOF flexibility 17x1 7 matrix [A,] (1 7x1 7), a diagonal 

polar mass moment of inertia matrix [J] ( 1 3 ~ 1 3 ) ~  and a symmetric 

TDOF flexibility matrix [A,] (13x3). Matrix [MI and [J] can be 

calculated by knowing the dimensions and material properties of 

each element. The values of [MI and [J] are given in appendix A. 

The definition of flexibility influence coefficient Ani and Ati, 

are as follows 

= deflection of mass i due to a unit force applied at 

mass j (3.2a) 

At i,j = angular rotation of polar inertia i due to a unit torque 
applied to polar inertia j (3.2b) 

Virtue work method [ I  51 is employed here to calculate 

according to it's definition. Ati, is computed from elementary 

mechanics for shafts in torsion. Sample calculations and the values 

of [A,] and [A,] are presented on Appendix A. 

The NDOF stiffness matrix [K,] and TDOF stiffness matrix [Kt] 

are computed by inverting [A,] and [A,]. IMSL subroutines are used 

for the inverting of [A,] and [A,], and the results are checked by using 

commercial software Matlab [16] on a Sun workstation. 
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3.4 Natural Frequencies and Mode Shapes of the Structure 

The system matrices above have been used to solve the 

eigenvalue, or free vibration, problem to compute the natural 

frequencies and mode shape vectors of the structure. This has been 

done in the usual way by assuming that free-vibration motion is 

simple harmonic, which results in the frequency equations 

where the h's are eigen values of the system matrix which are equal 

to the inverse square of the natural frequencies given by An= 1 /an2, 

kt= 1 / q 2 ,  and [I] is identity matrix. [D,] and [D,] are system matrices 

given by [D,] = [An][M] and [D,] = [A,][J]. The problem to find the 

natural frequencies and mode shapes of the structure is now reduced 

to find the eigenvalues and eigenvectors of system matrix [D,] and 

[D,]. This has been done by using lMSL subroutines and the results 

are checked by commercial software Matlab [16] on Sun workstation. 

The most significant results is the lowest natural frequency (or the 

largest eigenvalue) and its corresponding mode shape (eigenvector). 

The values of the two lowest natural frequencies for the NDOF and 

TDOF, respectively, are a, = 7.74 hz and o, = 97.38 hz and their 

respective mode shapes are: 



where subscript 1 denotes the first or fundamental mode shape. 

{Q,), is graphed in Fig. 3.3. In later section we will see that it is 

necessary to extend {&}from a 13x1 vector to a 17x1 vector to make 

{&} mathematically compatible with the 17x1 vector {$,} in certain 

matrix multiplications. This extension is realized by setting the 

values of elements 14 through 17 of vector {&} the same as the value 

of element 13 of vector ($1 as shown in Equation (3.4~). 

The extension is based on the fact that the torsional stiffness of 

elements 13 through 17 is much larger than that of elements 1 

through 12, as such the element 13 through 17 will undergo almost 

the same torsional deflection in reality. 

3.5 Mode Superposition Method 

Mode superposition method [I41 is the combination of the 

lumped mass method and generalized displacement method described 

in section 3.1 and 3.2, wherein the displacement patterns in Equation 

3.1 is replaced by mode-shape vectors {+,Ii and {$Ii. Hence, the 
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Figure 3.3 Fundamental Mode Shape of NDOF 
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displacement vectors of NDOF and TDOF can be expressed as 

where {V,) and {Vt) are displacement vectors of NDOF and TDOF 

respectively with {Vnji and {VtIi represent the displacements of the 

ith element. The mode shapes constitute independent displacement 

patterns, and the amplitudes qi and gi are served as generalized 

coordinates to express any form of displacement. The reason to use 

mode shapes as the displacement patterns is because their 

orthogonality properties [14] and because they describe the 

displacements efficiently so that good approximations can be made 

with few terms. 

Equations 3.5a and 3.5b can be written in matrix form: 

where [Q,] and [&] are 17x1 7 matrix and 13x1 3 matrix respectively 

whose ith columns are the ith mode shape vectors of NDOF and TDOF. 

