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Abstract. Inspired by an investigation of Ramsey theory, this paper aims to clarify
in further detail a number of results regarding the existence of monochromatic cycles
in complete graphs whose edges are colored red or blue. The second half focuses on a
proof given by Gyula Károlyi and Vera Rosta for the solution of all R(Cn, Ck).

1. Introduction

Let Kn denote the complete graph on n vertices. The Ramsey number R(n,m) is the
smallest integer r with the property that any edge coloring of the complete graph with
r vertices using red and blue must contain a red Kn or a blue Km. For example, no
matter how we assign the color blue or red to each edge of K6, there will always be a
blue triangle or a red triangle as a subgraph. Additionally, K6 is the smallest complete
graph with this property, since we are in fact able to bi-color the edges of K5 such that
there is no monochromatic triangle. Since a triangle in graph theory is just another
word for K3, we can say that R(3, 3) = 6 (see the detailed proof in the next section).

The proof of this fact is one of the most well-known in Ramsey theory; one part
of it was even asked as a question in the 1953 William Lowell Putnam Mathematical
Competition. The proof can be used to justify the fact that within any group of 6
people, either there is a group of three mutual friends, or there is a group of three mutual
strangers1. But what about bigger groups of people? Given any positive integers n and
m, can we always find a large enough group of people such that there will always be n
people in the group who mutually know each other, or m people who mutually do not?
In other words, does R(n,m) exist for all positive integer pairs (n,m)? It turns out that
while it is incredibly difficult to find the exact value of certain Ramsey numbers, we can
prove that R(n,m) exists for all positive integers n and m, and furthermore can prove
that R(n,m) is bounded from above.

Theorem 1.1 (Ramsey’s Theorem). For any two positive integers n and m, the number
R(n,m) exists and satisfies the inequality R(n,m) ≤ R(n− 1,m) +R(n,m− 1).

One proof of this, as explained in [1], considers an arbitrary red-blue coloring of a
complete graph on R(n−1,m)+R(n,m−1) vertices, and proves the existence of either

Date: June 7, 2013.
1Let each vertex represent a person, and let two vertices share a red edge if the two people know

each other, or a blue edge if they do not. This has been called the “theorem on friends and strangers.”
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a red Kn or a blue Km. The base cases for this inductive proof are established with
R(n, 2) = n (likewise R(2,m) = m), since a bi-colored complete graph on n vertices is
either a completely red Kn, or it has at least one blue edge, which may also be written as
K2. Observe also that for all integers n and m, R(n,m) = R(m,n), since the definition
of Ramsey number is inherently symmetric (we can merely flip the colors red and blue).

Only nine Ramsey numbers of this form are known [2] for integer pairs (n,m), with
n ≥ m. Specifically, these include the seven numbers R(3, 3), R(3, 4), . . . R(3, 9), whose
values are 6, 9, 14, 18, 23, 28, and 36 respectively. It has also been discovered that
R(4, 4) = 18 and R(4, 5) = 25. These numbers may seem small, but note that a graph

on n vertices has a total of
(
n
2

)
edges and therefore 2(n

2) possible red-blue colorings. For
a 25-vertex graph, the number is 2300, which is indeed enormous. In larger graphs, the
problem is not easily studied on a case-by-case basis. For higher Ramsey numbers, only
loose bounds have been established.

It is useful to extend the definition of Ramsey number so that it may be applied to a
larger set of combinatorial problems that involve different graph structures. Given two
graphs G1 and G2, we let the generalized Ramsey number R(G1, G2) denote the smallest
integer r with the property that any edge coloring of the complete graph on r vertices
using red and blue must contain either a red G1 or a blue G2 subgraph. This extension
of our original definition now treats what we have defined as R(n,m) as R(Kn, Km),
naturally. We also maintain the symmetric property, R(G1, G2) = R(G2, G1), again by
just flipping the roles of the two colors. The advantage to this new definition is that we
may also let each of the graphs be paths, stars, trees, or cycles, allowing for many more
possible areas of study in which concrete results are often easier to obtain.

As a final comment on notation, one other equivalent definition for the Ramsey num-
ber R(G1, G2) is the smallest number r with the property that any graph G on r vertices
will either contain a G1 subgraph, or its complement G will contain a G2 subgraph. To
see the equivalence at play here, let the edges of G be colored entirely red, and color
all edges of G blue. Taken together, G and G form a complete graph on r vertices. It
is sometimes useful to speak of a graph G and its complement G, rather than a com-
plete graph whose edges are colored red and blue. For this paper, however, I prefer the
red-blue edge-coloring definition, particularly for its visual appeal and clarity.

A cycle is a graph that consists of some vertices connected by edges in a closed chain.
Let Cn denote a cycle on n vertices, which we may also write as x1x2 . . . xnx1 with
each xi representing a vertex of the cycle. The purpose of this paper is to study and to
illustrate results that involve the Ramsey number R(Cn, Ck), for which a specific formula
has been discovered for all n ≥ k ≥ 3. In Section 2, I present the proofs for small cases
of R(Cn, Ck), aiming to illustrate some of the basic proof techniques that are used in
this area of research. Next, in Section 3, I highlight some important results involving
the existence of monochromatic cycles in complete graphs under certain preconditions.
In Section 4, I state the main theorem presented in [3] that establishes values for all
generalized Ramsey numbers where G1 and G2 are both cycles. I also present some
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lemmas used in [3], without full proof. In Sections 5-7, I delve into separate cases of the
theorem, with final supporting arguments given in Section 8.

2. Small Cycles

The following proofs help illustrate some important logical concepts and techniques
involved in the theory. To start, in order to prove that a Ramsey number equals a
specific value N , one must provide an example of a graph on N − 1 vertices that does
not contain either the red or blue specified subgraph. The more difficult part of the
proof involves showing that any complete graph on N vertices with edges colored red
and blue will contain one of the two subgraphs. Often, it is useful to assume one of the
colored subgraphs does not exist, and then show that this implies the existence of the
other. Proof by contradiction is also commonly used.

