
TIME-BASED APPROACH TO INTRUSION DETECTION USING MULTIPLE

SELF-ORGANIZING MAPS

A thesis presented to

the faculty of

the College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Ankush Sawant

March 2005

This thesis entitled

TIME-BASED APPROACH TO INTRUSION DETECTION USING MULTIPLE

SELF-ORGANIZING MAPS

by

ANKUSH SAWANT

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Carl T. Bruggeman

Assistant Professor of Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

SAWANT, ANKUSH. M.S. March 2005.
Electrical Engineering and Computer Science

Time-based Approach to Intrusion Detection using Multiple Self-Organizing Maps (82pp.)

Director of Thesis: Carl T. Bruggeman

Anomaly-based intrusion detection systems identify intrusions by monitoring net-

work traffic for abnormal behavior. Integrated Network-Based Ohio University Net-

work Detective Service (INBOUNDS) is an anomaly-based intrusion detection system

being developed at Ohio University. The Multiple Self-organizing map based Intru-

sion Detection System (MSIDS) module for INBOUNDS analyzes the time-based be-

havior of normal network connections for anomalies, using the Self-Organizing Map

(SOM) algorithm. The MSIDS module builds profiles of normal network behavior

by characterizing the network traffic with four parameters. A SOM, developed for

each time interval, captures the characteristic network behavior for that time interval

using the four parameters. This approach achieves better characterization of normal

network behavior, leading to better intrusion detection capability. During real-time

operation, the four-dimensional vectors, representing the attack connection for the

time intervals, are fed into respective trained SOMs. For each input vector in the

four-dimensional space, a “winner” neuron is determined. If the distance between the

input vector and the winner neuron for any SOM is greater than a certain threshold

value, the MSIDS module classifies the network connection as an intrusion. Moreover,

detecting the attack in early stages of the connection leads to near real-time response

to intrusions.

Approved:

Carl T. Bruggeman

Assistant Professor of Computer Science

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Bruggeman, for his kind guidance during the

development of this study. I remain greatly indebted to him for his indispensable

advice, constructive criticism and constant words of motivation.

I express sincere gratitude towards Dr. Ostermann for granting me the opportu-

nity to work on the INBOUNDS project. I would also like to thank the members of

INBOUNDS and IRG research groups for their valuable help and feedback.

I am forever indebted to my parents, my brother Aniket and my relatives for

their continual love and support. Additionally, I am thankful to my friends at Ohio

University and back home, who have contributed either directly or indirectly towards

this thesis. And last but not the least, I am grateful to my friend Veena for her

unending support and encouragement throughout the development of my thesis.

I dedicate this thesis to my parents.

5

TABLE OF CONTENTS

Page

ABSTRACT . 3

LIST OF TABLES . 7

LIST OF FIGURES . 9

1 Introduction . 11

1.1 Network Security . 11

1.2 Intrusion Detection Systems . 12

1.3 Organization of Thesis . 14

2 Background . 15

2.1 Classification of Intrusion Detection Systems 15

2.1.1 Classification Based on Data Source 15

2.1.2 Classification Based on Detection Approach 16

2.2 Self-Organizing Maps . 17

2.2.1 The SOM Algorithm . 18

2.2.2 Multiple Self Organizing Maps 22

2.2.3 Software Packages . 22

2.3 INBOUNDS . 23

2.3.1 Data Source Module . 24

2.3.2 Data Processor Module . 25

2.3.3 Statistical-based Anomaly Detection 25

2.3.4 Neural Network-based Anomaly Detection 28

2.3.5 Bayesian Network-based Anomaly Detection 30

2.3.6 Decision Module . 33

6

2.3.7 Intrusion Response Module 33

2.3.8 Data Visualization Module . 34

2.3.9 Limitations of Existing Approaches 34

3 Multiple Self-Organizing Map-based Intrusion Detection System (MSIDS) . 36

3.1 INBOUNDS Architecture . 36

3.2 Data Processor Module . 36

3.3 MSIDS Module . 39

3.3.1 TRC2INP Submodule . 42

3.3.2 Normalizer Submodule . 43

3.3.3 SOM Training . 44

3.3.4 SOM Operation . 47

4 Experimental Results . 48

4.1 Sendmail Buffer Overflow Attack . 48

4.1.1 SMTP SOM Training . 51

4.1.2 Attack Description . 53

4.1.3 Anomaly Detection . 54

4.1.4 Comparison with ANDSOM module 59

4.2 Apache Buffer Overflow Attack . 62

4.2.1 HTTP SOM Training . 62

4.2.2 Attack Description . 63

4.2.3 Anomaly Detection . 65

5 Conclusion . 74

5.1 Summary . 74

5.2 Advantages And Disadvantages . 75

5.3 Future Work . 76

BIBLIOGRAPHY . 78

7

LIST OF TABLES

Table Page

4.1 SMTP Map Dimensions . 51

4.2 SMTP Training Data Statistics . 52

4.3 SMTP Training Data Validation Results 53

4.4 SMTP Exploit Vector . 54

4.5 Normalized SMTP Exploit Vector . 55

4.6 SMTP Exploit Winner Neuron . 55

4.7 ANDSOM SMTP Training Data Statistics 59

4.8 ANDSOM SMTP Exploit Vector . 60

4.9 Normalized ANDSOM SMTP Exploit Vector 61

4.10 ANDSOM SMTP Exploit Winner . 61

4.11 HTTP Map Dimensions . 63

4.12 HTTP Training Data Statistics . 64

4.13 HTTP Training Data Validation Results 65

4.14 HTTP Exploit Vector . 66

8

4.15 Normalized HTTP Exploit Vector . 67

4.16 HTTP Exploit Winner Neuron . 67

9

LIST OF FIGURES

Figure Page

2.1 SOM Training . 19

2.2 Existing INBOUNDS Architecture . 24

2.3 ANDSOM Training . 31

3.1 Updated INBOUNDS Architecture . 37

3.2 Criteria for MSIDS Parameters . 40

3.3 MSIDS Training . 41

4.1 SMTP Connection Timeline . 49

4.2 Sendmail Buffer Overflow Exploit Bucket 0, View 1 56

4.3 Sendmail Buffer Overflow Exploit Bucket 0, View 2 56

4.4 Sendmail Buffer Overflow Exploit Bucket 1, View 1 57

4.5 Sendmail Buffer Overflow Exploit Bucket 1, View 2 57

4.6 Sendmail Buffer Overflow Exploit Bucket 2, View 1 58

4.7 Sendmail Buffer Overflow Exploit Bucket 2, View 2 58

4.8 Apache Buffer Overflow Exploit Bucket 0, View 1 68

10

4.9 Apache Buffer Overflow Exploit Bucket 0, View 2 69

4.10 Apache Buffer Overflow Exploit Bucket 1, View 1 69

4.11 Apache Buffer Overflow Exploit Bucket 1, View 2 70

4.12 Apache Buffer Overflow Exploit Bucket 2, View 1 70

4.13 Apache Buffer Overflow Exploit Bucket 2, View 2 71

4.14 Apache Buffer Overflow Exploit Bucket 3, View 1 71

4.15 Apache Buffer Overflow Exploit Bucket 3, View 2 72

4.16 Apache Buffer Overflow Exploit Bucket 4, View 1 72

4.17 Apache Buffer Overflow Exploit Bucket 4, View 2 73

11

1. Introduction

Since its inception in 1969, the Internet has dramatically transformed the traditional

method of information access and exchange. The Internet has overcome geographical

limitations and provided a medium for collaboration and interaction between individ-

uals across the globe. Anyone with a computer and a network connection can gain

access to this world-wide mechanism of information dissemination. As of Jan 2004,

the Internet connected an estimated 233 million hosts [21].

However, significant risks are associated with this convenience and ease of access

to information. Computer systems connected to the Internet are more susceptible to

security attacks than isolated ones. Sensitive information such as financial transac-

tions, employees records, and passwords, become potentially accessible to millions of

users when an enterprise’s networked system is part of the Internet. With today’s

booming e-commerce economy, it is even more important to protect the loss or modi-

fication of critical business data, disruption of services (availability), and compromise

of sensitive information (confidentiality and integrity).

1.1 Network Security

To preserve the availability, confidentiality and integrity of computer network

resources connected to the Internet, network and security engineers take measures for

prevention and detection of attacks as they occur. Following are some of the common

security threats experienced by existing networked systems:

• Unauthorized access, modification, or destruction of networked resources

• Misuse of authorized access to networked resources

12

• Malicious software programs (viruses/worms/Trojans)

• Misconfigured or poorly designed information systems

To counter such threats, security personnel typically employ techniques such as

firewalls, user authentication, access control, and data encryption. Firewalls aim to

regulate and control the flow of information into and out of a network, and are usually

deployed at an access point between the private network and the Internet. Authen-

tication mechanisms like individual passwords, a master password, and biometrics

protect an organization’s data against illegitimate access. Access control and data

encryption techniques further enhance security by protecting against accidental or

unauthorized access.

1.2 Intrusion Detection Systems

Commonly deployed security measures such as firewalls, user authentication and

encryption algorithms are effective mechanisms to protect and prevent unauthorized

access to systems. However, they lack the capability to examine the network traf-

fic where majority of the attacks occur. To constantly monitor the network traffic

for attacks, an organization’s network security kit must include Intrusion Detection

Systems (IDSs).

Intrusion detection can be defined as “the process of monitoring the events oc-

curring in a computer system or network and analyzing them for signs of intrusions,

defined as attempts to compromise the confidentiality, integrity, availability, or to

bypass the security mechanisms of a computer or network” [55]. Intrusion Detection

Systems are software or hardware systems that automate this process of monitoring

and analyzing such events. Thus, an IDS, similar to a burglar alarm in the digi-

tal world, monitors a specific host or a network of hosts for intrusions and reports

detected intrusions.

Depending on the source of input data, an IDS can be classified either as host-

based or network-based IDS. A host-based IDS monitors the activity of a specific

13

host computer and reports detected intrusions. A network-based IDS, on the other

hand, performs intrusion detection by analyzing the activity of a network of hosts.

Depending on the approach used for intrusion detection, an IDS can be classified

either as misuse-based or anomaly-based IDS. An IDS based on misuse detection

classifies a network activity as an intrusion if it matches the stored network activity

pattern of well-known attacks. Although, such IDS easily detects well-known attacks

with a low false positive rate, never-before-seen attacks generally go undetected. On

the other hand, an IDS based on anomaly detection principle is capable of detecting

novel attacks. An anomaly-based IDS monitors the network for activities that differ

from normal activity, and classifies such deviations as intrusions. However, IDS based

on anomaly-based principle exhibits a high false positive rate.

Integrated Network Based Ohio University Network Detective Service (INBOUNDS)

is an intrusion detection system developed at Ohio University. The ANDSOM mod-

ule [41] for the INBOUNDS system performed intrusion detection using Kohonen’s

Self-Organizing Map algorithm. It captured the essential characteristic patterns in

the multi-dimensional input space and signaled an alarm if the observed network con-

nection was significantly anomalous from the normal values. As the module analyzed

the network connections on an individual basis, each network connection was treated

as a whole. In other words, individual components of a normal network connection,

which could be anomalous, were not considered for analysis. In addition, the module

deferred its analysis until the network connection was reported to be complete.

In this thesis, we describe in detail the development of a network-based and

anomaly-based intrusion detection module for the INBOUNDS system. The module

utilizes multiple Self-Organizing Maps for intrusion detection. We take into consider-

ation time-based behavior of normal network connections, thus analyzing individual

parts for anomalous behavior. We anticipate such an analysis would aid in a better

and quicker response to network intrusions. Moreover, by lowering the false posi-

14

tive rate of the anomaly-based module, we expect the system to have an acceptable

performance.

1.3 Organization of Thesis

In chapter 2, we provide an overview of the classification of intrusion detection

systems, followed by a discussion on Self-Organizing Maps and the various intrusion

detection techniques used by INBOUNDS. In chapter 3, we detail the design and

implementation of the newly-developed intrusion detection module, based on multiple

Self-Organizing Maps. We evaluate the implementation with a set of experiments in

chapter 4, and a summary of the new approach along with some recommendations

for future work is presented in the final chapter.

15

2. Background

In this chapter, we provide the background necessary to understand the intrusion

detection module developed for our research. Section 2.1 presents an overview of the

classification of intrusion detection systems. Section 2.2 introduces the basis of our

intrusion detection approach, the Self-Organizing Maps. Finally, Section 2.3 deals

with the existing intrusion detection techniques used by INBOUNDS, along with

their limitations.

