
A CONSOLIDATED SOLUTION FOR BROADER STATISTICAL TESTING OF RANDOM
NUMBER GENERATORS IN A POST-QUANTUM ERA

John Edward Naizer

A THESIS

Presented to the Faculty of Miami University in partial
fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science & Software Engineering

The Graduate School
Miami University

Oxford, OH

2024

Dr. Khodakhast Bibak, Advisor
Dr. James Kiper, Reader
Dr. Suman Bhunia, Reader
Dr. Honglu Jiang, Reader

©

John Edward Naizer

2024

ABSTRACT

Pseudo-random number generators (PRNGs) and, more recently, quantum random number gener-
ators (QRNGs) play critical roles in ensuring the security of systems. Ensuring that the generated
randomness from these devices meets the benchmark of cryptographically secure randomness is of
utmost importance. To meet this benchmark, the National Institute of Standards and Technology
(NIST) has standardized a series of rigorous statistical tests to determine if a random output meets
the criteria for use in cryptographically secure applications. However, this benchmark has been
continuously evolving with recent advancements in the quantum realm, demanding increased cov-
erage and rigor in statistical testing. We utilize prior work that has contributed to this demand to
explore more efficient and rigorous ways to test contemporary random number generators and an-
alyze how they perform when tested beyond what is required by standardization bodies like NIST.
We introduce a Command Line Interface (CLI) tool for users to easily apply a myriad of different
testing suites on randomly generated binary data. Additionally, we use this tool to expand statisti-
cal testing analysis on a few modern PRNGs in tandem with comparative analysis against existing
statistical analysis data on certain QRNGs.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Background & Related Work 3
2.1 The Cloud . 3

2.1.1 Cloud Computing . 3
2.1.2 Shared Responsibility Model . 4
2.1.3 Microsoft Azure . 5

2.2 Quantum Computing . 6
2.2.1 Properties of Quantum Mechanics . 6
2.2.2 Quantum Algorithms . 7

2.3 Cryptography . 9
2.3.1 Pseudo-Random Number Generators . 9
2.3.2 Encryption Techniques . 10
2.3.3 Message Authentication Codes . 13
2.3.4 Authenticated Encryption . 14

2.4 Cloud Security . 15
2.4.1 Cloud Security Challenges . 15
2.4.2 Cloud Computing Resources . 16

2.5 Quantum Cryptography . 16
2.5.1 Quantum Random Number Generators 17
2.5.2 Post-Processing . 17
2.5.3 Statistical Testing Suites . 18

2.6 Cloud Computing with Quantum Cryptography 21
2.7 Related Work . 21

2.7.1 Cloud-based Quantum Random Number Generator System 22
2.7.2 Comparative Study of Quantum Random Number Generators 23
2.7.3 Enhancing Random Number Generator Verification 24

iv

3 Overview 25
3.1 Aim 1: Select Statistical Testing Suites and Random Number Generators 25
3.2 Aim 2: Develop Consolidated Statistical Testing Tool 25
3.3 Aim 3: Generate Data and Statistical Testing Results 26

4 Selection of Statistical Testing Suites and Random Number Generators 27
4.1 Statistical Testing Suite Selection . 27

4.1.1 ENT . 28
4.1.2 PractRand . 29
4.1.3 TestU01 . 30
4.1.4 Dieharder . 33
4.1.5 NIST STS . 35

4.2 Random Number Generator Selection . 37
4.2.1 Python Secrets RNG . 37
4.2.2 Wolfram Language RNG . 39
4.2.3 Microsoft Sparse Simulator RNG . 40

5 Development of Consolidated Statistical Testing Tool 42
5.1 Cryptoguard Architecture . 42

5.1.1 Selection of Development Environment 42
5.1.2 Installation of Selected Statistical Testing Suites 43
5.1.3 Accessibility of Cryptoguard . 43

5.2 Cryptoguard Ease-of-Use . 44
5.3 Detailed Steps Explanation . 48

5.3.1 Handling Binary File Input . 48
5.3.2 Handling Setting Input . 49
5.3.3 Handling Custom Setting Input . 50
5.3.4 Handling Directory Input . 50
5.3.5 Running Testing Suites . 50
5.3.6 Handling Command-Line Arguments . 50

5.4 Cryptoguard Tool Examples . 51
5.4.1 Example 1: Custom Setting with Specific Tests 51
5.4.2 Example 2: All User-Defined Input with Recommended Setting 52
5.4.3 Example 3: User-Defined Input for Custom Setting with Specific Tests . . 53
5.4.4 Live Output of Cryptoguard . 53
5.4.5 Logging and Results Storage . 54

6 Generation of Data and Statistical Testing Results 56
6.1 Format of Random Data . 56
6.2 Sample Length of Random Data . 58
6.3 Data Generation and Testing Methodology . 58

6.3.1 Data Generation Methodology . 58
6.3.2 Statistical Testing Methodology . 60

v

7 Analysis 62
7.1 RNG Generation Times . 63
7.2 Number of Failed Statistical Tests . 65
7.3 Number of Failed and Suspicious Statistical Tests 66
7.4 Statistical Testing Suite Runtimes . 68
7.5 Selected PRNGs vs. IDQ Quantis . 70
7.6 Selected PRNGs vs. Intel RDSEED . 71

8 Conclusion and Future Work 72

A Random Number Generator Analysis 73
A.1 Random Number Generator Generation Times . 73
A.2 Statistical Testing Suite Results . 74
A.3 Statistical Testing Suite Runtimes . 76

References 79

vi

List of Tables

2.1 Type I and Type II Errors [1] . 20

A.1 Random Number Generator Generation Times for Secrets RNG, Wolfram RNG,
and Microsoft Sparse Simulator RNG over their respective 10 samples each. The
time generation data is structured in hours (h) minutes (m) seconds (s). 73

A.2 Total number of failed tests for each of the ten samples for the Python Secrets RNG.
For the testing suites that offer additional metrics specifying any ”suspicious” tests
(Dieharder and PractRand), the total ”suspicious” tests for each sample are denoted
by parenthesis. 74

A.3 Total number of failed tests for each of the ten samples for the Wolfram RNG.
For the testing suites that offer additional metrics specifying any ”suspicious” tests
(Dieharder and PractRand), the total ”suspicious” tests for each sample are denoted
by parenthesis. 75

A.4 Total number of failed tests for each of the ten samples for the Microsoft Sparse
Simulator RNG. For the testing suites that offer additional metrics specifying any
”suspicious” tests (Dieharder and PractRand), the total ”suspicious” tests for each
sample are denoted by parenthesis. 75

A.5 Statistical Testing Suite Runtimes for the Secrets RNG. The testing suite runtimes
are structured in minutes (m) seconds (s). 76

A.6 Statistical Testing Suite Runtimes for the Wolfram RNG. The time generation data
is structured in hours (h) minutes (m) seconds (s). 77

A.7 Statistical Testing Suite Runtimes for the Microsoft Sparse Simulator RNG. The
time generation data is structured in hours (h) minutes (m) seconds (s). 78

vii

List of Figures

2.1 Block diagram representing a block cipher [2] . 11
2.2 Block diagram representing a stream cipher [2] 12
2.3 Block diagram representing a quantum random number generator [3] 18

5.1 Block diagram representing Cryptoguard workflow 49

7.1 Column chart depicting the RNG generation times for each of the 10 samples of
data respective to each of the 3 selected RNGs. 63

7.2 Column chart depicting the total number of failed tests over ten samples for each
statistical testing suite for each of the RNGs. 65

7.3 Column chart depicting the total number of failed and suspicious tests over ten
samples for each statistical testing suite for each of the RNGs. 66

7.4 Column chart depicting the average runtimes each statistical testing suite took to
run over the ten samples for each of the RNGs . 68

7.5 Column chart depicting the total number of failed tests over ten samples for our
three selected PRNGs and IDQ Quantis RNG. This data was gathered from [4]
and serves vital incite on how well our selected PRNGs perform when compared
to this QRNG. 70

7.6 Column chart depicting the total number of failed tests over ten samples for our
three selected PRNGs and Intel RDSEED. This data was gathered from [4] and
serves vital incite on how well our selected PRNGs perform when compared to
this QRNG. 71

viii

Chapter 1

Introduction

1.1 Motivation
Over the past decade, companies and organizations have been taking advantage of a increas-

ingly popular way to store and compute data which is known today as the cloud [5]. At a surface
level, the cloud is essentially a virtual environment that one can imagine being up in the clouds
compared to on one’s actual machine which provides a safe space to store and manage your data
[5]. There are many benefits to using the cloud including larger storage options for one’s data as
well as faster download and upload speeds [5]. However, a recently emerging technology known
as quantum computing has already begun to threaten the very infrastructure of the cloud including
the security and integrity of user data [6].

Quantum computing allows nefarious users to break conventional security protocols and algo-
rithms that were previously sound compared to classical computing [6]. They do this by taking
advantage of the many benefits that quantum computing provides over classical computing includ-
ing solving considerably complex problems exceedingly faster and being able to process larger sets
of data with ease [6]. The conventional security protocols and algorithms used to protect sensitive
data rely on these complex problems to absolutely prevent nefarious users from accessing the data,
and the fact that quantum computing can solve these complex problems exceedingly faster presents
a very clear problem to data security [6]. In order to combat the ever-growing threats to data se-
curity in the cloud, new and improved protocols and algorithms backed by even more complex
problems must be explored and implemented so that not even quantum computing techniques can
be exploited to expose the sensitive data [6].

The solution to providing unbreakable data security resides in the realm of cryptography. Cryp-
tography handles the masking or encryption of sensitive data so that a nefarious user cannot reveal
or decrypt the contents of the data for their own use [7]. The considerably complex problems
that security protocols and algorithms use are that of different encryption techniques [7]. Many
encryption techniques are used specifically for various purposes depending on the applications of
where the data is stored and how it is accessed [7]. Researchers have been actively modeling and
testing new encryption techniques to deter quantum computing attacks as well as using quantum
computing to deploy attacks on different encryption techniques to determine how sound they are
[7].

Exploring the robustness of pseudo-random number generators (PRNGs) and quantum ran-
dom number generators (QRNGs) stems from the increasing threat posed by quantum computing
to cloud infrastructure and data security [8]. Quantum computing’s ability to break conventional
security protocols and algorithms at a rapid pace presents a significant challenge to safeguarding

1

sensitive data in the cloud [8]. To counter these threats, it is essential to ensure that the randomness
generated by PRNGs and QRNGs meets the highest standards of cryptographic security. By delv-
ing into the realm of statistical testing, the goal is to apply modern testing suites that rigorously
evaluate the quality of randomness produced by these generators. This research focuses on expand-
ing the coverage and rigor of statistical tests to fortify data security, ensuring that even with the
advancements in quantum technologies, the integrity and quality of data storage and management
in cloud services remain robust and secure.

The motivation behind this type of research is to ensure the protection and quality of sensitive
user data in a post-quantum world which is exactly where this paper’s purpose lies.

1.2 Contributions
The contributions of this proposed thesis project are as follows:

• A Command Line Interface (CLI) tool that enables users to seamlessly test random binary
data across multiple contemporary statistical testing suites.

• Statistical and computational analysis on selected RNGs using selected statistical testing
suites utilizing the CLI tool.

• Comparative analysis between statistical testing analysis from selected RNGs and existing
statistical testing analysis on QRNGs.

2

Chapter 2

Background & Related Work

2.1 The Cloud
The cloud is a ubiquitous technology that has become increasingly prominent in today’s world.

At a high level the cloud is a network of remote servers that are used to store, manage, and process
data and applications, rather than relying on local hardware and infrastructure [9]. Thus, this
technology provides a scalable, flexible, and cost-effective way to access resources and services
remotely with little overhead cost for the customer [9]. From social media and business platforms
to enterprise software and government systems, the cloud has become an important part of our
digital landscape, enabling us to store and access data and collaborate on resources in real-time.
With the rise of remote work and digital transformation initiatives, the cloud has become even more
essential, allowing individuals and organizations to access and collaborate on data and resources
from anywhere in the world [9].

2.1.1 Cloud Computing
Cloud computing is a model of computing where computing resources and computing power

are provided over the internet as a service. There are three core services that cloud computing
provides:

Software as a Service (SaaS): A cloud-based software delivery model that enables users to ac-
cess and run applications through internet-connected devices without the need for purchasing
or installing physical software on-premises upfront [9].

Platform as a Service (PaaS): A cloud computing model where a third-party cloud service provider
(CSP) provides an environment on a pay-as-you-go basis, allowing customers to build, de-
velop, run, and manage their applications [9].

Infrastructure as a Service (IaaS): A cloud computing model where a third-party cloud service
provider (CSP) offers virtualized computing resources, including servers, data storage, and
network equipment, to customers on demand over the internet [9].

The cloud computing market in the United States has seen tremendous growth over the past
few years and is only projected to grow at an increasing pace. Customer spending on public cloud
services is expected to grow 20.7% to a total spending of around $600 billion in 2023 [10]. Out
of the three cloud services Infrastructure-as-a-service is expected to observe the highest customer
spending growth in 2023 at 29.8%, although all services are expected to see growth [10].

3

2.1.2 Shared Responsibility Model
There are many shared responsibilities between the CSP and the customer, and the Shared

Responsibility Model is a framework that was created in order to differentiate which of these re-
sponsibilities fall on them, respectively. The model requires that the CSP must be responsible for
the security and infrastructure of the cloud environment while requiring the customer to be respon-
sible for protecting the sensitive data and other assets that they store in the cloud [9]. One common
misunderstanding between the customers and the CSP is that cloud workloads, typically applica-
tions that utilize data, are protected under the CSP [9]. Under this false assumption, customers are
at risk for running cloud workloads with sensitive data in the public cloud which puts the sensitive
data in a vulnerable state [9]. It is important to note that each of the three core services that cloud
computing provides are subject to the concept of shared responsibility [9].

Some of the areas that a user are responsible for include [9]:

• Managing user credentials and user security

• Network and endpoint security

• Any code that might be used for cloud workloads

Some of the areas that a CSP are responsible for include [9]:

• All hardware and cloud infrastructure

• Data centers and facilities that utilize cloud resources

• Cloud virtualization layer between the hardware and software

Although the Shared Responsibility Model requires careful consideration and analysis for the
CSP and customer, there are many immediate benefits that it provides [9]:

Efficiency: While customers hold a considerable amount of responsibility in the Shared Respon-
sibility Model, certain important aspects of security such as hardware, infrastructure, and vir-
tualization layer are mainly handled by the CSP [9]. In a conventional on-premises model,
the customer is primarily responsible for managing these aspects. However, by moving to
the cloud, IT staff can now concentrate on other tasks and requirements while allocating
resources and investments to areas that fall under their responsibility [9].

Enhanced Protection: Cloud service providers are highly attentive to the safety of their cloud
environment and usually allocate substantial resources to guarantee complete protection for
their clients [9]. As a part of the service agreement, CSPs have much more time to perform
comprehensive monitoring and testing, along with prompt patching and updating [9].

Expertise: CSPs frequently possess greater knowledge and proficiency in the evolving domain of
cloud security and by partnering with a cloud vendor, customers can take advantage of the
organization’s experience, resources, and assets [9].

4

2.1.3 Microsoft Azure
One of the modern and very influential companies of today, Microsoft, has employed their

own solution, Microsoft Azure, to provide solutions over all services of the cloud: Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [11]. At its
core, Microsoft Azure is a centralized sandbox for creating all different types of resources that can
work individually or together to provide companies with cloud-based solutions [11]. Microsoft
Azure not only provides several advantages over on-premises solutions but is efficient, flexible,
and very reliable [11].

Microsoft Azure specializes in disaster recovery and data backup [11]:

• Azure offers exceptional flexibility for data backup, supporting multiple languages, operat-
ing systems, and locations.

• Azure site recovery enhances data backup by providing offsite replication, extended data
retention, and cost savings without significant capital investment.

Microsoft Azure provides an easy solution to modern day web and mobile applications [11]:

• Azure offers automatic patch management and continuous deployment support for stream-
lined app management.

• Microsoft AutoScale adjusts resource allocation based on web traffic, optimizing perfor-
mance and cost efficiency.

In the field of quantum computing, Microsoft has created an advanced quantum cloud service
known as Azure Quantum [12]. Within Azure Quantum, users have access to state-of-the-art cloud
tools to help them utilize and refine quantum algorithms using accessible hardware and software
[12]:

• Utilize the Azure Quantum resource estimator tool to project the required number of logical
and physical qubits, runtime, and differences across qubit technologies for executing and
refining quantum applications on future quantum computers.

• Combine classical and quantum computation to innovate hybrid algorithms like adaptive
phase estimation.

• Azure Quantum features quantum Software Development Kits (SDKs) like Q#, Qiskit, and
Cirq, supporting cross-platform deployment, direct access to Quantum Processing Units
(QPUs) for native circuit execution, and a repository of high-quality samples and educa-
tional resources.

There are many more advantages to Microsoft Azure including its plethora of different tailor-
made resources that provide the tools to construct any unique cloud solution. Provided below are
some examples of these resources:

5

Virtual Machine: An Azure Virtual Machine has the capabilities to run virtually any operating
system distribution with up to 416 vCPUs and 12 TB of memory, making them exceedingly
customizable [13]. They also feature per-second billing allowing for only paying what com-
puting power one uses, scaling which allows customers flexibility with the type of hardware
they would like to utilize, and comprehensive data encryption features that meet regulatory
requirements [13].

Storage Account: Azure Storage Accounts offer plenty of different options to store data within
the cloud including blobs, tables, and queues [14]. This flexibility allows for auto scaling to
fit customer needs, and the storage accounts can be seamlessly woven into different standing
projects within Azure cloud as well as outside via REST API [14].

Function App: Azure Function Apps allow for various pieces of code to be deployed via a server-
less architecture, reaping the benefits of no designated server infrastructure and configura-
tions [15]. Function apps are designed to carry out smaller tasks that can work completely
independent from your project via accessible endpoints [15].

2.2 Quantum Computing
Quantum computing is a rapidly emerging technology that is on track to revolutionize the way

we process information. Unlike classical computers that rely on binary bits to store and process
information, quantum computers use quantum bits or qubits, which can exist in multiple states
simultaneously, allowing for more complex calculations and exceedingly faster processing times
[16]. Quantum computing has the potential to solve complex problems in a wide range of fields,
from materials science and cryptography to artificial intelligence and machine learning. As a result,
many companies and research institutions as well as governments are investing heavily in quantum
computing research and development, and the technology will inevitably have a colossal impact
on many areas of science and industry [16].

2.2.1 Properties of Quantum Mechanics
Quantum computers rely on four basic properties found in the realm of quantum mechanics to

provide the inherent ability to compute complex calculations:

Superposition: Superposition is a fundamental concept in quantum mechanics that describes the
ability of a quantum system to exist in multiple states simultaneously [17]. This means that
until a measurement is made, the system is not confined to a single state but rather exists in
a combination of all possible states [17]. For instance, an unmeasured electron can exist in
superposition, where it occupies multiple energy levels or positions simultaneously. The act
of measurement causes the superposition to collapse into a single state, with the resulting
state being one of the possible states that the system could be in [17].

