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Anomaly-based intrusion detection is a research area in Computer Security, wherein
computer and network attacks are differentiated from normal computer interactions.
Anomaly-based intrusion detection systems detect attacks by analyzing either com-
puter or network data and flagging abnormalities as intrusions. The abnormalities are
detected by analyzing certain parameters that are present in the data. Our approach
analyzes certain network parameters, which characterize either a connection or a net-
work service on a monitored host or a network service on a monitored network. This
categorization of parameters helps detect varied classes of attacks including denial-
of-service, port scan and buffer overflow attacks.

Anomaly-based systems use various analysis techniques to detect parameter anoma-
lies. A new approach based on Bayesian Networks technique for analyzing and de-
tecting anomalies is presented here. The advantage of Bayesian Networks lies in their
ability to adaptively learn normal values of parameters without much training, which
makes it suitable for real-time analysis. Bayesian Network can be used to combine
current evidence and previous knowledge to obtain the probability of anomaly. This
property helps in detecting previously seen attacks faster, since the previous knowl-
edge provides strong evidence of an attack. The same property helps reduce the
number of false positives, since considerable evidence needs to accumulate for the

Bayesian Network to report high probability of anomaly.
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1. INTRODUCTION

The invention of computers has satisfied the demand for rapid access and processing
of information. The development of the Internet has further aided in effective transfer
and sharing of information. However, there are substantial risks with the convenience
and ease of access of information using computers and the Internet. A computer con-
nected to the Internet is more vulnerable to attacks than an isolated one. Computer
systems can be compromised or misused to obtain sensitive information such as credit
card numbers, passwords, etc.

The Computer Security of a system is based on the realization of the confiden-
tiality, integrity, and availability of its information [31]. Confidentiality requires that
information be accessible to only those who are authorized for it. Integrity requires
that information remain unaltered by temporary system failures, accidents, or ma-
licious attempts. Availability requires that information be accessible to authorized
users when they need it. A system has to protect its data, and resources from being
misused to realize the above principles. Mechanisms such as security policies, pass-
word authentication, and firewalls can be used to provide the protection. However,
incidents such as the Morris Worm attack [46] in 1988 prove that security of systems
has been compromised in spite of the use of one or more of these mechanisms. Fur-
ther, the Internet had aided in the rapid spread of such worms and viruses, exposing

computer systems to a wide variety of network attacks.

1.1 Network Security

Worms such as Slammer Worm [24], and Blaster worm [23] that attacked the

Internet in 2003, provide examples of the large scale destruction such network attacks
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can cause. The availability of various vulnerability assessment tools on the Internet
has caused the rise of network security breaches. Tools such as Nmap [8], SAINT [10],
Back Orifice [2], and SATAN [11] can be used to scan, identify, probe, and thereby
attack systems. Thus, there is a need to secure computer systems from the various
network attacks.

The various techniques that can be used to secure computers are stated below:

e Fixing software bugs that are being exploited, is the best way of protecting
systems. However, this method is not always possible due to the unavailability

of open source code to the users of certain software products.

e Authenticating users through mechanisms such as passwords could protect sys-
tems from illegitimate access. However, a weak password, or an exploit that

thwarts the authentication mechanism can compromise such a system.

e Using firewalls at the point of entry into the network could prevent certain kinds
of network attacks. However, a mis-configured firewall, or an insider attack can

cause such a protection to fail.

1.2 Intrusion Detection Systems

Firewalls and authentication mechanisms are effective in protecting systems from
attacks that emanate from outside the network but lack capabilities to monitor net-
work traffic. Thus, these mechanisms could be compromised by an insider attack, or
a breach that exploits a certain misconfiguration. Intrusion Detection Systems (IDS)
complement these mechanisms by monitoring the network traffic, and flagging any
suspicious behavior as an intrusion. An IDS acts as an alarm system whose alerts
can be used by the System Administrator to take necessary action such as enforcing
a firewall rule, in order to prevent further propagation of the attack.

Intrusion Detection (ID) is the art of detecting inappropriate, incorrect, or anoma-

lous activity [71]. ID Systems (IDS) accomplish the task of Intrusion Detection by
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collecting information from a variety of system and network sources, and analyzing
the information for possible security breaches. The following capabilities are provided

by an IDS, according to a SANS article by Rozenblum [69]:

1. Monitor, and analyze intrusive activity
2. Recognize, and report alterations to data
3. Automate the task of monitoring the network for well-known and novel attacks

4. Alert the system administrator in case of an attack, so that an appropriate

action can be taken to prevent further propagation of the attack

An IDS needs to possess the following key features, according to a SANS article
by Ho [39]:

1. Robustness: An IDS should run continually, and autonomously. It should be

fault-tolerant, and impervious to attacks.

2. Flexibility and Scalability: An IDS should be easily configurable and flexible to
changes in network infrastructure. Also, an IDS should be able to handle large

amounts of traffic with high performance capabilities.

3. Ease of Use: An IDS should be managed with minimum amount of resources
such as bandwidth, CPU power, and other network devices. It should also be

easily deployable on a host or in a network, without affecting their operation.

An IDS can be classified as either host-based, or network-based depending on the
source of data, and deployment point. A host-based IDS performs intrusion detection
on a particular host either by monitoring system activity, or evaluating the system
logs. A network-based IDS performs intrusion detection by analyzing the packets

traveling across the monitored host, or network.
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An IDS can be classified as either misuse-based, or anomaly-based depending
on the analysis method used. In a misuse-based IDS, intrusions are identified as
system activities that follow defined patterns of attack. Such systems define signatures
to identify the attack patterns. Anomaly-based systems detect intrusions based on
the anomalous behavior of computer components, and flag any irregular behavior
as potentially intrusive. Such systems model normal behavior and detect deviations
from the normal behavior. Anomaly-based systems have the advantage that they can
detect novel attacks in addition to well-known attacks.

In this thesis, we develop a network-based and anomaly-based Intrusion Detection
System for detecting intrusions. We apply the Bayesian Network technique to analyze
network traffic, and detect anomalies. An overview of this technique is provided in
section 2.2. We also provide a taxonomy of Intrusion Detection Systems in section 2.1,
which helped us choose Bayesian Networks after evaluating various other techniques,

their advantages and disadvantages when applied to intrusion detection.

1.3 Organization of Thesis

In chapter 2, we present previous work on intrusion detection, and an overview
of Bayesian Networks. Chapter 3 elaborates on the application of Bayesian Network
technique for intrusion detection in INBOUNDS. Chapter 4 presents the experimen-
tal results. In chapter 5, we assess the system that is developed, and provide the

conclusions and future work for our research.
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2. Background

This chapter provides the background required to understand the intrusion detection
system developed for our research. A taxonomy of certain existing intrusion detection
systems is presented in section 2.1. This is followed by an overview of Bayesian Net-
work technique in section 2.2, which we applied for developing the system presented
in this thesis. Finally, an overview of the techniques previously used for intrusion

detection in INBOUNDS is presented in section 2.3.

2.1 Taxonomy of Intrusion Detection Systems

A knowledge of existing technologies or methods in a particular field helps the
researchers keep abreast of the current research. However, a judgment on the pros
and cons of those methods becomes evident only when the concepts are organized.
A taxonomy provides such a platform to capture the essence of the knowledge that
resides in those technologies. In this section, we attempt to classify Intrusion Detec-
tion Systems, first based on the Data Source of the IDS, and second, based on the
Detection Method used by the IDS. This taxonomy is not complete since there might
be certain IDSs that do not fall under the categories presented in this taxonomy.
Related work that provides taxonomies of Intrusion Detection Systems can be found
in Axelsson et al. [17], Kumar et al. [51], Werrett et al. [80], and Debar et al. [38].
2.1.1 Classification Based on Data Source

One of the components of an IDS is the data source, whose output is evaluated

in order to detect intrusions. One approach is to classify IDSs based on the nature of

the data source:

e Host-based IDS: Such an IDS is deployed on a host computer. The IDS moni-
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tors host activity which might include system processes, registry entries, CPU
usage, file accesses, and system audit logs and flags any suspicious activity as
an intrusion. The earliest host-based IDS was developed in 1990 called Tripwire
[32]. Later, other such IDSs were developed including Haystack [74]. However,
a host-based IDS lacks the ability to detect network attacks. Also, the IDS

becomes unreliable once the host is compromised.

e Multi host-based IDS: Since the evolution from standalone to networked com-
puters, IDSs were adopted to evaluate data from multiple hosts. NIDES [29],
AAFID [30], and CSM [33] are certain multi host-based IDSs, which collect
data from multiple hosts, and evaluate them either at a centralized location or

in a distributed host environment.

e Network-based IDS: Such an IDS is deployed on a network segment that mon-
itors a particular host or, a network of hosts. The captured network data is
evaluated by the IDS for any malicious network activity. Some of the network-
based IDSs are NADIR [45], CyberCop [3], and SNORT [13]. A network-based
IDS has to handle large amounts of traffic without suffering a significant latency

between the time of attack and the time of alert.

e Hybrid/Hierarchical IDS: Host-based, and Network-based IDSs could comple-
ment each other to provide improved intrusion detection capability. A Hy-
brid /Hierarchical IDS combines the advantages of both host-based, and network-
based IDS by analyzing both the input data from the hosts, and the network
data to the hosts being monitored. Examples of such an IDS include EMER-
ALD [63], and GrIDS [70].

2.1.2 Classification Based on Detection Method

A second approach to classify IDSs is based on the detection method used:
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e Misuse-based IDS: Such an IDS detects intrusions that follow well-defined pat-
terns of an attack. The system defines knowledge about bad or unacceptable
behavior, and seeks to detect it directly. A misuse-based system is effective
at detecting well-known attacks, but has the disadvantage of not being able to

detect novel attacks.

e Anomaly-based IDS: Such an IDS detects intrusions by learning the normal
behavior of computer components, and flagging any anomalies observed as in-
trusive. Thus, the system can detect new kinds of attacks without any previous
knowledge of the attack. However, such a system has the drawback of flagging
normal behavior as an attack in certain cases. Such a false interpretation of
normal behavior is termed a false positive, which occurs due to incorrect repre-
sentation of normal behavior. Thus, reducing false positives is one of the goals

during the development of an anomaly-based IDS.

Misuse-based, and Anomaly-based IDSs can be further classified based on the
detection principle, or the method that they use for intrusion detection. Table 2.1
shows the classification. There is no established terminology for the methods, or
principles used by IDSs. Hence, we coined new terms based on principles common
to IDS technologies. There might be terms in the field that have different definitions
for the terms used here. The taxonomy presented here does not provide a standard
classification of all the existing IDSs, and only provides a guideline for understanding
the various IDS technologies.
2.1.2.1 Misuse-Based IDS

In a misuse-based IDS, an intrusion decision is based on the knowledge of an
intrusive process. Intrusive and non-intrusive behaviors are clearly distinguished, and
the current behavior is compared with this knowledge. A match with the intrusive
behavior is flagged as an attack.

A misuse-based IDS is either user-programmed, or dynamic.



Table 2.1 A Taxonomy of Intrusion Detection Systems

Misuse-based IDS

User Programmed

Simple rule-based
String matching

Keystroke monitoring

Dynamic

Model-based
Expert system

State Transition Analysis

Anomaly-based IDS

Statistical-based

Threshold

Multi-variate statistical

Pattern-based

HMM
State-based

Time-based

Feature selection

Genetic

Data Mining

Feature relationship-based

Neural networks

Correlation

Probability-based

18
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e User-programmed: In such a system, the user programs the detection rules
with which the current observation is compared. The detection rule contains
a straightforward coding of what can be expected in the event of an intrusion.
The various methods that have been adopted for defining the detection rules

are:

1. Simple rule-based: Simple rules similar to firewall rules are defined by
the user with respect to the state of the system. If the current state
matches any of these rules, it is flagged as an intrusion. SNORT IDS [13]
follows a rule-based approach by defining signatures for network patterns.
If the network data matches any of these signatures, an intrusion is flagged.
Other such IDSs include BRO [64], NADIR [45], and Haystack [74]. The
drawback of the approach is that the detection of attack is sensitive to
the rules that are defined. An incorrect rule might lead to either a false

positive, or a false negative.

2. String matching: String matching is a simple matching of suspicious char-
acters in the text that is transmitted over the network with strings that
define an attack. This method might be case-sensitive and less flexible, yet
has been adopted due to its simplicity for string matching in audit logs,
and network data. NSM [77] is one such IDS that uses string matching for

detecting intrusions.