2.1 Classification of Intrusion Detection Systems

Intrusion detection systems attempt to detect attacks against computer systems

and networks. Traditionally, intrusion detection systems can be classified using two

approaches, namely, data source and detection approach. Section 2.1.1 and Section

2.1.2 provide a brief overview of each of these approaches.

2.1.1 Classification Based on Data Source

Based on the source of input data, an Intrusion Detection System (IDS) can be

classified as follows:

• Host-based IDS: Deployed on a host computer, the IDS monitors only the ac-

tivity of that particular host. Information such as operating system audit trails,

registry entries and file accesses is used to detect an intrusion. Commonly used

host-based IDSs include Haystack [58], MIDAS [42], and IDES [40].

• Multi host-based IDS: A set of hierarchical host-based IDSs running on individ-

ual hosts coordinate to detect any suspicious network activity as an intrusion.

The master host is responsible for verification and analysis of the activities of

16

the network as a whole. Some examples of multi host-based IDSs include NIDES

[29] and CSM [32].

• Network-based IDS: Deployed on a host computer, a network-based IDS pas-

sively monitors the network activities of a particular host or a network of hosts.

Unlike host-based systems that seriously impact the performance of the host

computer, a network-based IDS operates in a non-intrusive manner. The Net-

work Security Monitor (NSM) [60] was the first IDS based on this approach.

Other more recent network-based IDSs include SNORT [13] and CyberCop [3].

• Hybrid/Hierarchical IDS: A Hybrid/Hierarchical IDS combines the advantages

of host-based and network-based IDSs. Improved intrusion detection capabil-

ity is achieved through analysis of both host and network data. SRI Interna-

tional’s Event Monitoring Enabling Responses to Anomalous Live Disturbances

(EMERALD) [49] is the most popular IDS based on this approach.

2.1.2 Classification Based on Detection Approach

Based on the approach used for intrusion detection, an IDS can be classified as

follows:

• Misuse-based IDS: Also known as signature-based detection, an IDS based on

misuse detection maintains a database of “signatures”, unique network activ-

ity patterns, of well-known intrusions. A pattern matching program compares

the observed activity pattern against the stored signatures, and raises an alert

whenever a match is found. Although a misuse-based IDS detects known in-

trusions with fair amount of certainty, novel attacks go undetected. In other

words, such an IDS generates few false-positives, false interpretations of normal

behavior, but large false-negatives, false interpretations of abnormal behavior.

• Anomaly-based IDS: Also known as profile-based detection, an IDS based on

anomaly detection classifies abnormal network activity as intrusion. Such an

17

IDS identifies critical network activity parameters and then builds profiles of

normal genuine traffic. An observed network activity that is sufficiently deviant

from the stored profile is then flagged as an intrusion. Although an anomaly-

based IDS has the advantage of detecting never-before-seen attacks (i.e. few

false-negatives), it is highly prone to false positives.

2.2 Self-Organizing Maps

Self-Organizing Map (SOM) [37], also known as Kohonen Self-Organizing Feature

Map, is one of the most prominent artificial neural network methods. Based on unsu-

pervised, competitive learning, the SOM algorithm provides a topology-preserving, or-

dered mapping from the high-dimensional input space onto a much lower-dimensional

output space. Accordingly, the resulting image of the input space tends to depict clus-

ters of input information and their relationships on the output space.

Developed by Professor Kohonen, the SOM has proved useful in the visualization

of high-dimensional systems and processes, and discovery of categories and abstrac-

tions from raw data [59]. The SOMs have been successfully applied in the identifica-

tion and monitoring of machine states, fault diagnosis and robot control [33]. Other

practical applications of SOMs include automatic speech recognition [38], computer

vision [31] and image analysis [22].

The SOM is a two-dimensional array of processing elements, typically called neu-

rons. The SOM algorithm maps the data points from a complex high-dimensional

input space onto the two-dimensional lattice of neurons. For example, if the input

signal space could be characterized by k parameters or dimensions, then each input

signal is represented as a k-dimensional vector in the input space. Accordingly, each

neuron i in the two-dimensional lattice is also assigned a k-dimensional weight vec-

tor. Thus, the SOM algorithm compresses information from the k-dimensional input

space onto the two-dimensional output space, thereby assisting in visualization of

high-dimensional input data.

18

2.2.1 The SOM Algorithm

The SOM algorithm operates in two phases: the training phase and the testing

phase. In the training phase, the neurons are trained to capture the essential char-

acteristics of input data set. In the testing phase, the trained lattice of neurons is

used for real-time operations. The subsequent sections detail with each of the SOM

phases.

2.2.1.1 The Training Phase

As mentioned previously, the neurons in the two-dimensional lattice are initialized

to k-dimensional values in the input range. The initialization of the neurons can either

be random or linear, however convergence to final values is faster for the latter case.

The neurons in the lattice are connected to adjacent neurons through a neighborhood

relation that determines the topology or structure of the map. The lattice could either

have rectangular or hexagonal topology, with the latter having better visualization

properties.

The SOM training phase has the following important properties:

• Competitive: For each given input, all the neurons determine their activations,

and the neuron with the lowest activation is declared as the “winner” neuron.

• Cooperative: The winner neuron spreads its activation over the neurons in its

neighborhood to stimulate topographical ordering.

• Adaptive: The winner and neighboring neurons adjust their weight vectors so

that they respond better for a similar input in the future.

The training phase of SOM, depicted in Figure 2.1, is as follows:

1. Select a k-dimensional input vector x from the training data set and feed it

in parallel to all the neurons in the lattice. Each neuron determines its dis-

tance from the input data point in the k-dimensional input space. The most

19

Figure 2.1. SOM Training
Each input vector is fed in parallel to all the SOM neurons, and the neuron
that is closest to the input vector in the k-dimensional space is declared
as the ‘winner’ neuron.

20

commonly used distance criterion for determining the winner neuron is the Eu-

clidean distance. For k-dimensional space, the Euclidean distance between two

points X(x1, x2, . . ., xk) and Y(y1, y2, . . ., yk) is given as follows:

√
(x1 − y1)2 + (x2 − y2)2 + . . . + (xk − yk)2

The neuron that has the smallest Euclidean distance from the input data

point is declared the “winner”. Another commonly used distance criterion is

the dot-product. For k-dimensional space, the dot product for two vectors

X(x1, x2, . . ., xk) and Y(y1, y2, . . ., yk) is given as follows:

x1.y1 + x2.y2 + . . . + xk.yk

However, in this case the neuron with the maximum dot product is considered

as the winner.

2. After the winner has been determined, the weight vectors of the winner and

neighboring neurons are adjusted according to the following learning function:

mi(t + 1) =

⎧⎪⎨
⎪⎩

mi(t) + hci(t)[x(t) − mi(t)] for each i ∈ Nc(t),

mi(t) otherwise,

where,

t is an integer that represents discrete time coordinate. t is incremented by

1 for during every iteration of the training process.

Nc(t) represents the neighborhood radius during iteration t of the training

process.

x(t) represents the input vector chosen during iteration t of the training

process.

21

mi(t) and mi(t+1) represent the vector measures of the neurons at distance

i from the winner, during iterations t and t+1 respectively.

hci(t) represents the neighborhood function. hci(t) = h(||rc, ri||, t). Here, rc

and ri are the locations of the winner and the neuron i in the lattice.

There are two commonly used neighborhood functions: bubble and gaussian. In

the bubble function, all the neurons in the neighborhood radius, Nc, are adjusted

by the same factor. The bubble function can also be specified as Nc(t) so that

the neighborhood radius reduces during the training process. In this case, the

neighborhood function hci(t) = α(t) for all neurons in the neighborhood, where

α(t) is the learning rate factor. The gaussian neighborhood function, on the

other hand, lets the adjustment factor vary as a bell-shaped gaussian function.

The winner neuron gets adjusted by the maximum amount, with the adjustment

factor for the neighboring neurons decreasing with increase in distance from the

winner neuron. The gaussian function is specified as follows:

hci(t) = α(t) exp

(
−||rc, ri||2

2σ2(t)

)

where, σ(t) specifies the neighborhood radius.

3. Repeat steps 1 and 2 until the training is complete. The number of steps needs

to be determined prior to the beginning of the training phase as the rate of

convergence of the neighborhood function and the learning rate are calculated

accordingly.

2.2.1.2 The Testing Phase

After the completion of the training phase, the SOM is used for real-time opera-

tions. During the testing phase, the input vector is fed in parallel to all the neurons

of the trained lattice. Each of the neurons determine their activations and calculate

the winner neuron. The input vector is then associated to the k-dimensional value

represented by the winner neuron.

22

2.2.2 Multiple Self Organizing Maps

One of the first applications of multiple self-organizing maps was in the field of

script theory [43]. Ever since multiple SOMs have been applied successfully in areas

such as exploratory data analysis, image retrieval, machine learning, and automatic

speech recognition. In recent years, multiple SOMs, in conjunction with other neural

network techniques, have also been applied in the area of intrusion detection [56, 57].

Several variants of the basic SOM algorithm have been proposed. Some of the variants

aim at reducing the computational complexity, while others tend to preserve the

topographical features using flexible map structures [26, 30].

Following are some of the most prominent applications of multiple SOMs:

• WEBSOM is a two-level architecture that provides an interactive graphical

exploration of a full-text database by utilizing multiple SOMs [34].

• PicSOM, developed at Helsinki University of Technology, is an image retrieval

system that employs multiple parallel SOMs for image indexing [39].

• GHSOM is a hierarchical structure composed of independent growing SOMs

facilitating global orientation along with ease of navigation across individual

branches [30]. The GHSOM acts as a basis for data organization in the SOM-

based digital library (SOMLib) [53] and SOM-enhanced Juke Box (SOMeJB)

[54].

2.2.3 Software Packages

Several public-domain software packages such as SOM PAK [15], SOFM [14],

NeNet [9] and CRAN-SOM [18] that implement the SOM algorithm are readily avail-

able. Similarly, SOMTOOLBOX [16] and xsom [20] are some software packages used

for visualization of the SOM algorithm. SOM PAK and SOMTOOLBOX have been

used for our experimentation purposes.

The software packages, SOM PAK and SOMTOOLBOX, are developed at the

23

Laboratory of Computer and Information Science, Helsinki University of Technology,

Finland. SOM PAK is a collection of programs written in ANSI C that provides the

correct application of the SOM algorithm in the visualization of complex experimental

data. Training parameters such as the learning rate factor, neighborhood radius and

the number of iterations are specified as command-line options to the programs.

SOMTOOLBOX is a function package for MATLAB 5 implementing the SOM

algorithm. Most features found in SOM PAK are in some form available also in the

SOMTOOLBOX. However, SOMTOOLBOX’s superior support for advanced graph-

ics and a powerful graphical user-interface make it an ideal candidate for visualization

tasks. Moreover, since the SOM PAK files can be accessed in SOMTOOLBOX, SOM

training can be accomplished via SOM PAK while visualization through SOMTOOL-

BOX.

2.3 INBOUNDS

INBOUNDS (Integrated Network Based Ohio University Network Detective Ser-

vice) is a real-time, network-based, anomaly-based IDS being developed at Ohio Uni-

versity. The INBOUNDS system detects intrusions by examining network traffic

gathered from various data sources, either in off-line or real-time mode. Based on

anomaly detection principle, the system classifies any deviations from normal data

patterns as intrusions. The primary goals of INBOUNDS are: run continually, be

fault tolerant, be able to resist subversion, be scalable, operate with minimal over-

head, be easily configurable, cope with changing system behavior, be difficult to fool

with, and most importantly, to detect never before seen attacks [24].

Prior to the work in this thesis, INBOUNDS used three anomaly-based approaches

for intrusion detection: a statistical based technique [24], a neural network based tech-

nique [41], and a Bayesian network technique [61]. Sections 2.3.3 to 2.3.5 provide a

brief description of each technique and Section 2.3.9 discusses some of their limi-

24

tations. Figure 2.2 represents the existing INBOUNDS architecture along with the

various intrusion detection modules.

Figure 2.2. Existing INBOUNDS Architecture
The NAID, ANDSOM and CANDES modules are responsible for intrusion
detection in the INBOUNDS system.

2.3.1 Data Source Module

The Data Source module gathers raw network data, and provides it as input

to the Intrusion Detection module for analysis. Since the INBOUNDS system is a

network-based IDS, it requires a Data Source module for each monitored network.