6

Entanglement: Entanglement is a quantum property that enables the linkage of objects, specif-
ically qubits, in a way that their properties become interconnected, regardless of distance
[17]. By creating entanglement between qubits in a quantum computer, the system can pro-
cess information in a fundamentally different way than classical computers, allowing it to
examine multiple states at once [17]. This results in a significant computational advantage,
enabling quantum computers to solve complex problems and find solutions much faster and
more efficiently than classical computers [17].

Interference: The phenomenon of interference is a crucial tool for manipulating quantum states
[17]. The two types of interference are called constructive interference which can enhance
signals and destructive interference which can cancel out signals [17]. By exploiting inter-
ference, quantum systems can be designed to amplify certain states while suppressing others,
which can improve the accuracy of measurements and increase the probability of obtaining
a correct outcome [17].

Coherence/Decoherence: The performance of quantum computers can be significantly impacted
by noise and environmental disturbances, making them extremely sensitive to external ef-
fects [17]. Moreover, the inherent quantum nature of the information makes it prone to
decay over time towards the state of decoherence, limiting the number of operations that can
be performed before the information is lost [17].

2.2.2 Quantum Algorithms
The inability to solve exceedingly complex calculations is a classical computer’s most promi-

nent shortcoming in today’s world, but quantum computing revolutionizes this by proving impres-
sive calculation times in comparison to classical computers [16]. According to an IBM internal
analysis of quantum computing’s potential for significant speed improvements over classical com-
puters, a classical algorithm with exponential run time that takes roughly 3300 years would only
take a quantum algorithm with polynomial time 11 minutes [16]. There have been many revolution-
ary quantum algorithms that have been discovered that have shaken the foundations of mathematics
and physics. Two significant algorithms that have been discovered thus far are [18]:

Shor’s Algorithm: Every integer contains a unique decomposition of itself into other smaller fac-
tors [18]. One very difficult problem that was born out of the factoring of large integers
was the problem of finding the prime factors of the integer [18]. Suppose we would like to
factor an arbitrary integer N with d decimal places [18]. The classical brute-force algorithm
requires the need to search through all prime numbers pi ∈ {p1, p2, ..., pk} up to

√
N and

check where pi divides N [18]. At worst case, this classical brute-force algorithm would
take roughly

√
N which increases exponentially as d increases [18]. Immediately, the draw-

backs of this classical algorithm can be made known which motivated researchers to seek
out a better more efficient algorithm. In 1995, a mathematician by the name of Peter Shor
proposed a polynomial-time quantum algorithm addressing this factoring problem [18]. The
backbone of this algorithm relies on being able to solve another problem known as period
finding: Given integers N and a, find the smallest positive integer r such that ar − 1 is a

7

multiple of N [18]. The number r is referred to as the period of a modulo N. Provided below
is an algorithmic representation of period finding [18]:

a2 = j1 (mod N)
a3 = j2 (mod N)

...
ar = 1 (mod N),

where ji ∈ { j1, j2, ..., jr−2} is the result of carrying out the modular exponentiation [18].
Once the period r is found for an arbitrary number N, let us then use the identity [18]

ar −1 = (ar/2 −1)(ar/2 +1).

We can first observe that ar/2 − 1 is not a multiple of N since otherwise r/2 would then be
the smallest period for N [18]. This then separates the problem into two cases [18]:

Case 1: ar/2+1 is not a multiple of N. So, neither integers ar/2±1 are factors of N, meaning
p1 is a prime factor of ar/2 −1 and p2 is a prime factor of ar/2 +1 (or visa versa) [18].
Thus, the two prime factors p1 and p2 can be computed by finding the greatest common
denominator of N and ar/2 ±1 denoted by gcd(N,ar/2 ±1) [18].

Case 2: ar/2 + 1 is a multiple of N. In this case, it is wise just to stop and find a different
integer a since the occurrence of this case is not significantly common [18].

Shor’s becomes advantageous when implemented on a quantum computer due to its efficient
simulation of the period-finding machine [18]. The primary reason that Shor’s algorithm
does not work on classical computers is due to the computational complexity of calculating
modular exponentiation in the period-finding problem [18]. In terms of performance, Shor’s
algorithm runs in polynomial time on a quantum computer compared to exponential time on
a classical computer, providing a substantial speedup for being able to find prime factors for
large integers [18].

Grover’s Algorithm: Suppose you have a collection of N items stored in an unsorted database
and you would like to find an item with some desired property. Let’s label this desired
item as w among the collection of items. Using a classical computer, one would need to go
through on average N/2 of these items before finding w [18]. Furthermore, worst case one
would need to go through all N to find w [18]. Fortunately, by using Grover’s algorithm we
can reduce the amount of time to find the desired item w to around

√
N steps [18]. Grover’s

algorithm even applies to generic list structures which makes it very versatile [18]. The key
idea that is used in Grover’s algorithm is amplitude amplification [18]. Suppose our database
is constructed of all possible basis states that the qubits can be in [18]. For example, suppose
we have 2 qubits, so our list of possible computational basis states is comprised of:

|00⟩, |01⟩, |10⟩, |11⟩.

8

Since the chance of finding w is uniform compared to the other items, we can represent this
as a quantum state of uniform superposition [18]:

|s⟩= 1√
N ∑

N−1
x=0 |x⟩.

Based on the properties of a quantum system being in superposition, observing a state of this
quantum system would collapse it into one of the basis states, where each state has exactly
1
N chance of collapsing into [18]. So, on average we would need to collapse the quantum
system 1

N times to find w which is an exact representation of our problem [18]. Let’s now
use amplitude amplification to enhance our chances of finding w. At a high level, amplitude
amplification extends the amplitude of the probability of collapsing into w while concur-
rently shrinking the amplitudes of the other states [18]. Carrying out repeated operations
on the quantum system using amplitude amplification will return w with exceedingly high
confidence [18].

2.3 Cryptography
Cryptography is a field of study that deals with developing secure communication techniques

that enable authorized parties to access and interpret sensitive information [19]. It involves using
various algorithms and methods to encrypt data and messages to ensure confidentiality, integrity,
and authenticity [19]. Cryptography plays a critical role in the digital age, where secure commu-
nication and online transactions have become so prevalent [19].

2.3.1 Pseudo-Random Number Generators
In order to achieve strong levels encryption within cryptography one must use robust sources

of randomness. Randomness (entropy) is fundamental to cryptography because it is essential for
generating keys which are the main ingredient for encrypting [20]. Higher randomness equates to
a more secure cryptographic system [20]. Thus, the main challenge is creating true randomness.
To create randomness, Random Number Generators (RNGs) are used:

Random Number Generators (RNGs): An RNG relies on a nondeterministic source, referred
to as the entropy source, along with an entropy distillation process to produce randomness
[1]. The distillation process is essential to address any weaknesses in the entropy source that
might result in non-random sequences, such as long strings of zeros or ones [1]. Typically,
the entropy source derives from a physical quantity like electrical circuit noise, user process
timing (e.g., keystrokes or mouse movements), or quantum effects in semiconductors, often
using various combinations of these inputs [1].
The outputs of an RNG can be used directly as random numbers or can be fed into a pseu-
dorandom number generator (PRNG) [1]. To be used directly, the RNG output must satisfy
strict randomness criteria, verified by statistical tests to ensure that the physical sources of
the RNG inputs appear random [1]. For example, electronic noise might seem random but

9

could contain regular structures like waves or periodic phenomena that statistical tests would
identify as non-random [1].
For cryptographic applications, RNG outputs must be unpredictable. However, some phys-
ical sources, such as date/time vectors, can be quite predictable. Combining outputs from
different types of sources can mitigate this issue, but the resulting RNG outputs might still
fail statistical tests for randomness [1]. Additionally, producing high-quality random num-
bers can be time-consuming, which is impractical when large quantities are needed [1]. In
such cases, pseudorandom number generators may be more suitable.

Pseudo Random Number Generators (PRNGs): A pseudorandom number generator (PRNG)
generates multiple ”pseudorandom” numbers using one or more inputs known as seeds [1].
In applications requiring unpredictability, the seed must be random and unpredictable, typ-
ically sourced from a random number generator (RNG), making an RNG essential for a
PRNG [1]. The PRNG’s outputs are deterministic functions of the seed, meaning the only
true randomness comes from the seed generation [1]. This deterministic nature is why the
term ”pseudorandom” is used. Since each value in a pseudorandom sequence can be recre-
ated from its seed, saving the seed is sufficient for reproducing or verifying the sequence [1].
Ironically, pseudorandom numbers can appear more random than those from physical sources
[1]. A well-constructed pseudorandom sequence transforms each value from the previous
one, which seems to add extra randomness [1]. Multiple transformations can remove sta-
tistical auto-correlations between inputs and outputs, resulting in PRNG outputs with better
statistical properties and faster production than those from an RNG [1].

2.3.2 Encryption Techniques
Some of the common encryption techniques used in cryptography include symmetric-key en-

cryption and public-key encryption [19]:

Symmetric-Key Encryption: A type of encryption where a single key is used in correspondence
with both the encryption and decryption of sensitive plaintext [19]. This type of encryp-
tion is widely used in major industries such as aerospace, business, and health care. It is
important to note that this type of encryption is not limited to sharing sensitive information
between just two parties [19]. Any person who has possession of the key is able to access
the sensitive information which therein lies a problem of data access by unauthorized parties
[19]. Symmetric-key encryption is categorized into two types of ciphers: block ciphers and
stream ciphers.

Block Ciphers: Block ciphers are known for converting arbitrary plaintext into fixed-sized
blocks of data, usually either 64 bits or 128 bits (8 bytes or 16 bytes respectively) in
length [21]. Some modes of block ciphers also require an initialization vector (IV)
for encryption [21]. An IV is a pseudo-random or random sequence of characters
used to encrypt the first block of plaintext which then results in a unique initialization
ciphertext block for the subsequent blocks [21].
Block ciphers are based on a type of mathematical construct known as Pseudo Random

10

Figure 2.1: Block diagram representing a block cipher [2]

Permutations (PRPs) [2]. PRPs are invertible functions that accept an n-bit input m
along with a secret key k, and produce an n-bit output c [2]. A PRP is secure if it
is indistinguishable from a random bijective function mapping n-bit inputs to n-bit
outputs [2]. Block ciphers use secure PRPs to:

1. Encrypt a block of plaintext into a block of ciphertext using a secret key [2]
2. Decrypt the ciphertext block back into the original plaintext block [2]

Block cipher operations ensure that the plaintext is thoroughly mixed and dispersed
into the ciphertext [2]. This means that even small changes in the plaintext result in
drastically different ciphertexts [2]. Figure 2.1 shows the high-level architecture of a
typical block cipher. In block cipher encryption, each plaintext block corresponds to a
ciphertext block [2]. As a result, changing one bit in the plaintext can alter the entire
ciphertext block, demonstrating the cipher’s sensitivity to changes in the plaintext [2].

Below are some common block cipher modes [21]:

• Cipher Block Chaining (CBC) - In this mode, plaintext is broken up into blocks
of data where the first block is initially encrypted with the IV via bitwise exclusive-
OR and then encrypted again with the key [21]. Thereafter, each subsequent block
is encrypted by the previous block’s resulting ciphertext and then encrypted again
with the key [21].

• Counter Mode (CTR) - In this mode, plaintext is broken up into blocks of data
where the blocks are encrypted separately from one another using a counter as
the initialization vector. After every subsequent block encryption the counter is
incremented [22]. One primary advantage over many other block ciphers is that
counter mode supports parallel computing [22].

One advantage that block ciphers provide over stream ciphers is that, in general, there
is a high diffusion rate since most modes incorporate previous ciphertext blocks in the
encryption of subsequent plaintext blocks [21]. However, this high diffusion rate also

11

correlates to a high error propagation rate which implies that a minor change to the
plaintext will significantly change the subsequent ciphertext blocks [21].

Stream Ciphers: Stream ciphers are known for encrypting a continuous stream of bits of
data using keystreams [21]. A keystream is essentially a combination of a key and a
nonce (number used only once) to form a pseudo-random number which is then used
to encrypt the plaintext by bitwise exclusive-OR [21]. Stream ciphers are grounded in

Figure 2.2: Block diagram representing a stream cipher [2]

a theoretical cipher known as the One Time Pad (OTP) [2]. In an OTP, the secret key
must be the same length as the message m [2]. The encryption function is defined as
E(k,m) = m⊕ k, and the decryption function is D(k,c) = c⊕ k [2]. Typically, both
plaintext and ciphertext are processed as bitstreams [2]. The key k is referred to as the
keystream, and it is combined bit by bit with the plaintext to generate the ciphertext
stream [2].
If the keystream is perfectly random (i.e., follows a uniform distribution), the OTP
achieves perfect secrecy [2]. This means the resulting ciphertext is indistinguishable
from a random sequence, due to the properties of the XOR operation [2] [2]. Conse-
quently, an attacker intercepting the ciphertext cannot gain any information about either
the message or the key [2]. However, the OTP is impractical because the sender and
receiver must share a secret key that is as long as the message [2].
Stream ciphers implement the OTP concept. In stream ciphers, the keystream is gen-
erated by a Pseudo-Random Generator (PRG) [2]. The PRG takes a value k (the seed
of the stream cipher) as input and outputs the keystream S(k) [2]. Thus, the encryption
and decryption functions are defined as E(k,m) = m⊕S(k) and D(k,c) = c⊕S(k) [2].
Therefore, the secret key exchanged between the sender and receiver is the seed of the
PRG, which is much shorter than the resulting keystream [2]. As long as the PRG pro-
duces an unpredictable keystream, the stream cipher remains secure [2].
In Figure 2.2, the high-level architecture of a typical stream cipher is depicted. It is

12

important to note that in stream cipher encryption, there is always a bit-to-bit corre-
spondence between plaintext and ciphertext. Specifically, a one-bit difference in the
plaintext results in the same one-bit difference in the ciphertext [2].

Stream ciphers can be categorized into synchronous and asynchronous stream ciphers
[21]:

• Synchronous - These types of stream ciphers generate keystream blocks that are
independent from past plaintext and ciphertext blocks [21].

• Asynchronous - These types of stream ciphers generate keystream blocks as a
function of the symmetric key as well as a fixed size of the previous ciphertext
block [21].

Below is a common stream cipher mode [21]:

• Salsa20 - Salsa20 is a lightweight efficient cipher that uses an expansion function
to create a keystream [21]. The keystream is created via a key, nonce, and constant
vectors using various add-rotate-XOR (ARX) operations [21].

Public-Key Encryption: Also known as asymmetric encryption, public-key encryption uses two
mathematically-linked keys known as a public-private key pair in order to encrypt and de-
crypt sensitive information [19]. In order to send sensitive information one must encrypt the
data with their destination’s public key and then the destination may decrypt that data with
their own private key [19]. This process ensures that the parties’ respective private keys are
never to be shared with any unauthorized parties [19].

RSA Asymmetric Encryption System: The RSA Asymmetric Encryption System forms
the basis for most public-key encryption schemes [23]. RSA was first introduced in
1977 by its founders Rivest, Shamir, and Adleman, hence the name [23]. Suppose we
select two large prime numbers x and y [23]. We then calculate n as a product of x and y
denoted as n= x ·y [23]. We then compute Euler’s totient function φ(n)= (x−1)(y−1)
[23]. We then select an integer e that is relatively co-prime to φ(n) where 1 < e < φ(n)
[23]. The pair (n,e) now makes up the public key which can be considered as a physical
lock to encrypt your sensitive data [23]. To calculate the private key we use the public
key and the extended euclidean algorithm to find d such that d = 1 (mod φ(n)) [23].
The pair (n,d) then make up the private key [23].

2.3.3 Message Authentication Codes
The main goal of data encryption within cryptography is to ensure that sensitive data remains

confidential. However, there is also another side of cryptography that handles the integrity of
sensitive data. In order to ensure that sensitive data does not get tampered with in any way by an
adversary, Message Authentication Codes (MACs) are used [24]. MACs can be considered as a
digital signature for data since they tell you who created or sent the data and whether the data has
been tampered with [24]. A MAC is usually in the form of a tag or small string of bits that are
concatenated to the message. Two important properties that MACs provide are [24]:

13

• Completeness - When a message is sent to a receiver, the receiver can use the tag to then
verify the message and confirm the message integrity [24]

• Security - Tags are derived from the message before it has been sent, which means that a
receiver can determine if the message has been altered by verifying the message with the tag
[24]

Below are some common variations of MACs:

• Hash-Based MAC (HMAC) - Hash-Based MAC essentially uses a cryptographic hashing
algorithm such as MD5 or SHA-256 to hash the data into a fixed bit size tag [25]. This tag
along with the file data is sent over the server to the end user, who then hashes the retrieved
file themselves and compares their generated hash to the shared, server generated hash value
[25]. Furthermore, HMAC also employs the authenticity check of the message by providing
exchanging parties a way to verify that the message is actually from their interacting parties
[25]. HMAC implements this authenticity check by carrying out a preliminary process of
key exchanging where both parties exchange a shared secret key [25]. HMAC is excellent
for ensuring file transfer data integrity due to its efficiency with handling large files [25].

• Cipher-Based Mac (CMAC) - Cipher-Based Mac creates message authentication tags by
using a block cipher and a private key similar to Cipher Block Chaining (CBC) encryption
[26]. However, instead of using a standardized hashing function like in HMAC, CMAC uses
a block symmetric key method [26]. CMAC would be more beneficial to use when there
is embedded hardware that offers hardware acceleration [26]. Generally however, HMAC
provides a faster authentication method over CMAC [26].

• Parallelizable Mac (PMAC) - Many other conventional MAC algorithms are sequential,
meaning that in order to move forward in the authentication algorithm one must encrypt
the previous message blocks [27]. PMAC has a similar block cipher structure to CMAC
but provides a parallelizable solution to this problem by allowing a MAC to be calculated
independently for each message block [27]. An immediate benefit to this is a decrease in
bottleneck for network speeds which increases the speed of cryptographic hardware [27].

2.3.4 Authenticated Encryption
In order to provide a complete spectrum of protection over sensitive user data, different ciphers

can be used in part with different MACs. Using both ensures that sensitive user data is protected
both in terms of confidentiality and integrity to maximize data protection which is otherwise known
as authenticated encryption [28]. A select few of these authenticated encryption protocols have
been standardized by the National Institute of Standards and Technology (NIST) [28]:

• Galois/Counter Mode (AES-GCM) - This mode of operation uses AES-CTR for the en-
cryption and then uses CW-MAC for the authentication [29]. This system requires the use
of a nonce, or initialization vector, which is unique to every instance of the protocol, a key
for the encryption operation, and associated data that will be authenticated but not encrypted
[29].

