
ARROS: DISTRIBUTED ADAPTIVE REAL-TIME NETWORK INTRUSION

RESPONSE

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Karthikeyan Karunanidhi

March 2006

This thesis entitled

ARROS: DISTRIBUTED ADAPTIVE REAL-TIME NETWORK INTRUSION

RESPONSE

by

KARTHIKEYAN KARUNANIDHI

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Shawn D. Ostermann

Associate Professor of Electrical Engineering and Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

KARUNANIDHI, KARTHIKEYAN. M.S. March 2006. Electrical Engineering
ARROS: Distributed Adaptive Real-Time Network Intrusion Response (96 pp.)

Director of Thesis: Shawn D. Ostermann

Research in Intrusion Response has shown that the success rate of an attack in-

creases with time. With attacks becoming sophisticated and automated, the response

to these attacks still remains a time-consuming manual process. An active response

system is a mechanism that can be used in conjunction with an intrusion detection

system (IDS) to provide a network administrator with the capability to respond to an

attack automatically when it has been detected. Active Real-time RespOnse System

(ARROS) is an active, distributed, adaptive, and real-time Intrusion Response Sys-

tem (IRS) that provides Intrusion Response capabilities to INBOUNDS (Integrated

Network Based Ohio University Network Detective Service), a network-based, real-

time, hierarchical intrusion detection and response system being developed at Ohio

University. ARROS consists of distributed autonomous agents that run at various

different points on the network it protects. Agents communicate with each other

to share information about the network, intrusions, and co-ordinate the response.

Each ARROS agent is a fully functional autonomous unit capable of responding to

intrusions in a distributed fashion. Coupled with priority queuing for ARROS traf-

fic, distributed response capabilities, and time-bound response the ARROS system is

able to provide real-time active Intrusion Response while minimizing adverse effects

to the host network.

Approved:

Shawn D. Ostermann

Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

I am forever indebted to my advisor Dr. Shawn Ostermann and Dr. Brett Tjaden for

giving me the opportunity to join the INBOUNDS Team. I thank Dr. Ostermann for

his guidance, support, encouragement, and patience without which this thesis could

not have been completed.

I thank my committee members Dr. Carl Bruggemann and Dr. Jeff Dill for their

help. I also thank the members of IRG and the INBOUNDS team for their support.

To mom and dad.

5

Table of Contents

Page

Abstract . 3

Acknowledgments . 4

List of Tables . 8

List of Figures . 9

Chapter 1. Introduction . 12

1.1 Intrusion Response Systems . 14

1.2 Organization of Thesis . 15

Chapter 2. Background . 16

2.1 Classification of Intrusion Response Systems 16

2.1.1 Passive Systems . 17

2.1.2 Active Systems . 18

2.2 IPTABLES . 19

2.2.1 Tables . 21

2.2.2 Targets . 22

2.3 HTB Traffic Shaping . 23

2.4 Access Control Lists . 24

2.5 Related Work . 25

2.5.1 Cooperating Security Managers 25

2.5.2 EMERALD . 25

2.5.3 AAIRS . 26

2.5.4 INDRA . 26

2.6 INBOUNDS . 27

6

2.6.1 Existing Architecture . 27

2.6.2 ANDSOM Module . 30

2.6.3 NAID Module . 30

2.6.4 Intrusion Detection Module 30

Chapter 3. New INBOUNDS Architecture . 32

3.1 Enhancements . 32

3.1.1 IPTraceback Marker Module 33

3.1.2 CANDES IDS Module . 34

3.1.3 IPTraceback Tracker Module 34

3.1.4 Decision and Intelligence Module 35

3.1.5 Intrusion Response Module 36

3.2 ARROS Intrusion Response System for INBOUNDS 36

3.2.1 ARROS System Goals . 37

3.2.2 ARROS System Architecture 39

3.2.3 ARROS System Modules . 41

3.2.4 ARROS Communication Protocol 47

3.2.5 ARROS Agent Configuration 48

3.2.6 Communication Between Agents 49

3.2.7 Intelligent Distributed Response 50

Chapter 4. Experimental Results . 53

4.1 Experiment Testbed . 53

4.2 Experimental Results . 55

4.2.1 Discovery Time Tests . 55

4.2.2 Response Time Tests . 58

4.3 Analysis of Results . 69

Chapter 5. Conclusion . 78

5.1 Advantages and Disadvantages . 78

5.2 Future Work . 79

7

Bibliography . 80

Appendix A. ARROS Communication Module Message Formats 83

A.1 Header . 83

A.2 Agent Table Request . 84

A.3 Agent Table Entries . 84

A.4 Remote Intrusion Response Request 85

A.5 Status of Remote Intrusion Response Request 85

A.6 Request Intrusion Tracking . 85

A.7 Path of Intrusion Through the Host Network 85

Appendix B. Response Time of ARROS Agents 89

Appendix C. Scripts used by ARROS to control the Firewall 91

C.1 IPTABLES preparation script. 91

C.2 HTB Traffic Shaping Setup script.. 92

C.3 IPTABLES Modifying Script. 94

8

List of Tables

Table Page

4.1 Testbed Configuration Table . 56

4.2 Agent Discovery Time . 58

4.3 Single Point Local Response Times . 62

4.4 Single Point Remote Response Times . 66

4.5 Multi-Point Response Times . 67

4.6 Broadcast Response Time . 72

A.1 Type field in Header Message Format 84

B.1 Individual Agent Response times during Broadcast Response Tests . . . 90

B.2 Individual Agent Response times during Multi-Point Response Tests . . 90

9

List of Figures

Figure Page

1.1 CERT: Incidents Reported . 13

1.2 Attack Success Rate . 14

2.1 Classification of Intrusion Response Systems 16

2.2 IPTABLES . 20

2.3 HTB Classes . 23

2.4 Existing INBOUNDS Architecture . 29

3.1 New INBOUNDS Architecture . 33

3.2 IPTraceback Marker Module . 34

3.3 IPTraceback Tracker Module . 35

3.4 Decision and Intelligence Module . 36

3.5 Intrusion Response System . 37

3.6 ARROS Data Flow Diagram . 40

3.7 ARROS Communication Module . 41

3.8 Steps in a Typical ARROS Agent Communication 42

10

3.9 Header Message Format . 43

3.10 Message Types . 43

3.11 Data Manager Module . 45

3.12 Rule Builder . 46

3.13 Response Engine . 46

3.14 Tracking the Path of an Intrusion through the Network 51

3.15 Selecting the Response Point . 52

4.1 Test Network . 54

4.2 ARROS Agent Discovery . 57

4.3 Single Point Local Response . 61

4.4 Single Point Local Response: 0% Background Traffic 62

4.5 Single Point Remote Response . 64

4.6 Single Point Remote Response: 0% Background Traffic 65

4.7 Multi-Point Response: 0% Background Traffic - Agent B 68

4.8 Multi-Point Response: 0% Background Traffic - Agent C 69

4.9 Multi-Point Response: 0% Background Traffic - Agent D and E 70

4.10 Multi-Point Response: 0% Background Traffic - Agent F and G 71

4.11 Broadcast Response . 72

11

4.12 Broadcast Response: 0% Background Traffic - Agent B and C 73

4.13 Broadcast Response: 0% Background Traffic - Agent D and E 74

4.14 Broadcast Response: 0% Background Traffic - Agent F and G 75

A.1 Header Message Format . 83

A.2 Firewall Device Information Message Format 85

A.3 Agent Table Entries Message Format . 86

A.4 Intrusion Response Request Message Format 86

A.5 Request Type Field Format . 87

A.6 Intrusion Response Request Status Message Format 87

A.7 Intrusion Track Request Message Format 87

A.8 Intrusion Track Message Format . 88

12

Chapter 1. Introduction

Networks are getting bigger and faster. The Internet consists of 353 million hosts as

of July 2005 [3]. A network that is isolated is safe from intrusions, something that

networks in this information age cannot dream of. Networks almost always connect

to the internet at which point they become vulnerable to intrusions. With networks

getting faster and better, the attacks are also now able to spread faster. On January

25th 2003, the Internet community witnessed the attack of the fastest computer worm

in history, the Sapphire Worm [16], that doubled in size every 8.5 seconds and infected

more than 90 percent of vulnerable hosts on the Internet within 10 minutes.

The number of attacks has increased in the recent years, and has almost doubled

every year for the past five years with 137,529 incidents reported in 2003 [8]. Figure

1.1 shows the growth of attacks from year 1988 to year 2003.

Traditionally the job of detecting intrusions is carried out by humans who go

through system and event logs, which is a time consuming process that is hardly

real-time. By the time the network administrators are aware of the attack, the attack

is well underway or in some cases over. Research by Cohen [13] has shown that the

probability of success of an attack increases with time delay between the start of the

attack and the response. Figure 1.2 shows the increase in the probability of success

of attackers with delay in Intrusion Response (IR).

The increase in number of attacks against networks, cost of intrusions, financial

loss, and loss of data led to the development of Intrusion Detection Systems (IDSs)

that has shifted the job of detecting intrusions from the hands of humans and auto-

mated them. Network Intrusion Detection (ID) is the art and science of monitoring

networks for activity that may jeopardize the security of the infrastructure under

13

Figure 1.1. CERT: Incidents Reported

surveillance [22]. The advent of IDSs reduced drastically the time it took to detect

intrusions, but the job of responding to these intrusions still remained in the hands

of the network administrators. The time it took for the administrators to update the

firewalls was sufficient enough to cause damage to the network.

An IDS reduces the time it takes to detect intrusions but the dependency on

humans for intrusion response forms a bottleneck in the process of IR. The next step

in the fight against intrusions is the Intrusion Response System (IRS).

INBOUNDS is an intrusion detection and response system being developed at

Ohio University. The INBOUNDS system performs intrusion detection by gathering

14

Figure 1.2. Attack Success Rate

network data and analyzing the data for attacks. INBOUNDS detects intrusions

using statistical anomaly detection technique [9], Self Organizing Maps(SOM) [20],

and Bayesian Networks [26]. Based on our experience with a prototype [11] of an

Intrusion Response System (IRS), we have designed ARROS, an Active Real-time

Intrusion RespOnse System to provide IR capabilities to INBOUNDS. This thesis

describes the ARROS architecture and the extensions to the existing INBOUNDS

architecture required to support ARROS and details the working of the ARROS IRS.

1.1 Intrusion Response Systems

An “intrusion” of a resource is defined as “any set of actions that attempt to com-

promise the integrity, confidentiality, or availability of the resource” [21] and computer

intrusion response can be defined as “the process of responding to an intrusion by per-

forming a set of predefined actions”. Thus, the goal of an intrusion response system

is to respond to intrusions with minimal or no human intervention.

15

Traditionally the job of responding to intrusion has been in the hands of humans,

but with hackers using scripts and software to carry out attacks, it is no longer

possible for human response to be fast enough to keep up with the intrusions. This

led to increased interest in Intrusion Response systems in the Computer Security

community.

An Intrusion Response System (IRS) handles the output from the Intrusion De-

tection System (IDS). When the IRS receives an alert from the IDS it formulates a

response based upon the type of attack. Intrusion Response systems are classified

based up the type of response they implement, this classification of IRSs is explained

in detail in Sections 2.1.

1.2 Organization of Thesis

We organize this thesis as follows. In Chapter 1 we talk about the current state

of Intrusion Response and the need for automated IRSs. In Chapter 2 we provide

background information on IRSs, classification of IRSs, related work in the area of

IR Research, describe the current INBOUNDS architecture, and provide information

on tools used by the ARROS agents to implement intrusion response. In Chapter

3 we describe in detail the enhancements to the INBOUNDS architecture, and the

ARROS IRS designed for INBOUNDS. In Chapter 4 we describe our experiences with

the prototype ARROS system and the proposed INBOUNDS architecture, and the

results. In Chapter 5 we present the advantages and disadvantages of the ARROS

system and future work.

16

Chapter 2. Background

In this chapter we classify the different types of Intrusion Response Systems, discuss

the technologies used by the ARROS system to implement intrusion response, related

work, and describe in detail the design, architecture, and working of the existing

INBOUNDS architecture.

