
SKETCHGNN: GENERATING CAD SKETCHES AS GRAPHS

Sathvik Reddy Chereddy

A THESIS

Presented to the Faculty of Miami University in partial
fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science & Software Engineering

The Graduate School
Miami University

Oxford, Ohio

2025

Dr. John Femiani, Advisor
Dr. Karen Davis, Reader
Dr. Khodakhast Bibak, Reader

©

Sathvik Reddy Chereddy

2025

ABSTRACT

Computer-aided design (CAD) is widely used for 3D modeling in many technical fields, yet
the creation of 2D sketches remains a manual step in typical CAD modeling workflows.
Automatically generating 2D sketches can help users in CAD modeling by reducing their
workload and by streamlining the design process. While sketches inherently possess a graph
structure, with geometric primitives as nodes and constraints as edges, the application of
graph neural networks (GNNs) to this domain remains relatively unexplored. To address this
gap, we introduce SketchGNN, a graph diffusion model designed to generate CAD sketches
using a joint continuous-discrete diffusion process. Our approach includes a novel discrete
diffusion technique, wherein Gaussian-perturbed logits are projected onto the probability
simplex via a softmax transformation. This enables our model to express uncertainty in
the discrete diffusion process unlike traditional methods. We demonstrate that SketchGNN
achieves state-of-the-art performance, reducing the Fréchet Inception Distance (FID) from
16.04 to 7.80 and the negative log-likelihood (NLL) from 84.8 to 81.33.

iii

Table of Contents

List of Tables vi

List of Figures vii

Dedication x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Background & Related Work 3
2.1 Computer-Aided Design (CAD) . 3

2.1.1 Neural Networks . 5
2.1.2 Variational Auto Encoders . 6
2.1.3 Diffusion Models . 7

2.2 Related Work . 10

3 Methodology 13
3.1 Dataset . 13
3.2 VAE for CAD Graph Generation . 15

3.2.1 Training Procedure . 16
3.2.2 VAE Inference Sampler . 17

3.3 Diffusion Model for CAD Graph Generation 18
3.3.1 Forward Process . 19
3.3.2 Training Procedure . 19
3.3.3 Inference Procedure . 20

4 Results 24
4.1 Baselines . 24

4.1.1 Negative Log-Likelihood . 24
4.1.2 Sample Quality . 25
4.1.3 Qualitative Results . 25

4.2 Remarks . 26
4.3 Failure Modes . 26

iv

5 Conclusion and Future Work 29

A 30
A.0.1 Derivation of Cumulative Forward Transition 30
A.0.2 Derivation of Gaussian Softmax Density 31
A.0.3 Derivation of Posterior for Guassian-Softmax 33
A.0.4 Derivation of Variance Schedule Augmentation 36
A.0.5 Model Architecture . 37

References 45

v

List of Tables

3.1 Here we present the frequency of each primitive type and constraint type in
the SketchGraphs dataset on the left and we present statistics on the filtered
dataset on the right. Splines and Ellipses make up a negligible portion of
the dataset. We also note that the frequencies of the various primitive and
constraint types are roughly preserved in the filtered dataset. 15

4.1 The NLL for each model is reported in bits, where a lower NLL is better.
For our VAE, we provide only sketch-level statistics as the ELBO must be
calculated jointly over latents, nodes, and edges. For SketchGraphs, since
primitive parameters are not predicted, there is no corresponding NLL for
primitives. Notably, our diffusion model achieved SOA NLL per primitive
and per sketch. 25

4.2 The FID, precision, and recall are presented for unconditional primitive gen-
eration. A lower FID is better, a higher precision is better, and a higher recall
is better. We note that our diffusion model has achieved SOA FID. 25

A.1 A table of the most common primitives and a visualization to describe their
semantics. 41

A.2 A table of the most common constraints and a visualization to describe their
semantics. 42

A.3 (Continued) A table of the most common constraints and a visualization to
describe their semantics. 43

A.4 A table of the primitive reparameterizations we employ and a visualization to
describe their semantics. For arcs κ is the curvature of the osculating circle,
negating κ reflects the arc center point across the line formed by the endpoints. 44

vi

List of Figures

2.1 A 2D rectangle is extruded into a 3D rectangular prism on the left and a
curtain is created from 2 splines by using them as cross sections on the right,
created by Autodesk Help. Copyright ©Autodesk, Inc. CC BY-NC-SA 3.0 . 3

2.2 A rendering of a CAD sketch where every primitive is assigned a unique color
and primitives tagged as construction aids are dotted on the left. The corre-
sponding graph representation is provided on the right where cyan represents
coincidence, red a midpoint constraint, and purple a parallel constraint. Con-
struction aids are omitted from the graph for clarity and readability. 4

2.3 A topographical visualization of a 4 layer feed forward network, where ev-
ery node is a neuron and the weights are represented by edges. The arrows
designate the flow of information, typically deeper layers encode higher level
information. 5

2.4 The encoder takes in an image and predicts the mean µE and the standard
deviation σE of a Gaussian distribution. The latent is sampled from the
Gaussian distribution via the reparameterization trick z = µE(x) + σE(x) ⊙ ϵ
where ϵ ∼ N (0, I). The decoder takes the perturbed latent and attempts to
reconstruct the original image. 7

2.5 Noise is iteratively added to the data until it is indistinguishable from pure
noise according to the forward distribution q(xt|xt−1). The reverse distribu-
tion p(xt−1|xt) gradually removes noise, and is iteratively applied to transform
pure noise into novel data. 8

2.6 The green curve plots the cosine variance schedule at = cos(πt
2T) proposed

by Nichol & Dhariwal over T = 1000 steps. This particular schedule is very
popular since it ensures information is not destroyed unnecessarily early in the
forward process. We can recover the non-cumulative variance via at = at/at−1 9

3.1 We plot the proportion of sketches in the SketchGraphs dataset with the
number of primitives they contain. The histogram indicates that OnShape
users tend to create and use CAD sketches with less than 16 primitives. . . . 14

3.2 The majority of the SketchGraphs dataset is comprised of very simple sketches
like these, so we exclude such sketches to ensure our model will learn to
generate more useful and diverse CAD sketches. 14

vii

https://creativecommons.org/licenses/by-nc-sa/3.0/

3.3 Node features on left and Edge features on right. Definitions of parameters
is provided in A.4. All parameters inconsistent with the primitive type are
zeroed out. Subnode A and B specify whether a constraint applies to the
start, end, or center point of the relevant primitives, none means the whole
primitive is affected by the constraint. 16

3.4 Training pipeline for VAE model. The encoder produces a mean µ and logvar
log σ2 , then the latent z is sampled via z = µ + σ ⊙ ϵ where ϵ ∼ N (0, I). The
latent vector is fed into the decoder to reproduce the encoded graph. 17

3.5 Inference pipeline for VAE model. The latent sampler network generates a
latent vector that can be then fed into the decoder to decode into a CAD graph. 18

3.6 The orange curves are the raw and augmented variance schedules, and the blue
curves are the respective probabilities that the argmax does not transition to
another index at that timestep. The augmented variance schedule provides a
more gradual discrete forward process than the raw variance schedule. 20

3.7 Training pipeline for Diffusion model. A graph is noised to a random timestep
and then passed into the diffusion model. The diffusion model is trained to
denoise the graph. 22

3.8 Inference pipeline for Diffusion model. The model iteratively and gradually
interpolates between the noisy variables and its predictions over T steps. . . 23

4.1 Random examples from the SketchGraphs dataset (left), random samples from
our unconditional diffusion model (center), and random samples from Vitru-
vion (right). Although Vitruvion generates higher precision CAD sketches,
the generated samples are not very diverse, indicating mode collapse where
the model fixated on generating very specific types of sketches. Our diffusion
model generates more diverse samples, but in exchange does not have great
precision in the generations. This behavior is reflected in the precision and
recall scores, where Vitruvion got a higher precision but lower recall score,
and our diffusion model got a higher recall but lower precision score. 27

4.2 Random samples drawn from our diffusion model along with the corresponding
diffusion trajectories, starting from pure noise (right) to samples (left). Each
snapshot was taken at regularly spaced intervals, in other words every 150
denoising steps. The bottom rows are the model predictions, and the top
rows are the graphs being denoised. 28

A.1 Our VAE Architecture is heavily influenced off of Digress by Vignac et al., in
particular we use the same multihead attention block and transformer layer. 38

A.2 The network architecture of diffusion denoiser network is a slight modification
off of the DiT architecture introduced by Peebles & Xie, where we simply
removed the gate scales. 39

viii

A.3 We present the failure cases that we’ve experienced concerning our diffusion
model. The most common of which are constraint failures and gaps between
primitive terminations. We believe this to be an artifact of treating primitive
parameters as continuous values. 40

ix

Dedication

I dedicate this thesis to my family: my mother Madhuri Latha Chereddy, my father Bhaskara
Reddy Chereddy, and my sister Sanvika Reddy Chereddy. I would not have been able to
come as far as I have in my academic endeavors without their unconditional and unwavering
support. This thesis is the culmination of not just mine, but equally their effort as well. I
wish my sister success on her academic career, may she go even farther than I could hope
to. I want to thank my mother who truly has been my biggest cheerleader. I am indebted
to her for multiple lifetimes over, and I truly can’t thank her enough. Lastly, I want to pay
homage to my dad who has always been the best coach to me, I only wish I’ll be able to
repay even a tenth of all he’s given to me.

I would like to express my heartfelt gratitude to my advisor, Dr. John Femiani, for taking
me under his wing. I also wish to thank my committee members: Dr. Karen Davis, whose
database classes remain some of my most vivid memories at Miami; and Dr. Khodkhast
Bibak, whose disinterest in movies is only matched by his contagious enthusiasm for cryp-
tography. I am also grateful to Dr. Zulal Sevkli for her zeal in guiding my personal C++
learning and projects, as well as her support of my master’s application. I thank Dr. Asaad
Althoubi for carrying me through Systems 2, and for his support of my master’s application.

I am also indebted to Dr. Daniela Inclezan, who advised me through both my bachelor’s
and master’s degrees, and whose classes were always a joy (especially logic programming). I
also want to thank Dr. Eric Bachmann for encouraging me to shoot for the moon in game
engine design with ocean simulations and bone animations. I’d like to thank Dr. Kurt
Johnson for teaching me web services, and for his support of my master’s application. I
am grateful to Professor Norm Krumpe for his encouragement of my emulator project and
whose classes were always incredibly fun (especially graphics). I would also like to thank
Dr. Xianglong Feng whose machine learning course was incredibly helpful in this thesis,
along with Dr. Scott Campbell whose courses on APIs/networking played a large part in
completing this thesis.