3.6 Dvnamic Model of the Structure 
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With d9Alembert's principle [13], the equations of dynamic 

equilibrium of the structure can be written: 

[JId2{"') + [Kt]{Vt} = {T} 

where [K,] and [Kt] are stiffness matrices of NDOF and TDOF 

respectively, and {F) and {T} are loading vectors of NDOF and TDOF on 

the structure respectively. The damping of the structure is 

neglected. 

Combining Equations 3.5 and 3.6 yields: 

where the double dot means the second derivative with respect to 

physical time. 

There are 30 unknown generalized coordinates in Equations 

3.7a-b. The present analysis, however, considers only the lowest 

(fundamental) frequency NDOF vibration mode and lowest TDOF mode 

and, as such, there is in reality no mode superposition. The 

justification for neglecting higher frequencies is based on the 

observation that oscilloscope traces of the strain gauge output, 

when the structure is excited with no water in the tank, indicate 



that the fundamental frequencies are dominant. Inclusion of higher 

frequencies increases the complexity of the algebra. 

For modeling the solid body rotation of the test rig, a rotation 

DOF (RDOF) is introduced. The RDOF is used to simulate the change in 

angle of attack of the structure due to the rotation imparted by the 

stepper motor. Notice that the TDOF as defined above simulates only 

torsional deformations relative to the top of the structure. Now the 

total deflection of the structure can be written as 

where q and g are actually the first element of vector {q} and {g} 

respectively, and {$,}, and {%I, are fundamental mode shapes. The 

scaler RDOF motion variable a is simply the magnitude of the 

nominal angle of attack as the structure is pitched and thus is a 

known variable for a prescribed motion. Actually the vibration of 

the whole structure is induced by the instantaneous input torque of 

the stepper motor (in other words a sudden change in a). 

In the present analysis, the coordinate p allows the structure 

to undergo solid body rotation while the coordinates q and g measure 

deflections relative to the instantaneous position of the top of the 

structure (where the NDOF and TDOF deflections are zero). 

Premultiplying 3.7a by to make use of the orthogonal 

Properties of mode shapes (1 41 ({$nI mTIMI{$n)n = 09 and {$nI rnTIKnI {@n}n 

= 0, when m is not equal to n), we obtain: 



where M (={@,} TIM]{@n}l ) is the generalized mass, Kn (={@,,}, T [ ~ n ]  {@,I, ) 

is the generalized NDOF stiffness, F (={@,J,~{F}) is the generalized 

force, and q is the same as in Equation 3.8a. 

Similarly, premultiplying Equation 3.7b by yields: 

where J (={%}lT[~]{%)l) is the generalized polar mass moment of 

inertia about the pitch axis, Kt (={(+}lT[~,]{(+}l) is the generalized 

TDOF stiffness, T (={(+} lT{~}) is the generalized aeroelastic moment, 

and g is the same as in Equation 3.8b. Because only one mode shape 

for each of NDOF and TDOF is considered in present analysis, the 

subscript 1 will be omitted in later discussion. 

Before solving Equations 3.9a-b, it is necessary to formulate 

the loading terms on the right hand side of Equations 3.9a-b. 

3.7 Aeroelastic Loading 

3.7.1 Sian Convention 

The sign conventions for the normal force and moment are 

defined such that a positive angle of attack (in the static sense) 

produces a positive normal force, while a positive moment produces 

a nose-up torque. For generalized coordinates, q, g, and p, the sign 

convention is as follows: a positive normal force tends to produce a 

positive change in q and it's time derivatives (note' this is the 
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reverse of the usual definition used for airfoils in which the NDOF 

coordinate i.e. plunge is measured in the opposite direction from the 

normal force); a positive moment tends to produce a positive change 

in g. 

3.7.2 Normal loading 

The normal force acting on the structure is composed of three 

parts: a) rigid body force vector, {FR}, which is caused by the step 

change of angle of attack of the airfoil, b) aeroelastic force vector, 

{FA), caused by time dependent elastic deflections along the span of 

the airfoil, and c) inertial force vector, {FI}, arise from the fact 

that the centroids of masses 13 through 17 do not coincide with the 

pitch axis, therefore the angular acceleration about the pitch axis 

produces an inertial normal force which acts at the centroid. 

