
QUALITY OF SERVICE ANALYSIS FOR DISTRIBUTED

MULTIMEDIA SYSTEMS IN A LOCAL AREA NETWORKING

ENVIRONMENT

A Dissertation Presented to

The Faculty of the

Fritz J. and Dolores H. Russ
College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Doc tor of Philosophy

by

Edward Chi-Fai Chung

June, 1996

Acknowledgments

I wish to take this opportunity to express my sincere gratitude to those

people who provided me with the guidance and encouragement during the

final stages of this education endeavor. Special thanks is given to my

dissertation advisor, Dr. Mehmet Celenk, for his patience, understanding and

support throughout the project. His dedication to work and attention to detail

never cease to amaze me. I am also grateful to my other committee members;

Dr. Dennis Irwin, Dr. Jeffery Dill, Professor Hari Shankar and especially Dr.

Costas Vassiliadis, for their time and valuable suggestions.

I owe much thanks to Mr. Sean Ann of RIM Communications Ltd.,

Hong Kong, for his invaluable support. Mr. Sean Ann is an exceptional friend

whose suggestions are often inspirational and challenging. Partial funding of

this research by RIM Communications Ltd. is also gratefully acknowledged.

Also deserving acknowledgment are the following individuals for their

kind assistance: Dr. Jerrel Mitchell, Mr. Timothy Bambeck and Mrs. Janelle

Baney. Mrs. Denise Ragan who gave her time to assist me with things that

made my life much easier. Special thanks go to Ms. Lisa Lung for her spiritual

and emotional support. She always reminded me of those things which are

really essential in my life that I sometimes overlooked.

Lastly, my heartfelt gratitude goes to my parents: Dora and Eric

Chung, for their encouragement, love , support and most important of all,

friendship that I cherish now and will treasure forever.

Table of Contents

. LIST OF FIGURES vii

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 BACKGROUND AND RELATED WORK 10

CHAPTER 3 QUALITY OF SERVICE REQUIREMENTS AND NETWORK

... PERFORMANCES 24

............. 3.1 NEZUTORK PERFORMANCE CRITERIA FOR MULTIMEDIA APPLICATIONS 24

... 3.2 APPLICATION QOS P A R A M ~ S -28

3.3 TRANSLATING APPLICATION QoS PARAM~TERS INTO NETWORK QOS

.. REQUIREMENTS -36

CHAPTER 4 THE QOS ORCHESTRATION MODEL 42

....................................... 4.1 INTEGRATED QOS ORCHESTRATION ARCHITECTURE 42

4.2 THE QOS NEGOTIATION AGENT .. -47

4.2.1 The Negotiution Protocol .. 51

4.2.2 The Cmzsumer Protocol .. -61

4.2.3 The Supplier Protocol ... 65

.. 4.3 GROUP COMMUNICATION 67

CHAPTER 5 COMPUTER IMPLEMENTATION AND EXPERIMENTAL

.. RESULTS 70

... 5.1 P R I O R I ~ INVERSION PROBLEM -70

.. 5.2 QOS-BASED RESOURCE CONTROL -79

.. 5.3 QOS MANAGEMENT AND ADMISSION CONTROL 80

.. 5.4 EXPERIMENTAL RESULTS -81

CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 108

.. 6.1 CONCLUDING REMARKS -108

.. 6.2 FUTURE RESEARCH DIRECTIONS -110

REFERENCES .. 112

APPENDIX A ... 117

... APPENDIX B 134

.. ABSTRACT 149

vii

List of Figures

FIGURE 1.1: DIFFERENCES BETWEEN MULTIMEDIA AND ASYNCHRONOUS NEIWORK

TRAFFIC CHARACTE5SI"I'CS. .. 3

FIGURE 1.2: BANDWIDTH REQUIREMENTS OF MULTIMEDIA TRAFFIC. 4

.. FIGURE 1.3: LATENCY CONCERNS IN INTER-NEWORKING.. 6

FIGURE 2.1: SPATIAL COMPOSITION OF NON-TEMPORAL MULTIMEDIA OBJECTS IN A

.. COMPOUND DOCUMENT.. -11

FIGURE 2.2: TEMPORAL COMPOSITION OF MULTIMEDIA OBJECTS ACCORDING TO THEIR

.. TEMPORAL RELATIONSHIPS .12

FIGURE 2.3: CLASSIFICATION OF MEDIA UTILIZATION IN MULTIMEDIA SYSTEMS AND

... APPLICATIONS.. -13

.................. FIGURE 2.4: DATA TOPOLOGY MOD= FOR MULTIMEDIA DATA STREAMS. .16

FIGURE 2.5: THE VUNET HIGH SPEED LOCAL AREA ATM W O R K ARCHITECTURE

DESIGNED TO DELIVER REAL-TIME DATA SUCH AS VIDEO AND AUDIO TO

.. MULTIMEDIA APPLICATIONS -21

FIGURE 3.1: THE STUDY CONDUCTED BY LITTLE ET AL. REGARDING CAUSES OF

... ASYNCHRONY IN A VIDEO TELEPHONY SYSTEM.. -26

FIGURE 3.2: THE LDU HIERARCHY OF A DIGITAL ANIMATION WHICH REQUIRES LIP-

... SYNCHRONIZATION.. -29

viii

FIGURE 3.3: THE END-TO-END DELAY OF A DISTRIBUTED MULTBEDIA COMPRISES ALL

THE DELAYS EXPFEIENCED AT THE SOURCE SITE, THE COMPUTER W O R K , AND

.. THE RECEIVERSm 31

FIGURE 3.4: EFFECTS OF TIME SKEW .. 32

FIGURE 3.5: A NOMINAL MULTIMEDIA DATA STREAM AS COMPARED TO THE RECEIVED

DATA STREAM WlTH ERRORS CAUSED BY SKEW AND JTlTER OF THE ORIGINAL DATA

DURING TRANSMISSION ... -33

FIGURE 3.6: QUALITY OF SERVICE FOR PRESENTATION SYNCHRONIZATION PURPOSES ..35

FIGURE 3.7: A SET OF APPLICATION QOS PARAMETERS DEFINED FOR MEDIA OBJECTS ..36

FIGURE 4.1: THE PROPOSED ENDPOINT COMMUNICATION MODEl EMBODIES TWO MAJOR

...... COMPONENTS: AN APPLICATION SUBSYSTEM AND A TRANSPORT SUBSYSTEM .44

FIGURE 4.2: THE LAYERED ARCI-IlTECTUXE OF OUR INTEGRATED QOS ORCHESTRA'IION

MODEL.. -45

FIGURE 4.3: THE BASIC STEPS IN ESTABLEHING A CONNECTION FROM THE CONSUMER TO

THE SUPPLIER WITH THE HELP OF THE QOS NEGOTIATION AGENTS ON EACH ~ 1 ~ ~ 4 9

FIGURE 4.4: ~ U R C E RESERVATION AND RESOURCE ALLOCATION PROTOCOL FOR

NEGOTIATING QOS REQUIREMENTS WITH AN "ACCEPT" RESPONSE..50

FIGURE 4.5: NEGOTIATIONS ACROSS THE LAYER BOUNDARIES OF THE PROPOSED QOS

MANAGEMENT MODEL .. .53

FIGURE 4.6: A DETAILED VIEW OF QOS NEGOTIATIONS.. -54

FIGURE 4.7: SIGNALING DURING QOS NEGOTIATIONS55

FIGURE 4.8: BILATERAL PEER-DPEER NEGOTIATION AT THE APPLICATION LAYER

BITWEEN THE CONSUMER AND THE SUPPLIER ... -56

FIGURE 4.9. TRIANGULAR NEGOTIATION FOR BOUNDED TARGET 58

FIGURE 4.10. TRIANGULAR NEGOTIATION FOR CONTRACTUAL VALUE 60

FIGURE 4.11. USING A SEPARATE CHANNEL TO CONTROL SYNCHRONIZATION 61

FIGURE 4.12. FLOWCHART FOR THE CONSUMER PROTOCOL ... 64

FIGURE 4.13. FLOWCHART FOR THE SUPPLIER PROTOCOL ... -66

FIGURE 4.14. THE NEGOTIATION PATHS IN GROUP C O ~ C A T I O N 68

FIGURE 5.1. PROCESS AND THREADS IN WINDOWS MI' .. 72

FIGURE 5.2. POSSIBLE STATES OF A WINDOWS NT THREAD ... 72

......................... FIGURE 5.3. SUMMARY OF WINDOWS NT THREAD INTERFACE CALLS 78

FIGURE 5.4: THE LAN SYSTEM SETUP FOR CONDUCTING THE QOS MANAGEMENT

EXPERMENTS .. -83

FIGURE 5.5: AVI PLAYERS RUNNING WITH THE QOS NEGOTIATION MODE DISAB LED...^^

FIGURE 5.6: A SINGLE AVI PLAYER RUNNING WITH THE QOS NEGOTIATION MODE

DISABLED ... 86

FIGURE 5.7: TWO SESSIONS OF THE AVI PLAYERS RUNNING WlTH THE QOS

NEGOTIATION MODE DISABLED .. -87

FIGURE 5.8: FOUR SESSIONS OF THE AVI PLAYERS RUNNING WITH THE QOS

NEGOTIATION MODE DJSABLED .. -88

FIGURE 5.9: INTERFRAME GAPS MEASURED BY RUNNING THE AVI PLAYERS WITH THE

QOS NEGOTIATION MODE DISABLED .. -89

FIGURE 5.10: INTERFRAME GAPS MEASURED BY RUNNING A SINGLE SESSION OF THE AVI

PLAYER WITH THE QOS NEGOTIATION MODE DISABLED90

FIGURE 5.11: GAPS MEASURED BY RUNNING TWO SESSIONS OF THE AVI

PLAYERS W~TH THE QOS NEGOTIATION MODE DISABLED..91

FIGURE 5.12: GAPS MEASURED BY RUNNING FOUR SESSIONS OF THE AVI

.................................. PLAYERS WITH THE QOS NEGOTIATION MODE DISABLED.. ,92

FIGURE 5.13: AVI PLAYERS RUNNING WITH THE QOS NEGOTIATION MODE ENABLED .94

FIGURE 5.14: A SINGLE SESSION OF THE AVI PLAYER RUNNING WlTH THE QOS

NEGOTIATION MODE ENABLED.. -94

FIGURE 5.15: TWO SESSIONS OF THE AVI PLAYERS RUNNING WITH THE QOS

NEGOTIATION MODE ENABLED.. -95

FIGURE 5.16: FOUR SESSIONS OF THE AVI PLAYERS RUNNING WITH THE QOS

NEGOTIATION MODE ENABLED..95

FIGURE 5.17: GAPS MEASURED BY RUNNING THE AVI PLAYERS WITH THE

.. QOS NEGOTIATION MODE ENABLED.. -96

FIGURE 5.18: GAPS MEASURED BY RUNNING A SINGLE SESSION OF THE AVI

.................................... PLAYER WITH THE QOS NEGOTIATION MODE ENABLED.. .96

FIGURE 5.19: -ME GAPS MEASURED BY RUNNING TWO SESSIONS OF THE AVI

PLAYERS WITH THE QOS NEGOTIATION MODE ENABLED -97

FIGURE 5.20: GAPS MEASURED BY RUNNING FOUR SESSIONS OF THE AVI

PLAYERs WITH THE QOS NEGOTIATION MODE ENABLED97

FIGURE 5.21: UP TO FOUR AVI PLAYERS ACCESSING A SINGLE FEE AND RUNNING WITH

.. THE (20s NEGOTIATION MODE DISABLED.. ..99

FIGURE 5.22: A SINGLE SESSION OF THE AVI PLAYER RUNNING WITH THE QOS

NEGOTIATION MODE DISABLED .. -99

FIGURE 5.23: TWO SESSIONS OF THE AVI PLAYERS ACCESSING A SINGLE FILE AND

RUNNING WITH THE QOS NEGOTIATION MODE DISABLED..I00

FIGURE 5.24: FOUR SESSIONS OF THE AVI PLAYERS ACCESSING A SINGLE FEE AND

................................ RUNNING WITH THE QOS NEGOTIATION MODE DISABLED .loo

FIGURE 5.25: UP TO FOUR AVI PLAYERS ACCESSING A SINGLE FILE AND RUNNING WITH

.. THE QOS NEGOTIATION MODE ENABLED 101

FIGURE 5.26: A SINGLE SESSION OF THE AVI PLAYER RUNNING WITH THE QOS

... NEGOTIATION MODE ENABLED.. .I 01

FIGURE 5.27: TWO SESSIONS OF THE AVI PLAYERS ACCESSING A SINGLE FlTE AND

............................... RUNNING WlTH THE QOS NEGOTIATION MODE ENABLED.. .lo2

FIGURE 5.28: FOUR SESSIONS OF THE AVI PLAYERS ACCESSING A SINGLE FILE AND

............................... RUNNING WlTH THE QOS NEGOTIATION MODE ENAB LED... 102

FIGURE 5.29: FIVME RATE VERSUS TIME: MACHINES A AND B ARE RUNNING WITHOUT

...... QOS MANAGEMENT WHILE MACHINES C AND D RUNNLNG IN MODE .I03

xii

FIGURE 5.30: GAP VERSUS TIME: h/lACHIINES A AND B ARE RUNNING

WITHOUT QOS MANAGEMENT WHILE MACHINES C AND D RUNNING IN QOS

.. MODE.. ,104

FIGURE 5.31: FRAME RATE VERSUS TIME: DYNAMIC QOS CONTROL WITH QOS

... NEWTIATION -106

FIGURE 5.32: ITERFRAME GAP VERSUS TIME: DYNAMIC QOS CONTROL WlTH QOS

Chapter 1

Introduction

1.1 Multimedia Networking Versus Traditional Data Networking

Distributed multimedia networking environments are an emerging

application domain [I, 2, 3, 4, 5, 6, 7] that introduces new challenges to

distributed processing systems (DPS). Such environments are characterized by

the presence of groups of users, connected via a computer network, cooperating

to achieve common tasks through sharing mixed-media information [8] such as

text, graphics, facsimiles, data, audio, and video. While typical database systems

handle only non-temporal (also referred as static, non-time-based, and discrete)

data types, such as text, images, fax, graphics, source codes, and binary codes,

multimedia systems must also support temporal (similar terminology includes

dynamic, time-based, and continuous) media types including video, animation,

speech, and music. The term temporal media describes the temporal dimension

of media such as video and audio, which contain sequences of data elements each

having a position in time. For instance, a digital video clip contains a sequence of

images called frames. Each frame must be played in a specific sequence in time

and at a specific rate (typical frame rate is between 15 to 30 frames per second) to

produce the correct visual effect The timing constraints must be enforced during

capture and playback when temporal data are being presented to a human user.

The success of conducting a multimedia session relies not only on the success of

executing various programs and accessing numerous types of data files across the

connected network, but also on the fulfillment of the timing requirements

demanded by the temporary media types being utilized.

Different multimedia applications demand different communication

requirements. A multimedia conferencing session, where data is presented once

and then discarded, can be more tolerant to a higher error rate than an

application that compresses and records an audio data stream for future

playback. Although the multimedia conferencing session is less prone to

transmission errors, it requires fast data delivery that is close to real-time. On the

other hand, long transmission delays are of little concern to the audio recording

application. Every element of the multimedia system must satisfy the

requirements of the executing multimedia application and data streams it

requested. Since multimedia systems are delay-sensitive, the multimedia services

they employ must provide some kind of timing guarantees. Resource

management, which is one of the major responsibilities of the multimedia

network operating system (MNOS), must incorporate some form of resource

allocation and scheduling schemes to map the requirements of the multimedia

application onto the system and network capacity.

Due to the temporal nature of multimedia data types, the multimedia data

streams that are transported across the computer network are significantly

different from the asynchronous data traffic that typical local-area networks

(LAN) are originally designed to support. Figure 1.1 lists some of the

characteristics differences between multimedia data streams and asynchronous

data.

Figure 1.1 : DZerences between multimedia and asynchronous network traffic
characteristics.

Character is t ics
Load offered

Latency

Jitter

Bandwidth

Connection type

The duration for serving multimedia data streams is usually long-lasting

(ranging from minutes, as in playing a musical file, to hours, as in playing a

digital video) and requires high data rates (e.g., 1Mbits per second). On the other

hand, asynchronous data transfers are typically short and bursty. A comparison

of various data types with their required transmission bandwidth is given in

Figure 1.2.

Rsynchronous data
Bursty

Not critical

Not critical

Highly bursty

Connectionless

Multimedia Streams
Long-lasting

Low, time-critical

Low, less is better

Nearly constant & Predictable

Connection-oriented

C~mpressed bandwidth

100 1K 10K 100K 1M 10M 100M 1G
bits per second

Figure 1.2: Bandwidth requirements of multimedia trafEc (from [9]).

Asynchronous data transfers depend on the network to correct any

transmission errors caused by data corruption or packet loss. Traditional

transmission protocols can correct these errors by data correction schemes or by

retransmission of the faulty data. In contrast, most multimedia applications can

tolerate errors but demand on-time delivery of the required multimedia data

streams. However, they cannot tolerate the kind of delay that can be caused by

data correction and retransmission. Instead, the corrupted data packets will be

discarded. In the case of a digital video playback, a frame or two may be

dropped without much distraction to the viewer.

Unlike asynchronous data transfers, where increased latency means longer

delays in the transfer but otherwise harmless, latency may cause multimedia data

to go completely out of synchronization; e.g., lip-synchronization during a video

conference session, thus degrading the quality of the multimedia application from

annoyance to unbearable. The inter-networking latency issue is illustrated in

Figure 1.3.

Multimedia communication demands certain service guarantees from the

computer network. These guarantees include per-session bandwidth

requirements with limited latency and jitter that traditional networks are not

designed to provide.

