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Chapter 1

INTRODUCTION

1.1 Problem Statement and Its Importance

a. General Problem Statement

Considerable attention has been given already to optimum detec­

tion for determining the presence or absence of a signal in noise. In such

systems, two decisions only are made: (1) a signal (as well as noise) is present

or (2) only noise occurs. For example, in a radar detection problem, we might

select two hypotheses; a target is present or no target is present.

Our purpose in this dissertation is to study the optimum multiple

alternative detection or classification of signals in noise, as applied to active

sonars. Active sonar classification is statistical in nature due to the uncertainty

associated with the scattering medium and the background noise present in the

measurement data. Consequently, the problem is best posed and solved within

the framework of Bayesian decision theory.

As in binary cases, the methods of decision theory are also applied to

multiple alternative situations involving the possible presence of more than one

signal during an observation interval T. This is done using the notion of risk,

which associates certain costs with each possible decision, and uses the average

risk to evaluate system performance. An optimum decision among the multiple

alternatives is obtained by minimizing the average risk, and this minimum

average is known as the Bayes risk.

In this dissertation, we are concerned with the implementation issues

arising in active sonars. We will display receiver operating characteristics

(ROC) curves in function of important parameters such as target resolution,
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signal-to-noise ratio, signal design, etc. We will also study the sensitivity of

the classifier when wrong a priori knowledge of the target's scattering properties

is processed. Finally, we will tackle the problem of acoustic target imaging. An

optimal estimate of the target's scattering coefficients will be derived and

investigated.

b. Specific Problem Statement

The specific issues to be studied in this dissertation are

summarized as follows:

(1) To study the classifier performance as a function of important

parameters such as target resolution, signal design, etc., for meaningful

target geometries.

(2) To investigate classifier sensitivity and performance when incorrect a

priori knowledge of certain parameters, such as target range and target

orientation, is infused into the processor.

(3) To study the imaging problem in the context of optimum classification.

c. Importance of the Problem

Most active sonar classifiers are based on accurate statistical

description of the illuminated target. In other words, perfect a priori knowledge

of the target's scattering properties, range, orientation, etc. is almost always

assumed in classifier design. In practice, scattering models are obtained from

experimental data and calculations performed on hypothesized targets. The

fidelity of this approach is questionable, since the assumed nominal model is

never a perfect replica of the actual target. Moreover, there will always be

uncertainty about the target's range and orientation. Consequently, unexpected
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and severe degradations in performance may result, and the need to investigate

classifier performance when an incorrect or imprecise statistical description is

used is essential.

A good classifier is one that can discriminate between two slightly

different targets. An intuitive approach suggests more point scatterers

modeling the target in order to exploit finer details. However, when more

scatterers are considered, more noise contaminated data will be processed and

performance is at stake. One way to get around this problem is to increase the

signal-to-noise ratio in order to make noise less significant to the processor.

Here again, there is a cost to be paid. Therefore, these different design tradeoffs

constitute another important aspect of classifier design.

The last issue to be investigated is acoustic target imaging. If the

"strength" or energy of each point scatterer forming the target can be

estimated, one can reconstruct the target. As a result, better estimation of the

target's statistics implies better classification. This leads to the importance of

optimal estimation techniques in active sonars, and an investigation of the

parameters affecting such techniques proves to be worthwhile.

1.2 Problem Formulation

A schematic diagram of an active sonar system is shown in figure 1.1.

Short pulses of acoustic energy are radiated periodically, usually from a highly

directional transmitter. If an object is located in the beam of the transmitter,

the energy in the pulse will be scattered in many directions. Some of this

energy will be reflected back towards an array of sensors. The return energy

picked up by the sensors has random parameters that are mainly dependent on

the scattering properties of the object and the transmission medium.



4

All signals not related to the signal backscattered from the object

constitute undesired interference we call noise. It has two components: system

noise and ambient noise. System noise arises within the processor and ambient

noise originates from the thermal energy within the array. We will combine the

system and ambient noises into a single process modeled by a zero-mean,

Gaussian distributed random vector. Furthermore, we will assume that the

noise process is spatially and temporally white.

The classification problem is formulated as a multiple hypothesis test on

the array data. The signal model for the array data given hypotheses Ho' H
l
,

· · . , HI is:

H
O

: x(t) = n(t) (noise only)

(1.2.1)

H. : x(t) = s.(t) + n(t); i = 1,2, ... , I
1 1

where x(t) denotes the outpu t from an array of N sensors at time t, n( t )

represents system and ambient noise, and 8.{t) represents the return from the
1

ith target. The ith target will be modeled with a finite number of independent

point scatterers and 8.(t) is a function of these scatterers and the time-delayed
1

replicas of the transmitted waveform. It will be shown in chapter 2 that 8.(t)
1

can be modeled as a zero-mean stochastic process with Gaussian statistics.

In this dissertation, we will study the ternary problem where we consider

three hypotheses: the null hypothesis Ho and two alternative hypotheses HI

and H
2

(refer to figure 1.2). Here hypothesis H
2

represents a target plus noise

and HI represents a false target or possibly the same target of hypothesis H
2

with a different orientation or range. False targets may occur due to undesired

reflected energy, called reverberation noise. In the ocean, this energy can be
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reflected from foreign materials such as suspended solids, sea organisms, fish,

etc.

Although the ternary problem is emphasized, we present a systematic

approach for designing Bayesian classifiers capable of deciding among 1+1

hypotheses (I ~ 2). Indeed, a decision rule designed to select between HI and

H
2

can be used to select between HI and H
3

or H
2

and H
3

in a four-hypotheses

case, for instance. Furthermore, design parameters arising in classifier imple­

mentation are independent of the number of hypotheses considered. Studying

classifier performance in function of such parameters is the basic issue addressed

in this dissertation.

1.3 Basic Approach to the Problem

We begin by describing the sonar model in more details, since it is a

crucial part of the overall approach to the problem. As we mentioned before, in

active classification, a known signal is transmitted into a propagating medium

and directed towards a region called the test volume. We will subdivide the

test volume into K disjoint regions called cells. Each cell contains at most one

point scatterer which models the net reflectivity properties of the object within

that cell.

Measurements from an array of sensors immersed in the medium are

processed in order to decide if an object is present, and if so, what kind of object

is present. For the ternary problem, it can be shown that a minimum Bayesian

risk decision rule for selecting between HI and H
2

leads to a sufficient statistic

L
12

. If L
12

is larger than the classification threshold 'fJ, we assert that HI is

correct; otherwise, we assert H
2

is correct.

The ability of the classifier to distinguish between HI and H
2

depends on
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the probability density functions f(L
I 2

/HI) and f(L
I2

/H
2)

of L
12

conditioned on

HI and H
2

, respectively. Throughout this dissertation, hypothesis H
2

represents

a target of interest and hypothesis HI represents a false target (reverberation).

The performance measures we shall use are the classification and false alarm

probabilities, P(H2 /H2) and P(H21 HI)' respectively. It turns out that the

sufficient statistic L
12

has a quadratic form. Distributions of quadratic forms in

complex multinormal random variables have been studied by Turin [20], Kharti

[21] and Johnson and Kotz [22]. They derived an expression for the

characteristic function of a quadratic form. Therefore, the basic approach in

evaluating the classifier performance is summarized in the following steps:

(1) Evaluate the characteristic functions M
1
(w) and M

2
( w) starting with the

quadratic form L
12

.

(2) Using the characteristic functions derived in (1), obtain the conditional

probability density function f(L
12

I HI) and f(L
12

1 H
2

) ·

(3) Evaluate the classification and false alarm probabilities, P(H
2

1H
2
) and

P(H21 HI)' based on conditional probability density functions derived in

(2).

The second issue to be investigated in this dissertation is classifier

sensitivity to incorrect a priori knowledge of the test volume scattering

properties. The scattering properties of the test volume will be described by the

scattering covariance matrices K and K corresponding to hypotheses HI and
a l a2

H
2

, respectively. In order to compute the sufficient statistic L
12

, the classifier

must know K and K a priori. Perfect knowledge of these matrices is usually
a

1
a2

a difficult task. If, for instance, there is uncertainty concerning the target range

or orientation under hypothesis H
2
, the corresponding scattering covariance
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matrix, now labeled K' , will be mismatched to the actual test volume
&2

geometry. Hence, performance analysis of the "mismatched" classifier is

accomplished by repeating steps (1), (2) and (3), discussed earlier in the section,

with the wrong scattering covariance matrix (K' in this case), infused into the
&2

processor. In both matched and mismatched processing, residue theory will be

employed extensively to evaluate f(L
12

1H
1

) and f(L
12

1H
2

) ·

In this dissertation, we will also study the issue of acoustic target

imaging. This problem will be approached by evaluating the minimum variance

linear unbiased estimator a. (i = 1, 2) of the test volume scattering coefficients
1

under each hypothesis. To do this, we will use basic properties of estimation

theory as well as the Wiener-Hopf equation.

In conclusion, our approach to the problem is based on Bayesian decision

theory. Within this framework, the classifier performance will be analyzed.

Many ideas of random processes, linear algebra and complex variable theory

will be employed in solving the problem.

1.4 Review of Literature

Classification and estimation, discussed in this dissertation, are a

combination of the classical techniques of decision theory and random process

characterization. Decision theory was studied in the middle of the eighteenth

century by Thomas Bayes [1], and work in the area of estimation theory was

published by Legendre [2] and Gauss [3] in the early nineteenth century.

Significant contributions to the classical decision theory were developed by

Fisher [4] and Neyman and Pearson [5] more than 50 years ago.

Statistical decision theory was later on applied to multiple-alternative
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detection of signals in noise. Two fundamental papers in this area were

published by Middleton and Van Meter [6,7] in 1955. They tackled the problem

based on Bayesian decision theory. In 1962, Thomas and Wolf [8] studied the

multiple detection issue using two criteria: Bayes procedure and the

Neyman-Pearson approach. They found that, for both criteria, the decision is

based on the likelihood ratios for the various signals.

Likelihood ratios were studied by Van Trees [13] in a classic report

published more than three decades ago. More specifically, he examined the

Gaussian signal in Gaussian noise detection problem and derived several

equivalent forms of the optimal structure used to implement likelihood ratios.

One of these forms is the estimator-correlator structure that we shall apply to

our problem.

Multiple detection applied to active sonar systems is commonly known

as classification. Active sonars have been used by the U.S. Navy as part of

antisubmarine warfare [9]. One of the relevant applications is automatic

torpedo guidance via active sonar. Due to the military nature of the

application, very little work in this area has been published. Nevertheless, two

reports, made available by the Naval Underwater Systems Center (NUSC),

have been used extensively throughout this dissertation. The first report,

written by Middleton and Pugliese [10] in 1987, provides a framework for

attacking problems that prevent achieving the full operational potential of

active sonar systems. Kelly and Carpenter [17] wrote the second report in

which they discuss the problem from a more technical point of view.

1.5 Overview of the Dissertation

Chapter 2 introduces the concepts, definitions, notation and theorems
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that will be used in subsequent chapters. In particular, we derive the sufficient

statistic for the ternary problem by minimizing the Bayesian risk. We also

derive an expression for the likelihood ratio based on the estimator-correlator

structure.

In chapter 3, classifier performance is studied for high resolution signals,

i.e., when targets are illuminated by signals capable of perfect resolution among

cells. Closed form expressions for the classification and false alarm probabilities

are derived. Classifier performance will be analyzed with respect to: (1)

changes in target strength, (2) range or orientation mismatch, (3) signal-to­

noise ratio, and (4) the number of test volume cells.

Classifier performance when targets are illuminated by linear FM signals

is discussed in chapter 4. In addition to the parameters consider in Chapter 3,

processor performance will be studied with respect to: (1) transmitter constant

k
f

and (2) target resolution.

Estimating the test volume scattering coefficients is the goal of chapter

5. First, we derive the MVLU estimator a, then we examine the parameters
1

needed to reduce the error variance of the estimator. These parameters turn

out to be: (1) transmitter constant kr (2) received signal-to-noise ratio,

(3) angular resolution, and (4) number of cells in the test volume. Finally,

conclusions and recommendations for further research are given in chapter 6.



Chapter 2

FORMULATION OF THE PROBLEM

AND MATHEMATICAL BACKGROUND

2.1 Introduction

This chapter introduces the concepts, definitions, notation, and theorems

that will be used in subsequent chapters. Results will be stated, but some proofs

and derivations will be omitted. The interested reader can find careful

developments of detection theory in references [11,12,14], and of the estimator­

correlator structure in references [12,13].

In section 2.2 we develop the mathematical model and state the assump­

tions made about the signal and the noise processes. Section 2.3 describes the

classification problem in which the Bayes risk is introduced. Section 2.4 discusses

the estimator-eorrelator structure. Section 2.5 ties in the previous sections

together in order to derive a sufficient statistic for the ternary problem.

2.2 Signal/Noise Model

a. Signal Model

In active classification, a known signal with a duration of T

seconds (finite energy) is transmitted into a propagating medium and directed

towards a region called the test volume (figure 2.1). Measurements from an

array of sensors immersed in the medium are processed in order to decide if an

object is present, and if so, what kind of object is present.

