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Chapter 1 

Introduction 

1.1 Multimedia Networking Versus Traditional Data Networking 

Distributed multimedia networking environments are an emerging 

application domain [I, 2, 3, 4, 5, 6, 7] that introduces new challenges to 

distributed processing systems (DPS). Such environments are characterized by 

the presence of groups of users, connected via a computer network, cooperating 

to achieve common tasks through sharing mixed-media information [8] such as 

text, graphics, facsimiles, data, audio, and video. While typical database systems 

handle only non-temporal (also referred as static, non-time-based, and discrete) 

data types, such as text, images, fax, graphics, source codes, and binary codes, 

multimedia systems must also support temporal (similar terminology includes 

dynamic, time-based, and continuous) media types including video, animation, 

speech, and music. The term temporal media describes the temporal dimension 

of media such as video and audio, which contain sequences of data elements each 

having a position in time. For instance, a digital video clip contains a sequence of 

images called frames. Each frame must be played in a specific sequence in time 

and at a specific rate (typical frame rate is between 15 to 30 frames per second) to 

produce the correct visual effect The timing constraints must be enforced during 



capture and playback when temporal data are being presented to a human user. 

The success of conducting a multimedia session relies not only on the success of 

executing various programs and accessing numerous types of data files across the 

connected network, but also on the fulfillment of the timing requirements 

demanded by the temporary media types being utilized. 

Different multimedia applications demand different communication 

requirements. A multimedia conferencing session, where data is presented once 

and then discarded, can be more tolerant to a higher error rate than an 

application that compresses and records an audio data stream for future 

playback. Although the multimedia conferencing session is less prone to 

transmission errors, it requires fast data delivery that is close to real-time. On the 

other hand, long transmission delays are of little concern to the audio recording 

application. Every element of the multimedia system must satisfy the 

requirements of the executing multimedia application and data streams it 

requested. Since multimedia systems are delay-sensitive, the multimedia services 

they employ must provide some kind of timing guarantees. Resource 

management, which is one of the major responsibilities of the multimedia 

network operating system (MNOS), must incorporate some form of resource 

allocation and scheduling schemes to map the requirements of the multimedia 

application onto the system and network capacity. 



Due to the temporal nature of multimedia data types, the multimedia data 

streams that are transported across the computer network are significantly 

different from the asynchronous data traffic that typical local-area networks 

(LAN) are originally designed to support. Figure 1.1 lists some of the 

characteristics differences between multimedia data streams and asynchronous 

data. 

Figure 1.1 : DZerences between multimedia and asynchronous network traffic 
characteristics. 
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The duration for serving multimedia data streams is usually long-lasting 

(ranging from minutes, as in playing a musical file, to hours, as in playing a 

digital video) and requires high data rates (e.g., 1Mbits per second). On the other 

hand, asynchronous data transfers are typically short and bursty. A comparison 

of various data types with their required transmission bandwidth is given in 

Figure 1.2. 
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Figure 1.2: Bandwidth requirements of multimedia trafEc (from [9]). 

Asynchronous data transfers depend on the network to correct any 

transmission errors caused by data corruption or packet loss. Traditional 

transmission protocols can correct these errors by data correction schemes or by 

retransmission of the faulty data. In contrast, most multimedia applications can 

tolerate errors but demand on-time delivery of the required multimedia data 



streams. However, they cannot tolerate the kind of delay that can be caused by 

data correction and retransmission. Instead, the corrupted data packets will be 

discarded. In the case of a digital video playback, a frame or two may be 

dropped without much distraction to the viewer. 

Unlike asynchronous data transfers, where increased latency means longer 

delays in the transfer but otherwise harmless, latency may cause multimedia data 

to go completely out of synchronization; e.g., lip-synchronization during a video 

conference session, thus degrading the quality of the multimedia application from 

annoyance to unbearable. The inter-networking latency issue is illustrated in 

Figure 1.3. 

Multimedia communication demands certain service guarantees from the 

computer network. These guarantees include per-session bandwidth 

requirements with limited latency and jitter that traditional networks are not 

designed to provide. 
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Figure 1.3 : Latency concerns in inter-networking (fiom [lo]). 

1.2 Research Objectives 

In this research, we classify the transmission and processing requirements 

of local and distributed multimedia applications by four major characteristics: (1) 

throughput, (2) local and global delays, (3) jitters, and (4) reliability. These 



characteristics are known as Quality-Of-Service or QOS parameters. The 

multimedia network operating system must be based on a given QOS 

specification to perform resource allocation and management tasks. This process 

is similar to a workload request in a distributed computing system [Ill. Existing 

literature on multimedia systems indicate that QOS definitions have not yet been 

standardized [12]. The main objective of this research is to identify the necessary 

QOS parameters for multimedia applications and the MNOS. The research also 

aims to propose an architectural model for mapping the multimedia application 

QOS requirements into the negotiation protocol of the networking system for 

resource allocations and utilization. The proposed model is designed to support 

multimedia applications with strict temporal requirements while isolating these 

applications from the details of network resource management, which include 

bandwidth allocation and process scheduling. The QOS Broker [13] model, 

suggested by Nahrstedt and Smith, is adopted here to negotiate and arrange for 

the delivery of end-to-end quality of service in our prototype distributed 

multimedia framework. 

To make the research more complete, we have studied several 

synchronization techniques in multimedia systems and determined the 

synchronization schemes best suited to the proposed QOS model. The QOS 

negotiation model is simulated on a local area network with a single server and 



four workstations. The server is running Windows NT Advance Server Operating 

System, version 3.51, while the workstations are running Windows NT 

Workstation Operating System, version 3.51. The entire network is running on 

IEEE 802.3 compliant 10-Base2 Ethernet Finally, we analyze our simulation 

results to determine the effectiveness of the proposed QOS negotiation model 

when used in a multimedia networking environment 

1.3 Outline of the Dissertation 

The remaining part of this dissertation is organized as follows: In Chapter 

2, we provide some fundamental concepts in multimedia networking and discuss 

the need for a standardized QOS negotiation model to conduct multimedia 

network communication effectively. The concept of data topology models are 

introduced and the literature survey is presented. 

Chapter 3 presents the different multimedia data types and defines the 

QOS parameters for multimedia applications. The multimedia application QOS 

parameters are then translated into network QOS requirements. We also analyze 

the network QOS requirements and discuss the issues related to skew, jitter, 

utilization, and data rate. 
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The QOS negotiation model is presented in Chapter 4. We first discuss the 

admission service for the transport subsystem and then describe the QOS 

negotiation process. A dynamic QOS negotiation scheme to accommodate the 

dynamic changes in network load conditions is also presented. 

In Chapter 5, we discuss the computer implementation of our QOS 

negotiation model and some important issues in multithreaded programming. 

The experimental results are also discussed here. 

Finally, the conclusion of this dissertation is given in Chapter 6. Future 

research directions pertaining to this research are also presented. 



Chapter 2 

Background and Related Work 

21 Multimedia Data Types 

Distributed multimedia systems deliver multiple sources of various spatial 

or temporal media types (also known as media objects) to compose mixed-media 

or compound documents [8]. QOS parameters can be derived from the methods 

used to compose these compound documents. As depicted in Figure 2.1, spatial 

composition links non-temporal media objects into a single entity or document. 

Spatial compositions must deal with object sizes, orientation, and placement 

within the document Temporal composition arranges both temporal and non- 

temporal media objects according to their temporal relationships along a time-line 

as shown in Figure 2.2. 

Temporal composition can be treated as a way of synchronizing 

multimedia objects. There are two types of temporal compositions: continuous 

synchronization and point synchronization. Lengthy multimedia presentations 

are best handled by continuous synchronization. An example would be video 

conferencing where audio and video signals are digitized at a remote site, 

transmitted over the network, then synchronized continuously at the receiving 



station for proper playback. Video conferencing also demands full duplex 

communication which makes continuous synchronization a complex task. In 

contrast, point synchronization concatenates a single point of one media block 

(the starting point) to a single point of the previous media block (the endpoint). 

Slide shows with audio and voice annotations are good examples of point 

synchronization. 

Chart 
lmage 

Text 

Text 
lmage Chart 

i Compound Document 

Figure 2.1: Spatial composition of non-temporal multimedia objects in a compound 

document. 
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Figure 2.2: Temporal composition of multimedia objects according to their temporal 

relationships. 

A multimedia system or a multimedia application is defined based on the 

number of media objects used in an application, the types of different media 

being supported, and the degree of media integration. The classification of 

multimedia systems based on these three criteria is illustrated in Figure 2.3. 
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Figure 2.3: Classifkation of media utilization in multimedia systems and applications (from 

[141). 

2 2  Synchronization in Multimedia Networking 

Synchronization is the mechanism that coordinates the order of events in 

the proper temporal sequence. Synchronization can be further classified as serial 

and parallel synchronization. Serial synchronization determines the rate at which 



multimedia events occur within a single data stream. Serial synchronization is 

often referred as intramedia (or intrastream) synchronization since it ensures that 

QOS parameters, such as delays and jitters, of temporal media types are tightly 

bounded from the point of generation or retrieval to the point of delivery within a 

single data stream. When several temporal media streams are requested in 

parallel, potentially from different points of generation or retrieval, parallel (also 

referred as intermedia or interstream) synchronization is required to determine 

the relative timing relationships and schedule of multiple data streams. Either 

type of synchronization demands coordination between the multimedia 

application and the network resource managers in order to guarantee end-to-end 

synchronization. Overviews of multimedia synchronization methods can be 

found in Steinmetz [15] and Little et al. [16]. 

The implementation of a synchronization algorithm for a particular 

multimedia application requires a well defined set of QOS parameters for the 

underlying multimedia communications. Little et al. [17] and Butlerman et al. 

[18] suggested that the required synchronization algorithm can be built on data 

topology (location) models. As shown in Figure 2.4, four data topology models 

are suitable for multimedia systems: 

1. Single source, local communication: A single media source produces 

and/or delivers the requested media streams to the playback devices 



typically controlled by a PC workstation. Examples of the media sources 

may be a CD-ROM (stored media streams) or a digital video camera (live 

media streams). Examples of playback devices include a graphics video 

adapter and an audio interface with speakers. The communication link 

between the source, the workstation and the playback devices may be the 

system bus, a Small Computer Systems Interface (SCSI) channel, or an 

Asynchronous Transfer Mode (ATM) link. If the playback devices can 

maintain their proper playback speed, no other synchronization 

techniques are required. CD-ROM and video display adapter 

manufacturers often include on-board cache memory for buffering 

playback data streams in their products to ensure proper playback speed. 

2. Multiple sources, local communication: Two or more media sources 

produce and/or deliver media streams to the local playback devices. A 

slide show with annotated speech and music fits into this type of data 

topology model. The workstation performing the slide show must perform 

media synchronization within the system. 

3. Single source, distributed communication: A single media source produces 

and/or delivers media streams across a computer network to one or more 

nodes consisting of playback devices. Video-on-demand [19] is an 



example of this model. It is assumed that there is no interactions between 

the clients and the server application. Synchronization becomes easier if all 

the playback devices can maintain proper playback speeds. 

System Bus 

r-'-r-7 

l i i l  Workstation 

System BUS I 

Source Destinations Source Source Destinations 

a) Single source, local communications b) Multiple sources, local communications 

Network Communications Link 

Source Destinations 

c) Single source, distributed communications 

Network Communications Link 

Source Source Destinations 

d) Multiple sources, distributed communications 

Figure 2.4: Data topology models for multimedia data streams: (a) Single source, local 

communication; (b) Multiple sources, local communication; (c) Single source, distributed 

communication; (d) Multiple sources, distributed communication. 



4. Multiple sources, distributed communication: Two or more sources 

produce and/or deliver media streams to multiple playback devices 

located at different nodes distributed across the network. This complex 

model can be further broken down into three scenarios: 

i) Multiple sources located at a single node delivering media streams to 

one or more remote nodes. This scenario is similar to the "single source, 

distributed communication" model but with multiple sources of media 

streams. 

ii) Multiple sources from two or more different nodes delivering media 

streams to a single remote node. 

iii) Multiple sources from two or more nodes delivering media streams to 

two or more nodes. In h s  scenario, a workstation delivering media 

streams from its local media source can also be a recipient of incoming 

media streams generated from another remote node. Multimedia 

conferencing [20] for business workgroups [8] is a typical application of 

this model. 

In order to implement an efficient synchronization algorithm for a specific 

application, one must efficiently translate the QOS parameters requested by the 



multimedia application into the network QOS requirements. If the network QOS 

cannot guarantee service quality specified by the application QOS, a negotiation 

on QOS requirements must take place. If the network can support a lower set of 

QOS requirements while the application can tolerate the degradation of playback 

quality caused by lowering its QOS demands, a successful multimedia session 

can then be conducted. Although considerable research efforts have been devoted 

to the standardization of QOS parameters to guarantee quality end-toend 

multimedia services, only a few studies focus on the translation of QOS 

requirements by an application into the negotiated network resource allocations. 

To this end, our research goal is to develop an architectural model to conduct 

these QOS translation and negotiation tasks. 

2.3 Related Work 

Tenet [21] is a research conducted by the University of California at 

Berkeley and the International Computer Science Institute. The Tenet 

approach to multimedia networking demands that any multimedia 

application should be able to request a level of network performance 

appropriate to its requirements. Tenet measures performance or QOS 

parameters including bandwidth (in terms of maximum packet size and inter- 



packet arrival time), delay bounds, jitter bounds, and reliability bounds. 

These bounds may be statistical in nature. Since network performance cannot 

be achieved in the realm of unpredictable network application behavior, the 

interface between the network and the application is modeled as a contract to 

which both sides must comply. 

The Desk Area Network (DAN) [22] project, developed at the University 

of Cambridge Computer Laboratory, employs a multimedia workstation 

equipped with a single ATM switch to interconnect multimedia peripherals (e.g., 

an audio interface and a video camera) with the system processors and memory. 

The internal architecture of a DAN workstation exhibits characteristics of an 

asymmetrical multiprocessor which differs from the typical symmetrical 

multiprocessor server design. By using an asymmetrical multiprocessor 

architecture, DAN'S design objectives may exclude the low-level intrasystem 

communication demanded by a symmetrical multiprocessor, such as 

interprocessor communication, synchronization, and cache coherency. A high 

speed input/output (I/O) subsystem, such as SCSI, is utilized to interface mass 

storage devices with a DAN workstation. Since the storage devices are not 

completely integrated within the system, DAN is more flexible in terms of 

scalability as compared to traditional file servers. The primary memory model 

used is "stream caching" which delivers the streaming data from various 



multimedia devices directly to the processor's secondary cache, thus bypassing 

the system main memory. 

