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Voltage-dependent ion channels mediate action potentials in excitable membranes, and play

an important role in signal generation and propagation in neurons. In different neurons

and different parts of neurons, voltage-dependent ion channels are distributed heteroge-

neously to facilitate specific functions. In my dissertation, I focus on myelinated axons and

unmyelinated axons, use deterministic HH equations, stochastic HH equations and cable

equations to investigate the effect of the spatial organization of ion channels on neuronal

function.

The spiking behavior of a small cluster of ion channels triggered by intrinsic noise

and synaptic noise was investigated using stochastic HH equations. The mechanism in

neuronal spike-generation by small and large ion channel clusters is different. For large

ion channel clusters, action potentials are elicited by synaptic noise. In small ion channel

clusters, channel noise dominates over synaptic noise. Action potentials are generated at a

frequency that is determined by single-channel kinetics.

In some cases, ion channels are distributed in clusters along unmyelinated axons. Each

ion channel cluster spikes spontaneously. The synchronization of ion channel clusters along

unmyelinated axons was investigated. It has been shown that two ion channel clusters

exhibit maximal synchrony when they have the same size. Furthermore there is an optimal

size of ion channel clusters with maximal synchrony.

Blockage of internodal potassium channels of the immature axon will induce sustained

oscillation activity by a single stimulus. The mechanism underlying the oscillation activity



and the function of internodal potassium channels were investigated. While the leakage

current has no effect on axonal oscillations, increasing internodal sodium conductance as

well as increasing internodal membrane capacitance can induce axonal oscillations. One

function of internodal potassium channels is to stabilize the paranodal axolemma against

nodal back-firing after a single impulse.

Experiments show that in some unmyelinated axons, ion channels are located in cluster.

The effect of clustered ion channels on action potential propagation efficiency and speed

was investigated. It has been shown that potassium channel localization is beneficial for

increasing propagation efficiency and propagation speed of action potentials. Localization

of sodium channels is advantageous to propagation efficiency only when axonal parameters

are in a specific range.

Approved:

Peter Jung

Associate Professor of Physics



Acknowledgements
My dissertation would not have jumped off to a smooth start without the extensive

succor from a variety of people around. Among them is Prof. Peter Jung, my supervisor

and one of the four members of my dissertation committee, whose outstanding tutorship

in the past four years has contributed to my steady advance of knowledge in physics. I am

particularly impressed by his rigorous attitude and approach in science research, as well

as by his solid academic background and sharp grasp of physical science. Prof. Jung’s

passion, dedication and aspiration for science have served a strong driving force behind my

persistently assiduous study in the doctoral degree, putting me on the right track to complete

my PhD dissertation, and giving me a steady ride for my future career in academia.

I also need to extend my thank-you note to Ohio University and its Physics
�

As-

tronomy Department for granting me full financial support, which totally shed my worries

about funding the study and shown me a handy entry to an amiably excellent academic

environment, thus gave me the full display of my talent on the academic work.

Meanwhile, Dr. William Holmes is another person on my thank-you list. It is he who

funded my study, unloading my financial burden in the period when I was engaged in the

dissertation writing. Besides, he instructed me last year on research projects, showing me

the way into another brand new territory of research.

I am completely indebted to all the four professors in my dissertation committee: Prof.

Peter Jung, Prof. William Holmes, Prof. David Tees and Prof. Daniel Phillips. Blessed by

their constructive advice on my dissertation proposal, I have been put at ease to work on

the dissertation. Furthermore, they spent lots of precious time reading my proposal and the

draft version of my dissertation, always giving me thoughtful and insightful feedback.

On the other hand, I am grateful to all the faculty members of Ohio University that



have taught me in the past few years. Their rich knowledge and patient instructions have

strengthened my academic background and expanded my horizon on science. I am fully

convinced that their excellent teaching philosophy, methods and approaches will leave a

lasting impact on my teaching career in the years to come.

I also need to thank department chair Prof. Wright Louis, department graduate chair

Prof. David Drabold, advisor of the first academic year Prof. Sergio Ulloa and advisor of

the second academic year Prof. Kenneth Hicks, for they have created an excellent academic

environment that facilitated and advanced my hunt on academic research. I appreciate all

my TA instructors, for they put me in the right course of self-discipline, perseverance and

dedication, the rightful attitude toward scientific research and studies.

Meanwhile, I am thankful to Dr. Jianwei Shuai, Mr. Muhammad Afghan and Mrs.

Suhita Nadkarni, as well as all the others who have provided me succor one way or the

other in the last several years. Though I did not list all of their names right here, I just want

to let them know that their heartfelt support left me indebted for the rest of my life.

I also appreciate the government and people of the United States for offering me the

great opportunity to pursue my PhD degree. The last several years not only saw me upgrade

my scientific knowledge, but also familiarized me with the great culture created by the

great country and the great people. Upon them, I have found the virtues planted deeply in

all human beings: consciences, integrity, kindness, compassion, patriotism, diligence and

love.

I am deeply indebted to my family in China. I am grateful to my parents for bring-

ing me up, nurturing me in a love-caring ambience and giving me access to top-notched

college education. My parents have devoted their love to me unreservedly. And it is their

strong support and love that made my study trip to the United States a reality in the first



place, placing me on a solid path to finish my doctoral program and getting me ready for a

bright future career on teaching and research in the field of physics. Their selfless love will

always accompany my academic journey, motivating me to gear up for new challenges and

embrace new success and breakthroughs in the future.

Last but not least, I appreciate deeply my great home country and compatriots. The

well-established, broad and profound culture created by my great ancestors and compatriots

in the past five thousand years through unremitting struggle, persevering pursuit, unceasing

vitality and unquenched faith has deeply affected my minds, feelings, qualities and values

and engraved everlasting marks on my soul and spirit. She was one of the most powerful

motility and spiritual support for me to withstand miseries and overcome difficulties in the

past years. The huge determination, courage, devotion and faith displayed by them during

the very long, arduous and magnificent course of pursuing Chinese nation’s independence,

emancipation and revival have manifested the noble, optimistic and never giving up spirit

of human beings confronting miseries, difficulties and challenges, and will encourage me

to finish my rest life’s journey forever.



8

Contents

Abstract 3

Acknowledgements 5

List of Tables 12

List of Figures 13

1 Introduction 16

1.1 Morphology of the neuron . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Types of neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Ion channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Location of channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Myelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Hodgkin-Huxley equations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Properties, structure and distribution of ion channels 28

2.1 Biophysics of channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Molecular structure of ion channels . . . . . . . . . . . . . . . . . . . . . 33



9

2.3 Developmental clustering of ion channels at nodes of Ranvier . . . . . . . . 35

2.3.1 Adult axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Localization of nodal ����� channels . . . . . . . . . . . . . . . . . 36

2.3.3 Localization of voltage-gated � � channels . . . . . . . . . . . . . 37

3 Deterministic and stochastic HH equations 39

3.1 Electrical circuit for a patch of nerve membrane . . . . . . . . . . . . . . . 40

3.2 Dynamics of ion channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Potassium ion channels . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Sodium ion channels . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Generation of Action Potentials . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Voltage threshold for spike initiation . . . . . . . . . . . . . . . . . 49

3.3.2 Refractory Period . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Stochastic Hodgkin-Huxley equations . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Simple stochastic method . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Markov process for the occupation numbers . . . . . . . . . . . . . 54

3.4.3 Gillespie’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.4 Langevin Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Cable equation and compartmental model 59

4.1 Introduction of the cable equation . . . . . . . . . . . . . . . . . . . . . . 60

4.2 steady-state solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Infinite cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Finite cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



10

4.3 Time-dependent solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Finite length cable with sealed ends . . . . . . . . . . . . . . . . . 71

4.4 Compartmental model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Mechanism for neuronal spike generation by small and large ion channel clusters 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Average interspike interval of the ion channel cluster . . . . . . . . 85

5.3.2 The relative fluctuation of the average interspike interval . . . . . . 92

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Synchronization of ion-channel clusters on axon 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Effects of axonal parameters . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Effect of cluster length distribution . . . . . . . . . . . . . . . . . 104

6.2.3 Effect of cluster length . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Axonal Oscillations in Developing Mammalian Nerve Axons 112

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Oscillation activity of myelinated axon in development . . . . . . . 115

7.3.2 Effects of parameters of internodal membrane on oscillation activity 118



11

7.3.3 The role of internodal potassium ion channels . . . . . . . . . . . . 126

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Effect of clustered ion channels along unmyelinated axon 131

8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.1 Effect of potassium channel localization . . . . . . . . . . . . . . . 134

8.2.2 Effect of sodium channel localization . . . . . . . . . . . . . . . . 141

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Conclusion and outlook 148

Bibliography 152



12

List of Tables

2.1 Ion channel density and single channel conductance . . . . . . . . . . . . . 31

6.1 Axonal parameters of unmyelinated axon . . . . . . . . . . . . . . . . . . 99

7.1 Axonal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Internodal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 Axonal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



13

List of Figures

1.1 The main features of a typical neuron. . . . . . . . . . . . . . . . . . . . . 17

2.1 Current flowing through a single ion channel. . . . . . . . . . . . . . . . . 30

2.2 Voltage dependence of ionic channels. . . . . . . . . . . . . . . . . . . . . 32

2.3 Molecular structure of an ionic channel. . . . . . . . . . . . . . . . . . . . 34

3.1 Time constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Steady-state value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Current-voltage relationship around the resting potential . . . . . . . . . . 50

3.4 � �� � in refractory period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Kinetic scheme of a 2-state channel. . . . . . . . . . . . . . . . . . . . . . 54

3.6 Kinetic scheme for a stochastic potassium channel. . . . . . . . . . . . . . 54

3.7 Kinetic scheme of a stochastic sodium channel . . . . . . . . . . . . . . . 55

4.1 Equivalent electrical structure of an arbitrary neuronal process. . . . . . . . 60

4.2 Steady-state potential attenuation . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Input resistance with normalized electrotonic length
�����	��


. . . . . . . . 69

4.4 Schematic graph of compartmental chain . . . . . . . . . . . . . . . . . . . 74



14

5.1 Average time intervals between subsequent action potentials . . . . . . . . 83

5.2 Comparison of the relative fluctuations
� ������������	�
 � 	����	 (Eq.5.14) . . . . . . 84

5.3 Comparison of the compute times . . . . . . . . . . . . . . . . . . . . . . 85

5.4 The average time interval between two subsequent action potentials . . . . 86

5.5 Membrane potential, fraction of open sodium and potassium channels. . . . 87

5.6 Membrane potential, open ��� � number, open � � number. . . . . . . . . . 88

5.7 The relative fluctuations (5.14) versus membrane area (in ���� ). . . . . . . 93

5.8 The power spectrum curves of spike trains . . . . . . . . . . . . . . . . . . 94

6.1 The spontaneous spikes of two independent ion channel clusters. . . . . . . 100

6.2 The spontaneous spikes of two coupled ion channel clusters. . . . . . . . . 101

6.3 Effects of axonal parameters on the synchronized spiking number. . . . . . 103

6.4 Synchronized spiking number versus the length of ion channel cluster one. . 104

6.5 Synchronized spiking number versus the length of each ion channel cluster. 106

6.6 The threshold value of the injected current for the ion channel cluster. . . . 107

6.7 The frequency ratio in two cases. . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 The cable model with 10 internodal compartments. . . . . . . . . . . . . . 114

7.2 Action potentials of two connected nodes. . . . . . . . . . . . . . . . . . . 117

7.3 The effect of internodal leakage conductance on action potentials. . . . . . 119

7.4 The effect of internodal membrane capacitance on action potentials. . . . . 120

7.5 The effect of internodal sodium conductance on action potentials. . . . . . 122

7.6 The effect of internodal sodium conductance on action potentials. . . . . . 124

7.7 The effect of internodal membrane capacitance on action potentials. . . . . 125

7.8 Action potentials of two connected nodes . . . . . . . . . . . . . . . . . . 127



15

7.9 Effects of potassium channels on action potential propagation speed. . . . . 128

8.1 The effect of potassium ion channel localization on propagation efficiency. . 135

8.2 The ratio of minimal required sodium conductances of two cases. . . . . . . 136

8.3 The ratio of the minimal required sodium conductance. . . . . . . . . . . . 137

8.4 The ratio of minimal required sodium conductance. . . . . . . . . . . . . . 139

8.5 The effect of potassium channel localization on propagation speed. . . . . 140

8.6 The ratio of minimal required sodium conductances. . . . . . . . . . . . . 142

8.7 The ratio of minimal required sodium conductances. . . . . . . . . . . . . 143

8.8 The ratio of minimal required sodium conductances. . . . . . . . . . . . . 144

8.9 The ratio of minimal required sodium conductances. . . . . . . . . . . . . 145



16

Chapter 1

Introduction

1.1 Morphology of the neuron

Neurons are the basic unit to send and receive electro-chemical signals to and from the

brain and in the nervous system. There are approximately 100 billion nerve cells in the

brain. The diameter of neural cell bodies varies from 1 �� to 100 �� (1). The length of

neural axons ranges from dozens of microns to several meters. The typical neuron has four

morphologically defined regions (Fig.1.1): the cell body (also called soma), the dendrites,

the axon and the presynaptic terminals of the axon(1).

A neuron’s dendritic tree is connected to thousands of neighboring neurons. When one

of the neighboring neurons fires, a chemical or electrical signal is transmitted. After one

of the dendrites receives the signal, a positive or negative voltage change is induced. The

dendritic tree integrates the signals spatially and temporally. Spatial summation occurs

when several weak signals sum into a single large one, while temporal summation converts

a rapid series of weak pulses from one source into a large signal. The amassed signal is then

propagated to the cell body. The soma and the enclosed nucleus do not play a significant
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Figure 1.1: The main features of a typical neuron.
A. A neuron drawn to illustrate the relative extent of each region. B. Typical neuron drawn
to illustrate its various regions and its points of contact with other nerve cells. Reprinted
from (1).



18

role in regulating the incoming and outgoing signal. The main function of the soma is to

perform a continuous maintenance required to maintain the neural function. In addition

to the nucleus, the soma contains other cellular organelles. These organelles are located

within the cell boundary in a fluid called cytoplasm. These organelles provide multiple

functions, including protein production, energy production, transporting proteins through

the cell membrane, enzyme production and hormone secretion, etc. Therefore the soma is

the site of major metabolic activity in neurons. Soma diameters range widely from 5 � 
to 100 �� in mammals. Neurons have a slightly expanded region at the initial end of the

axon called the axon hillock. The axon hillock receives the aggregated signal integrated by

the dendritic tree. If the aggregated signal is greater than the threshold value of the axon

hillock, then the neuron fires an action potential, and the output signal is transmitted down

along the axon. The amplitude of the output signal is constant, regardless of the strength of

the input signal. The axon of a neuron is a singular fiber that carries information away from

the soma to the presynaptic terminals of the axon. The axon is considerably longer than

the dendrites of a neuron. The length of the axon ranges widely from dozens of microns to

several meters. The signal propagates along the axon to the presynaptic terminals. After

receiving the signal, the presynaptic terminals release chemicals called neurotransmitters.

Neurotransmitters diffuse across the synaptic cleft to the dendritic tree of another neuron,

and trigger a positive or negative charge at the postsynaptic dendrite.

1.2 Types of neurons

There are many kinds of neurons. They are different in shape and function. According

to their function, spinal cord neurons are categorized as sensory neurons, motor neurons

and interneurons(1). Sensory neurons carry messages from the body’s sensory receptors to
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the CNS (central nervous system). They are specialized to be sensitive to special physical

stimuli, such as light, sound, chemicals or pressure. Motor neurons carry messages from

the CNS to muscles or glands. Interneurons form the largest group in the nervous system.

They receive input signals from sensory and other neurons, and send signals to motor and

other neurons. Neurons also vary in shape, more particularly, in the number and form of

processes. On the basis of process number arising from the cell body, neurons are catego-

rized into three groups: unipolar, biploar, and multipolar(1). Unipolar neurons have one

primary process that gives rise to many branches. Some branches serve as the dendritic tree

to receive information, some branches serve as axons and presynaptic terminals. Unipolar

neurons are predominant in the nervous systems of invertebrates. In bipolar neurons, the

somas give rise to one process in each end. One process, called the dendrite or periph-

eral process, collects information from the periphery, the other process, called the axon

or central process, carries information to the central nervous system. The bipolar cells in

the retina are the classic examples. Multipolar neurons predominate in the vertebrate ner-

vous system. These cells have many processes. Some processes serve as the dendritic tree

branches, while one process serves as the axon. In a typical multipolar neuron, many den-

drites emerge from all parts of the soma. The pyramidal cell and the Purkinje cell are the

classic examples of the class.

1.3 Ion channels

Electrical signals in the nervous system are carried by dissociated ions: sodium, potassium,

calcium and chlorine. Movement of ions across the plasma membrane induces changes of

the electrical potential across the membrane. These potential changes are the primary sig-

nals that convey information from one part of the neuron to another part of the neuron, from



20

this neuron to another neuron, and from one part of the body to another part of the body.

But since the cell membrane is almost impermeable to ions, it is necessary to use some

specialized cellular devices to transport ions in and out of the neuron throught the mem-

brane. The specialized devices are ion channels. Ion channels are formed by aggregation

of proteins. Ionic current through ion channels is often driven by the ionic concentration

gradient across the neuron membrane and the electric potential. The energy derives from

the chemical forces of diffusion, osmosis, and electrochemical equilibrium.

Ion channels can be classified into two categories: passive or active(1). Passive ion

channels are always open, but active channels have gates that can be either open or closed.

The opening and closing of active ion channels is controlled by neurotransmitters, mem-

brane potential or various other physical stimuli. Passive ion channels are important to

determine the resting membrane potential, while active ion channels are responsible for

the generation of action potentials and synaptic potentials. Ion channels, whether passive

or active, can also be classified by their permeability. Each channel behaves as if it has a

selective filter which permits some specific ions to pass through, but blocks other ions. In

addition, there may be several different ion channels permeable for one type of ion. For ex-

ample, some passive � � channels are responsible for the resting � � flux, and some active

� � channels are responsible for the repolarization of the membrane after an action poten-

tial. Most ion channels are not perfectly selective, several types of ions may be permeable

to the same type of ion channel. For example, � � channels pass one ��� � ion for about 12

� � ions(1).

Passive channels, which are responsible for establishing the membrane resting poten-

tial, are located in the dendrite, the soma, and the axon. Chemically-gated channels, which

are controlled by the neurotransmitter, are located on the dendrite and the soma, and are
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responsible for producing synaptic potentials. Synaptic potentials are integrated by the

dendritic tree, propagate to the soma, and serve as the input signal. Although there are lots

of voltage-dependent channels in the dendrites and the soma, most voltage-gated channels

are located on the axon hillock, along unmyelinated axons, and at the nodes of Ranvier in

myelinated axons. These channels are responsible for the generation and propagation of

action potentials.

The most important voltage-gated channels are � � � , � � , and
�
� � � channels. ��� �

channels are almost all voltage-gated. When the inside of the neuron becomes more pos-

itive, � � � channels activate or open, and allow ����� ions to pass through. Most � ���

channels also close or inactivate in a few milliseconds even through the membrane poten-

tial remains at a level positive to the potential which activated them. � � � channels serve to

let positive charge into the neuron to mediate the rising phase of the action potential. ��� �

channels are used in places where fast and reliable voltage changes are needed, such as gen-

eration of action potentials in the axon hillock and propagation of action potentials along

the axon. � � channels, like � ��� channels, open when the inside of the neuron becomes

more positive. Some require a more positive voltage to open than most ��� � and
�
��� �

channels, and stay open as long as the voltage remains positive enough. Others open with

small depolarizations and inactivate quickly. Activated � � channels allow positive charge

to move from the neuron to the extracellular space , and mediate the repolarizing process of

the action potential.
�
� � � channels, like ��� � channels, activate when the inside voltage

becomes more positive, and most inactivate spontaneously even through the voltage stimu-

lus is maintained. They tend to open more slowly than ��� � channels.
�
� � � channels also

mediate the rising phase of the action potential as � � � channels, but they have some other

cellular functions, such as: muscle contraction, hormone and neurotransmitter secretion,
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etc. With the patch-clamp technique developed by Neher and Sakmann(2), it is possible

to measure the electrical current through ion channels directly. The experiment shows that

individual ion channels open and close randomly at constant membrane voltage, described

by opening and closing rates(2; 3).