14

• Counter with Cipher Block Chaining Message Authentication Code (AES-CCM) - This
mode of operation uses CBC-MAC for the authentication and then uses AES-CTR for the
encryption [28]. This system has similar requirements to AES-GCM in that it requires the
use of a nonce, or initialization vector, which is unique to every instance of the protocol,
a key for the encryption operation, and associated data that will be authenticated but not
encrypted [28].

2.4 Cloud Security
The use of cryptographic techniques in cloud security refers to the implementation of methods

to safeguard the privacy and security of data stored and processed in the cloud. Cryptography offers
several tools to ensure the confidentiality, integrity, and authenticity of data, all of which are essen-
tial requirements for cloud security [30]. Encryption is a popular cryptographic technique used to
protect data both at rest and in transit, making it unreadable to unauthorized parties. Furthermore,
cryptographic protocols, such as secure key exchange mechanisms and digital signatures, can be
used to authenticate users and secure cloud-based transactions. However, implementing cryptogra-
phy in cloud security requires careful consideration of factors such as key management, protection,
and distribution [30].

2.4.1 Cloud Security Challenges
Provided below are some challenges that cryptography faces within the cloud:

• Secure Key Management - Since cloud-based transactions require encryption and decryp-
tion methods to protect sensitive user data, the keys that are used in these methods require
protection from adversaries in some way [31]. CSPs provide this key protection by imple-
menting key management protocols [31]. Some of these cloud key management protocols
include hardware security modules and other tools which are necessary to meet compliance
requirements from different reference standards such as the United States National Institute
of Standards and Technology (NIST) [31].

• Multitenancy - CSPs provide their services to many different customers using computing
resources and power [32]. Multitenancy is the idea that the customers of the CSP all use
the same computing resources and power from the same source, although the data remains
completely separate to sustain data confidentiality and integrity [32]. Multitenancy also
helps CSPs conform to many compliance requirements for cryptography that require CSPs
to ensure user data is handled in a conformed and uniform way [32]. Multitenancy also
allows better use of resources since cloud computing servers or machines can be shared
amongst users which in turn lowers the user costs [32].

• Scalability - The cloud is an ever-fluctuating network of storage and computing resources,
and in order for the cloud to be an integral role in customers and organizations it must
be able to scale to meet the ever-increasing demands of computing power, memory, and

15

communication speeds [33]. With these demands calls for the continuing preservation of
data confidentiality and integrity [33].

2.4.2 Cloud Computing Resources
Among the cloud, there are many cloud computing resources that can function as random

number generators (RNGs) and are publicly available for use. These resources may be used for
cryptographic applications as long as they produce randomness deemed secure by statistical testing
suites. Provided below are two modern cloud computing resources that can be used as RNGs:

1. Sparse Simulator: High-performance simulation methods for quantum programs on clas-
sical hardware often use large vectors to represent quantum states, but these states are fre-
quently sparse due to algorithmic structures [34]. A novel simulation technique was in-
troduced to exploit this sparsity, reducing memory usage and runtime [34]. Optimizations
such as gate rescheduling were also implemented to minimize data structure accesses [34].
The technique was benchmarked with quantum algorithms for factoring, integer and elliptic
curve discrete logarithms, and chemistry applications [34]. The Sparse Simulator can be uti-
lized through Microsoft Azure Quantum by using their open-source programming language
called Q# within their Azure Quantum Development Kit [35]. Q# can be used to deploy code
solutions as complex as recreating quantum algorithms or as simple as creating an RNG.

2. Wolfram Cloud: The Wolfram Cloud integrates a cutting-edge notebook interface with the
Wolfram Language, allowing for scalable programming and immediate access to a wide
array of built-in algorithms and knowledge [36]. It enables seamless code and content de-
ployment, offering instant APIs, mobile apps, and interactive document embedding [36].
Utilizing the extensive Wolfram Knowledgebase, the Wolfram Cloud ensures continuous
data updates and robust automation, along with flexible storage solutions and programmable
permissions [36]. Wolfram Language can be used to deploy code that utilizes built-in algo-
rithms to construct RNGs, taking advantage of the computing power Wolfram Cloud has to
offer.

Despite these challenges, cryptography remains a crucial tool for cloud security, providing a
means for organizations to safeguard their data against unauthorized access through what the tools
of cloud computing resources have to offer.

2.5 Quantum Cryptography
Quantum cryptography is a sub-field of cryptography that aims to create secure communication

channels that are impossible to eavesdrop on. Unlike traditional cryptographic systems that rely
on mathematical algorithms, quantum cryptography uses the principles of quantum mechanics
to protect data [37]. The central idea behind quantum cryptography is that a quantum system
cannot be observed without disturbing it, making it impossible for an eavesdropper to intercept
messages without leaving a trace. For instance, a popular technique used in quantum cryptography

16

is Quantum Key Distribution (QKD), which involves the exchange of quantum states between two
parties to establish a secret key. Since any attempt to observe the quantum states by a third party
would disrupt the transmission, the two parties can detect the presence of an eavesdropper and
abort the key exchange [37]. Another example of utilizing quantum mechanics is what are known
as quantum random number generators (QRNGs). QRNGs play a vital role in generating random
numbers by exploiting properties of subatomic particles such as electrons and photons [3].

2.5.1 Quantum Random Number Generators
In order to generate random numbers, different device constructions are developed such as the

ones provided below [3]:

• Radioactive Decay QRNGs - Radioactive decay-based quantum random number generators
utilize the inherent randomness of radioactive decay processes to generate random numbers
[3]. These QRNGs rely on the unpredictability of the timing or energy levels of radioactive
decay events to produce truly random outcomes [3]. The detection of radioactive decay
events by devices such as Geiger counters serves as a source of entropy, which is converted
into random numbers through appropriate measurement and processing techniques [3].

• Noise-based QRNGs - Noise-based quantum random number generators leverage the intrin-
sic randomness present in electronic or quantum noise phenomena present in electrical cir-
cuits to generate random numbers [3]. Specifically, these QRNGs exploit the unpredictable
fluctuations or variations in electrical signals such as shot noise or vacuum fluctuations [3].
The randomness is captured through specialized sensors or circuits that amplify and extract
the noise signals [3].

• Optical QRNGs - Optical quantum random number generators utilize the principles of quan-
tum optics to generate random numbers such as the nature of light or the uncertainty princi-
ple, to produce unpredictable outcomes [3]. Optical QRNGs typically involve the detection
of single photons or the measurement of quantum properties of light, such as its polarization
or phase [3]. Furthermore, some QRNGs utilize the same unpredictable emittance of light
similar to how radioactive decay QRNGs operate [3].

2.5.2 Post-Processing
QRNGs are very often used to construct a random number generator protocol which involves

more than just the generators themselves [3]. In Figure 3.1, a simple block diagram is shown
visually representing a quantum random number generator with post-processing. Post-processing
is done on the outputted numbers to first extract more randomness out of them and then validate
that they are in fact random enough to meet regulatory standards, such as the National Institute
of Standards and Technology (NIST) standards for random numbers [3]. Post-processing can be
broken down into two key components [3] [38]:

17

Figure 2.3: Block diagram representing a quantum random number generator [3]

• Randomness Extractors - Randomness extractors are algorithms or techniques designed
to distill true randomness from potentially imperfect or biased sources of data, in this case
QRNGs [3]. These extractors aim to eliminate any biases or correlations in the input data and
produce high-quality random numbers by applying mathematical and statistical operations
to transform the input data into a more uniform and unbiased distribution [3].

• Verification Testing - Statistical testing for random numbers involves examining the char-
acteristics of the data to determine its level of randomness [38]. Some examples of these
characteristics are the number of ones and zeros or patterns in m-bit blocks of the data [38].
They are organized into test suites that provide more comprehensive randomness analysis
such as the NIST Statistical Test Suite, an efficient implementation of these tests that pro-
vides fast throughput of testing random numbers [38].

2.5.3 Statistical Testing Suites
Numerous testing suites have been developed before and after NIST released its standardized

testing suite, and most continue to challenge the benchmark of how rigorous the statistical testing
should be. Quite a few are very popular today, and they are:

• ENT statistical testing suite: The ENT statistical test suite is a small testing suite comprised
of 6 statistical tests which are entropy, ideal compression rate, Chi-square test, arithmetic
mean, Monte Carlo estimation of π and serial correlation [39].

• PractRand statistical testing suite: PractRand includes a comprehensive battery of tests to
detect bias in RNGs efficiently, outperforming other test suites in detecting biases quickly
[40]. It offers flexible testing options, including command line tools for easy integration
and multithreaded capabilities for higher performance [40]. PractRand supports very long
sequence lengths, features original tests, and allows for preliminary result evaluations at any
time during testing. However, it requires more random bits than most test suites, which may
not be suitable for very slow PRNGs [40].

18

• TestU01 statistical testing suite: TestU01 is an ANSI C software library providing a suite of
tools for the empirical statistical testing of uniform random number generators (RNGs) [41].
The library features predefined test suites for uniform random numbers and bit sequences
and tools for studying the interaction between tests and the point sets from various RNG
families, helping determine necessary sample sizes before an RNG fails [41]. TestU01 also
offers various generic and specific RNGs, both from literature and widely used software
[41]. Tests can be applied to predefined generators, user-defined generators, or random
number streams from any device or file [41]. Additionally, the article surveys and classifies
statistical tests for RNGs and applies these test batteries to many commonly used RNGs [41].

• Diehard(er) statistical testing suite: Dieharder is a tool designed for timing and testing
both software and hardware random number generators (RNGs) for research and crypto-
graphic purposes [42]. Unlike its predecessor Diehard, which uses file-based sources of
random numbers limited to about ten million, Dieharder supports testing of generators that
can produce unbounded streams of random numbers, essential for modern applications need-
ing 1018 or more random numbers [42]. Dieharder supports three types of file-based input,
including piping bit streams and direct file input of binary or ASCII formatted numbers, and
can handle large files [42]. Additionally, Dieharder is extensible, incorporating all Diehard
tests and eventually all NIST STS tests, aiming to include various user-contributed tests and
those from the literature, making it a comprehensive tool for RNG testing and validation
[42].

Various statistical tests can be used to evaluate and compare a sequence to a truly random one.
Randomness is characterized by probabilistic properties, which can be described and predicted us-
ing probability [1]. The outcomes of these tests on a truly random sequence are known in advance
and can be expressed in probabilistic terms [1]. There are countless possible statistical tests, each
designed to detect patterns that would suggest the sequence is not random. Because there are so
many tests, no single set of tests is considered exhaustive. In fact, there will never be a complete
list of statistical tests, which implies that completeness will never be achieved [1]. Additionally, the
results of these tests must be interpreted carefully to avoid incorrect conclusions about a generator
[1].

A statistical test is designed to evaluate a specific null hypothesis (H0). In this context, the
null hypothesis is that the sequence being tested is actually random [1]. The alternative hypothesis
(Ha) is that the sequence is not random [1]. Each test results in a decision to accept or reject the
null hypothesis, determining whether the generator is producing random values based on the tested
sequence [1]. Each test uses a relevant randomness statistic to decide on the null hypothesis. As-
suming the sequence is random, this statistic follows a certain distribution. A theoretical reference
distribution of this statistic under the null hypothesis is determined mathematically, from which a
critical value is derived (typically far out in the tails of the graphed distribution, such as at the 99%
point) [1]. During the test, a test statistic value is calculated for the sequence, and if this value
exceeds the critical value, the null hypothesis of randomness is rejected (otherwise, it is accepted)
[1].

Statistical hypothesis testing works because the reference distribution and critical value are
generated under the assumption of randomness [1]. If the data is truly random, the test statistic

19

value should have a very low probability (around perhaps 0.01%) of exceeding the critical value
[1]. If the test statistic value does exceed the critical value, it suggests that the assumption of ran-
domness is incorrect [1]. Therefore, exceeding the critical value leads to rejecting H0 (randomness)
and accepting Ha (non-randomness).

Statistical hypothesis testing produces one of two conclusions: either accept H0 (the data is ran-
dom) or accept Ha (the data is non-random) [1]. The following table relates the true but unknown
status of the data to the conclusion derived from the testing procedure.

Null Hypothesis (H0) Is: True False
Rejected Type I Error No Error
Not Rejected No Error Type II Error

Table 2.1: Type I and Type II Errors [1]

If the data is genuinely random, rejecting the null hypothesis (concluding that the data is non-
random) will happen a small percentage of the time, known as a Type I error [1]. On the other
hand, if the data is truly non-random, accepting the null hypothesis (concluding that the data is
random) results in a Type II error [1]. Correct conclusions occur when H0 is accepted if the data is
random and when H0 is rejected if the data is non-random (resulting in a ”No Error” conclusion)
[1].

The probability of a Type I error is often referred to as the level of significance of the test and
is denoted as α . This is the probability that the test will indicate a sequence is not random when
it actually is [1]. In cryptography, common values for α are around 0.01, meaning there is a 1%
chance of concluding non-randomness for a truly random sequence [1].

The probability of a Type II error is denoted as β . This is the probability that the test will
indicate a sequence is random when it is not, meaning a ”bad” generator produced a sequence that
seems random [1]. Unlike α , β is not fixed and can vary because there are many ways a data
stream can be non-random, each yielding a different β [1]. Calculating β is more complex than
calculating α due to these many possible forms of non-randomness [1].

A key goal of the tests is to minimize the probability of a Type II error, for example, to reduce
the chance of accepting a sequence as random when the generator is actually faulty [1]. The
probabilities α , β , and the size n of the tested sequence are interrelated such that specifying any two
determines the third [1]. Typically, one selects a sample size n and a value for α (the probability
of a Type I error) [1]. They then choose a critical point for the statistic that minimizes β (the
probability of a Type II error) [1]. This involves selecting an appropriate sample size and an
acceptable level of significance to ensure the smallest possible probability of incorrectly accepting
a sequence as random [1].

Each test relies on a calculated test statistic value, which is derived from the data [1]. If the test
statistic value is S and the critical value is t, then the probability of a Type I error is expressed as
P(S > t || H0 is true) = P(reject H0 | H0 is true), and the probability of a Type II error is expressed
as P(S ≤ t || H0 is false) = P(accept H0 | H0 is false) [1]. The test statistic is used to calculate a
P-value, summarizing the strength of the evidence against the null hypothesis [1]. For these tests,
each P-value represents the probability that a perfect random number generator would produce a

20

sequence less random than the one tested, given the type of non-randomness the test assesses [1].
A P-value of 1 indicates perfect randomness, while a P-value of 0 indicates complete non-

randomness [1]. A significance level (α) can be chosen for the tests. If P-value ≥ α , the null
hypothesis is accepted, suggesting the sequence appears random [1]. If P-value < α , the null
hypothesis is rejected, suggesting the sequence appears non-random [1]. The parameter α denotes
the probability of a Type I error, typically chosen in the range [0.001, 0.01] [1].

Provided below are two eaxmples where a P-value is chosen, and the resulting conclusion can
be made:

• Example 1: α = 0.01: Implies that 1 out of every 100 sequences would be rejected if it
were random. A P-value of 0.01 or higher indicates that the sequence is random with 99%
confidence, while a P-value below 0.01 indicates non-randomness with 99% confidence [1].

• Example 2: α = 0.001: Implies that out of 1000 random sequences, we would expect one
sequence to be rejected by the test. If the P-value is greater than or equal to 0.001, the
sequence is deemed random with 99.9% confidence. Conversely, if the P-value is less than
0.001, the sequence is considered non-random with the same level of confidence [1].

In the research conducted within this paper, a P-value of 0.01 is used, which is also the same
P-value used within NIST’s publication of their standardized testing suite. Overall, Quantum Cryp-
tography holds great promise for the future of secure communication.

2.6 Cloud Computing with Quantum Cryptography
Cryptography, cloud computing, and quantum mechanics all come together in the realm of

cloud computing with quantum cryptography. Quantum cryptography leverages the principles of
quantum mechanics to create secure communication channels, which are essential for cloud com-
puting, where sensitive data is stored and processed. With the emergence of quantum computers,
traditional cryptographic systems are becoming increasingly vulnerable to attacks, and quantum
cryptography offers a promising solution for ensuring the security of cloud-based applications. As
cloud computing and quantum cryptography continue to evolve, the future of secure cloud-based
systems will likely depend on a combination of traditional cryptographic techniques and quantum-
enabled security measures.

2.7 Related Work
Currently, there is developing research into the new paradigm of statistical testing of random

number generators, both pseudo and quantum alike. This developing research is challenging the
adhesiveness of RNGs to the ever-changing benchmark of cryptographically secure randomness by
exploring broader statistical testing suites as well as their own protocol implementations. Several of
these research papers within this realm will be unpacked in order to build upon existing knowledge
and provide additional insight in this area.

21

2.7.1 Cloud-based Quantum Random Number Generator System
With the birth of quantum computing comes both benefits and drawbacks in the realm of cloud

computing, cloud storage, and data security. Specifically, quantum computing has provided new
ways to compromise classical Psuedorandom Number Generators (PRNGs) [43]. PRNGs are used
at a great extent to output seemingly random numbers which are then used in cryptosystems to hide
sensitive information. Quantum computing has opened up new security loopholes and algorithm
attacks on these classical generators which presences a huge concern, especially when these classi-
cal cryptosystems are used by companies who require the utmost security for their customers’ data
[43]. Quantum Random Generators (QRNGs) have become increasingly sought after since they
provide an excellent solution to the security loopholes. Alibaba Cloud servers currently use these
QRNGs to produce random numbers by leveraging the properties of quantum mechanics. There
are four unique QRNGs that Alibaba Cloud servers use [43]:

• single-photon detection

• photon-counting detection

• phase-fluctuations

• vacuum-fluctuations

At a high level, these four methods involve observing, counting, or detecting photons of light
which act in a random manner based on the principles of quantum mechanics. The outputs of the
QRNGs are based on the measurements of the photons and are then sent to customers requiring
high security which use the random numbers for their cryptosystems [43]. In some cases where
the client requires exceedingly high security, the numbers generated from each QRNG will be
combined by bitwise exclusive-OR to ensure a random number is outputted with high confidence.
Regarding the methods of utilizing QRNGs, there are currently no universal QRNG standards or
verification methods that have been enforced which makes the evaluation of the performance of
QRNGs difficult [43].

Each random number generated from the QRNGs follow a QRNG Platform Protocol [43]:

1. Data Import - Standard interfaces are used for the importing of data from the QRNGs to the
end-users along with different data formats available.

2. Randomness Extraction from Entropy Source - Random numbers pass a randomness extrac-
tor which enhances the randomness per bit of data.

3. Bitwise XOR (Optional) - Outputs are combined by bitwise exclusive-OR.

4. Randomness Testing - The system performs real-time entropy tests such as National Institute
of Standards and Technology (NIST) Randomness Tests on the random numbers to verify
quality of randomness.

22

5. Identity Authentication for Dissemination - System authenticates end-users who request ran-
dom numbers using pre-shared keys (PSKs).

