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ABSTRACT 

Computer-aided design (CAD) is widely used for 3D modeling in many technical fields, yet 
the creation of 2D sketches remains a manual step in typical CAD modeling workflows. 
Automatically generating 2D sketches can help users in CAD modeling by reducing their 
workload and by streamlining the design process. While sketches inherently possess a graph 
structure, with geometric primitives as nodes and constraints as edges, the application of 
graph neural networks (GNNs) to this domain remains relatively unexplored. To address this 
gap, we introduce SketchGNN, a graph diffusion model designed to generate CAD sketches 
using a joint continuous-discrete diffusion process. Our approach includes a novel discrete 
diffusion technique, wherein Gaussian-perturbed logits are projected onto the probability 
simplex via a softmax transformation. This enables our model to express uncertainty in 
the discrete diffusion process unlike traditional methods. We demonstrate that SketchGNN 
achieves state-of-the-art performance, reducing the Fréchet Inception Distance (FID) from 
16.04 to 7.80 and the negative log-likelihood (NLL) from 84.8 to 81.33. 
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Chapter 1 

Introduction 

Computer-Aided Design (CAD) is the use of software tools for drafting and editing both 3D 
models and blueprint documents, and it has become the standard for design in many fields 
of engineering such as: architecture, civil engineering, mechatronics, and manufacturing [1, 
2, 3]. A number of CAD tools have gained popularity among designers, engineers, and users 
respectively, but in recent years a few tools such as AutoCAD, SolidWorks, and Onshape 
have emerged as the most widely used CAD software [4, 5, 6]. These tools have significantly 
enhanced the precision of designs, while also improving the flexibility and speed of the design 
process. However, despite these benefits, users are still required to meticulously specify 
and fine-tune design/sketch details to achieve optimal results [2, 7]. This issue has been 
recognized by others, and several solutions have been proposed to alleviate the issue, with 
some solutions based on rule-based inference [8, 7] and other solutions based on generative 
neural networks [3, 2, 9]. Neural network (NN) based solutions have recently outpaced rule-
based inference solutions and have become the state-of-the-art (SOA) in terms of performance 
[2, 3], but are still limited to low fidelity sketches [3]. This work builds off of previous works, 
particularly Vitruvion [10] and SketchGen [3] by utilizing graph neural networks (GNNs) to 
generate graph representations of CAD sketches for more diverse and higher fidelity CAD 
designs. 

1.1 Motivation 

The primary functionality of CAD software suites is 3D modeling. The 3D models that users 
create are used for a variety of purposes such as machining/manufacturing parts, designing 
video game assets, and so forth [1, 11]. CAD tools are particularly popular in engineer-
ing disciplines due to their simplicity, precision, and interoperability with many fabrication 
procedures [3]. The common workflow in CAD modeling is to design 2D sketches that un-
dergo operations such as extrusion, revolution, and lofting to create complex 3D geometry. 
2D CAD sketches are blueprints composed of a set of geometric primitives (i.e., lines, arcs, 
points) and a set of geometric constraints (i.e., coincidence, orthogonality, parallelity) on 
those primitives. 

Although modern CAD software has sped up the design iteration cycle for modeling, it is 
still required of users to tediously and meticulously work with low level details when designing 
sketches, which drastically slows down the design iteration by forcing users to dedicate more 
time to drudgery. Generating CAD sketches can assist users by taking care of tedious design 
tasks, freeing up their time and mental energy to focus on higher-level constructs. By 
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automating menial design tasks, users can have their workload reduced/streamlined thus 
assisting their productivity and efficiency. Moreover, user creativity may be boosted by 
suggesting novel variations of CAD designs; being exposed to various generated CAD designs 
may inspire users to explore new design possibilities or to draft more diverse ideas. Lastly, 
multiple CAD designs can be generated simultaneously based on user specifications, allowing 
users to quickly test several prototypes. This functionality can be particularly useful for 
engineers and designers who need to iterate through different design options and test their 
feasibility. By enabling users to explore and test different design options more quickly, CAD 
sketch generation can accelerate the design process, yielding faster time-to-market for new 
products and structures. 

Other researchers have also identified the design iteration cycle of CAD sketches as a 
significant bottleneck in productivity, and have proposed several solutions to alleviate this 
issue which can be bifurcated to rule-based and neural network (NN) based solutions. While 
rule-based solutions have been proposed, these methods have limitations due to the difficulty 
of explicitly coding all possible rules for the sheer number of potential user designs. Addi-
tionally, these approaches may not generalize well to new design scenarios or accommodate 
the diversity of design inputs [2]. In contrast, NN solutions have shown promise by capturing 
relationships between different components of a design, and generating novel designs that 
satisfy specified constraints far better than existing rule-based methods. Furthermore, using 
NNs removes the need to explicitly define rules, allowing for more flexible and adaptable 
solutions that can generalize to different design scenarios. As a result, NNs are now the SOA 
in the domain of CAD sketch generation. 

However, current NN solutions are not robust, accurate, nor reliable enough to facilitate 
all the aforementioned benefits to CAD design. Currently, generative CAD NNs require an 
external constraint solver to fix the generated sketch [2], and are limited to simple sketches 
[3, 10]. Previous research on NNs has focused on utilizing Transformer [2, 3] and Recurrent 
neural network (RNN) [9] architectures to generate CAD sketches as token sequences. How-
ever, to the author’s knowledge, no previous research has explored the use of Graph Neural 
Networks (GNNs) for CAD generation. GNNs have demonstrated an ability to generate 
novel, diverse, and realistic graphs in a multitude of domains, for instance graph diffusion 
models are the SOA in molecule generation [12, 13]. This work explores a novel application 
of GNNs in the domain of CAD sketch generation, motivated by their success in other graph 
generation tasks. 

1.2 Contributions 

This work provides, to the author’s knowledge, the following contributions: 

1. The first application of GNNs to the task of CAD sketch generation. 

2. The first application of diffusion to the task of CAD sketch generation. 

3. A novel discrete diffusion strategy employing the Gaussian-Softmax distribution. 
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Chapter 2 

Background & Related Work 

CAD originated in the 1960s from the aircraft industry, and later cemented itself in various 
engineering disciplines by the 1980s [1]. Thanks to the increased precision, flexibility, and 
speed offered by CAD tools such as AutoCAD and Solidworks, CAD design has become 
the standard for modern manufacturing and engineering [2, 1]. Similar to CAD, modern 
NNs originated in the 1960s from the seminal work of Rosenblatt, and the field of Machine 
Learning (ML) was later established by Kohonen in the 1980s [14, 15, 16]. NNs have demon-
strated an ability to understand and predict complex phenomenae, and in recent years have 
revolutionized domains such as image synthesis and natural language processing. 

2.1 Computer-Aided Design (CAD) 

The primary purpose of CAD tools is the design of 3D models, however the typical workflow 
for users in modeling any complex 3D geometry is by first designing 2D CAD sketches and 
then performing operations such as extrusion, lofting, and revolution to extend the 2D planar 
sketches into 3D volumes. The volumes are then aggregated by the user to form the final 
model [17]. Extrusion refers to extending a 2D shape into a prism, revolution rotates a 2D 
shape around a specified axis to trace out a volume, and the loft operation creates a 3D 
shape by using specified 2D shapes as cross sections. A visualization of the extrude and loft 
operations are provided in Figure 2.1. As a result, the majority of users’ effort and time in 
CAD modelling is dedicated to the construction of 2D sketches. 