The ith signal vector (i referring to hypothesis H.) is given by
1

12
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s.(t) = [S'l(t), S'2(t), · · · ,S'N(t)]T , i = 1,2, ... , I
1 1 1 1

(2.2.1)

where I is the number of hypotheses considered (excluding the null hypothesis)

and N is the total number of sensors in the array. The test volume is subdivided

into K. disjoint regions called cells. Each cell contains at most one point
1

scatterer which models the net reflectivity properties of the object within that

cell. The nth component of the ith signal vector, denoted by s. (t), is found by
In

summing the returns from individual cells:

K.
1

~-,

s. (t) = ) a. f(t-T. ), 0 < t < T .
In ~-J im mrn

mee l

(2.2.2)

In this equation, the a. coefficients are random variables modeling the scatter-
irn

ing effects within each cell, and f(t-r. ) is a time-delayed replica of the
mrn

transmitted waveform. T. is the delay from the instant (t = 0) of trans-
mrn

mission (from a reference transducer element in the array) to reception by the nth

element of the array, of the waveform scattered by the kth cell. The delays are

deterministic, depending only on the array and test volume geometries. Using

vector-matrix notation:

s.(t) = F.(t) a.
1 1 1

(2.2.3)

where F.(t) is the N)(K. matrix of time-delayed transmitted waveforms, and a. is
1 1 1

the K.)(! vector of scattering coefficients. F.(t) is expressed as follows:
1 1
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f(t-T
ll

) , f(t-T
12

) , · .. , f(t-T
1K

)

F(t) =
f(t-r21)' f(t-T22)' · .. , f(t-T2K)

f(t-T
N1

) , f(t-T
N2

) , · .. , f{t-T
NK

)

(2.2.4)

For simplicity of notation, we omit the index i in both F.(t) and the time delays
1

T. since these are function of the test volume geometry regardless of the
mrn

hypothesis considered. The index i will be omitted where appropriate throughout

this dissertation. The randomness of the test volume is characterized solely by

the random vector a., which will be modeled as a complex, zero-mean, normally
1

distributed vector with covariance matrix K . The covariance matrices are the a
a.

1

priori knowledge required for optimal classification. Mathematically, we can

write the following equations:

a. = [a. 1, a.2, · .. , a.K]T
1 1 1 1

E[a.] = 0
1

HK =E[aa.].
a. 1 1

1

(2.2.5)

(2.2.6)

(2.2.7)

Note that the test volume in figure 2.1 is fixed to K cells with spherical

coordinates with respect to some reference point. The reference point is

conveniently chosen as a transducer element in the receiving array for example.

The figure also illustrates an example with a uniform planar array in a non­

refractive medium. In practice, the dimensions and decomposition of test regions

and estimates of K will be determined directly from both experimental data and
a.

1

calculations from scattering models of the hypothesized targets. Of course, the

dimensions of the test regions would match roughly at least the characteristic
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dimensions of the targets. We are also assuming that neither the scatterers nor

the sonar platform are in motion.

b. Noise Model

The thermal noise n(t) at the receive array will be modeled as a

zero-mean stochastic process with Gaussian statistics. Practically speaking, it is

usually sufficient to assume that the noise is spatially and temporally white,

meaning its covariance matrix is given by:

(2.2.8)

where 6( · ) is the Dirac delta function and I is an N-N identity matrix. Note that

n(t) is an Nx 1 random vector such that

c. Overall model

E[n{t)] = 0 . (2.2.9)

Let us consider I hypotheses H. (i = 1, . . . , I) where each
1

hypothesis refers to a specific target in the test volume. Different hypotheses

could refer to the same object with possibly different orientations. We will call

Ho the null hypothesis, referring to the situation where no target is present in the

test volume. Calling x(t) the Nxl random vector of array measurements for 0 <

t < T (T is the signal duration) and adding the signal vector si(t) (equation

2.2.3) to the thermal noise process n{t) at the array, we can describe the overall

model by the following equations:



H
O

: x(t) = n(t)

H. : x(t) = F{t) a. + n{t ) i = 1, ... , I
1 1

17

(2.2.10a)

(2.2.10b)

where F(t) and a. are given in equations (2.2.4) and (2.2.5) and the measurement
1

x{t) (array output) is such that 0 < t < T. We shall further assume that the

received signal vector s.(t) and the noise vector n{t) are uncorrelated. In other
1

words:

From equations (2.2.6), (2.2.9) and (2.2.10), we can easily show that

H. : E[x(t)] = 0 i = 0, ... , I .
1

Therefore, the covariance matrix of x{t) is given by

Kx.(t1,t2) = E[x(t1) xH(t
2) IHi] i = 1, . · · , I ·

1

Using equations (2.2.10b), (2.2.11) and Hermitian properties:

Therefore,

(2.2.11)

(2.2.12)

(2.2.13)
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Kx.(t 1,t2) = F(t 1) Ka.FH(t
2) + Kn(t1,t2) i = 1, · .. , I .

1 1

(2.2.14)

The covariance matrix of s.(t) has implicitly been derived in the step above and
1

is expressed as

Ks.(t 1,t2) = F(t 1) Ka.Y\ t 2) i = 1,2, · · · , I ·
1 1

(2.2.15)

2.3 Optimal Bayes Classifier

Beginning with well-established results from statistical decision theory,

the classification problem is formulated as a multiple hypothesis test on the array

data. An optimal Bayes test is one that minimizes the risk in applying a given

decision rule. More details and proofs can be found in references [11,15,16]. The

Bayesian risk R is defined as [15]

I I

R = ")' ")' Coo p. Pr[R.1 R.] i,j = 0, 1, ... I
.4_J .4_J IJ J 1 J
i=O j=O

(2.3.1)

where c.. is the cost of deciding between hypothesis H. when H. is true; p. is the a
IJ 1 J J

priori probability of H.; Pr[H.1H.] is the probability that a decision rule chooses
J 1 J

H. when H. is true. Note that Pr[H.1H.] can be expressed as follows:
1 J 1 J

Pr[H·IH.] = f p(x(t)IH.) dx(t)
1 J Jz.

1

(2.3.2)

where p(x(t) IH.) is the conditional probability density function of a measure­
J

ment vector x(t) given H.; z. is a region in the sample space of x(t) such that H.
J 1 . 1
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is chosen if a realization of H. is contained in z.; the regions z. (i = 0, ... , I) are
1 1 1

disjoint and cover the entire sample space.

It can be shown [15] that a minimum Bayesian risk decision rule for

selection the kth alternative is to choose H
k

is

(2.3.3)

where

I

E.(x(t)) = ">' A.. A.(x(t)) A.. = -e..p., i = 0, 1, ... , I
1 ~-J IJ 1 IJ IJ J

j=O

(2.3.4)

and A.(x(t)) is the likelihood ratio of H. with respect to the null hypothesis.
J J

A.(x(t)) can be expressed as follows:
J

p(x(t) IH.)
A.(x(t)) =~J •

J P\x\~JI~~OJ
(2.3.5)

In this dissertation we call the constants A.. classifier weights. Strict application
IJ

of the Bayesian rule requires values for each cost c.. and each a priori probability
IJ

p. in order to compute the classifier weights A... Although specification of these
J D

values is not usually possible, assuming equal a priori probabilities may be

reasonable in some applications. Furthermore, each cost c.. may be set to zero if
IJ

it is associated with a correct decision. It would not be reasonable to assume

that all costs associated with incorrect decisions are equal. These difficulties

become even greater as the number of possible hypotheses becomes larger.

Nevertheless, the Bayesian decision rule given by equations (2.3.3) and (2.3.4)
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gives the structure to design the classifier in function of likelihood ratios A.(x(t)).
1

When applied to experimental data, this structure offers a method of determining

the coefficients {A..} empirically (given subsequent constraints such as equal a
IJ

priori probabilities for hypotheses and zero costs for correct decisions, for

example). One possible approach is to [17]: (1) specify values of the prob­

abilities of each type of error (except one); (2) determine from experimental data

empirical operating characteristics curves by iterative variation of the coefficients

{A..}, selecting values corresponding to the assigned error probabilities.
IJ

A theoretical approach to determining the coefficients {A..} is to apply a
IJ

generalization of the Neyman-Pearson Lemma [8,15,16] to the multiple

hypotheses test directly instead of using the Bayes criterion. However, this

approach leads to a decision rule equivalent to that of equations (2.3.3) and

(2.3.4) except that the coefficients {A ..} could, in principle, be expressed directly
IJ

as functions of the specified error probabilities.

2.4 Derivation of the Likelihood Ratio

a. The "estimator-eorrelator" structure

One can show that the optimal array processor structure

{references [12,13,18])can be implemented in an "estimator--eorrelator" structure

(figure 2.2). In other words, the array measurements are directed into two

branches, each of which is described by a matrix filter acting on the data. The

matrix filters Q(.,.) and G{.,·) are found by solving the following integral

equations:

(2.4.1)



o o °
L

a
x
(
t)

O
r­

o o o -
-

A
R

R
A

Y
O

F
SE

N
SO

R
S

Q
(

r
»

-
)

G
(

_)
.

)

IN
N

E
R

"-I
v

l)
x

(t
)]

P
R

O
D

U
C

T
•

/l
'"

F
ig

u
re

2
2:

T
h

e
E

s
tl

m
e

to
r-

C
o

rr
e

la
to

r
ca

n
o

n
ic

al
s

tr
u

c
tu

re
.

N I--
--l

.



22

(2.4.2)

for i = 1,2, ... , I, where K (.,.) is the covariance kernel of the measurement
n

noise, K (.,.) is the covariance kernel of the returned signal alone, K (.,.) is
8. X.

I 1

the covariance kernel of the combined returned signal plus noise, T is the obser­

vation interval, and I is the identity matrix. The lower branch containing G( .,. )

will be called the estimator branch: it calculates an optimal estimate of the

backscattered signal based on the array data x(t). The upper branch will be

referred to as the inverse filter branch, because it represents the inverse of

K (.,.). The outputs of each branch are correlated to form the scalar-valued
n

test statistic l(x(t)) such that the likelihood ratio A.(x(t)) is expressed as [17]
1 1

A.[x(t)] = 'Y. exp(l[x(t)] ·
1 1 1

(2.4.3)

Note that x( t) is a random process, 'Y. is a positive constant and is the
1

hypothesis in question.

b. Application of the "estimator-eorrelator" to our model

In this section, we will implement the optimal detector by solving

equations (2.4.1) and (2.4.2) for the model discussed in section (2.2). Using the

sifting property, equation (2.4.1) has the obvious solution given by

(2.4.4)

In order to find G(t
2,t3

) , equations (2.2.8), (2.2.14) and (2.2.15) will be
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used in equation (2.4.2). Let us assume that G(t
2,t3

) can be expressed as follows:

(2.4.5)

where H. is a constant matrix to be found. Therefore, equation (2.4.2) becomes
1

= F(t 1) Ka.~(t3)
1

which can be rewritten as

Let us define the signal correlation matrix. as

(2.4.6)

(2.4.7)

(2.4.8)

where N is the total number of sensors in the array (figure 2.1) and Ef is the

signal energy of duration T sec. Ef is expressed as
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(2.4.9)

Using the sifting property

(2.4.10)

Equation (2.4.7) can be simplified using equations (2.4.8) and (2.4.10) such that

Let us define the signal to noise ratio PN as

2NE
fP =--,:r-

N l~ 0

and factor out (2.4.11), therefore,

F(t
1

) [PN Ka. ~ Hi + ~] F
H(t

3) = F(t1) Ka.F
H(t

3)
1 1

which implies by analogy that

(PN Ka.++ I) ~ = Ka.
1 1

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)
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or

H. = (I + P
N

K ~)-1 K .
1 a. a.

1 1

The estimator branch output in figure 2.2 is given by

which can be rewritten using (2.4.5) as

or

Similarly the noise branch output is given by

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

f Q(t 1,t2) x(t 2) dt 2 = k f h\t1-t2) x(t 2) dt 2 = k x(t 1) ·
TOT 0

(2.4.19)

The outputs of each branch are correlated to form the scalar valued test statistic

l{x{t)). Using equations (2.4.18) and (2.4.19), l(x(t)) is expressed as follows:
1 1

~(x(t)) = [~] 2 f T x
H(t

1) F(t1) dt 1 Hif T F
H(t

2) x(t2) dt 2 ·

(2.4.20)

Equation (2.4.3) can be written using equation (2.4.20) in an alternative form as
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follows:

A.[x(t)] = 'Y. exp (yH H. y)
1 1 1

where y is expressed as

2 J HY= N:" F (t) x(t) dt
o T

is the output of a matrix matched filter operation.

(2.4.21)

(2.4.22)

2.5 Derivation of the Sufficient Statistic for the Ternary Problem

Throughout this dissertation, we address the ternary problem. There are

three hypotheses; the null hypothesis Ho and two alternative hypotheses HI and

H
2

. We shall assume that the null hypothesis has been eliminated [19] since our

interest lies in choosing between HI and H
2

rather than detecting whether a

target exists or not. The decision rille is based on minimizing the Bayesian risk

described in section 2.3 and summarized by equations (2.3.3) and (2.3.4). First

let c
i i

= 0 and Pj = P where 0 ~ P ~ 1 and i = 0, 1, 2. In other words, it is

assumed that each hypothesis is equally probable a priori and that the costs of

correct decisions are zero. Moreover, it is assumed that the cost of deciding H.
1

given Ho is independent of i; therefore, ciO = Co where Co is a positive constant for

i = 1, 2. With these assumptions, equation (2.3.4) becomes for the ternary case

(I = 2):

(2.5.1a)

(2.5.1b)
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(2.5.1c)

where ).10 = ).20 = - CoP and Ao[0] = 1 (equation 2.3.5). In the above equations,

E.[.] > Eo[·]' i = 1,2 are tests for detection of the signals s.{t). Equation (2.3.3)
1 1

gives the following classifier rule:

Choose HI ifE
1
[o] > E

2
[o]' otherwise, choose H

2
.

