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Chapter 1

Preliminaries

In this dissertation R will stand for a noncommutative and associative ring with

identity and all rings considered will be as such. Our modules are unitary right

modules unless otherwise specified. RR (RR) stands for R considered as a right

(left) R-module over itself. For all the unproved basic properties in this section,

the reader may refer to [2], [13], [24], [26]. Also note that, throughout the text,

the bold type letters N,Q,R and C will denote the sets of natural, rational, real

and complex numbers respectively.

For two right R-modules M and N , HomR(M, N) denotes the set of R-

homomorphisms from M to N , and EndR(M) denotes the set of R-endomorphisms

of M . A monomorphism f : M → N is said to split if its image Im(f) is a direct

summand of N . Similarly, if f is an epimorphism, then it is said to split if its

kernel Ker(f) is a direct summand of M . Let Ai (iεI), A and B be submodules of

M . We will use the notation
∑

iεI Ai to denote the sum of Ai, i.e. the submodule
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of M generated by Ai. Also A⊕B and
⊕

iεI Ai stand for the direct sum of A and

B, and the direct sum of the submodules Ai, respectively. We will use the same

notation for arbitrary direct sums of modules, where the context will reflect the

distinction clearly. For a cardinal I, M (I) means a direct sum of I-copies of M .

N is called an essential submodule of M if N intersects nontrivially with any

nonzero submodule of M . The socle of M is the sum of all simple submodules

of M and is denoted soc(M). It is also equal to the intersection of all essential

submodules of M . N is said to be a small submodule of M if for any submodule

A of M , N + A = M implies A = M . The radical of M is the intersection of all

maximal submodules of M and it is denoted rad(M). If M contains no maximal

submodules, rad(M) is then defined to be equal to M . It is well known that

rad(RR) and rad(RR) are both equal to the Jacobson radical J(R). Also, rad(M)

coincides with the sum of all small submodules of M . If M is finitely generated,

then rad(M) itself is a small submodule of M .

Z(M) denotes the submodule of M consisting of the elements of M whose

annihilators are essential right ideals of R, and it is called the singular submodule

of M . Z2(M) is the submodule of M containing Z(M) with Z2(M)/Z(M) =

Z(M/Z(M)). Note that Z(M/Z2(M)) = 0. It is clear that Z(RR) and Z2(RR)

are ideals of R.

A nonzero module M is said to be (directly) indecomposable if its only direct

summands are 0 and M . A nonzero module M is called a uniform module if every

nonzero submodule of M is essential in M . We say that M has finite uniform
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(Goldie) dimension if it does not contain a direct sum of infinitely many nonzero

submodules, otherwise M is said to have infinite uniform dimension. If M has

finite uniform dimension, then there exists a smallest finite number n such that M

does not contain a direct sum of more than n nonzero submodules. The number n

is then called the uniform (Goldie) dimension of M . M has uniform dimension n

if and only if there exists a direct sum of n uniform submodules which is essential

in M . Any essential extension of M has the same uniform dimension as M .

For two submodules A and B of M , B is said to be a complement in M of A

if B is a maximal element in the set of submodules of M having zero intersection

with A. This is equivalent to the condition that A ∩ B = 0 and (A ⊕ B)/B is

essential in M/B. If C is a submodule of M with A ∩ C = 0, there exists, by

Zorn’s Lemma, a complement B in M of A containing C. A is called a (essentially)

closed submodule of M if it is not contained as a proper essential submodule of

any other submodule of M . Closed submodules and complements in M coincide.

M is said to be N -injective if every homomorphism f from a submodule A of

N to M can be extended to some element of HomR(N,M). For instance M is

N -injective if N is a semisimple module. If M is N -injective then M is A-injective

and N/A-injective for any submodule A of N . M is called a quasi-injective module

if it is M -injective and an injective module if it is N -injective for every module

N . It is known that M is an injective module if and only if M is RR-injective

(Baer’s criterion). E(M) denotes the injective hull of M . Similarly to the injective

hull, for any M , there exists a minimal quasi-injective extension (unique up to



11

isomorphism), called the quasi-injective hull M̂ of M . More precisely we have

M̂ = Tr(M,E(M)), where Tr(M,E(M)) =
∑{f(M)|f : M → E(M)} is the

trace of M in E(M). M is quasi-injective iff M = M̂ iff M is a fully invariant

submodule of E(M). The proofs of the statements in this paragraph and other

details about N -injectivity can be found in [27].

The Loewy series (or socle series) of a module M is defined as the ascending

chain

0 = S0(M) ⊆ S1(M) ⊆ ... ⊆ Sα(M) ⊆ Sα+1(M) ...,

where Sα+1(M)/Sα(M) = soc(M/Sα(M)) for each (non-limit) ordinal α ≥ 0,

and Sα(M) =
⋃

0≤β<α Sβ(M) for each limit ordinal α.

M is called a semi-Artinian module if every nonzero factor module of M has

essential socle. M is a semi-Artinian module if and only if Sα(M) = M for some

ordinal α ≥ 0 (see [7, 3.12]). A ring R is called a right semi-Artinian ring if RR

is semi-Artinian, equivalently, if every right R-module has essential socle. R is a

local ring if J(R) is its largest proper right (left) ideal or, equivalently, if R/J(R)

is a division ring. R is a semilocal ring if the factor ring R/J(R) is semisimple

Artinian. R is called a semiperfect ring if it is a semilocal ring and its idempotents

lift modulo J(R). R is called a right perfect ring if it is a left semi-Artinian ring

containing no infinite set of orthogonal (nonzero) idempotents or, equivalently, if

every descending chain of cyclic left ideals terminates. Right/ left perfect rings
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are semiperfect and obviously, local rings are both semilocal and semiperfect.

R is called a QF (quasi-Frobenius) ring if R is right and left self-injective and

Artinian. This is equivalent to the condition that R is a right self injective ring

which is right or left Noetherian.

A module M is called a uniserial module if all submodules of M are linearly

ordered by inclusion. R is called a serial ring if both RR and RR are direct sums

of uniserial submodules.

Throughout the text, for any module M and xεM , annR(x) will stand for

the annihilator of x in R. In case M = R, annR(x) will always denote the right

annihilator of x in R.

1.1 CS modules

In this section we give the definition of CS modules and some examples which mo-

tivate the open questions considered in this dissertation. Consider the following

conditions on a module M :

C1 : Every closed submodule of M is a direct summand of M , equivalently

every submodule of M is essential in a direct summand of M ,

C2 : Every submodule of M isomorphic to a direct summand of M is itself a

direct summand of M ,
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C3 : If A and B are direct summands of M with A ∩ B = 0, then A ⊕ B is

also a direct summand of M .

A module M satisfying C1 is called a CS module. If M satisfies both C1 and C2,

then it is called a continuous module. C2 implies C3, and a module satisfying both

C1 and C3 is called a quasi-continuous module. Uniform modules are precisely the

indecomposable CS modules. Also, if M is a uniform continuous module then

EndR(M) is a local ring. For any continuous module M with S = EndR(M),

J(S) consists of the R-endomorphisms of M with essential kernel. In particular

for a right continuous ring R, we have J(R) = Z(RR). See [27] and [7] for proofs

of the above statements and other details about CS modules.

CS modules have been extensively studied by many authors in the last three

decades. The three types of modules defined above are generalizations of injective

modules. For further generalizations of these concepts the reader may refer to [9],

[10], [31] and [32]. The following hierarchy holds and is strict:

Injective =⇒ quasi-injective =⇒ continuous =⇒ quasi-continuous =⇒ CS.

We refer the reader to [27] for counterexamples to the reverse implications in

the above hierarchy.