Figure 2.1: A 2D rectangle is extruded into a 3D rectangular prism on the left and a curtain 
is created from 2 splines by using them as cross sections on the right, created by Autodesk 
Help. Copyright ©Autodesk, Inc. CC BY-NC-SA 3.0 

3 

https://creativecommons.org/licenses/by-nc-sa/3.0/


CAD sketches are simply a collection of geometric primitives and corresponding geometric 
constraints that express relationships between those primitives. Thus sketches have a nat-
ural representation as graphs where the nodes are primitives and the edges are constraints. 
Figure 2.2 provides a simple sketch and its corresponding graph representation. For brevity, 
we denote the graph representation of CAD sketches as CAD graphs. Primitives in CAD 
sketches are often over parameterized due to the ease of performing certain 2D transforma-
tions (e.g., rotation, translation) with certain parameters versus others. Table A.1 lists the 
parameters of each primitive type and their corresponding semantics as used in Onshape. 
Additionally primitives can be tagged as “constructible” which turns them into construction 
aids that are not rendered in the final model; judicious use of construction aids along with 
constraints allows users to precisely codify design intent. 

Constraints are user specified relationships between primitives that encode geometric 
requirements in the final 3D model. Such relationships simplify and streamline the design 
iteration cycle by allowing users to edit individual primitives while preserving geometric 
requirements. Constraints can be specified on primitives as a whole or individual sub-
primitives, such constraints are referred to as sub-primitive constraints. Sub-primitives are 
simply the start, center, and end points of arcs and lines. Tables A.2 & A.3 list the constraints 
relevant to this work and their geometric semantics as provided in Onshape. Design intent 
is primarily conveyed through the constraints that users specify, and as a result require a 
good deal of attention from users. 

Figure 2.2: A rendering of a CAD sketch where every primitive is assigned a unique color 
and primitives tagged as construction aids are dotted on the left. The corresponding graph 
representation is provided on the right where cyan represents coincidence, red a midpoint 
constraint, and purple a parallel constraint. Construction aids are omitted from the graph 
for clarity and readability. 
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The complexity and expressivity of CAD sketches arises from the interaction of prim-
itives and constraints. Often times, as users continue to iterate and amend their designs, 
constraint conflicts arise where two constraints are mutually incompatible resulting in unsat-
isfied constraints. Furthermore, due to the sheer expressivity that standard CAD software 
provide, previously specified geometry may interact in unanticipated ways with newly intro-
duced geometry, as constraints may propagate to other parts of the design in unexpected 
ways. To alleviate this in some fashion, users typically construct CAD sketches by adding 
foundational primitives first and building off of them to finish the sketch. As a result, the 
ordering of primitives encodes very useful semantic information, thus even though all per-
mutations of CAD graphs are equivalent we focus solely on generating the canonical human 
ordering inline with much of the prior art [9, 3, 10]. 

2.1.1 Neural Networks 

Neural networks are essentially parameterized functions whose parameters are learned through 
some form of training, almost always being gradient descent based optimization. The func-
tionality of NNs is derived from their ability to approximate any continuous function to any 
arbitrary degree. This is known as the Universal Approximation Theorem and was proven by 
Hornik in 1989 [18]. The most basic neural network architecture is known as the Multilayer 
Perceptron (MLP) or Feed Forward network (FFN), originally introduced by Rosenblatt as 
an abstraction of biological neural networks [16]. An artificial neuron is just a simple unit 
of computation that takes a weighted sum of the neurons in the preceding layer with some 
bias, and uses that as input for a non linear activation function, where the output of the 
neuron is the result of the activation function. Information, also referred to as signals in 
ML nomenclature, is passed from the input layer through a series of intermediate layers, 
also referred to as hidden layers, and then lastly through an output layer [14]. Figure 2.3 
demonstrates a simple FFN composed of 4 layers. 

Figure 2.3: A topographical visualization of a 4 layer feed forward network, where every 
node is a neuron and the weights are represented by edges. The arrows designate the flow 
of information, typically deeper layers encode higher level information. 
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We can compactly represent the input of the ith layer as the vector x⃗i−1 where each layer 
transforms the input according to x⃗i = σ(Wix⃗i−1 + b⃗i) where σ is an element-wise nonlinear 
function, W is a matrix whose entries are parameters/weights to be learned, and ⃗b is a bias 
term to be learned. Training a NN is simply determining the optimal values of the weights 
and biases in each layer for a particular task. The optimal parameters are determined in 
relation to a loss function, which quantifies the error between the network output and true 
output. A lower loss means that the network is more apt at producing the correct outputs, 
and a higher loss means that the network is less adept at producing the correct outputs. 
The gradient of the loss determines which direction the parameters should be updated to 
reduce the loss [19]. During training, the NN is fed a large dataset of input data and the 
loss is calculated, in practice the loss is often not computed using the entire dataset but 
instead with smaller chunks of the dataset, and gradient descent is applied to reduce the 
loss. This process is repeated iteratively until the loss is minimized, and the NN is said 
to have converged [19]. Once the NN is trained, it can be used to make predictions on 
new data. The most common loss functions are Mean Squared Error (MSE) for regression 
tasks (continuous variables) which is computed as LMSE = || ⃗ XTRUE − ⃗ XPRED||2 and Cross 
Entropy (CE) for classification tasks (discrete variables/one-hot vectors) which is computed 
as LCE = − ⃗ XTRUE · log ⃗ XPRED. 

2.1.2 Variational Auto Encoders 

Variational Autoencoders, introduced by Kingma et al. [20], are generative models that learn 
a stochastic bidirectional mapping between data space and, typically, a lower dimensional 
latent space. They consist of an encoder network that learns the distribution q(z|x) which 
stochastically maps data x to a latent z such that z ∼ pprior(z), and a decoder network 
that learns p(x|z) which inversely maps latent z to data x. In simpler terms the encoder 
stochastically compresses the information of a datapoint into a latent vector and the decoder 
decompresses the stochastic latent vector into the original input. 

It is standard practice in machine learning to make the following assumptions: 

q(z|x) = N (µE (x) , σE (x)) , 

p(z) = N (0, I) , 

p(x|z) = N (µD (z) , σuserI) 

where N represents the Gaussian distribution [21, 20]. The outputs of the encoder are the 
mean µE (x) and standard deviation σE (x) of a latent Gaussian distribution, the output 
of the decoder is solely µD (z) which is the reconstruction, and σuser is an arbitrary user-
specified constant often set to 1. Note that σuser is used solely in log-likelihood computation 
and that no noise is actually added to µD (z) for decoding as doing so would diminish the 
fidelity of reconstructions [21, 20]. The latent z is sampled using the reparameterization 
trick z = µE (x) + σE (x) ⊙ ϵ where ϵ ∼ N (0, I). Figure 2.4 provides a visualization of the 
compression and decompression process in a VAE architecture. 

6 



VAEs are trained to minimize the negative evidence lower bound (ELBO), in other words, 
the loss function of the VAE is LVAE = LREC + LKLD. The first term LREC is the reconstruc-
tion loss (e.g., MSE, CE) between the decoder output and the ground truth. The second 
term LKLD is the Kullback-Leibler divergence (KLD loss) between the encoded and prior 
distribution for the latent. The KLD loss is calculated as LKLD = 1 ·(σ2 

E +µ2
E −1−2 log σE). 

The reconstruction loss coerces the encoder to capture important high level information in 
the latent vector and the decoder to take that high level information and accurately recon-
struct the original graph. The KLD loss applies only to the encoder and coerces the latents 
to follow an isotropic Gaussian distribution so new data can be generated by passing in a 
random vector into the decoder. 

Figure 2.4: The encoder takes in an image and predicts the mean µE and the standard 
deviation σE of a Gaussian distribution. The latent is sampled from the Gaussian distribution 
via the reparameterization trick z = µE(x) + σE(x) ⊙ ϵ where ϵ ∼ N (0, I). The decoder 
takes the perturbed latent and attempts to reconstruct the original image. 

2.1.3 Diffusion Models 

Diffusion models, first introduced by Sohl-Dickstein et al. in 2015 [22] and later popularized 
by Ho et al. in 2020 [23], represent a class of generative models that learn to simulate 
the reverse of a gradual noising process. These models are inspired by the principles of 
thermodynamics, where a data point is slowly corrupted by noise, and the model learns to 
revert it back to its original state. A visualization of the process is provided in Figure 2.5. 