I’d also like to thank Dr. Robert Davis for helping me finally understand probability.
Similarly, I’d like to thank Dr. Benjamin Sutcliffe whose Russian folklore class was delightful
and plain fun. I’m grateful to Dr. Scott Shreve, Dr. Sara Austin, Dr. Anthony Rapp, and
Dr. Alim Sukhtayev for their engaging classes despite the COVID lockdown. Lastly, I wish
to thank Dr. Ann Wainscott for her fantastic comparative politics class.

x

Chapter 1

Introduction

Computer-Aided Design (CAD) is the use of software tools for drafting and editing both 3D
models and blueprint documents, and it has become the standard for design in many fields
of engineering such as: architecture, civil engineering, mechatronics, and manufacturing [1,
2, 3]. A number of CAD tools have gained popularity among designers, engineers, and users
respectively, but in recent years a few tools such as AutoCAD, SolidWorks, and Onshape
have emerged as the most widely used CAD software [4, 5, 6]. These tools have significantly
enhanced the precision of designs, while also improving the flexibility and speed of the design
process. However, despite these benefits, users are still required to meticulously specify
and fine-tune design/sketch details to achieve optimal results [2, 7]. This issue has been
recognized by others, and several solutions have been proposed to alleviate the issue, with
some solutions based on rule-based inference [8, 7] and other solutions based on generative
neural networks [3, 2, 9]. Neural network (NN) based solutions have recently outpaced rule-
based inference solutions and have become the state-of-the-art (SOA) in terms of performance
[2, 3], but are still limited to low fidelity sketches [3]. This work builds off of previous works,
particularly Vitruvion [10] and SketchGen [3] by utilizing graph neural networks (GNNs) to
generate graph representations of CAD sketches for more diverse and higher fidelity CAD
designs.

1.1 Motivation

The primary functionality of CAD software suites is 3D modeling. The 3D models that users
create are used for a variety of purposes such as machining/manufacturing parts, designing
video game assets, and so forth [1, 11]. CAD tools are particularly popular in engineer-
ing disciplines due to their simplicity, precision, and interoperability with many fabrication
procedures [3]. The common workflow in CAD modeling is to design 2D sketches that un-
dergo operations such as extrusion, revolution, and lofting to create complex 3D geometry.
2D CAD sketches are blueprints composed of a set of geometric primitives (i.e., lines, arcs,
points) and a set of geometric constraints (i.e., coincidence, orthogonality, parallelity) on
those primitives.

Although modern CAD software has sped up the design iteration cycle for modeling, it is
still required of users to tediously and meticulously work with low level details when designing
sketches, which drastically slows down the design iteration by forcing users to dedicate more
time to drudgery. Generating CAD sketches can assist users by taking care of tedious design
tasks, freeing up their time and mental energy to focus on higher-level constructs. By

1

automating menial design tasks, users can have their workload reduced/streamlined thus
assisting their productivity and efficiency. Moreover, user creativity may be boosted by
suggesting novel variations of CAD designs; being exposed to various generated CAD designs
may inspire users to explore new design possibilities or to draft more diverse ideas. Lastly,
multiple CAD designs can be generated simultaneously based on user specifications, allowing
users to quickly test several prototypes. This functionality can be particularly useful for
engineers and designers who need to iterate through different design options and test their
feasibility. By enabling users to explore and test different design options more quickly, CAD
sketch generation can accelerate the design process, yielding faster time-to-market for new
products and structures.

Other researchers have also identified the design iteration cycle of CAD sketches as a
significant bottleneck in productivity, and have proposed several solutions to alleviate this
issue which can be bifurcated to rule-based and neural network (NN) based solutions. While
rule-based solutions have been proposed, these methods have limitations due to the difficulty
of explicitly coding all possible rules for the sheer number of potential user designs. Addi-
tionally, these approaches may not generalize well to new design scenarios or accommodate
the diversity of design inputs [2]. In contrast, NN solutions have shown promise by capturing
relationships between different components of a design, and generating novel designs that
satisfy specified constraints far better than existing rule-based methods. Furthermore, using
NNs removes the need to explicitly define rules, allowing for more flexible and adaptable
solutions that can generalize to different design scenarios. As a result, NNs are now the SOA
in the domain of CAD sketch generation.

However, current NN solutions are not robust, accurate, nor reliable enough to facilitate
all the aforementioned benefits to CAD design. Currently, generative CAD NNs require an
external constraint solver to fix the generated sketch [2], and are limited to simple sketches
[3, 10]. Previous research on NNs has focused on utilizing Transformer [2, 3] and Recurrent
neural network (RNN) [9] architectures to generate CAD sketches as token sequences. How-
ever, to the author’s knowledge, no previous research has explored the use of Graph Neural
Networks (GNNs) for CAD generation. GNNs have demonstrated an ability to generate
novel, diverse, and realistic graphs in a multitude of domains, for instance graph diffusion
models are the SOA in molecule generation [12, 13]. This work explores a novel application
of GNNs in the domain of CAD sketch generation, motivated by their success in other graph
generation tasks.

1.2 Contributions

This work provides, to the author’s knowledge, the following contributions:

1. The first application of GNNs to the task of CAD sketch generation.

2. The first application of diffusion to the task of CAD sketch generation.

3. A novel discrete diffusion strategy employing the Gaussian-Softmax distribution.

2

Chapter 2

Background & Related Work

CAD originated in the 1960s from the aircraft industry, and later cemented itself in various
engineering disciplines by the 1980s [1]. Thanks to the increased precision, flexibility, and
speed offered by CAD tools such as AutoCAD and Solidworks, CAD design has become
the standard for modern manufacturing and engineering [2, 1]. Similar to CAD, modern
NNs originated in the 1960s from the seminal work of Rosenblatt, and the field of Machine
Learning (ML) was later established by Kohonen in the 1980s [14, 15, 16]. NNs have demon-
strated an ability to understand and predict complex phenomenae, and in recent years have
revolutionized domains such as image synthesis and natural language processing.

2.1 Computer-Aided Design (CAD)

The primary purpose of CAD tools is the design of 3D models, however the typical workflow
for users in modeling any complex 3D geometry is by first designing 2D CAD sketches and
then performing operations such as extrusion, lofting, and revolution to extend the 2D planar
sketches into 3D volumes. The volumes are then aggregated by the user to form the final
model [17]. Extrusion refers to extending a 2D shape into a prism, revolution rotates a 2D
shape around a specified axis to trace out a volume, and the loft operation creates a 3D
shape by using specified 2D shapes as cross sections. A visualization of the extrude and loft
operations are provided in Figure 2.1. As a result, the majority of users’ effort and time in
CAD modelling is dedicated to the construction of 2D sketches.

Figure 2.1: A 2D rectangle is extruded into a 3D rectangular prism on the left and a curtain
is created from 2 splines by using them as cross sections on the right, created by Autodesk
Help. Copyright ©Autodesk, Inc. CC BY-NC-SA 3.0

3

https://creativecommons.org/licenses/by-nc-sa/3.0/

CAD sketches are simply a collection of geometric primitives and corresponding geometric
constraints that express relationships between those primitives. Thus sketches have a nat-
ural representation as graphs where the nodes are primitives and the edges are constraints.
Figure 2.2 provides a simple sketch and its corresponding graph representation. For brevity,
we denote the graph representation of CAD sketches as CAD graphs. Primitives in CAD
sketches are often over parameterized due to the ease of performing certain 2D transforma-
tions (e.g., rotation, translation) with certain parameters versus others. Table A.1 lists the
parameters of each primitive type and their corresponding semantics as used in Onshape.
Additionally primitives can be tagged as “constructible” which turns them into construction
aids that are not rendered in the final model; judicious use of construction aids along with
constraints allows users to precisely codify design intent.

Constraints are user specified relationships between primitives that encode geometric
requirements in the final 3D model. Such relationships simplify and streamline the design
iteration cycle by allowing users to edit individual primitives while preserving geometric
requirements. Constraints can be specified on primitives as a whole or individual sub-
primitives, such constraints are referred to as sub-primitive constraints. Sub-primitives are
simply the start, center, and end points of arcs and lines. Tables A.2 & A.3 list the constraints
relevant to this work and their geometric semantics as provided in Onshape. Design intent
is primarily conveyed through the constraints that users specify, and as a result require a
good deal of attention from users.

Figure 2.2: A rendering of a CAD sketch where every primitive is assigned a unique color
and primitives tagged as construction aids are dotted on the left. The corresponding graph
representation is provided on the right where cyan represents coincidence, red a midpoint
constraint, and purple a parallel constraint. Construction aids are omitted from the graph
for clarity and readability.

4

The complexity and expressivity of CAD sketches arises from the interaction of prim-
itives and constraints. Often times, as users continue to iterate and amend their designs,
constraint conflicts arise where two constraints are mutually incompatible resulting in unsat-
isfied constraints. Furthermore, due to the sheer expressivity that standard CAD software
provide, previously specified geometry may interact in unanticipated ways with newly intro-
duced geometry, as constraints may propagate to other parts of the design in unexpected
ways. To alleviate this in some fashion, users typically construct CAD sketches by adding
foundational primitives first and building off of them to finish the sketch. As a result, the
ordering of primitives encodes very useful semantic information, thus even though all per-
mutations of CAD graphs are equivalent we focus solely on generating the canonical human
ordering inline with much of the prior art [9, 3, 10].

2.1.1 Neural Networks

Neural networks are essentially parameterized functions whose parameters are learned through
some form of training, almost always being gradient descent based optimization. The func-
tionality of NNs is derived from their ability to approximate any continuous function to any
arbitrary degree. This is known as the Universal Approximation Theorem and was proven by
Hornik in 1989 [18]. The most basic neural network architecture is known as the Multilayer
Perceptron (MLP) or Feed Forward network (FFN), originally introduced by Rosenblatt as
an abstraction of biological neural networks [16]. An artificial neuron is just a simple unit
of computation that takes a weighted sum of the neurons in the preceding layer with some
bias, and uses that as input for a non linear activation function, where the output of the
neuron is the result of the activation function. Information, also referred to as signals in
ML nomenclature, is passed from the input layer through a series of intermediate layers,
also referred to as hidden layers, and then lastly through an output layer [14]. Figure 2.3
demonstrates a simple FFN composed of 4 layers.

Figure 2.3: A topographical visualization of a 4 layer feed forward network, where every
node is a neuron and the weights are represented by edges. The arrows designate the flow
of information, typically deeper layers encode higher level information.