1.4 Location of channels

Action potentials are propagated by the axon to the synaptic terminal of neurons. The

axon is a thin, tube-like process that arises from the neuronal cell body and travels from

distances ranging from micrometers to meters before terminating. Axons come in two

flavors, those covered by layers of the lipid myelin and those that are not. Most axons

of invertebrates are unmyelinated, such as the squid axon. In most unmyelinated axons,

the ion channels are distributed uniformly along the axon to provide stable propagation of

action potentials. In this case, the conduction in the axon is continuous, and the excitability

along the axon membrane is almost constant. Some experimental papers(4; 5; 6) show

that the ion channels are also located in clusters along some kinds of unmyelinated axons,

such as rat retina axons, giant squid axons and Aplysia axons. The mechanism and special

function of ion channel clusters along unmyelinated axons are unclear. The exact value of

single channel conductance depends on many variables, in particular the composition of

the extracellular fluid. The conductance of a single potassium ion channel of giant squid

axon is approximately 20 pS(9). The conductance of a single sodium ion channel of giant

squid axon ranges from 2 pS to 10 pS(7; 8). The density of potassium ion channels in

unmyelinated axon is approximately 20 per �� � (9). The density of sodium ion channels in

unmyelinated axon ranges from 10 to 330 per �� � (7; 8). In our simulations of ion channel

clusters in unmyelinated axon, we choose the conductances of a single sodium ion channel
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and a single potassium ion channel to be 20 pS, the density of sodium ion channels to be

60 per ���� and the density of potassium ion channels to be 20 per �� � . These values are

also used in many simulation papers(10; 11; 12).

1.5 Myelin

In vertebrates, many axon fibers are wrapped dozens or even hundreds of times with myelin.

Because much of the axon is myelinated, the actual diameter of the axon is approximately

60 � or 70 � of the total diameter with the myelin(13). The myelin sheaths, which originate

from the Schwann cell in the peripheral nervous system (PNS) and the oligodendrocytes

in the central nervous system (CNS) (14), consist of a compacted spiral of glial membrane

surrounding the axon. This anatomical arrangement provides a high transverse resistance

and low capacitance. Myelinated fibers are periodically punctuated by nodes of Ranvier,

where the myelin is interrupted. The nodes usually extend for approximately 1-2 �  along

the axon fiber(1; 13). The distance between two nodes ranges from hundreds of �� to

several millimeters(13). The axon membrane itself is highly differentiated at the nodes

of Ranvier, exhibiting different properties in that region compared to other sites along the

fiber. Due to the isolating effect of myelin, the capacitance and leakage current conductance

of the myelinated fibers are only approximately one percent of those of the nodes(13).

In both mammalian and frog myelinated nerves, voltage-dependent sodium ion chan-

nels are present mainly in the nodal and not in the internodal axolemma(15). In frog myeli-

nated nerves, voltage-dependent potassium ion channels are present both in the internodal

and in the nodal membrane(15). However, in mammalian myelinated nerves, potassium

channels are virtually absent from the nodal membrane(16), being present only in the in-

ternodal axolemma. Because sodium ion channels are clustered in the nodal region of
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myelinated axons, conduction does not proceed continuously along the cable, but jumps in

a discontinuous manner from one node to the next. This saltatory conduction was clearly

demonstrated by Huxley and Stampfli(17) and Tasaki (18). Sodium ion channel clusters

in the nodal region provide the physiological basis for saltatory conduction. The function

of the internodal potassium channels in the juxtaparanodal (nodal side of transition ranges

from nodes of Ranvier to internodal regions) membrane remains unclear. The density of

potassium ion channels in the juxtaparanodal regions is 12 per �  � (19; 20). The density of

sodium ion channels in the node ranges from 700 per �� � to 1500 per �� � (21; 22). The

conductance of each sodium ion channel in rat axon is 14.5 pS (21), and the conductance

of each potassium ion channel in the rat axon is 20 pS(19; 20).

1.6 Hodgkin-Huxley equations

The electrical behavior of the excitable nerve membrane was first quantitatively formalized

by Hodgkin and Huxley(23). In the Hodgkin-Huxley (HH) equations, the voltage depen-

dent ion channel conductance is described by a set of deterministic nonlinear differential

equations. When the density of ion channels is high, the HH equations are a good ap-

proximation to describe the average behavior of the large number of ion channels, which

individually open and close stochastically. When the patch of membrane is small, the mem-

brane exhibits spontaneous spiking(24; 25). In this case, the stochastic HH equations are

more appropriate for describing the electric behavior of the membrane. Theoretical work

shows that when the number of ion channels is small, then the stochastic HH equations can

simulate all the unique behaviors of small numbers of ion channel clusters (10; 11; 26);

when the ion channel number is large, the stochastic HH equation results will approach the

deterministic limit, and generate the properties of the deterministic HH equations(27; 28).
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There are two main sources of noise that arise in the nerve membranes: the noise due to

the stochastic opening and closing of ion channels and synaptic noise due to stochastic ar-

rival of neurotransmitter and spontaneous presynaptic release of neurotransmitters. When

the area of the neuronal membrane is small, the noise effect due to the stochastic open-

ing and closing of ion channels is dramatic. On the other hand, the neuronal membrane

is also driven by the synaptic noise. The synaptic noise comes from multiple sources, in-

cluding the probabilistic release of quantal transmitter, the random diffusion of transmitter,

stochastic chemical reaction in synaptic cleft and unpredictable responses of ligand-gated

ion channels(29). Neurons in cortical and other neural cells receive a continuous barrage

of synaptic input as a source of external noise(30).

Voltage-dependent ion channels mediate action potentials in excitable membranes, and

play an important role in signal generation and propagation in neurons(31). In the last

decades, using many methods such as: recombinant DNA technology, protein chemistry, X-

ray diffraction and electron microscopy, experimentalists have identified the protein com-

ponents of many voltage-dependent ion channels, derived their amino acid sequence, and

cloned, expressed, and manipulated them(13) . On the basis of the HH equations, theorists

have constructed many models to simulate and predict the electrical behaviors of neurons

such as: spiking, sub-threshold behavior, bursting and oscillation(3; 13). In different neu-

rons and different parts of neurons, voltage-dependent ion channels are distributed differ-

ently to facilitate corresponding functions(3; 13). In my thesis, I focus on myelinated and

unmyelinated axons, use deterministic HH equations, stochastic HH equations and cable

equations to investigate the effect of the spatial organization of ion channels on neuronal

function. The thesis is organized as follows:

Chapter 2: Structure, properties and distribution of ion channels. In this chapter, I will
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introduce the molecular structure of ion channels briefly, introduce biophysical properties

of ion channels, and then demonstrate the ion channel distribution along unmyelinated and

myelinated axons.

Chapter 3: Deterministic and stochastic HH equations. In this chapter, I will describe

the corner stone of modern neuroscience: HH equations, then describe the stochastic HH

equations, and describe several general solution methods of stochastic HH equations.

Chapter 4: Cable equation. In this chapter, I will introduce the cable equation, the so-

lution of the cable equation under special boundary conditions, and the numerical solution

of the cable equation.

Chapter 5: Mechanism for neuronal spike generation by small and large ion channel

clusters. When the cluster of ion channels is small, it is more valid to use stochastic HH

equations to describe the electrical behavior of the membrane. The mechanism for neu-

ronal spike-generation by small and large ion channel clusters will be different. I will

use stochastic HH equations to investigate the spiking behavior of a small cluster of ion

channels triggered by intrinsic noise and external noise.

Chapter 6: Synchronization of ion channel clusters along the unmyelinated axon. Al-

though in most cases, ion channels are distributed uniformly along unmyelinated axon,

in some cases, ion channels are also distributed in clusters. Each cluster spikes sponta-

neously. In this chapter, I will investigate the synchronization of ion channel clusters along

unmyelinated axons.

Chapter 7: Axonal oscillation in developing mammalian nerve axons. In myelinated

axon, sodium channels are located at nodes, but potassium channels are located in juxta-

paranodal regions. Blockage of internodal potassium channels in the immature axon will

induce bursting activity by a single stimulus, but blockage of internodal potassium channels
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of a mature axon has no the effect. In this chapter, I will investigate the sources to induce

bursting activity and the function of internodal potassium channels.

Chapter 8: Effects of clustering ion channels along unmyelinated axons. Experiments

show that in some unmyelinated axons, ion channels are located in clusters. In this chap-

ter, I will investigate the effect of clustering ion channels on action potential propagation

efficiency and speed.

Chapter 9: Summary
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Chapter 2

Properties, structure and distribution of

ion channels

An ion channel is an integral membrane protein or more typically an assembly of several

proteins(13). They anchor within the membrane lipid bilayer of neurons, glia, and other

cells. Their function is to facilitate the diffusion of ions across biological membranes.

By controlling the diffusion of ions, ion channels provide the substrate for all biophysical

phenomena relating to information processing, including mediating synaptic transmission,

controlling membrane potential, invoking the action potential and supporting the propa-

gation of the action potential. Channels are either open or closed. The conformational

change between closed and open states induced by an external or internal signal is called

gating. Channel gating can be due to changes in the membrane voltage or by binding of

the neurotransmitter. Ion channels can be classified according to the chemical or physi-

cal modulators that control their gating activity. There are several different groups of ion

channels as summarized below(13):



29

• Voltage-gated channels sense the transmembrane potential and their opening or clos-

ing is controlled by the transmembrane potential. Sodium, calcium and many potas-

sium channels belong to this class of channel.

• Ligand-gated channels open in response to a specific ligand molecule on the surface

of the membrane. AMPA receptor and other neurotransmitter-gated channels belong

to this class of channel.

• Channels open in response to second messengers. Calcium-activated potassium chan-

nels belong to this class of channel.

• Channels open or close in response to compression. This kind of channel is believed

to detect touch pressure or acoustic vibration.

Some channels respond to multiple stimuli. For example, the NMDA receptor is acti-

vated not only by interaction with its ligand, glutamate, but also by transmembrane poten-

tial and only conducts when glutamate is bound and the membrane is depolarized. Some

calcium-sensitive potassium channels respond to both calcium and transmembrane poten-

tials.

2.1 Biophysics of channels

A single channel opens or closes stochastically, and is controlled by membrane poten-

tial, stimuli of ligand molecules or compression. The channel is conducting, only when

the channel is open. The switch-like behavior of a single channel is demonstrated in

Fig.2.1. The current through a single channel can be described by a nonlinear model, called

Goldman-Hodgkin-Katz equation, and Ohm’s law(13; 32). In most cases, if the Nernst re-
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versal potential is properly included, Ohm’s law is sufficient to describe the relationship of

voltage and current of a single open channel as follows(13; 32),

���������	� ��
�������������������
(2.1)

where



is the channel conductance of a single channel, and
���������	�

is the reversal potential

of the specific kind of ion.

Figure 2.1: Current flowing through a single ion channel.
Several excerpts from a patch-clamp recording of a single acetylcholine-activated channel
on a cultured muscle cell are shown. The openings of the channel (downward events) cause
a unitary 3-nA current to flow, occasionally interrupted by a brief closing. Reprinted from
(13).

The voltage dependence of some ion channels are plotted in Fig.2.2. In part A, the ion

channel satisfies Ohm’s law. In part B, the I-V relationship of calcium-dependent potassium

channel is not exactly linear; for large potential excursions, the current through the ion
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Table 2.1: Ion channel density and single channel conductance

Channel type Preparation



(pS) ion channel density � (1/ �� � )
Fast � � � Giant squid axon 14 330
Fast � � � Rat axonal node of Ranvier 14.5 700
Fast � � � Pyramidal cell body 14.5 4-5
Delayed rectifier � � Giant squid axon 20 18

�
� � � -dependent � � Mammalian preparation 130-240 —-

Transient A current Insect, snail, mammal 5-23 —-
Nicotinic ACh receptor Mammalian motor endplate 20-40 10,000��������� �
	 �

receptor Hippocampal granule cells 14-23 —-

channel begins to saturate. There are many sources responsible for the nonlinearity. When

the concentration gradient of ions is too steep, current flows more easily in one direction

than in the other direction. A second source of nonlinearity is that ions move into the

channel and block it. The value of



ranges from one to several hundred pS for various ion

channels(3; 13). The upper limit of



is 300 pS, for no channel with larger conductance has

been reported(3; 13). The density of ion channels varies widely depending on the nervous

tissue. In the unmyelinated axon, such as the squid axon, the density of sodium channels is

on the order of 300 per square micrometer, and that of potassium channels is on the order

of 20 per square micrometer(3; 13). In the node of Ranvier, sodium channels are high

localized, and can be as high as 2000 per square micrometer(3; 13). The single channel

conductances and channel densities are listed in Table.2.1, which is reprinted from (13).
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Figure 2.2: Voltage dependence of ionic channels.
(A) Current-voltage relationship of a single nicotinic ACh-activated channel. (B) I-V rela-
tionship for a single voltage- and calcium-dependent potassium channel in a symmetrical
160-mM potassium solution. Reprinted from (13).
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2.2 Molecular structure of ion channels

The electromicrograph of an ACh-gated channel is shown in Fig.2.3A, a schematic graph

of a voltage-dependent ion channel is shown in Fig.2.3B. Ion channels are quite large

molecules, which consist of several thousand amino acids with molecular weight more

than 300,000 Daltons(1 Dalton = ���
�
������� ). The most narrow part of an ion channel with a

diameter about 3 ˚� determines the selectivity for certain ions. The conformational change

in a part of the ion channel by electric fields induces the voltage-dependent gating of the

channel, which is either open or closed. At the resting potential of -80 mV, the electrical

field across the 40 ˚� thin membrane is as high as 200,000 V/cm. Charges moving through

the membrane change the field, and change the configuration of the channel. The gating

current causing the change of channel configuration is tiny compared to the current moving

through the ion channel when it is open.

Recombinant DNA technology combined with protein chemistry, X-ray diffraction and

electron microscopy(31; 33) provide the technology to characterize the activation and inac-

tivation processes of sodium channels at the molecular level. The key points to determine

the voltage-dependent activation are four homologous subunits (termed S4) which span the

ion channel membrane in an 	 helix. Catterall(35; 36) presented a sliding helix model to

explain the activation of voltage-dependent channels, and this model now has experimental

support. Upon depolarization, each S4 subunit rotates by 60 degrees, and moves about 5 ˚� .

The rotation of the S4 subunit moves one charge across the membrane. The four subunits

act together to cause a configuration change that makes the channel conductive.
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Figure 2.3: Molecular structure of an ionic channel.
(A) Electron-microscopic image using crystallographic methods of the axial section of one
of the nicotinic acetylcholine receptors in the electric fish Torpedo. (B) Schematic view of
a generic voltage-dependent ion channel. Reprinted from (13).
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2.3 Developmental clustering of ion channels at nodes of

Ranvier

The major impediment to evolution of a large body is the requirement of stable, efficient

and rapid propagation of action potentials over long distances with minimal metabolic and

space requirements. The elegant solution of this problem is to develop the myelin sheath

and discontinuous localization of voltage-dependent ion channels. The myelin sheath is

a high-resistance, low capacitance barrier for ions, and provides the physiological basis

for rapid propagation of action potentials. Nodes of Ranvier interrupt the myelin sheath,

and are distributed along the axon uniformly. In nodes of Ranvier, the density of volt-

age dependent ��� � channels is as high as � � � � � ���� (3). In contrast, voltage-dependent

� � channels are excluded from nodes(34). Instead, � � channels are clustered beneath

the myelin sheath in the regions adjacent to the paranodes(transition ranges from nodes of

Ranvier to internodal regions), called the juxtaparanode. The total length of nodes, para-

nodes and juxtaparanodes is just a small fraction of the total axon length, but the precise

establishment and maintenance of these domains are important for the propagation of ac-

tion potentials. The cellular and molecular mechanisms responsible for the formation of

nodes and myelin sheath, and the maintenance of these domains are important and interest-

ing problems(37; 38; 39). Although the details of these events remain unclear, some recent

experiments show that the specific interactions between neuronal axons and myelinated

glial cells are critical to the localization of ion channels(37; 38; 39).
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2.3.1 Adult axons

In myelinated axons of adults, the nodes of Ranvier are located almost equidistantly along

the axon and are responsible for the regeneration of the action potential. The distance be-

tween two nodes, approximately 100 times the axonal diameter(40) , ranges from several

hundred microns to several millimeters. ����� channels are highly localized in the nodal

region, and the density reaches up to � � � � � �  � . The internodal ��� � channel density is

about 5 � of the above value estimated by loose patch clamp recordings(41; 42; 43). There

is a sharp transition in ��� � channel density from the node to paranodal regions. The dis-

tribution of � � channels is different from that of ��� � channels in myelinated axons. Chiu

and Ritchie(44; 45) showed that � � channels were absent from the nodal regions, but con-

tributed to the voltage clamp currents. Roper(19) reported that the density of potassium

channels at the paranodal region is six times higher than that of nodal and internodal re-

gions. It is also shown that Kv1.1 and Kv1.2 (two kinds of potassium channel subunits)

are present at high density in the juxtaparanodal axolemmal zone(46). The function of in-

ternodal potassium channels is not clear, but there are two main lines of speculation: one

is that they stabilize the internodal axolemma(47; 48), the other is that they prevent back

firing by a single impulse(45). Myelin serves to speed up the propagation and enlarge the

propagation distance of single action potentials by reducing the membrane capacitance and

by increasing the transverse resistance.

2.3.2 Localization of nodal
�����

channels

In the vertebrate nervous systems, the segregation of ion channels in myelinated axons oc-

curs during the first several days of development in the peripheral nervous system (PNS)

and in the first several weeks in the central nervous system (CNS)(14). The localization
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of sodium channels in the rat sciatic nerve(49) occurs as early as postnatal day P1, but the

localization of sodium channels in the optic nerve has not been observed before P9(50).

During maturation, the propagation speed of action potentials increases 50 times from 0.2

m/s to 10 m/s due to the thickening of myelin and Na channel clustering. The cells re-

sponsible for myelin formation are different for the CNS (oligodendrocytes) and the PNS

(Schwann cells).

During the early developmental myelinating procedure of PNS axons, clusters of � � �

channels first appear adjacent to the edge of Schwann cells. As the gap between two

Schwann cells decreases, adjacent clusters of ��� � channels fuse to form a new node of

Ranvier. Many experimental results(49; 51; 52) show that the clustering of � ��� channels

in the PNS requires the onset of myelination by Schwann cells and the physical influence of

axoglial contact. In the CNS, the onset of myelination occurs at P7, but clustering of � � �

channels occurs at P9-P10(50). Quantitative analyses also show that during the develop-

mental period from P5 to P60, the formation of axoglial junctions precedes the clustering

of � � � channels by about 2 days. These results are consistent with the assumption that

axoglial contact is essential for � ��� channel clustering, and oligodendrocytes exclude the

��� � channels from regions of axoglial contact to form the channel clusters(53). In regen-

erating myelinated axons, the distance between two nodes will decrease, but � � � channel

number in each node remains constant. Thus, the total ��� � channel number along the

remyelinated axon will increase.