2.1 Classification of Intrusion Response Systems

Intrusion Response is a new and fast developing area in the field of Computer

Security. Though research is being carried out in developing these systems there

does not exist a formal way of classifying them. In this section we classify them by

their response to intrusions. Figure 2.1 shows the classification of Intrusion Response

Systems.

INTRUSION RESPONSE SYSTEM

PASSIVE SYSTEMS ACTIVE SYSTEMS

NOTIFICATION SYSTEMS

MANUAL RESPONSE SYSTEMS ASSOCIATION BASED SYSTEMS

EXPERT BASED SYSTEMS

ADAPTIVE SYSTEMS

Figure 2.1. Classification of Intrusion Response Systems

Intrusion Response Systems are classified based on their reaction to intrusions

as Active Intrusion Response Systems and Passive Intrusion Response Systems. A

Passive IRS responds to intrusions either by alerting the system administrator or by

depending on the administrator to approve the response. An Active IRS responds

17

to intrusions by modifying the firewall to terminate the connection(s) or limit its

bandwidth, with minimal or no human intervention. In the following sections we

describe each type of IRS in detail and classify them further into sub-types.

2.1.1 Passive Systems

A passive IRS operates as a notification system. It forwards the details about

the intrusion to the administrator by either displaying an alert or sending it as an

email or text message to a mobile phone or by providing the administrator with a

list of response options to choose from. This allows the administrator to respond

to intrusions manually or by applying the predetermined set of rules to modify the

firewall. This approach makes the job of the administrator easy by offering ready-

made solutions for responding to intrusions. But responding to intrusions still remains

a job for the administrator and this provides a time window of opportunity, from the

time the intrusion is detected to the time when the first response is launched, for the

intruder to carry out the intrusion successfully.

Passive systems are further divided into Notification Systems and Manual Re-

sponse Systems.

2.1.1.1 Notification Systems

Notification systems alert the network administrator when it receives an intrusion

alert from the IDS. The alert can be in the form of an email, text message sent to a cell

phone or an audible alert. The job of analysing the intrusion, formulating the response

and implementing it on the firewall still remains in the hands of the administrator.

The problem with notification type IRS is that the time delay between the intrusion

detection and response still exists. The attack might be over and the damage done

even before the administrator can get to a computer terminal. The response can

take even days if the attack happens over the weekend. Also it takes time for the

administrator to analyse the attack, formulate the response and then update the

firewall, which is a complex task as the response implementation is different for each

type of firewall.

18

2.1.1.2 Manual Response Systems

Manual Response Systems are a step above the notifications systems in their

complexity and use. These systems analyse the alert from the IDS and select the

various types of responses, from a list of pre-programmed responses that can be

implemented for the current intrusion, and present them to the administrator. This is

a step above notification systems and it reduces the time taken by the administrator in

analyzing the IDS alert, formulating the response and implementing it on the firewall.

But the actual job of responding is still the job of the administrator and the delay

from the time of detection to response still exists.

2.1.2 Active Systems

An active IRS responds to detected intrusion by responding with minimal or no

human intervention. This dramatically reduces the time window of opportunity for

the intruder to carry out his misdeeds. Once an intrusion is detected the IRS modifies

the firewall and notifies the administrator about the intrusion and the response that

had been implemented. The administrator then has the ability to reverse the response

in case of false alarms.

Active or Automatic Response Systems are further classified into Association

Based, Expert Based and Adaptive Systems based on how they respond to intru-

sion and their level of intelligence.

2.1.2.1 Association Based Systems

An Association Based IRS is a simple form of IRS that has a type of response

associated with each type of intrusion. Once an intrusion alert is received from the

IDS, it looks up the response associated with it and then implements the response

in the firewall. The drawback of this type of response is that the list of intrusions

and their associated response needs to be kept up to date with every new type of

intrusion and it is easy for the intruder to modify the attack so that the IRS is unable

to respond.

19

2.1.2.2 Expert Based Systems

An Expert Based IRS is a much more complex model and has the ability to make

decisions based on various parameters attached to the intrusion alert. The type of

response can depend on factors such as the severity of the attack, the false-positive

rate of the IDS that generated the alert, and the confidence metric of the IDS that

the intrusion is real. These systems are harder to fool by adapting to the attack and

can respond to unknown intrusion types if other similar intrusions and their responses

are known.

2.1.2.3 Adaptive Systems

Adaptive IRSs are intelligent systems that can learn from past successes and

failures. They have built-in feedback loops that provide a way for them to learn

and correct mistakes. Though these systems are able to learn from past events, the

learning is still controlled by humans who provide the feedback on success and failure

of the response.

2.2 IPTABLES

IPTABLES [17] is a linux based firewalling system that can perform stateless/stateful

packet filtering, network address translation and packet mangling. It is the successor

of IPCHAINS [5] and IPFWADM [4] systems. IPTABLES is a generic table structure

that defines sets of rules that define/classify match network packets and specify the

action to be performed on the matched packet. Several tables of rules exist within

IPTABLES framework and each table contains built-in chains and/or user-defined

chains. When a packet is received it is matched against each of the rules in the table,

sequentially, until a match is found or the end is reached and the corresponding action

associated with the chain is performed. The actions that maybe associated with a

chain are ACCEPT, DROP, QUEUE, or RETURN.

Figure 2.2 shows the order in which the packets traverse the different chains in

IPTables.

20

Network

Routing
Decision

Routing
Decision

LOCAL
PROCESSES

PREROUTING CHAIN

MANGLE

NAT

CONNTRACK

FORWARD CHAIN

FILTER

INPUT CHAIN

FILTER

OUTPUT CHAIN

MANGLE

NAT

FILTER

POST ROUTING CHAIN

NAT

Figure 2.2. IPTABLES

21

2.2.1 Tables

There are currently three built-in tables - Filter, Nat and Mangle.

2.2.1.1 Filter

The FILTER table is used for filtering packets, the packets are either accepted

or dropped by matching them against the rules and by examining their contents.

This is the default table that contains the built-in chains INPUT, OUTPUT and

FORWARD.

• INPUT - For packets coming into the box.

• FORWARD - For packets that are being forwarded through the box.

• OUTPUT - For packets that are generated by the box, going out.

ARROS agents on linux routers utilize the FORWARD chain in the Filter table

to insert rules to respond to intrusion by dropping packets, closing connection, and

blocking intrusions.

2.2.1.2 NAT

The NAT table is used to perform Network Address Translation on packets, i.e.

to alter the packets source and destination fields. The NAT table is traversed only by

packets that creates a new connection, SYN packets and all the consequent packets

from that connection have the same operation performed on them. It contains three

built-in chains: PREROUTING, OUTPUT and POSTROUTING.

• PREROUTING - For altering packets that come in.

• OUTPUT - For altering packets locally generated by the box.

• POSTROUTING - For altering packets before going out of the box.

2.2.1.3 Mangle

The mangle table is a special form of packet alteration. The mangle table is used

to alter values in the packet itself. Some of the values that can be altered by using the

22

mangle table are TOS, TTL, and can also be used to mark the packet with a special

value. It contains the PREROUTING, POSTROUTING, INPUT, FORWARD and

OUTPUT built-in chains.

• INPUT - For packets coming into the box.

• FORWARD - For packets that are routed through the box.

• OUTPUT - For packets locally generated by the box, before routing.

• PREROUTING - For packets, before routing.

• POSTROUTING - For packets that are about to go out.

ARROS agents on linux routers utilize the PREROUTING, and OUTPUT chains

in the MANGLE table to mark ARROS communication traffic so that the commu-

nications between ARROS agents are given priority in router queues. The ARROS

agents also use the PREROUTING, and OUTPUT chains in the MANGLE table to

respond to bandwidth hogging intrusions by marking the packets in the connection

to be throttled back.

2.2.2 Targets

Each firewall rule, in the table, specifies the criteria for the packet and also a

target. If a packet matches a rule then the fate of that packet is decided by the target

specified in that matched rule. The types of targets are ACCEPT, DROP, QUEUE

and RETURN.

• ACCEPT - Lets the packet through.

• DROP - Drops the packet on the floor.

• QUEUE - Passes the packet to the userspace if it is supported by the kernel.

• RETURN - Stops the packet from traversing the chain and returns it to the

calling chain.

23

2.3 HTB Traffic Shaping

Hierarchical Token Bucket (HTB) is a hierarchical class-based link-sharing queuing

discipline written by Martin Devera to replace the Class Based Queuing (CBQ) Qdisc.

HTB is faster than CBQ and is available on a standard Linux kernel beginning from

kernel 2.4.20.

Figure 2.3 shows the HTB classes setup used by the ARROS agents to shape the

traffic on the network.

ROOT 1:

1 : 1
100 mbit
100 mbit

1 : 11
Bandwidth limited traffic

Rate 25 mbit
Ceiling 25 mbit

prio 7
handle 2

1 : 10
ARROS Traffic
Rate 100 mbit

Ceiling 100 mbit
prio 0

handle 1

1 : 12
All Other Traffic
Rate 100 mbit

Ceiling 100 mbit

Figure 2.3. HTB Classes

Some definitions,

QDisc - A QDisc, queueing discipline, is scheduler for arranging or rearranging

packets leaving the interface. FIFO is an example of a simple scheduling model.

Class - A class can exist only inside a classful QDisc and can contain a number of

child classes or a single QDisc.

Filter - Filters contain classifiers that are used to classify/select packets based on

24

certain characteristics and direct the selected packets to a sub-class. Filters can be

attached to a classful QDisc or a class.

Classful Qdisc - A class based QDisc can contain classes to which filters can be

attached.

Token Bucket Filter (TBF) is a queueing discipline that uses tokens and buckets

to shape the traffic on an interface. Each bucket can hold a specified number of tokens

and the bucket is replenished at a given rate. A packet is transmitted only if a token

is available.

HTB consists of a hierarchy of buckets that uses tokens and borrowing models

to provide granular, yet sophisticated ways for controlling the traffic through an

interface. The traffic is shaped in the leaf classes and the inner classes in the hierarchy

and specify the borrowing model. Each class has various parameters attached to it:

• rate - the minimum desired speed, similar to the committed information

• rate (CIR) or the guaranteed bandwidth.

• ceil - the maximum speed allowed

• burst - HTB can dequeue burst bytes before the arrival of more tokens

• quantum - the parameter used to control borrowing

• prio - priority, between 0 and 7, of a leaf class.

2.4 Access Control Lists

CISCO routers implement filtering using Access Control Lists(ACLs) [2]. An

Access Control List is a list of statements, where each statement defines a particular

pattern of IP packets and has a permit or deny rule associated with it, and has to

be associated to a particular interface for Ingress or Egress for filtering. For every

packet that enters the router, the list is scanned top to bottom, in the order that

it was entered, and when a match is found then the packet is permitted or dropped

based on the rule in the matching ACL entry.

25

2.5 Related Work

The concept of Intrusion Response has steadily gained popularity in the field of

Computer Security over the past decade. Past and ongoing research in this area has

led to the development of many interesting approaches with as many as 56 systems

[15] till date. In this section we examine four systems that have goals similar to

ARROS.

2.5.1 Cooperating Security Managers

Cooperating Security Managers (CSM) [25] is a host based Intrusion Detection

and Response System that cooperates with other CSMs in a distributed environment,

without a central controller. CSM takes a proactive approach to intrusion response.

It uses Fisch DC & A taxonomy to classify attacks and response. When an intrusion

is detected, it assigns it a level of suspicion to it and the response is chosen based on

the level assigned to the intrusion. There are eight different response sets used by the

CSM and each response set has one to fourteen different response actions. However

the CSMs do not remember and learn from false positives and negatives, do not have

a measure of the success or failure of the chosen response and do not differentiate

between new and old attacks.

2.5.2 EMERALD

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMER-

ALD) [19] is a distributed misuse and anomaly IDS coupled with a real-time Intrusion

Response system that has been developed for use in a large networks with variety of

components. The architecture comprises of a hierarchy of monitors that receive re-

ports from the analysis components and invokes the corresponding response using the

response handlers. The type of response is based on two metrics, the threshold and

the severity metric. The threshold metric indicates the certainty that the intrusion is

real and not a false positive and the severity metric indicates how severe a response

is required. However the EMERALD monitors do not remember and learn from false

26

positives and negatives, do not have a measure on the success or failure of the chosen

response and do not differentiate between new and old attacks.