5

We can compactly represent the input of the ith layer as the vector x⃗i−1 where each layer
transforms the input according to x⃗i = σ(Wix⃗i−1 + b⃗i) where σ is an element-wise nonlinear
function, W is a matrix whose entries are parameters/weights to be learned, and ⃗b is a bias
term to be learned. Training a NN is simply determining the optimal values of the weights
and biases in each layer for a particular task. The optimal parameters are determined in
relation to a loss function, which quantifies the error between the network output and true
output. A lower loss means that the network is more apt at producing the correct outputs,
and a higher loss means that the network is less adept at producing the correct outputs.
The gradient of the loss determines which direction the parameters should be updated to
reduce the loss [19]. During training, the NN is fed a large dataset of input data and the
loss is calculated, in practice the loss is often not computed using the entire dataset but
instead with smaller chunks of the dataset, and gradient descent is applied to reduce the
loss. This process is repeated iteratively until the loss is minimized, and the NN is said
to have converged [19]. Once the NN is trained, it can be used to make predictions on
new data. The most common loss functions are Mean Squared Error (MSE) for regression
tasks (continuous variables) which is computed as LMSE = || ⃗ XTRUE − ⃗ XPRED||2 and Cross
Entropy (CE) for classification tasks (discrete variables/one-hot vectors) which is computed
as LCE = − ⃗ XTRUE · log ⃗ XPRED.

2.1.2 Variational Auto Encoders

Variational Autoencoders, introduced by Kingma et al. [20], are generative models that learn
a stochastic bidirectional mapping between data space and, typically, a lower dimensional
latent space. They consist of an encoder network that learns the distribution q(z|x) which
stochastically maps data x to a latent z such that z ∼ pprior(z), and a decoder network
that learns p(x|z) which inversely maps latent z to data x. In simpler terms the encoder
stochastically compresses the information of a datapoint into a latent vector and the decoder
decompresses the stochastic latent vector into the original input.

It is standard practice in machine learning to make the following assumptions:

q(z|x) = N (µE (x) , σE (x)) ,

p(z) = N (0, I) ,

p(x|z) = N (µD (z) , σuserI)

where N represents the Gaussian distribution [21, 20]. The outputs of the encoder are the
mean µE (x) and standard deviation σE (x) of a latent Gaussian distribution, the output
of the decoder is solely µD (z) which is the reconstruction, and σuser is an arbitrary user-
specified constant often set to 1. Note that σuser is used solely in log-likelihood computation
and that no noise is actually added to µD (z) for decoding as doing so would diminish the
fidelity of reconstructions [21, 20]. The latent z is sampled using the reparameterization
trick z = µE (x) + σE (x) ⊙ ϵ where ϵ ∼ N (0, I). Figure 2.4 provides a visualization of the
compression and decompression process in a VAE architecture.

6

VAEs are trained to minimize the negative evidence lower bound (ELBO), in other words,
the loss function of the VAE is LVAE = LREC + LKLD. The first term LREC is the reconstruc-
tion loss (e.g., MSE, CE) between the decoder output and the ground truth. The second
term LKLD is the Kullback-Leibler divergence (KLD loss) between the encoded and prior
distribution for the latent. The KLD loss is calculated as LKLD = 1 ·(σ2

E +µ2
E −1−2 log σE).

The reconstruction loss coerces the encoder to capture important high level information in
the latent vector and the decoder to take that high level information and accurately recon-
struct the original graph. The KLD loss applies only to the encoder and coerces the latents
to follow an isotropic Gaussian distribution so new data can be generated by passing in a
random vector into the decoder.

Figure 2.4: The encoder takes in an image and predicts the mean µE and the standard
deviation σE of a Gaussian distribution. The latent is sampled from the Gaussian distribution
via the reparameterization trick z = µE(x) + σE(x) ⊙ ϵ where ϵ ∼ N (0, I). The decoder
takes the perturbed latent and attempts to reconstruct the original image.

2.1.3 Diffusion Models

Diffusion models, first introduced by Sohl-Dickstein et al. in 2015 [22] and later popularized
by Ho et al. in 2020 [23], represent a class of generative models that learn to simulate
the reverse of a gradual noising process. These models are inspired by the principles of
thermodynamics, where a data point is slowly corrupted by noise, and the model learns to
revert it back to its original state. A visualization of the process is provided in Figure 2.5.

Continuous Diffusion

The forward noising process is a Markov chain that gradually adds Gaussian noise to a data
point over a series of T timesteps. For a given clean data point x0, the process produces a
sequence of increasingly noisy versions x1, x2, . . . , xT . This is achieved through a transition

7

distribution defined as

q(xt|xt−1) = N (xt;
√
αtxt−1, (1 − αt) I) ⇐⇒ xt =

√
αtxt−1 +


(1 − αt)ϵ (2.1)

here ϵ ∼ N (0, I) and α0, α1, . . . , αT is a noise schedule that controls the amount of noise
added at each timestep.

A noise schedule is a sequence of monotonically decreasing scalar values satisfying α0 = 1
and αT = 0. Figure 2.6 illustrates the widely adapted cosine variance schedule introduced
by Nichol & Dhariwal [24], that we also adopt in this work.

The goal of the forward process is to gradually obscure the original data in a controlled
manner, reaching a point where xT is essentially pure noise. Conveniently, instead of itera-
tively noising a datapoint we can in one shot sample xt for any arbitrary t from the original
datapoint via the cumulative transition distribution

q(xt| x0) = N

xt;
√
αtx0, (1 − αt) I


⇐⇒ xt =

√
αtx0 +


(1 − αt)ϵ (2.2)

where αt =
t

i=1 αi.
The reverse process at a high level is simply gradually denoising a noisy sample by

interpolating it with the clean datapoint. It is given by the distribution

p (xt−1|xt) = N



xt−1;
√
at (1 − at−1) xt +

√
at−1 (1 − at) x0

1 − at
,
(1 − at) (1 − at−1)

1 − at
I



(2.3)

xt−1 =
√
at (1 − at−1) xt +

√
at−1 (1 − at) x0

1 − at
+


(1 − at) (1 − at−1)

1 − at
ϵ (2.4)

where ϵ ∼ N (0, I). Therefore, the reverse process can be learned by training a network to
predict the clean data point given a noisy sample. More explicitly, the denoiser network
learns the function x0 (xt, t). New data can be generated by passing in pure noise into the
network and iteratively denoising it by plugging the input and network prediction into the
reverse distribution. Accordingly, continuous diffusion models are trained only to reconstruct
the noiseless datapoint given some noisy input, thus MSE loss is almost always used.

Figure 2.5: Noise is iteratively added to the data until it is indistinguishable from pure
noise according to the forward distribution q(xt| xt−1). The reverse distribution p(xt−1| xt)
gradually removes noise, and is iteratively applied to transform pure noise into novel data.

8

Figure 2.6: The green curve plots the cosine variance schedule at = cos(πt
2T) proposed by

Nichol & Dhariwal over T = 1000 steps. This particular schedule is very popular since it
ensures information is not destroyed unnecessarily early in the forward process. We can
recover the non-cumulative variance via at = at/at−1

Discrete Diffusion

Analogous to continuous diffusion, a discrete diffusion framework utilizing the categorical
distribution was introduced by Hoogeboom et al. [25] and later extended by Austin et
al. [26]. The forward noising process for discrete diffusion is a discrete Markov chain that
jumbles the state of a onehot vector over a series of T timesteps. This is achieved through a
transition defined as q(xt|xt−1) = C(xt; atxt−1 + (1 − at)1/D), here C(x; p) is the categorical
distribution, a0, a1, . . . , aT is a variance schedule, and D is the dimension of x. Again, akin
to continuous diffusion, there is a cumulative transition distribution and reverse transition
distribution that are both Categorical distributions, however, as these details are not directly
relevant to this work, we do not elaborate further. Initial experiments using this discrete
noising scheme yielded poor performance. We attribute this limitation to the categorical
framework’s inability to represent superposition. In this context, superposition refers to a
probability vector representing a combination of multiple states. However, the categorical
distribution inherently produces one-hot vectors at each iteration of both the forward and
reverse processes, collapsing the model’s representation to a single discrete state. As a
result, the model cannot maintain partial confidence across multiple categories. Other prior
art addressed this issue by embedding discrete variables into a continuous space and then
performing continuous diffusion, some used learnable embeddings [27, 28, 29] and others used
nonlearnable embeddings [30, 31]. Instead, we propose a new discrete diffusion strategy that
showed far better performance for generating CAD sketches and allows for superposition,
allowing the model to consider multiple possible primitive types at the same time. Our

9

approach is a simple augmentation of continuous diffusion using the softmax function such
that the entire diffusion process is constrained to the probability simplex. Specifically, the
softmax function is defined as

softmax(x) =
exp (x)

1 · exp (x)

which is simply a mapping to turn unnormalized logits to a probability vector and the
forward noising process is

xt+1 = softmax
 √

at+1 log (xt) +


1 − at+1ϵ


(2.5)

where ϵ ∼ N (0, I). The cumulative transition and reverse process are analogously

xt = softmax
√

at log (x0) +
√

1 − atϵ


(2.6)

xt−1 = softmax

 µt−1 +


(1 − at) (1 − at−1)

1 − at
ϵ

 
(2.7)

µt−1 =
√
at (1 − at−1) log xt +

√
at−1 (1 − at) log x0

1 − at

Intuitively, we perform continuous diffusion in log-space and then project back onto the
simplex via the softmax function. The distribution that describes this transition is the
Logistic Normal distribution [32], however we simply refer to it as the Gaussian-Softmax
distribution. A detailed derivation of the formulae listed above is provided in A.0.1 & A.0.3.
We again prioritize reconstruction and we accordingly employ CE loss. The inference and
training procedures for our proposed discrete diffusion framework are exactly analogous to
the inference and training procedures for continuous diffusion. Note, however, that we have
to initially label smooth x0 to a near one-hot representation to avoid singularities at the
start of the diffusion process. This can be done via x′

0 = kx0 + 1
D

(1 − k) for some k close to
1 and D being the dimension of x0.

2.2 Related Work

The most relevant prior art to this work is Vitruvion, proposed by Seff et al. [10]. Vitruvion
is a generative model for CAD sketches based on the transformer architecture, generating
CAD sketches as sequences of tokens. The transformer architecture, originally introduced
by Vaswani et al. [33] for natural language processing, has demonstrated state-of-the-art
performance by enabling neural networks to focus on specific words or phrases via attention
mechanisms. Seff et al. chose to represent CAD sketches as token sequences to address the
heterogeneous nature of CAD sketches, where different primitives require varying numbers

10

of parameters. To further manage this heterogeneity, their work was limited to a subset of
primitive types namely: circles, arcs, lines, and points, and a select group of constraints:
coincident, horizontal, vertical, parallel, perpendicular, and midpoint. Seff et al. converted
CAD sketch graphs from the SketchGraphs dataset into token sequences by embedding each
primitive independently. This embedding was achieved by summing the class embeddings of
the primitive type with the embeddings of the 6-bit uniformly quantized parameter values.
A similar embedding process was applied to constraints, where sub-primitive references and
constraint types were independently embedded and then summed. Their model was trained
using CE loss to predict both the type and quantized parameter values.