VuNet [23] is a high speed local area ATM network that can handle data 

rates at giga-bits per second. VuNet is implemented in the context of ViewStation, 

which is a distributed multimedia research conducted at the Massachusetts 

Institute of Technology (Ml'T). VuNet investigates the use of ATM technology to 

connect multimedia devices to a workstation without extending ATM into the 

workstation itself. It interconnects workstations and multimedia devices using a 

set of ATM links and switches. The objective of VuNet is to deliver real-time data 

such as video and audio from the network to the multimedia applications. A 

general overview of the VuNet project is shown in Figure 2.5. 

Researchers at Washington University proposed using 3 by 3 ATM 

switches to connect a set of storage nodes to a high speed network [24]. Each 

storage node consists of SCSI channels and RAID (Redundant Arrays of 

Inexpensive Disks) devices to support massive storage and fault tolerance. A 

dedicated computer is attached to the ATM switches as a central manager to 

control the storage nodes. This project does not use ATM as the system 

interconnect bus but as the storage 1/0 back-bone network. The processors, 

system memory, and storage subsystems are still connect through a traditional 

system bus. 



Multimedia Workstation Multimedia Workstation 

Figure 2.5: The VuNet high speed local area ATM network architecture designed to deliver 

real-time data such as video and audio to multimedia applications. 

Project Athena [25,26] is a multimedia computing project initiated at  MIT 

to provide a flexible, efficient, and user-friendly prototype multimedia authoring 



environment for creating distributed multimedia computing applications. 

AthenaMuse 1 [27, 281 is the platform-independent, multimedia authoring 

software environment derived from Project Athena. The latest AthenaMuse 2 [29, 

301 converts the research agenda and experiences learned from AthenaMuse 1 

into an extensible object-oriented software environment The primary target 

platforms for this software system are UNIX-based workstations running the X- 

Windows System, a graphical user interface (GUI). Nevertheless, the software 

environment and generated applications will be portable across diverse hardware 

architectures and operating systems subject to the reasonable constraints of the 

target platform's hardware functionality. 

The Multipoint Interactive Audio-Visual System (MIAS) [31] project 

funded by Esprit (Commission of the European Community) aims to study 

the necessary protocols and features required to support an efficient 

multipoint multimedia communication. The MIAS audio-visual terminal 

consists of dedicated hardware attached to an ISDN line (2B+D channels) 

incorporating a video input connector and H.261 codec to handle digital video 

data, while using a G.722 codec and associated audio 1/0 circuitry to handle 

digital audio data. The system runs under the Microsoft Windows platform 

using PC workstations. The PC workstations are also used for sharing as well 

as transferring data files, and performing conference control chores. 



In this Chapter, we discussed the spatial and temporal properties of 

multimedia data types and the synchronization issues in delivering 

multimedia services. We also defined the four data topology models for 

multimedia networks that are used in this research. In the next Chapter we 

define the QOS requirements that multimedia applications impose on the 

underlying network. These requirements are expressed in a form of network 

performance criteria so that we can obtain a quantitative assessment of the 

services provided bv the overall system. 



Chapter 3 

Quality of Service Requirements and Network 
Performances 

3.1 Network Performance Criteria for Multimedia Applications 

In distributed multimedia applications involving multiple sources and 

receivers, an intermedia synchronization scheme is needed to eliminate causes of 

asynchrony. Figure 3.1 shows a study conducted by Little et al. [17] regarding 

causes of asynchrony in a video telephony system. From tlus study the basic set of 

QOS parameters can be identified as speed ratio, utilization, average delay, jitter, 

bit error rate, and packet error rate. The above set of QOS parameters indicates 

that these parameters need to be derived from various multimedia devices and 

the distributed network. However, this is only appropriate for describing the 

connection quality that the network provides. The specified set reveals little 

information for describing the QOS requirements demanded by multimedia 

applications. 

The first major goal of this research is to capture different media types and 

investigate their orientation, file size, temporal properties, and other features 



specific to the media under investigation. Digital video is one of the major media 

types that we consider here. The Intel Smart Video Recorder Pro (ISVRP) video 

digitizing interface is used to digitize and store the video footage captured from a 

SONY Hi-8mm camcorder using the Y/C (SVideo) input to ensure image 

quality. The ZSVRP interface is a second generation design based on the latest i750 

video processor developed by Intel. Using the i750 video processor and Intel's 

Indeo 3.2 compression technique, the ISVRP interface is capable of capturing and 

compressing video in real-time up to 15 frames per second (fps) at low resolution. 

To successfully capture and then playback the digitized video with an acceptable 

quality, the application QOS parameters should include sampling size, sampling 

rate (or frame rate), playback delay due to system processing times, hard drive 

access times and video display adapter delays, and sample loss rate. Speech and 

music are also captured using the TurtleBeach MultiSound Monterey 

audio/sound adapter. For an acceptable digitized audio quality, the application 

QOS parameters must include sampling size, sampling rate, playback delay, and 

sample loss rate. 
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2. The amount of data to be transmitted is substantial and the processing 

power involved in encoding and decoding the continuous media data may 

be considerable. 

3. Many multimedia applications are distribution oriented; e.g., video on- 

demand, where streams of multimedia data need to be distributed to 

many users at the same time. 

From these observations, we have chosen four performance criteria to 

characterize the network behavior when handling continuous media traffic. These 

criteria are actually used in specifying the QOS for our multimedia 

communications model: 

1. Throughput: This is the transfer rate or data rate between two 

communicating end-systems. Throughput is also known as the bandwidth 

of the network. 

2. Transmission delay: This is the delay for a block of data to propagate from 

one end-system, via a network, to another end-system. Transmission delay 

is often called the network latency. 

3. Delay variations: Data transmissions can be affected by the physical 

properties of the network, such as data corruption, crosstalk between 

cables, and network overloading. These conditions all contribute to 



variations in the transmission delay of the network. A term often used to 

describe these variations is jitter. 

4. Error rates: Error rates are measurements of the reliability, or the resilience 

to errors, of the network Errors can be caused by data loss, data 

duplication, data alteration, or incorrect-order delivery of data packets. 

3.2 Application QOS Parameters 

For multimedia computing, the required QOS depends on the individual 

multimedia application and the media objects being served. One of our research 

tasks is to provide a general framework to parameterize the QOS specifications 

for each media object for multimedia applications. The QOS specifications for a 

media object include quantified values to describe the necessary playback quality 

and the playback accuracy. For a time-dependent media object which contains a 

sequence of time-dependent information units, also known as Logical Data Units 

(LDUs), the accuracy in timing during playback depends on whether the QOS 

specification can be satisfied by the underlying network or not Figure 3.2 shows 

an example of the LDU hierarchy of a digital animation which requires lip- 

synchronization. 



Figure 3.2: The LDU hierarchy of a digital animation which requires lip-synchronization. 

Animation 

Depending on the type of multimedia application, absolute 

synchronization requirements can be relaxed to various degrees for each media 

object without adversely affecting their presentation quality. We classlfy the QOS 

specifications for a media object based on three major characteristics: 

1. Presentation qualities that are independent of temporal relationships. 

2. Presentation qualities that are affected by temporal relations among other 

media objects. 
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3. Quality degradation caused by the presentation environment. 

Color depth and resolution are the two time-independent QOS parameters 

that speclfy presentation quality for still pictures and digital video. For digital 

audio data, color depth is replaced by the number of audio channels and 

resolution is replaced by the sample size of the digital audio file. Apparently an 

audio file with mono sounds and a small sample size demands less bandwidth 

than the one with stereo sounds and a moderate sample size to be transmitted 

across the network In other words, these QOS parameters directly affect the 

throughput of the network. We shall derive an approach to map the QOS 

parameters into network QOS requirements in Section 3.3. 

The time-dependent QOS parameters of digital video include the frame 

rate which determines the smoothness of motion during playback It is generally 

agreed that at least 15 fps is required to reproduce fluid motion in a video 

sequence. Some video conferencing applications can perform satisfactorily 

between 11 fps to 14 fps due to the limited amount of movements typically 

involved in this kind of application. In the case of digital audio, frame rate is 

replaced by the sample rate. 

For aperiodic data (such as still images and text) time-dependent QOS 

parameters include preferred end-tosnd delay, acceptable end-to-end delay, and 



unacceptable end-toend delay as measured with respect to real-time or with 

respect to other aperiodic data to be presented[32]. An example of end-toend 

delay is illustrated in Figure 3.3. These end-toend delay parameters are also 

applicable to periodic data such as video and audio. However, instantaneous 

delay variations or jitter can seriously affect the synchronization between periodic 

data streams. Therefore, maximum acceptable jitter is included in our application 

QOS parameters to define an affordable synchronization boundary for the 

instantaneous difference between two synchronized data streams. 
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Delay variations are contributed by sample losses during transmission and 

the reliability of the underlying network To quantdy these variations, we have 

included the maximum sample loss rate (SLR), maximum bit error rate (BER), 

and the maximum packet error rate (PER) as the acceptable QOS parameters for a 

media object These parameters can be used to describe time skew with respect to 

real time or with respect to periodic data streams. The average difference in 

presentation times over some n synchronization intervals between two 

corresponding media objects is called skew. For media objects such as video and 

audio, data can be lost during playback resulting in dropped frames or gaps in 

the presentation. Such losses cause data streams to advance in time. This 

synchronization problem is called stream lead. On the other hand, duplicating a 

data frame causes the data stream to retard in time or a stream lead. Figure 3.4 

illustrates the effects of time skew. Figure 3.5 shows how jitter is corrected by 

either dropping or duplicating frames of data and skew may be corrected by 

dropping data frames. 
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Figure 3.4: Effects of time skew. 
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Figure 3.5: A nominal multimedia data stream as compared to the received data stream with 

errors caused by skew and jitter of the original data during transmission (fiom [33]). 

To account for time skew, we need to address the synchronization 

problem both during the production of multimedia data objects and during the 

presentation of these objects. In order to guarantee the QOS required by a 

multimedia application, all involved media objeds (e.g., video and audio) are 

captured, recorded, and edited with no skew during production This is known 

as the production-level synchronization and it ensures that all media objects are 

"in- synd' prior to the presentation of the data at the user interface. Unlike 

production-level synchronization, which can be controlled during production, 



presentation-level synchronization depends on the networking system conditions 

during presentation. The presentation-level synchronization defines the 

boundary for an acceptable presentation quality as perceived by the human user 

at the workstation end. The degree of acceptable presentation quality is expressed 

as the QOS parameters defined for maximum lead-skew and maximum lag- 

skew. The actual values for these parameters are found by exhaustive 

experiments as well as derived from literature in this research area. Figure 3.6 

depicts some of the QOS values appropriate for presentation-level 

synchronization [34]. 

The last application QOS parameter we need to define is the priority level 

that supports multithreaded programming. Multithreading is a form of 

concurrent programming in a multitasking environment Here, priority is defined 

for the relative importance among the different media objects that are managed 

by an application. Consider the case where a real-time application shares the 

same system resources with non real-time programs. The real-time application, 

while waiting for some continuous data packets, must compete for system 

resources with non real-time applications which need only asynchronous data. 

Since continuous data packets have deadlines to meet, they should be assigned 

with a higher priority than asynchronous data packets that have no timing 

restrictions. There are four priority levels: real-time, high, normal, and idle. 



Priority is not an option that can be selected by the user. It is defined by the 

application and the nature of the multimedia objects it handles. Details on 

priority and multithreading are given in Chapter 5 when we discuss the 

implementation of our QOS model. We have now covered the set of application 

QOS parameters defined for media objects and a summary is shown in Figure 3.7. 

a Pointer prior to audio for 500 ms; audio prior to pointer for 750 rns. 

Figure 3.6: Quality of Service for presentation synchronization purposes (fiom [34]). 
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Figure 3.7: A set of application QOS parameters defined for media objects. 
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the application, the networking system, and the operating system at the 

endpoints as well as between the endpoints and the network. The application 

QOS parameters defined in the previous section allow the multimedia application 

to submit a request for QOS guarantees, at the application's perspective, to the 

networking system for performing resource allocation. Resource allocation and 

management are complex tasks which will be discussed in the next Chapter when 

we describe our QOS negotiation model. However, before any resource allocation 

can begin, the networking system must understand the types of service 

guarantees that the application really needs by interpreting the set of submitted 

application QOS parameters. This is achieved by translating the application QOS 

parameters into the network QOS requirements. 

Our model specifies network resources as network QOS requirements 

based on three domains that govern the connection quality of the network The 

first domain involves throughput specifications which include packet size and 

packet rate. The second domain deals with network traffic specifications. Here, 

we have included preferred end-to-end delay, acceptable end-to-end delay, 

unacceptable end-toend delay, interarrival rate, and packet loss rate. The third 

domain is synchronization specifications which include network jitter, lead-skew, 

lag-skew, BER, PER, and priority. 



The translation between application QOS parameters and network QOS 

requirements is done by several mapping functions. The network packet size SN is 

a known value determined by the transport subsystem (e.g., TCP/IP running on 

10-Base2 Ethernet) used to implement the network The network packet rate RN is 

determined by 

RN = ( r s A / s N l  ) * RA (4.1) 

where SN is the packet size of the network and it is predetermined by the 

network itself, SA is the sample size of the application media object, RA is the 

media object sample rate, and ( r 1 ) is the ceiling function. The subscript 'A' 

denotes that the value is defined for an application QOS parameter whereas the 

subscript 'N' denotes that the value is defined for a network QOS parameter. The 

sample size of a still image or a video frame is determined by the resolution and 

the color depth of the image. For example, a video frame with resolution of 160 

pixels by 120 pixels and a color depth of 8 bits per pixel (i.e., 256 colors) has a 

sample size SA of 160 * 120 * 8 = 153,600 bits or 19,200 bytes. If the video clip is to 

be played back at 15 fps, then RA= 15 fps. Assuming that the network packet size 

SN is 64 bytes, the required network rate RN would be: 

RN = r (19,200 bytes per frame/ 64 bytes per * 15 fps 

= 4,500 packets per second 



The interarrival rate IN is calculated as 

The calculations for the network unacceptable end-to-end delay CN~, , 

acceptable end-toend delay C N ~ ~ ~  and preferred end-to-end delays C N ~  are 

expressed by the following equations: 

where RTA and WTA are the processing times for the application to read data 

from a remote source and to write data to a local buffer, respectively. These 

processing times are measured in advance and exchanged during the QOS 

negotiation process. 