2.5.3 AAIRS

Adaptive Agent based Intrusion Response System (AAIRS) [7] is host based In-

trusion Detection and Response System that employs several metrics to determine if

the intrusion is new or an old attack and also remembers and learns from false posi-

tives and the success or failure of a response. The host being protected is monitored

by multiple IDSs. The alerts from the IDSs are converted to a common format by

the Interface Agent that also keeps track of the false positive and negative rate of

each individual IDS. The Interface agent then sends the alert to the Master Analysis

agent along with an attack confidence metric. The Master Analysis agent maintains

an event history list and classifies each intrusion as new or existing attack. If the

attack is an old one the Master Analysis agent send it to the Analysis agent that is

handling the attack, else if it is a new attack then it creates a new Analysis agent that

formulates a response plan. The Analysis agents use the Response Taxonomy agent

to classify attacks, the Policy Specification agent to formulate the response, and the

Response Toolkit to implement the response. However the AAIRS is a host based

system and cannot provide distributed response. Though the system uses an attack

confidence metric that is generated by the Interface Agent, the actual IDS confidence

metric is updated by humans and is not automated.

2.5.4 INDRA

Intrusion Detection and Response Architecture (INDRA) [14] takes a distributed,

P2P approach to intrusion response and can respond proactively or retroactively

to intrusions. When an intrusion is detected by a security daemon it multicasts the

intrusion information to other daemons in the network that implement response based

on that information. The architecture consists of trusted peers that share rumors,

facts and trusted information to guard the network. The INDRA nodes use publish-

subscribe multicast mechanism or rumor spreading models to communicate among

27

themselves. The architecture consists of Watches that look for any suspicious activity

on the host or the network and generate alerts. The Listeners combine all the alerts

from the watchers and send alerts to the Access Controllers that restricts the users

access to the computer that generated the alert. Reporters are used to communicate

with other INDRA nodes. The INDRA nodes have a plug-in feature that allows new

functionalities to be added at runtime.

2.6 INBOUNDS

The INBOUNDS system is designed to detect attacks early and respond at an

appropriate points in the network that prevents further attack propagation. The

goals of the current INBOUNDS are [9]: Run continually, Be fault tolerant, Resist

subversion, Be scalable, Operate with minimal overhead, Be easily configurable, Cope

with changing system behavior, Be difficult to fool with, and Detect never before seen

attacks.

Figure 2.4 shows the existing INBOUNDS architecture diagram. The INBOUNDS

project is currently under development with some of the modules in their early stages

of development. The goal of this section is to present a high-level view of the IN-

BOUNDS system so as to give proper context for the description of the ARROS

System.

The heart of the INBOUNDS system is the Intrusion Detection Engine. This

engine makes the decision on whether the network connection being analyzed looks

normal or if it is anomalous and should be classified as an intrusion.

2.6.1 Existing Architecture

The existing INBOUNDS system gathers raw network data using tools such as

tcpdump [23] and ethereal [1]. It uses a program named TCPurify [10] that trun-

cates the raw packets by removing the data payload beyond the standard IP and

TCP/UDP headers, providing privacy. The ID module detects intrusions using Sta-

tistical Anomaly Detection [9] method and Self Organizing Maps [20]. The current

28

INBOUNDS system implementation can detect intrusions/anomalies in real-time and

respond to the intrusions locally [11].

The current INBOUNDS has successfully implemented the ability to run continu-

ally, be scalable, operate with minimal overhead, easily configurable, and detect never

before seen attacks, from it list of goals. The current INBOUNDS system has two IDS

modules, the SOM module and the NAID module, that are able to detect intrusions

such as Buffer Overflow attacks, HTTP Tunnels, Mail Bombs and P2P file sharing

services. The SOM IDS module uses Self Organizing Maps to detect never before

seen intrusions and has a false positive rate of 1.4%. It is an offline IDS that can be

easily adapted to be a real-time IDS. The NAID module is a real-time IDS module

that uses a Statistical approach to perform both host and network-based intrusion

detection.

Figure 2.4 shows the current INBOUNDS architecture diagram, is based upon

the earlier INBOUNDS architecture [20]. The goal of this section is to provide a

description of the various modules in the existing INBOUNDS system.

2.6.1.1 Data source

The Data Source module provides network data packets as input to the Intrusion

Detection Engine. Each network monitored by INBOUNDS requires a data source

module. The data source captures raw network data, which can typically be done

using tools such as tcpdump [23] and ethereal [1]. However, INBOUNDS uses a

program called TCPurify [10], a packet sniffer program that strips the data payload,

masks the source and destination IP addresses in the IP header and provides only the

needed headers for anomaly detection.

2.6.1.2 Data Processor

The data processor module obtains network data from the data source and pro-

cesses it. The code that performs the processing is present in the INBOUNDS module

[12] for TCPtrace [18]. TCPtrace is a TCP analysis tool that reads network data cap-

tured from a data source and groups the packets into conversations, and analyzes the

29

Data
Processor

Data
Processor

Data
Processor

NAID IDS

ANDSOM
IDS

CANDES
IDS

Intrusion
Detection
Module

Data Store
for previously

classified intrusions

Data
Source

Data
Source

Data
Source

DISPLAY

INTRUSION DETECTION ENGINE

Figure 2.4. Existing INBOUNDS Architecture

individual conversations. The output from the INBOUNDS module are messages

that are used by the intrusion detection module of INBOUNDS. Current IDS mod-

ules of INBOUNDS use three kinds of messages named O, U and C messages. These

messages are reported for each connection captured by the data source.

2.6.1.3 Display

The Display module is used to give a real-time display of the connections in and

out of the network being monitored by INBOUNDS. The program networkgraphserver

has been written for this purpose. This program is written in Java and gives a real-

time picture of the network, with each host in the network being represented by icons

and the connections between hosts indicated by lines between hosts. This module is

a work in progress.

30

2.6.2 ANDSOM Module

The Anomalous Network-traffic Detection with Self-Organizing Maps (ANDSOM)

[20] module uses the Self-Organizing Map algorithm to build profiles of normal net-

work traffic. The profiles built are later used to make a decision on whether a network

connection is normal or anomalous.

2.6.3 NAID Module

The Network Anomaly Intrusion Detection (NAID) module [9] detects anomalies

in real-time. It builds a statistical profile of the services during normal operation and

detects anomalies by comparing the real-time metrics against the stored profiles. The

NAID module uses the following network metrics to build the profile of the services:

1. Interactivity: number of questions during a time interval normalized to 1 second

2. ASOQ: average size of questions during the time interval in bytes

3. ASOA: average size of answers during the time interval in bytes.

4. QAIT: sum of idle question-answer time during the time interval normalized

to 1 second

5. AQIT: sum of idle answer-question time during the time interval normalized

to 1 second

6. NOC: number of connections in the network

The module observes the network metrics on a network level which enables it to

detect abnormalities on a service level such as an email macro virus, which would

be undetectable on a single-host/per-connection level, and also observes the network

metrics on a host level which enables it to detect attacks on a host level such as a

buffer overflow attack, in which the finger daemon exhibits a high level of interactivity.

2.6.4 Intrusion Detection Module

The INBOUNDS system has multiple IDS modules that use different techniques

to detect intrusions. The Intrusion Detection Module receives alerts from the various

IDS modules and corroborate the alerts and generate an IDS alert based on alerts

31

from the past, and the confidence metric of each IDS module. This module is a work

in progress.

32

Chapter 3. New INBOUNDS Architecture

In the fast networks of today, where it takes only a matter of minutes for an attack

to infect all available hosts in the internet, there is a need for a system that will be

able to respond to such an attack as it happens.

Previously the task of ID was performed by humans who went through moun-

tains of raw data and network logs to detect intrusions. But the need for detecting

intrusions in real-time led to the development of IDSs that took the task of ID from

humans and automated them. There is now a similar need in the area of IR where it

is no longer possible for the administrator to respond to intrusion fast enough to be

effective in real-time.

One of the important goals of the new INBOUNDS system is autonomous active

response to intrusion events. This goal requires enhancements to other areas of the

INBOUNDS system such as distributed detection and attack correlation, tracking the

path of an intrusion through the network, and response at a node appropriate to the

type and severity of attack. These additional features are described briefly in the

next section followed by the ARROS intrusion response system in Section 3.2.

3.1 Enhancements

Figure 3.1 shows the new architecture of the INBOUNDS system. This architec-

ture is a work in progress with the various modules in their early stages of develop-

ment. We have developed a prototype for the ARROS system and its communication

protocol and conducted experiments to prove the feasibility of the new INBOUNDS

architecture [11]. In this section we provide a description of the enhancements made

to the INBOUNDS architecture and set the context for the description of the ARROS

IRS.

33

DATA
SOURCE 1 NAID

ANDSOM

CANDES

MS IDS

IDSn

Raw
Network Data

Processed
Network

Data

DISPLAY

Connection
Tracker

AI
MODULE

Intrusion
Alerts

Intrusion
Response
Requests

Firewall
Rules

ARROS
IRS

Connection Tracks

DATA
SOURCE 2

DATA
SOURCE N

Data
Processor

INTRUSION DETECTION ENGINE

IDSs

Firewall
Router

Raw
Network Data

Raw
Network Data

Intrusion
Response Requests

Connection
Tracks

Data
Processor

Data
Processor

Figure 3.1. New INBOUNDS Architecture

3.1.1 IPTraceback Marker Module

The ability to respond at a location other than the location where the intrusion

is detected is possible only if the path of the intrusion through the host network is

known. The path of the intrusion through the host network is traced and is made

available to ARROS agents by the IPTracker module. This module consists of two

sub-modules, the IPTraceback Marker and the IPTraceback Tracker. The IPTrace-

back (IPT) Marker module runs on the border gateways of the host network and

grabs packets as they enter the network. It modifies the packets using the mangle

table of the Linux IPTABLES [17] and turns on the IP Record Route option for SYN,

SYN+ACK and all UDP packets. Figure 3.2 shows the IPTraceback Marker module.

34

Raw
Network
Data

IPTABLES
Packet
Mangler

Modified
Network
Data

Linux ROUTER

Figure 3.2. IPTraceback Marker Module

3.1.2 CANDES IDS Module

CANDES [26], Causal Tree Anomaly-based Network-Based Detection System, is

a new real-time IDS module that uses Bayesian Networks for intrusion detection.

The CANDES module receives information about the connections from the data

processor module. It calculates the confidence interval for each of the connection

parameters, and sets the range for classifying a value as no anomaly, low anomaly,

medium anomaly, and high anomaly. During runtime the connection parameters

are calculated and compared against the values obtained during the learning phase,

and based on this comparison the connection is then assigned one of four values: no

anomaly, low anomaly, medium anomaly, and high anomaly.

3.1.3 IPTraceback Tracker Module

The IPTraceback Tracker module runs on the gateway router of each subnet or at a

location where it has access to all the traffic in the subnet. Alternatively it can receive

network data packets from the Data Source module. The IPTraceback (IPT) Tracker

module grabs the network data packets and looks for packets destined to machines

in the monitored network and have IP Record-route option turned on. It builds a

database that contains the record route information for all active/open connections.

The record route information for a connection is deleted from the database after a

definite amount of time (this time is tunable) after the connection has been closed.

Figure 3.3 shows the IPTraceback Tracker module.

35

Raw/Modified
Network
Data

IPTraceback
Marker
Module

Connection
Tracks

ARROS
Agent

Database

Figure 3.3. IPTraceback Tracker Module

3.1.4 Decision and Intelligence Module

The Decision and Intelligence module is in part the Intrusion Detection Module

in the previous INBOUNDS architecture. This module is a work in progress that will

be designed to perform the following functions:

• Recieve and correlate intrusion alerts from multiple IDSs.

• Calculate the intrusion confidence metric and response severity metric.

• Formulate intrusion response plans.

• Provide an interface for administrators to review and rollback/modify responses.