6. Data Download of Random Numbers - Customers download the random numbers using
various encryption protocols.

QRNGs will play an increasingly important role in the realm of cryptography since random
numbers are a vital ingredient in a vast majority of encryption algorithms. There are immediate
applications of QRNGs including the distribution of quantum random numbers known as QKD as
well as post-quantum algorithms which will help strengthen encryption techniques [43].

2.7.2 Comparative Study of Quantum Random Number Generators
Random number generation is a critical component in many areas of information processing,

including cryptography, mathematical modeling, Monte Carlo methods, and gambling [44]. The
quality of randomness and the efficiency of the generation process are essential for these appli-
cations. While software-produced pseudorandom sequences are fast, they often fall short of the
required randomness quality, requiring the development of hardware-based methods to generate
truly random numbers [44].

Quantum random number generators (QRNGs) utilize the inherent unpredictability of quan-
tum mechanical phenomena to produce random numbers [44]. These devices draw from physical
sources such as quantum fluctuations, ensuring a high degree of randomness [44]. For instance,
the PQ4000KSI by ComScire and the JUR01 developed at Wroclaw University of Science and
Technology are two such QRNGs that have undergone rigorous testing [44].

A notable advancement in this field is the JUR02, a new miniaturized QRNG prototype that
achieves a bit generation rate of 1 Mb/s [44]. This device has successfully passed standard random-
ness tests, highlighting its potential for practical applications [44]. Additionally, research in this
area includes exploring entanglement-based QRNG protocols, which offer unconditionally secure
public randomness verification [44].

Evaluating the quality of randomness involves statistical tests designed to detect any deviations
from true randomness [44]. Common tests include the NIST and Dieharder suites, which assess
various properties of the bit sequences generated by QRNGs [44]. The tests ensure that the se-
quences meet stringent standards required for secure and reliable applications [44]. Within this
research, the PQ4000KSI and the JUR01 were put to the test using NIST’s standardized statistical
testing suite. The testing results were then compared to a pseudo-random number generator by
Wolfram and shown to be very similar in terms of the randomness metrics [44].

These developments in QRNGs address the limitations of pseudo-random number generators
by providing truly random sequences that enhance the security and reliability of various informa-
tion processing tasks [44]. This research also emphasizes the critical distinction between quantum
random number generators (QRNGs) and classical pseudo-random generators. QRNGs rely on
quantum phenomena like quantum measurements and Fermi transitions, which provide uncondi-
tional randomness [44]. Despite inherent classical components introducing bias, methods like the
von Neumann algorithm are employed to mitigate this bias effectively [44]. Current randomness

23

tests are noted for their limitations in distinguishing true randomness from pseudo-randomness,
and the statistical testing results show this lack of distinction [44]. To address this, the research
proposes a novel QRNG algorithm using multi-qubit entanglement for non-destructive public ran-
domness testing. This approach allows for high-accuracy testing without compromising the confi-
dentiality of the random bit sequence, thereby enhancing the efficiency and security of randomness
testing in cryptographic applications [44].

2.7.3 Enhancing Random Number Generator Verification
A Statistical Testing Environment (STE) designed to rigorously evaluate the statistical proper-

ties of random number generators (RNGs) was proposed within this research [4]. This environment
offers flexibility, allowing for both lightweight assessments and intensive testing that exceeds stan-
dard certification requirements [4]. The STE was applied to evaluate three RNGs: a 32-bit Linear
Feedback Shift Register (LFSR) pseudo-RNG, Intel’s RDSEED hardware RNG based on thermal
noise, and IDQuantique’s ’Quantis’ quantum RNG utilizing photon detection [4].

Key findings from the research include:

• Shortcomings were identified in two RNGs under intense statistical testing, confirming and
expanding upon previous research findings [4].

• By implementing a variety of post-processing techniques including deterministic, seeded,
two-source, and physical extractors the research successfully improved the statistical quality
of RNG outputs. This approach extends beyond previous studies that focused solely on
deterministic or seeded extraction methods [4].

• The analysis consistently demonstrated that higher levels of extraction (level 2 and above)
effectively produced outputs statistically indistinguishable from uniform randomness [4].

However, the study also highlights the inherent limitations of relying solely on statistical tests
to ensure RNG integrity, particularly in cryptographic applications [4]. Ongoing challenges within
existing statistical test suites, such as those of NIST and Dieharder, were brought to light, revealing
issues such as test interdependencies and inaccurate testing settings that can affect the assessment
of RNG quality [4].

Through this comprehensive approach, the research aims to contribute to the advancement and
validation of RNG technologies, emphasizing the importance of complementary methods along-
side statistical testing to ensure robust randomness in critical applications, especially in cryptogra-
phy [4].

24

Chapter 3

Overview

This thesis strives to answer the main question:

How can statistical testing for modern PRNGs and QRNGs be enhanced beyond cur-
rent standards in a post-quantum era?

In the context of this research question, we aim to find a consolidated solution to achieve great
efficiency and usability, while sustaining robustness and reliability in cryptographic applications.
In order to arrive at the solution and answer the question, we identify three distinct aims that need
completed:

3.1 Aim 1: Select Statistical Testing Suites and Random Num-
ber Generators

In order to explore statistical testing beyond what is currently standardized, we will select
reputable testing suites as well as the standardized NIST Statistical Testing Suite (STS). To analyze
the impacts of broader statistical testing coverage, we will select three reputable RNGs for use in
the statistical testing as well as comparative statistical analysis. Two important questions that we
answer in the completion of this aim are:

1. Which statistical testing suites are well suited for rigorous statistical testing purposes?

2. Which three contemporary RNGs will elicit the best comparative analysis on existing statis-
tical testing research?

3.2 Aim 2: Develop Consolidated Statistical Testing Tool
Once the statistical testing suites and RNGs have been selected and the random binary data has

been generated, we will develop a consolidated statistical testing tool in the form of a Command
Line Interface (CLI). This tool will be used to run the statistical testing analysis on the three sets of
ten randomly generated data samples. Three important questions that we answer in the completion
of this aim are:

1. How can we develop a tool that can be easily integrated into any statistical testing environ-
ments?

25

2. In what ways can we make this tool very user-friendly to increase ease-of-use?

3. What input should a user have to specify in order to test randomly generated data?

Even though these are the three main questions we strove to answer in this aim, there are many
more intricate questions we answered when making architectural decisions in the development of
this tool.

3.3 Aim 3: Generate Data and Statistical Testing Results
The final aim requires that the random data is generated and statistical testing is completed on

each of the ten samples in relation to each of the three RNGs. Once the CLI tool is complete, the
statistical testing results will be collected from each of the testing suites we run on the data. Three
main questions we answer in the completion of this aim are:

1. In what format should we generate the random data in?

2. What should the generated size of each sample be?

3. How do we consistently generate and test each sample of data?

Similar to Aim 2, we also have many other specific questions we answer in regards to the
statistical testing methodology of the samples that we go over in detail in later chapters.

26

Chapter 4

Selection of Statistical Testing Suites and
Random Number Generators

In this chapter we will elaborate on the first aim of this thesis - focusing on the selection of the
statistical testing suites and the random number generators. In completing this task, we
selected eight different statistical testing suites and three random number generators.

4.1 Statistical Testing Suite Selection
Each statistical testing suite was sourced from their respective originating website or code

repository. Specifically, a detailed description, and link to the originating website or code repos-
itory will be provided for each of these testing suites. It is important to note that each statistical
testing suite is unique in its own regard, but some tests within each suite may overlap. Furthermore,
each testing suite has its own recommendation on its usage specifying how long a sample should
be as well as how to interpret the results. These selections are also based on Quantinuum’s imple-
mentation of their Statistical Testing Environment [4], and this research builds on these selections
as well.

In this aim we strove to answer the first question:

Which statistical testing suites are well suited for rigorous statistical testing purposes?

The eight selected statistical testing suites are as follows:

• ENT

• PractRand

• SmallCrush

• Crush

• Alphabit

• Rabbit

• Dieharder

27

• NIST STS

It is also important to note that the SmallCrush, Crush, Alphabit, and Rabbit testing suites
all originate from one testing suite package known as TestU01. Below, we will break down each
statistical testing suite:

4.1.1 ENT
ENT1 is referred to as a pseudo-random number sequence test [45], however with recent ad-

vances in QRNGs, ENT has been an effective and efficient test in the statistical testing realm. ENT
performs exactly six statistical tests on a randomly generated stream of either 8-bit bytes or just
bits [45]. The six statistical tests are:

1. Entropy and Compression: The information density of a file’s content, measured in bits per
character, provides insight into its randomness [45]. For examples, the results from analyzing
an image file reveal a high information density, suggesting the file is almost entirely random
and unlikely to be further compressed [45]. This test can be considered two separate tests
but in high correlation with each other.

2. Chi-square Test: The chi-square test, widely used for assessing data randomness, is particu-
larly sensitive to flaws in pseudo-random number generators [45]. It calculates the chi-square
distribution for a file’s byte stream and presents it as a number and a percentage, given by
the formula

χ
2 = ∑

(Oi −Ei)
2

Ei
,

where χ2 is chi squared, Oi is the observed value, and Ei is the expected value [45]. This
shows how often a truly random sequence would exceed the calculated value [45]. This
percentage indicates the suspected non-randomness of the tested sequence. Values over 99%
or under 1% suggest the sequence is almost certainly non-random. Percentages between
99% and 95% or between 1% and 5% are suspect, while those between 90% and 95% or
between 5% and 10% are ”almost suspect.” Despite its high information density, that same
image file tested is not random, as revealed by the chi-square test [45].

3. Arithmetic Mean: This involves summing all the bytes or bits in a file (whichever format
is selected) and dividing by the file length [45]. For data that is nearly random, this average
should be around 127.5 for bits and 0.5 for bytes [45]. A significant deviation from this value
indicates that the data values are consistently high or low [45].

4. Monte Carlo Value for Pi: A sequence of six bytes is treated as 24-bit X and Y coordinates
inside a square [45]. Each successive one is plotted and if the distance of a randomly gener-
ated point falls within the radius of the inscribed circle in the square, it counts as a ”mark”
[45]. The proportion of marks can be used to estimate the value of Pi. For large datasets (due

1https://www.fourmilab.ch/random/

28

to the slow convergence of this method), the approximation will get closer to the true value
of Pi if the sequence is almost random [45].

5. Serial Correlation Coefficient: This metric evaluates the dependency of each (byte or bit)
in a file on its preceding byte (or bit) [45]. In truly random sequences, this value (which
may be positive or negative) will be close to zero [45]. Non-random byte streams, like those
found in a C program, will typically have a serial correlation coefficient around 0.5 [45].

The ENT testing suite does not have validation built in to the results. However, when perform-
ing analysis on the ENT test results, we referenced ENT test result thresholds as seen in Table 3 of
[46], which were also referenced in [4] (primary research we are building on).

4.1.2 PractRand
PractRand2 is an extensive C++ library of statistical tests as well as pseudo-random number

generators [40]. However, we only used the available testing suite pertaining to our research.
Provided below are some of the best features of PractRand [40]:

• Provides a standard set of tests, unlike competitors that offer only raw tests without clear
parameter choices.

• Quickly detects bias in a wide range of RNGs, outperforming other statistical test suites in
variety and speed.

• Supports easy integration via command line tools and allows direct data passing with source
code and static libraries for speed and versatility.

• Handles extremely long sequences, tested on over 500 terabytes and expected to work up to
several exabytes, unlike competitors with scalability issues.

PractRand is a very versatile testing tool and has implemented a lot of tests that other testing
suites offer as well. With the combined speed and ease-of-use, this testing suite contends to be at
the top of the list [40].

One unique aspect of PractRand is that it offers a more detailed analysis of tested data [40].
Instead of a ”pass” or ”fail” metric, it offers metrics that may indicate that a sample is “unusual”,
“mildly suspicious”, “suspicious”, or “suspect” [40]. All tests contained in the testing suite rely
on the ”p-value” statistic for determining the indication of how well the data succeeded at passing
[40]. The statistical tests are [40]:

1. BCFN: This test examines long-range linear correlations by counting bits, which can often
identify Fibonacci-style RNGs that use large lags in data generation to bypass other statis-
tical tests. The first parameter first sets the minimum ”level” for detecting bias, with higher
values speeding up the process but potentially missing shorter-range correlations. The sec-
ond parameter, which is the log-base-2 size of internal tables, helps determine memory and
cache usage when testing.

2https://pracrand.sourceforge.net/

29

2. DC6: This test examines short-range linear correlations through bit counting. It uses param-
eters to specify the size of integers it processes internally, the number of adjacent integers it
checks for correlations between, and the specific information used for each integer. The test
operates as a frequency test on overlapping sets of Hamming weights, which has similarities
to other overlapping tests in other testing suites like NIST STS.

3. Gap16: The Gap Test is essentially a test that determines the significance of the interval
between the recurrence of a certain digit [47]. The Gap16 test provided in PractRand is a
very similar variation of this test.

4. BRank: This test follows a conventional binary matrix rank assessment method. Its unique-
ness lies in the control logic determining when to extract data from the RNG output stream
to form matrices and their sizes. However, due to the granularity of its results, obtaining
precise p-values for many sub-tests of this test is often very difficult and unfeasible.

5. FPF (Floating Point Accuracy): This test checks for range correlations shorter than that
of DC6. This test essentially performs a frequency analysis on the binary representation of
floating-point numbers, using the integer values from overlapping segments of the original
data stream.

PractRand also appears to have other tests listed, however, these tests are actually in fact wrap-
pers for other tests listed [40]. Since PractRand excels at live testing data streams, the testing suite
begins to return testing results at very small intervals starting with a few kilobytes of data. Later
on in Chapter 6 when PractRand is used, the reader will have an opportunity to understand how
we calibrated PractRand to only return testing results near the size of our sample files, thereby
reducing redundant testing data.

4.1.3 TestU01
TestU013 is a software library implemented in the C language that offers a collection of testing

suite batteries as well as classical implementations of random number generators [41]. TestU01
is different from the other selected testing suites as it has many predefined batteries of statistical
testing suites that reside inside TestU01 [41]. These batteries are essentially their own testing
suite and have their own orientations towards certain sequences of bits [41]. Some may run more
efficiently than others and some may include many more tests than others [41]. For brevity’s sake,
we will only go into detail about all tests offered by SmallCrush and Alphabit (since they are 10
tests or less), but please refer to [41] for the full descriptions of all tests offered in TestU01 and
its statistical testing suites. Provided below are descriptions of each statistical testing suite we
selected to use inside of TestU01:

SmallCrush: SmallCrush is one of the smaller but faster statistical testing suites inside of TestU01.
In order to run the testing suite, it requires slightly less than 51320000 random numbers [41].
The following tests are applied for this testing suite [41]:

3https://simul.iro.umontreal.ca/testu01/tu01.html

30

1. smarsa BirthdaySpacings: This test simulates throwing n points into k = dt cells in
t dimensions. Imagine each point as a birthday randomly assigned to one of k days. To
decide which cell a point falls into, t integers between 0 and d − 1 are generated and
combined differently based on parameter p. The test then calculates the differences
between sorted cell numbers and counts collisions among these differences. Under the
assumption H0, the number of collisions follows a Poisson distribution with a specific
mean.

2. sknuth Collision: This test checks for collisions among points in a grid, similar to
the serial test but focusing on counting how often a point lands in an already occupied
cell rather than calculating a chi-square statistic.

3. sknuth Gap: This test focuses on analyzing gaps between successive values generated
within the range [0, 1). It counts how many times sequences of exactly s successive
values fall outside a specified interval [α,β]. It then uses a chi-square test to compare
the expected and observed counts of these sequences across different values of s.

4. sknuth SimpPoker: This test involves generating n groups of k integers from 0 to
d − 1 using nk calls to the data. For each group, it calculates the number s of distinct
integers present. A chi-square test is then applied to compare the expected and observed
frequencies of these s values across all groups.

5. sknuth CouponCollector: This test simulates collecting a complete set of d unique
items by generating random integers from {0, ...,d − 1}. It tracks how many random
draws are needed until each item appears at least once. This process repeats n times.
The test then counts how often exactly s draws were required for each s, comparing
these counts to expected values using a chi-square test.

6. sknuth MaxOft: This test evaluates the maximum value from groups of t values ran-
domly generated within the interval [0,1). It creates n such groups, calculates the
maximum X for each group, and then compares the empirical distribution of these
maximum values against the theoretical distribution F(x) = xt using both a chi-square
test and an Anderson-Darling (AD) test. The chi-square test categorizes the values of
X into d groups, where the expected number in each group under the null hypothesis
H0 is n/d. For N > 1, it also evaluates the empirical distribution of p-values from the
AD test against the AD distribution.

7. svaria WeightDistrib: This test generates k uniform numbers u1, ...,uk and com-
putes

W =
1
k

k

∑
j=1

I[α ≤UJ < β],

which counts how many u j’s fall within the interval [α,β). Under the null hypothesis
H0, W follows a binomial distribution with parameters k and p = β −α . This process
is repeated n time to obtain W1, ...,Wn, and their empirical distribution is compared to
the binomial distribution using a chi-square test.

31

8. smarsa MatrixRank: This test fills an L× k matrix with random bits using sequences
of uniform numbers. Each row of the matrix is filled sequentially by taking k/s bits
from a sequence of uniforms. After filling n matrices this way, it counts how many
matrices have each rank (number of independent rows). The test then compares this
count with the expected distribution of ranks using a chi-square test, adjusting groups
if necessary to match theoretical expectations.

9. sstring HammingIndep: This test looks at sequences of bits in blocks of length L.
It generates n such blocks and counts the number of 1s in each block. Under the
assumption of randomness H0, the number of 1s in each block follows a binomial
distribution with parameters L and 1/2 (meaning, on average, there are L/2 ones per
block). It then compares the observed counts of blocks with different numbers of 1s to
what would be expected by chance using a chi-square test.

10. swalk RandomWalk1: This test checks random walks on a number line. Starting at 0,
each step goes either left or right with equal chance. It looks at walks with different step
lengths, starting from L0 and increasing by 2 steps each time, up to L1. For example,
it first tests walk of length L0, then L0 + 2, then L0 + 4, and so on. It then computes
n values for each of these statistics which represents a value describing the final walk
distance from the starting point. It compares the empirical distribution of these values
with the theoretical law using a chi-square test.

All tests provided in SmallCrush have default parameters set when run on randomly gener-
ated data which can also be found in [41].

Crush: Crush is one of the bigger sized testing suites within TestU01. Not only does Crush
include all of the tests offered by SmallCrush, it includes a plethora more including variants
of tests [41]. Since the Crush testing suite is so large, the reader may refer to [41] that
outlines all 96 tests as well as all of the different default parameters used.

Alphabit: Alphabit is a smaller testing suite than Crush but still larger than SmallCrush. This
testing suite has been primarily designed to test hardware random bits generators as well
[41]. However, applying Alphabit to any pseudo-random number generator gives one great
insight to how random it truly is. Provided below are the tests included in the Alphabit
testing suite [41]:

1. smultin MultinomialBitsOver: This test generates n cell numbers using an over-
lapping approach at the bit level. It arranges n bits in a circular manner, where each
block of L consecutive bits determines a cell number. The test doesn’t require L and s
to be divisible by each other.

