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We use the simulation to verify a new multi-state model proposed in [1], but the 

simulator can be used for general-purpose simulation of any multi- (or single-) state 

fading.  We validate this simulation against both theory and measured data [2], using the 

second – order statistics of average fade duration and level crossing rate. 
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Chapter 1: Introduction 

1.1 Introduction 

Digital communications is becoming increasingly attractive because of the ever-

growing demand for data communications and due to the fact that digital transmission 

offers greater data processing options and flexibilities compared to analog transmission.  

A functional block diagram of a typical digital communication system is shown in Fig. 

1.1. 
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Figure 1.1. Block diagram of a typical digital communication system 
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The upper row of blocks in Fig. 1.1 [1] depicts the various signal transformations 

from the information source to the transmitter output.  The lower row of blocks denotes 

the signal transformations from the receiver input to the information sink.  It can be 

observed that the processes undergone from the receiver input to the sink are basically 

opposite to the transformations undergone by the signal from the source to the transmitter 

output.  These transformations are done to enable the transmission of the source signals 

across a communication channel.  The communication channel is the physical medium 

used to send the signal from the transmitter to the receiver, e.g., a cable or pair of wires 

for wired systems, and the atmosphere for wireless systems.  The transformations that 

have to be applied to the source signal before transmission depend greatly on the 

characteristics of this physical channel (e.g., center, or “carrier” frequency, frequency 

response, attenuation, etc.).  The design of spectrally efficient communication systems 

requires a detailed understanding of radio propagation environment.   Knowledge of the 

characteristics of the communication channel is therefore of particular importance in the 

analysis and design of communication systems, especially in the case of wireless mobile 

channel transmissions, because this channel is usually time varying in nature due to 

motion between transmitter and receiver, resulting in propagation path changes. 

 This thesis deals mainly with the study of the communication channel and some 

methods to simulate and model this channel.  Emphasis is placed on channel modeling of 

mobile satellite channels and rural/open area terrestrial radio channels.  It can also be 

made applicable to cellular radio channels if we take into account dispersion 

characteristics.  A typical mobile radio system consists of a fixed number of base stations 

that define the radio coverage area for a specific region.  Characteristics of radio channels 
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vary greatly with the operating frequency and the mode of operation, i.e., line of sight 

(LOS) radio links and non-LOS (NLOS) links, and in many cases must take into account 

electromagnetic propagation effects such as reflection, diffraction, and scattering. 

 

1.2 Propagation Review 

In most modern mobile communication systems, there are two major effects 

imposed upon transmitted signals: 

 

• Large-scale path loss: This path loss is basically a function of the distance 

between transmitter and receiver.  Since the transmitted signal has finite 

energy, the energy of the signal is reduced as the distance increases.  This 

loss in signal energy as a function of distance is also referred to as    

attenuation, spreading loss, or basic transmission loss. 

• Small scale fading: This is usually a “local” phenomenon and is nearly 

independent of the distance between the transmitter and the receiver.  This 

fading category is used to describe the rapid fluctuations of the 

amplitudes, phases, or multipath delays of a radio signal over a short 

period of time or travel distance.   

  

Radio signals transmitted to/from mobile-radio base stations (terrestrial or 

satellite) are not only subject to significant propagation path losses that are encountered 

in atmospheric propagation, but are also subject to the distorting effects of terrestrial 

propagation.  In a typical urban environment it’s quite often that only non-line of sight 
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radio propagation paths exist between the base station (BS) and the mobile station (MS) 

because of natural and man-made objects present between the BS and a MS.  As a 

consequence of this, the radio waves propagate via scattering, reflection, and diffraction, 

which are the root cause of distorted radio propagation.  We refer to these as the three 

basic physical mechanisms that impact signal propagation in a mobile communication 

system:  

 

i. Reflection: Occurs when an electromagnetic wave impinges on a smooth 

surface with very large dimensions relative to the radio frequency (RF) 

signal wavelength. 

ii. Diffraction:  This occurs when a dense body with dimensions that are 

large relative to the signal wavelength obstructs propagation path between 

transmitter and receiver, and the propagation wave encounters an edge of 

the object, causing secondary waves to be formed behind the obstructing 

body. 

iii. Scattering:  Occurs when a radio wave impinges on large rough surfaces 

whose dimensions are on the order of the RF signal wavelength causing 

the energy to be spread out (scattered) or reflected in all directions.  In an 

urban environment the obstructions that cause scattering include 

lampposts, foliage, street signs, etc.  
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Fading is a general term for the phenomenon of the signal variability.  Fading in 

mobile radio channels is usually characterized by two distinct phenomena:  

- Constructive and destructive addition of multiple arrivals of the transmitted 

signal (multipath propagation) 

- Obstruction of the LOS path (also called shadowing). 

 

Due to these phenomena the plane waves arriving at the BS/MS from many different 

directions arrive with different delays.  This effect is called multipath propagation.  Fig. 

1.2 shows an illustration of multipath propagation. 

 

 

 

Base Station 
Transmitter

Mobile User 
(Station) 

Figure 1.2. Illustration of multipath fading. 

 

It can be observed from Fig. 1.2 that the signal received at the mobile station 

could be due to reflections, scattering, and diffractions or could have a LOS transmission 

with the base station.  The signals from the base station could reach the mobile station 
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with different time delays due to different transmission path lengths.  These signals also 

often have different amplitudes, depending upon the path they travel. 

Propagation between a mobile unit and a base station is most susceptible to the 

effects of multipath fading phenomena, because all communication is essentially at 

ground level.  The effects of multipath phenomena are not as significant in air-to-ground 

or satellite-to-earth station communications because the high angle of propagation 

typically avoids the types of interferences caused by surrounding natural land features 

and man-made structures.  

The multipath phenomena cause multiple waves to combine vectorially at the 

receiver antenna to produce a composite received signal.  The carrier wavelength used in 

mobile radio applications is usually in the UHF band, which typically ranges from 

225MHz to 1GHz.  Therefore small changes in differential propagation delays due to MS 

mobility can cause large changes in the phase of the individually arriving plane waves 

[2].  The arriving plane waves at the MS and BS antennas will experience constructive 

and destructive addition depending on the location of the MS.  It is apparent that a 

receiver at given location can experience a signal level (power) that is several tens of dB 

different from that at another location a short distance away where the phase relationships 

between the incoming waves has changed [3]. 

If the MS is moving or there are changes in the scattering environment then the 

spatial variations manifest themselves as time variations; this phenomenon of signal 

fluctuations is called envelope fading.  The short-term fluctuations caused by the local 

multipath environment are known as fast fading to distinguish them from the much 

longer-term variation in mean signal level, known as slow fading.  This latter effect is 
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caused by movement over distances large enough to produce variation in the overall path 

length between the transmitter and the receiver.  Since the mobile station moving into the 

shadow of hills or buildings often causes these variations, slow fading is often called 

shadowing. 

 

1.3 Popular Fading Distribution Overview 

An exact analysis of these multipath channels would be very complex since it is 

would require isolation and identification of each part of a reflected wave while the 

scatterers are in motion; hence we usually use a statistical approach to model these 

channels.  Statistical models have been shown to exhibit good agreement with observed 

parameter values.  There are several probability distributions that can be used in 

attempting to model the statistical characteristics of fading channels.  These distributions 

are frequently used in mobile radio to represent the short-term amplitude distribution of 

mobile radio signals.  These statistical distributions are normally used to describe the 

signal envelope variations; they are also used to evaluate the fade margins required for 

both the uplink and downlink budgets.  A brief description of some of the popular fading 

models is given in this chapter and a more detailed explanation of these models is given 

in the next chapter.  Some of the popular fading models to describe the channel 

characteristics are as follows. 
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1.3.1  Rayleigh 

In urban environments local scatterers usually surround a mobile station so that 

the plane waves will arrive from many directions without a direct LOS component.  

Two–dimensional isotropic scattering where the arriving plane waves arrive from all 

directions with equal probability is a very commonly used scattering model in a 

macrocellular environment.  For this type of scattering the received envelope is Rayleigh 

distributed at any time, and is said to exhibit Rayleigh fading [2]. 

 

1.3.2 Rician  

In practical applications the movement of the mobile often causes the mobile to 

switch from a LOS path to a NLOS path and vice versa.  Even in the absence of LOS 

propagation path, there often is a dominant reflected or diffracted path between the base 

station and the mobile station.  The LOS or dominant reflected or diffracted path 

produces the specular component and a multitude of weaker secondary paths contribute 

to scattered components of the received envelope.  In this type of propagation 

environment, the received signal envelope still experiences fading, but the presence of the 

specular component changes the received envelope distribution, and very often a Rician 

distributed envelope is assumed.  The received envelope is said to exhibit Rician fading.  

It is intuitively to be expected that there will be a fewer deep fades compared to the 

Rayleigh fading due to the LOS propagation path, or at least a dominant specular 

component, and that the specular component will be a major feature of the channel power 

spectrum. 
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1.3.3 Nakagami–m 

The Nakagami-m distribution was introduced by Nakagami in the early 1940’s to 

characterize rapid fading in long distance high frequency channels.  This distribution was 

selected to fit empirical data and is one of the most versatile, in the sense that it has 

greater flexibility and accuracy in matching some experimental data than Rayleigh, log-

normal, or Rician distributions.  The distribution has been found to be the best fit for 

some data signals received in urban radio multipath channels [2].  The m parameter is 

known as the shape factor of the Nakagami distribution, and via the variation of the 

parameter m, the Nakagami distribution can model conditions from Rayleigh to Rician 

and beyond, so it is often used to model fading in terrestrial environments as well as 

satellite environments.  This choice offers more flexibility to the modeler than the 

previous two distributions.  These appealing features account for the widespread 

application of the Nakagami distribution to theoretical and applied research in wireless 

communication [5]. 

 

1.4 Thesis Scope 

From the above description of fading in mobile radio channels, we have noted that 

the general phenomenon of fading is often characterized by two distinct phenomenona: 

multipath fading and shadowing.  In this thesis we focus on the development of different 

fading generators for modeling multipath envelope fading.  We first develop (computer 

simulations) fading generators for the popular Rayleigh and Rician distributions, and then 

based on some recent work [6], develop a generator for a Nakagami-m distribution.   
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These fading generators yield the channel amplitude time series, i.e., a sequence 

of samples, according the fading distribution and its parameters.  These fading generators 

are used to model what is often known as a single state fading channel.  In many cases, 

the channel exhibits distinct propagation characteristics over distinct time periods.  These 

distinct characteristics are often classified as channel “states.”  The simplest non-trivial 

example is a two state case, in which the channel can be said to be in a “good,” (viz. 

unshadowed) or “bad” (viz. shadowed) state.   

In our thesis the main aim is to develop a multi-state fading model that yields 

more accurate amplitude time series representations than can be obtained with the simpler 

single-state models.  Multi-state models also offer greater flexibility in modeling satellite 

communication channels compared to single state models.  After proper validation of the 

several single state generators, we then employ these single state generators to develop a 

multi-state fading generator.  We use some recent results [11] to validate our multi-state 

fading generator against both theory and measured data [12], using the second-order 

statistics of average fade duration and level crossing rate. 