• Assign confidence metric to IDSs based on past success and false positives/negatives.

• Update IDS confidence metric for each IDS based on the feedback from the

administrator.

• Record intrusion alerts, and the success/failure of the response formulated.

• Learn from the response history to better formulate response plans.

The Decision and Intelligence module consists of the Intelligence Module (IM) and

the Decision Module (DM). The IM receives intrusion alerts from one or more IDSs

36

and gathers any intelligence that can be construed from the alerts of various IDSs

and past intrusion events. The information acquired is used by the DM to reach a

decision on the type of response. The decision is then sent as a request to the ARROS

agent, which implements the response. Figure 3.4 shows the IM and the DM.

Intelligence
Module

Decision
Module

IDS 1

IDS n

ARROS
Agent

Request for
Intrusion

Response

Figure 3.4. Decision and Intelligence Module

3.1.5 Intrusion Response Module

On of the major enhancements to the INBOUNDS architecture is the addition

of an automated intrusion response module. The ARROS intrusion response system

provides IR capabilities to INBOUNDS. The goal of the Intrusion Response module

is to take active response on the connections being perceived as intrusions by IN-

BOUNDS. Some of the response actions against intrusions include: active firewall

blocking of a specific network connection, reduction of priority for that connection or

that class of network connections at the border router, to name a few. The ARROS

intrusion response system is described in Section 3.2.

3.2 ARROS Intrusion Response System for INBOUNDS

The ARROS system provides intrusion response capabilities to INBOUNDS. The

ARROS system architecture is a distributed agent-based architecture that consists of

a number of autonomous ARROS agents running on various different subnets in the

host network that they protect. The ARROS agents communicate with each other to

share intrusion data and co-ordinate the response. ARROS agents receive requests

to respond to intrusions from the DM and other ARROS agents in the network.

37

When an ARROS agent receives a request, it inserts a firewall modifying rule that

blocks/bandwidth-limits the intrusion.

ARROS takes a distributed active approach towards intrusion response. One of

the important goals of the new Inbounds architecture and ARROS is to provide faster

response to the intrusions than what is manually possible. The new architecture is

designed to be distributed, wherein every node has the same capability, intelligence

and can perform independent if the need arises. This ensures that there is no sin-

gle/central point of failure/vulnerability. The communication between the agents is

kept to a minimum, while not compromising performance, so that the system itself

does not load the network or gives the attackers a chance to use it as a means for

mounting a DOS attack.

Figure 3.5 shows the architecture of the ARROS IRS.

ARROS
Agent

ARROS
Agent

Intrusion
Tracker

DM

Firewall

Figure 3.5. Intrusion Response System

3.2.1 ARROS System Goals

ARROS is designed to provide intelligent, distributed, and real-time intrusion

response capabilities to INBOUNDS.

The goals of the ARROS system are

• Real-time response.

• Scalability.

• Ability to rollback responses automatically and manually.

38

• Intelligent goal-oriented response.

• Graceful degradation.

The ARROS architecture has been designed to accommodate all of the above

goals. The current ARROS architecture and the prototype ARROS implementation

is designed to work on a LAN with a few tens of ARROS agents, and isn’t intended

to scale well with a large increase in the number of agents; this is an issue to be

addressed in future implementations using flooding algorithms to improve scalability.

The agents are fully functional autonomous units that are fully capable of respond-

ing to intrusions without depending on other agents or applications. Each agent is

designed to interact with other agents in the network to share information and co-

ordinate response to respond to the intrusion in the best possible way. But if the

agent is not able to communicate with the other agent, it is still able to respond to

the intrusion.

ARROS agents support the following types of responses:

• Bandwidth limit connections

– Locally

– At another point in the network

– At all points along the path of the intrusion through the network

– At all points in the network

• Block limit connections

– Locally

– At another point in the network

– At all points along the path of the intrusion through the network

– At all points in the network

39

3.2.2 ARROS System Architecture

Research in Automated Intrusion Response [24] has shown that for automated

response to be successful it needs to satisfy certain criteria. The automated response

system should be flexible, dynamic, efficient, easy to use, and minimize negative

effects on the host network. These criteria greatly influence the design of the ARROS

IRS, and has the following features:

• Autonomous

• De-centralized

• Be scalable

• Degrade gracefully

• Be fault tolerant

• Adaptable response

The agents consist of five modules, based on their functionality. We provide a

short description of the function of each module and their interactions with each

other. The modules are described in detail in the next section.

• Response Engine - Listens for intrusion response requests from the Decision and

Intelligence Module, and from other ARROS agents.

• Data Manager - Maintains the information about ARROS agents in the network,

and about the responses that are currently implemented in the firewall.

• Timer Module - Tracks the lifetime of each intrusion response.

• Rule Builder - Formulates firewall modifying commands.

• Communication Module - Handles inter-agent communication and communica-

tion with other modules.

40

Figure 3.6 shows the ARROS system modules. When the Decision and Intelligence

module receives an intrusion alert from the IDS, it corroborates the alert with alerts

from other IDSs, past IDS alerts, and the confidence metric of each of the IDS, and

generates a response plan for the intrusion. It then sends the intrusion response plan

to the local ARROS agent as an Intrusion Response Request (IRR). The Response

Server receives the IRR and based on the type of response, it passes the IRR to the

Communication Module to be sent to other ARROS agents or to the Data Manager.

The Data Manager writes the IRR into the database, updates the Timer Module

with the expiration time of the IRR, and then forwards the IRR to the Rule Builder.

The Rule Builder formulates the firewall modifying command and executes it on the

firewall (control point). When the rule expires the Timer Module alerts the Data

Manager and the Rule Builder to delete the intrusion response from the database

and the firewall respectively. If the Rule Builder fails to modify the firewall it uses

the Communication Module to send the IRR to other ARROS agents in the network,

until it finds an agent that is able to respond successfully.

Data
Manager

Response
Engine

Rule
Builder

Communication
Module

Timer

Intelligence Module

Connection
Tracker

ARROS
Agent

Firewall 1

Firewall n

Intrusion
Response

Data

Agent
Data

ARROS AGENT

Figure 3.6. ARROS Data Flow Diagram

41

3.2.3 ARROS System Modules

The ARROS agent is designed to work as an independent entity and to make

use of other distributed ARROS agents when possible, to provide the best type of

response. The agent is made up of five modules. In this section we describe in detail

the working of each module.

3.2.3.1 ARROS Communication Module

Client

Server

Port 9999

ARROS Communication Module

Intrusion Alerts
Request for Response
ARROS Agent Management Messages
Connection Tracks

Request for Response
ARROS Agent Management Messages
Connection Track Request

Figure 3.7. ARROS Communication Module

Figure 3.7 shows the ARROS communication module. The communication module

handles all the inter-agent and intra-agent communications of the agents. It consists

of two sub-modules, the Server and the Client. The server runs on port 9999 and

handles all the incoming connections from the IDS and other ARROS agents. The

client module handles connections to the IPTracker and other ARROS agents.

The communication module uses TCP connections for all its communication pur-

poses. Using UDP as the communication protocol, though certainly reducing the

overheads like three-way handshake, does not provide the reliability required. Us-

ing TCP provides the communication module with the benefit of reliable best effort

connections.

Trust is a very important issue in designing a distributed and automated IRS.

The architecture of the ARROS system and the prototype implementation of the

42

Communication Module do not address the issue of trust. All inter-agent and intra-

agent communications in the prototype ARROS implementation is un-encrypted and

implicitly assumes that all incoming communications are from trusted sources. The

issue of trust and encryption in communications involving distributed agents is be-

yond the scope of this research and many turnkey solutions exist that address this

issue. Some of the possible solutions that can be easily integrated into the ARROS

architecture are:

• Using public and private keys to encrypt all communications.

• Configuring the agents to only accept TCP connections from IP address of

agents that it knows from its agent table entries.

A typical communication exchange involves the sending of a header that tells the

receiver the type and size of the data to follow, followed by the data itself. The

process of communication between the ARROS agents is shown in Figure 3.8. The

smallest communication initiated by an ARROS agent consists of steps 1 and 2, with

optional steps 3 and 4.

Send Header

Send Data

Receive Header

Receive Data

1

2

3

4

Figure 3.8. Steps in a Typical ARROS Agent Communication

43

The header message format is shown in figure 3.9. The type, size, and number

fields indicate the type of the communication/data-transfer being initiated, the size

of the data, and the number of units of data that follow the header.

0 16 31

TYPE

SIZE

NUMBER

Figure 3.9. Header Message Format

There are eight different types of communication that take place in an operational

ARROS agent as shown in Figure 3.10.

IDS
IRS

IPTracker
IRS
IRS
IRS
IRS
IRS

Intrusion alert
Request track

Track
Request response

Request status
Agent table request

Agent table
Agent table update

IRS
IPTracker
IRS
IRS
IRS
IRS
IRS
IRS

Figure 3.10. Message Types

3.2.3.2 Timer Module

The ability of an automated intrusion response system to rollback responses, either

automatically or by human intervention, is important in mitigating loss in the net-

work. The timer module keeps track of the expiration times of the intrusion responses

that are implemented by the agent. With each new response the Timer updates the

44

database. When a response expires the Timer deletes the response from the database

and from the firewall.

3.2.3.3 Data Manager Module

The Data Manager module writes all responses received by the agent into the

database and also keeps track of all the other agents in the network. There are two

data stores that are managed by the data manager module, the rule’s file to save

response information and the agent table file to save the agent’s information.

When the agent receives a new intrusion response request or a new agent table

entry it inserts it into its data structure and also writes it into the date store. Also

when the agent is shutdown the data manager saves all the intrusion information

and the agent table entries into the data store before stopping, ensuring that the

information is not lost.

When the agent is started, the data manager retrieves the intrusion responses,

that have not expired at that time and sends them to the Response Engine to be

reinserted into the firewalls. It also reads the agent table entries from the data store

and rebuilds the agent table for use by the agent to communicate with other agents in

the network. This ensures that the responses are not forgotten due to any conditions

that causes the agent to stop, and also provides the agent with a list of all agents in

the network from its last runtime. Figure 3.11 shows the data manager module.

3.2.3.4 Rule Builder Module

The Rule Builder module receives information about the intrusion and the type

of response to be implemented from the Data Manager module and formulates the

command for modifying the firewall and implements the command on the firewall.

In case of a linux firewall router, running IPTABLES, the rule builder formulates

an IPTABLES command to insert a rule into the FORWARD chain in the IPTABLES

firewall. The prototype ARROS IRS has the ability to kill or limit the throughput of

TCP connections.

If the firewall is a CISCO router, the rule builder formulates an ACL (Access

45

Intrusion and Response
Information
Data Store

Agent
Information
Data Store

Data Manager

Realtime Agent,
Intrusion, and Response

Information Data Structure

Response
Engine

Response
Information

Agent
Information

Communication
Module

Agent
Information

Figure 3.11. Data Manager Module

Control List) entry to be applied to the corresponding interface on the router and

then connects to the router and executes the command in the router. Figure 3.12

shows the Rule Builder module.

3.2.3.5 Response Engine

The Response Engine is the core of the ARROS agent that ties together the var-

ious module in the ARROS agent. Figure 3.13 shows the Response Engine. The

Response engine is responsible for correlating the path of the intrusion received from

the IPTracker and the list of known ARROS agents in the network and their capabil-

ities to choose the best suited response point. If there is a failure in the response the

Response Engine chooses the next best response point and works through the list of

all possible response points until it finds an agent that is successful in responding to

the intrusion.