Continuous Diffusion 

The forward noising process is a Markov chain that gradually adds Gaussian noise to a data 
point over a series of T timesteps. For a given clean data point x0, the process produces a 
sequence of increasingly noisy versions x1, x2, . . . , xT . This is achieved through a transition 
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distribution defined as 

q(xt|xt−1) = N (xt; 
√ 
αtxt−1, (1 − αt) I) ⇐⇒ xt = 

√ 
αtxt−1 + 

 
(1 − αt)ϵ (2.1) 

here ϵ ∼ N (0, I) and α0, α1, . . . , αT is a noise schedule that controls the amount of noise 
added at each timestep. 

A noise schedule is a sequence of monotonically decreasing scalar values satisfying α0 = 1 
and αT = 0. Figure 2.6 illustrates the widely adapted cosine variance schedule introduced 
by Nichol & Dhariwal [24], that we also adopt in this work. 

The goal of the forward process is to gradually obscure the original data in a controlled 
manner, reaching a point where xT is essentially pure noise. Conveniently, instead of itera-
tively noising a datapoint we can in one shot sample xt for any arbitrary t from the original 
datapoint via the cumulative transition distribution 

q(xt| x0) = N 
 
xt; 
√ 
αtx0, (1 − αt) I 

 
⇐⇒ xt = 

√ 
αtx0 + 

 
(1 − αt)ϵ (2.2) 

where αt = 
t

i=1 αi. 
The reverse process at a high level is simply gradually denoising a noisy sample by 

interpolating it with the clean datapoint. It is given by the distribution 

p (xt−1|xt) = N 

 

xt−1; 
√ 
at (1 − at−1) xt + 

√ 
at−1 (1 − at) x0 

1 − at 
, 
(1 − at) (1 − at−1) 

1 − at 
I 

 

(2.3) 

xt−1 = 
√ 
at (1 − at−1) xt + 

√ 
at−1 (1 − at) x0 

1 − at 
+ 

 
(1 − at) (1 − at−1) 

1 − at 
ϵ (2.4) 

where ϵ ∼ N (0, I). Therefore, the reverse process can be learned by training a network to 
predict the clean data point given a noisy sample. More explicitly, the denoiser network 
learns the function x0 (xt, t). New data can be generated by passing in pure noise into the 
network and iteratively denoising it by plugging the input and network prediction into the 
reverse distribution. Accordingly, continuous diffusion models are trained only to reconstruct 
the noiseless datapoint given some noisy input, thus MSE loss is almost always used. 

Figure 2.5: Noise is iteratively added to the data until it is indistinguishable from pure 
noise according to the forward distribution q(xt| xt−1). The reverse distribution p(xt−1| xt) 
gradually removes noise, and is iteratively applied to transform pure noise into novel data. 
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Figure 2.6: The green curve plots the cosine variance schedule at = cos( πt
2T ) proposed by 

Nichol & Dhariwal over T = 1000 steps. This particular schedule is very popular since it 
ensures information is not destroyed unnecessarily early in the forward process. We can 
recover the non-cumulative variance via at = at/at−1 

Discrete Diffusion 

Analogous to continuous diffusion, a discrete diffusion framework utilizing the categorical 
distribution was introduced by Hoogeboom et al. [25] and later extended by Austin et 
al. [26]. The forward noising process for discrete diffusion is a discrete Markov chain that 
jumbles the state of a onehot vector over a series of T timesteps. This is achieved through a 
transition defined as q(xt|xt−1) = C(xt; atxt−1 + (1 − at)1/D), here C(x; p) is the categorical 
distribution, a0, a1, . . . , aT is a variance schedule, and D is the dimension of x. Again, akin 
to continuous diffusion, there is a cumulative transition distribution and reverse transition 
distribution that are both Categorical distributions, however, as these details are not directly 
relevant to this work, we do not elaborate further. Initial experiments using this discrete 
noising scheme yielded poor performance. We attribute this limitation to the categorical 
framework’s inability to represent superposition. In this context, superposition refers to a 
probability vector representing a combination of multiple states. However, the categorical 
distribution inherently produces one-hot vectors at each iteration of both the forward and 
reverse processes, collapsing the model’s representation to a single discrete state. As a 
result, the model cannot maintain partial confidence across multiple categories. Other prior 
art addressed this issue by embedding discrete variables into a continuous space and then 
performing continuous diffusion, some used learnable embeddings [27, 28, 29] and others used 
nonlearnable embeddings [30, 31]. Instead, we propose a new discrete diffusion strategy that 
showed far better performance for generating CAD sketches and allows for superposition, 
allowing the model to consider multiple possible primitive types at the same time. Our 
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approach is a simple augmentation of continuous diffusion using the softmax function such 
that the entire diffusion process is constrained to the probability simplex. Specifically, the 
softmax function is defined as 

softmax(x) = 
exp (x) 

1 · exp (x) 

which is simply a mapping to turn unnormalized logits to a probability vector and the 
forward noising process is 

xt+1 = softmax 
 √ 

at+1 log (xt) + 
 

1 − at+1ϵ 
 

(2.5) 

where ϵ ∼ N (0, I). The cumulative transition and reverse process are analogously 

xt = softmax 
√ 

at log (x0) + 
√ 

1 − atϵ 
 

(2.6) 

xt−1 = softmax 

 µt−1 + 

 
(1 − at) (1 − at−1) 

1 − at 
ϵ 

  
(2.7) 

µt−1 = 
√ 
at (1 − at−1) log xt + 

√ 
at−1 (1 − at) log x0 

1 − at 

Intuitively, we perform continuous diffusion in log-space and then project back onto the 
simplex via the softmax function. The distribution that describes this transition is the 
Logistic Normal distribution [32], however we simply refer to it as the Gaussian-Softmax 
distribution. A detailed derivation of the formulae listed above is provided in A.0.1 & A.0.3. 
We again prioritize reconstruction and we accordingly employ CE loss. The inference and 
training procedures for our proposed discrete diffusion framework are exactly analogous to 
the inference and training procedures for continuous diffusion. Note, however, that we have 
to initially label smooth x0 to a near one-hot representation to avoid singularities at the 
start of the diffusion process. This can be done via x′

0 = kx0 + 1 
D

(1 − k) for some k close to 
1 and D being the dimension of x0. 

2.2 Related Work 

The most relevant prior art to this work is Vitruvion, proposed by Seff et al. [10]. Vitruvion 
is a generative model for CAD sketches based on the transformer architecture, generating 
CAD sketches as sequences of tokens. The transformer architecture, originally introduced 
by Vaswani et al. [33] for natural language processing, has demonstrated state-of-the-art 
performance by enabling neural networks to focus on specific words or phrases via attention 
mechanisms. Seff et al. chose to represent CAD sketches as token sequences to address the 
heterogeneous nature of CAD sketches, where different primitives require varying numbers 
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of parameters. To further manage this heterogeneity, their work was limited to a subset of 
primitive types namely: circles, arcs, lines, and points, and a select group of constraints: 
coincident, horizontal, vertical, parallel, perpendicular, and midpoint. Seff et al. converted 
CAD sketch graphs from the SketchGraphs dataset into token sequences by embedding each 
primitive independently. This embedding was achieved by summing the class embeddings of 
the primitive type with the embeddings of the 6-bit uniformly quantized parameter values. 
A similar embedding process was applied to constraints, where sub-primitive references and 
constraint types were independently embedded and then summed. Their model was trained 
using CE loss to predict both the type and quantized parameter values. 