3. Keystroke monitoring: This technique utilizes user keystrokes to determine
the occurrence of an attack. The primary means is to match the pattern of
specific keystroke sequences with sequences that indicate an attack. The

disadvantage is the lack of reliable mechanisms for user keystroke capture.

e Dynamic: These systems combine models of misuse with evidence of misuse to

support conclusions about the occurrence of a misuse event. The similarity of
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an event to the defined model of misuse, and the conditions of event occurrence

are combined to obtain a decision on intrusion. The various methods are:

1. Model-based: In this method, a database of scenarios that comprise a
sequence of misuse behavior is defined. A search is made through this
database to match the current event with a subset of the scenarios. If the
first subset does not match, the next subset is considered and the search
continues. Based on this search, evidence is accumulated and the likelihood
of an attack is calculated. A system based on this technique is described

in Garvey et al. [76].

2. Expert system: This system encodes knowledge about attacks as if-then
implications, and asserts facts corresponding to events. For a particular
event, when all the if rules are satisfied, the action event of flagging an
intrusion is performed. For this method to be effective, the data should

have an inherent ordering. One such system is described in Snapp et al.

73].

3. State transition analysis: This method encodes the intrusion as a number
of different states, each of which has to be present in the observation space.
The transitions between the different states are applied to the current
event, and intrusion is flagged based on the final state. IDSs that use this

method include USTAT [50], and IDIOT [51].

Misuse-based IDSs are effective in detecting known attacks with few false positives.
However, they lack the capability of detecting novel kinds of attacks.
2.1.2.2 Anomaly-Based IDS

In an anomaly-based IDS, abnormalities in a particular host, or network behavior
are flagged as intrusions. The construction of such a detector starts by defining what

constitutes the normal behavior, and then looking for deviations from the defined nor-
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mal behavior. The behavior is generally characterized using certain host, or network

parameters. Various kinds of anomaly-based IDSs are explained below:

e Statistical-based: Such a system builds a profile for the parameters based on
their statistics. These statistics could be simple statistics such as mean and
standard deviation of the parameters, or complex statistics such as covariances.
The current parameter values are compared against the parameter values in the
profile, and a deviation is flagged as an intrusion. The various methods that

have been used to-date are:

1. Threshold-based: This is a statistical-based method where the statistics
are the mean, and standard deviation values of the parameters under con-
sideration. These values are used to calculate the level of anomaly and
a large deviation of the level of anomaly from a pre-defined threshold is
considered an intrusion. Some of the systems that use this method are
NIDES [29], and statistical module of INBOUNDS [18]. However, there
are certain disadvantages to systems that use this method. These systems
are insensitive to the time, and order of occurrence of events. It is difficult
to determine the thresholds such that there are few false positives, while

effectively detecting actual intrusions.

2. Multivariate statistical: This method is an improvement over the statistical-
based method. Cluster analysis is used in this method to formulate normal
traffic into distinct clusters. The attacks are then considered as those that
are sufficiently anomalous to stand out from these clusters. One system

that applies this method for intrusion detection is NATE [22].

e Pattern-based: In such a system, anomaly detection is performed by modeling
the input data space as a pattern within a certain dimension such as time, or

sequence of occurrence of a particular event. A deviation of the current event
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from the modeled pattern is flagged as an intrusion. Following are some of the

pattern-based techniques:

1. Hidden Markov Models (HMM): HMMs are modeled using parameters of
the system, and their transition probabilities at every time interval. The
parameters in the current time frame are estimated from the parameters in
previous time frame using HMM inference methods. For intrusion detec-
tion, HMMs are constructed to model the user’s or data’s historical behav-
ior, and a similarity measure is calculated for the current parameter values.
If the similarity measure is deviant from the past values, an anomaly is
flagged. A system that applies HMMs for intrusion detection is described
in Lane et al. [52]. HMMs are suitable for one-dimension sequence classi-
fication like voice wave or spectrum. However, typical anomaly detection
data are multi-dimensional sequences with many variables involved. Since
the processing time complexity of HMMs is proportional to the number of
variables, HMMs are not cost-effective for the purpose of intrusion detec-

tion.

2. State-based Models: This is a variation of HMM, where the modeling is
done based on states of the parameters rather than parameters itself. The
advantage is that a small number of state transitions would suffice to de-
tect intrusions in contrast to HMMs that require large number of parameter
transitions to encompass varied attacks. This model has been applied to
a system described in Sekar et al. [67]. In this system, network proto-
cols were incorporated as state machines, and intrusions were detected by
analyzing anomalies in the state transitions. The system showed a high
detection rate for well-known and novel attacks, and low false positive rate.
However, the drawback of the approach was that a large amount of data

was required to build complex state-based models for network protocols.



23

3. Time-based Models: This is a pattern-based method where the variables
are temporal events, and the inter-arrival times of events are used to esti-
mate the probability of the occurrence of a new event. If this probability
is too low, an intrusion is flagged. This approach has been adopted for
a system described in Chen et al. [28]. The system defines time-based
rules to characterize the normal behavior patterns of users. A deviation
is detected if the current observed sequence of events do not match the
defined rules. The drawback of this method is that it is difficult to define
all the possible event sequences, which leads to false positives when event

sequences are not matched.

e Feature Relationship-based: Features that characterize a particular system
may not be independent. For example, CPU usage is related to the number of
users connected to the system. Hence, a system that combines all the features to
derive the state of the system might be more effective in analyzing the system.
Feature relationship-based methods use models to combine the features of a

system to effectively detect intrusions. Various available methods are:

1. Neural Networks: The basic approach is to train a neural network on
certain data variables, which are represented as a vector in the data input
space. The input to the neural network is a set of such input vectors, from
which the neural network learns the behavior of the data input. At the end
of the learning phase, the neural network is said to be trained on a set of
representative data points that represent the input space. During analysis,
current data is compared to the trained neural network and a deviation
is flagged as an intrusion. The relationship between the input parameters
is implicit in neural networks. Neural networks were first applied in 1990
to a system described in Fox et al. [48]. A neural network method called

Support Vector Machines was applied for intrusion detection as described
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in Mukkamala et al. [72]. Also, a neural network method Self-Organizing
Maps (SOM) was applied for intrusion detection in INBOUNDS, described
in Ramadas et al. [55]. The intrusion detection mechanism of SOM for
INBOUNDS is briefly described in section 2.3.4.2. The disadvantage of
neural networks is that the topology, and coordinate values of the neural
network are learned after considerable trial and error, and hence large

amounts of training data are required.

. Probability-based: In probability-based approach, the normal behavior
values of the parameters are measured as probabilities. These values are
then used to estimate the probability of the new data to be either nor-
mal, or anomalous. Staniford et al. [75] outlines an approach to detect
network scans by examining the packet’s probability for expecting to see a
particular source, or destination IP address or port. A low probability in-
dicates the possibility of a network scan. Nong et al. [60] presents another
probabilistic method for learning long term profiles of normal activities in
computer, and network systems. An intrusion is flagged when a deviation
is measured in the observed activities from the built profiles.

Bayesian Networks fall under the category of probability-based methods.
In addition to estimating the probabilities of parameters, it also provides

a means of relating the parameters through conditional probability tables.

. Correlation-based: Another way of relating the parameters of a system is
by calculating the correlations between them. If measures A;, ... , A, are
the parameters and are represented by the vector A, then the compound

anomaly measure is determined as:
ATC1A

Here, C is the covariance matrix representing the dependence between each

pair of anomaly measures A; and A;, and AT is the transpose of A.
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NIDES [29] is one system that used a method called covariance matrices
to account for the interrelationships among measures. The current trend
in intrusion detection is to apply correlation methods to relate the various
intrusion alerts. Based on the obtained result, an alert is either considered
as an intrusion, or a false positive. Thus, this method is used to filter the
false positives generated by the IDSs. Systems that applied correlation
methods to IDS alerts are described in Valdes et al. [16], and Debar et al.
[37].

The above taxonomy was used to evaluate the various techniques applied to ex-
isting intrusion detection systems, their drawbacks, and the purpose for which they
were more suitable. The properties of Bayesian Networks in estimating the prob-
abilities, and relating parameters was estimated to be useful for reducing the false
positives, and aiding in better detection. Thus, the taxonomy has guided us in se-
lecting Bayesian Networks for analyzing network data in order to detect intrusions.
Application of Bayesian Networks for intrusion detection in INBOUNDS is explained
in chapter 3. Section 2.2 gives an overview of Bayesian Network technique.

2.1.3 Feature Selection

The important criteria for effective intrusion detection is to choose appropriate
features that accurately classify intrusions. In general, these measures are chosen
heuristically but might not be adequate to detect all kinds of intrusions. Feature
selection is a method where an exhaustive search is conducted to choose the optimal
subset of features. Even though feature selection is not used for intrusion detection,
they are described here as they can be used to complement IDSs in choosing fea-
tures most suitable for analyzing intrusions. One such feature selection technique is
described here.

Genetic algorithm: In this method, a genetic approach is applied to search

through the possible subsets of initial measures. If n is the number of initial mea-
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sures, there are 2" subsets and searching through them exhaustively is not efficient.
Heady et al. [68] describes a genetic algorithm to search through this space efficiently.
In this method, the initial measures are taken, and genetic operations of crossover and
mutation are applied to obtain the subsets. The subsets that exhibit low probability
of predicting intrusions are removed, and are replaced by applying genetic operators
to yield stronger measure subsets. Lee et al. [79] describes an IDS that used genetic
algorithm for selecting features that were consistent, and useful for intrusion detec-
tion. Then, Data Mining technique was applied for detecting intrusions using these

features.

2.2 Bayesian Networks

Bayesian Network is an artificial intelligence technique that has been an important
area for research, and application in various fields. Following are certain areas in which

Bayesian Networks have been applied successfully:

e Bayesian Networks was adopted by the National Aeronautic and Space Admin-
istration for the AutoClass project [42]. The project is an attempt to create
Bayesian applications that can be used for deep-space exploration, and knowl-

edge acquisition.

e Bayesian Networks have also been applied in searching solutions to certain NP-
hard problems. Bayesian Networks replace traditional heuristic methods by
introducing a method, where probabilities for feasible solutions are calculated

and updated continually during search.

e Bayesian Networks was applied to a project Lumiere [40] by Microsoft, which
was used in its “Office Assistant” for the Office 95 suite. The software interacts

with its users by anticipating their goals, and needs.
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e Bayesian Networks have also been used in spam filters to eliminate unwanted

messages from a user’s mail stream [56].

The wide usage of Bayesian Networks was recognized by Intel, which announced
the release of Bayesian network software libraries in May, 2003 [41], to aid software
developers. The following sections give an overview of Bayesian Networks, their
methods, and algorithms that are applied to our research.

2.2.1 Overview

A Bayesian Network is a directed graphical model that encodes relationship be-
tween the parameters of a particular domain into its structure, and probability tables
[65].
2.2.1.1 Representation

The basic representation of a Bayesian Network is a directed graph. Each node
in the directed graph represents either a parameter of the domain under study, or a
hypothesis that is accorded certain belief. For example, a node might either represent
“Number of days in February”, or “This year is a leap year”. The numerical value at
each node represents the degree of belief accorded to the parameter value, or to the
hypothesis. The parameters are random variables, which possess discrete state values
of the data domain. Thus, each node has discrete values equal to the number of states
of the corresponding parameter, or degrees of belief of the corresponding hypothesis.
The links between the nodes represent the relationships between the parameters [57].
The relationships between the parameters are quantified using conditional probabil-
ities, which are calculated using Bayes Theorem. The conditional probability gives
the probability that the parameter, or hypothesis has a certain value given the value
of the parameter, or hypothesis to which it is related. There are numerous variations
of Bayesian Networks, based on the model of the graph, which can be either directed
or undirected, tree or a graph, etc. The various models are described in Murphy et

al. [59] and the various probabilistic methods applied to these models are described
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in Jensen et al. [43]. For our research, we have adopted the graphical model called

causal trees, which is tree-structured. An example causal tree is shown in figure 2.1.

Figure 2.1. Example Causal Tree

In the tree shown, an arrow from node A to node B can be informally interpreted

as “A causes B”.