Origin of transmission

I
System bus

Ethernet, token ring or FDDl

WAN interconnection /

Ethernet, token ring or FDDl

System bus

Codec latency
30 ms

I
LAN latency

10 ms
I

I
1

WAN latency
10-20 ms

LAN latency
10 ms

Codec latency
30 ms

Total end-to-end
latency

approximately
100ms

I i
T I

Termination of transmission

Figure 1.3 : Latency concerns in inter-networking (fiom [lo]).

1.2 Research Objectives

In this research, we classify the transmission and processing requirements

of local and distributed multimedia applications by four major characteristics: (1)

throughput, (2) local and global delays, (3) jitters, and (4) reliability. These

characteristics are known as Quality-Of-Service or QOS parameters. The

multimedia network operating system must be based on a given QOS

specification to perform resource allocation and management tasks. This process

is similar to a workload request in a distributed computing system [Ill. Existing

literature on multimedia systems indicate that QOS definitions have not yet been

standardized [12]. The main objective of this research is to identify the necessary

QOS parameters for multimedia applications and the MNOS. The research also

aims to propose an architectural model for mapping the multimedia application

QOS requirements into the negotiation protocol of the networking system for

resource allocations and utilization. The proposed model is designed to support

multimedia applications with strict temporal requirements while isolating these

applications from the details of network resource management, which include

bandwidth allocation and process scheduling. The QOS Broker [13] model,

suggested by Nahrstedt and Smith, is adopted here to negotiate and arrange for

the delivery of end-to-end quality of service in our prototype distributed

multimedia framework.

To make the research more complete, we have studied several

synchronization techniques in multimedia systems and determined the

synchronization schemes best suited to the proposed QOS model. The QOS

negotiation model is simulated on a local area network with a single server and

four workstations. The server is running Windows NT Advance Server Operating

System, version 3.51, while the workstations are running Windows NT

Workstation Operating System, version 3.51. The entire network is running on

IEEE 802.3 compliant 10-Base2 Ethernet Finally, we analyze our simulation

results to determine the effectiveness of the proposed QOS negotiation model

when used in a multimedia networking environment

1.3 Outline of the Dissertation

The remaining part of this dissertation is organized as follows: In Chapter

2, we provide some fundamental concepts in multimedia networking and discuss

the need for a standardized QOS negotiation model to conduct multimedia

network communication effectively. The concept of data topology models are

introduced and the literature survey is presented.

Chapter 3 presents the different multimedia data types and defines the

QOS parameters for multimedia applications. The multimedia application QOS

parameters are then translated into network QOS requirements. We also analyze

the network QOS requirements and discuss the issues related to skew, jitter,

utilization, and data rate.

9

The QOS negotiation model is presented in Chapter 4. We first discuss the

admission service for the transport subsystem and then describe the QOS

negotiation process. A dynamic QOS negotiation scheme to accommodate the

dynamic changes in network load conditions is also presented.

In Chapter 5, we discuss the computer implementation of our QOS

negotiation model and some important issues in multithreaded programming.

The experimental results are also discussed here.

Finally, the conclusion of this dissertation is given in Chapter 6. Future

research directions pertaining to this research are also presented.

Chapter 2

Background and Related Work

21 Multimedia Data Types

Distributed multimedia systems deliver multiple sources of various spatial

or temporal media types (also known as media objects) to compose mixed-media

or compound documents [8]. QOS parameters can be derived from the methods

used to compose these compound documents. As depicted in Figure 2.1, spatial

composition links non-temporal media objects into a single entity or document.

Spatial compositions must deal with object sizes, orientation, and placement

within the document Temporal composition arranges both temporal and non-

temporal media objects according to their temporal relationships along a time-line

as shown in Figure 2.2.

Temporal composition can be treated as a way of synchronizing

multimedia objects. There are two types of temporal compositions: continuous

synchronization and point synchronization. Lengthy multimedia presentations

are best handled by continuous synchronization. An example would be video

conferencing where audio and video signals are digitized at a remote site,

transmitted over the network, then synchronized continuously at the receiving

station for proper playback. Video conferencing also demands full duplex

communication which makes continuous synchronization a complex task. In

contrast, point synchronization concatenates a single point of one media block

(the starting point) to a single point of the previous media block (the endpoint).

Slide shows with audio and voice annotations are good examples of point

synchronization.

Chart
lmage

Text

Text
lmage Chart

i Compound Document

Figure 2.1: Spatial composition of non-temporal multimedia objects in a compound

document.

Chart Video
Animation /I-",

Audio
n

Text

Time (t)

Figure 2.2: Temporal composition of multimedia objects according to their temporal

relationships.

A multimedia system or a multimedia application is defined based on the

number of media objects used in an application, the types of different media

being supported, and the degree of media integration. The classification of

multimedia systems based on these three criteria is illustrated in Figure 2.3.

Type of

Time-
dependent
and time-

independent

Time-
dependent

Time-
independent

. J Integration of Media
n media 1 media

Number of Media

Figure 2.3: Classifkation of media utilization in multimedia systems and applications (from

[141).

2 2 Synchronization in Multimedia Networking

Synchronization is the mechanism that coordinates the order of events in

the proper temporal sequence. Synchronization can be further classified as serial

and parallel synchronization. Serial synchronization determines the rate at which

multimedia events occur within a single data stream. Serial synchronization is

often referred as intramedia (or intrastream) synchronization since it ensures that

QOS parameters, such as delays and jitters, of temporal media types are tightly

bounded from the point of generation or retrieval to the point of delivery within a

single data stream. When several temporal media streams are requested in

parallel, potentially from different points of generation or retrieval, parallel (also

referred as intermedia or interstream) synchronization is required to determine

the relative timing relationships and schedule of multiple data streams. Either

type of synchronization demands coordination between the multimedia

application and the network resource managers in order to guarantee end-to-end

synchronization. Overviews of multimedia synchronization methods can be

found in Steinmetz [15] and Little et al. [16].

The implementation of a synchronization algorithm for a particular

multimedia application requires a well defined set of QOS parameters for the

underlying multimedia communications. Little et al. [17] and Butlerman et al.

[18] suggested that the required synchronization algorithm can be built on data

topology (location) models. As shown in Figure 2.4, four data topology models

are suitable for multimedia systems:

1. Single source, local communication: A single media source produces

and/or delivers the requested media streams to the playback devices

typically controlled by a PC workstation. Examples of the media sources

may be a CD-ROM (stored media streams) or a digital video camera (live

media streams). Examples of playback devices include a graphics video

adapter and an audio interface with speakers. The communication link

between the source, the workstation and the playback devices may be the

system bus, a Small Computer Systems Interface (SCSI) channel, or an

Asynchronous Transfer Mode (ATM) link. If the playback devices can

maintain their proper playback speed, no other synchronization

techniques are required. CD-ROM and video display adapter

manufacturers often include on-board cache memory for buffering

playback data streams in their products to ensure proper playback speed.

2. Multiple sources, local communication: Two or more media sources

produce and/or deliver media streams to the local playback devices. A

slide show with annotated speech and music fits into this type of data

topology model. The workstation performing the slide show must perform

media synchronization within the system.

3. Single source, distributed communication: A single media source produces

and/or delivers media streams across a computer network to one or more

nodes consisting of playback devices. Video-on-demand [19] is an

example of this model. It is assumed that there is no interactions between

the clients and the server application. Synchronization becomes easier if all

the playback devices can maintain proper playback speeds.

System Bus

r-'-r-7

l i i l Workstation

System BUS I

Source Destinations Source Source Destinations

a) Single source, local communications b) Multiple sources, local communications

Network Communications Link

Source Destinations

c) Single source, distributed communications

Network Communications Link

Source Source Destinations

d) Multiple sources, distributed communications

Figure 2.4: Data topology models for multimedia data streams: (a) Single source, local

communication; (b) Multiple sources, local communication; (c) Single source, distributed

communication; (d) Multiple sources, distributed communication.

4. Multiple sources, distributed communication: Two or more sources

produce and/or deliver media streams to multiple playback devices

located at different nodes distributed across the network. This complex

model can be further broken down into three scenarios:

i) Multiple sources located at a single node delivering media streams to

one or more remote nodes. This scenario is similar to the "single source,

distributed communication" model but with multiple sources of media

streams.

ii) Multiple sources from two or more different nodes delivering media

streams to a single remote node.

iii) Multiple sources from two or more nodes delivering media streams to

two or more nodes. In h s scenario, a workstation delivering media

streams from its local media source can also be a recipient of incoming

media streams generated from another remote node. Multimedia

conferencing [20] for business workgroups [8] is a typical application of

this model.

In order to implement an efficient synchronization algorithm for a specific

application, one must efficiently translate the QOS parameters requested by the

multimedia application into the network QOS requirements. If the network QOS

cannot guarantee service quality specified by the application QOS, a negotiation

on QOS requirements must take place. If the network can support a lower set of

QOS requirements while the application can tolerate the degradation of playback

quality caused by lowering its QOS demands, a successful multimedia session

can then be conducted. Although considerable research efforts have been devoted

to the standardization of QOS parameters to guarantee quality end-toend

multimedia services, only a few studies focus on the translation of QOS

requirements by an application into the negotiated network resource allocations.

To this end, our research goal is to develop an architectural model to conduct

these QOS translation and negotiation tasks.

2.3 Related Work

Tenet [21] is a research conducted by the University of California at

Berkeley and the International Computer Science Institute. The Tenet

approach to multimedia networking demands that any multimedia

application should be able to request a level of network performance

appropriate to its requirements. Tenet measures performance or QOS

parameters including bandwidth (in terms of maximum packet size and inter-

packet arrival time), delay bounds, jitter bounds, and reliability bounds.

These bounds may be statistical in nature. Since network performance cannot

be achieved in the realm of unpredictable network application behavior, the

interface between the network and the application is modeled as a contract to

which both sides must comply.

The Desk Area Network (DAN) [22] project, developed at the University

of Cambridge Computer Laboratory, employs a multimedia workstation

equipped with a single ATM switch to interconnect multimedia peripherals (e.g.,

an audio interface and a video camera) with the system processors and memory.

The internal architecture of a DAN workstation exhibits characteristics of an

asymmetrical multiprocessor which differs from the typical symmetrical

multiprocessor server design. By using an asymmetrical multiprocessor

architecture, DAN'S design objectives may exclude the low-level intrasystem

communication demanded by a symmetrical multiprocessor, such as

interprocessor communication, synchronization, and cache coherency. A high

speed input/output (I/O) subsystem, such as SCSI, is utilized to interface mass

storage devices with a DAN workstation. Since the storage devices are not

completely integrated within the system, DAN is more flexible in terms of

scalability as compared to traditional file servers. The primary memory model

used is "stream caching" which delivers the streaming data from various

multimedia devices directly to the processor's secondary cache, thus bypassing

the system main memory.

VuNet [23] is a high speed local area ATM network that can handle data

rates at giga-bits per second. VuNet is implemented in the context of ViewStation,

which is a distributed multimedia research conducted at the Massachusetts

Institute of Technology (Ml'T). VuNet investigates the use of ATM technology to

connect multimedia devices to a workstation without extending ATM into the

workstation itself. It interconnects workstations and multimedia devices using a

set of ATM links and switches. The objective of VuNet is to deliver real-time data

such as video and audio from the network to the multimedia applications. A

general overview of the VuNet project is shown in Figure 2.5.

Researchers at Washington University proposed using 3 by 3 ATM

switches to connect a set of storage nodes to a high speed network [24]. Each

storage node consists of SCSI channels and RAID (Redundant Arrays of

Inexpensive Disks) devices to support massive storage and fault tolerance. A

dedicated computer is attached to the ATM switches as a central manager to

control the storage nodes. This project does not use ATM as the system

interconnect bus but as the storage 1/0 back-bone network. The processors,

system memory, and storage subsystems are still connect through a traditional

system bus.

Multimedia Workstation Multimedia Workstation

Figure 2.5: The VuNet high speed local area ATM network architecture designed to deliver

real-time data such as video and audio to multimedia applications.

Project Athena [25,26] is a multimedia computing project initiated at MIT

to provide a flexible, efficient, and user-friendly prototype multimedia authoring

environment for creating distributed multimedia computing applications.

AthenaMuse 1 [27, 281 is the platform-independent, multimedia authoring

software environment derived from Project Athena. The latest AthenaMuse 2 [29,

301 converts the research agenda and experiences learned from AthenaMuse 1

into an extensible object-oriented software environment The primary target

platforms for this software system are UNIX-based workstations running the X-

Windows System, a graphical user interface (GUI). Nevertheless, the software

environment and generated applications will be portable across diverse hardware

architectures and operating systems subject to the reasonable constraints of the

target platform's hardware functionality.

The Multipoint Interactive Audio-Visual System (MIAS) [31] project

funded by Esprit (Commission of the European Community) aims to study

the necessary protocols and features required to support an efficient

multipoint multimedia communication. The MIAS audio-visual terminal

consists of dedicated hardware attached to an ISDN line (2B+D channels)

incorporating a video input connector and H.261 codec to handle digital video

data, while using a G.722 codec and associated audio 1/0 circuitry to handle

digital audio data. The system runs under the Microsoft Windows platform

using PC workstations. The PC workstations are also used for sharing as well

as transferring data files, and performing conference control chores.

In this Chapter, we discussed the spatial and temporal properties of

multimedia data types and the synchronization issues in delivering

multimedia services. We also defined the four data topology models for

multimedia networks that are used in this research. In the next Chapter we

define the QOS requirements that multimedia applications impose on the

underlying network. These requirements are expressed in a form of network

performance criteria so that we can obtain a quantitative assessment of the

services provided bv the overall system.

Chapter 3

Quality of Service Requirements and Network
Performances

3.1 Network Performance Criteria for Multimedia Applications

In distributed multimedia applications involving multiple sources and

receivers, an intermedia synchronization scheme is needed to eliminate causes of

asynchrony. Figure 3.1 shows a study conducted by Little et al. [17] regarding

causes of asynchrony in a video telephony system. From tlus study the basic set of

QOS parameters can be identified as speed ratio, utilization, average delay, jitter,

bit error rate, and packet error rate. The above set of QOS parameters indicates

that these parameters need to be derived from various multimedia devices and

the distributed network. However, this is only appropriate for describing the

connection quality that the network provides. The specified set reveals little

information for describing the QOS requirements demanded by multimedia

applications.

The first major goal of this research is to capture different media types and

investigate their orientation, file size, temporal properties, and other features

specific to the media under investigation. Digital video is one of the major media

types that we consider here. The Intel Smart Video Recorder Pro (ISVRP) video

digitizing interface is used to digitize and store the video footage captured from a

SONY Hi-8mm camcorder using the Y/C (SVideo) input to ensure image

quality. The ZSVRP interface is a second generation design based on the latest i750

video processor developed by Intel. Using the i750 video processor and Intel's

Indeo 3.2 compression technique, the ISVRP interface is capable of capturing and

compressing video in real-time up to 15 frames per second (fps) at low resolution.

To successfully capture and then playback the digitized video with an acceptable

quality, the application QOS parameters should include sampling size, sampling

rate (or frame rate), playback delay due to system processing times, hard drive

access times and video display adapter delays, and sample loss rate. Speech and

music are also captured using the TurtleBeach MultiSound Monterey

audio/sound adapter. For an acceptable digitized audio quality, the application

QOS parameters must include sampling size, sampling rate, playback delay, and

sample loss rate.

Different encoding
times for video

and audio

/ ',

Video Video -
source encoder

',

f

Audio Audio -
source encoder

<

C
0 -
w L .- aJ
G%
C u

;

Variations in acket Start-up delay due Frequencies of
prrival times btter) to decompression physical display
~ntroduced by: pipeline can cause dev~ces do not
- independent routing v~deo to trail audio match; audio

paths, where decompression and video may
- packet loss, dela is generally not stay in synch
- packet buffering srnaier; skew in over long periods

display

I

Figure 3.1 : The study conducted by Little et al. regarding causes of asynchrony in a video

telephony system (&om [17]).

r

Although multimedia applications may have properties in common with

other applications such as database systems, they have several specific features

that directly affect the underlying network performances:

C
.P L ", w .s U

5 g E-0

1. Multimedia applications require transmission of continuous media types

in either real-time or near real-time.

1

- -

f \

u
L /

\ " e

Network
6-ISDN

C
0

0 'G
a m s u

- Video
encoder
-

L J

C
0

0 'S .-
2 .E
< 5

- Audio
decoder

2. The amount of data to be transmitted is substantial and the processing

power involved in encoding and decoding the continuous media data may

be considerable.

3. Many multimedia applications are distribution oriented; e.g., video on-

demand, where streams of multimedia data need to be distributed to

many users at the same time.

From these observations, we have chosen four performance criteria to

characterize the network behavior when handling continuous media traffic. These

criteria are actually used in specifying the QOS for our multimedia

communications model:

1. Throughput: This is the transfer rate or data rate between two

communicating end-systems. Throughput is also known as the bandwidth

of the network.

2. Transmission delay: This is the delay for a block of data to propagate from

one end-system, via a network, to another end-system. Transmission delay

is often called the network latency.

3. Delay variations: Data transmissions can be affected by the physical

properties of the network, such as data corruption, crosstalk between

cables, and network overloading. These conditions all contribute to

variations in the transmission delay of the network. A term often used to

describe these variations is jitter.

4. Error rates: Error rates are measurements of the reliability, or the resilience

to errors, of the network Errors can be caused by data loss, data

duplication, data alteration, or incorrect-order delivery of data packets.

3.2 Application QOS Parameters

For multimedia computing, the required QOS depends on the individual

multimedia application and the media objects being served. One of our research

tasks is to provide a general framework to parameterize the QOS specifications

for each media object for multimedia applications. The QOS specifications for a

media object include quantified values to describe the necessary playback quality

and the playback accuracy. For a time-dependent media object which contains a

sequence of time-dependent information units, also known as Logical Data Units

(LDUs), the accuracy in timing during playback depends on whether the QOS

specification can be satisfied by the underlying network or not Figure 3.2 shows

an example of the LDU hierarchy of a digital animation which requires lip-

synchronization.