Raw network data can be collected with the help of packet sniffing tools such

as tcpdump [17], Ethereal [5] and EtherApe [4]. INBOUNDS uses Tcpurify [27], a

packet sniffing program, as its Data Source module. Since INBOUNDS is based on

anomaly detection principle, application data in the network packets are irrelevant

for our analysis. Tcpurify collects raw network packets from the wire, and discards

the application data from the packet. Only the first 64 bytes of each packet, typically

25

covering the IP and TCP/UDP protocol headers, are reported. Tcpurify program can

also be used to provide privacy by obfuscating the sender and receiver IP addresses.

Symmetric key encryption, based on RC5 algorithm [23], is used to encrypt the IP

addresses of the two communicating hosts.

2.3.2 Data Processor Module

The Data Processor module processes the “sanitized” network data obtained from

the Data Source module. Depending on the intrusion detection module, it reports

certain parameters that characterize the observed traffic.

2.3.3 Statistical-based Anomaly Detection

The statistical-based anomaly detection module, called Network Anomaly Intru-

sion Detection (NAID), generated certain network parameters that characterized the

individual connections. The NAID module periodically reported five parameters, also

known as dimensions, at a default time interval of 60 seconds1. Following criteria was

used to compute the various parameters:

• Question - a packet from client to server containing data in the payload

• Answer - a packet from server to client containing data in the payload

Following parameters were reported for each network connection:

• Interactivity (Inter) - number of questions observed per second during the time

interval

• Average Size Of Questions (ASOQ) - average size of payload data bytes trans-

mitted from client to server during the time interval

• Average Size Of Answers (ASOA) - average size of payload data bytes trans-

mitted from server to client during the time interval

1The time interval is tunable

26

• Question-Answer Idle Time (QAIT) - the idle time observed per second from

the reception of a question to the transmission of the subsequent answer during

the time interval

• Answer-Question Idle Time (AQIT) - the idle time observed per second from

the reception of an answer to the transmission of the subsequent question during

the time interval

In addition to the above parameters, a sixth parameter called Number of Connections

(NOC) was also reported. This parameter monitored the total number of connections

on a specific port.

TCPtrace [48], a TCP/IP network traffic analysis program, received “sanitized”

network data as input and reported the above mentioned network parameters. TCP-

trace, with the real-time module, generated the following three kinds of messages for

each connection:

• An ‘O’ message when a new network connection was opened in the network.

• An ‘I’ message, generated periodically, reported the five parameters. The time

interval had a default value of 60 seconds.

• A ‘C’ message when an active network connection was closed in the monitored

network.

The NAID module had two different approaches to monitor network activity:

• All Connections to a Single Host (ACSH)

• All Connections to All Hosts (ACAH)

In the ACSH approach, the NAID module monitored all classes of network traffic

destined to a particular host. This enabled the detection of an abnormality of a

27

particular service on a single host. In the ACAH approach, a specific type of network

traffic could be monitored for all hosts on a network. Using this approach, the NAID

module enabled the detection of an anomaly on a specific port on all hosts in a

network.

For both the approaches, the NAID module used two methods for intrusion de-

tection:

• Abnormality Factor Method

In the Abnormality Factor method, a database called the historical data repos-

itory maintained the average and the standard deviations of each of the six

dimensions of network connections. A key, which could either be an IP ad-

dress, port or a combination of both, was used to access the database. During

the real-time operation, the six dimensional values of live network connections

were compared with the corresponding values stored in the database. For each

dimension, the difference between the current value and the stored value was

calculated and then divided by the corresponding standard deviation. The ob-

tained value for each dimension measured the difference in units of standard

deviations. A distance value greater than or equal to certain threshold was

assigned an abnormality factor. If the sum of all such values for each dimen-

sion was greater than a pre-defined threshold value, the network connection was

termed as an intrusion.

• Moving Average Method

In the Moving Average method, the NAID module maintained a moving window

of the average value for each dimension of a particular key. The key could be

either an IP address, port or a combination of both. The moving or sliding

window was defined to be active over a specified time period ‘T’. Initially,

the average values for each dimension were set to zero. During the real-time

operation, a moving average was calculated by taking the average of all the

28

values collected in the past time windows. If the difference between the observed

values and the moving average was greater than a pre-defined threshold value,

the network connection was classified as an intrusion.

2.3.4 Neural Network-based Anomaly Detection

The neural network-based anomaly detection module, called Anomalous Network

traffic Detection with Self-Organizing Maps (ANDSOM), identified certain network

parameters that characterized the individual connections. The ANDSOM module

used the Self-Organizing Map (SOM) algorithm to convert non-linear statistical rela-

tionships between data points in a high dimensional space into geometrical relation-

ships between points in a two-dimensional map [37].

For each type of network traffic, the module periodically reported the five pa-

rameters, namely: Inter, ASOQ, ASOA, QAIT and AQIT, as explained in Section

2.3.3. An additional parameter, called Duration Of Connection (DOC), indicating

the length of the connection was also generated. The Data Processor module for

INBOUNDS reported the following three kinds of messages for each active network

connection:

• An ’O’ message signified the opening of a new connection in the monitored

network. The ‘O’ message had the following format:

O Timestamp Protocol <src host:port> <dst host:port> Status

The Timestamp field indicates the time when the connection was opened. The

Protocol field specifies the protocol used for communication. At present, only

two protocols are supported, namely TCP and UDP. The source and destination

IP addresses and ports of the communicating hosts are reported next. The

Status field indicates how the connection was opened. For a TCP connection, a

value of 0 indicates opening SYN packets were seen during analysis while a value

of 1 indicates the connection was already open prior to the start of analysis i.e.

29

SYN packets for the connection were not seen. For UDP connections, an ‘O’

message is generated when a packet is seen from one host to the other for the

first time. However for UDP connections, the Status field is always assigned a

value of 0.

• An ’U’ message, generated periodically, reported the five dimensions: Inter,

ASOQ, ASOQ, QAIT, AQIT. The time interval had a default value of 60 sec-

onds2. The ‘U’ message had the following format:

U Timestamp Protocol <src host:port> <dst host:port> Inter ASOQ ASOA

QAIT AQIT

• A ’C’ message indicated the closing of a connection in the monitored network.

The ‘C’ message had the following format:

C Timestamp Protocol <src host:port> <dst host:port> Status

The Status field has a value of 0 if a TCP connection was closed with two FINs,

and 1 if a RST packet closes the connection. For UDP traffic, the Status field

is always allocated a value of 0.

Figure 2.3 illustrates the various steps in the training of the ANDSOM module.

The ANDSOM module received these messages as input from the Data Processor

module. A submodule, TRC2INP, generated six dimensional values of Interactivity

(Inter), Average Size of Questions (ASOQ), Average Size of Answers (ASOA), Log

base 10 of Question Answer Idle Time (L QAIT), Log base 10 of Answer Question

Idle Time (L AQIT) and Duration Of Connection (DOC) for each network connec-

tion. The rationale for the use of L QAIT and L AQIT values instead of QAIT and

AQIT values respectively was to reduce the number of false positives found earlier.

The time difference between the generation of ‘O’ and ‘C’ messages for a network

connection was reported as the sixth dimension, Duration Of Connection (DOC), for

2The time interval is tunable

30

that connection. The Normalizer submodule, which received these values as input

from the TRC2INP submodule, produced normalized six dimensional vectors as its

output. After determining the lattice dimensions and size, the neurons in the lattice

were linearly initialized within the range of the input six dimensional vectors. The

ANDSOM module performed SOM training in two phases: an initial phase with a

high learning factor, large neighborhood radius and lesser number of iterations, and

final fine-tuning phase with a low learning factor, relatively low neighborhood radius

and larger number of iterations.

After the completion of training, a validation check was performed to evaluate the

trained lattice of neurons. The locator program, written for this purpose, took as

its input the initial un-normalized training data set, mean and standard deviation of

each dimension of the data set and the fully trained map. After normalization of each

input vector, the locator program calculated the distance between the input vector

and winner neuron. If 95.44% of all input vectors fall within a distance of 2σ from a

winner neuron, the map was assumed to be trained adequately. During the operation

phase of SOM, the test vector was fed into the trained map and the winner neuron

was determined. An anomaly was raised if the distance between the test vector and

the winner neuron was greater than 2 units.

2.3.5 Bayesian Network-based Anomaly Detection

Causal Tree Anomaly-based Network-based DEtection System (CANDES) is an

anomaly detection module based on Bayesian network technique. A Bayesian Net-

work is a directed graph model that encodes the relationship between the parameters

of input domain into its structure and probability tables [50]. The CANDES mod-

ule modeled the Bayesian network as a causal tree, wherein the nodes represented

either the parameters of input domain or hypotheses accorded some degree of belief,

and the links symbolized the relationship between the parameters. Each node pos-

sessed discrete values equal to the number of states of the corresponding parameter

or degrees of belief of the corresponding hypothesis. Bayes Theorem calculated the

31

Figure 2.3. ANDSOM Training
The ‘O’, ‘U’ and ‘C’ messages reported the six parameters characterizing
the network connections. Normalized six-dimensional values were used to
train the SOM lattice neurons [41].

32

conditional probabilities for each node that quantified the relationships between the

input parameters. Each entry of the Conditional Probability Table (CPT) indicated

the probability of the child node assuming a particular value, given a particular parent

node value.

To aid in the classification of certain kinds of attacks like Denial-Of-Service (DOS)

attacks, the CANDES system proposed new network parameters. These network pa-

rameters characterized both a particular network service as well as the connections to

that service. A module for TCPtrace, called Bayes module, reported these parameters

for each network service at a default time interval of 60 seconds 3.

The following network parameters were reported periodically:

• Number Of Open Connections (NOOC) - number of connections opened to a

particular network service in the last time interval

• Number Of Failed Connections (NOFC) - number of connections failed to a

particular network service in the last time interval

• Number Of Packets (NOP) - total number of packets received by a monitored

host, or a network on a particular network service in the last time interval

• Number Of Same client IP Connections (NOSC) - total number of connections

made to a particular network service from the same Client IP address in the

last time interval

The Bayes module generated as its output three types of messages:

• The ’A’ message reported the NOOC, NOFC, NOP and NOSC parameters for

a particular port for all the monitored hosts.

• The ’H’ message reported the NOOC, NOFC, NOP and NOSC parameters for

a particular port for each host of the monitored network.

3The time interval is tunable

33

• The ’C’ message reported the ASOQ and ASOA parameters, as described in

Section 2.3.3, for each active network connection.

The CANDES module received these messages as input from the Bayes module.

The leaf nodes of the Bayesian network represented the six parameters reported by

the Data Processor module. The values (probabilities) of leaf nodes, also known

as evidence nodes, were calculated from reported values. Each evidence node could

assume four discrete values: no anomaly, low anomaly, medium anomaly, and high

anomaly, depending on the deviation from the normal value. The internal nodes,

also known as hypothesis nodes, Network Service Behavior, and Connection Behavior

represented the hypotheses: “Network Service Behavior is anomalous”, and “Con-

nection Behavior is anomalous” respectively. The values of these internal nodes were

calculated by Bayesian Network algorithms and used to determine the presence of an

anomaly.

2.3.6 Decision Module

The Decision module as depicted in Figure 2.2 is work in progress. Its goal is to in-

tegrate and evaluate the intrusion alerts from the three IDS modules: statistical-based

NAID module, neural network-based ANDSOM module, and Bayesian Network-based

CANDES module, and convey the appropriate final decision to the Intrusion Response

module.

2.3.7 Intrusion Response Module

As shown in Figure 2.2, the Intrusion Response module is also work in progress.

The responsibility of this module is to take active response on the intrusion alert

generated by the Decision module. Some of the active responses include: firewall

rules to block the particular network connection or the particular port, rate limiting

the bandwidth of that class of network traffic, etc.

34

2.3.8 Data Visualization Module

The Data Visualization module provides a real-time picture of the various con-

nections made in and out of the network monitored by the INBOUNDS system. The

Data Visualization module runs the networkgraphserver program developed for this

purpose. Implemented in Java, the program depicts in real-time the hosts of the

monitored network as icons, and connections between the hosts as lines.

2.3.9 Limitations of Existing Approaches

The existing approaches used for anomaly detection in INBOUNDS have certain

limitations. The statistical-based technique described in Section 2.3.3 had only one

reference data point for each class of network traffic in six-dimensional space, namely,

the average values of all six dimensions for that particular network traffic. Since

the distribution of training data could occur as multiple distinct clusters, the ab-

normality factor method for statistical technique gave rise to a significant number

of false-positives. Moreover, the moving average method of statistical technique can

generate false-negatives when an intrusion gradually increases its activity in succes-

sive time windows. Although the moving average method detected attacks carried

over a very long period of time, it generated false-positives because of its dependence

of appropriate threshold values.