2.2.1.2 Bayes Theorem
The conditional probabilities at a particular node of the Causal Tree are calculated
using Bayes Theorem. According to Bayes Theorem:

P(e/H)P(H
P = PELDP)
The theorem states that the belief we accord to a hypothesis ‘H’ upon obtaining
evidence ‘e’ can be computed by multiplying our previous belief P(H) with the like-
lihood P(e/H) that ‘e’ materializes if ‘H’ is true. P(H/e) is also known as posterior

probability, and P(H) is called prior probability or belief. The denominator P(e) is

calculated as:
P(e) = P(e/H)* P(H)+ P(e/=H) « P(—H)

However, P(e) is a normalizing constant, which can be computed by requiring that
P(H/e) and P(— H/e) sum to unity [65]. For a causal tree, evidence is the directly
observable value of a parameter at the node. Hypothesis is the unknown probability

of an event that we need to calculate using Bayes Theorem.
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The significance of Bayes Theorem can be explained with an example. If there
are two kinds of dice, fair dice, and loaded dice. Given probability of choosing fair
dice is 99%, and that of loaded dice is 1%. The loaded die is loaded such that a six
comes up 50% of the time. A die is picked and it has been rolled thrice to get a six.
If we want to calculate the probability that the die is loaded i.e., we need to calculate
the probability P(Djsagea/3 sixes), it can be calculated using Bayes Theorem as:

P(38i$€S/Dloaded) * P(Dloaded)
P(3sizes)

P(Dioagea/3sizes) =

This value is calculated as

(0.5%(0.01)

P(Dipudea/3siTES) =

This implies that the probability of the die being loaded is only 0.21. However,
for the same example if the six was consecutively seen six times, the probability of
the die being loaded becomes,

(0.5%)(0.01)

(0.56)(0.01) + (1/6%)(0.99) =0.88

P(Dypadea/6sizes) =

The probability that the die is loaded is now a higher value i.e., 0.88. This means
that as evidence is accumulated for a particular hypothesis event, the probability of
the hypothesis being true increases.

The essence of Bayes Theorem is seen by using odds and likelihood ratio param-
eters. Consider the complementary form P(— H/e), which is calculated using Bayes
Theorem as:

P(e/~H)P(-H)
P(e)

P(—|H/e) =

Then,

P(H/je) _ Ple/H)P(H)

P(-HJe) ~ P(e/~H)P(-H)
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Defining prior odds on H as:

P(H
OH) = P((ﬁ[})
Defining likelihood ratio as:
P(e/H
I = iy
If posterior odds is defined as:
P(H/e

Then, posterior odds can be derived as:

O(H/e) = L(e/ H)O(H)

Thus, Bayes Theorem implies that the overall belief in a hypothesis H is based on
both the previous knowledge and the observed evidence, and is thus the product of
prior odds O(H) and likelihood ratio L(e/H). The first term measures prior support
accorded to H by background knowledge, and the second term measures current
support given to H by the evidence.

Bayes Theorem is applied to calculate the numerical probability at each node of
the causal tree. Since there can be multiple values to the node that represents the
parameter or hypothesis, the probability is to be calculated for each of these values.
As described before, links between the nodes of the tree represent the relationships
between the parameters. These relationships are given by a matrix called condi-
tional probability table (CPT), whose elements are conditional probabilities. The
conditional probability is the probability that the child is in a particular state for a
particular state of its parent node. Thus, the number of rows in the CPT equals the
number of states of the parent and number of columns equals the number of states

of the child.
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2.2.2 Belief Updating in Bayesian Networks

A Bayesian Network has two kinds of nodes:

e Nodes whose values are directly observable, or already known. These known

node values are termed as evidence.

e Nodes whose values are not known and need to be calculated from the evidence.

These unknown node values are termed as hypothesis or belief.

Bayes Theorem is used to calculate the probability value at each of its nodes. This
calculation is initiated each time new evidence is obtained. The evidence is combined
and propagated, initiating calculation of beliefs at each of the nodes in the tree. The
propagation between the nodes is achieved by passing messages. The steps involved
in fusing the evidence, propagating them through the network, and calculating the
beliefs based on the evidence is called Belief Updating. Certain rules govern the
Belief Updating procedure in a causal tree, which are explained below using a simple

example network in figure 2.2.

DA

Figure 2.2. Example to Illustrate Belief Updating

As discussed in section 2.2.1.2, the parent and child nodes in a causal tree are
related through a Conditional Probability Table (CPT). If X is the parent of Y, then
an element of the CPT at Y is given by

CPT(i,j) = P(state of Y=j/state of parent X=i)
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P is the conditional probability that the value of child node is j, given that the
value of its parent node is i. For convenience we represent the CPT at node Y, whose
parent is X, by the matrix M, ;.

The belief at node X in figure 2.2 is calculated using Bayes Theorem as:

Ple/X)P(X)
P(e)

Here, e is the evidence, which is obtained from the child nodes of X in the Bayesian

Bel(X) = P(X/e) =

tree i.e., Y and Z.

The above formula can be written as
Bel(X) = an(X)\X)

Bel(X) is the belief at node X.

7(X) is the prior probability at X i.e., P(X), which is obtained from the belief of
the parent of X (i.e. U) as Mj/,. The belief from parent of X is passed as a 7 message
from U. A special case that applies here is for a root node, whose prior probability is
given by the prior probability of the node itself rather than that of its parent.

A(X) is P(e/X), which is obtained from the beliefs of the children of X. The beliefs
at each of the children of X (i.e. Y, and Z) is given by My, and M,,,. The beliefs
at the children are fused by multiplying M,,,, and M, ,,. The beliefs calculated at Y,
and Z are passed as A messages to node X.

a equals % and is merely a normalization factor.

Once the belief at node X is calculated, the new belief needs to be propagated
to its parent, and child nodes. This belief is passed as 7 messages to nodes Y and
Z (child nodes of X), and as A message to node U (parent node of X). The belief at
these nodes are then calculated in turn. Thus, beliefs are calculated at each node of
the tree for every new evidence. The message propagation in the tree of figure 2.2 is
shown for node X in figure 2.3.

In the figure, mx (u) is the 7 message propagated from parent U to child X. Ax (u) is
the A message propagated from child X to parent U. 7y (x) is the 7 message propagated
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Figure 2.3. Message Passing in Causal Tree

from parent X to child Y. 77 (x) is the 7 message propagated from parent X to child Z.
Ay (x) is the \ message propagated from child Y to parent X. Az (x) is the \ message
propagated from child Z to parent X.

The calculation of 7, and A messages can be conveniently explained by using
matrix mathematics. The 7, and A\ messages can be represented as matrices, and
the propagation formulas can be explained as matrix operations. The mathematics
for these matrix operations are called belief propagation rules, or bayesian inference
rules and are explained in the next section 2.2.3.

2.2.3 Bayesian Inference Through Matrices

Bayesian Inference refers to the procedure of estimating the belief of a node given

the values of observed nodes. The estimation is carried out by applying the Belief

Propagation rules. There are two kinds of inferences:

e If the leaf node values are observed, we infer the values of the internal nodes in

the causal tree. This is called diagnosis, or bottom-up reasoning.
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e If the internal node values are observed, we infer the values of leaf nodes in the

causal tree. This is called prediction, or top-down reasoning.

For our research, we adopted bottom-up reasoning, as we represent the evidence
as leaf nodes, and the hypothesis as internal nodes. The graphical model that we use
for our research is explained in chapter 3. The mathematical framework for Belief

Propagation in this model is explained below:

e A 7w message can be represented as a row matrix. The number of elements of

the matrix is equal to the number of states of the parent node.

A )X message can be represented by a column matrix. The number of elements

of the matrix is equal to the number of states of the child node.

A node receives m message from its parent and A messages from its children

The CPT at a node Y, whose parent is X, is represented as CPT(y/x)

The mathematical formulas of the propagation rules for Bayesian Inference at

a node are given by:

1. The m message at a node can be calculated as:
7(node) = 7w (parent_node) * CPT(node/parent_node)

m(parent_node) is the m message obtained from the parent node. For a
root node, 7(parent_node) is the prior probability of the node itself, since

it does not have a parent node.

2. Since a node can have multiple children, the A messages from the children
need to be fused together.
The A message from a child is calculated as:

A_from _child(child_node) = (CPT(child-node/node) * A(child_node))



35

The A(child node) is the A\ message at the child node. This A message is
calculated from directly observed evidence.

The A message at the node can be calculated by fusing the A_from child

messages via matrix multiplication as:

A(node) = 1I A_from_child(c)

cechildren(node)

3. Once the m and A values are calculated, the belief at a node can be calcu-

lated as

Belief(node) = m(node) * A(node)

The Belief(node) thus calculated gives the belief at a particular node. An
important note to be considered is that all the resultant matrices in the above
rules need to be normalized. After the calculation of the belief at each node, this
belief in turn needs to be propagated to other nodes in the tree be reapplying
the belief propagation rules. These rules are executed on the entire causal tree,

for every new evidence that is obtained.

The propagation rules can be clearly understood through an example. Consider

a simple causal tree shown in figure 2.4.

&

Figure 2.4. Example to Illustrate Bayesian Inference

Suppose the beliefs, and 7 and A values at each node of this example tree is as

shown figure 2.5. The A\ matrices at the leaf nodes (Y, and Z) are calculated from
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directly observed evidence. Using the probabilities at each of the nodes, and CPT at

each link of the causal tree, the belief at node X is calculated as:

1. m(X) is calculated by multiplying the matrices 7(U) and M,,. This matrix is

then normalized

2. The X message from child Y is calculated by multiplying the matrices A(Y) and
My,;. The A message from child Z is calculated similarly. The resultant matrices

are then multiplied to obtain the final A message, which is then normalized

3. The 7, and A matrices thus obtained are multiplied to calculate the belief at X,
Bel(X)

4. The 7, and A messages at node X are then passed to its child, and parent nodes

respectively

The resultant 7, A, and belief matrices at node X are shown in figure 2.6.

U

[éé]l
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0.71 14 \
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v

Figure 2.6. Updated Belief at Node X of Example Tree
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2.3 INBOUNDS
INBOUNDS (Integrated Network Based Ohio University Network Detective Ser-

vice) is a real-time, network-based, anomaly-based Intrusion Detection System that is
being developed at Ohio University. The system detects anomalies by analyzing the
network traffic, either off-line or in real-time. The analysis is based on an anomaly
detection principle, where deviations from regular traffic patterns are characterized
as intrusions. The principal goals of INBOUNDS are to detect well-known and novel
attacks, generate few false positives and false negatives, operate in real-time with
minimal overhead; be adaptable, be configurable, and be fool-proof.

The following sections provide an overview of the architecture, and components
of the INBOUNDS system.
2.3.1 Architecture

The INBOUNDS system analyzes network data obtained from various data col-
lection modules, and provides this information to a module that analyzes the attack
and responds appropriately. Figure 2.7 depicts the INBOUNDS system, and its com-
ponents.

2.3.2 Data Source

The data source module collects the network data, and provides it to the data
processor of the Intrusion Detection module. This data is the raw network data,
which can typically be collected using tools such as tcpdump [14], and ethereal [4].
However, INBOUNDS uses a program named TCPurify [20] as the data source.

T CPurify is a packet sniffer program with a focus on privacy. The tool collects raw
network data, and truncates the packets by removing the data payload beyond the
standard IP and TCP/UDP headers. Since INBOUNDS is based on the principle of
anomaly detection, the application data is irrelevant for our research. Also, TCPurify
protects privacy by encrypting the IP addresses, such that it would not be possible

to reconstruct the original traffic data.
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Figure 2.7. INBOUNDS Architecture

2.3.3 Data Processor

The data processor module obtains network data from the data source, and pro-
cesses it. The module reports certain parameters that characterize the network data.
The reported parameters are used for intrusion detection in INBOUNDS.
2.3.3.1 Existing Network Parameters

The code that performs the processing is present in the INBOUNDS module [21],
which is included in a TCP/IP network traffic analysis program called TCPtrace
[62]. TCPtrace reads network data captured from a data source, groups the packets
into conversations, and analyzes the individual conversations. The analysis includes
calculation of round trip time, calculation of throughput, and detection of retransmis-
sions. TCPtrace uses certain modules that perform additional analysis, including the

INBOUNDS module that calculates parameters for each connection to characterize
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the network traffic. The parameters are reported periodically at a time interval of 60

seconds !. The paradigm that is used for calculating the parameters is
e A question is a packet from client to server that contains data in the payload
e An answer is a packet from server to client that contains data in the payload

The following parameters characterize each connection:

e Interactivity: Number of Questions per second during a particular time interval

ASOQ: Average Size Of Questions in bytes during the time interval

ASOA: Average Size Of Answers in bytes during the time interval

QAIT: Question Answer Idle Time value per second during the time interval

AQIT: Answer Question Idle Time value per second during the time interval

The output from this module are messages that are used by the intrusion detection
module of INBOUNDS. The three kinds of messages reported are named O, U, and
C messages. These messages are reported for each connection captured by the data

source.

e The ‘O’ message is reported when a new connection is opened. The format for

an ‘O’ message is:

O Timestamp Protocol < sourcehost >:< sourceport > < destinationhost >:<

destinationport > Status

Timestamp is the time when the connection was opened. The current supported
protocols are TCP, and UDP. The connection’s 4-tuple is reported as source
host, source port, destination host, and destination port. The status field is

either 0 indicating that a connection’s opening SYN packets were seen during

I This interval is tunable
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the analysis, or 1 indicating that the connection was already open prior to the

start of analysis i.e., the SYNs for the connection were not seen during analysis.

e The ‘U’ messages are update messages for each active connection, and are re-

ported every 60 seconds. The format of a ‘U’ message is:

U Timestamp Protocol < sourcehost >:< sourceport > < destinationhost >:<

destinationport > Interactivity ASOQ ASOA QAIT AQIT

The parameters are as explained previously, and characterize each network con-

nection

e The ‘C’ message is reported when an active connection is closed. The format

of the ‘C’ message is:

C Timestamp Protocol < sourcehost >:< sourceport > < destinationhost >:<

destinationport > Status

Status field is 0 if a TCP connection was closed with two FINs seen in each
direction, and 1 if a RST packet closes the connection. The status field for
UDP connections is always 0. Additionally, connections are timed out, and this

interval is 8 hours for TCP connections and 120 seconds for UDP connections.