46

Rule
Builder

IPTABLES
Syntax

ACL
Syntax

Response
Engine

IPTABLES
Script

Communication
Module

IPTABLES
Firewall

CISCO
Firewall

Figure 3.12. Rule Builder

Response
Engine

Data
Manager

Timer

Rule
Builder

Communication
Module

Firewall

ARROS
Agents

Figure 3.13. Response Engine

47

3.2.4 ARROS Communication Protocol

The ARROS agents run at various different points in the host network and com-

municate amongst themselves to share information about the network, about the

intrusions, and co-ordinate the response to intrusion to ensure that the response has

minimal adverse impact on the host network. The agents communicate using a sim-

ple communication protocol that involves exchange of their agent tables, similar to

routers exchanging routing tables. The agents share information about themselves

by sharing their Agent Table entries. Each ARROS agent has an entry in the agent

table with the following information:

• agent identifier

• agent IP

• agent’s subnet IP and mask

• list of firewalls the agent controls and their type and capabilities

• extended control (boolean)

• if extended control == true

– list of firewall IP, firewall type, network IP and mask, firewall capabilities

When a new agent is started in the network it connects to its neighbouring agent

and requests the Agent Table entries. When it receives the agent table entries it

contacts all agents in the list and shares its information with them.

When an agent sends a request for intrusion response to another agent in the

network, it sends the intrusion information to the other agent. The receiving agent

processes the request and responds with a success/failure message.

In both types of communication the actual data is preceded by a standard header

3.9 that informs the recipient about the type and size of the data to follow.

48

3.2.5 ARROS Agent Configuration

Each ARROS agent has the capability to operate autonomously when it is alone

in the network. But when the agent runs in a network along with other distributed

agents, the agents exchange information about intrusions and their subnet. The

agents work together to coordinate the response to intrusions. When a new agent,

say agent A, is started, it is provided with the id and the IP of one other agent, its

neighbour, say agent B, that is already a part of the ARROS agent network. Agent

B provides information about the other agents that are in the network. Agent A then

connects to agent B and other agents in the list and exchange information about the

network. When there is a change in an agents agent-table, the updated information

is shared with all the other agents. This ensures that within a short period of time all

agents learn about any changes to the agent network without using periodic updates

via multi-cast or broadcast which is an unnecessary overhead.

The use of a neighbour agent to assist a new agent in the process of discovery

raises the issue of race conditions. There exists the possibility of two new agents

being started at the same time in the network which leads to a situation where the

two new agents discover all the other agents in the network except each other. For

example, let us assume that there exist three agents E1, E2, and E3 in the network

and two new agents N1 and N2 are started at the same time with neighbours as E1

and E2 respectively.

• Both agents N1 and N2 contact their respective neigbouring agents E1 and E2

to request information about other agents in the network.

• Both agents N1 and N2 recieve the list containing information about E1, E2,

and E3.

• The agent N1 does not recieve information about agent N2 from agent E1 since

agent E1 is not aware of agent N2 yet. Similarly agent N2 is unaware of agent

N1.

49

• when agents N1 and N2 recieve the information about other agents in the net-

work they connect to the agents and exchange information.

At the end of the discovery process it can be seen that while the existing agents

(E1, E2, and E3) become aware of the two new agents (N1 and N2) in the network,

the new agents N1 and N2 do not have information about each other and will re-

main unaware of the other agents existance. This race condition can be avoided by

configuring the agents to go through a two-stage discovery process in which the new

agents connect to their neighbour agent, after the initial discovery is over, and request

an agent table update. When the new agent N1 connects to its neighbour after the

initial discovery it will receive an update with information about the other agent N2,

thus avoiding the effects of the race condition.

3.2.6 Communication Between Agents

An ARROS agent can communicate with other agents in the network to share

information about their network, information about any changes in the network, and

request the other agent to respond to an intrusion. The different types of communi-

cations possible between agents are,

• 1 to 1

• 1 to many

• Broadcast

An agent can use one of the above modes of communication depending upon the

type of action required. For example,

• agent A can request (1 to 1) agent B to block a certain connection

• agent A can request (1 to many) the agents that are on the border of the

organizational network to block all connections to respond to a DDOS attack

• agent A can request (broadcast) all agents to block all traffic from/to a partic-

ular port to stop the spread of a worm or virus through the network.

50

3.2.7 Intelligent Distributed Response

The following scenario illustrates the need for responding to intrusions at a dif-

ferent node in the network:

When the intrusion is of the type that is utilizing much of the bandwidth, it is best

to block the connection, by dropping all packets, as close to the source as possible. If

the response is not close to the source, at A, then the connection continues to utilize

the network resources of the host network until it reaches the victim machine, at J,

where the packets are eventually dropped. This means that the network resources are

being spent on routing packets through the network that are eventually going to be

dropped. The agents decide on the point of response by combining the information

from the IP traceback module and the information it has about other agents in the

network.

Let us consider the example network, depicted in figure 3.14, which is six levels

deep, with fourteen subnets A through N. Connection to the outside world is through

subnet A. The attacker is in the outside world and the victim machine is on subnet

J.

The subnets that have firewalls that are controlled by ARROS agents in the net-

work are marked with an asterisk (*), which are subnets A, B, C, F, H, J, L, M, and

N. The path of the intrusion from the attacker to the victim machine takes the path

through subnets A-B-D-F-I-H-J. If the flow of traffic that occupies the bandwidth is

from the victim to the attacker then the decision is to implement the rule locally. But

if the flow of the bandwidth hogging traffic is from the attacker to the victim then

the best place to block the intrusion and start dropping packets is at control-point A.

The agent arrives at this decision by analyzing the intrusion information, the type of

response required, the effect of the intrusions and the response on the network and

the response capability of itself and the other agents in the network. Once the agent

receives a request for response from the Decision Module, it analyzes the request and

tries to choose the best control-point. It requests the path of the intrusion from the

51

A*L*K

M*

N*

C*

B*

D

E

F* G

H*

J*

I

THE INTERNET

ATTACKER

VICTIM

HOST NETWORK

Path of the intrusion

Figure 3.14. Tracking the Path of an Intrusion through the Network

connection tracking module and correlates that information with its peer agents table

to get control-points along the path of the intrusion where response is possible. This

procedure is shown diagrammatically in figure 3.15.

Now that the agent has all the possible control points , it can choose the best

control point, or control points, based on the type of response, and the capabilities

of the control point firewall. In this particular example it decides to implement the

rule at A which is the closest point to the attacker where the agent has response

capabilities. The agent can also:

• Request all the agents in the path to respond

52

A
B
C
F
H
J
L
M
N

A
B
D
F
I
H
J

A
B
F
H
J

Control
points
in the

network
where

response
is

possible

Path of
the

intrusion
through

the
network

Control Points
along the
path of

the intrusion
where response

is possible.

Figure 3.15. Selecting the Response Point

• Start working its way through the agent list in the specified order until it finds

an agent that successfully blocks the connection.

• If it fails to find an appropriate response the agent implements the rule locally.

53

Chapter 4. Experimental Results

As described in Chapter 3, the ARROS agents provide automated IR capabilities to

INBOUNDS. The agents network with each other during the discovery phase and

share information about the network with each other. Agents also share information

about intrusions and co-ordinate responses to the intrusions to provide distributed

and intelligent response. The goals of the experiments were to test the ability of the

ARROS agent’s to successfully discover and network with other agents in the network,

respond to intrusions locally, respond to intrusions in more than one location, and

the ability to the system to perform these functions under stress. A test network

was setup to run multiple ARROS agents to study the discovery times and response

times of the agents under different network conditions. In this chapter, we present

the results of our experiments with the prototype ARROS system.

4.1 Experiment Testbed

A test network consisting of eight computers was setup in a simple bus topol-

ogy, as shown in Figure 4.1, using private IP addresses. Normal network usage was

simulated by injecting packets into the test network using a packet generating tool.

Traffic generation tool MGEN [6] was used to inject packets into the test network

to simulate normal network utilization. Multi-Generator (MGEN)is an open-source

software developed by the Naval Research Laboratory (NRL). MGEN was setup to

inject packets into the network at a set rate to load the network with the required

amount of background traffic.

The testbed consists of eight machines running Fedora Core 3, Linux version 2.6.9,

on seven subnets. The hardware configuration of the computers used in the testbed

is listed in Table 4.1. The six computers, labeled B through G, function as gateway

54

ATTACKER
10.10.1.1

HOST NAME: A

HOST NAME: H
192.168.6.253

THE
INTERNET

HOST NAME : B
Linux Firewall Router
ETH0 - 10.10.1.254
ETH1 - 192.168.1.254
AGENT IP - 192.168.1.254

HOST NAME : C
Linux FIrewall Router
ETH0 - 192.168.1.253
ETH1 - 192.168.2.254
AGENT IP - 192.168.2.254

HOST NAME : D
Linux Firewall Router
ETH0 - 192.168.2.253
ETH1 - 192.168.3.254
AGENT IP - 192.168.3.254

HOST NAME : E
Linux Firewall Router
ETH0 - 192.168.3.253
ETH1 - 192.168.4.254
AGENT IP - 192.168.4.254

HOST NAME : F
Linux Firewall Router
ETH0 - 192.168.4.253
ETH1 - 192.168.5.254
AGENT IP - 192.168.5.254

HOST NAME : G
Linux Firewall Router
ETH0 - 192.168.5.253
ETH1 - 192.168.6.254
AGENT IP - 192.168.6.254

eth0

eth1eth0

eth0

eth0 eth0

eth0

eth1

eth1
eth1

eth1

eth1

Figure 4.1. Test Network

55

routers for their respective subnets, and computer A functions as the attacker and

computer H as the victim.

4.2 Experimental Results

The experiments were conducted to test the performance of the new INBOUNDS

architecture and the ARROS agents and their ability to respond to intrusions in real-

time, cope with failures in the network, cope with traffic congestions, speedy discovery

of other agents, and provide distributed response.

The experiments are grouped into two categories, Discovery Time Tests and Re-

sponse Time Tests. In the following sections we describe each type of experiment in

detail, present the results of the tests, and follow them up with our analysis of the

outcome.

4.2.1 Discovery Time Tests

The experiment is designed to measure the time taken by the agents in the network

to learn about the existence of a new agent added to the network. When a new agent

is started in a network where there already exist other ARROS agents, the new agent

needs to gather information about the existing agents such as IP address, subnet

information, the control points, and their capabilities. Similarly the agents in the

network have to receive the same information about the new agent in the network so

that the new ARROS agent becomes a part of the ARROS Agent network for sharing

intrusion information and sharing response.

When a new agent is started in the network and there exist other agents in the

network, then the new agent is given the IP address of one of the existing agents in

the network. Without this one IP address the new agent is unable to discover the

existing agents in the network and vice versa. When the new agent is started, and

provided with an IP address of one other existing agent (neighbour) in the network, it

immediately connects to the neighbour and requests the neighbour’s copy of the agent

table. Once the new agent has the neighbours agent table, it adds the information

to its agent table and sends its own information to each of the agents in the table.

56

Table 4.1
Testbed Configuration Table

Name CPU Memory Kernel Version Interfaces IP

A Pentium Celeron 128M 2.6.9 eth0 10.10.1.1

566Mhz

B Pentium Celeron 128M 2.6.9 eth0 10.10.1.254

566MHz eth1 192.168.1.254

C Pentium Celeron 128M 2.6.9 eth0 192.168.1.253

566MHz eth1 192.168.2.254

D Pentium Celeron 128M 2.6.9 eth0 192.168.2.253

566MHz eth1 192.168.3.254

E Pentium Celeron 128M 2.6.9 eth0 192.168.3.253

566MHz eth1 192.168.4.254

F Pentium Celeron 128M 2.6.9 eth0 192.168.4.253

566MHz eth1 192.168.5.254

G Pentium Celeron 128M 2.6.9 eth0 192.168.5.253

566MHz eth1 192.168.6.254

H Pentium Celeron 128M 2.6.9 eth1 192.168.6.253

566MHz

57

The tests were conducted with varying loads on the network, ranging from 0 percent

network usage to 40, 70, and 95 percent network load.

AGENT : B

AGENT : C

AGENT : D
AGENT : E

AGENT : F

AGENT : G
NEW AGENT

1

2

3

1. New agent request’s
 "Agent Table" from neighbouring agent.
2. The neighbouring sends
 "Agent Table" to the new agent
3. New agent contacts all agents to
 introduce itself.

Figure 4.2. ARROS Agent Discovery

The following steps are performed under different network loads, as shown in

Figure 4.2:

• MGEN is started on machine A, and a stream of UDP packets are sent to

machine H to load the network to the required level.

• The ARROS agents are started on all the routers B, C, D, E, F, and G, in that

order.