 

1.5 Outline of Thesis 

 In this chapter we gave a brief summary of the purpose of studying fading 

channels, different popular existing fading models and an outline of what we plan to 

achieve from this research.  Chapter 2 describes the single state fading models in more 

detail and the simulation procedures we have used along with the results of the simulation 

procedures. In Chapter 3 we introduce multi-state fading and give a brief description of 

some popular multi-state fading models. Chapter 4 describes the new multi-state model, 
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the simulation procedure used and results of the simulation. Finally in Chapter 5 we 

conclude the thesis by summarizing the results obtained and by suggesting some future 

work that can be done to further this research. 
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Chapter 2: Single State Fading Models 

In this chapter we shall first give a more detailed description of the popular single 

state fading models noted in the previous chapter.  We begin with a brief mathematical 

introduction to the fading phenomenon and then describe the generation and simulation 

of the three popular fading models described in the previous chapter. 

 

2.1 Fading Channel Impulse Response 

Multipath fading arises physically from the addition of a large number of 

multipath reflections at the receiver.  These reflected signals (from buildings, hills, the 

ground, etc.) are often nearly equal amplitude, but random in phase.  It can be shown [4] 

that the complex baseband channel impulse response corresponding to this type of fading 

is 

 

(2.1) ( ) ( )( ) ( )[ ]{ } ( )[ ]                    exp);( ,

1

0
tttttjtth kkckkD

N

k
k τδτωτωατ −−−= ∑

−

=

 

where ( )tkα  represents the kth received amplitude, the exponential term represents the kth 

received phase, and the kth path is delayed by a time- varying delay ( )tkτ .  The δ function 

is a Dirac delta, and cc fπω 2= , where  is the carrier frequency.  The 

term

cf

kDf ,2kD , πω =  represents the Doppler shift associated with the kth received 

multipath echo.  The Doppler shift represents the shift in frequency of the received signal 

due to motion of the transmitter and/or receiver.  The Doppler shift will be discussed in 

more detail in the next section when we describe the Rician model. 
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It is to be noted that in the work that we have done we are considering a non-

dispersive channel in which case the time delays kτ  are very closely spaced in time and 

much smaller than any signal symbol duration.  In this case we approximated all τk as τ, 

and when all amplitudes are equal, the sum of the exponentials is our multipath-fading 

envelope.  For the Rician case, one of the amplitudes is much larger than the others. 

 

2.2 Popular Fading Models 

2.2.1 Rayleigh Fading 

This distribution is usually used to model a channel when there exists no 

significant LOS component and radio propagation is usually achieved by local scattering.  

When there are a large number of scatterers in the channel that contribute to the signal at 

the receiver (i.e., no prominent LOS path), then the composite received signal consists of 

a large number of equi-amplitude plane waves.  This kind of fading is commonly 

encountered in urban areas, for instance a mobile user among many high-rise buildings. 

If the number of received waves N is sufficiently large, from (2.1) (theoretically 

infinite, but in practice greater than 6 [2]) and by the Central Limit Theorem the complex 

received envelope can be modeled as a wide-sense stationary Gaussian random process.  

The real and imaginary parts of the complex received envelope are independent and 

identically distributed zero-mean Gaussian random variables, thus the envelope, the 

square root of the sum of the squared in-phase and quadrature (I & Q) zero-mean 

Gaussian processes, is said to be Rayleigh distributed.  These I and Q processes are 

completely characterized by their mean value and autocorrelation function.  When the 
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time delays ( )tkτ  are on the order of 1  and larger, the random phase terms cf/

( )t( j kc )τω−exp  are essentially uniformly distributed over the interval [0,2π), and vary 

rapidly (the path delays themselves vary slowly, but the delays multiplied by the carrier 

frequency vary rapidly [1]).  Since the means of the I & Q channel processes are zero, the 

variance of the quadrature components equals the mean-squared value (the mean power).  

The Rayleigh probability density function (pdf) is completely characterized by this mean 

square value.  As noted, under these conditions the envelope of the channel response at 

any time instant has a Rayleigh probability distribution and the phase is uniformly 

distributed in the interval (0, 2π).  This translates to the following: a Rayleigh process is 

the envelope of two zero-mean Gaussian processes, where by envelopes we mean the 

square root of the sum of the squares.  That is the envelope r(t) of the complex received 

signal is given by 

)()()( 22 tQtItr +=              (2.2) 

and the pdf  is given by 

 

                               
  ,                         0

     0    ,     exp2
)(

2





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








≥








Ω

−
Ω=

elsewhere

rrr
rpR    (2.3) 

 

where ( )2  RE=Ω . 

The probability distribution of the phase (θ) can be obtained by integrating the 

joint pdf equation over r, which results in a uniform distribution [3]. 
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Shown in Fig 2.1 and Fig 2.2 is a time series plot of Rayleigh faded signal envelope as a 

function of time and the Rayleigh pdf, for E (r2) =1.   

 

 
 Figure 2.1. Time series of Rayleigh fading samples 
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Fig. 2.1 is the output of a simulation that uses the above-mentioned Gaussian processes, 

and these processes are filtered with a filter of normalized bandwidth B=0.1, to yield the 

time correlation. Bandwidth is relative to the sampling frequency of the simulation. 

 

Figure 2.2. Rayleigh fading probability distribution function 
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2.2.2 Rician Fading 

There are many radio channels in which fading is encountered that are basically 

LOS communication links with multipath components arising from secondary reflections, 

or signal paths, from surrounding terrain or other obstacles.  In such channels, the number 

of multipath components is usually small and hence the channel may be modeled in a 

manner somewhat similar to the Rayleigh model but with an important difference: the 

presence of the specular component and the presence of a Doppler shift in the frequency 

associated with this LOS component or specular component.  Whenever relative motion 

exists between the transmitter and receiver, there is a shift in the frequency of the 

received signal due to the Doppler Effect.  The Doppler shift represents the frequency 

shift of the received signal due to motion of the transmitter and/or receiver.  The Doppler 

frequency parameter fm is the maximum Doppler shift that the signal undergoes.  Waves 

arriving from ahead of the mobile have a positive Doppler shift, i.e., an increase in 

frequency, while the reverse is the case for waves arriving from behind the mobile.  

Waves arriving from directly ahead of, or directly behind the vehicle are subjected to the 

maximum rate of change of phase, giving [3] 

λ
vfm =         (2.5) 

m carrier,  theof wavelength           
m/s unit, mobile  theof velocity             

Hz shift,Doppler  Maximum  where

−
−

−

λ
v
fm
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Fig. 2.3 shows an illustration of the mechanism causing the Doppler shift in 

frequency.  Let the nth reflected wave with amplitude c and phase φn arrive from an angle 

αn relative to the direction of the motion of the antenna.  

 

 

 

 

 

Figure 2.3. Illustration of Doppler shift 

 

The Doppler shift of this wave is then 

  nn
vf α
λ

cos=∆        (2.6) 

where v is the speed of the antenna and nα .is the angle of arrival. 

Referring back to Eq (2.1), the Doppler frequency, for terrestrial velocities  is 

most often much smaller than 1/T where T is the shortest baseband signal duration 

(symbol, bit, or chip time).  Thus usually the maximum Doppler shift is much smaller 

than the signal bandwidth.  The phase terms 

kDf ,

( )[ ]{ }ttj kkD τω −,exp  associated with the 

Doppler shift of the kth path generally vary much more slowly than the random phase 

terms, as (which can itself be a function of time) is in general much smaller than . kDf , cf
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The pdf of the Rician distribution is given by [2] 

 

( ) 0        
2

exp 202

22

2 ≥













 +
−= rrsIsrrrpr σσσ     (2.6) 

 

where  - power in the dominant component, 2s

  σ2 - power in the scattered components. 

 

In the literature a Rician process is often characterized by 2 parameters: its maximum 

Doppler frequency and its Rice-factor or “K–factor”.  The Rice Factor is defined as 

follows: 

 

 

 
components scatteredin Power 
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Interpreting the Rice factor in mathematical form we have, in dB 
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The envelope distribution can be rewritten in terms of the Rice factor and the average 

envelope power [ ] 222 2σ+=Ω= srE p  by noting that  
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The Rician pdf in terms of the Rice factor (k –numeric value (not dB)) is 
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It can be observed that for K = 0 the channel exhibits Rayleigh fading, and when 

K = ∞ the channel does not exhibit any fading at all.  The pdf of the envelope ( )rpr  is 

shown in Fig 2.4 for various values of K.  From the plots it can be observed that for  

K = 0 the pdf is a Rayleigh distribution and for K>>1 the pdf becomes approximately 

Gaussian with a mean square value (power) s2.  In Fig. 2.4 the mean square values of the 

pdf have been normalized to one. 

 Similar to the Rayleigh distribution, when the time delays ( )tkτ  are on the order 

of  and larger, the random phase terms cf/1 ( )( )tj kcτω−exp  are essentially uniformly 

distributed over the interval [0,2π), resulting in a uniformly distributed random phase for 

the scattered components. 
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Figure 2.4. Rician PDF’s for different K values 

 

An example time series of the Rician fading samples is shown in Fig. 2.5 for K= 5 

dB.  As expected, the presence of the specular or the LOS component reduces the number 

of deep fades when compared to the Rayleigh distribution time series in Fig. 2.1.  For the 

simulations used to generate Fig. 2.4 we used N =100,000 samples with the mean square 

value for each case set equal to one.  The filter bandwidth was set to 0.2 and the 

maximum Doppler frequency was set equal to 0.05.  For Fig. 2.5 the parameters for the 

simulation were same as that of Fig. 2.4 except that we just 200 samples to generate the 

time series. 
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Figure 2.5. Time series of Rician fading samples, K = 5 dB 
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2.2.3 Nakagami-m Fading 

As explained in the previous chapter, the Nakagami distribution is very popular 

due to its versatility in providing greater flexibility and accuracy in matching some 

experimental data, and also due to the fact that the distribution has been found to provide 

a very good fit for the mobile radio channel.  Beyond its empirical justification, the 

Nakagami distribution is often used because the distribution can model fading conditions 

that are either more or less severe than Rayleigh fading.  When m = 1, the Nakagami 

distribution is the Rayleigh distribution, when m = 1/2 it is a one-sided Gaussian 

distribution, and when m → ∞ the distribution becomes an impulse (no fading) [2].   

Two useful relations in our case are those relating the Nakagami-m shape factor m 

and the Rician k factor and σ2 (the power of the scattered waves), given by [6] 
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 (2.11) 

 

 

 Note that the above relations between m and k and not exact but approximations.  

Since the Rice distribution contains a Bessel function while the Nakagami distribution 

does not, the Nakagami distribution often leads to convenient closed-form analytical 

expressions that are otherwise unattainable. 
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The Nakagami-m probability density function p(r) of the envelope r is given by 

[6] 
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is the Gamma function.  Fig. 2.6 shows the Nakagami distribution for several values of 

m.  It can be observed from the Fig 2.6 that the Nakagami-m pdf for m = 1 resembles the 

Rayleigh pdf.  For the simulations used to generate Fig 2.6 we have used N = 100,000 

samples with a filter bandwidth of 0.1. 
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Figure 2.6. Nakagami – m fading probability distribution function 
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2.3 Simulation of Fading Models 

In this section we shall discuss the generation methods for the Rayleigh 

distribution, the Rician distribution and the Nakagami–m distribution.  At the end of the 

section we shall compare the results from the simulations generated with the analytically 

obtained results. 