The rest of the network QOS requirements are directly mapped onto the 

given application QOS parameters. They are: 



Packet loss rate LN = Sample loss rate LA (4.6) 

Network jitter JN = Maximum acceptable jitter JA (4.7) 

had-skew SDN = Maximum lead-skew SDA (4.8) 

Lag-skew SGN = Maximum lag-skew SGA (4.9) 

Network bit error rate BERN = Maximum acceptable bit error rate BERA (4.10) 

Network packet error rate BERN = Maximum packet error rate BERA (4.11) 

Priority set for application PA = Priority set for network PN (4.12) 

In this Chapter we have discussed the behavior of continuous media traffic 

and the four performance criteria which are critical for the communication 

subnetwork to support multimedia applications. Based on these criteria (i.e., 

throughput, transmission delay, delay variations, and error rates), we have 

derived the basic set of QOS parameters for multimedia applications. These 

application QOS parameters are then translated into network QOS requirements 

based on the mapping functions (equations 4.1 through 4.12). Although these 

mapping functions may be straight forward to obtain, the entire translation 

process is in fact a complex procedure due to the dynamic nature of the 

networking environment. Recall the four data topologies outlined in Chapter 2. 

Media streams can come from several different sources, go through different 

parts of the network, and be delivered to different users (or sinks) thus making 

the translation process a difficult one. If parts of the network resources are not 



available at the time of the QOS request, the network must decide to either reject 

or attempt to accommodate the request by modifying the QOS requirements to 

some levels that are acceptable by both the application and the network. The 

details of tlus QOS negotiation process are given in the next Chapter. 



Chapter 4 

The QOS Orchestration Model 

4.1 Integrated QOS Orchestration Architecture 

To satisfy the QOS requirements demanded by multimedia applications, 

network resource management alone is inadequate [35]. There have been debates 

on placing the responsibilities of these QOS requirements to the application level 

software instead of redesigning a whole new set of multimedia networking 

protocols. As a result, much of the current multimedia applications have to 

incorporate proprietary codes to maintain isochronous transmission for media 

objects since most commercial networking operating systems are not designed to 

support continuous media. The main disadvantages of this brute force approach 

are: 

i) Distributed multimedia applications are difficult to develop without 

standard support for continuous media communication from the 

underlying operating system. 

ii) Proprietary QOS management imposed by different multimedia 

applications may result in poor performance when these applications are 

executing together in a multitasking environment. 



iii) There will be some wasted bandwidth and processing power across the 

network since there is no integrated resource management overseeing all 

the distributed resources. 

This analysis suggests that there is a need to manage resources among the 

application, network, operating system at the communicating end-station, as well 

as between the communicating end-stations and the network itself in a unified 

and balanced manner. We, therefore, advocate the notion of an integrated QOS 

architecture [36], whereby application QOS requirements should be mapped 

through all the layers of the entire system. Our proposed endpoint 

communication model, which is designed to support an integrated architecture, 

embodies two major components: an application subsystem and a transport 

subsystem as shown in Figure 4.1. The application subsystem provides facilities 

such as application QOS management, multimedia service management, 1/0 

device management, media object synchronization, and media data delivery to 

the application. End-to-end connection management, data flow and throughput 

control, data packet ordering, and data flow management at the network interface 

are all functions provided by the transport subsystem. Each subsystem is further 

divided into functional layers similar to the Lancaster distributed multimedia 

architecture [37. 
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Figure 4.1: The proposed endpoint communication model embodies two major 

components: an application subsystem and a transport subsystem (fiom[l3]). 

In our model, resource management is conducted over the entire network 

architectural layers, from the distributed application layer down to the network 

layer as depicted in Figure 4.2. The QOS negotiation agent is at the interface 

between the application subsystem and transport subsystem. It is an entity that 

orchestrates required resources for the multimedia application. The orchestration 

services include end-to-end QOS negotiation, renegotiation, QOS degradation 

detection, and QOS coordination over multiple related connections. 
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Figure 4.2: The layered architecture of our integrated QOS orchestration model. 

All multimedia application resources are treated as local or remote 1/0 

devices that can carry continuous media traffic. The resources are parameterized 

through the translation between application QOS parameters and network QOS 

requirements as discussed in Chapter 3. For simplicity, we decide to allocate each 

media object its own virtual 1 /0  channel or virtual circuit in the transport layer. 

One may argue that continuous synchronization can be achieved by multiplexing 



the required media objects into a single virtual circuit in the proper throughput 

ratios. Our experiments indicate that a more general solution of separating media 

objects, each with its own virtual circuit, has a number of advantages over the 

multiplexing approach [38]: 

(i) Implementation is simplified with a single media per virtual circuit 

approach. Comparatively, the complexity and processing overhead to 

multiplex and demultiplex are substantial. 

(ii) Most often media data are compressed to improve throughput during 

transmission. Compression schemes vary greatly among different media 

types. With compressed data, multiplexing and demultiplexing ddferent 

media objects over a single virtual circuit may lead to excessive end-toend 

delays. 

(iii) Multiplexing is not feasible when several requested media objects are 

originated from different sources. 

(iv) Separate virtual circuits may be processed in parallel to increase 

performance. 

(v) Separate virtual circuits allow the use of best-suited 1/0  channels for 

individual media objects, thus leading to better resource utilization. 

Contrarily, multiplexing leads to compromise QOS and poor utilization of 

the 1 /0  channels. 



In addition, our transport subsystem requires only unidirectional 

(simplex) virtual circuits for transporting continuous media. The argument is that 

most continuous media are inherently unidirectional in nature; e.g., video on- 

demand delivers digital video to an end-station in one direction. As resources 

must be explicitly reserved to provide QOS guarantees, network bandwidth will 

be wasted on supporting duplex virtual circuits when only unidirectional 

transfers are needed. For situations where duplex communication is required, 

two simplex virtual circuits are employed. An added advantage for using two 

simplex virtual circuits instead of a single duplex virtual circuit is that the QOS 

requirements of the two directions are generally different and should be handled 

separately. 

4.2 The QOS Negotiation Agent 

In a QOS-based resource management scheme, it is not sufficient to specify 

only a QOS level, the protocol profile, plus the service class at session creation 

time and assume that all conditions will statistically remain intact for the life of 

the session. It is more appropriate to adopt a dynamic QOS control scheme [39, 

40,411 since QOS requirements and network traffic frequently change during the 

course of a single session. Based on this observation, our QOS negotiation agent is 

designed to maintain the required services even when system condition changes 

during a multimedia session. 



The QOS negotiation agent relies on the supplier-consumer paradigm, 

where the consumer requests a service, or a product, from the supplier and the 

supplier delivers the service if the consumer agrees on the price. A deal may not 

work out if either the consumer is not satisfied with the given product or the 

supplier is not pleased with the offered price. A third party, an agent, may be 

called upon to mediate between the consumer and the supplier in order to close a 

deal. Using dynamic QOS control, the QOS negotiation agent plays the role of a 

mediator in helping the consumer and the supplier to come to an agreement for 

multimedia services. The consumer, in this case, is a human user, or a computer 

program, who requests multimedia services by executing some application. The 

commodities being consumed here are the media objets requested by the 

consumer. The terms for this deal to close depend on the availability of the 

resources that can be allocated for processing and transmitting the media objects. 

Naturally, the supplier is the remote application that manages the requested 

multimedia resources at a remote site; e.g., a video database server for video on- 

demand services. 

A multimedia session begins when the consumer calls for services at the 

graphic user interface (GUI). The consumer application creates a QOS profile 

registry (database) and stores a set of application QOS parameters as described in 

the previous Chapter. According to the QOS values, the QOS negotiation agent 



begins to allocate local resources at the QOS orchestration layer. Through the 

transport subsystem, this agent also gathers resource allocation information from 

the network resource management as well as from the supplier QOS negotiation 

agent at the remote site. Upon some request for senrice, the remote supplier 

initiates QOS orchestration similar to the process performed by the consumer 

application. The supplier QOS agent determines the availability of resources for 

establishing the specified connections. If all the QOS requirements can be satisfied 

at the time of the request, the service is admitted with an end-toend QOS 

guarantee. Figure 4.3 shows the basic steps to establish a connection involving the 

consumer, the QOS negotiation agents, and the supplier. An example of a 

successful QOS negotiation is shown in Figure 4.4. 
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Figure 4.3: The basic steps in establishing a connection fiom the consumer to the supplier 

with the help of the QOS negotiation agents on each side. 



Consumer (Service Request) supplier (Service Grant) 

Figure 4.4: Resource reservation and resource allocation protocol for negotiating QOS 

requirements with an "accept" response (from [42]). 



The supplier and the consumer both employ the layered QOS architecture 

shown in Figure 4.2. The application subsystem on either side orchestrates 

resources in the user space, which include memory buffers and processor 

utilization. On the other hand, the transport subsystem manages resources shared 

by lower layers of the network protocol stacks. The QOS profile registry stores 

and provides information necessary for resource synchronization. Global 

orchestration is achieved through interactions between the transport portion of 

the QOS negotiation agent and the network resource manager. 

4.21 The Negotiation Protocol 

An agreement on QOS requirements may not be reached during the 

negotiation for many reasons. The QOS negotiation agent may find that local 

resources are inadequate for the multimedia services requested; e.g., lack of 

memory buffers. Network resources may be insufficient to create a proper virtual 

circuit with enough bandwidth to accommodate the required media streams. 

Even if sufficient local resources are reserved, the remote supplier may be too 

busy serving other users and decide to drop the connection. In case the consumer 

QOS agent discovers that the requested QOS is denied by any of the mentioned 

entities, it sends a "modijj "signal back to the application subsystem and attempts 

to lower the QOS requirements. The "rnodiw signal indicates the need for 

negotiation or renegotiation on the QOS parameters. Using the preferred, 



acceptable, and unacceptable QOS values defined in Chapter 4, the QOS 

negotiation agent will reduce the QOS requirements from a preferred value 

(upper bound) to an acceptable value or down to just above the unacceptable 

value (lower bound). The range between preferred values and just above 

unacceptable values is referred as "soft" QOS guarantees. Soft guarantees mean 

that the QOS may change during the course of connection and renegotiation is 

needed to determine at what level the QOS will continue to be delivered. 

The negotiation process is performed across the boundaries of all the 

layers within the application and transport subsystems as shown in Figure 4.5. 

The QOS negotiation agent incorporates several types of communication during 

negotiation: layer-to-layer, layer-to-operating system, peer-to-peer, peer-to-group, 

and groupto-peer. It is worthwhile to note that in IS0 terminology, peer-to-peer 

negotiation is also known as caller-to-calk negotiation and layer-to-layer 

negotiation is called -ce-user-to-&ce-pr&der negotiation. 

Layer-to-layer communication is used to facilitate the human user and 

application interactions. Layer-to-operating system communication is used 

during the admission of local system resources. Peer-to-peer communication is to 

obtain and distribute QOS resource requirements between the consumer and the 

remote supplier. Figure 4.6 provides a detailed description of the different types 



of communication taking place across the layer boundaries of the proposed QOS 

management model. 
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1 application 1 

(caller) 

1 
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(caller) (Caller-to-Callee) 

Layer-to-Operating system Layer-to-Operating system 

Network 
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1 

Operating System 
(caller) 

Figure 4.5: Negotiations across the layer boundaries of the proposed QOS management 

model. 
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Figure 4.6: A detailed view of QOS negotiations. 

During the negotiation process, signaling among the different layers in the 

application and network subsystems results in one of the three responses (see 

Figure 4.7): 

i) Accept: The supplier agrees to allocate the resources at the remote site. 



ii) Modih The supplier cannot provide the required resources to the 

consumer at the preferred QOS levels. However, by relaxing the requested 

QOS specifications the supplier can still provide end-toend services 

within the consumefs lower QOS bound. 

iii) Rqect: This signals that the supplier cannot provide the necessary 

resources even if the consumer reduces its QOS specifications to the lowest 

acceptable level. This may also be an indication of time-out problems or 

some irrecoverable errors taking place in the network. 
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Figure 4.7: Signaling during QOS negotiations @om [43]). 



To efficiently perform negotiations across the layers and among the peers, 

we have adopted several negotiation protocols: 

i) Bilateral peer-to-peer negotiation is used at the application layer between 

peers as shown in Figure 4.8. This type of negotiation takes place between 

the consumer application subsystem and the supplier application 

subsystem. The consumer application specifies the QOS requirements and 

the supplier application is not permitted to modify the proposed value. 

The supplier QOS agent can, however, signal the consumer QOS agent 

that there is a need to modify the request QOS in order to conduct a 

successful session. Any modifications to the QOS parameters must be 

made by the consumer application. 
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Figure 4.8: Bilateral peer-to-peer negotiation at the application layer between the consumer 
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ii) Unilateral layer-to-operating system negotiation is conducted between the 

application layer and the local operating system when local resources are 

being allocated. The operating system is not allowed to change the 

proposed QOS. However, the consumer application is allowed to control 

the presentation quality of the received media objects if necessary. For 

example, a digital audio data stream with stereo channels are multicasted 

to several users and one of the user machines can only play mono sounds. 

The machine that lacks stereo sound support will still be able to present 

the audio, but in monaural manner. 

iii) Triangular negotiation is used at the transport subsystem layer to 

negotiate with the underlying network. Two methods of triangular 

negotiation may take place: triangular negotiation for a bounded target 

and triangular negotiation for a contractual value. 

To allocate network resources, the QOS agent must negotiate at the 

transport layer. To begin the negotiation, the application QOS parameters 

are translated into the network QOS requirements. Triangular negotiation 

for bounded target is used to obtain the best possible QOS from the 

network. In this method of negotiation, the consumer QOS agent only 

presents the values of a QOS parameter through two bounds: the 



preferred value (upper bound) and the acceptable value (lower bound). 