Figure 3.2: The LDU hierarchy of a digital animation which requires lip-synchronization.

Animation

Depending on the type of multimedia application, absolute

synchronization requirements can be relaxed to various degrees for each media

object without adversely affecting their presentation quality. We classlfy the QOS

specifications for a media object based on three major characteristics:

1. Presentation qualities that are independent of temporal relationships.

2. Presentation qualities that are affected by temporal relations among other

media objects.

I

- - - - - - - -

- - - - - - - -
Frame p

A L

' r 'l

Frarnel

Animation: Maximum advancement 80 ms
Speech: Maximum advancement 80 ms
Background music: Maximum advancement 80 ms

Frame 5

A L A

T 1 ----

A).

r

A L

Background Music
T 1

Music 1

Frame 2

A L

Frame 6

L A

T

L

,, Speech
\

Speech 1

T --

Frame 7

L

\

A L

T \

Speech 2

Frame 3

\

A L

T 7

Music 2

Speech 3

Frame 4

--

y t

Speech 9

Music 3

Music r

3. Quality degradation caused by the presentation environment.

Color depth and resolution are the two time-independent QOS parameters

that speclfy presentation quality for still pictures and digital video. For digital

audio data, color depth is replaced by the number of audio channels and

resolution is replaced by the sample size of the digital audio file. Apparently an

audio file with mono sounds and a small sample size demands less bandwidth

than the one with stereo sounds and a moderate sample size to be transmitted

across the network In other words, these QOS parameters directly affect the

throughput of the network. We shall derive an approach to map the QOS

parameters into network QOS requirements in Section 3.3.

The time-dependent QOS parameters of digital video include the frame

rate which determines the smoothness of motion during playback It is generally

agreed that at least 15 fps is required to reproduce fluid motion in a video

sequence. Some video conferencing applications can perform satisfactorily

between 11 fps to 14 fps due to the limited amount of movements typically

involved in this kind of application. In the case of digital audio, frame rate is

replaced by the sample rate.

For aperiodic data (such as still images and text) time-dependent QOS

parameters include preferred end-tosnd delay, acceptable end-to-end delay, and

unacceptable end-toend delay as measured with respect to real-time or with

respect to other aperiodic data to be presented[32]. An example of end-toend

delay is illustrated in Figure 3.3. These end-toend delay parameters are also

applicable to periodic data such as video and audio. However, instantaneous

delay variations or jitter can seriously affect the synchronization between periodic

data streams. Therefore, maximum acceptable jitter is included in our application

QOS parameters to define an affordable synchronization boundary for the

instantaneous difference between two synchronized data streams.

Stored Multimedia Data

(Hard Disk Drive)

Real-Time Multimedia Data

T ~ u e r y T~cceaa T Transmit T~epacketize T~layback

4 End-To-End Delay

4

Figure 3.3: The end-toad delay of a distributed multimedia comprises all the delays experienced at

the source site, the computer network, and the receiver site.

TSeek T~acketize T~uf fer T ~ e c o d e
b-4 b4 b4 4 b4 b

Delay variations are contributed by sample losses during transmission and

the reliability of the underlying network To quantdy these variations, we have

included the maximum sample loss rate (SLR), maximum bit error rate (BER),

and the maximum packet error rate (PER) as the acceptable QOS parameters for a

media object These parameters can be used to describe time skew with respect to

real time or with respect to periodic data streams. The average difference in

presentation times over some n synchronization intervals between two

corresponding media objects is called skew. For media objects such as video and

audio, data can be lost during playback resulting in dropped frames or gaps in

the presentation. Such losses cause data streams to advance in time. This

synchronization problem is called stream lead. On the other hand, duplicating a

data frame causes the data stream to retard in time or a stream lead. Figure 3.4

illustrates the effects of time skew. Figure 3.5 shows how jitter is corrected by

either dropping or duplicating frames of data and skew may be corrected by

dropping data frames.

0 Reel Time n Real Time

(a) Legging Skew (b) No Skew

Figure 3.4: Effects of time skew.

,i Reel Time

,--iyi-i-H $ 5 ? + !
Playour

time

(c) Leading Skew

Figure 3.5: A nominal multimedia data stream as compared to the received data stream with

errors caused by skew and jitter of the original data during transmission (fiom [33]).

To account for time skew, we need to address the synchronization

problem both during the production of multimedia data objects and during the

presentation of these objects. In order to guarantee the QOS required by a

multimedia application, all involved media objeds (e.g., video and audio) are

captured, recorded, and edited with no skew during production This is known

as the production-level synchronization and it ensures that all media objects are

"in- synd' prior to the presentation of the data at the user interface. Unlike

production-level synchronization, which can be controlled during production,

presentation-level synchronization depends on the networking system conditions

during presentation. The presentation-level synchronization defines the

boundary for an acceptable presentation quality as perceived by the human user

at the workstation end. The degree of acceptable presentation quality is expressed

as the QOS parameters defined for maximum lead-skew and maximum lag-

skew. The actual values for these parameters are found by exhaustive

experiments as well as derived from literature in this research area. Figure 3.6

depicts some of the QOS values appropriate for presentation-level

synchronization [34].

The last application QOS parameter we need to define is the priority level

that supports multithreaded programming. Multithreading is a form of

concurrent programming in a multitasking environment Here, priority is defined

for the relative importance among the different media objects that are managed

by an application. Consider the case where a real-time application shares the

same system resources with non real-time programs. The real-time application,

while waiting for some continuous data packets, must compete for system

resources with non real-time applications which need only asynchronous data.

Since continuous data packets have deadlines to meet, they should be assigned

with a higher priority than asynchronous data packets that have no timing

restrictions. There are four priority levels: real-time, high, normal, and idle.

Priority is not an option that can be selected by the user. It is defined by the

application and the nature of the multimedia objects it handles. Details on

priority and multithreading are given in Chapter 5 when we discuss the

implementation of our QOS model. We have now covered the set of application

QOS parameters defined for media objects and a summary is shown in Figure 3.7.

a Pointer prior to audio for 500 ms; audio prior to pointer for 750 rns.

Figure 3.6: Quality of Service for presentation synchronization purposes (fiom [34]).

+I- I1 p.s

4- 120 ms

+/- 500 ms

+/- 5 ms

+I- 500 ms

4- 240 ms

- 500 ms,
t 750 msa

Audio

Image

Text

Pointer

Tightly Coupled (stereo)

Loosely Coupled (dialogue mode with
various participants)

Loosely Coupled (e.g., background
music)

Tightly Coupled (e.g., music with notes'

Loosely Coupled (e.g. slide show)

Text Annotation

Audio Related to the Item to Which the
Pointer Points

Figure 3.7: A set of application QOS parameters defined for media objects.

Media Object

Quality of Service

3.3 Translating Application QOS Parameters into Network QOS

requirements

To provide multimedia applications with end-toend service guarantees,

some kind of network resource management scheme must be incorporated into

Graphics and
Bitmap Image

Color Depth

Resolution

Digital Video

Color Depth

Resolution

Frame Rate

Max. Jitter

Max. Lead Skew

Max. Lag Skew

Frame Loss Rate

Max. Bit Error
Rate

Max. Packet Error
Rate

Priority

Digital Audio

Audio Channels

Sample size

Sample Rate

Max. Jitter

Max. Lead Skew

Max. Lag Skew

Sample Loss Rate

Max. Bit Error
Rate

Max. Packet Error
Rate

Priority

the application, the networking system, and the operating system at the

endpoints as well as between the endpoints and the network. The application

QOS parameters defined in the previous section allow the multimedia application

to submit a request for QOS guarantees, at the application's perspective, to the

networking system for performing resource allocation. Resource allocation and

management are complex tasks which will be discussed in the next Chapter when

we describe our QOS negotiation model. However, before any resource allocation

can begin, the networking system must understand the types of service

guarantees that the application really needs by interpreting the set of submitted

application QOS parameters. This is achieved by translating the application QOS

parameters into the network QOS requirements.

Our model specifies network resources as network QOS requirements

based on three domains that govern the connection quality of the network The

first domain involves throughput specifications which include packet size and

packet rate. The second domain deals with network traffic specifications. Here,

we have included preferred end-to-end delay, acceptable end-to-end delay,

unacceptable end-toend delay, interarrival rate, and packet loss rate. The third

domain is synchronization specifications which include network jitter, lead-skew,

lag-skew, BER, PER, and priority.

The translation between application QOS parameters and network QOS

requirements is done by several mapping functions. The network packet size SN is

a known value determined by the transport subsystem (e.g., TCP/IP running on

10-Base2 Ethernet) used to implement the network The network packet rate RN is

determined by

RN = (r s A / s N l) * RA (4.1)

where SN is the packet size of the network and it is predetermined by the

network itself, SA is the sample size of the application media object, RA is the

media object sample rate, and (r 1) is the ceiling function. The subscript 'A'

denotes that the value is defined for an application QOS parameter whereas the

subscript 'N' denotes that the value is defined for a network QOS parameter. The

sample size of a still image or a video frame is determined by the resolution and

the color depth of the image. For example, a video frame with resolution of 160

pixels by 120 pixels and a color depth of 8 bits per pixel (i.e., 256 colors) has a

sample size SA of 160 * 120 * 8 = 153,600 bits or 19,200 bytes. If the video clip is to

be played back at 15 fps, then RA= 15 fps. Assuming that the network packet size

SN is 64 bytes, the required network rate RN would be:

RN = r (19,200 bytes per frame/ 64 bytes per * 15 fps

= 4,500 packets per second

The interarrival rate IN is calculated as

The calculations for the network unacceptable end-to-end delay CN~, ,

acceptable end-toend delay C N ~ ~ ~ and preferred end-to-end delays C N ~ are

expressed by the following equations:

where RTA and WTA are the processing times for the application to read data

from a remote source and to write data to a local buffer, respectively. These

processing times are measured in advance and exchanged during the QOS

negotiation process.

The rest of the network QOS requirements are directly mapped onto the

given application QOS parameters. They are:

Packet loss rate LN = Sample loss rate LA (4.6)

Network jitter JN = Maximum acceptable jitter JA (4.7)

had-skew SDN = Maximum lead-skew SDA (4.8)

Lag-skew SGN = Maximum lag-skew SGA (4.9)

Network bit error rate BERN = Maximum acceptable bit error rate BERA (4.10)

Network packet error rate BERN = Maximum packet error rate BERA (4.11)

Priority set for application PA = Priority set for network PN (4.12)

In this Chapter we have discussed the behavior of continuous media traffic

and the four performance criteria which are critical for the communication

subnetwork to support multimedia applications. Based on these criteria (i.e.,

throughput, transmission delay, delay variations, and error rates), we have

derived the basic set of QOS parameters for multimedia applications. These

application QOS parameters are then translated into network QOS requirements

based on the mapping functions (equations 4.1 through 4.12). Although these

mapping functions may be straight forward to obtain, the entire translation

process is in fact a complex procedure due to the dynamic nature of the

networking environment. Recall the four data topologies outlined in Chapter 2.

Media streams can come from several different sources, go through different

parts of the network, and be delivered to different users (or sinks) thus making

the translation process a difficult one. If parts of the network resources are not

available at the time of the QOS request, the network must decide to either reject

or attempt to accommodate the request by modifying the QOS requirements to

some levels that are acceptable by both the application and the network. The

details of tlus QOS negotiation process are given in the next Chapter.

Chapter 4

The QOS Orchestration Model

4.1 Integrated QOS Orchestration Architecture

To satisfy the QOS requirements demanded by multimedia applications,

network resource management alone is inadequate [35]. There have been debates

on placing the responsibilities of these QOS requirements to the application level

software instead of redesigning a whole new set of multimedia networking

protocols. As a result, much of the current multimedia applications have to

incorporate proprietary codes to maintain isochronous transmission for media

objects since most commercial networking operating systems are not designed to

support continuous media. The main disadvantages of this brute force approach

are:

i) Distributed multimedia applications are difficult to develop without

standard support for continuous media communication from the

underlying operating system.

ii) Proprietary QOS management imposed by different multimedia

applications may result in poor performance when these applications are

executing together in a multitasking environment.

iii) There will be some wasted bandwidth and processing power across the

network since there is no integrated resource management overseeing all

the distributed resources.

This analysis suggests that there is a need to manage resources among the

application, network, operating system at the communicating end-station, as well

as between the communicating end-stations and the network itself in a unified

and balanced manner. We, therefore, advocate the notion of an integrated QOS

architecture [36], whereby application QOS requirements should be mapped

through all the layers of the entire system. Our proposed endpoint

communication model, which is designed to support an integrated architecture,

embodies two major components: an application subsystem and a transport

subsystem as shown in Figure 4.1. The application subsystem provides facilities

such as application QOS management, multimedia service management, 1/0

device management, media object synchronization, and media data delivery to

the application. End-to-end connection management, data flow and throughput

control, data packet ordering, and data flow management at the network interface

are all functions provided by the transport subsystem. Each subsystem is further

divided into functional layers similar to the Lancaster distributed multimedia

architecture [37.

/ IIO Devices / Application (20.5 Parameters 1

Graphical User Interface A
Application Subsystem

....................

Transport Subsystem

Network Interface 1
Network resources Network QOS Parameters

Figure 4.1: The proposed endpoint communication model embodies two major

components: an application subsystem and a transport subsystem (fiom[l3]).

In our model, resource management is conducted over the entire network

architectural layers, from the distributed application layer down to the network

layer as depicted in Figure 4.2. The QOS negotiation agent is at the interface

between the application subsystem and transport subsystem. It is an entity that

orchestrates required resources for the multimedia application. The orchestration

services include end-to-end QOS negotiation, renegotiation, QOS degradation

detection, and QOS coordination over multiple related connections.

Graphical User Interface (GUI)

Distributed Multimedia Application

Distributed System Application Program Interface (API)

QOS Orchestration Services

1 Transport Support Layer i TCP I ,

! QOS Negotiation Agent i
..

Network Resource Management
' ---------<

" 4 6 2
$4

Network Support Layer $2,

Data Link Support Layer

1

Network interface 110 BASE 2; ,
i -------- i

Figure 4.2: The layered architecture of our integrated QOS orchestration model.

All multimedia application resources are treated as local or remote 1/0

devices that can carry continuous media traffic. The resources are parameterized

through the translation between application QOS parameters and network QOS

requirements as discussed in Chapter 3. For simplicity, we decide to allocate each

media object its own virtual 1 /0 channel or virtual circuit in the transport layer.

One may argue that continuous synchronization can be achieved by multiplexing

the required media objects into a single virtual circuit in the proper throughput

ratios. Our experiments indicate that a more general solution of separating media

objects, each with its own virtual circuit, has a number of advantages over the

multiplexing approach [38]:

(i) Implementation is simplified with a single media per virtual circuit

approach. Comparatively, the complexity and processing overhead to

multiplex and demultiplex are substantial.

(ii) Most often media data are compressed to improve throughput during

transmission. Compression schemes vary greatly among different media

types. With compressed data, multiplexing and demultiplexing ddferent

media objects over a single virtual circuit may lead to excessive end-toend

delays.

(iii) Multiplexing is not feasible when several requested media objects are

originated from different sources.

(iv) Separate virtual circuits may be processed in parallel to increase

performance.

(v) Separate virtual circuits allow the use of best-suited 1/0 channels for

individual media objects, thus leading to better resource utilization.

Contrarily, multiplexing leads to compromise QOS and poor utilization of

the 1 /0 channels.

In addition, our transport subsystem requires only unidirectional

(simplex) virtual circuits for transporting continuous media. The argument is that

most continuous media are inherently unidirectional in nature; e.g., video on-

demand delivers digital video to an end-station in one direction. As resources

must be explicitly reserved to provide QOS guarantees, network bandwidth will

be wasted on supporting duplex virtual circuits when only unidirectional

transfers are needed. For situations where duplex communication is required,

two simplex virtual circuits are employed. An added advantage for using two

simplex virtual circuits instead of a single duplex virtual circuit is that the QOS

requirements of the two directions are generally different and should be handled

separately.

4.2 The QOS Negotiation Agent

In a QOS-based resource management scheme, it is not sufficient to specify

only a QOS level, the protocol profile, plus the service class at session creation

time and assume that all conditions will statistically remain intact for the life of

the session. It is more appropriate to adopt a dynamic QOS control scheme [39,

40,411 since QOS requirements and network traffic frequently change during the

course of a single session. Based on this observation, our QOS negotiation agent is

designed to maintain the required services even when system condition changes

during a multimedia session.

The QOS negotiation agent relies on the supplier-consumer paradigm,

where the consumer requests a service, or a product, from the supplier and the

supplier delivers the service if the consumer agrees on the price. A deal may not

work out if either the consumer is not satisfied with the given product or the

supplier is not pleased with the offered price. A third party, an agent, may be

called upon to mediate between the consumer and the supplier in order to close a

deal. Using dynamic QOS control, the QOS negotiation agent plays the role of a

mediator in helping the consumer and the supplier to come to an agreement for

multimedia services. The consumer, in this case, is a human user, or a computer

program, who requests multimedia services by executing some application. The

commodities being consumed here are the media objets requested by the

consumer. The terms for this deal to close depend on the availability of the

resources that can be allocated for processing and transmitting the media objects.

Naturally, the supplier is the remote application that manages the requested

multimedia resources at a remote site; e.g., a video database server for video on-

demand services.

A multimedia session begins when the consumer calls for services at the

graphic user interface (GUI). The consumer application creates a QOS profile

registry (database) and stores a set of application QOS parameters as described in

the previous Chapter. According to the QOS values, the QOS negotiation agent

begins to allocate local resources at the QOS orchestration layer. Through the

transport subsystem, this agent also gathers resource allocation information from

the network resource management as well as from the supplier QOS negotiation

agent at the remote site. Upon some request for senrice, the remote supplier

initiates QOS orchestration similar to the process performed by the consumer

application. The supplier QOS agent determines the availability of resources for

establishing the specified connections. If all the QOS requirements can be satisfied

at the time of the request, the service is admitted with an end-toend QOS

guarantee. Figure 4.3 shows the basic steps to establish a connection involving the

consumer, the QOS negotiation agents, and the supplier. An example of a

successful QOS negotiation is shown in Figure 4.4.