When finding R(G1, G2) with G1 = G2, the task of showing the existence of either the
red or blue subgraph is reduced to showing the existence of a monochromatic subgraph.
The roles of the two colors are even more easily exchanged to prove the result.

Theorem 2.1. R(C3, C3) = 6.

Proof. Note that because C3 = K3, the Ramsey number R(C3, C3) = R(K3, K3) =
R(3, 3), as mentioned in the introduction. Consider any 5-cycle of K5. Color its edges
red. The edges not in this cycle form another C5; color these edges blue. There exists
no monochromatic C3 in this coloring of K5 (see Figure 1a), therefore R(C3, C3) > 5.

Let G be a K6 graph whose edges are colored red and blue. Consider a single vertex
v in G, and note that, since all vertices in G including v have degree 5, at least three
of the edges incident to v must be red, or else at least three must be blue. Without
loss of generality, assume at least three of these edges are red, and let’s say v1, v2, and
v3 are vertices adjacent to v by red edges (Figure 1b). Now consider the possible edge
colorings of the K3 graph formed on v1, v2, and v3. If one of its three edges (say v1v2)
is red, then it forms a red K3 with two of the already established red edges (vv1 and
vv2, Figure 1c). Otherwise, all of these three edges are blue, but then we have a blue
K3 (Figure 1d). We have just shown that R(C3, C3) ≥ 6, and this combined with the
result from the first paragraph gives R(C3, C3) = 6. �

v

v1v2

v3 v

v1v2

v3 v

v1v2

v3

Figure 1. Demonstrating that R(C3, C3) = 6.
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Theorem 2.2 (Djang2). R(C4, C4) = 6.

Proof. The edge-coloring of K5 in Figure 1a also shows R(C4, C4) > 5, since it is free
of any monochromatic C4. Now let G be a complete graph on six vertices with edges
colored red and blue. Consider a vertex v in G.

Case 1: Four or more vertices are adjacent to v by red edges. Consider the K4

subgraph on these other vertices, shown with dashed edges in Figure 2a. Among the six
edges of the K4, if any two adjacent edges are both red, then together with the two red
edges joined to v, they form a red C4 (Figure 2b). Otherwise, there are at most two red
edges in this K4, which are not incident to any of the same vertices. In this case, there
are four remaining blue edges that will form a blue C4, as in Figure 2c.

v v v

Figure 2. Diagrams for Case 1 of Theorem 2.2.

Case 2: The vertex v is joined by red edges to exactly three vertices, and by blue
edges to exactly two vertices. Group these five vertices into the sets Vr = {r1, r2, r3}
and Vb = {b1, b2}, based on the color of the edge connecting each vertex to v. Consider
the complete bipartite graph K3,2 on said vertex sets, shown by dashed lines in Figure
3a. Note if there exists a vertex bi ∈ Vb with two red edges incident to it in this K3,2, a
red C4 is formed. Likewise, if there exists a vertex rj ∈ Vr with two blue edges incident
to it, a blue C4 exists.

v

r1r2

r3

b1 b2

v

r1r2

r3

b1 b2

v

r1r2

r3

b1 b2

Figure 3. Diagrams for Case 2 of Theorem 2.2.

Assume there is no monochromatic C4, and try to color the edges of this K3,2 while
avoiding the above two situations. Start by coloring, say, the edge r1b1 red. Since b1
may not have two red edges incident to it, we are forced to color b1r2 blue. Then r2b2
must be red, etc. This process of coloring edges continues until we reach the last edge

2The first known proof of this theorem can be found in [4], but I choose to present my own here.
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of the K3,2, which will inevitably form part of a red C4 (namely vr1b1r3v, in Figure 3b).
If instead, we color r1b1 blue, we are still forced to color the rest of the edges (Figure
3c), and again cannot avoid the formation of a red C4.

By swapping the roles of the colors red and blue in the above two cases, we may
conclude that if four or more vertices are adjacent to v by blue edges, or if v is incident
to exactly three blue edges and two red edges, inevitably a monochromatic C4 exists
somewhere in G. This covers all possible cases. We have shown that in all red-blue
colorings of K6, there must exist a monochromatic C4, completing the proof. �

For the following theorem, I reiterate the proof given first by [5], using the language
of edge-coloring rather than complementary graphs.

Theorem 2.3 (Chartrand and Schuster). R(C4, C3) = 7.

Proof. For the lower bound case, consider a red-blue edge-coloring of K6, consisting of
two disjoint red C3 graphs, with all remaining edges colored blue (these blue edges form
a complete bipartite subgraph K3,3), as shown in Figure 4. Since this coloring of K6

contains no red C4 and no blue C3, we have R(C4, C3) ≥ 7.

Figure 4. Showing a lower bound for R(C4, C3).

What remains is to show that a complete graph G on 7 vertices, with edges colored
red and blue, will always contain either a red C4 or a blue C3. Assume G contains no
blue C3. Since R(C3, C3) = 6, there must exist a monochromatic C3 in G, which by our
assumption must be red; call it C. Let the remaining four vertices be v1, v2, v3, and v4.

v1

v2

v3

v4

v1

v2

v3

v4

v1

v2

v3

v4

Figure 5. Demonstrating R(C4, C3) ≤ 7.

If any vi is adjacent to two or more vertices of C by red edges, then a red C4 is formed,
as in Figure 5a. Thus, assume all vi are adjacent to at most one vertex of C by a red
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edge; therefore each vi is adjacent to at least two vertices of C by blue edges. Since C
consists of only 3 vertices, any two distinct vi must then be joined by blue edges to at
least one common vertex of C. In order to avoid a blue C3 in G, any pair of distinct
vi must be adjacent by a red edge; see vertices v1 and v2 in Figure 5b. But then a red
K4 is formed on the vertices {vi}, as shown in Figure 5c, and a red C4 subgraph exists
within that. �

Building on this last result, we are able to prove by induction the values for many
more Ramsey numbers for cycles, specifically when one of the subgraphs is a C3. The
proof of this more general result shares similar techniques and constructions as those
just demonstrated in the proof of Theorem 2.3.