The neural network-based approach described in Section 2.3.4 overcomes the lim-

itations of the statistical-based approach by storing multiple reference points for each

type of network traffic. Nevertheless the ANDSOM module had its own set of draw-

backs. The ANDSOM module captured the essential characteristic patterns of the

input signal space and signaled an alarm if the observed input signal was sufficiently

deviant from the normal values. Since analysis was performed on a per-connection-

basis, certain types of intrusions such as Denial Of Service (DOS) attacks went un-

detected. Moreover, as every network connection was treated as a single entity, the

ANDSOM module ignored the time-based behavior of the network connection. In

35

other words, individual sections of an otherwise normal network connection were not

considered for analysis. Additionally, the ANDSOM module performed intrusion de-

tection only after the connection was closed. That is, analysis was carried out when

the Data Processor module reported the ‘C’ message for the network connection.

Furthermore, the ANDSOM module could generate false-negatives for network traffic

that exhibited parametric values similar to those of normal traffic. Also, the SOM

training phase was assumed to be complete when 95.44% of the training data vectors

had a winner neuron within 2σ. In other words, the remaining 4.56% of the train-

ing data vectors were themselves classified as network intrusions by the ANDSOM

module.

Though the Bayesian network-based anomaly detection approach used in CAN-

DES successfully detected DOS attacks such as finger bomb [6], it had its own limita-

tions. The CANDES module was based on the categorization of the input parameters

into four different anomaly levels: no anomaly, low anomaly, medium anomaly and

high anomaly. Since these levels were manually defined at the end of training phase,

an error in calculations resulted in false-positives or false-negatives. Moreover, since

the criteria for anomaly classification was time-independent, increased network activ-

ity, which could be normal at that particular time of the day, would trigger a false

positive. Besides, the CANDES module used simple relationships between input pa-

rameters to detect anomalies. As these relationships were determined without analysis

of their exact dependency, combining unrelated parameters to classify intrusions lead

to false-positives or false-negatives.

Our research is motivated by the need to design a more powerful technique for

intrusion detection that overcomes some of the aforementioned limitations. In par-

ticular, we would like to perform a time-based characterization of normal network

behavior. We anticipate such a characterization would lead to a better network in-

trusion detection system. Moreover, analyzing the network connection before it closes

would result in a near real-time response to network intrusions.

36

3. Multiple Self-Organizing Map-based Intrusion Detection

System (MSIDS)

This chapter describes the design and working of Multiple Self-Organizing Map-based

Intrusion Detection System (MSIDS) module developed for INBOUNDS. Section 3.1

outlines the updated INBOUNDS architecture, followed by the description of the Data

Processor module in Section 3.2. Section 3.3 deals at length with the new approach

proposed for intrusion detection.

3.1 INBOUNDS Architecture

As shown in Figure 3.1, the INBOUNDS system consists of the following modules:

Data Source, Data Processor, Intrusion Detection, Data Visualization, Decision and

Intrusion Response. The INBOUNDS system inputs the network data, received from

the various data sources, to the intrusion detection module for anomaly detection.

The intrusion detection module analyzes the network data for intrusion and reports

accordingly to the intrusion decision module.

3.2 Data Processor Module

The Data Processor module obtains “sanitized” network data from the Data

Source module, and processes it to produce messages indicating the opening, activity,

and closing of live network connections.

TCPtrace, which acts as the Data Processor module, receives the network data as

input and reports certain network parameters for each individual network connection.

We redefine the criteria [41] used to compute the new parameters for our MSIDS

module:

37

Figure 3.1. Updated INBOUNDS Architecture
The MSIDS module analyzes the time-based behavior of network connec-
tions for anomalies in the INBOUNDS system.

• Question - the set of packet(s) containing data in the payload transmitted from

client to server, before the transmission of next packet containing data in the

payload in the other direction from server to client

• Answer - the set of packet(s) containing data in the payload transmitted from

server to client, before the transmission of next packet containing data in the

payload in the other direction from client to server

• Cycle - the collection of data from the first packet of a question until the last

packet of the subsequent answer

It should be noted that the above values are calculated at the transport layer. For

many application protocols, there is one-to-one correspondence between the cycles

that occur at the transport layer and those that occur at the application layer because

38

of the simple query-response behavior of a typical client-server interface. For such

protocols, the cycle behavior at the transport layer directly corresponds to the cycle

behavior at the application layer. However, for application protocols in which there

may be multiple outstanding queries made before an answer is received, possibly

while receiving answers to prior queries, there is no logical correspondence between

the cycles at the transport and application layers. An example of one such application

protocol is HTTP/1.2 pipelined queries. Therefore, we hypothesize the above criteria

would not work well for such protocols.

Following network parameters are reported by the Data Processor module for each

active network connection:

• Size Of Question (SOQ) - the total number of payload data bytes transmitted

from client to server within one cycle

• Size Of Answer (SOA) - the total number of payload data bytes transmitted

from server to client within one cycle

• Question-Answer Idle Time (QAIT) - the time elapsed (in seconds) between

the reception of the last packet of a cycle’s question and the transmission of the

first packet of the cycle’s answer

• Inter-Cycle Idle Time (ICIT) - the time elapsed (in seconds) between the re-

ception of the last packet of a cycle’s answer and the transmission of the first

packet of the subsequent cycle’s question, or close of the connection

The output of the Data Processor module consists of messages that are used as

input to the Intrusion Detection module of INBOUNDS. Three types of messages are

generated for each active network connection, namely: ‘O’, ‘L’ and ‘C’. The ‘O’ and

‘C’ messages have the same semantics as described in Section 2.3.4. We introduce a

new message, ‘L’, that reports the four parameters for the network connection. The

following paragraph provides a summary of the three messages:

39

• The ‘O’ (Open) message is generated when a new connection is opened in the

monitored network. The format of an ‘O’ message is:

O Timestamp Protocol <src host:port> <dst host:port> Status

• The ‘L’ (Loop) message is generated throughout the lifetime of the network

connection. The format of an ‘L’ message is:

L Timestamp Protocol <src host:port> <dst host:port> SOQ SOA QAIT

ICIT

The ‘L’ message reports the parameters SOQ, SOA, QAIT and ICIT, as ex-

plained earlier, for each network connection for the particular traffic.

• The ‘C’ (Close) message is generated when an active connection is closed in the

monitored network. The format of an ‘C’ message is:

C Timestamp Protocol <src host:port> <dst host:port> Status

Figure 3.2 illustrates the above mentioned criteria, along with the four MSIDS

network parameters. The timestamps, Ta, Tb, Tc, and Td, indicate the exact time

instances where the parameters are calculated. At timestamp Tb and Td, we deter-

mine the SOQ and SOA parameters respectively. While the difference between times-

tamps Ta and Tb is reported as QAIT parameter, the difference between timestamps

Tc and Td is reported as ICIT parameter. The ‘L’ message, generated at timestamp

Td, reports all the four network parameters for the cycle. It should be noted that,

for the last cycle, the ‘C’ message for the connection triggers the generation of the

‘L’ message that reports the parameters for it.

3.3 MSIDS Module

The steps in the training of Multiple Self-Organizing Map-based Intrusion De-

tection System (MSIDS) module are illustrated in Figure 3.3. The MSIDS module

employs the Self-Organizing Map algorithm, mentioned in Section 2.2.1, to build

profiles of normal network traffic and thereby detect anomalous network traffic.

40

Figure 3.2. Criteria for MSIDS Parameters
The timestamps, Ta, Tb, Tc, and Td, indicate the exact time instances
where the various MSIDS network parameters, SOQ (Size Of Question),
SOA (Size Of Answer), QAIT (Question-Answer Idle Time), and ICIT
(Inter-Cycle Idle Time), are calculated. At timestamp Tb, transmission
of first data packet from server to client enables the calculation of SOQ
and QAIT values for that cycle. Similarly, at timestamp Td, transmission
of first data packet from client to server allows the calculation of SOA and
ICIT values for the preceding cycle.

41

Figure 3.3. MSIDS Training
The ‘L’ messages report four parameters that characterize the network
connections. The TRC2INP module ‘exponentially’ groups these values
in different buckets. Based on the bucket number, normalized four dimen-
sional vectors train the neurons of various SOMs.

42

3.3.1 TRC2INP Submodule

The TRC2INP submodule, that runs the trc2inp program, processes the ‘O’, ‘L’

and ‘C’ messages received from the Data Processor module and generates four dimen-

sional values: Average Size of Questions (ASOQ), Average Size of Answers (ASOA),

Log base 10 of Question-Answer Idle Time (L QAIT) and Log base 10 of Inter-Cycle

Idle Time (L ICIT) for each “bucket”, a collection of ‘L’ messages, per network con-

nection.

The trc2inp program maintains a hash table of active network connections. Each

entry in the hash table is identified by a four-tuple <Source IP address, Source Port,

Destination IP address, Destination Port>. Moreover, each hash table entry main-

tains a list of buckets to group the ’L’ messages of that particular network connection.

Each bucket in the list maintains four values: ASOQ, ASOA, QAIT and ICIT, for the

’L’ messages stored in that bucket. The current implementation of MSIDS module

“exponentially” stores the ’L’ messages in a list of buckets. In other words, the first

’L’ message is stored in bucket 0, the first two ’L’ messages are stored in bucket 1, the

first four ’L’ messages are stored in bucket 2, and so on. The rationale for grouping

multiple ‘L’ messages into buckets is to better characterize the behavior of normal

network traffic over the lifetime of a connection. The goal is to potentially reduce the

number of false positives that would be generated if an individual SOM is dedicated

for each ‘L’ message. The other benefit of grouping the ‘L’ messages is to limit the

number of buckets to a constant value. Upon receiving an ’O’ message, the trc2inp

program calculates the hash value for the new network connection and adds an entry

in the hash table.

Upon receiving an ’L’ message, the hash table entry for the network connection is

found using the four-tuple <Source IP address, Source Port, Destination IP address,

Destination Port> in the message. A counter, lcnt, is maintained to keep track of the

’L’ messages for the network connection. Depending on the value of lcnt, the values

SOA, SOA, QAIT, ICIT reported in the ’L’ message are added to the dim1, dim2,

43

dim3 and dim4 fields of the appropriate bucket and new values for ASOQ, ASOA,

QAIT and ICIT are calculated. This procedure is repeated for each ’L’ message

received, updating the ASOQ, ASOA, QAIT and ICIT values of the appropriate

bucket of the connection.

Upon receiving a ’C’ message, the hash table entry corresponding to the pertinent

network connection is removed. For each bucket in the linked-list, the trc2inp program

reports dim1 and dim2 as ASOQ and ASOA respectively. On the other hand, the log

base 10 values of dim3 and dim4 are reported as L QAIT and L ICIT respectively.

The decision to use L QAIT and L ICIT values instead of QAIT and ICIT was not

only to reduce the number of false positives found in earlier experiments, but also to

better characterize widely varying time values.

3.3.2 Normalizer Submodule

The four-dimensional vectors, generated by TRC2INP submodule, can be directly

used to train SOMs for each class of network traffic. However, the SOM algorithm uses

the Euclidean distance as its criterion to determine the winner neuron, so scaling of

dimensions becomes essential. For example, if one dimension has values in the range

of [0,. . . ,1] and another in the range of [0,. . . ,100], the latter will certainly dominate

the map organization. In most cases, one would like to assign all dimensions equal

importance. One approach would be to normalize the data so that each dimension

of input vectors will have unit variance and zero mean. The normalizer program,

written for this purpose, normalizes the input vectors so that none of the dimensions

has a considerable impact on the training result.

The normalizer program takes as input the four-dimensional vectors of each bucket

and produces the corresponding normalized four-dimensional vectors. The normal-

izer program operates in two stages. In the first stage, it calculates the mean (µij)

and standard deviation (σij) of each dimension i per bucket j. It stores these cal-

culated values the mean in separate data files for latter use. In the second stage,

the normalizer program takes as input each four-dimensional vector < d1, d2, d3, d4 >

44

of bucket i and produces the corresponding normalized four-dimensional vector <

n1, n2, n3, n4 >, such that ni = di−µij

σij
, where µij and σij are the mean and standard

deviation of dimension i and bucket j respectively.