Another closely related work is SketchGen, proposed by Para et al. [3]. Like Seff et 
al., Para et al. introduced SketchGen as a generative model for CAD sketches based on 
the transformer architecture. However, unlike Vitruvion, SketchGen employed a custom 
grammar to represent CAD sketches as token sequences. Despite this difference, they also 
restricted their scope to the same primitive types: circles, arcs, lines, and points, as well as 
the same constraints: coincident, horizontal, vertical, parallel, perpendicular, and midpoint. 
Para et al. generated separate token sequences for primitives and constraints by applying a 
custom grammar parser to the list of entities. Their neural network was trained using CE 
loss, similar to the approach used by Seff et al. 

SketchGraphs by Seff et al. [9] is another related work that introduced the dataset that 
all subsequent research has used. They provide a baseline model utilizing a Recurrent Neural 
Network (RNN) architecture. RNNs are not the state of the art in CAD sketch generation, 
and their follow up work Vitruvion has switched to the transformer architecture as well. 
Additionally, the baseline model does not predict the parameter values for primitives and 
instead relies on an off the shelf CAD constraint solver to fill in the parameter values. 

Han et al. [30] also proposed a discrete diffusion procedure based on the Gaussian-
Softmax distribution, however their procedure differs from ours in 2 major aspects. The first 
is that they use a heuristic reverse transition which they define to be 

xt−1 = softmax 
 √ 

at−1 log x0 + K 
 

1 − at−1ϵ 
 

This is in contrast to our work for which we derived the reverse transition from the posterior 
distribution of the discrete forward process, justifying our approach from a probabilistic 
perspective. Another limitation of their heuristic reverse process is that too much information 
is destroyed since the cumulative transition is used at each step in the reverse process, which 
they address by introducing an almost one-hot projection scheme after each reverse step, but 
as a result the benefits of superposition were greatly diminished. The second aspect that 
differentiates our work is that we also propose a variance modification formula in Equation 
3.1, that ensures a gradual forward process. In our early experiments we found weighting the 
noise added by an arbitrary constant K to abruptly destroy information during the forward 
process. 

Simonovsky & Komodakis [13] introduced GraphVAE, a generative model for molecule 
synthesis that employs a variational autoencoder architecture. In GraphVAE, a graph is 
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represented by an adjacency matrix, an edge attribute tensor, and a node attribute tensor. 
The adjacency matrix encodes the connections between nodes. The edge attribute tensor 
contains additional information about each edge, such as the type of chemical bond repre-
sented using a one-hot vector. Similarly, the node attribute tensor includes further details 
about each node, such as the atomic element, also represented with a one-hot vector. Graph-
VAE uses a feedforward network with edge-conditioned graph convolutions for the encoder. 
The decoder is a simple multi-layer perceptron that takes the latent vector as input and 
outputs the predicted adjacency matrix, predicted edge attribute tensor, and predicted node 
attribute tensor. GraphVAE was trained using CE loss and achieved decent results on the 
task of molecule synthesis. 

Lastly, In their work, Vignac et al. [12] introduced Digress, a generative graph diffusion 
model for molecule synthesis that outperformed other models in its class. Like GraphVAE, 
Digress employs node and edge attribute tensors, where the attributes of each node and edge 
are represented by one-hot vectors. Unlike GraphVAE, however, Digress does not utilize an 
explicit adjacency matrix; instead, it uses the edge attribute tensor directly. Digress uses the 
categorical discrete diffusion framework proposed by Hoogeboom et al. [25]. The model was 
trained using CE loss and achieved state-of-the-art results on the task of molecule synthesis. 
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Chapter 3 

Methodology 

In this work, we begin by processing the SketchGraphs dataset in 2 stages. For the first stage 
we filter out simple CAD sketches, for which automation provides limited benefits, and large 
CAD sketches due to time and resource constraints. In the second stage we simplify primitive 
parameterizations, to avoid redundancy, and remove duplicate sketches from the dataset to 
avoid biasing our models. Initially, we explored a VAE as a generative approach for sketch 
synthesis, however, we found that our VAE produced suboptimal generations. Consequently, 
we pivoted to a diffusion-based generative model, which demonstrated superior performance 
in generating realistic and coherent sketches. Despite this shift, for the sake of completeness 
and to provide a comprehensive account of our research process, we include the methodology 
and findings from our VAE experiments. Ultimately, we train both of our models on the 
processed SketchGraphs dataset. 

3.1 Dataset 

We use the CAD sketch dataset introduced in SketchGraphs by Seff et al. [9]. The dataset 
is comprised of 15 million human-created CAD sketches scraped from Onshape, a cloud 
centric CAD platform. The majority of sketches in the dataset have less than 8 primitives 
comprising approximately 84% of the dataset, they are very simple box-like shapes and 
are almost identical to one another, Figure 3.2 illustrates such simple sketches. Figure 3.1 
provides the proportion of sketches in relation to the number of primitives they contain. We 
also report, in Table 3.1, statistics on the frequency of each primitive type and constraint 
type in the dataset. 

In accordance we chose to filter out all sketches with less than 8 primitives as this would 
heavily bias our model to generate simple boxes. Additionally due to resource and time 
constraints we chose to discard all sketches with more than 16 primitives, and retain only 
the most important primitive types namely: Line, Circle, Arc, and Point. Doing so is not 
very detrimental, however, since it appears that only a minority 9.98% of CAD sketches are 
comprised of more than 16 primitives. After filtering the primitives, we then kept the 8 most 
frequent constraints out of the subset namely: Coincident, Horizontal, Vertical, Parallel, 
Perpendicular, Tangent, Midpoint, and Equal. Thus even after filtering we keep 6 out of the 
8 most frequent constraints in the raw dataset. After filtering we are left with 2.1 million 
CAD sketches. Para et al. similarly filter CAD sketches but discarded those with more than 
24 primitives, whereas we discard sketches with more than 16 [3]. 

We also noted that the primitives in the raw dataset are overparameterized, and so we 
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Figure 3.1: We plot the proportion of sketches 
in the SketchGraphs dataset with the number 
of primitives they contain. The histogram in-
dicates that OnShape users tend to create and 
use CAD sketches with less than 16 primitives. 

Figure 3.2: The majority of the 
SketchGraphs dataset is comprised 
of very simple sketches like these, so 
we exclude such sketches to ensure 
our model will learn to generate more 
useful and diverse CAD sketches. 

simplified them to avoid redundancy. The reparameterizations are listed in Table A.4. In 
addition we noted that the scales of the CAD sketches varied greatly from being only a few 
millimeters in dimensions to being as large as several meters, so we perform a normalization 
procedure where sketches are rescaled, such that their bounding boxes have a side length 
of 2 meters, and shifted to align their center of mass onto the origin. Lastly, since the 
SketchGraphs dataset was constructed by retrieving public CAD sketches from the OnShape 
cloud platform, several sketches are duplicates of one another. This arises primarily from 
users creating sketches by following tutorials, reusing previously created sketches, or using 
collaboration tools provided by OnShape to copy sketches from each other. We perform a 
deduplication procedure to avoid biasing to such sketches, where we group identical sketches 
together and keep only 1 sketch from each group. After the deduplication procedure we are 
left with 1.4 million CAD sketches, which is sufficient for this work. Seff et al. perform a 
similar normalization and deduplication procedure [10]. 