Contrary to injective modules, direct sums of CS modules may not be CS.
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Example 1.1.1 The Z-modules Z/pZ and Z/p3Z are both uniform, hence CS,

but Z/pZ⊕ Z/p3Z is not CS (see [7, p.56]).

Example 1.1.2 Zn is a CS Z-module for each n by [7, Corollary 12.10], but

Z(N) is not CS, since if it were, then we would obviously have an epimorphism

f : Z(N) → Q with nonessential kernel. Then by CS property, Ker(f) is essential

in some direct summand K of Z(N). Hence Q ∼= K/Ker(f) ⊕ T for some direct

summand T of Z(N). Since Q is nonsingular, K = Ker(f). It is now easy to see

that Q embeds in Z, which is a contradiction.

M is called (countably) Σ-CS or Σ-(quasi-)injective if every (countable) direct

sum of copies of M is CS or (quasi-)injective. For any property (P) of modules, a

ring R is said to be a right (P)-ring if the module RR has the property (P). M is

Σ-(quasi-)injective if and only if it is countably Σ-(quasi-)injective. However, not

every countably Σ-CS module is Σ-CS. Before giving an example separating these

two conditions, we give a definition: A ring R is called (von Neumann) regular if

for each element aεR, there exists some xεR such that axa = a. This is equivalent

to the condition that every cyclic (or finitely generated) right ideal of R is a direct

summand of RR. For a continuous module M with S = EndR(M), S/J(S) is a

regular ring (see [27, Theorem 3.11]).

Example 1.1.3 A regular ring R is right countably Σ-CS if and only if it is right

self-injective (Dung and Smith [8, Proposition 3]). In this case, R is right Σ-CS

if and only if it is semisimple Artinian. Consider, in particular, R = End(VK),
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where VK is an infinite dimensional vector space over a field K. Then, R is a right

countably Σ-CS ring which is not right Σ-CS.

1.2 Some useful results

In this section we give some known results which we will use or cite throughout the

dissertation. The proofs of the results with no references specified can be found

in [2], [13], [24], or [26]. The following is a key lemma.

Lemma 1.2.1 ([7, Lemma 7.5]) Let M and N be two modules and X = M ⊕N .

The following conditions are equivalent:

(i) M is N -injective;

(ii) For every submodule A of X with A ∩M = 0, there exists a submodule K

of X containing A such that M ⊕K = X.

A family {Mi|iεI} of modules is said to have the property (A2) if, for any

xεMi(iεI) and mkεMik for distinct ikεI(kεN) with annR(x) ⊆ annR(mk) for all k,

the ascending sequence
⋂

k≥n annR(mk) becomes stationary.

Proposition 1.2.1 ([27, Proposition 1.18]) Let M =
⊕

iεI Mi be a direct sum.

The following conditions are equivalent:

(i) M is quasi-injective;

(ii) Mi is Mj-injective for any i, jεI and (A2) holds.
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Proposition 1.2.2 (Azumaya) Let M =
⊕

iεI Mi be a direct sum of indecom-

posable modules Mi with local endomorphism rings. Let M = A⊕ B where B is

indecomposable. Then A⊕Mj = M for some jεI, whence B ∼= Mj.

Proposition 1.2.3 The following conditions are equivalent for a ring R:

(i) R is right Noetherian;

(ii) Every injective right R-module is Σ-injective;

(iii) Every injective right R-module is a direct sum of indecomposable submod-

ules;

(iv) Every countable direct sum of injective hulls of simple modules is injective.

Proposition 1.2.4 The following conditions are equivalent for a ring R:

(i) R is right Artinian;

(ii) Every injective right R-module is a direct sum of injective hulls of simple

submodules.

Proposition 1.2.5 M is Σ-(quasi-)injective if and only if it is countably Σ-(quasi-

)injective.

Proposition 1.2.6 R is a QF ring if and only if RR is (countably) Σ-injective.

Theorem 1.2.1 (Okado [28]) A ring R is right Noetherian if and only if every

CS right R-module is a direct sum of uniform modules.
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Proposition 1.2.7 (Dung [5, Corollary 3.6]) Let M =
⊕

iεI Mi where Mi are

indecomposable quasi-injective modules. The following conditions are equivalent:

(i) M is quasi-injective;

(ii) Mi is Mj-injective for all distinct pairs of indices i, jεI and every uniform

submodule of M is essential in a direct summand of M .

Proposition 1.2.8 (Dung [6, Proposition 3.9]) Let R be a right Noetherian ring.

Then every CS right R-module is Σ-CS if and only if every uniform right R-module

is quasi-injective.

Note that under the conditions of the above proposition, every uniform right

R-module is in fact Σ-quasi-injective (Proposition 1.2.1).

Proposition 1.2.9 (Dung [6, Theorem 2.4]) A direct sum M =
⊕

iεI Mi of mod-

ules Mi with local endomorphism ring is CS if and only if the direct sum of every

countable subfamily of {Mi|iεI} is CS.

It is well known that every Σ-(quasi-)injective module is a direct sum of uniform

submodules. The following result improves this considerably. First note that ℵ1

stands for the first uncountable cardinal and M is said to be ℵ1-Σ-CS if M (ℵ1) is

CS.

Theorem 1.2.2 (Gómez Pardo and Guil Asensio [15, Theorem 2.6]) If M is ℵ1-

Σ-CS then M is a direct sum of uniform submodules.
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Corollary 1.2.1 (Gómez Pardo and Guil Asensio [14, Corollary 2.7]) If all CS

right R-modules over a ring R are Σ-CS, then R is right Noetherian.

Proof. By Theorem 1.2.2 and Theorem 1.2.1.

Proposition 1.2.10 (Huynh and Rizvi [21, Proposition 2.5]) Let M =
⊕

iεI Mi

where each Mi is uniform. Assume that M is continuous and every uniform

submodule in M (N) is essential in a direct summand. Then M is Σ-quasi-injective.

Lemma 1.2.2 ([7, 13.1]) The following conditions are equivalent for a ring R:

(i) The direct sum of any two uniform right R-modules is CS;

(ii) Any uniform right R-module has length at most two;

(iii) Any direct sum of uniform right R-modules is CS.

Theorem 1.2.3 (Huynh and Muller [20, Theorem 2]) If R is a right CS ring over

which every direct sum of CS right R-modules is CS, then every right R-module

is CS.

Theorem 1.2.4 ([7, 13.5]) For a ring R, the following conditions are equivalent:

(i) Every right R-module is CS;

(ii) R is an Artinian serial ring with J(R)2 = 0.

Proposition 1.2.11 (Al-Attas and Vanaja [1, Proposition 3.5]) Let M =
⊕

iεI Mi

be a countably Σ-CS module, where Mi are indecomposable modules. The follow-

ing conditions are equivalent:
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(i) M is Σ-CS;

(ii) Each Mi is Σ-CS;

(iii) Each Mi is quasi-injective;

(iv) Each Mi has local endomorphism ring;

(v) Each Mi has ACC (DCC) on submodules isomorphic to Mi.

Lemma 1.2.3 (Al-Attas and Vanaja [1, Lemma 3.8]) Let M be a continuous

uniform module such that M2 is CS. Then M is quasi-injective.

Proposition 1.2.12 (Al-Attas and Vanaja [1, Lemma 2.7]) A nonsingular uni-

form module M is countably Σ-CS if and only if it is Σ-CS.

Proposition 1.2.13 (Oshiro [30]) A right Σ-CS ring is (two sided) Artinian.

Proposition 1.2.14 (Dinh and Huynh [4, Theorem 3.2]) A finitely generated CS

module M over a right semi-Artinian ring has finite uniform dimension.