User
I (Consumer side)

QOS Negotiation Agent I
Endgoint resource + - - - - - - - - - - -

management - - - - - - - - - - - -
(4) Gathers remote QOS & resource

(1) O~ch&ratcs local rrsouroes information

5

Remote Server

QOS Negotiation Agent m
End-point resource

management

Network resource Network resource
management management

Figure 4.3: The basic steps in establishing a connection fiom the consumer to the supplier

with the help of the QOS negotiation agents on each side.

Consumer (Service Request) supplier (Service Grant)

Figure 4.4: Resource reservation and resource allocation protocol for negotiating QOS

requirements with an "accept" response (from [42]).

The supplier and the consumer both employ the layered QOS architecture

shown in Figure 4.2. The application subsystem on either side orchestrates

resources in the user space, which include memory buffers and processor

utilization. On the other hand, the transport subsystem manages resources shared

by lower layers of the network protocol stacks. The QOS profile registry stores

and provides information necessary for resource synchronization. Global

orchestration is achieved through interactions between the transport portion of

the QOS negotiation agent and the network resource manager.

4.21 The Negotiation Protocol

An agreement on QOS requirements may not be reached during the

negotiation for many reasons. The QOS negotiation agent may find that local

resources are inadequate for the multimedia services requested; e.g., lack of

memory buffers. Network resources may be insufficient to create a proper virtual

circuit with enough bandwidth to accommodate the required media streams.

Even if sufficient local resources are reserved, the remote supplier may be too

busy serving other users and decide to drop the connection. In case the consumer

QOS agent discovers that the requested QOS is denied by any of the mentioned

entities, it sends a "modijj "signal back to the application subsystem and attempts

to lower the QOS requirements. The "rnodiw signal indicates the need for

negotiation or renegotiation on the QOS parameters. Using the preferred,

acceptable, and unacceptable QOS values defined in Chapter 4, the QOS

negotiation agent will reduce the QOS requirements from a preferred value

(upper bound) to an acceptable value or down to just above the unacceptable

value (lower bound). The range between preferred values and just above

unacceptable values is referred as "soft" QOS guarantees. Soft guarantees mean

that the QOS may change during the course of connection and renegotiation is

needed to determine at what level the QOS will continue to be delivered.

The negotiation process is performed across the boundaries of all the

layers within the application and transport subsystems as shown in Figure 4.5.

The QOS negotiation agent incorporates several types of communication during

negotiation: layer-to-layer, layer-to-operating system, peer-to-peer, peer-to-group,

and groupto-peer. It is worthwhile to note that in IS0 terminology, peer-to-peer

negotiation is also known as caller-to-calk negotiation and layer-to-layer

negotiation is called -ce-user-to-&ce-pr&der negotiation.

Layer-to-layer communication is used to facilitate the human user and

application interactions. Layer-to-operating system communication is used

during the admission of local system resources. Peer-to-peer communication is to

obtain and distribute QOS resource requirements between the consumer and the

remote supplier. Figure 4.6 provides a detailed description of the different types

of communication taking place across the layer boundaries of the proposed QOS

management model.

Consumer 1
1 application 1

(caller)

1
La yer-to-La yer Layer-to-Layer

Application peer-to-peer ---------- Application
(Caller-to-Callee)

Network t Peer-to-Peer ----------
(caller) (Caller-to-Callee)

Layer-to-Operating system Layer-to-Operating system

Network
(callee)

1

Operating System
(caller)

Figure 4.5: Negotiations across the layer boundaries of the proposed QOS management

model.

Operating System
(callee)

1 t

t

Translation

Negotiation of application
QOS

Translation

Negotiation of network
QOS

Translation

Figure 4.6: A detailed view of QOS negotiations.

During the negotiation process, signaling among the different layers in the

application and network subsystems results in one of the three responses (see

Figure 4.7):

i) Accept: The supplier agrees to allocate the resources at the remote site.

ii) Modih The supplier cannot provide the required resources to the

consumer at the preferred QOS levels. However, by relaxing the requested

QOS specifications the supplier can still provide end-toend services

within the consumefs lower QOS bound.

iii) Rqect: This signals that the supplier cannot provide the necessary

resources even if the consumer reduces its QOS specifications to the lowest

acceptable level. This may also be an indication of time-out problems or

some irrecoverable errors taking place in the network.

User application and QOS profile 1
registers

t (Accept) I (Modify)

QOS Request

I t (Accept) 1 (Modify)

QOS Negotiation ., ,,,,
Agent - Negotiate system QOS parameters

.
(Accept) 1 (Modify)

QOS Request Negotiate network QOS parameters

... :..A ,,,,.. ...
C

Figure 4.7: Signaling during QOS negotiations @om [43]).

To efficiently perform negotiations across the layers and among the peers,

we have adopted several negotiation protocols:

i) Bilateral peer-to-peer negotiation is used at the application layer between

peers as shown in Figure 4.8. This type of negotiation takes place between

the consumer application subsystem and the supplier application

subsystem. The consumer application specifies the QOS requirements and

the supplier application is not permitted to modify the proposed value.

The supplier QOS agent can, however, signal the consumer QOS agent

that there is a need to modify the request QOS in order to conduct a

successful session. Any modifications to the QOS parameters must be

made by the consumer application.

Consumer
(caller)

Figure 4.8: Bilateral peer-to-peer negotiation at the application layer between the consumer

Suggested
90s value

and the supplier.

*

peer-to-peer - - - - - - - - -
negotiation

Supplier
(ca l lee)

:---.. ~ >

Network
(service provider) . . . -...- ------.- -

Connect
Confirm

1 , .

Requested Requested
W S value W S value

Connect
Request

t ,

Connect
Indication

12 .

Available
QOS value

Connect
Response

t 3

ii) Unilateral layer-to-operating system negotiation is conducted between the

application layer and the local operating system when local resources are

being allocated. The operating system is not allowed to change the

proposed QOS. However, the consumer application is allowed to control

the presentation quality of the received media objects if necessary. For

example, a digital audio data stream with stereo channels are multicasted

to several users and one of the user machines can only play mono sounds.

The machine that lacks stereo sound support will still be able to present

the audio, but in monaural manner.

iii) Triangular negotiation is used at the transport subsystem layer to

negotiate with the underlying network. Two methods of triangular

negotiation may take place: triangular negotiation for a bounded target

and triangular negotiation for a contractual value.

To allocate network resources, the QOS agent must negotiate at the

transport layer. To begin the negotiation, the application QOS parameters

are translated into the network QOS requirements. Triangular negotiation

for bounded target is used to obtain the best possible QOS from the

network. In this method of negotiation, the consumer QOS agent only

presents the values of a QOS parameter through two bounds: the

preferred value (upper bound) and the acceptable value (lower bound).

The objective is to negotiate for the preferred QOS value, which is the

targeted value for this negotiation. The network manager is not permitted

to change the lower bound that is set at the acceptable QOS value.

However, it is allowed to modlfy the target value if it has determined that

the target is too high to satisfy. The supplier QOS agent makes the final

decision on whether target value suggested by the network is acceptable

(see Figure 4.9).

Consumer
(caller)

Figure 4.9: Triangular negotiation for bounded target.

t , t ,

peer-to-~eer -----------
negotiation

t 2

Supplier
(caiiee)

: .. ;

Network
(service provider)

: :

Selected
QOS value

A

/
"SOW QOS

requirements

\
Connect
Confirm

Selected
QOS value

Connect
Response

Preferred QOS
(Target value)

Available
QOS value

/
Acceptable

QOS

Connect
Request

A

Connect
Indication

If the supplier QOS agent agrees to accept the new target value, admission

for the network resources will then be performed by the transport

subsystem. If the supplier QOS agent cannot provide at least the

acceptable quality, the second tiangular negotiation is employed.

Triangular negotiation for a contracted value is used if the bounded target

method fails. This happens when the supplier QOS agent cannot provide

services at the acceptable QOS levels. In this case, the consumer QOS agent

resubmits the QOS parameters using only the preferred and the

unacceptable values. The objective here is to agree on a contractual value,

which is set slightly above the unacceptable value, for each QOS

parameter. The network resource management can increase the

contractual value from the unacceptable level towards the preferred level

as network resources permit The supplier QOS agent makes the final

decision and signals the consumer QOS agent If the network cannot

provide services at above the unacceptable QOS levels, the connection

request is rejected without further negotiations. This situation is illustrated

in Figure 4.10.

Figure 4.10: Triangular negotiation for contractual value.

Consumer

During the course of a session, the user may reduce the size of a video

window from 640 pixels by 480 pixels to 320 pixels by 200 pixels in order to get

more viewing area for another application that is running concurrently. By

reducing the screen size, the user may receive better service in tenns of the frame

rate per second since a smaller display window requires less processing power

peer-to-peer ----------- Supplier
(caller) negotiation (callee)

Reject

. .- - -. . - .
Network

(service provider) . .. --.........-...-. :

A

Connect
Confirm

t 4
v

Reject

Connect
Response

* 3
v

Preferred
QOS value

Unacceptable

/ O S "'\. - -
Connect
Request

t ,

A

#. - - Best effort
QOS value

Connect
Indication

t 2

and fewer memory buffers. This is an example of dynamic changes in QOS

requirements during a multimedia session Negotiations and modifications are

continued to be made across the layers of the application and transport subsystem

as the QOS requirements change. A separate virtual channel is used for

exchanging QOS information between the consumer and the supplier without

affecting the continuous media traffic (see Figure 4.11).

Real-time virtual circuits Asynchronous data connection

Consumer
(Sink)

Figure 4.1 1 : Using a separate channel to control synchronization.

Supplier
(Source)

4.22 The Consumer Protocol

The consumer protocol, as shown in Figure 4.12 is initiated by the input of

application QOS requirements set at the user endstation. For instance, the user

+ Video stream
L 1

I

4 Audio stream
\ I ,

L Synchronization 4

Network

may open a 640 pixels by 480 pixels window for displaying a video clip digitized

at 256 colors. All the associated QOS parameters are stored in the application

QOS profile registry.

The application QOS requirements are accessed from the QOS profile

registry and then mapped into resource requirements for the local operating

system. The consumer QOS agent negotiates with the operating system utilizing

an admission service implemented in the QOS orchestration layer. The admission

service assumes that task processing times and memory buffer space

requirements are known a priori. This information must be available from the

system QOS parameter profile registry before any admission decisions can be

made. Two tests against the temporal resources are than performed by the

admission senice at the application level. A local schedulability test decides

whether or not the tasks can manage 1/0 streams from multimedia devices

within the required time bounds. An end-to-end delay test is also performed to

determine whether or not the tasks can meet the specified end-to-end delay upper

bound. The local resources are reserved if both tests are satisfied. At this point,

the consumer QOS agent starts a peer-to-peer negotiation at the application level

with the remote supplier QOS agent

Since there is no reason to hold up shared network resources before we

can admit the required local resources, the negotiation for application QOS is

separated from the negotiation for network QOS. Admission of the local

resources must be made before the negotiation with the network begins.

Unless the negotiation at the application layer is rejected, the consumer

QOS agent initiates the request for network QOS requirements and begins

network resource reservation and allocation. Four steps are carried out by the

consumer QOS agent in the transport subsystem:

i) Application QOS parameters are translated into network QOS

requirements.

ii) The admission service for the transport subsystem is initiated.

iii) Negotiation begins for per-connection network QOS parameters.

iv) Finally the consumer QOS agent waits for the network resource manager

and the supplier QOS transport layer to reply. The accepted QOS values

are translated back into application QOS and the QOS profile registry is

updated.

Mu~media appliicabon requesbng semces

BEGIN (Consumer side)

Obtain application QOS fran d k regisby

Global host rescurces W

Rejed Modlty

4 t

4
TmnJate accepted rdvmk QOS valws

into application QOS parameters

l and
update consumer-side applicabon W S

profile regisby

Figure 4.12: Flowchart for the consumer protocol.

4.23 The Supplier Protocol

The supplier protocol works similarly to the consumer protocol as shown

in Figure 4.13. The supplier QOS agent responds to the consumer call for service

by waiting for the remote consumer to send the requested application QOS

parameters. The received application QOS parameters are compared against and

the supplieis own application QOS output parameters. A match between the

two sets of QOS values invokes the admission service in the supplier application

subsystem. The supplier QOS agent signals the remote consumer according to

results from the admission service. A positive negotiation of the application QOS

parameters is followed by obtaining the consumeis network resource

information from the network resource management layer. The network resource

management then signals the global admission service at the supplier transport

subsystem. The negotiation protocol translates the network QOS parameters into

the application QOS requirements and determines if resources can be allocated,

relaxed or released according to the availability of resources. If all required

resources are available, they are allocated and the multimedia session begins.

/7 Mubmedii applicabon s&ng resouroes

(BEGIN) (Supplier side)

Request fu QOS n e g d a h is received I

Local s@em resources
r e s d

Receive callec's network QOS requirements s
Translate M Q3S requiremen& into

a p p l i h QOS parameters

I. Reject -

Translate accepted network M ~ U ~ S

into app lmh aOS parameters
and

update a p p l i h QOS profile regisby

Figure 4.13: Flowchart for the supplier protocol.

4.3 Group Communication

When multiple consumers or suppliers are involved in a multimedia

session, peer-to-group and group-to-peer communication methods are utilized.

Peer-to-group communication is needed when the consumer wants to receive

multimedia streams from several remote suppliers. The consumer application

specifies the addresses of each remote supplier and the types of services

requested from the identified suppliers. At the transport level of the consumer

side, the network management system provides the network addresses and waits

for responses returned from the network and the group of suppliers. At this point

the QOS negotiation agent on the consumer side must multicast the network QOS

requirements to all members involved in this group communication session. The

agent relies totally on the multicast capabilities of the underlying network.

Neither the agents nor the end-point transmission protocols have multicasting

capabilities.

The suppliers at various locations proceed resource allocation according to

the consumer QOS agent specifications and return their resource management

decisions to the consumer QOS agent If the suppliers cannot deliver the service at

the specified quality, they must mod@ their own capabilities at the transport

subsystem. Each supplier is responsible for adjusting its own QOS capabilities.

The advantage of negotiating with each supplier separately is that each supplier

can report its own offerings to the consumer. The disadvantage is that the number

of connections required to conduct the negotiations increases proportionally with

the total number of group members involved. Figure 4.14 shows the negotiation

paths in peer-to-group communication.

Group-to-peer communication is essentially identical to the peer-to-group

communication except that the consumer must decide how to allocate resources

for multiple incoming connections. The remote suppliers may return different

QOS specifications and it is the duty of the consumer to deal with resource

allocation and management for all the incoming media streams. The distribution

of negotiation messages is also similar to that of the peer-to-group

communication.

Supplier Supplier

Consumer
QOS Agent

Figure 4.14: The negotiation paths in group communication.

4 tul
c

I 1 5
] !i

r---------------' 1

4 I t
I ,
I i
1 I

T I 1

i
j
j
I T j I

I
I

I I
- I I

I +

I I

- - b

r----- j ----
I
I

I
I

I
!
I

In this Chapter, we have proposed on the architecture of our integrated

QOS management model. Using a layered architecture across the application and

the transport subsystems, an application can negotiate and establish an end-to-

end multimedia communication efficiently. Based on a supplier-consumer model,

we have developed the QOS negotiation agents that conduct QOS negotiations on

behalf of a consumer (e.g., a human user) and a supplier (e.g., a video server) of

multimedia services. We have also discussed the negotiation protocol, the

consumer protocol, and the supplier protocol employed by the QOS negotiation

agents. In the next Chapter, we describe the computer implementation of this

model and present the experimental results.

Chapter 5

Computer Implementation and Experimental Results

The integrated QOS management architecture proposed in this research is

motivated by the stringent timing requirements imposed by distributed

multimedia applications and the lack of continuous media management in the

current commercial operating systems. To implement the QOS negotiation model,

we need real-time support from the operating system (0s). Single-tasking OS

such as MS-DOS cannot support continuous media in a distributed environment

For this reason, we have selected Microsoft Windows NT v.3.51 as the platform

for implementing and testing our simulation programs mainly because it

provides real-time multi-tasking support. Another important factor for this

selection is that Windows NT includes the Windows Socket library, called

WinSock [44], which provides many networking functions for implementing

TCP/IP (Transmission Control Protocol/Internet Protocol) compliant

applications. A discussion on WinSock is included in Appendix A.

5.1 Priority Inversion Problem

When a real-time application shares the same resources in a system with

non real-time applications, the real-time application is usually forced to wait for

the completion of the non real-time applications. For instance, if many non real-

time applications, such as file utilities, word-processors or spreadsheets, are

sharing the same network file server, the data packets of a high-priority tasKs

video stream must wait for the completion of all previously queued low-priority

packets. If the operating system does not preempt the low-priority tasks and

allow the high-priority tasks to execute first, unexpected delay and jitters will

result. This problem is called priority inversion.

Priority inversion is avoided by exploiting the strength of preemptive

multitasking in Windows NT. Windows NT uses a set of priority queues to

determine a thread's eligibility to execute when it is time for context switching.

The Windows NT dispatcher examines the set of ready threads and selects the

head of the highest priority queue to be executed first For example, the thread for

handling timecritical video packets, that has a higher priority, will be executed

immediately by preempting the currently running non real-time thread, that has

a lower priority. When it is the time for the preempted thread to use the processor

again, the operating system restores the state of the thread and allows it to resume

execution. The Windows NT process object is depicted in Figure 5.1, showing the

process address space and several different threads.