At the end of the normalization process, normalized four-dimensional input vectors

per bucket, stored in separate files, are used for SOM training.

3.3.3 SOM Training

The software packages SOM PAK and SOMTOOLBOX, mentioned in Section

2.2.3, are used to build a SOM for each bucket. While SOMTOOLBOX’s som lininit

function initializes the neurons of the SOM lattice, SOM PAK’s vsom program per-

forms SOM training for each bucket.

Before the onset of SOM training, there are four values that need to be deter-

mined: number of neurons, dimensions of the lattice, lattice shape, and topology.

With the neighborhood function controlling the smoothness and generalization of the

mapping, the number of neurons can be chosen as large as possible. The som lininit

function uses the following heuristic formula to determine the number of neurons:

munits=5*sqrt(num), where munits denote the number of neurons in the lattice and

num denote the number of training samples.

Once the number of neurons in the lattice are calculated, the lattice dimensions

can be computed. The som lininit function determines the two biggest eigenvalues

of the training data set, and sets the ratio between the two dimensions of the lattice

to the ratio between these two eigenvalues. The actual dimensions are then adjusted

such that the product of the dimensions is as close as possible to the value munits.

The default recommended shape for the lattice is sheet, unless the shape of the

data manifold is known beforehand. Hence, the torrid and circular shapes should

be used only if the data is known to be circular. The lattice topology can either be

hexagonal or rectangular, although the former is known to have better visualization

properties as all the neighboring neurons are equidistant. The som lininit function

creates a two dimensional lattice of neurons with hexagonal topology.

45

After determining the lattice dimensions and lattice size, the neurons are then

initialized, either linearly or randomly, to four-dimensional values in the input data

range. The SOM algorithm is known to converge faster to a good solution in case of

linear initialization. For linear initialization, the som lininit function selects a mesh

of points from the four-dimensional min-max cube of training data set. It is important

to note that the initialization of neurons is irrespective of the lattice shape; the lattice

is always assumed to be sheet-shaped.

SOM PAK’s vsom program performs SOM training in two phases: an initial train-

ing phase, and a final fine-tuning training phase. The vsom program determines the

winner neuron for each input vector and updates the associated vectors of those neu-

rons in the neighborhood of it according to the selected neighborhood function. The

initial value of the neighborhood radius is defined for each phase and is linearly re-

duced to one during training. The initial learning rate factor is also defined for each

phase and is linearly reduced to zero at the end of training.

In the initial phase, the number of iterations is chosen to relatively low, in order of

thousands. A gaussian neighborhood function is used, with the neighborhood radius

set to a high value, typically the smaller of the lattice dimensions. The neighborhood

radius is linearly reduced to value of 1 as the training proceeds. The learning rate

factor, linearly reduced to zero, is also chosen to a high value close to unity, typically

0.9. Most of the map organization happens in the initial training phase. In the final

fine-tuning phase, the number of iterations is set to a high value, typically 100,000.

The gaussian neighborhood radius is set to a relatively smaller value in this case.

Similarly, the learning rate factor, chosen to be relatively small, say 0.05, is linearly

reduced to a value of 0 as the training concludes. At the end of the final fine-

tuning phase, each SOM lattice captures the essential characteristic patterns of the

corresponding (bucket) data set.

At the end of the two phases of training, each SOM lattice is evaluated with

the locator, a program written for this purpose. The locator program takes as input

46

un-normalized training data set for each bucket, the corresponding trained lattice

of neurons, and the corresponding mean and standard deviations generated by the

normalizer submodule. For each input vector, the locator program first normalizes

it based on the corresponding mean and standard deviation, and then feeds it to

all the neurons of the corresponding trained SOM lattice. The winner neuron for

the input vector is then determined, and the normalized vector, the topographical

location of the winner in the SOM lattice, and the measured distance are reported

as output by the locator program. The output gives the number of input vectors

that have a winner neuron within a distance of 2σ units in the four-dimensional

space. Since gaussian distribution was used as the neighborhood function during the

training phase, ideally at least 95.44% of the samples must fall within 2σ of the mean.

Using this property as a heuristic for SOM validation, we consider the SOM lattice

to be completely trained if 95.44% of training data have a winner neuron within 2σ

units in the four-dimensional space.

This thesis assumes that normal network data (i.e. training data) follow a stan-

dard Gaussian distribution for the four parameters, and that the standard deviation

(σ) is a measure of distance in the four-dimensional input space for each datum. If

this assumption for normal network data holds true, then σ for the training datum

can be interpreted as a probability of the datum occurring using traditional statistical

techniques. For many Internet attacks, however, it is clear that the four computed

network parameters for attack data are not normal network data, and hence the stan-

dard Gaussian probability associated with a particular value of σ is not valid and

has no meaning. We still use σ, however, for attack data to provide a metric of how

abnormal a particular attack datum actually is, even though this usage of σ is not

standard and could lead to confusion if interpreted as a probability. For example,

if an attack datum exhibits a standard deviation value of 4.5 units, then it would

indicate a Gaussian probability of 7.89E-09.

47

3.3.4 SOM Operation

The Data Source, Data Processor and the MSIDS modules, as shown in Figure

3.1, communicate with each other in real-time using the icomm library. The icomm

library provides the modules with a set of interface functions, so that the underlying

communication mechanism can be module-independent. The current implementa-

tion of icomm library makes use of TCP sockets API. Although SOM training was

performed offline using network dump files, the MSIDS module performs intrusion

detection in real-time.

During the real-time SOM operation, the Data Source module, running the tcpu-

rify program, reports “sanitized” network packets to the Data Processor module.

The Data Processor module, running the TCPtrace program with the INBOUNDS

module, in turn processes these sanitized network packets to produce ‘O’, ‘L’ and ‘C’

messages for each network connection. The trc2inp program, a submodule of MSIDS

module, receives these messages and reports four-dimensional vectors on a bucket-

basis. The output is received by the locator program that operates for a specific class

of network traffic. The locator program normalizes these four-dimensional vectors,

reported per bucket, using the mean and standard deviations of the respective buckets

generated during the SOM training. Each normalized vector is then fed in parallel

to all the neurons of the corresponding trained SOM lattice. A winner neuron is

determined for each input vector fed to the respective SOM lattice. If the distance

between the winner neuron and the input vector for any of the SOM lattices is greater

than 2σ units, the network connection is classified as an intrusion.

48

4. Experimental Results

As detailed in Chapter 3, the MSIDS module performs intrusion detection by ana-

lyzing the time-based behavior of network connections using multiple SOMs. In this

chapter, we present some of the experimental results obtained from the operation of

the MSIDS module. We organize this chapter in two sections. In Section 4.1, we

describe the successful detection of the Sendmail buffer overflow attack by our mod-

ule [12, 2]. Later, we provide a comparison of the attack detection with that by the

ANDSOM module [41]. In Section 4.2, we substantiate our claim with the effective

detection of another attack, namely: Apache/OpenBSD stack overflow attack [28].

4.1 Sendmail Buffer Overflow Attack

Simple Mail Transfer Protocol (SMTP) is the default standard protocol for trans-

mission of “electronic mail” (email) across the Internet [51]. SMTP is a relatively

simple, text-based protocol that supports 7-bit ASCII characters. The protocol is

specified in RFC 2821 [35], which is an updated version of RFC 821 [51]. Multipur-

pose Internet Mail Extensions (MIME) extends the original specification of SMTP

by allowing email messages to contain characters from other encodings as well as

8-bit binary content such as files containing images, sounds and movies. The MIME

extensions are specified in RFCs 2045-2049 [46, 47, 36, 44, 45]. Mail Transfer Agents

(MTAs) use SMTP for transfer of email messages amongst hosts. The client MTA

establishes a connection with a server MTA on tcp port 25 to send an email message.

Figure 4.1 depicts a typical network, packet-level interaction between the client MTA

and the server MTA.

49

Figure 4.1. SMTP Connection Timeline
The adapted figure illustrates a typical interaction between SMTP client
and SMTP server in terms of cycles [41].

50

Following are the steps involved in the transmission of an email message from the

SMTP client to the SMTP server:

• The SMTP client uses the TCP three-way handshake to establishes a connection

with the SMTP server, which is listening on port 25.

• After receiving the “220 Service Ready” message from the server, the client

sends the “EHLO” command to the server. An SMTP client supporting SMTP

extensions should start an SMTP session using the “EHLO” command instead

of the default “HELO” command. If the SMTP server does not support SMTP

extensions, it responds back with “500 Unrecognized” message.

• If the SMTP server does not support SMTP extensions, the SMTP client sends

the “HELO” command in response. The SMTP server responds with “250 OK”

message.

• The client then informs the sender of the email with the “Mail From” command.

The server replies back with “250 OK” message acknowledging the command.

• The client then specifies the recipient of the email message with the “Rcpt To”

command. If the intended recipient is a valid user, the server responds with

“250 OK” message else with “550 No such user here” message indicating an

invalid user.

• After a positive acknowledgment from the server, the client issues the “Data”

command. If the SMTP server is ready to receive the mail contents, it responds

to the “Data” command with “354 Start Mail Input” message.

• The SMTP client then transfers the contents of the email using multiple TCP

segments, if required. The SMTP server responds back with “250 Mail Ac-

cepted” message indicating the receipt of the mail contents.

51

• After the reception of “250 Mail Accepted” message from the server, the SMTP

client issues the “Quit” command. The server replies with “221 Closing Con-

nection” message and then closes the SMTP connection.

4.1.1 SMTP SOM Training

The MSIDS module was trained on normal values of 2304 SMTP connections

obtained from MIT Lincoln Laboratory - DARPA Intrusion Detection Evaluation

Project [7]. The MSIDS module generated a total of seven SOMs from the training

data set with dimensions mentioned in Table 4.1. It should be noted that only 2297

SMTP connections, reported as ‘complete’ by the Data Processor module, were used

for SOM training. Each SOM, with map dimensions of X and Y, was built in two

training phases as explained in Section 3.3.3.

Table 4.1 SMTP Map Dimensions

Map # 0 1 2 3 4 5 6

X-dimension 13 13 13 14 8 4 5

Y-dimension 18 18 18 17 11 10 7

Following parameters were used for the initial SOM training phase:

• Learning rate factor α: High value of 0.9.

• Gaussian neighborhood radius: Lower of map dimensions.

• Number of iterations: Number of the training samples for the particular SOM.

Following parameters were used for the final SOM training phase:

• Learning rate factor α: Low value of 0.05.

52

Table 4.2 SMTP Training Data Statistics

Map 0 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

Cycle Cycles Cycles Cycles Cycles Cycles Cycles

(0) (0 - 1) (0 - 3) (0 - 7) (0 - 15) (0 - 31) (0 - 63)

ASOQ
(µ) 0 11.63 21.41 286.85 248.92 179.17 548.92

(σ) 0 1.05 1.44 536.44 463.73 467.16 451.79

ASOA
(µ) 79.23 53.97 48.82 41.67 41.59 40.39 37.78

(σ) 15.42 14.62 9.8 4.9 3.77 4.5 0.86

L QAIT
(µ) -10.0 -2.77 -2.61 -2.38 -2.45 -2.51 -2.59

(σ) 0 0.77 0.68 0.49 0.46 0.48 0.21

L ICIT
(µ) -1.56 -1.79 -2.01 -2.18 -2.87 -3.28 -3.29

(σ) 0.87 0.85 0.83 0.76 0.62 0.33 0.28

• Gaussian neighborhood radius: Low value of 5.

• Number of iterations: 500 times the map dimensions (500∗X∗Y).

The SOMs, along with the mean and standard deviations for each of the 4 di-

mensions, are mentioned in Table 4.2. Each of the trained SOMs was evaluated by

testing the training data set itself for anomalies. Table 4.3 summarizes the validation

results for the maps, along with the number of training data vectors for each map.

If 95.44% of the training data vectors had a winner neuron within a distance of 2σ

units, the SOM was assumed to capture the essential input characteristics. It should

be noted that our heuristic of 95.44% - 2σ units is barely met by the last two maps

because few SMTP connections last until those buckets. In particular, since 57 of 60

and 48 of 50 SMTP connections, that last till buckets 5 and 6 respectively, have a

53

Table 4.3 SMTP Training Data Validation Results

Map # 0 1 2 3 4 5 6

Number of data vectors 2297 2297 2297 2297 301 60 50

Percentage (%) 100 99.52 99.91 98.56 97.69 95 96

winner neuron within 2σ units, maps 5 and 6 have corresponding training results of

95% and 96%.