The rigid body force vector is the ideal aerodynamic loading 

response to a step change in angle of attack due to rotation about 

the quarter chord. These aerodynamic forces are acting only upon 

the submerged part of the airfoil represented by masses 15,16, and 

17 in Figure 1.2. According to Equation 2.14, the aerodynamic force 

due to rigid body rotation p(t) is given by 

FRi = 0 , for i=1,2, ..., 14 

F R ~  = ~ l i ~ b u * { % ( t ) + ~ ( t ) + 2  r(t-~)[p(t)+p(t)]dr) 
2 for i=15,16,17 

where p is the density of water, li is the length of airfoil element i 
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(note that 1, 5=1, ,=1,,=4.667 in), b is the semichord length of the 

airfoil, U is the velocity of free stream, and T(t -T) is Wagner's 

function given by Equation 2.5. Notice that {FR) is not a function of 

the generalized coordinates q and g since in the ideal response the 

loading is given by (rigid body motion) 2D airfoil theory alone. 

For pitch axis at the quarter chord, the aeroelastic force 

vector, (FA), which is acting upon the submerged part of the airfoil 

again, is also based on the convolution integral formulation for an 

airfoil in arbitrary motion [3,1 I ] .  According to Equation 2.14 the 

aerodynamic force due to NDOF and TDOF motion q(t) and g(t) is given 

by 

F A i = O ,  for i=1,2, ..., 14 

r(t-~)[$tig(t)+$tig(t)-3niq(t)1d~) 

, for i=15,16,17 

where Qni is the value of the NDOF mode shape {Q,} at element i, and 

& is the value of the TDOF mode shape.{%) at element i. Notice that 

it is necessary now to extend {Qt} from 13x1 vector to 17x1 vector 

as described in section 3.4. The negative sign on the NDOF term 

comes from the sign convention adopted. 

Because the centroids of mass 13 through 17 do not coincide 
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with the pitch axis, the angular acceleration about the pitch axis 

produces an inertial normal force at the centroid of each mass. 

Moreover, due to the fact that the centroid of mass 13 through 17 is 

behind the axis, a nose-up acceleration will produce a positive 

initial force, hence, 

for i=1,2, ..., 12 

for i=13,14, ..., 17 

(3.12) 

where mi is the mass of element i and ri is the distance from pitch 

axis to the centroid of element i. 

3.7.3 Aeroelastic Moments 

The TDOF system has been discretized into 13 elements in 

solving the eigenvalue problem and calculating the generalized 

inertia and stiffness of the TDOF. However, due to the coupling of 

NDOF and TDOF there is difficulty in the analysis of aeroelastic 

moments if we still use 13 elements. To overcome this difficulty, 

the mode shape vector {&} is now extended from a 13x1 vector to the 

17x1 vector and the moment vector {T) is also extended to 17x1. 

This extension does not affect the results for the TDOF generalized 

inertia and generalized stiffness computed in the 13 element 

representation. 

The moment acting on the structure is also composed of three 

parts: a) rigid body moment vector, {TR}, which is caused by the step 

change of angle of attack of the airfoil, b) aeroelastic moment 

vector, {TA), caused by time dependent elastic deflections along the 
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span of the airfoil, and c) inertial moment vector. {TI). The rigid 

body moment and the aeroelastic moment act only on the submerged 

part of the airfoil. The expressions for these moments are 

simplified by the fact that the circulatory normal force acts at the 

quarter chord (for a flat plate airfoil) giving a zero moment arm in 

the present study. For a NACA 0015 airfoil the circulatory normal 

force (at Re-lo5) acts within 2% fraction of chord from the quarter 

chord and on this basis has been neglected. According to Equation 

2.15 the rigid body moment for rotation about the quarter chord is 

given by 

for i=1,2 ,...,I4 

for i=15,16,17 

(3.13) 

The aeroelastic moment vector due to NDOF and TDOF motion 

q(t) and g(t) is given by Equation 2.15 

for i=1,2, ... , I 4  

2 2 1  T~ i ( t )  = ~ l i p b  U {+n~(t)-$ti[%(t)+$(l)l~ 
2 b 8 , for i=15,16,17 

The inertial moment comes from two sources, one is the rigid 

body rotation (the step change of angle of attack) of the test rig, the 

other is due to the fact that the centroids of masses 13 through 17 
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does not coincide with the pitch axis, as such the normal 

acceleration of each mass produce an inertial moment about the 

pitch axis. Hence, 

for i=1,2, 12 

fori=13,14, 17 

(3.15) 

where J i  is the mass moment of inertia about pitch axis of element 

i. 