Proposition 1.2.15 (Jonah [23]) If R is a right perfect ring then every right

R-module has the ascending chain condition on cyclic submodules.



Chapter 2

Rings over which every CS

module is countably Σ-CS

It is known that a ring R is right Noetherian if and only if every injective right

R-module is Σ-injective (Proposition 1.2.3). Dung considered rings over which CS

right R-modules are Σ-CS (Proposition 1.2.8). Gómez Pardo and Guil Asensio

proved that such a ring R is right Noetherian (Corollary 1.2.1) and Huynh, Jain

and López-Permouth [9] later showed that R is in fact right Artinian. From these

results and Proposition 1.2.8, the following conditions on a ring R are equivalent:

(i) All CS right R-modules are Σ-CS;

(ii) R is a right Artinian ring whose uniform right R-modules are Σ-quasi-

injective.

Recall that not every countably Σ-CS module is Σ-CS (Example 1.1.3). Thus

it is natural to ask if, in the above equivalence, Σ-CS can be replaced by countably
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Σ-CS. Moreover, it would be interesting to describe rings whose CS modules are

countably Σ-CS. In this chapter we show that such a ring is right semi-Artinian

with all uniform right R-modules Σ-quasi-injective (Corollary 2.1.2 and Corol-

lary 2.2.3). We also answer the former question affirmatively for a ring with

finitely generated right socle. (Theorem 2.1.2).

We also consider some conditions for uniform modules to be quasi-injective.

Concerning this we prove that if R is either

(i) a right or left perfect ring such that for each cyclic uniform right R-module

U , U2 is CS, or;

(ii) a right semi-Artinian ring such that for each uniform right R-module U ,

U2 is CS, then a direct sum M of indecomposable right R-modules is Σ-CS if and

only if M is countably Σ-CS.

2.1 When every CS module is countably Σ-CS

Consider the following conditions on a ring R:

(P): Every CS right R-module is countably Σ-CS,

Condition (P) also motivates the study of the following weaker conditions (see

the results following Proposition 2.2.1):
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(Q): For every uniform right R-module U , U2 is CS,

(T): For every cyclic uniform right R-module U , U2 is CS.

Clearly (P) implies (Q) implies (T).

First we give a result which will be used in the proof of our key result in this

chapter:

Lemma 2.1.1 (Huynh, Jain and López-Permouth [19]) Let R be a semiprime

right Goldie ring with every uniform right ideal countably Σ-CS. Then R is

semisimple Artinian.

Proof. By assumption RR = soc(RR)⊕T for some right ideal T of R. Assume

T is nonzero. Then there exists some non-simple uniform right ideal U contained

in T properly containing a nonzero right ideal V . Pick some vεV for which vV is

nonzero. Obviously annR(v)∩U = 0, since R is right nonsingular. Thus vU ∼= U ,

whence U embeds in itself properly, which is a contradiction by Proposition 1.2.11

and Proposition 1.2.12.

Now we can prove the key result of this chapter:

Theorem 2.1.1 Let R be a ring with finite right uniform dimension and prop-

erty (P). Then R is right Artinian and every uniform right R-module is Σ-quasi-

injective.
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Proof. First we prove that R is right Noetherian: Since RR has finite uniform

dimension, so does E(RR), whence E(RR) is a direct sum of (finitely many) uni-

form submodules. By assumption E(RR)(N) is CS. Thus, by Proposition 1.2.10

E(RR) is Σ-quasi-injective, whence Σ-injective. Now let M be any injective right

R-module. We claim that M is a direct sum of uniform submodules:

Let S be the set consisting of all submodules of M which are isomorphic to

uniform direct summands of E(RR) and the zero submodule. We can choose, by

Zorn‘s Lemma, a maximal family F of submodules in S whose sum (say T ) is

direct. Since E(RR) is Σ-injective, T is obviously injective. So M = T ⊕ V for

some submodule V of M . By maximality of F , V does not have any submodule

isomorphic to a uniform direct summand of E(RR).

If we can prove that V is a direct sum of uniform modules, then M is also a

direct sum of uniform modules. This implies by Proposition 1.2.3 that R is right

Noetherian.

Now let E be a uniform direct summand of E(RR) and D = V (N) ⊕E. Being

a direct summand of (V ⊕ E)(N), D is CS. Let B be a nonzero submodule of D

with B ∩ V (N) = 0, and let C be a closed submodule of D essentially containing

B. Then D = C ⊕ C ′ for some submodule C ′ of D. It is easy to see that

C ∩ E is nonzero, since otherwise V (N) and E would contain isomorphic nonzero

submodules, whence V would contain a copy of E; a contradiction. It follows that

E ∩ C ′ = 0, hence E is embedded in C. Since C is uniform, E ∼= C, whence C is

injective.
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Now by modularity V (N) ⊕ C = V (N) ⊕ C0, where C0 is a submodule of E

which is isomorphic to C. Hence C0 = E, so that D = V (N) ⊕ C. Thus, by

Lemma 1.2.1, V (N) is E-injective. Since E(RR) is a direct sum of uniform modules,

we conclude that V (N) is E(RR)-injective, hence injective. Thus V is Σ-injective by

Proposition 1.2.5. Then by Theorem 1.2.2 V is a direct sum of uniform modules,

as desired.

Thus by Proposition 1.2.3 R is right Noetherian. Now we show that R is

right Artinian: Let N be the prime radical of R. Then, clearly, R/N is a semi-

prime right Noetherian ring whose uniform right ideals are countably Σ-CS as

right R-modules, hence as right R/N -modules. Then by Lemma 2.1.1 R/N is

a semi-simple Artinian ring. Since N is nilpotent, this implies that R is right

Artinian.

Now let V be any cyclic uniform right R-module. Since V is indecomposable

with finite composition length, its endomorphism ring is local. Hence V is quasi-

injective by assumption and Proposition 1.2.11. Now let U be any uniform right

R-module and recall that a module is quasi-injective if and only if it is a fully

invariant submodule of its injective hull. Write U =
∑

uεU uR. Let fεEnd(E(U)).

Note that E(U) = E(uR) for each nonzero uεU . Then for each nonzero uεU ,

f(uR) ⊆ uR. Thus, f(U) =
∑

uεU f(uR) ⊆ U . Therefore U is quasi-injective

(and countably Σ-CS), hence Σ-quasi-injective by Proposition 1.2.11. Now the

result follows.

Corollary 2.1.1 Let R be a ring such that every CS right R-module is ℵ1-Σ-CS.
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Then R is a right Artinian ring with all uniform right R-modules Σ-quasi-injective.

Proof. By Theorem 1.2.2 every ℵ1-Σ-CS right R-module is a direct sum of

uniform modules. Then E(RR) is a direct sum of uniform modules by this fact

and the assumption. Thus RR has finite uniform dimension as well as property

(P). Now the conclusion follows by Theorem 2.1.1.

Lemma 2.1.2 Let R be a ring with property (P). Then the following assertions

hold:

(i) The direct sum of any countable family of injective right R-modules is CS;

(ii) The direct sum of any family of uniform injective right R-modules is quasi-

injective;

(iii) Soc(SS) is nonzero for any nonzero factor ring S of R;

(iv) Soc(RR) is finitely generated if and only if R is a right Artinian ring with

all uniform right R-modules Σ-quasi-injective.

Proof. (i) Let {Mn} be a countable family of injective right R-modules and

let E = E(
⊕

Mn). Then E(N) is CS by assumption and
⊕

Mn is isomorphic to a

direct summand of E(N). Hence
⊕

Mn is CS.