The parameters described are reported for every connection, and are suitable for
detecting anomalies on a particular network connection. However, certain attacks
such as Denial of Service (DOS) attacks work by opening numerous connections to a
particular network service, each of which are normal. Analysis of the parameters re-
vealed that they would not capture DOS attacks. Thus, we proposed new parameters

to capture various kinds of attacks, which are described in section 3.1.2.1.
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2.3.4 Intrusion Detection System

Prior to the work cited in this thesis, anomaly detection in INBOUNDS used
two approaches, a statistical based technique [18], and a neural network based tech-
nique [55]. The following sections briefly explain each of the approaches, and their

shortcomings.

2.3.4.1 Statistical-Based Anomaly Detection

This module used the parameters explained in section 2.3.3.1. In addition, a
parameter Number Of Connections (NOC) was calculated for each monitored network
service (port). The statistical anomaly detection module called Network Anomaly

Intrusion Detection (NAID) used two approaches to monitor network activity:

e All Connections to All Hosts on a particular port (ACAH)

e All Connections to a Single Host on a particular port (ACSH)

In the ACAH approach, the NAID module monitors the behavior of a specified
port on all hosts in the network. This module enables detection of an abnormality on
a particular port on all hosts. In the ACSH approach, the NAID module monitors
the behavior of all connections to a specified port on a particular host in the network
being monitored. This enables detecting an anomaly on a particular service running
on a specific host.

The NAID module utilized two methods to monitor the behavior of a particular

network service:

o Abnormality Factor Method

In this method, a database is used to store the average, and standard deviation
values of the dimensions for a particular key. The key could be a port, a host
IP address, or a combination of both. When a new set of dimension values

are obtained, these values are compared with the stored average values in the
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database. The standard deviation values are used to calculate the distance of
the current dimension value with those stored in the database. A distance value
that is greater or equal to certain threshold is assigned an abnormality factor.
Thus, the abnormality factor is the difference between the current dimension
value and the threshold value. The sum of the abnormality values of all the
dimensions gives the overall abnormality value. An intrusion is flagged if the

resultant abnormality value is greater than a pre-defined threshold.

o Moving Average Method

The abnormality factor method had the drawback that the average values for
the dimensions are fairly constant over time, and do not adapt to network
changes. To overcome this drawback, the moving average method was imple-
mented, which defined a moving window for the average parameter values. The
time period for which the window is active is specified by a certain value ‘T’.
A moving average is calculated for the current ‘T’ by taking the average values
of all the parameters from the past time window. An intrusion is flagged if
the difference between the current dimension value and the moving average is

greater than a certain pre-defined threshold.

2.3.4.2 Neural Network-Based Anomaly Detection

The neural network-based method that was used in INBOUNDS for anomaly
detection is Self-Organizing Maps (SOM) [55]. A SOM maps non-linear statistical
relationships between data points in a high dimensional space into geometrical re-
lationships between points in a two-dimensional map [49]. Each element in such a
map is called a neuron, which represents an n-dimensional input vector. The input
vector for INBOUNDS consists of the five dimensions described in section 2.3.3.1,
and a sixth dimension called Duration Of Connection (DOC). Application of SOM to
intrusion detection comprises a learning phase, and an operation phase. During the

learning phase, SOM neurons are trained to model the input data. A different SOM
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is defined for each network service whose behavior is to be monitored. During the
operation phase of SOM, the current input vector is fed into the trained SOM, and
associated with one of the SOM neurons. An anomaly is flagged when the current

input vector does not fall within a certain vicinity of the current SOM neurons.

2.3.4.3 Drawbacks of Existing Approaches

The existing approaches used in INBOUNDS for anomaly detection had certain
drawbacks. The Statistical based technique described in section 2.3.4.1 had the dis-
advantage that it was not adaptive to changing environments. An intruder could
gradually increase the average, and standard deviation values by carrying an attack
over a long period of time. This leads to an attack going unnoticed after a certain
period of time. To overcome this drawback, the moving average method was used,
which can detect the attacks carried out in steps over a large period of time. How-
ever, moving average method might not be able to detect attacks that increase the
activity gradually in successive time windows. Also, statistical-based systems have
the disadvantage that they generate more false positives, since they are dependent on
an appropriate threshold being set.

The SOM-based approach described in section 2.3.4.2 overcomes the drawbacks
of the Statistical-based technique, since it can store multiple data reference points for
each class of network traffic. Hence, a network connection is considered normal if it
falls within any of these data reference points in the SOM. However, neural networks
need large amounts of training data to learn normal data values. Also, the SOM
module for INBOUNDS analyzes traffic only on a per-connection basis, based on
whether the connection is normal or abnormal. Hence, it cannot classify an attack,
where the individual connections look normal but the anomaly is due to the presence
of numerous such connections, as is the case for a Denial Of Service (DOS) attack.
Another drawback of the SOM approach is that it can detect an anomaly only after
the connection is closed.

We analyzed the disadvantage of not being able to detect DOS attacks, and pro-
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posed new parameters, which are described in section 3.1.2.1. Also, our work is
motivated by the need to design a powerful technique that overcomes the limitations
of both statistical, and neural network techniques. We found Bayesian Network [65]
to be a useful technique, which has the advantages of being adaptable to changing
environments, and need less training. A prototype was developed using the Bayes
Net Toolbox [58], and a feasibility study was conducted. We found the Bayesian tech-
nique to be promising, and hence have adopted the technique for intrusion detection
in our research. Section 2.2 explained the Bayesian Network technique and chapter
3 describes the application of Bayesian Network technique to INBOUNDS.
2.3.5 Decision Module

The decision module shown in figure 2.7 is work in progress, which integrates
the intrusion alerts from the various IDSs of INBOUNDS, and makes a decision ac-
cordingly. The decisions taken by the module are sent as requests to the Intrusion
Response module, which implements the decisions. The decisions might be to ter-
minate a connection, block a particular kind of traffic, or rate limit the bandwidth.
The various IDSs from which the Decision Module obtains the intrusion alerts are
the statistical-based IDS described in section 2.3.4.1, SOM-based IDS described in
section 2.3.4.2, and the IDS presented in this thesis.
2.3.6 Intrusion Response Module

The Intrusion Response Module shown in figure 2.7 is also work in progress, which
implements the decisions given by the Decision Module. This module provides the
capability of taking active responses at an appropriate point in the network so as to
prevent further propagation of an attack. The approaches to active intrusion response
include inserting a firewall rule to block a particular connection, block a particular
port, or rate limit the bandwidth for a particular kind of traffic at a gateway router,

which are all done autonomously.
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2.3.7 Data Visualization Module
The Data Visualization Module shown in figure 2.7 is a program called network-
graphserver, which displays a picture of the connections made from or to the hosts in

the network that is being monitored.
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3. Causal Tree Anomaly-Based Network-Based Detection
System (CANDES)

The architecture of INBOUNDS was depicted in figure 2.7 and elaborated in section
2.3. One of the Intrusion Detection Systems in the architecture is the Causal tree
Anomaly-based Network-based DEtection System (CANDES), which uses Bayesian
Network technique for intrusion detection. The following sections describe the ar-
chitecture of CANDES, the graphical model used by CANDES, and the intrusion
detection approach used by CANDES.

3.1 CANDES Intrusion Detection Module for INBOUNDS

A detailed architecture of the CANDES system is shown in figure 3.1. The various

components in the architecture are described in the following subsections.

Data Captured Data A/ H C CANDES Intrusion alert _ ( Decision
Source /etwork Packets  \_T0CeSSOr /™ accages messages Module

Figure 3.1. CANDES Architecture

3.1.1 Data Source

The data source is typically a network packet capturing tool such as tcpdump or
ethereal, or TCPurify as described in section 2.3.2. The output of this component is
the raw network data captured on the network being monitored, which is fed to the

data processor.
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3.1.2 Data Processor

As explained in section 2.3.3.1, the parameters reported by the existing IN-
BOUNDS data processor would not suffice to detect certain kinds of attacks such
as Denial-Of-Service (DOS) attacks. Since the parameters are reported only for each
connection, an additional mechanism is needed to detect the DOS attacks. We an-
alyzed the existing parameters, and framed new parameters that can detect varied
kinds of attacks. The new parameters characterize a particular network service as
well as the connections to that service. The code for calculating these parameters is
a module for TCPtrace called Bayes module.
3.1.2.1 Proposed Network Parameters

The new parameters are calculated, and reported for each network service by the
Bayes module. The parameters are reported every 60 seconds 2, and are elaborated

below:

e Number Of Open Connections (NOOC): This parameter indicates the number
of connections that have been open to a particular network service in the past

60 seconds.

e Number Of Failed Connections (NOFC): This parameter indicates the number
of failed connections to a network service seen in the past 60 seconds. Failed
connections include connections that have been reset, and that are half-open.
The connections that have been reset are those connections that have seen a
RESET packet from the client to server before the establishment of connection.
Half-open connections are those connections that have not completed TCP con-
nection establishment i.e., a SYN was sent to the server by the client, but an
ACK was not seen coming back to the server. Such connections are timed out

after an interval of 60 seconds and are reported as failed connections.

2This time interval is tunable
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e Number Of Packets (NOP): This parameter indicates the total number of pack-
ets received by a monitored host, or a network on a particular network service

in the past 60 seconds.

e Number Of Same client IP Connections (NOSC): This parameter indicates the
total number of connections made to a particular network service from the
same Client IP address. This parameter is also reported every 60 seconds, and
is zeroed out after a threshold number of such connections are seen, in order to

prevent the parameter from incrementing continually.

The parameters are reported as three kinds of messages by the Bayes module, and

are explained below:

e ‘A’ message (Message for parameters per port on all hosts): This message re-
ports the NOOC, NOFC, NOP, and NOSC parameters for a particular port
to all the hosts that are being monitored. This message can help detect cer-
tain network attacks, including worms and viruses that affect all the hosts in a

network. The format of the message is:

Timestamp A < PortNumber > NOOC NOFC NOP NOSC

e ‘H’ message (Message for parameters per port to a host): This message reports
the NOOC, NOFC, NOP, and NOSC parameters for a particular port to each

host in the network that is being monitored. The format of the message is:

Timestamp H < Port Number > HostIP NOOC NOFC NOP NOSC

e ‘C’ message (Message for parameters for each connection): This message reports
the ASOQ, and ASOA parameters for each active connection. The ASOQ), and
ASOA parameters are calculated as described in section 2.3.3.1. The format of

the message is:

Timestamp C < SourceHost >:< SourcePort > < DestinationHost >:<
DestinationPort > ASOQ ASOA
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3.1.3 CANDES

The CANDES module takes as input the messages reported by the data proces-
sor, applies the Bayesian Inference rules described in section 2.2.3, and reports any
anomalies observed during the inference process as intrusions. The model used for
detecting such anomalies is explained in the following sections of this chapter.
3.1.4 Decision Module

The decision module is the module that takes a decision based on the intrusion

alerts obtained from the various intrusion detection systems, as described in section

2.3.5.

3.2 Graphical Model for CANDES

The Bayesian Network that is used by CANDES for intrusion detection is shown

Network Service
Behavior

in figure 3.2.

Figure 3.2. Bayesian Model for CANDES

As explained in section 2.2.1.1, each of the nodes in the tree has several discrete
values. The leaf nodes are the parameters reported by the data processor: NOOC,
NOFC, NOP, NOSC, ASOQ, and ASOA. These nodes are evidence nodes, and their
values (probabilities) can be calculated from the reported values. Each of the evidence

nodes is assumed to have four discrete values: no anomaly, low anomaly, medium
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anomaly, and high anomaly, depending on the anomaly it exhibits from the normal
value. The calculated values are then propagated to their parents as A\ messages.

The internal nodes, Network Service Behavior, and Connection Behavior are hy-
pothesis nodes and represent the hypotheses “Network Service behavior is anoma-
lous”, and “Connection Behavior is anomalous” respectively. The number of discrete
values at these nodes is equal to the number of network services which are being
monitored. The relationship between the hypothesis and evidence nodes is given by
a corresponding conditional probability table. The elements of this matrix are fixed
probabilities, defined before the start of analysis. The hypothesis nodes do not have
parents and hence the prior probabilities at these nodes are the probabilities at the
node itself. The prior probability for the current interval is the belief calculated in the
previous analysis interval. The calculated prior probability is stored as a m message
at the node.