Process

Context /
Attributes

Attributes

...

Thread, Thread, Thread3

Atrributes

Thread,

Figure 5.1: Process and threads in Windows NT (from [45]).

The priority of a thread is determined by the thread's process priority

class, and its base and dynamic priorities. Within each priority level, threads are

scheduled using a firstcome-first-sewed round-robin policy. Figure 5.2 shows

the possible states of a thread in Windows NT.

Figure 5.2: Possible states of a Widows NT thread (from [45]).

The thread's process priority class is the most important component of a

thread's priority. In Windows NT, thread priority can be one of the four classes:

real-time, high, normal, and idle. By default, a process is started with the

NORMAL - PRIORTY - CLASS. When QOS negotiation begins, the processes

involved in the negotiation are set with the H I G H - PRIORITY - CLASS. Once the

admission of resources is completed, multimedia streams begin to flow from the

source to the user.

To determine the priority class of a process, the GetPriorityClass

function is used:

1: DWORD PriorityClass;

2: HANDLE hProcess;

3: hProcess = GetCurrentProcess();

4: PriorityClass = GetPriorityClass(hProcess) ;

GetPriorityClass uses a process handle (h~rocess) as the only argument

and returns the priority class of that process or the zero value in case of an error.

To mod@ the priority class of a process, the Setpriorityclass

function is used. ~e t Priori t y~las s uses two argument: a process handle and

the new process priority class. An example follows:

1: DWORD error code; -

2: BOOL State;

3: HANDLE hProcess;

4: hProcess = GetCurrentProcess();

5: State = SetPriorityClass(hProcess, HIGH - PRIORITY - CLASS);

6: If (State == FALSE)

7: error - code = GetLastErrorO;

This function should be used with caution since raising the priority class of a

process to HIGH - PRIORITY - CLASS may starve all other processes in a lower

priority class.

Within each priority class, there is a thread base priority level. There are a

total of five thread priority levels:

1. THREAD PRIORITY HIGHEST - -
2. THREAD - PRIORITY ABOVE NORMAL - -
3. THREAD - PRIORITY - NORMAL (the default level)

4. THREAD - PRIORITY - BELOW NORMAL -

5. THREAD - PRIORITY LOWEST -

All newly spawned threads have the priority of

THREAD - PRIORITY NORMAL by default. An application can determine a

thread's priority by calling the Get ThreadPriori t y function. This function

accepts a thread handle as the only argument and returns that thread's priority. If

the function call returns the value THREAD - PRIORITY - ERROR - RETURN, this

indicates that an error has occurred. An example is given below:

DWORD error code; -
BOOL State;

HANDLE hThread;

int ThreadPriority;

ThreadPriority = GetThreadPriority(hThread);

If (Threadpriority == THREAD - PRIORITY - ERROR - RETURN)

error - code = GetLastErrorO;

A thread's base priority can be raised or lowered by calling the

SetThreadPriority function with two arguments: a thread handle and an

integer priority level as mentioned above. The function returns a Boolean value

indicating whether or not the operation is successful. By setting the priority above

the normal level, a thread can request service from the operating system in order

to handle some continuous media. The thread should not stay running at high

priority after handling time-critical data to avoid stawing other threads that are

running at a lower priority. An example is given below:

1: DWORD error code; -

2: BOOL State;

3: HANDLE hThread;

4: int Threadpriority = THREAD - PRIORITY - ABOVE - NORMAL;

5: . . .
6 : hThread = GetCurrentThread () ;

5: State = SetThreadPriority(hThread, THREAD - PRIORITY - HIGHEST);

6: If (State == FALSE)

7: { error - code = GetLastErrorO;

8 : / / Error handling begins

10: } / / end - if

11: else

12: { //Execute some job at high priority

14: / / Return to normal Priority

15: State = SetThreadPriority(hThread,THREAD - PRIORITY - NORMAL);

16: If (State == FALSE)

17: { error - code = GetLastErrorO;

18 : / / Error handling begins

20: } / / end-if

21:) / / end-else

In addition to a base priority level that is changeable by the thread itself, a

thread also has a dynamic priority level that can be altered by Windows NT. The

operating system employs this function when it needs to make a thread more

responsive to certain events by raising the thread's priority level. The level of

priority promotion depends on the type of event that the thread awaits. In

Windows NT, the scheduling policy is that threads awaiting keyboard input

receive the highest amount of priority promotion so that they can be responsive to

user inputs. On the other hand, threads awaiting 1/0 events receive a medium

amount of promotion and threads that are computer-bound get the least

promotion. After the event has passed, the scheduler lowers the dynamic priority

by one level at each time slice until the thread priority returns to its base priority.

Hence, the operating system can never lower a thread's priority level beyond its

original base priority. A summary of Windows NT thread interface calls is shown

in Figure 5.3.

Figure 5.3: Summary of Windows NT thread interface calls.

Windows NT Thread Interface Call
CreateThread

CreateRemoteThread

GetCurrentThread

SuspendThread

ResumeThread

ExitThread

TerminateThread

GetThreadPriority

SetThreadPriority

DuplicateHandle

CloseHandle

WaitForSingleObject

WaitForMultipleObjects

CreateEvent

SetEvent

ResetEvent

PulseEvent

Initializecriticalsection

Entercriticalsection

Leavecriticalsection

Deletecriticalsection

CreateMutex

ReleaseMutex

OpenMutex

Createsemaphore

Releasesemaphore

TlsALloc

TlsSetValue

TlsGetValue

TlsFree

Description
Create a new thread

Create a new thread in a different process
address space

Return a pseudo handle to the current
thread

Suspend a specified thread's execution

Resume the execution of the specific thread

Terminate the current thread

Terminate a specified thread

Get the base priority of the specified thread

Set the base priority of the spedied thread

Get a duplicate handle to a thread object

Relinquish a thread handle
Wait for the specified object to attain a

signaled state
Wait for all or one of many specified objects

to attain a signaled state
Create an event synchronization object

Signal an event

Set the state of an event object to not-
signaled

Set and then reset an event

Initialize a critical section object

Acquire a critical section object

Release a critical section object

Remove a critical section object from the
system

Create a mutex synchronization object

Signal a mutex object

Given the mutex name, obtain a handle to it
Create a new semaphore synchronization

object
Signal a semaphore object

Allocate the thread local storage

Set the value of a thread local storage

Get the value of a thread local storage

Free or de-allocate the thread local storage

5.2 QOS-Based Resource Control

The dynamic QOS control scheme that we use with the QOS negotiation

agent allows the initial QOS values to change during the course of a multimedia

session. The following pseudo code demonstrates how dynamic changes in QOS

are handled in the program:

1: LONG APIENTRY MainWndProc(HWND hwnd, UINT message,

2 : UINT wParam, LONG 1Param)

3: {

4 : DWORD ThreadIDl, ThreadID2, ThreadID3;

5 : static HANDLE hThreadl, hThread2, hThread3;

7 : main - thread - body;

9: session - create (qos - manager, qos - request);

10: . . .
11: session - control (qos-manager, qos-change);

12 : . . .
13: session - callback(session, qos - level)

14: { modify - qos (session, qos-level) ;

After creating a session using the s e s s ion - create procedure in line 9,

the user application may submit a request for degrading the initial QOS

parameters; e.g., rescaling the video window to a smaller size. This is handled by

the session control procedure in line 11. Meanwhile, the QOS negotiate

agent may invoke a call-back function (line 13) for restoring or degrading the

QOS values of the session being processed when either the application subsystem

or the transport subsystem signals the need for such a change in QOS levels.

5.3 QOS Management and Admission Control

In order to coordinate with the QOS negotiation agent in performing

dynamic QOS control, admission services for QOS allocation must also work in

accord. The pseudo code of the admission control for managing changes in QOS

values is given below:

qos - control ()

accept - request () ;

switch (sigal)

case ADMISSION TEST: -

estimate - resource - request () ;

check - mem - buffers () ;

check - schedulability () ;

check - network - capacity () ;

if (IS - REQUEST - ACCEPTABLE)

qos - level = determine qos init value() ; - - -

replay (caller, qos - level);

. . .

This implementation allows the initial value of the requested QOS level to

be admitted if all the resource allocation checks are passed. Windows NT also

provides several synchronization mechanisms known as synchronization objects.

They are events, critical sections, mutex (mutual exclusive), and semaphores.

These mechanisms are widely used in operating system development [46].

5.4 Experimental Results

The implementation of the integrated QOS management model requires

that the existing operating system's kernel to be modified in order to support the

real-time operations of the proposed architecture. Since the source code for

Windows NT is not commercially available, we can only write simulation

programs to study the effectiveness of the QOS management scheme developed

here. The QOS negotiation agent is written as a background process handling all

the negotiation threads by monitoring the operating system resources, the

network resources, and the state of the multimedia application that is running in

the foreground. The multimedia application that we developed simulates an AVI

(Audio/Video Interleaved) digital video player. The AVI format is the native file

format defined by the digital video framework from Microsoft called Video for

Windows (VfW). Additional information on the AVI file format is given in

Appendix B.

The AVI player can run in two modes: one with QOS negotiation

capabilities enabled and the other with the QOS negotiation capabilities disabled.

When it is running in QOS negotiation mode, it utilizes the QOS negotiation

agent to adjust QOS levels according to available resources. With QOS

negotiation mode disabled, the simulated AVI player relies only on the standard

functions provided by Video for Windows which has no QOS management

The experiments are conducted on a on a local area network with a single

server and four workstations (see Figure 5.4). The server is running Windows NT

Server 3.51, while the workstations are running Windows NT Workstation 3.51.

The network runs TCP/IP on 10-Base2 Ethernet. The server and two of the

workstations are Intel Pentiurn@ computers each having 32MB of RAM and a

clock frequency of 60MH.z. They are configured similarly, each with a 16-bit

sound card, 64-bit PC1 local bus video adapter with 2MB video RAM, and a

quad-speed CD-ROM. The two remaining workstations are Intel 486-DX~@

machines running at 66MHz.

Hard Disk Array

I

Local Area Network (LAN)
I

Workstation
W ~ t i o n

Pentium 60MHz
486DX-2 66MHz

Figure 5.4: The LAN system setup for conducting the QOS management experiments.

Both are equipped similarly, each having 16MB RAM, a 16-bit sound card, 64-bit

PC1 local bus video adapter with 2MB video RAM, and a double-speed CD-ROM.

The use of different machines in the computer simulation enables us to observe

whether or not the heterogeneous nature of a LAN has any impact on the QOS

each machine can deliver. In the remaining part of this Chapter, the two ~entium"

workstations are referred as machines A and B and the two 486-DX~@

workstations are referred as machines C and D.

The first experiment involves the measurement of the average number of

frames per second under three conditions: One, two, and four video sessions are

initiated by the AVI player running on each machine simultaneously, each

reading a different copy of the same AVI file. The playback file is originally

recorded at 160 pixels by 120 pixels at 25 fps without compression and no skew or

jitters occurred during capture. Four copies of the same file are stored in the

server under different file names. The files are read off from the server and

played as the data streams get served through the network. The spatial resolution

of the playback window for each machine is set to 320 pixels by 200 pixels (by

doubling the original captured resolution during playback) with 8-bit color depth

(256 colors). Figure 5.5 shows the results of the AVI players running with the

QOS negotiation mode disabled. The results indicate that the player can achieve

up to 23 fps (using machine A) when only a single session is running. There are

little fluctuations in the frame rate and the rate is stabilized throughout the 15-

second playout time. As more sessions run simultaneously, the frame rate drops

to 11 fps for two sessions (using machines A and B) and down to an unbearable 5

fps for four sessions. Variations in the frame rate are more severe when four

sessions are running.

AVI Players Running with QOS Negotiation Mode Disabled
25

20

-
2 is - -
D

::
E
2 lo

0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (seconds)

Figure 5.5: AVI players running with the QOS negotiation mode disabled. Separate plots of
the results are available for: One session (Figure 5.6), two sessions (Figure 5.7), and four
sessions (Figure 5.8).

Figure 5.6: A single AVI player running with the QOS negotiation mode disabled.

23

20

-
2 15 - -
-s

f
L
2

l o

5

0

AVI Players Running with QOS Negotiation Mode Disabled

.-

.-

.-

.-

r

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 !

Ttme (seconds)

Figure 5.7: Two sessions of the AVI players running with the QOS negotiation mode

disabled.

25 AVI Players Running with QOS Negotiation Mode Disabled

0 4 I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T i m (seconds)

Figure 5.8: Four sessions of the AVI players running with the QOS negotiation mode

disabled.

To determine the jittering and skew effects between frames, we have

measured the interframe gap and the results are shown in Figure 5.9. The results

indicate that interframe gap varies greatly when four sessions are running

simultaneously. This happens when frames are dropped, attempting to correct

the effects of jitter and skew.

AVI Players Running with QOS Negotiation Mode Disabled

3W

250

8 g m -
0.
0)

E
g 190 - -

la,

50

0
1 2 3 4 5 6 7 8 0 1 0 1 1 1 2 1 3 1 4 1 5

Tm (.econdS)

--cl b s d m (A)
4 2 serrkns (A)

-a-2-(s)
3 C 4 S e s k m (A)

+4-w
+4SePslans(C)

+4 - (0) D

Figure 5.9: Interli-me gaps measured by running the AVI players with the QOS negotiation
mode disabled. Separate plots of the results are available for: One session (Figure 5.10),

two sessions (Figure 5.1 l), and four sessions (Figure 5.12).

AVI Players Running with QOS Negotiation Mode Disabled

Figure 5.10: Intedi-me gaps measured by running a single session of the AVI player with

the QOS negotiation mode disabled.

350 -

JW - -

250

I
2 m--
P

0)

E
$ 1 5 0 . ~ - -

1m

50

0

- -

.-

- -

, -
7

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

The (w c i ~ d s)

AVI Players Running with QOS Negotiation Mode Disabled

Figure 5.1 1 : Interfiarne gaps measured by running two sessions of the AVI players with the

QOS negotiation mode disabled.

AVI Players Running with QOS Negotiation Mode Disabled

-+4 Sessbm (6)

+ 4 S s s b n s (C)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T h e (seconds)

Figure 5.12: Interfiarne gaps measured by running four sessions of the AVI players with

the QOS negotiation mode disabled.

Next, we run the experiment again with the same conditions as before,

except that the QOS negotiation mode is enabled. For the purpose of comparing

results, each session keeps the original resolution and color depth so that none of

the sessions can reduce these parameters in order to compensate for the degraded

QOS. The results shown in Figure 5.13 indicate that the player still achieves up to

23 fps when only a single session is running (machine A). In this case, fluctuations

in the frame rate are limited and the rate is stabilized throughout the 15-second

playout time. The frame rate drops to 12 fps with two sessions running but the

frame rate stabilizes at 12 fps for the duration of the test. When four session are

running simultaneously, the session running on machine D goes down to 5 fps

and is aborted after three seconds of playout time have elapsed. This is because

the unacceptable QOS level is set to 6 fps and machine D sees no hope to continue

the session at an acceptable QOS level. The remaining sessions continue to run at

approximately 10 fps for the rest of the test, Interframe gaps are also small and

stay at stable levels after machine D terminates its session and leaving only three

sessions running (see Figure 5.17).

AVI Players Running with QOS Negotiation Mode Enabled

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (seconds)

Fi~wre 5.13: AVI players running with the QOS negotiation mode enabled. Separate plots
of the results are available for: One session (Figure 5.14), two sessions (Figure 5.15), and
four sessions (Figure 5.16).

AVI Players Running with QOS Negotiation Mode Enabled

Figure 5.14: A single session of the AVI player running with the QOS negotiation mode
enabled.

I-+ 1 **n (A))

25 7

Tme (seconds)

20

2 15 -
0

P
it
E
F 10.-
Y

5 -

0

4 ,

- -

~~

t
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

AVI Players Running with QOS Negotiation Mode Enabled

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T h e (seconds)

Figure 5.15: Two sessions of the AVI players running with the QOS negotiation mode
enabled.

AVI Players Running with QOS Negotiation Mode Enabled

T h e (seconds)

Figure 5.16: Four sessions of the AVI players running with the QOS negotiation mode
enabled.

AVI Players Running with QOS Negotiation Mode Enabled
350

-4-2 Sesrm (A)

+? S e s r m (8)

X - 4 Ses- (A)

-+ 4 SCSsl~rn (8)

+4 Serslons (C)

0 I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T h e (seconds)

Figure 5.17: Interii-arne gaps measured by running the AVI players with the QOS
negotiation mode enabled. Separate plots of the results are available for: One session
(Figure 5.18), two sessions (Figure 5.19), and four sessions (Figure 5.20).

AVI Players Running with QOS Negotiation Mode Enabled

-

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Tim (seconds)

Figure 5.18: Interf?ame gaps measured by running a single session of the AVI player with
the QOS negotiation mode enabled.

AVI Players Running with QOS Negotiation Mode Enabled

250

; m
-
P

01

E
f 150 - -

100

50

0
1 2 3 4 5 6 7 8 0 1 0 1 1 1 2 1 3 1 4 1 5

T i m (seconds)

Figure 5.19: Intefiame gaps measured by running two sessions of the AVI players with the
QOS negotiation mode enabled.

AVI Players Running with QOS Negotiation Mode Enabled

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Tkne (seconds)

Figure 5.20: Interframe gaps measured by running four sessions of the AVI players with the
QOS negotiation mode enabled.

To investigate the effects of latency caused by hard drive access, we run

the above tests with one condition altered. We make all the sessions sharing the

same AVI file. The results are shown in Figure 5.21,with QOS negotiation

disabled, and in Figure 5.25, with QOS negotiation enabled. In both situations, the

performance is better than the case with accessing four separate AVI movies. This

can be explained by the disk caching facilities provided by Windows NT. Since a

portion of the AVI file is available in cache memory, when another session tries to

play the AVI file, it may find a hit in the cache and read it from the cache memory

instead of from the much slower hard drive. This is consistent with the findings

in the references [47,48].