(ii) Let {Ui : i ∈ I} be a family of uniform injective right R-modules where I is

an arbitrary index set. Then the direct sum of any countable subfamily of {Ui : i ∈

I} is CS by (i) above. This shows by Proposition 1.2.9 that the family {Ui : i ∈ I}

satisfies the condition (A2). Now the result follows by Proposition 1.2.1.
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(iii) We first prove that Soc(RR) is nonzero: Assume Soc(RR) = 0. Let E =

⊕
En be a countable direct sum of injective hulls of simple right R-modules.

Now E(RR) and E have no nonzero isomorphic submodules and the module M =

E(RR)⊕E is CS by (i) above. Now let A be a submodule of M with A∩E = 0 and

let K be a complement in M of E containing A. Then K∩E(RR) is essential in K,

since otherwise K would have a nonzero submodule which could be embedded in

both E and E(RR); a contradiction. Now since M is CS, there exists a submodule

L of M such that K ⊕ L = M . Let ν : K ⊕ L → K be the obvious projection,

and let D be an injective submodule of E(RR) essentially containing K ∩E(RR).

Obviously, the restriction of ν to D is a monomorphism. This proves that D ∼=

K, whence K is injective. Note that (E ⊕ K)/E is essential in M/E. Thus

E ⊕ K = M . Now by Lemma 1.2.1 E is E(RR)-injective, hence injective. This

proves by Proposition 1.2.3 that R is right Noetherian, hence right Artinian by

Theorem 2.1.1 a contradiction. Therefore Soc(RR) is nonzero. Now let S be any

nonzero factor ring. Since for any right S-module B, the S-submodules and the

R-submodules of B coincide, S has the property (P). Thus Soc(SS) is nonzero by

the above argument.

(iv) Assume Soc(RR) =
⊕n

i=1 Si where Si are simple modules. Let E and En

be as in (iii) above. E(RR) = (
⊕n

i=1 E(Si)) ⊕ B for some injective module B

with Soc(B) = 0. Obviously, B and E have no isomorphic nonzero submodules

and E ⊕ (
⊕n

i=1 E(Si)) is quasi-injective by (ii) above, whence E is
⊕n

i=1 E(Si)-

injective. Now let N = E ⊕ B. Applying the same argument as in (iii) above to
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N yields that E is also B-injective. Thus E is E(RR)-injective, hence injective.

Then R is right Noetherian. The result now follows by Theorem 2.1.1.

Corollary 2.1.2 A ring R with property (P) is right semi-Artinian.

Proof. Consider the Loewy series (Sα) of the module RR. Then S = ∪Sα is an

ideal such that the right R-module R/S has zero right socle. But then R/S = 0

by Lemma 2.1.2. Thus R = S. Now the result follows.

Before proving the following result, note that Dung proved that for a right

Noetherian ring R, every CS right R-module is Σ-CS if and only if every uniform

right R-module is quasi-injective (see Proposition 1.2.8).

Theorem 2.1.2 The following assertions are equivalent for a ring R:

(i) Every CS right R-module is ℵ1-Σ-CS;

(ii) R has property (P) and Soc(RR) is finitely generated;

(iii) R is a right Artinian ring with all uniform right R-modules Σ-quasi-injective;

(iv) R is a right Noetherian ring with all uniform right R-modules quasi-injective;

(v) Every CS right R-module is a direct sum of quasi-injective uniform right

R-modules.

Proof. (i) ⇒ (ii) By Corollary 2.1.1.

(ii) ⇒ (iii) By Lemma 2.1.2.
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(iii) ⇒ (iv) Clear, and (iv) ⇒ (i) by Proposition 1.2.8.

(iv) ⇔ (v) By Theorem 1.2.1, a ring R is right Noetherian if and only if every

CS right R-module is a direct sum of indecomposable (hence uniform) modules.

Now the conclusion follows.

Proposition 2.1.1 Assume that R is a ring with property (P) and RR is con-

tained in a finitely generated CS right R-module (in particular E(RR) is finitely

generated). Then R satisfies the conditions of Theorem 2.1.2.

Proof. Let M be a finitely generated CS right R-module containing RR. Note

that R is right semi-Artinian by Corollary 2.1.2. Then M has finite uniform

dimension by Proposition 1.2.14. Hence soc(RR) is finitely generated. Now the

result follows by Theorem 2.1.2.

2.2 When are uniforms quasi-injective?

In this section we discuss some sufficient conditions on a ring R for all uniform

right R-modules to be quasi-injective.

Proposition 2.2.1 Let U be a uniform module with finite composition length

n. Then U is quasi-injective if and only if U2 is CS.

Proof. Let U2 be CS and Û be the quasi-injective hull of U . Assume U

is not equal to Û . Since Û is U -generated, there exists some homomorphism

f : U → Û such that f(U) is not contained in U . Then we have an obvious
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epimorphism g : U2 → U + f(U) with non-essential kernel. By CS assumption

U2 = K ⊕B where K contains Ker(g) essentially. But since Û is uniform, K = 0

and B ∼= U + f(U). It can be easily seen that B is embedded in U via one of the

canonical epimorphisms U2 → U , a contradiction. Therefore U = Û .

Note that Proposition 2.2.1 also follows from [7, Corollary 8.9].

Corollary 2.2.1 Every uniform right R-module with finite composition length

over a ring R with property (Q) is quasi-injective.

Proposition 2.2.2 Let R be a left or right perfect ring and U be a cyclic uniform

right R-module. Then U is quasi-injective if and only if U2 is CS.

Proof. If U is quasi-injective then U2 is quasi-injective, hence CS. Conversely,

let U be a cyclic uniform right R-module with U2 CS. Let V be a copy of U

and M = V ⊕ U . Let A be a submodule of M with A ∩ U = 0. Let K be a

complement in M of U containing A. K is obviously nonzero. Since M is CS K

is a direct summand of M hence K ⊕ L = M for some submodule L of M . Let

αV : U⊕V → V , βK : K⊕L → K be the canonical epimorphisms. Assume αV (K)

is distinct from V . If L ∩ U = 0 the U embeds in K. Otherwise we must have

L∩V = 0, in which case V embeds in K. In either case U embeds in K. Then by

assumption U has a proper submodule isomorphic to itself, say W . Now if R is left

perfect/ resp. right perfect then every right R-module has DCC/ resp. ACC on

cyclic submodules by Proposition 1.2.15. In the former case, we immediately have
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a contradiction. In the latter case; we can extend an isomorphism φ : W → U

to some monomorphism ϕ : U → Û (where we have U properly contained in

ϕ(U)), and iterating this process we obtain in Û a properly ascending sequence of

modules each isomorphic to U ; a contradiction. Thus in each case αV (K) = V .

Hence U ⊕K = U ⊕ αV (K) = U ⊕ V = M . This implies, by Lemma 1.2.1, that

U is V -injective, hence quasi-injective.

Corollary 2.2.2 If R is a left or right perfect ring with property (T), then all

uniform right R-modules are quasi-injective.

Proof. By Proposition 2.2.2, all cyclic uniform right R-modules are quasi-

injective. Now the fact that every uniform right R-module is quasi-injective fol-

lows in the same way as in Theorem 2.1.1.

Recall that a left perfect ring is right semi-Artinian. Now we prove

Proposition 2.2.3 If R is a right semi-Artinian ring with property (Q), then all

uniform right R-modules are quasi-injective.