The aeroelastic forces and moments have been formulated in 

terms of the two unknown generalized coordinates q and g. The 

system equations 3.9a and 3.9b may now be written as: 

where {$,I and ($1 are fundamental mode shapes of NDOF and TDOF 

respectively. 

3.8 Nondimensionalization 

It is preferable to nondimensionalize the system equations 

3.1 6a-b into dimensionless form, where the generalized coordinate q 

and time t are nondimensionalized with respect to the airfoil 

semichord b (=3.0 in). The generalized coordinate g, as well as p, are 
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nondirnensional by definition. 

Multiplying both sides of Equation 3.16a by ( 1  /pU2bl) where 

p=0.03613 Ibm/in3, U=24 inls, and 1=42 in yields: 

Note that now the dot superscript indicates differentiation with 

respect to nondirnensional time t *  where 

Gi=O, for i =1,2, ..., 14 

Gi = q%+13+2 r (t * - ~ ' ) [ b ; ( ~ * ) + ~ ( r ' ) ] d ~ * }  
3 2 , for i =15,16,17 

* 
 FA^ = 0 , for i =1,2, ..., 17 



for i =15116117 

for i =1,2, ..., 12 

for i =13,14, ..., 17 

Multiply both sides of Equation 3.16b by (l/p@b21 ) 

where 

for i = I  121...114 

for i =15,16,17 

for i =1,2, ..., 14 
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for i =15,16,17 

for i =1,2, , I2  

for i =13,14 ,...,I7 

Equations 3.17a-b are nondimensional form of system 

equations which will be solved for nondimensionalized general 

coordinates 4' and g subject to a prescribed input step change of 

attack angle p. Note that the superscript * which indicates the 

nondimensional form of variables will be omitted for brevity in 

later discussions. 

3.9 Input Step 

The ideal instantaneous step change of attack angle can be 

expressed by 

where Aa is the step amplitude and u is unit step function. 

Differentiate (3.18) with respect to t 

where ti is Dirac delta function. 



Differentiate (3.19) with respect to t again 

where S is time derivative of delta function. 

3.10 Solution of Svstem Equations 

The Laplace transform method is used to solve the system 

equations for a step change in attack angle with an amplitude Aa = lo 

(7c1180 radian). Before Laplace transformation is performed, all the 

coefficients in system equations are calculated. Rearranging the 

equations yields: 

Substituting Equations 3.19-20 into above and rearranging 
yields: 



Note that T(t -2) is Wagner function given by Equation 2.5. 

Taking Laplace transformation of Equations 3.22a-b yields 

where s is the Laplace variable, Q(s) and G(s) are the Laplace 

transform of q(t) and g(t). 

The commercial code MATHEMATICA [17] is used to solve the 

above algebraic equations symbolically. The solutions of Q(s) and 

G(s), which are given in Appendix B, are quotients in the form of a 

sixth order polynomial in s divided by a seventh order polynomial in 

S. 

The quotients are decomposed into partial fractions by 

MATHEMATICA in order to perform the inverse Laplace transform. 
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The procedures of the partial fraction decomposition are listed in 

Appendix C. The inverse Laplace transform is then performed by 

hand using any mathematical handbook (Appendix D). The solutions 

for the generalized coordinates in the nondimensional time domain 

are in the form of: 

where t is in semichords and: 

b = 0.29 

c = 0.0454 

d = 0.42 

f = 0.825 

Note that a, and y are reduced frequencies which are based on 

semichord (obIU), where o, is associated with the NDOF and y wi th  

the TDOF. 

The values of the other constants for each of the 

nondimensional generalized coordinates are given in the following 

table. 
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Table 1.  Constants in the Generalized Coordinate Solutions for an 

Instantaneous Step Input. 