By using equations (2.5.1b) and (2.5.1c) and remembering that \2' ).21 < 0, the

classifier rule becomes:

A
1
[ · ] A12Choose H1 if -rr:r > L ' otherwise choose H2 ·

i~2L·J 21

Now using the expression of the likelihood ratio given in equation (2.4.21) in the

above decision rule, we can write:

Choose HI if 11 exp(yH HI y)/h2 exp(yH H2y)) > \2/).21 I

otherwise choose H
2

.

Taking the logarithm of the above equation, we can derive the following classifier

rule:

Choose H1 if L12 > 1], otherwise choose H2 '

where

(2.5.2)
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and

(2.5.3)

L
12

is called the sufficient statistic for choosing between HI and H
2

while TJ is a

threshold value to be optimized. HI' H
2

and yare given by equations (2.4.15)

and (2.4.22).

Our discussion of the ternary problem is easily generalized to more

hypotheses. Conceptually, choosing between HI and H
2

is no different than

choosing between HI and H
3

or H
2

and H
3

, in a four-hypotheses problem for

example. In other words, the design parameters involved in a ternary classifier

remain the same when more hypotheses are considered. From here stems the

importance of the ternary problem and the subsequent chapters further justify

our confinement.



Chapter 3

CLASSIFIER PERFORMANCE FOR HIGH RESOLUTION SIGNALS

3.1 Introduction

This chapter investigates classifier performance when targets are

illuminated by high resolution signals capable of perfect resolution among

individual test volume cells. Mathematically, this translates into 4' = I.

Although in practice such signals are not realizable, they provide us with insight

into the processor performance. Also, this assumption enables us to write closed

form solutions for the classification and false alarm probabilities.

Section 3.2 summarizes fundamental results obtained from chapter 2.

They will be needed in this chapter as well as in subsequent chapters. In section

3.3, we investigate classifier performance when a perfect statistical description of

each object to be classified is available. This is known as matched processing and

is optimal in that it defines the upper bound on performance. Section 3.4

examines the relationship between the performance of the classifier and the

fidelity of a priori knowledge made available to it. In section 3.5 we display

receiver operating characteristic (ROC) curves illustrating the classifier

performance with respect to: (1) increased target strength, (2) mismatched

processing, (3) signal-to-noise ratio, and (4) the number of cells in the test

volume.

3.2 Summary of Fundamental Equations

This section presents a brief review of the fundamental equations of the

problem. We also derive more relationships that will be used throughout this

29
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dissertation. In chapter 2, we showed that the sufficient statistic for deciding

between HI and H2 (assuming Hohas been eliminated) is given by

where

and

y = k- i ~(t) x(t) dt
o T

Hi = (I + PN Ka.~)-I Ka.
1 1

(3.2.1 )

(3.2.2)

(3.2.3)

for i = 1, 2. Classification is performed by comparing L
12

to a threshold TJ. If

L
12

is larger than TJ, we assert that HI is correct; otherwise, we assert H
2

is

correct. Note that P
N

is the defined signal-to-noise ratio and is expressed in

function of the noise level No' the number of sensors N and the signal energy E
f

(3.2.4)

where

~ is the signal correlation matrix and is given by

~ = Nt i ~(t) F(t) dt ·
f T

(3.2.5)

(3.2.6)
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The ability of the classifier to distinguish between H
l

and H
2

depends on

the probability density function of L
l 2

conditioned on H
l

and H
2

. The

performance measures we shall use are the classification and false alarm

probabilities. If H
2

is a target of interest and H
l

is a false target, then the

classification probability is the probability that H
2

is chosen given H
2

is correct:

(3.2.7)

where TJ is the classification threshold. The false alarm probability is:

(3.2.8)

Note that f(L
12

IHi) is the probability density function of L
12

conditioned on Hi"

The density functions are found as follows. Since y (equation 3.2.2) is a linear

function of the Gaussian process x(t), it too is normally distributed under either

hypothesis. y is zero mean with covariance matrix

(3.2.9)

which implies

(3.2.10)

or
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(3.2.11)

Using equations (2.2.8) and (2.2.14), equation (3.2.11) becomes

(3.2.12)

Using the fact that 2/No = PN/{NEf) (equation 3.2.4) and applying the sifting

property, equation (3.2.12) becomes

(3.2.13)

One can easily verify that ~ is a Hermitian matrix (equation 3.2.6). This

property will be used in the remaining chapters.

Distributions of quadratic forms in complex multinormal random variables

have been studied by Turin [20], Kharti [21], and Johnson and Kotz [22]. They

showed that the characteristic function M.{w) of the quadratic form (3.2.1) is
1

where

Then

M.( w) = 1/det[V.{ w)]
1 1

(3.2.14)

(3.2.15)
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(3.2.16)

for i = 1,2. This summarizes the fundamental equations that will be used

extensively in the remaining discussion.

3.3 Evaluating Classifier Performance (Matched Processing)

a. Matched Processing

In section 3.3 we will study the performance of the "matched"

classifier. Matched processing means that the classifier has perfect a priori

knowledge of each object to be classified; in other words, the processing is exactly

matched to the physical characteristics of the target and environment enclosed

by the test volume.

b. Derivation of Closed Form Expressions

In this section we will derive closed form expressions for the classifi­

cation and false alarm probabilities in function of the threshold 1/. The scenario

of interest is depicted in figure 3.1, where a horizontal cut of the test volume is

shown for both HI and H
2

. The test volume is assumed to be identical for each

hypothesis, and it comprises K cells with an independent scatterer in each cell. If

under hypothesis HI no target is present and the scattered return is due to

reverberation alone, all cells in the test volume will possess uniform scattering

strength. Reverberation is returned energy from suspended solids in the medium.

If, in addition to reverberation, a target is present under hypothesis H
2

, the

uniform scattering strength of a number of cells J (J ~ K) in the test volume may

be replaced with new scattering strength. Therefore, it is assumed that each
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scatterer falls into one of two categories: target-like or reverberation. It is also

assumed that reverberation scatterers are of equal strength under both H
l

and

H
2

· Hence, the a priori scattering matrices K
a

. (i = 1,2) are obtained as follows:
1

E[a. a.] = 0 (m f n, uncorrelated scatterers)
im In

(3.3.1)

2 _ { (1i (reverberation cell) _
E[a· k] - 2 k - 1, ... , K

1 (1 0 (target-Ii ke cell)

(3.3.2)

where a. is the mth component of the scattering vector a (i = 1,2). Equations
1m 1

(3.3.1) and (3.3.2) imply that K and K are diagonal and of full rank. We
a l a2

shall further assume that the waveform f{t) interrogating the test volume is

capable of perfect resolution among cells. This reduces the signal correlation

matrix to the identity matrix

~ = I. (3.3.3)

These assumptions diagonalize VI (w) and V2{ w), making their determinant

calculations easy.

Let us proceed with the calculations leading to solutions for f{ L
l 2

1 Hi)' i =

1,2. Using the assumption, that ~ = I, equations (3.2.3) and (3.2.13) reduce to

and

Hi = (I + PNKa)-l Ka.
1 1

2
K = PNK + PNIy. a.

1 1

(3.3.4)

(3.3.5)
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for i = 1,2. Therefore, matrices K and HI are diagonal and have identical
Yl

elements each

(3.3.6)

(3.3.7)

A similar result for H
2

is obtained. If there are J target cells, H
2

is expressed as

follows:

2 2

{

O'R/(l + PNO'o) (J target-like cells)

[H2]k k = 2 2 k = 1, ... , K
, O'R/(l + PNO'R) (K-J reverberation cells)

(3.3.8)

Clearly, H
1
- H

2
is diagonal and only J of its main diagonal elements,

corresponding to cells with different scattering energies under HI and H
2

, are

non-zero. In other words

(3.3.9)

Therefore, K (H
1-H2

) has J non-zero terms:
Y1

{

{j (J target-l ike cells)
[K (H -H)] =

Y1 1 2 k,k 0 (K-J reverberation cells) k = 1, ... , K

(3.3.10)
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where

This yields the result for M
1
(w) in function of fJ and J:

1
M 1(w) = J'

(l-jwfJ)

Then

(3.3.11)

(3.3.12)

(3.3.13)

The integral can be evaluated by means of residues (Appendix A). If {3 <
2 2o (O"R < 0"0)' then

(3.3.14)

and it equals 0 for L
12

> O. Note that I'(J) = (J-l)!

The probability density function f(L
12

1H
2

) is obtained by similar means.

Matrix K is diagonal and its diagonal elements are given by
Y2

{

PN(l+PNO"~) (J target-like cells)
[K] =

Y2 k,k PN(l+PNO"~) (K-J reverberation cells) k = 1, ... , K

(3.3.15)
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Next K (H
1
- H

2
) is evaluated and the result is a diagonal matrix whose

Y2

elements are

{

a (J target-l ike cells)
[K (H1-H2)]k k =

Y2 '0 (K-J reverberation cells)

where

This yields the result for M
2
{w) in function of a and J:

1
M 2(w) = J ·

(l-jwa)

k = 1, ... , K

(3.3.16)

(3.3.17)

(3.3.18)

If a < 0 (O"i < O"~), then f(L
12

IH
2

) is given by analogy with equation (3.3.14) by

L
L J - 1 -~

( I) 1 12 a
f L12 H2 = - rpJ -J- e , L12 ~ 0

a
(3.3.19)

and it equals 0 elsewhere. These results are used to compute the classification

and false alarm probabilities as a function of the classification threshold TJ. Using

equations (3.2.7) and (3.3.19):

L J - 1 L 12

~e a dL <0aJ 12' 17 - ·

(3.3.20)

Let L
12

/ a = u, therefore
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(3.3.21)

or

(3.3.22)

which can be written

where [23]

and

Jy
-t a-I

/(a,y) = 0 e t dt

r(N) = (N-l)!

(3.3.23)

(3.3.24a)

(3.3.24b)

are the incomplete and complete Gamma functions, respectively. By the same

token, we can show that the false alarm probability is

(3.3.25)

This concludes the analysis of the matched classifier.

3.4 Evaluating Classifier Performance (Mismatched Processing)

a. Mismatched Processing

Our purpose in this section is to investigate the robustness of the
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classifier when wrong a priori knowledge is processed. We will consider two types

of mismatch: (1) object misorientation in which the only uncertainty is in the

object orientation and (2) range misidentification in which the uncertainty lies in

the object range.

b. Derivation of Closed Form Expressions

(1) Object Misorientation

The scenario of interest is shown in figure 3.2. Here, perfect a

priori knowledge of H
l

is assumed: no object is present and energy returned is

caused by reverberation only. The only uncertainty in H
2

is the object orienta­

tion. In other words, the processor assumes the object has a bow or stern aspect

rather than the correct broadside aspect. We will also assume that the correct

number of cells is used; in other words, the assumed length of the object is

correct.

In order to study the performance of the mismatched classifier, we first

construct an assumed scattering matrix K' which is used to construct H
2

. Note
a

2

that HI remains the same since hypothesis HI has not changed. Next we

compute K (H
1-H2

) . Here K is computed from the actual scattering matrix
Y2 Y2

K ,because y comes directly from array measurements (equation 3.2.2).
a
2

Given these assumptions, the matrix H
1-H2

is diagonal with J non-zero

entries such that

2 2
O"R-O"O .

{
(1+ 2)(1+ $) (J target-lIke cells)

[H -H] = PNO"o PNO"K
1 2 k,k k = 1, ... , K

o (K-J reverberation cells)

(3.4.1 )
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K is diagonal, and since all of its main diagonal elements are PN(l+PNui)
Y1

(equation 3.3.6):

M {w)=_l_
1 (l-jw{j)J

(3.4.2)

where (3 is given in equation (3.3.11). Therefore, the false alarm probability is

given by

(3.4.3)

The expression for M
2
( w) is derived by examining how different amounts

of overlap between the actual and assumed target geometries affect V
2
(w). The

first step is to find K ,which is obtained from the actual target geometry. It is
Y2

diagonal and can be written as

k = 1, ... , K

(3.4.4)

We should note here that the J target-like cells of equation (3.4.1) come from

the assumed geometry while those of equation (3.4.4) come from the actual

geometry of H
2

. Bearing this in mind, the product K (H
1-H2

) is diagonal with
Y2

J non-zero diagonal terms. If L is the number of intersection cells between the

actual and the assumed geometries of H
2
, then
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PN (qi-q~)
1 (L intersection cells)
+PNO"~

PN (qi-q~)
1 (J -L non-intersection target-like cells)

+P N 0"5

o (K-J remaining cells)

(3.4.5)

Using a and fJ defined in section 3.3 in the above equation, the characteristic

function M2(w) can be written using (3.2.14) and (3.2.15) as

1
M2(w) = L J L'

(l-jwa:) (l-jwfJ) -

In order to obtain f(L
12

1 H2) , it is necessary to evaluate

(3.4.6)

(3.4.7)

for a and fJ negative and J ~ L. The form above has been solved in appendix B.