 

2.3.1 Generation of a Rayleigh Process 

To generate a Rayleigh process, one often begins with the “traditional” definition: 

A Rayleigh process is the square root of a central chi-squared variate with two degrees of 

freedom.  This translates to the following: a Rayleigh process is the envelope of two zero-

mean Gaussian processes, where by envelope we mean the square root of the sum of the 

squares [12]. 

To aid in the explanation, we show in Fig. 2.6 a diagram of the Rayleigh process 

generator.  The inputs to the left of Fig. 2.6 are white Gaussian processes of zero mean.  

The two branches can be treated as the in-phase and quadrature channel of a complex 

Gaussian random process.  A convenient normalization is to set the channel power to one 

( 1 ).  Since the Gaussian processes are zero mean, the variance equals the power 

and thus we normalize the variances of the Gaussian processes to one.   

)( 2 =rE
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The power of the Rayleigh variable is equal to the expected value of , i.e., kr

2
kr

( ) ( ) 222
2

2
1

2 2 µσ +=+= kk vvErE       (2.13) 

where - power in each of the I & Q channels (variance), 2σ

 - mean of the Gaussian processes (2µ µ  = 0 in our case). 
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Figure 2.7. Illustration of the components used to generate the Rayleigh fading 
 process 

 

 

The filtering and scaling operation are used to reduce the fade rate of the white 

processes to equal the desired maximum fading rate.  The filtering operation is performed 

as the power spectral density of the white process is the Fourier transform of its 

autocorrelation, and is a constant value.  What this means is that the Gaussian process is 
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rapidly varying (or can be), contrary to what we want our model to be.  Thus we need to 

filter the white Gaussian process to slow down the variation to something approximating 

what is seen in practice.  Filtering narrows the output power spectrum and widens the 

resulting autocorrelation function [1].  The scaling operation is performed after the filter 

operation for the outputs of the filter to have the same mean and variance (power) as the 

input.  The two different noise sources must have the same power spectral density (PSD) 

to produce a Rayleigh faded envelope. 

Often the ideal is a low pass filter with a cut off frequency of  (f0f D, max).  For the 

model developed, we have used a conventional low pass filter, with a variable order (2nd - 

9th): a Chebyshev type I filter.  The filter order is adjusted depending on the desired 

cutoff frequency.  For filter cutoff frequencies below 0.1 (fsample/2) we generally use a 3rd 

or 4th order filer and a 9th order filter for cutoff frequencies above this value.  This is done 

because with very narrowband filters, some of the filter coefficients become extremely 

small (e.g., 10-9), where these coefficients are those generated by the Matlab built-in 

function denoted “cheby1.”  The filter stability is not always guaranteed in the cases of 

small coefficients. 

With a sampling rate of fs, the value of the scale factor b is then approximated as 

os ff / for outputs  that have the same mean and variance (power) as the input.  In 

our model the sampling frequency is set to one.  The outputs after scaling are then 

squared and added to generate the Rayleigh faded samples.  

kv

 



  39   
2.3.1.2 Verification of Model 

This model was used to generate N = 100,000 random samples of the Rayleigh 

fading process.  To verify our model we compare the histogram of the generated samples 

with the analytical Rayleigh pdf.  The plot of the comparison of the two histograms is 

shown in Fig. 2.7.  We have also shown a histogram to demonstrate the phase uniformity 

over [0,2π ) in Fig 2.8.  From Fig. 2.7 we can observe that model developed exhibits a 

good agreement with the analytical Rayleigh pdf.  From Fig. 2.8 we can observe the 

phase uniformity between 0 and 360 degrees. 

 

 

Figure 2.8. Rayleigh analytical pdf & histogram. 
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Figure 2.9. Phase histogram of the Rayleigh fading samples. 

 

For the plots shown in Figures 2.7, and 2.8 we have used a 9th order Chebyshev filter 

with a filter cut off frequency of 0.1 Hz.  The full N=100000 samples were used to 

generate both the histograms of the amplitude and phase. 
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2.3.2 Generation of a Rician Process 

The main distinction between the Rayleigh and Rician distribution is the presence 

of LOS or specular component in the Rician, absent in the Rayleigh case.  Due to the 

presence of the LOS or specular component one has to take into account Doppler shift in 

frequency of the component. 

Similar to the Rayleigh case, the generation of the Rician process begins with the 

“traditional” definition: a Rician process is the square root of a non-central Chi-square 

process with two degrees of freedom.  Thus essentially the Rician process is the envelope 

of two non-zero mean Gaussian processes.  In the mobile radio context, this isn’t 

completely correct, as the result of generating the process in this way is a process that has 

a LOS component with a Doppler shift of identically zero.  For non-zero LOS Doppler 

shifts, we need to add a tone of the desired frequency to create the non-zero mean 

Gaussian process [12].  To aid in this discussion we show in Fig 2.9 a diagram of the 

Rician process generator.   

The Rician process is often characterized by these two parameters: 

1. Maximum Doppler frequency. 

2. Rice-factor or “K-factor” 

To these two parameters we could also add the Doppler frequency of the LOS 

component, which in general is time varying [12]. 
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Figure 2.10. Illustration of the components used to generate the Rician fading process 
 

In the Rician case, we assume that the first-arriving signal is a constant amplitude 

µ.  Thus the power in the LOS component is µ2.  The power in the diffuse component is 

conventionally denoted 2σ2, where the power in each of the channels (in-phase and 

quadrature) is σ2.  Therefore our expression for k where K = 10log (k), is: 

 

( )22 2/ σµ=k           (2.14) 
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From the illustration of the model in Fig 2.9 we see that except for the Doppler frequency 

component, the model is identical to the Rayleigh sample generation model discussed in 

section 2.3.1. 

 Referring to Fig. 2.9, the random processes  and  equal the corresponding 

filtered Gaussian processes plus the tone at the Doppler frequency of the LOS 

components, .  The power of the Rician variable  is equal to the expected value 

of , i.e., 

1kv 2kv

DLf kr

2
kr

 

 ( ) ( ) 222
2

2
1

2 2 µσ +=+= kk vvErE       (2.15) 

where - power in each of the I & Q channels (variance), 2σ

 - mean of the Gaussian processes. 2µ

If we set , the mean of each Gaussian process  and  is0=DLf 1kv 2kv 2/µ , and 

the variance of each is σ2.  In this case the mean power ( )2rE is identical to that in (2.15). 

Using again the normalization ( ) 12 =rE  and combining equations (2.14) and (2.15), we 

can obtain equations for µ and σ in terms of k using Eq.(2.8).  Therefore given a desired 

value of k (or K), we can set the mean and variance parameter in the model. 

 A simple Rician model assumes that the means of the Gaussian processes are 

constant.  This will certainly yield a Rician distributed envelope, but will not realistically 

model the higher order envelope statistics for a particular scattering environment.  For 

our model we have used a better approach suggested by [12].  In this case the means of 
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the  and  corresponding to means of the in phase and quadrature components 

of the LOS signal are given by 

( )tmI ( )tmQ

 

( ) ( )φπµ +⋅= tftm DLI 2cos         (2.16) 

( ) ( )φπµ +⋅= tftm DLQ 2sin         (2.17) 

where  and DLf φ  are the Doppler shift and random phase offset associated with the LOS 

or specular component, respectively. 

2.3.2.1 Verification of Rician Model 
 

This model was used to generate N = 200 random samples of the Rician fading 

process r for two values of the Rice factor K: K = 5dB and K = 10 dB.  Additional 

parameters used for this simulation are a 9th order Chebyshev filter with cutoff of 0.1 Hz, 

and a maximum   Doppler frequency ( ) of 0.01Hz. mf

 



  45   

 

 

Figure 2.10. Rician fading vs. time for two different ‘K’ values 
 

 

To verify our model we compare the histograms of the Rician generated samples 

for the two K values with the analytical Rician pdf for the same K values and the plots are 

shown in Fig. 2.11.  The parameters for this simulation is same as the above, except that 

to get an accurate histogram we have used N = 100,000 samples. 
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Figure 2.12 Rician analytical pdf & histogram for two different ‘K’ values 

 

It can be observed from Fig. 2.11 that the model developed exhibits a good 

agreement with the analytical Rician pdf.  We have also created a histogram of the phase 

of the Rician samples, and shown in Fig. 2.12.  As stated above it can be observed that 

the phase is uniform between 0 and 2π. 
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Figure 2.13. Phase histogram of the Rician fading samples 
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2.3.3 Generation of a Nakagami-m fading Process 

The Nakagami-m model has no physical foundation unlike the previous two 

described models, and is essentially an empirical formula selected to fit observed data.  

We have used the reference [6] to develop this model.  In this model the shape factor m 

can take on values m = n/2, with n a non-zero positive integer.  Though developed for 

discrete values of m this model works for any integer multiple of 0.5, greater than or 

equal to 0.5. 

We review the method developed in [6].  Let ( )txi  and  be Gaussian random 

processes, corresponding to in-phase and quadrature components, respectively.  We set 

the mean of the Gaussian processes to zero and the variances to .  Let , or 

equivalently , and , i = 1, 2….  We note that r  is semi-positive 

Gaussian distributed whereas , i = 1, 2… are Rayleigh distributed.  The fading model of 

the envelope r is defined as  
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This model has been shown to fit the Nakagami-m distribution in an exact manner [6].  

An illustration of the Nakagami-m generator is shown in Fig. 2.13. 
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Figure 2.14. Illustration of the components used to generate the Nakagami-m fading 
process. 



  50   
2.3.3.1 Verification of Nakagami Model 

 
This model was used to generate N = 200 random samples of the Nakagami-m 

fading process r for two values of m: m = 1 and m = 3.5.  We have shown the time series 

of the Nakagami-m fading envelope for the above values of m in Fig. 2.14.  As expected, 

the number of deep fades is greater for m = 1 compared to m = 3.5.  A 9th order 

Chebyshev filter with cutoff of 0.1 Hz was used in the simulation. 

 

 

 

Figure 2.15. Nakagami-m fading vs. time for two different ‘m’ values 
 
 
 
 



  51   
 

To verify our model we compare the histograms of the Nakagami-m generated 

samples with the analytical Nakagami-m pdf for the same m values and the plot is shown 

in Fig. 2.15.  It can be observed from Fig. 2.15 that the model developed exhibits a good 

agreement with the analytical Nakagami-m pdf. 

 

Figure 2.15 Nakagami-m analytical pdf & histogram for two different m values  
 
 
 Summarizing what we discussed in this chapter, we have described three popular 

single state fading models, their simulation procedures and validated the results from the 

simulation with analytical results. In the next chapter we introduce multi-state fading 

concepts and describe some popular multi-state fading models.  
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Chapter 3: Multistate Fading Models 

In the last chapter we described various fading models and the simulation 

procedures used to produce those models.  Channel fading models can be generally 

classified into the following two types [7]: 

 

Single state models: These models are suitable for environments where the mobile 

receiving station is in a uniform environment where the propagation paths do not have 

abrupt changes.  The models described in the previous chapter come under this category. 

 

Multi-state models: When a mobile terminal travels in a large area or through 

non-uniform environments, the received signals may change abruptly, yielding for 

example different average power levels which are the case when a mobile user travels 

from an open area to densely populated urban areas.  A more suitable model to describe 

this sort of a channel is a multistate model, as a single state model cannot characterize the 

slow variations corresponding to the large scale fading or a change in the mean power 

level.  This model is usually a linear combination of several single-state fading models, 

each of which corresponds to a specific uniform environment. 