2.3.3 Localization of voltage-gated � �
channels

In contrast to ��� � channels, potassium channels are not located at the nodes of Ranvier,

but are clustered in the region adjacent to paranodes called juxtaparanodes. Juxtaparanodal
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� � channels are found in many nervous tissues such as brainstem(46), cerebellar white

matter(54), spinal cord(55), optic nerve(56) and sciatic nerve(57). Blockage of juxtapara-

nodal � � channels by � � channel blockers such as 4-aminopyridine increases both the

amplitude and duration of action potentials in the optic nerve, but has almost no effect on

the conduction in myelinated PNS axons. The transient localization of � � channels in

nodal and paranodal zones stabilizes action potential conduction and prevents back-firing

by a single stimulus in PNS development(48).

The mechanisms to determine � � channel clustering at juxtaparanodal regions parallel

those of ��� � channels as described above, but there are several differences. In demyeli-

nated PNS axons, ��� � channels remain at the nodes of Ranvier, but � � channels clustered

at juxtaparanodes diffuse laterally to the former nodal and paranodal zones that normally

exclude � � channels. This suggests that the continuous presence of paranodal axoglial

junctions is necessary to keep the localization of � � channels at juxtaparanodes. During

remyelination, ��� � channels migrate to the edge of Schwann cells and fuse to form the

new node, but clusters of � � channels are not detected. Only after the new node is fully

formed, is the clustering of � � channels observed. It is interesting to note that � � chan-

nels initially are located at the nodal regions, then diffuse to the paranodes, and finally are

clustered at the corresponding juxtaparanodes. The clustering of juxtaparanodal � � is also

observed in CNS regions, such as optic nerve(50) and spinal cord(58). The clustering of

� � channels during developmental myelination of CNS axons is similar to that of the PNS

axons. However, there are some differences and similarities between the clustering proce-

dures of PNS axons and CNS axons. As in PNS, the clustering of � � channels is several

days later than that of ��� � channels(59).
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Chapter 3

Deterministic and stochastic HH

equations

Nerve cells have an all-or-nothing response to external stimuli. If the amplitude of external

stimuli is less than a threshold value, the response of the nerve cell is weak, just a small

perturbation of the membrane potential. If the amplitude of external stimuli is larger than

a threshold, the response of the nerve cell is dramatic. The nerve cell will generate large

amplitude voltage pulses that are called action potentials. An action potential propagates

along the axon to the presynaptic terminals of the axon with constant amplitude and speed.

Action potentials are so important that most propagation of information in the nervous

system depends on them. The ionic mechanism underlying the generation and propagation

of action potentials in the nervous system was quantified in giant squid axon by Hodgkin

and Huxley(23; 60; 61; 62). They presented the HH model in their four papers. The HH

model describes the electrical behavior of nervous membrane by a set of first-order ordinary

differential equations and elucidates the all-or-nothing response of action potentials.
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3.1 Electrical circuit for a patch of nerve membrane

Hodgkin and Huxley carried out research on the squid giant axon. In order to eliminate

the effect of the spatial component of the neuronal structure, a conductive axial wire was

inserted inside the axon. The technology, called “space clamp”, keeps the potential along

the axon uniform. The total membrane current is the sum of the ionic currents and the

capacitive current(13),
��� ��� � � � �	������� ��� �������
	 � ��� �

	 � (3.1)

where
� ���������

is the ion channel current,
���

is the specific membrane capacitance, and
�

is

the membrane potential.

For most neuronal membranes, ionic currents mainly include sodium ion channel cur-

rents and potassium ion channel currents. Other ion channel currents are lumped as leakage

current. Sodium ion channel conductance ���� and potassium ion channel conductance ���
are voltage dependent. Leakage current conductance is voltage independent. Then the total

ionic current is the sum of the sodium ion channel current, potassium ion channel current

and the leakage current(13; 32),

���������	� ��� �� � � � ������� �� (3.2)

Each kind of ionic current
��� ��� �

is linearly related to the driving potential, which is equal

to the membrane potential minus the corresponding reversal potential
���

(13; 32),

� � ��� � � � ����� ��� �� ��� �
(3.3)
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Each voltage-dependent ionic current conductance is expressed as the maximal conduc-

tance multiplied by the fraction of open ion channels.

3.2 Dynamics of ion channels

Each voltage dependent ion channel is characterized by specific dynamics to determine the

temporal change of activation and inactivation states.

3.2.1 Potassium ion channels

Hodgkin and Huxley modeled the potassium channel current as(23),

� � ���� � ��� ��� � � � � (3.4)

where
�� � is the maximal potassium conductance with the value of

��� 	� � �  � and
� � is

the reversal potential of potassium channels with the value of
��
�
  �

(23). The term � �

implies there are four gates in one potassium channel(13; 23). Only when all the four gates

are open is the potassium ion channel open. Then � represents the open probability of one

potassium gate and has a value between 0 and 1.

We can assume that each potassium gate has two states, the open state and the closed

state. If the open probability is n, then the closed probability is 1-n. The transition between

the open state and the closed state is governed by first order kinetics, and can be described

by the following scheme(13; 32),

n 1-n

 �

	 � ��
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where 	 � is the voltage dependent transition rate from the closed state to the open state,

and
 �

is the voltage dependent transition rate from the open state to the closed state. All

the transition rates have units of 1/msec. Then, the scheme can be expressed by a first order

differential equation(13; 32),

	 �
	 �
� 	 ����� ��� � � � ��  � ��� � ��� (3.5)

Instead of using transition rates 	 � and
 �

, we can rewrite Eq.3.5 with a voltage dependent

time constant � ����� � and a steady-state open fraction ��� ��� �
,

	 �
	 �
� ��� � �

� � � (3.6)

where

� � � �
	 � �  � � (3.7)

and

��� � 	 �

	 � �  �
� (3.8)

According to Hodgkin and Huxley, the opening and closing rates of potassium channels

are(23)

	 � ��� � � � � � � �	�
� � � �
��� �����

���

������ � � � (3.9)

and
 � ��� � � � � � �

�
� ��� � ���
 
������ � (3.10)

where the unit of
�

is  �
.

Fig.3.1 shows the voltage dependence of the time constant for potassium ion channels.
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� � has a bell shape. Fig.3.2 shows the voltage dependence of the steady-state value ��� of

potassium ion channels. � � increases monotonically with the membrane potential. Be-

cause of the fourth power relationship between ��� and � , the potassium conductance as

a function of the membrane potential is much steeper than the steady-state value of a sin-

gle � gate. The open fraction of potassium ion channels in the steady-state is identical

to ��� ��� � � . At the resting potential, this fraction is very small, � � � � � � � � � � � , and thus

means only 1 � of potassium channels are in the open state. The evolution of the potassium

channel conductance is dictated by the solution of Eq.3.6(13),

� ��� � � � � ��� ��� ��� � � � ��� ��������� � �

 � � � (3.11)

where � � is the initial steady-state value, and ��� is the final steady-state value.

3.2.2 Sodium ion channels

The dynamics of sodium ion channels is more complicated than that of potassium channels.

In order to fit the dynamics of sodium channels, Hodgkin and Huxley used an activating

sodium gate  and an inactivating sodium gate
�

to describe the sodium channel conduc-

tance (13; 23; 32),
� �� ���� �  
	 � ��� � � �  � � (3.12)

where
�� �� is the maximum sodium conductance with the value of � � � 	� � �  � , � �  is the

sodium reversal potential with the value of 50 mV, and  and
�

are dimensionless variables

with values from 0 to 1. Similar to the � gate of potassium channels, gate  and gate
�
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satisfy the following dynamics(13; 32),

	 
	 �
� 	 � ��� ��� � �  ��  � ��� �  � (3.13)

and
	 �
	 �
� 	�� ��� ��� � � � �� 

�
��� � � � (3.14)

Transition rates 	 � ,
 �

, 	�� and

� are given by(23),

	 � ��� � � � � � ��� ��� � �� � ��� � � ���

������ � � (3.15)

 � ��� � ��� � � �
���
� ���

 
������
(3.16)

	�� ��� � � � � � 

�
���
� ���

 
��
�
�

(3.17)


�
��� � � � � �� � � 	

 �
�

������ � �

� (3.18)

The time constants of sodium channels are plotted in Fig.3.1 and similar to � � , both

� � and �
� are bell-shaped curves, while the value of � � is just 10 � of that of �

� . The

steady-state values  � ��� �
and

� � ��� �
of sodium channels are plotted in Fig.3.2. While

 � increases monotonically with increasing membrane potential as expected of an activa-

tion variable,
� � decreases monotonically with increasing membrane potential, the feature

of an inactivation variable. When the membrane potential is at the resting potential,  is

approximately 0,
�

is approximately 1. The steady-state sodium conductance at rest is less
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than 1 � of the maximal value. When the membrane potential is suddenly increased by

the voltage clamp technique,  will change to a value close to its final value in a fraction

of millisecond according to its short time constant, while
�

requires 5 msec or longer to

decrease from its former high value to its final smaller value. In other words, two pro-

cesses govern the sodium conductance: the activation process rapidly increases the sodium

conductance upon depolarization, while the inactivation process decreases the sodium con-

ductance upon depolarization slowly.

3.2.3 Complete model

Except for the sodium and potassium currents, other ion channel currents are lumped as

leakage current. Unlike the sodium and potassium conductance, leakage conductance � ��� ��
is a constant over time, without depending on the membrane potential. The value of � ��� ��
provided by Hodgkin and Huxley is 0.3 	� � �  � , corresponding to a passive membrane

resistivity of � � � ��������� �  � (23). The leakage current also has an associated reversal

potential
� � �  � . Hodgkin and Huxley did not measure

� ��� �� directly, but adjusted it so

that the total membrane current at the resting potential was 0.
� � �  � came out to be -54.4

mV(23). The membrane capacitance
� �

is 1 ��� � �  � . Then, the single equation describing

current across a patch of neuronal membrane is(13; 32),

� � 	 �
	 �
���� �� 
	 � ��� �� ��� � � �� � � � ��� � � � � � � ��� �� ����� ��� � ��� � �����	�
	 ��� �

(3.19)

where
� �	��	

is the current injected by an electrode. This nonlinear equation in combination

with the first-order ordinary linear differential equations (Eq.3.5, Eq.3.13, Eq.3.14) specify

the dynamics of neuronal membrane potential.
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3.3 Generation of Action Potentials

One of the most remarkable behaviors of the neuronal membrane is its all-or-nothing re-

sponse to external stimulus. If the amplitude of the external stimulus is below a threshold,

the membrane will depolarize slightly and then return to the resting potential, while if the

amplitude of the external stimulus is above a threshold, the stimulus will induce an action

potential, whose shape is independent of the stimulus(13; 23; 32). The effect of an injected

inward current pulse
���	�
	

is to depolarize the membrane potential. The depolarization will

increase  and � , but decrease
�

. Because the time constants �
� and � � are an order of

magnitude slower than the time constant � � ,
�

and � can be considered as quasi-stationary,

but  will increase initially. Consequently, the conductance of the potassium ion chan-

nels will remain approximately constant, and the conductance of sodium ion channels will

increase initially. If the amplitude of the current pulse is below the threshold value, the

system is at the sub-threshold case. Because the membrane potential is depolarized from

rest, the value of
� ��� � will increase, and the potassium current

� � will increase con-

comitantly. The concomitant increase of
� � will outweigh the increase of

� �� due to the

increase of � �� , and the total current is outward. The net outward current will drive the

membrane potential back to the resting potential. If the amplitude of the current pulse is

increased over a threshold value, the depolarization of the membrane potential will reach

a point where the increase of
� �� exceeds the increase of

� � . At this point,
� �� enters

a positive feedback loop: the additional
� �� depolarizes the membrane potential, and the

depolarization of membrane potential increases the value of  , which then increases
� �� .

Driven by the positive feedback, the membrane potential will reach the reversal potential

of
� �� rapidly. After a delay, the activation of the � gate and the inactivation of sodium

channels will turn on, and drive the membrane potential back to the resting potential.
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3.3.1 Voltage threshold for spike initiation

What is the most important factor to initiate spiking of neurons? Is it the potential threshold

value
� �
� ? The minimal amount of injected current

� �
� ? A certain amount of electrical

charge � � � ? These possibilities have been discussed by many authors in some different

circumstances. In order to simplify the discussion, we just deal with the spike initiation

in an ideal nonlinear membrane, without considering the complicated spatial structure of

axons.

In order to answer this question, we need to consider the instantaneous I-V relationship
� � ��� � of the squid giant axon. We are interested in rapid synaptic injection, where the

injection time is less than the passive membrane time constant. In the short period of time,

we can consider the sodium inactivation gate
�

and the potassium activation gate � to be

constant. Because the time constant of  is ten times faster than the constants of
�

and � ,

we can consider  reaching its steady-state value within the injection period. According to

these principles, we plot the instantaneous I-V relationship
� � ��� � in Fig.3.3 , where

� � ��� �

is the sum of the ion and leakage currents. In this figure, we keep � and
�

to be the value

at the resting potential, and  to be the steady-state value. In other words,

� � ��� � ���� ��  ��� � 	 � ����� ��� � ��������� �  � � �� � � ��� � � � � � � ������� � � � � � �  � ��������� �
(3.20)

Fig.3.3 shows the inverted U-shape of
� � near the resting potential, and three ionic currents

� �  , � � and
� ��� �� .

When there is no external input, the system rests at the resting potential -65mV(23). If a

small depolarizing potential is applied, the system is moved to the right, generating a small

outward current. Because the increase in
� � due to the increase in the driving potential
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� � � � and the decrease in
� ��� �� due to the decrease in the driving potential

� � � �
outweigh

the increase in
� �� due to the increase of  , this pulls the membrane potential back to

the resting potential corresponding to the subthreshold potential trajectory. Similarly, if a

hyperpolarizing potential is applied, a negative inward current will be generated to pull the

membrane potential back to the resting potential. The resting potential point is a stable

attractor.
� � ��� � has a second zero point at

� � � �
�
� � � �  �

. Because the slope of the
� � curve around

� �
� is negative, the point

� �
� is an unstable point. A negative perturbation

will carry the system to the resting potential, but a positive perturbation will induce a small

inward current flow, which further depolarizes the membrane, and leads to a larger inward

current. Then, the membrane potential depolarizes toward the reversal potential of the

sodium current, and an action potential will be generated.

3.3.2 Refractory Period

When an action potential is generated, the membrane potential will be pulled back to the

resting potential due to the inactivation of sodium channels and the activation of potassium

channels. The potassium conductance remains activated following the spike pulse, and

induces the membrane to undergo a hyperpolarization (a change in membrane potential in

the negative direction, making the cell interior more negative). During this period where

the
�

gates of the sodium channels remain inactivated and the potassium channels remain

activated, it is more difficult to initiate an action potential than usual. The membrane is in

the refractory period.

The refractory period is measured by the following method shown in Fig.3.4 . At
� � � ,

a 0.5 ms current pulse is injected into a patch of membrane to initiate an action potential.

The amplitude of the minimal pulse is
� � � � �  � � �  � . The pulse triggers an action
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potential which peaks at 4  � . The membrane potential is repolarized to
� � � � � � � at

� � �  � . The time that the potential is below the resting potential is set to
� � � � . Then

a second current pulse is injected to initiate another action potential. We begin to record

the amplitude of the second pulse at
� � �

�  � . At this time,
�
�
� � � � � � � � , which means

that the amplitude of second pulse has to be 21.4 times larger than that of the first pulse to

generate an action potential. Because such a large amplitude is impossible physiologically,

this period is called the absolute refractory period. When
� � � � �  � ,

�
�
� � � � � , and

this period is called the relative refractory period. This is followed by a brief period of

hyperexcitability, during which the amplitude of the second pulse need only be � � � of that

of the first pulse.
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Figure 3.4: � �� � in refractory period
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3.4 Stochastic Hodgkin-Huxley equations

If the number of ion channels is large, the dynamics of the  , � and
�

gates can be described

by first-order differential equations. If the number of ion channels is small, differential

equations are not a good description due to the stochastic behavior of ion channels. It is

more accurate to use stochastic HH equations. To integrate Eq.3.19, the numbers of open

sodium and potassium channels have to be determined at each instant. It is assumed that

the subunits of the sodium and potassium channels are not cooperative and that they switch

between the open and closed states according to a Markov process(13). There are several

methods to simulate the patch of ion channels. Each method has some advantages and

disadvantages.

3.4.1 Simple stochastic method

This method assumes that all gates open and close according to a two-state Markov process

with voltage dependent opening and closing rates(12). For example, the two-state Markov

process of a single gate is sketched in Fig.3.5, where 	 and


are the opening and closing

rates of the gates. If the gate is closed at time
�
, it will open with the probability 	�� � and

remain closed with probability � � 	�� � in the time interval (
� � � � � � ) for sufficiently small

� � , i.e. � ����� � � 	 . If the gate is open at time
�
, it will close with the probability

 � � and

remain open with probability � �  � � in the time interval (
� � � � � � ) for sufficiently small � � ,

i.e. � ����� � �  . We update the state of each gate by drawing a random number � from the

unit interval with a uniform distribution. If the gate is closed at time t and �	� 	�� � , the gate

remains closed while it opens if � � 	�� � (12). Similarly, if the gate is open at time t and

�
�  � � , the gate remains open while it closes if � �  � � (12). This method is obviously

inefficient since many transitions of gates between the open and closed state do not change
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the state of the channel and thus the conductance of the channel. It is, however, the most

accurate method since no other assumptions than the Markov-process have been made.

3.4.2 Markov process for the occupation numbers

Instead of keeping track of the state of each gate, one can keep track only of the total

populations of channels in each possible state (11). Each channel has either � � � � � � � or
�

gates open and can thus be in the corresponding states � � � � � � � � � � 	 � � � . Thus the entire

population of channels can be completely described by specifying the numbers of channels
� � ��� � � � ��� � � � �

� � � � 	
� � � � � � in the states � � � � � � � � � � 	 � � � . Stochastic transitions are consid-

ered between the occupation numbers
� � � � , �

� � � �
� � � � � � . Assuming Markov processes

for these transitions, a corresponding kinetic scheme can be formalized that explicitly incor-

porates the stochastic behavior of the ion channels. The model requires that the potassium

channels can exist in five different states, i.e(11).

α

β
openclosed

Figure 3.5: Kinetic scheme of a 2-state channel.

[n0] [n1] [n2] [n3] [n4]
4α α3α 2α

4β3β2ββ

Figure 3.6: Kinetic scheme for a stochastic potassium channel.
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where
� � � � is the number of potassium channels with � open gates. The number of open

potassium channels is given by
� � � � .

Similarly, sodium channels can exist in eight different states, and the corresponding

kinetic scheme is given by(11)

where
�  � � 	 � is the number of sodium ion channels with � open activating gates of

type  and � open inactivating gates of type
�

. Thus,
�  	

� ��� denotes the number of open

sodium channels. In order to update the state of the population of ion channels with time,

we have to create rules in what sequence the states are updated. The simple stochastic

method, described in the previous section, does not require such rules. In order to enforce

positive occupation numbers we update the occupation numbers sequentially, starting with

the process with the largest rate and so forth. Let, for example, the transition rate between

� � and � � be

�� � � � and the populations of these states be

� � � � and
� �
�
� . Then, the probability� that a channel switches within the time interval

��� � � � � � � from state � � to � � is given by��� 
�� � � � � � . The probability that
� � � � �

� channels switch from state � � to state � � in the

same time interval satisfies the binomial distribution(11)

[m0h1]
βm

[m0h0]

[m1h1] [m2h1] [m3h1]

[m1h0] [m2h0] [m3h0]

αm

3βm2βm

αm

3αm 2αm
3βm

2αm

2βmβm

3αm

αh αhαhαh βhβhβhβh

Figure 3.7: Kinetic scheme of a stochastic sodium channel

� � � � � � �
� � ���
	 � ���	  � � � ��� � 	  � � ��� � � � � � � 	 � ��� � 	  � � ��� 
 � (3.21)
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Thus the number of switching channels between the states is sequentially drawn from bi-

nomial distributions. If the cluster of channels is large i.e.
� � � � is large, the number of

switching channels is also large on average. Thus, in the time interval � � larger channel

clusters experience more transitions.