Theorem 2.4 (Chartrand and Schuster). For n ≥ 4, R(Cn, C3) = 2n− 1.

Proof. First, consider a complete graph G on 2n− 2 vertices, and color completely red
the edges of two separate Kn−1 subgraphs. Color the rest of the edges in G blue, so that
the blue subgraph consists of a bipartite Kn−1,n−1. See an example of this construction
in Figure 6, and note that this is a generalization of the coloring given for the small case
in Figure 4. Since bipartite graphs contain no 3-cycles, and since the biggest red cycles
that can be found here have length n− 1, we have constructed a graph that has neither
a red Cn nor a blue C3. Thus, R(Cn, C3) > 2n− 2.

Figure 6. Demonstrating R(Cn, C3) > 2n− 2, with the example of n = 7.

We now use induction on n, with the result of Theorem 2.3 as the base case. Assume
that R(Cn, C3) = 2n − 1 for some n ≥ 4. From the above lower bound analysis, we
have R(Cn+1, C3) > 2(n + 1) − 2 = 2n. We aim to show that R(Cn+1, C3) = 2n + 1.
Let G be a graph on 2n+ 1 vertices, and assume that G contains no blue C3. We have
R(Cn, C3) = 2n− 1 by our induction hypothesis, and since the number of vertices in G
is greater than 2n− 1, there must exist a red Cn (or a blue C3, but that’s impossible by
our assumption) in G. Let C be this red cycle of length n, with vertices u1, u2, . . . , un.
Denote the remaining vertices v1, v2, . . . , vn+1.

Suppose some vertex u of C is adjacent to all vertices vi by blue edges. Since G
contains no blue C3, every two distinct vertices vi are adjacent by red edges. But this
creates a red Kn+1 and therefore a red Cn+1 subgraph. This contradiction allows us to
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conclude that every vertex of C is adjacent to at least one vi by a red edge. There are
two cases to consider. We define a pair of alternate vertices in C to be two vertices that
are not adjacent to one another but are both adjacent to the same vertex in C that lies
between them in the cycle.

Case 1: Suppose there exists a pair of alternate vertices of C which are respectively
joined to two distinct vi by red edges. Suppose u is the vertex in C between these
alternate vertices, with v1 and v2 the mentioned vertices outside C. Note that if any
two adjacent vertices in C are connected by red edges to the same vertex outside C,
then there exists a red Cn+1. To avoid this situation, it must be that both edges uv1
and uv2 are blue. Now consider the edge v1v2. If it is red, then a red Cn+1 is formed
by replacing u in C by the edge v1v2. But if this edge is blue, then the C3 denoted by
uv1v2u is entirely blue. Either way, we have a red Cn+1 or a blue C3.

v1

v2

u

Figure 7. Case 1 of Theorem 2.4: A pair of alternate vertices of C are
respectively joined by red edges to distinct vertices not in C.

Case 2: Suppose no two alternate vertices of C are joined by red edges to distinct
vertices vi. Since at least one red edge must be incident to each vertex of C, it must be
that exactly one red edge is incident to each, otherwise we revert back to Case 1. Now
u1 and u3 are joined by red edges to the same vi, say v1. In fact all ui with i odd are
joined to v1 by a red edge. If n is odd, then both u1 and un are joined by red edges to
v1, and since u1 is adjacent to un in C, a red Cn+1 is formed. Assume n is even. Then
it follows that each ui with i even is adjacent by red edges to the same vi 6= v1, say v2.
No more red edges connect vertices of C to vertices not in C, so each vj, 3 ≤ j ≤ n+ 1,
is joined by only blue edges to every vertex of C. In order to avoid the existence of a
blue C3, each vj, excluding v1 and v2, must be adjacent to one another by red edges.
In particular, the edges v4v5, . . . , vnvn+1, vn+1v1 are red. Also, since the edges v1u2 and
v2u1, v3u2 and v3u1 are blue, it must be that all edges v1vi and v2vi, 3 ≤ i ≤ n + 1 are
red (avoiding a blue C3). Finally, we may now create a red Cn+1: v1v3v2v4v5 . . . vn+1v1.

Either hypothetical case yields R(Cn+1, C3) ≤ 2n + 1, and we have equality after
putting to use the lower bound mentioned earlier. By induction, we have proven the
theorem. �

Chartrand and Schuster [5] also go on to prove similarly that R(Cn, C4) = n + 1 for
n ≥ 6, and also that R(Cn, C5) = 2n − 1 for n ≥ 5. These results are encompassed
in the complete solution for R(Cn, Ck), which was obtained shortly afterwards by other
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mathematicians. Nearly 30 years later, in 2001, a simpler proof was published by Gyula
Károlyi and Vera Rosta [3]. I choose to elaborate on results from this newer proof in
the remaining sections.

3. Observations Regarding Monochromatic Cycles

Before introducing the main theorem as presented in [3], I discuss some interesting
preliminary observations made by [3], with the aim of clarifying visually3 and verbally
the arguments behind them. Let G be a complete graph whose edges are colored red
and blue. Given a cycle C = x1x2 . . . xtx1, we let an edge of the form xixi+j be called a
chord of length j, or a j-chord. Note also that indices are meant modulo the length of
the cycle that is considered.

Lemma 3.1 (Károlyi and Rosta). Let C = x1x2. . .xtx1 be a monochromatic blue (red)
cycle in G. Then either G contains a blue (red) Ct−1 or every 2-chord of C is red (blue).