Another closely related work is SketchGen, proposed by Para et al. [3]. Like Seff et
al., Para et al. introduced SketchGen as a generative model for CAD sketches based on
the transformer architecture. However, unlike Vitruvion, SketchGen employed a custom
grammar to represent CAD sketches as token sequences. Despite this difference, they also
restricted their scope to the same primitive types: circles, arcs, lines, and points, as well as
the same constraints: coincident, horizontal, vertical, parallel, perpendicular, and midpoint.
Para et al. generated separate token sequences for primitives and constraints by applying a
custom grammar parser to the list of entities. Their neural network was trained using CE
loss, similar to the approach used by Seff et al.

SketchGraphs by Seff et al. [9] is another related work that introduced the dataset that
all subsequent research has used. They provide a baseline model utilizing a Recurrent Neural
Network (RNN) architecture. RNNs are not the state of the art in CAD sketch generation,
and their follow up work Vitruvion has switched to the transformer architecture as well.
Additionally, the baseline model does not predict the parameter values for primitives and
instead relies on an off the shelf CAD constraint solver to fill in the parameter values.

Han et al. [30] also proposed a discrete diffusion procedure based on the Gaussian-
Softmax distribution, however their procedure differs from ours in 2 major aspects. The first
is that they use a heuristic reverse transition which they define to be

xt−1 = softmax
 √

at−1 log x0 + K


1 − at−1ϵ


This is in contrast to our work for which we derived the reverse transition from the posterior
distribution of the discrete forward process, justifying our approach from a probabilistic
perspective. Another limitation of their heuristic reverse process is that too much information
is destroyed since the cumulative transition is used at each step in the reverse process, which
they address by introducing an almost one-hot projection scheme after each reverse step, but
as a result the benefits of superposition were greatly diminished. The second aspect that
differentiates our work is that we also propose a variance modification formula in Equation
3.1, that ensures a gradual forward process. In our early experiments we found weighting the
noise added by an arbitrary constant K to abruptly destroy information during the forward
process.

Simonovsky & Komodakis [13] introduced GraphVAE, a generative model for molecule
synthesis that employs a variational autoencoder architecture. In GraphVAE, a graph is

11

represented by an adjacency matrix, an edge attribute tensor, and a node attribute tensor.
The adjacency matrix encodes the connections between nodes. The edge attribute tensor
contains additional information about each edge, such as the type of chemical bond repre-
sented using a one-hot vector. Similarly, the node attribute tensor includes further details
about each node, such as the atomic element, also represented with a one-hot vector. Graph-
VAE uses a feedforward network with edge-conditioned graph convolutions for the encoder.
The decoder is a simple multi-layer perceptron that takes the latent vector as input and
outputs the predicted adjacency matrix, predicted edge attribute tensor, and predicted node
attribute tensor. GraphVAE was trained using CE loss and achieved decent results on the
task of molecule synthesis.

Lastly, In their work, Vignac et al. [12] introduced Digress, a generative graph diffusion
model for molecule synthesis that outperformed other models in its class. Like GraphVAE,
Digress employs node and edge attribute tensors, where the attributes of each node and edge
are represented by one-hot vectors. Unlike GraphVAE, however, Digress does not utilize an
explicit adjacency matrix; instead, it uses the edge attribute tensor directly. Digress uses the
categorical discrete diffusion framework proposed by Hoogeboom et al. [25]. The model was
trained using CE loss and achieved state-of-the-art results on the task of molecule synthesis.

12

Chapter 3

Methodology

In this work, we begin by processing the SketchGraphs dataset in 2 stages. For the first stage
we filter out simple CAD sketches, for which automation provides limited benefits, and large
CAD sketches due to time and resource constraints. In the second stage we simplify primitive
parameterizations, to avoid redundancy, and remove duplicate sketches from the dataset to
avoid biasing our models. Initially, we explored a VAE as a generative approach for sketch
synthesis, however, we found that our VAE produced suboptimal generations. Consequently,
we pivoted to a diffusion-based generative model, which demonstrated superior performance
in generating realistic and coherent sketches. Despite this shift, for the sake of completeness
and to provide a comprehensive account of our research process, we include the methodology
and findings from our VAE experiments. Ultimately, we train both of our models on the
processed SketchGraphs dataset.

3.1 Dataset

We use the CAD sketch dataset introduced in SketchGraphs by Seff et al. [9]. The dataset
is comprised of 15 million human-created CAD sketches scraped from Onshape, a cloud
centric CAD platform. The majority of sketches in the dataset have less than 8 primitives
comprising approximately 84% of the dataset, they are very simple box-like shapes and
are almost identical to one another, Figure 3.2 illustrates such simple sketches. Figure 3.1
provides the proportion of sketches in relation to the number of primitives they contain. We
also report, in Table 3.1, statistics on the frequency of each primitive type and constraint
type in the dataset.

In accordance we chose to filter out all sketches with less than 8 primitives as this would
heavily bias our model to generate simple boxes. Additionally due to resource and time
constraints we chose to discard all sketches with more than 16 primitives, and retain only
the most important primitive types namely: Line, Circle, Arc, and Point. Doing so is not
very detrimental, however, since it appears that only a minority 9.98% of CAD sketches are
comprised of more than 16 primitives. After filtering the primitives, we then kept the 8 most
frequent constraints out of the subset namely: Coincident, Horizontal, Vertical, Parallel,
Perpendicular, Tangent, Midpoint, and Equal. Thus even after filtering we keep 6 out of the
8 most frequent constraints in the raw dataset. After filtering we are left with 2.1 million
CAD sketches. Para et al. similarly filter CAD sketches but discarded those with more than
24 primitives, whereas we discard sketches with more than 16 [3].

We also noted that the primitives in the raw dataset are overparameterized, and so we

13

Figure 3.1: We plot the proportion of sketches
in the SketchGraphs dataset with the number
of primitives they contain. The histogram in-
dicates that OnShape users tend to create and
use CAD sketches with less than 16 primitives.

Figure 3.2: The majority of the
SketchGraphs dataset is comprised
of very simple sketches like these, so
we exclude such sketches to ensure
our model will learn to generate more
useful and diverse CAD sketches.

simplified them to avoid redundancy. The reparameterizations are listed in Table A.4. In
addition we noted that the scales of the CAD sketches varied greatly from being only a few
millimeters in dimensions to being as large as several meters, so we perform a normalization
procedure where sketches are rescaled, such that their bounding boxes have a side length
of 2 meters, and shifted to align their center of mass onto the origin. Lastly, since the
SketchGraphs dataset was constructed by retrieving public CAD sketches from the OnShape
cloud platform, several sketches are duplicates of one another. This arises primarily from
users creating sketches by following tutorials, reusing previously created sketches, or using
collaboration tools provided by OnShape to copy sketches from each other. We perform a
deduplication procedure to avoid biasing to such sketches, where we group identical sketches
together and keep only 1 sketch from each group. After the deduplication procedure we are
left with 1.4 million CAD sketches, which is sufficient for this work. Seff et al. perform a
similar normalization and deduplication procedure [10].

Subsequently, the final CAD sketches were converted into graph representations for use
in our models. For a given graph G = (V , E) the nodes are represented as tensors V ∈ Rn×dn

and the edges as tensors E ∈ Rn×n×de , where n is the maximum number of nodes, dn is
the dimension of node features, and de is the dimension of edge features. For our purposes
n = 16, dn = 20, and de = 17. Figure 3.3 shows a visualization of the features for each node
and edge. We split our dataset of 1.4 million CAD sketches into 3 subsets: 90% is used for
training, 5% is used for validation, and 5% is reserved for testing.

14

Primitive and Constraint type
frequencies in raw dataset

Primitive %
Line 68.47
Circle 9.97
Arc 9.45
Point 8.58
Spline 2.57
Ellipse 0.08

Constraint %
Coincident 42.17
Projected 9.71
Distance 6.72
Horizontal 6.45
Mirror 5.54
Vertical 4.78
Parallel 4.37
Length 3.68
Perpendicular 3.24
Tangent 2.94

Primitive and Constraint type
frequencies in filtered dataset

Primitive %
Line 76.64
Circle 7.06
Arc 7.02
Point 9.28

Constraint %
Coincident 49.94
Horizontal 12.19
Vertical 6.93
Parallel 11.80
Perpendicular 7.76
Tangent 5.10
Midpoint 3.27
Equal 3.01

Table 3.1: Here we present the frequency of each primitive type and constraint type in the
SketchGraphs dataset on the left and we present statistics on the filtered dataset on the
right. Splines and Ellipses make up a negligible portion of the dataset. We also note that
the frequencies of the various primitive and constraint types are roughly preserved in the
filtered dataset.

3.2 VAE for CAD Graph Generation

We first trained a Variational Autoencoder (VAE) since it is a well-established architecture
for generative tasks. The encoder and decoder networks incorporate the graph attention
module proposed in DiGress, due to its strong performance in other generative tasks [12].
Figure A.1 illustrates the architectural details of both the encoder and the decoder. The
encoder maps CAD graphs into a latent space, while the decoder reconstructs CAD graphs
from the latent representations. The latent space in our model is R1024 represented as 1024-
dimensional vectors. As is standard, we choose the isotropic Gaussian distribution as our
prior for the latent space. The encoder predicts the mean and log-variance (logvar) of a
multivariate Gaussian distribution, which parameterizes the latent space. Latent vectors
are then sampled from this distribution during both training and inference. These sampled
latents serve as input to the decoder, enabling the generation of CAD graphs. We use
MSE loss for the node parameter values and CE loss for the node type, node constructible,
edge type, and edge subnode types. We choose the prior distribution of the latents to be

15

Figure 3.3: Node features on left and Edge features on right. Definitions of parameters is
provided in A.4. All parameters inconsistent with the primitive type are zeroed out. Subnode
A and B specify whether a constraint applies to the start, end, or center point of the relevant
primitives, none means the whole primitive is affected by the constraint.

a standard Gaussian distribution so the KLD loss coerces the encoder to predict the mean
and logvar to be 0.