Constants q(t) g(t) 



Chapter Four 

Results and Discussion 

4.1 Sensible Force at the Load Cell 

The purpose of this exercise is to determine the aeroelastic 

effects on the output of the strain gauge load cell. In the 

experiments, point loads are applied on the midspan of submerged 

portion of the airfoil (centroid of element 16) to calibrate the strain 

gauge bridge. The output of the strain gauge is interpreted ideally 

as that due to the moment exerted by the aerodynamic normal force 

acting on the same point. In reality, however, the strain gauge 

output is determined only by the load beam curvature at the cell. 

This curvature is due not to aerodynamic loading alone, but rather 

the total aeroelastic structural response. 

In elementary beam theory, the moment and beam curvature are 

related by 

where V,(x,t) is the deflection of the beam and x is measured along 

the span. Since the deflection of the structure is known as a 

function of time from the results of last chapter, the second 

derivative in Equation 4.1 (beam curvature) at the load cell (centroid 

of element 7) can be determined by using a numerical difference 

method. The method used here is five point Richardson's 
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extrapolation method [18]. The normal force, N, acting at the 

midspan of the submerged portion of airfoil can then be determined 

for the purpose of comparison with experimental normal force data. 

These results are presented in the form of normal force coefficient 

defined as 

where C, is normal force at the origin of the motion, and p, U, b, L 

are as described before. 

4.2 Results and Discussion 

4.2.1 Generalize Coordinates for an Instantaneous Steg 

The close form solutions of the generalized coordinates have 

been found in Chapter 3 for a unit step of amplitude Aa =+lo at a step 

onset angle of zero. Figure 4 . l a  shows the result for the 

nondimensional NDOF coordinate, q(t), based on semichord. Two 

vibration frequencies can be observed from the figure. The low 

frequency is due to direct aeroelastic reaction in the NDOF, while 

the high frequency oscillation comes from the coupling with the 

TDOF. Most of the oscillatory response has decayed beyond 3 

semichords of travel after the step onset. The steady state value of 

q(t) determines the steady state normal force via Equation (4.1). As 

shown below, the steady state value of q(t) yields the correct steady 

normal force. 



time (semichords) 

Figure 4.1 a Result of NDOF Generalized Corrdinate 
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Figure 4 . lb  shows the result for the nondimensional TDOF 

coordinate, g(t). The magnitude of the TDOF oscillation is very small 

compared with that of the NDOF oscillation. A steady state value at 

zero is observed. This result agrees with the fact that the resultant 

force of the steady state normal force acts at the quarter chord 

which is coincident with the pitch axis of the present test rig and 

thus it gives zero moment. 

4.2.2 Comparison with Theoretical Normal Force R ~ S D O ~ S ~  

Figure 4.2 is a comparison of the theoretical response of 

Equation 1.1 (zero onset angle of attack) with the aeroelastic 

sensible force of the present analysis. Significant aeroelastic 

effects shortly after the step onset due to the direct NDOF response 

(low frequency) and TDOF response (high frequency) can be observed. 

The aeroelastic response of present study gives measurable 

differences with the theoretical response for a rigid 2D airfoil. The 

steady state aeroelastic response is a little larger than the steady 

state theoretical response. The difference may be due to roundoff 

errors. The capability of predicting the total structural response 

gives rise to the interesting possibility for developing a rational to 

correct experimental strain gauge data accordingly and extract 

therefrom the aerodynamic component of interest. 

4.2.3 Comparison with Experiment Data 

Figure 4.3a shows a comparison of the result of present 

analysis with the experimental data taken in the Ohio University tow 

tank. These data are same as in Figure 1.3b. The step onset angle is 

2.09 deg. and the step amplitude is 1.3 deg. as shown in Figure 1.3a. 