3.4.3 Gillespie’s method

Similar to the Markov process for the occupation numbers, the entire population of ion

channels can be described at each instant of time by the occupation numbers of all possible

states(10). At any instant of time, the ion channels are distributed over the 13 states, and

there are 28 possible transitions (8 transitions for potassium ion channels, 20 transitions for

sodium ion channels) to all possible successive states. For each ion channel in state � at

time
�
, the probability of the ion channel remaining in that state in the (sufficiently small)

time interval � � is given by
� � � �����  � (10), where


 �
is the sum of all the transition rates

from state � to any possible successive state. Sufficiently small means here that during � � no

other channel is switching conductance state. The probability of the cluster of ion channels

remaining in the same state in time interval � � is
� ���  � (10), where


 � 	�
��� �

�
�
	�� �

�  � � 	 � 
 � 	 � ��
� � �

� � � � 
 � � (3.22)

Here
�  � � 	 � denotes the number of sodium channels in state  � � 	

,
� � � � the number of

potassium channels in the state � � , 
 � 	 the total transition rate associated with escaping

from state  � � 	
, and


 � the total transition rate associated with escaping from state � � . For

example, for state  � � � , 
 ��� = � 	 � �  � � 
� . In order to pick a transition time

� � � for

a specific ion channel state, one can draw a pseudorandom number � � from the uniform
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distribution [0, 1] and find a transition time by
� � � ����� � � ���� � � 


(10). In this time step, only

the state of one single gate will be changed. The next step in the stochastic algorithm is to

select which of the 28 possible transitions occurs in the time interval
� � � . The conditional

probability that a particular transition � occurs in the time interval � � is given by(10)

�
	 � �� �
�� � � � � � �

� �
	

� �
�� � � � � � (3.23)

where � 	 is the product of the transition rate associated with transition � and the number of

channels in the parent state associated with that transition. Because the sum in the denomi-

nator of 3.23 is a re-ordered version of 3.22, it also equals



. A specific transition is selected

by drawing a random variable � � from the uniform distribution
�
� � 
 � , and determining �

such that(10) � ���
�
��� � �

� � � ���
�

�
� � � �

� � (3.24)

Then we can update the ion channel number in each state, and can update the membrane

potential consequently.

3.4.4 Langevin Approach

Fox and Liu (27; 28) have derived the following set of Ito-Langevin equations for the gating

variables � �  and
�

for large ion channel clusters (i.e. when the number of channels in the

cluster is large)

	
	 �
� � 	 � � � � � ��  � � � � � � � �

	
	 �
� � 	�� � � � � � � 

�
� � � �

� � �
	
	 � 

� 	 � � � �  � �  �  � � � ��� � � (3.25)
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where the variables � � � � � � � � � � � � � � ��� � denote Gaussian, zero-mean white noise with

� � � ��� � � � ������� � � �
� �

	 � � � � � � �  � �
�

� ��� � ��� �
� � � ��� � � � ��� � � � � �

� � 
	 � � � �  � �  � 

�
� ��� � � � �

� � �
� � � � � ��� � � � � �

� � 
	�� � � � � � � 

�
�

�
� ��� � � � � � (3.26)

Here � � and � �  denote the total number of potassium and sodium channels. It is

necessary to include restrictions to guarantee that  , � and
�

do not leave the unit interval

[0, 1]. The differential equations for the membrane potential are the classic Hodgkin-

Huxley equations where  	 � determines the fraction of open sodium channels and � � the

fraction of open potassium channels, i.e.

� ���� � � �
�
� �
� � � � � � � ���� � � �

� ��  	 � � � � � � ����� � � �
� � � � � � � �
	 ��� ��� � � � (3.27)

where
� �

is the specific membrane capacitance and
� � � � �

is the synaptic noise. Equations

(3.25,3.26,3.27) have to be integrated numerically in order to predict a neuronal spike train.
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Chapter 4

Cable equation and compartmental

model

Dendritic trees receive synaptic signals, and propagate the signals to the soma. The spike

is generated at the axon hillock, and propagates to the presynaptic terminals through the

axon. We therefore need to consider the extended system with cable-like structure. The

cable equation determines the dynamics of the membrane potential along thin tube-like

structures, such as axons and dendrites. This equation was introduced by Lord Kelvin in

the middle of nineteen century to describe the propagation of potentials along the submarine

telegraph cable linking America and Britain. A half century later, Hermann formulated the

core conductor model to describe the flow of current along nerve axons. Two classical

papers, which derived the cable equation for neurons and provided transient solutions, are

written by Hodgkin
�

Rushton(63) and Davis
�

Lorente de No(65).

Cable theory studies the partial differential equations describing the propagation of the

electrical potential along tube-like structures. In the 1930s and 1940s, the concept of cable

theory was applied to the nervous system, especially in the squid giant axon. The work
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of Rall(66) expanded the application of cable theory to passive dendrites, which began in

the late 1950s, and blossomed in the 1960s and 1970s. In this chapter, we will restrict

our discussion to linear cable theory. The membrane is considered to be passive, and can

be described as a combination of resistances and capacitances. It is true that there are

widespread dendritic nonlinearities, but the passive membrane is a valid and efficient first

approximation of the active membrane.

4.1 Introduction of the cable equation

The equivalent electrical circuit of a neuronal fiber with a passive membrane is shown in

Fig.4.1, where the neuronal tissue is represented by a series of discrete electrical circuits.

The current per unit length flowing through the membrane at location
�

is �
� � � � � � , with-

out making any specific assumptions and losing any generality. We can write down the

following equation for the discrete circuit demonstrated in Fig.4.1 by Ohm’s law

Figure 4.1: Equivalent electrical structure of an arbitrary neuronal process.
Reprinted from (13).
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� ��� � � � � � ��� � � � � � � � � � � � ��� � � � � � � � � � (4.1)

or if we transfer the infinitesimal small interval � � into the differential � � , and with
� � �

� �
, we can get the following equation:

� � �
� �

� � � � � � � � � � � � � � � � � � � � � (4.2)

where � � � � � � � � is the unit intracellular resistance with the dimensions of ohms per

centimeter.
���

is the intracellular core current along the axon, and assumed to be positive

when the current flows to the right. Applying Kirchhoff’s law to the node at
�

in Fig.4.1 ,

we have

�
� � � � � � � � � � ��� � � � �� � � � � � � � � � � � � � � � � � (4.3)

If � � approaches zero, we obtain

�
� � � � � � � � � � �

� �
� � � � ��� � � � � (4.4)

Differentiating Eq.4.2 and combining Eq.4.4, we find

�
� �

� � � �
� � �

� � � � � � �
� � � � � � � � � � � (4.5)

We found the relationship between the membrane potential’s spatial derivative with the unit

current flowing through the membrane. We can express the unit current flowing through
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the membrane �
� � � � � � by the following formula:

�
� � � � � � �

� � � � � � � � � � ��� �
� �

� � � � � � � � � � �
� �

� ���	�
	 � � � � ��� � � � � (4.6)

where � � is the unit membrane resistance with the dimension of ohms-centimeter. If the

nerve fiber is homogeneous, we can put the right side of Eq.4.6 equal to the right side of

Eq.4.5, multiply both sides by � � , and get the following equation:


 � � � � � � � � � �
� � �

� � � � � � � � � � �
� �

����� � � � � � ������ ��� � �� � � � � �
	 � � � � � � � � � � (4.7)

where the time constant � � equals � � ��� and the space constant



is
� � � � � � �

�� .
The above parabolic equation is very similar to the heat and diffusion equations being

a first order partial differential equation in time and second order partial differential equa-

tion in space. The character of this kind of parabolic equation is dissipation and without

constant wavelike solution. The cable equation is the fundamental equation to understand

the evolution of membrane potential along the nerve fiber.

Now, we have to deal with the vexing unit problem. The three fundamental parameters

of the nerve fibers can be expressed in two ways. If they are expressed per unit length, they

are formalized as the following:

� � �
� � �
� 	 �

� � � � � (4.8)

where the unit of � � is
� � �  .

� � � � �
� 	

� � � � � (4.9)
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where the unit of � � is
� �  .

� � �
� 	 � � � � � � � (4.10)

where the unit of
���

is � � �  . The advantage of this set of parameters is that the cable

equation has no explicit terms depending on the axonal diameter 	 .

The more common way is to formalize these parameters independent of the axonal di-

ameter 	 . The set of parameters used are the intracellular resistance � � with the dimensions

of
� �  , the specific membrane resistance � � with the dimensions of

� � �� and the spe-

cific membrane capacitance
� �

with the dimensions of � � � �� . Putting Eq.4.8, Eq.4.9 and

Eq.4.10 into Eq.4.7, we can get the following equation,

� � � �

� �
� � �	��	

� 	
� ��� � � � ���

� �
� 	
� � �

��� �
� � �

� � � � � (4.11)

4.2 steady-state solution

At first, we consider the steady-state solution of the cable equation. In order to evaluate the

steady-state solution, we set � � � � � and
� � ��� � to be zero, and rewrite the cable equation, to

get the following equation:


 � 	 �
� � ���

	 � �
� � � ��� � � � � �	��	 � ����� � � � � (4.12)

This simplification reduces the original cable equation to an ordinary second-order dif-

ferential equation.



64

4.2.1 Infinite cable

We assume the external current
���	�
	

is injected at location x = 0, and we can express the

external current as
� � � � ��� , where � � ��� is the dirac delta function. Considering the boundary

condition, we can assume the membrane potential to be 0 when
� � ��� �

. Then we can get

the steady-state solution of an infinite cable as follows:

� � ��� � � � � ��� ��� � � � � � � � (4.13)

where
� � is equal to

� � � � � � �

 �

. It is obvious that the membrane potential decays with the

distance, and the parameter controlling the decay is the space constant



. When x is equal

to



, the membrane potential decays to
� ���

of the original value, or approximately 37 �

of the original value. When x is equal to �



, the membrane potential decays to
� � � of the

original value, or approximately 13 � . In Eq.4.13, the steady-state space constant is defined

as

 � � � �

� �
� � � � � � � �

� �
� 	
�
� � � � � � � � � (4.14)

Because of the importance of the steady-state constant



, we often normalize the space

distance x with respect to



in the dimensionless form
� � �	��


, which is called the

electrotonic distance. What then is the input resistance of the infinite cable? It is calculated

by inserting an electrode to measure the membrane potential and the corresponding current

flow. The value of the input resistance can be expressed as

� �	� �
� � ���
� � � ��� �

� � � � � �� �
� � � � � (4.15)
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If we set x to be zero in Eq.4.13, we get the following equation,

� � � � ��� � ��� � � � � � �

 ��� � � � � (4.16)

We can get the input resistance,

� �	� � � �
�

 � �

� 


�
� � � � � � �

� �
�

�
� � � � � (4.17)

In case of an infinite cable, we consider the infinite cable as two semi-infinite cables,

one on the left side, the other on the right side. Then the input resistance of the semi-

infinite cable is twice that of the corresponding infinite cable, because current can flow in

two directions. So the input resistance of the semi-infinite cable is:

� � � � � � ��� � � �
� �
� � � �
 � � � � � � �

� �
� �

� 	 	
�
�
� � � � � (4.18)

4.2.2 Finite cable

In real neurons, the length of a neuronal fiber is limited, so we need to consider a finite

cable measured by the electrotonic length
� � 	 � 


. The general solution of the finite cable

with the electrotonic length is the following,

� � � � � 	������
	 ��� � � � �  �� � 	 ��� � � ��� � � � � (4.19)

Where
� � �	��


, the values of 	 and


are determined by the specific boundary condition.
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Sealed-End boundary condition

This is the most general case of real neurons embedded in living tissue. If the terminating

resistance is infinite, then the outgoing axial current at position
��� �

is zero. Because the

axial current is determined by the derivative of the voltage along the cable, then we have

the following formula,
	 � � ���

	 �
�

�
� � � � � � � � � (4.20)

This condition is called a Neumann boundary condition. Applying Eq.4.20 to Eq.4.19, we

get
� � � � � � � �����
	 ��� � � �

�����
	 ��� �
� � � � � (4.21)

Fig.4.2 shows the voltage profile in cables with two different electrontonic lengths with a

sealed-end boundary condition.

Now, we calculate the input resistance with the same strategy as in the previous section,

and obtain

� �	� � � � � � � 	 ��� ��� � � � � (4.22)

where ��� � 	 � ��� � �����
	 � ��� � �
� � 	 � ��� and � � is the input resistance of the semi-infinite

cable. This is plotted in Fig.4.3, which shows that the input resistance is higher in a finite

length cable than that of the semi-infinite cable.

Cut-End boundary condition

Another boundary condition is the cut-end boundary condition, when the nervous fiber is

physically cut open. The intracellular potential at the terminal is equal to the extracellular
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Figure 4.2: Steady-state potential attenuation
Steady-state potential attenuation with the normalized electrotonic length

� � �	��

.

Adapted from ref(13).
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potential. The transmembrane potential at the terminal can be set to zero,

� � � � �
�
� � ��� � � � � (4.23)

This type of boundary condition is called a Dirichlet boundary condition. Putting Eq.4.23

into Eq.4.19, we can get the membrane potential solution as,

� � � � � � � �� � 	 � � � � �

�
� � 	 � � �
� � � � � (4.24)

and the corresponding input resistance is

� �	� � � � ��� � 	 ��� ��� � � � � (4.25)

The voltage profiles along the axon with the cut-end boundary condition for the electrotonic

lengths L = 1 and 2 are plotted in Fig.4.2. This value is less than that of the semi-infinite

cable, and the input resistance is also less than that of the semi-infinite cable (Fig.4.3).

Arbitrary boundary condition

However, in the general case, the boundary condition of real nervous fibers is neither

sealed-end or cut-end. The terminal resistance has some finite value � � corresponding

to a junction to another cable. If we know the value � � of the terminal resistance, then we

can get the general solution as follows,

� � � � � � � �
� � 	 ��� � � � � � � �� � 	 � � �

�
� � 	 � � �
� � � � � (4.26)
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The voltage profiles along the axon with
� � � � � �

� � and
��� � � � � � � are plotted in Fig.4.2.

We also can rewrite Eq.4.26 in the following form,

� � � � ��� � ��� �	 � � � � � � � � � � � � � �
� � 	 � � � � �

��� �	 ��� � � � � � � � � � �
� � 	 � � �
� � � � � (4.27)

Combining the above equation and Eq.4.3, we can relate the input resistance with the

terminating resistance � � ,

� �	� � � � � � � � � ��� � 	 ��� �
� � � � � ��� � 	 ��� �

� � � � � (4.28)

If we set � � to zero or
�

, we can obtain the input resistances for sealed-end and killed-end

boundary conditions from Eq.4.28.

4.3 Time-dependent solutions

Until now, we have only considered the membrane potential profile of a constant injected

current. In most cases, we need to consider the voltage profile responding to the various

injected currents. Because this case is more complicated, we just discuss two special cases.

If we introduce the dimensionless variables for both time
� � � � � � and space

� � �	��

,

and set
� � ��� � � � , we can rewrite Eq.4.7 as the following equation,

��� � � � � � �

� � �
� � � � � � � �

� �
� � � � � � � � ��� � � (4.29)

The above equation has many solutions, and we need to find a solution to satisfy the bound-

ary condition and the initial condition. There are two basic solutions for this kind of PDE.
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One kind of solution is based on the method called separation of variables. Using this

method, the general solution of this kind of PDE can be expressed as,

� � � � � � � � � �� � � 	 � � � � � ��� � 	 � � ��� ����� ���
� 
 � � ��� � � (4.30)

where A and B are arbitrary constants determined by the initial condition, and 	 � is called

the separation constant. It is easy to verify that this solution satisfies the dimensionless

Eq.4.29.

The other class of solution is based on the Green’s function. This solution is

� � � � � � � � � � �
� � ��� � � �

�����
�

� � � � � 
 � ��� � � (4.31)

where X can range from
� �

to
� �

, and the point charge is located at X = 0 when T =

0. If the amount of the charge is Q coulombs, then for a semi-infinite cable,
� � is equal

to � � � 
 � � � . For the doubly infinite case, the charge moves in two directions, then
� � has

half the value.

4.3.1 Finite length cable with sealed ends

For a uniform cable, with two sealed-end boundary conditions, it is found that the value of

A in Eq.4.30 is zero, and the coefficients 	 have an infinite number of values, 	 � � � �
� �

,

where n is an integer from zero to infinity. Then we can express the solution of the cable

equation with two sealed-end boundary conditions by the following equation,

� � � � � � �
��
� � �

� � ��� � � � �
� � � ��� � 	 � � � ��� � � 
 � � � � ��� � � (4.32)
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where the coefficients
� �

are called Fourier coefficients, and are determined by the initial

condition,
� � � � � � � �

� �
�

� � � ��� � 	 ��� ��� � � (4.33)

� � � 	 � 
 � �
�
� � � � �

�
� � � ��� ����� � � � �

� � � � 	 ��� ��� � � (4.34)

There is an alternative expression for Eq.4.31,

� � � � � � � � � � ��������� � � � � ������� � � �

�
� ������� � � ����� � ��� � (4.35)

where
� � � � � and � � equals the positive membrane time constant, and

� � � � � � � � � � �
� � � � � ��� � � (4.36)

And for � �

� � � � � � � � 	 �� � � � � � �
� � � � � ��� � � (4.37)

where � � � is associated with the slowest decay time constant.

It is important to note that the time constants depend on the electrotonic length L, but

are independent of the initial condition. The electrotonic length L can be calculated as

� � � �� � � � � � � �
� ��� � � (4.38)

The coefficients
� �

depend on the initial condition and the measured position.
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4.4 Compartmental model

In order to describe the spatial and temporal evolution of the action potential along the

heterogeneous axon, a spatially explicit model of the axon is needed. If we set the injected

current to be 0, and rewrite the third term of left side of Eq.4.11 as �������
��� �

, the cable

equation for a one-dimensional axon is given by (see e.g. in (32)),

� � � � � � � � �
	 �

�
�������

��� � � 	
� � �

� � �
� � �

� � 
 � � (4.39)

where � � denotes the axoplasmic resistivity, 	 the diameter of the axon, and
� �

the mem-

brane capacity per area. The ionic current sources

�������
� � �� ��� � � �� � � � � ��� � � � � � � ��� �� ��� � � ��� �� ��� ��� � � (4.40)

are given by the Hodgkin-Huxley model described in the previous section.

The compartmental model replaces the continuous partial differential equation of the

cable model 4.39 by a set of � ordinary differential equations(67). There are two key

advantages of this model. First, the flexibility of the compartmental model ensures that

this model can embody the structure and physiological differences of specific dendrites.

Second, the compartmental model can be implemented directly on a computer. In the

compartmental model, an unbranched region of an axon is divided into a number of con-

tiguous compartments (68).Each compartment is small enough to be considered as being

at a constant potential. Then the differences in physical properties and potential only occur

between two nearby compartments rather than in one compartment(70; 71).