Substituting N by L, M by J-L and x by L
12

in (B.!) and (B.19), the result for

qi < q~ (0:, ,8 < 0) is

(3.4.8)

where

J-2 L L-1 L-1 -L / a:
f L H 0: L12 -,-, [L-1] r fJ-L+n) o:DrJ e 12
1( 12 1 2) = - r(L)(o-,8)J-L ~~J n{J-L) (,8-o:)D LD

n=O 12

(3.4.9)
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and

{32L-J LJ-L-1 J-L-1 -L /{3

f (L IH) = _ 12 ~>' [J-L-l] rft!j) a
m

[? e 12
2 12 2 r{J-L) {{J-a)L ~-J m (a-(3)m Lm

m=O 12

(3.4.10)

for L
12

~ O. Note that f{L
12

IH
2

) = 0 for L
12

> O. From equation 3.2.7, we can

write

(3.4.11)

or

(3.4.12)

where

(3.4.13)

and

(3.4.14)

In order to solve for 11' we need to solve for the following integral (refer to

equation 3.4.9)

L-l -L I2/ a

J
oL12 e _ JO L-n-l -L I2/ a

n dL12 - L 12 e dL12 ·
TJ L 12 TJ

(3.4.15)

Letting L12/ a = u,

-L fa
LL- n- l 12 dL _ L-n-1 L-n-l -u ( d )

12 e 12 - a u e au.

(3.4.16)
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Therefore,

j
O LL- l -L12/a

12 e dL _ L-n fO L-n-l -u d
12 - a u e u

T/ L~2 nl a

= _aL
-

n 'YCL-n,T/la) .

We can now solve for 11:

(3.4.17)

J-2L L-1

I a '>' [L-l] rfJ- L+n) anrr L-n L
1 = - r(L)( a-.B)J-L ::~ n =(3-1) (fJ-a)n a 'YC -n,T/1 a)

(3.4.18)

L-1

I - - a
J
-

L '>-' [[ L-1] r~J-L+nt] It L-n a
1 - (a-{3)J-L ::~ n f( -1)f() (~at 'YC ,T/I)·

(3.4.19)

Note that the term between brackets in (3.4.19) becomes

(L-1f r~J-L+nt - 1 rfJ-L+n~
{L-1-n In! r( -L) r( )- (L-l-n)! r 3-L) n:

Therefore,

(3.4.20)

(3.4.21)
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where F( · , · , · , · ) is the hypergeometric function [23] and is defined as follows

(3.4.22)

In order to evaluate 1
2
, we will follow a similar approach. From (3.4.10) and

(3.4.14), we can write

f O - - dL
12

= _{i-L-m 'Y(J-L-m,TJ/fJ)
"l

(3.4.23)

which can be obtained by analogy with equation (3.4.17). We can now solve for

1
2

:

J-L-l

I = _fJ
2L

-
J

')' [J-L-1] rfttj) amrE {i-L-m 'Y(J-L-m,TJ/fJ)
2 r(J-L )(,B-a)L ~:~ m (a-fJ) m

(3.4.24)

The term between brackets is written as

(J-L-l~! r(L+m~ - 1 H~tm~
(J-L-m-1 lml r(J-L) r L) - (J-L-m-1)! m. ·

(3.4.26)

Therefore,
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(3.4.27)

where F( · ,. ,. ,. ) is defined in (3.4.22). As a result the classification probabili ty

is given by equation (3.4.12), (3.4.21) and (3.4.27) while the false alarm

probability is given by equation (3.4.3) for 0, {3 and 'TJ negative.

(2) Range Misidentification

The scenario of interest is shown in figure 3.3. We assume that

perfect a priori knowledge of HI is known and the only uncertainty is in the

target range under hypothesis H
2

. The analysis of the processor performance can

be repeated as in part (1). However, a careful look at the analysis in part (1)

allows us to directly evaluate the classification and false alarm probabilities. For

instance, since hypothesis HI remains the same, then M
I
(w) is given as in (3.4.2)

by

1
MI(w) = J ·

(1-j w{3)
(3.4.28)

In order to evaluate M
2
(w), we can consider the range mismatch as an "object

misorientation" with no intersection cells (L=O). Setting L = 0 in equation

(3.4.6), we get

1
M2(w) = J ·

(l-jwfj)
(3.4.29)

Therefore, M
I
(w) = M

2
( w) and we can deduce that the classification probability

P(H21 H2) equals the false alarm probability P(H2/HI)' It turns out that when

the range is misestimated, and there is no overlap between the actual and
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assumed test volume geometries (under H
2
) , the processor is unable to

distinguish between HI and H
2

at all. This conclusion can be reached with an

intuitive argument. We have presupposed perfect cell resolution; therefore, when

an incorrect range estimate is infused into the classifier, only return from

reverberation cells in processed. But the only statistical difference between HI

and H
2

is the difference between total scattering strengths. When reverberation

energy along is processed, it is not possible to distinguish between target-like and

reverberation-like energy; consequently, classification is not possible.

3.5 Simulation Results and Conclusions

In order to evaluate the classification performance, we shall display the

receiver operating characteristic (ROC) curves. A ROC curve is a plot of the

classification probability P(H
2

1H
2
) versus the false alarm probability P( H

2
1HI)'

P( H
21

H
2

) and P(H21HI) are computed in function of the classification threshold

TJ· If, for instance, P(H
2

/H
2

) and P(H2 J HI) are equal, the processor cannot

distinguish between HI and H
2

at all and one might as well "toss a coin" to

classify the target. A good processor performance translates into a high

classification probability and a low false alarm probability for a certain value of

the classification threshold TJ. ROC curves provide the design engineer in this

field with a criterion to select the classification threshold TJ with respect to some

parameters.

The equations derived in this chapter were evaluated numerically on a

personal computer (IBM PS/2) using Turbo Pascal programming language.

Figure 3.4 displays ROC curves for the matched processor using equations

(3.3.23) and (3.3.25). These equations were derived for e, {3, 'T/ negative. In this

example, we set the signal-to-noise ratio P
N

to unity. Next, we set the
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reverberation strength per cell ui to 10 while we vary the target strength per cell

from 20 to 50 by steps of 10. We remind the reader that the geometry in

question is shown in figure 3.1. It is clear from figure 3.4 that as the target to

reverberation contrast in the test volume increases, the processor performance is

improved. In other words, the performance of the classifier degrades

tremendously as the reverberation increases. We draw the first conclusion: the

classifier performance is a direct function of the reverberation noise. Good

performance occurs when reverberation noise is small.

Next, we examine the classifier performance when the wrong scattering

covariance matrix is infused into the processor. The closed form expressions for

the ROC curves of figure 3.5 are shown in equations (3.4.3) and (3.4.12), (3.4.21),

(3.4.27). Note that the geometry of interest is shown in figure 3.2. In this

example, the number of target-like cells J and the signal-to-noise ratio P
N

are

set to 10 and 1, respectively. Also, we set ui to 10 and u~ to 20. The only

parameter which was varied is L, the number of overlapping target-like cells

between the assumed and the actual test volume geometries (under H
2
) . Clearly,

classification performance falls off as the degree of "mismatch" gets worse.

Therefore, we can draw the second conclusion: the ability of the classifier to

distinguish between objects decreases as the difference between actual and

assumed test volume geometries increases. The performance of the mismatched

classifier is directly proportional to the number and energy of the target like cells

which overlap between the assumed and actual geometries. If an incorrect range

is assumed and there is no overlap between target-like cells, the classifier cannot

distinguish between HI and H
2

at all.

Third, we investigate the classifier performance with respect to the

signal-to-noise ratio P
N

. In this example, we consider the matched processor
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case (figure 3.1) for J = 4 cells, ui = 10 and u~ = 30. The curves in figure 3.6

display ROC curves for P
N

= 1.0, 0.25, 0.1 and 0.01. Experimentation has shown

that P
N

= 1.0 (0 dB) is a high signal-to-ratio in our model. A higher signal-to­

noise ratio would not improve the performance by much. Also, the graph shows

that a signal-to-noise ratio of 0.01 (-20 dB) degrades the performance tremen­

dously. A signal-to-noise ratio of 0.25 or 0.1 (- 6 or -10 dB) provides an

acceptable performance. It is up to the application engineer to specify the

signal-to-noise ratio taking into consideration the performance required, other

parameters (i.e., J, ui, u~) and the cost to be paid with high SNR.

Finally, we demonstrate the relationship between performance and

number of cells. In this example, the test volume geometry does not change

(figure 3.1); however, the cell resolution does. In other words, each cell is

subdivided into two cells such that the sum of their scattering strength has the

same value as the scattering strength of the "root" cell. Figure 3.7 displays the

classifier performance for a small target to reverberation contrast (ui = 10, u~ =

15) when J = 4 (lower curve), J = 8 (upper curve) and J = 16 (middle curve).

This is an example in which increasing the cell resolution degrades the classifier

performance. This effect is not as pronounced for a higher target to reverberation

contrast (figure 3.8). Here, performance increases as the number of cells

increases. This is expected up to a point. It turns out that beyond an optimum

number, performance begins to falloff as J is increased. The reason for this is

because more white noise is processed along with the test volume return, and

eventually the signal-to-noise ratio begins to falloff.
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Chapter 4

CLASSIFIER PERFORMANCE FOR LINEAR FM SIGNALS

4.1 Introduction

In this chapter, we investigate the classifier performance when targets

are illuminated by linear FM pulses of the form

(4.1.1)

where k
f

is the transmitter constant. If k
f

is set to zero, f(t) describes a single

frequency pulse of duration T seconds. In this case the signal correlation matrix

~ will no longer be the identity matrix and closed form expressions for the false

alarm and classification probabilities will be expressed in terms of the

eigenvalues of Ky.(H1-H2
) , for i = 1, 2.

1

In section 4.2, we develop these expressions, starting with characteristic

functions. The need to diagonalize Ky.(H1-H2
) for i = 1, 2 turns out to be an

1

important concern in evaluating characteristic functions. Section 4.3 discusses

how the signal correlation matrix ~ is computed for a real situation in which we

assume a two-dimensional test region and a linear array of eight elements. In

the process, we evaluate the time delays needed to compute e. In section 4.4,

we display (ROC) curves illustrating the classifier performance with respect to:

(1) transmitter constant k
f
, (2) target strength, (3) signal-to-noise ratio, (4)

angular width, (5) range misidentification, and (6) target misorientation.

57
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4.2 Evaluating Classifier Performance (4' f I)

a. Diagonalization of Ky.ill1-H2)
1

In section 3.2 we summarized the fundamental equations needed to

evaluate the classifier performance. The probability density function f(L
12

IHi)

of the test statistic L
12

conditioned on Hi is obtained from the characteristic

function M.( w) expressed as
1

M.(w) = 1jdet[V.(w)]
1 1

where

for i = 1, 2. K and H. are given by
Yi 1

H. = (I + p K' ~)-l K'
1 N a. a.

1 1

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

for i = 1, 2. Note that the scattering covariance matrix in equation (4.2.3) has

been labeled K~: This is due to the fact that H
1

and H
2

are computed by the
1

processor and the a priori covariance matrix K' is usually mismatched to the
a.

1

actual test volume geometry. K is obtained from the output y of a matrix
Yi

matched filter and is a direct function of the array measurement. Therefore,

K in equation (4.2.4) perfectly describes the statistical scattering properties of
a.

1
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the test volume under hypothesis H.. In the computer simulation, we shall treat
1

this problem in the general case where the processor assumes wrong a priori

information. If the a priori information matches exactly the test volume

geometry, we will set K I = K .
a. a.

1 1

It is now clear that the characteristic function M.( w) cannot be expressed
1

analytically, since • is no longer a diagonal matrix. One approach to get

around this problem is to diagonalize K
y.(H1-H2

) for i = 1, 2. Let, for
1

instance, T be the matrix of eigenvectors of K (H
1-H2

) assuming for the
Y2

moment that the eigenvalues are real and distinct. Therefore,

(4.2.5)

where A is the K)(K diagonal matrix of eigenvalues of K (H
1-H2

) . Pre­
Y2

multiplying and postmultiplying the above equation by T and T-1
,

respectively, we get

(4.2.6)

Using this result and substituting I in (4.2.2) by TIT-I, V
2
(jw) is expressed as

(4.2.7)

or

(4.2.8)

Therefore,
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Recalling the following determinant properties

det (A B C) = det (A) det (B) det (C)

and

det(A-1
) = l/det(A)

M
2
(jw) is expressed as

M
2(jw)

= l/det(I-jw A)

which is equivalent to

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

where {Ak} , k = 1, · · · , K is the set of eigenvalues of K (H
1-H2

) and K is
Y2

again the number of cells in the test volume. A similar approach is used to

diagonalize K (H
1-H2

) . Hence, the characteristic function M
1
(w) is expressed

Y1

as

(4.2.14)

where {A
k
/ } , k = 1, ... ,K is the set of eigenvalues ofK (H

1-H2
) .

Y1
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Next, we discuss the sign and type of these eigenvalues. In appendix C,

we showed that HI and H
2

are Hermitian and that K and K are positive
Y1 Y2

definite matrices. This implies that H
I-H2

is Hermitian and has real

eigenvalues. Now let A = H
1-H2

and B = K-1 (i = 1, 2). It is stated in
Y1

reference [25] that if B is positive definite, which is the case here since the

inverse of a positive definite matrix is positive definite as well, then the problem

Ax. = A Bx has eigenvalues of the same sign as the conventional Ax. = AX. In

other words, B-1A = Ky.(H1-H2
) has eigenvalues of the same sign as H

1-H2
,

1

Since H
I-H2

is Hermitian but not necessarily positive or negative definite, the

eigenvalues {Ak} and {A
k

} (k = 1, . · · , K) of K (H
1-H2

) and K (H
I-H2

) are
YI Y2

real.

b. Classification and False Alarm Probabilities

In this section, we will derive expressions for the classification and

false alarm probabilities in terms of the classification threshold 1/ and the

eigenvalues {A
k

} and {Ak} discussed in part a. We will not confine our discus­

sion to a specific geometry for hypotheses HI and H
2

. Nevertheless, we still

assume that the test volume is identical (same number of cells) under both

hypotheses. Also, each cell contains at most one scatterer. These scatterers are

uncorrelated and follow equations (3.3.1) and (3.3.2).