Proof. Let U be a uniform right R-module and V be the sum of all quasi-

injective submodules of U . Since R is right semi-Artinian V is nonzero. Let C

be a nonzero quasi-injective submodule of U and fεEnd(E(V )). Since E(V ) =

E(C) = E(U), we have f(C) ⊆ C. Hence V is a quasi-injective submodule

of U . Assume V is distinct from U . Then by semi-Artinian assumption, there
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exists a submodule T of U such that V is a maximal submodule of T . Now let

g : T → T be a monomorphism. We may assume without loss of generality that

gεEnd(E(T )). Since E(T ) = E(V ) and V is nonzero quasi-injective, g(V ) ⊆ V ,

hence g(V ) = V . Then T/V ∼= g(T )/g(V ) = g(T )/V . This implies g(T ) = T .

Hence T is a continuous module with T 2 CS. Now by Lemma 1.2.3, T is quasi-

injective; a contradiction. Thus V = U , hence U is quasi-injective.

Corollary 2.2.3 If R is a ring with property (P) then all uniform right R-modules

are Σ-quasi-injective.

Proof. By Proposition 2.2.3 and Corollary 2.1.2 every uniform right R-module

U is quasi-injective. Now let {Ei : i ∈ I} be a family of copies of E(U). Then

⊕
i∈I Ei is quasi-injective by (ii) of Lemma 1. Thus {Ei : i ∈ I} has the property

(A2) by Proposition 1.2.1, whence so does a family of |I| copies of U . Now the

result follows again by Proposition 1.2.1.

2.3 When are countably Σ-CS modules Σ-CS?

It has been proved by Gómez Pardo and Guil Asensio (Theorem 1.2.2) that a ℵ1-

Σ-CS module is a direct sum of uniform modules. On the other hand, a countably

Σ-CS module does not necessarily have an indecomposable decomposition (Exam-

ple 1.1.3). Following Dung [6], Attas and Vanaja [1] presented some conditions

for a countably Σ-CS module which is a direct sum of uniforms to be Σ-CS. Thus

it would be interesting to know the rings over which all countably Σ-CS modules
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are Σ-CS. In the next two results we are able to provide partial answers to this

question:

Corollary 2.3.1 Let R be a left or right perfect ring and M be a countably

Σ-CS right R-module which is a direct sum of cyclic uniform modules. Then M

is Σ-CS.

Proof. Let M =
⊕

iεI Ui be a countably Σ-CS module, where Ui are cyclic

uniform modules. Each Ui is quasi-injective by assumption and Proposition 2.2.2.

Now the conclusion follows by Proposition 1.2.11.

Corollary 2.3.2 Let R be a ring such that R is either

(i) a left or right perfect ring with property (T), or;

(ii) a right semi-Artinian ring with property (Q), or;

(iii) a ring with property (P),

and let M be a countably Σ-CS module which is a direct sum of uniform modules.

Then M is Σ-CS.

Proof. (i) and (ii) follows by Corollary 2.2.2, Proposition 2.2.3 and the proof

of the Corollary 2.3.1. (iii) then follows from Corollary 2.1.2 and (ii).

2.4 Remarks

Example 2.4.1 Consider the following rings:
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R = Q[x]/(x2), S =




K K

0 K


 (where K is a field), and A =




C C

0 R


.

(1)R is a quasi-Frobenius ring all of whose cyclic right R-modules are quasi-

injective (see [26, Remark 6.84]).

(2) It is easy to see that S is a right Artinian ring with all proper cyclic right

R-modules quasi-injective, and SS is not uniform. Thus R and S both satisfy the

conditions of Theorem 2.1.2.

(3) A is not a right-CS ring, but it satisfies the conditions of Theorem 2.1.2

(see [19]).

Note that any right semi-Artinian right V-ring (i.e. a ring R with all simple

right R-modules injective) trivially satisfies Proposition 2.2.3 and that such a ring

is not necessarily right Noetherian even if we assume R/Soc(RR) is a division ring

(see [18]).

We close the chapter with an open question.

Question Is a ring R with property (P) right Artinian ?

By Theorem 2.1.2 it would suffice to see that for such a ring R, Soc(RR) is

finitely generated.



Chapter 3

Rings over which finite direct

sums of CS modules are CS

In this chapter we will discuss rings over which the direct sum of any two CS

modules is again CS. Huynh and Müller proved in [20] that a right nonsingular

ring over which all direct sums of CS right modules are CS is right Artinian. Later

the nonsingularity condition was removed by Huynh, Jain and López-Permouth

in [18]. However the structure of rings over which finite direct sums of CS modules

are CS is not known. In this chapter we show in Theorem 3.1.1 that a ring R

with this property is right Artinian if soc(RR) is finitely generated, or; if RR is

contained in a finitely generated CS module (in particular, if the injective hull of

RR is finitely generated). As a corollary we show that all right R-modules are CS

if R is a right CS ring over which finite direct sums of CS right R-modules are

CS. Such a ring is Artinian serial by Theorem 1.2.4.
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3.1 When finite direct sums of CS modules are CS

In Chapter 2 we proved that a ring R for which either soc(RR) or E(RR) is finitely

generated is right Artinian if all CS right R- modules are countably Σ-CS. In this

section we prove, in particular, that the same conclusion holds for a ring R over

which all finite sums of CS modules are again CS (Theorem 3.1.1).

Consider the following property for a ring R:

(W): The direct sum of any two CS right R-modules is CS

Proposition 3.1.1 Let R be a ring with finitely generated right socle and prop-

erty (W). Then R is right Artinian.

Proof. Let soc(RR) = S1 ⊕ S2 ⊕ ... ⊕ Sn (n ∈ N), where Si are simple right

ideals, Ei = E(Si) and {Vα}α∈I be any nonempty family of injective hulls of simple

modules. Call V =
⊕

α∈I Vα. Then the module

M = E1 ⊕ E2 ⊕ ...⊕ En ⊕ V

is CS by Lemma 1.2.2, hence quasi-injective by Proposition 1.2.7. Thus V is

a quasi-injective module which is
⊕n

i=1 Ei-injective. We have

E(RR) = E ⊕ E1 ⊕ E2 ⊕ ...⊕ En,
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where E is an injective module with soc(E) = 0. Assume, without loss of gener-

ality, that E is nonzero and let A = E ⊕ V . Then A is CS by assumption and the

above argument.

Now let X be a submodule of A with X ∩ V = 0. Also let B be a complement

in A of the submodule V containing X. Then there exists a submodule B′ of

A such that B ⊕ B′ = A. Since E and V have no mutually isomorphic nonzero

submodules, we have B ∩ E essential in B. Choose a closed submodule D of E

essentially containing B ∩ E. It is easy to see that D embeds in B essentially.

Since D is injective this implies D ∼= B, whence B is injective. Thus B ⊕ V = A.

Now, by Lemma 1.2.1 V is E-injective. Thus V is E(RR)-injective, hence injective.

We have established that the direct sum of any family of injective hulls of simple

modules is injective. This implies that R is right Noetherian.

By the above argument, every injective module is a direct sum of uniform

modules. Since by Lemma 1.2.2 each uniform module has length at most two,

every injective is a direct sum of injective hulls of simple modules. This proves by

Proposition 1.2.4 that R is right Artinian. Hence the proof is complete.

Recall that a ring R is called right semi-Artinian if every right R-module has

essential socle.

Corollary 3.1.1 A ring R with property (W) is right semi-Artinian.

Proof. By Proposition 3.1.1, a nonzero ring R with property (W) can not
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have a zero right socle. Also, it is easy to verify that the property (W) is in-

herited by factor rings. Thus, every nonzero factor ring of R has nonzero right

socle. Now let S be the union of the socle series of RR. Then S is an ideal with

soc((R/S)R/S) = 0. By the preceding argument, R = S. Then, as in Corol-

lary 2.1.2, R is right semi-Artinian.