-0.03 
0 2 4 6 

time (semichords) 

Figure 4.1 b Result of TDOF Generalized Coordinate 



0 2 4 6 8 1 0  
time (sernichords) 

Figure 4.2 Comparison of Present Aeroelastic Response 
with Wagner Function (for step onset angle = 0 deg, 

step = 1 deg) 
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C~ can be calculated by Equation 2.1 which gives the result of 0.22 

for step onset 2.09 deg. Static tests in O.U. tow tank gave a normal 

force close to this value. The comparison of the experimental data 

with the theoretical response has been given in Figure 1.3b. In order 

to compare with the test data, the present analytical response has 

been multiplied by a factor of 1.3 by assuming that the response is 

linearly related to step amplitude. In Figure 4.3a, there is sufficient 

agreement between the analytical result and the test data to 

conclude that the rise in the strain gauge data shortly after the 

step, followed by an underdamped oscillation is due to 

aeroelasticity. Such a conclusion is not a priori possible since such 

behavior could very well arise from aerodynamics alone, particularly 

when considering that the noncirculatory loading at the step origin 

is theoretically large and positive. Figure 4.3b and 4 . 3 ~  are 

magnified view of Figure 4.3a. In Figure 4.3b, the experiment data 

indicate a lower frequency of vibration than the analysis below 1.0 

semichord. This might be expected since the actual structure is less 

stiff than the analytical model due to deformations in the I-beams, 

gear box, etc. Also, this frequency may be associated with a higher 

NDOF mode not considered here. The high frequency oscillations in 

the experiment data appear to damp out faster than the analysis 

which may be due to the fact that no structural damping is put into 

the analytical model. 

4.3 Reduced Frequency and Apparent Mass 

Apparent mass and apparent inertia arise from second order 

noncirculatory terms in the aerodynamic normal force and moment 



time (semichord) 

Figure 4.3a Comparison of present analysis with 
experimental data (step onset angle = 2 deg, 

step = 1.3 deg) 



time (semichord) 

Figure 4.3b Magnified view of figure 4.3a 



present analysis experimental data 

0.4 - 
h I 

V 

C 

0 0.3 - 

time (semichord) 

Figure 4 . 3 ~  Magnified view of Figure 4.3a 
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representations. These terms introduce sufficient "added" mass and 

inertia to cause a significant shift in the vibrational frequencies of 

the structure. More specifically, the NDOF fundamental frequency is 

reduced from 7.74 hz (with no water in the tank) to 2.92 hz, and the 

TDOF fundamental frequency is reduced from 97.38 hz to 63.34 hz. It 

may be possible to use Fourier analysis to provide an indirect 

measurement of apparent mass. This may be a useful technique in 

the nonlinear aerodynamics problem where, to the author's 

knowledge, the effect of apparent mass has not been widely studied. 

4.4 Limitations and Further Study 

The problem of finding the dynamic response to a unit step in 

angle of attack has been solved using a mode superposition model. 

Actually this model is sufficiently general to simulate any 

prescribed motion given that the angle of attack is small and the 

fluid is incompressible. The limitation is due to the fact that the 

indicial response given by Wagner's function is only valid for small 

angles of attack and incompressible flow. 

For large angle of attack, no functional forms of the indicial 

response are currently available. Experimental data of indicial 

response may be used in the convolution integral representation of 

aerodynamic response. 

The results of present study may be improved by incorporating 

actual stiffness matrix data measured on the test rig. It is expected 

that the actual rig is less stiff than the theoretical values derived 

here in. 



Chapter Five 

Conclusions 

The present work provides a mathematical model for studying 

the aeroelastic effects in experimental measurement of the indicia1 

response of airfoil. Closed form solutions have been found for a 

testing undergoing a small step change in angle of attack. The 

results have shown fair agreement with experimental data. Evident 

aeroelastic effects have been shown when comparing present 

analytical result with Wagner's function. The ability of this model 

to predict the structural response gives rise to the interesting 

possibility for developing a method to correct experimental strain 

gauge data accordingly and extract therefrom the aerodynamic 

component of interest. Additional experiments are needed for direct 

measurement of the system structural properties such as 

flexibility, natural frequencies, and material properties for 

incorporating into the analysis. 



Appendix A 

System Matrices 

The 17x17 mass matrix [MI and the 13x13 polar mass moment 

of inertia matrix are diagonal matrices listed as follows: 

vi = 2.2122, .1425, .9794, .9794, .06632, .06632, .06632, .06632, 

.06632, 1.0754, 1.0754, .4313, 3.1785, .3596, 2.2372, 2.2372, 

2.2372 ( bl ) 

for i= 1, 2, ..., 17 

Jii = 2.20, .02784, .4897, .4897, .01338, .01338, .01338, .01338, 

.01338, .5378, .5378, .1468, 35.58 ( Ibm-in2 ) 

for i= 1, 2, ..., 17 

Virtual work method is used to calculate the NDOF flexibility 

matrix. The principle of virtual work for deformable bodies is 

stated as [16]: 

If a deformable body is in equilibrium under a virtual Q-force 

system and remains in equilibrium while it is subjected to a small 

and compatible deformation, then the external virtual work done by 

the external Q forces is equal to the internal virtual work of 

deformation done by the internal Q stresses. 