Let us now evaluate the classification probability from the characteristic

function M
2
(w). First, we find the probability density function f(L

12
IH

2
) :
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(4.2.15)

or

K K · L1 []-r [1 J] f OCIl [ 1 J -Jw 12
f(L12 IH2) = 211" k;;l -jO\ -00 k;;l w+j7'\ e dw ·

(4.2.16)

The integral in the above equation can be written as:

Ie f(z) dz = f OQ

f(z) dz +}; f(z) dz
--OC B.

(4.2.17)

where C is the counterclockwise contour (figure 4.1) enclosing K' poles of f(z), z

is a complex variable and

-jzL
12

f(z) = (z+j/\)(z+Jf:X
2

) . . . (z+j7'\)' (4.2.18)

It can be shown reference [24] that Ie f(z) dz = 0 as R goes to infinity. Note
R

that the K' poles -j/A1, -j/A2, · · · ,j/AK, enclosed by the contour correspond

to K' negative eigenvalues AI' A2, · · · ,AK , . Residues at these poles are

computed as follows:

-L121-.
Reslz=_j/\ = (-jf:\+j/X

2)(:j/\+j/X3
) (-j/A1+j/AK)

(4.2.19)
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1m z
/ "

R
----..a..----+----t-----+-----------~ Re z

Figure 4.1: Integration contour. The K' poles inside the
contour correspond to K' negat1ve ei qenve:uesJ

and the remaining K - K' poles outside the
contour correspond to pes: t i ve eigenvalues.



or

-L 12/ ).. 1
e

Reslz=_j/A = K ·

1 I~[ (-j/A 1+j/Ak)

k=1
kl1

Similarly

-L 12/ ).. 2
e

Reslz=_j/A = K ·

2 I~[ (-j/A2+j/Ak)

k=l
kl2

The sum of the K I residues is given by

Equation (4.2.16) can be written in function of the residues as:

The term outside the summation can be rearranged as

64

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)
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(4.2.24)

Therefore,

for L
12

, '\ < o. The classification probability is given by

Since

then

(4.2.25)

(4.2.26)

(4.2.27)

(4.2.28)
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for TJ < o. the summation above can be rewritten as

Therefore,

K',-,
= .4~J

i=l
K

]~I (). i -).k)

k=l
kf i

(4.2.29)

K'

P(H
2 1H2) = '>~

~-J

i=l

K 1 -TJ/~.
\ - 1/\ . e

1

K

]~I (\-).k)
k=l
kf i

(4.2.30)

for TJ < 0, ~i < 0 and ~k real. Following the same steps, the false alarm

probability is given as

(4.2.31)

for TJ < 0, ~ i < 0 and Akreal. Note that the number of negative eigenvalues of

the set {).k) is also K I because, as mentioned before, K (H
1-H2

) has eigen­
Y1

values of the same sign as H
1-H2

. In the numerical results, it was observed
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that the positive eigenvalues have much lower magnitude (of the order 10~)

than the negative eigenvalues (of the order 10-1
) . Therefore, the positive

eigenvalues can be neglected with respect to the negative eigenvalues.

P( H
2

1H
2
) in equation (4.2.30) becomes

K 1 -TJ/A.
, - 1
1\ • e

1

or

K'

P{H
2 1 H2) = '>'

~-J

i=l A~-K'
1

K'

]~I
k=l
kfi

(4.2.32)

K'

P(H
2 1H2) = '>'

.4-J
i ee l

K '
1 -TJ/A.

,- 1
1\. e

1

K'

]~I (\-Ak )

k=l
kf i

(4.2.33)

for Ai' A
k

and TJ negative. Similarly the false alarm probability becomes

(4.2.34)
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4.3 Computation of the Signal Correlation Matrix

a. Elements of + in Function of Time Delays

In this section we propose to evaluate the elements of the signal

correlation matrix + in function of time delays for a linear FM pulse. A linear

FM pulse of duration T seconds and amplitude A is expressed as (references [26]

and [27]):

(4.3.1)

where Wo is the center frequency in radians per seconds and k
f

is the transmitter

constant. The instantaneous frequency of f(t) is given by

If k
f
= 0, f(t) reduces to

f(t) = A cos(w0t), 0 < t < T ·

(4.3.2)

(4.3.3)

This pulse is commonly known as the single-frequency pulse or simply a pure

tone. In this dissertation, we shall treat a pure tone as a particular case of the

linear FM pulse (k
f

= 0). Using equation (2.24) and (2.4.8), each element of the

KxK matrix + is expressed as

N

1 IT ['-' ][+].. = n'Ir ) f(t-Tk.) f(t-rk .) dt
IJ 1~ £J f 0 ~-rI 1 J

k=l

(4.3.4)
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which evaluates to the summation of the integral:

Changing the variable t-r
kj

to t' I (4.3.5) becomes

Therefore,

N
1 .,-, JT

[~] .. = NE: > f(t) f(t-r) dt
IJ f ~-J 0

k=l

where

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

If f(t) is a linear FM pulse, the analytical solution of the integral in (4.3.7)

cannot be easily obtained. Hence, we resorted to numerical integration in the

computer simulation. If, however, f(t) is a pure tone, then

N
A 2 .,-, JT

[~] .. = NE: > cos(wot) cos[wo(t-r)] dt ·
IJ f ~-J 0

k=l

(4.3.9)

Using trigonometric properties, we can write
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(4.3.10)

where

(4.3.11)

and

(4.3.12)

Therefore,

N
A2 ~-, { 1 T}[cl)]ij = NE; ~~01 4w

O
[sin(wo(2T-r)) + sin (wor)] + 2" cos (wor) ·

k=l

(4.3.13)

The signal energy E
f

for a pure tone is

(4.3.14)

Remembering that T is not the period of the signal but rather its pulse

duration, then

(4.3.15)

The signal energy E
f

for a linear FM signal is computed using numerical inte­

gration. This concludes our discussion of how if- can be computed in terms of

time delays.
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b. Time Delay Computations

In this section, we propose to evaluate time delays for specific test

volume geometries. Each time delay Tnk represent the time it takes the

waveform f(t) to travel from the transmitter to the kth cell and back to the nth

sensor in the array. Figure (4.2.a) illustrates this scenario. One can see that

the travel time is proportional to the distance traveled

CTnk = Ilrkll + Ilrk-dnll ; k = 1,2, · . · , K; n = 1,2, ... , N

(4.3.16)

where rk is the position vector fixing the origin of the kth cell of the ith object's

test region; and d is the position vector for the nth element in the receiving
n

array. A nonrefractive medium with sound speed c is assumed.

A Taylor series expansion in terms of d about 0 (equation D.9) gives,
n

showing only first order terms,

(4.3.17)

where ~ = rk/llrkll is the unit vector along rk, To neglect higher order terms is

to assume that each of the K cells is in the Fraunhofer zone of the array. here

it is assumed that for the array dimensions and distances of interest, the

Fraunhofer zone applies and equation (4.3.17) without the higher order terms is

taken to be exact. Therefore,

1 T
Tnk = Tk - c Q k · dn; k = 1, 2, · · , K; n = 1, 2, · · · , N

(4.3.18)
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ORIGIN OF kt h CELL

Tnk = l/c[ II rkll + II rk - dnlll

c =sound speed

..... nth ELEMENT IN RECEIVING ARRAV

o
(a)

(b)

Figure 4.2 .8. Time delay configuration for nonrefractlve medium.
b. Single annulus and linear array.
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where

(4.3.19)

Let us now consider the case depicted in figure (4.2.b) where we assume

a uniform linear array and a single range annulus. In this example, the trans­

mitter location at the origin of the x-y axis coincides with the first array

element and the center of the annulus. Therefore, T
k

is a constant for all k and

the distance lid II from the nth array element to the origin is given by
n

lid II = (n-1)d; n = 1, 2, ... , N
n

(4.3.20)

where d is the spacing between sensors. Now let the cells be uniform in angular

extent. In other words,

Ok = (k-1) 6.0; k = 1,2, ... , K .

Using these assumptions, the time delay T
nk

is expressed as

T
nk

= T
k

- ~ (n-l)d sin ((k-l) ~O]

for n = 1, 2, ... , Nand k = 1, 2, ... , K.

(4.3.21)

(4.3.22)

The real situation of interest is when the target is contained in a two­

dimensional test region of K cells as shown in figure 4.3. The target occupies

one annulus of J cells. It is easily seen that if the length of the target is small

compared to the range of interest, then the distance between cell k and cell k+ 1



CELL LABELING k

Figure 4.3: Two dl mensi anal test region and 1i near array.

x
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within one annulus is equal to the distance between cell k and cell k-l-J in the

next annulus. Let r be the range of the first annulus and L1r the distance

between two neighboring cells (in azimuth or in range). The range of the

second annulus is given by

r + Lir = r + rL10 = r(l+LiO) .

Similarly the range of the third annulus is

r + 2~r = r + 2rtlO = r(l + 2L10) .

(4.3.23)

(4.3.24)

Since all cells within one annulus are at the same range, the range of each cell in

function of its index k is given by

r[l + ((k-1) div J)~O] , k = 1, ... , K (4.3.25)

where a div b symbolizes the integer division of a by b. The time delay T
k

defined in (4.3.19) is now expressed as

Tk = ~ r[1 + ((k-1) div J) LiO] j k = 1, ... , K .

(4.3.26)

We can also generalize the expression of Ok given in (4.3.21) to accommodate

the two-dimensional test region of figure 4.3. Therefore,

Ok = ((k-1) mod J) LiO; k = 1, ... , K (4.3.27)
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where a mod b equals the remainder of the integer division of a by b. The time

delay T
nk

for the two-dimensional test region can be summarized using (4.3.18),

(4.3.26) and (4.3.27) as

T
nk

= ~r [1 + ((k-l) div J) ~O] - (n-~)d sin [((k-l) mod J) !1()]

(4.3.28)

for k = 1, . . . , K and n = 1, . . . , N.

4.4 Simulation Results and Conclusions

In this section we will display ROC curves for two-dimensional test

region illuminated by linear FM pulses. The pure tone pulse is treated as a

particular FM signal with a transmitter constant k
f

equal to zero. The array of

sensors is linear with eight elements (figure 4.3) separated by a distance d equal

to half of the signal wavelength (d = >./2). The center frequency fo of the

transmitter is fixed to 10 Khz and the test volume range r in equation (4.3.28)

equals 1000 meters. The speed of sound c in water is 1500 rn/sec. The angular

width ~ () will be expressed in function of the null-to-null beamwidth (figure

4.4) of the array. The null-to-null beamwidth is given by

BW = 2 sin-1 [ fu] = 29° . (4.4.1)

In the simulation, we first evaluate the time delays (equation 4.3.28).

Then we construct the signal correlation matrix 4- using equations (4.3.1) and

(4.3.7). If k
f

= 0 (pure tone), ~ is evaluated analytically using equation

(4.3.13). Knowing ai, a~ and +, we can compute K
y.(H1-H2) for i = 1,2. The

1
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eigenvalues {Ak} of K (H
1-H2

) are used to compute the false alarm prob­
Y1

ability given in equation (4.2.34). Also, the eigenvalues {.\} of K (H
1-H2

)
Y2

are used to compute the classification probability given in equation (4.2.33).

The results will demonstrate the performance of the classifier with respect to (1)

the transmitter constant k
f
, (2) the target-to-reverberation contrast, (3) the

signal-to-noise ratio P
N

, and (4) the angular width 6. (J for the matched

processor case (figure 4.5). For the mismatched processor (figure 4.11), we

display the classifier performance for both (5) range misidentification and (6)

object misorientation.

(1) Varying the transmitter constant kf. In this example, we vary

the transmitter constant k
f
. Here the number of cells J occupied by the target

is 4, the signal- to-noise ratio P
N

is 1.0, the angular width ~ fJ is equal to one

eighth of the beamwidth (l:1fJ = BW/8 = 3.625°), and the pulse duration T is

set to 1 second. The reverberation and target strength per cell ui and u~ are

set to 10 and 40 (low contrast) in figure 4.6 and to 10 and 80 (high contrast) in

figure 4.7. In both cases k
f

takes the following values: 0, 1, 10, 100, 1000 and

10000. It is clear that as k
f

increases the performance improves noticeably.

This improvement is more pronounced for high contrast (figure 4.7). For

instance, for kf greater than or equal to 100, we can choose "l such that

P(H
2

/HI) = 0.1 and P(H
2

/H
2
) > 0.9. The cost one has to pay for large values

of k
f

is expensive transducers because of the bandwidth required to transmit

these signals.
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(2) Varying the target to reverberation contrast. Here J = 4 cells,

PN = 1.0, t18 = 3.625°, kf = 0 and T = 30 ms. The reverberation strength per

cell lTi is set to 10 while the target strength per cell lT~ is varied from 20 to 70

by steps of 10. It is clear that performance improves as the target-to­

reverberation contrast increases (figure 4.8).

(3) Varying the signal-to-noise ratio P
N

. In this example, we

examine the classifier performance as we increase the signal-to-noise ratio.

Here J = 4, !:i.0 = 3.625°, T = 30 ms, kf = 0, lTi = 10 and lT~ = 80. In figure

4.9, the signal-to-noise ratio P
N

takes the following values: 0.001, 0.01, 0.1,

0.25, 1, 10 and 100 (lowest to highest curve, respectively). The performance is

improved for signal-to-noise ratios greater than 0.1 (-10 dB). For P
N

= 0.001

(-30 dfl), the performance degrades drastically and one can no longer distin­

guish between H
1

and H
2

.