 

In this chapter we describe multistate models and also give a brief description of 

two popular multistate models, the Lutz model [8] and the Loo model [10] and lastly 

describe some recent work by others in developing multi-state models.   
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3.1 Introduction 

 

The mobile radio channel is characterized by rapidly changing channel 

characteristics which arise naturally and inevitably as a consequence of the mobility.  As 

the amplitude of a signal received over such a channel fluctuates, the receiver will 

experience periods during which the signal can not be received reliably.  If a certain 

minimum (threshold) signal level is needed for acceptable communication performance, 

in these channels the received signal will experience (at least) two distinct cases of 

received signal power: 

Sufficient signal strength or "non-fade intervals," during which the 

receiver can work reliably and at low bit error rate,  

• 

• Insufficient signal strength or "fades," during which the bit error rate 

inevitably is close to one half (randomly guessing ones and zeros) and the 

receiver’s output is no more reliable. 

 

A graphical illustration of the received signal amplitude vs. time is shown in Fig. 

3.1. 

 

 

Figure 3.1 Illustration of received signal amplitude vs. time. 
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Referring to Fig. 3.1 we could categorize the fade and non-fade periods as two 

states: we can refer to the fade period as the bad state and the non-fade period as the 

good state.  The good state is also generally referred to as the unshadowed state and the 

bad state is referred to as the shadowed state.  This two-state model is the simplest of the 

class of general multistate models.  A bi-modal pdf is used to show the total distribution.  

The switching between the two states is often modeled with a finite state Markov chain.  

This two-state simplification of the wireless channel behavior is called a Gilbert-Elliot 

model [9].  This model is essentially a binary channel whose two states can be considered 

the good and bad states.  The probability of the channel being in any state at any given 

time is quantified by the steady-state probabilities. 

For our thesis we have developed a two-state model simulation (good and bad 

states).  The good state can be related to the non-fade period or unshadowed state and the 

bad state correspond to the fade period or shadowed state.  This two state model can be 

easily extended to an n-state model by partitioning the received signal envelope into n 

intervals and a finite state Markov model can be fitted for the physical channel model.  In 

the last section of this chapter we briefly discuss a 3-state model [14].  The Markov 

model is described more in detail in the next section. 

 

3.2 Markov chains 

The name chain model is derived from one of the assumptions which allow this 

system to be analyzed, namely the Markov property.  The Markov property states that 

given the current state of the system, the future evolution of the system is independent of 

its history.  The controlling factor in a Markov chain is the transition probability; it is a 
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conditional probability for the system to go to a particular new state, given the current 

state of the system. 

A discrete time Markov chain {Xn| n = 0, 1…} is a discrete time, discrete valued 

random sequence such that given X0… Xn, the next random variable Xn+1 depends only on 

Xn, through the transition probability 

 

[ ] [ ] ijnnnnnn PiXjXPiXiXiXjXP ======== +−−+ 100111 ,......,,    (3.1) 
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the next element Xn+1 of the random sequence.  We call Xn the state of the system at time 
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(usually constant) transition probability Pij that the next state will be j given that the 

current state is i.  When the Markov chains have a finite set of states {0, 1… K}, we say 

we have a finite Markov chain.  In this case, it is convenient to denote the set of one step 
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Since the contents of the matrix are probability values they are non-negative and 

the elements of any row must sum to 1.  The matrix P is called a state transition matrix.  

We may alternatively represent the chain by a graph with nodes representing the sample 

space of Xn as directed arcs for all pairs of states (i, j) such that Pij >0.  

Fig. 3.2 shows a graphical representation of a 2-state Markov chain.  In this 

figure, the following notation applies: 

Pgb is the probability of transition from a good state to a bad state 

Pgg is the probability for the process in the good state to remain in the good state 

Pbg is the probability of transition from a bad state to a good state  

Pbb is the probability for the process in the bad state to remain in the bad state. 

 

 

 

1 – P (Pgb) 

1 
(Bad)

0 
(Good)

P (Pgg) P (Pgg) 

1 – P (Pbg)

 

Figure 3.2 Graphical illustration of a Markov chain 
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Representing this in the matrix form discussed above we get 
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Thus the only parameter required to implement the Markov two-state model is the 

matrix P and this model can be easily scaled to implement an n-state Markov model by 

providing an n x n transition probability matrix. 

 

3.3 Popular Multistate Models 

3.3.1 Lutz Model 

Lutz et. al. [8] introduced a two-state analog model to describe a land mobile 

satellite channel which can be readily be used for hardware and software fading 

simulation.  This model was developed from data measured and recorded in different 

European areas between a satellite and a ground station (a cruising van) for different 

elevation angles and different environments.  The results of this extensive statistical 

evaluation include spectra of the fading amplitude, probability density functions, 

distributions of the received signal power, and the percentage of time for fade and non-

fade periods at a given fade level or fade depth.    

In [8], they use a two-state Gilbert-Elliot model to represent the land mobile 

satellite channel.  An important parameter of the model is the time-share of shadowing A, 

ranging from less than 1% on certain highways to 89% in some urban environments.   
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The authors divide the received signal envelope into two periods or states, the 

good and bad channel periods. 

 

Good state: The good channel state corresponds to areas with unobstructed 

“view” of the satellite (unshadowed areas).  This corresponds to periods when the 

received signal power is above a certain threshold value; below this value the received 

signal is no longer reliable.  When no shadowing is present, the received signal is 

assumed to consist of a multipath signal superimposed on the direct LOS satellite signal, 

with the total received signal amplitude modeled as a Rician process.   

 

Bad state: The bad channel state represents the case when the direct satellite 

signal is shadowed by obstacles.  When this shadowing is present, it is assumed that no 

direct signal path exists and that the multipath fading has a Rayleigh characteristic. 

 

The threshold value must be determined such that the time-share of when the 

received signal power is below the threshold is equal to the parameter A.  In both 

shadowed and unshadowed cases, the signal components are received with independently 

time-varying amplitudes and phases 
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The resulting probability density function of the received signal power in terms of 

the time share of shadowing, A is  
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Here c is the Rice factor, S0 is the short-term mean received power in the 

shadowed state, µ  is the mean power level decrease from unshadowed to shadowed 

states, and is the variance of the amplitude due to shadowing.  (The integral 

expression results from the theorem of total probability, and can’t be analytically 

simplified.)  The pdf p(s) is independent of the vehicle velocity, which is assumed 

constant.  The parameters A and the various other parameters required for the Rayleigh, 

Rician and Lognormal fading processes were determined from the statistics of the 

recording by a least square curve-fitting procedure. 

2σ

From (3.4) it can be see that the Lutz equation is a combination of the Rayleigh, 

Rician and lognormal processes.  It can be observed that for the fraction of time in the 
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shadowed state, the received power is described by a Rayleigh/lognormal distribution and 

for the fraction with a LOS component; the received power is described by the Rician 

process, which is quite intuitive. 

 The pdf’s obtained show good agreement with the statistics of the recorded signal 

power.  Figure 3.3 shows a dynamic model of the land mobile satellite channel that 

reproduces the fading amplitude samples having the desired pdf of the received signal 

power, including the dynamic power of the fading and shadowing process. 

Referring to Figure 3.3 it is seen that the transmitted signal s(t) is deteriorated by 

multiplicative fading a(t) and additive white Gaussian noise n(t) with power spectral 

density N0.  The characteristics of the switching process between the shadowed and 

unshadowed sections have been approximated by a Markov model similar to the Markov 

model described earlier.   

Referring to Figure 3.3 again we see that Rician fading is produced by attenuating 

the Rayleigh process to power of 1/c and adding a value of unity to represent the direct 

satellite signal component.  The Rayleigh/lognormal fading samples are generated by 

multiplying the Rayleigh process with a slow lognormal shadowing process.  This 

approach has the advantage that very few fades can be reproduced which is not possible 

when assuming constant multipath power.   

A brief summary of this model is that the channel model developed is largely 

characterized by the time-share of shadowing, A, and the Rice factor, c, describing the 

channel during unshadowed periods.  The authors claim that the model shows that 

reliable and efficient data transmission via the land mobile satellite channel should be 

achievable, if the transmission scheme is suitably adapted to channel behavior. 
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Figure 3.3 Dynamic model of land mobile satellite model 
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3.3.2 Loo Model 

The authors of [10] have conducted channel measurements ranging from ultrahigh 

frequency to Ka band and have developed a statistical channel model from this data for 

land mobile satellite systems.  This popular channel model assumes that the LOS 

component under shadowing is log-normally distributed and the multipath component is 

Rayleigh distributed.  The two processes are additive and the channel model is given by 

the combination of log-normal and Rayleigh models.  Thus the channel model is as given 

below 

 

( ) ( ) ( ) ( ) ( )( )[ ] [ ]{ }tfjtatyjtatyta csscc π2expRe +++=    (3.5) 

 

where and  are white Gaussian random processes, and  and )(tac ( )tas ( )tyc ( )tys  are 

lognormal random processes.  The signal envelope and signal phase are given by 

 

( ) ( ) ( )[ ] ( ) ( )[ ]22 tatytatytr sscc +++=      (3.6) 
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 The Loo model has also been shown to compare reasonably well with the 

measured data.  This model can represent some of the most common known fading 

conditions, such as Rician, log-normal, and Rayleigh. 
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3.3.3 Other Multi-State Models 

There are currently several others developing multi-state models for mobile 

satellite systems.  We briefly discuss another multi-state model [14].  The main elements 

in the model were the direct signal and the multipath component.    

The characterization of the direct signal was a two-stage approach where the 

variations were divided into very slow which can be described by a steady-state model 

(Markov) and slow, which can be represented by a log-normal distribution.  The model 

developed by the authors is a three- state model.  This choice was made to accommodate 

the high dynamic range in the received signal.  The following states were defined: 

  S1 – LOS conditions; 

  S2 – moderate shadowing conditions; 

  S3 – deep shadowing conditions; 

 A first order Markov chain process is used for switching between the different 

states.  The multipath component is characterized by the average multipath power 

parameter or, alternatively, the carrier-to-multipath ratio.  To jointly model the behavior 

of the direct signal and the multipath component within each state (nor for overall 

received signal) the Loo distribution is proposed in this model. 

 

 Summarizing, in this chapter we briefly described multi-state fading and some 

popular multi-state fading models. In the next chapter we introduce the new multi-state 

fading model, describe the simulation procedures and validate the results obtained from 

this model with measured data. 
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Chapter 4: New Multi-State Fading Model 

 
In this chapter we introduce the fading model developed in [11] and illustrate how 

it differs from the other multi-state fading models discussed in the previous chapter.  This 

new model is developed from measured data [13].  We then describe the simulations we 

have developed to test this new model and compare the results obtained from these 

simulations with the original data of [13], thereby validating this new multi-state model.  