Proof. We can see that if some 2-chord of C were the same color as C, then we can
create a same-colored Ct−1 by using the 2-chord to replace the two adjacent edges of
C whose outer endpoints are the vertices of the 2-chord. Figure 8a and 8c show this.
Otherwise, every 2-chord of C must be the opposite color, as in Figure 8b, 8d. �

Figure 8. Lemma 3.1, illustrated here using t = 10.

Lemma 3.2 (Károlyi and Rosta). Suppose that G contains a monochromatic C2l+1 for
some l ≥ 3. Then G also must contain a monochromatic C2l.

Proof. Suppose C = x1x2. . .x2l+1x1 is a monochromatic (blue) cycle, and there is no
monochromatic C2l. By Lemma 3.1 we know that every 2-chord of C is red. Since C is
an odd-length cycle, these red 2-chords (there are exactly 2l + 1 of them) form a new
C2l+1 that is entirely red. By Lemma 3.1, every 2-chord of this new C2l+1 must be blue,
and these chords are precisely all 4-chords of C. Figure 9a illustrates this situation.

Were some 3-chord, say x1x4, blue, then consider x1x4x3x2x6x7. . .x2l+1x1 (shown in
Figure 9b). This cycle uses the blue 3-chord x1x4 and the blue 4-chord x2x6, along with
blue edges of C. It includes all vertices of C except x5, and thus we are left with a blue
C2l, a contradiction. We can repeat this argument for any blue 3-chord of C.

3In the following diagrams, when appropriate, we let x1 be the rightmost vertex, with subsequent
vertices labeled counterclockwise.
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x1

x4

x2

x6

x1

x4

x2

x7

x2l+1

Figure 9. Diagrams for Lemma 3.2, with l = 7.

Therefore, we can conclude that every 3-chord of C is red. Known red edges are now
shown in Figure 9c. Consider the cycle x1x4x7x9. . .x2l+1x2x2lx2l−2. . .x6x3x1 (Figure 9d),
which uses red 2- and 3-chords, and includes all odd and all even vertices of C, except
for x5. This is a red C2l, and again, we have a contradiction. It must be that some
monochromatic C2l exists. �

Lemma 3.3 (Károlyi and Rosta). Suppose that G contains a monochromatic C2l for
some l ≥ 3. Then G also contains a monochromatic C2l−2.

Proof. First, note that ifG contains a monochromatic C6, thenG has at least six vertices.
Since R(C4, C4) = 6 (see proof in Section 2), G definitely contains a monochromatic C4,
located specifically in the K6 subgraph formed on the vertices of the C6. Thus we have
proven the truth of the lemma for l = 3.

Now, assume l ≥ 4. Suppose C = x1x2 . . . x2l is a monochromatic (blue) cycle. If G
contains a monochromatic C2l−1, then by Lemma 3.2, G also contains a monochromatic
C2l−2 and we are done. Assume then that G contains no monochromatic C2l−1. Then
by Lemma 3.1, all 2-chords of C are red. If there is no blue C2l−2, then all 3-chords of
C are also red. Figure 10 illustrates this. But now we can find a red cycle of length
2l − 1, a contradiction. Consider x1x2l−1 . . . x3x2lx2l−2 . . . x4x1, as in Figure 10b, which
uses all odd and even vertices of C except x2.

x1

x3
x4

x2l

Figure 10. Diagrams for Lemma 3.3.

To summarize, if G contains a monochromatic C2l−1, then by Lemma 3.2, G also
contains a monochromatic C2l−2. If we then assume that G has no a monochromatic
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C2l−1 or C2l−2, we reach a contradiction. It must be that G contains a monochromatic
C2l−2. �

Lemma 3.4 (Károlyi and Rosta). Suppose that G contains a (monochromatic) blue
cycle C = x1x2. . .x2lx1, but does not contain any monochromatic C2l−1. Then each of
the complete subgraphs G1 and G2, induced on the vertex sets {x1, x3, . . . , x2l−1} and
{x2, x4, . . . , x2l} respectively is a red Kl.

Proof. The two supposed red Kl’s are made up precisely of all even chords of C. We
must prove that all 2j-chords of C are red for 1 ≤ j ≤ l/2. If j = 1, we immediately
see from Lemma 3.1 that all 2-chords of C are red. For any 2j-chord, say x1x2j+1,
consider the following two cycles in G: x1x2j+1x2jx2j−1 . . . x2x2j+3x2j+4 . . . x2lx1 and
x1x2 . . . x2j−1x2lx2l−1 . . . x2j+1x1, shown in Figure 11.

x1
x2

x2j+1

x2j+3

x1

x2j+1
x2j−1

x2l

Figure 11. Two cycles in G using the 2j-chord x1x2j+1. (j = 3)

Both of these cycles use 2l−3 blue edges of C, plus two additional chord edges, whose
colors we have yet to determine. The chords x1x2j+1 and x2x2j+3 are used in the first
cycle, and x2j−1x2l and x1x2j+1 are used in the second. Since each cycle has total length
2l − 1, each may not be monochromatic (blue). We can conclude that either the edge
x1x2j+1 is red, or, if it is blue, then both edges x2x2j+3 and x2j−1x2l must be red, as in
Figure 12a and 12b respectively. If this second case occurs, consider the (2l − 1)-cycle
x2x4 . . . x2lx2j−1x2j−3 . . . x2j+3x2, in Figure 12c.

x2

x4

x2l

x2j−1

x2j−3

x2j+1

x2j+3

Figure 12. If both chords x2x2j+3 and x2j−1x2l are red, we find a red C2l−1.
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This final cycle uses all even and odd vertices of C, excluding x2j+1. It’s edges are
red 2-chords of C, plus the two chords, x2x2j+3 and x2j−1x2l, that we assume are both
red. Here we have a red C2l−1, a contradiction. Since this case is impossible, it must
be that the 2j-chord x1x2j+1 is red. This argument works for all 1 < j ≤ l/2, and we
can rotate the graph to make any vertex the starting vertex x1. We have shown that
all even chords of C are red, which gives the desired result of two red Kl’s, respectively
spanning the even and odd vertices of C, as shown in Figure 13, using l = 6. �

x1

x2

x2l

x1

x3

x2

x2l

x2l−1

x4

Figure 13. Two arrangements of the vertices of C (the blue cycle) with
known colored edges. All even chords of C are red (left); equivalently, two red
Kl subgraphs span the even and odd vertices of C, respectively (right).