AVI Players Accessing a Single File 8 without QOS Negotiation
X

- 2 15 -
n - 2 Sess)oor (8)

8 + 4 sessionr (A)
2 --LC 4 Sessms (0)

:: -4 S e s ~ (C)

E
2 10

0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (seconds)

Figure 5.21: Up to four AVI players accessing a single file and running with the QOS
negotiation mode disabled. Separate plots of the results are available for: One session
(Figure 5.22), two sessions (Figure 5.23), and four sessions (Figure 5.24).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (seconds)

Figure 5.22: A single session of the AVI player running with the QOS negotiation mode

disabled.

AVI Players Accessing a Single File (L without QOS Negotiation

20

-
15 -

E
8 ::
i
E
e 10

5

0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (seconds)

Figure 5.23 : Two sessions of the AVI players accessing a single file and

QOS negotiation mode disabled.
AVI Players Accessing a Single File 8 without QOS Negotiation

running with the

-
g 15

.-

? +4-(B)

4-4ssskCS(C)

5

0 3

0

- -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thne (seconds)

Figure 5.24: Four sessions of the AVI players accessing a single file and running with the
QOS negotiation mode disabled.

AVI Players Accessing a Single File B with QOS Negotiation
25

M

- > 15 - + 2 Sesrsns (A)

'0

-4 Sesmns (A)

-4 S e r r m (0)

k -4 Sesr~onr (C) ,

f - 4 Sessions (D)

e lo

0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T i (onandsl

Figure 5.25: Up to four AVI players accessing a single file and running with the QOS

negotiation mode enabled. Separate plots of the results are available for: One session

(Figure 5.26), two sessions (Figure 5.27), and four sessions (Figure 5.28).

AVI Plavers Accessina a Sinale File & with QOS Neaotiation

enabled.

a .-

A g 15 .- -
'0

f
il
B
C 10

5

0

Tkne (seconds)

Figure 5.26: A single session of the AVI player running with the QOS negotiation mode

.-

.-

4
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

[-+I scssccn(~)I

AVI Players Accessing a Single File &with QOS Negotiation

20

- 8 15 -
w

P
&

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tim (seconds)

Figure 5.27: Two sessions of the AVI players accessing a single file and running with the
QOS negotiation mode enabled.

QOS negotiation mode enabled.

AVI Players Accessing a Single File & with QOS Negotiation
X -

20

-
g 15 -
?

--

.-

-4-(B)
+4Sasbna (C)

+e -. ,. - - - - ." .., - - - - - -

0 7

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (seconds)

Figure 5.28: Four sessions of the AVI players accessing a single file and running with the

Figures 5.29 and 5.30 show the results of a test where QOS negotiation

mode is enabled only for the sessions running on machine C and machine D. The

two more powerful machines (A and B) are running the sessions without any

QOS management The results indicate that while the machines C and D have less

resources (slower processors and less RAM), the amount of interframe gap is less

when QOS negotiation mode is enabled. This test demonstrates the importance of

QOS management in multimedia applications.

Figure 5.29: Frame rate versus time: Machines A and B are running without QOS

management while Machines C and D running in QOS mode.

-6-4 Sesaons (8)

4 4 Sesrbons (C)

Thee (seconds)

Figure 5.30: Interframe gap versus time: Machines A and B are running without QOS

management while Machines C and D running in QOS mode.

The last experiment is designed to evaluate the effectiveness of dynamic

QOS control. For this experiment we have added two additional machines (E and

F) that are equipped the same way as the less powerful machines (C and D). The

same 160 pixels by 120 pixels by 256 colors AVI file is used here since we want to

keep the temporal resolution constant for each session. However, we allow each

session to request its own frame rate before the sessions begin. Machine A

requests 22 fps as the preferred rate, 10 fps as the acceptable rate, and 8 fps as the

unacceptable rate. Machine B requests 15 fps as the prefemed rate, 13 fps as the

acceptable rate, and 9 fps as the unacceptable rate. Machine C requests 12 fps as

the preferred rate, 9 fps as the acceptable rate, and 7 fps as the unacceptable rate.

Machine D requests 15 fps as the preferred rate, 9 fps as the acceptable rate, and 5

fps as the unacceptable rate. Machine E requests 20 fps as the preferred rate, 10

fps as the acceptable rate, and 8 fps as the unacceptable rate. Sessions A, B, C, D,

and E are set to start at the same time at time TO. Five seconds after that, machine

F begins a new session requesting 12 fps as the preferred rate, 8 fps as the

acceptable rate, and 5 fps as the unacceptable rate. All sessions are executed with

the QOS negotiation mode enabled.

The results are shown in Figure 5.31. Machine A is able to play the digital

video file at its preferred rate of 22 fps for the first five seconds of the session,

until machine F starts the AVI player. When machine F requests for a new

session, the QOS negotiation agent tries to find an acceptable QOS level that both

the network and the application can agree on. In order to accommodate machine

F s request at 12 fps, the QOS orchestration service decides to degrade the session

running by machine A from its preferred frame rate at 22 fps down to its

acceptable frame rate at 10 fps. The change of the temporal resolution of session A

is done by resetting the execution rate of that thread. All other sessions

maintained their throughput in a stable manner throughout the test duration.

Although the machines C, D, and E do not get to play their sessions at their

preferred rates they specified, they all performed within the acceptable

tolerances. Jitters are more severe with the less powerful machines but still within

the acceptable range as seen in Figure 5.32.

Machines A, 6, C, D, and E starts together, while machine F starts 5 sec,later

25

25

-
g 15 -
0

::
B

E
C 10

5 - -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 S

Time (seconds)

Figure 5.3 1: Frame rate versus time: Dynamic QOS control with QOS negotiation.

Machines A, B, C, D and E starts together, while machine F starts 5 sec. later

160

140

120

1W

& - -
m

" 80
z

E

40

20

0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

T i (seconds)

Figure 5.32: Iterframe gap versus time: Dynamic QOS control with QOS negotiation.

Chapter 6

Conclusions and Future Research

6.1 Concluding Remarks

This research has addressed the impact of application QOS requirements

on synchronization problems that a multimedia network operating system must

resolve. We have studied the temporal properties of continuous media types and

identified operating system supports for distributed multimedia computing. This

includes resource management support, architectural support, and programming

support.

We have outlined an integrated QOS management model which maps

application QOS parameters through all the layers of the entire system, from the

application layer down to the network layer. This mapping process is done

automatically throughout the application and the transport subsystems, thus

protecting application programmers form the communication chores. However,

the use of QOS parameterization of connections does not imply that a single fully

generic transport protocol can cater for all types of multimedia traffic equally

well. Instead, different types of media traffic require specialized protocols and

control data. The layered architecture of the QOS management framework is

designed to support future expansions by adding additional protocols to the

appropriate layer.

We have also discussed the use of the QOS negotiation agents to

dynamically control QOS variations during a multimedia session. Experimental

results have demonstrated the effectiveness of this negotiation scheme which

adjusts QOS levels according to the system resources and the application

requirements.

Multithreaded programming experiments have indicated that the

operating system (0s) is a vital component in building an effective multimedia

applications platform. Continuous media communication would be impractical

without multithreading and preemptive scheduling facilities in an OS.

We envision that with true integrated QOS support from the next

generation multimedia network operating systems, less powerful (low-cost)

computers will perform well in delivering multimedia services since system

resources will be better managed and utilized.

6.2 Future Research Directions

The ability to build better distributed multimedia applications depends on

much more than the operating system itself. A number of issues remains to be

investigated:

1. In this research, we have limited our discussion to end-to-end

communication in a local area networking environment. However, the

proposed layered architecture should be general enough to be adopted in

wide are networks (WAN) or other gigabit network technologies such as

Asynchronous Transfer Mode (ATM) networks [49].

2. The number of QOS dimensions in the architecture can be expanded to

include support for security transactions and cost functions based on

usage. This kind of support is important for doing business over the WAN

or the Internet.

3. The integrated QOS management approach suggests that Ethernet is not

effective in delivering multimedia services since it does not support QOS

management schemes that are based on bandwidth reservation. In

contrast, ATM networks have QOS characterization built into its

architecture [50, 511. It may be beneficial to incorporate other network

111

technologies such as ATM, 100VG-AnyLAN [52], and iso-Ethernet [53]

into our proposed model.

4. The area of network support for rate-based flow control remains an

important issue which we have not addressed. The effectiveness of

TCP/IP in multimedia communication should also be further studied [54].

5. Currently, there are no multicasting capabilities built into the QOS

negotiation agent or the end-point transmission protocols. It is possible to

employ IP multicast in a future revision of the design.

6. A potential weakness in our QOS negotiation model is that too much time

may be spent on negotiating between the layers and the remote supplier

for an acceptable QOS level. It is also a concern that QOS levels may be

modified too often when multimedia applications are competing for

resources from a heavily loaded network.

7. Further research is needed in developing real-time support for existing

operating systems. The microkernel architecture [55, 56, 571 in research

operating systems such as the Real-Time Mach [58] is especially attractive

in supporting real-time multimedia applications.

References

J. A. Adam, "Special Report/Multimedia: Applications, Implications,"
IEEE Spectrum, Vol. 30, No. 3,1993, pp. 22-31.

J. Bach, S. Paul, and R. Jain, "A Visual Information Management
System for Interactive Retrieval of Faces," IEEE Transactions on
Knowledge and Data Engineering, Vol. 5, No. 4,1993, pp. 619-628.

Y. H. Chang et al., "An Open-Systems Approach to Video on
Demand," IEEE Communications, Vol. 32, No. 5, May 1994, pp. 68-80.

N. Dimitrova and F. Golshani, "Rx for Semantic Video Database
Retrieval," Proc. ACM Multilnedia '94, ACM Press, San Francisco,
October 1994, pp. 219-226.

J. Sutherland and L. Litteral, "Residential Video Services," IEEE
Comm., Vol. 30, No. 7, July 1992, pp. 36-41.

T. Little and D. Venkatesh, "Prospects for Interactive Video-on-
demand," IEEE MultiMedia, Vol. 1, No. 3,1994, pp. 14-24.

W. Mackay and G. Davenport, "Virtual Video Editing in Interactive
Multimedia Applications," Comm. ACM, Vol. 32, No. 7,1989, pp. 802-
810.

E. C. Chung and M. Celenk, "Novel1 Netware Multimedia
Communication System Using Microsoft Windows," Proc. 27th
Southeastern Symposium on System Themy, Starkville, Mississippi, March
1995, pp. 397-401.

B. Szuprowicz, Multimedia Nehomking, McGraw-Hill, 1995, p. 112.

B. Szuprowicz, Multimedia Nefworking, McGraw-Hill, 1995, p. 114.

M. Celenk and Y. Wang, "Distributed Computation in Local Area
Networks of Workstations," Parallel Algmithnzs and Applications, Vol. 5,
1995, pp. 79-106.

J. Buford, Multimedia Systenzs, Addison-Wesley, 1994.

K. Nahrstedt and J. Smith, "The QOS Broker," IEEE MultiMedia, Spring
1995, pp. 53-67.

R. Steinrnetz and K. Nahrstedt, Multirrzedia: Computing, Communications
and Applications, Prentice Hall, 1995, p. 571.

R. Steinmetz, " Synchronization Properties in Multimedia Systems,"
IEEE Journal on Selected Areas in Comm., Vol. 8, No. 3,1990, pp. 401-412.

T. Little, A. Ghafoor, C. Chen, C. Chang, and P. Berra, "Multimedia
Synchronization," IEEE Data Eng. Bulletin, Vol. 14, No. 3,1991, pp. 26-
35.

T. Little and A. Ghafoor, "Network Considerations for Distributed
Multimedia Object Composition and Communication," IEEE Nehomk,
Vol. 4, No. 6,1990, pp. 32-49.

D. Bulterman and R. van Liere, "Multimedia Synchronization and
Unix," Proc. 2nd Int'l. Wmkslzop on Network and Operating System
Support fm Digital Audio and Video, Heidelberg, Germany, Nov. 1991,
pp. 108-119.

Y. ~ o k a n a t a and A. Tantawi, "Making Cost-Effective Video Server,"
IEEE MultiMedia, Winter 1994, pp. 22-30.

H. Vin, P. Zellweger, D. Swinehart, and P. Rangan, "Multimedia
Conferencing in the Etherphone Environment," IEEE Computer,
October 1991.

D. Ferrari et al., "Network Support for Multimedia - A Discussion of
the Tenet Approach," Technical Report TR-92-072, International
Computer Science Institute, November 1992.

M. Hayter, A Wmkstation Arclritecture to Support Multimedia, Ph.D.
dissertation, St. John's College, University of Cambridge, 1993.

J. F. Adam et al., "Media-Intensive Data Communications in a Desk-
Area Network," IEEE Communications, Vol. 32, No. 8, August 1994,
pp. 60-67.

M. Buddhikot, G. Parulkar, and J. Cox, "Design of a Large-Sale
Multimedia Server," Proc. INET 94/JNEC5,1994, pp. 663.1-663.10.

M. Hodges, R. Sasnett, and M. Ackerman, "A Construction Set for
Multimedia Applications," IEEE Sofhoare, pp. 37-41, January 1989.

W. Mackay and G. Davenport, "Virtual Video Editing in Interactive
Multimedia Applications," Communications ofthe ACM, pp. 802-806,
July 1989.

M. Hodges, R. Sasnett and J. Harward, "Musings on Multimedia,"
UNIX Review, pp. 83-85, February 1990.

M. Hodges, R. Sasnett, and E. Schlusselberg, "AthenaMuse Data
Description Language," CECI Report, MIT, 1992.

"The AthenaMuse 2 Functional Specification," CECI (MIT) Report, May
1992.

"The AthenaMuse2 Architecture," CECI (MIT) Report, August 1992.

W. J. Clark, "Multipoint Multimedia Conferencing," IEEE
Communications, pp. 44-48, May 1992.

T. Little and J. F. Gibbon, "Management of Time-Dependent
Multimedia Data," Proc. SPIE Symposium OE/FIBERS 1992, Enabling
Technologies fm Multi-Media, Multi-Service Nehomks, September 1992.

B. Furht, "Multimedia Systems: An Overview," IEEE Multimedia, Vol.
1, No. 1, Spring 1994, pp. 47-59.

R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications
and Applications, Prentice Hall, 1995, p. 615-635.

G. S. Blair, F. Garcia, D. Hutchison, and W. D. Shepherd, "Towards
New Transport Services to Support Distributed Multimedia
Apllications," Multimedia '92: 4th IEEE COMSOC International
Workshop, Monterey, California, April 1-4/1992.

H. Leopold, G. Blair, A. Campbell, G. Coulson, P. Dark, F. Garcia, D.
Hutchison, N. Singer, and N. Williams, "Distributed Multimedia
Communications System Requirements," OSI95/Deliverable ELIN-

1/P/V3, Alcatel ELIN Research, A-1210 Vienna, Ruthnergasse 1-7,
Austria, April 1992.

A. Campbell, G. Coulson, and D. Hutchison, "A Suggested QOS
Architecture for Multimedia Communications," ISO/IEC
JTCl/SC21/WGl N1201, International Standards Organisation, UK,
December 1991.

D. L. Tennenhouse, "Layered Multiplexing Considered Harmful,"
Protocols fw High-Speed Nehomks, Elsevier Science Publishers B. V.,
North Holland, 1990.

R. G. Herrtwich and L. Delgrossi, "Beyond ST-11: Fulfilling the
Requirements of Multimedia Communication," Proc. 3rd International
Wmkshop on Nehomk Operating System Suppmt fm Digital Audio and
Video, November 1992.

H. Tokuda, Y. Tobe, S. Chou, and J. Moura, "Continuous Media
Communication with Dynamic QOS Control Using ARTS with an
FDDI Network," Proc. ACM SIGCOMM '92, August 1992.

C. A. Nicolaou, "A Distributed Architecture for Multimedia
Communication Systems," Technical Report 220, Computer Laboratory,
University of Cambridge, May 1991.

R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications
and Applications, Prentice Hall, 1995, p. 439.

R. Steinmetz and K. Nahrstedt, Multinzedia: Computing, Communications
and Applications, Prentice Hall, 1995, p. 430.

A. Dumas, Programming WinSock, Sams Publishing, 1995.

T. Q. Pham and P. K. Garg, Multithreaded Programming with Windows
NT, Prentice Hall, 1996, pp. 17-22.

A. M. Van Tilborg and G. M. Koob, eds., Foundations of Real-Time
Computing: Scheduling and Resource Management, Kulwer Academic
Publisher, Nonvell, Mass., 1991.

H. J. Chen and T. Little, "Physical Storage Organizations for Time-
Dependent Multimedia Data," Proc. Foundations of Data Organization
and Algmithms Con ference, October 1993 .

S. Ghandeharizadeh and C. Shahabi, "On Multimedia Repositories,
Personal Computers, and Hierarchical Storage Systems,'' Proc. ACM
Multimedia 94, San Francisco, pp. 407-416, October 1994.

D. Ferrari, "Distributed Delay Jitter Control in Packet-Switching
Internetworks," Technical Report, International Computer Science
Institue, Berkely, CA.

L. A. Crutcher and A. G. Waters, "Connection Management for an
ATM Network," IEEE Nefwmk, Vol. 6, No. 6, pp. 42-55, Nov. 1992.

J. Jung and D. Seret, "Translation of QOS Parameters into ATM
Performance Parameters in B-ISDN," Proc. Infocom 93, Vol. 11, IEEE,
New York, pp. 748-755,1993.

D. Newman and B. Levy, "100Base-T vs. 100VG: The Real Fast
Ethernet," Data Communications, Vol. 25, No. 3, pp. 66-80, March 1996.