Subsequently, the final CAD sketches were converted into graph representations for use 
in our models. For a given graph G = (V , E) the nodes are represented as tensors V ∈ Rn×dn 

and the edges as tensors E ∈ Rn×n×de , where n is the maximum number of nodes, dn is 
the dimension of node features, and de is the dimension of edge features. For our purposes 
n = 16, dn = 20, and de = 17. Figure 3.3 shows a visualization of the features for each node 
and edge. We split our dataset of 1.4 million CAD sketches into 3 subsets: 90% is used for 
training, 5% is used for validation, and 5% is reserved for testing. 
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Primitive and Constraint type 
frequencies in raw dataset 

Primitive % 
Line 68.47 
Circle 9.97 
Arc 9.45 
Point 8.58 
Spline 2.57 
Ellipse 0.08 

Constraint % 
Coincident 42.17 
Projected 9.71 
Distance 6.72 
Horizontal 6.45 
Mirror 5.54 
Vertical 4.78 
Parallel 4.37 
Length 3.68 
Perpendicular 3.24 
Tangent 2.94 

Primitive and Constraint type 
frequencies in filtered dataset 

Primitive % 
Line 76.64 
Circle 7.06 
Arc 7.02 
Point 9.28 

Constraint % 
Coincident 49.94 
Horizontal 12.19 
Vertical 6.93 
Parallel 11.80 
Perpendicular 7.76 
Tangent 5.10 
Midpoint 3.27 
Equal 3.01 

Table 3.1: Here we present the frequency of each primitive type and constraint type in the 
SketchGraphs dataset on the left and we present statistics on the filtered dataset on the 
right. Splines and Ellipses make up a negligible portion of the dataset. We also note that 
the frequencies of the various primitive and constraint types are roughly preserved in the 
filtered dataset. 

3.2 VAE for CAD Graph Generation 

We first trained a Variational Autoencoder (VAE) since it is a well-established architecture 
for generative tasks. The encoder and decoder networks incorporate the graph attention 
module proposed in DiGress, due to its strong performance in other generative tasks [12]. 
Figure A.1 illustrates the architectural details of both the encoder and the decoder. The 
encoder maps CAD graphs into a latent space, while the decoder reconstructs CAD graphs 
from the latent representations. The latent space in our model is R1024 represented as 1024-
dimensional vectors. As is standard, we choose the isotropic Gaussian distribution as our 
prior for the latent space. The encoder predicts the mean and log-variance (logvar) of a 
multivariate Gaussian distribution, which parameterizes the latent space. Latent vectors 
are then sampled from this distribution during both training and inference. These sampled 
latents serve as input to the decoder, enabling the generation of CAD graphs. We use 
MSE loss for the node parameter values and CE loss for the node type, node constructible, 
edge type, and edge subnode types. We choose the prior distribution of the latents to be 
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Figure 3.3: Node features on left and Edge features on right. Definitions of parameters is 
provided in A.4. All parameters inconsistent with the primitive type are zeroed out. Subnode 
A and B specify whether a constraint applies to the start, end, or center point of the relevant 
primitives, none means the whole primitive is affected by the constraint. 

a standard Gaussian distribution so the KLD loss coerces the encoder to predict the mean 
and logvar to be 0. 

3.2.1 Training Procedure 

The encoder and decoder networks were jointly trained for 70 epochs with a batch size of 
8 × 256 distributed across 8 NVIDIA A30 GPUs. During training, we observed a severe 
adversarial relationship between the reconstruction loss and the KLD loss. This conflict 
arose because the KLD loss drives the latent space towards a standard Gaussian distribution, 
thereby reducing the encoder’s capacity to encode meaningful information into the latent 
representations. Consequently, this behavior hindered the reconstruction of CAD graphs 
with high fidelity. To mitigate this issue, we applied a scaling factor of 1 × 10−3 to the 
KLD loss term to reduce its impact during training, additionally we also scaled the MSE 
loss term by a factor of 16. This adjustment improved graph reconstructions by forcing 
the model to prioritize reconstruction quality, but as a result we can’t generate novel CAD 
graphs by simply feeding a random standard Gaussian vector into the decoder. A diagram 
of the training pipeline is provided in Figure 3.4, and pseudocode is provided in Algorithm 
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Figure 3.4: Training pipeline for VAE model. The encoder produces a mean µ and logvar 
log σ2 , then the latent z is sampled via z = µ + σ ⊙ ϵ where ϵ ∼ N (0, I). The latent vector 
is fed into the decoder to reproduce the encoded graph. 

1. 

Algorithm 1 VAE Training Procedure 

Require: Training data X, neural networks for encoder Eϕ(V , E) and decoder Dθ(z), num-
ber of epochs N , and KLD loss weight λ 

1: for epoch = 1 to N do 
2: for each graph (V , E) ∈ X do 
3: Calculate mean and standard deviation µ, σ = Eϕ(V , E) 
4: Sample latent z = µ + σ ⊙ ϵ, ϵ ∼ N (⃗0, I) 
5: Reconstruct graph (V ′ , E ′ ) = Dθ(z) 
6: Compute reconstruction loss: Lrecon(V ′ , E ′ , V , E) 
7: Compute KL divergence: LKL = 1 

2


i(σ

2 
i + µ2 

i − 1 − 2 log σi) 
8: Compute total loss: L = Lrecon + λLKL 

9: Update ϕ and θ using gradient descent on L 
10: end for 
11: end for 

3.2.2 VAE Inference Sampler 

To extend the generative capability of our baseline model, we trained a separate continu-
ous diffusion-based sampler network after training the VAE. This sampler generates latent 
vectors that the decoder transforms into CAD graphs, independent of the encoder. The 
diffusion sampler was trained for 1000 epochs with a batch size of 8 × 1024, also utilizing 
8 NVIDIA A30 GPUs for efficient training. The sampler network is a simple 32 layer feed 
forward network with residual connections. Since, the sampler is tasked with generating 
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Algorithm 2 VAE Inference Procedure 

Require: Trained neural networks for sampler Sϕ(z) and decoder Dθ(z), and variance sched-
ule a0, . . . , aT 

1: Sample seed zt ∼ N (⃗0, I) 
2: for t = T − 1 to 0 do 
3: Predict true latent z ′0 = S(zt, t) 

zt−1 = 
√ 
at(1 − at−1)zt + 

√ 
at−1(1 − at)z ′ 0 

1 − at 
+ 

 
(1 − at)(1 − at−1) 

1 − at 
ϵ, ϵ ∼ N (⃗0, I) 

4: end for 
5: Reconstruct graph (V ′ , E ′ ) = Dθ(z0) 

latents for the decoder, we employ MSE loss between the predicted latent and true latent 
vectors for training. The generation pipeline of the VAE is illustrated in Figure 3.5 and 
pseudocode is provided in Algorithm 2. 

Figure 3.5: Inference pipeline for VAE model. The latent sampler network generates a latent 
vector that can be then fed into the decoder to decode into a CAD graph. 

3.3 Diffusion Model for CAD Graph Generation 

Motivated by state-of-the-art performance of diffusion models across a variety of generative 
tasks, we present the first application of diffusion to the task of CAD graph generation. The 
architecture of our denoiser network is a slight variant of the Diffusion Transformer (DiT) 
architecture, as introduced by Peebles & Xie [34]. This choice was motivated by the strong 
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performance of DiT in image generation tasks, and our experiments confirmed its suitability 
for primitive generation. A schematic of the network architecture is depicted in Figure A.2. 

3.3.1 Forward Process 

The denoiser network is trained to reconstruct the original noiseless graph G0 from a noisy 
graph Gt conditioned on the diffusion timestep t. We define the total diffusion process across 
1500 steps, where t = 0 corresponds to the original graph without noise, and t = 1500 
represents pure noise. We use the aforementioned cosine variance schedule illustrated in 
Figure 2.6. The forward diffusion process independently noises each variable x in the graph 
via: 

x t,c = 
√ 
atx0,c + 

√ 
1 − atϵ 

xt,d = softmax 

 
bt log (kx0,d + 

1− k 
D 

) + 
 

1 − btϵ 

 

where x−,c are continuous variables (i.e., primitive parameters), x−,d are discrete variables 
(i.e., primitive types, edge types, edge subnodes, and construct booleans), D is the dimension 
of the respective one-hot vector, ϵ ∼ N (0, I), k is a user-defined smoothing constant near 1 as 
to avoid singularities at the start of the diffusion process which we set k = .99. Essentially, 
all continuous variables undergo continuous Gaussian diffusion and all discrete variables 
undergo Guassian-Softmax diffusion. Note that we expand boolean values into a one-hot 
representation for the forward noising and reverse denoising processes. 