The following important lemma is stated without proof, as it would be too long to
include here.

Lemma 3.5 (Károlyi and Rosta). Suppose that G contains a blue cycle C = x1x2. . .x2lx1,
l ≥ 3, such that G1 = {x1, x3, . . . , x2l−1} and G2 = {x2, x4, . . . , x2l} are red complete
subgraphs with l vertices. Then one of the following 3 possibilities occur.

(i) G contains a red Cm for each 3 ≤ m ≤ 2l.
(ii) G contains a blue Ck for each 3 < k ≤ 2l + 1.
(iii) G contains a blue Ck for each even number 4 ≤ k ≤ 2l and a red Cm for each

3 ≤ m ≤ min{d|V (G)|e/2, 2l}.

In short, the argument behind this result first considers possible red edges connecting
G1 to G2. If two independent red edges exist between the two red subgraphs, we have
case (i). Otherwise, in both case (ii) and (iii), we can obtain blue cycles of even length
that alternate between G1 and G2. Next, the vertices in G that lie outside of C are
considered. If some vertex d, not in C, is connected by blue edges to some vertices in
both G1 and G2, we may modify the blue cycles of even length to also obtain cycles of
odd length that include d. This gives case (ii). If no such vertices exist, then we are
guaranteed to have many vertices outside C that connect to one of the red subgraphs
(G1 or G2) with only red edges. This grants the existence of red cycles of many lengths.
The largest guaranteed red cycle is limited by the number of vertices in G and in C;
this is case (iii).
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4. The Main Theorem

We have handled several small cases for R(Cn, Ck), and we have investigated how
monochromatic cycles of varying sizes may imply the existence of other monochromatic
cycles in complete graphs. This next section moves on to examine certain areas of the
proof given by Károlyi and Rosta [3] for the solution for all R(Cn, Ck). We state the
theorem here.

Theorem 4.1. Let 3 ≤ k ≤ n be integers. Then,

R(Cn, Ck) =


6 if k=n=3 or 4,

n+ k/2− 1 if n,k are even,

max{n+ k/2− 1, 2k − 1} if n is odd, k is even,

2n− 1 otherwise (i.e. if k is odd).

We have already shown in Section 2 that R(C3, C3) = R(C4, C4) = 6, so we may focus
on the remaining three cases. Also note that our previous result of R(Cn, C3) = 2n− 1
is consistent with this theorem, as it falls into the case where k is odd. We also have
already established R(C4, C3) = 7, and since n ≥ k, we have covered all situations where
n = 4. Instead of handling these small cases again, we may assume n > 4, k > 3 for all
statements that follow.

Károlyi and Rosta’s proof is the newest and shortest for this particular result; it is
organized into three main overarching lemmas that each cover all possible combinations
of parities of n and k. I briefly summarize these three main points. Let G be a complete
graph with edges colored red and blue. The first lemma states that if G has a required
number of vertices, we may ensure the existence of either a monochromatic cycle of
length l ≥ n, or we may find a blue Ck in G. Using this lemma, it is argued next that
G contains either a monochromatic cycle of length exactly n, or G contains a blue Ck.
Finally, the third lemma states that if a blue Cn exists in G, this implies the existence
of a red Cn or a blue Ck. This justifies the theorem.

The structure of their proof has the advantage of conciseness and unity of overall
strategy, however, the proof of each individual lemma is quite involved, as it must often
provide separate explanations for different cases of even or odd n and k. As a reader,
it may sometimes be difficult to jump between these cases while remaining confident
in the continuity of the proof. Additionally, the chain of arguments may be difficult to
follow on the first read, as the ideas put forward are not easily absorbed quickly. It is
necessary to pause and visualize the ways in which vertices and colored edges of a graph
interact, and no diagrams are provided to aid the reader in this task. The proof leaves
out many details that may be trivial for experts, but that are worthwhile for anyone
else wishing to gain a more immediate understanding of the concepts.

I state the first main lemma from [3] here, without full proof. While elaborating on
the latter two of the main lemmas, the remaining sections seek to fill in some of these
gaps for one who is less familiar with the topic at hand. Following this pattern, some
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lemmas taken from [3] will be stated without proof, while others will be explained with a
greater level of detail than was supplied in their paper. The proof ideas are reiterated in
three cases, treated separately in Sections 5-7, based on the parity of n and k. Although
much overlap does occur in each case, examining each one individually may allow for
an easier following of the reasoning involved.

Lemma 4.2. Let G be a complete graph with n + k/2 − 1 vertices, where k is even.
Then either there exists a monochromatic Cl with l ≥ n, or there is a blue Ck in G.

This is indeed a strong result, and it makes up a good portion of Károlyi and Rosta’s
proof. To prove it, in short, we first assume that C is the largest monochromatic cycle
in G, with length L ≤ n − 1. If C is red, we may utilize the maximality of L to prove
the existence of a blue Ck that alternates along vertices of C and vertices outside C. If
C is blue, we may find a red Ck in the same way, and use some other results to prove
that this implies the existence of a blue Ck. The following Corollary will also be useful.

Corollary 4.3. Let G be a graph on at least (3/2)m − 1 vertices, with m even. There
must exist a monochromatic cycle in G of length l ≥ m.