3.2.1 Training Procedure

The encoder and decoder networks were jointly trained for 70 epochs with a batch size of
8 × 256 distributed across 8 NVIDIA A30 GPUs. During training, we observed a severe
adversarial relationship between the reconstruction loss and the KLD loss. This conflict
arose because the KLD loss drives the latent space towards a standard Gaussian distribution,
thereby reducing the encoder’s capacity to encode meaningful information into the latent
representations. Consequently, this behavior hindered the reconstruction of CAD graphs
with high fidelity. To mitigate this issue, we applied a scaling factor of 1 × 10−3 to the
KLD loss term to reduce its impact during training, additionally we also scaled the MSE
loss term by a factor of 16. This adjustment improved graph reconstructions by forcing
the model to prioritize reconstruction quality, but as a result we can’t generate novel CAD
graphs by simply feeding a random standard Gaussian vector into the decoder. A diagram
of the training pipeline is provided in Figure 3.4, and pseudocode is provided in Algorithm

16

Figure 3.4: Training pipeline for VAE model. The encoder produces a mean µ and logvar
log σ2 , then the latent z is sampled via z = µ + σ ⊙ ϵ where ϵ ∼ N (0, I). The latent vector
is fed into the decoder to reproduce the encoded graph.

1.

Algorithm 1 VAE Training Procedure

Require: Training data X, neural networks for encoder Eϕ(V , E) and decoder Dθ(z), num-
ber of epochs N , and KLD loss weight λ

1: for epoch = 1 to N do
2: for each graph (V , E) ∈ X do
3: Calculate mean and standard deviation µ, σ = Eϕ(V , E)
4: Sample latent z = µ + σ ⊙ ϵ, ϵ ∼ N (⃗0, I)
5: Reconstruct graph (V ′ , E ′) = Dθ(z)
6: Compute reconstruction loss: Lrecon(V ′ , E ′ , V , E)
7: Compute KL divergence: LKL = 1

2


i(σ

2
i + µ2

i − 1 − 2 log σi)
8: Compute total loss: L = Lrecon + λLKL

9: Update ϕ and θ using gradient descent on L
10: end for
11: end for

3.2.2 VAE Inference Sampler

To extend the generative capability of our baseline model, we trained a separate continu-
ous diffusion-based sampler network after training the VAE. This sampler generates latent
vectors that the decoder transforms into CAD graphs, independent of the encoder. The
diffusion sampler was trained for 1000 epochs with a batch size of 8 × 1024, also utilizing
8 NVIDIA A30 GPUs for efficient training. The sampler network is a simple 32 layer feed
forward network with residual connections. Since, the sampler is tasked with generating

17

Algorithm 2 VAE Inference Procedure

Require: Trained neural networks for sampler Sϕ(z) and decoder Dθ(z), and variance sched-
ule a0, . . . , aT

1: Sample seed zt ∼ N (⃗0, I)
2: for t = T − 1 to 0 do
3: Predict true latent z ′0 = S(zt, t)

zt−1 =
√
at(1 − at−1)zt +

√
at−1(1 − at)z ′ 0

1 − at
+


(1 − at)(1 − at−1)

1 − at
ϵ, ϵ ∼ N (⃗0, I)

4: end for
5: Reconstruct graph (V ′ , E ′) = Dθ(z0)

latents for the decoder, we employ MSE loss between the predicted latent and true latent
vectors for training. The generation pipeline of the VAE is illustrated in Figure 3.5 and
pseudocode is provided in Algorithm 2.

Figure 3.5: Inference pipeline for VAE model. The latent sampler network generates a latent
vector that can be then fed into the decoder to decode into a CAD graph.

3.3 Diffusion Model for CAD Graph Generation

Motivated by state-of-the-art performance of diffusion models across a variety of generative
tasks, we present the first application of diffusion to the task of CAD graph generation. The
architecture of our denoiser network is a slight variant of the Diffusion Transformer (DiT)
architecture, as introduced by Peebles & Xie [34]. This choice was motivated by the strong

18

performance of DiT in image generation tasks, and our experiments confirmed its suitability
for primitive generation. A schematic of the network architecture is depicted in Figure A.2.

3.3.1 Forward Process

The denoiser network is trained to reconstruct the original noiseless graph G0 from a noisy
graph Gt conditioned on the diffusion timestep t. We define the total diffusion process across
1500 steps, where t = 0 corresponds to the original graph without noise, and t = 1500
represents pure noise. We use the aforementioned cosine variance schedule illustrated in
Figure 2.6. The forward diffusion process independently noises each variable x in the graph
via:

x t,c =
√
atx0,c +

√
1 − atϵ

xt,d = softmax


bt log (kx0,d +

1− k
D

) +


1 − btϵ



where x−,c are continuous variables (i.e., primitive parameters), x−,d are discrete variables
(i.e., primitive types, edge types, edge subnodes, and construct booleans), D is the dimension
of the respective one-hot vector, ϵ ∼ N (0, I), k is a user-defined smoothing constant near 1 as
to avoid singularities at the start of the diffusion process which we set k = .99. Essentially,
all continuous variables undergo continuous Gaussian diffusion and all discrete variables
undergo Guassian-Softmax diffusion. Note that we expand boolean values into a one-hot
representation for the forward noising and reverse denoising processes.

For discrete diffusion, variance schedules can not be used as is, since the softmax pro-
jection distorts the effect of the injected noise. To address this, we propose the following
adjustment where the argmax of the noised class label follows the Categorical distribution
argmax(xt) ∼ C(atx0 + (1 − at)/D) achieved via the augmentation:

bt =
f(at)

2

f(at)2 + f(k)2
where f(x) = log


1− x

(D − 1)x + 1



(3.1)

Figure 3.6 highlights the importance of the proposed variance schedule augmentation, demon-
strating its advantages over directly using the raw variance schedule. A derivation of the
augmentation scheme is provided in A.0.4

3.3.2 Training Procedure

Training was performed over 1000 epochs with a batch size of 8 × 512, distributed across
8 NVIDIA A30 GPUs. A constant learning rate of 1 × 10−4 was employed throughout.
To prevent bias toward predicting zeros, we use the ground truth primitive type to mask
irrelevant parameters before computing the MSE loss. This approach ensures the model
simultaneously predicts the optimal parameters for all possible primitive types while assign-
ing a confidence score (i.e., probability) to each. For example, if the true primitive type is

19

(a) Cosine variance used directly in discrete
forward process.

(b) Cosine variance augmented by 3.1 in dis-
crete forward process.

Figure 3.6: The orange curves are the raw and augmented variance schedules, and the blue
curves are the respective probabilities that the argmax does not transition to another index
at that timestep. The augmented variance schedule provides a more gradual discrete forward
process than the raw variance schedule.

a line, the model still predicts the parameters for the other types, such as circles or arcs,
while assigning probabilities that reflect its confidence in each prediction. A diagram of the
training pipeline is presented in Figure 3.7, and pseudocode is provided in Algorithm 3. The
denoiser network was trained using the same reconstruction loss that the VAE was trained
with. Similarly, we found it beneficial for training convergence to weigh the MSE loss by
min(c, SNR(t)), where SNR(t) = at/(1 − at), following the methodology of Hang et al. [35].
Additionally, to improve training convergence, we deviated from the conventional approach
of sampling timesteps from a uniform distribution. Instead, we adopted the methodology
proposed by Wang et al. [36], to sample timesteps from a piecewise distribution, for our work
it is:

A(x) =


1.6 if x ≤ 750,

0.4 if x > 750
(3.2)

3.3.3 Inference Procedure

Since we noise all continuous and discrete variables independently, for the reverse process we
denoise all variables independently as well. We use the same reverse transitions defined in
Equations 2.4 & 2.7. Before each continuous reverse step, we weight the predicted primitive
parameters by their corresponding rescaled predicted type probabilities. This adjustment is
necessary because irrelevant parameters are masked during training, prompting the model
to predict optimal parameters for all types simultaneously. Since the model is trained to
expect irrelevant parameters to approach zero at smaller timesteps, discrepancies may arise

20

Algorithm 3 Diffusion Training Procedure

Require: Training data X, neural network for denoiser Mθ(V , E), number of epochs N
Ensure: Trainable parameters θ
1: for epoch = 1 to N do
2: for each graph (V , E) ∈ X do
3: Sample timestep t ∼ A(x) provided in 3.2
4: Noise graph (Vt, Et) = noise(V , E , t)
5: Reconstruct graph (V ′ , E ′) = Mθ(Vt, Et)
6: Mask predicted parameters V ′

c with corresponding ground truth primitive type
probabilities Vd

V ′ c ←− V ′ c ∗ Vd

7: Compute reconstruction loss: Lrecon(V ′ , E ′ , V , E)
8: Update θ using gradient descent on L
9: end for
10: end for

Algorithm 4 Diffusion Inference Procedure

Require: neural network for denoiser Mθ(V , E)
1: Sample latent: discrete variables from the isotropic standard Gaussian-Softmax and

continuous variables from the isotropic standard Gaussian

(VT , ET) ∼ N (⃗0, I)||softmax{N (⃗0, I)}

2: for t = T − 1 to 1 do
3: Predict noiseless graph (V ′ , E ′) = Mθ(Vt, Et)
4: Weight predicted parameters V ′

c by corresponding predicted primitive type probabil-
ities V ′

d, rescaled such that the maximum element is exactly 1

V ′ c ←− V ′ c ∗ V ′ d/max(V ′ d)

5: Interpolate as given by Equations 2.4 & 2.7

Vt−1, Et−1 = interpolate(Vt, V ′), interpolate(Et, E ′)

6: end for

21

Figure 3.7: Training pipeline for Diffusion model. A graph is noised to a random timestep
and then passed into the diffusion model. The diffusion model is trained to denoise the
graph.

during the reverse process. Applying this weighting ensures that the model’s predictions
better align with its expectation of noisy primitives, particularly at smaller timesteps. We
rescale the predicted type probabilities by dividing each probability vector with its maximum
element. This rescaling prevents parameter values from decaying to zero throughout the
reverse diffusion process, ensuring more accurate predictions of noisy primitives, particularly
at smaller timesteps. A visualization of the generation pipeline is provided in Figure 3.8,
and pseudocode is provided in Algorithm 4.

22

Figure 3.8: Inference pipeline for Diffusion model. The model iteratively and gradually
interpolates between the noisy variables and its predictions over T steps.