We consider an unbranched, cylindrical region of a passive axon, divided into three
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linked compartments. A linked chain of equivalent electrical circuits illustrating this re-

gion is shown in Fig.4.4a. These compartments are represented by the equivalent circuit of

Fig.4.4b. As shown in Fig.Fig4.4b, the circuit of each compartment consists of a capacitor

in parallel with a resistor. Each compartment 	 is joined to its immediate neighbors by

junctional resistors � �
���

� � and � � � � �
� . If the cylindrical compartment 	 has uniform diam-

eter 	 and length
	
� , the membrane capacitance parameters have the following formulas

���
�

� � �
�

	
�

� 	
� � � �

� � �
�

� � �
�
� ��� � �

	
�
�

��� � �

	
�

� 	 � � (4.41)

where
� �

� is the membrane capacitance per unit area.

Figure 4.4: Schematic graph of compartmental chain
(A) A chain of three cylindrical compartments that are sufficiently short to be considered
isopotential. (B) Equivalent circuit for a compartmental model of a chain of three succes-
sive small cylindrical compartments of passive axonal membrane. Adapted from ref(67).
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The compartmental model is represented by a set of ordinary differential equations.

Each equation is derived from Kirchhoff’s laws. In each compartment, 	 , the net current

through the membrane, � � , must equal the longitudinal current that enters that compartment

minus the longitudinal current that leaves it. If the 	 th compartment lies between the

( 	 � � )th compartment and the ( 	 � � )th compartment, the membrane current of the 	 th

compartment is given by

�
�

�

�
� �
���

� �
�

� � � � �
� � � 
 � � (4.42)

where � �
���

� � is the current that flows from the ( 	 � � )th compartment to the 	 th com-

partment and � � � � �
� is the current that flows from the 	 th compartment to the ( 	 � � )th

compartment. The membrane current is the sum of the capacitance (charging) current and

the net ionic current ( �
�����

) that flows through the transmembrane resistance. For the com-

partment 	 , the membrane current can be expressed as

�
�

�

� � �
�

	 � �	 �
�

�
�����

�

� � 
 � � (4.43)

where
�
� is the membrane potential measured with respect to the resting potential. The

longitudinal current is the voltage gradient between two nearby compartments divided by

the axial resistance between the two compartments. Combining Eq.4.42 and Eq.4.43 , we

can get the following equations

� �
�

	 � �	 �
�

�
�����

�

� �
�
��� � �

�
� �
���

� �
� �

�
���

� �
�

� � � � �
� � � 
 � � (4.44)
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or

���
�

	 � �	 �
�

�
�����

�

� ���
�
��� ���

�
� � �

���
� �

� ���
�
���

� �
� � � � � � �

� � � 
 � � (4.45)

where � �
���

� �
� � � � �

���
� � is the axial conductance between the ( 	 � � )th compartment

and the 	 th compartment. For the first compartment in a chain, only the second term

for the longitudinal current appears on the right-hand side of the equations; for the last

compartment in a chain, only the first term for the longitudinal current appears on the

right-hand side of the equations.

Inserting the explicit expression for the ionic transmembrane currents (for all compart-

ments 	 )

�
�

�

� ���
�

	 � �	 �
� � � �  � � �

������� � �  � �
� � �� � �

������� �� ��� � � � �
�������

�
� � � 
 � � (4.46)

into Eq.4.45, one finds

���
�

	 � �	 �
� � �

���
� �
�
�
��� � � � � � �

� �
� �

�

� � � ������� � �
� � �  � �

� � � � �
� � �

���
� �
� � � � � �

� ���
�

� � ������� � �
�
�������

� �
� � �� � �

� �� � �
� � � � �

� � � �
� � 
 � � (4.47)
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For a homogeneous axon, if we insert Eq.4.41 into Eq.4.45, and combine the two terms

in right side of Eq.4.45 , we can get the following equation,

	 � �	 �
� �

�����
�

� � 	
�

� 	
� 	
� � � � � 	 �

���
�
��� � �

�
�
� �

� �
� � � (4.48)
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Chapter 5

Mechanism for neuronal spike

generation by small and large ion

channel clusters

5.1 Introduction

Conductance-based models for the trans-membrane voltage of neurons - pioneered in the

seminal paper by Hodgkin and Huxley(23) - are the cornerstone of modern computational

neuroscience. The essential idea is that the conductance of the membrane is determined

by the conductance of the potassium and sodium systems which in turn is determined by

the membrane potential. The nonlinear dependence of the sodium and potassium conduc-

tances on the membrane potentials generates action potentials that travel down the axon

to contact other neurons. The conductance of sodium and potassium through the mem-

brane is facilitated by specific ion channels that individually switch stochastically between
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the open and the closed states - as demonstrated by Neher and Sakman(2). Experiments

show that individual ion channels open and close randomly with membrane voltage de-

pendent opening and closing rates(2; 3). The deterministic Hodgkin-Huxley equations

(23) describe the dynamics of the membrane potential if the number of ion channels is

very large, i.e. when conductance fluctuations are negligible. If the action potentials are

generated by a cluster of sodium and potassium channels that comprises only a few chan-

nels, stochastic effects become important, giving rise to spontaneous spiking (24; 25). In

such situations, stochastic Hodgkin-Huxley equations have to be employed to describe the

transmembrane potential(10; 11; 26; 27; 28; 72). When the ion channel number is large,

the stochastic Hodgkin-Huxley equation results will approach the conventional Hodgkin-

Huxley equation results(27; 28). The effects of channel noise (as a function of the size of

the ion channel cluster) have been studied recently in the context of the coherence of the

generated neuronal spike train(12; 74). Besides channel noise, other sources of noise are

important. Synaptic noise is generated by stochastic effects in the diffusion of neurotrans-

mitter through the synaptic cleft as well as by the relatively small number of postsynaptic

receptors. Furthermore, a neuron is often contacted by a large number of other neurons

whose signals can act like a noise source(30). Other sources of noise are ligand-gated ion

channels(29). In this chapter we report on the differences of the mechanisms of action-

potential generation by small and large ion channel clusters and how these differences are

expressed in the statistical properties of the neuronal spike train. We further explore the

role of synaptic noise on the generation of action potentials by small and large clusters of

ion channels in the neuronal membrane. Since synaptic noise is extrinsic to the ion chan-

nel processes that generate the action potentials, it appears as noise terms in the equation

for the membrane voltage. Intrinsic channel noise appears in the equations for the gating
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variables(27; 28). In Section 5.2, we describe the Hodgkin-Huxley model in the presence

of channel noise and synaptic noise. In Section 5.3 we describe results for the spiking rates,

variability of the spiking and temporal coherence of the generated spike trains. In section

5.4 our results are summarized. The results of this chapter have been published in Physics

Review E(69).

5.2 Model

We adapt the classic model for the ion channels introduced by Hodgkin and Huxley that

models the potassium channel by four identical gates that stochastically switch between an

open state and a closed state. The open probabilities � � for the four gates � � � � � � � � � are

described by the rate equations

�� � ��� � � � � 	 � � � � �  � � � � � � ��� � � � 	 � � � � � (5.1)

where 	�� � � � and
 � � � � are the membrane-voltage � dependent opening and closing rates,

and the unit is 1/msec.

	�� � � � � � � � � � ��� � � �
����� � � ��� � � � � ��� � � � �  � � � � � � � � �

� ����� � � �
� � � � (5.2)

The trans-membrane voltage � is measured here and in all equations below in  �
with

respect to the physiological cellular resting potential of
� � �  �

. The potassium channel is

open only when all four gates are open, i.e. with probability � � � � � 	 � � .
The sodium channel consists of four gates. Three identical fast gates increase their

opening probability �
� ��� � ��� 	 when the voltage � becomes larger than the resting potential.



81

The slower fourth inactivation gate decreases its open probability � � when the membrane

potential increases. The gate variables obey the following rate equations:

�
�
� ��� � � � � 	 �

�  � � � �  �
�� � � � � �

� ��� ��� 	
�
�� � � � ��

� �
��� � � � � 	

�
�� � � � �  ��  � � � � � � ��� � � 	

�
�� � � � � (5.3)

with the opening and closing rates

	
�
�  � � � � � � � � �

� � � �
����� � � �

� � � � � ��� � � � �  �
�� � � � ��� � � ����� � � �

� � � �

	
�
�  � � � � � � � 
 ����� � � �

� � � �  ��� � � � � �
����� � � � � � � � � � � � � �

� (5.4)

Although each individual ion channel opens and closes independently, the opening and

closing rates are regulated by the same membrane potential. As a consequence all ion

channels are globally coupled through the membrane potential. For the density of the

sodium and potassium channels (number of channels per unit area) we use � �  � � � � �� �
and � � �

� � � �� � , respectively. The single-channel conductances of the sodium and

potassium channels are given by

 �  � 
 � �

� � � � . Except for ��� �
� � � �� � these

values have been reported for the squid giant axon (23). Using a membrane capacitance of

� ��� � �  � we end up with the following equation for the membrane potential

�� � � �
�
��� ���
�� � � �

� � � � � ���� � � �
��� � �
� � �� � ��

� � � � � ����  � � �
� � � � � � � � 	 � (5.5)

where � � ���� � � � �  � � � � ����  � � � �  � � � � � ��� � �  � � �
��� ���
�� � �

��� � �
� � � �� � �
� denote rever-

sal potentials of the potassium system, sodium system and leakage system, open sodium

channel number, open potassium channel number, sodium channel number, and potassium
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channel number, respectively. The minimal time constants are given by

� � � ����  �

� �  � �
� � � 

�

� � � � � �  � � (5.6)

The numbers of open � � and ��� � channels, �
��� ���
� and �

��� ���
�� , respectively, have to

be determined as a function of time by stochastic simulations with methods described in

Chapter 3.

The time scale of synaptic noise is about one order of magnitude smaller than channel

noise (see e.g. in (75)). Thus we can consider synaptic noise as Gaussian white noise
����� � �

with

� � � ��� � � � �
� � � � � � � � � ��� � � � � �� � � �� �����

(5.7)

where
� �

describes the strength of the synaptic noise. Since synaptic noise leads to events

that are integrated, it has to be added to the right hand side of Eq.5.5, i.e.

�� � � �
�
� ��� �
�� � � �

� � � � � ���� � � �
��� ���
��� �  �
��

� � � � � ����� � � �
� � � � � � � �
	 ��� � ��� � � (5.8)

5.3 Results

We have compared the average time-interval between two subsequent action potentials and

the variance obtained from spike trains of
� � � � action potentials that have been gener-
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ated by the methods described earlier. The simple stochastic scheme, the Markov process

method for the occupation number and the Gillespie method yield results that agree within

a 5% error. The Langevin method does not reproduce accurate results either for small or

large cluster sizes (see Figs.5.1 and 5.2). The disagreement is particularly large in the ab-

sence of synaptic noise when the average time interval between subsequent spikes diverges

for large cluster sizes.
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Figure 5.1: Average time intervals between subsequent action potentials
Comparison of the average time intervals between subsequent action potentials obtained
from spike trains of

� � � � action potentials for
� � � � and

� � �
� � � � �  � . (x): Langevin

method at
� � � � , (*): occupation number method at

� � � � , (+): occupation number
method at

� � �
� � � � �  � , (square):Langevin method at

� � �
� � � � �  � .

The computation times for the different algorithms are compared in Fig.5.3. For the

simple stochastic method, the simulation times increase linearly with the number of the

channels in the cluster. The computing time for the Gillespie method also increases lin-
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early in cluster size since the time-steps - drawn from an exponential distribution with a

linearly decreasing decay time - become smaller as the cluster size increases. The Gillespie

method is, however, much more efficient than the simple stochastic method. The occupa-

tion number method appears to us as the most efficient method. It leads to faster code with

no cost in accuracy since 1) several channels are updated at each time step and 2) the time

interval is fixed independent of the cluster size.
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Figure 5.2: Comparison of the relative fluctuations
� ����� ������	�
 � 	����	 (Eq.5.14)

Comparison of the relative fluctuations
� ������������	�
 � 	����	 (Eq.5.14) of the intervals between

subsequent action potentials obtained from spike trains of
� � � � action potentials for

��� � �
and

� � �
� � � � �  � . (x): Langevin method at

� � � � , (*): occupation number method at
� � � � , (+): occupation number method at

� � �
� � � � �  � , (square):Langevin method at

� � �
� � � � �  � .

In order to further verify the accuracy of our simulations, we have verified 1) that the

results obtained with the stochastic schemes approach the deterministic Hodgkin-Huxley



85

equations when the ion channel number is large, and 2) that our results agree with those in

Ref.(11).
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Figure 5.3: Comparison of the compute times
Comparison of the compute times for clusters of Na � and K � channels to generate a train
of

� � � � action potentials using the simple stochastic method (+), the Markov process for
the occupation number (x) and the Gillespie method (*).

The Langevin method does not reproduce accurate results for small and large cluster

sizes and therefore we did not compare the compute times of this method.

5.3.1 Average interspike interval of the ion channel cluster

We consider the combined effect of channel noise and synaptic noise on the average inter-

spike interval
� � � as shown in Fig.5.4 as a function of the cluster size in the absence

of an external stimulus. The fraction and density of sodium versus potassium channels is

kept constant while the cluster size is increased. In the case of vanishing synaptic noise,
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Figure 5.4: The average time interval between two subsequent action potentials
The average time interval between two subsequent action potentials (in  � ) versus mem-
brane area (in ���� ) at

� � � � (+),
� � �

� � � � �  � (*),
� � � � � � � �  � (x) and

� � � � � � � �  � (square). These results were obtained with the occupation number method.

the average interspike interval
� � � first decreases with increasing area of cluster, but

then increases again since for infinitely many channels the deterministic Hodgkin-Huxley

model is approached. In the presence of synaptic noise, the spiking rate does not decrease

to zero as the size of the cluster increases. The average time-interval between two sub-

sequent spikes is thus only determined by the synaptic noise as the number of channels

becomes very large. We therefore encounter the paradoxical situation that channel noise

in addition to synaptic noise decreases the spontaneous firing rate for small clusters. To

understand this phenomenon it is useful to consider the two extreme situations of an in-

finitely large cluster of sodium and potassium channels with synaptic noise and a cluster
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Figure 5.5: Membrane potential, fraction of open sodium and potassium channels.
The membrane potential in  �

, the fraction of open sodium and potassium channels are
shown as a function of time for an ion channel cluster with infinitely many channels. The
variance of the external noise is

� � � � �  � . For better visibility, the fraction of open chan-
nels is multiplied by 20.

of three sodium channels and one potassium channel. The membrane area of the second

extreme situation is 0.05 �� � . We set the magnitude of the variance
� �

of the synaptic noise

as 5 � � � �  � . The membrane potential, the fraction of open sodium ion channels and the

fraction of open potassium ion channels in the case of an infinite cluster size are plotted

in Fig.5.5. Here the membrane potential fluctuates about its rest state due to the synaptic

noise. An action potential is fired when the membrane potential exceeds a threshold (of

about
� �
�  �

) which is determined by the deterministic Hodgkin-Huxley equations. The

average time interval between two successive spikes is determined by the probability for

the membrane potential to cross the threshold.

In the other extreme case, a small cluster of three sodium channels and one potas-

sium channel is considered. The time course of the membrane potential, the number of
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Figure 5.6: Membrane potential, open � � � number, open � � number.
The membrane potential (in  �

), the number of open sodium ion channels and the number
of open potassium channels is shown as a function of time for the membrane with one
potassium channel and three sodium channels. The variance of external noise is 5 � � � �  � .
The number of open channels has been multiplied by a factor of 20. (a) When one sodium
channel is open, an action potential is evoked. (b) Even if the membrane potential is greater
than the threshold value of infinite large ion channel cluster, if there is no open sodium
channel, no action potential is evoked.
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open sodium channels, and the number of open potassium channels is shown in Fig.5.6.

As can be seen in Fig.5.6a, an action potential is fired exactly when one sodium channel

opens, although the membrane potential is well below the firing threshold of the deter-

ministic Hodgkin-Huxley equations (about
��� �  �

). In Fig.5.6b, we show a trace of the

membrane potential in comparison with the number of open channels where the membrane

potential is well above threshold but no action potential is fired. In contrast to the mech-

anism of action potential generation by large clusters, the mechanism for small clusters is

not determined by the firing threshold of the membrane potential, but rather by the single

channel kinetics. To see this we show in the following that the average time for any (of

the three) sodium channels of the cluster to open after they all have been reset (after action

potential) to a state where all gates are closed agrees well with the average time interval

between two successive spikes. In other words, we show that the average interspike interval

is determined by the activation time of the sodium channels. A single sodium channel is

described by the following set of kinetic equations in which the rates out of the open-state

 	
� � are discarded, i.e. thus generating the cumulative probability

� � ��� � � �  	
� � � for the
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probability that the channel has opened in the time interval
�
��� � �
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with the initial conditions

�  � � 	 � �
��� �� ��� �	� �

� � � �

� � � 	 � ��
 � � �
� (5.10)

Assuming for now that the voltage is clamped, the solution for this set of equations for

one single sodium channel is independent of the potassium conductance and can be solved

easily for the cumulative probability
�� � � �

. Since the sodium channels are independent, the

cumulative probability that any of the three sodium channels has opened within the time

interval
�
��� � � is given by �

	
��� � � � � � � � � � � � � � 	 � (5.11)
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and thus the probability density of re-open times of any channel within the cluster of three

sodium channels reads

� 	
��� � � 	

	 �
�
	
��� � � � �� � � � � � � � � � ��� � � � � (5.12)

where the dot indicates a derivative with respect to time
�
. The average opening time can

then be obtained from
� �

	 �
� � �

�
� � 	

��� � 	 � � (5.13)

Since the voltage is fluctuating for a cluster of three sodium and one potassium channel

(see Fig.5.6), the clamped voltage in the rate equations (Eq.5.9) is replaced by the average

voltage of
� � � � ���  �

. Plugging the solution of Eq.5.9 into Eqs.5.10-5.13 one finds an

average opening time of
�

� � � �  � . This number compares favorably with the average inter-

spike interval of
�

� � 
 �  � for a cluster of three sodium channels and one potassium channel

obtained by stochastic simulations. This agreement supports the above stated hypothesis

that the firing of action potentials in small channel clusters is determined by single channel

kinetics and not by a threshold of the membrane potential.

As the cluster size is increased, the probability of opening just one sodium ion chan-

nel will increase since more sodium channels are available. Thus, the spontaneous firing

rate increases with increasing cluster size and the average time interval between subse-

quent spikes decreases - as can be observed in Fig.5.4. When the cluster size increases

further, opening of single sodium channels will not always trigger an action potential, a

critical fraction of all available sodium channels is required to be open - consistent with the

membrane potential crossing a threshold.

Thus the observed reduction of the spontaneous firing rate in spite of additional channel
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noise reflects a change in the mechanism by which spikes are generated as the ion channel

clusters become smaller.

As already mentioned earlier the Langevin approximation does not accurately repro-

duce these results. It fails at small and large cluster sizes (see Fig.5.1).

5.3.2 The relative fluctuation of the average interspike interval

The variability of the interspike intervals T is described by the relative fluctuations

� �
� � � � � � � � � � �� � �

� (5.14)

The relative fluctuations of the interspike intervals are plotted versus the cluster size for

various values of the strength of the synaptic noise in Fig.5.7. In the absence of synaptic

noise, the fluctuations of the intervals decrease with increasing cluster size until they reach

a minimum. For further increasing cluster sizes, the fluctuations of the intervals increase

again (see also (12; 74)). The power spectra of the spike trains shown in Fig.5.8 confirm

that the spike train exhibits a maximum temporal periodicity at the cluster size where the

relative fluctuations are at minimum.