Proof. Since (3/2)m− 1 = m+m/2− 1, and m is even, we apply Lemma 4.2 using the
values n = k = m. Then either there exists a monochromatic cycle Cl with l ≥ m, or
there is a blue Cm in G. The second possibility falls into the first. �

5. Let k ≤ n be even integers with k ≥ 4, n ≥ 6. Then
R(Cn, Ck) = n+ k/2− 1.

For the lower bound case, consider a complete graphG on n+k/2−2 vertices. Separate
the vertices of G into two sets of sizes n− 1 and k/2− 1, respectively, and consider the
two disjoint complete subgraphs on each set, Kn−1 and Kk/2−1. Color the edges of these
graphs completely red. The remaining edges of G form a complete bipartite subgraph
Kn−1,k/2−1; color these edges blue. There cannot be a red Cn in G, since we have only
n − 1 vertices in the red Kn−1, and only k/2 − 1 ≤ n/2 − 1 < n vertices in the red
Kk/2−1. Additionally, there is no blue Ck in G, since blue cycles in Kn−1,k/2−1 can be
at most twice the length of the smaller of the vertex sets, and 2(k/2− 1) = k − 2 < k.
Therefore, R(Cn, Ck) > n+ k/2− 2. Now let G be a graph on n+ k/2− 1 vertices. We
prove that either a red Cn or blue Ck must exist, beginning with the following lemma.

Lemma 5.1. Let k ≤ n be even integers with k ≥ 4, n ≥ 6. If |V (G)| ≥ n + k/2 − 1,
then G contains either a monochromatic Cn or a blue Ck.

Proof. Assume there is no blue Ck in G. Then by Lemma 4.2, there exists a monochro-
matic cycle of length at least n. Assume by contradiction that G does not contain any
monochromatic Cn. Then, since n is even, by Lemma 3.3 in Section 3, it would be
impossible for G to contain any monochromatic Cn+2, Cn+4, Cn+6 . . . in fact, G could
not contain any monochromatic Cl for all even l ≥ n. Additionally, now by using
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Lemma 3.2, G could not contain a monochromatic Cl+1 for the same even l ≥ n, so
that monochromatic cycles of length n+ 1, n+ 3, n+ 5, etc. are not allowed. But this
means that G contains no monochromatic cycles of length greater than or equal to n, a
contradiction. G must contain a monochromatic Cn. �

If this monochromatic Cn is red, we are done. If it is blue, we continue on to prove
that either a red Cn or blue Ck must still exist. In the following lemma, note that we
will make an assumption in the proof (and in the proofs of corresponding lemmas in
Sections 6 and 7) that will be handled later.

Lemma 5.2. Let k ≤ n be even integers with k ≥ 4, n ≥ 6. If G contains a blue Cn,
then G also contains either a red Cn or a blue Ck.

Proof. Let the blue Cn in G be called C, and assume that G contains no blue Ck. If a
(k−1)-chord of C is blue, it can be used to create a blue Ck. Thus, all (k−1)-chords of C
must be red. We will also now assume4 here that all 2-chords of C are red. Now consider
the cycle x3x5 . . . x1xkxk−2xk−4 . . . xk+2x3, which first uses red 2-chords to traverse all
odd vertices of C, and then uses the red (k− 1)-chord x1xk to jump to all even vertices
(k is even). Finally, the red (k − 1)-chord xk+2x3 completes the cycle. Thus, we have
found a red Cn in G. Figure 14 shows an example of this red cycle with n = 10, k = 6.

x1

x3x5
xk

xk+2

Figure 14. When n and k are even, we may find a red Cn on the vertices of
a blue Cn, using red 2-chords and (k − 1)-chords.

�

6. Let k ≤ n be integers with k ≥ 4 even, and n ≥ 5 odd. Then
R(Cn, Ck) = max{n+ k/2− 1, 2k − 1}.

Again, we start with the lower bound case. The same construction used in the
beginning of Section 5, since it does not depend on the parity of n, establishes that
R(Cn, Ck) ≥ n + k/2 − 1. Still, we consider one additional construction to make our
lower bound more specific. Let a graph G on 2k−2 vertices be colored so that there ex-
ists a red complete bipartite graph Kk−1,k−1. Then color the remaining edges blue, and
note that these edges make up two complete Kk−1 subgraphs. Any red cycle in G can

4We postpone the case in which some 2-chord of C is blue until Section 8.
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use only edges of the bipartite graph, and therefore can only be of even length. Since n
is odd, there cannot be a red Cn. There is also no blue Ck, since the two Kk−1 subgraphs
are disjoint, and each only have k−1 vertices. This shows that R(Cn, Ck) > 2k−2. We
finally may state that R(Cn, Ck) ≥ max{n + k/2 − 1, 2k − 1}. Now, let G be a graph
on max{n+ k/2− 1, 2k − 1} vertices.

Lemma 6.1. Let k ≤ n be integers with k ≥ 4 even, and n ≥ 5 odd. If |V (G)| ≥
max{n+ k/2− 1, 2k − 1}, then G contains either a monochromatic Cn or a blue Ck.

Proof. Assume there is no blue Ck in G. Since k is even, by Lemma 4.2, there exists
a monochromatic cycle of length at least n. Assume that G does not contain any
monochromatic Cn. Furthermore, let’s assume G contains no monochromatic Cn+1. But
since n + 1 is even, using the argument in Lemma 5.1, we have that no Cl exists with
l ≥ n+ 1. This gives a contradiction, so now assume that G contains a monochromatic
Cn+1. We can generate yet another contradiction as follows.

Suppose this Cn+1 is blue. We have a monochromatic Cn+1, where n+ 1 is even, but
no monochromatic Cn. We can apply Lemma 3.4, and then 3.5 with l = (n + 1)/2.
Combining lemmas 3.4 and 3.5 in this fashion always results in case (iii) of 3.5, since
cases (i) and (ii) result in a monochromatic cycle of length 2l−1 (specifically 2l−1 = n
here). Thus, G contains a blue Cj for each even number 4 ≤ j ≤ 2l = n + 1. Since
k ≤ n and k is even, k = j for some j just described, thus we have shown the existence
of a blue Ck, a contradiction.