Note that Corollary 3.1.1 can also be deduced from Theorem 8 of [20] and

Lemma 1.2.2.

Now we prove the main theorem of this chapter.

Theorem 3.1.1 The following conditions are equivalent for a ring R:

(i) R has property (W) and soc(RR) is finitely generated;

(ii) R has property (W) and E(RR) is finitely generated;

(iii) R has property (W) and RR is contained in a finitely generated CS module;

(iv) R has finite right uniform dimension and the direct sum of any two uniform

right R-modules is CS;

(v) R is a right Artinian ring whose uniform right R-modules have length at

most two.

Proof. (i) ⇒ (v) By Proposition 3.1.1 R is right Artinian, the rest follows by

Lemma 1.2.2.
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(v) ⇒ (ii) First note that by Lemma 1.2.2 and the assumption any direct sum

of uniform modules is CS. Also, since R is right Artinian, every CS module is a

direct sum of uniform submodules. Thus E(RR) is a finite direct sum of uniform

modules which are of finite length. Hence the conclusion follows.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) The conclusion follows by Proposition 1.2.14 and Corollary 3.1.1 in

the same way as in the proof of Proposition 2.1.1.

(iv) ⇒ (v) By Lemma 1.2.2 and the assumption, uniform modules have finite

length. Also, since E(RR) has finite uniform dimension, it is a (finite) direct sum

of uniforms. By the preceding argument, E(RR), hence RR is Artinian.

(v) ⇒ (iv) by Lemma 1.2.2.

It was proved by Gómez-Pardo and Guil-Asensio that any Σ-CS module is

a direct sum of uniform modules, whence they also showed that a ring whose

CS modules are Σ-CS is right Noetherian. Using this result, Huynh, Jain and

López-Permouth proved the following statement, which follows easily from Theo-

rem 3.1.1.

Corollary 3.1.2 (Huynh, Jain and López-Permouth [19]) The following condi-

tions are equivalent for a ring R:

(i) R is a right Artinian ring and all uniform right R-modules have length at

most two;
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(ii) Any direct sum of CS right R-modules is CS;

Proof. (i) ⇒ (ii) Any CS module is a direct sum of uniforms by Artinian

assumption and Theorem 1.2.1. Also, any direct sum of uniform modules is CS

by Lemma 1.2.2 and the assumption. Now the conclusion follows immediately.

(ii) ⇒ (i) By assumption E(RR) is Σ-CS, hence it is a (finite) direct sum of

uniform modules by Theorem 1.2.2. Now the result follows by Lemma 1.2.2, The-

orem 3.1.1 and the assumption.

Theorem 1.2.3 and Theorem 3.1.1 yield the following

Corollary 3.1.3 Let R be a right CS ring with property (W). Then every right

R-module is CS.

3.2 Remarks

Example 3.2.1 Consider the rings S and A of Example 2.4.1. Then, S is a

right CS, (two sided) Artinian and serial ring with J(S)2 = 0, hence S satisfies

Corollary 3.1.3 (see Theorem 1.2.4). A satisfies Theorem 3.1.1, but it is not right

CS (see [18] and [20]).

We do not know the answer to the following question in general:

Question Is a ring R with property (W) right Artinian?
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By Theorem 3.1.1 it would suffice to prove that soc(RR) or E(RR) is finitely

generated.



Chapter 4

Σ-CS rings and QF rings

In this chapter we address some questions raised by Huynh in [16] and [17]. Recall

that M is called a (countably) Σ-CS module if every direct sum of (countably

many) copies of M is CS. Σ-CS rings were first introduced by Oshiro [29] under

the name co-H rings.

By Proposition 1.2.5 a module M is countably Σ-(quasi)-injective if and only

if it is Σ-(quasi)-injective. For M = RR these two conditions are equivalent to

R being a QF (quasi-Frobenius) ring (Proposition 1.2.6). Also, it is known that

a right Σ-CS ring is right and left Artinian (Proposition 1.2.13). However, a

von Neumann regular right self-injective ring is right countably Σ-CS but not

Σ-CS unless it is semisimple Artinian (Example 1.1.3). Hence it is clear that

a right countably Σ-CS ring need not even have finite right uniform dimension.

Huynh raised the question if a right countably Σ-CS ring with finite right uniform

dimension is right Σ-CS ([16]). This question has been studied by several authors
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such as Huynh [16], Huynh and Rizvi [21], and in the more general terms of

modules by Dung [6] and Al-Attas and Vanaja [1]. However, a definitive answer

has not been obtained thus far. In this chapter we prove a theorem characterizing,

in terms of radicals, when countably Σ-CS and Σ-CS are equivalent for a ring R

(Theorem 4.1.1). We also prove a result (Theorem 4.1.2) which considers the case

as to when a semilocal right countably Σ-CS ring is right Σ-CS.

Finally we give new characterizations of QF rings which extend some results

due to Huynh and Tung [22] and Clark and Huynh [3].

4.1 Countably Σ-CS rings with finite uniform dimension

For any module M , countably Σ-(quasi-)injectivity and Σ-(quasi-)injectivity are

equivalent properties (Proposition 1.2.5). However, as pointed out earlier, this is

no longer the case when (quasi-)injectivity is replaced by the CS property in the

above assertion.

Huynh raised the question if a finite right uniform (Goldie) dimensional or

semilocal right countably Σ-CS ring is Σ-CS. In Theorem 4.1.1 and Theorem 4.1.2

we characterize when the respective situations hold.

The following proposition is a summary of some known results on this subject:

Proposition 4.1.1 Let R be a right countably Σ-CS ring with finite right uniform

dimension. Then the following statements are equivalent:

(i) R is a right Σ-CS ring;
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(ii) Every uniform direct summand of RR has a local endomorphism ring;

(iii) R has ACC (DCC) on projective uniform principal right ideals;

(iv) E(RR) is countably generated;

(v) Every uniform submodule of E(RR)(N) is essential in a direct summand.

In the above proposition, the equivalence (i) ⇔ (ii) is due to Al-Attas and

Vanaja [1], (i) ⇔ (iii) was obtained by Huynh [16], and (i) ⇔ (iv) ⇔ (v) ⇔ (i)

by Huynh and Rizvi [21].

First we give a preliminary characterization which will be useful in the proof of

the main results. Recall that an element xεR is called right regular if annR(x) = 0.

Proposition 4.1.2 The following statements are equivalent for a right countably

Σ-CS ring R with finite right uniform dimension:

(i) RR is a right Σ-CS ring;

(ii) Every right regular element of R is right invertible;

(iii) Every countably generated projective uniform right R-module U with nonzero

Z(U) has local endomorphism ring;

(iv) Every uniform summand U of RR with nonzero Z(U) has local endomor-

phism ring;

(v) Every uniform summand U of RR with nonzero Z(U) satisfies ACC (DCC)

on submodules isomorphic to U .
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Proof. (i) ⇒ (ii) R is Artinian by Proposition 1.2.13. If x ∈ R is right regular

then xR ∼= RR, so that xR = R.

(ii) ⇒ (i) Since RR is CS with finite uniform dimension, RR =
⊕n

i=1 Ui where

Ui are uniform. By Proposition 1.2.11 it suffices to see that each Ui has DCC on

submodules isomorphic to Ui: Fix i, and assume V is a submodule of Ui which is

isomorphic to Ui. Then RR
∼= (

⊕
j 6=i Uj)⊕V . Call the latter I. Then there exists

a right regular element x ∈ I such that xR = I. By assumption I = R. Hence by

modular law V = Ui.