When an ‘A’, ‘H’, or ‘C’ message is reported by the data processor, the correspond-
ing leaf node values are calculated, and passed as A messages. The final A message is
calculated, and combined with the 7 message at the corresponding hypothesis node
to calculate the belief. The Bayesian Inference rules described in section 2.2.3 are
applied to calculate the beliefs of the Network Service Behavior, and Connection Be-
havior nodes. The behavior of a particular network service, or connection is reported
as either being anomalous, or not anomalous, based on the calculated beliefs.

It can be observed that in addition to the NOOC, NOFC, NOP, and NOSC pa-
rameter values, the Network Service Behavior takes as input the Connection Behavior
node value. This is advantageous when numerous anomalous connections are observed
for an intrusion event, which is not captured by the parameters for the network ser-
vice. The next section describes the various modules that apply Bayesian Network

technique to calculate, and analyze beliefs at the hypothesis nodes.
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3.3 CANDES Approach for Intrusion Analysis

The Bayesian analysis method is depicted in figure 3.3

TCPtrace
Bayes
module

A, H, C messages

CANDES statistical ; CANDES parameter
learning module : H classifier module
i OPERATION
i Average and H i Observed : PHASE
maximum values : H Node values :
LElfHRANSIEG i for parameters A
CANDES ! |CANDES probabiity ~ |Probabilty i | pecision
Anomaly-level H calculator module of intrusion | Module
classifier : :
H H H Probabilities
i Parameter confidence ; ; at nodes of
H intervals for : : Bayesian network
classification H H \
of anomaly-level

CANDES knowledge
propagator

Figure 3.3. Bayesian Analysis Procedure

The various submodules in the CANDES analysis procedure are explained in the
following subsections. The statistical learning, and anomaly-level classifier modules
are executed during the learning phase of CANDES, while the parameter classifier,
probability calculator, and knowledge propagator modules are executed during the
operation phase of CANDES.

3.3.1 CANDES Statistical Learning Module

The input to this module are the A, H, and C messages from the TCPtrace Bayes
module, which were described in section 3.1.2.1. The parameter values reported in
these messages are used to calculate the mean, and standard deviation (SD) values
for the parameters. The mean, and SD values in turn are used to calculate the
confidence interval for each of the parameters. The confidence interval defines the
range for the mean value of a parameter. A statistical method called Hypothesis

Testing [78] provides the mathematical formulas to calculate the confidence interval
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for the parameters. According to the hypothesis, for a 98% confidence that the current

value is equal to the mean, the confidence interval is given by:

(mean — 2.576 x SD) (mean + 2.576 x SD)
sqrt(NumberofSamples)’ sqrt(NumberofSamples)

(

However, we are interested only in the maximum of this interval, as we look for

values abnormally larger than the expected value. Thus, the maximum expected

value for the mean of a parameter is

(mean+2.576xS D)
sqrt(NumberofSamples)

Expected Mean =

Also, the maximum value that a parameter can have, is calculated as

Maximum Allowable Parameter Value = (mean + 2.576 * SD)

The value of 2.576 in the above formulas is a constant factor, for a 98% confidence
that the value is the mean. The constant factor value varies with the percentage of
confidence. The statistical derivations for these values are explained in Trivedi et al.
[78].

3.3.2 CANDES Anomaly-Level Classifier

Each of the evidence nodes of the Bayesian Network shown in figure 3.2 is assigned
four discrete values: no anomaly, low anomaly, medium anomaly, and high anomaly.
The output of the Statistical Learning module are the expected mean, and allowable
maximum values, which are continuous. The functionality of the anomaly-level clas-
sifier is to use these values to define ranges for each of the discrete values. However,
this definition of ranges was performed manually for all the parameters. An area for
future work involves using a more sophisticated technique to perform the categoriza-
tion. The ranges thus defined are used during the analysis phase of the CANDES
module to set the level of anomaly for the current value of a parameter. The ranges

are defined for only directly observable nodes of the Bayesian Network shown in figure

3.2 i.e.,, NOOC, NOFC, NOP, NOSC, ASOQ), and ASOA.
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3.3.3 CANDES Parameter Classifier Module

The functionality of this module is to classify the current parameter value into one
of the four discrete levels. These discrete values represent the levels of anomaly of the
parameter. The module takes as input the current message from the TCPtrace Bayes
module, and the ranges defined for the parameter by the anomaly-level classifier
module. Based on the range within which a particular parameter value falls, the
parameter value is categorized into one of the four anomaly levels. The A message for
the evidence node that corresponds to the parameter is then set accordingly. If the
parameter value is not anomalous, the A message is the matrix [0.25 0.25 0.25 0.25].
If the parameter value is of low anomaly, the A message is the matrix [0.25 0.5 0.25
0.25]. If the parameter value is of medium anomaly, the A message is the matrix [0.25
0.25 0.75 0.25]. If the parameter value is of high anomaly, the A message is the matrix
[0.25 0.25 0.25 1.0]. The values 0.25, 0.5, 0.75, and 1.0 represent, the probabilities of
anomaly of the parameter, corresponding to the anomaly level. Thus, if the parameter
value is of medium anomaly, the probability of anomaly is considered 0.75 and the
corresponding \ message entry is set to 0.75. The A\ messages are calculated for all
the evidence nodes, using the parameter values reported in the current ‘A’, ‘H’, or
‘C’ message.
3.3.4 CANDES Probability Calculator Module

The functionality of this module is to apply the Bayesian propagation rules de-
scribed in section 2.2.3, in order to calculate the beliefs at the hypothesis nodes (Net-
work Service Behavior, and Connection Behavior). The steps involved in calculating

the beliefs are:

1. The X\ messages at the leaf nodes are calculated by the parameter classifier

module.

2. Each of these A messages are multiplied by the CP'T matrix at the corresponding

evidence node, to obtain the final A messages at these leaf nodes
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3. The X\ messages from all the leaf nodes are combined through matrix multipli-
cation to obtain the A\ message that is transmitted to the parent (hypothesis)

node

4. The m message (prior probability) at the hypothesis node is the belief at that

node itself, which was calculated in the previous inference interval

5. The X and m messages are multiplied to calculate the belief at the hypothesis

node

The belief at the hypothesis node is a matrix with number of elements equal to the
number of network services that are being monitored. Each element of this matrix
gives the belief that a particular network service, or connection to the network service
is anomalous.

The belief calculation is illustrated with an example, for calculating the belief of
the Connection Behavior node. Assume that four network services are being mon-
itored: say, SSH, SMTP, FINGER, and HTTP. Supposing that the SSH network
service parameter values are analyzed currently, and that the ASOQ value was found
to be anomalous. Figure 3.4 shows the A messages at the evidence nodes, and 7
message at the Connection Behavior hypothesis node.

The belief is calculated for SSH, which is the first element of belief matrix. The
other elements correspond to other network services, and hence are set to 0. The
anomaly for ASOQ value is set to be of low anomaly, and hence the A\ at the cor-
responding node is [0.25 0.5 0.25 0.25]. After applying the belief propagation rules,
the belief matrix is calculated to be [0.01875 0 0 0]. However, this does not directly
give the probability of anomaly on the SSH connection. The actual probability of
anomaly is calculated as:

Belief % 0.25
P(A ly) =
(Anomaly) Belief if normal
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Here, P(Anomaly) is the probability of anomaly that is to be calculated. Belief is

the actual belief calculated after applying the belief propagation rules for the current

evidence. The denominator is the actual belief if all the evidence node values are

not anomalous. The factor 0.25 represents the probability if the connection were

normal. Thus, the above formula is explained as: if 0.25 is the probability for a

belief to be normal, what is the probability in case of a belief that is anomalous. For

the example, the “belief if normal” value is 0.015625 for connection behavior. Thus,

the probability of anomaly for the belief 0.01875 is

0.015625

, which is 0.30. The
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probability of anomaly for a network service is calculated similarly after calculating
the belief for “Network Service Behavior” hypothesis node.
3.3.5 CANDES Knowledge Propagator

As explained in section 2.2.1.2, Bayes Theorem combines previous knowledge, and
current evidence to calculate the belief in a hypothesis. From an anomaly detection
perspective, if an attack was seen previously, and the same attack is being carried out
currently, the probability of attack is bound to increase. The propagation of previous
knowledge of an attack is achieved using the Bayesian Network propagation rules,
described in section 2.2.3. The previous knowledge is stored in the m messages at
the “Network Service Behavior”, and “Connection Behavior” hypothesis nodes. For
instance, consider the belief calculation example shown in figure 3.4. The probability
of anomaly on SSH connection was calculated as 0.3. This is stored in the 7 message
for the Connection Behavior node as the matrix [0.3 0.25 0.25 0.25]. This helps using
the knowledge that an anomaly of probability 0.3 was observed on SSH connection.
Suppose that in the next inference, the ASOQ parameter was found to be of low
anomaly. The belief calculation for the current inference interval is depicted in figure
3.5.

The probability of anomaly for the current inference is calculated to be 0.36.
This implies that as an attack progresses, evidence accumulates about the anomalies,
causing a rise in probability of anomaly. This property is useful for detecting an
attack that exhibits low anomaly on a particular parameter value, which might go
unnoticed with other intrusion detection techniques. This is because the techniques
might report an alert only if the probability of anomaly is greater than a threshold
value. Since the techniques might not use previous knowledge, the probability of
anomaly would remain the same (0.3 for our example). If the threshold is, say 0.4,
then the attack goes unnoticed. However, for the Bayesian approach, the probability
increases as knowledge about the attack accumulates. The probability eventually

increases beyond the threshold, and an alert would be reported.
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4. Experimental Results

According to Kendall et al. [47], computer attacks can be classified into four types:

e Denial-Of-Service (DOS) attacks, which interrupt a service to other users by
exploiting a constraint on the amount of resources needed for that service.
Typical examples include Neptune, Ping Of Death, Process Table attack, and
UDP Storm.

e Remote-to-User (R-U) attacks, by which an attacker can gain access to a system
without possessing an authorized account. Typical examples include guest,

dictionary, imap, and sendmail attacks.

e User-to-Root (U-R) attacks, by which a user with nominal privileges can obtain

root privileges on a system. Typical examples include ps, and eject attacks.

e Probing, which are actions taken by an attacker to gather information about
the hosts in a network, so as to search for known vulnerabilities on those hosts.

Typical examples include ip sweep, nmap, and saint.

CANDES is aimed at detecting most of the DOS attacks that tend to flood the
network with large amounts of traffic, thereby denying legitimate access to other
users of the system. CANDES also aims at detecting certain probes such as port
scans, where the attacker tries to look for a vulnerable network service on the hosts
in a network. The advantage of Bayesian Network is that it uses previous knowledge
to gain additional information about an ongoing event. This property helped us

detect a buffer overflow attack on sendmail, and a stealthy port scan on the finger
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service, which might have gone unnoticed with other techniques. The same Bayesian
property helps detect an ongoing attack faster, and with higher probability, which is
depicted for a Process Table attack [35]. The property that Bayesian Networks can
combine several parameters effectively to detect an attack is shown for an Apache
buffer overflow attack. The various attacks, and their detection using CANDES

module is elaborated in the following sections.

4.1 Sendmail Buffer Overflow Attack

Electronic mail is a popular application that is used to send memos across the
Internet. The protocol that handles the delivery of mails is the Simple Mail Transfer
Protocol (SMTP), described in RFC 2821 [44]. The exchange of mail using TCP is
performed through message transfer agents (MTAs). SMTP is the protocol that is
used for communication between the MTAs. A TCP connection is first established
by the client MTA to a server MTA listening on TCP port 25. This is followed by
SMTP commands from the client and responses from the server. A typical SMTP
connection between a client and server MTA is depicted in figure 4.1.

Following is an explanation of the SMTP connection message exchanges:

e The SMTP client establishes a TCP connection with the SMTP server, which

is listening on port 25.

e The client then waits for the “220 READY FOR MAIL” messages from the
server. Upon receipt, the client sends a “HELO” message. The server responds
with an OK message and also identifying itself. At this point, the client can

send the mail commands to the server, in order to transfer the mail contents.

e The mail transaction begins with a “MAIL FROM” command that specifies
the sender address. The server responds with a “250 OK” message in case of
success. The client then issues the “RCPT TO” command that specifies the

recipient address. The server responds with a “250 OK” message if there is no
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error or a “550 No such user here” for a non-existent mailbox. The client issues

multiple “RCPT TO” commands for multiple recipients.

o After all the RCPT commands are acknowledged, the client issues “DATA”
command to inform the server that the client is ready to send the mail message.
Once the server responds with the “354 START MAIL INPUT” message, the

client can transfer the mail contents.

e After the transfer, the client sends a “QUIT” command to terminate the con-
nection. The server responds with a “221 CLOSING CONNECTION” message.
The established TCP connection is then closed.