The objective is to negotiate for the preferred QOS value, which is the 

targeted value for this negotiation. The network manager is not permitted 

to change the lower bound that is set at the acceptable QOS value. 

However, it is allowed to modlfy the target value if it has determined that 

the target is too high to satisfy. The supplier QOS agent makes the final 

decision on whether target value suggested by the network is acceptable 

(see Figure 4.9). 
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Figure 4.9: Triangular negotiation for bounded target. 
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If the supplier QOS agent agrees to accept the new target value, admission 

for the network resources will then be performed by the transport 

subsystem. If the supplier QOS agent cannot provide at least the 

acceptable quality, the second tiangular negotiation is employed. 

Triangular negotiation for a contracted value is used if the bounded target 

method fails. This happens when the supplier QOS agent cannot provide 

services at the acceptable QOS levels. In this case, the consumer QOS agent 

resubmits the QOS parameters using only the preferred and the 

unacceptable values. The objective here is to agree on a contractual value, 

which is set slightly above the unacceptable value, for each QOS 

parameter. The network resource management can increase the 

contractual value from the unacceptable level towards the preferred level 

as network resources permit The supplier QOS agent makes the final 

decision and signals the consumer QOS agent If the network cannot 

provide services at above the unacceptable QOS levels, the connection 

request is rejected without further negotiations. This situation is illustrated 

in Figure 4.10. 



Figure 4.10: Triangular negotiation for contractual value. 
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window from 640 pixels by 480 pixels to 320 pixels by 200 pixels in order to get 

more viewing area for another application that is running concurrently. By 

reducing the screen size, the user may receive better service in tenns of the frame 

rate per second since a smaller display window requires less processing power 

peer-to-peer ----------- Supplier 
(caller) negotiation (callee) 

Reject 

. .- . . . . . . - . . . . . . -. . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Network 

(service provider) . .. - ....-......... . ......-... .............................. . ...... ....... ...... . ... . ... . . .. . ... . ... ... . . .. . .. .. ...... ....... ..... ............ . ...-. ..... .... ..... : 

A 

Connect 
Confirm 

t 4  
v 

Reject 

Connect 
Response 

* 3 
v 

Preferred 
QOS value 

Unacceptable 

/ O S  "'\. - - 
Connect 
Request 

t ,  

A 

#. - - Best effort 
QOS value 

Connect 
Indication 

t 2  



and fewer memory buffers. This is an example of dynamic changes in QOS 

requirements during a multimedia session Negotiations and modifications are 

continued to be made across the layers of the application and transport subsystem 

as the QOS requirements change. A separate virtual channel is used for 

exchanging QOS information between the consumer and the supplier without 

affecting the continuous media traffic (see Figure 4.11). 

Real-time virtual circuits Asynchronous data connection 

Consumer 
(Sink) 

Figure 4.1 1 : Using a separate channel to control synchronization. 

Supplier 
(Source) 

4.22 The Consumer Protocol 

The consumer protocol, as shown in Figure 4.12 is initiated by the input of 

application QOS requirements set at the user endstation. For instance, the user 

+ Video stream 
L 1 

I 

4 Audio stream 
\ I , 

L Synchronization 4 

Network 



may open a 640 pixels by 480 pixels window for displaying a video clip digitized 

at 256 colors. All the associated QOS parameters are stored in the application 

QOS profile registry. 

The application QOS requirements are accessed from the QOS profile 

registry and then mapped into resource requirements for the local operating 

system. The consumer QOS agent negotiates with the operating system utilizing 

an admission service implemented in the QOS orchestration layer. The admission 

service assumes that task processing times and memory buffer space 

requirements are known a priori. This information must be available from the 

system QOS parameter profile registry before any admission decisions can be 

made. Two tests against the temporal resources are than performed by the 

admission senice at the application level. A local schedulability test decides 

whether or not the tasks can manage 1/0 streams from multimedia devices 

within the required time bounds. An end-to-end delay test is also performed to 

determine whether or not the tasks can meet the specified end-to-end delay upper 

bound. The local resources are reserved if both tests are satisfied. At this point, 

the consumer QOS agent starts a peer-to-peer negotiation at the application level 

with the remote supplier QOS agent 



Since there is no reason to hold up shared network resources before we 

can admit the required local resources, the negotiation for application QOS is 

separated from the negotiation for network QOS. Admission of the local 

resources must be made before the negotiation with the network begins. 

Unless the negotiation at the application layer is rejected, the consumer 

QOS agent initiates the request for network QOS requirements and begins 

network resource reservation and allocation. Four steps are carried out by the 

consumer QOS agent in the transport subsystem: 

i) Application QOS parameters are translated into network QOS 

requirements. 

ii) The admission service for the transport subsystem is initiated. 

iii) Negotiation begins for per-connection network QOS parameters. 

iv) Finally the consumer QOS agent waits for the network resource manager 

and the supplier QOS transport layer to reply. The accepted QOS values 

are translated back into application QOS and the QOS profile registry is 

updated. 
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Figure 4.12: Flowchart for the consumer protocol. 



4.23 The Supplier Protocol 

The supplier protocol works similarly to the consumer protocol as shown 

in Figure 4.13. The supplier QOS agent responds to the consumer call for service 

by waiting for the remote consumer to send the requested application QOS 

parameters. The received application QOS parameters are compared against and 

the supplieis own application QOS output parameters. A match between the 

two sets of QOS values invokes the admission service in the supplier application 

subsystem. The supplier QOS agent signals the remote consumer according to 

results from the admission service. A positive negotiation of the application QOS 

parameters is followed by obtaining the consumeis network resource 

information from the network resource management layer. The network resource 

management then signals the global admission service at the supplier transport 

subsystem. The negotiation protocol translates the network QOS parameters into 

the application QOS requirements and determines if resources can be allocated, 

relaxed or released according to the availability of resources. If all required 

resources are available, they are allocated and the multimedia session begins. 
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Figure 4.13: Flowchart for the supplier protocol. 



4.3 Group Communication 

When multiple consumers or suppliers are involved in a multimedia 

session, peer-to-group and group-to-peer communication methods are utilized. 

Peer-to-group communication is needed when the consumer wants to receive 

multimedia streams from several remote suppliers. The consumer application 

specifies the addresses of each remote supplier and the types of services 

requested from the identified suppliers. At the transport level of the consumer 

side, the network management system provides the network addresses and waits 

for responses returned from the network and the group of suppliers. At this point 

the QOS negotiation agent on the consumer side must multicast the network QOS 

requirements to all members involved in this group communication session. The 

agent relies totally on the multicast capabilities of the underlying network. 

Neither the agents nor the end-point transmission protocols have multicasting 

capabilities. 

The suppliers at various locations proceed resource allocation according to 

the consumer QOS agent specifications and return their resource management 

decisions to the consumer QOS agent If the suppliers cannot deliver the service at 

the specified quality, they must mod@ their own capabilities at the transport 

subsystem. Each supplier is responsible for adjusting its own QOS capabilities. 

The advantage of negotiating with each supplier separately is that each supplier 



can report its own offerings to the consumer. The disadvantage is that the number 

of connections required to conduct the negotiations increases proportionally with 

the total number of group members involved. Figure 4.14 shows the negotiation 

paths in peer-to-group communication. 

Group-to-peer communication is essentially identical to the peer-to-group 

communication except that the consumer must decide how to allocate resources 

for multiple incoming connections. The remote suppliers may return different 

QOS specifications and it is the duty of the consumer to deal with resource 

allocation and management for all the incoming media streams. The distribution 

of negotiation messages is also similar to that of the peer-to-group 

communication. 

Supplier Supplier 

Consumer 
QOS Agent 

Figure 4.14: The negotiation paths in group communication. 
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In this Chapter, we have proposed on the architecture of our integrated 

QOS management model. Using a layered architecture across the application and 

the transport subsystems, an application can negotiate and establish an end-to- 

end multimedia communication efficiently. Based on a supplier-consumer model, 

we have developed the QOS negotiation agents that conduct QOS negotiations on 

behalf of a consumer (e.g., a human user) and a supplier (e.g., a video server) of 

multimedia services. We have also discussed the negotiation protocol, the 

consumer protocol, and the supplier protocol employed by the QOS negotiation 

agents. In the next Chapter, we describe the computer implementation of this 

model and present the experimental results. 



Chapter 5 

Computer Implementation and Experimental Results 

The integrated QOS management architecture proposed in this research is 

motivated by the stringent timing requirements imposed by distributed 

multimedia applications and the lack of continuous media management in the 

current commercial operating systems. To implement the QOS negotiation model, 

we need real-time support from the operating system (0s). Single-tasking OS 

such as MS-DOS cannot support continuous media in a distributed environment 

For this reason, we have selected Microsoft Windows NT v.3.51 as the platform 

for implementing and testing our simulation programs mainly because it 

provides real-time multi-tasking support. Another important factor for this 

selection is that Windows NT includes the Windows Socket library, called 

WinSock [44], which provides many networking functions for implementing 

TCP/IP (Transmission Control Protocol/Internet Protocol) compliant 

applications. A discussion on WinSock is included in Appendix A. 

5.1 Priority Inversion Problem 

When a real-time application shares the same resources in a system with 

non real-time applications, the real-time application is usually forced to wait for 

the completion of the non real-time applications. For instance, if many non real- 



time applications, such as file utilities, word-processors or spreadsheets, are 

sharing the same network file server, the data packets of a high-priority tasKs 

video stream must wait for the completion of all previously queued low-priority 

packets. If the operating system does not preempt the low-priority tasks and 

allow the high-priority tasks to execute first, unexpected delay and jitters will 

result. This problem is called priority inversion. 

Priority inversion is avoided by exploiting the strength of preemptive 

multitasking in Windows NT. Windows NT uses a set of priority queues to 

determine a thread's eligibility to execute when it is time for context switching. 

The Windows NT dispatcher examines the set of ready threads and selects the 

head of the highest priority queue to be executed first For example, the thread for 

handling timecritical video packets, that has a higher priority, will be executed 

immediately by preempting the currently running non real-time thread, that has 

a lower priority. When it is the time for the preempted thread to use the processor 

again, the operating system restores the state of the thread and allows it to resume 

execution. The Windows NT process object is depicted in Figure 5.1, showing the 

process address space and several different threads. 
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Figure 5.1: Process and threads in Windows NT (from [45]). 

The priority of a thread is determined by the thread's process priority 

class, and its base and dynamic priorities. Within each priority level, threads are 

scheduled using a firstcome-first-sewed round-robin policy. Figure 5.2 shows 

the possible states of a thread in Windows NT. 

Figure 5.2: Possible states of a Widows NT thread (from [45]). 



The thread's process priority class is the most important component of a 

thread's priority. In Windows NT, thread priority can be one of the four classes: 

real-time, high, normal, and idle. By default, a process is started with the 

NORMAL - PRIORTY - CLASS. When QOS negotiation begins, the processes 

involved in the negotiation are set with the H I G H  - PRIORITY - CLASS. Once the 

admission of resources is completed, multimedia streams begin to flow from the 

source to the user. 

To determine the priority class of a process, the GetPriorityClass 

function is used: 

1: DWORD PriorityClass; 

2: HANDLE hProcess; 

3: hProcess = GetCurrentProcess(); 

4: PriorityClass = GetPriorityClass( hProcess ) ;  

GetPriorityClass uses a process handle (h~rocess) as the only argument 

and returns the priority class of that process or the zero value in case of an error. 

To mod@ the priority class of a process, the Setpriorityclass 

function is used. ~e t Priori t y~las s uses two argument: a process handle and 

the new process priority class. An example follows: 



1: DWORD error code; - 

2: BOOL State; 

3: HANDLE hProcess; 

4: hProcess = GetCurrentProcess(); 

5: State = SetPriorityClass(hProcess, HIGH - PRIORITY - CLASS); 

6: If (State == FALSE) 

7: error - code = GetLastErrorO; 

This function should be used with caution since raising the priority class of a 

process to HIGH - PRIORITY - CLASS may starve all other processes in a lower 

priority class. 

Within each priority class, there is a thread base priority level. There are a 

total of five thread priority levels: 

1. THREAD PRIORITY HIGHEST - - 
2. THREAD - PRIORITY ABOVE NORMAL - - 
3. THREAD - PRIORITY - NORMAL (the default level) 

4. THREAD - PRIORITY - BELOW NORMAL - 

5. THREAD - PRIORITY LOWEST - 

All newly spawned threads have the priority of 

THREAD - PRIORITY NORMAL by default. An application can determine a 



thread's priority by calling the Get ThreadPriori t y function. This function 

accepts a thread handle as the only argument and returns that thread's priority. If 

the function call returns the value THREAD - PRIORITY - ERROR - RETURN, this 

indicates that an error has occurred. An example is given below: 

DWORD error code; - 
BOOL State; 

HANDLE hThread; 

int ThreadPriority; 

ThreadPriority = GetThreadPriority(hThread); 

If (Threadpriority == THREAD - PRIORITY - ERROR - RETURN) 

error - code = GetLastErrorO; 

A thread's base priority can be raised or lowered by calling the 

SetThreadPriority function with two arguments: a thread handle and an 

integer priority level as mentioned above. The function returns a Boolean value 

indicating whether or not the operation is successful. By setting the priority above 

the normal level, a thread can request service from the operating system in order 

to handle some continuous media. The thread should not stay running at high 



priority after handling time-critical data to avoid stawing other threads that are 

running at a lower priority. An example is given below: 

1: DWORD error code; - 

2: BOOL State; 

3: HANDLE hThread; 

4: int Threadpriority = THREAD - PRIORITY - ABOVE - NORMAL; 

5: . . .  
6 : hThread = GetCurrentThread ( ) ; 

5: State = SetThreadPriority(hThread, THREAD - PRIORITY - HIGHEST); 

6: If (State == FALSE) 

7: { error - code = GetLastErrorO; 

8 : / /  Error handling begins 

10: } / /  end - if 

11: else 

12: { //Execute some job at high priority 

14: / /  Return to normal Priority 

15: State = SetThreadPriority(hThread,THREAD - PRIORITY - NORMAL); 

16: If (State == FALSE) 

17: { error - code = GetLastErrorO; 

18 : / /  Error handling begins 

20: } / /  end-if 



21: ) / /  end-else 

In addition to a base priority level that is changeable by the thread itself, a 

thread also has a dynamic priority level that can be altered by Windows NT. The 

operating system employs this function when it needs to make a thread more 

responsive to certain events by raising the thread's priority level. The level of 

priority promotion depends on the type of event that the thread awaits. In 

Windows NT, the scheduling policy is that threads awaiting keyboard input 

receive the highest amount of priority promotion so that they can be responsive to 

user inputs. On the other hand, threads awaiting 1/0 events receive a medium 

amount of promotion and threads that are computer-bound get the least 

promotion. After the event has passed, the scheduler lowers the dynamic priority 

by one level at each time slice until the thread priority returns to its base priority. 