(4) Varying the angular width /). B. Our variable is now the

angular width !:i. O. Here lTi = 10, lT~ = 70, J = 4, kf = 0, T = 30 ms and PN =

1. s» takes the following values: BW/2, BW/4, BW/16, BW/32 and BW/64

(highest to lowest curve, respectively). We see that the performance degrades

as the classifier attempts finer angular resolution (figure 4.10). Practically

speaking, trying to distinguish finer details of a target is not an easy task. One

cost we have to pay at high angular resolution can, for instance, be a large

signal-to-noise ratio.
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AZIMUTH

HYPOTHES IS H2

80

.... ...... .... .. .... .... ........ ....

III'll!II!t: III~
........ ... .... ....... .... ....... ....

....... .... ..... ..... ........... ..........

AZIMUTH

ffiJd REVERBERATION CELL

II TARGET CELL

Figure 4.5: Example of 6 two-ctmenstonel test volume.
K =16 test cells and J =4 target-like cells.
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Figure 4.6: ROC curves displaying classifier performance in function of the

transmitter constant k
f

Here J = 4 target cells, ~() = 3.625 0

, T =
2 21 second, P

N
= 1.0, O"R = 10 and 0"0 = 40. kf takes the values 0, 1,

10, 100, 1000 and 10000 (lowest to highest curve, respectively).
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Figure 4.7: ROC curves displaying classifier performance in function of the

transmitter constant k
f

Here J = 4 target cells, D.() = 3.625 0

, T =
2 2

1 second, PN = 1.0, a
R

= 10 and aD = 80. kf takes the values 0, I,

10, 100, 1000 and 10000 (lowest to highest curve, respectively.)



83

1.0 II-T-r-r---'--T~:C;;;~~~""

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr [H2IH1]

0.1 ~---+-----+-~I-----........- .........---+---t---+---+--4

0.3 ......---#---+----#---+--1-----+--.......---+--1---+---+-----1

0.2 ..............~---..-~t--- ........-......-----+--+-- --+-----t

0.6 1--1--#-...........--A-----..1I---........&......-+----t---+---I-----I-----t

o.0 "-_...-.-._--.a-_---.l~ .-...._--...__""---_........_ ........_~

0.0 0.1 0.2 0.3

Figure 4.8: ROC curves displaying classifier performance in function of the

target-to-reverberation contrast. Here J = 4 target cells, ~ 0 ==

3.625° , T = 30 ms, PN = 1.0, kf = 0 and ui = 10. u~ is varied

from 20 (lowest curve) to 70 (highest curve) by steps of 10.
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Figure 4.9: ROC curves displaying classifier performance in function of the

signal-to-noise ratio P
N

. Here J = 4 target cells, 6.0 = 3.625° ,

2 2T = 30 ms, k
f

= 0, (JR = 10 and (Jo = 80. PN takes the values

0.001, 0.01, 0.1, 0.25, 1, 10, 100 (lowest to highest curve,

respectively) .
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Figure 4.10: ROC curves displaying classifier performance in function of the

angular width ~O. Here J = 4 target cells, T = 30 ms, k
f
= 0,

2 2
O"R = 1 0 and 0"0 = 70. i:1(Jtakes the values BW/2, BW/4, BW /16,

BW/32 and BW/64 (highest to lowest curve, respectively).
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(5) Range misidentification. Now we examine the classifier per­

formance when the wrong scattering covariance matrix is infused into the

processor. In this example, the processor assumes the wrong range (refer to

figure 4.11). The number of target-like cells J and the signal-to-noise ratio P
N

are set to 4 and 1, respectively. Also, 6.(J = 3.625°, k
f
= 0, ui = 10, u~ = 70

and T = 30 ms. Here the farthest range is named row 1 and the closest range is

named row 4. The target is located in row 2. In figure 4.12, the highest curve

is obtained when the processor assumes perfect a priori knowledge of the test

region (matched case). The remaining curves display the classifier perfor­

mance when the processor assumes the target is in row 1, row 3 or row 4

(second highest to lowest curve, respectively). It is obvious that the better the

target range is estimated, the better the classifier performance is. The assump­

tion that the target is in row 1 and row 3 provides about the same classifier

performance while the assumption that the target is in row 4 gives the worst

performance.

In the case of high resolution signals (+ = I), we showed that the

classifier cannot distinguish between HI and H
2

if the range is misestimated.

This is not true for non-high resolution signals (particularly FM signals) since

the trans- mitted signal picks up energy from neighboring cells.

(6) Object Misorientation. In this example, the processor assumes

the wrong orientation (figure 4.11). J, PN, 6.(J, kf , T, ui and u~ are assigned

the same values as in (5). Here, we vary the azimuth of the target. For

instance, if the target is assumed to be in column 1, the angle it makes with the

transmitter is the smallest. If, however, the target is assumed to be in column
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Figure 4.11 Scenario illustrating range and orientation
mismatch for K 16 cells and J =4 target-like
cells.
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P
N

= 1.0, T = 30 IDS, t10 = 3.625° , kf = 0, ai = 10 and a~ = 70.

Highest curve is for the matched processor. In remaining curves,

the target is assumed to be row 1, 3 and 4 (second highest to lowest

curve, respectively).
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Highest curve is for the matched processor. In the remaining

curves, the target is assumed to be in columns 1, 2, 3 and 4 (over­

laping curves).
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4, the angle it makes with the transmitter is the largest. The target is actually

located in row 2. In figure 4.13, the highest curve is obtained when the

processor assumes perfect a priori knowledge of the test volume (matched case).

The remaining curves display the classifier performance when the processor

assumes that the target is located in column 1, 2, 3 or 4. It is clear that the

classifier performance degrades when the object is misoriented. Interestingly,

this degradation is independent of the target azimuth. Note that the curves

coincide together in this case. Hence we can draw the following conclusion:

when targets are illuminated by linear FM signals, a correct knowledge of the

target orientation is very important for the classifier. On the contrary, the

classifier is not as sensitive (within limits) to a wrong estimated range. This

concludes our discussion of simulation results.



Chapter 5

ACOUSTIC TARGET IMAGING

5.1 Introduction

This chapter is concerned with an estimation problem. In order to image

the test volume encompassing the target, we would like to estimate the

scattering coefficients. The estimator a. is sought to be a minimum variance
1

linear unbiased (MVLU) estimator of the random vector a..
1

In section 5.2, we derive the MVLU estimator a. in function of the data
1

x(t) and the a priori scattering covariance matrix K for i = 1, 2. This will be
a.

1

done using the Wiener-Hopf equation (reference 17). We shall also prove that

classification is a function of the properties of the estimator a..
1

This issue will be discussed further in section 5.3. There, we will derive

an expression for the variance of the estimator error. In part a) of section 5.3,

the variance of the estimation error is derived for the general case of

mismatched processing and in part b), it is simplified for the specific case of

matched processing.

In section 5.4, we display graphic results illustrating variance reduction.

We will see that the variance is reduced by increasing the so-called received

signal-to-noise ratio and decreasing the angular resolution of the test region.

These results will be discussed for both matched and mismatched processing

and the test region of concern is either a single range annulus or a

two-dimensional grid. We will also illustrate variance reduction with increased

transmitter constant k
f

for linear FM signals.

91
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5.2 Estimation of a.
1

In this section, we derive the minimum variance linear unbiased

(MVLU) estimator of the random vector a from the data x(t), which under H.
1 1

(i = 1, 2), are given by the linear model

x(t) = F{t)a + n(t), 0 < t < T .
1

(5.2.1)

We are seeking an estimator a., under H., to be a minimum variance
1 1

estimator of a.. a. is also unbiased and linear. Therefore
1 1

and

E[a.1 H.] = E[a]
1 1 1

a. = r H.(t) x(t) dt ,
1 J

T
1

i = 1,2

(5.2.2 )

(5.2.3 )

where H.(t) is a KxN unknown matrix function. Since the measurement process
1

x(t) has a mean of zero, then

E[a.IH.] = 0,
1 1

(i = 1, 2) (5.2.4)

let f. = a.-a represent the estimation error, and q{a) the quadratic form given
1 1 1

by

q(a.) = E[E~ V E.I H.]
1 1 1 1

(5.2.5)

where V is any KxK positive definite matrix and a. is any estimator that
1

satisfies equations (5.2.2) and (5.2.3). q(a.) is minimized when (references 17,
1
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28 and 29) H.(t) satisfies the Wiener-Hopf equation given by
1

E[a. xH(t)IH.] = rH.(r) E[x(r) xH(t)IH.] dr
1 1 J

T
1 1

(5.2.6)

for i = 1,2 and 0 < r,t < T. Using equation (5.2.1),

E[a. xH(t) IH.] = E[a.a~ FH(t)] + E[a.nH(t)] (i = 1,2)
1 1 1 1 1

(5.2.7)

since E[a.nH(t)] = 0 for 0 < t < T, therefore,
1

E[a. xH(t) IH.] = K FH(t) , i = 1,2 . (5.2.8)
1 1 a.

1

From equations (2.2.8) and (2.2.14)

(5.2.9)

Equation (5.2.6) becomes

H i H NoiK F (t) = H.(r) F(r) K F (t) dr + -2 H.(r) 6(r-t)I dr ,
~ T 1 ~ T 1

(5.2.10)

Using the sifting property, equation (5.2.10) becomes

(5.2.11)
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for i = 1, 2 and 0 < t < T. In order to solve the matrix integral equation

above, let us assume H.(t) can be written in the form
1

2 HH.(t) =~ G.F (t),
1 l~ 0 1

i = 1,2 (5.2.12)

where G. is a KxK constant matrix to be determined. Substituting equation
1

(5.2.12) in equation (5.2.11), we get

(5.2.13)

or

K FH(t) = ~ G. [f FH( T) F(T) dT] K FH(t) + G.YI(t) .
~ l~ 0 1 T a i 1

(5.2.14)

Recalling the expressions of the signal correlation matrix + and the signal-to-

noise ratio:

• = Nt: i FH(t) F(t) dt
f T

and

equation (5.2.14) becomes

Ka.YI(t) = PN Gi • Ka.FH(t) + GlH(t)
1 1

or

(5.2.15)

(5.2.16)

(5.2.17)



Ka.~(t) == Gi(1 + PN • Ka)FH(t)
1 1

which implies

Ka. == Gi(1 + PN • Ka) ·
1 1

Therefore,

Gi == Ka.(1 + PN • Ka) - l ·
1 1

Remembering that H. defined in chapter 2 and given by
1

Hi == (I + PN Ka.•r' Ka.
t 1

is a Hermitian matrix (appendix C), then

H. == H~ == K (I + P
N

• K )-1 == G..
1 1 a. a. 1

1 1

Equation (5.2.12) becomes

2 H() 2 ( )-1 HH.(t) = n- H.F t = n- K I + PN ~ K F (t) ,
1 1~ 0 1 1~ 0 a i a i
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(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

(5.2.23)

and the optimal MVLU estimator a. (under H.) is given by (from equations
1 1

5.2.3 and 5.2.23):
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a. = .a- K (I + P
N
~ K )-1 r FH(t) X(t) dt , i = 1, 2

1 1"j 0 a i a i J
T

(5.2.24)

or more simply

a. = H. y,
1 1

i = 1,2 (5.2.25)

where H. is given in equation 5.2.22 and y is the output of a matrix matched
1

filter operation and is expressed as

2 r H
Y = N:" J_F (t) x(t) dt .

o T
(5.2.26)

Let us now express the likelihood ratio derived in chapter 2 in function of the

estimator a.. Recalling equation 2.4.21, the ith likelihood ratio is expressed in
1

the following form:

A.[x(t)] = 1. exp(yHH.y) .
1 1 1

This equation can be written using (5.2.25) and (5.2.26) as follows:

A.[x(t)] = 'Y. exp [~ r xH(t) F(t) a. dt]
1 1 1"j 0 JT 1

or

A.[x(t)] = 'Y. exp [~ r xH(t) 8.(t) dt ]
1 1 l~O JT 1

where

s.(t) = F(t) a. .
1 1

(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)
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Under Hi' ai is the MVLU estimator of ~ and is given by equation (5.2.24).

Thus, si(t) is the optimal estimator of si(t) and equation (5.2.29) is the

estimator correlator structure used in chapter 2 to derive the likelihood ratio.

5.3 Variance ofl
1

a. Mismatched Classifier

Although classifier performance is a function of the distribution

function of the likelihood ratio as given by equation (5.2.27), the result in

equation (5.2.28) indicates that performance is ultimately a function of the

properties of the optimal estimator of a. in equation (5.2.24). Our purpose in
1

this section is to find an expression for the variance of the estimation error

given by

var(f.) = E[a.-a)(a.-a)H IH.] ,
1 1 1 1 1 1

i = 1,2

(5.3.1)

and try to minimize it. We shall treat the problem in the general case where

the processor assumes the wrong a priori scattering covariance matrix in order

to find a. (mismatched processing). For this reason, we will label the scattering
1

covariance matrix in 5.2.24 by K'. The matrix K' is assumed by the
a. a.

1 1

processor while the matrix K perfectly describes the scattering properties of
a.

1

the test region. For matched processing discussed in part b), we will set K' =
a.

1

K . Hence, equation (5.2.24) is now expressed as follows:
a.

1

i = 1,2

(5.3.2 )
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or

a = H~ y
1 l'

where H~ is a Hermitian matrix given by
1

i = 1,2 (5.3.3 )

H~=K/(I+p +K/)-l,
1 a. N a.