2. sstring HammingIndep: Please refer to SmallCrush description of sstring HammingIndep.

3. sstring HammingCorr: The test uses the s most significant bits from each generated
random number (excluding the first r bits) to form n blocks of L bits. Each block’s

32

Hamming weight, X j (number of 1s), is calculated. The test then computes the empiri-
cal correlation between successive X j values using the formula:

ρ
ˆ=

4
(n−1)L

n−1

∑
j=1

(X j −
L
2
)(X j+1 −

L
2
).

Under the null hypothesis H0, as n becomes very large, ρˆ divided by
√

n−1 approxi-
mates a standard normal distribution. This correlation test is valid only for large values
of n.

4. swalk RandomWalk1: Please refer to SmallCrush description of swalk RandomWalk1.

Rabbit: Rabbit is a decently sized testing suite, right between the caliber of the Alphabit and
Crush testing suites. Since Rabbit also has quite a large list of tests, please refer to [41] for
the complete description of the 26 tests as well as the default parameters used.

4.1.4 Dieharder
Dieharder4 testing suite is a comprehensive tool that extends George Marsaglia’s original

Diehard tests by incorporating additional statistical tests and enhancing its ability to detect sub-
tle patterns and correlations in RNG outputs [42]. Key features of Dieharder include its integration
with the GNU Scientific Library (GSL), which provides access to a variety of RNG algorithms and
statistical functions [42]. This integration allows users to test a wide range of RNGs and evaluate
their performance under different conditions [42]. Dieharder specifically provides 18 crafty but
extremely effective tests, and they are [42]:

1. Birthday Spacings: Tests the distribution of gaps between repeated birthday values assigned
by intervals from the data and compares it to the expected Poisson distribution for random
numbers.

2. Overlapping Permutations: Evaluates the sequence of overlapping 5-tuples of random in-
tegers, checking the permutation frequency within the data.

3. Ranks of 31x31 and 32x32 matrices: Examines the rank distribution of randomly filled bi-
nary matrices using the data, comparing the observed ranks to the expected ranks for random
numbers.

4. Ranks of 6x8 Matrices: Analyzes the ranks of 6x8 binary matrices generated from the data,
assessing whether the rank distribution matches that expected from truly random numbers.

5. Monkey Tests: Includes OPSO (Overlapping-Pairs-Sparse-Occupancy), OQSO (Overlapping-
Quadruples-Sparse-Occupancy), and DNA (counting certain 4-tuples of bits) to check the
frequency of overlapping words of different lengths.

4https://rurban.github.io/dieharder/manual/dieharder.pdf

33

6. Count the 1s in a Stream of Bytes: Counts the occurrences of 1s in streams of 8-bit bytes
and evaluates if the distribution matches that expected from random data.

7. Count the 1s in Specific Bytes: Similar to the previous test but counts the 1s in specific
bytes within a larger stream of data.

8. Parking Lot Test: Simulates cars parking in a lot and assesses how well the distribution of
open spaces matches that expected from randomness.

9. Minimum Distance Test: Measures the minimum distance between pairs of points ran-
domly placed in a unit square and compares the observed distribution with the theoretical
one for random numbers.

10. 3D Spheres Test: Evaluates the distribution of distances between random points in a three-
dimensional unit cube and compares it to the expected distribution for random points.

11. Squeeze Test: Applies a series of transformations to random sequences to determine if the
sequences can be compressed as expected for truly random data.

12. Overlapping Sums Test: Sums sequences of random numbers and checks if the distribution
of these sums matches that expected for true random sequences.

13. Runs Test: Assesses the length of runs (sequences of identical bits) in a random sequence
and compares it to the expected distribution for random data.

14. Craps Test: Simulates a large number of games of craps using the random sequence and
checks if the outcomes match the theoretical probabilities for random play.

15. Serial Correlation (two bytes) Test: Measures the correlation between successive pairs of
bytes in the random sequence, expecting no significant correlation if the sequence is random.

16. Random Walk (1D) Test: Simulates a one-dimensional random walk and examines the
distribution of the final positions and the number of returns to the origin, comparing it to the
expected distribution for a truly random walk.

17. Random Walk (2D) Test: Similar to the 1D test but simulates a two-dimensional random
walk, evaluating the final positions and path taken for randomness.

18. Random Walk (3D) Test: Extends the random walk analysis to three dimensions, checking
the distribution of final positions and the paths taken for consistency with random behavior.

Just like PractRand, Dieharder is more unique in that it offers another level of transparency
when showing the user how well the data performed on each of the tests. Instead of just a ”pass”
and ”fail”, Dieharder also offers a ”weak” metric that only appears if the p-value is suspiciously
close to falling into the ”fail” interval [42].

34

4.1.5 NIST STS
The NIST Statistical Testing Suite (STS)5 is very unique to that of the other testing suites

because it provides a standardized and comprehensive set of tests specifically designed to evaluate
the randomness of binary sequences [1]. These tests are widely accepted and used in both academic
and industrial settings for their rigor and reliability [1]. Its standardization by NIST (National
Institute of Standards and Technology) ensures consistency and comparability of results across
different applications, making it a trusted tool [1]. The following tests are included in the NIST
STS [1]:

1. Frequency (Monobit) Test: Determines whether the number of ones and zeros in a sequence
are approximately the same. Let n be the length of the bit sequence, and let Sn be the sum of
the bits (with zeros counted as -1). The test statistic is

Sn =
n

∑
i=1

(2Xi −1),

where Xi is the i-th bit in the sequence. The sequence is considered random if Sn is close to
zero.

2. Frequency Test within a Block: Divides the sequence into N non-overlapping blocks of
length M. For each block, the proportion of ones πi is calculated. The test statistic is

χ
2 = 4M

N

∑
i=1

(πi −0.5)2.

3. Runs Test: Evaluates the total number of runs (continuous sequences of the same bit) in the
sequence. The number of runs nr is counted, and the test statistic is

µ =
2n0n1

n
+1, σ

2 =
2n0n1(2n0n1 −n)

n2(n−1)
,

where n0 and n1 are the counts of zeros and ones, respectively.

4. Test for Longest-Run-of-Ones in a Block: Analyzes the longest run of ones within blocks
of length M. The test compares the observed distribution of longest runs to the expected
distribution using a chi-square test.

5. Binary Matrix Rank Test: Tests for linear dependence among fixed-length substrings of the
original sequence by constructing matrices. The rank of each Q×Q matrix is determined,
and the distribution of ranks is compared to the expected distribution.

5https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-
cryptographic

35

6. Discrete Fourier Transform (Spectral) Test: Detects periodic features in the sequence by
computing the discrete Fourier transform (DFT). The peak heights of the DFT are analyzed
to detect deviations from randomness.

7. Non-overlapping Template Matching Test: Searches for occurrences of a specified m-bit
pattern in the sequence without allowing overlaps. The number of matches in each block
is counted, and the test uses a chi-square statistic to compare the observed and expected
frequencies.

8. Overlapping Template Matching Test: Similar to the non-overlapping test but allows for
overlapping occurrences of the specified m-bit pattern. The expected number of matches is
given by the Poisson distribution.

9. Maurer’s Universal Statistical Test: Measures the sequence’s compressibility. A dictio-
nary of observed patterns is built, and the entropy of the sequence is estimated. The test
statistic is based on the average number of bits between repeated patterns.

10. Linear Complexity Test: Evaluates the linear complexity L of the sequence, defined as the
length of the shortest linear feedback shift register (LFSR) that can generate the sequence.
The test compares L to the expected linear complexity for a random sequence of the same
length.

11. Serial Test: Compares the frequency of all possible overlapping m-bit patterns. The test
uses chi-square statistics for both m-bit and (m+1)-bit patterns to evaluate the sequence.

12. Approximate Entropy Test: Compares the frequency of overlapping blocks of two consec-
utive lengths, m and m+1. The approximate entropy is given by

φm =− 1
n−m+1

n−m+1

∑
i=1

log2 P(i),

where P(i) is the frequency of the i-th m-bit pattern.

13. Cumulative Sums (Cusum) Test: Analyzes the cumulative sum S j of adjusted (centered)
digits. The test statistic is

S j =
j

∑
i=1

(2Xi −1),

where Xi is the i-th bit in the sequence. The maximum and minimum values of S j are
compared to expected bounds.

14. Random Excursions Test: Identifies the number of cycles having exactly K visits to the
origin in a random walk. The number of occurrences of each state within cycles is counted
and compared to the expected distribution.

36

15. Random Excursions Variant Test: Similar to the Random Excursions Test, but focuses on
the number of occurrences of each state (including the origin) within the random walks. The
test uses chi-square statistics to compare observed frequencies to expected frequencies.

The NIST STS is also a different testing suite because in order to run it on randomly generated
data, user input is required [1]. In Chapter 6 when we elaborate on our testing methodology, the
reader will have an opportunity to understand how we navigated this inside the consolidated testing
suite tool we developed.

4.2 Random Number Generator Selection
The three selected random number generators were handpicked based on common usage and

research-based publication relevance. Each provides a unique perspective in the realm of cloud-
based quantum cryptography as well as relevant insight to the state of randomness compared to
other researched RNGs. To clarify, each of these RNGs are in fact not RNGs by themselves, but
each provide necessary tools to create an RNG specifically for our research purposes. The reader
may think of each of these as their own set of Lego pieces, and when an RNG is crafted with their
respective pieces, they may operate similarly but with differing results. The constructions of the
RNGs will be elaborated on further into this chapter.

In this aim we strove to answer the second question:

Which three contemporary RNGs will elicit the best comparative analysis on existing
statistical testing research?

The three selected random number generators are as follows:

• Python Secrets RNG

• Wolfram Language RNG

• Microsoft Sparse Simulator RNG

Provided below, we break each of these RNGs down into their constructions, their origin, and
explain the purposes behind why we chose each of them. Each implementation provides both a bit
and byte representation, which will be decided upon in Chapter 6 when we answer the question of
how should the generated data be formatted.

4.2.1 Python Secrets RNG
The Python secrets module is crafted for creating cryptographically secure random numbers

and handling sensitive information such as passwords, authentication tokens, and security keys
[48]. It is recommended over the random module, which is intended for general-purpose use and
not for security applications [48]. We picked the Python secrets module as the basis for our first
RNG because it is one of the most effective and common modules used to create cryptographically
secure applications [49]. Some of the main features of the secrets module include [48]:

37

• SystemRandom Class: Uses the highest-quality random number sources from the operating
system.

• choice Function: Picks a random element from a non-empty sequence.

• randbelow Function: Returns a random integer within a specified exclusive upper bound.

• randbits Function: Generates an integer with a specified number of random bits.

For the purposes of this thesis, we utilized the choice Function. Provided below is the pseudo-
code representation of the RNG we constructed using the choice Function in the Python secrets
module:

function generate_random_bits (bit_or_byte_length):
bits_or_bytes = empty list

for i from 0 to bit_or_byte_length - 1:

bit_or_byte = choose randomly between 0 and 1

append bit_or_byte to bits_or_bytes

return bits_or_bytes

Looking at the pseudo-code, the Python implementation is pretty straightforward. The function
utilizes the secrets module to implement a choice between a ”1” or ”0” in either a bit or byte format.

38

4.2.2 Wolfram Language RNG
The Wolfram Language is a powerful symbolic programming language known for its compre-

hensive capabilities in computational mathematics and beyond [36]. Symbolic expressions con-
struct everything in Wolfram Language, facilitating unparalleled programming flexibility [36]. The
Wolfram Language excels in randomness generation, leveraging algorithms developed by Wolfram
Research [36]. It ensures both efficiency and high-quality results across various types of random
variables, whether discrete or continuous [36]. Users can specify a wide array of distributions
symbolically, enabling precise control over randomness generation [36]. We picked the Wolfram
Language as the basis for our second RNG because of its unique cloud-based architecture as well
as its sourced algorithms from Wolfram Research. Key functions within the Wolfram Language
include [36]:

• RandomInteger and RandomReal: Generates random integers or real numbers, individually
or in arrays.

• RandomComplex: Generates random complex numbers.

• RandomPoint: Generates random points within user-specified regions.

• RandomChoice and RandomSample: Makes random selections or permutations from user-
specified lists.

• RandomPrime: Generates random prime numbers.

With such an extensive list of randomness functions inside the Wolfram Language, it may be
hard to select which function to implement in an RNG construction. However, to stay with consis-
tent generation methodology, we opted to use the RandomChoice function just like in the Python
secrets module. Provided below is the pseudo-code representation of the RNG we constructed
using the choice Function in the Wolfram Language:

size = generationSize

file = constructFileName(PresentWorkingDirectory , "

fileToWriteTo ")

s = openFile(file , mode=" append", format =" chosen_format ")

for i = 1 to size

byteOrBit = chooseRandomByteOrBit ()

writeFile(s, byteOrBit)

closeFile(s)

The pseudo-code for the Wolfram Language is also pretty straightforward. The implementation
utilized the RandomChoice function to choose between a ”0” and ”1” in either a bit or byte format.
The key difference in this implementation compared to the secrets module implementation is that
the Wolfram Language is accessed via the cloud. In order to store the generated data, we need to
store it within a file accessible by Wolfram Cloud. Once the data is generated, we may download
the data and use it as needed for statistical testing purposes.

39

4.2.3 Microsoft Sparse Simulator RNG
Quantum computing holds great promise for exponential speedups in computational tasks (tak-

ing advantage of various quantum algorithms), yet simulating quantum programs on classical hard-
ware faces tough challenges due to the exponential growth in state vector size [34]. However, many
quantum states resulting from algorithms exhibit significant sparsity, either inherent in their struc-
ture or caused by optimizations [34]. In response to this, Microsoft developed the Microsoft Sparse
Simulator which is a novel approach that capitalizes on sparsity to drastically reduce memory us-
age and simulation runtime [34]. Because of this drastic reduction in memory usage and simulation
runtime, we were able to confidently select this as our basis for our third RNG. The RNG was con-
structed using the Azure Quantum Development Kit [50] as well as the Q# programming language
[51]. Since Q# allows you to create and manage individual qubits, we were able to construct an
RNG completely from scratch using managed qubits. Provided below is the pseudo-code for the
Q# implementation of the RNG:

function Random () -> Result:

q = allocateQubit ()

ApplyHadamard(q)

result = measure(q)

reset(q)

deallocateQubit(q)

return result

function RandomNBits(N: Integer) -> Result []:

results = []

for i = 0 to N - 1:

r = Random ()

append results , r

return results

In this provided pseudo-code, we first constructed a function Random which allocates a single
qubit, applies the Hadamard Gate (placing it in superposition with a 50% chance of being mea-
sured as a ”0” or ”1”) and measures it. This result provides us with a simulated random binary
”0” or ”1” value. Next, we implement the Random function into the RandomNBits function. The
RandomNBits function takes in a parameter of how many bits to generate and returns the list of
the randomly generated bits. Now in order to call this function within Python, we use the Azure
Quantum Development Kit [50] to help us out:

function ms_sparse_simulator(bit_length: Integer) -> Integer []:

bits = call Q# operation RandomNBits(bit_length)

for i = 0 to length(bits) - 1:

if bits[i] == "One":

bits[i] = 1

40

else:

bits[i] = 0

return bits

Since the binary output of the Q# call represents the binary data as (”One”)’s and (”Zero”)’s,
we must account for that by converting them to (”1”)’s and (”0”)’s. This Python function allows
us to either make use of the bits stored as bytes or as bits (via bit-packing into a byte), which will
be specified in Chapter 6.

41

Chapter 5

Development of Consolidated Statistical
Testing Tool

In this chapter we will elaborate on the second aim of this thesis - focusing on the
development of our consolidated statistical testing tool. In completing this task, we finished devel-
opment of our tool called Cryptoguard.

5.1 Cryptoguard Architecture
In this aim we strove to answer the first question:

How can we develop a tool that can be easily integrated into any statistical testing
environments?

We developed a highly-integrable tool that allows users to seamlessly apply a myriad of se-
lected statistical testing suites on randomly generated binary data in the form of a Command Line
Interface (CLI) tool called Cryptoguard. In order to develop this tool, several sub tasks had to be
completed:

1. Selection of the development environment that we will develop our tool in.

2. Installation of the selected testing suites so that they can be used inside Cryptoguard while
keeping integration independence.

3. Accessibility of Cryptoguard to allow users to be able to access and utilize this tool almost
anywhere.

5.1.1 Selection of Development Environment
The selection of the development environment for our tool was vital information for us to plan

the remainder of the sub tasks. For Cryptoguard, we chose to implement the tool in Python1 be-
cause of it’s flexibility and extensive libraries. Python’s versatility allowed us to rapidly prototype
and iterate on our ideas, and Python’s integration capabilities with other languages such as Bash
Scripting enhanced the tool’s functionality. These factors collectively made Python an ideal choice
for developing Cryptoguard, enabling us to deliver a powerful and effective solution. Now as far as

1https://www.python.org/

42

the kernel, we chose to operate within a Linux environment through an Ubuntu2 distribution inside
a Docker3 container. This is due in part to Quantinuum’s research that facilitates the installation
of our selected testing suites in the form of Bash Scripting in an Ubuntu distribution [4]. Provided
below is the outline of our completed selections:

1. Language Selection: Python and Bash Scripting

2. Kernel Selection: Linux Kernel through Ubuntu 20.04.6 LTS inside Docker container

5.1.2 Installation of Selected Statistical Testing Suites
The installation of our selected testing suites was made possible through existing research,

building off of Quantinuum’s research regarding their Statistical Testing Environment [4]. Through
their existing Bash Scripts accessible through their published GitHub page4, we were able to seam-
lessly install ENT, PractRand, and TestU01 statistical testing suites. Regarding NIST STS, we were
able to install this testing suite into the same directory as the others via NIST’s access page5, and
access it quite the same. Dieharder is the only statistical testing suite that the user has to manually
install, but it is quite an easy task through executing an install command on an Ubuntu or Debian
distribution. In order to manually install Dieharder, a user would run

sudo apt-get install -y dieharder

Since all the statistical testing suites are stored as executable files within Cryptoguard’s project
directory (excluding Dieharder), the installation of the testing suites is very compartmentalized
and independent, which means that we have achieved our sub task’s expectation.

5.1.3 Accessibility of Cryptoguard
To make Cryptoguard extremely accessible, we chose to use PyPi6 to create a Python package

that users can install via the pip package installer. In order to install Cryptoguard, a user just has
to execute

pip install cryptoguard

Once the user has successfully installed Cryptoguard, they may be able to use the tool and all
of its provided features. Assuming they have already installed Dieharder testing suite, they have
full access to use this testing suite as desired.