For discrete diffusion, variance schedules can not be used as is, since the softmax pro-
jection distorts the effect of the injected noise. To address this, we propose the following 
adjustment where the argmax of the noised class label follows the Categorical distribution 
argmax(xt) ∼ C(atx0 + (1 − at)/D) achieved via the augmentation: 

bt = 
f(at)

2 

f(at)2 + f(k)2 
where f(x) = log 

 
1− x 

(D − 1)x + 1 

 

(3.1) 

Figure 3.6 highlights the importance of the proposed variance schedule augmentation, demon-
strating its advantages over directly using the raw variance schedule. A derivation of the 
augmentation scheme is provided in A.0.4 

3.3.2 Training Procedure 

Training was performed over 1000 epochs with a batch size of 8 × 512, distributed across 
8 NVIDIA A30 GPUs. A constant learning rate of 1 × 10−4 was employed throughout. 
To prevent bias toward predicting zeros, we use the ground truth primitive type to mask 
irrelevant parameters before computing the MSE loss. This approach ensures the model 
simultaneously predicts the optimal parameters for all possible primitive types while assign-
ing a confidence score (i.e., probability) to each. For example, if the true primitive type is 
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(a) Cosine variance used directly in discrete 
forward process. 

(b) Cosine variance augmented by 3.1 in dis-
crete forward process. 

Figure 3.6: The orange curves are the raw and augmented variance schedules, and the blue 
curves are the respective probabilities that the argmax does not transition to another index 
at that timestep. The augmented variance schedule provides a more gradual discrete forward 
process than the raw variance schedule. 

a line, the model still predicts the parameters for the other types, such as circles or arcs, 
while assigning probabilities that reflect its confidence in each prediction. A diagram of the 
training pipeline is presented in Figure 3.7, and pseudocode is provided in Algorithm 3. The 
denoiser network was trained using the same reconstruction loss that the VAE was trained 
with. Similarly, we found it beneficial for training convergence to weigh the MSE loss by 
min(c, SNR(t)), where SNR(t) = at/(1 − at), following the methodology of Hang et al. [35]. 
Additionally, to improve training convergence, we deviated from the conventional approach 
of sampling timesteps from a uniform distribution. Instead, we adopted the methodology 
proposed by Wang et al. [36], to sample timesteps from a piecewise distribution, for our work 
it is: 

A(x) = 

 
1.6 if x ≤ 750, 

0.4 if x > 750 
(3.2) 

3.3.3 Inference Procedure 

Since we noise all continuous and discrete variables independently, for the reverse process we 
denoise all variables independently as well. We use the same reverse transitions defined in 
Equations 2.4 & 2.7. Before each continuous reverse step, we weight the predicted primitive 
parameters by their corresponding rescaled predicted type probabilities. This adjustment is 
necessary because irrelevant parameters are masked during training, prompting the model 
to predict optimal parameters for all types simultaneously. Since the model is trained to 
expect irrelevant parameters to approach zero at smaller timesteps, discrepancies may arise 
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Algorithm 3 Diffusion Training Procedure 

Require: Training data X, neural network for denoiser Mθ(V , E), number of epochs N 
Ensure: Trainable parameters θ 
1: for epoch = 1 to N do 
2: for each graph (V , E) ∈ X do 
3: Sample timestep t ∼ A(x) provided in 3.2 
4: Noise graph (Vt, Et) = noise(V , E , t) 
5: Reconstruct graph (V ′ , E ′ ) = Mθ(Vt, Et) 
6: Mask predicted parameters V ′ 

c with corresponding ground truth primitive type 
probabilities Vd 

V ′ c ←− V ′ c ∗ Vd 

7: Compute reconstruction loss: Lrecon(V ′ , E ′ , V , E) 
8: Update θ using gradient descent on L 
9: end for 
10: end for 

Algorithm 4 Diffusion Inference Procedure 

Require: neural network for denoiser Mθ(V , E) 
1: Sample latent: discrete variables from the isotropic standard Gaussian-Softmax and 

continuous variables from the isotropic standard Gaussian 

(VT , ET ) ∼ N (⃗0, I)||softmax{N (⃗0, I)} 

2: for t = T − 1 to 1 do 
3: Predict noiseless graph (V ′ , E ′ ) = Mθ(Vt, Et) 
4: Weight predicted parameters V ′ 

c by corresponding predicted primitive type probabil-
ities V ′ 

d, rescaled such that the maximum element is exactly 1 

V ′ c ←− V ′ c ∗ V ′ d/max(V ′ d) 

5: Interpolate as given by Equations 2.4 & 2.7 

Vt−1, Et−1 = interpolate(Vt, V ′ ), interpolate(Et, E ′ ) 

6: end for 
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Figure 3.7: Training pipeline for Diffusion model. A graph is noised to a random timestep 
and then passed into the diffusion model. The diffusion model is trained to denoise the 
graph. 

during the reverse process. Applying this weighting ensures that the model’s predictions 
better align with its expectation of noisy primitives, particularly at smaller timesteps. We 
rescale the predicted type probabilities by dividing each probability vector with its maximum 
element. This rescaling prevents parameter values from decaying to zero throughout the 
reverse diffusion process, ensuring more accurate predictions of noisy primitives, particularly 
at smaller timesteps. A visualization of the generation pipeline is provided in Figure 3.8, 
and pseudocode is provided in Algorithm 4. 
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Figure 3.8: Inference pipeline for Diffusion model. The model iteratively and gradually 
interpolates between the noisy variables and its predictions over T steps. 
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Chapter 4 

Results 

4.1 Baselines 

For our baselines we choose the most relevant prior art, namely: SketchGraphs by Seff 
et al., SketchGen by Para et al., and Vitruvion by Seff et al., since they are all methods 
pertaining to generating CAD sketches. SketchGraphs was the first work in this domain 
and importantly introduced the dataset that all subsequent work has utilized, however it 
could not generate primitive parameters and relied on an external constraint solver provided 
by Onshape to estimate the values. SketchGen and Vitruvion are subsequent works that 
aimed to generate primitive parameters. SketchGen used a custom grammar to represent 
primitives as token sequences, which neccessitated the primitive parameters to be quantized. 
Vitruvion is a follow up work that similarly generates CAD sketches as token sequences, 
but they did not write their own custom grammar and instead opted to generate simplified 
primitive parameterizations. Vitruvion was the SOA, so we’ll be comparing our work against 
theirs the most. Unlike prior art we chose not to quantize primitive parameters and treat 
them as continuous values. We justify this approach by noting that this allows for a simpler 
implementation and also allows our model to directly consider the distance, direction, and 
other geometric information between primitives. 

4.1.1 Negative Log-Likelihood 

We present the negative log-likelihood (NLL) on the test set to measure the aptitude of 
our model in learning the distribution of CAD graphs, provided in Table 4.1. A lower NLL 
indicates better generalization and improved model performance, though it is not necessarily 
indicative of sample quality. For diffusion models and VAEs, computing the exact NLL is 
intractable, therefore, we follow the standard approach of approximating the NLL using the 
ELBO, which satisfies the inequality ELBO ≥ NLL. As a result, we present the ELBO for 
our VAE and diffusion model, however despite this, our diffusion model achieved SOA NLL 
for CAD sketch generation. We note that the NLL for constraint generation seems to be 
inaccurate due to the non-sparse representation of constraints in our approach. The vast 
majority of graph edges are the null type, which biases the model toward predicting null 
constraints, artificially skewing the constraint NLL lower. Importantly, this issue does not 
affect the generation of primitives—the most critical component of a CAD sketch—where 
our model has still achieved SOA NLL. 
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Method Bits/Sketch↓ Bits/Primitive↓ Bits/Constraint↓ 
Diffusion (Ours) 81.33 5.08 0.0031 
VAE (Ours) 334.19 
Vitruvion 84.80 8.19 0.82 
SketchGen 88.22 8.60 0.61 
SketchGraphs 158.90 2.42 

Table 4.1: The NLL for each model is reported in bits, where a lower NLL is better. For our 
VAE, we provide only sketch-level statistics as the ELBO must be calculated jointly over 
latents, nodes, and edges. For SketchGraphs, since primitive parameters are not predicted, 
there is no corresponding NLL for primitives. Notably, our diffusion model achieved SOA 
NLL per primitive and per sketch. 