 

4.1 Introduction 

This new multi-state model aims to obtain a new analytical expression for the pdf 

of received signal envelope in a mobile satellite channel.  The expressions for the pdf are 

derived from measured data in [13] for an urban environment, but the method yields 

insight into other environments too.  This model used the Average Fade Duration (AFD) 

and Level Crossing Rate (LCR) to obtain a composite model similar to the other two-state 

models discussed in the previous chapter.  The concepts of AFD and LCR will be 

discussed in more detail in this chapter.  Since this new model only provides the pdf, our 

contribution is amenable to the development of computer simulations for this mobile 

satellite channel pdf model. 
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4.2 New Model Development 

4.2.1 Level Crossing Rates and Average Fade Durations 

Two important second order statistics associated with envelope fading are the 

level crossing rate (how often the envelope crosses a specified value) and the average 

fade duration (how long the envelope remains below a specified level).  Fig 4.1 shows an 

illustration of the time-varying envelope used to help define these two parameters. 
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Figure 4.1. Illustration of LCR and AFD 
  

Referring to Fig. 4.1, if z(t) is the received envelope then the LCR and AFD for a 

specified level R would be computed as follows, for a given realization of z(t) 
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where N is the total number of crossing at level R in a given direction (either in the 

positive or negative direction).  The notation t  represents the n  crossing of the signal 

below the threshold level R and  represents the crossing of the signal above the 

threshold level. 

iR,
th

iRu ,
thi

 

4.2.2 Model Derivation 

In this section we review the new pdf model developed in [11].  Most models 

based upon empirical data that attempt to find a pdf must make some assumptions, 

partition the data and then apply some sort of curve fit.  This model used the LCR and 

AFD data to obtain the pdf model.  The LCR can easily be obtained from the measured 

data by creating thresholds.  The AFD in this case has been derived from the LCR and the 

actual fading time series [13].  These two functions are directly related to the desired 

fading pdf via a first-order differential equation.  The generic expression for the AFD for 

a fade below a level of R dB (beneath the mean amplitude level) is 

 

 AFD(R) = cdf(R)/LCR(R)      (4.3) 

 

where LCR(R) is the level crossing rate at level R, and the distribution function cdf(R) is 

the integral of the pdf  from 0 to R.  Here( )zpz ( )zR 10log20= .  Transforming R to 

, the domain of z is divided into two regimes states.   20/10Rz =
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The reasons for making a choice of two regimes are: 

i. The convenience and agreement with a visual “fit” observed in the data of 

[13] 

ii. To agree with physically–justified division of prior models into two states 

iii. After numerous attempts at fitting over the entire domain of z, it was 

found that the number of terms required to achieve a good fit in the “single 

–regime” approach was too large to render the resulting pdf’s convenient. 

The explicit expression for the function ( )zpz , obtained by taking a derivative of (4.3) is 

 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )xLxAxAxLxAFDxLCR
dx
dxpz ′+′==   (4.4) 

 

where LCR has been abbreviated by L, and AFD by A, and the primes denotes 

derivatives.  Using two sets of data for LCR and AFD from [13] corresponding to two 

different elevation angles, were developed  

The data from the cumulative density functions (cdf’s), also given in [13], was 

used to obtain “state probabilities”, the probabilities of being in a fading state.  For the 

functional form of the pdf the author chose the Nakagami pdf, which has been discussed 

in Chapter 2.  It is found that L(x) is of Nakagami form when the pdf was Nakagami 

(without any assumption on the scattering geometry).  For additional flexibility, a linear 

combination of Nakagami pdf’s was used 
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where the Nakagami pdf’s are defined as  

  ( ) ( ) ( Pmxx
Pm

mPmxp m
m

m

N /exp2,, 212 −
Γ

= − )    (4.6) 

(see equation (2.12)) with P, the average power in the distribution equal to ( )2xE .  The 

final result for the pdf  in each regime is made up of a sum of Nakagami pdf’s 

similar to (4.5), and this can be derived by obtaining the solution of the following first 

order non-homogenous differential equation when we assume the use of (4.5) and a 

similar Nakagami form for the pdf: 

( )xpz
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which comes from (4.4), where the function { } { }( )kk Pmxa ,,  is defined as  
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The coefficients { }kα  in (4.9) are those for the pdf ( )xpz , and are analogous to the c ’s 

in (4.5), that is, the pdf is  

k

        (4.10) ( ) ( )∑= kkNkz Pmxpxp ,,α

 

The function  in the numerator of (4.8) arises from differentiation of the 

Nakagami pdf, and is defined as  

( kk Pmxh ,, )

  

  ( ) ( ) xmPxmPmx kkkkk /12/2,,h −+−=     (4.11) 

 

Allowing the coefficients of { }kα  in the pdf sum to be distinct from those in the sum for 

L(x) allows more flexibility in fitting the functions for A(x) to the data.  The solution for 

A(x) turns out to be 
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where [11].  These equations are solved numerically 

since they are not solvable in closed from in the general case, except when N = 1.  For 

insight, consider the case when N = 1.  It can be observed that when A(x) is in the form of 

(4.12), the pdf  is exactly the form of (4.10).  Using the data from [13], the author 

has obtained pdf’s for two elevation angles.  For each case he has divided the envelope 
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amplitude range into two regimes and obtained the individual pdf’s for each regime.  The 

pdf’s from the two regimes are combined using the appropriate state probabilities, 

obtained by reading a single point from the graph of the corresponding cdf’s in [13].  The 

curve fits for the resulting simulated L(x) and A(x) show good agreement with the 

measured data, as will be shown. 

 To summarize, the new model uses AFD and LCR data, along with the Nakagami 

assumption, to fit pdf’s using equations (4.5), (4.10), and (4.12).  The result is the set of 

pdf’s of the form of (4.10), along with their constituent parameters ({ } { } { }Pm ,,α ). 

 We then use pdf parameters in a simulation that produces the fading amplitude 

time series which is validated against the original measured data.  The overall procedure 

is illustrated in Fig. 4.2. 
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4.2.3 Simulation Development of New Multi-State Fading Model 

In the previous section we described the analytical development of the new multi-

state fading model (NMSFM).  We now aim to simulate this model to verify its analytical 

development.  We can divide this simulation into four different modules 

i. Nakagami fading generators 

ii. Markov process generators 

iii. Level crossing rate calculator 

iv. Average fade duration calculator 

Modules iii and iv are solely for model validation. 

A block diagram of the simulation procedure is shown in Fig. 4.2.  The shaded 

blocks in Fig. 4.3 represent the inputs to the simulations.  We shall first explain the 

overall simulation development and then explain in detail the development of each of the 

individual modules. 

From Fig. 4.3 it can be observed that we require two separate Nakagami fading 

generators.  Each generator is used to generate the fading samples corresponding to one 

of the two regimes.  Strictly, the same programs are used for both the Nakagami 

generator, with distinct parameters for each state.  The parameters mLo and mHi denote 

the low-regime and high-regime m values of the Nakagami generators, respectively.  

Similarly the parameters PLo and PHi denote the mean square values for each of the 

Nakagami generators.  After we have the fading samples for each of the two regimes we 

combine the fading samples according to their state probabilities.  We shall explain later 

how we obtain the state probabilities.   
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The process of switching between the two regimes is accomplished using 

a Markov process generator as explained in an earlier chapter.  The resulting 

samples obtained after the switching process are the desired multi-state fading 

samples. 
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  Figure 4.3. Block Diagram of New Multistate Fading Model 
 

 

In order to validate the obtained fading samples against the measured data we 

calculate the LCR and AFD from the obtained fading samples, and compare these with 

the measured LCR and AFD data. 
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A sample multi-state pdf is shown in Fig.4.4 for the following Nakagami 

generator parameters 

mLo = 1.5  PLo = 0.9 

mHi = 14  PHi = 1.1 

 

Figure 4.4 Multi- State Fading PDF 
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4.2.4 Parameters for the Nakagami Fading Generators 

The Nakagami generator we have developed requires three input parameters, 

namely 

i. Number of samples required. 

ii. Value of the shape factor m (has to be a positive multiple of 0.5 as 

discussed in Chapter 2). 

iii. Mean square value of the fading samples (PLo or PHi). 

From the measured data in [13] we have calculated of the fitting parameters 

required for the mobile satellite channel modeling.  We took the LCR and AFD data from 

the measured data and then curve fit to equations (4.5), (4.10), and (4.12) to obtain the m 

values and the mean square values. The fitting parameters are shown in Table 4.1, where 

the Nakagami parameters and constants are given for the four streets for which data was 

given in [13]. 

Table 4.1 Summary of Fitting Parameters 
 

Street 
Name 

Elevation 
Angle 

(degrees) 

Regime 1 
(-35 dB to -7 

dB) 
1α  

Regime 2 
(-7 dB to +3 

dB) 
2α  

  mLo PLo  mHi PHi  
Zaimi St. 80 1.312 0.09 0.083 7.536 1.076 0.952 

 60 0.946 0.085 0.616 6.651 1.021 0.412 
Bouboulinas 

St. 80 2.499 0.275 0.047 5.646 1.213 0.987 

 60 1.276 0.069 0.6 14.124 1.102 0.404 
Ippokratous 

St. 80 23.161 1.074 1.035 X X X 

 60 1.09 0.069 0.8 12.798 1.203 0.209 
Askpliou St 80 16.786 1.068 1.004 X X X 

 60 1.029 0.047 0.723 0.882 0.847 0.416 
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For the 80-degree elevation angle, the Ippokratous Street and Askpliou Street data 

yielded only a single regime.  The reason we have a single state is because from the 

measured data for these two streets we could get a good fit with the data using only one 

regime compared to using two regimes, unlike the remaining cases.  The range for 

Ippokratous street 80 degrees was -4.5dB to 1.5dB, and for Askpliou street 80 degrees the 

range was -6.5dB to 2.5dB.  The parameters 1α  and 2α  are the coefficients over the 

respective regimes, used to normalize the resulting total pdf so that its area is unity (see 

(4.10)). 

For the simulations we used N=100,000 samples.  The reason we have generated 

so many samples is to get a smooth LCR and AFD curve for even low envelope values, 

which occur infrequently.  We have also approximated the m values in the table, as our 

Nakagami generator can provide only m values that are positive multiples of 0.5.  

 

4.2.5 Markov Process Generator 

As mentioned in the previous section, the process of switching between the two 

states is accomplished using Markov chains.  We obtain the steady state probabilities of 

being in a particular state from the cumulative distribution function (CDF) plots.  Since 

we have already divided the available data into two regimes we can just look up the 

steady state probabilities of being in each regime from the cdf plot given in [13].  An 

illustration of calculating the steady state probabilities from the cdf plot is shown in Fig. 

4.5.  
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Figure 4.6.Steady State Probabilities for Different Transition Probabilities 

  

The relationships between these probabilities are gggb PP −= 1  and   bbbg PP −= 1 .

 

4.2.6 Level Crossing Rate and Average Fade Duration Calculator 

After we have obtained the multi-state fading samples given {m}, {P} and A, we 

calculate the LCR and AFD to validate the model against the measured LCR and AFD 

data of [13].  We have already introduced the concepts of LCR and AFD in Section 4.2.1.  

For our simulation we have calculated all the fades that cross the reference value in the 

negative direction.  The range of the reference values that we have considered in the 

simulations varies from -40 dB to +20 dB from the mean square value. 
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To test the LCR and AFD module, we first test it for a single state case.  Shown in 

Figure 4.7 is the LCR plot for Ippokratous Street from [13] which we have divided into 

only one regime.  Similarly, Figure 4.8 shows the AFD plots for the same street.  The 

normalized LCR on the ordinates of the LCR plots represent the crossings per wavelength 

for the threshold indicated by the abscissa value.  For the AFD plots the normalized AFD 

represents the duration of fades in wavelengths for the abscissa value, which in turn 

corresponds to the received signal level in dB normalized to the LOS value.  From [13] 

we know that the measurements were made at 1.8 GHz, therefore the wavelength of the 

signal is  

 

m
f
c

c

1667.0
108.1

103
9

8

=
×

×
==λ      (4.13) 

where c is the propagation speed of light and  is the carrier frequency. cf
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Figure 4.7 LCR Plot for Ippokratous Street 80 degrees. 