Let us take an example to explain how to apply the above 

principle to the flexibility calculation of beams. Consider a 

cantilever beam shown in Figure A.1. According to the definition of 

flexibility influence coefficient (that is Anilj is equal to the 
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deflection of point i due to a unit force applied at point j), a unit 

force Pj=l  lbf is applied at point j. In order to calculate the 

Figure A . l  A Cantilever Beam 

deflection of point i caused by force, Be assume a unit virtual 

force Q i = l  lbf acting at point i. The principle of virtual work as 

applied to this case will be simply 

where MQ and Mp are the moments due to load Q and P respectively, E 

is Young's modulus of elasticity, I is the moment of inertia of cross- 

sectional area of the beam. Thus the beam deflection problem 

become the evaluation of the integration on the right-hand side of 

Equation (A. 1 ). 

Before the integration of the right-hand side can be 

accomplished, both MQ and Mp must first be expressed as functions 

of x. It is necessary to separate the integration for the entire beam 

into the sum of several integrals, one for each of several portions of 

the beam. The integration must be broken at points where there is a 
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change in the functions representing MQ, MP, or E, I in terms of x. 

The results of NDOF flexibility matrix [AN] which is a 17x17 

matrix are listed below. 

[AN] = [1.67 3.816 6.117 9.47 11.61 12.53 13.45 14.37 15.29 17.59 

21.27 24.2 26.6 29.09 37.64 52.37 67.09; 

3.816 8.948 14.85 23.45 28.93 31.29 33.65 36.01 38.37 44.27 

53.71 61.22 67.37 73.78 95.7 133.5 171.2; 

6.117 14.85 30.36 53.89 68.89 75.34 81.8 88.26 94.72 110.9 

136.7 157.2 174.1 191.6 251.6 354.9 458.3; 

9.47 23.45 53.89 104 136.5 150.6 164.6 178.6 192.6 227.7 

283.4 364.9 403 533.2 757.5 981.9; 

11.61 28.93 68.89 136.5 182 201.7 221.5 241.2 261 310.4 

389.3 452.1 503.6 557.2 740.6 1057 1372; 

12.53 31.29 75.34 150.6 201.7 224.5 247.4 270.3 293.2 350.4 

441.9 514.6 574.3 636.4 848.9 1215 1581; 

13.45 33.65 81.8 164.6 221.5 247.4 273.9 300.5 327.2 393.8 

500.3 585 654.4 726.7 974.1 1400 1826; 

14.37 36.01 88.26 178.6 241.2 270.3 300.5 333.3 364.3 441.8 

565.9 664.4 745.3 819.5 111701613 21 10; 

15.29 38.37 94.72 192.6 261 293.2 327.2 364.3 398.4 488.4 

632.4 746.8 840.6 938.3 1273 1849 2424; 

17.59 44.27 110.9 227.7 310.4 350.4 393.8 441.8 488.4 613.4 

814.1 973.5 1104 1241 17.6 2509 3312; 

21.27 53.71 136.7 283.8 389.3 441.9 500.3 565.9 632.4 814.1 

1111 1348 1542 1745 2437 3629 4822; 

24.2 61.22 157.2 328.4 452.1 514.6 585 664.4 746.8 973.5 

1348 1650 1899 2158 3043 4569 6095; 



The TDOF flexibility matrix of the system [AT] is calculated 

from elementary torsional shaft theory. Consider a circular shaft as 

shown in Figure A.2. 

I 

Figure A.2 Deformation of circular shaft 
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For circular shafts, the torsional angle 8 is related with torque 

T by 

where T is applied torque, L is the length of shaft, J is the polar 

moment of inertia of the cross-section, G is modulus of rigidity. 