The most popular implementation of the SMTP protocol is sendmail [12] and is
the most widely deployed mail transfer agent in the Internet. However, several buffer
overflow vulnerabilities have been discovered in the sendmail program. One such
vulnerability is described in the next section 4.1.1.

4.1.1 Attack Description

Buffer Overflow attacks work by filling a buffer with more data than it can hold.
Most of the buffer overflow attacks occur by overflowing a buffer allocated on the
stack, thereby modifying the return address. The modified return address points
back to a code, which is present in the buffer used for the overflow. This causes the
code to be executed as the next instruction. A successful attack typically spawns
a shell for the attacker on the victim machine, even though the attacker does not
have an authorized account on the machine. For an introduction to Buffer Overflow
attacks, refer to Aleph One [61].

A buffer overflow bug was discovered in sendmail version 8.12.10 by Michal Za-
lewski. The specification of this bug is given in the CERT advisory [26]. The vul-
nerability could allow a remote attacker to execute arbitrary instructions with the
privileges of sendmail daemon, which is typically root. The vulnerability exists in

the address parsing code, specifically in the prescan() function, that would allow an
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attacker to write past the end of a buffer stored either on the stack, or the heap.
Thus a specially crafted e-mail message that exploits the vulnerability can be used
to attack an unpatched sendmail daemon.

The attack code was a program obtained from an exploit archive called packet
storm [9]. The code works by overflowing a buffer stored on the stack or heap,
and causing the next instruction to point to the shell code, which spawns a root
shell. The shell code was placed in the “RCPT TO” command of the client, such
that sendmail parses the recipient address. Due to the bug in the address parsing
code, a root shell can be obtained for a successful exploit. However, the attack had
to be performed multiple times for a successful exploit. The attack is successful
when the next instruction points exactly to the location of the shell code placed on
the stack or heap. Thus, multiple attempts are made from the attacker machine
to the victim machine, which is running the buggy sendmail software. While the
attack is taking place, the data source (tcpdump), data processor (TCPtrace) and
the CANDES intrusion detection module are executed to capture the attack.

4.1.2 CANDES Sendmail Buffer Overflow Detection

The CANDES module was trained on normal values for the connection, and port
parameters as discussed in section 3.1.2.1 on port 25 (SMTP). At the end of training,
expected mean and allowable maximum values for the various parameters are obtained
as shown in table 4.1. The table provides the normal values for the ASOQ, and ASOA
connection parameters, and also the NOOC, NOFC, NOP, and NOSC parameters
for port on a particular host, for SMTP protocol. Using these values, the current
parameter value can be classified into one of the anomaly levels: no anomaly, low
anomaly, medium anomaly, or high anomaly. From the table, the ASOQ value is
seen to be significantly large compared to the ASOA value. This is because the mail
contents are sent as questions to the SMTP server, while the answers are success
messages of mail receipt, which tend to be smaller.

The attack was simulated, and CANDES module was fed the attack network data
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Table 4.1 SMTP Protocol Training Parameter Values

Parameter Expected Mean | Allowable Maximum
ASOQ 1502.55 16797.54
ASOA 4.62 47.68
NOOC (per host) 1.59 3.4
NOFC (per host) 0.36 1.2
NOP (per host) 1.15 6.33
NOSC (per host) 0.76 4.45

in real-time as described in previous section 4.1.1. The data source collected the raw
network data, and the data processor processed this data to report the ‘A’, ‘H’ and ‘C’
messages, as described in section 3.1.2.1. The CANDES module reported anomalies
on connections to port 25, and also anomaly for parameters on port 25. Following

are the messages displayed by CANDES intrusion detector:

e Intrusion on Connection: < ServerIP > 25 < ClientI P > 3083 Probability:
0.415735

Intrusion on Connection: < ServerIP > 25 < ClientI P > 3084 Probability:
0.441463

Intrusion on Connection: < ServerIP > 25 < ClientI P > 3085 Probability:
0.462045

Intrusion on Connection: < ServerIP > 25 < ClientI P > 3086 Probability:
0.478511

Intrusion on Connection: < ServerIP > 25 < ClientI P > 3087 Probability:
0.491684
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e Intrusion on Port: 25 Host: < ServerlIP > Probability: 0.452100

e Intrusion on Connection: < ServerIP > 25 < ClientI P > 3089 Probability:
0.502222

e Intrusion on Port: 25 Host: < ServerlIP > Probability: 0.509750

The above messages were displayed during the real-time analysis of the ‘A’, ‘H’,
and ‘C’ messages from the data processor. This shows an advantage of Bayesian
Network technique over previous techniques used for INBOUNDS, which were de-
scribed in section 2.3.4. The previous techniques could detect intrusions only after
the connection closed. In contrast, our CANDES module could detect the anomaly
before connection closure, with a delay of 60 seconds, which is the time interval for
displaying the ‘C’ messages.

Further analysis revealed that an anomaly was reported for the ASOA parameter
for the connections to the SMTP port. As described in section 4.1.1, multiple attack
attempts need to be made for a successful exploit. During these attempts, the ASOA
parameter was found to be anomalous, since the SMTP server returned error mes-
sages to the client such as “User Not Found” for an unsuccessful exploit. However,
the ASOA value was found to be of low anomaly value and hence the initial proba-
bility is not high. But as the same kind of attack was seen repeatedly, the Bayesian
network accumulated the knowledge, and reported higher probability as the attack
progressed. Additionally, anomaly of NOSC parameter on port 25 increased since the
attempts were made from the same host. The Bayesian model described in section
3.2 integrates the anomaly values from both the Connection Behavior node, and its
parameters. Thus, the anomaly for NOSC parameter was combined with the anomaly
for Connection Behavior, resulting in an alert for port 25. The system administrator
can analyze the alerts generated due to connection anomaly, and also network service

anomaly to conclude about the attack and take appropriate action.
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Plot of ASOQ and ASOA for Sendmail Overflow
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Figure 4.2. Sendmail Buffer Overflow Attack Connection Parameter Values

The graph illustrating the anomalous value for ASOA is shown in figure 4.2, and

the anomalous value for NOSC on port 25 is shown in figure 4.3.

4.2 Stealthy Port Scan

There are numerous network scanning tools such as SAINT [10], and Nmap [8] that
help system administrators recognize network-related security problems, and report
the problems without actually exploiting them. These tools use raw IP packets to
determine the hosts that are available on the network, network services that are
running on the hosts, the operating system on the hosts, any firewalls that are being
used, etc. One of the functionalities offered is a port scan [47], where the hosts in a
network are scanned to see if a known vulnerable network service is running on any
of the hosts. An attacker could use port scan functionality to collect, and analyze the

network topology and the vulnerable ports that are open on the hosts in the network.



67

Plot of NOOC, NOP and NOSC for Sendmail Overflow
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Figure 4.3. Sendmail Buffer Overflow Attack Host Parameter Values

Such scans need to be detected as they might indicate an impending attack. However,
the difficulty in detecting the scans is that an attacker can try to masquerade a scan
through various techniques. The techniques might be to perform a slow scan, or to
perform the scan from various machines simultaneously. Such stealthy scans are hard
to detect. We performed a stealthy scan to test the effectiveness of our CANDES
module in detecting such a scan, and the results are presented in section 4.2.2 for a
port scan on Finger network service (port 79) [81].
4.2.1 Attack Description

Most of the network programs offer application services through network daemons.
The daemons open a particular port, and listen for incoming connections. Certain
daemons create a new process for each incoming connection. The new process handles

the connections, and the daemon continues to accept new connections. Finger is one
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such network service that is handled by a daemon called inetd [27]. The daemon
creates sockets on behalf of a number of services including finger, and listens on all
of them simultaneously. When an incoming connection is received on any of these
sockets, inetd accepts the connection and spawns the server specified for this port,
passing the socket across for it to manage. The inetd daemon then returns to listening.
The inetd daemon runs with root privileges.

The Finger protocol is based on the Transmission Control Protocol, using TCP
port 79. This protocol displays useful information about users, such as their full
names, phone numbers, office numbers, etc., which can be used by password crack-
ers to hack into their systems. There are certain other vulnerabilities in the finger
protocol such as Finger Bomb described in [5]. Finger Bomb is a denial-of-service
attack that is achieved by forming a recursive request to the finger service. There are
known buffer overflow vulnerabilities in finger protocol implementation that were ex-
ploited, the well-known exploit being the morris worm attack, described in Hafner et
al. [46]. Since finger is handled by the inetd daemon, which runs with root privileges,
an attacker can obtain root privileges by exploiting a finger vulnerability.

Due to the vulnerabilities in finger implementations, attackers can scan a network
to see if finger port is open on any of the hosts. However, due to security issues with
finger protocol, most of the network administrators either filter traffic to the finger
port, or close the port. In such a case, a reset is sent on the connection made by the
attacker while scanning. For our experiments, we made a stealthy port scan against
port 79, making 2 connections per minute from three attacker hosts simultaneously.
The scan was made onto a particular network, and the packet dumps were collected
and analyzed.

4.2.2 CANDES Port Scan Detection
As discussed in section 4.2.1, finger is a vulnerable network service, and hence

attackers scan networks looking for open finger port. We conducted an analysis using

CANDES module, to test its ability in detecting a stealthy port scan. We trained
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Table 4.2 Finger Protocol Training Parameter Values

Parameter Expected Mean | Allowable Maximum
NOOC 5.65 13.12
NOFC 0.0 0.45
NOP 1.67 0.87
NOSC 0.56 2.13
NOOC (per host) 4.53 11.14
NOFC (per host) 0.0 0.23
NOP (per host) 1.19 4.82
NOSC(per host) 0.35 1.18

the CANDES module on the normal values for the network parameters discussed
in section 3.1.2.1 on port 79. At the end of the training, the expected mean, and
allowable maximum values for the various parameters are obtained, and are shown in
table 4.2. The first four entries are the NOOC, NOFC, NOP, and NOSC parameter
values on all hosts in the network. The last four entries are the NOOC, NOFC, NOP,
and NOSC parameter values for each host in the network. A Finger Port Scan was
made onto a network using Nmap [8], and packet dumps collected.

Following are the alerts reported by the CANDES module:
1. Intrusion on port: 79 Probability: 0.412500
2. Intrusion on port: 79 Probability: 0.456500

3. Intrusion on port: 79 Probability: 0.557700

Analysis of the packet dumps revealed an anomaly on port 79 for NOFC, and

NOSC parameters. An important note is that the firewall on the network on which
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port scan was attempted blocked incoming Finger traffic, and hence those connections
were being reset. This caused the data processor to analyze the connections to the
Finger server as failed connections, which resulted in the anomalous NOFC value.
Also, the anomaly was reported only for the parameters on all hosts and not for
the parameters on each host. Since only one connection is made to each host in the
network, the anomaly was not observed on individual hosts in the network. However,
the total number of connections made to all hosts in the network is high, and hence
the anomaly was observed for parameters on all hosts. An anomaly was also found on
the NOSC parameter, which was due to the multiple connections made from the same
host to the victim network machines. Thus, the overall anomaly is a combination of
the anomalous NOFC and NOSC values, and the probability of anomaly increased as
the previous knowledge is used to provide stronger of evidence of the attack that is
taking place.

The graph illustrating anomalous values for NOFC, and NOSC parameters on all
hosts for port 79 is shown in figure 4.4.

4.3 Apache Buffer Overflow

The World Wide Web (WWW) is the most popular application of the TCP/IP
technology since its inception in 1991 [6]. It provides simplified access to the infor-
mation, and resources on the Internet through web browsers. The protocol that the
Web commonly uses for the client-server interactions between the browser, and server
is the HTTP protocol. HTTP version 1.1 is documented in RFC 2616 [66], and the
previous version 1.0 is documented in RFC 1945 [19]. HTTP operates over TCP
connections, usually using TCP port 80. After a successful connection, the client
transmits a request message to the server, which sends a reply message back. The
request consists of a single line of text that begins with the keyword GET, followed
by the document that is requested. After the server fulfills the request, the connec-

tion is closed. This is the client-server connection paradigm used in HT'TP version
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Plot of NOFC, NOSC and NOP for Finger Port Scan on All Hosts
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Figure 4.4. Finger Port Scan Parameter Values for All Hosts

1.0. However, version 1.1 introduced the concept of persistent connection, where a
client can make multiple requests using the same connection. Though most of the
times the server sends the information to the client, in some cases the client can send
information by submitting a form.
4.3.1 Attack Description

The most popular implementation of a HI'TP web server is the Apache Web Server
[1]. The October 2003 Netcraft Web Server Survey [7] found that more than 64% of
the web sites on the Internet are using Apache. The Apache web server provides
a secure, and efficient open-source HT'TP server for various platforms, implemented
according to the current HTTP standards. Apache uses modules to handle various
client requests, except for transfer of basic static files, since modules allow Apache

to be customized. The mod_mylo [36] is one such module, which allows Apache to
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log HT'TP requests to a MySQL database. However, a security vulnerability was
discovered in the logging section of the code [54]. An insufficient bounds checking
on a buffer in the code could allow a remote attacker to overwrite saved data on the
stack, and execute commands under the privileges of the Apache server daemon. The
exploit is publicly available on the Web [53].