  

The fitting parameters for the Ippokratous Street 80-degree case were m = 23 and P = 

1.074.  From the plots it can be observed that the simulated plots for both the LCR and 

AFD exhibit very good agreement with the measured data. 
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Figure 4.8. AFD Plot for Ippokratous Street -80 degrees 
 

4.3 Results of Simulation 

 We now validate the results for all the multi-state streets in Table 4.1 using the 

multi-state simulator developed with the measured data from [13]. 

 Figures 4.9 and 4.10 are the LCR and AFD plots respectively of Bouboulinas 

Street at 60-degrees elevation angle. The parameters of the simulation are: 

 mLo = 1 

 mHi = 14 

 PLo = 0.069 

 PHi = 1.102 
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Figure 4.9. LCR Plot for Bouboulinas Street 60 – degrees  

 

Figure 4.10. AFD Plot for Bouboulinas street 60 degrees. 
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The transition probabilities for Bouboulinas Street (60 degrees) are  
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Figure 4.11 shows the pdf for Bouboulinas street 60-degree elevation angle case, 

comparing it with the analytical pdf that is obtained by combining two single state 

analytical pdf’s according to each regime’s respective steady state probabilities. 

 

 

Figure 4.11. Multi-State PDF of Bouboulinas Street 60 degrees. 
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Figures 4.12 and 4.13 are the LCR and AFD plots respectively of Askpliou Street 

60-degree elevation angle case.  The parameters used for the simulation are: 

 mLo = 1 

 mHi = 1     

 PLo = 0.047 

 PHi = 0.847 

 

Figure 4.12 LCR Plot for Askpliou Street 60 degrees  
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The transition probabilities for Askpliou Street (60 degrees) are  
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Figure 4.13 AFD Plot for Asklipiou Street 60 degrees  
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Figure 4.14 is a plot of the histogram of multi-state simulated fading samples compared 

with the analytical pdf.  

 

Figure 4.14. Multi-State PDF of Asklipiou street 60 degrees. 

 

Figures 4.15, 4.16 and 4.17 are the LCR, AFD, and pdf comparison plots 

respectively for Ippokratous street 60-degrees elevation angle case.  .  The parameters 

used for the simulation are: 

 mLo = 1 

 mHi = 13     

 PLo = 0.069 

 PHi = 1.102 
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Figure 4.15. LCR Plot for Ippokratous Street 60 degrees  Figure 4.15. LCR Plot for Ippokratous Street 60 degrees  

  

Figure 4.16. AFD Plot for Ippokratous Street 60 degrees  
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The transition probabilities for Ippokratous Street (60 degrees) are  

P =  = .   
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Figure 4.17. Multi-State PDF of Ippokratous street 60 degrees. 

 

Figures 4.18, 4.19 and 4.20 are the LCR, AFD, and pdf comparison plots 

respectively for Zaimi street 60-degrees elevation angle case.  The parameters used for 

the simulation are: 

 mLo = 1 

 mHi = 6.5     

 PLo = 0.085 

 PHi = 1.021 
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Figure 4.18. LCR Plot for Zaimi Street 60 degrees  

 

 

Figure 4.19. AFD Plot for Zaimi Street 60 degrees. 
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The transition probabilities for Zaimi Street (60 degrees) are  

P =  = . 
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Figure 4.20. Multi-State PDF of Zaimi street 60 degrees. 

 

All the above multi-state LCR and AFD plots are for different streets in the Table 

4.1 for an elevation angle of 60 degrees.  From the pdf’s of the streets with 60 degrees 

elevation angle it can be observed that the majority of the time the received signal was in 

the shadowed state. 
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 We shall now validate our simulation results for the streets with 80 

degrees elevation angles in Table 4.1.  Figures 4.21, 4.22 and 4.23 are the LCR, AFD and 

pdf comparison plots respectively for Bouboulinas Street at 80 degrees elevation angle. 

 

Figure 4.21. LCR Plot for Bouboulinas Street 80 degrees 

 

The parameters used for the simulation are: 

 mLo = 2.5 

 mHi = 5.5     

 PLo = 0.275 

 PHi = 1.213 
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Figure 4.22. AFD Plot for Bouboulinas Street 80 degrees  

Figure 4.23. Multi-State PDF of Bouboulinas Street 80 degrees. 
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The transition probabilities for Bouboulinas Street (80 degrees) are  

P =  = . 












bbbg

gbgg

PP

PP

      

      

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




0.535         465.0

0.01       99.0

 

 Figures 4.24, 4.25 and 4.26 are the LCR, AFD and pdf comparison plots 

respectively for Zaimi street 80 degrees. 

 

 

Figure 4.24. LCR Plot for Zaimi Street 80 degrees 
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The parameters used for the simulation are: 

 mLo = 1.5 

 mHi = 7.5     

 PLo = 0.09 

 PHi = 1.076 

 

 

Figure 4.25. LCR Plot for Zaimi Street 80 degrees 

 

 

 



  94   
 

The transition probabilities for Zaimi Street (80 degrees) are  

P =  = . 












bbbg

gbgg

PP

PP
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




0.83         17.0

0.01       99.0

 

Figure 4.26. Multi-State PDF of Zaimi Street 80 degrees. 

 

From the LCR and AFD plots for the different streets and elevation angles it can 

be observed that there is a good agreement between the measured data and the simulated 

data.  

Comparing the multi-state pdf’s of the 60 degrees elevation angle and the 80 

degrees elevation angle we observe that the amount of time in the shadowed state for the 
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60 degrees case is much higher when compared to the 80 degrees cases. The opposite 

holds true when comparing the time spent in the unshadowed state. This is rather intuitive 

as you would expect more fading for a lower elevation angle when compared to a higher 

elevation angle.  It can be observed in some cases (Figures 4.12 and 4.15) the simulated 

LCR is higher when compared to the measured value for part of the domain; this is due to 

a high number of transitions observed in the time series.  If we use a high value of 

transition probabilities between the two states then we induce “artificial” level crossings 

which increase the LCR values at all levels.  Therefore given the steady state 

probabilities for each state we have to choose the transition probabilities such that the 

transition between the states is kept relatively low.  The steady state transition values we 

have thus far used can be considered as an approximate upper bound to our choice of 

transition probabilities until we come up with a better method of deriving these transition 

probabilities.  Based upon some values of these transition probabilities in another set of 

data [8], we have found that the transition probabilities should be less than approximately 

0.125 

To summarize, we have simulated all the multi-state fading cases in Table 4.1 and 

we have seen that the results from the new simulation model show good agreement with 

the measured data [13].  The modeling and validation procedure is summarized again in 

Fig 4.27. 
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5. If agreement NOT good, refit the LCR & AFD 
functions in (2) and repeat 

or 
select new Markov parameters in (3) and repeat 

 

4. Compare simulated and measured data (LCR, AFD, pdf, and CDF)

3. Find Markov 
probabilities and combine 
with Nakagami’s to get 
time series 

2. LS curve fit to LCR and 
AFD to obtain pdf and 
{m}, {P}. 

1. Measured Data 
(Either “raw” amplitude time 
series, or LCR, AFD and CDF) 
or analytical AFD, LCR and 
CDF 

CDF)rom(f

 

 

 

Figure 4.27 Schematic of Model Validation 
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Chapter 5: Summary and Future Work 
 

In this chapter we give a brief summary of the work done on this thesis and 

suggest some areas for future work. 

 

5.1 Summary 

 We have developed a new simulator for a multi-state fading channel.  This 

simulator is general, and can be configured to yield existing models such as “Loo’s 

model” and “Lutz model” and even simple single state models like Rayleigh, Rician and 

Nakagami-m distributions.  The simulator has been validated against known theoretical 

models, and provides excellent agreement.  It can also compute the statistics of measured 

data such as level crossing rate and average fade duration.  The required inputs for the 

multi-state model include Nakagami pdf parameters (m and P), and the cdf data point(s) 

to determine the state boundaries.  This simulation is useful in developing computer 

simulations of mobile satellite and terrestrial fading channel amplitude time series 

realizations, and with further analytical study and additional measured data, may provide 

additional insight into the physical channel character. 

 

5.2 Future Work 

As mentioned in Chapter 4, we obtain the probabilities of switching between states 

from the steady state probabilities, which give us an approximate upper bound on the 

transition probabilities and not exact values of the transition probabilities.  We thus need 
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to devise a better method to obtain the exact transition probabilities, rather than via a 

“trial and error” method. 

 For this model and simulation development we have used only experimental data 

from [13].  To better fine tune the model and make it more widely applicable, we would 

need to gather more experimental data for different propagation environments and 

validate the results from the simulator for the different fading environments. 

 Another topic for future work would be to include more non-stationary features in 

the model.  In our model we have assumed the filter bandwidth, corresponding to the 

Doppler frequency shift, is constant throughout the simulation.  This is not generally true 

in practice, for instance in a moving vehicle the Doppler frequency is not constant and 

would change according to the velocity of the vehicle. 
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Appendix: Matlab Code  

 
%  *****************************************************************  % 
%                              GENERALIZED FADING SIMULATOR                                    % 
%                                                                                                                                      % 
%           This program can simulate fading samples of the following distribution:        % 
%                            1. Rayleigh fading samples                                                               % 
%                       2. Rician fading samples                                                                   % 
%                          3. Nakagami-m fading samples                                    % 
%                                                                                                                                      % 
%        The common parameters required for all the three fading generators are:          % 
%                           1. Number of fading samples required                                              % 
%                           2. Filter bandwidth or maximum fading rate required                      % 
% ****************************************************************** %     
 
% Start of program -----------------------------------------------------------------------------  % 
% Selecting fading distribution required  
 
Process = input('\n Enter 1 for Rayleigh fading \n       2 for Rician fading \n       3 for Nakagami fading :'); 
  
if((Process ~= 1) & (Process ~= 2)& (Process ~= 3)) 
    fprintf('Invalid Selection'); 
    break; 
end 
 
% Entering input parameters 
 
No_samples = input('\n Enter number of samples required :'); 
FadingRate = input('\n Enter the filter bandwidth = max fading rate, <=1: '); 
 
% Selecting the appropriate fading process generator 
       
if(Process == 1) 
    fading_samples = Rayleigh(No_samples,FadingRate);     % Calling the Rayleigh 
 
elseif (Process == 2) 
        fading_samples =  Rician(No_samples,FadingRate);  % Calling the Rician  
 
elseif(Process ==3) 
        fading_samples = Nakagami(No_samples,FadingRate); % Calling the Nakagami  
 
else printf('\nInvalid selecton'); 
end 
 
% End of program ------------------------------------------------------------------------------- % 
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% *********************************************************   % 
%                                 Nakagami Fading Generator                                        % 
%                                                                                                                       % 
%              Input parameters to the generator are:                                             % 
%                                 1. Number of fading samples required                         % 
%                                 2. Filter bandwidht or maximum fading rate                % 
%                                 3. Shape factor 'm'       % 
% **********************************************************  % 
 
function fading_samples =  Nakagami(No_samples,FadingRate); 
 