4.1.2 Attack Description

Sendmail [12] is a widely deployed open-source mail transfer agent that implements

the SMTP protocol. Sendmail versions 8.8.3 and 8.8.4 had a serious buffer overflow

vulnerability in the processing of MIME headers. Due to insufficient bounds checking

while performing limited 7 to 8 bits MIME conversions on email messages, the internal

stack space of Sendmail could be overwritten. As the Sendmail program is usually

run as root, the successful exploitation enabled remote users to execute arbitrary

commands on the local system with root privileges. Moreover since MIME conversion

is performed on final delivery, the bug may be exploited regardless of the presence of

firewalls or other network boundary security measures. This vulnerability has been

described in detail in a CERT advisory [2]. The attack, that exploited the buffer

overflow vulnerability, was obtained offline from MIT Lincoln Laboratory data set

that contains several labeled attacks. The attack works by sending a carefully crafted

SMTP request with a large MIME header and overflowing the buffer on the server

side. The return address on the stack is modified so as to point to the code in the

MIME header to add a root account. On successful exploitation, the remote attacker

can gain access on the victim with root privileges.

54

Table 4.4 SMTP Exploit Vector

Bucket # ASOQ ASOA L QAIT L ICIT

0 4474.0 575.0 -1.356 0.258

1 2239.5 300.5 -1.647 -0.043

2 1495.0 214.333 -1.814 -0.219

4.1.3 Anomaly Detection

Table 4.4 shows the four-dimensional values of the SMTP exploit vector. The loca-

tor program was fed with these four-dimensional vectors as input. It first normalized

the vectors based on the mean and standard deviation statistics of the respective

SOMs as mentioned in Table 4.2. The normalized values of the SMTP exploit vector

are shown in Table 4.5. We can observe from this table and the “normal” values in

Table 4.2 that the ASOQ values are significantly deviant from the mean and stan-

dard deviations values observed during the training phase. After establishing a TCP

connection with the SMTP server on port 25, the attack system sends multiple mali-

cious packets to overflow the server-side stack. These packets, perceived as questions,

have ASOQ values that are highly anomalous from the observed mean and standard

deviation values for the corresponding buckets. The exploit vector has ASOQ value

of 4474 bytes in bucket 0, which differs from the ASOQ value, 0, observed during the

training phase for map 0. Similarly, the ASOQ values for bucket 1 and 2, with stan-

dard deviation values much greater than the threshold value of 2σ units, are found

to be highly anomalous from the respective mean values.

After normalizing the exploit vector, the locator program feeds the values into

corresponding SOMs to determine the winner neurons. The distance between the

normalized vectors and the winner neurons in the corresponding maps is shown in

Table 4.6. As mentioned in Section 3.3.3, the distance, expressed in units of standard

55

Table 4.5 Normalized SMTP Exploit Vector

Bucket # ASOQ ASOA L QAIT L ICIT

0 4474.0 32.134 -1.356 2.085

1 2119.588 16.859 1.464 2.051

2 1022.354 16.880 1.179 2.161

Table 4.6 SMTP Exploit Winner Neuron

Bucket # ASOQ ASOA L QAIT L ICIT Distance

0 4474.0 32.134 0.000 2.085 4474.110

1 2119.588 16.859 1.464 2.051 2118.391

2 1022.354 16.880 1.179 2.161 1020.425

deviation (σ) from the corresponding mean (µ), represents how abnormal the attack

vector is, and should not be interpreted as the probability of occurrence using standard

statistical techniques. As the distance from the winner neurons is greater than the

threshold value of 2σ units, the MSIDS module classifies the SMTP connection as an

attack. Moreover, detecting such anomalous behavior in early stages of the connection

leads to a quicker response to intrusion. The graphs illustrating the anomalous values

for ASOQ, ASOA, L QAIT and L ICIT for the various SOMs are shown in the Figures

4.2 to 4.7. For simplicity, we have split each four-dimensional SOM into two views.

For all the graphs, the dimensions are expressed in units of standard deviations from

the corresponding means.

56

0 2000 4000 6000
−50

0

50
−2

−1

0

1

2

3

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.2. Sendmail Buffer Overflow Exploit Bucket 0, View 1: ASOQ,
ASOA, and L ICIT
The graph shows the behavior of SMTP traffic for three network parame-
ters: ASOQ, ASOA, and L ICIT for Bucket 0, along with the attack vector
for the same bucket. All dimensions are expressed in units of standard
deviations from the respective means.

−2 0 2 4
−2

−1

0
−10

0

10

20

30

40

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.3. Sendmail Buffer Overflow Exploit Bucket 0, View 2: L QAIT,
L ICIT, and ASOA

57

−1000 0 1000 2000 3000−20

0

20
−2

−1

0

1

2

3

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.4. Sendmail Buffer Overflow Exploit Bucket 1, View 1: ASOQ,
ASOA, and L ICIT

−2 0 2 4
−5

0

5
−5

0

5

10

15

20

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.5. Sendmail Buffer Overflow Exploit Bucket 1, View 2: L QAIT,
L ICIT, and ASOA

58

−500 0 500 1000 1500
−20

0

20
−2

−1

0

1

2

3

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.6. Sendmail Buffer Overflow Exploit Bucket 2, View 1: ASOQ,
ASOA, and L ICIT

−2 0 2 4
−5

0

5
−5

0

5

10

15

20

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.7. Sendmail Buffer Overflow Exploit Bucket 2, View 2: L QAIT,
L ICIT, and ASOA

59

Table 4.7 ANDSOM SMTP Training Data Statistics

Dimensions Mean Standard Deviation

Inter 6.954 4.694

ASOQ 316.764 579.988

ASOA 36.903 9.984

L QAIT -1.524 0.518

L AQIT -1.345 0.701

DOC 3.649 75.242

4.1.4 Comparison with ANDSOM module

As explained in Section 2.3.4, the ANDSOM module for INBOUNDS detects

anomalous traffic using the SOM algorithm. The module creates a single two-dimensional

lattice of neurons that captures the essential characteristic patterns in the input data

set. The MSIDS module, on the other hand, analyzes the time-based behavior of nor-

mal network connections for anomalous values using the SOM algorithm. It builds

multiple two-dimensional maps, each capturing the behavior of the network traffic

over a different period of time.

To compare the performance of the two modules, we trained the ANDSOM module

with the same training data set of 2304 SMTP connections. The adjoining Table 4.7

summarizes the training data statistics used by the ANDSOM module. After the SOM

training, the trained lattice of neurons was evaluated by feeding the training data set

itself. The lattice modeled 98.39% of the training data set vectors with a winner

neuron within 2σ distance, and cleared our 95.44% gaussian heuristic. It should be

noted that the statistics generated by the ANDSOM module are essentially similar

to, but not exactly same as, the statistics generated by the MSIDS module for the

60

Table 4.8 ANDSOM SMTP Exploit Vector

Inter ASOQ ASOA L QAIT L AQIT DOC

1.465 1495 214.333 -1.648 -0.053 2.069

last map. The reason for the dissimilarity can be attributed to the different criteria

used for defining the network parameters. Let us assume, for the sake of simplicity,

we are interested in monitoring only one parameter, namely: ASOQ (Average Size Of

Question). Suppose the MSIDS module reports five ‘L’ messages for a normal SMTP

connection, with SOQ values of 20, 30, 20, 40, and 10 bytes respectively. Accordingly,

the ASOQ (Average Size Of Question) value for the entire SMTP connection will be

averaged over five cycles (i.e. 24 bytes). On the other hand, the ANDSOM module

might report two ‘U’ messages for the entire SMTP connection; the first ‘U’ message

reporting the ASOQ value for the first two cycles (i.e. 25 bytes) while the second

‘U’ message reporting the ASOQ value for the remaining three cycles (i.e. 23.33

bytes). The ASOQ value for the entire SMTP connection will then be calculated as

the average of these two ASOQ values (i.e. 24.16 bytes). Thus, it is clear that the

two modules use similar, but not exactly the same, statistics for generating the maps.

The aforementioned scenario makes the assumption that the ‘U’ message and the

cycle boundaries coincide. This is rarely the case as ‘U’ messages are reported at a

fixed interval (default value of 60 seconds) throughout the lifetime of the connection,

independent of the cycles, leading to even more dissimilar training statistics.

Table 4.8 shows the six-dimensional values for the Sendmail exploit vector, men-

tioned in Section 4.1.2, for the ANDSOM module. The locator program for the

ANDSOM module was fed with this exploit vector. It first normalized the vector

with the training statistics mentioned in Table 4.7. The normalized SMTP exploit

vector is shown in Table 4.9. We can observe from this table that the ASOA value

61

Table 4.9 Normalized ANDSOM SMTP Exploit Vector

Inter ASOQ ASOA L QAIT L AQIT DOC

-1.169 2.031 17.77 -1.648 -0.238 1.841

Table 4.10 ANDSOM SMTP Exploit Winner

Inter ASOQ ASOA L QAIT L AQIT DOC Distance

-1.169 2.031 17.77 -1.648 -0.238 1.841 16.517

is highly anomalous with a standard deviation value of 17.77 units from the mean

ASOA value, classifying the connection as an intrusion. When the attack system

sends multiple SMTP requests to overflow the buffer, the server responds with mul-

tiple “Command Unrecognized” messages in response. The response, perceived as

answer, has an average size of 214.33 bytes that is greater than the average response

message size of 36.9 bytes sent by the server. As noted in Section 4.1.3, the MSIDS

module not only finds ASOA but also ASOQ values to be highly deviant from the

respective mean values for the different buckets.

The winner neuron for this normalized SMTP vector, and the distance in the six-

dimensional space is shown in Table 4.10. As the distance from the winner neuron

is greater than the threshold value of 2σ units, the ANDSOM module classifies the

SMTP connection as intrusion. For the MSIDS module, as shown in Table 4.6, the

distance from the winner neuron for all the buckets is greater than 2σ units. However,

classifying the SMTP connection as intrusion in bucket 0 itself results in a faster

response to the intrusion.

62

4.2 Apache Buffer Overflow Attack

The World Wide Web (WWW, or simply the Web) is a distributed interlink

of hypertext servers that operates over the Internet [19]. The Hypertext Transfer

Protocol (HTTP) is a commonly used standard for information access over the Web.

HTTP is a request/response protocol between clients and servers that operates at

the application level. An HTTP client, such as a web browser, requests information

from an HTTP server over a standard TCP/IP connection on some well-known port,

typically port 80. A typical HTTP request consists of a single line containing the

keyword GET, followed by the protocol and the required URL. The HTTP server,

on the other hand, listens for such requests from HTTP clients over the well-known

port. As soon as the request is fulfilled, the HTTP server closes the connection

and continues to listen for requests. The aforementioned scenario depicts a typical

HTTP client-server interaction as specified in HTTP version 1.0. The first version of

HTTP, namely HTTP/0.9, provided raw data transfer capability over the Internet.

HTTP version 1.0, specified in RFC 1945 [25], extended the protocol by allowing

messages to contain information other than text, such as images and multi-media

documents. The current specification, HTTP/1.1 [52], includes support for persistent

connections, caching, proxies and virtual hosts. Prior to the introduction of persistent

connections, HTTP/1.0 required a separate TCP connection for each requested URL.

The approach lead to increased load on HTTP servers and unnecessary congestion of

the Internet. With persistent connections, HTTP clients can request multiple objects

over a single TCP connection to the HTTP server, thus increasing efficiency. Though

mostly information flows from servers to clients, sometimes the server needs to accept

data from client, for example when accepting a submitted registration form.

4.2.1 HTTP SOM Training

The MSIDS module was trained on normal values of 7369 complete HTTP con-

nections obtained from our network. The MSIDS module generated a total of seven

63

SOMs from the training data set with dimensions mentioned in Table 4.11. Each

SOM, with map dimensions of X and Y, was built in two training phases as ex-

plained in Section 3.3.3. SOM training was accomplished with the same parameters

as mentioned in Section 4.1.1.

Table 4.11 HTTP Map Dimensions

Map # 0 1 2 3 4 5 6

X-dimension 19 12 10 9 7 5 3

Y-dimension 23 14 14 10 8 5 3

The SOMs, along with the mean and standard deviations for each of the 4 di-

mensions, are mentioned in the adjoining Table 4.12. Each of the trained SOMs was

evaluated by feeding the training data set itself. Table 4.13 summarizes the validation

results for the maps, along with the number of training data vectors for each map.