The power spectrum of the spike train generated by a membrane with area 0.1 �� � is

relatively flat. At a membrane area of
� �� � (near the point with minimal relative fluctua-

tion) the power spectrum exhibits a peak close to the angular frequency of � � � 
 �  � , which

corresponds to an average interspike interval of about � 
  � , consistent with the minimum

average interspike interval (see Fig.5.4). The power spectrum confirms the maximal tem-

poral coherence of the spike train at the same cluster size where the cluster fires action

potentials at its highest rate.
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Figure 5.7: The relative fluctuations (5.14) versus membrane area (in �  � ).
The relative fluctuations (5.14) versus membrane area (in �� � ). at

� � � � (+),
� � �

� � � � �  � (*),
� � � � � � � �  � (x) and

� � � � � � � �  � (square). These results were ob-
tained with the occupation number method.
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Figure 5.8: The power spectrum curves of spike trains
The power spectrum curves of spike trains generated by membranes with
area= � � � �� � (solid line), area=

� ���� (dotted line) and area=
� � ���� (dashed line) in

the absence of synaptic noise.
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As shown in Fig.5.7, synaptic noise alters the relative fluctuations mostly at larger mem-

brane areas, where the channel noise induced spikes are infrequent. On the other hand,

when the area of membrane is small, the statistical features of the neuronal spike train are

mainly determined by channel noise.

5.4 Discussion

We have compared the average interspike interval and the relative fluctuations of trains

of action potentials generated by small and large clusters of ion channels. For large ion-

channel clusters, action potentials are elicited by synaptic noise when the membrane po-

tential exceeds an excitation threshold. For small ion channel clusters, channel noise domi-

nates over synaptic noise. Action potentials are generated at a frequency that is determined

by the single channel kinetics and is only dependent very weakly on the synaptic noise

strength. We have further shown that at the size of the ion channel cluster at which a

maximum spontaneous spiking rate is observed, the spike trains exhibits maximum tempo-

ral periodicity. Different stochastic algorithms have been compared. Because the simple

stochastic method requires the least number of assumptions it is a priori the most accurate

method. For spike trains of
� � � � spikes the occupation number method and the Gillespie

method reproduce the results obtained with the simple stochastic method within
� � error.

If the membrane comprises � ion channels,
� � random numbers are required for the sim-

ple stochastic method. Thus, the simulation time of the simple stochastic method increases

linearly with the number of ion channels. In Gillespie’s method, the step time is inversely

proportional to



(3.22). Since the value of



is linearly proportional to the number of

ion channels, the simulation step time is inversely proportional to the ion channel num-

ber. Thus, the simulation time of the Gillespie’s method is also linearly proportional to the
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number of ion channels - though with a smaller slope than the simple stochastic method.

In each simulation step, the occupation number method needs to generate a fixed number

of � � random numbers regardless of the number of ion channels. Thus, the simulation time

is approximately independent of the number of the ion channels; in our tests it was the

fastest method for a given accuracy. The Langevin method - although designed for large

ion channel clusters - generates accurate results only for intermediate cluster sizes.
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Chapter 6

Synchronization of ion-channel clusters

on axon

6.1 Introduction

Synchronization is a basic phenomenon in science, discovered by Huygens three centuries

ago(77). During the past decade, the concept of synchronization has been used to describe

the interaction of chaotic oscillators. Periodic self-sustained oscillators adjust the oscillat-

ing frequencies through synchronization due to weak interactions(78; 79). Recently, the

concept of phase synchronization of chaotic systems has been introduced(80). Phase syn-

chronization is the appearance of a certain relationship between the phases of interacting

systems. In the synchronization of chaotic systems, phase locking is important, while there

are no restrictions on the amplitudes of chaotic oscillations. The properties of phase syn-

chronization in chaotic systems are similar to those of synchronization in noisy oscillators

and periodic oscillators(64).
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Synchronization phenomena are often encountered in living systems. In living sys-

tems, the notion of synchronization is used widely to describe the interaction between

different physiological systems demonstrating oscillating behavior. There are many syn-

chronization phenomena in living systems, such as: phase locking of respiration with lo-

comotory rhythms(76), coordinated movement(81), synchronization of oscillations of hu-

man insulin secretion(82), and synchronization of the noisy electrosensitive cells in the

paddlefish(83). The notion of synchronization is also related to several important issues

of neuroscience(84). Synchronization is the essential mechanism for information process-

ing in brain areas, and responsible for the information communication between different

brain areas. Synchronization of neuronal activity in the visual cotex is also responsible for

combining several related visual features into a whole and integrated one(84; 85).

In neurons, the spiking frequency and time of action potential generation can be syn-

chronized by weak interactions. The generation of action potentials is due to the movement

of ions across the membrane through ion channels. Ion channels are usually uniformly dis-

tributed along the unmyelinated axon to support action potential propagation, but in some

cases, ion channels are also distributed in clusters in giant squid axons(5) and in the rat

retinal nerve fiber layer(86). The ion channel clusters along unmyelinated axons gener-

ate spontaneous spiking due to ion-channel noise(10; 27). The ion-channel clusters are

coupled by an axonal cable, and the spontaneous spiking of each ion channel cluster is

synchronized. Here we consider the synchronization of two ion channel clusters coupled

by the axon. First, we calculate the effect of axonal parameters on the synchronization of

ion channel clusters along the axon, then we consider the effect of ion channel cluster size

on the synchronization. It is reported that there is an optimal size of the ion channel cluster

for which the effect of synchronization is maximal.
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Table 6.1: Axonal parameters of unmyelinated axon
Axon diameter ( 	 ) 2 ��
Membrane capacitance (

� �
) 1 ��� � �  �

Axoplasmic resistivity ( � � ) 80
� � � 

Length of each compartment 2 ��
Length between two ion channel clusters 20 � 
��� � density in the ion channel cluster ( � �  ) � � � �  �
� � density in the ion channel cluster ( � � ) � � � �  �
Conductance of each ion channel (


 �  � 
 � ) 20pS
��� � reversal potential (

� �� ) 50 mV
� � reversal potential (

� � ) -77 mV
Leakage reversal potential (

� �
) -54.4 mV

Leakage current conductance ( � � ) 0.3 	� � �  �
Transition rate ( 	 � ) 	 � �

��� � � �
� �

� 

� � � � �����	�
�
�� � �

Transition rate (
 �

)
 � � � � � �

� � ��� � ���
 
������

Transition rate ( 	 � ) 	 � �
��� � �

� � �
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6.2 Results

We use the occupation number method to compute results from the stochastic HH equa-

tions, and analyse a spike train with 10000 spikes. In order to verify the accuracy of our

simulation, we have 1) verified that when the ion channel number is large, the simulation re-

sult with stochastic HH equations approaches the result of the deterministic HH equations,

2)verified that the results agree with that of (11). We consider two ion-channel clusters con-

nected by an unmyelinated axon. The unmyelinated axon is divided into 10 compartments.

The parameters of the cable system are given in Table.1.
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If there is no coupling between two ion channel clusters, the two clusters will spike

independently. If we choose a large distance between two ion channel clusters, they can

be considered as two independent clusters. Fig.6.1 illustrates the spontaneous spiking of

two approximately independent ion channel clusters. As the figure shows, the spontaneous

spiking times of two approximately independent ion channel clusters are independent and

not correlated. If we set the distance between two clusters to 20 �� , then the two ion

channel clusters are coupled. Fig.6.2 illustrates the spontaneous spiking of two coupled ion

channel clusters. As Fig.Fig6.2 shows, the spontaneous spiking time of two coupled ion

channel clusters are synchronized.
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Figure 6.1: The spontaneous spikes of two independent ion channel clusters.

From Fig.6.2, we find that the spike time of two synchronized spikes is not exactly the

same. The time difference of two synchronized spikes is the action potential propagation

time between the two ion channel clusters. The average spiking time difference between
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Figure 6.2: The spontaneous spikes of two coupled ion channel clusters.
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200 pairs of synchronized spikes is 1.9 ms. The maximal time difference of the 200 pairs of

spikes is 2.9 ms. If the time difference of two spikes is less than 3 ms, we consider the two

spikes to be synchronized. In order to consider the synchronization strength, we calculate

the average consecutive synchronized spiking number (SSN), which is shown in Fig.6.2.

In our simulation, we first calculate 10000 spikes for one cluster, then calculate the average

consecutive synchronized spiking number.

6.2.1 Effects of axonal parameters

We first consider the effects of cable parameters on the synchronized spiking number. We

consider the effects of the specific membrane capacitance, the specific electrical resistivity

of the cytoplasmic core, the axon diameter and the cable length on the synchronized spiking

number, respectively. When we consider the effect of one parameter listed above, we fix

the other parameters at the values shown in Table6.1. The effect of cable parameters is

shown in Fig.6.3.

As shown in Fig.6.3, the synchronized spiking number will decrease if the specific

membrane capacitance, electrical resistivity and the cable length are increased; if the axon

diameter is increased, the synchronized spiking number will increase. The effect is dra-

matic and approximately exponential. We can consider the coefficient
�

��� ����� � � of the term

on the right side of Eq.4.48 as the coupling strength. It is clear that if � � , � �
and

	
are

increased, the coupling strength will decrease. If 	 is increased, the coupling strength will

increase. Increasing the coupling strength, increases the synchronized spiking number, and

vice versa.
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Figure 6.3: Effects of axonal parameters on the synchronized spiking number.
The effects of the specific membrane capacitance, the specific electrical resistivity of the
cytoplasmic core, the axon diameter and the cable length on the synchronized spiking num-
ber, respectively.
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6.2.2 Effect of cluster length distribution

Now we fix the total length of two ion-channel clusters at 4 �� , fix the parameters at the

values shown in Table.6.1, and change the length of one cluster. The synchronized spiking

number versus the length of ion-channel cluster is shown in Fig.6.4. Because the system

is symmetric about the middle point, where the length of each ion channel cluster is 2 �� ,

we first calculate the synchronized spiking number with the length of cluster one ranging

from 0.6 �� to 3.4 �� , then calculate the average value about the middle point. As Fig.6.4

shows, when the two ion channel clusters have the same area, the synchronized spiking

number has the maximal value, and the synchronization effect is most dramatic. It agrees

with the real biological myelinated axon, where nodes are distributed homogeneously, and

each node has approximately the same area.
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Figure 6.4: Synchronized spiking number versus the length of ion channel cluster one.
The total length of two ion channel clusters is fixed at 4 �� .
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6.2.3 Effect of cluster length

Now we fix the parameters to the values shown in Table.6.1, and change the length of

each ion channel cluster simultaneously. The synchronized spiking number versus the

length of each ion channel cluster is shown in Fig.6.5. As we increase the length of each

ion channel cluster, the synchronized spiking number first increases, and after reaching

a maximal value, it then decreases. The synchronization of spiking is due to the charge

propagation between two clusters. When there is a spike in cluster one, then the charge

will propagate from cluster one to cluster two. If the charge is big enough, the potential of

cluster two will reach the threshold value, and a spike will be evoked. There is then a pair

of synchronized spikes between the two clusters. If the charge is not big enough, cluster

two will not evoke a spike, and there will not be a pair of synchronized spikes between the

two clusters. So whether the quantity of charge propagating between two clusters is above

a threshold value is the main factor that determines the synchronization of two clusters.

When the parameters of the axon are fixed, the charge carried by one spike is approx-

imately fixed. Then the threshold value of charge to evoke a spike is the main factor to

determine the synchronization of two clusters. At first glance, one would expect that the

smaller the area of the cluster, the smaller the threshold value of charge to evoke a spike.

Thus the smaller the area of the cluster, the bigger the synchronized spiking number. But

the simulation results in Fig.6.5 show the opposite picture. The synchronized spiking num-

ber first increases with increasing cluster size. After reaching a maximal value, SSN de-

creases with increasing cluster size. We inject a current pulse in the ion channel cluster to

calculate the threshold value to evoke a spike. The duration of the current pulse is fixed at

0.1 ms. We calculate the threshold value of the injected current in two cases. In one case,

the ion channel cluster is connected with the axon; in the other case, the ion channel cluster
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Figure 6.5: Synchronized spiking number versus the length of each ion channel cluster.
The length of each ion channel cluster changes simultaneously.
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is isolated, and is not connected with the axon. The threshold values of the injected current

in the two cases are plotted in Fig.6.6.
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Figure 6.6: The threshold value of the injected current for the ion channel cluster.
The duration of the current pulse is fixed as 0.1 ms. In one case, the ion channel cluster
is connected with the axon; in the other case, the ion channel cluster is isolated, and is not
connected with the cable.

As Fig.6.6 shows, in the case where the ion channel cluster is isolated, the threshold

value of the injected current increases linearly with the length of the ion channel cluster. It

is reasonable that the larger the area of the ion channel cluster is, more charge is needed to

evoke a spike. In the other case where the ion channel cluster is connected with the axon,

the threshold value of the injected current first decreases as the size of the ion channel

cluster is increased, and after reaching the minimal value, it then increases with increasing

cluster size. This phenomenon can explain why the synchronized spiking number first

increases, reaches a maximal value, and then decreases.
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When the action potential propagates from one ion channel cluster to the second ion

channel cluster, charge moves in two directions in two different periods. During the first

period, the voltage of the connected axon is higher than that of the second ion channel

cluster. Charge moves from the connected axon to the second ion channel cluster, and the

voltage of the second ion channel cluster will increase. When the voltage of the second ion

channel cluster is higher than that of the connected axon, the second period is entered. In

the second period, charge moves from the second ion channel cluster to the connected axon,

and will affect the voltage increase of the second ion channel cluster. The dissipation of

charge by the connected axon will decrease the spiking of the second ion channel cluster. In

order to measure the effect of charge dissipation from the cluster to the axon on the spiking

of the ion channel cluster, we calculate the spontaneous spiking frequencies in two cases.

In one case, the ion channel cluster is connected with the axon; in the other case, the ion

channel cluster is isolated, and is not connected with the axon. We calculate the ratio of

spontaneous spiking frequencies in the two cases versus the length of ion channel cluster,

and plot it in Fig.6.7.

As shown in Fig.6.7, the ratio of spontaneous spiking frequency increases with increas-

ing length of the ion channel cluster. When the length of the ion channel cluster is small,

the ratio is as small as 10 � ; when the length of the ion channel cluster is large, the ratio

reaches 60 � . When the size of the ion channel cluster is small, the effect of charge dissi-

pation by the axon is dramatic, and the firing threshold is large. When the size of the ion

channel cluster is increased, the ratio of the spontaneous spiking frequency increases. This

mechanism will cause the threshold value of the ion channel cluster connected with the

axon to decrease. On the other hand, the threshold value of the isolated ion channel cluster

will increase due to increasing membrane area. This mechanism will cause the threshold
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Figure 6.7: The frequency ratio in two cases.
In case one, the ion channel cluster is connected with the axon; in case two, the ion channel
cluster is isolated, and is not connected with the axon. The numerator is the spontaneous
spiking frequency of case one, the denominator is the spontaneous spiking frequency of
case two.
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value of the ion channel cluster connected with the axon to increase. There is a competition

between the two mechanisms. When the length of the ion channel cluster is approximately

2.5 �� , the competition induces an optimal value. The threshold value of injected current

reaches a minimum, when the synchronized spiking number has a maximum.

6.3 Discussion

We consider synchronization of two coupled ion channel clusters on an axon. We use the

synchronized spiking number to describe the synchronization strength. The axonal param-

eters, such as the specific membrane capacitance, the specific axial electrical resistivity,

and the axon diameter, affect the synchronized spiking number exponentially. The coeffi-

cient
�

� ����� is used to describe the coupling strength. Increasing the axonal diameter ( 	 ),

decreasing the specific membrane capacitance (
� �

) and the specific electrical resistivity

( � � ) will increase the synchronized spiking number dramatically. It is known that the ve-

locity of spike propagation will be proportional to the axonal diameter(88). On the other

hand, increasing the axonal diameter will also be beneficial for the spiking synchronization.

In myelinated axons, myelin isolates the membrane, and decreases the membrane capaci-

tance. Decreasing the membrane capacitance can decrease the time constant of the axon,

and increase the spike propagation speed(13). On the other hand, it is also shown here that

decreasing the membrane capacitance can increase the synchronization.

It is shown that two ion channel clusters exhibit maximal synchrony when they have

the same size. Correspondingly, in the biological system the length of nodes of Ranvier in

myelinated axon is uniform. It is also shown that there is an optimal size of ion channel

clusters with maximal synchronized spiking number. The length of ion channel clusters

with the maximal synchronized spiking number is approximately 2.5 �� . This value ac-
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cords with the length of the node of Ranvier in the myelinated axon(89). In order to explain

the optimal phenomenon of the synchronized spiking number, we calculate the threshold

value of the injected current of the ion channel cluster connected with the axon. Corre-

spondingly, the threshold value of the injected current has a minimal value when the length

of the ion channel cluster is approximately 2.5 �� . There are two mechanisms that affect

the threshold value of the injected current. First, when increasing the area of the ion chan-

nel cluster, the threshold value of the injected current of an isolated ion channel cluster will

increase. Second, when increasing the area of the ion channel cluster, the effect of charge

dissipation by the axon will cause the threshold decrease. The competition between the

two mechanisms generates an optimal threshold value of injected current, and produces an

optimal ion channel cluster length with the maximal synchronization.
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Chapter 7

Axonal Oscillations in Developing

Mammalian Nerve Axons

7.1 Introduction

An important requirement for the successful evolution to large body sizes of organisms

is the stable, efficient, and fast propagation of action potentials across the long axons of

the peripheral nervous system. An elegant solution of this problem is the development of

the myelinated axon, where the sodium channels are concentrated at the nodes of Ran-

vier, separated by segments sheathed with myelin. The myelin sheath is a high resistance,

low capacitance barrier for the axonal membrane and provides the basis for fast propa-

gation of action potentials. The nodes of Ranvier are distributed along the axon where

the myelin is interrupted at distances ranging from
� � �� to � � � � �� for different nerves.

These spatial axonal domains differ dramatically from internodal axonal regions. Voltage-

dependent sodium channels can be found in the nodes of Ranvier at a much larger density
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(approximately � � � � � ���� (3)) than in the internodal region(41; 42; 43; 45) (of the order

��� � �� � ). Furthermore, the capacitance of the nodes of Ranvier is higher than that of

the internodal region. Voltage-dependent potassium channels are excluded from nodes of

Ranvier(44); they are clustered beneath the myelin sheaths in regions adjacent to paranodes,

called juxtaparanodes(45; 46).

Potassium ion channels play an important role in the modulation of excitability(3). In

their pioneering work on neuronal excitability, Hodgkin and Huxley(23) demonstrated that

potassium ion channels play an important role in the repolarization of the action potential

in the squid giant axon. Blockage of internodal potassium ion channels in young dorsal

roots(90) and regenerating rat nerve fibers (91) results in a bursting activity triggered by

a single impulse. Vabnick et al.(92) demonstrated that internodal potassium ion channels

prevent bursting activity in the developing sciatic nerve of rat. In contrast, blockage of

internodal potassium ion channels does not affect the spike waveform and firing properties

of normal mature sciatic nerve fibers(91).

Although sodium ion channels clustered in nodes of Ranvier provide the physiological

basis for saltatory conduction, the function of internodal potassium ion channels remains

unclear. There are two suggestions about the function of internodal potassium ion channels.

One suggestion is that they stabilize the paranodal axolemma against nodal back-firing after

a single impulse(45). The other suggestion is that the function of internodal potassium ion

channels is to maintain a resting potential under the myelin(47; 48). In this chapter, we

use a computational model for a developing mammalian axon to explore the role of the

spatial distribution of potassium channels with regard to reliability and speed of action

potential propagation. Our main result is that the observed configuration of juxtaparanodal

concentrations of potassium channels optimizes speed and reliability of action potential
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propagation during the development of the axon. The results of this chapter are accepted

by Physical Review E.