(i) ⇒ (iii) Let U be any projective uniform module. U is isomorphic to a direct

summand of R
(Λ)
R for some index set Λ, hence U is Σ-CS. So by Proposition 1.2.11

U has local endomorphism ring.

(iii) ⇒ (iv) This is obvious.

(iv) ⇒ (i) Let RR =
⊕n

i=1 Ui where Ui are uniform modules, as in the proof of

(ii) ⇒ (i) above. Fix i : If Ui is nonsingular then Ui is Σ-CS by Proposition 1.2.12.

Else, if Z(Ui) is nonzero, then by assumption Ui has local endomorphism ring,

hence is Σ-CS by Proposition 1.2.11. Now the result follows by Proposition 1.2.11.

(i) ⇒ (v) Any uniform direct summand of RR is Σ-CS. Now the result follows

by Proposition 1.2.11.

(v) ⇒ (i) Any uniform summand U of RR with ACC (DCC) on submodules

isomorphic to U is Σ-CS by Proposition 1.2.11. The rest of the proof follows in

the same way as in (iv) ⇒ (i).
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Next we prove a key lemma:

Lemma 4.1.1 If M is a CS (resp. quasi-injective) module, then so is any fully

invariant submodule N of M . In particular rad(M) and Z(M) are CS (resp.

quasi-injective).

Proof. First we do the proof for the CS case. Let M be CS and let A be a

submodule of N . Then M = K ⊕ T for some submodules K and T , where A is

essential in K. It is easy to see that by assumption N = (N ∩K)⊕ (N ∩T ). Thus

A is essential in N ∩K, where the latter is a direct summand of N . Therefore N

is CS. As for the quasi-injective case, one can see easily that N is invariant under

homomorphisms of E(N). Hence N is quasi-injective.

For convenience we will call a module M semilocal if M/rad(M) is semisimple.

Now we can prove the main results of this section:

Theorem 4.1.1 Let R be a right countably Σ-CS ring with finite right uniform

dimension. Then the following statements are equivalent:

(i) R is a right Σ-CS ring;

(ii) R is a semilocal ring and J(R)R is Σ-CS;

(iii) Z2(RR)R is semilocal and rad(Z2(RR))R is Σ-CS;

(iv) Z2(RR)R is semilocal and rad(Z2(RR))R is a direct sum of uniform modules

with local endomorphism rings;
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(v) Z2(RR)R is semilocal and, for each uniform direct summand U of Z2(RR)R,

rad(U) satisfies ACC (DCC) on submodules isomorphic to rad(U);

(vi) Z(RR) ⊆ J(R) and (Z2(RR)/Z(RR))R has finite composition length;

(vii) Z2(RR)R is Noetherian.

Proof. (i) ⇒ (ii) R is Artinian by Proposition 1.2.13, hence semilocal. Also,

for any index set I, rad(R(I))R
∼= J(R)

(I)
R , hence rad(R(I))R is CS by Lemma 4.1.1.

Therefore J(R)R is Σ-CS.

(ii) ⇒ (iii) RR is CS and Z2(RR) is clearly a closed submodule, hence a direct

summand of RR. Thus Z2(RR)R is a semilocal module if R is semilocal. Also

rad(Z2(RR)) is a direct summand of J(R)R. Hence rad(Z2(RR))R is Σ-CS.

(iii) ⇒ (iv) rad(Z2(RR))R is a Σ-CS module with finite uniform dimension,

thus it is a direct sum of Σ-CS uniform modules. A Σ-CS uniform module has

local endomorphism ring by Proposition 1.2.11. Hence the result follows.

(iv) ⇒ (v) Let rad(Z2(RR))R =
⊕n

i=1 Vi where Vi are uniform modules with

local endomorphism rings. If U is a uniform direct summand of Z2(RR)R, then

V = rad(U) is a direct summand of rad(Z2(RR))R. Without loss of generality

we may assume that V is nonzero. Since Vi have local endomorphism rings,

by Proposition 1.2.2 V ∼= Vi for some i. Thus V is a countably Σ-CS uniform

module with local endomorphism ring by Lemma 4.1.1 (see the proof of (i) ⇒ (ii)

above), and since Z2(RR) is a direct summand of RR. Now the result follows by

Proposition 1.2.11.
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(v) ⇒ (i) By Proposition 4.1.2, it suffices to show that every uniform direct

summand U of RR with nonzero Z(U) is continuous (hence has local endomor-

phism ring): Now let U be as such. Then since U/Z(U) is singular, U = Z2(U).

Hence U is a direct summand of Z2(RR). It is easily seen that U/rad(U) is finitely

generated semisimple, hence has finite composition length. Also U is countably

Σ-CS, which implies by Lemma 4.1.1 that rad(U) is countably Σ-CS. Assume,

without loss of generality, that rad(U) is nonzero (otherwise U would be semisim-

ple, hence trivially continuous). Thus rad(U) is uniform. Then by assumption and

Proposition 1.2.11 rad(U) is continuous. Now let f : U → U be a monomorphism.

We have f(rad(U)) ⊆ rad(U). Since f is 1-1 and rad(U) is continuous uniform,

this means f(rad(U)) = rad(U). Then we have U/rad(U) ∼= f(U)/rad(U), which

implies that both have the same composition length, hence f(U) = U . This proves

U is continuous, as was required.

(i) ⇒ (vi) R is Artinian, so that RR =
⊕n

i=1 Ui where Ui are local uniform

modules. Then we have Z(RR) =
⊕n

i=1 Z(Ui) and Z(Ui) ⊆ rad(Ui) ⊆ J(R) for

each i. Hence the result follows.

(vi)⇒ (i) Let U be a uniform direct summand of RR with nonzero Z(U). Then

as in the proof of (v) ⇒ (i) U is a direct summand of Z2(RR). We will prove that

U is continuous: Let f : U → U be a monomorphism. Note that Z(U) is a direct

summand of Z(RR) so that U/Z(U) has finite composition length by assumption.

Now, (f(U) + Z(U))/Z(U) ∼= f(U)/(f(U) ∩ Z(U)) = f(U)/Z(f(U)) ∼= U/Z(U).

Thus (f(U)+Z(U))/Z(U) and U/Z(U) have the same composition length. Hence
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f(U) + Z(U) = U . But Z(U) is a small submodule of U by assumption and since

U is a direct summand of RR, whence f(U) = U . Therefore the result follows by

Proposition 4.1.2.

(i) ⇒ (vii) R is Artinian, hence the result follows immediately.

(vii) ⇒ (i) Any uniform direct summand U of RR with nonzero Z(U) is con-

tained in Z2(RR) by the proof of (v) ⇒ (i). Thus U is a countably Σ-CS uniform

module with ACC on submodules isomorphic to U . The result now follows from

Proposition 4.1.2.

Note that for a right CS ring R, the conditions ”Z(RR) ⊆ J(R)” and ”Z(RR) ⊆

rad(Z2(RR))” are equivalent since Z2(RR) is a direct summand of RR.

Every finitely generated semilocal CS module can easily be seen to be a direct

sum of uniforms. It is not known whether a semilocal right countably Σ-CS ring

is Σ-CS. The following result characterizes when the above holds:

Theorem 4.1.2 Let R be a semilocal right countably Σ-CS ring. Then the fol-

lowing statements are equivalent:

(i) R is right Σ-CS;

(ii) rad(Z2(RR))R is Σ-CS;

(iii) rad(Z2(RR))R is a direct sum of uniform modules with local endomorphism

rings;
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(iv) For any uniform direct summand U of Z2(RR)R, rad(U) has ACC (DCC)

on submodules isomorphic to rad(U);

(v) Z(RR) ⊆ J(R) and rad(Z2(RR))/Z(RR) has finite composition length;

(vi) rad(Z2(RR))R is Noetherian.