2https://ubuntu.com/
3https://www.docker.com/
4https://github.com/CQCL/random test?tab=readme-ov-file
5https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
6https://pypi.org/

43

5.2 Cryptoguard Ease-of-Use
In this aim we strove to answer the second question:

In what ways can we make this tool very user-friendly to increase ease-of-use?

First and foremost, Cryptoguard was designed with ease-of-use at top of mind. When develop-
ing the tool, we looked to existing research in similar tools, and realized that the NIST STS testing
suite was a perfect user-oriented tool to inspire the way Cryptoguard feels and functions. Crypto-
guard’s functionality essentially has three to four steps of user input depending on which route the
user would like to take to test their samples of data, similar to that of the NIST STS testing suite.
The reader has an opportunity to understand how similar Cryptoguard and NIST STS look and feel
when we go over how we pre-selected the user input for NIST STS below and when we go over
Cryptoguard examples further below.

We also wanted to ensure that running any of the statistical testing suites was hassle-free and
convenient for the user. Fortunately, every single statistical testing suite we selected can be ran
without any user input except for one, the NIST STS. As just discussed, the NIST STS does require
user input, but we were able to navigate through this using NIST STS recommended settings along
with our desire for what Cryptoguard offers. Provided below are the NIST STS user prompts as
shown similarly in [1] along with an explanation for each on how we decided on the inputs:

1. Executing NIST STS

assess 1000000

Explanation: In order to execute NIST STS, Cryptoguard executes the assess executable
file which does require one user input. This user input specifies how long each sample should
be, and according to NIST STS recommendations in [1], we predefined the bit stream sample
length to be 1,000,000 bits.

2. Generator Selection

G E N E R A T O R S E L E C T I O N

[0] Input File [1] Linear Congruential

[2] Quadratic Congruential I [3] Quadratic

Congruential II

[4] Cubic Congruential [5] XOR

[6] Modular Exponentiation [7] Blum -Blum -Shub

[8] Micali -Schnorr [9] G Using SHA -1

Enter Choice: 0

User Prescribed Input File: /binary/file/to

/test.bin

44

Explanation: Cryptoguard allows users to specify the source of their random data, such as
an input file. This aligns with our aim to support diverse data sources and integrate seam-
lessly into existing workflows which is why we pre-select ”0” and input the user specified
binary file from Cryptoguard.

3. Statistical Tests

S T A T I S T I C A L T E S T S

[01] Frequency [02] Block

Frequency

[03] Cumulative Sums [04] Runs

[05] Longest Run of Ones [06] Rank

[07] Discrete Fourier Transform [08] Nonperiodic

Template Matchings

[09] Overlapping Template Matchings [10] Universal

Statistical

[11] Approximate Entropy [12] Random

Excursions

[13] Random Excursions Variant [14] Serial

[15] Linear Complexity

INSTRUCTIONS

Enter 0 if you DO NOT want to apply all of the

statistical tests to each sequence and 1 if you

DO.

Enter Choice: 1

Explanation: Users are given the option to apply all statistical tests to each sequence of
data, promoting comprehensive analysis. This choice reflects Cryptoguard’s commitment to
thorough testing and reliability assessment which is why we pre-select ”1” to run all of them.

4. Parameter Adjustments

P a r a m e t e r A d j u s t m e n t s

[1] Block Frequency Test - block length(M): 128

[2] NonOverlapping Template Test - block length(m): 9

[3] Overlapping Template Test - block length(m): 9

[4] Approximate Entropy Test - block length(m): 10

[5] Serial Test - block length(m): 16

[6] Linear Complexity Test - block length(M): 500

45

Select Test (0 to continue): 0

Explanation: Cryptoguard honors NIST STS recommendations for the predefined parame-
ters and does not opt to change them in any way. Thus, we pre-select ”0” to continue.

5. Bitstreams and Input File Format

How many bitstreams? 100

Input File Format:

[0] ASCII - A sequence of ASCII 0’s and 1’s

[1] Binary - Each byte in data file contains 8 bits of

data

Select input mode: 1

Explanation: Users specify the number of bitstreams to test and the format of the input
file. This step is following NIST’s recommendation of 100 samples of 1,000,000 bits in
correlation to the p-value they use in their post-test analysis to determine if a sample passes
a test or not [1]. Please see [1] for more information on this matter.

To provide transparency for the user when selecting NIST STS to run on their data, a file called
nist input.txt is stored in the user specified results directory that stores all of these pre-selections.
Since the user currently has no control on customizing the NIST STS inputs, every nist input.txt
file will contain the same pre-selected input content. The contents of the file looks like

0

/path/to/sample.bin

1

0

100

1

where each line corresponds to each pre-selected input for each user prompt discussed above.
Although the other statistical testing suites do not require any user input, we will go in depth on

how they are executed to provide transparency and insight on the ease-of-use aspect for the other
testing suites. As a matter of fact, every testing suite is run following the same structure. To be
specific, there is exactly one bash script file for each testing suite, and each bash script executes the
respective testing suite with efficiency. Each script is housed in a sub directory within Cryptoguard
called testing suite scripts. Provided below is the pseudo-code outline for an arbitrary bash script
that runs a testing suite:

Start

Read command -line arguments BINARY_FILE and RESULT_DIR

BINARY_FILE = $1
RESULT_DIR = $2

46

Check if BINARY_FILE exists

if not exists(BINARY_FILE):

print("Error: The specified binary file ’" +

BINARY_FILE + "’ does not exist .")

exit (1)

Check if RESULT_DIR exists

if not exists(RESULT_DIR):

print("Error: The specified directory ’" + RESULT_DIR +

"’ does not exist .")

exit (1)

Calculate path to the testing suite directory

TEST_SUITE_DIR = dirname(realpath($0)) + "/../

testing_suites"

Execute the testing suite with timing

start_time = current_time ()

execute (" $TEST_SUITE_DIR /{ testing_suite }", BINARY_FILE ,

output="> " + RESULT_DIR + "/ test_{testing_suite }.log")

end_time = current_time ()

Record execution time

time_taken = end_time - start_time

write_to_file ("{ testing_suite }", RESULT_DIR + "/time")

append_to_file(read_file(RESULT_DIR + "/time_{testing_suite

}"), RESULT_DIR + "/time")

remove_file(RESULT_DIR + "/time_{testing_suite }")

print ("{ testing_suite} test completed .")

End

Going through this incrementally:

1. The command-line arguments are fed into the bash script. Every testing suite script receives
the same arguments, ensuring consistency across executions. Error handling checks ensure
that essential arguments are properly validated, though in the context of Cryptoguard man-
aged by Python, such errors are anticipated to be managed before reaching this stage.

2. Next, the script executes the testing suite by substituting the user-specified binary file into the
appropriate place in the testing suite executable. This ensures that each testing suite operates
on the intended data set, maintaining accuracy and relevance to the user’s input.

47

3. During execution, the script measures the time taken to complete the testing suite using a
timing mechanism. This provides insight into the efficiency and performance of the testing
suite, which is crucial for users evaluating the reliability of their data.

4. Upon completion, the script records the execution time in a designated temporary file time {testing suite}
within the specified result directory RESULT DIR. This temporary file then gets copied over
to the official run time file time. The output from each statistical testing suite is also stored in
their own respective log file as well. This systematic logging allows users to review and com-
pare the performance of different testing suites over time as well as dive into the statistical
analysis of each testing suite.

5. Lastly, the script ensures cleanup by removing any temporary files or logs time {testing suite}
generated during the execution. This maintains the cleanliness and organization of the result
directory, facilitating ease of interpretation and management of test results.

5.3 Detailed Steps Explanation
In this aim we strove to answer the third question:

What input should a user have to specify in order to test randomly generated data?

To test randomly generated data using Cryptoguard, a user should specify:

1. Binary File Path: The path to the binary file containing the data to be tested.

2. Testing Setting: The desired testing setting, such as Light, Recommended, All, or Custom.
This is following the proposed testing settings outlined in Table 1 of [4] (excluding the
Custom setting).

3. Custom Setting Input (if applicable): A binary representation indicating which specific
tests to run, if the Custom setting is selected.

4. Result Directory: The directory where the test results should be stored.

Each of these steps will be elaborated on in the next few subsections. In Diagram 5.1, Crypto-
guard’s workflow can be understood from a visual perspective.

5.3.1 Handling Binary File Input
The tool prompts the user to specify the path to the binary file that needs to be tested. If the file

does not exist or is not a valid file, it will prompt the user again until a valid file path is provided.
This ensures that the testing process starts with a legitimate data file, preventing errors and ensuring
the integrity of the test results. The data file can either be input as an absolute path:

/absolute/path/to/sample

48

Figure 5.1: Block diagram representing Cryptoguard workflow

Or, the data file can be input as a relative path corresponding to the user’s present working direc-
tory:

relative/path/to/sample

5.3.2 Handling Setting Input
The tool displays a list of available testing settings and prompts the user to select one. The

available settings include:

• Light: ENT, PractRand, SmallCrush

• Recommended: ENT, PractRand, Rabbit, Dieharder, NIST STS

• All: All testing suites

• Custom: User-defined binary representation of the tests to run

The user selects a setting by entering the corresponding number. This selection determines
which predefined set of tests will be applied to the binary file. To reiterate, the first three testing
settings are based on the proposed settings outlined in Table 1 of [4].

49

5.3.3 Handling Custom Setting Input
For the custom setting, the tool prompts the user to enter a binary string where each bit rep-

resents whether a corresponding testing suite should be run. The length of the binary string must
match the number of available testing suites. This allows users to tailor the testing process pre-
cisely to their needs by selecting specific testing suites. A detailed example will be shown in the
next section for a more visible explanation.

5.3.4 Handling Directory Input
The tool prompts the user to specify a directory to store the results. If the directory does

not exist, it will be created. This ensures that all test outputs are saved in a designated location,
making it easy to access and review the results. The user can either specify a custom directory or
use the current working directory by pressing ENTER. The same absolute and relative path input
specifications apply as shown in Subsection 5.3.1.

5.3.5 Running Testing Suites
The tool iterates over the selected testing suites and runs each suite on the specified binary file.

The results are stored in the specified directory, and the elapsed time for each test is displayed.

5.3.6 Handling Command-Line Arguments
The tool also supports command-line arguments for all inputs, allowing users to run the tool

non-interactively by providing all necessary information upfront.

usage: cryptoguard.py [-h] [-v] [-l] [-g] [-b BINARY_FILE] [-s

{1,2,3,4}] [-i BINARY_SETTING] [-d DIRECTORY]

cryptoguard is a Python package designed for conducting

comprehensive testing of random number generators. It

provides a collection of testing suites that evaluate the

statistical properties and reliability of random number

sequences.

optional arguments:

-h, --help show this help message and exit

-v, --version show program ’s version number and exit

-l, --list -suites List all available testing suites

-g, --list -settings List all available testing settings

-b BINARY_FILE , --binary -file BINARY_FILE

Binary file to test

-s {1,2,3,4}, --setting {1,2,3,4}

50

Testing setting number (1: Light , 2:

Recommended , 3: All , 4: Custom)

-i BINARY_SETTING , --binary -setting BINARY_SETTING

Binary representation of the tests to

run (only for Custom setting)

-d DIRECTORY , --directory DIRECTORY

Directory to store the results (will be

created if it doesn ’t exist)

5.4 Cryptoguard Tool Examples
The following examples demonstrate how to use the Cryptoguard tool in different scenarios.

5.4.1 Example 1: Custom Setting with Specific Tests
In this example, we start the Cryptoguard tool without any predefined user input, select the

’Custom’ setting, and specify which tests to run.

1. Start the Cryptoguard tool:

cryptoguard

2. The tool prompts for a binary file to test:

B I N A R Y F I L E

Please specify the path to the binary file to test: /

path/to/sample/sample.bin

3. The tool displays available testing settings and prompts for selection:

T E S T I N G S E T T I N G S

[1] Light (ENT , SmallCrush , PractRand)

[2] Recommended (Dieharder , ENT , PractRand , NIST

STS)

[3] All (Rabbit , SmallCrush , PractRand ,

Alphabit , Dieharder , NIST STS , ENT , Crush)

[4] Custom

Please select testing setting (number): 4

51

4. Since ’Custom’ is selected, the tool displays available testing suites and prompts for binary
input:

T E S T I N G S U I T E S

[1] ENT [2] PractRand

[3] SmallCrush [4] Crush

[5] Alphabit [6] Rabbit

[7] Dieharder [8] NIST STS

Enter a 0 or 1 to indicate whether or not the numbered

statistical

testing suite should be applied.

12345678

10100010

Here, the user specifies the binary string ’10100010’ to run the ENT, SmallCrush, Dieharder,
and NIST STS tests.

5. The tool prompts for the result directory:

R E S U L T D I R E C T O R Y

Please specify directory name to store results in (ENTER

for pwd): results_directory

6. The tool runs the selected testing suites and stores the results in the specified directory.

5.4.2 Example 2: All User-Defined Input with Recommended Setting
In this example, we provide all necessary inputs at the beginning using command-line argu-

ments, and the setting chosen is ’Recommended’.

1. Start the Cryptoguard tool with all inputs predefined:

cryptoguard -b path/to/binary/file.bin -s 2 -d

results_directory

2. The tool automatically selects the ’Recommended’ setting and runs the corresponding testing
suites (ENT, PractRand, Rabbit, Dieharder, and NIST STS).

3. The results are stored in the specified directory.

52

5.4.3 Example 3: User-Defined Input for Custom Setting with Specific Tests
In this example, we choose the ’Custom’ setting and specify which tests to run by providing a

binary representation.

1. Start the Cryptoguard tool with a custom binary setting:

cryptoguard -b path/to/binary/file.bin -s 4 -i 10101000

-d results_directory

2. The tool interprets the custom setting ’10101000’ as follows:

• ’1’: Run the ENT test

• ’0’: Skip the PractRand test

• ’1’: Run the SmallCrush test

• ’0’: Skip the Crush test

• ’1’: Run the Alphabit test

• ’0’: Skip the Rabbit test

• ’1’: Run the Dieharder test

• ’0’: Skip the NIST STS test

3. The results are stored in the specified directory.

5.4.4 Live Output of Cryptoguard
When running Cryptoguard, the tool provides live output to keep the user informed about the

progress of the testing process. Below is an example of what the live output looks like when
running the ENT testing suite:

Running the ENT testing suite ...

Elapsed time: 0:00:01.056307

This output indicates that the tool is currently executing the ENT testing suite. The elapsed time
is displayed continuously, showing how long the suite has been running. This feature allows the
user to monitor the progress in real-time and estimate the remaining time for the tests to complete.

Additionally, for other testing suites, the output follows a similar format, with the suite’s name
and the elapsed time being updated periodically until the suite completes its execution. This live
feedback is crucial for keeping users informed and ensuring transparency in the testing process.

53

5.4.5 Logging and Results Storage
Cryptoguard provides comprehensive logging and results storage capabilities to ensure that

users can review the outcomes of their tests in detail. For each testing suite that is run, a separate
log file is created in the user-specified results directory. The log files are named according to the
format

test_{testing_suite }.log

where testing suite is the name of the specific testing suite. This naming convention is used simi-
larly within [4] as well.

Each log file contains detailed output exclusively from the corresponding testing suite exe-
cutable, including results and any messages generated during the test runs. These files allow users
to perform in-depth analysis and keep records of test outcomes.

In addition to individual log files, Cryptoguard also creates a file named time in the results
directory. This file records the run times of each testing suite that was executed. The time file
provides a summary of how long each test took to complete, facilitating assessment of test per-
formance and efficiency. An example of a time file with every statistical testing suite ran looks
like:

ENT

real 1m29 .267s

user 1m27 .224s

sys 0m2.000s

PractRand

real 2m38 .069s

user 2m32 .939s

sys 0m4.843s

SmallCrush

real 0m31 .975s

user 0m30 .560s

sys 0m1.389s

Crush

real 140m54 .474s

user 135m20 .261s

sys 5m13 .720s

54

Alphabit

real 12m42 .504s

user 12m36 .140s

sys 0m6.040s

Rabbit

real 51m18 .468s

user 50m27 .754s

sys 0m43 .864s

Dieharder

real 7m56 .351s

user 6m53 .250s

sys 1m22 .658s

NIST

real 29m25 .487s

user 29m6.115s

sys 0m15 .650s

Overall, these logging and storage features enhance the usability and transparency of Crypto-
guard, enabling users to easily access and analyze their test results.

55

Chapter 6

Generation of Data and Statistical Testing
Results

After selecting the statistical testing suites, the random number generators, and developing the
consolidated statistical testing CLI tool, Cryptoguard, we needed to generate our random data and
use Cryptoguard for statistical analysis purposes.

6.1 Format of Random Data
In this aim we strove to answer the first question:

In what format should we generate the random data in?

Considering we developed Cryptoguard to handle files in binary format, the more obvious
answer would be to generate the random data samples in binary format. This observation would
be correct, and we opted to pursue generation of binary data for all three of our selected random
number generators. Provided below are also some advantages to generating data in binary format
rather than byte format:

• Compactness: Binary format (1 = 1) can be more compact than byte format (1 =
00000001), especially when dealing with large datasets (in which this research dealt
with). This efficiency in storage is advantageous in resource-constrained environments
or when handling massive amounts of data.

• Direct Representation: Binary format directly represents data as sequences of 0’s and 1’s,
aligning closely with how data is processed at the hardware level in computing systems. This
direct representation simplifies certain types of computations and analyses.

• Compatibility: Many statistical testing suites and cryptographic analysis tools are designed
to process data in binary format. Using binary format ensures compatibility and seamless
integration with these tools, avoiding unnecessary conversions or data transformations.

For the Python secrets RNG, the Wolfram Cloud RNG, and the Microsoft Sparse Simulator
RNG we were able to successfully generate random binary 0’s and 1’s and bit pack them into
bytes of data. Bit packing into a byte involves efficiently consolidating multiple individual bits
of data into a single byte. This method optimizes storage and processing efficiency by reducing
the number of storage units needed by a factor of 8. The pseudo-code for bit packing is provided
below:

56

Generate random bits

bits = generator(bit_length)

Initialize an empty byte array and variables for the current

byte and bit count

byte_data = []

current_byte = 0

bit_count = 0

Pack the bits into bytes

for each bit in bits:

if bit is 1:

set the (7 - bit_count)th bit of current_byte to 1

else if bit is 0:

do nothing (bit is already 0 by default)

increment bit_count by 1

if bit_count equals 8:

append current_byte to byte_data

reset current_byte to 0

reset bit_count to 0

If there are remaining bits , add the last byte

if bit_count > 0:

append current_byte to byte_data

Elaborating each step of this pseudo-code we can observe that:

1. First, we generate random bits using a generator function.

2. Next, we initialize an empty byte array and variables for the current byte and bit count.

3. Then, we iterate over each bit in the generated bits:

(a) If the bit is 1, we set the corresponding bit in the current byte to 1.

(b) If the bit is 0, we do nothing (bit is already 0 by default).

(c) We increment the bit count by 1.