7.2 Model

We consider two nodes of Ranvier connected by an axon. There are 10 compartments be-

tween two successive nodes(93). The present model provides an explicit representation

of the node of Ranvier, the myelin attachment compartment (MYSA), the paranode main

compartment (FLUT) and the internode compartments (STIN). The geometric structure of

the cable model is shown in Fig.7.1. Sodium ion channels exist in a high density in the

node of Ranvier, and a very low density in the internodal region. Potassium ion chan-

nels only exist in the juxtaparanodal region. The nodes consist of a parallel combination

of the nonlinear sodium conductance, the leakage conductance and the membrane capac-

itance. The internodal region consists of a parallel combination of the nonlinear sodium

conductance, nonlinear potassium conductance, the leakage conductance, and the mem-

brane capacitance. The parameters of the cable model are listed in the Table7.1.

Figure 7.1: The cable model with 10 internodal compartments.
Each internodal section of the model consists of 2 myelin attachment compartments
(MYSA), 2 paranode main compartments (FLUT) and 6 internodal compartments (STIN).
FLUT is the juxtaparanode.
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Table 7.1: Axonal parameters
Axon diameter 5 ��
Nodal membrane capacitance 2 ��� � �  �
Axoplasmic resistivity 70

� � � 
� � � conductance in nodal region 800 	� � �  �
� � � reversal potential 50 mV
� � reversal potential -90 mV
Leakage reversal potential -80 mV
Nodal leakage current conductance 8 	� � �  �
Nodal length 1 ��
MYSA length 3 ��
FLUT length 20 ��
STIN length 50 ��

7.3 Results

7.3.1 Oscillation activity of myelinated axon in development

Myelin isolates the cytoplasmic core of the axon from the extracellular environment, and

provides low internodal capacitance and high transverse resistance for the membrane(13).

During the development of the axon, the thickness of the myelin increases and thus, the in-

ternodal capacitance and leakage currents decrease(14). Due to the segregation of sodium

ion channels and the isolating effect of myelin, the conductance of internodal sodium ion

channels will also decrease in development(42). In order to simulate action potentials in

development, we increase the internodal capacitance, leakage conductance and internodal

sodium channel conductance proportionally. In order to determine the effect of juxtapara-

nodal potassium ion channels, we first set the potassium conductance zero everywhere.

We simulate four groups of data. Internodal parameters are listed in Table.7.2. The case
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Table 7.2: Internodal parameters
Set Internodal ��� � Internodal leakage Internodal membrane
number density ( 	� � �  � ) density ( 	� � �  � ) capacitance ( ��� � �  � )
First 0.5 0.005 0.005
Second 1 0.01 0.01
Third 2 0.02 0.02
Fourth 3 0.03 0.03

numbers correspond to conditions for decreasing degrees of axon myelination as an animal

develops. External current is injected in node one to evoke an action potential. Action

potentials in the four groups of data are plotted in Figs.7.2.

In the first group, the values of ��� � � , � ������� � and
��� � are very small, corresponding to

a more mature axon. As shown in Fig.7.2(A), the action potential evoked in node one

(solid line) by an external current, propagates along the axon to node two (dashed line),

where it evokes another action potential. This behavior is consistent with the observation

that blockage of internodal potassium ion channels does not affect the spike waveform

and firing properties of normal mature axons(91). As shown in Figs.7.2(B)(C)(D), the

shape of the action potentials changes gradually when the values of the internodal sodium

conductance ��� � � , leakage conductance � ������� � and internodal capacitance
��� � are increased,

with increases corresponding to an axon in an earlier stage of development. Consistent

with observations in developing axons (90; 91) we observe multiple spikes in nodes one

and two in the absence of potassium channels, and sustained axonal oscillations can be

observed in Fig.7.2D. In the following section we discuss what parameter changes can

cause these oscillations.
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Figure 7.2: Action potentials of two connected nodes.
Action potentials of two connected nodes without juxtaparanodal and internodal potassium
channels. The solid lines represent the action potential of node one and the dashed lines
denote the action potentials of node two. Current is injected into node one to evoke an
action potential. (A) ��� � � � � � � 	� � �  � , � ������� � � � � � � � 	� � �  � , � � � � � � � � � ��� � �  � .
(B) � � � � � � 	� � �  � , � ������� � � � � � � 	� � �  � , ��� � � � � � � ��� � �  � . (C) � � � � � � 	� � �  � ,
� ������� � � � � � � 	� � �  � , ��� � � � � � � ��� � �  � . (D) � � � � � � 	� � �  � , � ������� � � � � � � 	� � �  � ,��� � � � � � � ��� � �  � .
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7.3.2 Effects of parameters of internodal membrane on oscillation ac-

tivity

In order to determine the effect of each parameter, we only change one parameter value,

and keep the values of other parameters constant. First, we test the effect of leakage con-

ductance. At constant values of � � � � � � � � 	� � �  � , and
� � � � � � � � � ��� � �  � , we change

the value of � ������� � from � � � � � 	� � �  � to � � � � 	� � �  � . An external current pulse is in-

jected into node one to evoke an action potential. Simulation results (Fig.7.3) show that the

leakage current does not change the shape of action potentials. Thus, the leakage current is

not the source of oscillation activity.

Next we investigate the effect of the internodal membrane capacitance. At constant

values of � � � � � � � � 	� � �  � and � ������� � � � � � � � 	� � �  � , we change the value of
��� �

from � � � � � ��� � � �� to � � � � ��� � �  � . An external current pulse is injected into node one to

evoke an action potential. The subsequent membrane potentials at both nodes are plotted

in Fig.7.4. As shown in Fig.7.4, the shape of the action potentials changes gradually as the

internodal membrane capacitance is increased. When the capacitance increases beyond a

certain value, the axon can respond with multiple spikes (at each node) to a single action

potential. For large enough capacitance tonic oscillation occurs. Thus, a relatively big

value of internodal membrane capacitance in development is a potential source of axonal

oscillation if the internodal and juxtaparanodal potassium ion channels are blocked.

A simple theory can predict the onset of axonal oscillations. Given the refractory time

of a node of about � � � �  � , an action potential starting out at node one and propagat-

ing to node two can back-fire to node one if the propagation speed of the action potential

� is less than �
� � � � where

�
is the distance between the two nodes, i.e. for our model

axon
� � � � � �  . Thus backfiring between two subsequent nodes is expected to occur if
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Figure 7.3: The effect of internodal leakage conductance on action potentials.
The effect of internodal leakage conductance on action potentials of two connected
nodes without juxtaparanodal and internodal potassium ion channels. The solid line
denotes the action potential of node one, while the dashed line represents the ac-
tion potential of node two. Stimuli current is injected in node one. The parameters
are � � � � � � � � 	� � �  � � � ������� � � � � � � � 	� � �  � � ��� � � � � � � � ��� � �  � � � � � � ������� � �
� � � � 	� � �  � � � � � � ������� � � � � � � 	� � �  � � � � � � ������� � � � � � � 	� � �  � ��� �

.
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Figure 7.4: The effect of internodal membrane capacitance on action potentials.
The effect of internodal membrane capacitance on action potentials of two connected
nodes without internodal and juxtaparanodal potassium ion channels. The solid line
denotes the action potential of node one, while the dashed line represents the ac-
tion potential of node two. Stimuli current is injected in node one. The parame-
ters are � � � � � � � � 	� � �  � � � ������� � � � � � � � 	� � �  � � ��� � � � � � � � ��� � �  � � � � � ��� � �
� � � � ��� � �  � � � � � ��� � � � � � � � � � �  � � � � � ��� � � � � � � ��� � �  � ��� �

.
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the speed of the action potential is below � � � �  � � . The speed of the action potential in

Fig.7.4(A) is approximately � � 
  � � while it is only � � � �  � � in Fig.7.4(B) with a larger

internodal capacitance. Consistent with the simple criteria developed above, backfiring is

seen in Fig.7.4(B). As described below, this theory is not complete. Other effects than the

competition between refractoriness and propagation time are relevant for axonal oscilla-

tions.

Next we study the effect of internodal sodium ion channels. At constant values of

� ������� � � � � � � � 	� � �  � , and
��� � � � � � � � ��� � �  � , we change the value of ��� � � from

� � � 	� � �  � to
� 	� � �  � . An external current pulse is injected into node one to evoke

an action potential there. The subsequent action potentials of node one and node two are

plotted in Fig.7.5. With an increase in the conductance of internodal sodium ion chan-

nels, the shape of the action potentials changes suddenly. Below a sodium conductance

of � � � � � � 	� � �  � , tonic spiking can be observed, below a sodium conductance of

� � � � � � 	� � �  � , tonic oscillation can be observed. Thus, a relatively large value of

internodal sodium conductance in development can induce axonal oscillation when the in-

ternodal potassium ion channels are blocked.

Because there are no low-threshold calcium ion channels in the system, the mechanism

of the oscillation activity is purely due to back-firing of the action potential. Increasing the

internodal sodium conductance will enhance the excitability of the internodal membrane,

enhance the back propagation of the action potential and thus can facilitate the onset of

axonal oscillation.

The next question we consider is whether internodal sodium channels are necessary

for the axonal oscillation. To this end we block all internodal sodium channels, i.e. we

set the internodal sodium conductance to zero. In order to guarantee the success of action
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Figure 7.5: The effect of internodal sodium conductance on action potentials.
The effect of internodal sodium conductance on action potentials of two connected nodes
without internodal and juxtaparanodal potassium ion channels. The solid line depicts
the action potentials of node one and the dashed line represents the action potential of
node two. An electrical current pulse is injected into node one to evoke an action po-
tential. The parameter values are � ������� � � � � � � � 	� � �  � � ��� � � � � � � � ��� � �  � � � � � � �
� � � 	� � �  � � � � � � � � � � � 	� � �  � � � � � � � � � � � 	� � �  � � � � � � � � � � � 	� � �  � ��� �
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potential propagation from node one to node two, we increase the axon diameter to 10

�� , and shorten the length of the internode to 250 �� . Increasing the capacitance of the

internodal membrane, i.e. reducing the speed of action potential propagation causes axonal

oscillation. Thus, internodal sodium ion channels are not necessary for axonal oscillation.

By carefully inspecting the sequence of action potentials in Fig.7.4 we realize that the

qualitative picture of action potentials bouncing back from node two to node one seems to

be correct only at the onset of axonal oscillation. In Fig.7.4(D) node one fires the second

time before node two has ever fired. Furthermore, the period of the bursts (same figure)

is too short for action potential propagation delayed spikes, as can be seen by the long

time interval between the first spike of node one and the first spike of node two. Thus, our

hypothesis is that the backfiring can occur through sodium channels in the internode. To

this end we remove node two and evoke an action potential in node one.

We delete the second node, evoke action potentials at the remaining node and perform

simulations under the same conditions as in Figs.7.2-7.5. In the presence of internodal

sodium channels we find - similar to the case with two nodes (Figs.7.4-7.5) - that onset

of axonal oscillation occurs with increasing internodal membrane capacitance and sodium

channel conductance. (see Fig.7.6 for the effect of increasing internodal sodium channels).

Thus, as hypothesized above, axonal oscillations can be facilitated through backfiring

at internodal sodium channels. However, as Fig.7.7 shows, in the absence of internodal

sodium channels, no oscillation can be observed in the absence of the second node regard-

less of increases in internodal membrane capacitance. Thus, in the absence of internodal

sodium channels, only backfiring between nodes generates axonal oscillation.
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Figure 7.6: The effect of internodal sodium conductance on action potentials.
The effect of internodal sodium conductance on action potentials of a single node
connected to an internode without juxtaparanodal and internodal potassium chan-
nels. The solid line depicts the action potentials at the node. An electrical cur-
rent pulse is injected into the node to evoke an action potential. The parameter val-
ues are � ������� � � � � � � � 	� � �  � � � � � � � � � � � � � � �  � � � � � � � � � � 	� � �  � � � � � � � � � �
� 	� � �  � � � � � � � � � � � 	� � �  � � � � � � � � � � � 	� � �  � ��� �



125

0 10 20
−100

−50

0

50

time (ms)

m
em

br
an

e 
po

te
nt

ia
l (

m
V

)

0 10 20
−100

−50

0

50

time (ms)
m

em
br

an
e 

po
te

nt
ia

l (
m

V
)

0 10 20
−100

−50

0

50

time (ms)m
em

br
an

e 
po

te
nt

ia
l (

m
V

)

0 10 20
−100

−50

0

50

time (ms)m
em

br
an

e 
po

te
nt

ia
l (

m
V

)

Figure 7.7: The effect of internodal membrane capacitance on action potentials.
The effect of internodal membrane capacitance on action potentials of a single node con-
nected to an internode without juxtaparanodal and internodal potassium channels and in-
ternodal sodium ion channels. The solid line depicts the action potentials at the node. An
electrical current pulse is injected into the node to evoke an action potential. The parame-
ter values are � ������� � � � � � � � 	� � �  � � ��� � � � � � � � ��� � �  � � � � � � � � 	� � �  � � � � � ��� � �
� � � � ��� � �  � � � � � ��� � � � � � � � � � �  � � � � � ��� � � � � � � ��� � �  � ��� �
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7.3.3 The role of internodal potassium ion channels

In order to test the role of internodal potassium ion channels, we set the conductance

of potassium ion channels � � � in juxtaparanodes to
� 	� � �  � and 0 in internodes. For

the conductance of the internodal sodium channels and internodal membrane capacity we

pick values at which axonal oscillations are observed, i.e. � � � � � � � � 	� � �  � � � ������� � �

� � � � � 	� � �  � , and
��� � � � � � � ��� � �  � . In the absence of internodal potassium channels,

the axon exhibits oscillation as shown in Fig.7.4(D). The action potentials in the presence

of internodal potassium ion channels (see Fig.7.8) do not cause axonal oscillation, con-

sistent with the experimental observation in(92). Thus internodal potassium ion channels

stabilize the internodal axolemma against oscillation.

An interesting point is that the required potassium conductance in order to prevent

axonal oscillation depends on the spatial distribution of these channels. In order to inhibit

the oscillation activity for the parameter sets in Fig.7.2(D), the conductance of potassium

ion channels in juxtaparanodes must be larger than � � � 	� � �  � . Instead, if internodal

potassium ion channels are distributed uniformly along the axon, an internodal potassium

conductance of as low as � 	� � �  � is sufficient to inhibit the oscillation activity. Thus,

a uniform distribution of internodal potassium ion channels is more efficient to inhibit

the oscillation activity than a localized juxtaparanodal distribution. On the other hand,

the conduction speed is also affected by the distribution of the potassium channels. In

general, internodal and juxtaparanodal potassium channels slow down the speed of the

action potential of the purely passive cable. Localizing the potassium channels on the

juxtaparanodes, however, leaves the internodes almost passive (except for some internodal

sodium channels) and thus the reduction of the conduction speed is small in comparison to a

uniform distribution at the same conductance. In Fig.7.9 the effects of internodal potassium
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Figure 7.8: Action potentials of two connected nodes
Action potentials of two connected nodes with juxtaparanodal potassium ion channels.
Solid line is the action potential of node one. Dashed line is the action potential of node two.
Stimuli current is injected in node one. The parameters are � � � � � � � � 	� � �  � � � ������� � �
� � � � � 	� � �  � and

� � � � � � � � ��� � �  � .
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channels on action potential propagation speed in two cases are shown. For an internodal

membrane capacity of � � � � ��� � �  � and a maximum internodal sodium conductance of

� � � 	� � �  � the propagation speed in the absence of potassium channels is � � �����  � � . For

a maximum internodal potassium channel conductance of ��� 	� � �  � the conduction speed

is � � �
���  � � for a uniform potassium channel distribution, but � � � � �  � � for juxtaparanodal

distribution.
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Figure 7.9: Effects of potassium channels on action potential propagation speed.
The solid line depicts the effect of localized potassium channels in the juxtaparanode on
action potential propagation speed. The value of x-axis for the solid line is 8.65 times that
of x-axis for the dashed line. The Dashed line depicts the effect of uniformly distributed
internodal potassium on action potential propagation speed. In the two cases, the total
potassium numbers are the same. The parameter values are � ��� �� � � � � � � � 	� � �  � , ��� � �
� � � � ��� � �  � , � �� � � � 	� � �  � .
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7.4 Discussion

We simulated the action potentials of two nodes connected by an axon. Our simulation

results show that blockage of internodal potassium ion channels can induce axonal oscil-

lations in developing axons, but has no effect on the action potentials of normal mature

axons. These results are consistent with the experimental results(90; 91). Our simulation

results also show - consistent with experimental results(49) - that internodal potassium ion

channels stabilize the internodal axolemma, and prevent axonal oscillation in developing

axons. We tested the effects of axonal parameters with respect to onset of axonal oscilla-

tion. While the leakage current has no effect on axonal oscillation, increasing internodal

sodium conductance as well as increasing internodal membrane capacitance can facilitate

axonal oscillation. Increasing the conductance of internodal sodium ion channels increases

the excitability of the axon and therefore also the chance for back propagation leading to

axonal oscillation. Increasing the capacitance of internodal membrane affects axons in two

aspects. First, an increasing capacitance leads to a slower propagation speed and thus an

increase in the time an action potential takes to propagate between node one and node two

or node one and some other internodal active site and back to node one. If this time is large

enough, re-excitation of node one leads to backfiring and possibly to persistent axonal os-

cillations. The other aspect is that it increases the charge carried by the back propagated

action potential. We furthermore find that one node connected with an axon is sufficient

to induce axonal oscillation if sufficient numbers of sodium channels are present along the

axon. In order to investigate the oscillation mechanism, we first chose the simplest model,

two nodes connected by an axon. We also simulated systems with three nodes and four

nodes, and got similar qualitative results.

The mechanism of oscillation, tonic oscillation, and tonic spiking described in this
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chapter is facilitated by back-propagation of action potentials on the axon. This mecha-

nism is similar to that of oscillation in cortical cells, where the back propagation of action

potentials by the dendritic tree causes the oscillation activity (94; 95). But it is different

from the mechanism of oscillation in thalamic cells, where the somatic low-threshold cal-

cium current induces the oscillation activity(96; 97). In Pinsky and Rinzel’s model(98)

for CA3 pyramidal cells, oscillation is due to the interaction between the lower threshold,

fast, sodium currents in the soma compartment and the higher threshold, slower Ca and Ca

dependent currents in the dendrite compartment. In models of sensory neurons(99), there

is a saddle-node bifurcation of periodic orbits that separates tonic spiking from oscillation.

A ping-pong effect described by Pinsky
�

Rinzel(98) and Laing
�

Longtin(99) is similar

in appearance to the one we report along the axon in this chapter. Different physical prop-

erties of the two compartments are the cause for the ping-pong of excitation between soma

and dendrites. In this chapter, we study axonal dynamics only and find a ping-pong effect

along the axon under specified physiological conditions and specified spatial distributions

of ion channels.
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Chapter 8

Effect of clustered ion channels along

unmyelinated axon

In most unmyelinated axons, the ion channels are distributed uniformly along the axon to

facilitate stable propagation of action potentials. In this case, the conduction in the axon

is continuous, and the excitability along the membrane is constant. Some experimental

papers show that ion channels also locate in clusters in some unmyelinated axons. Widely

dispersed clusters of potassium ion channels were observed in the axonal membrane of

squid giant axons(5; 100; 101). Punctuate domains of potassium ion channels were also

observed in the axoplasm and were localized into 25-50 �� -wide columns down along

the axon longitudinally(5; 100; 101). In Aplysia axonal membrane, sodium ion chan-

nels are localized in clusters, and the distance between clusters is on the order of 5-15

�� (96). Sodium ion channel clusters are also observed in pyramidal cell dendrites of

Apteronotus(102) and frog sartorius muscle(103). The distance between clusters in these

two kinds of membrane are on the order of 5-15 �� and 10-20 �� respectively. Regional

node-like membrane specializations were also found in unmyelinated axons of rat retinal
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nerve fiber layer(86).These experimental results demonstrate that conduction in some un-

mylinated axons may occur in a non-uniform rather than in a continuous manner.