If 95.44% of the training data vectors had a winner neuron within a distance of 2σ

units, the SOM was assumed to capture the essential input characteristics. It should

be noted that since only 26 of 29 HTTP connections, that last till bucket 5, have a

winner neuron within 2σ units, map 5 does not meet our heuristic of 95.44% - 2σ

units. On the other hand, as both of the HTTP connections, that last till bucket 6,

have a winner neuron within 2σ units, the corresponding map shows 100% success

rate.

4.2.2 Attack Description

The Apache HTTP Server is an open-source web server that implements a number

of protocols, including HTTP/1.1 [1]. A project of the Apache Software Foundation,

Apache aims at providing a secure, efficient and extensible server for the various

64

Table 4.12 HTTP Training Data Statistics

Map 0 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

Cycle Cycles Cycles Cycles Cycles Cycles Cycles

(0) (0-1) (0-3) (0-7) (0-15) (0-31) (0-63)

ASOQ
(µ) 706.675 545.94 554.107 578.271 629.05 625.94 628.84

(σ) 2512.62 264.001 257.697 287.042 333.73 397.92 193.07

ASOA
(µ) 11037.3 11763.7 8785.4 13820.6 4112.6 2832.2 2104

(σ) 121800 83655.3 43621.9 136012 7416.7 1858.4 1994

L QAIT
(µ) -1.265 -1.422 -1.393 -1.346 -1.331 -1.019 -0.829

(σ) 0.786 0.738 0.734 0.748 0.779 0.616 0.336

L ICIT
(µ) -4.253 -0.391 -0.163 -0.094 0.058 -0.056 0.297

(σ) 3.591 1.157 1.068 0.995 0.838 0.661 0.154

modern operating systems. As of October 2004, more than 67% of the web sites on

the Internet run on Apache, making it the most popular web server on the Internet

[8]. As mentioned previously, data occasionally flows from clients to server when

a client submits information via forms. In cases where the HTTP client does not

know beforehand how much data will be uploaded, it requests a ‘Chunked Encoded’

transfer. If supported by the HTTP server, the client organizes the data into chunks

as it is generated. The server is informed about the chunk size and data is submitted

in chunks by the HTTP client. Apache includes support for chunk-encoded data

according to the HTTP/1.1 specification.

A security vulnerability in the handling of certain chunk-encoded HTTP requests

was reported in June 2002 [28]. Apache web server versions 1.2.2 and above, 1.3

through 1.3.24, and versions 2.0 through 2.0.36 were affected by this vulnerability.

Possibly due to improper (signed) interpretation of an unsigned integer value, the

65

Table 4.13 HTTP Training Data Validation Results

Map # 0 1 2 3 4 5 6

Number of data vectors 7369 1132 744 352 128 29 2

Percentage (%) 99.09 98.76 98.79 99.43 98.44 89.66 100

vulnerable web servers incorrectly calculated the required buffer sizes when processing

requests coded with the ‘Chunked Encoding’ mechanism [11]. The vulnerability allows

a remote attacker to execute arbitrary code on the remote system or lead to denial-

of-service attacks. The exploit for this vulnerability is publicly available on the Web

[10].

The exploit works by sending a large amount of data (shell code and the return

address to be placed on the stack) in a single chunk to the web server, and overflowing

the buffer space allocated to that chunk. When the vulnerability is exploited, the

return address causes the next instruction to point to the shell code on the stack. To

increase the likelihood of the exploit working, the code performs a brute-force attack

wherein several connections to the web server are attempted with guessed return

addresses.

4.2.3 Anomaly Detection

Table 4.14 shows the four dimensional values of the HTTP exploit vector. The

locator program was fed with these four dimensional vectors as input. It first normal-

ized the vectors based on the mean and standard deviation statistics of the respective

SOMs as mentioned in Table 4.12.

The normalized values of the HTTP exploit vector are shown in Table 4.15. We

can observe from this table and the “normal” values in the Table 4.12 that the ASOQ

values are significantly deviant from the corresponding mean and standard deviation

66

Table 4.14 HTTP Exploit Vector

Bucket # ASOQ ASOA L QAIT L ICIT

0 29896 4 -1.972 -3.382

1 14991 81 -2.146 0.927

2 7507.25 9262.5 -2.235 1.035

3 3762.25 7096.25 -2.312 0.825

4 3344.778 6307.778 -2.359 0.774

values observed during the training phase. The attack system sends malicious packets

to the server containing the shell code and return address, attempting to overwrite the

allocated buffer space. These packets, perceived as questions by the Data Processor

module, have ASOQ values that are highly anomalous from the observed mean and

standard deviation values for the corresponding buckets. The exploit vector has

ASOQ value of 29896 bytes in bucket 0, that differs from the ASOQ value of 706

bytes observed during the training phase for map 0. Similarly, the ASOQ values for

subsequent buckets, with standard deviation values much greater than the threshold

value of 2σ units, are found to be highly anomalous from the respective mean values.

After normalizing the exploit vector, the locator program feeds the values into

corresponding SOMs to determine the winner neurons. The distance between the

normalized vectors and the winner neurons in the corresponding maps is shown in

Table 4.16. As previously mentioned, the distance, expressed in units of standard

deviation (σ) from the corresponding mean (µ), is a measure of how abnormal the

attack vector is, and should not be converted into Gaussian probability using tradi-

tional statistical techniques. As the distance from the winner neurons is greater than

the threshold value of 2σ units, the MSIDS module classifies the HTTP connection

as an attack. Moreover, the attack vector exhibits such behavior in the early stages

67

Table 4.15 Normalized HTTP Exploit Vector

Bucket # ASOQ ASOA L QAIT L ICIT

0 11.617 -0.09 -0.898 0.242

1 54.715 -0.139 -0.979 1.138

2 26.981 0.01 -1.145 1.121

3 11.092 -0.049 -1.289 0.924

4 8.137 0.295 -1.317 0.853

of the connection, leading to a faster intrusion detection. The graphs illustrating the

anomalous values for ASOQ, ASOA, L QAIT and L ICIT for the various SOMs are

shown in the Figures 4.8 to 4.13. For simplicity, we have split each four-dimensional

SOM into two views. For all the graphs, the dimensions are expressed in units of

standard deviations from the corresponding means.

Table 4.16 HTTP Exploit Winner Neuron

Bucket # ASOQ ASOA L QAIT L ICIT Distance

0 11.617 -0.09 -0.898 0.242 2.895

1 54.715 -0.139 -0.979 1.138 51.279

2 26.981 0.01 -1.145 1.121 23.955

3 11.092 -0.049 -1.289 0.924 8.658

4 8.137 0.295 -1.317 0.853 6.401

In Figure 4.8, we observe that the training data vectors, indicated by plus symbols

68

(+), towards the extreme right represent instances of HTTP connections with large

amounts of data exchanged in the initial stages of connection. We notice similar

behavior in Figure 4.9 with large ASOA values for some HTTP connections.

−10 0 10 20
−100

0

100
−2

−1

0

1

2

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.8. Apache Buffer Overflow Exploit Bucket 0, View 1: ASOQ,
ASOA, and L ICIT
The graph shows the behavior of HTTP traffic for three network param-
eters: ASOQ, ASOA, and L ICIT for Bucket 0, along with the attack
vector for the same. All dimensions are expressed in units of standard
deviations from the respective means.

69

−2 −1 0 1 2
−20

0

20
−10

0

10

20

30

40

50

60

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.9. Apache Buffer Overflow Exploit Bucket 0, View 2: L QAIT,
L ICIT, and ASOA
The attack vector has approximate co-ordinate values of (-0.8, 0.2, -0.09)
for L QAIT, L ICIT, and ASOA dimensions respectively.

−20 0 20 40 60
−50

0

50
−3

−2

−1

0

1

2

3

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.10. Apache Buffer Overflow Exploit Bucket 1, View 1: ASOQ,
ASOA, and L ICIT

70

−4 −2 0 2 4−5

0

5
−5

0

5

10

15

20

25

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.11. Apache Buffer Overflow Exploit Bucket 1, View 2: L QAIT,
L ICIT, and ASOA
The attack vector has approximate co-ordinate values of (-0.9, 1.1, -0.1)
for L QAIT, L ICIT, and ASOA dimensions respectively.

−10 0 10 20 30
−50

0

50
−3

−2

−1

0

1

2

3

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.12. Apache Buffer Overflow Exploit Bucket 2, View 1: ASOQ,
ASOA, and L ICIT

71

−4 −2 0 2 4
−5

0

5
−5

0

5

10

15

20

25

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.13. Apache Buffer Overflow Exploit Bucket 2, View 2: L QAIT,
L ICIT, and ASOA
The attack vector has approximate co-ordinate values of (-1.1, 1.1, 0.01)
for L QAIT, L ICIT, and ASOA dimensions respectively.

−5 0 5 10 15−20

0

20
−3

−2

−1

0

1

2

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.14. Apache Buffer Overflow Exploit Bucket 3, View 1: ASOQ,
ASOA, and L ICIT

72

−4 −2 0 2−5

0

5
−5

0

5

10

15

20

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.15. Apache Buffer Overflow Exploit Bucket 3, View 2: L QAIT,
L ICIT, and ASOA
The attack vector has approximate co-ordinate values of (-1.2, 0.9, -0.04)
for L QAIT, L ICIT, and ASOA dimensions respectively.

−5 0 5 10
−10

0

10
−4

−3

−2

−1

0

1

2

ASOQ
ASOA

L
_I

C
IT

Training data
SOM neurons
Attack

Figure 4.16. Apache Buffer Overflow Exploit Bucket 4, View 1: ASOQ,
ASOA, and L ICIT

73

−4 −2 0 2−5

0

5
−2

0

2

4

6

8

10

L_ICIT
L_QAIT

A
SO

A

Training data
SOM neurons
Attack

Figure 4.17. Apache Buffer Overflow Exploit Bucket 4, View 2: L QAIT,
L ICIT, and ASOA
The attack vector has approximate co-ordinate values of (-1.3, 0.8, 0.2)
for L QAIT, L ICIT, and ASOA dimensions respectively.

74

5. Conclusion

The MSIDS module detects network intrusions by analyzing the time-based behavior

of normal network connections using multiple Self-Organizing Maps. This chapter

provides a summary of the approach, followed by a description of its advantages and

disadvantages. Lastly, we present some recommendations for future work.

5.1 Summary

The Self-Organizing Map (SOM) algorithm maps the data points from a complex

high-dimensional input space onto a low-dimensional output space, thereby facilitat-

ing visualization of high-dimensional data. The ANDSOM module, based on the SOM

algorithm, introduced a new approach to intrusion detection to the INBOUNDS sys-

tem. The MSIDS module extends the approach by examining the time-based behavior

of network traffic for anomalous characteristics.

The MSIDS module identifies four parameters to characterize the network connec-

tions: SOQ (Size of Question), SOA (Size Of Answer), QAIT (Question-Answer Idle

Time) and ICIT (Inter-Cycle Idle Time). To analyze the constituent parts for anoma-

lous values, every network connection is broken down into individual ‘cycles’. The

current implementation of MSIDS ‘exponentially’ groups these cycles into ‘buckets’

and reports the four-dimensional vectors <ASOQ, ASOQ, L QAIT, L ICIT> for each

bucket. Normalized four-dimensional vectors are then used to create multiple SOMs,

one for every bucket. SOM training is accomplished in two phases: an initial learning

phase with a high learning rate and fewer iterations, and a final fine-tuning phase

with a low learning rate and higher iterations. It should be noted that each SOM is

trained using the normalized four-dimensional vectors for that bucket only. In other

75

words, each trained SOM essentially represents the behavior of network connections

over that period of time.

During real-time operation, the MSIDS module generates four-dimensional vectors

representing the observed network connection. Each normalized four-dimensional

vector is then fed in parallel to all the neurons of the corresponding trained SOM.

For each input vector fed into the trained SOM, a winner neuron is determined. If

the distance between the input vector and the winner neuron for any SOM lattice is

greater than a certain threshold value, the connection is classified as an intrusion.

In order to validate this new approach, the MSIDS module was trained for dif-

ferent classes of network traffic, such as SMTP and HTTP. A buffer overflow attack

exploiting a vulnerability in Sendmail program version 8.8.3 was successfully classi-

fied as an intrusion by the MSIDS module. The attack connection exhibited ASOQ

values that were significantly anomalous from the corresponding normal values. Simi-

larly, the SOMs built for normal HTTP traffic classified an Apache/OpenBSD exploit

as an intrusion based on the anomalous size of ASOQ value. The exploit, in order

to overflow the server-side buffer, sent multiple large HTTP requests to the victim,

leading to high ASOQ value.