(d) If the bit count reaches 8, we append the current byte to the byte array, reset the current
byte to 0, and reset the bit count to 0.

4. Finally, if there are any remaining bits after the loop, we append the last byte to the byte
array.

Every sample of binary data was processed through this bit packing code implemented in Python.

57

6.2 Sample Length of Random Data
In this aim we strove to answer the second question:

What should the generated size of each sample be?

Since our statistical testing data was intended for comparative analysis with the existing data
published in [4], we adopted the same random data generation methodology. Additionally, we
selected the same testing suites (with the addition of Crush) to maximize our comparative analysis
opportunities. Their methodology is as follows [4]:

• Generate 10 samples of random data from each of the selected RNGs.

• Each sample must be 10Gbit in length.

• Statistical testing suites must execute directly on each sample, except for NIST, where only
100Mbit of each sample is tested (100 bitstreams of 1,000,000 bits outlined in Section 5.2).

6.3 Data Generation and Testing Methodology
In this aim we strove to answer the third question:

How do we consistently generate and test each sample of data?

Both of the data generation and testing methodologies follow in close alignment with Quantin-
uum’s research methodologies [4] when they generated and tested a select number of RNGs, which
we used in comparative analysis in Chapter 7. Provided below are the methodologies broken down
for the reader:

6.3.1 Data Generation Methodology
Building on the previous sections that discussed the format and length of the data files, this

section focuses on our data generation process. We generated 10Gbit samples of random data
using the RNGs constructed from each of the three bases outlined in Chapter 4. To preface, all
data generation was conducted on a Windows Laptop 2 with 16GB RAM and a 1.90GHz Intel
i7-8650U processor, running the Windows 12 operating system. The procedure for each RNG is
outlined below:

Python secrets RNG: To generate data with this RNG, we created 100 sub-samples of 100,000,000
bits of binary data each, and concatenated them into a single 10Gbit data file. This approach
was chosen primarily to manage RAM usage effectively, as handling smaller sub-samples
prevents excessive memory consumption and potential system slowdowns. Additionally,
generating 100 sub-samples allowed us to monitor progress via an updated progress bar
showing the number of sub-samples generated. We also implemented a timer within the
generator to track how long it took for one sample to generate.

58

Wolfram RNG: Since the Wolfram RNG was constructed and executed within the Wolfram Cloud
environment, we had to work within the confines of Wolfram Cloud restrictions. The primary
restriction we navigated was the runtime limit of any executable code sequence. Operating
under a standard subscription (not premium), we decided to generate 50,000,000 bits of ran-
dom binary data per code execution, cycling through 200 code executions. We implemented
a timer within each code execution and summed all timer outputs to determine the total time
required to generate one sample of data.

Microsoft Sparse Simulator RNG For this RNG, we followed the same generation process as
the Python secrets RNG. We generated 100 sub-samples of 100,000,000 bits of binary data
each and concatenated them into a single 10Gbit data file. This method was chosen to
manage RAM usage effectively, as handling smaller sub-samples prevents excessive memory
consumption and potential system slowdowns. Additionally, by generating 100 sub-samples,
we were able to monitor the generation progress via an updated progress bar indicating the
number of sub-samples generated. We also included a timer within the generator to track the
time taken to generate one sample.

All ten generated samples of data from each of the RNGs were stored in a simple directory structure
as so:

data/

|

|-- secrets_rng/

| |-- secrets_0.bin

| |-- ...

| ’-- secrets_9.bin

|

|-- wolfram_rng/

| |-- wolfram_0.bin

| |-- ...

| ’-- wolfram_9.bin

|

’-- sparse_rng/

| |-- sparse_0.bin

| |-- ...

| ’-- sparse_9.bin

All of the generation timing data can be viewed in Appendix A.1.

59

6.3.2 Statistical Testing Methodology
The methodology elaborated on in this subsection focuses primarily on how we tested the

generated samples of random binary data using Cryptoguard. Because Cryptoguard was developed
for specialized use on a Linux kernel (i.e. Ubuntu or Debian distribution), we tested our data within
the same environment. To preface, all statistical testing was conducted on a Windows Laptop 2 with
16GB RAM and a 1.90GHz Intel i7-8650U processor, running the Ubuntu 20.04.6 LTS operating
system.

In order to obtain complete statistical testing coverage from all testing suites on our data sam-
ples, we decided to run Cryptoguard with the ”All” testing setting selected. Since each sample
was stored in an organized fashion, we were able to take advantage of for-loop logic within the
command line as well. Provided below was our command that we executed once per RNG:

for i in ‘seq 0 9‘; do cryptoguard -b data/{ rng_name}_rng/{

rng_name}_$i.bin -s 3 -d results /{ rng_name}_rng/{

rng_name}_$i; done

All of the statistical testing suite results are stored in a simple directory structure as so:

results/

|

|-- secrets_rng/

| |-- secrets_0

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

| | ’-- time

| |-- ...

| ’-- secrets_9

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

| | ’-- time

|

|-- wolfram_rng/

| |-- wolfram_0

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

| | ’-- time

| |-- ...

| ’-- wolfram_9

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

60

| | ’-- time

|

’-- sparse_rng/

| |-- sparse_0

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

| | ’-- time

| |-- ...

| ’-- sparse_9

| | |-- test_ent.log

| | |-- test_practrand.log

| | |-- ...

| | ’-- time

All of the statistical testing suite results can be viewed in Appendix A.2, and all statistical testing
suite runtimes can be viewed in Appendix A.3.

61

Chapter 7

Analysis

After obtaining the statistical testing results from the ten samples respective to each of the three
RNGs we selected, we were able to gain significant insight on how well these three RNGs perform
when tested beyond what is required by standardization bodies like NIST. Additionally, using the
statistical testing data provided by Quantinuum’s research [4], we were able to also conduct dis-
cerning comparative analysis between our selected PRNGs and two contemporary QRNGs, Intel
RDSEED and IDQ Quantis QRNG. It is important to note that all statistical testing data from the
Crush testing suite will not be included in the analysis. The primary reason for this is to stay con-
sistent with Quantinuum’s analysis in [4], as this keeps our comparative analysis seamless.

Outlined below is an itemized list of what statistical data we analyzed:

• RNG Generation

• Number of Failed Statistical Tests

• Number of Failed and Suspicious Statistical Tests

• Statistical Testing Suite Runtimes

• Selected PRNGs vs. IDQ Quantis QRNG

• Selected PRNGs vs. Intel RDSEED

62

7.1 RNG Generation Times
After generating each of the ten samples for each of the three RNGs we selected, we recorded

the generation times. RNG generation times give us immediate insight to how fast each RNG may

Figure 7.1: Column chart depicting the RNG generation times for each of the 10 samples of data
respective to each of the 3 selected RNGs.

produce random binary output. In Figure 7.1, the reader may visually understand how each RNG
performed when generating the ten random binary files in a side-by-side comparison. The vertical
axis shows the generation times of each sample respective to its RNG in seconds. In terms of
averages:

• Wolfram RNG averaged a total of 2 hours 39 minutes and 58 seconds to generate a sample
(9,598 seconds).

• Microsoft Sparse Simulator RNG averaged a total of 24 hours 1 minute and 2 seconds to
generate a sample (86,462 seconds).

• Python Secrets RNG averaged a total of 3 hours 42 minutes and 48 seconds to generate a
sample (13,368 seconds).

The main observation that can be made according to this data is that the Microsoft Sparse Sim-
ulator RNG took by far the most amount of time to generate the binary data, followed by the

63

Python Secrets RNG, and the fastest generator, the Wolfram RNG. The raw data can be viewed in
Appendix A.1.

64

7.2 Number of Failed Statistical Tests
Once we ran all of the statistical testing suites on every sample of data respective to their RNG,

we were able to make concise observations on how well each RNG performed. In Figure 7.2,

Figure 7.2: Column chart depicting the total number of failed tests over ten samples for each
statistical testing suite for each of the RNGs.

the reader may visually understand how many statistical tests each RNG failed for each testing
suite. The data that is displayed in this figure represented the total number of failed tests over the
ten samples of randomly generated binary data. We were able to determine just how well they
performed compared to each other as well as how well they performed against the standardized
NIST STS compared to the other non-standardized testing suites.

When comparing the performance of each RNG against the others, an initial observation re-
veals that the Python Secrets RNG exhibited the highest number of failed tests among the three.
Specifically, it failed one test each in NIST STS, ENT, and SmallCrush, and failed three tests in
both Alphabit and Rabbit, resulting in a total of nine failed tests. The Wolfram RNG followed
with the second highest number of failed tests, failing three tests in NIST STS and two in Rab-
bit, totaling five failed tests overall. In contrast, the Microsoft Sparse Simulator RNG performed
the best, with only one failed test in both NIST STS and Alphabit, and two failed tests in Rabbit,
totaling four failed tests. Based solely on ”pass” and ”fail” rates, the Microsoft Sparse Simulator
RNG emerges as the most successful performer in this comparison. The raw data can be viewed in
Appendix A.2.

65

7.3 Number of Failed and Suspicious Statistical Tests
Since both the Dieharder and PractRand statistical testing suites offer in-depth metrics on how

well a random binary file performs on their statistical tests, we were also able to analyze how
well each RNG performed by summing both the failed and ”suspicious” test results. Since only

Figure 7.3: Column chart depicting the total number of failed and suspicious tests over ten samples
for each statistical testing suite for each of the RNGs.

the Dieharder and PractRand statistical testing suites offered these additional metrics, Figure 7.3
displays the same numerical data as Figure 7.2 with the addition of the new ”suspicious” test results
data. Upon analyzing the figure alongside the numerical data, similar insights emerge regarding
the performance of each RNG. However, a closer examination focused strictly on the number of
suspicious tests highlights that the Microsoft Sparse Simulator shows the highest count, with eight
suspicious tests from Dieharder and five from PractRand, totaling thirteen suspicious tests. In
contrast, the Python Secrets RNG follows with six suspicious tests from Dieharder and three from
PractRand, totaling nine suspicious tests. The Wolfram RNG demonstrates the most favorable
performance, with four suspicious tests from Dieharder and three from PractRand, totaling seven
suspicious tests. The raw data can be viewed in Appendix A.2.

When considering the cumulative number of failed and suspicious tests across all testing suites,
a nuanced perspective emerges. The Python Secrets RNG registers the highest combined count of
failed and suspicious tests, totaling eighteen instances. The Microsoft Sparse Simulator follows

66

closely behind with fifteen combined failed or suspicious tests. In contrast, the Wolfram RNG
stands out as the most successful performer, with a combined total of twelve failed or suspicious
tests, indicating its strong performance in passing the majority of statistical tests with satisfactory
results.

At this point in the statistical analysis, two conclusions can be made regarding which RNG
performed the best out of the three. First, when evaluating based on the number of failed statistical
tests, the Microsoft Sparse Simulator RNG exhibited the best performance, with only four failed
tests in total—one each in NIST STS and Alphabit, and two in Rabbit. In contrast, the Wolfram
RNG had five failed tests, while the Python Secrets RNG had the highest number of failed tests at
nine. Therefore, based solely on the number of failed tests, the Microsoft Sparse Simulator RNG
is the clear winner.

Second, when considering the cumulative number of both failed and suspicious tests, the con-
clusions shift slightly. The Python Secrets RNG had the highest combined count, with eighteen
failed or suspicious tests in total. The Microsoft Sparse Simulator RNG followed with fifteen,
and the Wolfram RNG had the fewest combined failed or suspicious tests at twelve. While the
Microsoft Sparse Simulator RNG showed strong performance in terms of failed tests alone, the
Wolfram RNG emerged as the most successful overall when taking into account both failed and
suspicious tests, indicating its strong performance across a broader spectrum of statistical evalua-
tions.

67

7.4 Statistical Testing Suite Runtimes
The next section presents a column chart illustrating the runtimes for all the statistical testing

suites. The observations from Figure 7.4 indicate that the Wolfram RNG random data took the

Figure 7.4: Column chart depicting the average runtimes each statistical testing suite took to run
over the ten samples for each of the RNGs

longest time to run each testing suite, with average runtimes of 28 minutes and 42 seconds (1722
seconds) for NIST STS, 15 minutes and 44 seconds (944 seconds) for Dieharder, 2 minutes and
3 seconds (123 seconds) for ENT, 42 seconds for SmallCrush, 11 minutes and 4 seconds (664
seconds) for Alphabit, 51 minutes and 54 seconds (3114 seconds) for Rabbit, and 3 minutes and
32 seconds (212 seconds) for PractRand. The Microsoft Sparse Simulator RNG followed, with
average runtimes of 26 minutes and 59 seconds (1619 seconds) for NIST STS, 16 minutes and 51
seconds (1011 seconds) for Dieharder, 2 minutes and 1 second (121 seconds) for ENT, 37 seconds
for SmallCrush, 10 minutes and 48 seconds (648 seconds) for Alphabit, 45 minutes and 30 seconds
(2730 seconds) for Rabbit, and 3 minutes and 15 seconds (195 seconds) for PractRand. The Python
Secrets RNG exhibited the shortest runtimes, averaging 24 minutes and 42 seconds (1482 seconds)
for NIST STS, 12 minutes and 58 seconds (778 seconds) for Dieharder, 1 minute and 52 seconds
(112 seconds) for ENT, 38 seconds for SmallCrush, 9 minutes and 55 seconds (595 seconds) for
Alphabit, 43 minutes and 45 seconds (2625 seconds) for Rabbit, and 3 minutes and 14 seconds
(194 seconds) for PractRand.

68

This difference in runtimes may provide insights into the computational efficiency and com-
plexity of the generated random sequences. Longer runtimes for the Wolfram RNG and Microsoft
Sparse Simulator RNG could suggest that their sequences exhibit more complex patterns or struc-
tures, requiring more processing power and time to analyze. In contrast, the shorter runtime for the
Python Secrets RNG might indicate simpler or more straightforward sequences. However, these
runtimes do not necessarily correlate directly with the quality or robustness of the RNGs. While
the Python Secrets RNG had the shortest runtimes, it also exhibited the highest number of failed
tests, suggesting that shorter runtimes might reflect less thoroughness in randomness. Conversely,
the Wolfram RNG, despite its longer runtimes, demonstrated fewer combined failed and suspicious
tests, indicating better overall performance. Therefore, the runtime data adds another layer to our
understanding but does not solely determine the best performer. The balance between runtime and
the quality of randomness must be considered when determining this conclusion. The raw data can
be viewed in Appendix A.3.

69

7.5 Selected PRNGs vs. IDQ Quantis

Figure 7.5: Column chart depicting the total number of failed tests over ten samples for our three
selected PRNGs and IDQ Quantis RNG. This data was gathered from [4] and serves vital incite on
how well our selected PRNGs perform when compared to this QRNG.

Figure 7.5 presents the total number of failed tests across the statistical testing suites for each
PRNG, now including the data for IDQ Quantis RNG as reported in the research by Quantinuum
[4]. Two significant observations can be made regarding their comparative performance. First,
when focusing solely on the standardized NIST STS, the IDQ Quantis RNG demonstrates su-
perior performance, with zero failed tests across ten samples. However, when considering the
non-standardized testing suites, the IDQ Quantis RNG shows markedly poorer performance, with
ten failed tests in ENT, thirty-four in Alphabit, forty-nine in Rabbit, and five in PractRand, culmi-
nating in a total of ninety-eight failed tests. Thus, although the IDQ Quantis RNG excels in the
standardized NIST STS, it performs the worst overall when evaluated against the broader range of
non-standardized testing suites.

70

7.6 Selected PRNGs vs. Intel RDSEED

Figure 7.6: Column chart depicting the total number of failed tests over ten samples for our three
selected PRNGs and Intel RDSEED. This data was gathered from [4] and serves vital incite on
how well our selected PRNGs perform when compared to this QRNG.

Figure 7.6 presents the total number of failed tests across the statistical testing suites for each
PRNG, now including the data for the QRNG RDSEED provided in the research by Quantinuum
[4]. Two significant observations can be made regarding their comparative performance. First,
when focusing solely on the standardized NIST STS, RDSEED demonstrates exceptional perfor-
mance, with zero failed tests across ten samples. Additionally, in the non-standardized testing
suites, RDSEED maintains its high performance, failing only one test in SmallCrush and two in
Rabbit, for a total of three failed tests. Therefore, RDSEED not only excels in the standardized
NIST STS but also performs robustly across the broader range of non-standardized testing suites,
indicating its overall strong reliability and effectiveness as a QRNG.

When considering which PRNGs contend with this high-performing QRNG, the Microsoft
Sparse Simulator RNG and the Wolfram RNG are notable. The Microsoft Sparse Simulator RNG,
with a total of four failed tests, and the Wolfram RNG, with a total of five failed tests, both demon-
strate strong performance, though not quite at the level of RDSEED. Thus, while these PRNGs
show competitive results, RDSEED’s performance stands out as the best among the RNGs evalu-
ated.

71

Chapter 8

Conclusion and Future Work

This thesis has presented a few notable contributions to the advancements in statistical
testing of randomly generated binary data. With the development of Cryptoguard, a consolidated
statistical testing tool used to increase efficiency and testing coverage of randomly generated binary
data, we have shown that broader statistical testing can be very beneficial in granting more insight
into just how random arbitrary binary data is. Cryptoguard can be viewed at https://github.
com/jnaizer/cryptoguard.

Our comprehensive analysis of our selected PRNGs and existing testing data on QRNGs from
[4]’s publication, across a range of standardized and non-standardized statistical testing suites, re-
vealed significant fi ndings. The Microsoft Sparse Simulator RNG and the Wolfram RNG demon-
strated robust performance with relatively low numbers of failed tests, indicating strong relia-
bility and effectiveness in generating random sequences. However, when performing compara-
tive analysis on the RDSEED QRNG with our PRNGs, RDSEED emerged as the standout per-
former, excelling in both standardized (NIST STS) and non-standardized testing suites with an
exceptionally low total of three failed tests. This highlights RDSEED’s superior capability in
generating high-quality random numbers, making it a compelling choice for applications requir-
ing stringent randomness criteria. All thesis statistical results can be viewed at https: //
github.com/jnaizer/thesis_research_results. Future work will focus on several key
areas to build upon the development of Cryptoguard and findings of this thesis:

• Customizable NIST STS Input: Adding a new feature within Cryptoguard that allows the
user to customize which options within the NIST STS are pre-selected. This would increase
the flexibility and number of user-applications for the standardized testing suite within Cryp-
toguard.

• Implementation of Additional Testing Suites: Expand the scope of testing by incorporating
more statistical suites into Cryptoguard, thereby enhancing the understanding of arbitrary
RNGs’ performance characteristics.

• Broader Statistical Testing: Apply a wider range of statistical testing suites to our selected
RNGs to conduct a more comprehensive analysis of their performance across other testing
suites.

• Extended Comparative Analysis: Conduct comparative analyses of the selected RNGs against
other contemporary PRNGs and QRNGs to further benchmark their performances and iden-
tify potential areas for improvement.