The exploit code constructs a HI'TP GET request containing the shell code, and
the return address to be placed on the stack. The return address causes the next
instruction to point to the shell code on the stack when the vulnerability is exploited.
As for most of the buffer overflow attacks, the return address needs to be guessed
correctly in order to successfully execute the shell code. The exploit code performs
a brute force attack, making connections to the victim HTTP server with various

guessed return addresses.

4.3.2 CANDES Apache Buffer Overflow Detection

The CANDES module was trained on normal values for the connection, and port
parameters as discussed in section 3.1.2.1 on port 80 (HTTP). At the end of train-
ing, expected mean, and allowable maximum values for the various parameters are
obtained as shown in table 4.3. The table provides the normal values for the ASOQ),
and ASOA connection parameters, and also the NOOC, NOFC, NOP, and NOSC
parameters for port on a particular host for SMTP protocol. From the table, we can
observe that the ASOA value is larger than ASOQ value. This is because the answers
to HTTP requests are web pages, while the questions are typically GET requests.
However, there might be data flow from client to server, in which case the ASOQ
value is also high.

Apache HTTP server was installed along with the buggy mod_mylo module on
the victim machine. The attack was then performed using the exploit code from the
attacker machine onto the victim HTTP server. The data source (tcpdump), data
processor (TCPtrace), and the CANDES intrusion detection module were executed

while the attack was taking place. The ‘A’, ‘H’, and ‘C’ messages reported by the data



Table 4.3 HTTP Protocol Training Parameter Values

Parameter Expected Mean | Allowable Maximum
ASOQ 1546.67 12885.35
ASOA 7021.88 85134.48
NOOC (per host) 1.38 9.48
NOFC (per host) 0.67 3.72
NOP (per host) 1.85 16.68
NOSC (per host) 2.51 15.67
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processor were analyzed by the CANDES module. The CANDES module detected

the attack in real-time and reported anomalies on port 80. Following are the messages

displayed by CANDES intrusion detector:

e Intrusion on Connection: < ServerIP > 80 < ClientIP > 1560 Probability:

0.415735

Intrusion on Port: 80 Host: < ServerlP > Probability: 0.463100

Intrusion on Port: 80 Host: < ServerI P > Probability: 0.572000

Intrusion on Connection: < ServerIP > 80 < ClientI P > 1562 Probability:
0.462045

Intrusion on Connection: < ServerIP > 80 < ClientI P > 1564 Probability:
0.502222

Intrusion on Connection: < ServerIP > 80 < ClientIP > 1566 Probability:
0.522793
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Intrusion on Connection: < ServerIP > 80 < ClientIP > 1570 Probability:

0.557946

e Intrusion on Connection: < ServerIP > 80 < ClientIP > 1594 Probability:
0.649495

e Intrusion on Connection: < ServerIP > 80 < ClientI P > 1596 Probability:
0.650846

e Intrusion on Port: 80 Host: < ServerIP > Probability: 0.705980

The displayed messages do not include all the connection anomaly messages, since
numerous connections were made for the brute force attack, all of which cannot be
shown. Further analysis revealed that anomalies were found for ASOQ parameter on
connections to port 80. This was because the shell code was sent in the HTTP GET
requests present in the network packets to port 80. In addition, anomalies were found
for NOOC, NOP, and NOSC parameters on port 80. This is due to the fact that a
brute force attack was conducted by making numerous connections, and trying the
exploit with various return addresses in the HTTP requests, which caused anomalies
in NOOC, and NOP parameters. Since the attack was made from the same host,
the NOSC parameter was also found anomalous. Since, most of the parameter values
exhibited anomaly, the combined probability of anomaly was found to be high. This
shows an advantage of Bayesian Networks, in that if multiple parameters display
anomalies, the probability of attack is higher, aiding faster detection of an attack.

The graph illustrating the anomalous values for ASOA is shown in figure 4.5, and
the anomalous values for NOOC, NOSC, and NOP on port 80 is shown in figure 4.6.

4.4 Process Table Attack

The process table attack description was first posted to the bugtraq mailing list
in 1999 [35]. It has been described as a DOS attack that exploits network services,

which create new processes to handle incoming client connections.
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Plot of ASOQ and ASOA for Apache Overflow
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Figure 4.5. Apache Buffer Overflow Connection Parameter Values

4.4.1 Attack Description

Whenever a client connects to a network server, the server dedicates certain re-
sources to the client, which include CPU, bandwidth, memory etc. Certain network
server implementations include the creation of a new process, which is stored in the
process table. Some of the network servers check the resource availability, or the max-
imum number of allowable connections, based on which a new connection is accepted.
However, certain buggy implementations such as those of finger protocol (port 79),
and sendmail (port 25) do not make such checks, and hence are prone to process table
attacks.

A process table is a data structure that stores process information such as status of
process, its priority etc, [27]. Information regarding processes is saved into this table
during context switch. The table might have a finite size that imposes a restriction

on the number of processes that a user can create. This can be exploited by an
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Plot of NOOC, NOP and NOSC for Apache Overflow
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Figure 4.6. Apache Buffer Overflow Host Parameter Values

attacker to launch an attack against a network service that creates a new process for
an incoming connection. An attacker can open numerous connections simultaneously
so that the process table for that system is filled up, causing the system to accept no
more new process requests. Here, we present a process table attack launched against
sendmail.
4.4.2 CANDES Process Table Attack Detection

One of the network services that is vulnerable to a process table attack is sendmail.
During the training phase of CANDES, the expected mean and allowable maximum
parameter values on port 25 are calculated as described in section 3.3.1. The results
of the training phase are shown in table 4.4.

The first four entries in the table are the NOOC, NOFC, NOP, and NOSC param-
eter values on all hosts in the network. The last four entries are the NOOC, NOFC,
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Table 4.4 SMTP Training Parameter Values

Parameter Expected Mean | Allowable Maximum
NOOC 5.93 12.94
NOFC 1.91 2.42
NOP 12.38 34.08
NOSC 1.46 6.82
NOOC (per host) 1.59 3.4
NOFC (per host) 0.36 1.2
NOP (per host) 1.15 6.33
NOSC (per host) 0.76 4.45

NOP, and NOSC parameter values for each host in the network. A simulation attack
was carried out for about six minutes on sendmail server by opening numerous con-
nections to fill the process table. The packet dumps were collected during the attack,
and later analyzed as described in section 3.3.4. The analysis revealed an anomaly
on port 25 for NOOC, and NOSC parameters. The alert messages generated by our

module in the six time intervals are shown below:

e Intrusion on port: 25 Probability: 0.443750

Intrusion on Port: 25 Host: < HostIP > Probability: 0.417500

e Intrusion on port: 25 Probability: 0.506250

Intrusion on Port: 25 Host: < HostI P > Probability: 0.456500

e Intrusion on port: 25 Probability: 0.685000

Intrusion on Port: 25 Host: < HostI P > Probability: 0.579700
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e Intrusion on port: 25 Probability: 0.793000

Intrusion on Port: 25 Host: < HostI P > Probability: 0.678260

e Intrusion on port: 25 Probability: 0.853400

Intrusion on Port: 25 Host: < HostI P > Probability: 0.757108

e Intrusion on port: 25 Probability: 0.917720

Intrusion on Port: 25 Host: < HostI P > Probability: 0.820186

CANDES analysis uses previous knowledge so that a previously seen attack strength-
ens the current evidence, leading to an increase in the probability of attack. Thus, the
probability of process table attack increases from around 36% to 82% on the particular
host. An implication of this Bayesian Network property is that a high probability of
intrusion is reported only after certain time intervals of reporting anomalous parame-
ter values. Thus, knowledge is acquired gradually about an attack before sending an
alarm of high probability to the intrusion decision module. However, we can observe
that the incremental updating of the anomaly probability is also not slow enough,
which helps in taking the necessary action against the intrusion at the appropriate
time. It had taken at most six minutes for our module to report a high probability
of intrusion.

The graphs illustrating the anomalous values for NOOC, and NOSC parameters

on all hosts and a particular host are shown in figures 4.7 and 4.8.

4.5 Neptune (SYN Flood Attack)

In the year 2000, attacks were made against web sites like Yahoo, eBay, and
E Trade causing disruption of their services [34]. These attacks exploited the TCP
connection establishment mechanism to launch DOS attacks that exposed the Internet
to a whole new range of vulnerabilities. The significant DOS attack that was launched
is the SYN flood attack, where spoofed TCP SYN packets were sent to a listening
TCP port. A CERT advisory was published in 1996 [25] about TCP SYN flooding,
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Plot of NOOC, NOP and NOSC for SMTP process table attack to all hosts

SMTP attack traffic *
SMTP normal traffic X

NOSC

400
350 x
300
250
200
150
100

50

Figure 4.7. Process Table Attack Parameter Values on All Hosts

and IP spoofing attacks. Numerous remedies were proposed to encounter the attack,
yet many TCP-based network services remain susceptible to the SYN flood attack.
4.5.1 Attack Description
e The Transport Control Protocol is a connection oriented, reliable, and in-
sequence delivery transport protocol. This is the most widely used protocol
for the Internet, used by various network services including mail (SMTP), se-
cure shell (SSH) and Hyper Text Transfer Protocol (HTTP). RFC 793 [15]
provides the header formats, and connection establishment paradigms for TCP.
TCP is a connection oriented protocol and uses handshaking to establish and

close a connection. When a system (client) attempts to establish, or close a
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Plot of NOOC, NOP and NOSC for SMTP process table attack to a particular host
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connection with the system that provides a particular network service (server),
the client and server exchange a set of messages. This handshaking for a nor-
mal connection setup and tear down is depicted in figure 4.9. In the figure, the
SYN, ACK, and FIN represent the corresponding flags that are turned on in
the TCP header while sending the packet. The SYN, and FIN packets delimit

the beginning, and end of each connection.

SYN Flood attack exploits the weakness in the connection setup process when
the server sends an acknowledgment (SYN-ACK), and waits for an ACK from
the client. Such a connection is termed half-open, and TCP servers typically

have a data structure that keeps track of such pending connections. This data
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structure might be of finite size, causing the structure to fill up when numerous
half-open connections are present. This causes the network service to be denied
to other legitimate users. Most TCP service implementations impose a relatively
long timeout period before incomplete connections are cleared out from the data

structure, and hence are vulnerable to the attack.

During a SYN Flood attack, the attacker sends a large number of SYN packets
without the corresponding ACK packet response to the victim’s SYN/ACK
packets. The easiest way to accomplish this is to spoof the IP address of the
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Table 4.5 SSH Training Parameter Values

Parameter Expected Mean | Allowable Maximum
NOOC 10.4 20.0
NOFC 0.25 1.54
NOP 39.69 483.24
NOSC 7.48 10.69
NOOC (per host) 1.53 5.9
NOFC (per host) 0.0 0.54
NOP (per host) 6.38 90.26
NOSC (per host) 0.94 3.62

machine from which the SYN packets appear to be sent, so that the SYN/ACKs
are sent to an unreachable machine. During the attack, the victim’s connection

data structure fills up, thereby denying legitimate access to the service.

4.5.2 CANDES SYN Flood Attack Detection

One of the network services that is vulnerable to a syn flood attack is SSH. The
CANDES module was trained on the normal values for the network parameters dis-
cussed in section 3.1.2.1 on SSH port (port 22). At the end of training, the expected
mean, and allowable maximum values for the various parameters are obtained as
shown in table 4.5. The first four entries are the NOOC, NOFC, NOP, and NOSC
parameter values for all hosts in the network. The last four entries are the NOOC,
NOFC, NOP, and NOSC parameter values for each host in the network.