4.1.2 Sample Quality 

Here we present the Fréchet Inception Distance (FID), precision, and recall as metrics to 
evaluate the fidelity of generated CAD graphs, as shown in Table 4.2. Fidelity measures 
how closely synthetic CAD graphs resemble real CAD graphs. Standard image generation 
metrics are employed to assess sample quality; however, since constraints are immaterial, 
these metrics evaluate only the fidelity of primitives. A lower FID score indicates higher 
fidelity samples, and our diffusion model achieves state-of-the-art (SOA) FID. Higher preci-
sion reflects a closer resemblance between generated and real samples, minimizing irrelevant 
or low-quality outputs, while higher recall indicates greater diversity in generated samples, 
capturing the full range of real data variations. Precision and recall often exhibit an inverse 
relationship, where improvements in one may lead to reductions in the other. As is stan-
dard in image generation literature, we compute these metrics using InceptionV3 trained on 
ImageNet over 10K CAD graphs from our test set. 

Method FID↓ Precision↑ Recall↑ 
Diffusion (Ours) 7.80 0.233 0.251 
VAE (Ours) 93.34 0.134 0.033 
Vitruvion 16.04 0.294 0.176 

Table 4.2: The FID, precision, and recall are presented for unconditional primitive genera-
tion. A lower FID is better, a higher precision is better, and a higher recall is better. We 
note that our diffusion model has achieved SOA FID. 

4.1.3 Qualitative Results 

We also provide model generations to illustrate perceptual quality, as evaluating CAD 
sketches is still an open problem. In Figure 4.1 we provide 3 columns of rendered CAD 
sketches from the SketchGraphs dataset, our diffusion model, and Vitruvion respectively. 
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We also provide some diffusion trajectories to visualize the sampling process of our diffusion 
model in Figure 4.2. We don’t show generations from our VAE due to subpar results. 

4.2 Remarks 

We believe there are two major reasons as to why our model has improved generative capa-
bilities. The first reason is that our diffusion model has access to the full context of the CAD 
graph at any given step, unlike Vitruvion and SketchGen which have a limited view due their 
autoregressive nature. Since, Vitruvion and SketchGen append one node to the graph at a 
time, the models start off with an empty graph with zero context of how the node will fit 
in with the yet to be generated graph. Seff et al., make note of this in their work where 
they discuss how their model has better performance near the end of the sampling process 
where it has a larger context window. This is in contrast to our graph diffusion model which 
always has full context and can thus better model the relationships between nodes. 

The second reason we hypothesize as to why our model performs better is our diffusion 
approach. Unlike autoregressive models which can only influence each node once, namely 
during each generation step, our diffusion based approach allows our model to influence 
nodes over the whole reverse process. Although the downside is that the sampling takes 
much longer, the benefit is that our model gets multiple chances to correct the nodes. This 
works in tandem with our focus on generating CAD graphs, since the model has multiple 
chances to see how any particular node/primitive fits in with the rest of the sketch, our 
model is better able to exactly pinpoint the semantics of primitives. 

4.3 Failure Modes 

We identified two primary failure modes in our model. The first failure mode is where the 
model produces no discernible shape. This typically occurs when the model fails to interpret 
the relationships between primitives within a sketch and is unable to effectively denoise it. 
A lesser offshoot of this issue is that the model will often not terminate arcs and lines in 
a cohesive manner resulting in gaps and deformities. The second common failure involves 
generating constraints that are frequently unsatisfiable or, if satisfiable, fail to accurately 
represent the intended relationships between primitives. When an external constraint solver, 
such as Onshape’s, attempts to enforce these constraints, the resulting sketch structure is 
often compromised. Although we were able to improve primitive generation, constraint 
generation performance is still poor. Similar sentiments were voiced by Para et al. and 
Seff et al. in their respective works SketchGen and Vitruvion, where they found generated 
constraints often did not improve the fidelity of sketches and instead even reduced the fidelity 
of sketches when a constraint solver attempted to enforce the constraints [3, 10]. We provide 
visualizations of each failure case in Figure A.3. 
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SketchGraphs dataset Diffusion Vitruvion 

Figure 4.1: Random examples from the SketchGraphs dataset (left), random samples from 
our unconditional diffusion model (center), and random samples from Vitruvion (right). 
Although Vitruvion generates higher precision CAD sketches, the generated samples are not 
very diverse, indicating mode collapse where the model fixated on generating very specific 
types of sketches. Our diffusion model generates more diverse samples, but in exchange does 
not have great precision in the generations. This behavior is reflected in the precision and 
recall scores, where Vitruvion got a higher precision but lower recall score, and our diffusion 
model got a higher recall but lower precision score. 
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Figure 4.2: Random samples drawn from our diffusion model along with the corresponding 
diffusion trajectories, starting from pure noise (right) to samples (left). Each snapshot was 
taken at regularly spaced intervals, in other words every 150 denoising steps. The bottom 
rows are the model predictions, and the top rows are the graphs being denoised. 
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Chapter 5 

Conclusion and Future Work 

In this work, we present the first application of GNNs and diffusion to the task of CAD sketch 
generation, addressing limitations in existing methods that hinder their robustness and ef-
fectiveness in assisting the iterative CAD design process. To advance the state-of-the-art in 
this domain, we proposed a novel discrete diffusion strategy based on the Gaussian-Softmax 
distribution for simplex-constrained diffusion. This approach accommodates superposition 
and is presented as an alternative to the widely adopted categorical diffusion framework. 
Additionally, we introduce a variance schedule augmentation to ensure a gradual and stable 
noising process for our proposed discrete diffusion framework. 

Empirical evaluation demonstrates that our diffusion-based approach achieves state-of-
the-art (SOA) performance in terms of Negative Log-Likelihood (NLL) and Fréchet Inception 
Distance (FID) metrics. We observe that integrating GNNs with our novel diffusion strategy 
significantly outperforms the previous SOA model, Vitruvion, highlighting the effectiveness 
of our method in generating accurate and expressive CAD sketches. 

A promising direction for future research lies in exploring conditional text-to-CAD sketch 
generation. Given that conditional image diffusion models have demonstrated significant 
improvements in sample quality over unconditional approaches, a similar benefit may be 
realized in the context of CAD sketch generation. Extending this concept would provide users 
with more precise control over generated sketches based on textual input, thereby increasing 
the applicability of CAD generation in the design iteration cycle. Another important avenue 
involves applying our proposed discrete diffusion strategy to domains beyond CAD, such 
as image generation and natural language synthesis, where the ability to handle simplex-
constrained diffusion could offer novel modeling capabilities. 

Finally, integrating 3D operations for volumetric generation represents a natural exten-
sion of this work, moving beyond 2D sketch generation to encompass full three-dimensional 
design capabilities. Such advancements could open pathways for generating comprehensive 
CAD models suitable for complex engineering and manufacturing tasks. 
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Appendix A 

The Gaussian-Softmax distribution (GS), introduced as the Logistic-Normal distribution 
by Aitchison [32], is the distribution of a Gaussian vector that has undergone the softmax 
transformation. The probability density is: 

p(⃗ y|µ⃗, σ 2) = D− 1
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and the derivation of the density is provided in A.0.2. 

A.0.1 Derivation of Cumulative Forward Transition 

A simple derivation for the cumulative transition is: 
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Merging terms accumulates the a terms: 

= softmax 
 √ 

at+2at+1 log (x⃗t) + 
 

1 − at+2at+1ϵ⃗ 
 

therefore iteratively applying the forward transition will simply accumulate the variance 
schedule terms. 