Hence, the operating system can never lower a thread's priority level beyond its 

original base priority. A summary of Windows NT thread interface calls is shown 

in Figure 5.3. 



Figure 5.3: Summary of Windows NT thread interface calls. 

Windows NT Thread Interface Call 
CreateThread 

CreateRemoteThread 

GetCurrentThread 

SuspendThread 

ResumeThread 

ExitThread 

TerminateThread 

GetThreadPriority 

SetThreadPriority 

DuplicateHandle 

CloseHandle 

WaitForSingleObject 

WaitForMultipleObjects 

CreateEvent 

SetEvent 

ResetEvent 

PulseEvent 

Initializecriticalsection 

Entercriticalsection 

Leavecriticalsection 

Deletecriticalsection 

CreateMutex 

ReleaseMutex 

OpenMutex 

Createsemaphore 

Releasesemaphore 

TlsALloc 

TlsSetValue 

TlsGetValue 

TlsFree 

Description 
Create a new thread 

Create a new thread in a different process 
address space 

Return a pseudo handle to the current 
thread 

Suspend a specified thread's execution 

Resume the execution of the specific thread 

Terminate the current thread 

Terminate a specified thread 

Get the base priority of the specified thread 

Set the base priority of the spedied thread 

Get a duplicate handle to a thread object 

Relinquish a thread handle 
Wait for the specified object to attain a 

signaled state 
Wait for all or one of many specified objects 

to attain a signaled state 
Create an event synchronization object 

Signal an event 

Set the state of an event object to not- 
signaled 

Set and then reset an event 

Initialize a critical section object 

Acquire a critical section object 

Release a critical section object 

Remove a critical section object from the 
system 

Create a mutex synchronization object 

Signal a mutex object 

Given the mutex name, obtain a handle to it 
Create a new semaphore synchronization 

object 
Signal a semaphore object 

Allocate the thread local storage 

Set the value of a thread local storage 

Get the value of a thread local storage 

Free or de-allocate the thread local storage 



5.2 QOS-Based Resource Control 

The dynamic QOS control scheme that we use with the QOS negotiation 

agent allows the initial QOS values to change during the course of a multimedia 

session. The following pseudo code demonstrates how dynamic changes in QOS 

are handled in the program: 

1: LONG APIENTRY MainWndProc(HWND hwnd, UINT message, 

2 : UINT wParam, LONG 1Param) 

3: { 

4 : DWORD ThreadIDl, ThreadID2, ThreadID3; 

5 : static HANDLE hThreadl, hThread2, hThread3; 

7 :  main - thread - body; 

9: session - create (qos - manager, qos - request); 

10: . . .  
11: session - control (qos-manager, qos-change); 

12 : . . .  
13: session - callback(session, qos - level) 

14: { modify - qos (session, qos-level) ; 



After creating a session using the s e s s ion - create procedure in line 9, 

the user application may submit a request for degrading the initial QOS 

parameters; e.g., rescaling the video window to a smaller size. This is handled by 

the session control procedure in line 11. Meanwhile, the QOS negotiate 

agent may invoke a call-back function (line 13) for restoring or degrading the 

QOS values of the session being processed when either the application subsystem 

or the transport subsystem signals the need for such a change in QOS levels. 

5.3 QOS Management and Admission Control 

In order to coordinate with the QOS negotiation agent in performing 

dynamic QOS control, admission services for QOS allocation must also work in 

accord. The pseudo code of the admission control for managing changes in QOS 

values is given below: 

qos - control ( ) 

accept - request ( ) ;  

switch (sigal) 

case ADMISSION TEST: - 

estimate - resource - request ( ) ;  

check - mem - buffers ( ) ; 

check - schedulability ( ) ;  



check - network - capacity ( ) ;  

if (IS - REQUEST - ACCEPTABLE) 

qos - level = determine qos init value( ) ;  - - - 

replay (caller, qos - level); 

. . . 

This implementation allows the initial value of the requested QOS level to 

be admitted if all the resource allocation checks are passed. Windows NT also 

provides several synchronization mechanisms known as synchronization objects. 

They are events, critical sections, mutex (mutual exclusive), and semaphores. 

These mechanisms are widely used in operating system development [46]. 

5.4 Experimental Results 

The implementation of the integrated QOS management model requires 

that the existing operating system's kernel to be modified in order to support the 

real-time operations of the proposed architecture. Since the source code for 

Windows NT is not commercially available, we can only write simulation 

programs to study the effectiveness of the QOS management scheme developed 

here. The QOS negotiation agent is written as a background process handling all 

the negotiation threads by monitoring the operating system resources, the 

network resources, and the state of the multimedia application that is running in 

the foreground. The multimedia application that we developed simulates an AVI 



(Audio/Video Interleaved) digital video player. The AVI format is the native file 

format defined by the digital video framework from Microsoft called Video for 

Windows (VfW). Additional information on the AVI file format is given in 

Appendix B. 

The AVI player can run in two modes: one with QOS negotiation 

capabilities enabled and the other with the QOS negotiation capabilities disabled. 

When it is running in QOS negotiation mode, it utilizes the QOS negotiation 

agent to adjust QOS levels according to available resources. With QOS 

negotiation mode disabled, the simulated AVI player relies only on the standard 

functions provided by Video for Windows which has no QOS management 

The experiments are conducted on a on a local area network with a single 

server and four workstations (see Figure 5.4). The server is running Windows NT 

Server 3.51, while the workstations are running Windows NT Workstation 3.51. 

The network runs TCP/IP on 10-Base2 Ethernet. The server and two of the 

workstations are Intel Pentiurn@ computers each having 32MB of RAM and a 

clock frequency of 60MH.z. They are configured similarly, each with a 16-bit 

sound card, 64-bit PC1 local bus video adapter with 2MB video RAM, and a 

quad-speed CD-ROM. The two remaining workstations are Intel 486-DX~@ 

machines running at 66MHz. 
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Figure 5.4: The LAN system setup for conducting the QOS management experiments. 



Both are equipped similarly, each having 16MB RAM, a 16-bit sound card, 64-bit 

PC1 local bus video adapter with 2MB video RAM, and a double-speed CD-ROM. 

The use of different machines in the computer simulation enables us to observe 

whether or not the heterogeneous nature of a LAN has any impact on the QOS 

each machine can deliver. In the remaining part of this Chapter, the two ~entium" 

workstations are referred as machines A and B and the two 486-DX~@ 

workstations are referred as machines C and D. 

The first experiment involves the measurement of the average number of 

frames per second under three conditions: One, two, and four video sessions are 

initiated by the AVI player running on each machine simultaneously, each 

reading a different copy of the same AVI file. The playback file is originally 

recorded at 160 pixels by 120 pixels at 25 fps without compression and no skew or 

jitters occurred during capture. Four copies of the same file are stored in the 

server under different file names. The files are read off from the server and 

played as the data streams get served through the network. The spatial resolution 

of the playback window for each machine is set to 320 pixels by 200 pixels (by 

doubling the original captured resolution during playback) with 8-bit color depth 

(256 colors). Figure 5.5 shows the results of the AVI players running with the 

QOS negotiation mode disabled. The results indicate that the player can achieve 

up to 23 fps (using machine A) when only a single session is running. There are 



little fluctuations in the frame rate and the rate is stabilized throughout the 15- 

second playout time. As more sessions run simultaneously, the frame rate drops 

to 11 fps for two sessions (using machines A and B) and down to an unbearable 5 

fps for four sessions. Variations in the frame rate are more severe when four 

sessions are running. 
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Figure 5.5: AVI players running with the QOS negotiation mode disabled. Separate plots of 
the results are available for: One session (Figure 5.6), two sessions (Figure 5.7), and four 
sessions (Figure 5.8). 



Figure 5.6: A single AVI player running with the QOS negotiation mode disabled. 
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Figure 5.7: Two sessions of the AVI players running with the QOS negotiation mode 

disabled. 
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Figure 5.8: Four sessions of the AVI players running with the QOS negotiation mode 

disabled. 



To determine the jittering and skew effects between frames, we have 

measured the interframe gap and the results are shown in Figure 5.9. The results 

indicate that interframe gap varies greatly when four sessions are running 

simultaneously. This happens when frames are dropped, attempting to correct 

the effects of jitter and skew. 
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Figure 5.9: Interli-me gaps measured by running the AVI players with the QOS negotiation 
mode disabled. Separate plots of the results are available for: One session (Figure 5.10), 

two sessions (Figure 5.1 l), and four sessions (Figure 5.12). 
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Figure 5.10: Intedi-me gaps measured by running a single session of the AVI player with 

the QOS negotiation mode disabled. 
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AVI Players Running with QOS Negotiation Mode Disabled 

Figure 5.1 1 : Interfiarne gaps measured by running two sessions of the AVI players with the 

QOS negotiation mode disabled. 
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Figure 5.12: Interfiarne gaps measured by running four sessions of the AVI players with 

the QOS negotiation mode disabled. 



Next, we run the experiment again with the same conditions as before, 

except that the QOS negotiation mode is enabled. For the purpose of comparing 

results, each session keeps the original resolution and color depth so that none of 

the sessions can reduce these parameters in order to compensate for the degraded 

QOS. The results shown in Figure 5.13 indicate that the player still achieves up to 

23 fps when only a single session is running (machine A). In this case, fluctuations 

in the frame rate are limited and the rate is stabilized throughout the 15-second 

playout time. The frame rate drops to 12 fps with two sessions running but the 

frame rate stabilizes at 12 fps for the duration of the test. When four session are 

running simultaneously, the session running on machine D goes down to 5 fps 

and is aborted after three seconds of playout time have elapsed. This is because 

the unacceptable QOS level is set to 6 fps and machine D sees no hope to continue 

the session at an acceptable QOS level. The remaining sessions continue to run at 

approximately 10 fps for the rest of the test, Interframe gaps are also small and 

stay at stable levels after machine D terminates its session and leaving only three 

sessions running (see Figure 5.17). 
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Fi~wre 5.13: AVI players running with the QOS negotiation mode enabled. Separate plots 
of the results are available for: One session (Figure 5.14), two sessions (Figure 5.15), and 
four sessions (Figure 5.16). 
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Figure 5.14: A single session of the AVI player running with the QOS negotiation mode 
enabled. 
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Figure 5.15: Two sessions of the AVI players running with the QOS negotiation mode 
enabled. 

AVI Players Running with QOS Negotiation Mode Enabled 

T h e  (seconds) 

Figure 5.16: Four sessions of the AVI players running with the QOS negotiation mode 
enabled. 



AVI Players Running with QOS Negotiation Mode Enabled 
350 

-4-2 Sesrm (A) 

+? S e s r m  (8) 

X - 4  Ses- (A) 

-+ 4 SCSsl~rn (8) 

+4 Serslons (C) 

0  I 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

T h e  (seconds) 

Figure 5.17: Interii-arne gaps measured by running the AVI players with the QOS 
negotiation mode enabled. Separate plots of the results are available for: One session 
(Figure 5.18), two sessions (Figure 5.19), and four sessions (Figure 5.20). 
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Figure 5.18: Interf?ame gaps measured by running a single session of the AVI player with 
the QOS negotiation mode enabled. 
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Figure 5.19: Intefiame gaps measured by running two sessions of the AVI players with the 
QOS negotiation mode enabled. 
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Figure 5.20: Interframe gaps measured by running four sessions of the AVI players with the 
QOS negotiation mode enabled. 



To investigate the effects of latency caused by hard drive access, we run 

the above tests with one condition altered. We make all the sessions sharing the 

same AVI file. The results are shown in Figure 5.21,with QOS negotiation 

disabled, and in Figure 5.25, with QOS negotiation enabled. In both situations, the 

performance is better than the case with accessing four separate AVI movies. This 

can be explained by the disk caching facilities provided by Windows NT. Since a 

portion of the AVI file is available in cache memory, when another session tries to 

play the AVI file, it may find a hit in the cache and read it from the cache memory 

instead of from the much slower hard drive. This is consistent with the findings 

in the references [47,48]. 
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Figure 5.21: Up to four AVI players accessing a single file and running with the QOS 
negotiation mode disabled. Separate plots of the results are available for: One session 
(Figure 5.22), two sessions (Figure 5.23), and four sessions (Figure 5.24). 
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Figure 5.22: A single session of the AVI player running with the QOS negotiation mode 

disabled. 
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Figure 5.23 : Two sessions of the AVI players accessing a single file and 

QOS negotiation mode disabled. 
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Figure 5.24: Four sessions of the AVI players accessing a single file and running with the 
QOS negotiation mode disabled. 
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Figure 5.25: Up to four AVI players accessing a single file and running with the QOS 

negotiation mode enabled. Separate plots of the results are available for: One session 

(Figure 5.26), two sessions (Figure 5.27), and four sessions (Figure 5.28). 
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Figure 5.26: A single session of the AVI player running with the QOS negotiation mode 

.- 

.- 

4 
1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

[-+I scssccn(~)I 



AVI Players Accessing a Single File &with QOS Negotiation 

20 

- 8 15 - 
w 

P 
& 

10 

0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Tim (seconds) 

Figure 5.27: Two sessions of the AVI players accessing a single file and running with the 
QOS negotiation mode enabled. 
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Figure 5.28: Four sessions of the AVI players accessing a single file and running with the 



Figures 5.29 and 5.30 show the results of a test where QOS negotiation 

mode is enabled only for the sessions running on machine C and machine D. The 

two more powerful machines (A and B) are running the sessions without any 

QOS management The results indicate that while the machines C and D have less 

resources (slower processors and less RAM), the amount of interframe gap is less 

when QOS negotiation mode is enabled. This test demonstrates the importance of 

QOS management in multimedia applications. 

Figure 5.29: Frame rate versus time: Machines A and B are running without QOS 

management while Machines C and D running in QOS mode. 
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Figure 5.30: Interframe gap versus time: Machines A and B are running without QOS 

management while Machines C and D running in QOS mode. 