5.2 Advantages And Disadvantages

The ANDSOM module for INBOUNDS analyzed entire network connections for

anomalous values. A network connection, with normal values for the entire connection

but with anomalous values over constituent time intervals, may be classified as ‘nor-

mal’, thus creating a false-negative. The MSIDS module, on the other hand, develops

multiple SOMs that capture the behavior of normal network traffic over different

time intervals, leading to refined analysis. As a result, network connections, with

normal behavior over the entire connection but anomalous behavior over different

time intervals, will be classified as intrusions.

The MSIDS module considers a network connection as an intrusion if the winner

76

neuron for any SOM lattice is greater than 2σ units, where σ stands for standard de-

viation. Thus, if a network connection displays abnormal behavior for the monitored

parameters early on, the MSIDS module promptly raises an intrusion alert, leading

to a near real-time response. The ANDSOM module, on the other hand, analyzes

a network connection only after it is reported closed by the Data Processor module.

In other words, a connection lasting for an arbitrarily long period of time would be

considered for analysis only after it closes.

The MSIDS module utilizes the SOM algorithm to capture the time-based behav-

ior of normal network connections. However, the SOM algorithm tends to capture

the bulk behavior of network traffic, disregarding the corner cases of normal network

behavior. The SOM training, for MSIDS module, is regarded as complete if 95.44%

of the training data vectors have a winner neuron within a certain threshold value

(2σ units). In other words, the remaining 4.56% of the training data vectors will

themselves be classified as intrusions, leading to significant number of false-positives.

The inherent difficulty with an anomaly-based IDS is to find the right set of

parameters to characterize normal network behavior. The anomaly-based MSIDS

module identifies four such network parameters: ASOQ, ASOA, QAIT, and ICIT.

The module raises an intrusion alert if a network connection displays anomalous

behavior only for these monitored parameters. In other words, attacks that exhibit

normal behavior for these four specific parameters will go unnoticed, leading to false-

negatives.

5.3 Future Work

The current implementation of MSIDS module ‘exponentially’ stores the ‘L’ mes-

sages in a list of buckets. As mentioned previously, the rationale for grouping multiple

‘L’ messages is twofold: better characterization of normal network behavior, and po-

tentially reduction in the number of false-positives. Tables 4.3 and 4.13 illustrate that

the trained SOMs appearing towards the end barely meet our validation heuristic,

77

leading to increased number of false-positives. As a result, it would be interesting

to construct various other groupings of ‘L’ messages and evaluate their performance.

Moreover, it would be intriguing to find groupings that are suitable for certain proto-

cols, leading to better characterization of network traffic and hence better intrusion

detection.

The MSIDS module utilizes the SOM algorithm to capture the characteristic pat-

terns in the input data set. The SOM training phase uses the heuristic of 2σ units

and 95.44% distribution for validation purpose. Although this has given satisfac-

tory performance, constructing and validating SOMs with different values may yield

better results. Furthermore, the MSIDS module utilizes the basic SOM algorithm

with a gaussian distribution and hexagonal map topology. It would be interesting to

evaluate the performance of the module with different training parameters.

78

BIBLIOGRAPHY

[1] Apache HTTP Server Project. URL: http://httpd.apache.org/.

[2] CERT Advisory CA-1997-05 MIME Conversion Buffer Overflow in Sendmail
Versions 8.8.3 and 8.8.4. URL:
http://www.cert.org/advisories/CA-1997-05.html.

[3] CyberCop. URL:
http://www.ngc.com/product info/cybercop/ccdata/ccdata1.html.

[4] EtherApe. URL: http://etherape.sourceforge.net.

[5] Ethereal. URL: http://www.ethereal.com.

[6] Finger Bomb. URL: http://securescannx.vigilante.com/tc/13109.

[7] MIT Lincoln Laboratories - DARPA Intrusion Detection Evaluation. URL:
http://www.ll.mit.edu/IST/ideval/index.html.

[8] Netcraft Web Server Survey. URL: http://news.netcraft.com/.

[9] Neural Networks Tool - NeNet. URL:
http://koti.mbnet.fi/ phodju/nenet/Nenet/General.html.

[10] Packet Storm Security: OpenBSD/X86 Apache Chunked-Encoding
Vulnerability. URL:
http://packetstormsecurity.org/0206-exploits/apache-scalp.c.

[11] Security Focus: Apache Chunked-Encoding Memory Corruption Vulnerability.
URL: http://www.securityfocus.com/bid/5033/discussion.

[12] Sendmail Consortium. URL: http://www.sendmail.org.

[13] SNORT: The Open Source Intrusion Detection System. URL:
http://www.snort.org.

[14] SOFM package. URL: http://nn.cs.utexas.edu/pages/software/software.html.

79

[15] SOM PAK. URL: http://www.cis.hut.fi/research/som lvq pak.shtml.

[16] SOMTOOLBOX. URL: http://www.cis.hut.fi/projects/somtoolbox.

[17] Tcpdump. URL: http://www.tcpdump.org.

[18] The Comprehensive R Archive Network. URL:
http://cran.r-project.org/src/contrib/Descriptions/som/html.

[19] World Wide Web. URL: http://en.wikipedia.org/wiki/WWW.

[20] xsom. URL: http://fuzzy.cs.uni-magdeburg.de/ borgelt/doc/somd/.

[21] Internet Domain Survey, Internet Software Consortium, January 2004. URL:
http://www.isc.org.

[22] Alirezaie, J., Jernigan, M. E., and Nahmias, C. Automatic
Segmentation of MR Images Using Self-organizing Feature Mapping and
Neural Networks. Proceedings of the SPIE—The International Society for
Optical Engineering 3034, pt. 1–2 (1997), 138–49. (Medical Imaging 1997:
Image Processing Conf. Date: 25–28 Feb. 1997 Conf. Loc: Newport Beach, CA,
USA Conf. Sponsor: SPIE).

[23] Baldwin, R., and Rivest, R. The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms, October 1996. RFC 2040.

[24] Balupari, R. Real-Time Network-Based Anomaly Intrusion Detection.
Master’s thesis, Ohio University, 2002.

[25] Berners-Lee, T., Fielding, R., and Frystyk, H. Hypertext Transfer
Protocol – HTTP/1.0, May 1996. RFC 1945.

[26] Blackmore, J., and Miikkulainen, R. Incremental Grid Growing:
Encoding High-Dimensional Structure into a Two-Dimensional Feature Map.
In Proc. ICNN’93, International Conference on Neural Networks (Piscataway,
NJ, 1993), vol. I, IEEE Service Center, pp. 450–455.

[27] Blanton, E. Tcpurify: TCP Packet Sniffer, Sept. 2002. URL:
http://irg.cs.ohiou.edu/ eblanton/tcpurify.

[28] CERT. Apache Web Server Chunk Handling Vulnerability, CERT Advisory.
URL: http://www.cert.org/advisories/CA-2002-17.html.

[29] D. Anderson, T. Frivold and A. Valdes. Next-Generation Intrusion
Detection Expert System. Tech. rep., SRI International, 1995.

80

[30] Dittenbach, M., Merkl, D., and Rauber, A. The Growing Hierarchical
Self-Organizing Map. In Proc of the International Joint Conference on Neural
Networks (IJCNN 2000) (Como, Italy, July 24. – 27. 2000), S. Amari, C. L.
Giles, M. Gori, and V. Puri, Eds., vol. VI, IEEE Computer Society, pp. 15 – 19.

[31] E.Alhoniemi, J.Hollmen, O.Simula, and J.Vesanto. Integrated
Computer Aided Engineering 6, 3 (1999).

[32] G. White and V. Pooch. Cooperating Security Managers: Distributed
Intrusion Detection Systems. Computer & Security .

[33] Helge Ritter, T. M., and Schulten, K. Neural Computation and
Self-Organizing Maps. Addison-Wesley Publishing Company, 1992.

[34] Honkela, T., Kaski, S., Lagus, K., and Kohonen, T.

WEBSOM—Self-Organizing Maps of Document Collections. In Proceedings of
WSOM’97, Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6
(Espoo, Finland, 1997), Helsinki University of Technology, Neural Networks
Research Centre, pp. 310–315.

[35] J.Klensin. Simple Mail Transfer Protocol, April 2001. RFC 2821.

[36] K.Moore. MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text, November 1996. RFC 2047.

[37] Kohonen, T. Self-Organizing Maps, 3rd ed. Springer, 2001.

[38] Kurimo, M. Self-Organization in Mixture Densities of HMM Based Speech
Recognition. In Proceedings of the European Symposium on Artificial Neural
Networks (ESANN’98) (Bruges, Belgium, 1998), G. Deboeck and T. Kohonen,
Eds., Springer-Verlag, pp. 237–242.

[39] Laaksonen, J., Koskela, M., and Oja, E. PicSOM—A Framework for
Content-Based Image Database Retrieval using Self-Organizing Maps. In Proc.
of 11th Scandinavian Conference on Image Analysis (SCIA’99), Kangerlussuaq,
Greenland, June 7–11 (1999), pp. 151–156.

[40] Lunt, T. F., Jagannathan, R., Lee, R., Listgarten, S., Edwards,

D. L., Javitz, H. S., and Valdes, A. IDES: The Enhanced Prototype - A
Real-Time Intrusion-Detection Expert System. Tech. Rep. SRI-CSL-88-12,
Computer Science Laboratory, SRI International, Menlo Park, CA, October
1988.

[41] Manikantan Ramadas, Shawn Ostermann and Brett Tjaden.
Detecting Anomalous Network Traffic with Self-Organizing Maps. In Recent
Advances in Intrusion Detection (Sept. 2003), Springer-verlag.

81

[42] Michael M. Sebring, Eric Shellhouse, Mary E. Hanna and R.

Alan Whitehurst. Expert Systems in Intrusion Detection: A Case Study.
In Proceedings of the 11th National Computer Security Conference (1988).

[43] Miikkulainen, R. Script Recognition with Hierarchical Feature Maps.
Connection Science 2, 1&2 (1990), 83–101.

[44] N.Freed, J.Klensin, and J.Postel. Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures, November 1996. RFC
2048.

[45] N.Freed, and N.Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Five: Conformance Criteria and Examples, November 1996. RFC
2049.

[46] N.Freed, and N.Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies, November 1996. RFC
2045.

[47] N.Freed, and N.Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types, November 1996. RFC 2046.

[48] Ostermann, S. tcptrace: TCP dump file analysis tool, Jan. 1996.
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html.

[49] P. Porras and P. Neumann. EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances. 20th National Information
Systems Security Conference.

[50] Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[51] Postel, J. Simple Mail Transfer Protocol, August 1982. RFC 821.

[52] R. Fielding and J. Gettys and J. Mogul and H. Frystyk and L.

Masinter and P. Leach and T. Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1, June 1999. RFC 2616.

[53] Rauber, A., and Merkl, D. The SOMLib Digital Library System. In
European Conference on Digital Libraries (1999), pp. 323–342.

[54] Rauber, A., Pampalk, E., and Merkl, D. The SOM-enhanced JukeBox:
Organization and Visualization of Music Collections based on Perceptual
Models. Journal of New Music Research (2003).

82

[55] Rebecca Bace and Peter Mell. Intrusion Detection Systems. Tech. rep.,
National Institute of Standards and Technology, July 2004.

[56] Rhodes, B.C., M. J. A., and Cannady, J. D. Multiple Self-Organizing
Maps for Intrusion Detection. In National Proceedings of the 23rd National
Information Systems (Baltimore, MD, 2000).

[57] Ryan, J., Lin, M.-J., and Miikkulainen, R. Intrusion Detection with
Neural Networks. In Proceedings of the 1997 conference on Advances in neural
information processing systems 10 (1998), MIT Press, pp. 943–949.

[58] S.Smaha. Haystack: An Intrusion Detection System. IEEE Computer Society
Press.

[59] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, and Jari

Kangas. Engineering Applications of the Self-Organizing Map. In Proceedings
of the IEEE, vol. 84, No. 10, p. 1358.

[60] Todd Heberlein, Gihan Dias, Karl Levitt, Biswanath Mukherjee,

Jeff Wood, and David Wolber. A Network Security Monitor. In
Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy,
p. 296.

[61] Yellapragada, R. Probabilistic Model for Detecting Network traffic
anomalies. Master’s thesis, Ohio University, 2004.