The mechanisms and special functions of ion channel clusters along unmyelinated ax-

ons are unclear. In this chapter, we investigate theoretically the effect of localization of

ion channels along unmyelinated axons. It is well known that the propagation speed of the

action potential is important for fast signaling. Experimental papers show that half of the

metabolic energy for the neural system is consumed by the pumps that exchange sodium

and potassium ions across cell membranes. We use the terminology “action potential prop-

agation efficiency” to describe the energy consumption to propagate action potentials. If

the energy consumption to propagate action potentials is decreased, the action potential

propagation efficiency is increased, and vice versa. So for a specific potassium channel

conductance, decreasing the minimal required sodium channel conductance for success-

ful action potential propagation will increase action potential propagation efficiency and

decrease metabolic energy consumption. We will focus on the effect of ion channel local-

ization along an unmyelinated axon in two areas: action potential propagation efficiency

and action potential propagation speed. We will investigate the effect of axonal parame-

ters on action potential propagation efficiency, and try to construct an unmyelinated axon

with better propagation efficiency. Upon further research, the results of this chapter will be

submitted to Physics Review E.

8.1 Model

We use the deterministic HH equations and cable equations to investigate this problem.

The model has 101 compartments in total. External current is injected at compartment one

to initiate an action potential. The axonal parameters are listed in Table.8.1.
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Table 8.1: Axonal parameters
compartment number 101
compartment length 2 ��
axon diameter 1-8 � 
cytoplasmic resistivity 30-130

� � � 
membrane capacitivity 1 ��� � �  �
conductance of leakage current 0.3 	� � �  �
reversal potential of sodium ion channel 50.0 mV
reversal potential of potassium ion channel -77.0 mV
reversal potential of leakage current -54.4 mV
transition rate of 	 �

��� � � ���
�
� 
� � � � � ��� �

�
� 
������ 


�
�

transition rate of
 � � � � �

�
� � � ��� � � � � � � � � � �

transition rate of 	 �
��� � � �

� �
� 
� � � � � ��� � � �
� 
������ 


�
�

transition rate of
 � � � � � � � � � � � � � � � � � �

�
transition rate of 	 � � � � 

� � � ��� � � � � � � � � � �
transition rate of


�

� � �� � � � � �
	
 � � 
������ 


�
�
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8.2 Results

8.2.1 Effect of potassium channel localization

First we test the effect of potassium channel localization on action potential propagation

efficiency. The axonal diameter is � �� , and the cytoplasmic resistivity is 70
� �  . Ini-

tially, potassium ion channels are distributed uniformly along the axon, with a conductance

density of 20 	� � � �� . The minimal required conductance of sodium channels to support

stable action potential propagation is 23 	� � �  � . Then we keep the total potassium chan-

nel number constant, localize potassium ion channels gradually into clusters, and measure

the minimal required sodium ion channel conductance to support stable action potential

propagation. There is one potassium ion channel cluster every five compartments. Potas-

sium ion channels with lower density are distributed uniformly between clusters. As Fig.8.1

shows, potassium channel localization increases the propagation efficiency, and the mini-

mal required sodium conductance can decrease 15 � .

Next we test the effect of the axon diameter on propagation efficiency. We keep the

cytoplasmic resistivity at 70
� �  , change the axon diameter from 1 �� to 8 �� , and leave

the potassium channel conductance at 20 	� � �  � . We test two cases. In case one, 96 �

of potassium channels are localized in clusters; in case two, potassium ion channels are

distributed uniformly along the axon. With a change in the axon diameter, the minimal

required sodium conductance is almost the same in both cases. This shows that the axon

diameter does not affect the propagation efficiency.

Now we test the effect of cytoplasmic resistivity on propagation efficiency. The axon

diameter is 2 �� . Cytoplasmic resistivity ranges from 30
� �  to 130

� �  . We test the

same two cases that are described above, and calculate the ratio of the minimal required
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Figure 8.1: The effect of potassium ion channel localization on propagation efficiency.
The

�
axis represents the potassium ion channel localization coefficient which is the num-

ber of potassium ion channels in clusters divided by the total number of potassium ion
channels. The � axis represents the minimal required sodium channel ratio, i.e. the min-
imal required sodium conductance divided by the minimal required sodium conductance
when potassium ion channels are distributed uniformly.
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sodium conductance of the two cases. The results are shown in Fig.8.2. As the cytoplasmic

resistivity is increased, the localization of potassium channels has a more dramatic effect

on the propagation efficiency.
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Figure 8.2: The ratio of minimal required sodium conductances of two cases.
In case one, 96 � of the potassium channels are located in clusters. In case two, potassium
channels are distributed uniformly along the axon. The average potassium conductance of
the two cases is 20 	� � �  � . The minimal required sodium conductance of case one is the
numerator, and that of case two is the denominator.

Now we change the conductance of potassium channels, and calculate the ratio of min-

imal required sodium conductances in the two cases. The two cases are the same as above.

The axon diameter is 2 �� , and the cytoplasmic resistivity is 70
� �  . Fig.8.3 shows the

ratio of the minimal required sodium conductance in the two cases. It shows that the effect

of potassium channel localization on propagation efficiency is more dramatic as potassium

conductance is increased.
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Figure 8.3: The ratio of the minimal required sodium conductance.
The ratio of the minimal required sodium conductance in the two cases versus potassium
channel conductance. In case one, 96 � of potassium channels are localized in clusters. In
case two, potassium channels are distributed uniformly. In both cases, the average potas-
sium channel conductance is the same. The minimal required sodium conductance of case
one is the numerator, and that of case two is the denominator.
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Now we change the compartment number between potassium clusters then change

the distance between two potassium clusters, and calculate the ratio of minimal required

sodium conductance in the two cases. The two cases are again the same as above. The

axon diameter is 2 �� , and the cytoplasmic resistivity is 70
� �  . The average potas-

sium channel conductance in the two cases is 20 	� � �  � . The minimal required sodium

conductance of the case when potassium channels are distributed uniformly is 23 	� � �  � .
Fig.8.4 shows that as one increases the distance between potassium channel clusters, the ef-

fect of potassium channel localization on propagation efficiency becomes large. When the

distance between potassium channel clusters reaches 26 �� , the ratio of minimal required

sodium conductance in the two cases reaches a minimal value.

Now, we test the effect of potassium channel localization on action potential propaga-

tion speed. The axon diameter is 2 �� , and the cytoplasmic resistivity is 70
� �  . The

average potassium channel density is 20 	� � �  � . We test four different sodium channel

conductances:23 	� � � �� , 30 	� � �  � , 40 	� � � �� and 50 	� � �  � . For each sodium

conductance, we first calculate the propagation speed for different potassium channel local-

ization, then divide the results by the propagation speed when potassium channels are uni-

formly distributed, to obtain the speed ratio. When potassium channels are uniformly dis-

tributed, the propagation speeds of the different sodium channel conductances 23 	� � �  � ,
30 	� � �  � , 40 	� � �  � and 50 	� � �  � are 0.12  � � , 0.15  � � , 0.18  � � and 0.2  � � ,

respectively. As shown in Fig.8.5, the propagation speed increases for increasing potassium

channel localization. As sodium conductance is increased, the effect of potassium channel

localization on propagation speed decreases.
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Figure 8.4: The ratio of minimal required sodium conductance.
The ratio of minimal required sodium conductance in the two cases versus distance between
potassium channel clusters. In case one, 96 � potassium channels localize in clusters. In
case two, potassium channels distribute uniformly. In the two cases, the average potassium
channel conductance is 20 	� � �  � . The minimal required sodium conductance of case
one is the numerator, and that of case two is the denominator.
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Figure 8.5: The effect of potassium channel localization on propagation speed.
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8.2.2 Effect of sodium channel localization

Now we test the effect of sodium channel localization. The axon diameter is 2 �� , and

the cytoplasmic resistivity is 70
� �  . For different potassium conductances, we calculate

the ratio of minimal required sodium conductances in two cases. In case one, there is

one sodium channel cluster for every five compartments, and all the sodium channels are

localized in the clusters. In case two, sodium channels are distributed uniformly along

the axon. The ratio of minimal required sodium conductance is plotted in Fig.8.6. As

shown in Fig.8.6, when the potassium conductance is low, sodium channel localization

will reduce the minimal required sodium conductance. When the potassium conductance is

high, sodium channel localization will increase the minimal required sodium conductance.

Localization of sodium channels is advantageous to propagation efficiency only when the

potassium conductance is low.

Now we test the effect of the distance between sodium channel clusters on the propa-

gation efficiency. The axon diameter is 2 �  , and the cytoplasmic resistivity is 70
� �  .

The length of each sodium channel cluster is 2 �� . We calculate the ratio of the minimal

required sodium conductance in both cases versus distance between the two clusters. The

two cases are the same as above. The result is shown in Fig.8.7. As shown in Fig.8.7,

the ratio of minimal required sodium conductance first decreases, reaches a minimal value,

and then increases again for increasing distance between the clusters. There is an optimal

distance which the propagation efficiency is best.

Now we test the effect of sodium cluster length on the ratio of minimal required sodium

conductance in both cases. The two cases are the same as above. The distance between

sodium channel clusters is 10 �� , the axon diameter is 2 �� , the cytoplasmic resistivity

is 70
� �  , and the potassium channel conductance is 20 	� � �  � . The ratio of mini-
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Figure 8.6: The ratio of minimal required sodium conductances.
The ratio of minimal required sodium conductances in two cases versus different potassium
conductance. In case one, every fifth compartment has one sodium cluster, and all the
sodium channels localize in the clusters. In case two, sodium channels distribute uniformly
along the axon. The minimal required sodium conductance of case one is the numerator,
and that of case two is the denominator.
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Figure 8.7: The ratio of minimal required sodium conductances.
The ratio of minimal required sodium conductances in two cases versus different distances
between sodium channel clusters. In case one, every fifth compartment has one sodium
cluster, and all the sodium channels localize in the clusters. In case two, sodium channels
are distributed uniformly along the axon. The minimal required sodium conductance of
case one is the numerator, and that of case two is the denominator.
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mal required sodium channel conductances is plotted in Fig.8.8. As shown in Fig.8.8, for

increasing sodium channel cluster length, the ratio of minimal required sodium channel

conductances increases. When the length of sodium channel clusters is less than 3.5 �� ,

localization of sodium channels is advantageous to propagation efficiency, otherwise, lo-

calization of sodium channels is disadvantageous to propagation efficiency.
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Figure 8.8: The ratio of minimal required sodium conductances.
The ratio of minimal required sodium conductances in two cases versus different sodium
channel cluster length. In case one, every fifth compartment has one sodium cluster, and
all the sodium channels localize in clusters. In case two, sodium channels are distributed
uniformly along the axon. The minimal required sodium conductance of case one is the
numerator, and that of case two is the denominator.

Now we test the effect of cytoplasmic resistivity on the ratio of minimal required

sodium channel conductance in two cases. The two cases are the same as above. The axon

diameter is 2 �� , and the potassium channel conductance is 20 	� � �  � . The ratio of
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minimal required sodium channel conductances is plotted in Fig.8.9. As shown in Fig.8.9,

with increasing cytoplasmic resistivity, the ratio of minimal required sodium channel con-

ductance increases. When the cytoplasmic resistivity is less than 120
� �  , localization

of sodium channels is advantageous to propagation efficiency, otherwise, localization of

sodium channels is disadvantageous to propagation efficiency.
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Figure 8.9: The ratio of minimal required sodium conductances.
The ratio of minimal required sodium conductances in two cases versus cytoplasmic resis-
tivity. In case one, every fifth compartments has one sodium cluster, and all the sodium
channels localize in clusters. In case two, sodium channels are distributed uniformly along
the axon. The minimal required sodium conductance of case one is the numerator, and that
of case two is the denominator.

We also have tested the effect of sodium channel localization on the action potential

propagation speed. Our results show that localization of sodium channels has only a weak

effect on the action potential propagation speed.
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8.3 Discussion

Localization of ion channels in myelinated axons is accompanied by the formation of

myelin. The cells responsible for myelin formation are different for CNS (Oligodendro-

cytes) and PNS (Schwann cells). The thickening of myelin and Na channel localization

will increase the propagation speed of action potential. But the mechanisms and effects

of ion channel localization in unmyelinated axon are unclear. In this chapter, we inves-

tigated theoretically the effect of localization of ion channels along unmyelinated axons.

We mainly focused on two aspects: propagation efficiency and propagation speed. Our

results show that potassium channel localization is beneficial for increasing propagation

efficiency and propagation speed of action potentials. Localization of sodium channels

is advantageous to propagation efficiency only when axonal parameters are in a specific

range. Potassium ion channels play an important role in the modulation of excitability(3).

In their pioneering work on neuronal excitability, Hodgkin and Huxley(23) demonstrated

that potassium ion channels play an important role in the repolarization of action potential

in the squid giant axon.

There are two kinds of functions for internodal potassium ion channels in myelinated

axons. One is that they stabilize the paranodal axolemma against nodal back-firing after a

single impulse(45). The other is to maintain a resting potential under the myelin(47; 48).

Localization of potassium channels decreases the potassium conductance of the axon be-

tween potassium clusters, and affects the repolarization of action potentials, the electrical

stability at the resting potential of the axonal membrane and the resting potential of the

axonal membrane. In order to counterbalance the effect of potassium ion channel localiza-

tion, it is necessary to decrease the sodium conductance of the axonal membrane between

potassium channel clusters. Then localization of potassium ion channels and sodium ion
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channels at the same sites can not only increase the propagation efficiency but also maintain

the electrical stability of the axonal membrane.

According to the results of this chapter, we can construct a better axon for better prop-

agation efficiency with sufficient electrical stability. For the same potassium channel local-

ization, increasing cytoplasmic resistivity, distance between potassium channel clusters and

average potassium conductance all will increase the propagation efficiency. For the same

sodium channel localization, increasing cytoplasmic resistivity, distance between sodium

channel clusters and average potassium conductance, will decrease the propagation effi-

ciency. There are optimal values of cytoplasmic resistivity, distance between channel clus-

ters and average potassium conductance to optimize the propagation efficiency and electri-

cal stability of unmyelinated axons with ion channel clusters. In future research, I will try

to find the series of optimal values.
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Chapter 9

Conclusion and outlook

We have compared the average interspike interval and the relative fluctuations of trains

of action potentials generated by small and large clusters of ion channels. For large ion

channel clusters, action potentials are elicited when the fraction of open sodium channels

exceeds a threshold value. The fraction of open channels is mainly determined by the

magnitude of the synaptic noise. For small ion channel clusters, channel noise dominates

over synaptic noise. Action potentials are generated at a frequency that is determined by

the single channel kinetics and is only weakly dependent on the synaptic noise. We have

further shown that at the size of the ion channel cluster at which a maximum spontaneous

spiking rate is observed, the spike trains exhibit maximum temporal periodicity.

Synchronization is a basic phenomenon in science, and has many applications in liv-

ing systems. In neurons, the spiking frequency and time of action potentials can be syn-

chronized by weak interactions. Ion channels are usually distributed uniformly along the

unmyelinated axon to support stable action potential propagation. In some cases, however,

ion channels are also distributed in clusters along unmyelinated axons. The ion channel

clusters along the unmyelinated axon generates spontaneous spiking due to channel noise.
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If the ion channel clusters are coupled by an axonal cable, then the spontaneous spiking

of the clusters can be synchronized. In order to measure the synchronization strength, we

calculate the average consecutive number of synchronized spikes. Increasing the axonal

diameter, decreasing the specific membrane capacitance and the specific electrical resistiv-

ity will increase the synchronized spiking number dramatically. It is also shown that the

homogeneous distribution of ion channel clusters produces the maximal number of syn-

chronized spikes. It is also shown that there is an optimal size of ion channel clusters to

produce a maximal number of synchronized spikes.

An important requirement for the evolution of organisms is the stable, efficient and

fast propagation of action potentials. An elegant solution of this problem is the develop-

ment of the myelinated axon. The nodes of Ranvier are distributed along the axon where

the myelin is interrupted at distances ranging from 50 �  to 1000 �� for different nerves.

These spatial axonal domains differ dramatically from internodal axon regions. Sodium

channels can be found in the nodes of Ranvier at a much larger density than in the intern-

odal region. Potassium channels are excluded from nodes of Ranvier; they are clustered

beneath the myelin shealths in juxtaparanodes. We simulated the action potentials of two

nodes connected by an axon. Our simulations show that blockage of internodal potassium

ion channels can induce axonal oscillations in the developing axon, but has no effect on

the action potential of normal mature axons. These results are consistent with experimental

observations. Our simulations also show that internodal potassium ion channels stabilize

the internodal axolemma, and prevent axonal oscillation in developing axons. We tested

the effect of axonal parameters with respect to the onset of axonal oscillation. While the

leakage current has no effect on axonal bursting, increasing internodal sodium conductance

as well as increasing internodal membrane capacitance can facilitate axonal oscillation.
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The mechanism and function of ion channel localization along an unmyelinated axon

is unclear. In this thesis, I performed a theoretical investigation of the effect of ion channel

localization along unmyelinated axons. I mainly focused on two aspects: propagation effi-

ciency and propagation speed. Our results show that localization of potassium channels can

improve propagation efficiency and speed. Average potassium conductance, size of sodium

channel clusters and cytoplasmic resistivity can affect the effect of sodium channel localiza-

tion on propagation efficiency. In a specific range of the above parameters, sodium channel

localization increases the propagation efficiency. But if one of the above parameters ex-

ceeds this range, sodium channel localization is detrimental to the propagation efficiency.

Sodium channel localization has a minor effect on the propagation speed.

In the future, I will carry out research in the following aspects. In myelinated axons,

although most sodium channels are localized in nodes of Ranvier to regenerate action po-

tentials, sodium channels can not be excluded from internodal regions completely(41; 42;

43; 45). The density of internodal sodium channels is approximately 5 � of that of nodes of

Ranvier(41; 42; 43; 45). In the past, the function of internodal sodium channels has been

neglected, however, our preliminary research results show that internodal sodium channels

play an important role in action potential propagation. Because the density of internodal

sodium channels is low, it is more valid to use the stochastic HH equations to investigate

this problem. In the future, I will use deterministic HH equations (for nodes of Ranvier),

stochastic HH equations (for internodal sodium channels) and the cable equation to inves-

tigate the function of internodal sodium channels on action potential propagation and firing

pattern. In chapter 6, I found that there is an optimal length of ion channel clusters along

unmyelinated axons for which the consecutive synchronized spiking number is maximal.

This result inspires me to investigate whether there is an optimal length of nodes of Ran-
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vier along myelinated axons for which the valid propagation distance of action potentials

is maximal. In the future, I will use deterministic HH equations and the cable equation to

investigate this problem, and try to find the optimal length of nodes of Ranvier and the ef-

fects of axonal parameters on the optimal length. In chapter 8, I demonstrated that in order

to guarantee electrical stability and increase the propagation efficiency of action potentials

of unmyelinated axons, it is necessary to localize sodium ion channels and potassium ion

channels. For the same potassium channel localization, increasing cytoplasmic resistiv-

ity, distance between two potassium channel clusters and average potassium conductance

all will increase the propagation efficiency. For the same sodium channel localization, in-

creasing cytoplasmic resistivity, distance between two sodium channel clusters and average

potassium conductance, will decrease the propagation efficiency. There are optimal values

of cytoplasmic resistivity, distance between two channel clusters and average potassium

conductance to optimize the propagation efficiency and electrical stability of unmyelinated

axons with ion channel clusters. In future research I will try to find the series of optimal

values.
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