The last experiment is designed to evaluate the effectiveness of dynamic 

QOS control. For this experiment we have added two additional machines (E and 

F) that are equipped the same way as the less powerful machines (C and D). The 

same 160 pixels by 120 pixels by 256 colors AVI file is used here since we want to 

keep the temporal resolution constant for each session. However, we allow each 

session to request its own frame rate before the sessions begin. Machine A 

requests 22 fps as the preferred rate, 10 fps as the acceptable rate, and 8 fps as the 



unacceptable rate. Machine B requests 15 fps as the prefemed rate, 13 fps as the 

acceptable rate, and 9 fps as the unacceptable rate. Machine C requests 12 fps as 

the preferred rate, 9 fps as the acceptable rate, and 7 fps as the unacceptable rate. 

Machine D requests 15 fps as the preferred rate, 9 fps as the acceptable rate, and 5 

fps as the unacceptable rate. Machine E requests 20 fps as the preferred rate, 10 

fps as the acceptable rate, and 8 fps as the unacceptable rate. Sessions A, B, C, D, 

and E are set to start at the same time at time TO. Five seconds after that, machine 

F begins a new session requesting 12 fps as the preferred rate, 8 fps as the 

acceptable rate, and 5 fps as the unacceptable rate. All sessions are executed with 

the QOS negotiation mode enabled. 

The results are shown in Figure 5.31. Machine A is able to play the digital 

video file at its preferred rate of 22 fps for the first five seconds of the session, 

until machine F starts the AVI player. When machine F requests for a new 

session, the QOS negotiation agent tries to find an acceptable QOS level that both 

the network and the application can agree on. In order to accommodate machine 

F s  request at 12 fps, the QOS orchestration service decides to degrade the session 

running by machine A from its preferred frame rate at 22 fps down to its 

acceptable frame rate at 10 fps. The change of the temporal resolution of session A 

is done by resetting the execution rate of that thread. All other sessions 

maintained their throughput in a stable manner throughout the test duration. 



Although the machines C, D, and E do not get to play their sessions at their 

preferred rates they specified, they all performed within the acceptable 

tolerances. Jitters are more severe with the less powerful machines but still within 

the acceptable range as seen in Figure 5.32. 
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Figure 5.3 1: Frame rate versus time: Dynamic QOS control with QOS negotiation. 
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Figure 5.32: Iterframe gap versus time: Dynamic QOS control with QOS negotiation. 



Chapter 6 

Conclusions and Future Research 

6.1 Concluding Remarks 

This research has addressed the impact of application QOS requirements 

on synchronization problems that a multimedia network operating system must 

resolve. We have studied the temporal properties of continuous media types and 

identified operating system supports for distributed multimedia computing. This 

includes resource management support, architectural support, and programming 

support. 

We have outlined an integrated QOS management model which maps 

application QOS parameters through all the layers of the entire system, from the 

application layer down to the network layer. This mapping process is done 

automatically throughout the application and the transport subsystems, thus 

protecting application programmers form the communication chores. However, 

the use of QOS parameterization of connections does not imply that a single fully 

generic transport protocol can cater for all types of multimedia traffic equally 

well. Instead, different types of media traffic require specialized protocols and 

control data. The layered architecture of the QOS management framework is 



designed to support future expansions by adding additional protocols to the 

appropriate layer. 

We have also discussed the use of the QOS negotiation agents to 

dynamically control QOS variations during a multimedia session. Experimental 

results have demonstrated the effectiveness of this negotiation scheme which 

adjusts QOS levels according to the system resources and the application 

requirements. 

Multithreaded programming experiments have indicated that the 

operating system (0s) is a vital component in building an effective multimedia 

applications platform. Continuous media communication would be impractical 

without multithreading and preemptive scheduling facilities in an OS. 

We envision that with true integrated QOS support from the next 

generation multimedia network operating systems, less powerful (low-cost) 

computers will perform well in delivering multimedia services since system 

resources will be better managed and utilized. 



6.2 Future Research Directions 

The ability to build better distributed multimedia applications depends on 

much more than the operating system itself. A number of issues remains to be 

investigated: 

1. In this research, we have limited our discussion to end-to-end 

communication in a local area networking environment. However, the 

proposed layered architecture should be general enough to be adopted in 

wide are networks (WAN) or other gigabit network technologies such as 

Asynchronous Transfer Mode (ATM) networks [49]. 

2. The number of QOS dimensions in the architecture can be expanded to 

include support for security transactions and cost functions based on 

usage. This kind of support is important for doing business over the WAN 

or the Internet. 

3. The integrated QOS management approach suggests that Ethernet is not 

effective in delivering multimedia services since it does not support QOS 

management schemes that are based on bandwidth reservation. In 

contrast, ATM networks have QOS characterization built into its 

architecture [50, 511. It may be beneficial to incorporate other network 
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technologies such as ATM, 100VG-AnyLAN [52], and iso-Ethernet [53] 

into our proposed model. 

4. The area of network support for rate-based flow control remains an 

important issue which we have not addressed. The effectiveness of 

TCP/IP in multimedia communication should also be further studied [54]. 

5. Currently, there are no multicasting capabilities built into the QOS 

negotiation agent or the end-point transmission protocols. It is possible to 

employ IP multicast in a future revision of the design. 

6. A potential weakness in our QOS negotiation model is that too much time 

may be spent on negotiating between the layers and the remote supplier 

for an acceptable QOS level. It is also a concern that QOS levels may be 

modified too often when multimedia applications are competing for 

resources from a heavily loaded network. 

7. Further research is needed in developing real-time support for existing 

operating systems. The microkernel architecture [55, 56, 571 in research 

operating systems such as the Real-Time Mach [58] is especially attractive 

in supporting real-time multimedia applications. 
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Appendix A 

Audio/Video Interleaved Digital Video Format 

The experiments conducted in this research make use of Video for 

Windows (VfW) which is a digital video framework developed by Microsoft. 

Video for Windows provides a programming interface for video playback and 

recording and specifies the Audio/Video Interleaved (AVI) file format for 

storing digital video and audio data. The AVI format is a RIFF (Resource 

Interchange File Format) file specification, jointly developed by IBM and 

Microsoft, to be used with applications that capture, edit, and playback 

audio/video sequences. In general, AVI files may contain multiple streams of 

different types of data. Most AVI sequences store both audio and video 

streams. There is also a variation for the AVI sequence that contains only 

video data and does not require an audio stream. Specialized AVI sequences 

may include a control track or a Musical Instrument Digital Interface (MIDI) 

track as an additional data stream. The control track can be used to control 

external devices such as a media control interface (MCI) videodisc player. The 

Appendix A discusses the following topics as related to the AVI file format: 

1. Required chunks of an AVI file, 

2. optional chunks of an AVI file, and 

3. developing routines to write AVI files. 



Detailed information on AVI and RIFF file formats are available from the 

Microsoft Developers' Network. 

RIFF files are built from chunks, each of which consists of a four- 

character chi~tzk type, followed by an integer value indicating the amount of 

data in the chunk, and then the actual data. Since chunks can contain other 

chunks, thus RIFF files have a hierarchical structure. The root chunk has 

' RIFF ' as its chunk type and the first four bytes of the data field are reserved 

for a fmln type. Similar to chunk type, form type is a four-character identifier 

to specify the structure of the embedded data. The RIFF file specification is 

extensible since new media types can be accommodated by introducing new 

chunk types or form types. Figure A.l shows a list of chunk and form types 

supported by RIFF. 

Figure A. 1 : Different RIFF chunk types and form types 

Chunk type or 
form type 

AVI 
INFO 

LIST 
PAL 
RDIB 
RMID 
RTF 
WAVE 

Data type contained in the chunk 

An audio/video interleaved sequence 
Information about the file including creation date, 
copyright holder, and comments 
A list of subchunks 
A color palette 
A device-independent bitrnap (DIB) image 
A Musical Instrument Digital Interface (MIDI) sequence 
Rich Text Format (RTF) including text and graphics 
Waveform audio samples 



AVI files use the AVI RIFF form which is identified by the chunk type 

code 'AVI '. All AVI files include two mandatory LIST chunks, which define 

the format of the streams and stream data. An index chunk may also be 

included in AVI files, which specifies the location of data chunks within the 

file. The index chunk is useful for editing and keeping track of the frames in 

the file. An AVI file with these components has the following form: 

1: R I F F  ( 'AVI ' 

2 :  LIST ( ' h d r l '  

3 : . . . 

4 : ) 

5: LIST ('movi' 

6 : . . .  
7 : ) 

8 :  [ ' i d x l '  <AVI Index>] 

9 :  ) 

The LIST chunks and the index chunk are subchunks of the RIFF 'AVI ' 

chunk. The 'AVI ' chunk type identifies the file as an AVI RIFF file. The LIST 

"hdrl" chunk defines the format of the data and it is the first required list 

chunk. The LIST "movi" chunk contains the digital video data for the AVI 



sequence and is the second required list chunk. The "idxl" chunk is the 

optional index chunk that contains location information of the playback 

frames. These three components must be organized in the proper sequence 

within the AVI file. 

The LIST "hdrl" and LIST "movi" chunks use subchunks for their data. 

The following example shows the AVI RIFF form, expanded with the chunks 

required to complete the LIST "hdrl" and LIST "movi" chunks: 

1 :  RIFF ('AVI ' 

2: LIST ('hdrl' 

3: ' avih' (<Main AVI Header>) 

4 : LIST ('strl' 

5: ' strh' (<Stream header>) 

6 : 'strf' (<Stream format>) 

7 : 'strdl(additional header data) 

8 : . . .  
9: 1 

10: . . . 

11: 1 

1 2 :  LIST ('movi' 

13:  {Subchunk I LIST('rec ' 

1 4 :  SubChunkl 



22: [ ' idxl ' <AVIIndex>] 

In an AVI file, the main header is identified with the four-character 

identifier code "avih". The header contains general information about the file, 

including the number of streams within the file, and the height and width of 

the AVI sequence. The data structure of the main header is defined as follows: 

1: typedef struct { 

2 : DWORD dwMicroSecPerFrame; 

3 : DWORD dwMaxBytesPerSec; 

4 : DWORD dwReservedl; 

5 : DWORD dwFlags; 

6 : DWORD dwTotalFrames; 

7 : DWORD dwInitialFrames; 

8 : DWORD dwstreams; 



9: DWORD dwSuggestedBufferSize; 

10: DWORD dwWidth; 

11: DWORD dwHeight; 

12: DWORD dwScale; 

13: DWORD dwRa t e; 

14: DWORD dwStart; 

15: DWORD dwlength; 

16: } MainAVIHeader; 

The dwMi croS ecPer Fr ame field specifies the period between video 

frames, which is used to specify the overall timing for the file. 

The dwMaxB yt es PerSec field specifies the approximate maximum 

data rate of the file. This value indicates the number of bytes per second that 

the system must handle to present an AVI sequence as specified by the other 

parameters contained in the main header and stream header chunks. 

The dwFlags field contains any one of the following flags for the file: 

AVIF - COPYRIGHTED 

Indicates the AVI file contains copyrighted data. When this flag is set, 

applications should not let user duplicate file or the data in the file. 



AVI F HAS INDEX - 

Indicates the AVI file has an "idxl" chunk. 

AVIF - ISINTERLEAVED 

Indicates the AVI file is interleaved. The computer system can stream 

interleaved data from a CD-ROM more efficiently than non-interleaved 

data. 

AVIF - MUSTUSEINDEX 

Indicates the index should be used to determine the order of 

presentation of the data. When this flag is set, it implies the physical 

ordering of the chunks in the file that does not correspond to the 

presentation order. 

AVI F - WASCAPTUREFILE 

Indicates the AVI file is a specially allocated file used for capturing 

real-time video. Typically, capture files have been defragmented by 

user so that video capture data can be efficiently streamed into the file. 

If this flag is set, an application should warn the user before writing 

over the file with this flag. 



The dwTotalFrames field of the main header specifies the total 

number of frames of data in file. 

The dwInitialFrames is used for audio/video interleaved files. 

When creating interleaved files, the number of frames in the file prior to the 

initial frame of the AVI sequence should be specified in this field. 

The dwstreams field specifies the number of data streams in the file. 

For instance, a file with audio and video contains two data streams. 

The dwSugges tedBuf f ers i ze field specifies the suggested buffer 

size for reading the file. In general, this buffer size should be large enough to 

contain the largest chunk in the file. If the field is set to the size of zero, or if 

the size is too small, the playback application must reallocate memory during 

playback which will reduce performance. For an interleaved file, the buffer 

size should be large enough to read an entire record and not just a chunk to 

avoid memory reallocation. 

The dwW idth and dwHe i ght fields specify the width and height of the 

AVI file in pixels, respectively. 



The dwScale and dwRate fields are used to specify the general time 

scale that the AVI file would use. In addition to the general time scale, each 

stream can have its own time scale. The time scale expressed in samples per 

second is determined by dividing dwRat e by dwscale. 

The dwS t art and dwLength fields specify the starting time and the 

total length of the AVI file. The units are defined by the two fields dwRate 

and dwScale. The d w ~  t art field is typically set to zero as the initial start 

time. 

The main header is followed by one or more stream header ("strl") 

chunks. A "strl" chunk is required for each data stream and it contains 

information about each data stream in the file. The data structure of the 

stream header is defined as follows: 

1: typedef struct { 

2 : FOURCC fccType; 

3 : FOURCC fccHandler; 

4: DWORD dwFlags; 

5 : DWORD dwReserved1; 

6 : DWORD dwInitialFrames; 

7 : DWORD dwScale; 



8 : DWORD dwRate ; 

9 : DWORD dwStart; 

10:  DWORD dwlength; 

11: DWORD dwSuggestedBufferSize; 

12:  DWORD dwQuality; 

13:  DWORD dwSampleSize; 

1 4 :  } AVIStreamHeader; 

The stream header specifies the type of data the stream contains, such 

as video or audio, by using a four-character identifier code. The fccType 

field is set to "vids" if the stream it specifies contains video data. In the case of 

audio data, it is set to "auds". 

The fccHandler field contains a four-character code describing the 

installable codec (compressor /decompressor) to be used with the data. 

The dwFlags field contains any flags for the data stream: 

AVISF DISABLED - 

This flag indicates that the stream data should be rendered only when 

explicitly enabled by the user. 