% Start of program---------------------------------------------------------% 
 
    m_val = input('Enter Nakagami shape factor m : ');     
  
% Start of program------------------------------ 
% Generating the filter parameters 
 
    [b,a] = cheby1(5,0.05,FadingRate);   % Obtaining the filter coefficients 
 
% Generating the Gaussian samples 
% When m = 0.5 the samples are equal to the square of a single Gaussian Process 
 
    if (m_val == 0.5)                    
        gaussx = randn(1,No_samples + 10000); 
        gfilt1 = filter(b,a,gaussx); 
        gfiltx = gfilt1./sqrt(mean(gfilt1.^2)); 
        gfiltx = gfiltx(10001:No_samples + 10000); 
     
        r = gfiltx.^2;  % Nakagami faded samples for m = 0.5 
 
    elseif(m_val == 1) 
     
% We use a different if loop for m = 1 since for m > 1 we have a m - dimensional array % The array is 
summed it across  m dimensions. For m = 1 we have just a 1-D array 
% Hence we don’t sum the array twice 
 
% Gaussian generator x and y padded with 10000 samples for transient 
         gaussx = randn(1,No_samples + 10000);      
        gaussy = randn(1,No_samples + 10000);   
     
        gfilt1 = filter(b,a,gaussx);             % Filtering the Gaussian output  
        gfilt2 = filter(b,a,gaussy); 
        gfiltx= gfilt1./sqrt(mean(gfilt1.^2));   % Scaling the output of the filter 
        gfilty = gfilt2./sqrt(mean(gfilt2.^2)); 
% Removing the transient portion of the samples 
        gfiltx1 = gfiltx(10001:No_samples + 10000);      
        gfilty1 = gfilty(10001:No_samples + 10000); 
 
        r = (gfiltx1.^2 + gfilty1.^2);  % Nakagami faded samples for even m = 1  
 
   elseif(m_val == 1.5) 
 
% For m = 1 
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        gaussx = randn(1,No_samples + 10000); 
        gaussy = randn(1,No_samples + 10000); 
        gfilt1 = filter(b,a,gaussx);          % Filtering the samples 
        gfilt2 = filter(b,a,gaussy); 
        gfiltx = gfilt1./sqrt(mean(gfilt1.^2));   % Sacling the output of the filter 
        gfilty = gfilt2./sqrt(mean(gfilt2.^2)); 
        gfiltx1 = gfiltx(10001:No_samples + 10000); 
        gfilty1 = gfilty(10001:No_samples + 10000); 
     
% For m = 0.5 
        gaussx0 =randn(1,No_samples + 10000); 
        gfilt = filter(b,a,gaussx0); 
        gfilt = gfilt./sqrt(mean(gfilt.^2)); 
        gfilt1 = gfilt(10001:No_samples+10000); 
        r = (gfiltx1.^2 + gfilty1.^2); 
 
        r = r + gfilt1.^2; 
 
% Even values of 'n' (m = n/2) 
        
   elseif (mod(2*m_val,2)== 0) 
     
% Gaussian generator x and y padded with 10000 samples for transient 
        gaussx = randn(m_val,No_samples + 10000);   
        gaussy = randn(m_val,No_samples + 10000);       
     
% Filtering and scaling the squared Gaussian values  
      for i = 1:m_val; 
        gfilt1(i,:) = filter(b,a,gaussx(i,:));                      
        gfilt2(i,:) = filter(b,a,gaussy(i,:)); 
        gfiltx(i,:)= gfilt1(i,:)./sqrt(mean(gfilt1(i,:).^2));        % Scaling the output of the filter 
        gfilty(i,:) = gfilt2(i,:)./sqrt(mean(gfilt2(i,:).^2)); 
        gfiltx1(i,:) = gfiltx(i,10001:No_samples + 10000); 
        gfilty1(i,:) = gfilty(i,10001:No_samples + 10000); 
         
    end 
        r = sum(gfiltx1.^2 + gfilty1.^2);  % Nakagami faded samples for even m   
     
 else     
 
% For odd values of 'n'       
     
% For the even portion of 'n'     
    m1 = m_val - 1/2; 
 
% Gaussian generator x and y padded with 10000 samples for transient 
    gaussx = randn(m1,No_samples + 10000  
    gaussy = randn(m1,No_samples + 10000);     
     
    for i = 1:m1; 
        gfilt1(i,:) = filter(b,a,gaussx(i,:));                 % Filtering the Gaussian output  
        gfilt2(i,:) = filter(b,a,gaussy(i,:)); 
        gfiltx(i,:) = gfilt1(i,:)./sqrt(mean(gfilt1(i,:).^2)); % Scaling the output of the filter 
        gfilty(i,:) = gfilt2(i,:)./sqrt(mean(gfilt2(i,:).^2)); 
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% Removing the transient response 
        gfiltx1(i,:) = gfiltx(i,10001:No_samples + 10000);     
        gfilty1(i,:) = gfilty(i,10001:No_samples + 10000); 
   end 
 
% For the odd portion of 'n' 
 
% Extra addition of Gaussian samples done when 'n' is odd; 
    gaussx0 = randn(1,No_samples + 10000);    
    gfilt = filter(b,a,gaussx0);            % Filtering the Gaussian output 
    gfilt = gfilt./sqrt(mean(gfilt.^2));    % Scaling the Gaussian output 
    gfilt1 = gfilt(10001:No_samples + 10000);           
    r= sum(gfiltx1.^2 + gfilty1.^2); 
     
    r = r + gfilt1.^2;                         % Nakagami samples 
end 
 
     r=sqrt(r);                          % Scaling the output to have E(r^2)=1 
     rrms = sqrt(mean(r.*r)); 
     r = (r./rrms); 
   
    fading_samples = r; 
 
% End of main program--------------------------------------------------------% 
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% ********************************************************** % 
%                   Rician Fading Generator                                      % 
%                                                                        % 
%  Input parameters to the generator are:                                       % 
%         1. Number of fading samples required                          % 
%         2. Filter bandwidth or maximum fading rate      %  
%         3. Rice factor 'K' in dB                             % 
%      4. Maximum Doppler frequency of LOS component               % 
% ********************************************************** % 
 
function fading_samples =  Rician(No_samples,FadingRate); 
 
% Start of program---------------------------------------------------------% 
 
K = input('Enter K factor in dB : ');     
Dopp_freq = input('\nEnter Doppler Frequency of LOS component, <= fM: ') ;  
 
% Start of program------------------------------ 
% Generating the Gaussian samples 
   gauss1 = randn(1,No_samples + 10000) ;     % White Gaussian generator 1  
   gauss2 = randn(1,No_samples + 10000) ;     % White Gaussian generator 2  
  
% Filtering the Gaussian output 
    [b,a] = cheby1(9,0.5,FadingRate) ;          % Obtaining the filter coefficients 
    gfilt1 = filter(b,a,gauss1) ;       
    gfilt2 = filter(b,a,gauss2) ;          
 
% Removing the transient portion of the filter output and scaling the output of the filter  
    
    s = sqrt(1./FadingRate);                    % Scaling factor  
    gfiltx = gfilt1(10001:No_samples+10000).*s   
    gfilty = gfilt2(10001:No_samples+10000).*s ;   
 
% Generating the Rician fading samples 
 
    k = 10.^(K/10) ;          % Converting the 'K' value to normal ratio from dB 
    mean_val = sqrt(k./(k + 1)) ;     % mean amplitude of the random processes 
    var_root = 1./(sqrt(2.*(k+1))) ;  % square root of variance of the random processes 
  
% Normalize filter outputs to have variance var_root^2 (pre-filter values) 
 
    gfiltx1 = gfiltx./sqrt(var(gfiltx)).*var_root ; 
    gfilty1 = gfilty./sqrt(var(gfilty)).*var_root ; 
 
 
% Add the Doppler frequency-shifted LOS signal to the filtered Gaussian samples 
 
    sample_no = 1:No_samples; 
    theta = rand(1,1)*2*pi;                 % Random phase between (0,360) 
    Icomp_doppshift = mean_val.*cos(2*pi*Dopp_freq*sample_no + theta);     
    Qcomp_doppshift = mean_val.*sin(2*pi*Dopp_freq*sample_no + theta); 
    Icomp = gfiltx1 + Icomp_doppshift; 
    Qcomp = gfilty1 + Qcomp_doppshift; 
 
% Generate the Ricean samples 
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    r = sqrt(Icomp.^2 + Qcomp.^2);      % Filtered Ricean amplitude vector 
    rrms=sqrt(mean(r.*r));                 % Compute E(r^2), and its square-root 
    r=r/rrms;     % Normalize to obtain E(r^2) = 1 
    fading_samples = r; 
 
% End of main program--------------------------------------------------------% 
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% ********************************************************** % 
%                  Rayleigh Fading Generator                                % 
%                                                                   % 
%   Input parameters to the generator are:                        % 
%         1. Number of fading samples required             % 
%       2. Filter bandwidth or maximum fading rate required    % 
% ********************************************************** % 
 
function fading_samples =  Rayleigh(No_samples,FadingRate); 
 
% Start of program---------------------------------------------------------% 
% Generate Gaussian samples 
       
   gauss1 = randn(1,No_samples + 10000);  % White Gaussian generator 1 
   gauss2 = randn(1,No_samples + 10000);  % White Gaussian generator 2 
         
%  10000 samples taken extra to compensate for the transient effect of the filter 
% Filtering the Gaussian outputs 
      
  [b,a] = cheby1(7,0.5,FadingRate);           % Obtaining the filter coefficients 
  gfilt1 = filter(b,a,gauss1);          
  gfilt2 = filter(b,a,gauss2);        
   
% Removing the transient portion of the filter output and scaling the output of the filter 
 
  b = sqrt(1./FadingRate);                      % Scaling factor  
  gfiltx = gfilt1(10001:No_samples + 10000).*b;      
  gfilty = gfilt2(10001:No_samples + 10000).*b;      
         
% Generating the Rayleigh fading samples 
% Normalizing the mean square value to obtain  E(r^2) = 1          
         
  r = sqrt(gfiltx.^2 + gfilty.^2);   % Rayleigh faded amplitude samples 
  rrms = sqrt(mean(r.*r));           % Compute E(r^2), and its square-root 
  r = r/rrms;       % Normalize to obtain E(r^2) = 1 
   
  fading_samples = r; 
   
% End of main program--------------------------------------------------------% 
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%  ******************************************************************* % 
%                       MULTI_STATE FADING SIMULATOR                                    % 
%                                                                                                  % 
%  This program  simulates multi-state fading samples using Nakagami-m distribution  % 
%                                                                                             % 
%   The functions required by this program are                                                   % 
%                   1. MultistateNakagami.m                                                  % 
%                   2. Markov.m                                                                   %  
%                   3. LcrAfd.m                                                                   %  
%                                                                                                  %  
%  ******************************************************************* %  
 
% Start of program -------------------------------------------------------------------  % 
 
    No_samples = input('\nEnter number of samples required :'); 
    init_state = input('\nEnter initial state of the process (0-bad, 1-good) :'); 
    goodm = input('\nEnter m value of the good state :'); 
    goodP = input('\nEnter mean power of the good state :'); 
    badm = input('\nEnter m value of the bad state :'); 
    badP = input('\nEnter mean power of the bad state :'); 
    Pgg = input('\nEnter probability of transition from good to good state :'); 
    Pbb = input('\nEnter probability of transition from bad to bad state :'); 
     