A SYN flood attack was simulated on port 22, and the packet dumps collected
by the data source, which were analyzed by the CANDES probability calculator

module as described in section 3.3.4. An anomaly was reported on port 22 for NOFC,
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and NOSC parameters by CANDES, which also calculated the probability of attack.
Anomaly was reported for parameters per port on all hosts with the corresponding
probability as well as parameters per port to a single host with the corresponding
probability. The attack spanned for two time intervals (60 seconds) of our intrusion
analysis module. The messages that our intrusion analysis module displayed in the

three intervals are:

e Intrusion on Port: 22 Host: < ServerIP > Probability: 0.450000

Intrusion on port: 22 Probability: 0.507433

Intrusion on Port: 22 Host: < Serverl P > Probability: 0.547462

Intrusion on port: 22 Probability: 0.606833

Intrusion on Port: 22 Host: < Serverl P > Probability: 0.579446

Intrusion on port: 22 Probability: 0.699717

As we can see, the probabilities of intrusion are reported, and none of them is
100%. This behavior is due to the fact that we are combining four parameter values
to obtain an intrusion decision. This implies that unless all parameters exhibit highly
anomalous values, the probability is not a large value. Hence, fluctuation in one of
the parameter values does not immediately raise an alarm of high probability. Also,
the probability of attack increases as the attack continues in successive time intervals.
This is inherent in the Bayesian Network algorithms as it uses previous knowledge
to estimate current knowledge. These properties help reduce the number of false
alarms reported to the intrusion decision module. However, this does not imply that
probabilities increase at a slow pace. This fact was illustrated for the Process Table
attack described in section 4.4.

The graphs illustrating the anomalous values for NOFC, and NOSC are shown in

figures 4.10 and 4.11, for parameters on all hosts, and on each host respectively.
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5. Conclusions and Future Work

In this chapter, we present the conclusions, advantages and disadvantages of our
approach. We also analyze the performance of CANDES intrusion detection system
that uses Bayesian Networks, and compare the system with the previous intrusion
detection system that used SOM approach. We then provide future directions to our

research.

5.1 Conclusions

This section presents an overview of CANDES module approach to intrusion de-
tection, and discusses the advantages and disadvantages of our approach.
5.1.1 Overview

The goal of our research is to effectively detect intrusions, for which we have de-
veloped a system called CANDES that uses Bayesian Network technique. A Bayesian
Network is represented by a tree, the nodes being the parameters of the input domain,
and links between the nodes showing the relationship between the parameters. Each
node possesses discrete values, which are interpreted as probabilities of the node tak-
ing those values. The quantitative relationships between the nodes are represented
by Conditional Probability Tables (CPT) that link a child to a parent. Each entry of
the CPT gives the probability of the child node possessing a particular value, given
its parent node value.

The data input streams containing the raw network data are captured and pro-
cessed, which are reported as six parameters: Number Of Open Connections (NOOC),
Number Of Failed Connections (NOFC), Number Of Packets (NOP), Number Of
Same-client IP Connections (NOSC), Average Size Of Questions (ASOQ), and Aver-
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age Size Of Answers (ASOA). These parameters are calculated either for connections
to a network service, or for network services running on a monitored host or network.

The six reported parameters are represented as leaf nodes in the Bayesian net-
work, and the values of these nodes are directly observable. The internal nodes are
Network Service Behavior and Connection Behavior, which are hypothesis nodes, and
whose values are used to determine the presence of an anomaly. When the leaf nodes
obtain new values, the internal node values are calculated using Bayesian Network
algorithms. If the internal node values are anomalous, an intrusion is flagged.

5.1.2 Advantages and Disadvantages

The Bayesian Network module for intrusion detection in INBOUNDS (CANDES)
uses anomaly-based detection method, and provides the capability of detecting varied
kinds of attacks such as Denial-Of-Service (DOS), Port Scan, and Buffer Overflow at-
tacks. The module detects attacks, where the network parameter values on a network
service, or on the connections to a network service for which the Bayesian Network
was trained, are significantly different from the normal values. An advantage of using
the Bayesian Network technique is the detection of attacks in real-time. Previous
approaches for anomaly detection in INBOUNDS could detect intrusions only after
the connection closed.

Bayesian Networks provide the ability to combine multiple network parameter
values to detect intrusions. Since the relationships are taken into consideration while
calculating the overall anomaly measure, the probability of intrusion depends on the
number of parameters that exhibit anomaly. Another property of Bayesian Networks
is that they combine previous knowledge with current evidence to calculate the belief
in a hypothesis. Hence, a recurring attack triggers an attack faster than a novel attack
since the previous knowledge provides strong evidence of the ongoing attack. Also,
for a novel attack the probability of attack is gradually incremented until sufficient
evidence is accumulated, in order to trigger an alert of high probability.

However, there are certain limitations to our approach. The Bayesian Network is
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trained for certain network services, and hence can capture anomalies seen on these
particular network services only. Intrusions can be detected only when the network
parameters that we use, exhibit anomalous values. For example, certain attacks such
as port sweeps affect all the network services to a particular host, without any anomaly
in the individual network services. Such attacks are not captured by the parameters
that we use and go unnoticed, leading to a false negative. Also, we considered simple
relationships between parameters without analyzing their exact dependencies. This
might trigger a false positive, or a false negative when unrelated parameter values are
combined to obtain the anomaly measure.

The parameters that we use are categorized into four different anomaly levels. We
defined ranges for these levels manually at the end of the CANDES training phase.
An error in this range definitions might lead to either a false positive, or a false
negative. Our approach considers the high activity on a network service as one of
the criteria to classify anomalies. However, the time of the day, or day of the year
are not considered. This might trigger false positives when there is a sudden spike in
network activity, which might be normal during busy hours of the day, or busy days

of the year.

5.2 Real-time Performance of CANDES

CANDES is a network-based intrusion detection system. A design issue while
constructing such a system is its ability to handle large amounts of network traffic,
without significant performance loss. Hence, we analyzed the performance of CAN-
DES intrusion detection system in handling varying amounts of network data. The
analysis was performed by capturing network data dumps of various sizes, and running
the CANDES system on these dumps. The dumps were collected using TCPurify,
which is a tool similar to tcpdump but with focus on privacy. A brief overview of
TCPurify is given in section 2.3.2. The off-line analysis provided an estimate of the

real-time performance of CANDES, and the results are presented in Appendix A.
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5.3 Comparison With SOM Approach
We compare the performance of CANDES with the SOM-based approach de-

scribed in section 2.3.4.2. The criterion for comparison is the capability of detecting
attacks. We analyzed if the SOM approach could detect the attacks presented in
this thesis. SOM approach uses the existing data processor, which reports network
parameters only for each active network connection. Hence, the SM'TP process table
and SYN flood DOS attacks, and finger port scan attack could not be detected by
the SOM approach. This is not a drawback of the SOM approach but is due to the
limited processing done by the existing data processor.

However, we analyzed the SOM model for the two buffer overflow attacks on
sendmail, and apache. The SOM model was trained on the four protocols used for
our research: SSH, SMTP, FINGER, and HTTP, using the same training data sets
that were used for CANDES approach. The dumps corresponding to sendmail and
apache attacks were then fed to the SOM. SOM model uses a threshold of 2 units of
standard deviation (SD) from the trained SOM i.e., if the attack value is greater than
2 units of SD from the trained SOM, an intrusion alert is reported. It was observed
that SOM missed both the attacks. For the sendmail attack, the ASOA value was
anomalous, but the level of anomaly was low. Hence, the value did not fall within the
2 units threshold, causing a false negative. In contrast, for the CANDES approach
the low probability of anomaly was combined with the ASOA anomaly, causing the
probability of intrusion to eventually increase to a value when an alert was reported.
Similar explanation can be given for the missed HTTP attack, which exhibited a low
anomaly on ASOQ parameter. CANDES module could detect the attack due to its
ability to use previous knowledge to update its current evidence for an ongoing attack.
Additionally, CANDES module has the capability of detecting attacks in real-time in

contrast to SOM approach that could detect attacks only after the connection closed.
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5.4 Future Work

The network parameters used by CANDES possess four discrete values: no anomaly,
low anomaly, medium anomaly, and high anomaly. The ranges for these discrete val-
ues were defined manually, and hence might be error-prone. A scope for future work
would involve adopting an automated, adaptive, and error-free technique to dynami-
cally define the ranges. The simple relationships between the parameters need to be
analyzed, and encoded into the structure of the Bayesian Network. This can reduce
false positives by not combining anomaly measures of unrelated parameters.

The CANDES module uses the NOOC, NOFC, NOP, NOSC, ASOQ, and ASOA
parameters to capture anomalies in network data. However, these parameters might
not capture all kinds of attacks. Hence, the need for new parameters has to be an-
alyzed, and the parameters included for intrusion analysis by CANDES. One way of
achieving this is to apply feature selection algorithms such as genetic algorithms to
search through the parameter input space, and find the optimal subset of parame-
ters needed to successfully detect all kinds of intrusions. As stated previously, the
parameters do not capture certain attacks such as port sweeps. However, CANDES
module can be adapted for detecting such sweeps by introducing new parameters,
which capture the behavior of multiple network services on a particular host.

The CANDES module uses Bayesian Network technique to store previous knowl-
edge about attacks. This property helps detect recurring attacks more effectively.
However, this runtime state information is lost for every new execution of the CAN-

DES module. Hence, a technique to retain the state has to be proposed, and adapted.
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A. Real-time Performance of CANDES

We analyzed the real-time performance of CANDES by capturing data dumps of
varying sizes, and performing an off-line analysis. The results of the off-line analysis
are presented in table A.1. The Bayesian Network for CANDES was trained for
four different network services: SSH, SMTP, FINGER, and HTTP. The dump files
included various kinds of traffic, and the data processor processed all the traffic.
However, since the Bayesian Network was built for only four protocols, the intrusion
detection module analyzed processed data belonging to only these four protocols. The
communication between the two components was through pipes.

The various fields in table A.1 are:

e Duration: Duration for which dumpfile was captured

e Bytes: Total number of bytes captured in the dumpfile

e Packets: Total number of packets captured in the dumpfile

e Data Rate: Rate at which data was observed (in Mbps) during the capture
e Conns: Total number of connections captured in the dumpfile

e Proc Time: Total amount of time for processing the dumpfile, and analyzing

the processed data using CANDES

e Proc Rate: Rate at which data was processed (in Mbps)

It can be observed that the processing rate varies from 69.64 Mbps to 334.85
Mbps, which varies with the number of packets and connections, which is directly

related to the size of the dumpfile.



Table A.1 Analysis of CANDES Performance
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Duration Bytes Packets | Data Conns. | Proc. Proc.
Rate Time Rate
(Mbps) (sec) (Mbps)

26 Feb 2004

(10 mins) 46,220,753 43,226 | 0.59 1,029 | 1.05 334.85

26 Feb 2004

(20 mins) 122,373,562 136,656 | 0.79 2,149 | 2.78 335.84

26 Feb 2004

(40 mins) 287,014,150 | 263,621 | 0.91 4,138 | 6.27 349.24

26 Feb 2004

(1 hour) 444,241,755 | 459,232 | 0.94 5,891 | 42.18 | 80.35

26 Feb 2004

(2 hours) 931,131,307 | 961,374 | 0.99 10,982 | 99.82 | 7T1.17

26 Feb 2004

(3 hours) 1,311,398,262 | 1,389,888 | 0.93 16,349 | 143.67 | 69.64

The components of CANDES are the data processor, which is the Bayes module
for TCPtrace, and intrusion detection module, which uses Bayesian Network to de-
tect intrusions. The data processor processes the network data, and reports certain
network parameters as ‘A’, ‘H’, and ‘C’ messages. These messages are analyzed by
the intrusion detection module for detecting intrusions. The runtimes for each of

these components for the various dump files is presented in table A.2.



Table A.2 Analysis of CANDES Components

Duration Pkts | Conns. | TCPtrace Candes
(sec) (sec)

(pkts/sec) | (pkts/sec)

(conns/sec) | (conns/sec)

26 Feb 2004 0.82 0.15
(10 mins) 43,226 1,029 52,714.63 | 288,173.33
1,254.87 6,360

26 Feb 2004 2.16 0.4
(20 mins) 136,656 2,149 63,266.67 341,640.0
994.9 5,372.5

26 Feb 2004 4.76 0.94
(40 mins) 263,621 4,138 55,382.56 | 280,447.87
869.33 4,402.13

26 Feb 2004 36.7 1.57
(1 hour) 459,232 5,891 12,513.13 | 292,504.46
160.52 3,752.23

26 Feb 2004 93.78 3.56
(2 hours) 961,374 | 10,982 10,251.38 | 270,048.87
1171 3,084.83

26 Feb 2004 130.65 7.5
(3 hours) 1,389,888 | 16,349 10,638.25 185,318.4
125.14 | 2,179.87
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The various fields in table A.2 are:

e TCPtrace: The module that processes the network dumpfile

e Candes: The module that used Bayesian Network for analyzing the processed

data
e Pkts/sec: Rate at which packets are analyzed by a module

e Conns/sec: Rate at which connections are analyzed by a module

It can be observed that major part of the processing time is consumed by the data
processor. The processing rates for both the modules decrement as the number of

packets, and connections increase.