23

Chapter 4

Results

4.1 Baselines

For our baselines we choose the most relevant prior art, namely: SketchGraphs by Seff
et al., SketchGen by Para et al., and Vitruvion by Seff et al., since they are all methods
pertaining to generating CAD sketches. SketchGraphs was the first work in this domain
and importantly introduced the dataset that all subsequent work has utilized, however it
could not generate primitive parameters and relied on an external constraint solver provided
by Onshape to estimate the values. SketchGen and Vitruvion are subsequent works that
aimed to generate primitive parameters. SketchGen used a custom grammar to represent
primitives as token sequences, which neccessitated the primitive parameters to be quantized.
Vitruvion is a follow up work that similarly generates CAD sketches as token sequences,
but they did not write their own custom grammar and instead opted to generate simplified
primitive parameterizations. Vitruvion was the SOA, so we’ll be comparing our work against
theirs the most. Unlike prior art we chose not to quantize primitive parameters and treat
them as continuous values. We justify this approach by noting that this allows for a simpler
implementation and also allows our model to directly consider the distance, direction, and
other geometric information between primitives.

4.1.1 Negative Log-Likelihood

We present the negative log-likelihood (NLL) on the test set to measure the aptitude of
our model in learning the distribution of CAD graphs, provided in Table 4.1. A lower NLL
indicates better generalization and improved model performance, though it is not necessarily
indicative of sample quality. For diffusion models and VAEs, computing the exact NLL is
intractable, therefore, we follow the standard approach of approximating the NLL using the
ELBO, which satisfies the inequality ELBO ≥ NLL. As a result, we present the ELBO for
our VAE and diffusion model, however despite this, our diffusion model achieved SOA NLL
for CAD sketch generation. We note that the NLL for constraint generation seems to be
inaccurate due to the non-sparse representation of constraints in our approach. The vast
majority of graph edges are the null type, which biases the model toward predicting null
constraints, artificially skewing the constraint NLL lower. Importantly, this issue does not
affect the generation of primitives—the most critical component of a CAD sketch—where
our model has still achieved SOA NLL.

24

Method Bits/Sketch↓ Bits/Primitive↓ Bits/Constraint↓
Diffusion (Ours) 81.33 5.08 0.0031
VAE (Ours) 334.19
Vitruvion 84.80 8.19 0.82
SketchGen 88.22 8.60 0.61
SketchGraphs 158.90 2.42

Table 4.1: The NLL for each model is reported in bits, where a lower NLL is better. For our
VAE, we provide only sketch-level statistics as the ELBO must be calculated jointly over
latents, nodes, and edges. For SketchGraphs, since primitive parameters are not predicted,
there is no corresponding NLL for primitives. Notably, our diffusion model achieved SOA
NLL per primitive and per sketch.

4.1.2 Sample Quality

Here we present the Fréchet Inception Distance (FID), precision, and recall as metrics to
evaluate the fidelity of generated CAD graphs, as shown in Table 4.2. Fidelity measures
how closely synthetic CAD graphs resemble real CAD graphs. Standard image generation
metrics are employed to assess sample quality; however, since constraints are immaterial,
these metrics evaluate only the fidelity of primitives. A lower FID score indicates higher
fidelity samples, and our diffusion model achieves state-of-the-art (SOA) FID. Higher preci-
sion reflects a closer resemblance between generated and real samples, minimizing irrelevant
or low-quality outputs, while higher recall indicates greater diversity in generated samples,
capturing the full range of real data variations. Precision and recall often exhibit an inverse
relationship, where improvements in one may lead to reductions in the other. As is stan-
dard in image generation literature, we compute these metrics using InceptionV3 trained on
ImageNet over 10K CAD graphs from our test set.

Method FID↓ Precision↑ Recall↑
Diffusion (Ours) 7.80 0.233 0.251
VAE (Ours) 93.34 0.134 0.033
Vitruvion 16.04 0.294 0.176

Table 4.2: The FID, precision, and recall are presented for unconditional primitive genera-
tion. A lower FID is better, a higher precision is better, and a higher recall is better. We
note that our diffusion model has achieved SOA FID.

4.1.3 Qualitative Results

We also provide model generations to illustrate perceptual quality, as evaluating CAD
sketches is still an open problem. In Figure 4.1 we provide 3 columns of rendered CAD
sketches from the SketchGraphs dataset, our diffusion model, and Vitruvion respectively.

25

We also provide some diffusion trajectories to visualize the sampling process of our diffusion
model in Figure 4.2. We don’t show generations from our VAE due to subpar results.

4.2 Remarks

We believe there are two major reasons as to why our model has improved generative capa-
bilities. The first reason is that our diffusion model has access to the full context of the CAD
graph at any given step, unlike Vitruvion and SketchGen which have a limited view due their
autoregressive nature. Since, Vitruvion and SketchGen append one node to the graph at a
time, the models start off with an empty graph with zero context of how the node will fit
in with the yet to be generated graph. Seff et al., make note of this in their work where
they discuss how their model has better performance near the end of the sampling process
where it has a larger context window. This is in contrast to our graph diffusion model which
always has full context and can thus better model the relationships between nodes.

The second reason we hypothesize as to why our model performs better is our diffusion
approach. Unlike autoregressive models which can only influence each node once, namely
during each generation step, our diffusion based approach allows our model to influence
nodes over the whole reverse process. Although the downside is that the sampling takes
much longer, the benefit is that our model gets multiple chances to correct the nodes. This
works in tandem with our focus on generating CAD graphs, since the model has multiple
chances to see how any particular node/primitive fits in with the rest of the sketch, our
model is better able to exactly pinpoint the semantics of primitives.

4.3 Failure Modes

We identified two primary failure modes in our model. The first failure mode is where the
model produces no discernible shape. This typically occurs when the model fails to interpret
the relationships between primitives within a sketch and is unable to effectively denoise it.
A lesser offshoot of this issue is that the model will often not terminate arcs and lines in
a cohesive manner resulting in gaps and deformities. The second common failure involves
generating constraints that are frequently unsatisfiable or, if satisfiable, fail to accurately
represent the intended relationships between primitives. When an external constraint solver,
such as Onshape’s, attempts to enforce these constraints, the resulting sketch structure is
often compromised. Although we were able to improve primitive generation, constraint
generation performance is still poor. Similar sentiments were voiced by Para et al. and
Seff et al. in their respective works SketchGen and Vitruvion, where they found generated
constraints often did not improve the fidelity of sketches and instead even reduced the fidelity
of sketches when a constraint solver attempted to enforce the constraints [3, 10]. We provide
visualizations of each failure case in Figure A.3.

26

SketchGraphs dataset Diffusion Vitruvion

Figure 4.1: Random examples from the SketchGraphs dataset (left), random samples from
our unconditional diffusion model (center), and random samples from Vitruvion (right).
Although Vitruvion generates higher precision CAD sketches, the generated samples are not
very diverse, indicating mode collapse where the model fixated on generating very specific
types of sketches. Our diffusion model generates more diverse samples, but in exchange does
not have great precision in the generations. This behavior is reflected in the precision and
recall scores, where Vitruvion got a higher precision but lower recall score, and our diffusion
model got a higher recall but lower precision score.

27

Figure 4.2: Random samples drawn from our diffusion model along with the corresponding
diffusion trajectories, starting from pure noise (right) to samples (left). Each snapshot was
taken at regularly spaced intervals, in other words every 150 denoising steps. The bottom
rows are the model predictions, and the top rows are the graphs being denoised.

28

Chapter 5

Conclusion and Future Work

In this work, we present the first application of GNNs and diffusion to the task of CAD sketch
generation, addressing limitations in existing methods that hinder their robustness and ef-
fectiveness in assisting the iterative CAD design process. To advance the state-of-the-art in
this domain, we proposed a novel discrete diffusion strategy based on the Gaussian-Softmax
distribution for simplex-constrained diffusion. This approach accommodates superposition
and is presented as an alternative to the widely adopted categorical diffusion framework.
Additionally, we introduce a variance schedule augmentation to ensure a gradual and stable
noising process for our proposed discrete diffusion framework.

Empirical evaluation demonstrates that our diffusion-based approach achieves state-of-
the-art (SOA) performance in terms of Negative Log-Likelihood (NLL) and Fréchet Inception
Distance (FID) metrics. We observe that integrating GNNs with our novel diffusion strategy
significantly outperforms the previous SOA model, Vitruvion, highlighting the effectiveness
of our method in generating accurate and expressive CAD sketches.

A promising direction for future research lies in exploring conditional text-to-CAD sketch
generation. Given that conditional image diffusion models have demonstrated significant
improvements in sample quality over unconditional approaches, a similar benefit may be
realized in the context of CAD sketch generation. Extending this concept would provide users
with more precise control over generated sketches based on textual input, thereby increasing
the applicability of CAD generation in the design iteration cycle. Another important avenue
involves applying our proposed discrete diffusion strategy to domains beyond CAD, such
as image generation and natural language synthesis, where the ability to handle simplex-
constrained diffusion could offer novel modeling capabilities.

Finally, integrating 3D operations for volumetric generation represents a natural exten-
sion of this work, moving beyond 2D sketch generation to encompass full three-dimensional
design capabilities. Such advancements could open pathways for generating comprehensive
CAD models suitable for complex engineering and manufacturing tasks.

29

Appendix A

The Gaussian-Softmax distribution (GS), introduced as the Logistic-Normal distribution
by Aitchison [32], is the distribution of a Gaussian vector that has undergone the softmax
transformation. The probability density is:

p(⃗ y|µ⃗, σ 2) = D− 1
2 (2πσ 2)

1−D
2


D

i=1

yi

−1

× exp

  −
1

2σ2

 


i̸=D



log
yi
yD
− µi + µD

 2

−
1
D

 

i̸=D

log
yi
yD
− µi + µD

 2


  

and the derivation of the density is provided in A.0.2.

A.0.1 Derivation of Cumulative Forward Transition

A simple derivation for the cumulative transition is:

p (x⃗t+2 | x⃗t) = softmax
 √

at+2 log

softmax

 √
at+1 log (x⃗t) +


1 − at+1ϵ⃗


+


1 − at+2ϵ⃗


Expand terms:

= softmax
 √

at+2

 √
at+1 log (x⃗t) +


1 − at+1ϵ⃗ + C


+


1 − at+2ϵ⃗


Reduce terms:

= softmax
 √

at+2at+1 log (x⃗t) +

at+2(1 − at+1)⃗ϵ +

√
at+2C +


1 − at+2ϵ⃗



Constants disappear due to shift invariance of softmax:

= softmax
 √

at+2at+1 log (x⃗t) +

at+2(1 − at+1)⃗ϵ +


1 − at+2ϵ⃗



Sum of Gaussians is another Gaussian with summed variances:

= softmax
 √

at+2at+1 log (x⃗t) +

at+2(1 − at+1) + 1 − at+2ϵ⃗



30

Merging terms accumulates the a terms:

= softmax
 √

at+2at+1 log (x⃗t) +


1 − at+2at+1ϵ⃗


therefore iteratively applying the forward transition will simply accumulate the variance
schedule terms.