For rectangular shafts, the torsional angle 8 is related with 

torque T by 

where a and b are the lengths of the short and long sides of the 

rectangle. The numerical factor p can be obtained from any 

mechanical engineering handbook. 





Appendix B 

Solving of the System Equation 

The system equations 3.23a-b are solved symbolically by 

Mathematics as follows where qone and qtwo are Q(s) and G(s) 

respectively as in Equations 3.23. 

The solutions are 

qone ->(I .7189 + 37.805s + 11 7.82s2 + 1 35.99s3 + 36.725s4 - 
O.O03O852s5 - O.0OO6088s6)/(23O.67~ + 5915.0s2 + 1851 3s3 

+ 3832.3s4 + 3258.4s5 + 3.7056s6 + 1.3124s7) 

qtwo ->-(0.0072537s + 0.18832s2 + 0.64569s3 + 0.3194s4 + 
0 . 0 6 6 7 2 8 ~ ~  + 0.024067~~)/(230.67~ + 591 5.0s2 + 1 85 1 3s3 

+ 3832.3s4 + 3258.4s5 + 3.7056s6 + 1.31 24s') 



Appendix C 

Partial Fraction of the Solution 

The procedures of decomposing the quotient solution into 

partial fraction forms by Mathematica are listed as follows. 

1. Findina the roots of the denominator (note that Q(s) and G(s) have 

jhe same denominator) usina Roots command. 

The roots are found to be 

The root 0 is obvious, thus there are four complex roots and three 

real roots for the denominator. 

2. Partial fraction of Q(s). 

Assume that 



Multiply both sides of Equation B. l  by the denominator of Q(s) using 

the Expand command in Mathernatica. The right-hand side of (B.1) 

becomes 

RHS of (B. 1 ) = Expand[a*s*(s+O.O454)*((~+0.825)A2+49.75A2)* 

((~+0.42)~2+2.29~2)+b*s*(s+0.29)*((~+0.825)~2+49.75~2)* 

((s+0.42)~2+2.29~2)+(c*s+d)*s*(s+0.29)*(s+0.0454)* 

((s+0.42)A2+2.29~2)+(e*s+f)*s*(s+0.29)*(s+0.0454)* 

((s+O.825)~2+49.75~2)+g*(s+0.29)*(s+0.0454)*((s+O.825)~2 

+49.75A2)((s+0.42)A2+2.29A2)] 

= 176.68463400891 69*g + 609.257358651 4376*a*s + 
3891.7320266281 25*b*s + 0.071 36630300000002*d*s + 
32.59563398375001 *f*s + 4528.487472225863*g*s + 
1351 4.5865985325*a*sA2 + 1 4025.4503435625*b*sA2 + 
0.071 36630300000002*c*s~2 + 1.8290951 4*d*sA2 + 
32.59563398375001 *e*sA2 + 830.385968025*f*sA2 + 
141 52.956581 39525*g*sA2 + 2201.275802975*a*sA3 + 
2808.50744125*b*sA3 + 1.82909514*c*sA3 + 
5.715402*d*sA3 + 830.385968025*e*sA3 + 
2476.309701*f*sA3 + 2921.247977564999*g*sA3 + 
2482.662671 *a*sA4 + 2483.271 725*b*sA4 + 5.71 5402*c*sA4 

+ 1.1 754*d*sA4 + 2476.309701 *e*sA4 + 1.9854*f*sA4 + 
2483.397937*g*sA4 + 2.5354*a*sA5 + 2.78*b*sA5 + 
1 .1754*c*sA5 + d*sA5 + 1.9854*e*sA5 + f*sA5 + 
2.8254*g*sA5 + a*sA6 + b*sA6 + c*sA6 + e*s% + g*s/\6 
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At this point, let the coefficients with the same power of s of both 

sides be equal and then use the command Solve to solve the linear 

algebraic simultaneous equations. 

The coefficients a to g for Q(s) are found to be 

3. Partial fraction of G(s): 



Assume that 

Using similar procedures as step two, we can find the coefficients 

for G(s). 



Appendix D 

Inverse Laplace Transformation 

The partial fraction forms of Q(s) and G(s) are: 

Taking inverse Laplace transformation of above two equations, 

noting that, 

where 



we get 
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