1 1

i = 1,2 . (5.3.4)

Using Hermitian properties and knowing that K - E[aa~ IH.], equation
a. 1 1 1

1

(5.3.1) can be expanded in the following form:

var(f.) = E[(a.-a)(a.-a)H 1H.] = E[a.a~IH.] -2E[a.a~IH.] + K ,i = 1,2.
1 1 1 1 1 1 1 1 1 1 1 1 a.

1

(5.3.5)

Let us now evaluate each unknown term separately

(5.3.6)

Note that K is given in equation (3.2.13) by
y.

1

2 H
K = PN ~ K ~ + PN ~ ,y. a.

1 1

or

i = 1,2 (5.3.7)

Ky. = PN + (I + PN Ka. +) , i = 1, 2 ·
1 1

(5.3.8)
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In this equation K is the correct a priori scattering covariance matrix since y
a.

1

is a direct function of the array measurement x(t). From equations (5.3.4),

(5.3.6) and (5.3.8), we can write

E[~a.~IHi] = PNK~.(I + pN4> K~)-l 4>(1 + PNKa.4»(1 + PNK~.4»-l K~. ·
1 1 1 1 1

(5.3.9)

Next we evaluate E[a..a~ IH.]. From equation (5.3.3)
1 1 1

E[a..a~ IH.] = E[H~ y a~ IH.] = H~ E[y a~ IH.]
11 1 1 1 1 1 1 1

where

H] 21H [ HE[ya.IH. =n-- F (t)Ex{t)a.IH.]dt.
1 1 l~ 0 TIl

From equation (2.2.10b)

E[x(t) a~IH.] = E[F(t) a.a~ + n(t) a~]
1 1 1 1 1

or

HE[x(t) a. I H.] = F(t) K .
1 1 a,

1

Equation (5.3.11) becomes

E[y a~ IH.] = ~ [r FH(t) F(t) dt] K
1 1 1';0 JT a i

which can be written using equations (5.2.15) and (5.2.16) as

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

(5.3.14)



Therefore,

E[y a~ IH.] = PN ~ K ·
1 1 a.

1

E[a.a~IH.] = P
N

K' (I + P
N
~ K' )-1 ~ K .

1 1 1 a. a. a.
1 1 1
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(5.3.15)

(5.3.16)

As a result, the variance of the estimation error for the mismatched classifier is

expressed in equations (5.3.5), (5.3.9) and (5.3.16). In section 5.4, we simulate

these results for specific test volume geometries.

b. Matched Classifier

In this part, we assume the processor has perfect a priori knowledge

of the statistical properties of the test volume under hypothesis H.. In other
1

words, the assumed a priori covariance matrix K' is now correct.
a.

1

Mathematically speaking, K' should be substituted by K . Equations (5.3.9)
a. a.

1 1

and (5.3.16) become

E[a.a~IH.] = P
N

K (I + P
N

-t K )-1 -t K
1 1 1 a. a. a.

1 1 1

and

E[a.a~IH.] = P
N

K (I + P
N

-t K )-1 -t K ·
1 1 1 a. a. a.

1 1 1

(5.3.17)

(5.3.18)

Since for the matched classifier E[a.a~ IH.] = E[a.a~ IH.], the right-hand side of
1 1 1 1 1 1

equation (5.3.5) becomes
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var('f.) = K - P
N

K (I + P
N
~ K )-1 ~ K .

1 a. a. a. a.
1 1 1 1

(5.3.19)

Factoring out Ka.(1 + P
N

4) Ka)- I, we get
1 1

var('£) = Ka.(I + PN 4) Ka)- 1[(I + PN 4) Ka) - PN 4) Ka.J
1 1 1 1

(5.3.20)

which implies

var(f.) = H. = K (I + P
N

4) K )-1
1 1 a. a.

1 1

(5.3.21)

for i = 1, 2. Equation 5.3.21 shows the direct dependence of the estimation

error covariance matrix on a priori information regarding the ith scattering

target's spatial properties. Moreover, the estimation error is a function of

parameters characteristics of the array, signal design, etc. Investigation of H.
1

will help us understand the classifier performance. These results will be shown

in the next section.

5.4 Simulation Results and Conclusions

a. Single Range Annulus

In this example, we assume that all cells are within a single range

annulus and are uniform in angular extent as shown in figure 4.2.b. In chapter

4, we showed that the time delay T
nk

it takes the waveform f(t) to travel from

the transmitter (located at the origin) to the kth cell and back to the nth sensor

in an N-element linear array is given by
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T
nk

= ~r - (n-~)d sin[(k-1) ~O]; n = 1, ... I N; k = 1, ... , K

(5.4.1)

where r is the annulus range, tl 0 is the angular extent between cells and c is the

speed of sound in the medium. The values of ~O specify the angular resolution

of the processor. To proceed with calculations, let us further assume that the

scattering covariance matrix K is given by
a

(5.4.2)

In other words, the scattering strength of the target is uniformly distributed

among each of the K cells of the annulus. For the matched classifier, the

variance of ais given by equation (5.3.21) as

var(f) = H = K (I + P
N
~ K )-1

a a

which, using equation (5.4.2), becomes

(N) 2( 2 )-1var f = (Jo 1 + PN (Jo 4- ·

(5.4.3)

(5.4.4)

We define the variance ratio as the trace of the error variance matrix

normalized by the trace of K . For this example, it is given by
a

~ _ .!. tr[I + p (72 ~]-1
~-K NO'

a

(5.4.5)
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The elements of ~ in function of time delays are discussed thoroughly in chapter

4. Equation (5.4.5) shows that the variance ratio is a function of p a2
N 0

(received signal-to-noise ratio) and the resolution parameter ~8. For the

particular case when. = I, equation (5.3.5) becomes

!!h!!illi __ 1
tr[lCJ ---2'

a l+PN O"O
(5.4.6)

This equation shows that minimizing the variance ratio can be achieved with

increased received signal-to-noise ratio P
N

(]~. In the graphs presented in this

chapter, the variance ratio is calculated for N = 8 array elements (with d = >.../2

distance between them), a pulse duration T of 30 ms, a range of 1000 m and

center frequency fo of 10 Khz. Also, the speed of sound c in water equals 1500

m/sec and the beamwidth BW measured between the first nulls is given by

BW . -1 [A J 0= 2 SIn NO = 29 · (5.4.7)

In figures 5.1 and 5.2, we display the variance ratio (in dB) versus the

angular width 6.0 and the received signal-to-noise ratio PN (]~ (in dB) for K =
2 and K = 8, respectively. In this case, the transmitted waveform is a pure

tone pulse. It is clear that as the classifier processes high angular resolution, in

other words as ~O decreases, the error variance increases. The cost one has to

pay for good resolution is a large signal-to-noise ratio. The figures also

illustrate the performance dependence on the number of cells in the test region.

For instance, if a variance ratio of -10 dB at an angular extent ~O = BW /8 is

desired, subdividing the test region in 2 cells requires a received signal-to-noise
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ratio of about 12 dB. However, if the test region is subdivided in 8 cells, the

processor requires a received signal-to-noise ratio of 45 dB. We can also

deduce from the graphs that the high resolution signal (~ = I) has the lowest

error variance as compared to a pure tone pulse. This conclusion is true

regardless of the angular extent, the signal-to-noise ratio, or the number of

cells in the test region. Therefore, signal design is an important aspect in target

imaging.

Next we discuss variance reduction as we increase the transmitter

constant k
f

for linear FM pulses. Figures 5.3, 5.4 and 5.5 illustrate variance

reduction for a test region subdivided in 2 cells when k
f

= 103
, 105 and 107

,

respectively. We see that the estimator variance decreases with a large kr For

k
f
= 103

, an angular extent of BW /64 increases the variance ratio (with respect

to an angular extent of BW /32) by about 38 dB for received signal-to-noise

ratios greater than 40 dB. This variance ratio is increased no more than 8 dB

for received signal-to-noise ratios as low as 10 dB or higher when k
f

= 105
.

We also notice in this case that angular widths of BW /8, BW /16 and BW /32

have a variance as low as the high resolution signal for 6.() = BW /32 or ~ () ~

BW /16. With k
f

equal to 107
, the variance ratio is more or less independent of

the angular resolution (overlapping curves). Here we reduce the variance by

about 7 dB with respect to the high resolution performance for received

signal-to-noise ratios as low as 0 dB or higher. This performance tends to be a

limit in variance reduction. In fact, further increase in k
f

does not reduce the

error variance noticeably compared to k
f

= 107
. Higher values of kf would be

impractical and the cost one has to pay for such large values is expensive

transducers because of the bandwidth required to transmit these signals.
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Figures 5.6, 5.7 and 5.8 illustrate a similar situation for K = 8 cells.

Figure 5.6 (k f = 1000) is similar to figure 5.2 (k
f

= 0). A transmitter constant

kf = 105 (figure 5.7) reduces the variance ratio when 6.0 = BW/8. In this case,

there is not much variance reduction for 6.0 < BW/16. Increasing k
f

to 107

gives the desired variance reduction. Here also performance of linear FM

signals with large k
f

is better than that of high resolution signals. We conclude

that variance reduction is better achieved when linear FM pulses (as compared

to pure tone pulses), with a relatively large k
f

(typically 107
) , illuminate a test

region. Depending on the value of kr the processor can achieve a variance

reduction as good as that of high resolution signals (if not better). The cost to

be paid with more cells in the test region is a larger transmitter constant and/or

a larger received signal-to-noise ratio. Hence, linear FM pulses have a better

performance than pure tone pulses for target classification and imaging.

b. Two-Dimensional Test Region

We now consider the two-dimensional test region shown in figure

4.3. The receiver is also a uniform linear array of 8 elements. In chapter 4, we

discussed in detail how the elements of • can be computed in function of time

delays T
nk

(equation 4.3.28) for both a pure tone and a linear FM pulse. We

will apply the following examples to the test volume geometries depicted in

figure 4.5 (matched classifier) and figure 4.11 (mismatched classifier).

First, we examine variance reduction for a pure tone pulse in function of

the angular extent ~O. Figure 5.9 shows that the classifier achieves a very poor

variance reduction even at the cost of a small angular resolution (~O = BW /2)

and a large received signal-to-noise ratio (80 dB). In this case, the variance

reduction achieved by high resolution signals is very desirable (-20 dB) at a
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received signal-to-noise ratio of about (25 dB). Here also, we used J = 4

target-like cells and the reverberation noise energy per cell is l1i = 10. All

other parameters have been assigned the same values used in part a). We can

make the first conclusion: in order to obtain a desirable variance reduction of

the estimator 3,2 for the matched classifier, the transmitted signal f(t) should

approach high resolution characteristics. This can be achieved by illuminating

the target with a linear FM signal having a large transmitter constant k
f

Next, we examine variance reduction when wrong a priori knowledge of

the test region scattering properties is fed to the classifier. Here also, f(t) is a

pure tone pulse, J = 4 target-like cells, 6.0 = BW /8 and l1i = 10. All other

parameters are assigned the values used in part a). In figures 5.10 and 5.11, we

illustrate variance reduction when the target is mismatched in range and

orientation, respectively. It is clear that target imaging, when the test region is

illuminated by a pure tone pulse, is very sensitive to wrong a priori information.

From the above discussion, we conclude that when a two-dimensional

test region is interrogated by a pure tone pulse, the estimator a. (estimated
1

image of the test region) cannot be achieved with a low variance error. This

conclusion holds true for both the matched and mismatched classifier.

Moreover, variance reduction for misoriented targets (refer to figure 4.11) is

independent of the target azimuth. Therefore, linear FM signals provide a

better performance for target imaging. This concludes our discussion of chapter

5.
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Figure 5.1 Variance ratio tr[var('f)]/tr[K] versus angular width ~ () and
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ratio for the two-dimensional test region of figure 4.11. Here the

mismatch is in the target range, J = 4 target-like cells and f(t) is a

pure tone pulse.
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f(t) is a pure tone pulse.



Chapter 6

CONCLUDING REMARKS

6.1 Conclusions

A systematic approach for analyzing the performance of Bayesian

optimal classifiers has been presented. Closed-form solutions for classification

and false alarm probabilities were obtained and several receiver operating

characteristics illustrating meaningful physical scenarios were presented. Two

classes of transmitted signals in the sonar system were considered: a) high

resolution signals having a signal correlation matrix equal to the identity matrix

and b) linear FM and pure tone pulses. Also, a minimum value linear unbiased

estimator of the random vector ~ was developed and different methods of

minimizing the estimator error were investigated.

When high resolution signals interrogate the test volume, we can make

two general conclusions:

1. The classifier is very sensitive to incorrect a priori knowledge of the

scattering properties of the test volume being interrogated. Its ability to

distinguish between targets decreases as the difference between actual

and assumed test volume geometries increases. If the classifier assumes

the wrong target orientation, its performance is directly proportional to

the number and energy of the target-like cells which overlap between

the assumed and nominal geometries.

2. If an incorrect range is assumed and there is no overlap between target­

like cells, the classifier cannot distinguish between HI and H2 at all.

This conclusion can be reached with an intuitive argument. Since

perfect cell resolution was presupposed; therefore, when an incorrect

118
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range estimate is infused into the processor, only return from reverbera­

tion cells is processed. However, the only statistical difference between

HI and H
2

is the difference between total scattering strengths. When

reverberation energy alone is processed, it is not possible to distinguish

between target-like and reverberation-like energy; consequently, classi­

fication is not possible.