AVISF - VIDEO - PALCHANGES 

This flag indicates that information for palette changes are included in 

the AVI file. 

The dwIni  t i a l F r a m e s  data field is used for audio/video interleaved 

files. When creating interleaved files, this field is utilized to specify the 

number of frames in the file prior to the initial frame of the AVI sequence. 

The remaining fields describe the playback characteristics of the media 

stream. These factors include the playback rate (dwScale and dwRa te),  the 

starting time of the sequence (dwstar t ) ,  the length of the sequence 

(dw~ength) ,  the size of the playback buffer (dwsugge s t e d ~ u f  fer ) ,  an 

indicator of the data quality ( d w ~ u a l i t y ) ,  and the sample size 

(dwsample~ize) .  

A stream format ("strf") chunk must follow a stream header ("strh") 

chunk. The format of the data in the stream is described by the stream format 

chunk. For video streams, the information in this chunk is a BITMAPINFO 

structure including palette information (e.g., 8-bit color). For audio streams, 

the information in this chunk is a WAVEFORMATEX or PCMWAVEFORMAT data 

structure. The WAVEFORMATEX structure is an extended version of the 



WAVEFORMAT struclre.  The "strl" chunk might also contain a stream data 

("strd") chunk. Whenever a stream data chunk is used, it always follows the 

stream format chunk. The format and content of this chunk are defined by 

installable codec drivers. Typically, codec drivers use this information for 

configuration. Multimedia applications that read and write RIFF files do not 

need to decode this information. The applications simply transfer this data to 

and from a codec driver as a memory block and the actual compression and 

decompression are performed by the codec driver itself. 

An AVI player associates the stream headers in the LIST "hdrl" chunk 

with the stream data in the LIST "movi" chunk by using the order of the "strl" 

chunks. The first "strl" chunk applies to stream 0, the second applies to stream 

1, and so forth. For instance, if the first "strl" chunk describes video data, then 

the video data is contained in stream 0. Naturally, if the second "strl" chunk 

describes the wave audio data, the wave audio data is contained in stream 1. 

Following the header information is a LIST "movi" chunk that contains 

chunks of the actual data in the streams; i.e., the image frames and sounds 

themselves. The data chunks can reside directly in the LIST "movi" chunk or 

they may be grouped into "rec " chunks. The "rec " grouping implies that the 



grouped chunks should be read from disk all at once. This is used only for 

files specifically interleaved to play from a CD-ROM. 

Similar to all RIFF chunks, the data chunks contain a four-character 

code to identify the chunk type. The four-character code that identifies each 

chunk consists of the stream number and a two-character code that defines the 

type of information encapsulated in the chunk. In the case of a waveform 

(audio) chunk, it is identified by a two-character code "wb". However, if the 

waveform chunk is corresponding to the second LIST "hdrl" stream 

description, it would have a four-character code of "Olwb". 

It is unnecessary for the audio data chunks to contain any information 

about its format since all the format information is already included in the 

header. An audio data chunk using the ## in the format to represent the 

stream identifier has the following format: 

1: WAVE Bytes '##wbl 

2 : BYTE abBytes  [ 1 ; 

Utilizing different codec drivers, video data can be compressed or 

uncompressed DIBs. An uncompressed DIB has BI - RGB specified for the 



bicompres s ion field in its associated B I TMAP INFO structure. A compressed 

DIB has a value other than B I  - RGB specified in the bicompres s ion field. A 

data chunk for an uncompressed DIB contains RGB video data. These chunks 

are identified with a two-character code of "db" which stands for DIB bits. 

Data chunks for a compressed DIB are identified with a two-character code of 

"dc" which stands for DIB compressed. Neither one of the video data chunk 

contains any header information about the DIBs. An uncompressed DIB data 

chunk has the following form: 

1: D I B  Bits '##dbl 

2 :  BYTE abBits[]; 

A compressed DIB data chunk has the following form: 

1: Compressed D I B  '##dcl 

2: BYTE abBits [ I  ; 

Video data chunks can also define new color palette entries used to 

update the palette during the playback of an AVI sequence. These chunks are 

identified with a two-character code of "pc" which stands for palette change. 

The color palette information has the following data structure: 

1: typedef struct { 

2 : BYTE bFirstEntry; 



3 :  BYTE bNumEntries; 

4: WORD wFlags; 

5: PALETTEENTRY peNew; 

6: } AVIPALCHANGE; 

The bFirs tEnt ry field defines the first palette entry that needs to be 

changed and the bNumEntrie s field specifies the number of entries to be 

changed altogether. Where the peNew field contains the new color palette 

entries. 

If a video stream includes any kind of color palette changes, the 

AVITF - VIDEO - PALCHANGES flag in the dwFlags field of the stream header 

should be set. This flag indicates that this video stream contains palette 

changes and warns the playback application that the application will have to 

handle the palette changes. 

AVI files can also include an index chunk after the LIST "movi" chunk 

to provide location specific information to the AVI playback application. 

Essentially, the index chunk contains a list of the data chunks and their 

location in the file which provides efficient random access to the data within 

the file. If an index chunk is not included, the playback application would 



have to search through the entire AVI file in order to locate a particular video 

frame or an audio sequence. An index chunk is especially effective for large 

AVI files. 

The four-character identifier code for index chunks is "idxl". The data 

structure of an index entry has the following form: 

1: typedef struct { 

2 : DWORD ckid; 

3 : DWORD dwFlags; 

4 : DWORD dwChunk0ffset; 

5: DWORD dwchunklength; 

6 : } AVIINDEXENTRY; 

The ckid, dwFlags, dwChunk0f fset, and dwChunkLength entries 

are repeated in the AVI file for each indexed data chunk. If the file is 

interleaved, the index will also contain these entries for each "rec" chunk. The 

"rec" entries should have the AVIIF - LIST flag set and the list type in the 

ckid field. 

The ckid field uses four-character codes for identifying the type of 

data chunk used. The dwFlags field specifies any one of the appropriate 



flags for the data. The AVIIF - KEYFRAME flag indicates key frames in the 

video sequence. Key frames do not need previous video information to be 

decompressed. The AVI I F - NOTIME flag indicates a chunk that does not affect 

the timing of a video stream. For instance, changing palette entries indicated 

by a palette chunk should occur between displaying video frames. Thus, if an 

application needs to determine the length of a video sequence, it should not 

use chunks with the AVIIF - NOTIME flag. Under this condition, the 

application would ignore the palette chunk. The AVI IF - LIST flag indicates 

that the current chunk is a LIST chunk. The ckid field is then used to 

identify the type of LIST chunk. 

The dwChunkOf fset and dwChunkLength fields specify the position 

of and the length of the chunk. The dwChunkOf f set field specifies the 

position of the chunk in the file relative to the 'movi' list. 

The dwChunkLength field specifies the length of the chunk excluding 

the eight bytes required for the RIFF header. 

The AVIF - HASINDEX in the dwFlags field of the AVI header is set 

when an index chunk is included in the RIFF file. 



Appendix B 

A WinSock C++ Class Library 

Although the WinSock C library supplied by Microsoft provides the 

basic functions to create network applications, writing sophisticated 

networking protocols with the WinSock-specific C function calls is still a 

complex task. The WinSock C++ class library introduced here is designed to 

provide object-oriented support for writing network applications efficiently. 

This C++ class library is a class-wrapper of the original WinSock C library. It 

employs encapsulation, inheritance, and polymorphism to create an extensible 

framework for writing network applications. Many of the details required to 

utilize the WinSock functions are encapsulated in the class library. The result 

is a set of WinSock objects that make programming network functions more 

robust, concise, and maintainable. The remaining of Appendix B is a partial 

listing of the WinSock C++ Class library. 



/ / 
/ /  A Ct+ class library designed to manage WinSock network 
/ /  communication. 
/ / 
/ /  This class library includes functions to: 
/ - Initialize, get TCP/IP stack information, and clean up a 
/ /  WINSOCK socket 
/ - To create, send, receive, and destroy a stream socket 
/ / 
/ /  The original WINSOCK library contains code copyrighted by 
/ /  Microsoft and Regents of the University of California (Berkeley). 
/ /  The class library is built on codes from Microsoft and Arthur 
/ /  Dumas, Programming WinSock, SAMS Publishing, 1994. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL WINSock Class Library / /  
/////7///////////////////////// 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL WINSock constructor - 
/ / 
/ /  Constructs the CL - WINSock object. Initializes object member 
/ /  variables 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CL - W1NSock::CL - WINSock( WORD wVersionRequired ) 

/ /  initialize object member variables 
m nLastError = NIL; 
m w ~ e r s i o n ~ e ~ u i r e d  - = wVersionRequired; 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL - WINSock::Initialize() 
/ / 
/ /  Initialize the WinSock sub-system. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL WINSock::Initialize() - 
I 
int nStatus = CL WINSOCK NOERROR; - - 

m - nLastError = WSAStartup( m - wVersionRequired, &m-wsaData ) ;  

if (m - nLastError ! =  NoErr) 



nStatus = CL WINSOCK WINSOCK ERROR; - - - 

return nStatus; 
1 

/ /  Close down and clean up the WinSock sub-system. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL - WINSock::Close() 
I 
int nStatus = CL WINSOCK NOERROR; - - 

return nStatus; 
I 

/ /  Copy the WinSock TCP/IP stack information structure. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void CL - WINSock::GetInfo(LPWSADATA pwsaData) 
( 
memcpy (pwsaData, &m-wsaData, sizeof (WSADATA) ) ; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL StreamSock Class library / /  
/ / / / / T / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL - Streamsock constructor 
/ / 
/ /  Constructs the CL Datagramsock object. 
/ /  Initializes the ogject member variables. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CL - StreamSock::CL - StreamSock(CWnd *pParentWnd, UINT uMsg) 
{ 

/ /  initialize the object member variables 
m pParentWnd = pParentWnd; 
 ASSERT(^ - pParentWnd !=  NULL); 
m uMsg = uMsg; 
ASSERT (m uMsg ! = 0 ) ; 
1nitvars7) ; 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL Streamsock destructor 
..................................................................... 

/ /  Destroy the object when it's no longer in use. 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL - StreamSock::InitVars() 
/ / 
/ /  Initialize the object member variables. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void CL - StreamSock::InitVars(BOOL bInitLastError) 
I 
if (bInitLastError) 
m - nLastError = NoErr; 

m-s = INVALID SOCKET; 
memset(&m-sin~ocal, 0, sizeof(S0CKADDR IN) ) ;  
memset(&m sinRemote, 0, s i z e o f ( ~ 0 ~ K A ~ ~ R  - IN) ) ;  
m - b ~ e r v e r =  FALSE; 

1 

/ /  To create a hidden window that can receive connection-oriented 
/ /  messages from WinSock. In addition, to create a socket and 
/ /  optionally bind it to a name if the socket is a server socket. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL - StreamSock::CreateSocket(int nLocalPort) 
{ 

/ /  if this version of the function is being called, 
/ /  a valid port number must be specified 
if (nLocalPort <= 0) 

return CL - WINSOCK - PROGRAMMING ERROR; - 

/ /  convert the port number into a string and 
/ /  call the version of Createsocket() which 
/ /  accepts a string 
char pszLocalService[l8]; 

- itoa(nLocalPort, pszLocalService, 10); 
return CreateSocket(pszLoca1Service); 



/ /  To close the socket, clean up all queued data, and destroy the 
/ /  hidden window. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL - StreamSock::DestroySocket() 
1 

int nStatus = CL WINSOCK NOERROR; - - 

/ /  check if the socket is valid 
if (m s == INVALID SOCKET) 
nstatus = CL - WINSOCK PROGRAMMING ERROR; - - 

else 
I 

/ /  remove any data in the write queue 
while (!m-listWrite.IsEmpty()) 
{ 
LPSTREAMDATA pStreamData = 

(LPSTRE9MDATA)m listWrite.RemoveHead(); 
LPVOID pData = p~tream~ata->p~ata; 
delete pStreamData; 

m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - WRITE - ERR, 
(LPARAM) pData) ; 

I 

/ /  remove any data in the read queue 
while (!m - listRead.IsEmpty()) 
{ 
LPSTREAMDATA pStreamData = 

(LPSTREAMDATA)m listRead.RemoveHead(); 
free (p~tream~ata->p~ata) 7 
delete pStreamData; 

/ /  close the socket and initialize variables 
closesocket (m-s) ; 
InitVars ( ) ; 

/ /  destroy the hidden window 
Destroywindow(); 

I 

return nStatus; 

/ /  This version of the Connect() function takes a pointer to a 
/ /  string that represents the host name to send the data to and 



/ /  an integer that represents the port number to connect to. 
/ / 

int CL - StreamSock::Connect(LPSTR pszRemoteName, int nRemotePort) 
{ 

/ /  convert the port number into a string and then call the version 
/ /  of Connect() which accepts a string service name or port number 
char pszRemoteService[l8]; 

- itoa(nRemotePort, pszRemoteService, 10); 
return Connect(pszRemoteName, pszRemoteService); 

I 

/ /  This version of the Connect0 function takes a pointer to a 
/ /  string that represents the host name to send the data to and 
/ /  an integer that represents the service name or port number to 
/ /  connect to. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL StreamSock::Connect(LPSTR pszRemoteName, LPSTR 
psz~em~te~ervice) 
1 
LPHOSTENT pHent; 
LPSERVENT pSent; 
SOCKADDR - IN sinRemote; 
int nStatus = CL - WINSOCK - NOERROR; 

while (TRUE) 
I 

/ /  assign the address family 
sinRem0te.si.n - family = AF - INET; 

/ /  assign the service port 
sinRemote.sin-port = htons(atoi(pszRemoteService)); 
if (sinRemote.sin-port == 0) 
{ 
pSent = getservbyname(pszRemoteService, "tcp"); 
if (pSent == NULL) 
{ 
m nLastError = WSAGetLastErrorO; 
nStatus = CL - WINSOCK - WINSOCK - ERROR; 
break; 
1 
sinRemote.sin - port = pSent->s-port; 

1 

/ /  assign the IP address 
sinRemote.sin addr.s addr = inet-addr(pszRemoteName); 
if (sin~emoteTsin - addr.s - addr == INADDR-NONE) 
I 
pHent = gethostbyname(pszRemoteName); 
if (pHent == NULL) 