A.0.2 Derivation of Gaussian Softmax Density

Our strategy is to use the change of variables formula:

p ′ (y⃗) = p

h−1 (y⃗)


Det


J

h⃗ (y⃗)


where h⃗(y⃗) is some invertible function and Det(J (⃗h(y⃗)) is the determinant of the jacobian.
More specifically,

softmax{y⃗} = softmax{y⃗ − 1⃗ · yD}

holds due to the shift invariance of softmax, thus our strategy is to first find the density of
y⃗′ = [y1 − yD, y2 − yD, ..., 0], as this “centered” form turns the softmax into an invertible
function h⃗(⃗ y′) = softmax{⃗ y′ } where the inverse is h⃗−1(x⃗) = log(x⃗/xD). The derivation is
as follows for y⃗ ∼ N (⃗ µ, σ⃗2I), additionally for brevity we aggregate all factors into a single
variable C:

Marginalizing over yD yields the density of the “centered” density:

p(⃗ y′) =
 ∞

−∞
p(y⃗′ | yD)p(yD) dyD

=
 ∞

−∞

 
i̸=D


2πσ 2

− 1
2 exp



−
1

2σ2
(yi − yD − µi)

2

  
2πσ 2

− 1
2 exp



−
1

2σ2
(yD − µD)2



dyD

Expand terms:

= (2πσ 2)− D
2

 ∞

−∞

 

i̸=D

exp



−
1

2σ2
(y2

i − 2yiµi + µ2
i)



× exp



−
1

2σ2



y2
D − 2yDµD + µ2

D + (D − 1)y2
D + 2yD



i̸=D

µi − yi



dyD

31

Reduce yD terms:

= C

 

i̸=D

exp



−
1

2σ2
(yi − µi)

2



×
 ∞

−∞
exp



−
1

2σ2



y2
D − 2yDµD + µ2

D + (D − 1)y2
D + 2yD



i̸=D

µi − yi



dyD

Reduce terms:

= C
 ∞

−∞
exp



−
1

2σ2



Dy2
D − 2yD



µD +


i̸=D

yi − µi



+ µ2
D



dyD

Complete the square:

= C exp



−
1

2σ2
µ2
D

 ∞

−∞
exp



−
1

2σ2



Dy2
D − 2yD



µD +


i̸=D

yi − µi



dyD

= C
 ∞

−∞
exp

  
−

1
2σ2

 
√
DyD −


µD +


i̸=D yi − µi



√
D

 

2
   

dyD

The integrand is a Gaussian density in terms of yD:

= (2πσ 2)− D
2

 

i̸=D

exp



−
1

2σ2
(yi − µi)

2



exp



−
1

2σ2
µ2
D



× exp

  
−

1
2σ2


µD +


i̸=D yi − µi

2
D

  


2πσ2

D

We can simplify this further using the fact that shifting the mean by any constant
scalar does not affect the density due to the shift invariance of the softmax operation i.e.,

32

p(y⃗|u⃗, σ2) = p(y⃗|u⃗ + c⃗1, σ2), thus if we use c = −µD the density becomes:

= D− 1
2

2πσ 2

 1−D
2 exp

  −
1

2σ2

 


i̸=D

(yi − µi + µD)2 −
1
D

 

i̸=D

yi − µi + µD

 2


  

Now that we have the density of y⃗′ we can use a straightforward application of the
change of variables formula, with the known result that the determinant of the Jacobian of
the softmax is (

D
i yi)

−1 [37, 38] to obtain:

p(⃗ y|µ⃗, σ 2) = D− 1
2 (2πσ 2)

1−D
2


D

i=1

yi

−1

× exp

  −
1

2σ2

 


i̸=D



log
yi
yD
− µi + µD

 2

−
1
D

 

i̸=D

log
yi
yD
− µi + µD

 2


  

A.0.3 Derivation of Posterior for Guassian-Softmax

For the reverse process we sample from the posterior distribution p(x⃗t−1|x⃗t, ⃗x0), using the
same setup as in DDPM [23]:

p(x⃗t−1|x⃗t, ⃗x0) =
p(x⃗t−1, ⃗xt, ⃗x0)

p(x⃗t, ⃗x0)
=

p(x⃗t|x⃗t−1, ⃗x0)p(x⃗t−1, ⃗x0)
p(x⃗t, ⃗x0)

=
p(x⃗t|x⃗t−1, ⃗x0)p(x⃗t−1|x⃗0)

p(x⃗t|x⃗0)

and due to the Markov property p(x⃗t|x⃗t−1, ⃗x0) = p(x⃗t|x⃗t−1) the posterior simplifies to:

p(x⃗t−1|x⃗t, ⃗x0) =
p(x⃗t|x⃗t−1)p(x⃗t−1|x⃗0)

p(x⃗t|x⃗0)
∝ p(x⃗t|x⃗t−1)p(x⃗t−1|x⃗0)

fortunately we have access to the necessary densities which are simply:

1.

p(x⃗t−1|x⃗0) ∝


D

i

xt−1,i

−1

exp



−
1

2(1 − at−1)



i̸=D

v 2
i



exp

  1
2D(1 − at−1)

 

i̸=D

vi

2
 

where vi = log xt−1,i

xt−1,D
−
√
at−1 log x0,i

x0,D

2.

p(x⃗t|x⃗t−1) ∝ exp



−
1

2(1 − at)



i̸=D

r 2
i



exp

  1
2D(1 − at)

 

i̸=D

ri

2
 

where ri = log xt,i

xt,D
−
√
at log xt−1,i

xt−1,D

33

Focusing on the first exponential terms with simplified notation where zi = log xt,i

xt,D
, yi =

log xt−1,i

xt−1,D
, xi = log x0,i

x0,D
, σ2

t = 1 − at, and σ2
t−1 = 1 − at−1

exp



−
1

2(1 − at−1)



i̸=D

v 2
i



exp



−
1

2(1 − at)



i̸=D

r 2
i



= exp



−
1

2σ2
t−1


i̸=D


yi −


at−1xi

 2
−

1
2σ2

t



i̸=D

(zi −
√
atyi)

2


= exp



−
1
2

 

i̸=D

1
σ2
t−1


yi −


at−1xi

 2
+

1
σ2
t

(zi −
√
atyi)

2


= exp



−
1
2

 

i̸=D

1
σ2
t−1


y2
i − 2yi


at−1xi + at−1x 2

i



+
1

σ2
t


z 2
i − 2

√
atyizi + aty 2

i

 

∝ exp



−
1
2

 

i̸=D

y2
i

σ2
t−1

−
2yi
√
at−1xi

σ2
t−1

−
2
√
atyizi
σ2
t

+
aty 2

i

σ2
t



= exp



−
1
2

 
i̸=D

 1
σ2
t−1

+
at
σ2
t


y2
i − 2

√
at−1xi

σ2
t−1

+
√
atzi
σ2
t


yi



observe that we can read the posterior mean and variance as:

µt−1,i =

√
at−1xi

σ2
t−1

+
√
atzi
σ2
t



σ 2
t−1 =

√
at(1 − at−1)zi +

√
at−1(1 − at)xi

1 − at

σ 2
t−1 =


1

σ2
t−1

+
at
σ2
t

−1

=
(1 − at)(1 − at−1)

1 − at

since the form has to be proportional to exp {− 1
2σ2 (yi − µ)2}.

34

Similarly for the second exponential term:

exp

  1
2D(1 − at−1)

 

i̸=D

vi

2
  exp

  1
2D(1 − at)

 

i̸=D

ri

2
 

= exp

  
1

2D

  1
σ2
t−1

 

i̸=D

yi −

at−1xi

 2

+
1
σ2
t

 

i̸=D

zi −
√
atyi

 2


  

= exp


1

2D


1

σ2
t−1

 

i̸=D

(yi −


at−1xi)
2 + 2



j<i,i̸=D

(yi −


at−1xi)(yj −

at−1x j)



+
1
σ2
t

 

i̸=D

(zi −
√
atyi)

2 + 2


j<i,i̸=D

(zi −
√
atyi)(z j −

√
atyj)



The terms in bold correspond exactly with the first exponential term, and imply the same
posterior mean and variance, further more the remaining terms are proportional to:

exp
1

2D



2


j<i,i̸=D

1
σ2
t−1


yiyj −


at−1x jyi −


at−1xiyj


+

1
σ2
t

(−
√
atziyj −

√
atz jyi + atyiyj)



= exp
1

2D



2


j<i,i̸=D

1
σ2
t−1


yiyj −


at−1x jyi −


at−1xiyj


+

1
σ2
t

(−
√
atziyj −

√
atz jyi + atyiyj)



= exp
1

2D



2


j<i,i̸=D


1

σ2
t−1

+
at
σ2
t



yiyj −

√
at−1x j
σ2
t−1

+
√
atzj
σ2
t



yi −

√
at−1xi

σ2
t−1

+
√
atzi
σ2
t



yj



which again imply the same posterior mean and variance since the form has to be proportional
to:

exp



2

 

j<i,i̸=D

yiyj
σ2
−

µj

σ2
yi −

µi

σ2
yj +

µiµj

σ2



Thus all terms agree on the same posterior mean and variance of:

µt−1,i =

√
at−1xi

σ2
t−1

+
√
atzi
σ2
t



σ 2
t−1 =

√
at(1 − at−1)zi +

√
at−1(1 − at)xi

1 − at

σ 2
t−1 =


1

σ2
t−1

+
at
σ2
t

−1

=
(1 − at)(1 − at−1)

1 − at

We can simplify the posterior mean by utilizing the shift invariance property, where we

35

observe that:

µt−1,i =
√
at(1 − at−1)(log xt,i − log xt,D) +

√
at−1(1 − at)(log x0,i − log x0,D)

1 − at

=
√
at(1 − at−1) log xt,i +

√
at−1(1 − at) log x0,i

1 − at
−
√
at(1 − at−1) log xt,D +

√
at−1(1 − at) log x0,D

1 − at

=
√
at(1 − at−1) log xt,i +

√
at−1(1 − at) log x0,i

1 − at
+ C

so the posterior mean can be simplified as:

µt−1,i =
√
at(1 − at−1) log xt,i +

√
at−1(1 − at) log x0,i

1 − at

Since all the terms agree on the same posterior mean and variance, and furthermore the
posterior density has the same form as the Gaussian-Softmax distribution, we can conclude
that p(x⃗t−1|x⃗t, ⃗x0) = p(x⃗t−1|µ⃗t−1, σ2

t−1I)

A.0.4 Derivation of Variance Schedule Augmentation

As shown in Figure 3.6, we need to augment our chosen variance schedule to ensure that
the class labels are gradually noised. Taking inspiration from Categorical diffusion, our
desideratum is to smoothly noise the class label such that the argmax of xt follows the
distribution C(btx0 + 1

D
(1− bt)1) where C is the categorical distribution and b0, b1, . . . , bT is a

variance schedule of our choosing. Unfortunately there is no closed form formula to determine
the argmax of a Gaussian vector, so we instead approximate a Gaussian vector with a Gumbel
vector. A useful property of the Gumbel distribution is that it can be used to reparameterize
the Categorical distribution where argmax{a log p + g} ∼ C(softmax{a log p}), g ∼ G(0, 1),
and G is the Gumbel distribution [39]. Then considering the forward process in Gaussian-
Softmax diffusion we can derive:

argmax{xt} ≈ argmax



softmax

 √
αt log



kx0 +
1− k
D



+
√

1 − αtg



.