The log messages are analysed and the times taken by the ARROS agents to

discover the new agent in the network are listed in Table 4.2. The time taken for

58

Table 4.2
Agent Discovery Time

Network Load Average Time MIN MAX Standard Deviation

0% 0.366 s 0.317 s 0.419 s 0.028 s

40% 0.528 s 0.476 s 0.565 s 0.022 s

70% 0.816 s 0.717 s 0.857 s 0.036 s

95% 1.144 s 0.978 s 1.236 s 0.061 s

discovery is calculated as the average of the discovery time for each agent where

the discovery time is defined as the time difference between the time a new agent is

started and the time an existing agent in the network receives information about the

new agent. In each experiment, new agents are started, one after another, and the

time delay between the starting of the new agent and the time each existing agent in

the network becomes aware of the new agent is recorded and the average of all the

discovery times is calculated.

It can been seen from Table 4.2 that the Discovery Time for the agents is less

then 1 second, even when the network is loaded. The times listed in the table are

inclusive of the time taken by the log messages to be sent from each ARROS agent

to the Log Server that was setup up record the log messages, and hence are larger

than the actual time it took for the agents to complete discovery.

4.2.2 Response Time Tests

The Response Time of the ARROS agents is an important factor that influences

how successful the response is. The ability of the automated response to be imple-

mented quickly is important in preventing the spread of fast attacks like the Sapphire

worm [16]. The Response Time Test is designed to test the speed of response, the

time from when the intrusion in detected by the IDS to the time when the response is

59

implemented, and the ability of the ARROS system to provide distributed response.

The tests are repeated under various network loads ranging from the total absence of

network traffic to 40 percent, 70 percent, and 95 percent network utilization. During

the course of each experiment the ARROS agent were tested for speed of response

and tolerance to network failures. At certain points in time the agents in the network

were disabled from responding to attacks to simulate the possibility of breakdown in

the network due to failures that are inherent in networks, and the performance of the

agent under these conditions and the ability to cope with the failures and the time

to implement alternative responses was observed.

Four types of tests were conducted in this category:

• Single Point Local Response

• Single Point Remote Response

• Multi-point Response

• Broadcast Response

In the following sections we describe each type of experiment, the setup, and the

analysis of the test results.

4.2.2.1 Single Point Local Response

When the intrusion is a single connection or multiple connections that requires

the ARROS agent to respond by simply killing the connection and block it, the agent

responds by simply modifying the firewall to kill the connection and block it. This

kind of a simple response is used by the ARROS agents as a failsafe when distributed

and remote responses fail.

In this response scenario, the response is implemented at the point of detection,

locally, and only at that point. This type of a response is the best response in cases

that involve a single intrusion connection. The response can be as simple as logging

the connection or just killing the connection and preventing similar connection for

60

the specified time period. Since the connection is either logged or terminated there

is no need for distributed response or remote response since the connection is either

logged or terminated.

The traffic generator, MGEN, is started on machine A and the traffic sink on

machine H. ARROS agents are started on all the subnet gateway routers B, C, D,

E, F, and G. After the agents discover themselves and the background traffic in the

network was at the desired level, a simulated attack connection is made from machine

A to machine H. Once the simulated attack connection is established an IDS alert is

sent to the ARROS agent on the local gateway machine G requesting response. The

time duration between the alert and the implementation of the response is observed

and recorded.

In the second part of the test, once the simulated intrusion connection is estab-

lished the response capability of the agent on G is disabled to simulate a breakdown

in the system. The time taken by the ARROS agent to analyse, formulate and im-

plement the response at an alternate location is observed and recorded. In this case

the ARROS agent contacted each agent along the part of the intrusion, one by one,

starting from the one closest to the victim and proceeding towards the attack source,

until it was able to connect to an agent, agent F, that was able to respond to the

intrusion.

Figure 4.3 shows the testbed setup, the location of the attacker, victim, the path

of the intrusion through the network, the response point, and the process of intrusion

response. The traffic generator was modified to generate background traffic up to 40,

70 and 95 percent of the network bandwidth, and in each case the test is carried out

and the results recorded. The response times from the tests are tabulated in Table

4.3 and the throughput graph of the intrusion connection is shown in Figure 4.4.

Figure 4.4 shows the effect of the response on the intrusion connection. The agent

responds to the intrusion by inserting a rule into the firewall to block the connection

for 30 seconds. After the response expires the agent rolls back the response to the

61

2

ATTACKER VICTIM

1

3

1. Attacker establishes connection
 to victim machine.
2. IDS on victim machine detects
 intrusion and sends IR request to
 local ARROS Agent.
3. ARROS Agent terminates connection.

AGENT : B

AGENT : C

AGENT : D

AGENT : F

AGENT : GINTERNET

AGENT : E

Figure 4.3. Single Point Local Response

intrusion connection which, at which point the connection resumes. The effectiveness

of the ARROS IRS, in blocking the intrusion connection locally, is shown in Figure 4.4

which confirms that the intrusion connection is blocked from the time the intrusion

response is requested and after the lifetime of the response, when the response is

rolled back, the block is removed. It is clear from the figure that the agents are able

to block connections locally for a given time period quickly, and without affecting

other legitimate traffic.

62

Figure 4.4. Single Point Local Response: 0% Background Traffic

Table 4.3
Single Point Local Response Times

Network Load (%) Response Time (seconds)

0 0.006

40 0.009

70 0.012

95 0.016

63

4.2.2.2 Single Point Remote Response

Single point remote response is the type of response that is implemented at a

single point, but is at a location that is not on the same subnet the victim is at or the

subnet where the intrusion is detected. This type of response is typical for intrusion

that consume the bandwidth, like file sharing. Also in some cases it is not possible

to terminate certain types of traffic since it includes legitimate traffic. But a failure

to respond leads to network congestion and failure. In such cases the response is to

shape the traffic, limit its bandwidth, so that the network is no longer overloaded.

A good example of this would be a situation where there is an email virus that is

spreading, blocking all email traffic would affect legitimate email traffic while not

responding to the threat might overload the network and disrupt other traffic. So in

this case the most appropriate response would be to limit the bandwidth for email

traffic.

Since the intrusion involves the use of network resources, the response to it is

to limit the bandwidth, by dropping packets at set a rate. If the point of response

is local, close to the victim, the packets would get dropped at the victim’s subnet,

after they have passed through the host network and used up its resources till that

point. In this case the right point of response would be to start dropping the packets,

limit its bandwidth, as soon as they come within the host network. So the point of

response should be as close to the attack source as possible.

In this experiment the agents were started on all the subnets, and background

traffic is generated to simulate required network utilization.

Once the agents are started and had discovered each other, a simulated bandwidth

attack connection is made from machine A to machine H. Once the attack traffic starts

to hog the bandwidth, an alert is sent to the agent on machine G, as shown in Figure

4.5. The time, including any network congestion delay, it took the agent on machine

G to contact the agent closest to the source of the attack, machine B, to respond

to the attack by limiting the bandwidth of the attack connection, is observed and

64

2

ATTACKER VICTIM

1

3

1. Attacker establishes connection
 to victim machine.
2. IDS on victim machine detects
 intrusion and sends IR request to
 local ARROS Agent.
3. Local ARROS agent, Agent G, contacts
 the Agent closest to source, Agent B,
 to respond.
3. Agent B bandwidth-limits connection.

4

AGENT : B

AGENT : C

AGENT : D

AGENT : F

AGENT : G
INTERNET

AGENT : E

Figure 4.5. Single Point Remote Response

recorded. The changes in the network bandwidth usage, by the attack connection, is

logged downstream on machine H. The Figure 4.6 shows a intrusion connection that

is consuming the bandwidth in the network at which point it becomes an undesirable

connection, a possible attack and an alert is sent to the agent to respond to the attack

by shaping its traffic. The rule is inserted into the firewall to throttle the bandwidth

of the connection, and the attack connections bandwidth is successfully throttled,

shown by the drop in throughput of the intrusion connection in Figure 4.6.

65

Figure 4.6. Single Point Remote Response: 0% Background Traffic

4.2.2.3 Multi-point Response

A multi-point response is required when only a few select agents are required to

respond to the intrusion. An example of this type of response would be an response

by:

• Agents along the path of the intrusion.

• All border router agents, in case of a DDOS.

• Only agent capable of a particular type of response, like traffic shaping.

66

Table 4.4
Single Point Remote Response Times: The graphs shows the successful
blocking of the intrusion connection for the set time period, and the suc-
cessful rollback of the response after its expiration

Network Load (%) Response Time (seconds)

0 0.023

40 0.037

70 0.046

95 0.130

When the agent decides to implement a multi-point response, it refers to its agent

cache and selects agents that meet the response criteria and contacts the agents to

request them to respond to the intrusion. This is different from Broadcast Response,

discussed in Section 4.2.2.4, where the ARROS agent contacts all agents it is aware

of.

In this test the traffic generator, MGEN, is started on machine A and is run until

the background traffic was at the required level. Simulated intrusion connections were

made from machine A and B to the victim machine H. Similar connections were also

made from machines C, D, E, and F to machine H to simulate legitimate connections

that are similar to the intrusion connection. The purpose of the test was to show

that the agents are able to provide multi-point response, based on the given criteria,

so that they are able to respond to the intrusion at specific points in the network to

block intrusions without disrupting similar looking legitimate connections.

In this experiment the traffic generator, MGEN, is started on machine A and the

traffic sink is started on machine H. All the agents are started and a simulated attack

connection is made from machine A to machine H. An alert is sent to the agent on

machine G requesting it to implement a multi-point response using agents B and C.

67

Table 4.5
Multi-Point Response Times

Network Load Average Time MIN MAX Standard Deviation

0% 0.083 s 0.037 s 0.128 s 0.064 s

40% 0.085 s 0.051 s 0.120 s 0.049 s

70% 0.133 s 0.081 s 0.185 s 0.074 s

95% 0.295 s 0.198 s 0.392 s 0.137 s

The time taken by the select agents to implement response is observed and recorded.

The throughput graphs of all the connections is shown in Figures 4.7, 4.8, 4.9, and

4.10. It can be seen from the figures that the connections from machines A and B

are blocked by the ARROS agents and the rest of the connections are unaffected.

4.2.2.4 Broadcast Response

When an intrusion is deemed to be highly destructive, the response needs to be

fast, widespread and restrictive to stop it from further spreading. A good example

of one such incident would be the SQL Slammer worm that spread itself from one

machine to another and infected all available machines in the world, in a matter of

minutes. If such a worm were detected on the host network, the agent initiating the

response would start a broadcast response request to all the agents in the network to

block the worm, thereby containing the damage to the already infected subnets and

stopping its spread to other subnets and the internet, and preventing anymore worm

traffic from entering the network.

A broadcast response, as the name implies, involves the initiating ARROS agent

sending requests for response to all the agents in the host network. Though the

response does not involve any intelligent by the agent, in terms of exploring other

68

Figure 4.7. Multi-Point Response: 0% Background Traffic - Agent B: The
connection from machine A, flagged as an intrusion, is successfully blocked
by ARROS agent B

available response options, it still is the most effective and restrictive response to

certain kinds of intrusions that are fast and highly destructive.

In this experiment all the ARROS agents are started, and the traffic generator,

MGEN, is started on machine A and is set to generate varying amounts of traffic

ranging from no traffic to 40, 70, and 95 percent of the total network bandwidth.

Once the agents discovered themselves, an alert is sent to the agent on machine G to

implement a Broadcast response, as shown in Figure 4.11. The time from the instant

the agent received the alert, to the instant when all the agents on the network had

successfully responded to the attack is observed and recorded. The test was carried

out under varying network loads to observe the effect, if any, of network congestion

on the response system. The response times are listed in Table 4.6. The throughput

69

Figure 4.8. Multi-Point Response: 0% Background Traffic - Agent C: The
connection from machine B that is flagged as an intrusion is successfully
blocked by ARROS agent C

graph of all the intrusion connections is shown in Figures 4.12, 4.13, and 4.14, which

shows the successful blocking of the intrusion connections by all the agents.