I 
m nLastError = WSAGetLastErrorO; 
nStatus = CL - WINSOCK WINSOCK ERROR; - - 
break; 

} 
sinRemote.sin - addr.s - addr = *(u-long *)pHent->h-addr; 

I 

/ /  call the version of Connect0 that takes an IP address 
/ /  structure 
return Connect(&sinRemote); 

1 

return nStatus; 
I 

/ / 

/ /  This version of the Connect() function takes a pointer to an IP 
/ /  address structure to connect to. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL - StreamSock::Connect(LPSOCKADDR - IN psinRemote) 
I 
int nStatus = CL WINSOCK NOERROR; - - 

while (TRUE) 
I 

/ /  only clients are allowed to call connect() 
if (m - bserver) 
{ 
nStatus = CL WINSOCK PROGRAMMING ERROR; - - - 
break; 

/ /  copy the IP address of the remote connecting server 
memcpy(&m-sinRemote, psinRemote, sizeof(S0CKADDR-IN)); 

/ /  attempt the asynchronous connection 
if (connect (m - s, (LPSOCKADDR) &m - sinRemote, sizeof (SOCKADDR - IN) ) == 

SOCKET ERROR) - 
{ 
m nLastError = WSAGetLastErrorO; 
if (m nLastError == WSAEWOULDBLOCK) 
m nxast~rror = NoErr; 

else 
nStatus = CL - WINSOCK WINSOCK ERROR; - - 

break; 
1 
break; 

I 

return nStatus; 



/ /  To accept a connection request from a client. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL~StreamSock::Accept(CL~StreamSock *pStreamSocket) 
I 
int nStatus = CL - WINSOCK NOERROR; - 

while (TRUE) 
I 
if (pstreamsocket == NULL) 
I 
ASSERT (0) ; 
nStatus = CL WINSOCK PROGRAMMING ERROR; - - - 
break; 

I 

/ /  only servers should call Accept0 
if ( !m bServer) - 
I 
nStatus = CL WINSOCK PROGRAMMING ERROR; - - - 
break; 

/ /  Check if the socket is not already created. 
if (pStreamSocket->m-s ! =  INVALID SOCKET) 

return CL - WINSOCK - PROGRAMMING - ERROR; 

/ /  create the hidden window 
RECT rect; 
rect.left = 0; 
rect.top = 0; 
rect.right = 50; 
rect.bottom = 50; 
if (pStreamSocket->Create(NULL, NULL, WS OVERLAPPEDWINDOW, rect, 

pStreamSocket->m - p~arent~nd, 0) == 0) 
I 
nStatus = CL WINSOCK WINDOWS ERROR; - - - 
break; 

/ /  accept the client connection 
pStreamSocket->m s = accept(m-s, NULL, NULL); 
if (p~tream~ocket->m-s == INVALID - SOCKET) 
I 
m nLastError = WSAGetLastErroro; 
nStatus = CL WINSOCK WINSOCK ERROR; 
p ~ t r e a m ~ o c k e t - > ~ e s t r ~ i n d o w ( ) ;  
break; 

I 



/ /  start the asynchronous event notification 
long 1Event; 
lEvent = ED READ I ED WRITE I ED CONNECT I ED CLOSE; 
if ( W ~ ~ ~ s y n c ~ e l e c t  (p~tream~ocketz>m s, p~tream~ocket->m hWnd, 

CL WINSOCK EVENT NOTIFICATION, i~vent) == SOCKET ERROR) - - - 
{ 

- 

m nLastError = WSAGetLastErrorO; 
nStatus = CL WINSOCK WINSOCK ERROR; 
closesocket (p~tream~ocket->rn_s) ; 
pstreamsocket->Destroysocket(); 
break; 

break; 

/ /  if anything failed in this function, reset the socket variables 
if (nStatus == CL WINSOCK WINSOCK-ERROR) 

p ~ t r e a m ~ o c k e t z > ~ n i t ~ a ~ s ( ~ ~ ~ ~ ~ ) ;  
else if (nStatus == CL WINSOCK NOERROR) - - 
{ 

/ /  notify the parent if the connection was accepted 
/ /  successfully 
pStreamSocket->m~pParentWnd->PostMessage(pStreamSocket->m - uMsg, 

CL WINSOCK YOU ARE CONNECTED); - - - -  

return nStatus; 
I 

/ /  Write data to the stream socket. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int CL - StreamSock::Write(int nLen, LPVOID pData) 
I 
int nStatus = CL WINSOCK NOERROR; - - 

while (TRUE) 
{ 

/ /  dynamically allocate a structure to hold the data pointer 
/ /  and the data's length 
LPSTREAMDATA pStreamData = new STREAMDATA; 
if (pStreamData == NULL) 
{ 
nStatus = CL WINSOCK WINDOWS ERROR; - - - 
break; 

1 
pStreamData->pData = pData; 
pStreamData->nLen = nLen; 



/ /  add the data to the list 
TRY 

CATCH (CMemoryException, e) 
{ 
delete pStreamData; 
nStatus = CL WINSOCK WINDOWS ERROR; - - - 
break; 

I 
END CATCH - 

/ /  trigger the ED WRITE handler to try to send 
PostMessage(CL WINSOCK EVENT NOTIFICATION, m-s, 

WSAMAKESELECTREPLY(FD - WRITE, O )  1 ;  
break; 

return nStatus; 
I 

/ /  Read data that has been received by the stream socket. 
/ / 

LPVOID CL - StreamSock::Read(LPINT pnLen) 

LPVOID pData = NULL; 

/ /  check to see if there is data to receive 
if (!m - listRead.IsEmpty()) 
I 

/ /  remove the stream data from the list 
LPSTREAMDATA pStreamData = (LPSTREAMDATA)m listRead.RemoveHead(); - 
pData = pStreamData->pData; 
*pnLen = pStreamData->nLen; 
delete pStreamData; 

return pData; 
I 

/ /  message map 
BEGIN MESSAGE MAP(CL StreamSock, CWnd) 
ON MESSAGE(?L WINSOCK - EVENT NOTIFICATION, OnWinSockEvent) - 

END - MESSAGE - M A P ~ )  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ /  CL - StreamSock::OnWinSockEvent() 
/ / 
/ /  Event handler: Called when there is an asynchronous event on the 
/ /  socket. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LONG CL - StreamSock::OnWinSockEvent(WPARAM wParam, LPARAM 1Param) 
I 

/ /  check for an error 
if (WSAGETSELECTERROR(1Param) ! =  0) 

return OL; 

/ /  act upon the notified event 
switch (WSAGETSELECTEVENT(1Param)) 
{ 
case ED ACCEPT: 

/ /  inform the parent window that a client would like to connect 
/ /  to the server socket 
m-pParentWnd->PostMessage(m-uMsg, 

CL - WINSOCK - READY - TO - ACCEPT-CONNECTION); 
break; 

case ED CONNECT: 
/ /  inform the parent window that the socket has connected 
m-pParentWnd->PostMessage(m uMsg, 

CL - WINSOCK YOU ARE CONNECTED); - - -  
break; 

case ED READ: 
return HandleRead (wParam, 1Param) ; 
break; 

case FD WRITE: 
return HandleWrite(wParam, 1Param); 
break; 

case FD CLOSE: 
/ /  check for more data queued on the socket 
if (HandleRead(wParam, 1Param)) 
1. 
PostMessage(CL - WINSOCK - EVENT - NOTIFICATION, wParam, 1Param); 
break; 
I 
/ /  inform the parent window that the socket is closed 
m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - LOST - CONNECTION); 
break; 

default: 
/ /  exception handling 
ASSERT ( 0) ; 
break; 

1 
return OL; 



/ /  Called when there is an asynchronous read event on the socket. 
/ / 

LONG CL StreamSock::HandleRead(WPARAM wParam, LPARAM 1Param) - 
I 
while (TRUE) 
I 

/ /  allocate memory for incoming data 
LPVOID pData = malloc(READ BUF LEN); 
LPSTREAMDATA pStreamData =-new-STREAMDATA; 

if ((pData == NULL) I I (pStreamData == NULL)) 
I 

/ /  free any memory that was allocated 
if (pData ! =  NULL) 
free (pData) ; 
pData = NULL; 

if (pStreamData ! =  NULL) 
delete pStreamData; 
pStreamData = NULL; 

/ /  inform the parent that a possible data read failed 
m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - ERROR - READING); 

PostMessage(CL WINSOCK EVENT NOTIFICATION, m-s, 
WSAMAKESELECTREPLY(FD - READ, 0)); 

break; 
I 

/ /  receive data 
int nBytesRead = recv(m-s, (LPSTR)pData, READ - BUF - LEN, 0 ) ;  
if (nBytesRead == SOCKET-ERROR) 
{ 

/ /  free memory buffer for incoming data 
free (pData) ; 
pData = NULL; 
delete pStreamData; 
pStreamData = NULL; 

m nLastError = WSAGetLastErrorO; 
iT (m nLastError == WSAEWOULDBLOCK) 
m n~ast~rror = NoErr; 
eis e 
/ /  inform the parent that a data read failed 
m - pParentWnd->PostMessage(m uMsg, CL WINSOCK ERROR READING); - - - - 

break: 



/ /  make sure some data was read 
if (nBytesRead == 0) 

/ /  free memory for incoming data 
free (pData) ; 
pData = NULL; 
delete pStreamData; 
pStreamData = NULL; 

break; 

/ /  add the data to the list 
pStreamData->pData = pData; 
pStreamData->nLen = nBytesRead; 
TRY 

m - listRead.AddTail(pStreamData); 
1 
CATCH (CMemoryException, e )  
I 
free (pData) ; 
pData = NULL; 
delete pStreamData; 
pStreamData = NULL; 

/ /  inform the parent that a data read failed 
m pParentWnd->PostMessage(m-uMsg, CL - WINSOCK - ERROR - READING); 
break ; 

I 
END - CATCH 

/ /  inform the parent that data has been read 
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK DONE READING, 

(LPARAMF~ - list~ead. ~ e t ~ o u n t  ( ) 7; 

/ /  return 1 if there is still remaining data 
return 1L; 

break; 
1 

return OL; 

/ /  Called when there is an asynchronous write event on the socket. 
/ / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LONG CL - StreamSock::HandleWrite(WPARAM wParam, LPARAM 1Param) 
{ 



int nLen; 
LPVOID pData; 
LPSTREAMDATA pStreamData; 
static LPVOID pDataRemaining = NULL; 
static int nLenRemaining = 0; 

while (TRUE) 
I 

/ /  check if there is any data to send 
if (m-listWrite.IsEmpty()) 
break; 

/ /  if not in the middle of another buffer send, 
/ /  get data and data length from the write queue 
pStreamData = (LPSTREAMDATA)m - listWrite.GetHead(); 
pData = pStreamData->pData; 
nLen = pStreamData->nLen; 
if (pDataRemaining == NULL) 
{ 

pDataRemaining = pData; 
nLenRemaining = nLen; 

I 

/ /  sending the data 
BOOL bRemove = FALSE; 
int nBytesSent = send(m-s, (LPCSTR)pDataRemaining, 

nLenRemaining, 0 ) ; 
if (nBytesSent == SOCKET-ERROR) 
r 
I 

m nLastError = WSAGetLastErrorO; 
if (m nLastError == WSAEWOULDBLOCK) 

m-n~ast~rror - = NoErr; 
else 
{ 

bRemove = TRUE; 
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK - WRITE - ERR, 

(LPARAM) p~Zta) ; 
I 

I 
else 
I 

/ /  if data was sent, check if all the bytes were sent 
if (nBytesSent == nLenRemaining) 
{ 
bRemove = TRUE; 
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK - DONE - WRITING, 

(LPARAM) p~ata) ; 
I 
else 
I 
/ /  the complete buffer was not sent so reset these values 
pDataRemaining = (LPVOID) ((LPCSTR)pDataRemaining + nBytesSent); 
nLenRemaining = nLenRemaining - nBytesSent; 
I 



/ /  if the data was completely sent or an error has actually 
/ /  occurred, clean up remaining data from the queue 
if (bRemove) 
{ 
delete pStreamData; 
m listwrite. RemoveHead ( )  ; 
p'2jata~emaining = NULL; 
nLenRemaining = 0; 

1 

/ /  if there is more data to send, trigger this ED - WRITE handler 
if ( !m listWrite.IsEmpty() ) 

~ o s t M e s s a g e ( ~ ~  WINSOCK EVENT NOTIFICATION, m-s, 
WSZ~KESELECTREPLY(FD - WRITE, O )  ) ;  

break; 

return OL; 
1 

/ /  TO copy the IP address of the other end (peer) of the socket 
connection into 
/ /  the given pointer. Useful for server's to use after an Accept(). 
/ / 

int CL - StreamSock::GetPeerName(LPSOCKADDRRIN psinRemote) 
I 
int nStatus = CL WINSOCK NOERROR; 
int nLen = sizeof(~0cKA~D~ - IN); 

/ /  check if the listening socket is not calling this function 
if (m-bServer) 

nStatus = CL WINSOCK PROGRAMMING ERROR; 
else if (getpeername(m-sT ( L P S O C K A D D R ) ~ S ~ ~ R ~ ~ O ~ ~ ,  &nLen) == 

SOCKET - ERROR) 
I 

m nLastError = WSAGetLastError(); 
nStatus = CL - WINSOCK - WINSOCK - ERROR; 

\ 

return nStatus; 



Chung, Edward, Chi-Fai. Ph.D. June, 1996 

Electrical and Computer Engineering 

Quality of Service Analysis for Distributed Multimedia Systems in a Local Area 
Networking Environment (148 pp.) 

Director of Dissertation: Dr. Mehmet Celenk 

The stringent timing requirements imposed by distributed multimedia 

applications have raised questions about the adequacy of continuous media 

support in the current commercial operating systems. The main objective of this 

research is to study the requirements, also known as Quality of Service (QOS), of 

multimedia applications and develop a QOS management scheme to support an 

efficient multimedia networking environment. An integrated QOS management 

architecture is proposed to maintain synchronization among different continuous 

media objects. 

The primary goal of this research is to present a set of key application QOS 

parameters and map these requirements through all the layers of our proposed 
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End-toend QOS guarantees are ensured by dynamic QOS control that is 

orchestrated by a protocol entity called the QOS negotiation agent. The QOS 