Performance of linear FM signals in active sonar systems can be

summarized as follows:

1. Classifiers performance is improved with the following parameters: a)

the transmitter constant k
f
, b) target strength, and c) the signal-to­

noise ratio. Performance degrades with finer angular resolution. An

extensive quantitative discussion has been presented in chapter 4. We

can make the following suggestions for implementation purposes. For a

test volume subdivided into 16 cells (target occupies 4 cells), we

generally suggest a linear FM pulse having a transmitter constant k
f

=

100 and a pulse duration of 30 ms. The signal-to-noise ratio should be

no less than 10 dB and an angular extent of 3.625° generally provides

acceptable performance. These values lead to a classification probability

of 0.8 or greater while keeping the false alarm probability constrained to

0.1. Here we assumed that the reverberation strength per cell (CTi)

equals 10 and the target strength per cell (CT~) equals 40.

2. The classifier is sensitive to mismatched a priori information. If the

processor assumes the wrong target orientation, the degradation in

performance is independent of the assumed azimuth. In other words,

performance depends on the number of intersection cells between the
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assumed and actual target geometries rather than the azimuth of the

mismatched target. This result was predicted when high resolution

signals were discussed.

3. When the target range is misestimated, performance is directly propor­

tional to the range's estimation error. If this error is small, the classifier

performs relatively well. We conclude that the processor is not as

sensitive (due to blurring) to range misidentification when targets are

illuminated by linear FM signals as opposed to high resolution signals.

For instance, if the target length is 100 m and its range is 1000 m, a

range estimation error less than or equal to 25 m leads to a classification

probability of 0.6. If the range estimation error is 50 m or more the

classification probability becomes 0.3 or lower. If the exact range is

known, the classification probability is 0.7. In this discussion, the false

alarm probability is also constrained to 0.1.

We can also draw the following conclusions regarding acoustic target

imaging:

1. Imaging the target is performed by estimating the test volume scattering

coefficients (vector ~). The error variance of the estimation error

depends on system characteristics such as array/test volume geometry

and transmitted waveform.

2. The best images are generally obtained with high resolution signals.

Good images can also be obtained with linear FM pulses having a large

transmitter constant. For the single annulus geometry, physically

representing a reverberation-free environment, we suggest a transmitter

constant of 107 when the target occupies 8 cells. With such a large value
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of kr we even achieve better variance reduction than with high

resolution signals. These images can have a very fine angular resolution

(~O = BW/64). If the target occupies 2 cells, we suggest a transmitter

constant of 105
. Such large values of k

f
are limited by transducer

bandwidth.

3. In a reverberating environment, variance reduction is not easily

achieved. For instance, if k
f
= 0 (pure tone), the variance ratio is about

--{) dB at a received signal-to-noise ratio as high as 80 dB. Using the

same parameters in a reverberation-free environment, we were able to

obtain a variance ratio of at least -70 dB.

4. A bad image does not necessarily imply a bad classifier. A plot of the

classification probability versus the variance ratio, while keeping the

false alarm probability constrained to 0.1, will provide more quantitative

results and needs to be done.

6.2 Recommendations for Future Research

Several interesting open problems need to be solved. First, we can relax

some of the assumptions made about the noise process. The assumption of a

Gaussian density for the noise stems from the central limit theorem and

continues to be a popular assumption in classical detection since it leads to

simpler detection structures. However, recent studies of data from a number of

noise environments show that noise is often non-stationary, non-white and

non-Gaussian [30, 31, 32]. Hence, detectors designed to operate under the

assumption of white Gaussian noise may result in severe degradations in

performance when operated in a non-white non-Gaussian noise environment.

For this reason, the design of a non-parametric classifier structure, designed
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with minimal knowledge of the noise characteristics, may be appropriate and

ought to be researched. Although non-parametric detectors are simple in

structure, their conservative performance compared with optimum detectors is a

major drawback [33]. Another alternative would be an adaptive classifier which

can adapt or learn the characteristics of the noise process by changing its

structure with time. Such structures are usually very complex but result in

nearly optimum performance.

Second, we assumed that the scattering coefficients are uncorrelated and

frequency independent at least over the band of f(t). A relaxation of these

assumptions will undoubtedly lead to a more complete and hence better model.

Third, the problem needs to be studied when the target and the array

are in relative motion. At this point, we can predict that the only parameter

that will vary is the signal correlation matrix. It will now be a function of the

target's velocity. A helpful discussion of targets in motion is given in references

[12,17 and 27].

Finally, one can further investigate the system characteristics, mainly

array and signal design. For instance, a non-uniform linear array or a planar

array can be studied, and another class of transmitted signals may have an

attractive performance. More work on the relation between number of cells and

classifier performance needs to be done as well.
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APPENDIX A

In this appendix, we evaluate the following integral

f ex> -jwx
I = ~ e dw

11" -00 (l-jwa/
(A.I)

using contour integration. We assume that a is a negative constant. J is a

positive integer and wand x are real variables. (A.I) can be written as

1 1
I = 21r -(_-j-a)-J i -j zx

e dz
C (z+j/ a)J

(A.2)

where C is the counterclockwise contour (figure A.l) enclosing the pole zl =

-j/ a and z is a complex variable. The contour integral above can be written as

where

f f(z) dz = foo f(z) dz + i f(z) dz
c -00 C

R

-jzx
f(z) = e .

(z+j/a)J

(A.3)

(A.4)

It can be shown [24] that i f(z) dz = 0 as R goes to infinity. (A.2) becomes
C

R

or

[
· dJ-

1
]I = L 1 27r __ e-jzx

271" (_ja)J Mh dzJ- 1 z=-j/a
(A.5)



I - j 1 (. )J-1 x
- (_ja)J rm -JX e - Ci ·

Therefore the solution of (A.I) is

1 J-1x xI=-rm-Je-li' x~O
a
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(A.6)

(A.7)

and I equals 0 for x > o. r(.) is the gamma function and is defined as I'(J) =

(J-l)! for J integer.

1m z

a.<O

-j/Q..

__----& +-__....a...-.__~----'----~Re z
R

Figure A.l: Integration Contour (1 pole)
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APPENDIX B

In this appendix, we propose to evaluate the following integral

f OO e-jWX
I = ~ N M dw

7r -00 (l-jwa) (l-jwfj)
(B.l)

using contour integration. We assume that a and {3 are negative real constants,

M and N are positive integers, and wand x are real variables. (B.l) can be

written as

1 1 r e-jz x

I = 211" (-ja)N(-j,8)M Jc (z+j/a)N(z+j/,8)M dz (B.2)

where C is the counterclockwise contour (figure B.l) enclosing the poles zl =

-j/ a and z2 = -j/ {3 and Z is a complex variable. The contour integral above

can be written as

where

i f(z) dz = foo f(z) dz + f f(z) dz
c -00 C

R

-jzx
f(z) = eN M ·

(z+jfa) (z+jf(3)

(B.3)

(B.4)

It can be shown [24] that £ f(z) dz =0 as R goes to infinity. (B.2) becomes
R

(B.5)

where



B = I dN
-

1
[ e -j zx ]

1 (N-I)! dzN-1 (z+j/{3)M z=-j/a

and

B = I dM
-

1
[ e -j zx ]

2 (M-I)! dzM-1 (z+J/a)N z=-j/{3

are the residues at poles zl and z2' respectively. (B.5) can be written as

where

I = j I dN
-

1 [_e_-J_·
Z
_
X

_ ]

1 (-ja)N(-j{3)M (N-I)! dzN-1 (z+j/{3)M z=-j/a

and

I = j 1 [ _e_-J_· z_x_ ]

2 (_ja)N(_j{3)M (M-I)! (z+j/ a)N z=-j/{3·
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(B.6)

(B.7)

(B.8)

(B.9)

(B.lO)

In order to find 11' we will try a recursive approach. We noticed that making

the substitution b = -fj in (B.9) helps solve a sign ambiguity in later steps.

Therefore,

I = j I d
N

-
1 [_e_-_j Z

_
X
__]

1 (_ja)N(jb)M (N-I)! dzN-1 (z-j/b)M z=-j/a·

(B.II)

For N=l:



M-l
I = _ a e-x/ a

1 (a+b)M ·

For N=2:

I = j [-jx - M ] e-jzx
1 (_ja)2(jb)M (z-j/b)M (z-j / b)M+l z=-j/a

I - - =i [ -j x _ M ] e-xla
1 - a2 (jb)M(_j/a-j/b)M (jb)M (_j/a-j/b)M+l

M-2 [ b]I - _ a x 1 + Mae-xla
1 - ( a+b)M ( a +h)x ·
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(B.12)

(B.13)

For N=3:

I = j/2 [_x
2

+ 2jMx + M(M+l)] e-jzx

1 (-ja)\jb)M (z-j/b)M (z-j/ b )M+l (z- j / b ) M+2 z=-j/a

I = _1_ [ _x
2 + __2__jM_x _

1 2a3 (jb)M(_j/a-j/b)M (jb)M(_j/ a-j/b)M+l

+ M(M+l) ] e-x/a
(jb)M(_ j / a_j/b)M+2
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M-3 2 [ 2 2I - _1 a x 1 + 2Mab + M(M+l)a b ] e-x / a
1 - 2 (a+b)M (a+b)x (a+b)x2 ·

(B.14)

In general, we can write

N-l
M-N N-1 [.-' [N-I] ~M+ nbn] /I - _ a x... n a e-x a

1 - r(N)(a+b)M :~~ n (a+b)nxn

(B.IS)

for x ~ O. Note that r(.) is the Gamma function and (.) is a combination

defined, respectively, as r(N) = (N-l)! and [;] = p!(~~p)!' Substituting b

by -{3 in (B.IS), we get

N-1
M-N N-l [ [] ( ) nn]I =_ a x ")' (_l)n N-l r _M+n a B e-xj a

1 r(N)(Q-{3)M ::~ n r(M) (a-{3)n xn

(B.16)

for x ~ O. 1
2

is obtained from the residue at Z2 = -j/{3. This step can be done

by analogy with equation (B.16). Therefore,

for x ~ O. If a and {3 were positive the signs of 1
1

and 1
2

would be inverted.

Using the fact that

(B.18)
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then we can write I as

(B.19)

for x ~ o.

1m z

-j/o.

-j/~

-----... -+--__~__+__----A..---~Re z
-R R

Figure 5.1: Integretlon Contour (2 poles)
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APPENDIX C

In this appendix, we demonstrate some matrix properties that are used

in chapter 4. First, we prove that H. (i = 1, 2) is Hermitian. It is easy to
1

verify that K (i = 1, 2) and ~ (equation 2.4.8) are Hermitian matrices.
a.

1

Starting with equation (2.4.15)

Hi = (I + PNKa.~)-l Ka. ,
1 1

and using Hermitian properties, we can write

H~ = Ka.(1 + PN ~ Ka)-l = Ka.(K:~Ka. + PN~ Ka)-l
1 1 1 1 1 1

or

which can be written as

H~ = [K:~(I + PNKa.~)]-l = (I + PNKa.~)-l Ka. ·
1 1 1 1

Therefore, H~ = H. and H. (i = 1, 2) is a Hermitian matrix.
III

Next, we show that

(C.l)

(C.2)

(C.3)

(C.4)

(C.S)
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is Hermitian and positive definite. Using Hermitian properties, it is easy to

show that KH = K . To show positive definiteness, let x be a nonzero vector.
Yi Yi

Writing K as defined in (3.2.9), we have
y.

1

Letting z = yHx, (C.6) becomes

H H [2x K x = E[z z] = E Iz I ] > 0 .
y.

1

(C.7)

(C.7) is a real and sufficient condition for the Hermitian matrix K (i = 1, 2)
y.

1

to be positive definite. This property holds true for all covariance matrices.
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APPENDIX D

In this appendix, we would like to obtain an approximate expression of

f(d ) = II rk-d IIn n (D.l)

in terms of a Taylor series about d = o. Showing only first order terms,
n

fed ) = f(O) + (d -{»)T Vf(O) + ....
n n

(D.2)

Writing f(d ) in function of the coordinates of I
k

and d assuming three-
n n

dimensional vectors, we get

(D.3)

Using this equation, we can write

and

Therefore

or

8f(d
n

) 2(I1-d1) (r1-d1)
ad1 = - 2ll I k=dnlf = -llrk=dn[ ·

(D.4)

(D.5)

(D.6)
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(D.7)

which implies

(D.S)

where l\ is a unit vector along Ike Substituting these results in (D.2), II I
k-<in \I

is expressed approximately as



ABSTRACT

HADDAD, NICHOLAS KARIM. Ph.D. June, 1990. Electrical and Computer

Engineering

Performance Analysis of Active Sonar Classifiers

Director of Dissertation: Dr. John Tague

This dissertation studies the theoretical underpinnings of active sonar

classifiers. We present a systematic approach for designing optimal Bayesian

classifiers and analyzing their performance. We emphasize the ternary case

where three hypotheses are considered: Ho (noise only), HI (reverberation plus

noise) and H
2

(target plus noise).

We start by deriving a sufficient statistic to decide between H
l

and H
2

,

assuming Ho has already been eliminated. Then, closed-form solutions for

classification and false alarm probabilities are obtained and several receiver

operating characteristics curves illustrating meaningful physical scenarios are

presented. Two classes of illuminating signals are considered: high resolution

and linear FM signals.

Many design parameters affecting classifier performance are studied.

Perhaps the most important issue is classifier performance when incorrect a

priori knowledge of the target's spatial properties is processed. Other

parameters such as target resolution, signal-to-noise ratio, transmitter

constant in linear FM signals, etc. are investigated as well.

The final issue presented is acoustic target imaging. A minimum

variance linear unbiased estimator of the scattering coefficients of the test

volume encompassing the target is derived. Furthermore, we investigate error