4.3 Analysis of Results

As described in Section 4.2 the new INBOUNDS architecture and the ARROS

IRS prototype were run on a test-bed as a proof of concept and the time taken by the

system to successfully respond to intrusions under varying network loads recorded.

The tests with the prototype ARROS system and the new architecture show that

the new architecture and the ARROS system is able to:

• Respond quickly.

• Respond in multiple locations, distributed response.

70

Figure 4.9. Multi-Point Response: 0% Background Traffic - Agent D and
E: The connection from machines C and D that are legitimate connections,
remain unaffected by the Multi-Point response

71

Figure 4.10. Multi-Point Response: 0% Background Traffic - Agent F and
G: The connection from machines E and F that are legitimate connections,
remain unaffected by the Multi-Point response

72

AGENT : B

AGENT : C

AGENT : D AGENT : E

AGENT : F

AGENT : G
3

INTERNET

ATTACKER VICTIM

1. Attacker establishes connection
 to victim machine.
2. IDS on victim machine detects
 intrusion and sends IR request
 to local ARROS Agent.
3. ARROS Agent terminates
 connection and requests all
 ARROS agents to respond.
4. All Agents respond to the
 intrusion and prevent the
 attack from spreading.

1

2

Figure 4.11. Broadcast Response

Table 4.6
Broadcast Response Time

Network Load Average Time MIN MAX Standard Deviation

0% 0.092 s 0.005 s 0.182 s 0.066 s

40% 0.156 s 0.014 s 0.305 s 0.108 s

70% 0.259 s 0.020 s 0.489 s 0.176 s

95% 0.327 s 0.022 s 0.733 s 0.265 s

73

Figure 4.12. Broadcast Response: 0% Background Traffic - Agent B
and C: The intrusion connections from machine A and B are successfully
blocked by agents B and C

74

Figure 4.13. Broadcast Response: 0% Background Traffic - Agent D
and E: The intrusion connections from machine C and D are successfully
blocked by agents D and E

75

Figure 4.14. Broadcast Response: 0% Background Traffic - Agent F
and G: The intrusion connections from machine E and F are successfully
blocked by agents F and G

76

• Rollback responses automatically.

• Recover from and adapt to failures in response.

From Table 4.2 it is evident that the discovery time required by ARROS agents

is, on average, less than 1 second even under overloaded network conditions. This is a

important factor in deciding how effective a response is in stopping the intrusion. The

time taken by agents to communicate with each other is reduced by using priority

queueing, which ensures that the agents are able to network with new agents and

provide fast response.

The response times of the agents listed in Table 4.3, Table 4.4, Table 4.5, and

Table 4.6 for each type of test conducted. The ability of the IRS to respond quickly

to intrusions is important as it reduces the time gap available to the intruder to carry

out the attack. It is evident from the tests that the ARROS agents are able to provide

response times in the order of microseconds even when the network is under load. In

each of the throughput graphs it is seen that the agents are successful in blocking the

connection and shaping it bandwidth. The agents are also successful is rolling back

the response after the stipulated period of time.

The agents respond to intrusions in a time sensitive manner to alleviate any ad-

verse effects to the host network due to false positives. One of the biggest drawbacks

of automated intrusion response is the ability of the intruder to use the IRS to turn

off legitimate traffic , DOS attack, thereby using the IRS itself to mount attacks. But

the default behavior of the ARROS system is to give the intrusion responses a definite

lifetime, once the lifetime of a particular intrusion response is over the response in

rolled back. This behavior of the ARROS agent ensures that false positives do not

affect the host network over long periods of time and keeps the firewall ruleset from

bloating while discouraging script-kiddies and casual hackers who loses interest after

a few attempts to hack the network.

In each of the experiments, when a failure was introduced in the response, the

77

agents were able to recover from and adapt to the failure in response and were able

to implement the response at an alternate location.

78

Chapter 5. Conclusion

In this chapter, we present a summary of the design and operation of the new IN-

BOUNDS architecture and the ARROS system, its strengths and weaknesses, and

follow it up with recommendations for future work.

The ARROS IRS and the proposed architecture provide distributed intrusion de-

tection and response by using multiple intrusion response agents at various different

point in the host network. The the IDS, IRS, and the Intrusion Tracker work together

to detect the intrusion, track its path through the host network and respond to the

intrusion by terminating the connection or by limiting its bandwidth. Experiments

with the new INBOUNDS architecture and the ARROS system has shown that the

agents are able to:

• Respond quickly.

• Respond in multiple locations, distributed response.

• Automatic Rollback ability.

• Recover from and adapt to failures in response.

5.1 Advantages and Disadvantages

The ARROS IRS for INBOUNDS is able to respond successfully to intrusion in

less than 1 second from the time the intrusion is detected. The agents also rollback

the firewall changes once the response time expires, thereby keeping the firewall from

bloating and reducing network traffic disruption times due to false positives. The

ARROS agents also communicate with each other and the Intelligence Module to

exchange information on success/failure of responses which provides feedback to the

79

Intelligence Module to improve future responses. The “Intelligence Module” still

depends on the administrator to report false positives. The agents require initial

setup to be able to discover existing agents in the host network, and if the agent is

unable to communicate with its specified neighbour-agent during the start-up phase

then it is cut-off from the rest of the ARROS agents.

5.2 Future Work

The current implementation of the ARROS IRS is a proof of concept and does not

include a robust firewalling mechanism. Also the system currently lacks a working

“Intelligence Module”. It will be interesting to test the system with an “Intelligence

Module” in place that will be able to correlate IDS real-time alerts from multiple

IDSs, past IDS alerts, and IDS confidence metrics to generate a high-level intrusion

response scenario that can be implemented by the ARROS IRS.

80

Bibliography

[1] Ethereal. http://www.ethereal.com.

[2] Access Control Lists: Overview and Guidelines.
Cisco Access Control List Documentaion.

[3] Internet Domain Survey 2003, Internet Software Consortium.
http://www.isc.org/ds.

[4] IPFWADM Project. ftp://ftp.xos.nl/pub/linux/ipfwadm/ .

[5] Linux IP Firewalling Chains. http://www.netfilter.org/ipchains .

[6] MGEN: The Multi-Generator Toolset. http://mgen.pf.itd.nrl.navy.mil/ .

[7] AAIRS: An Intrusion Response Taxonomy and its Role in Automatic Intrusion
Response. In Proceedings of the 2000 IEEE Workshop on Information
Assurance and Security (United States Military Academy, West Point, NY,
2000).

[8] CERT/CC Statistics, CERT Coordination Center, 2003.
http://www.cert.org/stats/ .

[9] Balupari, R. Real-Time Network-Based Anomaly Intrusion Detection.
Master’s thesis, Ohio University, Mar. 2002.
http://portal.acm.org/citation.cfm?id=903866.903869 .

[10] Blanton, E. Tcpurify: TCP Packet Sniffer, Sept. 2002.
http://irg.cs.ohiou.edu/~eblanton/tcpurify .

[11] Bruggeman, C., Welch, L., Gillen, M., Ostermann, S.,

Yellapragada, R., and Karunanidhi, K. Secure-RM: Security as a QoS
Constraint in Real-Time Middleware. In The Proceedings of The 2003
International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’03) (2003).

[12] Bykova, M. INBOUNDS Tcptrace Module: Packet Analyzer, Sept. 2003.
http://cidds.cs.ohiou.edu/~inbounds/downloads.shtml .

http://www.ethereal.com
http://www.cisco.com/en/US/tech/tk648/tk361/tk821/tsd_technology_support_sub-protocol_home.html
http://www.isc.org/ds
ftp://ftp.xos.nl/pub/linux/ipfwadm/
http://www.netfilter.org/ipchains
http://mgen.pf.itd.nrl.navy.mil/
http://www.cert.org/stats/
http://portal.acm.org/citation.cfm?id=903866.903869
http://irg.cs.ohiou.edu/~eblanton/tcpurify
http://cidds.cs.ohiou.edu/~inbounds/downloads.shtml

81

[13] Cohen, F. Simulating Cyber Attacks, Defenses, and Consequences.
http://all.net/journal/ntb/simulate/simulate.html .

[14] Janakiraman, R., Waldvogel, M., and Zhang, Q. Indra: A
Peer-to-Peer Approach to Network Intrusion Detection and Prevention. In
WETICE ‘03: Proceedings of the Twelfth International Workshop on Enabling
Technologies (Washington, DC, USA, 2003), IEEE Computer Society, p. 226.

[15] Jr, C. A. C., Hill, J. M., and R, J. A Methodology for Using Intelligent
Agents to Provide Automated Intrusion Response. In IEEE Workshop on
Information Assurance and Security (jun 2000).

[16] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and

Weaver, N. Sapphire/Slammer Worm, January 2003.
http://www.cs.berkeley.edu/~nweaver/sapphire/ .

[17] Netfilter. Netfilter/IPTABLES. http://www.netfilter.org/ .

[18] Ostermann, S. Tcptrace: TCP Dump File Analysis Tool, Apr. 2003.
http://tcptrace.org.

[19] Porras, P. A., and Neumann, P. G. EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. In 1997 National
Information Systems Security Conference (oct 1997).
http://www.sdl.sri.com/papers/emerald-niss97/ .

[20] Ramadas, M. Real-Time Network-Based Anomaly Intrusion Detection.
Master’s thesis, Ohio University, June 2002.
http://www.ohiolink.edu/etd/view.cgi?ohiou1049472005 .

[21] R.Heady, G.Luger, A.Maccabe, and M.Servilla. The Architecture of a
Network Level Intrusion Detection System. Tech. rep., University of New
Mexico, 1990.

[22] SANS. SANS Intrusion Detection FAQ: Network Intrusion and use of
Automated Responses.
http://www.sans.org/resources/idfaq/auto_res.php .

[23] Tcpdump. Tcpdump. http://www.tcpdump.org.

[24] Toth, T., and Kruegel, C. Evaluating the Impact of Automated Intrusion
Response Mechanisms. In 18th Annual Computer Security Applications
Conference (Dec. 2002).
http://wwwcsif.cs.ucdavis.edu/~balepin/new_pubs/response_cost.pdf .

[25] White, G., Fisch, E., and Pooch, U. Cooperating Security Managers: A
Peer-based Intrusion Detection System. IEEE Network 10, 1 (Jan. 1996).

http://all.net/journal/ntb/simulate/simulate.html
http://www.cs.berkeley.edu/~nweaver/sapphire/
http://www.netfilter.org/
http://tcptrace.org
http://www.sdl.sri.com/papers/emerald-niss97/
http://www.ohiolink.edu/etd/view.cgi?ohiou1049472005
http://www.sans.org/resources/idfaq/auto_res.php
http://www.tcpdump.org
http://wwwcsif.cs.ucdavis.edu/~balepin/new_pubs/response_cost.pdf

82

[26] Yellapragada, R. Probabilistic Model for Detecting Network Traffic
Anomalies. Master’s thesis, Ohio University, March 2004.
http://www.ohiolink.edu/etd/view.cgi?acc_num=ohiou1088538020 .

http://www.ohiolink.edu/etd/view.cgi?acc_num=ohiou1088538020

83

Appendix A. ARROS Communication Module Message

Formats

The ARROS Communication Module handles allthe inter-agent and intra-agent com-

munications. When the communication module connects to another entity, it sends

a standard header first followed by the actual data that needs to be sent. Similarly

when the communication module receives a connection it expects to receive the header

followed by the actual data. In both cases the transmission of data is an optional,

and the whole communication can just be the transmission of the header. In the fol-

lowing sections we describe in detail the message formats used by the Communication

Module for data exchange.

A.1 Header

0 16 31

TYPE

SIZE

NUMBER

Figure A.1. Header Message Format

The ARROS Communication module sends and recieves the header in the begin-

ning of each communication to let the reciever know the type and amount of data that

is to follow. The Type field in the header indicates the type of the communication

being initiated. The list of allowed values and their meanings are shown in table A.1.

84

Table A.1
Type field in Header Message Format

Type Communication

0 Intrusion Alert.

1 Request for Tracking an intrusion.

2 Path of the intrusion through the host network.

3 Request for Intrusion Response.

4 Status of the Request for Intrusion Response received.

5 Request for Agent Table.

6 Agent Table entries.

7 Update for Agent Table.

The size and number fields in the header indicate the size of each unit of data that

follows and the total number of units being sent, respectively.