% Markov switching matrix 
 
    trans_prob = [Pgg 1-Pgg ; 1-Pbb Pbb]; 
  
% Generating the Markov swithing samples 
     
    switch_samples = Markov(No_samples,trans_prob,init_state); 
     
% Generating Nakagami fading samples for the good and bad state 
 
    good_samp = MultistateNakagami(No_samples,goodm,goodP); 
    bad_samp = MultistateNakagami(No_samples,badm,badP); 
  
% Switching between the states 
     
    for i = 1:No_samples; 
        if switch_samples(i) ~= 0; 
            fading_samples(i) = bad_samp(i); 
        else 
            fading_samples(i) = good_samp(i); 
        end 
    end 
% Calculating the mean square value of the composite fading sample sequences 
    
    mean_sq = mean(fading_samples.^2); 
     
% Calculating the LCR and AFD values 
 
    lcrafd = LcrAfd(fading_samples.^2,mean_sq); 
    lcrsamples = lcrafd(1,:); 
    afdsamples = lcrafd(2,:); 
     



  109   
 
% End of main program ------------------------------------------------------------% 
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% Function Markov2.m generates a random binary vector S, with elements in set {0,1} 
% where each element represents the state of a 2-state Markov process at time k, k=1,2, ...N 
% This function uses the binary random variable generator function b01(L,p0), where here L=1, 
% and p0 is one of the diagonal elements of the Markov state transition matrix P. 
%  (b01.m syntax is y=b01(L,p0), where y0 is zero or one) 
 
% P=[P(1,1) P(1,2); P(2,1) P(2,2)] where P(i,j)=transition probability from state i to state j 
%  so p0 must be either P(1,1) or P(2,2) 
% The other input is the starting state, 0 (corresponding to 1) and 1 (corresponding to 2) 
 
function S = Markov2(N,P,s0) 
if s0 ~= 1 
   if s0 ~= 0 
   sprintf('%s','s0 must be either 0 or 1') 
   return; 
   end 
end 
 
Ptest=sum(P'); 
Ptest2=sum(Ptest-[1 1]); 
if Ptest2 ~= 0 
   sprintf('%s','Each row of P must sum to one') 
   return; 
end 
 
S(1)=s0;  %Starting state is s0 
for kk=1:N 
   x=b01(1,P(S(kk)+1,S(kk)+1)); 
   if x == 1 
      S(kk+1)= S(kk); 
   else 
      S(kk+1)= ~S(kk); 
   end 
end 
 
function n=baseM2dec(s,M,L) 
% This function converts a base M number to its decimal equivalent 
fact=1; n=0; 
for ii=L:-1:1 
   n=n+s(ii)*fact; 
   fact=fact*M; 
end 
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% ********************************************************** % 
%                  Nakagami Fading Generator                                       % 
%                                                                        % 
%   Input parameters to the generator are:                            % 
%        1. Number of fading samples required                          % 
%        2. Mean square value of the samples required         % 
%       3. Shape factor 'm'                                        % 
% ********************************************************** % 
 
function fading_samples = multinakagami(No_samples,m_val,P_val) 
 
% Start of program---------------------------------------------------------% 
 
% Generating the filter parameters 
 
    FadingRate = 0.066;    
    [b,a] = cheby1(5,0.05,FadingRate);   % Obtaining the filter coefficients 
 
 
% Generating the Gaussian samples 
 
% When m = 0.5 the samples are equal to the square of a single Gaussian Process 
 
    if (m_val == 0.5)                    
        gaussx = randn(1,No_samples + 10000); 
        gfilt1 = filter(b,a,gaussx); 
        gfiltx = gfilt1./sqrt(mean(gfilt1.^2)); 
        gfiltx = gfiltx(10001:No_samples + 10000); 
     
        r = gfiltx.^2;  % Nakagami faded samples for m = 0.5 
 
    elseif(m_val == 1) 
     
% We use a different if loop for m = 1 since for m > 1 we have a m - dimensional array % The array is 
summed it across  m dimensions. For m = 1 we have just a 1-D array 
% Hence we don’t sum the array twice 
         
%   Gaussian generator x and y padded with 10000 samples for transient 
        gaussx = randn(1,No_samples + 10000);   
        gaussy = randn(1,No_samples + 10000);   
        gfilt1 = filter(b,a,gaussx);             % Filtering the Gaussian output  
        gfilt2 = filter(b,a,gaussy); 
        gfiltx= gfilt1./sqrt(mean(gfilt1.^2));   % Scaling the output of the filter 
        gfilty = gfilt2./sqrt(mean(gfilt2.^2)); 
 
% Removing the transient portion of the samples 
 
        gfiltx1 = gfiltx(10001:No_samples + 10000);    
        gfilty1 = gfilty(10001:No_samples + 10000); 
 
        r = (gfiltx1.^2 + gfilty1.^2);  % Nakagami faded samples for even m = 1  
   
   elseif(m_val == 1.5) 
        
% For m = 1 
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        gaussx = randn(1,No_samples + 10000); 
        gaussy = randn(1,No_samples + 10000); 
        gfilt1 = filter(b,a,gaussx);          % Filtering the samples 
        gfilt2 = filter(b,a,gaussy); 
        gfiltx = gfilt1./sqrt(mean(gfilt1.^2));   % Sacling the output of the filter 
        gfilty = gfilt2./sqrt(mean(gfilt2.^2)); 
        gfiltx1 = gfiltx(10001:No_samples + 10000); 
        gfilty1 = gfilty(10001:No_samples + 10000); 
     
% For m = 0.5 
 
        gaussx0 =randn(1,No_samples + 10000); 
        gfilt = filter(b,a,gaussx0); 
        gfilt = gfilt./sqrt(mean(gfilt.^2)); 
        gfilt1 = gfilt(10001:No_samples+10000); 
        r = (gfiltx1.^2 + gfilty1.^2); 
 
        r = r + gfilt1.^2; 
    
% Even values of 'n' (m = n/2) 
        
   elseif (mod(2*m_val,2)== 0) 
 
%   Gaussian generator x and y padded with 10000 samples for transient 
 
        gaussx = randn(m_val,No_samples + 10000);       
        gaussy = randn(m_val,No_samples + 10000);       
     
% Filtering and scaling the squared Gaussian values  
     
    for i = 1:m_val; 
        gfilt1(i,:) = filter(b,a,gaussx(i,:));                      
        gfilt2(i,:) = filter(b,a,gaussy(i,:)); 
        gfiltx(i,:)= gfilt1(i,:)./sqrt(mean(gfilt1(i,:).^2));        % Scaling the output of the filter 
        gfilty(i,:) = gfilt2(i,:)./sqrt(mean(gfilt2(i,:).^2)); 
        gfiltx1(i,:) = gfiltx(i,10001:No_samples + 10000); 
        gfilty1(i,:) = gfilty(i,10001:No_samples + 10000); 
         
    end 
     
        r = sum(gfiltx1.^2 + gfilty1.^2);  % Nakagami faded samples for even m   
     
 else     
% For odd values of 'n'       
     
% For the even portion of 'n'     
    m1 = m_val - 1/2; 
 
%   Gaussian generator x and y padded with 10000 samples for transient 
 
    gaussx = randn(m1,No_samples + 10000);     
    gaussy = randn(m1,No_samples + 10000);     
     
    for i = 1:m1; 
        gfilt1(i,:) = filter(b,a,gaussx(i,:));                 % Filtering the Gaussian output  
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        gfilt2(i,:) = filter(b,a,gaussy(i,:)); 
        gfiltx(i,:) = gfilt1(i,:)./sqrt(mean(gfilt1(i,:).^2)); % Scaling the output of the filter 
        gfilty(i,:) = gfilt2(i,:)./sqrt(mean(gfilt2(i,:).^2)); 
        gfiltx1(i,:) = gfiltx(i,10001:No_samples + 10000);   
        gfilty1(i,:) = gfilty(i,10001:No_samples + 10000); 
    end 
 
% For the odd portion of 'n' 
 
% Extra addition of Gaussian samples done when 'n' is odd; 
 
    gaussx0 = randn(1,No_samples + 10000);   
    gfilt = filter(b,a,gaussx0);            % Filtering the Gaussian output 
    gfilt = gfilt./sqrt(mean(gfilt.^2));    % Scaling the Gaussian output 
    gfilt1 = gfilt(10001:No_samples + 10000);           
    r= sum(gfiltx1.^2 + gfilty1.^2); 
    r = r + gfilt1.^2;                         % Nakagami samples 
end 
 
     r=sqrt(r);                          % Scaling the output to have E(r^2)=P_val 
     rrms = sqrt(mean(r.*r)); 
     r = (r./rrms).*sqrt(P_val);          
    fading_samples = r; 
 
% End of main program--------------------------------------------------------% 
%******************************************************************* % 
%   Level Crossing Rate and Average Fade Duration Calculator                         % 
%                                                                                           % 
%   Input parameters to the generator are:                                              % 
%        1. Fading samples whose LCR and AFD need to be calculated              % 
%       2. Mean square value of the fading samples                              % 
%                                                                                         % 
% ****************************************************************** % 
 
function LcrAfd_val = LcrAfd(fading_samples,P_val) 
 
% Start of program---------------------------------------------------------% 
 
    index = 1;                         % Indexing variable 
    dbpower = 10 .* log10(P_val);      % Converting to dB the mean square value 
 
% Calculating LCR and AFD for +20db to -20db of the power 
 
    for range = (dbpower-20):(dbpower+10);   
        ref_val = 10.^(range/10);       % Converting the threshold from dB to normal value 
        fflag = -1;                     % To check for initial value above reference 
        count = 1;                      % Total number of crossings in downward directions 
        temp = 0;                       % To store the crossing across the reference 
     
% Calculating LCR and AFD for each threshold value defined by the range 
     
        for sample_num = 1:length(fading_samples); 
         
% To ensure that the count begins after sample value is above the reference  
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            if (fading_samples(sample_num)>ref_val & fflag == -1);   
               fflag = 1; 
            end 
         
% Checking if value below the reference value  
 

if((fading_samples(sample_num) < ref_val) & (fflag == 1))                      
temp(count,1) = sample_num;                   

                 fflag = 0; 
             
% Checking if value greater than the reference value 
 

elseif((fading_samples(sample_num) > ref_val) & (fflag == 0))                   
temp(count,2) = sample_num; 

                 fflag = 1; 
                count = count + 1; 
            end    
        end 
     
% Calculating the LCR and AFD 
 
        lcrsum = 0;      % Initializing LCR                               
        afdsum = 0;      % Initializing AFD 
 
% Reduced count to compenstate in case last crossing was below the threshold 
        total = count - 2;     
        for t = 1:total; 
            lcrsum = lcrsum + (temp(t+1,1) - temp(t,1));     
            afdsum = afdsum + (temp(t,2)- temp(t,1)); 
        end 
     
% Storing LCR and AFD value for each thresold value 
 
        LcrAfd_val(1,index) = total./lcrsum; 
        LcrAfd_val(2,index) = afdsum./total; 
        index = index + 1; 
    end 
% End of program ------------------------------------------------------------------------% 
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