Proof. By Theorem 4.1.1.

4.2 QF rings

Oshiro proved in [29] that R is a QF ring if and only if R is right Σ-CS and

Z(RR) = J(R). Also Huynh proved in [16, Corollary 2] the following result:

A ring R is QF if and only if R is a semiperfect, right countably Σ-CS ring

with no nonzero projective right ideals contained in J(R).

Huynh also raised the question if semilocal could replace semiperfect in the

above statement, or generally, if every semilocal right countably Σ-CS ring is

right Σ-CS (see [17]). Note that for a right CS ring R , the condition ”no nonzero

projectives in J(R)” is clearly equivalent to the condition ”J(R) ⊆ Z(RR)”. Also

since R is semiperfect, Z(RR) ⊆ J(R), hence the condition Z(RR) = J(R) is

implicit in Huynh’s assumption in the above result. Thus the following result is a

partial answer to Huynh’s question and it extends Oshiro’s result:

Corollary 4.2.1 The following are equivalent for a ring R:

(i) R is a QF ring;
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(ii) R is a semilocal right countably Σ-CS ring with Z(RR) = J(R);

(iii) R is a semilocal right countably Σ-CS ring with no nonzero projective right

ideals contained in J(R) and Z(RR) ⊆ rad(Z2(RR)).

Proof. (i) ⇒ (ii) holds by Oshiro‘s result mentioned above, and (ii) ⇔ (iii)

follows from the arguments preceding Theorem 4.1.2 and this corollary.

(ii) ⇒ (i) Assume (ii). Then rad(Z2(RR))/Z(RR) = 0. Now the conclusion

follows by part (v) of Theorem 4.1.2 and Oshiro’s result.

In the next proposition we answer Huynh’s question affirmatively for yet an-

other case than those accounted for in Theorem 4.1.2, namely when J(R)R is

quasi-injective.

Proposition 4.2.1 If R is a semilocal right countably Σ-CS ring and J(R)R is

quasi-injective then R is a right Σ-CS ring.

Proof. R is a direct sum of uniforms, as expressed in the paragraph pre-

ceding Theorem 4.1.2. By this fact and Proposition 1.2.11, it suffices to prove

that every uniform direct summand of RR is quasi-injective. So let U be a uni-

form direct summand of RR and A = A1 ⊕ A2, where Ai
∼= U . Let B be a

submodule of A with B ∩ A1 = 0, and let K be a complement in A of A1 con-

taining B. By semilocality assumption U/rad(U) is semisimple, so that we can
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assume without loss of generality that rad(U) is nonzero. By assumption K

is a (nonzero) direct summand of A. Hence rad(K), being a direct summand

of rad(A), is nonzero since otherwise rad(A) would be uniform, a contradic-

tion. Now let µ : A → A2 be the obvious projection. Also since A2
∼= U

and U embeds in K, there exists a monomorphism f : A2 → K. Now by the

preceding arguments and since J(R)R is quasi-injective, µ(rad(K)) = rad(A2)

and f(rad(A2)) = rad(K). Hence rad(A2) = µf(rad(A2)). Thus the composi-

tion lengths of A2/rad(A2), µf(A2)/µf(rad(A2)) and µf(A2)/rad(A2) are equal,

whence µf(A2) = A2 = µ(K). Then we have A1⊕K = A1⊕ µ(K) = A. Then by

Lemma 1.2.1 A1 is A2-injective. Hence U is quasi-injective, as required.

Note that while every QF ring satisfies the conditions of Proposition 4.2.1 by

Lemma 4.1.1, the converse is not true, as the following example shows

Example 4.2.1 Let K be a field and consider

R =




K K

0 K


.

Then R is a right Σ-CS ring with quasi-injective radical, hence it satisfies the

conditions of Proposition 4.2.1, but R is not a QF ring.

Consider a module decomposition M =
⊕

i∈I Mi. For a submodule A of M ,



52

we will say that A is finitely contained in
⊕

i∈I Mi if A ⊆ ⊕
i∈F Mi for a finite

subset F of I. Next, we extend some results in [22] and [3] characterizing QF

rings.

Theorem 4.2.1 Let R be a semiperfect right self-injective ring. The following

statements are equivalent:

(i) R is a QF ring;

(ii) Z(RR)(N) has all uniform submodules finitely contained;

(iii) No uniform closed submodule of R
(N)
R is singular.

Proof. (i) ⇒ (ii) Assume (i). Then R
(N)
R is an injective module, whence

Z(RR)(N) is quasi-injective by Lemma 4.1.1. Now let U be a uniform submodule of

Z(RR)(N). There exists a direct summand K of Z(RR)(N) essentially containing U .

K is complemented by any direct sum decomposition of Z(RR)(N) into uniforms,

since Z(RR)(N) is quasi-injective. Thus K is finitely generated, hence finitely

contained in the sum Z(RR)(N). Then so does U .

(ii) ⇒ (iii) Assume (ii). Let U be a uniform closed submodule of R
(N)
R which

is singular. Then U is in Z(RR)(N). Thus, by assumption, U is in a finite sub-sum

of Z(RR)(N), whence it is in a finite sub-sum of R
(N)
R . Since U is closed and R

is right self-injective, U is a direct summand of R
(N)
R . But then U is projective,

contradicting its singularity. Now the conclusion follows.

(iii) ⇒ (i) Assume (iii). Let M = R
(N)
R ⊕ V , where V is any uniform direct

summand of RR. Let A be a submodule of M with A ∩ R
(N)
R = 0. Take a
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complement K in M of R
(N)
R containing A. Since K embeds in V it is uniform.

Also since K is closed it is not singular, by assumption. Consider the canonical

projection µ : M → V . Then K ∼= µ(K). Since R is right self-injective Z(RR) =

J(R), whence rad(V ) = Z(V ). Also note that V is a local module by semiperfect

assumption on R. These arguments together yield µ(K) = V , whence R
(N)
R ⊕K =

R
(N)
R ⊕ µ(K) = M . Now, by Lemma 1.2.1 R

(N)
R is V -injective. Since V is an

arbitrary direct summand of RR, this implies that R
(N)
R is injective. Therefore R

is a QF ring by Proposition 1.2.6.

Corollary 4.2.2 (Huynh and Tung [22])The following statements are equivalent

for a ring R:

(i) R is a QF ring;

(ii) R is a semiperfect ring with finite right uniform dimension, J(R) contains

no nonzero projective right ideals and every closed uniform submodule of

R
(N)
R is a direct summand.

Proof. (i) ⇒ (ii) is trivial. So assume (ii). Let RR =
⊕n

i=1 Ui, where Ui are

local modules. By finite uniform dimension and the assumption on R
(N)
R , it is easy

to see that each Ui must be uniform. Let M , V , A, K and µ be as in the proof of

(iii) ⇒ (i) of Theorem 4.2.1. By the assumption on R
(N)
R , K is a direct summand

of M . Thus K is projective and µ(K) is a nonzero submodule of V which is not

contained in rad(V ). Since V is local this implies that µ(K) = V . Thus, in the

same way as in Theorem 4.2.1, R
(N)
R is injective, whence R is a QF ring.



54

Corollary 4.2.3 (Clark and Huynh [3]) The following statements are equivalent

for a ring R:

(i) R is a QF ring;

(ii) R is a semiperfect right self-injective ring such that every uniform submodule

of any projective right R-module M is contained in a finitely generated

submodule of M .

Proof. By Theorem 4.2.1-(ii).
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