A.2 Agent Table Request

When the ARROS Communication module sends a request to its neighbouring

ARROS agent, to request a copy of the neighbours Agent Table, it sends a request

with the header type field set to 5, and the size and number fields set to zero. The

Agent Table request consists of just the header and is not followed by any data.

A.3 Agent Table Entries

Each Agent Table entry has information about an ARROS agent and information

about the firewall devices that it controls. The format of the Agent Table entry and

the Firewall Device information are shown in figures A.3 and A.2.

85

0 16 31

FIREWALL DEVICE ID

FIREWALL DEVICE IP

FIREWALL DEVICE TYPE

FIREWALL CONTROL

Figure A.2. Firewall Device Information Message Format

A.4 Remote Intrusion Response Request

The Remote Intrusion Response Request message consists of information about

the intrusion and the response to be implemented. The TTL field indicates the

lifetime of the response. The Request Type Field in the message indicates the type

and scope of the response. It is a 32 bit field. The first 16 bits are unused. Bits 16 to

23 indicate the scope of the response and bits 24 to 31 indicate the type of response

to be implemented. The format of the Request Type Field and the Remote Intrusion

Response Request message are shown in figures A.5 and A.4.

A.5 Status of Remote Intrusion Response Request

When an agent recieves a request for intrusion response from another agent, it

implements the response and returns a status message, to indicate the success/failure

of the response, back to the requesting agent. The format of the status message is

shown in figure A.6. The status is set to 0 for failure and 1 for success.

A.6 Request Intrusion Tracking

When an agent needs the path of an intrusion it sends the intrusion information

to the tracker. The format of the message is shown in figure A.7.

A.7 Path of Intrusion Through the Host Network

When an agents requests the path of an intrusion, the tracker returns the path

of the intrusion through the host network, if available. The format of the message is

86

0 16 31

AGENT ID

AGENT IP

AGENT SUBNET IP

AGENT SUBNET MASK

FIREWALL DEVICE INFO [0]

FIREWALL DEVICE INFO [9]

Figure A.3. Agent Table Entries Message Format

0 16 31

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

SOURCE PORT DESTINATION PORT

SOURCE IP MASK

DESTINATION IP MASK

REQUEST TYPE

TTL

TIMESTAMP

RESPONSE POINT FED IP

RESPONSE POINT FED TYPE

Figure A.4. Intrusion Response Request Message Format

87

0 8

UNUSED SCOPE TYPE

SCOPE: 8 Bits
 Mask: 0x0000FF00

 Single Point : 0
 Multi Point : 1
 All Points : 2

TYPE : 8 Bits
 Mask: 0x000000FF

 Limit Bandwidth : 0
 Kill Intrusion : 1
 Log Intrusion : 2

Request Type Field: 32 Bits

16 24 31

Figure A.5. Request Type Field Format

0 16 31

STATUS

TIMESTAMP

ECHO TIMESTAMP

Figure A.6. Intrusion Response Request Status Message Format

0 16 31

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

SOURCE PORT DESTINATION PORT

SOURCE IP MASK

DESTINATION IP MASK

TIMESTAMP

Figure A.7. Intrusion Track Request Message Format

88

shown in figure A.8. It is a list of 9 IP addresses, one for each HOP, starting with

the border router.

0 16 31

HOP[1] IP ADDRESS

HOP[9] IP ADDRESS

Figure A.8. Intrusion Track Message Format

89

Appendix B. Response Time of ARROS Agents

Table B.1 lists the individual response times for each of the agents in the Broadcast

Response tests, under varying network loads.

Table B.2 lists the individual response times for each of the agents in the Multi-

point Response tests, under varying network loads.

90

Table B.1
Individual Agent Response times during Broadcast Response Tests

Agent\Network Load 0% 40% 70% 95%

B 0.185 0.305 0.484 0.733

C 0.146 0.240 0.400 0.517

D 0.110 0.182 0.311 0.347

E 0.081 0.123 0.211 0.234

F 0.040 0.069 0.120 0.110

G 0.006 0.014 0.020 0.022

Table B.2
Individual Agent Response times during Multi-Point Response Tests

Agent\Network Load 0% 40% 70% 95%

B 0.037 0.051 0.081 0.198

C 0.128 0.120 0.185 0.392

91

Appendix C. Scripts used by ARROS to control the Firewall

C.1 IPTABLES preparation script.

#!/bin/bash

#reset everything in Iptables

iptables=/sbin/iptables

${iptables} -t filter -F

${iptables} -t mangle -F

${iptables} -X

${iptables} -Z

echo 1 > /proc/sys/net/ipv4/ip_forward

${iptables} -A OUTPUT -t mangle -p tcp --dport 9999 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --dport 9999 -j MARK \

--set-mark 1

${iptables} -A OUTPUT -t mangle -p tcp --dport 9998 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --dport 9998 -j MARK \

--set-mark 1

${iptables} -A OUTPUT -t mangle -p tcp --sport 9999 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --sport 9999 -j MARK \

--set-mark 1

92

${iptables} -A OUTPUT -t mangle -p tcp --sport 9998 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --sport 9998 -j MARK \

--set-mark 1

${iptables} -A OUTPUT -t mangle -p tcp --dport 9997 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --dport 9997 -j MARK \

--set-mark 1

${iptables} -A OUTPUT -t mangle -p tcp --sport 9997 -j MARK \

--set-mark 1

${iptables} -A PREROUTING -t mangle -p tcp --sport 9997 -j MARK

--set-mark 1

C.2 HTB Traffic Shaping Setup script..

#!/bin/bash

tc=/sbin/tc

INTERFACEPREFIX=’eth’

INTERFACENUMBER=$1

ONE=1

INTERFACESUFFIX=${INTERFACENUMBER}

INTERFACE=${INTERFACEPREFIX}${INTERFACESUFFIX}

INTERFACEBW=$2

BWBOTTLENECK=$3

UNIT=’mbit’

MAX_VALUE=${INTERFACEBW}

MAXBOTTLENECK_VALUE=${BWBOTTLENECK}

THROTTLEBY=4

93

THROTTLE_VALUE=$((${MAXBOTTLENECK_VALUE} / ${THROTTLEBY}))

MAX=${MAX_VALUE}${UNIT}

MAXBOTTLENECK=${MAXBOTTLENECK_VALUE}${UNIT}

THROTTLE=${THROTTLE_VALUE}${UNIT}

#DELETE THE ROOT

${tc} qdisc del dev ${INTERFACE} root handle 1:

#ADD THE ROOT

${tc} qdisc add dev ${INTERFACE} root handle 1: htb default 12

${tc} class add dev ${INTERFACE} parent 1: classid 1:1 htb rate \

${MAX} ceil ${MAX}

#ARROS - low latency, high priority

${tc} class add dev ${INTERFACE} parent 1:1 classid 1:10 htb rate \

${MAX} ceil ${MAX} quantum 7000 prio 0

#THROTTLED TRAFFIC - low priority, 1/4 of the bottleneck rate \

${tc} class add dev ${INTERFACE} parent 1:1 classid 1:11 htb rate \

${THROTTLE} ceil ${THROTTLE} quantum 2000 prio 7

#ALL OTHER TRAFFIC THAT IS UNMARKED

${tc} class add dev ${INTERFACE} parent 1:1 classid 1:12 htb rate \

${MAX} ceil ${MAX} quantum 7000 prio 1

#WHICH PACKETS GO TO WHICH CLASS

${tc} filter add dev ${INTERFACE} parent 1: protocol ip prio 0 handle \

1 fw classid 1:10

94

${tc} filter add dev ${INTERFACE} parent 1: protocol ip prio 1 handle \

2 fw classid 1:11

C.3 IPTABLES Modifying Script.

#!/bin/bash

#VARIABLE DECLARATIONS

iptables=/sbin/iptables

action=$1

localip=$2

localmask=$3

if [$4 -eq 0]

then

localport=" "

else

localport="--dport $4"

fi

remoteip=$5

remotemask=$6

if [$7 -eq 0]

then

remoteport=" "

else

remoteport="--sport $7"

fi

requesttype=$8

protocol=$9

#SCRIPT EXECUTION STARTS HERE

if [$8 -eq 1]

95

then

#LOG

if ["$1" = "INSERT"]

then

#write the rule here

echo "Inserted IPTables Logging rule"

else

#write the rule here

echo "Deleted IPTables Logging rule"

fi

exit 1

fi

if [$8 -eq 2]

then

#TERMINATE

if ["$1" = "INSERT"]

then

${iptables} -A FORWARD -p ${protocol} -s ${remoteip}/${remotemask} \

${remoteport} -d ${localip}/${localmask} ${localport} -j DROP

echo "Inserted IPTables terminating rule"

else

${iptables} -D FORWARD -p ${protocol} -s ${remoteip}/${remotemask} \

${remoteport} -d ${localip}/${localmask} ${localport} -j DROP

echo "Deleted IPTables terminating rule"

fi

exit 1

fi

if [$8 -eq 3]

96

then

#LIMIT

if ["$1" = "INSERT"]

then

${iptables} -A PREROUTING -t mangle -p ${protocol} -s \

${remoteip}/${remotemask} ${remoteport} -d \

${localip}/${localmask} ${localport} -j \

MARK --set-mark 2

echo "Inserted IPTables limiting rule"

else

${iptables} -D PREROUTING -t mangle -p ${protocol} -s \

${remoteip}/${remotemask} ${remoteport} -d ${localip}/${localmask} \

${localport} -j MARK --set-mark 2

echo "Deleted IPTables limiting rule"

fi

exit 1

fi

echo "| ERROR: UNKNOWN RESPONSE TYPE |"

exit 0

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1 Intrusion Response Systems
	1.2 Organization of Thesis

	Chapter 2. Background
	2.1 Classification of Intrusion Response Systems
	2.1.1 Passive Systems
	2.1.2 Active Systems

	2.2 IPTABLES
	2.2.1 Tables
	2.2.2 Targets

	2.3 HTB Traffic Shaping
	2.4 Access Control Lists
	2.5 Related Work
	2.5.1 Cooperating Security Managers
	2.5.2 EMERALD
	2.5.3 AAIRS
	2.5.4 INDRA

	2.6 INBOUNDS
	2.6.1 Existing Architecture
	2.6.2 ANDSOM Module
	2.6.3 NAID Module
	2.6.4 Intrusion Detection Module

	Chapter 3. New INBOUNDS Architecture
	3.1 Enhancements
	3.1.1 IPTraceback Marker Module
	3.1.2 CANDES IDS Module
	3.1.3 IPTraceback Tracker Module
	3.1.4 Decision and Intelligence Module
	3.1.5 Intrusion Response Module

	3.2 ARROS Intrusion Response System for INBOUNDS
	3.2.1 ARROS System Goals
	3.2.2 ARROS System Architecture
	3.2.3 ARROS System Modules
	3.2.4 ARROS Communication Protocol
	3.2.5 ARROS Agent Configuration
	3.2.6 Communication Between Agents
	3.2.7 Intelligent Distributed Response

	Chapter 4. Experimental Results
	4.1 Experiment Testbed
	4.2 Experimental Results
	4.2.1 Discovery Time Tests
	4.2.2 Response Time Tests

	4.3 Analysis of Results

	Chapter 5. Conclusion
	5.1 Advantages and Disadvantages
	5.2 Future Work

	Bibliography
	Appendix A. ARROS Communication Module Message Formats
	A.1 Header
	A.2 Agent Table Request
	A.3 Agent Table Entries
	A.4 Remote Intrusion Response Request
	A.5 Status of Remote Intrusion Response Request
	A.6 Request Intrusion Tracking
	A.7 Path of Intrusion Through the Host Network

	Appendix B. Response Time of ARROS Agents
	Appendix C. Scripts used by ARROS to control the Firewall
	C.1 IPTABLES preparation script.
	C.2 HTB Traffic Shaping Setup script..
	C.3 IPTABLES Modifying Script.