Simplifying the expression inside the argmax:

= argmax

 √
αt log



kx0 +
1− k
D

1



+
√

1 − αtg



= argmax


αt

1 − αt
log



kx0 +
1− k
D

1



+ g



∼ softmax


αt

1 − αt
log



kx0 +
1− k
D

1



36

We aim to satisfy:

softmax


αt

1 − αt
log



kx0 +
1− k
D

1



= btx0 +
1 − bt
D

1

Taking the logarithm of both sides gives: 
αt

1 − αt
log



kx0 +
1− k
D

1



+ c = log



btx0 +
1 − bt
D

1



Assuming without loss of generality that x0 = [1, 0, . . . , 0], we have: 
αt

1 − αt



log



k +
1− k
D



, log


1− k
D



, . . .



+ c =



log



bt +
1 − bt
D



, log


1 − bt
D



, . . .



Since c is a free parameter, we can set:

c =



log



bt +
1 − bt
D



−


αt

1 − αt
log



k +
1− k
D



1

This reduces the equation to: 
αt

1 − αt



0, log


1− k

(D − 1)k + 1



, . . .



=



0, log


1 − bt

(D − 1)bt + 1



, . . .



Thus, we deduce: 
αt

1 − αt
= log


1 − bt

(D − 1)bt + 1



/ log


1− k

(D − 1)k + 1



Finally, isolating αt yields:

αt =
n 2

n2 + m2
, where n = log


1 − bt

(D − 1)bt + 1



, m = log


1− k

(D − 1)k + 1



.

A.0.5 Model Architecture

37

(a) Encoder (b) Decoder

(c) Graph Transformer Layer (d) MultiHead Attention Block

Figure A.1: Our VAE Architecture is heavily influenced off of Digress by Vignac et al., in
particular we use the same multihead attention block and transformer layer.

38

Figure A.2: The network architecture of diffusion denoiser network is a slight modification
off of the DiT architecture introduced by Peebles & Xie, where we simply removed the gate
scales.

39

(a) Primitive generation has no discernible
pattern.

(b) Gaps exist between primitive termina-
tions.

(c) Large gaps between termination along
with extraneous primitives.

(d) Before constraint enforcement.

(e) After constraint enforcement in On-
shape’s constraint solver. Generated con-
straints damage sketch fidelity.

Figure A.3: We present the failure cases that we’ve experienced concerning our diffusion
model. The most common of which are constraint failures and gaps between primitive
terminations. We believe this to be an artifact of treating primitive parameters as continuous
values.

40

Table A.1: A table of the most common primitives and a visualization to describe their
semantics.

primitive parameters visualization

point x(x-coordinate), y(y-coordinate)

line x, y, u, v, a, b

arc x, y, u, v, r, c, a, b

circle x, y, u, v, r, c

41

Table A.2: A table of the most common constraints and a visualization to describe their
semantics.

constraint description visualization

coincident
restricts two points to share the same position
in space

horizontal
either aligns a line to the x-axis or restricts
two points to have the same y-coordinate

vertical
either aligns a line to the y-axis or restricts
two points to have the same x-coordinate

parallel aligns two lines to be parallel

42

Table A.3: (Continued) A table of the most common constraints and a visualization to
describe their semantics.

constraint description visualization

perpendicular aligns two lines to be orthogonal

midpoint
restricts a point to be the midpoint of an arc
or line, or restricts a point to the center of a
circle

equal
restricts two primitives to have the same pa-
rameters

tangent
restricts a line to be tangent to a circle/arc or
two curves to be tangent to one another

43

Table A.4: A table of the primitive reparameterizations we employ and a visualization to
describe their semantics. For arcs κ is the curvature of the osculating circle, negating κ
reflects the arc center point across the line formed by the endpoints.

primitive parameters visualization

point x, y

line x1, y1, x2, y2

arc x1, y1, x2, y2, κ

circle x, y, r

44

References

[1] Monika Dyavenahalli Shivegowda, Pawinee Boonyasopon, Sanjay Mavinkere Rangappa,
and Suchart Siengchin. A Review on Computer-Aided Design and Manufacturing Pro-
cesses in Design and Architecture. Archives of Computational Methods in Engineering,
29(6):3973–3980, October 2022.

[2] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti.
Computer-aided design as language. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 5885–5897. Curran Associates, Inc., 2021.

[3] Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra,
Leonidas Guibas, and Peter Wonka. Sketchgen: generating constrained cad sketches.
In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc.

[4] Autodesk. https://www.autodesk.com/products/autocad/overview, March 2023. Date
Accessed: 2023-03-19.

[5] Solidworks. https://www.solidworks.com/domain/design-engineering, March 2023.
Date Accessed: 2023-03-19.

[6] Onshape. https://www.onshape.com/en/, March 2023. Date Accessed: 2023-03-19.

[7] Tom Veuskens, Florian Heller, and Raf Ramakers. Coda: A design assistant to facilitate
specifying constraints and parametric behavior in cad models. In Graphics Interface,
2021.

[8] Sofia Kyratzi and Philip Azariadis. A Constraint-based Framework to Recognize De-
sign Intent during Sketching in Parametric Environments. Computer-Aided Design and
Applications, 18:545–560, September 2020.

[9] Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. Sketchgraphs: A large-
scale dataset for modeling relational geometry in computer-aided design. ArXiv,
abs/2007.08506, 2020.

[10] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams. Vitruvion: A generative
model of parametric CAD sketches. In International Conference on Learning Represen-
tations, 2022.

45

https://www.onshape.com/en
https://www.solidworks.com/domain/design-engineering
https://www.autodesk.com/products/autocad/overview

[11] Yang Jing and Yang Song. Application of 3d reality technology combined with cad in
animation modeling design. Computer-Aided Design and Applications, 18(S3):164–175,
2020.

[12] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and
Pascal Frossard. Digress: Discrete denoising diffusion for graph generation. In The
Eleventh International Conference on Learning Representations, 2023.

[13] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small
graphs using variational autoencoders. In Věra Kůrková, Yannis Manolopoulos, Barbara
Hammer, Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial Neural Networks and
Machine Learning – ICANN 2018, pages 412–422, Cham, 2018. Springer International
Publishing.

[14] Bohdan Macukow. Neural Networks – State of Art, Brief History, Basic Models and
Architecture. In Khalid Saeed and Wladyslaw Homenda, editors, Computer Information
Systems and Industrial Management, Lecture Notes in Computer Science, pages 3–14,
Cham, 2016. Springer International Publishing.

[15] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43(1):59–69, January 1982.

[16] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408, 1958. Place: US Publisher:
American Psychological Association.

[17] Bernhard Bettig and Christoph M Hoffmann. Geometric constraint solving in paramet-
ric computer-aided design. Journal of computing and information science in engineering,
11(2), 2011.

[18] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, January 1991.

[19] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocom-
puting, 5(4):185–196, June 1993.

[20] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[21] Stanley H. Chan. Tutorial on diffusion models for imaging and vision. Found. Trends
Comput. Graph. Vis., 16:322–471, 2024.

[22] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning Research, pages 2256–2265, Lille,
France, 07–09 Jul 2015. PMLR.

46

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Asso-
ciates, Inc., 2020.

[24] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion prob-
abilistic models. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 8162–8171. PMLR, 18–24 Jul 2021.

[25] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling.
Argmax flows and multinomial diffusion: Learning categorical distributions. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, 2021.

[26] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den
Berg. Structured denoising diffusion models in discrete state-spaces. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[27] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori
Hashimoto. Diffusion-LM improves controllable text generation. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022.

[28] Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq:
Text diffusion with encoder-decoder transformers. ArXiv, abs/2212.10325, 2022.

[29] Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-
Chun Zhu, and Ying Nian Wu. Latent diffusion energy-based model for interpretable
text modelling. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
25702–25720. PMLR, 17–23 Jul 2022.

[30] Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive
simplex-based diffusion language model for text generation and modular control. In
Annual Meeting of the Association for Computational Linguistics, 2022.

[31] Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete
data using diffusion models with self-conditioning. In The Eleventh International Con-
ference on Learning Representations, 2023.

[32] J. Aitchison and S. M. Shen. Logistic-normal distributions: Some properties and uses.
Biometrika, 67(2):261–272, 1980.

47

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[34] William S. Peebles and Saining Xie. Scalable diffusion models with transformers. 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pages 4172–4182,
2022.

[35] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and
Baining Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7441–
7451, October 2023.

[36] Kai Wang, Yukun Zhou, Mingjia Shi, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng,
Hanwang Zhang, and Yang You. A closer look at time steps is worthy of triple speed-up
for diffusion model training. ArXiv, abs/2405.17403, 2024.

[37] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In International Conference on Learning Representations, 2017.

[38] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. In International Conference on
Learning Representations, 2017.

[39] Iris A. M. Huijben, Wouter Kool, Max B. Paulus, and Ruud J. G. van Sloun. A review of
the gumbel-max trick and its extensions for discrete stochasticity in machine learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):1353–1371,
2023.

48

	List of Tables
	List of Figures
	Dedication
	Introduction
	Motivation
	Contributions

	Background & Related Work
	Computer-Aided Design (CAD)
	Neural Networks
	Variational Auto Encoders
	Diffusion Models

	Related Work

	Methodology
	Dataset
	VAE for CAD Graph Generation
	Training Procedure
	VAE Inference Sampler

	Diffusion Model for CAD Graph Generation
	Forward Process
	Training Procedure
	Inference Procedure

	Results
	Baselines
	Negative Log-Likelihood
	Sample Quality
	Qualitative Results

	Remarks
	Failure Modes

	Conclusion and Future Work
	
	Derivation of Cumulative Forward Transition
	Derivation of Gaussian Softmax Density
	Derivation of Posterior for Guassian-Softmax
	Derivation of Variance Schedule Augmentation
	Model Architecture

	References