72

https://github.com/jnaizer/cryptoguard
https://github.com/jnaizer/cryptoguard
https://github.com/jnaizer/thesis_research_results
https://github.com/jnaizer/thesis_research_results

Appendix A

Random Number Generator Analysis

This chapter displays all of the collected raw data from each of our selected random number
generators when tested with all of our selected statistical testing suites.

A.1 Random Number Generator Generation Times
All raw generation times were collected within our data generation environment via imple-

mented timers within each RNG data generation code.

RNG Secrets Wolfram MSS
Sample 1 3h46m40s 2h30m53s 23h14m27s
Sample 2 3h36m22s 2h36m3s 24h05m18s
Sample 3 3h45m15s 2h50m40s 24h42m59s
Sample 4 3h52m04s 2h30m15s 23h53m12s
Sample 5 3h47m55s 2h51m13s 24h21m36s
Sample 6 3h41m19s 2h29m54s 23h29m04s
Sample 7 3h31m53s 2h41m01s 24h17m08s
Sample 8 3h34m27s 2h38m20s 24h56m45s
Sample 9 3h40m11s 2h43m34s 23h45m21s

Sample 10 3h48m58 2h49m12s 23h02m50s
Average 3h42m48s 2h39m58s 24h01m02s

Table A.1: Random Number Generator Generation Times for Secrets RNG, Wolfram RNG, and
Microsoft Sparse Simulator RNG over their respective 10 samples each. The time generation data
is structured in hours (h) minutes (m) seconds (s).

73

A.2 Statistical Testing Suite Results
Provided below is the raw data displaying the number of failed and suspicious tests for each

of the ten samples for each of the three random number generators. Each statistical testing suite is
labelled with its corresponding total number of total statistical tests it ran. For example, the ENT
statistical testing suite executed a total of 6 statistical tests on each sample, denoted by the ”(6)”.
The number of failed tests for each testing suite are then totalled at the bottom, signifying the total
number of failed tests for that specific testing suite across the specific RNG samples.

RNG
NIST
(15)

Dieharder
(18)

ENT
(6)

SmallCrush
(15)

Crush
(144)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

Secrets 1 0 0 (1) 0 0 6 1 0 0 (0)
Secrets 2 1 0 (1) 0 0 8 0 0 0 (1)
Secrets 3 0 0 (0) 0 0 5 0 0 0 (0)
Secrets 4 0 0 (1) 1 1 9 0 1 0 (0)
Secrets 5 0 0 (0) 0 0 8 2 1 0 (0)
Secrets 6 0 0 (2) 0 0 7 0 0 0 (2)
Secrets 7 0 0 (0) 0 0 6 0 0 0 (0)
Secrets 8 0 0 (1) 0 0 7 0 1 0 (0)
Secrets 9 0 0 (0) 0 0 7 0 0 0 (0)

Secrets 10 0 0 (0) 0 0 7 0 0 0 (0)
Total 1 0 (6) 1 1 70 3 3 0 (3)

Table A.2: Total number of failed tests for each of the ten samples for the Python Secrets RNG.
For the testing suites that offer additional metrics specifying any ”suspicious” tests (Dieharder and
PractRand), the total ”suspicious” tests for each sample are denoted by parenthesis.

74

RNG
NIST
(15)

Dieharder
(18)

ENT
(6)

SmallCrush
(15)

Crush
(144)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

Wolfram 1 0 0 (0) 0 0 18 0 1 0 (0)
Wolfram 2 0 0 (0) 0 0 7 0 0 0 (1)
Wolfram 3 0 0 (0) 0 0 6 0 0 0 (0)
Wolfram 4 1 0 (1) 0 0 7 0 0 0 (0)
Wolfram 5 0 0 (1) 0 0 7 0 0 0 (1)
Wolfram 6 0 0 (0) 0 0 6 0 0 0 (1)
Wolfram 7 0 0 (0) 0 0 8 0 0 0 (0)
Wolfram 8 0 0 (0) 0 0 6 0 0 0 (0)
Wolfram 9 1 0 (2) 0 0 7 0 1 0 (0)
Wolfram 10 1 0 (0) 0 0 6 0 0 0 (0)

Total 3 0 (4) 0 0 78 0 2 0 (3)

Table A.3: Total number of failed tests for each of the ten samples for the Wolfram RNG. For
the testing suites that offer additional metrics specifying any ”suspicious” tests (Dieharder and
PractRand), the total ”suspicious” tests for each sample are denoted by parenthesis.

RNG
NIST
(15)

Dieharder
(18)

ENT
(6)

SmallCrush
(15)

Crush
(144)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

MSS 1 0 0 (2) 0 0 6 1 0 0 (0)
MSS 2 0 0 (0) 0 0 8 0 0 0 (0)
MSS 3 0 0 (0) 0 0 8 0 1 0 (1)
MSS 4 1 0 (1) 0 0 9 0 0 0 (0)
MSS 5 0 0 (0) 0 0 5 0 0 0 (0)
MSS 6 0 0 (0) 0 0 8 0 1 0 (1)
MSS 7 0 0 (1) 0 0 7 0 0 0 (1)
MSS 8 0 0 (2) 0 0 7 0 0 0 (1)
MSS 9 0 0 (0) 0 0 7 0 0 0 (1)

MSS 10 0 0 (2) 0 0 6 0 0 0 (0)
Total 1 0 (8) 0 0 71 1 2 0 (5)

Table A.4: Total number of failed tests for each of the ten samples for the Microsoft Sparse Sim-
ulator RNG. For the testing suites that offer additional metrics specifying any ”suspicious” tests
(Dieharder and PractRand), the total ”suspicious” tests for each sample are denoted by parenthesis.

75

A.3 Statistical Testing Suite Runtimes
All raw statistical testing times were collected within our statistical testing environment via

implemented timers within each statistical testing suite script.

RNG NIST Dieharder ENT
Small
Crush Crush Alphabit Rabbit PractRand

Secrets
1 22m20s 15m29s 1m47s 0m34s 118m44s 9m15s 38m28s 2m47s

Secrets
2 31m49s 8m37s 1m35s 0m34s 121m43s 9m35s 45m36s 3m0s

Secrets
3 24m7s 7m17s 2m34s 0m48s 153m14s 10m31s 45m56s 4m19s

Secrets
4 23m56s 16m29s 1m44s 0m37s 128m45s 9m37s 43m9s 3m13s

Secrets
5 24m38s 16m51s 1m41s 0m37s 130m38s 10m10s 44m35s 3m1s

Secrets
6 25m2s 17m24s 1m48s 0m37s 134m6s 10m7s 43m41s 3m18s

Secrets
7 24m15s 17m33s 1m57s 0m40s 140m19s 11m0s 48m52s 3m21s

Secrets
8 24m19s 17m25s 1m54s 0m38s 141m1s 9m44s 44m16s 3m19s

Secrets
9 24m15s 6m28s 1m48s 0m34s 133m0s 9m58s 44m4s 3m14s

Secrets
10 22m20s 6m16s 1m57s 0m38s 117m58s 9m14s 38m54s 2m47s

Average 24m42s 12m58s 1m52s 0m38s 131m53s 9m55s 43m45s 3m14s

Table A.5: Statistical Testing Suite Runtimes for the Secrets RNG. The testing suite runtimes are
structured in minutes (m) seconds (s).

76

RNG NIST Dieharder ENT
Small
Crush Crush Alphabit Rabbit PractRand

Wolfram
1 35m5s 23m22s 1m33s 0m37s 147m22s 13m15s 53m14s 3m30s

Wolfram
2 33m19s 21m56s 2m38s 0m54s 168m10s 13m30s 54m9s 4m19s

Wolfram
3 33m50s 22m33s 2m28s 0m54s 168m57s 13m52s 56m13s 4m11s

Wolfram
4 27m3s 18m40s 2m31s 0m51s 168m55s 13m56s 53m20s 4m13s

Wolfram
5 22m1s 15m30s 1m52s 0m35s 120m38s 8m55s 38m11s 2m55s

Wolfram
6 22m6s 6m6s 1m43s 0m35s 119m53s 8m58s 38m28s 2m49s

Wolfram
7 22m8s 15m30s 1m36s 0m35s 120m8s 8m59s 38m56s 2m46s

Wolfram
8 30m39s 8m2s 2m9s 0m43s 161m32s 13m23s 52m48s 3m32s

Wolfram
9 36m6s 9m51s 2m32s 0m45s 159m10s 13m2s 53m17s 3m55s

Wolfram
10 23m6s 15m59s 1m37s 0m38s 125m17s 9m34s 40m26s 3m19s

Average 28m42s 15m44s 2m3s 0m42s 145m54s 11m4s 51m54s 3m32s

Table A.6: Statistical Testing Suite Runtimes for the Wolfram RNG. The time generation data is
structured in hours (h) minutes (m) seconds (s).

77

RNG NIST Dieharder ENT
Small
Crush Crush Alphabit Rabbit PractRand

MSS
1 28m14s 23m48s 1m33s 0m35s 142m1s 12m30s 50m24s 2m53s

MSS
2 27m28s 15m51s 2m42s 0m34s 118m49s 9m4s 40m9s 2m47s

MSS
3 21m52s 15m43s 1m46s 0m35s 121m7s 9m9s 39m21s 2m56s

MSS
4 21m22s 15m38s 1m51s 0m35s 122m32s 9m16s 38m50s 2m49s

MSS
5 21m7s 18m44s 1m47s 0m35s 123m38s 9m6s 51m53s 2m49s

MSS
6 21m22s 16m0s 2m56s 0m43s 121m56s 9m8s 39m28s 4m11s

MSS
7 21m51s 15m28s 2m2s 0m33s 116m40s 8m45s 38m14s 2m40s

MSS
8 30m16s 18m57s 1m41s 0m43s 154m49s 12m45s 50m26s 4m0s

MSS
9 30m32s 20m31s 2m36s 0m45s 162m5s 14m0s 53m20s 4m9s

MSS
10 29m25s 7m56s 1m29s 0m32s 140m43s 12m43s 51m18s 2m38s

Average 26m59s 16m51s 2m1s 0m37s 134m17s 10m48s 45m30s 3m15s

Table A.7: Statistical Testing Suite Runtimes for the Microsoft Sparse Simulator RNG. The time
generation data is structured in hours (h) minutes (m) seconds (s).

78

References

[1] L E Bassham, A L Rukhin, J Soto, J R Nechvatal, M E Smid, E B Barker, S D Leigh, M Lev-
enson, M Vangel, D L Banks, and et al. A statistical test suite for random and pseudorandom
number generators for cryptographic applications. A statistical test suite for random and
pseudorandom number generators for cryptographic applications, 2010.

[2] Riccardo Cantoro, Nikolaos I. Deligiannis, Matteo Sonza Reorda, Marcello Traiola, and
Emanuele Valea. Evaluating the code encryption effects on memory fault resilience. 2020
IEEE Latin-American Test Symposium (LATS), Mar 2020.

[3] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number gen-
erators. Reviews of Modern Physics, 89(1), 2017.

[4] Cameron Foreman, Richie Yeung, and Florian J Curchod. Statistical testing of random
number generators and their improvement using randomness extraction. arXiv preprint
arXiv:2403.18716, 2024.

[5] Michael Tabb, Jeffery DelViscio, and Andrea Gawrylewski. What is ’the cloud’ and how
does it pervade our lives?, Dec 2021.

[6] Timothy Hollebeek. How to secure quantum computing in the cloud, Nov 2020.

[7] Aryya Paul. An introduction to cryptographic algorithms, Aug 2018.

[8] Itan Barmes. The quantum threat to cyber security, Sep 2020.

[9] Gui Alvarenga. What is the shared responsibility model? CrowdStrike, Nov 2022.

[10] Gartner. Gartner forecasts worldwide public cloud end-user spending to reach nearly $600
billion in 2023. Gartner, Oct 2022.

[11] Logan McCoy. Microsoft azure explained: What it is and why it matters, Jan 2023.

[12] Microsoft. Azure quantum - quantum cloud computing service: Microsoft azure, 2024.

[13] Microsoft. Virtual machines (vms) for linux and windows: Microsoft azure, 2023.

[14] Rupal Purohit. Microsoft azure storage account: A complete overview, Jun 2023.

[15] Mahesh Chand. What is azure functions: A beginner’s tutorial, Jan 2023.

79

[16] Anthony Annunziata, Jerry Chow, Jay Gambetta, and Joe Raffa. Coming soon to your busi-
ness: Quantum computing. IBM, 2018.

[17] Carolyn Mathas. The basics of quantum computing. EDN, Aug 2019.

[18] IBM Quantum, 2021.

[19] Brett Daniel. Symmetric vs. asymmetric encryption: What’s the difference? Trenton Systems,
May 2021.

[20] Cremarc. The importance of randomness in a quantum world, Apr 2022.

[21] Sudip Sengupta. Stream cipher vs. block cipher, Feb 2022.

[22] Shawn Wang. The difference in five modes in the aes encryption algorithm, Aug 2019.

[23] Subhasish Sarkar, 2020.

[24] Casey Crane. What is a message authentication code (mac)?, Feb 2023.

[25] John Carl Villanueva. What is hmac and how does it secure file transfers?, Dec 2022.

[26] Bill Buchanan. I know hmac, but what’s cmac?, Oct 2021.

[27] Neeru Mago. Pmac: A fully parallelizable mac algorithm. Apeejay Journal of Computer
Science and Applications, 3:36–44, Jan 2015.

[28] BrainKart. Authenticated encryption: Ccm and gcm.

[29] M J Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode
(gcm) and gmac. Recommendation for block cipher modes of operation:, 2007.

[30] Suhas Hegde. Cloud cryptography: A reliable solution to secure your cloud. Analytics
Vidhya, Oct 2022.

[31] Cloud Security Alliance. Cloud key management, 2023.

[32] Cloudflare. What is multitenancy? — multitenant architecture, 2023.

[33] Mehdi Ebady Manaa and Zuhair Gheni Hadi. Scalable and robust cryptography approach
using cloud computing. Journal of Discrete Mathematical Sciences and Cryptography,
23(7):1439–1445, 2020.

[34] Samuel Jaques and Thomas Häner. Leveraging state sparsity for more efficient quantum
simulations. ACM Transactions on Quantum Computing, 3(3):1–17, Jun 2022.

[35] Microsoft. Introduction to q# & quantum development kit - azure quantum, 2024.

[36] Wolfram. Wolfram cloud: Integrated computation, knowledge, deployment, 2024.

80

[37] California Institute of Technology. How will quantum technologies change cryptography?
Caltech Science Exchange, 2023.

[38] Marek Sýs and Zdeněk Řı́ha. Security, privacy, and applied cryptography engineering. Faster
Randomness Testing with the NIST Statistical Test Suite, 2014.

[39] Darren Hurley-Smith and Julio Hernandez-Castro. Certifiably biased: An in-depth analysis
of a common criteria eal4+ certified trng. IEEE Transactions on Information Forensics and
Security, 13(4):1031–1041, 2018.

[40] Chris Doty-Humphrey. Practrand (practically random), 2016.

[41] Pierre L’Ecuyer and Richard Simard. Testu01. ACM Transactions on Mathematical Software,
33(4):1–40, Aug 2007.

[42] Robert G Brown. Dieharder: A random number test suite, 2024.

[43] Leilei Huang, Hongyi Zhou, Kai Feng, and Chongjin Xie. Quantum random number cloud
platform. npj Quantum Information, 7(1), 2021.

[44] Marcin M. Jacak, Piotr Jóźwiak, Jakub Niemczuk, and Janusz E. Jacak. Quantum generators
of random numbers. Scientific Reports, 11(1), Aug 2021.

[45] John Walker. Ent, Jan 2008.

[46] Lara Ortiz-Martin, Pablo Picazo-Sanchez, Pedro Peris-Lopez, and Juan Tapiador. Heartbeats
do not make good pseudo-random number generators: An analysis of the randomness of
inter-pulse intervals. Entropy, 20(2):94, Jan 2018.

[47] Meng Xiannong. Gap test, Oct 2002.

[48] Python Software Foundation. Secrets - generate secure random numbers for managing se-
crets, 2024.

[49] Swathi Arun. The secrets module of python, Sep 2021.

[50] Microsoft. Azure Quantum Development Kit.

[51] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: En-
abling Scalable Quantum Computing and Development with a High-level DSL. In Proceed-
ings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018. ACM,
February 2018.

81

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions

	Background & Related Work
	The Cloud
	Cloud Computing
	Shared Responsibility Model
	Microsoft Azure

	Quantum Computing
	Properties of Quantum Mechanics
	Quantum Algorithms

	Cryptography
	Pseudo-Random Number Generators
	Encryption Techniques
	Message Authentication Codes
	Authenticated Encryption

	Cloud Security
	Cloud Security Challenges
	Cloud Computing Resources

	Quantum Cryptography
	Quantum Random Number Generators
	Post-Processing
	Statistical Testing Suites

	Cloud Computing with Quantum Cryptography
	Related Work
	Cloud-based Quantum Random Number Generator System
	Comparative Study of Quantum Random Number Generators
	Enhancing Random Number Generator Verification

	Overview
	Aim 1: Select Statistical Testing Suites and Random Number Generators
	Aim 2: Develop Consolidated Statistical Testing Tool
	Aim 3: Generate Data and Statistical Testing Results

	Selection of Statistical Testing Suites and Random Number Generators
	Statistical Testing Suite Selection
	ENT
	PractRand
	TestU01
	Dieharder
	NIST STS

	Random Number Generator Selection
	Python Secrets RNG
	Wolfram Language RNG
	Microsoft Sparse Simulator RNG

	Development of Consolidated Statistical Testing Tool
	Cryptoguard Architecture
	Selection of Development Environment
	Installation of Selected Statistical Testing Suites
	Accessibility of Cryptoguard

	Cryptoguard Ease-of-Use
	Detailed Steps Explanation
	Handling Binary File Input
	Handling Setting Input
	Handling Custom Setting Input
	Handling Directory Input
	Running Testing Suites
	Handling Command-Line Arguments

	Cryptoguard Tool Examples
	Example 1: Custom Setting with Specific Tests
	Example 2: All User-Defined Input with Recommended Setting
	Example 3: User-Defined Input for Custom Setting with Specific Tests
	Live Output of Cryptoguard
	Logging and Results Storage

	Generation of Data and Statistical Testing Results
	Format of Random Data
	Sample Length of Random Data
	Data Generation and Testing Methodology
	Data Generation Methodology
	Statistical Testing Methodology

	Analysis
	RNG Generation Times
	Number of Failed Statistical Tests
	Number of Failed and Suspicious Statistical Tests
	Statistical Testing Suite Runtimes
	Selected PRNGs vs. IDQ Quantis
	Selected PRNGs vs. Intel RDSEED

	Conclusion and Future Work
	Random Number Generator Analysis
	Random Number Generator Generation Times
	Statistical Testing Suite Results
	Statistical Testing Suite Runtimes

	References