Now reverse the roles of the colors, letting the Cn+1 be red. Case (iii) of Lemma 3.5
gives us a blue Cm in G for each 3 ≤ m ≤ min{d|V (G)|/2e, n+1}. If n+1 ≤ d|V (G)|/2e,
then we have found a blue Cn, a contradiction. If d|V (G)|/2e < n+1, we must prove that
k < d|V (G)|/2e in order to ensure a blue Ck. But k = 2k/2 = d(2k−1)/2e ≤ d|V (G)|/2e,
since |V (G)| ≥ 2k − 1. Thus a blue Ck is guaranteed. �

If G contains a red Cn, we are done. If G contains a blue Cn, since n is odd, the
2-chords of this blue cycle form another Cn. Assume all 2-chords of the blue cycle are
red to form a red Cn. Again, see Section 8 for the explanation of the case when some
2-chord of the blue cycle is blue.

7. Let 5 ≤ k ≤ n be integers with k odd. Then R(Cn, Ck) = 2n− 1.

We may color the edges of a graph on 2n−2 vertices so that there is no red Cn or blue
Ck. See the beginning of the proof of Theorem 2.4, that verifies R(Cn, C3) ≥ 2n−1. As in
the earlier theorem, there are no red Cn subgraphs. The blue edges in this construction
form a bipartite graph, and since k is odd, there are no blue cycles of length k. This
gives us R(Cn, Ck) > 2n− 2. Now, let G be a graph on 2n− 1 vertices.

Lemma 7.1. Let 5 ≤ k ≤ n be integers with k odd. If |V (G)| ≥ 2n−1, then G contains
either a monochromatic Cn or a blue Ck.
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Proof. Since n > 3, we can see that |V (G)| ≥ 2n − 1 = (3/2)n + n/2 − 1 = (3/2)(n +
1)− 1 + n/2− (3/2) ≥ (3/2)(n+ 1)− 1 > (3/2)n+ 1. If n is even, apply Corrollary 4.3
with m = n, so that we find a monochromatic cycle Cl, l ≥ n. The argument used in
the proof for Lemma 5.1 (which references Lemmas 3.3 and 3.2) shows that there must
be a monochromatic Cn in G.

Now assume n is odd, and apply the special case of Lemma 4.2 to m = n + 1, so
that we find a monochromatic cycle of length Cl, l ≥ n + 1. Assume that there is no
monochromatic Cn in G. Since n is odd, by the argument used in Lemma 6.1, there
must exist a Cn+1 in G, which we’ll assume is blue. Again, now apply Lemmas 3.4 and
3.5 with l = (n+ 1)/2 to guarantee that we will be in case (iii) of 3.5. Now we see that
G has a red Cm for each 3 ≤ m ≤ min{d|V (G)|/2e, 2l} = min{d|V (G)|/2e, n+ 1}.

To generate a contradiction by showing a red Cn exists, we must prove that n ≤
min{d|V (G)|/2e, n+1}. Since |V (G)| ≥ 2n−1, |V (G)|/2 ≥ (2n−1)/2, and d|V (G)|/2e ≥
(2n)/2 = n. Clearly n = min{n, n+ 1} ≤ min{d|V (G)|/2e, n+ 1}. �

Lemma 7.2. If k is odd and |V (G)| ≥ 2n − 1, then if G contains a blue Cn, it also
contains either a red Cn or a blue Ck.

Proof. Assume all 2-chords of the blue Cn are red (again, see Section 8 for explanation
if not). If n is odd, the red 2-chords of C form a red Cn. Otherwise, assume n is even.

Note that if G1 = {x1, x3, . . . , xn−1} and G2 = {x2, x4, . . . xn} are complete red sub-
graphs, then, on account of Lemma 3.5 (with n = 2l), we have the situation in which one
of cases (i), (ii), or (iii) must be true. Since we have already assumed that G has no blue
Ck, we eliminate case (ii). In case (i), we definitely have a red Cn. In case (iii), we have
a red Cn if n ≤ d|V (G)|/2e. But this is clear, since by hypothesis |V (G)|/2 ≥ (2n−1)/2,
so d|V (G)|/2e ≥ d(2n− 1)/2e = 2n/2 = n.

We may illustrate that this particular condition on G1 and G2 is definitely true if
n = 4 or n = 6. Observe in Figure 15 that the red 2-chords alone give us two red Kn/2

subgraphs, induced on the even and odd vertex sets of C.

Figure 15. The 2-chords of C4 and C6 give two complete graphs on 2 and 3
vertices, respectively.

If G1 and G2 are not complete red subgraphs, then not all even chords of C are red. In
other words, there exists a blue 2j-chord, say x1x2j+1, for some 2 ≤ 2j ≤ n/2, 2j+1 6= k
(since all (k − 1)-chords of C are red). We may assume, since we have handled lower
cases, that n ≥ 8 and k > 3.
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If there are indices γ, δ of different parity such that both edges xγxδ and xγ−2xδ+2 are
red, then they form, together with red 2-chords of C, a red Cn, which we can denote as
xγxγ+2 . . . xγ−2xδ+2xδ+4 . . . xδxγ. Below, see Figure 16a, which illustrates this Cn when
n = 18, γ = 5, and δ = 12. We must assume that such indices do not exist, so that for
any indices γ, δ of different parity, we must have at least one of xγxδ and xγ−2xδ+2 blue.

xγ
xγ−2

xδ
xδ+2

x1

x2j+1

xγxk

xδ
xδ+2

x1

x2j+1

xk xγ−2

xδ
xδ+2

Figure 16. Forming a red Cn, or a blue Ck. The blue 2j-chord is shown (j = 5).