A.0.2 Derivation of Gaussian Softmax Density 

Our strategy is to use the change of variables formula: 
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where h⃗(y⃗) is some invertible function and Det(J (⃗h(y⃗)) is the determinant of the jacobian. 
More specifically, 

softmax{y⃗} = softmax{y⃗ − 1⃗ · yD} 

holds due to the shift invariance of softmax, thus our strategy is to first find the density of 
y⃗′ = [y1 − yD, y2 − yD, ..., 0], as this “centered” form turns the softmax into an invertible 
function h⃗(⃗ y′ ) = softmax{⃗ y′ } where the inverse is h⃗−1(x⃗) = log(x⃗/xD). The derivation is 
as follows for y⃗ ∼ N (⃗ µ, σ⃗2I), additionally for brevity we aggregate all factors into a single 
variable C: 
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Reduce yD terms: 
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The integrand is a Gaussian density in terms of yD: 
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We can simplify this further using the fact that shifting the mean by any constant 
scalar does not affect the density due to the shift invariance of the softmax operation i.e., 
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p(y⃗|u⃗, σ2) = p(y⃗|u⃗ + c⃗1, σ2), thus if we use c = −µD the density becomes: 
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Now that we have the density of y⃗′ we can use a straightforward application of the 
change of variables formula, with the known result that the determinant of the Jacobian of 
the softmax is (

D 
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−1 [37, 38] to obtain: 
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A.0.3 Derivation of Posterior for Guassian-Softmax 

For the reverse process we sample from the posterior distribution p(x⃗t−1|x⃗t, ⃗x0), using the 
same setup as in DDPM [23]: 
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Focusing on the first exponential terms with simplified notation where zi = log xt,i 
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Similarly for the second exponential term: 
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The terms in bold correspond exactly with the first exponential term, and imply the same 
posterior mean and variance, further more the remaining terms are proportional to: 
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observe that: 
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Since all the terms agree on the same posterior mean and variance, and furthermore the 
posterior density has the same form as the Gaussian-Softmax distribution, we can conclude 
that p(x⃗t−1|x⃗t, ⃗x0) = p(x⃗t−1|µ⃗t−1, σ2

t−1I) 

A.0.4 Derivation of Variance Schedule Augmentation 

As shown in Figure 3.6, we need to augment our chosen variance schedule to ensure that 
the class labels are gradually noised. Taking inspiration from Categorical diffusion, our 
desideratum is to smoothly noise the class label such that the argmax of xt follows the 
distribution C(btx0 + 1 

D
(1− bt)1) where C is the categorical distribution and b0, b1, . . . , bT is a 

variance schedule of our choosing. Unfortunately there is no closed form formula to determine 
the argmax of a Gaussian vector, so we instead approximate a Gaussian vector with a Gumbel 
vector. A useful property of the Gumbel distribution is that it can be used to reparameterize 
the Categorical distribution where argmax{a log p + g} ∼ C(softmax{a log p}), g ∼ G(0, 1), 
and G is the Gumbel distribution [39]. Then considering the forward process in Gaussian-
Softmax diffusion we can derive: 

argmax{xt} ≈ argmax 

 

softmax 

 √ 
αt log 

 

kx0 + 
1− k 
D 

 

+ 
√ 

1 − αtg 

 

. 

Simplifying the expression inside the argmax: 

= argmax 

 √ 
αt log 

 

kx0 + 
1− k 
D 

1 

 

+ 
√ 

1 − αtg 

 

= argmax 

 
αt 

1 − αt 
log 

 

kx0 + 
1− k 
D 

1 

 

+ g 

 

∼ softmax 

 
αt 

1 − αt 
log 

 

kx0 + 
1− k 
D 

1 
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We aim to satisfy: 

softmax 

 
αt 

1 − αt 
log 

 

kx0 + 
1− k 
D 

1 

 

= btx0 + 
1 − bt 
D 

1 

Taking the logarithm of both sides gives:  
αt 

1 − αt 
log 

 

kx0 + 
1− k 
D 

1 

 

+ c = log 

 

btx0 + 
1 − bt 
D 

1 

 

Assuming without loss of generality that x0 = [1, 0, . . . , 0], we have:  
αt 

1 − αt 

 

log 

 

k + 
1− k 
D 

 

, log 

 
1− k 
D 

 

, . . . 

 

+ c = 

 

log 

 

bt + 
1 − bt 
D 

 

, log 

 
1 − bt 
D 

 

, . . . 

 

Since c is a free parameter, we can set: 

c = 

 

log 

 

bt + 
1 − bt 
D 

 

− 

 
αt 

1 − αt 
log 

 

k + 
1− k 
D 

 

1 

This reduces the equation to:  
αt 

1 − αt 

 

0, log 

 
1− k 

(D − 1)k + 1 

 

, . . . 

 

= 

 

0, log 

 
1 − bt 

(D − 1)bt + 1 

 

, . . . 

 

Thus, we deduce:  
αt 

1 − αt 
= log 

 
1 − bt 

(D − 1)bt + 1 

 

/ log 

 
1− k 

(D − 1)k + 1 

 

Finally, isolating αt yields: 

αt = 
n 2 

n2 + m2 
, where n = log 

 
1 − bt 

(D − 1)bt + 1 

 

, m = log 

 
1− k 

(D − 1)k + 1 

 

. 

A.0.5 Model Architecture 
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(a) Encoder (b) Decoder 

(c) Graph Transformer Layer (d) MultiHead Attention Block 

Figure A.1: Our VAE Architecture is heavily influenced off of Digress by Vignac et al., in 
particular we use the same multihead attention block and transformer layer. 
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Figure A.2: The network architecture of diffusion denoiser network is a slight modification 
off of the DiT architecture introduced by Peebles & Xie, where we simply removed the gate 
scales. 
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(a) Primitive generation has no discernible 
pattern. 

(b) Gaps exist between primitive termina-
tions. 

(c) Large gaps between termination along 
with extraneous primitives. 

(d) Before constraint enforcement. 

(e) After constraint enforcement in On-
shape’s constraint solver. Generated con-
straints damage sketch fidelity. 

Figure A.3: We present the failure cases that we’ve experienced concerning our diffusion 
model. The most common of which are constraint failures and gaps between primitive 
terminations. We believe this to be an artifact of treating primitive parameters as continuous 
values. 
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Table A.1: A table of the most common primitives and a visualization to describe their 
semantics. 

primitive parameters visualization 

point x(x-coordinate), y(y-coordinate) 

line x, y, u, v, a, b 

arc x, y, u, v, r, c, a, b 

circle x, y, u, v, r, c 
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Table A.2: A table of the most common constraints and a visualization to describe their 
semantics. 

constraint description visualization 

coincident 
restricts two points to share the same position 
in space 

horizontal 
either aligns a line to the x-axis or restricts 
two points to have the same y-coordinate 

vertical 
either aligns a line to the y-axis or restricts 
two points to have the same x-coordinate 

parallel aligns two lines to be parallel 
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Table A.3: (Continued) A table of the most common constraints and a visualization to 
describe their semantics. 

constraint description visualization 

perpendicular aligns two lines to be orthogonal 

midpoint 
restricts a point to be the midpoint of an arc 
or line, or restricts a point to the center of a 
circle 

equal 
restricts two primitives to have the same pa-
rameters 

tangent 
restricts a line to be tangent to a circle/arc or 
two curves to be tangent to one another 
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Table A.4: A table of the primitive reparameterizations we employ and a visualization to 
describe their semantics. For arcs κ is the curvature of the osculating circle, negating κ 
reflects the arc center point across the line formed by the endpoints. 

primitive parameters visualization 

point x, y 

line x1, y1, x2, y2 

arc x1, y1, x2, y2, κ 

circle x, y, r 
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