D. Greenfield, "Iso-Ethernet: A Reprieve for Ethernet?" Data
Communications, Vol. 25, No. 3, pp. 115-120, March 1996.

C. Papadopoulos and G. M. Parulkar, "Experimental Evaluation of
SUNOS IPC and TC/IP Protocol Implementation," IEEE/ACM
Transactions on Nefwmking, Vol. 1, No. 2, pp. 199-216, April 1993.

M. J. Accetta, et al., "Mach: A New Foundation for UNIX
develpoemnt," Proc. US ENIX Conference, July 1986.

D. L. Black, et al., "Microkernel Operating System Architecture and
Mach," Proc. Wmkshop on Micro-kernels and Other Kernel Architectures,
April 1992.

D. Golub, et al., "UNIX as an Application Program," Proc. Summer
USENIX Cofeuence, June 1990.

H. Tokuda, T. Nakajima, and P. Rao, "Real-Time Mach: Towards a
Predictible Real-Time System," Proceedings of USENIX Mach Wmkshop,
October 1990.

Appendix A

Audio/Video Interleaved Digital Video Format

The experiments conducted in this research make use of Video for

Windows (VfW) which is a digital video framework developed by Microsoft.

Video for Windows provides a programming interface for video playback and

recording and specifies the Audio/Video Interleaved (AVI) file format for

storing digital video and audio data. The AVI format is a RIFF (Resource

Interchange File Format) file specification, jointly developed by IBM and

Microsoft, to be used with applications that capture, edit, and playback

audio/video sequences. In general, AVI files may contain multiple streams of

different types of data. Most AVI sequences store both audio and video

streams. There is also a variation for the AVI sequence that contains only

video data and does not require an audio stream. Specialized AVI sequences

may include a control track or a Musical Instrument Digital Interface (MIDI)

track as an additional data stream. The control track can be used to control

external devices such as a media control interface (MCI) videodisc player. The

Appendix A discusses the following topics as related to the AVI file format:

1. Required chunks of an AVI file,

2. optional chunks of an AVI file, and

3. developing routines to write AVI files.

Detailed information on AVI and RIFF file formats are available from the

Microsoft Developers' Network.

RIFF files are built from chunks, each of which consists of a four-

character chi~tzk type, followed by an integer value indicating the amount of

data in the chunk, and then the actual data. Since chunks can contain other

chunks, thus RIFF files have a hierarchical structure. The root chunk has

' RIFF ' as its chunk type and the first four bytes of the data field are reserved

for a fmln type. Similar to chunk type, form type is a four-character identifier

to specify the structure of the embedded data. The RIFF file specification is

extensible since new media types can be accommodated by introducing new

chunk types or form types. Figure A.l shows a list of chunk and form types

supported by RIFF.

Figure A. 1 : Different RIFF chunk types and form types

Chunk type or
form type

AVI
INFO

LIST
PAL
RDIB
RMID
RTF
WAVE

Data type contained in the chunk

An audio/video interleaved sequence
Information about the file including creation date,
copyright holder, and comments
A list of subchunks
A color palette
A device-independent bitrnap (DIB) image
A Musical Instrument Digital Interface (MIDI) sequence
Rich Text Format (RTF) including text and graphics
Waveform audio samples

AVI files use the AVI RIFF form which is identified by the chunk type

code 'AVI '. All AVI files include two mandatory LIST chunks, which define

the format of the streams and stream data. An index chunk may also be

included in AVI files, which specifies the location of data chunks within the

file. The index chunk is useful for editing and keeping track of the frames in

the file. An AVI file with these components has the following form:

1: R I F F ('AVI '

2 : LIST (' h d r l '

3 : . . .

4 :)

5: LIST ('movi'

6 : . . .
7 :)

8 : [' i d x l ' <AVI Index>]

9 :)

The LIST chunks and the index chunk are subchunks of the RIFF 'AVI '

chunk. The 'AVI ' chunk type identifies the file as an AVI RIFF file. The LIST

"hdrl" chunk defines the format of the data and it is the first required list

chunk. The LIST "movi" chunk contains the digital video data for the AVI

sequence and is the second required list chunk. The "idxl" chunk is the

optional index chunk that contains location information of the playback

frames. These three components must be organized in the proper sequence

within the AVI file.

The LIST "hdrl" and LIST "movi" chunks use subchunks for their data.

The following example shows the AVI RIFF form, expanded with the chunks

required to complete the LIST "hdrl" and LIST "movi" chunks:

1 : RIFF ('AVI '

2: LIST ('hdrl'

3: ' avih' (<Main AVI Header>)

4 : LIST ('strl'

5: ' strh' (<Stream header>)

6 : 'strf' (<Stream format>)

7 : 'strdl(additional header data)

8 : . . .
9: 1

10: . . .

11: 1

1 2 : LIST ('movi'

13: {Subchunk I LIST('rec '

1 4 : SubChunkl

22: [' idxl ' <AVIIndex>]

In an AVI file, the main header is identified with the four-character

identifier code "avih". The header contains general information about the file,

including the number of streams within the file, and the height and width of

the AVI sequence. The data structure of the main header is defined as follows:

1: typedef struct {

2 : DWORD dwMicroSecPerFrame;

3 : DWORD dwMaxBytesPerSec;

4 : DWORD dwReservedl;

5 : DWORD dwFlags;

6 : DWORD dwTotalFrames;

7 : DWORD dwInitialFrames;

8 : DWORD dwstreams;

9: DWORD dwSuggestedBufferSize;

10: DWORD dwWidth;

11: DWORD dwHeight;

12: DWORD dwScale;

13: DWORD dwRa t e;

14: DWORD dwStart;

15: DWORD dwlength;

16: } MainAVIHeader;

The dwMi croS ecPer Fr ame field specifies the period between video

frames, which is used to specify the overall timing for the file.

The dwMaxB yt es PerSec field specifies the approximate maximum

data rate of the file. This value indicates the number of bytes per second that

the system must handle to present an AVI sequence as specified by the other

parameters contained in the main header and stream header chunks.

The dwFlags field contains any one of the following flags for the file:

AVIF - COPYRIGHTED

Indicates the AVI file contains copyrighted data. When this flag is set,

applications should not let user duplicate file or the data in the file.

AVI F HAS INDEX -

Indicates the AVI file has an "idxl" chunk.

AVIF - ISINTERLEAVED

Indicates the AVI file is interleaved. The computer system can stream

interleaved data from a CD-ROM more efficiently than non-interleaved

data.

AVIF - MUSTUSEINDEX

Indicates the index should be used to determine the order of

presentation of the data. When this flag is set, it implies the physical

ordering of the chunks in the file that does not correspond to the

presentation order.

AVI F - WASCAPTUREFILE

Indicates the AVI file is a specially allocated file used for capturing

real-time video. Typically, capture files have been defragmented by

user so that video capture data can be efficiently streamed into the file.

If this flag is set, an application should warn the user before writing

over the file with this flag.

The dwTotalFrames field of the main header specifies the total

number of frames of data in file.

The dwInitialFrames is used for audio/video interleaved files.

When creating interleaved files, the number of frames in the file prior to the

initial frame of the AVI sequence should be specified in this field.

The dwstreams field specifies the number of data streams in the file.

For instance, a file with audio and video contains two data streams.

The dwSugges tedBuf f ers i ze field specifies the suggested buffer

size for reading the file. In general, this buffer size should be large enough to

contain the largest chunk in the file. If the field is set to the size of zero, or if

the size is too small, the playback application must reallocate memory during

playback which will reduce performance. For an interleaved file, the buffer

size should be large enough to read an entire record and not just a chunk to

avoid memory reallocation.

The dwW idth and dwHe i ght fields specify the width and height of the

AVI file in pixels, respectively.

The dwScale and dwRate fields are used to specify the general time

scale that the AVI file would use. In addition to the general time scale, each

stream can have its own time scale. The time scale expressed in samples per

second is determined by dividing dwRat e by dwscale.

The dwS t art and dwLength fields specify the starting time and the

total length of the AVI file. The units are defined by the two fields dwRate

and dwScale. The d w ~ t art field is typically set to zero as the initial start

time.

The main header is followed by one or more stream header ("strl")

chunks. A "strl" chunk is required for each data stream and it contains

information about each data stream in the file. The data structure of the

stream header is defined as follows:

1: typedef struct {

2 : FOURCC fccType;

3 : FOURCC fccHandler;

4: DWORD dwFlags;

5 : DWORD dwReserved1;

6 : DWORD dwInitialFrames;

7 : DWORD dwScale;

8 : DWORD dwRate ;

9 : DWORD dwStart;

10: DWORD dwlength;

11: DWORD dwSuggestedBufferSize;

12: DWORD dwQuality;

13: DWORD dwSampleSize;

1 4 : } AVIStreamHeader;

The stream header specifies the type of data the stream contains, such

as video or audio, by using a four-character identifier code. The fccType

field is set to "vids" if the stream it specifies contains video data. In the case of

audio data, it is set to "auds".

The fccHandler field contains a four-character code describing the

installable codec (compressor /decompressor) to be used with the data.

The dwFlags field contains any flags for the data stream:

AVISF DISABLED -

This flag indicates that the stream data should be rendered only when

explicitly enabled by the user.

AVISF - VIDEO - PALCHANGES

This flag indicates that information for palette changes are included in

the AVI file.

The dwIni t i a l F r a m e s data field is used for audio/video interleaved

files. When creating interleaved files, this field is utilized to specify the

number of frames in the file prior to the initial frame of the AVI sequence.

The remaining fields describe the playback characteristics of the media

stream. These factors include the playback rate (dwScale and dwRa te), the

starting time of the sequence (dwstar t) , the length of the sequence

(dw~ength) , the size of the playback buffer (dwsugge s t e d ~ u f fer) , an

indicator of the data quality (d w ~ u a l i t y) , and the sample size

(dwsample~ize) .

A stream format ("strf") chunk must follow a stream header ("strh")

chunk. The format of the data in the stream is described by the stream format

chunk. For video streams, the information in this chunk is a BITMAPINFO

structure including palette information (e.g., 8-bit color). For audio streams,

the information in this chunk is a WAVEFORMATEX or PCMWAVEFORMAT data

structure. The WAVEFORMATEX structure is an extended version of the

WAVEFORMAT struclre. The "strl" chunk might also contain a stream data

("strd") chunk. Whenever a stream data chunk is used, it always follows the

stream format chunk. The format and content of this chunk are defined by

installable codec drivers. Typically, codec drivers use this information for

configuration. Multimedia applications that read and write RIFF files do not

need to decode this information. The applications simply transfer this data to

and from a codec driver as a memory block and the actual compression and

decompression are performed by the codec driver itself.

An AVI player associates the stream headers in the LIST "hdrl" chunk

with the stream data in the LIST "movi" chunk by using the order of the "strl"

chunks. The first "strl" chunk applies to stream 0, the second applies to stream

1, and so forth. For instance, if the first "strl" chunk describes video data, then

the video data is contained in stream 0. Naturally, if the second "strl" chunk

describes the wave audio data, the wave audio data is contained in stream 1.

Following the header information is a LIST "movi" chunk that contains

chunks of the actual data in the streams; i.e., the image frames and sounds

themselves. The data chunks can reside directly in the LIST "movi" chunk or

they may be grouped into "rec " chunks. The "rec " grouping implies that the

grouped chunks should be read from disk all at once. This is used only for

files specifically interleaved to play from a CD-ROM.

Similar to all RIFF chunks, the data chunks contain a four-character

code to identify the chunk type. The four-character code that identifies each

chunk consists of the stream number and a two-character code that defines the

type of information encapsulated in the chunk. In the case of a waveform

(audio) chunk, it is identified by a two-character code "wb". However, if the

waveform chunk is corresponding to the second LIST "hdrl" stream

description, it would have a four-character code of "Olwb".

It is unnecessary for the audio data chunks to contain any information

about its format since all the format information is already included in the

header. An audio data chunk using the ## in the format to represent the

stream identifier has the following format:

1: WAVE Bytes '##wbl

2 : BYTE abBytes [1 ;

Utilizing different codec drivers, video data can be compressed or

uncompressed DIBs. An uncompressed DIB has BI - RGB specified for the

bicompres s ion field in its associated B I TMAP INFO structure. A compressed

DIB has a value other than B I - RGB specified in the bicompres s ion field. A

data chunk for an uncompressed DIB contains RGB video data. These chunks

are identified with a two-character code of "db" which stands for DIB bits.

Data chunks for a compressed DIB are identified with a two-character code of

"dc" which stands for DIB compressed. Neither one of the video data chunk

contains any header information about the DIBs. An uncompressed DIB data

chunk has the following form:

1: D I B Bits '##dbl

2 : BYTE abBits[];

A compressed DIB data chunk has the following form:

1: Compressed D I B '##dcl

2: BYTE abBits [I ;

Video data chunks can also define new color palette entries used to

update the palette during the playback of an AVI sequence. These chunks are

identified with a two-character code of "pc" which stands for palette change.

The color palette information has the following data structure:

1: typedef struct {

2 : BYTE bFirstEntry;

3 : BYTE bNumEntries;

4: WORD wFlags;

5: PALETTEENTRY peNew;

6: } AVIPALCHANGE;

The bFirs tEnt ry field defines the first palette entry that needs to be

changed and the bNumEntrie s field specifies the number of entries to be

changed altogether. Where the peNew field contains the new color palette

entries.

If a video stream includes any kind of color palette changes, the

AVITF - VIDEO - PALCHANGES flag in the dwFlags field of the stream header

should be set. This flag indicates that this video stream contains palette

changes and warns the playback application that the application will have to

handle the palette changes.

AVI files can also include an index chunk after the LIST "movi" chunk

to provide location specific information to the AVI playback application.

Essentially, the index chunk contains a list of the data chunks and their

location in the file which provides efficient random access to the data within

the file. If an index chunk is not included, the playback application would

have to search through the entire AVI file in order to locate a particular video

frame or an audio sequence. An index chunk is especially effective for large

AVI files.

The four-character identifier code for index chunks is "idxl". The data

structure of an index entry has the following form:

1: typedef struct {

2 : DWORD ckid;

3 : DWORD dwFlags;

4 : DWORD dwChunk0ffset;

5: DWORD dwchunklength;

6 : } AVIINDEXENTRY;

The ckid, dwFlags, dwChunk0f fset, and dwChunkLength entries

are repeated in the AVI file for each indexed data chunk. If the file is

interleaved, the index will also contain these entries for each "rec" chunk. The

"rec" entries should have the AVIIF - LIST flag set and the list type in the

ckid field.

The ckid field uses four-character codes for identifying the type of

data chunk used. The dwFlags field specifies any one of the appropriate

flags for the data. The AVIIF - KEYFRAME flag indicates key frames in the

video sequence. Key frames do not need previous video information to be

decompressed. The AVI I F - NOTIME flag indicates a chunk that does not affect

the timing of a video stream. For instance, changing palette entries indicated

by a palette chunk should occur between displaying video frames. Thus, if an

application needs to determine the length of a video sequence, it should not

use chunks with the AVIIF - NOTIME flag. Under this condition, the

application would ignore the palette chunk. The AVI IF - LIST flag indicates

that the current chunk is a LIST chunk. The ckid field is then used to

identify the type of LIST chunk.

The dwChunkOf fset and dwChunkLength fields specify the position

of and the length of the chunk. The dwChunkOf f set field specifies the

position of the chunk in the file relative to the 'movi' list.

The dwChunkLength field specifies the length of the chunk excluding

the eight bytes required for the RIFF header.

The AVIF - HASINDEX in the dwFlags field of the AVI header is set

when an index chunk is included in the RIFF file.

Appendix B

A WinSock C++ Class Library

Although the WinSock C library supplied by Microsoft provides the

basic functions to create network applications, writing sophisticated

networking protocols with the WinSock-specific C function calls is still a

complex task. The WinSock C++ class library introduced here is designed to

provide object-oriented support for writing network applications efficiently.

This C++ class library is a class-wrapper of the original WinSock C library. It

employs encapsulation, inheritance, and polymorphism to create an extensible

framework for writing network applications. Many of the details required to

utilize the WinSock functions are encapsulated in the class library. The result

is a set of WinSock objects that make programming network functions more

robust, concise, and maintainable. The remaining of Appendix B is a partial

listing of the WinSock C++ Class library.

/ /
/ / A Ct+ class library designed to manage WinSock network
/ / communication.
/ /
/ / This class library includes functions to:
/ - Initialize, get TCP/IP stack information, and clean up a
/ / WINSOCK socket
/ - To create, send, receive, and destroy a stream socket
/ /
/ / The original WINSOCK library contains code copyrighted by
/ / Microsoft and Regents of the University of California (Berkeley).
/ / The class library is built on codes from Microsoft and Arthur
/ / Dumas, Programming WinSock, SAMS Publishing, 1994.
/ /
.

.
/ / CL WINSock Class Library / /
/////7/////////////////////////

.
/ / CL WINSock constructor -
/ /
/ / Constructs the CL - WINSock object. Initializes object member
/ / variables
/ /
.

CL - W1NSock::CL - WINSock(WORD wVersionRequired)

/ / initialize object member variables
m nLastError = NIL;
m w ~ e r s i o n ~ e ~ u i r e d - = wVersionRequired;

I

.
/ / CL - WINSock::Initialize()
/ /
/ / Initialize the WinSock sub-system.
.

int CL WINSock::Initialize() -
I
int nStatus = CL WINSOCK NOERROR; - -

m - nLastError = WSAStartup(m - wVersionRequired, &m-wsaData) ;

if (m - nLastError ! = NoErr)

nStatus = CL WINSOCK WINSOCK ERROR; - - -

return nStatus;
1

/ / Close down and clean up the WinSock sub-system.
.

int CL - WINSock::Close()
I
int nStatus = CL WINSOCK NOERROR; - -

return nStatus;
I

/ / Copy the WinSock TCP/IP stack information structure.
.

void CL - WINSock::GetInfo(LPWSADATA pwsaData)
(
memcpy (pwsaData, &m-wsaData, sizeof (WSADATA)) ;

1

.
/ / CL StreamSock Class library / /
/ / / / / T /

.
/ / CL - Streamsock constructor
/ /
/ / Constructs the CL Datagramsock object.
/ / Initializes the ogject member variables.
.