Next, let’s first assume k < 2j + 1. Choose γ = k − 2 (odd), δ = 2j + 2 (even). This
choice is consistent with the indices shown in Figures 16b and 16c. If the edge xγxδ
= xk−2x2j+2 is blue, then we may find a blue Ck = x1x2 . . . xγxδx2j+1x1 (Figure 16b).
If xγxδ is not blue, then xγ−2xδ+2 = xk−4x2j+4 is blue, but then we may find a blue
Ck = x1x2 . . . xγ−2xδ+2xδ+1xδx2j+1x1 (Figure 16c).

Assume next that 2j + 1 < k < n − 1. Choose γ = 2j (even), δ = k (odd).
Again, we have that either xγxδ = x2jxk is blue or xγ−2xδ+2 = x2j−2xk+2 is blue, in
order to avoid a red Cn (Figure 17a). If x2jxk is blue, we may find a blue Ck =
x1x2 . . . x2jxkxk−1 . . . x2j+1x1, as in Figure 17b. But if x2j−2xk+2 is blue, then Ck =
x1x2 . . . x2j−2xk+2xk+1 . . . x2j+1x1 is also completely blue, shown in Figure 17c.

xγ xγ−2

xδ

xδ+2

x2j

x1

x2j+1

xk

xk+2

x1

x2j+1 x2j−2

Figure 17. Forming a red Cn, or a blue Ck. Here, n = 18, j = 3, and k = 9.

Finally, now suppose k = n− 1. Either there is a blue Ck (of length n− 1), or, as in
the proof of Lemma 3.4 (using 2l = n), the assumption that the 2j-chord x1x2j+1 is blue
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gives us knowledge of a few red edges that must exist in order to avoid the formation
of a blue Cn−1. These edges are x2x2j+3 and x2j−1xn (see Figure 12). Very similar
constructions also give us the red edges xn−1x2j and x3x2j+2. I choose not to include the
full proof of this case here, but in [3], p.93, it is described how to use these red edges to
conclude that either a red Cn or a blue Ck exists. �

8. Additional Lemmas

One large case has not been handled in the second half of the proofs for Sections 5,
6, and 7. We showed that if G contains a blue Cn, G also contains either a red Cn or
a blue Ck, under the assumption that all 2-chords of the blue Cn were red. This section
aims to clarify some of the case in which a 2-chord of the blue Cn is blue. We don’t give
a full proof, but do explain in detail a necessary proposition that used in it.

Lemma 8.1. Let G be a complete graph such that |V (G)| ≥ 2n − 1 when n is even
and k is odd. Consider any 2-coloring of its edges with red and blue. Suppose that G
contains a blue cycle of length n, denoted by C = x1x2 . . . xnx1, and that some 2-chord
of C is blue. Then G contains either a red Cn or a blue Ck.

Assume G does not have a blue Ck and that some 2-chord of C is blue. These
assumptions allows us to find many red edges using the following proposition, and we
are able to connect them to form a red Cn.

Proposition 8.2. If a 2-chord xixi+2 of C is blue, then either G contains a blue Ck or
the edges xi+1xi+k−1, xi+1xi−k+3 and xjxj+k are red for i− k + 2 ≤ j ≤ i.

Proof. Each edge mentioned above, if colored blue, can form a blue Ck when com-
bined with the blue xixi+2 edge and the blue edges of C, as we will see. Assume
the above edges are blue. Note that both xi+1xi+k−1 and xi+1xi−k+3 are (k − 2)-
chords of C. By hypothesis, xixi+2 is a blue edge. Using it, we may form a blue
Ck = xi+1xixi+2 . . . xi+k−1xi+1 (Figure 18a). Similarly, we may use the chord xi−k+3xi+1

to form a blue Ck = xi+1xi+2xi . . . xi−k+3xi+1 (Figure 18b).

xi

xi+2

xi+k−1

xi−k+3

xi

xi+2

xi+k−1

xi−k+3

xi

xi+2

xi+k−1

xi−k+3

Figure 18. A 2-chord xixi+2 is blue. In order to prevent a blue Ck, the edges
xi+1xi+k−1 and xi+1xi−k+3 must be red.
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To show that xjxj+k are red for i− k+ 2 ≤ j ≤ i, note that xjxj+k is a k-chord of C.
We may use such a k-chord along with the edges of C to form a cycle of length (k+ 1).
If this cycle includes the segment xixi+1xi+2 of C, then we may replace xixi+1xi+2 with
the blue edge xixi+2, to form a blue Ck. The k-chords with this particular property are
xi−k+2xi+2, xi−k+3xi+3, . . . xi−1xi+k−1, xixi+k, giving us the required bounds for j.

Figure 19. A sketch of blue Ck’s formed using the k-chords mentioned. We
conclude that each must be red. Known red edges, including those in Figure
18 are shown (right).

Because each of these edges, when colored blue, form a blue Ck, each must be red,
since we assumed before that no blue Ck exists in G. Observe the above illustration,
with n = 18 and k = 7. �

While we have by no means reconstructed a complete proof for all Ramsey numbers
R(Cn, Ck), hopefully this study has illuminated some important strategies used in the
proof, and has revealed that it is both complicated and fascinating to prove conjec-
tures about the existence of monochromatic structures within a graph whose edges are
randomly colored red and blue.
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[4] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs. II. Small Diagonal Numbers,

Proceedings of the American Mathematical Society 32 (1972), 389–394.
[5] G. Chartrand and S. Schuster, On a variation of the Ramsey number, Transactions of the American

Mathematical Society 173 (1972), 353–362.
[6] R. E. Greenwood and A. M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian

Journal of Mathematics, 7 (1955) 1–7.
[7] S. P. Radziszowski, Ramsey Numbers Involving Cycles, in Ramsey Theory, Yesterday, Today, and

Tomorrow, A. Soifer ed., Progrss in Mathematics 285. (2011) 41–56.

Department of Mathematics, Oberlin College, Oberlin, Ohio 44074, USA
E-mail address: clairedjang@gmail.com