CL - StreamSock::CL - StreamSock(CWnd *pParentWnd, UINT uMsg)
{

/ / initialize the object member variables
m pParentWnd = pParentWnd;
 ASSERT(^ - pParentWnd != NULL);
m uMsg = uMsg;
ASSERT (m uMsg ! = 0) ;
1nitvars7) ;

.
/ / CL Streamsock destructor
...

/ / Destroy the object when it's no longer in use.
1

.
/ / CL - StreamSock::InitVars()
/ /
/ / Initialize the object member variables.
/ /
.

void CL - StreamSock::InitVars(BOOL bInitLastError)
I
if (bInitLastError)
m - nLastError = NoErr;

m-s = INVALID SOCKET;
memset(&m-sin~ocal, 0, sizeof(S0CKADDR IN)) ;
memset(&m sinRemote, 0, s i z e o f (~ 0 ~ K A ~ ~ R - IN)) ;
m - b ~ e r v e r = FALSE;

1

/ / To create a hidden window that can receive connection-oriented
/ / messages from WinSock. In addition, to create a socket and
/ / optionally bind it to a name if the socket is a server socket.
/ /
.

int CL - StreamSock::CreateSocket(int nLocalPort)
{

/ / if this version of the function is being called,
/ / a valid port number must be specified
if (nLocalPort <= 0)

return CL - WINSOCK - PROGRAMMING ERROR; -

/ / convert the port number into a string and
/ / call the version of Createsocket() which
/ / accepts a string
char pszLocalService[l8];

- itoa(nLocalPort, pszLocalService, 10);
return CreateSocket(pszLoca1Service);

/ / To close the socket, clean up all queued data, and destroy the
/ / hidden window.
/ /
.

int CL - StreamSock::DestroySocket()
1

int nStatus = CL WINSOCK NOERROR; - -

/ / check if the socket is valid
if (m s == INVALID SOCKET)
nstatus = CL - WINSOCK PROGRAMMING ERROR; - -

else
I

/ / remove any data in the write queue
while (!m-listWrite.IsEmpty())
{
LPSTREAMDATA pStreamData =

(LPSTRE9MDATA)m listWrite.RemoveHead();
LPVOID pData = p~tream~ata->p~ata;
delete pStreamData;

m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - WRITE - ERR,
(LPARAM) pData) ;

I

/ / remove any data in the read queue
while (!m - listRead.IsEmpty())
{
LPSTREAMDATA pStreamData =

(LPSTREAMDATA)m listRead.RemoveHead();
free (p~tream~ata->p~ata) 7
delete pStreamData;

/ / close the socket and initialize variables
closesocket (m-s) ;
InitVars () ;

/ / destroy the hidden window
Destroywindow();

I

return nStatus;

/ / This version of the Connect() function takes a pointer to a
/ / string that represents the host name to send the data to and

/ / an integer that represents the port number to connect to.
/ /

int CL - StreamSock::Connect(LPSTR pszRemoteName, int nRemotePort)
{

/ / convert the port number into a string and then call the version
/ / of Connect() which accepts a string service name or port number
char pszRemoteService[l8];

- itoa(nRemotePort, pszRemoteService, 10);
return Connect(pszRemoteName, pszRemoteService);

I

/ / This version of the Connect0 function takes a pointer to a
/ / string that represents the host name to send the data to and
/ / an integer that represents the service name or port number to
/ / connect to.
/ /
.

int CL StreamSock::Connect(LPSTR pszRemoteName, LPSTR
psz~em~te~ervice)
1
LPHOSTENT pHent;
LPSERVENT pSent;
SOCKADDR - IN sinRemote;
int nStatus = CL - WINSOCK - NOERROR;

while (TRUE)
I

/ / assign the address family
sinRem0te.si.n - family = AF - INET;

/ / assign the service port
sinRemote.sin-port = htons(atoi(pszRemoteService));
if (sinRemote.sin-port == 0)
{
pSent = getservbyname(pszRemoteService, "tcp");
if (pSent == NULL)
{
m nLastError = WSAGetLastErrorO;
nStatus = CL - WINSOCK - WINSOCK - ERROR;
break;
1
sinRemote.sin - port = pSent->s-port;

1

/ / assign the IP address
sinRemote.sin addr.s addr = inet-addr(pszRemoteName);
if (sin~emoteTsin - addr.s - addr == INADDR-NONE)
I
pHent = gethostbyname(pszRemoteName);
if (pHent == NULL)

I
m nLastError = WSAGetLastErrorO;
nStatus = CL - WINSOCK WINSOCK ERROR; - -
break;

}
sinRemote.sin - addr.s - addr = *(u-long *)pHent->h-addr;

I

/ / call the version of Connect0 that takes an IP address
/ / structure
return Connect(&sinRemote);

1

return nStatus;
I

/ /

/ / This version of the Connect() function takes a pointer to an IP
/ / address structure to connect to.
/ /
.

int CL - StreamSock::Connect(LPSOCKADDR - IN psinRemote)
I
int nStatus = CL WINSOCK NOERROR; - -

while (TRUE)
I

/ / only clients are allowed to call connect()
if (m - bserver)
{
nStatus = CL WINSOCK PROGRAMMING ERROR; - - -
break;

/ / copy the IP address of the remote connecting server
memcpy(&m-sinRemote, psinRemote, sizeof(S0CKADDR-IN));

/ / attempt the asynchronous connection
if (connect (m - s, (LPSOCKADDR) &m - sinRemote, sizeof (SOCKADDR - IN)) ==

SOCKET ERROR) -
{
m nLastError = WSAGetLastErrorO;
if (m nLastError == WSAEWOULDBLOCK)
m nxast~rror = NoErr;

else
nStatus = CL - WINSOCK WINSOCK ERROR; - -

break;
1
break;

I

return nStatus;

/ / To accept a connection request from a client.
/ /
.

int CL~StreamSock::Accept(CL~StreamSock *pStreamSocket)
I
int nStatus = CL - WINSOCK NOERROR; -

while (TRUE)
I
if (pstreamsocket == NULL)
I
ASSERT (0) ;
nStatus = CL WINSOCK PROGRAMMING ERROR; - - -
break;

I

/ / only servers should call Accept0
if (!m bServer) -
I
nStatus = CL WINSOCK PROGRAMMING ERROR; - - -
break;

/ / Check if the socket is not already created.
if (pStreamSocket->m-s ! = INVALID SOCKET)

return CL - WINSOCK - PROGRAMMING - ERROR;

/ / create the hidden window
RECT rect;
rect.left = 0;
rect.top = 0;
rect.right = 50;
rect.bottom = 50;
if (pStreamSocket->Create(NULL, NULL, WS OVERLAPPEDWINDOW, rect,

pStreamSocket->m - p~arent~nd, 0) == 0)
I
nStatus = CL WINSOCK WINDOWS ERROR; - - -
break;

/ / accept the client connection
pStreamSocket->m s = accept(m-s, NULL, NULL);
if (p~tream~ocket->m-s == INVALID - SOCKET)
I
m nLastError = WSAGetLastErroro;
nStatus = CL WINSOCK WINSOCK ERROR;
p ~ t r e a m ~ o c k e t - > ~ e s t r ~ i n d o w () ;
break;

I

/ / start the asynchronous event notification
long 1Event;
lEvent = ED READ I ED WRITE I ED CONNECT I ED CLOSE;
if (W ~ ~ ~ s y n c ~ e l e c t (p~tream~ocketz>m s, p~tream~ocket->m hWnd,

CL WINSOCK EVENT NOTIFICATION, i~vent) == SOCKET ERROR) - - -
{

-

m nLastError = WSAGetLastErrorO;
nStatus = CL WINSOCK WINSOCK ERROR;
closesocket (p~tream~ocket->rn_s) ;
pstreamsocket->Destroysocket();
break;

break;

/ / if anything failed in this function, reset the socket variables
if (nStatus == CL WINSOCK WINSOCK-ERROR)

p ~ t r e a m ~ o c k e t z > ~ n i t ~ a ~ s (~ ~ ~ ~ ~) ;
else if (nStatus == CL WINSOCK NOERROR) - -
{

/ / notify the parent if the connection was accepted
/ / successfully
pStreamSocket->m~pParentWnd->PostMessage(pStreamSocket->m - uMsg,

CL WINSOCK YOU ARE CONNECTED); - - - -

return nStatus;
I

/ / Write data to the stream socket.
/ /
.

int CL - StreamSock::Write(int nLen, LPVOID pData)
I
int nStatus = CL WINSOCK NOERROR; - -

while (TRUE)
{

/ / dynamically allocate a structure to hold the data pointer
/ / and the data's length
LPSTREAMDATA pStreamData = new STREAMDATA;
if (pStreamData == NULL)
{
nStatus = CL WINSOCK WINDOWS ERROR; - - -
break;

1
pStreamData->pData = pData;
pStreamData->nLen = nLen;

/ / add the data to the list
TRY

CATCH (CMemoryException, e)
{
delete pStreamData;
nStatus = CL WINSOCK WINDOWS ERROR; - - -
break;

I
END CATCH -

/ / trigger the ED WRITE handler to try to send
PostMessage(CL WINSOCK EVENT NOTIFICATION, m-s,

WSAMAKESELECTREPLY(FD - WRITE, O) 1 ;
break;

return nStatus;
I

/ / Read data that has been received by the stream socket.
/ /

LPVOID CL - StreamSock::Read(LPINT pnLen)

LPVOID pData = NULL;

/ / check to see if there is data to receive
if (!m - listRead.IsEmpty())
I

/ / remove the stream data from the list
LPSTREAMDATA pStreamData = (LPSTREAMDATA)m listRead.RemoveHead(); -
pData = pStreamData->pData;
*pnLen = pStreamData->nLen;
delete pStreamData;

return pData;
I

/ / message map
BEGIN MESSAGE MAP(CL StreamSock, CWnd)
ON MESSAGE(?L WINSOCK - EVENT NOTIFICATION, OnWinSockEvent) -

END - MESSAGE - M A P ~)

.
/ / CL - StreamSock::OnWinSockEvent()
/ /
/ / Event handler: Called when there is an asynchronous event on the
/ / socket.
/ /
.

LONG CL - StreamSock::OnWinSockEvent(WPARAM wParam, LPARAM 1Param)
I

/ / check for an error
if (WSAGETSELECTERROR(1Param) ! = 0)

return OL;

/ / act upon the notified event
switch (WSAGETSELECTEVENT(1Param))
{
case ED ACCEPT:

/ / inform the parent window that a client would like to connect
/ / to the server socket
m-pParentWnd->PostMessage(m-uMsg,

CL - WINSOCK - READY - TO - ACCEPT-CONNECTION);
break;

case ED CONNECT:
/ / inform the parent window that the socket has connected
m-pParentWnd->PostMessage(m uMsg,

CL - WINSOCK YOU ARE CONNECTED); - - -
break;

case ED READ:
return HandleRead (wParam, 1Param) ;
break;

case FD WRITE:
return HandleWrite(wParam, 1Param);
break;

case FD CLOSE:
/ / check for more data queued on the socket
if (HandleRead(wParam, 1Param))
1.
PostMessage(CL - WINSOCK - EVENT - NOTIFICATION, wParam, 1Param);
break;
I
/ / inform the parent window that the socket is closed
m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - LOST - CONNECTION);
break;

default:
/ / exception handling
ASSERT (0) ;
break;

1
return OL;

/ / Called when there is an asynchronous read event on the socket.
/ /

LONG CL StreamSock::HandleRead(WPARAM wParam, LPARAM 1Param) -
I
while (TRUE)
I

/ / allocate memory for incoming data
LPVOID pData = malloc(READ BUF LEN);
LPSTREAMDATA pStreamData =-new-STREAMDATA;

if ((pData == NULL) I I (pStreamData == NULL))
I

/ / free any memory that was allocated
if (pData ! = NULL)
free (pData) ;
pData = NULL;

if (pStreamData ! = NULL)
delete pStreamData;
pStreamData = NULL;

/ / inform the parent that a possible data read failed
m-pParentWnd->PostMessage(m - uMsg, CL - WINSOCK - ERROR - READING);

PostMessage(CL WINSOCK EVENT NOTIFICATION, m-s,
WSAMAKESELECTREPLY(FD - READ, 0));

break;
I

/ / receive data
int nBytesRead = recv(m-s, (LPSTR)pData, READ - BUF - LEN, 0) ;
if (nBytesRead == SOCKET-ERROR)
{

/ / free memory buffer for incoming data
free (pData) ;
pData = NULL;
delete pStreamData;
pStreamData = NULL;

m nLastError = WSAGetLastErrorO;
iT (m nLastError == WSAEWOULDBLOCK)
m n~ast~rror = NoErr;
eis e
/ / inform the parent that a data read failed
m - pParentWnd->PostMessage(m uMsg, CL WINSOCK ERROR READING); - - - -

break:

/ / make sure some data was read
if (nBytesRead == 0)

/ / free memory for incoming data
free (pData) ;
pData = NULL;
delete pStreamData;
pStreamData = NULL;

break;

/ / add the data to the list
pStreamData->pData = pData;
pStreamData->nLen = nBytesRead;
TRY

m - listRead.AddTail(pStreamData);
1
CATCH (CMemoryException, e)
I
free (pData) ;
pData = NULL;
delete pStreamData;
pStreamData = NULL;

/ / inform the parent that a data read failed
m pParentWnd->PostMessage(m-uMsg, CL - WINSOCK - ERROR - READING);
break ;

I
END - CATCH

/ / inform the parent that data has been read
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK DONE READING,

(LPARAMF~ - list~ead. ~ e t ~ o u n t () 7;

/ / return 1 if there is still remaining data
return 1L;

break;
1

return OL;

/ / Called when there is an asynchronous write event on the socket.
/ /
.

LONG CL - StreamSock::HandleWrite(WPARAM wParam, LPARAM 1Param)
{

int nLen;
LPVOID pData;
LPSTREAMDATA pStreamData;
static LPVOID pDataRemaining = NULL;
static int nLenRemaining = 0;

while (TRUE)
I

/ / check if there is any data to send
if (m-listWrite.IsEmpty())
break;

/ / if not in the middle of another buffer send,
/ / get data and data length from the write queue
pStreamData = (LPSTREAMDATA)m - listWrite.GetHead();
pData = pStreamData->pData;
nLen = pStreamData->nLen;
if (pDataRemaining == NULL)
{

pDataRemaining = pData;
nLenRemaining = nLen;

I

/ / sending the data
BOOL bRemove = FALSE;
int nBytesSent = send(m-s, (LPCSTR)pDataRemaining,

nLenRemaining, 0) ;
if (nBytesSent == SOCKET-ERROR)
r
I

m nLastError = WSAGetLastErrorO;
if (m nLastError == WSAEWOULDBLOCK)

m-n~ast~rror - = NoErr;
else
{

bRemove = TRUE;
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK - WRITE - ERR,

(LPARAM) p~Zta) ;
I

I
else
I

/ / if data was sent, check if all the bytes were sent
if (nBytesSent == nLenRemaining)
{
bRemove = TRUE;
m-pParentWnd->PostMessage(m uMsg, CL WINSOCK - DONE - WRITING,

(LPARAM) p~ata) ;
I
else
I
/ / the complete buffer was not sent so reset these values
pDataRemaining = (LPVOID) ((LPCSTR)pDataRemaining + nBytesSent);
nLenRemaining = nLenRemaining - nBytesSent;
I

/ / if the data was completely sent or an error has actually
/ / occurred, clean up remaining data from the queue
if (bRemove)
{
delete pStreamData;
m listwrite. RemoveHead () ;
p'2jata~emaining = NULL;
nLenRemaining = 0;

1

/ / if there is more data to send, trigger this ED - WRITE handler
if (!m listWrite.IsEmpty())

~ o s t M e s s a g e (~ ~ WINSOCK EVENT NOTIFICATION, m-s,
WSZ~KESELECTREPLY(FD - WRITE, O)) ;

break;

return OL;
1

/ / TO copy the IP address of the other end (peer) of the socket
connection into
/ / the given pointer. Useful for server's to use after an Accept().
/ /

int CL - StreamSock::GetPeerName(LPSOCKADDRRIN psinRemote)
I
int nStatus = CL WINSOCK NOERROR;
int nLen = sizeof(~0cKA~D~ - IN);

/ / check if the listening socket is not calling this function
if (m-bServer)

nStatus = CL WINSOCK PROGRAMMING ERROR;
else if (getpeername(m-sT (L P S O C K A D D R) ~ S ~ ~ R ~ ~ O ~ ~ , &nLen) ==

SOCKET - ERROR)
I

m nLastError = WSAGetLastError();
nStatus = CL - WINSOCK - WINSOCK - ERROR;

\

return nStatus;

Chung, Edward, Chi-Fai. Ph.D. June, 1996

Electrical and Computer Engineering

Quality of Service Analysis for Distributed Multimedia Systems in a Local Area
Networking Environment (148 pp.)

Director of Dissertation: Dr. Mehmet Celenk

The stringent timing requirements imposed by distributed multimedia

applications have raised questions about the adequacy of continuous media

support in the current commercial operating systems. The main objective of this

research is to study the requirements, also known as Quality of Service (QOS), of

multimedia applications and develop a QOS management scheme to support an

efficient multimedia networking environment. An integrated QOS management

architecture is proposed to maintain synchronization among different continuous

media objects.

The primary goal of this research is to present a set of key application QOS

parameters and map these requirements through all the layers of our proposed

integrated QOS management framework. Emphasis is placed on four

performance criteria for continuous media communication: Throughput,

transmission delay, delay variations, and error rates.

End-toend QOS guarantees are ensured by dynamic QOS control that is

orchestrated by a protocol entity called the QOS negotiation agent. The QOS

